WorldWideScience

Sample records for superconducting field coil

  1. A current limiter with superconducting coil for magnetic field shielding

    Science.gov (United States)

    Kaiho, K.; Yamaguchi, H.; Arai, K.; Umeda, M.; Yamaguchi, M.; Kataoka, T.

    2001-05-01

    The magnetic shield type superconducting fault current limiter have been built and successfully tested in ABB corporate research and so on. The device is essentially a transformer in which the secondary winding is the superconducting tube. However, due to the large AC losses and brittleness of the superconducting bulk tube, they have not yet entered market. A current limiter with superconducting coil for the magnetic field shielding is considered. By using the superconducting coil made by the multi-filamentary high Tc superconductor instead of the superconducting bulk tube, the AC losses can be reduced due to the reduced superconductor thickness and the brittleness of the bulk tube can be avoidable. This paper presents a preliminary consideration of the magnetic shield type superconducting fault current limiter with superconducting coil as secondary winding and their AC losses in comparison to that of superconducting bulk in 50 Hz operation.

  2. Analysis of mechanical characteristics of superconducting field coil for 17 MW class high temperature superconducting synchronous motor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. H.; Park, S. I.; Im, S. H.; Kim, H. M. [Jeju National University, Jeju (Korea, Republic of)

    2013-09-15

    Superconducting field coils using a high-temperature superconducting (HTS) wires with high current density generate high magnetic field of 2 to 5 [T] and electromagnetic force (Lorentz force) acting on the superconducting field coils also become a very strong from the point of view of a mechanical characteristics. Because mechanical stress caused by these powerful electromagnetic force is one of the factors which worsens the critical current performance and structural characteristics of HTS wire, the mechanical stress analysis should be performed when designing the superconducting field coils. In this paper, as part of structural design of superconducting field coils for 17 MW class superconducting ship propulsion motor, mechanical stress acting on the superconducting field coils was analyzed and structural safety was also determined by the coupling analysis system that is consists of commercial electromagnetic field analysis program and structural analysis program.

  3. Superconducting FCL using a combined inducted magnetic field trigger and shunt coil

    Science.gov (United States)

    Tekletsadik, Kasegn D.

    2007-10-16

    A single trigger/shunt coil is utilized for combined induced magnetic field triggering and shunt impedance. The single coil connected in parallel with the high temperature superconducting element, is designed to generate a circulating current in the parallel circuit during normal operation to aid triggering the high temperature superconducting element to quench in the event of a fault. The circulating current is generated by an induced voltage in the coil, when the system current flows through the high temperature superconducting element.

  4. Protective link for superconducting coil

    Science.gov (United States)

    Umans, Stephen D.

    2009-12-08

    A superconducting coil system includes a superconducting coil and a protective link of superconducting material coupled to the superconducting coil. A rotating machine includes first and second coils and a protective link of superconducting material. The second coil is operable to rotate with respect to the first coil. One of the first and second coils is a superconducting coil. The protective link is coupled to the superconducting coil.

  5. Superconducting toroidal field coil current densities for the TFCX

    Energy Technology Data Exchange (ETDEWEB)

    Kalsi, S.S.; Hooper, R.J.

    1985-04-01

    A major goal of the Tokamak Fusion Core Experiment (TFCX) study was to minimize the size of the device and achieve lowest cost. Two key factors influencing the size of the device employing superconducting magnets are toroidal field (TF) winding current density and its nuclear heat load withstand capability. Lower winding current density requires larger radial build of the winding pack. Likewise, lower allowable nuclear heating in the winding requires larger shield thickness between the plasma and coil. In order to achieve a low-cost device, it is essential to maximize the winding's current density and nuclear heating withhstand capability. To meet the above objective, the TFCX design specification adopted as goals a nominal winding current density of 3500 A/cm/sup 2/ with 10-T peak field at the winding and peak nuclear heat load limits of 1 MW/cm/sup 3/ for the nominal design and 50 MW/cm/sup 3/ for an advanced design. This study developed justification for these current density and nuclear heat load limits.

  6. Fabrication of superconducting tunnel junctions with embedded coil for applying magnetic field

    Science.gov (United States)

    Yamaguchi, Kenji; Nakagawa, Hiroshi; Aoyagi, Masahiro; Naruse, Masato; Myoren, Hiroaki; Taino, Tohru

    2016-11-01

    We have proposed and demonstrated a superconducting tunnel junction (STJ) with an embedded coil for applying a magnetic field. The STJ was fabricated on the coil, which was embedded in a Si substrate. The coil in the Si substrate consists of superconducting microstrip lines and applies a magnetic field to the STJ to suppress the dc Josephson current. The embedded coil was designed with a line and space of 3 μm and a thickness of 120 nm. To planarize the coil, we employed chemical mechanical polishing (CMP) in our fabrication process. In this STJ, the maximum current of the embedded coil was 28 mA, which corresponded to the maximum magnetic field of 11.76 mT.

  7. Tokamak Fusion Core Experiment: design studies based on superconducting and hybrid toroidal field coils. Design overview

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, C.A. (ed.)

    1984-10-01

    This document is a design overview that describes the scoping studies and preconceptual design effort performed in FY 1983 on the Tokamak Fusion Core Experiment (TFCX) class of device. These studies focussed on devices with all-superconducting toroidal field (TF) coils and on devices with superconducting TF coils supplemented with copper TF coil inserts located in the bore of the TF coils in the shield region. Each class of device is designed to satisfy the mission of ignition and long pulse equilibrium burn. Typical design parameters are: major radius = 3.75 m, minor radius = 1.0 m, field on axis = 4.5 T, plasma current = 7.0 MA. These designs relay on lower hybrid (LHRH) current rampup and heating to ignition using ion cyclotron range of frequency (ICRF). A pumped limiter has been assumed for impurity control. The present document is a design overview; a more detailed design description is contained in a companion document.

  8. Quench absorption coils: a quench protection concept for high-field superconducting accelerator magnets

    Science.gov (United States)

    Mentink, M.; Salmi, T.

    2017-06-01

    A quench protection concept based on coupled secondary coils is studied for inductively transferring energy out of a quenching superconducting dipole and thus limiting the peak hotspot temperature. So-called ‘quench absorption coils’ are placed in close proximity to the superconducting coils and are connected in series with a diode for the purpose of preventing current transformation during regular operation. During a quench, current is then transformed into the quench absorption coils so that a significant fraction of the stored magnetic energy is dissipated in the these coils. Numerical calculations are performed to determine the impact of such a concept and to evaluate the dimensions of the quench absorption coils needed to obtain significant benefits. A previously constructed 15 T Nb3Sn block coil is taken as a reference layout. Finite-element calculations are used to determine the combined inductive and thermal response of this system and these calculations are validated with a numerical model using an adiabatic approximation. The calculation results indicate that during a quench the presence of the quench absorption coils reduces the energy dissipated in the superconducting coils by 45% and reduces the hotspot temperature by over 100 K. In addition, the peak resistive voltage over the superconducting coils is significantly reduced. This suggests that this concept may prove useful for magnet designs in which the hotspot temperature is a design driver.

  9. Superconducting Coil of Po Dipole

    CERN Multimedia

    1983-01-01

    The Po superconducting dipole was built as a prototype beam transport magnet for the SPS extracted proton beam P0. Its main features were: coil aperture 72 mm, length 5 m, room-temperature yoke, NbTi cable conductor impregnated with solder, nominal field 4.2 T at 4.7 K (87% of critical field). It reached its nominal field without any quench.After this successful test up to its nominal field of 4.2 T, the power was not raised to reach a quench. The magnet was not installed in a beam and had no other further use. Nevertheless its construction provided knowledges and experience which became useful in the design and construction of the LHC magnets. The photo shows a detail of the inner layer winding before superposing the outer layer to form the complete coil of a pole. Worth noticing is the interleaved glass-epoxy sheet (white) with grooved channels for the flow of cooling helium. See also 8211532X.

  10. Field quality of 1.5 m long conduction cooled superconducting undulator coils with 20 mm period length

    Science.gov (United States)

    Casalbuoni, S.; Glamann, N.; Grau, A. W.; Holubek, T.; Saez de Jauregui, D.; Boffo, C.; Gerhard, Th A.; Turenne, M.; Walter, W.

    2017-07-01

    The Institute for Beam Physics and Technology (IBPT) at the Karlsruhe Institute of Technology (KIT) and the industrial partner Babcock Noell GmbH (BNG) are collaborating since 2007 on the development of superconducting undulators both for ANKA and low emittance light sources. The first full length device with 15 mm period length has been successfully tested in the ANKA storage ring for one year. The next superconducting undulator has 20 mm period length (SCU20) and is also planned to be installed in the accelerator test facility and synchrotron light source ANKA. The SCU20 1.5 m long coils have been characterized in a conduction cooled horizontal test facility developed at KIT IBPT. Here we present the local magnetic field and field integral measurements, as well as their analysis including the expected photon spectrum.

  11. A liquid-helium-free superconducting coil system forming a flat minimum-magnetic-field distribution of an electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Ken-ichi, E-mail: yoshida.kennichi71@jaea.go.jp; Nara, Takayuki; Saitoh, Yuichi; Yokota, Watalu [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2014-02-15

    A flat distribution of the minimum magnetic field (flat-B{sub min}) of an electron cyclotron resonance ion source (ECRIS) is expected to perform better in highly charged ion production than classical B{sub min}. To form a flat-B{sub min} structure with a liquid helium-free superconducting device, a coil system of seven coils with four current leads has been designed. The lead number was reduced by connecting the plural coils in series to maintain the flat-B{sub min} structure even when the coil currents are changed for adjustment. This coil system can be operated with a helium-free cryostat, since the estimation of heat from the leads to the coils is nearly equivalent to the existing superconducting ECRIS of a similar type.

  12. Vortex dynamics in a thin superconducting film with a non-uniform magnetic field applied at its center with a small coil

    Science.gov (United States)

    Lemberger, Thomas R.; Loh, Yen Lee

    2016-10-01

    This paper models the dynamics of vortices that are generated in the middle of a thin, large-area, superconducting film by a low-frequency magnetic field from a small coil, motivated by a desire to better understand measurements of the superconducting coherence length made with a two-coil apparatus. When the applied field exceeds a critical value, vortices and antivortices originate near the middle of the film at the radius where the Lorentz force of the screening supercurrent is largest. The Lorentz force from the screening supercurrent pushes vortices toward the center of the film and antivortices outward. In an experiment, vortices are detected as an increase in mutual inductance between the drive coil and a coaxial "pickup" coil on the opposite side of the film. The model shows that the essential features of measurements are well described when vortex pinning and the attendant hysteresis are included.

  13. Rotor assembly including superconducting magnetic coil

    Energy Technology Data Exchange (ETDEWEB)

    Snitchler, Gregory L. (Shrewsbury, MA); Gamble, Bruce B. (Wellesley, MA); Voccio, John P. (Somerville, MA)

    2003-01-01

    Superconducting coils and methods of manufacture include a superconductor tape wound concentrically about and disposed along an axis of the coil to define an opening having a dimension which gradually decreases, in the direction along the axis, from a first end to a second end of the coil. Each turn of the superconductor tape has a broad surface maintained substantially parallel to the axis of the coil.

  14. Superconducting coil development and motor demonstration: Overview

    Science.gov (United States)

    Gubser, D. U.

    1995-12-01

    Superconducting bismuth-cuprate wires, coils, and magnets are being produced by industry as part of a program to test the viability of using such magnets in Naval systems. Tests of prototype magnets, coils, and wires reveal progress in commercially produced products. The larger magnets will be installed in an existing superconducting homopolar motor and operated initially at 4.2K to test the performance. It is anticipated that approximately 400 Hp will be achieved by the motor. This article reports on the initial tests of the magnets, coils, and wires as well as the development program to improve their performance.

  15. Transformer current sensor for superconducting magnetic coils

    Science.gov (United States)

    Shen, Stewart S.; Wilson, C. Thomas

    1988-01-01

    A transformer current sensor having primary turns carrying a primary current for a superconducting coil and secondary turns only partially arranged within the primary turns. The secondary turns include an active winding disposed within the primary turns and a dummy winding which is not disposed in the primary turns and so does not experience a magnetic field due to a flow of current in the primary turns. The active and dummy windings are wound in opposite directions or connected in series-bucking relationship, and are exposed to the same ambient magnetic field. Voltages which might otherwise develop in the active and dummy windings due to ambient magnetic fields thus cancel out. The resultant voltage is purely indicative of the rate of change of current flowing in the primary turns.

  16. Electromagnetic Design of Superconducting Dipoles Based on Sector Coils

    CERN Document Server

    Todesco, Ezio

    2007-01-01

    We study the coil lay-outs of superconducting dipoles for particle accelerators based on the sector geometry. We show that a simple model based on a sector coil with a wedge allows us to derive an equation giving the short sample field as a function of the aperture, coil width, cable properties and superconducting material. The equation agrees well with the actual results of several dipole coils that have been built in the last 30 years. The improvements due to the grading technique and the iron yoke are also studied. The proposed equation can be used as a benchmark to judge the efficiency of the coil design, and to carry out a global optimization of an accelerator lay-out.

  17. Switching transients in a superconducting coil

    Energy Technology Data Exchange (ETDEWEB)

    Owen, E.W.; Shimer, D.W.

    1983-11-18

    A study is made of the transients caused by the fast dump of large superconducting coils. Theoretical analysis, computer simulation, and actual measurements are used. Theoretical analysis can only be applied to the simplest of models. In the computer simulations two models are used, one in which the coil is divided into ten segments and another in which a single coil is employed. The circuit breaker that interrupts the current to the power supply, causing a fast dump, is represented by a time and current dependent conductance. Actual measurements are limited to measurements made incidental to performance tests on the MFTF Yin-yang coils. It is found that the breaker opening time is the critical factor in determining the size and shape of the transient. Instantaneous opening of the breaker causes a lightly damped transient with large amplitude voltages to ground. Increasing the opening time causes the transient to become a monopulse of decreasing amplitude. The voltages at the external terminals are determined by the parameters of the external circuit. For fast opening times the frequency depends on the dump resistor inductance, the circuit capacitance, and the amplitude on the coil current. For slower openings the dump resistor inductance and the current determine the amplitude of the voltage to ground at the terminals. Voltages to ground are less in the interior of the coil, where transients related to the parameters of the coil itself are observed.

  18. SERPENTINE COIL TOPOLOGY FOR BNL DIRECT WIND SUPERCONDUCTING MAGNETS.

    Energy Technology Data Exchange (ETDEWEB)

    PARKER, B.; ESCALLIER, J.

    2005-05-16

    Serpentine winding, a recent innovation developed at BNL for direct winding superconducting magnets, allows winding a coil layer of arbitrary multipolarity in one continuous winding process and greatly simplifies magnet design and production compared to the planar patterns used before. Serpentine windings were used for the BEPC-II Upgrade and JPARC magnets and are proposed to make compact final focus magnets for the EC. Serpentine patterns exhibit a direct connection between 2D body harmonics and harmonics derived from the integral fields. Straightforward 2D optimization yields good integral field quality with uniformly spaced (natural) coil ends. This and other surprising features of Serpentine windings are addressed in this paper.

  19. Simulation of Thermal Processes in Superconducting Pancake Coils Cooled by GM Cryocooler

    Science.gov (United States)

    Lebioda, M.; Rymaszewski, J.; Korzeniewska, E.

    2014-04-01

    This article presents the thermal model of a small scale superconducting magnetic energy storage system with the closed cycle helium cryocooler. The authors propose the use of contact-cooled coils with maintaining the possibility of the system reconfiguring. The model assumes the use of the second generation superconducting tapes to make the windings in the form of flat discs (pancakes). The paper presents results for a field model of the single pancake coil and the winding system consisting of several coils.

  20. Mathematical model to determine the dimensions of superconducting cylindrical coils with a given central field - the case study for MgB2 conductors with isotropic Ic(B) characteristic

    Science.gov (United States)

    Pitel, Jozef; Melišek, Tibor; Tropeano, Matteo; Nardelli, Davide; Tumino, Andrea

    2016-08-01

    In this work, we present a mathematical model which enables to design cylindrical coils with a given central field, made of the superconducting conductor with isotropic Ic(B) characteristic. The model results in a computer code that enables to find out the coil dimensions, and to calculate the coil parameters such as critical current, maximum field in the winding and field non-uniformity on the coil axis. The Ic(B) characteristic of the conductor is represented by the set of data measured in discrete points. This approach allows us to express the Ic(B) as a function linearized in parts. Then, it is possible to involve the central field of the coil, coil dimensions, and parameters of the conductor, including its Ic(B) characteristic, in one equation which can be solved using ordinary numerical non-linear methods. Since the coil dimensions and conductor parameters are mutually linked in one equation with respect to a given coil central field, it is possible to analyze an influence of one parameter on the other one. The model was applied to three commercially available MgB2/Ni/Cu conductors produced by Columbus Superconductors. The results of simulations with the Ic(B) data at 20 K illustrate that there exists a set of winding geometries that generate a required central field, changing from a disc shape to long thin solenoid. Further, we analyze how the thickness of stabilizing copper influences the coil dimensions, overall conductor length, coil critical current, maximum field in the winding. An influence of the safety coefficient in operating current on coil dimensions and other above mentioned parameters is studied as well. Finally, we compare the coil dimensions, overall conductor length as well as coil critical current and maximum field in the winding if the value of required central field changes between 1 and 3 T.

  1. Study on the performance improvement of the high temperature superconducting coil with several separated coils at the edges

    Science.gov (United States)

    Ishiguri, S.; Oka, T.; Fukui, S.; Ogawa, J.; Sato, T.

    2008-09-01

    In designing high temperature superconducting (HTS) coils, it is important to secure large magnetic fields and stored energy using shorter tape length. Thus, it is necessary to improve the transport current performance of the coils. The critical current and n-value of an HTS tape depend on magnetic fields and flux angles under constant temperature. Considering these dependencies, we established a model to analyze coil critical current. This model clarifies that relatively large electric fields are generated at the coil edges. This adversely affects the transport current performance. In this study, the coil edge is separated into several coils, keeping the total tape length constant. This increases the coil critical current, stored energy, central magnetic field, and also the coil volume, which contains vacancies created by the separation. To estimate coil performance, we calculated the stored energy density, whose denominator is the increased coil volume. This stored energy density reaches its maximum value when the number of the separated coils is eight. At this optimum separation, the central magnetic field increases by 13%, and the stored energy improves by 43%, compared to a rectangular coil wound with the same tape length.

  2. Mathematical model to determine the dimensions of superconducting cylindrical coils with a given central field – the case study for MgB{sub 2} conductors with isotropic I{sub c}(B) characteristic

    Energy Technology Data Exchange (ETDEWEB)

    Pitel, Jozef, E-mail: jozef.pitel@savba.sk [Institute of Electrical Engineering, Slovak Academy of Sciences, Dúbravská 9, 841 04 Bratislava (Slovakia); Melišek, Tibor [Institute of Electrical Engineering, Slovak Academy of Sciences, Dúbravská 9, 841 04 Bratislava (Slovakia); Tropeano, Matteo; Nardelli, Davide; Tumino, Andrea [Columbus Superconductors, Via delle Terre Rosse 30, I-16133 Genova (Italy)

    2016-08-15

    Highlights: • Influence of the winding geometry on central field of cylindrical coils is studied. • Procedure to determine dimensions of coils with a given central field is developed. • The model is applied to MgB{sub 2}/Ni/Cu conductors with isotropic I{sub c}(B) characteristic. • Influence of the thickness of stabilizing copper on coil parameters is analyzed. • Optimization with respect to coil operating current and wire length is discussed. - Abstract: In this work, we present a mathematical model which enables to design cylindrical coils with a given central field, made of the superconducting conductor with isotropic I{sub c}(B) characteristic. The model results in a computer code that enables to find out the coil dimensions, and to calculate the coil parameters such as critical current, maximum field in the winding and field non-uniformity on the coil axis. The I{sub c}(B) characteristic of the conductor is represented by the set of data measured in discrete points. This approach allows us to express the I{sub c}(B) as a function linearized in parts. Then, it is possible to involve the central field of the coil, coil dimensions, and parameters of the conductor, including its I{sub c}(B) characteristic, in one equation which can be solved using ordinary numerical non-linear methods. Since the coil dimensions and conductor parameters are mutually linked in one equation with respect to a given coil central field, it is possible to analyze an influence of one parameter on the other one. The model was applied to three commercially available MgB{sub 2}/Ni/Cu conductors produced by Columbus Superconductors. The results of simulations with the I{sub c}(B) data at 20 K illustrate that there exists a set of winding geometries that generate a required central field, changing from a disc shape to long thin solenoid. Further, we analyze how the thickness of stabilizing copper influences the coil dimensions, overall conductor length, coil critical current, maximum

  3. Superconducting coil system and methods of assembling the same

    Science.gov (United States)

    Rajput-Ghoshal, Renuka; Rochford, James H.; Ghoshal, Probir K.

    2016-01-19

    A superconducting magnet apparatus is provided. The superconducting magnet apparatus includes a power source configured to generate a current; a first switch coupled in parallel to the power source; a second switch coupled in series to the power source; a coil coupled in parallel to the first switch and the second switch; and a passive quench protection device coupled to the coil and configured to by-pass the current around the coil and to decouple the coil from the power source when the coil experiences a quench.

  4. The training in epoxy-impregnated superconducting coils

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, H.; Bobrov, E.S.; Iwasa, Y.; Takaghi, T.; Tsukamoto, O.

    1985-03-01

    The authors have investigated the training of epoxy-impregnated superconducting coils. It has been observed that the boundary conditions at the coil ends have a crucial effect on shear-stress-induced epoxy cracks in the winding and consequently on the coil training. The results were quantified using acoustic emission data.

  5. Resistive demountable toroidal-field coils for tokamak reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jassby, D.L.; Jacobsen, R.A.; Kalnavarns, J.; Masson, L.S.; Sekot, J.P.

    1981-07-01

    Readily demountable TF (toroidal-field) coils allow complete access to the internal components of a tokamak reactor for maintenance of replacement. The requirement of readily demountable joints dictates the use of water-cooled resistive coils, which have a host of decisive advantages over superconducting coils. Previous papers have shown that resistive TF coils for tokamak reactors can operate in the steady state with acceptable power dissipation (typically, 175 to 300 MW). This paper summarizes results of parametric studies of size optimization of rectangular TF coils and of a finite-element stress analysis, and examines several candidate methods of implementing demountable joints for rectangular coils constructed of plate segments.

  6. Spontaneous quenches of a high temperature superconducting pancake coil

    Energy Technology Data Exchange (ETDEWEB)

    Lue, J.W.; Lubell, M.S. [Oak Ridge National Lab., TN (United States); Aized, D.; Campbell, J.M.; Schwall, R.E. [American Superconductor Corp., Westborough, MA (United States)

    1995-09-01

    A double-pancake coil made of Bi-2223/Ag high temperature superconducting (HTS) tape was constructed with an embedded heater and graded conductors to study the stability and quench propagation in HTS coils. The experiments were performed with liquid nitrogen and gaseous helium cooling in temperatures ranging from 5 to 77 K. The coil was very stable, and no ``normal`` zone was sustained or propagated with local pulsed heating. However, spontaneous quenches of the cod were experienced. This was found to be the result of having the coil current higher than that of the lower I{sub c} sections of the coil for a long time. This quench process took minutes to develop--much longer than would be expected in a low temperature superconducting coil. The quench behaved more like a spreading and continuous heating of an increasingly larger partially resistive section of the coil than like a sequential ``normal`` front propagation.

  7. High field superconducting magnets

    Science.gov (United States)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  8. Design Study of Superconducting Coil of 230 MeV Superconducting Cyclotron

    Institute of Scientific and Technical Information of China (English)

    WANG; Chuan; YIN; Meng; ZHANG; Su-ping; LI; Ming; CUI; Tao; LIN; Jun; LV; Yin-long; GE; Tao; YIN; Zhi-guo; ZHANG; Tian-jue

    2015-01-01

    The superconducting coil system of CYCIAE-230superconducting proton cyclotron consists of two coil windings,cryostat,GM coolers,and the liquid helium condenser(Fig.1),along with multiple thermometers,pressure gauges,liquid level gauges,load cells,a vacuum pump,a

  9. SSC (Superconducting Super Collider) dipole coil production tooling

    Energy Technology Data Exchange (ETDEWEB)

    Carson, J.A.; Barczak, E.J.; Bossert, R.C.; Brandt, J.S.; Smith, G.A.

    1989-03-01

    Superconducting Super Collider dipole coils must be produced to high precision to ensure uniform prestress and even conductor distribution within the collared coil assembly. Tooling is being prepared at Fermilab for the production of high precision 1M and 16.6M SSC dipole coils suitable for mass production. The design and construction methods builds on the Tevatron tooling and production experience. Details of the design and construction methods and measured coil uniformity of 1M coils will be presented. 4 refs., 10 figs.

  10. Fabrication of the superconducting coils for Wendelstein 7-X

    Energy Technology Data Exchange (ETDEWEB)

    Risse, Konrad E-mail: konrad.risse@ipp.mpg.de; Rummel, Th.; Wegener, L.; Holzthuem, R.; Jaksic, N.; Kerl, F.; Sapper, J

    2003-09-01

    The Max Planck Institute of Plasma Physics is building up the stellarator fusion experiment Wendelstein 7-X (W7-X) at the branch institute in Greifswald. W7-X continues the line of stellarator experiments at IPP. To allow for steady state operation W7-X has a superconducting coil system with 50 non-planar and 20 planar coils. The coil system is grouped in five equal modules, each consisting of two mirror symmetric half modules. The half modules are assembled from five different non-planar coils, two planar coils and a sector of the coil support structure. All cryogenic parts are enclosed in a cryostat to protect them from ambient temperature. The magnet system was ordered from the European industry. The production of superconductor, winding packs and encasings are under way. The main focus of this contribution aims on the fabrication state of the coil system.

  11. Magnesium Diboride Superconducting Coils for Electric Propulsion Systems for Large Aircraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The recent development of magnesium diboride superconducting wires makes possible the potential to have much lighter weight superconducting coils for heavy aircraft...

  12. Enhancing the design of a superconducting coil for magnetic energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Indira, Gomathinayagam, E-mail: gindu80@gmail.com [EEE Department, Prince Shri Venkateshwara Padmavathy Engineering College, Chennai (India); UmaMaheswaraRao, Theru, E-mail: umesh.theru@gmail.com [Divison of Power Engineering and Management, Anna University, Chennai (India); Chandramohan, Sankaralingam, E-mail: cdramo@gmail.com [Divison of Power Engineering and Management, Anna University, Chennai (India)

    2015-01-15

    Highlights: • High magnetic flux density of SMES coil to reduce the size. • YBCO Tapes for the construction of HTS magnets. • Relation between energy storage and length of the coil wound by various materials. • Design with a certain length of second-generation HTS. - Abstract: Study and analysis of a coil for Superconducting Magnetic Energy Storage (SMES) system is presented in this paper. Generally, high magnetic flux density is adapted in the design of superconducting coil of SMES to reduce the size of the coil and to increase its energy density. With high magnetic flux density, critical current density of the coil is degraded and so the coil is wound with High Temperature Superconductors (HTS) made of different materials. A comparative study is made to emphasize the relationship between the energy storage and length of the coil wound by Bi2223, SF12100, SCS12100 and YBCO tapes. Recently for the construction of HTS magnets, YBCO tapes have been used. Simulation models for various designs have been developed to analyze the magnetic field distribution for the optimum design of energy storage. The design which gives the maximum stored energy in the coil has been used with a certain length of second-generation HTS. The performance analysis and the results of comparative study are done.

  13. Modified Bean Model and FEM Method Combined for Persistent Current Calculation in Superconducting Coils

    CERN Document Server

    Völlinger, Christine; Russenschuck, Stephan

    2001-01-01

    Field variations in the LHC superconducting magnets, e. g. during the ramping of the magnets, induce magnetization currents in the superconducting material, the so-called persistent currents that do not decay but persist due to the lack of resistivity. This paper describes a semi-analytical hysteresis model for hard superconductors, which has been developed for the computation of the total field errors arising from persistent currents. Since the superconducting coil is surrounded by a ferromagnetic yoke structure, the persistent current model is combined with the finite element method (FEM), as the non-linear yoke can only be calculated numerically. The used finite element method is based on a reduced vector potential formulation that avoids the meshing of the coil while calculating the part of the field arising from the source currents by means of the Biot-Savart Law. The combination allows to determine persistent current induced field errors as function of the excitation and for arbitrarily shaped iron yoke...

  14. Static Measurements on HTS Coils of Fully Superconducting AC Electric Machines for Aircraft Electric Propulsion System

    Science.gov (United States)

    Choi, Benjamin B.; Hunker, Keith R.; Hartwig, Jason; Brown, Gerald V.

    2017-01-01

    The NASA Glenn Research Center (GRC) has been developing the high efficiency and high-power density superconducting (SC) electric machines in full support of electrified aircraft propulsion (EAP) systems for a future electric aircraft. A SC coil test rig has been designed and built to perform static and AC measurements on BSCCO, (RE)BCO, and YBCO high temperature superconducting (HTS) wire and coils at liquid nitrogen (LN2) temperature. In this paper, DC measurements on five SC coil configurations of various geometry in zero external magnetic field are measured to develop good measurement technique and to determine the critical current (Ic) and the sharpness (n value) of the super-to-normal transition. Also, standard procedures for coil design, fabrication, coil mounting, micro-volt measurement, cryogenic testing, current control, and data acquisition technique were established. Experimentally measured critical currents are compared with theoretical predicted values based on an electric-field criterion (Ec). Data here are essential to quantify the SC electric machine operation limits where the SC begins to exhibit non-zero resistance. All test data will be utilized to assess the feasibility of using HTS coils for the fully superconducting AC electric machine development for an aircraft electric propulsion system.

  15. New Development of VPI Process for Large Superconducting Coils

    Institute of Scientific and Technical Information of China (English)

    潘皖江; 武松涛; 崔益民

    2003-01-01

    High vacuum is required for Vacuum Pressure Impregnation (VPI) process of largecoils used in cryogenic. The defects such as dry spots and over rich resins should be minimized inlarge superconducting coils used. Both sealing problems associated with the mold and over richresin problems are eliminated by using vacuum bag mold method with which we can simplify thedesign of vacuum mold.

  16. Cryocooled Facilities for Superconducting Coils Testing in Gaseous Helium

    Science.gov (United States)

    Naumov, A. V.; Keilin, V. E.; Kovalev, I. A.; Surin, M. I.; Shcherbakov, V. I.; Shevchenko, S. A.; Ilin, A. A.

    Two superconducting coil test facilities equipped by Sumitomo SRDK-415D cryocoolers were developed, manufactured and tested. The motivation for their constructing was to make cheaper the testing (and especially training of LTS magnets) by liquid helium (LHe) saving. It is well known that the helium price increases rapidly and this tendency most probably will continue for a long time, as the demand of helium grows faster than its production. The utilization of heat-exchange gas considerably reduces many problems, that arise in the design of completely dry LTS magnets. The goal was to decrease or even completely avoid the consumption of rather expensive liquid helium for testing the laboratory size Nb-Ti and Nb3Sn coils including their training process. Several superconducting magnets were tested by using these facilities. For example, the first facility was successfully used for testing of 13 T, 60 kg coil cooled by cryocooler in helium gas (several torr pressure) heat exchange atmosphere. The precooling time was about 45 hours. The quench current (240 A at 4.2 K) was equal to that reached in the pool boiling LHe cryostat. The second facility with 420 mm wide access bore can be used for testing of corresponding size superconducting coils with very modest consumption of liquid helium with its level well below the lower flange of the coil. Each test facility is equipped by 2 pairs of HTS current leads. Design and operational experience of one of them is described.

  17. Background field coils for the High Field Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Zbasnik, J.P.; Cornish, D.N.; Scanlan, R.M.; Jewell, A.M.; Leber, R.L.; Rosdahl, A.R.; Chaplin, M.R.

    1980-09-22

    The High Field Test Facility (HFTF), presently under construction at LLNL, is a set of superconducting coils that will be used to test 1-m-o.d. coils of prototype conductors for fusion magnets in fields up to 12 T. The facility consists of two concentric sets of coils; the outer set is a stack of Nb-Ti solenoids, and the inner set is a pair of solenoids made of cryogenically-stabilized, multifilamentary Nb/sub 3/Sn superconductor, developed for use in mirror-fusion magnets. The HFTF system is designed to be parted along the midplane to allow high-field conductors, under development for Tokamak fusion machines, to be inserted and tested. The background field coils were wound pancake-fashion, with cold-welded joints at both the inner and outer diameters. Turn-to-turn insulation was fabricated at LLNL from epoxy-fiberglass strip. The coils were assembled and tested in our 2-m-diam cryostat to verify their operation.

  18. Thermomechanical properties of the coil of the superconducting magnets for the Large Hadron Collider

    CERN Document Server

    Couturier, K; Scandale, Walter; Todesco, Ezio; Tommasini, D

    2002-01-01

    The correct definition and measurement of the thermomechanical properties of the superconducting cable used in high-field magnets is crucial to study and model the behavior of the magnet coil from assembly to the operational conditions. In this paper, the authors analyze the superconducting coil of the main dipoles for the Large Hadron Collider. They describe an experimental setup for measuring the elastic modulus at room and at liquid nitrogen temperature and for evaluating the thermal contraction coefficient. The coils exhibit strong nonlinear stress-strain behavior characterized by hysteresis phenomena, which decreases from warm to cold temperature, and a thermal contraction coefficient, which depends on the stress applied to the cable during cooldown. (35 refs).

  19. Analysis of an HTS coil for large scale superconducting magnetic energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji Young; Lee, Se Yeon; Choi, Kyeong Dal; Park, Sang Ho; Hong, Gye Won; Kim, Sung Soo; Kim, Woo Seok [Korea Polytechnic University, Siheung (Korea, Republic of); Lee, Ji Kwang [Woosuk University, Wanju (Korea, Republic of)

    2015-06-15

    It has been well known that a toroid is the inevitable shape for a high temperature superconducting (HTS) coil as a component of a large scale superconducting magnetic energy storage system (SMES) because it is the best option to minimize a magnetic field intensity applied perpendicularly to the HTS wires. Even though a perfect toroid coil does not have a perpendicular magnetic field, for a practical toroid coil composed of many HTS pancake coils, some type of perpendicular magnetic field cannot be avoided, which is a major cause of degradation of the HTS wires. In order to suggest an optimum design solution for an HTS SMES system, we need an accurate, fast, and effective calculation for the magnetic field, mechanical stresses, and stored energy. As a calculation method for these criteria, a numerical calculation such as an finite element method (FEM) has usually been adopted. However, a 3-dimensional FEM can involve complicated calculation and can be relatively time consuming, which leads to very inefficient iterations for an optimal design process. In this paper, we suggested an intuitive and effective way to determine the maximum magnetic field intensity in the HTS coil by using an analytic and statistical calculation method. We were able to achieve a remarkable reduction of the calculation time by using this method. The calculation results using this method for sample model coils were compared with those obtained by conventional numerical method to verify the accuracy and availability of this proposed method. After the successful substitution of this calculation method for the proposed design program, a similar method of determining the maximum mechanical stress in the HTS coil will also be studied as a future work.

  20. Development of superconducting magnetic bearing with superconducting coil and bulk superconductor for flywheel energy storage system

    Science.gov (United States)

    Arai, Y.; Seino, H.; Yoshizawa, K.; Nagashima, K.

    2013-11-01

    We have been developing superconducting magnetic bearing for flywheel energy storage system to be applied to the railway system. The bearing consists of a superconducting coil as a stator and bulk superconductors as a rotor. A flywheel disk connected to the bulk superconductors is suspended contactless by superconducting magnetic bearings (SMBs). We have manufactured a small scale device equipped with the SMB. The flywheel was rotated contactless over 2000 rpm which was a frequency between its rigid body mode and elastic mode. The feasibility of this SMB structure was demonstrated.

  1. Heat load characteristics and new design using one-coil model superconducting magnets

    Science.gov (United States)

    Jizo, Yoshihiro; Akagi, Hidenari; Yamaguchi, Takashi; Terai, Motoaki; Shinobu, Masatoshi

    Superconducting magnets (SCM) for Maglev trains are vibrated by the electromagnetic force arising from the magnetic field of higher harmonics, which is due to the arrangement of the ground coils. The heat load within the liquid helium temperature region increases by the vibration of the magnets. This paper reports a heat load generation estimation mechanism due to the above-mentioned vibration, as well as effective measures of reducing heat load generation. In addition, we show how a one-coil type SCM can reduce the heat load generation in electromagnetic disturbance tests.

  2. Low Loss and Magnetic Field-tuned Superconducting THz Metamaterial

    CERN Document Server

    Jin, Biaobing; Engelbrecht, Sebastian; Pimenov, Andrei; Wu, Jingbo; Xu, Qinyin; Cao, Chunhai; Chen, Jian; Xu, Weiwei; Kang, Lin; Wu, Peiheng

    2010-01-01

    Superconducting terahertz (THz) metamaterial (MM) made from superconducting Nb film has been investigated using a continuous-wave THz spectroscopy with a superconducting split-coil magnet. The obtained quality factors of the resonant modes at 132 GHz and 450 GHz are about three times as large as those calculated for a metal THz MM operating at 1 K, which indicates that superconducting THz MM is a very nice candidate to achieve low loss performance. In addition, the magnetic field-tuning on superconducting THz MM is also demonstrated, which offer an alternative tuning method apart from the existed electric, optical and thermal tuning on THz MM.

  3. Space-deployed, thin-walled enclosure for a cryogenically-cooled high temperature superconducting coil

    Science.gov (United States)

    Porter, Allison K.

    The interaction of magnetic fields generated by large superconducting coils has multiple applications in space, including actuation of spacecraft or spacecraft components, wireless power transfer, and shielding of spacecraft from radiation and high energy particles. These applications require coils with major diameters as large as 20 meters and a thermal management system to maintain the superconducting material of the coil below its critical temperature. Since a rigid thermal management system, such as a heat pipe, is unsuitable for compact stowage inside a 5 meter payload fairing, a thin-walled thermal enclosure is proposed. A 1.85 meter diameter test article consisting of a bladder layer for containing chilled nitrogen vapor, a restraint layer, and multilayer insulation was tested in a custom toroidal vacuum chamber. The material properties found during laboratory testing are used to predict the performance of the test article in low Earth orbit. Deployment motion of the same test article was measured using a motion capture system and the results are used to predict the deployment in space. A 20 meter major diameter and coil current of 6.7 MA is selected as a point design case. This design point represents a single coil in a high energy particle shielding system. Sizing of the thermal and structural components of the enclosure is completed. The thermal and deployment performance is predicted.

  4. Dipole model test with one superconducting coil; results analysed

    CERN Document Server

    Durante, M; Ferracin, P; Fessia, P; Gauthier, R; Giloux, C; Guinchard, M; Kircher, F; Manil, P; Milanese, A; Millot, J-F; Muñoz Garcia, J-E; Oberli, L; Perez, J-C; Pietrowicz, S; Rifflet, J-M; de Rijk, G; Rondeaux, F; Todesco, E; Viret, P; Ziemianski, D

    2013-01-01

    This report is the deliverable report 7.3.1 “Dipole model test with one superconducting coil; results analysed “. The report has four parts: “Design report for the dipole magnet”, “Dipole magnet structure tested in LN2”, “Nb3Sn strand procured for one dipole magnet” and “One test double pancake copper coil made”. The 4 report parts show that, although the magnet construction will be only completed by end 2014, all elements are present for a successful completion. Due to the importance of the project for the future of the participants and given the significant investments done by the participants, there is a full commitment to finish the project.

  5. Dipole model test with one superconducting coil: results analysed

    CERN Document Server

    Bajas, H; Benda, V; Berriaud, C; Bajko, M; Bottura, L; Caspi, S; Charrondiere, M; Clément, S; Datskov, V; Devaux, M; Durante, M; Fazilleau, P; Ferracin, P; Fessia, P; Gauthier, R; Giloux, C; Guinchard, M; Kircher, F; Manil, P; Milanese, A; Millot, J-F; Muñoz Garcia, J-E; Oberli, L; Perez, J-C; Pietrowicz, S; Rifflet, J-M; de Rijk, G; Rondeaux, F; Todesco, E; Viret, P; Ziemianski, D

    2013-01-01

    This report is the deliverable report 7.3.1 “Dipole model test with one superconducting coil; results analysed “. The report has four parts: “Design report for the dipole magnet”, “Dipole magnet structure tested in LN2”, “Nb3Sn strand procured for one dipole magnet” and “One test double pancake copper coil made”. The 4 report parts show that, although the magnet construction will be only completed by end 2014, all elements are present for a successful completion. Due to the importance of the project for the future of the participants and given the significant investments done by the participants, there is a full commitment to finish the project.

  6. Optimization of the detection coil of high-Tc superconducting quantum interference device-based nuclear magnetic resonance for discriminating a minimum amount of liver tumor of rats in microtesla fields

    Science.gov (United States)

    Chen, Hsin-Hsien; Huang, Kai-Wen; Yang, Hong-Chang; Horng, Herng-Er; Liao, Shu-Hsien

    2013-08-01

    This study presents an optimization of the detection coil of high-Tc superconducting quantum interference device (SQUID)-based nuclear magnetic resonance (NMR) in microtesla fields for discriminating a minimum amount of liver tumor in rats by characterizing the longitudinal relaxation rate, T1-1, of tested samples. The detection coil, which was coupled to the SQUID through a flux transformer, was optimized by varying the copper wires' winding turns and diameters. When comparing the measured NMR signals, we found that the simulated NMR signal agrees with simulated signals. When discriminating liver tumors in rats, the averaged longitudinal relaxation rate was observed to be T1-1 = 3.3 s-1 for cancerous liver tissue and T1-1 = 6.6 s-1 for normal liver tissue. The results suggest that it can be used to successfully discriminate cancerous liver tissue from normal liver tissues in rats. The minimum amount of samples that can be detected is 0.2 g for liver tumor and 0.4 g for normal liver tissue in 100 μT fields. The specimen was not damaged; it can be used for other pathological analyses. The proposed method provides more possibilities for examining undersized specimens.

  7. Response of an on-chip coil-integrated superconducting tunnel junction to x-rays

    CERN Document Server

    Maehata, K; Taino, T

    2003-01-01

    An on-chip coil-integrated superconducting tunnel junction (OC sup 2 -STJ) was irradiated by X-rays emitted from an sup 5 sup 5 Fe source to the examine the performance of X-ray detection by applying a magnetic field produced by a superconducting microstrip coil integrated into the junction chip. Response characteristics were obtained for a diamond-shaped Nd-based tunnel junction with a sensitive area of 100 x 100 mu m sup 2 in the OC sup 2 -STJ chip. Two kinds of stable operation modes with different pulse heights were observed by changing the magnetic flux density in the barrier region of the junction. In the low-pulse-height mode, the pulse height distribution exhibits two full-energy peaks corresponding to signals created in the top and base electrodes. Stable operation of the OC sup 2 -STJ was demonstrated without using conventional external electromagnets. (author)

  8. Superconducting coil development for the Wendelstein 7-X stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Sapper, J. (Max-Planck-Inst. fuer Plasmaphysik, EURATOM Association, Garching (Germany)); W 7-X Technical Group

    1993-01-01

    At the Max-Planck-Institut fuer Plasmaphysik (IPP), Garching, the Wendelstein 7-X stellarator (W 7-X) is in the stage of the beginning R and D phase. The experiment will be a large modular machine with nonplanar coils, following the Garching development line. It fits into the range of next step devices. The main technical parameters are: Major radius: R[sub 0]=5.5 m, magnetic induction: B[sub 0]=3 T, stored magnetic energy: W[sub m]=600 MJ, average plasma radius: r[sub 0]=0.53 m. The expected plasma parameters are: Central temperatures: T[sub i](0), T[sub e](0)=2-5 keV, central electron density: n[sub e](0)=0.1-2x10[sup 20] m[sup -3], energy confinement time: [tau][sub E]=0.1-0.5 s, average beta value: <[beta]>[<=]0.05. The design has to allow steady-state plasma operation. Consequently the coil system is superconducting. An internally cooled cable-in-conduit conductor with copper stabilized NbTi strands will be used at 4 K (LHe). The paper presents an overview of the design features of the machine and describes in particular the conductor design, the coil arrangement with electrical, hydraulic and mechanical parameters as well as the sequence of prototype steps which are foreseen for establishing a well-developed series production of the magnet. (orig.).

  9. Magnetic Fields at the Center of Coils

    Science.gov (United States)

    Binder, Philippe; Hui, Kaleonui; Goldman, Jesse

    2014-01-01

    In this note we synthesize and extend expressions for the magnetic field at the center of very short and very long current-carrying coils. Elementary physics textbooks present the following equation for the magnetic field inside a very long current-carrying coil (solenoid): B[subscript sol] = µ[subscript 0] (N/L) I, (1) where I is the current, N…

  10. Discrete Differential Geometry Applied to the Coil-End Design of Superconducting Magnets

    CERN Document Server

    Auchmann, B; Schwerg, N

    2007-01-01

    Coil-end design for superconducting accelerator magnets, based on the continuous strip theory of differential geometry, has been introduced by Cook in 1991. A similar method has later been coupled to numerical field calculation and used in an integrated design process for LHC magnets within the CERN field computation program ROXIE. In this paper we present a discrete analog on to the continuous theory of strips. Its inherent simplicity enhances the computational performance, while reproducing the accuracy of the continuous model. The method has been applied to the design

  11. Analysis of reflection-coefficient by wireless power transmission using superconducting coils

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, In Sung; Choi, Hyo Sang [Chosun University, Gwangju (Korea, Republic of); Chung, Dong Chul [Korea Institute of Carbon Convergence Technology, Jeonju (Korea, Republic of)

    2017-06-15

    The use of electronic devices such as mobile phones and tablet PCs has increased of late. However, the power which is supplied through wires has a limitation of the free use of devices and portability. Magnetic-resonance wireless power transfer (WPT) can achieve increased transfer distance and efficiency compared to the existing electromagnetic inductive coupling. A superconducting coil can be applied to increase the efficiency and distance of magnetic-resonance WPT. As superconducting coils have lower resistance than copper coils, they can increase the quality factor (Q-factor) and can overcome the limitations of magnetic-resonance WPT. In this study, copper coils were made from ordinary copper under the same condition as the superconducting coils for a comparison experiment. Superconducting coils use liquid nitrogen to keep the critical temperature. As there is a difference of medium between liquid nitrogen and air, liquid nitrogen was also used in the normal conductor coil to compare the experiment with under the same condition. It was confirmed that superconducting coils have a lower reflection-coefficient(S11) than the normal conductor coils.

  12. Use of a High-Temperature Superconducting Coil for Magnetic Energy Storage

    Science.gov (United States)

    Fagnard, J.-F.; Crate, D.; Jamoye, J.-F.; Laurent, Ph; Mattivi, B.; Cloots, R.; Ausloos, M.; Genon, A.; Vanderbemden, Ph

    2006-06-01

    A high temperature superconducting magnetic energy storage device (SMES) has been realised using a 350 m-long BSCCO tape wound as a ''pancake'' coil. The coil is mounted on a cryocooler allowing temperatures down to 17.2 K to be achieved. The temperature dependence of coil electrical resistance R(T) shows a superconducting transition at T = 102.5 K. Measurements of the V(I) characteristics were performed at several temperatures between 17.2 K and 101.5 K to obtain the temperature dependence of the critical current (using a 1 µV/cm criterion). Critical currents were found to exceed 100 A for T power supply as bridge input voltage. The coil current, the bridge input and output voltages were recorded simultaneously. Using a 10 A setpoint current in the superconducting coil, the whole system (coil + DC-DC converter) can provide a stable output voltage showing uninterruptible power supply (UPS) capabilities over 1 s.

  13. The Magnetic Field of Helmholtz Coils

    Science.gov (United States)

    Berridge, H. J. J.

    1975-01-01

    Describes the magnetic field of Helmholtz coils qualitatively and then provides the basis for a quantitative expression. Since the mathematical calculations are very involved, a computer program for solving the mathematical expression is presented and explained. (GS)

  14. Magnetic field mapper based on rotating coils

    CERN Document Server

    AUTHOR|(CDS)2087244; Arpaia, Pasquale

    This thesis presents a magnetic field mapper based on rotating coils. The requirements, the architecture, the conceptual design, and the prototype for straight magnets were shown. The proposed system is made up of a rotating coil transducer and a train-like system for longitudinal motion and positioning inside magnet bore. The mapper allows a localized measurement of magnetic fields and the variation of the harmonic multipole content in the magnet ends. The proof-of-principle demonstration and the experimental characterization of the rotating-coil transducer specifically conceived for mapping validated the main objective of satisfying the magnetic measurement needs of the next generation of compact accelerators.

  15. Serpentine Coil Topology for BNL Direct Wind Superconducting Magnets

    CERN Document Server

    Parker, Brett

    2005-01-01

    BNL direct wind technology, with the conductor pattern laid out without need for extra tooling (no collars, coil presses etc.) began with RHIC corrector production. RHIC patterns were wound flat and then wrapped on cylindrical support tubes. Later for the HERA-II IR magnets we improved conductor placement precision by winding directly on a support tube. To meet HERA-II space and field quality goals took sophisticated coil patterns, (some wound on tapered tubes). We denote such patterns, topologically equivalent to RHIC flat windings, "planar patterns." Multi-layer planar patterns run into trouble because it is hard to wind across existing turns and magnet leads get trapped at poles. So we invented a new "Serpentine" winding style, which goes around 360 degrees while the conductor winds back and forth on the tube. To avoid making solenoidal fields, we wind Serpentine layers in opposite handed pairs. With a Serpentine pattern each turn can have the same projection on the coil axis and integral field harmonics t...

  16. Strain Measurement on the Toroidal Field (TF) Coil Cases

    Institute of Scientific and Technical Information of China (English)

    Chen Zhuomin; Long Feng; Wu Hao

    2005-01-01

    The stress-strain state of the structure is a matter of interest to designer. The strain measurement of superconducting magnets at cryogenic temperature is a specific technique. Based on strain measurement of TF coil case for EAST, this paper presents a measuring technique at cryogenic temperature and on intense magnetic field. The compensation methods for both temperature and magnetic field effects of the gauges, together with the measured results are involved, and the discussions of the measured results are given in the paper.

  17. Study of the relation between evaluation of strain distribution on superconducting coil and mechanical heat generation

    Science.gov (United States)

    Seino, Hiroshi; Kurihara, Minoru; Herai, Toshiki; Suzuki, Eiji

    2002-10-01

    In the superconducting Maglev system, on-board superconducting magnets (SCMs) are vibrated at various frequencies according to the train speed by the electromagnetic disturbance which is caused when the train passes over ground coils. Then a mechanical loss is generated inside the inner vessel in the SCM. This phenomenon increases the heat load on the cryogenic equipment in the SCM. It has been surmised that the mechanical heat inside the inner vessel is generated by the frictional heat caused by the relative microscopic slips between fasteners and superconducting coil (SC coil). Nevertheless, heat generation mechanisms inside the inner vessel have not been studied sufficiently. In this study, we suggest a hypothesis that the frictional heat generated by the relative microscopic slips between fasteners and a SC coil will be indicated if the calculated strain distribution on the SC coil is evaluated. The results of this study supported this hypothesis.

  18. Equilibrium modeling of the TFCX poloidal field coil system

    Energy Technology Data Exchange (ETDEWEB)

    Strickler, D.J.; Miller, J.B.; Rothe, K.E.; Peng, Y.K.M.

    1984-04-01

    The Toroidal Fusion Core Experiment (TFCX) isproposed to be an ignition device with a low safety factor (q approx. = 2.0), rf or rf-assisted startup, long inductive burn pulse (approx. 300 s), and an elongated plasma cross section (kappa = 1.6) with moderate triangularity (delta = 0.3). System trade studies have been carried out to assist in choosing an appropriate candidate for TFCX conceptual design. This report describes an important element in these system studies - the magnetohydrodynamic (MHD) equilibrium modeling of the TFCX poloidal field (PF) coil system and its impact on the choice of machine size. Reference design points for the all-super-conducting toroidal field (TF) coil (TFCX-S) and hybrid (TFCX-H) options are presented that satisfy given PF system criteria, including volt-second requirements during burn, mechanical configuration constraints, maximum field constraints at the superconducting PF coils, and plasma shape parameters. Poloidal coil current waveforms for the TFCX-S and TFCX-H reference designs consistent with the equilibrium requirements of the plasma startup, heating, and burn phases of a typical discharge scenario are calculated. Finally, a possible option for quasi-steady-state operation is discussed.

  19. Mechanical behavior of the mirror fusion test Facility superconducting magnet coils

    Energy Technology Data Exchange (ETDEWEB)

    Horvath, J.A.

    1980-01-01

    The mechanical response to winding and electromagnetic loads of the Mirror Fusion Test Facility (MFTF) superconducting coil pack is presented. The 375-ton (3300 N) MFTF Yin-Yang magnet, presently the world's largest superconducting magnet, is scheduled for acceptance cold-testing in May of 1981. The assembly is made up of two identical coils which together contain over 15 miles (24 km) of superconductor wound in 58 consecutive layers of 24 turns each. Topics associated with mechanical behavior include physical properties of the coil pack and its components, winding pre-load effects, finite element analysis, magnetic load redistribution, and the design impact of predicted conductor motion.

  20. Superconducting flux pump for high-temperature superconductor insert coils of NMR magnets

    Science.gov (United States)

    Jeong, S.; Lee, H.; Iwasa, Y.

    2002-05-01

    This paper describes a prototype flux pump recently operated at the MIT Francis Bitter Magnet Laboratory. The results of the prototype flux pump will be used in the development of a full-scale flux pump that will be coupled to a high-temperature superconductor (HTS) insert coil of a high-field NMR magnet. Such an HTS insert is unlikely to operate in persistent mode because of the conductor's low index (n). The flux pump can compensate for field decay in the HTS insert coil and make the insert operate effectively in persistent mode. The flux pump, comprised essentially of a transformer and two switches, all made of superconductor, transfers into the insert coil a fraction of a magnetic energy that is first introduced in the secondary circuit of the transformer by a current supplied to the primary circuit. A prototype flux pump has been designed, fabricated, and operated to demonstrate that a flux pump can indeed supply a small metered current into a load superconducting magnet. A current increment in the range of microamperes has been measured in the magnet after each pumping action. The superconducting prototype flux pump is made of Nb3Sn tape. The pump is placed in a gaseous environment above the liquid helium level to keep its heat dissipation from directly discharged in the liquid; the effluent helium vapor maintains the thermal stability of the flux pump. [This paper is also published in Advances in Cryogenic Engineering Volume 47A, AIP Conference Proceedings Volume 613, pp. 441-448.

  1. Superconductive coil characterization for next dipoles and quadrupoles generation

    CERN Document Server

    Khalil, Malathe

    2016-01-01

    The LHC is the most sophisticated scientific machine ever built as a device that allows the scientists to explore the universe and its origin. Scientists from all over the world are working to upgrade the LHC to open the door for new physics. HL-LHC (high luminosity LHC) project is the core project at CERN which was approved in 2013 by CERN’s council. In order to increase the integrated luminosity up to 3000 fb-1 within this decade. To do so it is crucial to design cutting edge superconducting magnets that can elevate the magnetic field up to 20T, which is Nb3Sn. However this material is brittle when it functions as superconductor, which makes it hard to be used as a cold magnet. So in this report the fabrication of 10 stacks of Nb3Sn superconducting multifilament wires was investigated as well as primary test using experimental setup and creating material model for Nb3Sn with the finite element analysis [ANSYS] is carried out.

  2. Cryogenic magnetic coil and superconducting magnetic shield for neutron electric dipole moment searches

    Science.gov (United States)

    Slutsky, S.; Swank, C. M.; Biswas, A.; Carr, R.; Escribano, J.; Filippone, B. W.; Griffith, W. C.; Mendenhall, M.; Nouri, N.; Osthelder, C.; Pérez Galván, A.; Picker, R.; Plaster, B.

    2017-08-01

    A magnetic coil operated at cryogenic temperatures is used to produce spatial, relative field gradients below 6 ppm/cm, stable for several hours. The apparatus is a prototype of the magnetic components for a neutron electric dipole moment (nEDM) search, which will take place at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory using ultra-cold neutrons (UCN). That search requires a uniform magnetic field to mitigate systematic effects and obtain long polarization lifetimes for neutron spin precession measurements. This paper details upgrades to a previously described apparatus [1], particularly the introduction of super-conducting magnetic shielding and the associated cryogenic apparatus. The magnetic gradients observed are sufficiently low for the nEDM search at SNS.

  3. Simulation of superconducting tapes and coils with convex quadratic programming method

    Science.gov (United States)

    Zhang, Yan; Song, Yuntao; Wang, Lei; Liu, Xufeng

    2015-08-01

    Second-generation (2G) high-temperature superconducting coated conductors are playing an increasingly important role in power applications due to their large current density under high magnetic fields. In this paper, we conclude and explore the ability and possible potential of J formulation from the mathematical modeling point of view. An equivalent matrix form of J formulation has been presented and a relation between electromagnetic quantities and Karush-Kuhn-Tucker (KKT) conditions in optimization theory has been discovered. The use of the latest formulae to calculate inductance in a coil system and the primal-dual interior-point method algorithm is a trial to make the process of modeling stylized and build a bridge to commercial optimization solvers. Two different dependences of the critical current density on the magnetic field have been used in order to make a comparison with those published papers.

  4. A flux pumping method applied to the magnetization of YBCO superconducting coils: frequency, amplitude and waveform characteristics

    Science.gov (United States)

    Fu, Lin; Matsuda, Koichi; Lecrevisse, Thibault; Iwasa, Yukikazu; Coombs, Tim

    2016-04-01

    This letter presents a flux pumping method and the results gained when it was used to magnetize a range of different YBCO coils. The pumping device consists of an iron magnetic circuit with eight copper coils which apply a traveling magnetic field to the superconductor. The copper poles are arranged vertically with an air gap length of 1 mm and the iron cores are made of laminated electric steel plates to minimize eddy-current losses. We have used this arrangement to investigate the best possible pumping result when parameters such as frequency, amplitude and waveform are varied. We have successfully pumped current into the superconducting coil up to a value of 90% of I c and achieved a resultant magnetic field of 1.5 T.

  5. Shapes of coil ends in racetrack layout for superconducting magnets

    CERN Document Server

    Milanese, A

    2010-01-01

    Racetrack coils have received considerable attention for Nb3Sn magnets, both built using the React-and-Wind and Wind-and-React techniques. The geometry usually consists of a series of straight parts connected with circular arcs. Therefore, at the interface between these sections, a finite change in curvature is imposed on the cable. Alternative transition curves are analyzed here, with a particular focus on the total strain energy and the minimum / maximum radii of curvature. The study is presented in dimensionless form and the various alternatives are detailed in mathematical terms, so to be used for drafting or simulations. Extensions for the design of flared ends are also briefly discussed. This study is within the framework of the EuCARD WP7-HFM project. In particular, the proposed curve can be used for the end design of the high field model magnet (Task 7.3).

  6. Test equipment for a flywheel energy storage system using a magnetic bearing composed of superconducting coils and superconducting bulks

    Science.gov (United States)

    Ogata, M.; Matsue, H.; Yamashita, T.; Hasegawa, H.; Nagashima, K.; Maeda, T.; Matsuoka, T.; Mukoyama, S.; Shimizu, H.; Horiuchi, S.

    2016-05-01

    Energy storage systems are necessary for renewable energy sources such as solar power in order to stabilize their output power, which fluctuates widely depending on the weather. Since ‘flywheel energy storage systems’ (FWSSs) do not use chemical reactions, they do not deteriorate due to charge or discharge. This is an advantage of FWSSs in applications for renewable energy plants. A conventional FWSS has capacity limitation because of the mechanical bearings used to support the flywheel. Therefore, we have designed a superconducting magnetic bearing composed of a superconducting coil stator and a superconducting bulk rotor in order to solve this problem, and have experimentally manufactured a large scale FWSS with a capacity of 100 kWh and an output power of 300 kW. The superconducting magnetic bearing can levitate 4 tons and enables the flywheel to rotate smoothly. A performance confirmation test will be started soon. An overview of the superconducting FWSS is presented in this paper.

  7. Operation of a 400MHz NMR magnet using a (RE:Rare Earth)Ba2Cu3O7-x high-temperature superconducting coil: Towards an ultra-compact super-high field NMR spectrometer operated beyond 1GHz.

    Science.gov (United States)

    Yanagisawa, Y; Piao, R; Iguchi, S; Nakagome, H; Takao, T; Kominato, K; Hamada, M; Matsumoto, S; Suematsu, H; Jin, X; Takahashi, M; Yamazaki, T; Maeda, H

    2014-10-18

    High-temperature superconductors (HTS) are the key technology to achieve super-high magnetic field nuclear magnetic resonance (NMR) spectrometers with an operating frequency far beyond 1GHz (23.5T). (RE)Ba2Cu3O7-x (REBCO, RE: rare earth) conductors have an advantage over Bi2Sr2Ca2Cu3O10-x (Bi-2223) and Bi2Sr2CaCu2O8-x (Bi-2212) conductors in that they have very high tensile strengths and tolerate strong electromagnetic hoop stress, thereby having the potential to act as an ultra-compact super-high field NMR magnet. As a first step, we developed the world's first NMR magnet comprising an inner REBCO coil and outer low-temperature superconducting (LTS) coils. The magnet was successfully charged without degradation and mainly operated at 400MHz (9.39T). Technical problems for the NMR magnet due to screening current in the REBCO coil were clarified and solved as follows: (i) A remarkable temporal drift of the central magnetic field was suppressed by a current sweep reversal method utilizing ∼10% of the peak current. (ii) A Z2 field error harmonic of the main coil cannot be compensated by an outer correction coil and therefore an additional ferromagnetic shim was used. (iii) Large tesseral harmonics emerged that could not be corrected by cryoshim coils. Due to those harmonics, the resolution and sensitivity of NMR spectra are ten-fold lower than those for a conventional LTS NMR magnet. As a result, a HSQC spectrum could be achieved for a protein sample, while a NOESY spectrum could not be obtained. An ultra-compact 1.2GHz NMR magnet could be realized if we effectively take advantage of REBCO conductors, although this will require further research to suppress the effect of the screening current.

  8. Running characteristics of the superconducting magnetically levitated train in the case of the superconducting coil quenching; Chodendo jiki fujo ressha no chodendo coil quenching ji no soko tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, H. [Kansai University, Osaka (Japan); Osaki, H.; Masada, E. [The University of Tokyo, Tokyo (Japan)

    1998-07-01

    A superconducting (SC) magnetically levitated (Maglev) transportation system has been developed in Japan and various experiments have been done in the new test line at Yamanashi prefecture. Although the superconducting electrodynamic suspension (EDS) system has the advantage of stable levitation without active control, various electromagnetic or mechanical disturbances can cause the change of gap length and the displacement or oscillation of the bogie. In this system, the severest disturbance is SC coil quenching. Therefore it is important to show the running characteristics of the Maglev train and to increase the stability in this case. We developed three dimensional numerical simulation program for the Maglev train. Using this program, running simulation of the train for Yamanashi new test track was undertaken in the case of SC coil quenching. Because of the damping characteristics of the EDS system, influence of the coil quenching is smaller at a higher speed. In the train model, electromagnetic spring strength of the EDS system is larger than mechanical spring of the secondary suspension system connecting a bogie and cabins. Therefore influence of the quenching is only seen in the cabins connected to the quenched bogie. Demagnetization of the SC coil quenching is considered to increase the stability of the train. Although this method is useful to decrease large guidance force, lateral displacement, yaw and roll angle of the bogie, vertical displacement and pitch angle become large. 10 refs., 17 figs., 2 tabs.

  9. Properties of cryocooler-cooled superconductive pulse coil (1); Chokureishiki chodendo parusu koiru no tokusei hyoka (1)

    Energy Technology Data Exchange (ETDEWEB)

    Hae, T.; Kajikawa, K.; Iwakuma, M.; Funaki, K. [Kyushu Univ., Fukuoka (Japan); Hayashi, H.; Tsutsumi, K. [Kyushu Electric Power Co., Inc., Fukuoka (Japan); Tomioka, A.; Konno, M.; Nose, S. [Fuji Electric Corp., Tokyo (Japan)

    1999-11-10

    We manufactured the pulse coil of refrigerating machine direct cooling system using oxide superconducting wire rod, and they succeeded in triangular wave continuous running of 1T and 1Hz. It aimed at future further scale-up using this pulse coil this time, and the relationship between heat quantity and coil temperature rise in the operation was evaluated. (NEDO)

  10. Magnesium Diboride Superconducting Coils for Adiabatic Demagnetization Refrigerators (ADR's) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — For Adiabatic Demagnetization Refrigerators(ADR's) for space it is desirable to have very light weight, small diameter, high current density superconducting wires...

  11. Superconducting curved transport solenoid with dipole coils for charge selection of the muon beam

    Energy Technology Data Exchange (ETDEWEB)

    Strasser, P., E-mail: patrick.strasser@kek.jp [Muon Science Laboratory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); J-PARC Center, 2-4 Shirane Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Ikedo, Y.; Miyake, Y.; Shimomura, K.; Kawamura, N.; Nishiyama, K.; Makimura, S.; Fujimori, H.; Koda, A.; Nakamura, J.; Nagatomo, T. [Muon Science Laboratory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); J-PARC Center, 2-4 Shirane Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Adachi, T. [Department of Physics, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Pant, A.D. [Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu 400-8511 (Japan); Ogitsu, T. [Cryogenic Science Center, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); J-PARC Center, 2-4 Shirane Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Makida, Y.; Yoshida, M. [Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); J-PARC Center, 2-4 Shirane Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Sasaki, K. [Cryogenic Science Center, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); J-PARC Center, 2-4 Shirane Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Okamura, T. [Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); J-PARC Center, 2-4 Shirane Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); and others

    2013-12-15

    Highlights: • Superconducting curved transport solenoid. • Muon charge selection by superimposed dipole field. • World strongest pulsed muon source. -- Abstract: At the J-PARC Muon Science Facility (MUSE) the Super-Omega muon beamline is now under construction in the experimental hall No. 2 of the Materials and Life Science Facility building. Muons up to 45 MeV/c will be extracted with a large acceptance solid angle to produce the world highest intensity pulsed muon beam. This beamline comprises three parts, a normal-conducting capture solenoid, a superconducting curved transport solenoid and an axial focusing solenoid. Since only solenoids are used, both surface μ{sup +} and cloud μ{sup −} are extracted simultaneously. To accommodate future experiments that would only require either μ{sup +} or μ{sup −} beam, two dipole coils located on the straight section of the curved solenoid provide the muon charge selection by directing one of the beam onto the solenoid inner-wall. The design parameters, the construction status and the initial beam commissioning are reported.

  12. A Full-Size High-Temperature Superconducting Coil Employed in a Wind Turbine Generator Setup

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Mijatovic, Nenad; Kellers, Jürgen

    2017-01-01

    A full-size stationary experimental setup, which is a pole pair segment of a 2 MW high-temperature superconducting (HTS) wind turbine generator, has been built and tested under the HTS-GEN project in Denmark. The performance of the HTS coil is crucial to the setup, and further to the development ...

  13. Design Aspects on Winding of an MgB2 Superconducting Generator Coil

    DEFF Research Database (Denmark)

    Magnusson, N.; Eliassen, J.C.; Abrahamsen, Asger Bech

    2015-01-01

    Generators based on superconducting rotor coils are considered for future large off-shore wind turbines for their low weight and compact design, and for their possibility to reduce costs. In the 10-20 K temperature range, MgB2 superconductors carry current densities 100 times higher than standard...... copper conductors at room temperature at one tenth of the wire cost per unit carried current. In the framework of the European project INNWIND.EU, an MgB2 superconducting generator pole will be designed, built and tested. Some of the design aspects of this work with emphasis on the winding process......% compared to the use of an additional, dedicated, electrical insulation like Kapton for wet-winding or glass-fibre for dry-winding followed by vacuum impregnation. We show the results of a trial winding of 500 m of MgB2 superconducting wire into a double pancake coil using the wet-winding technique...

  14. Starfire poloidal coil systems

    Energy Technology Data Exchange (ETDEWEB)

    Evans, K. Jr.; Kim, S.H.; Turner, L.R.; Wang, S.T.

    1980-01-01

    The poloidal coils for STARFIRE consists of three systems: (1) equilibrium field (EF) coils; (2) ohmic heating (OH) coils; and (3) correction field (CF) coils. The EF coils are superconducting and lie outside the toroidal field (TF) coils. These coils provide the bulk of the equilibrium field necessary to keep the plasma positioned in the vacuum chamber with the desired cross sectional shape and pressure and current distributions. Having these coils outside of the TF coils requires that they have a larger stored energy and larger currents but eases the assembly, maintenance, and reliability of the coils. The STARFIRE OH system is relatively small compared to tokamaks in which the current is entirely ohmically driven. It is designed to provide sufficient flux in the early startup to raise the plasma current to the point (1 to 2 MA) where the rf current drive can take over.

  15. A novel no-insulation winding technique of high temperature-superconducting racetrack coil for rotating applications: A progress report in Korea university

    Science.gov (United States)

    Choi, Y. H.; Song, J. B.; Yang, D. G.; Kim, Y. G.; Hahn, S.; Lee, H. G.

    2016-10-01

    This paper presents our recent progress on core technology development for a megawatt-class superconducting wind turbine generator supported by the international collaborative R&D program of the Korea Institute of Energy Technology Evaluation and Planning. To outperform the current high-temperature-superconducting (HTS) magnet technology in the wind turbine industry, a novel no-insulation winding technique was first proposed to develop the second-generation HTS racetrack coil for rotating applications. Here, we briefly report our recent studies on no-insulation (NI) winding technique for GdBCO coated conductor racetrack coils in the following areas: (1) Charging-discharging characteristics of no-insulation GdBCO racetrack coils with respect to external pressures applied to straight sections; (2) thermal and electrical stabilities of no-insulation GdBCO racetrack coils encapsulated with various impregnating materials; (3) quench behaviors of no-insulation racetrack coils wound with GdBCO conductor possessing various lamination layers; (4) electromagnetic characteristics of no-insulation GdBCO racetrack coils under time-varying field conditions. Test results confirmed that this novel NI winding technique was highly promising. It could provide development of a compact, mechanically dense, and self-protecting GdBCO magnet for use in real-world superconducting wind turbine generators.

  16. Current control method of thyristor converter for PF superconducting coil in KSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jae-hoon, E-mail: jaehoon@nfri.re.kr [National Fusion Research Institute (NFRI), 169-148 Gwahak-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Ahn, Hyun-sik [POSCO ICT, 622, Sampyeong-dong, Bundang-gu, Seongnam-si, Kyeonggi-do 463-400 (Korea, Republic of); Lee, Dong-keun; Jin, Jong-kuk [National Fusion Research Institute (NFRI), 169-148 Gwahak-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Jang, Gye-yong; Seong, Dae-kyung; Yun, Min-sung; Shin, Hyun-seok [POSCO ICT, 622, Sampyeong-dong, Bundang-gu, Seongnam-si, Kyeonggi-do 463-400 (Korea, Republic of); Kim, Yaung-soo [National Fusion Research Institute (NFRI), 169-148 Gwahak-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of)

    2012-11-15

    This paper presents the current control method of thyristor converter which is applied to PF power supply in KSTAR. The thyristor converter for PF superconducting coil is composed of two 6 pulse converters and each converter is connected in parallel using DC reactor to reduce voltage ripple, current rating of converter and harmonic components. For 4 quadrant operation, each 6 pulse converter has six arms of anti-paralleled thyristor device, back-to-back connection. To apply this converter on KSTAR PF coil, stable coil current control is needed. Additionally, PF coil needs smooth current control without dead-time when current polarity changes and it is not easy in back-to-back thyristor converter. For this reason, zero crossing current control using circulating current and test results are introduced in this paper and it was satisfactory.

  17. First qualification of ITER Toroidal Field Coil conductor jacketing

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Kazuya, E-mail: hamada.kazuya@jaea.go.jp [Japan Atomic Energy Agency (Japan); Takahashi, Yoshikazu; Isono, Takaaki; Nunoya, Yoshihiko; Matsui, Kunihiro; Kawano, Katsumi; Oshikiri, Masayuki; Tsutsumi, Fumiaki; Koizumi, Norikiyo; Nakajima, Hideo; Okuno, Kiyoshi [Japan Atomic Energy Agency (Japan); Matsuda, Hidemitsu; Yano, Yoshitaka [Nippon Steel Engineering Co. Ltd (Japan); Devred, Arnauld; Bessette, Denis [ITER Organization (France)

    2011-10-15

    The Japan Atomic Energy Agency (JAEA) has the responsibility to procure 25% of the ITER Toroidal Field Coil conductors as the Japanese Domestic Agency (JADA) in the ITER project. The TF conductor is a circular shaped, cable-in-conduit conductor, composed of a cable and a stainless steel conduit (jacket). The outer diameter and maximum length of the TF conductor are 43.7 mm and 760 m, respectively. JAEA started to produce strand, cables and jacket sections and to construct a conductor manufacturing (jacketing) facility in 2008. Following preparation in December 2009 of the jacketing facility, the dummy cable, the jacket sections and fabrication procedures, such as welding, cable insertion, compaction and spooling, JAEA manufactured a 760 m long Cu dummy conductor for process qualification. Into the 760 m long Cu dummy conductor jacketing, JAEA successfully inserted the cable with a maximum force of 32 kN. The outer diameter of the cross section of the spooled conductor was 43.7 {+-} 0.15 mm, which complies with the ITER target requirement of 43.7 {+-} 0.3 mm. Following qualification of all manufacturing processes, JAEA has started to fabricate superconducting conductors for the TF coils.

  18. A study on electromagnetic and mechanical characteristics of the field coil in HTS motor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.B., E-mail: kim@elec.okayama-u.ac.j [Department of Electrical and Electronic Engineering, Okayama University, 3-1-1, Tsushima Naka, Kita-ku, Okayama 700-8530 (Japan); Kadota, T.; Joo, J.H.; Sano, H.; Murase, S. [Department of Electrical and Electronic Engineering, Okayama University, 3-1-1, Tsushima Naka, Kita-ku, Okayama 700-8530 (Japan); Lee, S.H.; Hong, J.P. [Department of Automotive Engineering, Hanyang University, 17, Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Kim, H.M.; Kwon, Y.K.; Jo, Y.S. [Korea Electrotechnology Research Institute, 28-1, Seongju-dong, Changwon 641-120 (Korea, Republic of)

    2010-11-01

    High temperature superconducting (HTS) motors electromagnetically consist of a rotator wound with HTS wires and an armature with conventional copper wires like Litz wire. The HTS rotor windings, as field coils, consist of a straight part and an end-ring part. Because a major rotation torque is induced by an interaction between magnetic fields and current-carrying conductors in the straight part, most of mechanical stresses in the motor occur at the straight part. An end-ring is placed in the edge of the straight part and used to connect to each adjacent straight-part coils. The magnetic fields by coil currents concentrate on the end-ring part, therefore, it is expected that the critical current of the entire coil, straight and end-ring, can be determined by the magnitude of the field in the end-ring. This paper deals with the overall J{sub c} degradation in the end-ring part by self-field generated from the coil. In addition to electromagnetic analyses, we have performed a numerical analysis in order to evaluate mechanical stresses in the straight part of field coil by armature reaction on steady-state operation. The analytical results will be presented in this paper.

  19. Design of a superconducting volume coil for magnetic resonance microscopy of the mouse brain.

    Science.gov (United States)

    Nouls, John C; Izenson, Michael G; Greeley, Harold P; Johnson, G Allan

    2008-04-01

    We present the design process of a superconducting volume coil for magnetic resonance microscopy of the mouse brain at 9.4T. The yttrium barium copper oxide coil has been designed through an iterative process of three-dimensional finite-element simulations and validation against room temperature copper coils. Compared to previous designs, the Helmholtz pair provides substantially higher B(1) homogeneity over an extended volume of interest sufficiently large to image biologically relevant specimens. A custom-built cryogenic cooling system maintains the superconducting probe at 60+/-0.1K. Specimen loading and probe retuning can be carried out interactively with the coil at operating temperature, enabling much higher through-put. The operation of the probe is a routine, consistent procedure. Signal-to-noise ratio in a mouse brain increased by a factor ranging from 1.1 to 2.9 as compared to a room-temperature solenoid coil optimized for mouse brain microscopy. We demonstrate images encoded at 10x10x20mum for an entire mouse brain specimen with signal-to-noise ratio of 18 and a total acquisition time of 16.5h, revealing neuroanatomy unseen at lower resolution. Phantom measurements show an effective spatial resolution better than 20mum.

  20. Theoretical and experimental study of a new single-coil superconducting miniundulator

    CERN Document Server

    Kulesza, Joe; Roscup, Neil; Diao, Cao Zheng; Deyhim, Alex; Moser, Herbert O

    2014-01-01

    The first pre-prototype of a single-coil superconducting miniundulator has been built and studied. Its basic specifications include 10 main periods and two end compensation periods, a period length of 7 mm, and a gap of 2 mm. The design is based on a racetrack-like coil configuration that is subsequently compressed to form the gap region with the spatially alternating currents flowing perpendicularly to the electron beam above and below the midplane. Operation up to an excitation current slightly beyond 400 A before quenching resulted in a peak magnetic flux density on axis of about 1 T and an undulator parameter of K about 0.65.

  1. Elastic Modulus Measurements of the LHC Dipole Superconducting Coil at 300 K and at 77 K

    CERN Document Server

    Couturier, K; Todesco, Ezio; Tommasini, D; Scandale, Walter

    2002-01-01

    We present measurements of the stress-displacement relation for the superconducting coils used in the Large Hadron Collider main magnets (dipoles and quadrupoles). This mechanical property is relevant to determine the correct amount of azimuthal pre-stress to be imposed on the coil. The hysteresis pattern in the loading and unloading curves is discussed. The stress-displacement curves are used to compute the corresponding elastic moduli and deformations. Measurements are also carried out at liquid nitrogen temperature, using the same framework to interpret experimental data.

  2. Shapes of coil ends in racetrack layout for superconducting magnets

    CERN Document Server

    Milanese, A

    2010-01-01

    Racetrack coils have received considerable attention for Nb3Sn magnets, both built using the React-and-Wind and Wind-and-React techniques. The geometry usually consists of a series of straight parts connected with circular arcs. Therefore, at the interface between these sections, a finite change in curvature is imposed on the cable. Alternative transition curves are analyzed here, with a particular focus on the total strain energy and the minimum / maximum radii of curvature. The study is presented in dimensionless form and the various alternatives are detailed in mathematical terms, so to be used for drafting or simulations. Extensions for the design of flared ends are also briefly discussed.

  3. 4C code analysis of thermal-hydraulic transients in the KSTAR PF1 superconducting coil

    Science.gov (United States)

    Savoldi Richard, L.; Bonifetto, R.; Chu, Y.; Kholia, A.; Park, S. H.; Lee, H. J.; Zanino, R.

    2013-01-01

    The KSTAR tokamak, in operation since 2008 at the National Fusion Research Institute in Korea, is equipped with a full superconducting magnet system including the central solenoid (CS), which is made of four symmetric pairs of coils PF1L/U-PF4L/U. Each of the CS coils is pancake wound using Nb3Sn cable-in-conduit conductors with a square Incoloy jacket. The coils are cooled with supercritical He in forced circulation at nominal 4.5 K and 5.5 bar inlet conditions. During different test campaigns the measured temperature increase due to AC losses turned out to be higher than expected, which motivates the present study. The 4C code, already validated against and applied to different types of thermal-hydraulic transients in different superconducting coils, is applied here to the thermal-hydraulic analysis of a full set of trapezoidal current pulses in the PF1 coils, with different ramp rates. We find the value of the coupling time constant nτ that best fits, at each current ramp rate, the temperature increase up to the end of the heating at the coil outlet. The agreement between computed results and the whole set of measured data, including temperatures, pressures and mass flow rates, is then shown to be very good both at the inlet and at the outlet of the coil. The nτ values needed to explain the experimental results decrease at increasing current ramp rates, consistently with the results found in the literature.

  4. Performance of titanium oxide-polymer insulation in superconducting coils made of Bi-2212/Ag-alloy round wire

    Science.gov (United States)

    Chen, Peng; Trociewitz, Ulf P.; Dalban-Canassy, Matthieu; Jiang, Jianyi; Hellstrom, Eric E.; Larbalestier, David C.

    2013-07-01

    Conductor insulation is one of the key components needed to make Ag-alloy clad Bi2Sr2CaCu2O8+x (Bi-2212/Ag) superconducting round wire (RW) successful for high field magnet applications, as dielectric standoff and high winding current densities (Jw) directly depend on it. In this study, a TiO2-polymer insulation coating developed by nGimat LLC was applied to test samples and a high field test coil. The insulation was investigated by differential thermal analysis (DTA), thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM), dielectric property measurement, and transport critical current (Ic) property measurement. About 29% of the insulation by weight is polymer. When the Bi-2212/Ag wire is fully heat treated, this decomposes with slow heating to 400 ° C in pure O2. After the full reaction, we found that the TiO2 did not degrade the critical current properties, adhered well to the conductor, and provided a breakdown voltage of more than 100 V, which allowed the test coil to survive quenching in 31.2 T background field, while providing a 2.6 T field increment. For Bi-2212/Ag RW with a typical diameter of 1.0-1.5 mm, this ˜15 μm thick insulation allows a very high coil packing factor of ˜0.74, whereas earlier alumino-silicate braid insulation only allows packing factors of 0.38-0.48.

  5. Design and analysis of the INTOR toroidal field-coil structural system

    Energy Technology Data Exchange (ETDEWEB)

    O' Toole, J.A.; Brown, T.G.; Shannon, T.E.

    1981-01-01

    The International Tokamak Reactor (INTOR) is a unique collaborative effort among the USA, USSR, EURATOM, and Japan to define the characteristics and objectives of, assess the technical feasibility of, and develop a design for the next major experiment in the world-wide tokamak program. The conceptual design consists of twelve toroidal field (TF) coils, each having a bore of 7.75 X 10.7 meters and a maximum field of 10.8 Tesla. The all-external poloidal field (PF) coil system imposes a very large pulsed field on the TF coil system. The superconducting TF and PF coils are enclosed by a common vacuum cryostat which includes individual enclosures for each TF coil's outer leg. This configuration provides a large window through which a complete torus sector can be withdrawn. The purpose of this study was to develop a feasible TF coil structural system design. The various design criteria and their effects on the design are discussed. The rationale supporting the allowable cyclic stress of 200 MPa (29 ksi) is discussed.

  6. Analysis of transmission efficiency of the superconducting resonance coil according the materials of cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yu Kyeong; Hwang, Jun Won; Choi, Hyo Sang [Chosun University, Gwangju (Korea, Republic of)

    2016-03-15

    The wireless power transfer (WPT) system using a magnetic resonance was based on magnetic resonance coupling of the transmission and the receiver coils. In these system, it is important to maintain a high quality-factor (Q-factor) to increase the transmission efficiency of WPT system. Our research team used a superconducting coil to increase the Q-factor of the magnetic resonance coil in WPT system. When the superconductor is applied in these system, we confirmed that transmission efficiency of WPT system was higher than normal conductor coil through a preceding study. The efficiency of the transmission and the receiver coil is affected by the magnetic shielding effect of materials around the coils. The magnetic shielding effect is dependent on the type, thickness, frequency, distance, shape of materials. Therefore, it is necessary to study the WPT system on the basis of these conditions. In this paper, the magnetic shield properties of the cooling system were analyzed using the High-Frequency Structure Simulation (HFSS, Ansys) program. We have used the shielding materials such as plastic, aluminum and iron, etc. As a result, when we applied the fiber reinforced polymer (FRP), the transmission efficiency of WPT was not affected because electromagnetic waves went through the FRP. On the other hand, in case of a iron and aluminum, transmission efficiency was decreased because of their electromagnetic shielding effect. Based on these results, the research to improve the transmission efficiency and reliability of WPT system is continuously necessary.

  7. Performance of current measurement system in poloidal field power supply for Experimental Advanced Superconducting Tokamak

    Science.gov (United States)

    Liu, D. M.; Li, J.; Wan, B. N.; Lu, Z.; Wang, L. S.; Jiang, L.; Lu, C. H.; Huang, J.

    2016-11-01

    As one of the core subsystems of the Experimental Advanced Superconducting Tokamak (EAST), the poloidal field power system supplies energy to EAST's superconducting coils. To measure the converter current in the poloidal field power system, a current measurement system has been designed. The proposed measurement system is composed of a Rogowski coil and a newly designed integrator. The results of the resistor-inductor-capacitor discharge test and the converter equal current test show that the current measurement system provides good reliability and stability, and the maximum error of the proposed system is less than 1%.

  8. A quantitative investigation of the effect of a close-fitting superconducting shield on the coil factor of a solenoid

    DEFF Research Database (Denmark)

    Aarøe, Morten; Monaco, R.; Koshelet, V.;

    2009-01-01

    Superconducting shields are commonly used to suppress external magnetic interference. We show, that an error of almost an order of magnitude can occur in the coil factor in realistic configurations of the solenoid and the shield. The reason is that the coil factor is determined by not only...

  9. Numerical calculation of transient field effects in quenching superconducting magnets

    CERN Document Server

    Schwerg, Nikolai; Russenschuck, Stephan

    2009-01-01

    The maximum obtainable magnetic induction of accelerator magnets, relying on normal conducting cables and iron poles, is limited to around 2 T because of ohmic losses and iron saturation. Using superconducting cables, and employing permeable materials merely to reduce the fringe field, this limit can be exceeded and fields of more than 10 T can be obtained. A quench denotes the sudden transition from the superconducting to the normal conducting state. The drastic increase in electrical resistivity causes ohmic heating. The dissipated heat yields a temperature rise in the coil and causes the quench to propagate. The resulting high voltages and excessive temperatures can result in an irreversible damage of the magnet - to the extend of a cable melt-down. The quench behavior of a magnet depends on numerous factors, e.g. the magnet design, the applied magnet protection measures, the external electrical network, electrical and thermal material properties, and induced eddy current losses. The analysis and optimizat...

  10. Enhanced trapped field performance of bulk high-temperature superconductors using split coil, pulsed field magnetization with an iron yoke

    Science.gov (United States)

    Ainslie, M. D.; Fujishiro, H.; Mochizuki, H.; Takahashi, K.; Shi, Y.-H.; Namburi, D. K.; Zou, J.; Zhou, D.; Dennis, A. R.; Cardwell, D. A.

    2016-07-01

    Investigating and predicting the magnetization of bulk superconducting materials and developing practical magnetizing techniques is crucial to using them as trapped field magnets in engineering applications. The pulsed field magnetization (PFM) technique is considered to be a compact, mobile and relative inexpensive way to magnetize bulk samples, requiring shorter magnetization times (on the order of milliseconds) and a smaller and less complicated magnetization fixture; however, the trapped field produced by PFM is generally much smaller than that of slower zero field cooling or field cooling techniques, particularly at lower operating temperatures. In this paper, the PFM of two, standard Ag-containing Gd-Ba-Cu-O samples is carried out using two types of magnetizing coils: (1) a solenoid coil, and (2) a split coil, both of which make use of an iron yoke to enhance the trapped magnetic field. It is shown that a significantly higher trapped field can be achieved using a split coil with an iron yoke, and in order to explain these how this arrangement works in detail, numerical simulations using a 2D axisymmetric finite element method based on the H -formulation are carried to qualitatively reproduce and analyze the magnetization process from both electromagnetic and thermal points of view. It is observed that after the pulse peak significantly less flux exits the bulk when the iron core is present, resulting in a higher peak trapped field, as well as more overall trapped flux, after the magnetization process is complete. The results have important implications for practical applications of bulk superconductors as such a split coil arrangement with an iron yoke could be incorporated into the design of a portable, high magnetic field source/magnet to enhance the available magnetic field or in an axial gap-type bulk superconducting electric machine, where iron can be incorporated into the stator windings to (1) improve the trapped field from the magnetization process

  11. Further progresses in the development of large MgB2 Superconducting Coils for the Ignitor Experiment

    Science.gov (United States)

    Tumino, A.; Grasso, G.; Coppi, B.

    2013-10-01

    Intermediate temperature superconducting cables have been adopted for the fabrication of the largest poloidal field coils of the Ignitor experiment. This is an important step toward achieving better duty cycles in Ignitor-like machines with innovative magnet technologies compared to traditional superconductors. The commercially available MgB2 strands manufactured by Columbus Superconductors can achieve the target specifications for the considered coils, about 5 meters of outer diameter and maximum field on the conductor below 5 T. These cables are also compatible with the Ignitor cryogenic system, which is designed to cool the machine at about 30 K, although MgB2 may use colder gas at 10 K. The preliminary cable design includes about 300 MgB2 multifilamentary strands of 1 mm in diameter and a copper tube for the He-gas flow in the center. Recently we have succeeded in the development of MgB2 strands with a further improvement in design and electrical properties for cable application. Reaching of a higher critical current density and better current sharing properties between the different strands is allowed by the newest design. The implementation of this progress in wire performance and its impact on the coil design will be discussed. US DOE partly sponsored.

  12. Magnetic field measurements of JT-60SA CS model coil

    Energy Technology Data Exchange (ETDEWEB)

    Obana, Tetsuhiro, E-mail: obana.tetsuhiro@LHD.nifs.ac.jp [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Takahata, Kazuya; Hamaguchi, Shinji; Chikaraishi, Hirotaka; Mito, Toshiyuki; Imagawa, Shinsaku [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Kizu, Kaname; Murakami, Haruyuki; Natsume, Kyohei; Yoshida, Kiyoshi [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan)

    2015-01-15

    Highlights: • Magnetic fields of the JT-60SA CS model coil were measured. • While the coil current was held constant at 20 kA, magnetic fields varied slightly with several different long time constants. • We investigated coils consisting of CIC conductors and having long time constants. - Abstract: In a cold test of the JT-60SA CS model coil, which has a quad-pancake configuration consisting of a Nb{sub 3}Sn cable-in-conduit (CIC) conductor, magnetic fields were measured using Hall sensors. For a holding coil current of 20 kA, measured magnetic fields varied slightly with long time constants in the range 17–571 s, which was much longer than the time constant derived from a measurement using a short straight sample. To validate the measurements, the magnetic fields of the model coil were calculated using a computational model representing the positions of Nb{sub 3}Sn strands inside the CIC conductor. The calculated results were in good agreement with the measurements. Consequently, the validity of the magnetic field measurements was confirmed. Next, we investigated other coils consisting of CIC conductors and having long time constants. The only commonality among the coils was the use of CIC conductors. At present, there is no obvious way to prevent generation of such magnetic-field variations with long time constants.

  13. Study of Kapton insulated superconducting coils manufactured for the LHC inner triplet model magnets at Fermilab

    CERN Document Server

    Andreev, N; Bossert, R; Brandt, J; Chichili, D R; Kerby, J S; Nobrega, A; Novitski, I; Ozelis, J P; Yadav, S; Zlobin, A V

    2000-01-01

    Fermilab has constructed a number of 2 m model quadrupoles as part of an ongoing program to develop and optimize the design of quadrupoles for the LHC Interaction Region inner triplets. The quadrupole design is based upon a two layer shell type coil of multi-filament NbTi strands in Rutherford cable, insulated with Kapton film. As such, the coil size and mechanical properties are critical in achieving the desired prestress and field quality targets for the agent. Throughout the model magnet program, different design and manufacturing techniques have been studied to obtain coils with the required mechanical properties. This paper summarizes the structural material and coil mechanical properties, coil design optimization results and production experience accumulated in the model R&D program. (5 refs).

  14. Characteristics of persistent-current mode of HTS coil on superconducting electromagnet

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.Y., E-mail: cylee@krri.re.kr [Korea Railroad Research Institute, Woram Dong, Uiwang Si 437-757 (Korea, Republic of); Kim, J.; Han, Y.J.; Kang, B. [Korea Railroad Research Institute, Woram Dong, Uiwang Si 437-757 (Korea, Republic of); Chung, Y.D. [Department of Electrical Engineering, Suwon University, Bongdang Eup, Hwaseong Si 445-743 (Korea, Republic of); Yoon, Y.S. [Department of Electrical Engineering, Ansan College of Technology, Choji-Dong, Ansan Si 425-792 (Korea, Republic of); Chu, S.Y.; Hwang, Y.J.; Jo, H.C.; Jang, J.Y.; Ko, T.K. [Department of Electrical and Electronic Engineering, Yonsei University, Sinchon-dong, Seoul 120-749 (Korea, Republic of)

    2011-11-15

    The levitation gap of an electromagnetic suspension (EMS) system affects the current decay rate of superconducting electromagnet. The presence of iron core provides a significant benefit in the PCM performance of SC coil. The increased levitation gap of the EMS model with the SC-EM could negatively affect the design of SC-EM operated in PCM. This paper investigates the way in which the levitation gap of an electromagnetic suspension (EMS) system affects the current decay rate of superconducting electromagnet (SC-EM) operated in persistence-current mode (PCM). Using inductance analyzed from the magnetic circuit of an EMS model, the current decay rate caused by the variation in the levitation gap was simulated. In order to experimentally verify the simulation results, we fabricated a small-scale EMS model with SC coil operated in PCM and measured the current decay rates at different levitation gaps. The result showed that the presence of iron core provides a significant benefit in the PCM performance of SC coil, but the benefit decreased as the levitation gap increases. This study revealed that the increased levitation gap of the EMS model with the SC-EM could negatively affect the design of SC-EM operated in PCM.

  15. A novel approach to quench detection for high temperature superconducting coils

    Energy Technology Data Exchange (ETDEWEB)

    Song, W.J., E-mail: songwenjuan@bjtu.edu.cn [School of Electrical Engineering, Beijing Jiaotong University, Beijing (China); China Electric Power Research Institute, Beijing (China); Fang, X.Y. [Department of Electrical and Computer Engineering, University of Victoria, PO Box 1700, STN CSC, Victoria, BC V8W 2Y2 (Canada); Fang, J., E-mail: fangseer@sina.com [School of Electrical Engineering, Beijing Jiaotong University, Beijing (China); Wei, B.; Hou, J.Z. [China Electric Power Research Institute, Beijing (China); Liu, L.F. [Guangzhou Metro Design & Research Institute Co., Ltd, Guangdong (China); Lu, K.K. [School of Electrical Engineering, Beijing Jiaotong University, Beijing (China); Li, Shuo [College of Information Science and Engineering, Northeastern University, Shenyang (China)

    2015-11-15

    Highlights: • We proposed a novel quench detection method mainly based on phase for HTS coil. • We showed theory model and numerical simulation system by LabVIEW. • Experiment results are showed and analyzed. • Little quench voltage will cause obvious change on phase. • The approach can accurately detect quench resistance voltage in real-time. - Abstract: A novel approach to quench detection for high temperature superconducting (HTS) coils is proposed, which is mainly based on phase angle between voltage and current of two coils to detect the quench resistance voltage. The approach is analyzed theoretically, verified experimentally and analytically by MATLAB Simulink and LabVIEW. An analog quench circuit is built on Simulink and a quench alarm system program is written in LabVIEW. Experiment of quench detection is further conducted. The sinusoidal AC currents ranging from 19.9 A to 96 A are transported to the HTS coils, whose critical current is 90 A at 77 K. The results of analog simulation and experiment are analyzed and they show good consistency. It is shown that with the increase of current, the phase undergoes apparent growth, and it is up to 60° and 15° when the current reaches critical value experimentally and analytically, respectively. It is concluded that the approach proposed in this paper can meet the need of precision and quench resistance voltage can be detected in time.

  16. ROXIE the Routine for the Optimization of Magnet X-sections, Inverse Field Computation and Coil End Design

    CERN Document Server

    Russenschuck, Stephan

    1999-01-01

    The ROXIE software program package has been developed for the design of the superconducting magnets for the LHC at CERN. The software is used as an approach towards the integrated design of superconducting magnets including feature-based coil geometry creation, conceptual design using genetic algorithms, optimization of the coil and iron cross-sections using a reduced vector-potential formulation, 3-D coil end geometry and field optimization using deterministic vector- optimization techniques, tolerance analysis, production of drawings by means of a DXF interface, end-spacer design with interfaces to CAD-CAM for the CNC machining of these pieces, and the tracing of manufacturing errors using field quality measurements. This paper gives an overview of the methods applied in the ROXIE program. (9 refs).

  17. Double pancake superconducting coil design for maximum magnetic energy storage in small scale SMES systems

    Science.gov (United States)

    Hekmati, Arsalan; Hekmati, Rasoul

    2016-12-01

    Electrical power quality and stability is an important issue nowadays and technology of Superconducting Magnetic Energy Storage systems, SMES, has brought real power storage capability to power systems. Therefore, optimum SMES design to achieve maximum energy with the least length of tape has been quite a matter of concern. This paper provides an approach to design optimization of solenoid and toroid types of SMES, ensuring maximum possible energy storage. The optimization process, based on Genetic Algorithm, calculates the operating current of superconducting tapes through intersection of a load line with the surface indicating the critical current variation versus the parallel and perpendicular components of magnetic flux density. FLUX3D simulations of SMES have been utilized for energy calculations. Through numerical analysis of obtained data, formulations have been obtained for the optimum dimensions of superconductor coil and maximum stored energy for a given length and cross sectional area of superconductor tape.

  18. Trapped field internal dipole superconducting motor generator

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. (Downers Grove, IL)

    2001-01-01

    A motor generator including a high temperature superconductor rotor and an internally disposed coil assembly. The motor generator superconductor rotor is constructed of a plurality of superconductor elements magnetized to produce a dipole field. The coil assembly can be either a conventional conductor or a high temperature superconductor. The superconductor rotor elements include a magnetization direction and c-axis for the crystals of the elements and which is oriented along the magnetization direction.

  19. A single-sided linear synchronous motor with a high temperature superconducting coil as the excitation system

    Energy Technology Data Exchange (ETDEWEB)

    Yen, F; Li, J; Zheng, S J; Liu, L; Ma, G T; Wang, J S; Wang, S Y; Liu Wei, E-mail: fei.h.yen@gmail.co [Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)

    2010-10-15

    Thrust measurements were performed on a coil made of a YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} coated conductor acting as the excitation system of a single-sided linear synchronous motor. The superconducting coil was a single pancake in the shape of a racetrack with 100 turns, the width and effective lengths were 42 mm and 84 mm, respectively. The stator was made of conventional copper wire. At 77 K and a gap of 10 mm, with an operating direct current of I{sub DC} = 30 A for the superconducting coil and alternating current of I{sub AC} = 9 A for the stator coils, a thrust of 24 N was achieved. With addition of an iron core, thrust was increased by 49%. With addition of an iron back-plate, thrust was increased by 70%.

  20. Field gradient calculation of HTS double-pancake coils considering the slanted turns and the splice

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Geon Woo; Kim, Jin Sub; Song, Seung Hyun; Ko, Tae Kuk [Yonsei University, Seoul (Korea, Republic of); Lee, Woo Seung [JH ENGINEERING CO., LTD., Gunpo (Korea, Republic of); Lee, On You [Korea National University of Transportation, Chungju (Korea, Republic of)

    2017-03-15

    To obtain Nuclear Magnetic Resonance (NMR) measurement of membrane protein, an NMR magnet is required to generate high intensity, homogeneity, and stability of field. A High-Temperature Superconducting (HTS) magnet is a promising alternative to a conventional Low-Temperature Superconducting (LTS) NMR magnet for high field, current density, and stability margin. Conventionally, an HTS coil has been wound by several winding techniques such as Single-Pancake (SP), Double-Pancake (DP), and layer-wound. The DP winding technique has been frequently used for a large magnet because long HTS wire is generally difficult to manufacture, and maintenance of magnet is convenient. However, magnetic field generated by the slanted turns and the splice leads to field inhomogeneity in Diameter of Spherical Volume (DSV). The field inhomogeneity degrades performance of NMR spectrometer and thus effect of the slanted turns and the splice should be analyzed. In this paper, field gradient of HTS double-pancake coils considering the slanted turns and the splice was calculated using Biot-Savart law and numerical integration. The calculation results showed that magnetic field produced by the slanted turns and the splice caused significant inhomogeneity of field.

  1. Magnetic field modeling with a set of individual localized coils.

    Science.gov (United States)

    Juchem, Christoph; Nixon, Terence W; McIntyre, Scott; Rothman, Douglas L; de Graaf, Robin A

    2010-06-01

    A set of generic, circular individual coils is shown to be capable of generating highly complex magnetic field distributions in a flexible fashion. Arbitrarily oriented linear field gradients can be generated in three-dimensional as well as sliced volumes at amplitudes that allow imaging applications. The multi-coil approach permits the simultaneous generation of linear MRI encoding fields and complex shim fields by the same setup, thereby reducing system complexity. The choice of the sensitive volume over which the magnetic fields are optimized remains temporally and spatially variable at all times. The restriction of the field synthesis to experimentally relevant, smaller volumes such as single slices directly translates into improved efficiency, i.e. higher magnetic field amplitudes and/or reduced coil currents. For applications like arterial spin labeling, signal spoiling and diffusion weighting, perfect linearity of the gradient fields is not required and reduced demands on accuracy can also be readily translated into improved efficiency. The first experimental realization was achieved for mouse head MRI with 24 coils that were mounted on the surface of a cylindrical former. Oblique linear field gradients of 20 kHz/cm (47 mT/m) were generated with a maximum current of 1.4A which allowed radial imaging of a mouse head. The potential of the new approach for generating arbitrary magnetic field shapes is demonstrated by synthesizing the more complex, higher order spherical harmonic magnetic field distributions X2-Y2, Z2 and Z2X. The new multi-coil approach provides the framework for the integration of conventional imaging and shim coils into a single multi-coil system in which shape, strength, accuracy and spatial coverage of the magnetic field can be specifically optimized for the application at hand.

  2. Cryocooled superconducting magnets for high magnetic fields at the HFLSM and future collaboration with the TML

    Science.gov (United States)

    Watanabe, K.; Nishijima, G.; Awaji, S.; Koyama, K.; Takahashi, K.; Kobayashi, N.; Kiyoshi, T.

    2006-11-01

    A hybrid magnet needs a large amount of liquid helium for operation. In order to make an easy-to-operate hybrid magnet system, we constructed a cryocooled 28 T hybrid magnet, consisting of an outer cryocooled 10 T superconducting magnet and an inner traditional water-cooled 19 T resistive magnet. As a performance test, the cryocooled hybrid magnet generated 27.5 T in a 32 mm room temperature experimental bore. As long as Nb3Sn superconducting wires are employed, the expected maximum high field generation in the cryocooled superconducting magnet will be 17 T at 5 K. We adopted the high temperature superconducting insert coil, employing Ag-sheathed Bi2Sr2Ca2Cu3O10superconducting tape. In combination with the low temperature 16.5 T back-up coil with a 174 mm cold bore, the cryocooled high temperature superconducting magnet successfully generated the total central field of 18.1 T in a 52 mm room temperature bore. As a next step, we start the collaboration with the National Institute for Materials Science for the new developmental works of a 30 T high temperature superconducting magnet and a 50 T-class hybrid magnet.

  3. A Novel Idea for Coil Collar Structures in Accelerator Superconducting Magnets

    CERN Document Server

    Fessia, P

    2002-01-01

    The dipoles for several different machines (LHC, SSC, HERA) were designed using non-magnetic metallic collars to contain the superconducting coils. The coils are of two types, main and floating. This paper describes a structure with combined steel and plastic collars. Since the floating collars do not give an important contribution to the global rigidity of the dipole we propose to suppress them. The plastic collars are just fillers to limit the helium contained in the cold mass. Some data about thermoplastic materials to be possibly used for the collars are given and some estimations of mass and cost of this configuration are made. Finally the results of the tests of a 1-m-long twin aperture dipole with mixed steel-plastic collars are shortly described. The replacement of expensive alloys by high performance plastic in non-structural components can be a cost-effective solution in view of future projects where superconducting magnets are involved and contained costs are a key issue.

  4. A new design method for asymmetrical head gradient coils used for superconducting MRI scanner

    Institute of Scientific and Technical Information of China (English)

    TANG Xin; ZU Donglin; BAO Shanglian

    2004-01-01

    A novel approach of asymmetrical gradient coil design for head imaging in MRI (magnetic resonance imaging) is presented in this paper. The design is based on a modified target field method in which the stream function is introduced to replace Blaine's scheme for the length control. The transverse head coil calculated by this method has a high performance. The coil efficiency is 0.41 mT/m/A and the inductance is 512 μH. The coil has an inner diameter of 32 cm and a length of 45.8 cm. The size of the ROU (region of uniformity) is 20 cm along the transverse direction and 17 cm along the axial direction and it is close to one end of the coil. The ROU of the coil matches the ROI (region of interest) of human head very well. Compared with previous designs, our design has relatively high performance and the overlap between the ROU and the ROI is larger (the overlap percent is 95 % ).

  5. A novel approach to quench detection for high temperature superconducting coils

    Science.gov (United States)

    Song, W. J.; Fang, X. Y.; Fang, J.; Wei, B.; Hou, J. Z.; Liu, L. F.; Lu, K. K.; Li, Shuo

    2015-11-01

    A novel approach to quench detection for high temperature superconducting (HTS) coils is proposed, which is mainly based on phase angle between voltage and current of two coils to detect the quench resistance voltage. The approach is analyzed theoretically, verified experimentally and analytically by MATLAB Simulink and LabVIEW. An analog quench circuit is built on Simulink and a quench alarm system program is written in LabVIEW. Experiment of quench detection is further conducted. The sinusoidal AC currents ranging from 19.9 A to 96 A are transported to the HTS coils, whose critical current is 90 A at 77 K. The results of analog simulation and experiment are analyzed and they show good consistency. It is shown that with the increase of current, the phase undergoes apparent growth, and it is up to 60° and 15° when the current reaches critical value experimentally and analytically, respectively. It is concluded that the approach proposed in this paper can meet the need of precision and quench resistance voltage can be detected in time.

  6. A Superconducting Magnet with Center Field of 10 T and φ100 mm Warm Bore

    Institute of Scientific and Technical Information of China (English)

    王秋良; 严陆光; 赵宝志; 宋守森

    2006-01-01

    A conduction-cooled superconducting magnet with central field of 10T and warm bore of 100 mm was designed based on a Nb3Sn and two NbTi superconducting coils. At the first stage, the NbTi coils have been fabricated and tested. A two-stage 4 K Gifford-McMahon (GM) cryocooler with the second-stage power in 1W, 4.2K is used to cool the magnet from room temperature to 4 K. The superconducting magnet with the same power supply has the operating current of 116A. The magnet can be rotated with a support frame to be operated with either horizontal or vertical position. A pair of Bi-2223 high temperature superconducting current leads was employed to reduce heat leakage into 4.2K level. The NbTi coils reachto the operating current of 120A without training effect to be observed during charging of the magnet during 40 minutes charging time and generate the center field of 6.5T. The training effect in the NbTi magnet directly cool-down by cryocooler and inter-winding support structure in magnet can be remarkably improved. The superconducting magnet has been stably operated for more than 275 hours with 6.5T. In this paper, the detailed design, fabrication, stress analysis and quench protection characteristics are presented.

  7. Conceptual design of cooling anchor for current lead on HTS field coils

    Energy Technology Data Exchange (ETDEWEB)

    Hyeon, C. J.; Kim, J. H.; Quach, H. L. [Dept. of Electrical Engineering, Jeju National University, Jeju (Korea, Republic of); and others

    2017-06-15

    The role of current lead in high-temperature superconducting synchronous machine (HTSSM) is to function as a power supply by connecting the power supply unit at room temperature with the HTS field coils at cryogenic temperature. Such physical and electrical connection causes conduction and Joule-heating losses, which are major thermal losses of HTSSM rotors. To ensure definite stability and economic feasibility of HTS field coils, quickly and smoothly cooling down the current lead is a key design technology. Therefore, in this paper, we introduce a novel concept of a cooling anchor to enhance the cooling performance of a metal current lead. The technical concept of this technology is the simultaneously chilling and supporting the current lead. First, the structure of the current lead and cooling anchor were conceptually designed for field coils for a 1.5 MW-class HTSSM. Then, the effect of this installation on the thermal characteristics of HTS coils was investigated by 3D finite element analysis.

  8. Optimum coil shape for a given volume of conductor to obtain maximum central field in an air core solenoid

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, P. [Lawrence Berkeley Lab., CA (United States)

    1995-02-01

    This paper is an expansion of engineering notes prepared in 1961 to address the question of how to wind circular coils so as to obtain the maximum axial field with the minimum volume of conductor. At the time this was a germain question because of the advent of superconducting wires which were in very limited supply, and the rapid push for generation of very high fields, with little concern for uniformity.

  9. Angular dependence of direct current decay in a closed YBCO double-pancake coil under external AC magnetic field and reduction by magnetic shielding

    Science.gov (United States)

    Geng, J.; Zhang, H.; Li, C.; Zhang, X.; Shen, B.; Coombs, T. A.

    2017-03-01

    High T c superconducting (HTS) coils are ideal candidates in the use of high field magnets. HTS coils carrying a direct current, however, suffer a non-negligible loss when they are exposed to an external AC magnetic field. Although this phenomenon is well known, no study concerning AC magnetic field angular dependence of direct current decay has ever been shown. In this work, we experimentally investigate the direct current decay characteristics in a closed double pancake coil made of a YBCO coated conductor under external AC field. AC field of different angles with respect to the coil plane is applied. Results show that the current decay rate presents a strong angular dependence. The fastest decay occurs when the field is parallel to the coil plane, in which case the surface of the tape in the outermost layer experiences most flux variation. To reduce the decay rate, we propose wrapping superconducting tapes around the outermost layer of the coil to shield external AC field. This method significantly reduces direct current decay rate under parallel field, without affecting the perpendicular self-field of the coil.

  10. Superconductivity in Strong Magnetic Field (Greater Than Upper Critical Field)

    Energy Technology Data Exchange (ETDEWEB)

    Tessema, G.X.; Gamble, B.K.; Skove, M.J.; Lacerda, A.H.; Mielke, C.H.

    1998-08-22

    The National High Magnetic Field Laboratory, funded by the National Science Foundation and other US federal Agencies, has in recent years built a wide range of magnetic fields, DC 25 to 35 Tesla, short pulse 50 - 60 Tesla, and quasi-continuous 60 Tesla. Future plans are to push the frontiers to 45 Tesla DC and 70 to 100 Tesla pulse. This user facility, is open for national and international users, and creates an excellent tool for materials research (metals, semiconductors, superconductors, biological systems ..., etc). Here we present results of a systematic study of the upper critical field of a novel superconducting material which is considered a promising candidate for the search for superconductivity beyond H{sub c2} as proposed by several new theories. These theories predict that superconductors with low carrier density can reenter the superconducting phase beyond the conventional upper critical field H{sub c2}. This negates the conventional thinking that superconductivity and magnetic fields are antagonistic.

  11. Feasibility Study on Welding Structure of the HT-7U Toroidal Field Coil Case

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The Toroidal Field (TF) coil case of the HT-7U superconducting tokamak device is made of austenitic stainless steel 316LN and is designed to operate at cryogenic temperature (4 K). 316LN can retain high strength and fracture toughness at 4 K. Feasibility study on technical process of welding has been experimentally considered as a hopeful joint method for suppression of post-welding deformation and reduction of over-heating. Meanwhile the final range of stress in- tensity and the stress intensity factor (K) for pre-cracks of welding structure have been determined by using J-integral. These related results are optimistic and have shown that there's no problem in strength and fracture toughness at the vicinity of the pre-crack tip. This paper introduces the welding structure of TF coil case in detail.

  12. Miniature coils for producing pulsed inplane magnetic fields for nanospintronics

    Energy Technology Data Exchange (ETDEWEB)

    Pawliszak, Łukasz; Zgirski, Maciej [Institute of Physics, Polish Academy of Sciences, al.Lotnikow 32/46, PL 02-668 Warszawa (Poland); Tekielak, Maria [Faculty of Physics, University of Białystok, ul.Lipowa 41, PL 15-424 Białystok (Poland)

    2015-03-15

    Nanospintronic and related research often requires the application of quickly rising magnetic field pulses in the plane of the studied planar structure. We have designed and fabricated sub-millimeter-sized coils capable of delivering pulses of the magnetic field up to ∼500 Oe in the plane of the sample with the rise time of the order of 10 ns. The placement of the sample above the coil allows for easy access to its surface with manipulators or light beams for, e.g., Kerr microscopy. We use the fabricated coil to drive magnetic domain walls in 1 μm wide permalloy wires and measure magnetic domain wall velocity as a function of the applied magnetic field.

  13. High temperature superconducting axial field magnetic coupler: realization and test

    Science.gov (United States)

    Belguerras, L.; Mezani, S.; Lubin, T.; Lévêque, J.; Rezzoug, A.

    2015-09-01

    Contactless torque transmission through a large airgap is required in some industrial applications in which hermetic isolation is necessary. This torque transmission usually uses magnetic couplers, whose dimension strongly depends on the airgap flux density. The use of high temperature superconducting (HTS) coils to create a strong magnetic field may constitute a solution to reduce the size of the coupler. It is also possible to use this coupler to replace a torque tube in transmitting the torque produced by a HTS motor to its load. This paper presents the detailed construction and tests of an axial field HTS magnetic coupler. Pancake coils have been manufactured from BSCCO tape and used in one rotor of the coupler. The second rotor is mainly composed of NdFeB permanent magnets. Several tests have been carried out showing that the constructed coupler is working properly. A 3D finite element (FE) model of the studied coupler has been developed. Airgap magnetic field and torque measurements have been carried out and compared to the FE results. It has been shown that the measured and the computed quantities are in satisfactory agreement.

  14. Finite Element Analyses and Instrumentation Layout for Single Coil Testing of TF Coils in HT-7U

    Institute of Scientific and Technical Information of China (English)

    陈文革; 翁佩德

    2003-01-01

    The HT-7U tokamak is a magnetically-confined full superconducting fusion device,consisting of superconducting toroidal field (TF) coils and superconducting poloidal field (PF)coils. These coils are wound with cable-in-conductor (CICC) which is based on UNK NbTi wiresmade in Russian [1]. A single D-shaped toroidal field magnet coil will be tested for large andexpensive magnets systems before assembling them in the toroidal configuration. This paperdescribes the layout of the instrumentation for a superconducting test facility based on the resultsof a finite element modeling of the single coil of toroidal magnetic field (TF) coils in HT-7Utokamak device. At the same time, the design of coil support structure in the test facility isparticularly discussed in some detail.

  15. Ultra-high-field superconducting magnets

    Energy Technology Data Exchange (ETDEWEB)

    Hoard, R.W.; Cornish, D.N.; Scanlan, R.M.; Zbasnik, J.P.; Leber, R.L.; Hickman, R.B.; Lee, J.D.

    1983-08-01

    The following topics are considered: (1) superfluid helium for advanced magnets, (2) conductor reinforcement, (3) designing a 20-T, 2-m bore solenoidal coil, (4) coil size and conductor properties, (5) axial forces on the coil, (6) effect of radiation on the coil systems, and (7) helium-II transient heat transfer and coil protection. (MOW)

  16. Technique for reduction of mechanical losses in AC superconducting coils due to thermal expansion properties of various FRP bobbins

    Science.gov (United States)

    Sekine, N.; Tada, S.; Higuchi, T.; Furumura, Y.; Takao, T.; Yamanaka, A.

    2005-10-01

    We reported about reduction of mechanical losses in AC superconducting coils. The method is the use of FRP bobbins fabricated with special fibers. Since their FRPs have negative thermal expansion coefficient to the fiber direction, the FRP bobbins expand to the circumferential direction during cooling down. In case of the superconducting coils with such FRP bobbins, the winding tensions do not decrease during cooling down. Therefore, the mechanical losses are reduced by the suppression of wire's vibration. Their special FRPs are a Dyneema® fiber reinforced plastic (DFRP), a Dyneema and glass fiber reinforced plastic (DGFRP), and a Zylon® fiber reinforced plastic (ZFRP). These materials have negative thermal expansion coefficient to the fiber direction, however, the amplitudes of thermal expansion are various by the quantity or quality of the fiber. In this paper, the values of thermal expansion were actually measured, and it was discussed about the influence on the mechanical losses. At the experimental results, the mechanical loss was small, so that the thermal strain to the circumferential direction on the coil was large. Moreover, in case of the coils with sufficiently strong winding tensions at coil-operating temperature, the mechanical losses vanished.

  17. Technique for reduction of mechanical losses in AC superconducting coils due to thermal expansion properties of various FRP bobbins

    Energy Technology Data Exchange (ETDEWEB)

    Sekine, N. [Tsukamoto Laboratory, Faculty of Engineering, Yokohama National University, 79-5, Tokiwadai, Hodogaya-ku, Yokohama 240-8501 (Japan)]. E-mail: n-sekine@tsukalab.dnj.ynu.ac.jp; Tada, S. [Sophia University, 7-1, Kioicho, Chiyoda-ku, Tokyo 102-8554 (Japan); Higuchi, T. [Sophia University, 7-1, Kioicho, Chiyoda-ku, Tokyo 102-8554 (Japan); Furumura, Y. [Sophia University, 7-1, Kioicho, Chiyoda-ku, Tokyo 102-8554 (Japan); Takao, T. [Sophia University, 7-1, Kioicho, Chiyoda-ku, Tokyo 102-8554 (Japan); Yamanaka, A. [Research Center, Toyobo, Co., Ltd, 2-1-1, Katata, Otsu, Shiga 520-0292 (Japan)

    2005-10-01

    We reported about reduction of mechanical losses in AC superconducting coils. The method is the use of FRP bobbins fabricated with special fibers. Since their FRPs have negative thermal expansion coefficient to the fiber direction, the FRP bobbins expand to the circumferential direction during cooling down. In case of the superconducting coils with such FRP bobbins, the winding tensions do not decrease during cooling down. Therefore, the mechanical losses are reduced by the suppression of wire's vibration. Their special FRPs are a Dyneema[reg] fiber reinforced plastic (DFRP), a Dyneema and glass fiber reinforced plastic (DGFRP), and a Zylon[reg] fiber reinforced plastic (ZFRP). These materials have negative thermal expansion coefficient to the fiber direction, however, the amplitudes of thermal expansion are various by the quantity or quality of the fiber. In this paper, the values of thermal expansion were actually measured, and it was discussed about the influence on the mechanical losses. At the experimental results, the mechanical loss was small, so that the thermal strain to the circumferential direction on the coil was large. Moreover, in case of the coils with sufficiently strong winding tensions at coil-operating temperature, the mechanical losses vanished.

  18. Magnetic Field Reentrant Superconductivity in Aluminum Nanowires

    Science.gov (United States)

    Bretz-Sullivan, Terence; Goldman, Allen

    Reentrance to the superconducting state through the application of a magnetic field to quasi-one dimensional superconductors driven resistive by current, is counter to the expected properties of superconductors. It was not until recently that a microscopic mechanism explaining the phenomenon was proposed in which superconductivity and phase slip driven dissipation coexist in a non-equilibrium state. Here we present additional results of magnetic field induced reentrance into the superconducting state in quasi-one-dimensional aluminum nanowires with an in-plane magnetic field both transverse to, and along the wire axis. The reentrant behavior is seen in the magnetic field dependence of the I-V characteristic and resistance vs. temperature, and in the wire's magnetoresistance at 450mK. This work was supported by DOE Basic Energy Sciences Grant DE-FG02-02ER46004. Samples were fabricated at the Minnesota Nanofabrication Center. Parts of this work were carried out in the University of Minnesota Characterization Facility, a member of the Materials Research Facilities Network (www.mrfn.org) funded via the NSF MRSEC program.

  19. Characterization of superconducting coil for fault current limitation; Caracterizacao de bobina supercondutora para limitacao de corrente de curto-circuito

    Energy Technology Data Exchange (ETDEWEB)

    Polasek, Alexander; Dias, Rodrigo; Niedu, Daniel Brito; Ogasawara, Tsuneharu; Oliveira Filho, Orsino Borges de; Serra, Eduardo Torres [Centro de Pesquisas de Energia Eletrica (CEPEL), Rio de Janeiro, RJ (Brazil); Gomes Junior, George; Amorim, Helio Salim [Coordenacao dos Programas de Pos-Graduacao em Engeharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil)

    2010-07-01

    The increasing power demand has been raising fault currents up to dangerous levels. Superconducting fault current limiters are a promising solution for this problem. In the present work, we studied a superconducting Bi-2212 coil that is used for fault current limitation. Samples were analyzed by XRD, SEM/EDS and measurement of critical temperature (Tc). The Rietveld method was employed for phase quantification. Relatively high Bi-2212 fractions were found. However, Tc varies from a sample to another one. Variations of local Tc are attributed to variations of oxygen content in Bi- 2212 phase. (author)

  20. Superconducting Quadrupoles for the ISR High Luminosity insertion Coil cross section

    CERN Multimedia

    1978-01-01

    This picture shows a cut out section of an ISR High Luminosity (low beta) Quadrupole. One can clearly see the distribution of conductors and spacers which produces the wanted quadrupolar field. The spacers are made of pure copper and the central pole of stainless steel.The superconducting wire may be seen in photo 8008591X. See also pictures 7702690X, 8008591X, 7702698X.

  1. Synchronous Generator with HTS-2G field coils for Windmills with output power 1 MW

    Science.gov (United States)

    Kovalev, K.; Kovalev, L.; Poltavets, V.; Samsonovich, S.; Ilyasov, R.; Levin, A.; Surin, M.

    2014-05-01

    Nowadays synchronous generators for wind-mills are developed worldwide. The cost of the generator is determined by its size and weight. In this deal the implementation of HTS-2G generators is very perspective. The application of HTS 2G field coils in the rotor allows to reduce the size of the generator is 1.75 times. In this work the design 1 MW HTS-2G generator is considered. The designed 1 MW HTS-2G generator has the following parameters: rotor diameter 800 mm, active length 400 mm, phase voltage 690V, rotor speed 600 min-1 rotor field coils with HTS-2G tapes. HTS-2G field coils located in the rotating cryostat and cooled by liquid nitrogen. The simulation and optimization of HTS-2G field coils geometry allowed to increase feed DC current up to 50A. Copper stator windings are water cooled. Magnetic and electrical losses in 1 MW HTS-2G generator do not exceed 1.6% of the nominal output power. In the construction of HTS-2G generator the wave multiplier with ratio 1:40 is used. The latter allows to reduce the total mass of HTS-2G generator down to 1.5 tons. The small-scale model of HTS-2G generator with output power 50 kW was designed, manufactured and tested. The test results showed good agreement with calculation results. The manufacturing of 1 MW HTS-2G generator is planned in 2014. This work is done under support of Rosatom within the frames of Russian Project "Superconducting Industry".

  2. A Method for Evaluating the Magnetic Field Homogeneity of a Radiofrequency Coil by Its Field Histogram

    Science.gov (United States)

    Yang, Q. X.; Li, S. H.; Smith, M. B.

    The magnetic field homogeneity of a radiofrequency coil is very important in both magnetic resonance imaging and spectroscopy. In this report, a method is proposed for quantitatively evaluating the RF magnetic field homogeneity from its histogram, which is obtained by either experimental measurement or theoretical calculation. The experimental histogram and theoretical histogram can be compared directly to verify the theoretical findings. The RF field homogeneities of the bird-cage coil, slotted-tube resonator, cosine wire coil, and a new radial plate coil design were evaluated using this method. The results showed that the experimental histograms and the corresponding theoretical histograms are consistent. This method provides an easy and sensitive way of evaluating the magnetic field homogeneity and facilitates the design and evaluation of new RF coil configurations.

  3. Equilibrium of a system of superconducting rings in a uniform gravitational field

    Science.gov (United States)

    Bishaev, A. M.; Bush, A. A.; Gavrikov, M. B.; Gordeev, I. S.; Denisyuk, A. I.; Kamentsev, K. E.; Kozintseva, M. V.; Savel'ev, V. V.; Sigov, A. S.

    2013-05-01

    To construct a plasma trap with levitating magnetic coils in the thin ring approximation, we derive the expression for the potential energy of a system of several superconducting rings (one of which is fixed) capturing the preset flows in the uniform gravitational field as a function of the coordinates of the free ring (or rings). Calculations performed in the Mathcad system show that the potential energy of such a system has a local minimum for certain values of parameters. Stable levitation of a superconducting ring in the position corresponding to calculations is realized in the field of another superconducting ring, and this leads to the conclusion that a magnetic Galatea trap can be prepared on the basis of a levitating quadrupole.

  4. Design of A Conduction-cooled 4T Superconducting Racetrack for Multi-field Coupling Measurement System

    CERN Document Server

    Chen, Yuquan; Wu, Wei; Guan, Mingzhi; Wu, Beimin; Mei, Enming; Xin, Canjie

    2015-01-01

    A conduction-cooled superconducting magnet producing a transverse field of 4 Tesla has been designed for the new generation multi-field coupling measurement system, which was used to study the mechanical behavior of superconducting samples at cryogenic temperature and intense magnetic fields. Considering experimental costs and coordinating with system of strain measurements by contactless signals (nonlinear CCD optics system), the racetrack type for the coil winding was chosen in our design, and a compact cryostat with a two-stage GM cryocooler was designed and manufactured for the superconducting magnet. The magnet was composed of a pair of flat racetrack coils wound by NbTi/Cu superconducting composite wires, a copper and stainless steel combinational form and two Bi2Sr2CaCu2Oy superconducting current leads. All the coils were connected in series and can be powered with a single power supply. The maximum central magnetic field is 4 T. In order to support the high stress and uniform thermal distribution in t...

  5. Implementation of a planar coil of wires as a sinus-galvanometer. Analysis of the coil magnetic field

    CERN Document Server

    Stoyanov, Dimitar G

    2010-01-01

    The paper presents a theoretical analysis on the interaction between the Earth's magnetic field of a compass needle and the magnetic field of a straight infinite current-carrying wire. Implementation of a planar horizontal coil of wires has been shown as a sinus galvanometer. The magnetic field over the planar coil of wires has been examined by experiment. The coil could be used as a model for straight infinite current wire in demonstration set-ups or could be given as an assignment in Physics laboratory workshops.

  6. Implementation of a planar coil of wires as a sinus-galvanometer. Analysis of the coil magnetic field

    OpenAIRE

    Stoyanov, Dimitar G.

    2010-01-01

    The paper presents a theoretical analysis on the interaction between the Earth's magnetic field of a compass needle and the magnetic field of a straight infinite current-carrying wire. Implementation of a planar horizontal coil of wires has been shown as a sinus galvanometer. The magnetic field over the planar coil of wires has been examined by experiment. The coil could be used as a model for straight infinite current wire in demonstration set-ups or could be given as an assignment in Physic...

  7. Critical Magnetic Field Determination of Superconducting Materials

    Energy Technology Data Exchange (ETDEWEB)

    Canabal, A.; Tajima, T.; /Los Alamos; Dolgashev, V.A.; Tantawi, S.G.; /SLAC; Yamamoto, T.; /Tsukuba, Natl. Res. Lab. Metrol.

    2011-11-04

    Superconducting RF technology is becoming more and more important. With some recent cavity test results showing close to or even higher than the critical magnetic field of 170-180 mT that had been considered a limit, it is very important to develop a way to correctly measure the critical magnetic field (H{sup RF}{sub c}) of superconductors in the RF regime. Using a 11.4 GHz, 50-MW, <1 {mu}s, pulsed power source and a TE013-like mode copper cavity, we have been measuring critical magnetic fields of superconductors for accelerator cavity applications. This device can eliminate both thermal and field emission effects due to a short pulse and no electric field at the sample surface. A model of the system is presented in this paper along with a discussion of preliminary experimental data.

  8. Using Ferromagnetic Material to Extend and Shield the Magnetic Field of a Coil

    Science.gov (United States)

    2017-06-14

    sources , gathering and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden...field sources , magnetic field shaping, magnetic coil enhancement, magnetic coil interactions 16. SECURITY CLASSIFICATION OF: 17. LIMITATION...2 Fig. 3 Two-dimensional calculation of the field of a single-turn coil ( right ) with external metal cladding (left

  9. Matrix field theory: Applications to superconductivity

    Science.gov (United States)

    Zhou, Lubo

    In this thesis a systematic, functional matrix field theory is developed to describe both clean and disordered s-wave and d-wave superconductors and the quantum phase transitions associated with them. The thesis can be divided into three parts. The first part includes chapters 1 to 3. In chapter one a general physical introduction is given. In chapters two and three the theory is developed and used to compute the equation of state as well as the number-density susceptibility, spin-density susceptibility, the sound attenuation coefficient, and the electrical conductivity in both clean and disordered s-wave superconductors. The second part includes chapter four. In this chapter we use the theory to describe the disorder-induced metal - superconductor quantum phase transition. The key physical idea here is that in addition to the superconducting order-parameter fluctuations, there are also additional soft fermionic fluctuations that are important at the transition. We develop a local field theory for the coupled fields describing superconducting and soft fermionic fluctuations. Using simple renormalization group and scaling ideas, we exactly determine the critical behavior at this quantum phase transition. Our theory justifies previous approaches. The third part includes chapter five. In this chapter we study the analogous quantum phase transition in disordered d-wave superconductors. This theory should be related to high Tc superconductors. Surprisingly, we show that in both the underdoped and overdoped regions, the coupling of superconducting fluctuations to the soft disordered fermionic fluctuations is much weaker than that in the s-wave case. The net result is that the disordered quantum phase transition in this case is a strong coupling, or described by an infinite disordered fixed point, transition and cannot be described by the perturbative RG description that works so well in the s-wave case. The transition appears to be related to the one that occurs in

  10. Seismic analysis of ITER fourth PF (Poloidal Field Coil) feeder

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Sumei, E-mail: smliu@ipp.ac.cn [School of Engineering, Anhui Agricultural University, Hefei 230036 (China); Institute of Plasma Physics, Chinese Academy of Science, Hefei 230031 (China); Chen, Wei [School of Engineering, Anhui Agricultural University, Hefei 230036 (China); Song, Yuntao; Ni, Xiaojun; Wang, Zhongwei [Institute of Plasma Physics, Chinese Academy of Science, Hefei 230031 (China); Chen, Yonghua; Gong, Chenyu [Magnet Division, TKM, ITER Organization, Route de Vinon sur Verdon, 13115 St. Paul Lez Durance (France)

    2014-10-15

    The ITER feeder systems connect the ITER magnet systems located inside the main cryostat to the cryo-plant, power-supply and control system interfaces outside the cryostat. The main purpose of the feeders is to convey the cryogenic supply and electrical power to the coils as well as house the instrumentation wiring. The PF busbar which carries 52 kA current will suffer from high Lorentz force due to the background magnetic field inspired by the coils and the self-field between every pair of busbars. Except their mechanical strength and thermal insulation performance must be achieved, the dynamic mechanism on PF structure should be assessed. This paper presents the simulation and seismic analysis on ITER 4th PF feeder including the Coil Terminal Box and S-bend Box (CTB and SBB), the Cryostat Feed-through (CFT), the In-Cryostat-Feeder (ICF), especially for the ground supports and main outer-tube firstly. This analysis aims to study seismic resistance on system design under local seismograms with floor response spectrum, the structural response vibration mode and response duration results of displacement, membrane stress, and bending stress on structure under different directions actuating signals were obtained by using the single-seismic spectrum analysis and Dead Weight analysis respectively. Based on the simulative and analytical results, the system seismic resistance and the integrity of the support structure in the 4th PF feeder have been studied and the detail design confirmed.

  11. Superconducting Sphere in an External Magnetic Field Revisited

    Science.gov (United States)

    Sazonov, Sergey N.

    2013-01-01

    The purpose of this article is to give the intelligible procedure for undergraduate students to grasp proof of the fact that the magnetic field outside the hollow superconducting sphere (superconducting shell) coincides with the field of a point magnetic dipole both when an uniform external magnetic field is applied as when a ferromagnetic sphere…

  12. Field-Induced Superconductivity in Electric Double Layer Transistors

    NARCIS (Netherlands)

    Ueno, Kazunori; Shimotani, Hidekazu; Yuan, Hongtao; Ye, Jianting; Kawasaki, Masashi; Iwasa, Yoshihiro

    2014-01-01

    Electric field tuning of superconductivity has been a long-standing issue in solid state physics since the invention of the field-effect transistor (FET) in 1960. Owing to limited available carrier density in conventional FET devices, electric-field-induced superconductivity was believed to be possi

  13. Field Quality and Alignment of the Series Produced Superconducting Matching Quadrupoles for the LHC Insertions

    CERN Document Server

    Catalan-Lasheras, Nuria; Kirby, Glyn; Ostojic, Ranko; Perez, Juan C; Prin, Herve

    2005-01-01

    The production of the superconducting quadrupoles for the LHC insertions is advancing well and about half of the magnets have been produced. The coil size and field measurements performed on individual magnets both in warm and cold conditions are yielding significant results. In this paper we present the procedures and results of steering the series production at the magnet manufacturers and the assembly of cold masses at CERN. In particular, we present the correlation between coil sizes and geometrical field errors, the effect of permeability of magnet collars, and the analysis of warm-cold correlations and hysteresis of the main field multipoles. The results are compared with the target values for field multipoles and quadrupole alignment.

  14. Mathematical Model for Temperature Field of Strip Coil in Cooling and Heating Process

    Institute of Scientific and Technical Information of China (English)

    SUN Ji-quan; SUN Jing-hong; WU Bin; LIAN Jia-chuang

    2005-01-01

    The convection between the strip coil boundary and the surrounding medium was studied,and the math ematical model and boundary conditions for the temperature field of anisotropic strip coil was proposed,and the temperature field of strip coil were calculated by the analytic method.

  15. Superconductivity

    CERN Document Server

    Ketterson, John B

    2008-01-01

    Conceived as the definitive reference in a classic and important field of modern physics, this extensive and comprehensive handbook systematically reviews the basic physics, theory and recent advances in the field of superconductivity. Leading researchers, including Nobel laureates, describe the state-of-the-art in conventional and unconventional superconductors at a particularly opportune time, as new experimental techniques and field-theoretical methods have emerged. In addition to full-coverage of novel materials and underlying mechanisms, the handbook reflects continued intense research into electron-phone based superconductivity. Considerable attention is devoted to high-Tc superconductivity, novel superconductivity, including triplet pairing in the ruthenates, novel superconductors, such as heavy-Fermion metals and organic materials, and also granular superconductors. What’s more, several contributions address superconductors with impurities and nanostructured superconductors. Important new results on...

  16. Experimental and theoretical investigation of mechanical disturbances in epoxy-impregnated superconducting coils. 2. Shear-stress-induced epoxy fracture as the principal source of premature quenches and training - theoretical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bobrov, E.S.; Williams, J.E.C.; Iwasa, Y. (Massachusetts Inst. of Tech., Cambridge (USA). Francis Bitter National Magnet Lab.; Massachusetts Inst. of Tech., Cambridge (USA). Plasma Fusion Center)

    1985-06-01

    The paper examines various modes of matrix failure in epoxy-impregnated superconducting coils. Properties of superconducting composite; possible composite failure modes; constituent stresses in a composite winding; and premature-quench experiment; are all discussed.

  17. Electric field depth–focality tradeoff in transcranial magnetic stimulation: simulation comparison of 50 coil designs

    Science.gov (United States)

    Deng, Zhi-De; Lisanby, Sarah H.; Peterchev, Angel V.

    2012-01-01

    Background Various transcranial magnetic stimulation (TMS) coil designs are available or have been proposed. However, key coil characteristics such as electric field focality and attenuation in depth have not been adequately compared. Knowledge of the coil focality and depth characteristics can help TMS researchers and clinicians with coil selection and interpretation of TMS studies. Objective To quantify the electric field focality and depth of penetration of various TMS coils. Methods The electric field distributions induced by 50 TMS coils were simulated in a spherical human head model using the finite element method. For each coil design, we quantified the electric field penetration by the half-value depth, d1/2, and focality by the tangential spread, S1/2, defined as the half-value volume (V1/2) divided by the half-value depth, S1/2 = V1/2/d1/2. Results The 50 TMS coils exhibit a wide range of electric field focality and depth, but all followed a depth–focality tradeoff: coils with larger half-value depth cannot be as focal as more superficial coils. The ranges of achievable d1/2 are similar between coils producing circular and figure-8 electric field patterns, ranging 1.0–3.5 cm and 0.9–3.4 cm, respectively. However, figure-8 field coils are more focal, having S1/2 as low as 5 cm2 compared to 34 cm2 for circular field coils. Conclusions For any coil design, the ability to directly stimulate deeper brain structures is obtained at the expense of inducing wider electrical field spread. Novel coil designs should be benchmarked against comparison coils with consistent metrics such as d1/2 and S1/2. PMID:22483681

  18. Manufacture of the poloidal field conductor insert coil (PFCI)

    Energy Technology Data Exchange (ETDEWEB)

    Baker, W. [EFDA CSU Garching, Boltzmannstrasse 2, 85748 Garching bei Muenchen (Germany); Keefe, C. [Tesla Engineering, Storrington, Sussex (United Kingdom); Rajainmaeki, H. [EFDA CSU Garching, Boltzmannstrasse 2, 85748 Garching bei Muenchen (Germany)], E-mail: hannu.rajainmaki@tech.efda.org; Salpietro, E. [EFDA CSU Garching, Boltzmannstrasse 2, 85748 Garching bei Muenchen (Germany)

    2007-10-15

    Within the framework of the R and D programme for international thermonuclear experimental reactor (ITER) the European team European Fusion Development Agreement (EFDA) has been charged with the design and manufacture of the poloidal field conductor insert coil (PFCI). The purpose of the PFCI is to test and demonstrate the performance of long-length full-scale NbTi conductors in ITER-relevant conditions. The PFCI will be tested in the central solenoid model coil test facility at the JAEA, Naka, Japan. This paper details the complete manufacturing of the PFCI including development, forming machining, pre-assembly, impregnation, final assembly and testing. The PFCI is a single-layered wound solenoid of nine turns with a transition joggle in the centre section of the winding and an intermediate joint connection between the upper termination and the main coil winding. To give the required overall dimensions to fit in the testing facility, preformed and machined glass resin composite filler pieces are assembled with the winding and is finally vacuum pressure impregnated (VPI) to create a single assembly unit. The PFCI is enclosed for assembly in a support structure, which consists of an upper and lower flange, each made up of four electrically insulated machined stainless steel castings, and 12 tie rods preloading the complete assembly in the vertical direction. The upper flange is equipped with four radial restraining jacks and the lower flange is equipped with four sets of studs and shear keys to withstand the net vertical and lateral electromagnetic forces. The PFCI is equipped with inductive heaters, voltage taps, temperature transducers, strain gauges and other instrumentation as diagnostics to monitor the performance. The current status of the manufacture is that the coil has passed the final acceptance tests and it is in the support structure assembly stage.

  19. Fuel magnetization without external field coils (AutoMag)

    Science.gov (United States)

    Slutz, Stephen; Jennings, Christopher; Awe, Thomas; Shipley, Gabe; Lamppa, Derek; McBride, Ryan

    2016-10-01

    Magnetized Liner Inertial Fusion (MagLIF) has produced fusion-relevant plasma conditions on the Z accelerator where the fuel was magnetized using external field coils. We present a novel concept that does not need external field coils. This concept (AutoMag) magnetizes the fuel during the early part of the drive current by using a composite liner with helical conduction paths separated by insulating material. The drive is designed so the current rises slowly enough to avoid electrical breakdown of the insulators until a sufficiently strong magnetic field is established. Then the current rises more quickly, which causes the insulators to break down allowing the drive current to follow an axial path and implode the liner. Low inductance magnetically insulated power feeds can be used with AutoMag to increase the drive current without interfering with diagnostic access. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  20. High-Field Superconducting Magnets Supporting PTOLEMY

    Science.gov (United States)

    Hopkins, Ann; Luo, Audrey; Osherson, Benjamin; Gentile, Charles; Tully, Chris; Cohen, Adam

    2013-10-01

    The Princeton Tritium Observatory for Light, Early Universe, Massive Neutrino Yield (PTOLEMY) is an experiment planned to collect data on Big Bang relic neutrinos, which are predicted to be amongst the oldest and smallest particles in the universe. Currently, a proof-of-principle prototype is being developed at Princeton Plasma Physics Laboratory to test key technologies associated with the experiment. A prominent technology in the experiment is the Magnetic Adiabatic Collimation with an Electrostatic Filter (MAC-E filter), which guides tritium betas along magnetic field lines generated by superconducting magnets while deflecting those of lower energies. B field mapping is performed to ensure the magnets produce a minimum field at the midpoint of the configuration of the magnets and to verify accuracy of existing models. Preliminary tests indicate the required rapid decrease in B field strength from the bore of the more powerful 3.35 T magnet, with the field dropping to 0.18 T approximately 0.5 feet from the outermost surface of the magnet.

  1. A method for estimating tokamak poloidal field coil currents which incorporates engineering constraints

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, W.A.

    1990-05-01

    This thesis describes the development of a design tool for the poloidal field magnet system of a tokamak. Specifically, an existing program for determining the poloidal field coil currents has been modified to: support the general case of asymmetric equilibria and coil sets, determine the coil currents subject to constraints on the maximum values of those currents, and determine the coil currents subject to limits on the forces those coils may carry. The equations representing the current limits and coil force limits are derived and an algorithm based on Newton's method is developed to determine a set of coil currents which satisfies those limits. The resulting program allows the designer to quickly determine whether or not a given coil set is capable of supporting a given equilibrium. 25 refs.

  2. The effect of the wire design parameters on the stability of MgB{sub 2} superconducting coils

    Energy Technology Data Exchange (ETDEWEB)

    Majkic, G; Salama, K [Department of Mechanical Engineering and Texas Center for Superconductivity, University of Houston, Houston, TX 77204-4006 (United States); Alessandrini, M; Laskaris, E T [General Electric Company, Global Research Center, Niskayuna, NY 12309 (United States)], E-mail: gmajkic@uh.edu

    2009-03-15

    The thermal stability of superconducting wires is one of the important issues for wire applications. We present a numerical study on the effect of the wire design parameters on the quench behavior of superconducting MgB{sub 2} wire employed in coils. The model considers a stack of MgB{sub 2} wires of rectangular cross section separated by insulation layers and subjected to a thermal disturbance. The problem is solved on a two-dimensional domain and employs the current sharing concept in the transition between superconducting and normal states. The effects of three design parameters in wire manufacturing are investigated. Quench behavior is compared for wires having different filling factor of superconducting filaments, different volume of copper stabilizer, and different residual resistivity ratio (RRR) values for copper. The results indicate that the quench propagation velocity (QPV) at 1.5 T is weakly affected by changes in the volume and electrical properties of copper, whereas the minimum quench energy (MQE) is strongly dependent on the RRR value of copper and can increase by a factor of nearly 2 with the RRR varying from 30 to 150. Both the MQE and QPV change remarkably by varying the MgB{sub 2} filling factor. The MQE drops by a factor of 6 and the QPV increases by a factor of 2 with the filling factor varying from 10.5% to 25%.

  3. Electromagnetic superconductivity of vacuum induced by strong magnetic field

    CERN Document Server

    Chernodub, M N

    2012-01-01

    The quantum vacuum may become an electromagnetic superconductor in the presence of a strong external magnetic field of the order of 10^{16} Tesla. The magnetic field of the required strength (and even stronger) is expected to be generated for a short time in ultraperipheral collisions of heavy ions at the Large Hadron Collider. The superconducting properties of the new phase appear as a result of a magnetic-field-assisted condensation of quark-antiquark pairs with quantum numbers of electrically charged rho mesons. We discuss similarities and differences between the suggested superconducting state of the quantum vacuum, a conventional superconductivity and the Schwinger pair creation. We argue qualitatively and quantitatively why the superconducting state should be a natural ground state of the vacuum at the sufficiently strong magnetic field. We demonstrate the existence of the superconducting phase using both the Nambu-Jona-Lasinio model and an effective bosonic model based on the vector meson dominance (th...

  4. Numerical calculation of transient field effects in quenching superconducting magnets

    Energy Technology Data Exchange (ETDEWEB)

    Schwerg, Juljan Nikolai

    2010-07-01

    The maximum obtainable magnetic induction of accelerator magnets, relying on normal conducting cables and iron poles, is limited to around 2 T because of ohmic losses and iron saturation. Using superconducting cables, and employing permeable materials merely to reduce the fringe field, this limit can be exceeded and fields of more than 10 T can be obtained. A quench denotes the sudden transition from the superconducting to the normal conducting state. The drastic increase in electrical resistivity causes ohmic heating. The dissipated heat yields a temperature rise in the coil and causes the quench to propagate. The resulting high voltages and excessive temperatures can result in an irreversible damage of the magnet - to the extend of a cable melt-down. The quench behavior of a magnet depends on numerous factors, e.g. the magnet design, the applied magnet protection measures, the external electrical network, electrical and thermal material properties, and induced eddy current losses. The analysis and optimization of the quench behavior is an integral part of the construction of any superconducting magnet. The dissertation is divided in three complementary parts, i.e. the thesis, the detailed treatment and the appendix. In the thesis the quench process in superconducting accelerator magnets is studied. At first, we give an overview over features of accelerator magnets and physical phenomena occurring during a quench. For all relevant effects numerical models are introduced and adapted. The different models are weakly coupled in the quench algorithm and solved by means of an adaptive time-stepping method. This allows to resolve the variation of material properties as well as time constants. The quench model is validated by means of measurement data from magnets of the Large Hadron Collider. In a second step, we show results of protection studies for future accelerator magnets. The thesis ends with a summary of the results and a critical outlook on aspects which could

  5. Conceptual design and thermal analysis of a modular cryostat for one single coil of a 10 MW offshore superconducting wind turbine

    Science.gov (United States)

    Sun, Jiuce; Sanz, Santiago; Neumann, Holger

    2015-12-01

    Superconducting generators show the potential to reduce the head mass of large offshore wind turbines. A 10 MW offshore superconducting wind turbine has been investigated in the SUPRAPOWER project. The superconducting coils based on MgB2 tapes are supposed to work at cryogenic temperature of 20 K. In this paper, a novel modular rotating cryostat was presented for one single coil of the superconducting wind turbine. The modular concept and cryogen-free cooling method were proposed to fulfil the requirements of handling, maintenance, reliability of long term and offshore operations. Two stage Gifford-McMahon cryocoolers were used to provide cooling source. Supporting rods made of titanium alloy were selected as support structures of the cryostat in aim of reducing the heat load. The thermal performance in the modular cryostat was carefully investigated. The heat load applied to the cryocooler second stage was 2.17 W@20 K per coil. The corresponding temperature difference along the superconducting coil was only around 1 K.

  6. Superconductivity

    CERN Document Server

    Poole, Charles P; Creswick, Richard J; Prozorov, Ruslan

    2014-01-01

    Superconductivity, Third Edition is an encyclopedic treatment of all aspects of the subject, from classic materials to fullerenes. Emphasis is on balanced coverage, with a comprehensive reference list and significant graphics from all areas of the published literature. Widely used theoretical approaches are explained in detail. Topics of special interest include high temperature superconductors, spectroscopy, critical states, transport properties, and tunneling. This book covers the whole field of superconductivity from both the theoretical and the experimental point of view. This third edition features extensive revisions throughout, and new chapters on second critical field and iron based superconductors.

  7. Validation of Helium Inlet Design for ITER Toroidal Field Coil

    CERN Document Server

    Boyer, C; Hamada, K; Foussat, A; Le Rest, M; Mitchell, N; Decool, P; Savary, F; Sgobba, S; Weiss, K-P

    2014-01-01

    The ITER organization has performed design and its validation tests on a helium inlet structure for the ITER Toroidal Field (TF) coil under collaboration with CERN, KIT, and CEA-Cadarache. Detailed structural analysis was performed in order to optimize the weld shape. A fatigue resistant design on the fillet weld between the shell covers and the jacket is an important point on the helium inlet structure. A weld filler material was selected based on tensile test at liquid helium temperature after Nb3Sn reaction heat treatment. To validate the design of the weld joint, fatigue tests at 7 K were performed using heat-treated butt weld samples. A pressure drop measurement of a helium inlet mock-up was performed by using nitrogen gas at room temperature in order to confirm uniform flow distribution and pressure drop characteristic. These tests have validated the helium inlet design. Based on the validation, Japanese and European Union domestic agencies, which have responsibilities of the TF coil procurement, are pr...

  8. Optimal Value of Series Capacitors for Uniform Field Distribution in Transmission Line MRI Coils

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy

    2016-01-01

    Transmission lines are often used as coils in high field magnetic resonance imaging (MRI). Due to the distributed nature of transmission lines, coils based on them produce inhomogeneous field. This work investigates application of series capacitors to improve field homogeneity along the coil....... The equations for optimal values of evenly distributed capacitors are derived and expressed in terms of the implemented transmission line parameters.The achieved magnetic field homogeneity is estimated under quasistatic approximation and compared to the regular transmission line resonator. Finally, a more...... practical case of a microstrip line coil with two series capacitors is considered....

  9. Critical current studies of a HTS rectangular coil

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Z. [Department of Engineering, University of Cambridge (United Kingdom); Chudy, M., E-mail: Michal.chudy@stuba.sk [Graduate School of Technology Management, University of Pretoria (South Africa); Institute of Power and Applied Electrical Engineering, Slovak University of Technology in Bratislava (Slovakia); Ruiz, H.S. [Department of Engineering, University of Leicester, Leicester LE1 7RH (United Kingdom); Zhang, X.; Coombs, T. [Department of Engineering, University of Cambridge (United Kingdom)

    2017-05-15

    Highlights: • Unique square pancake coil was manufactured. • Measurements in relatively high magnetic field were performed. • Different sections of the coil were characterized. • Parts of the coil which are limiting critical current were identified. - Abstract: Nowadays, superconducting high field magnets are used in numerous applications due to their superior properties. High temperature superconductors (HTS) are usually used for production of circular pancake or racetrack coils. However different geometries of HTS coils might be required for some specific applications. In this study, the HTS coil wound on a rectangular frame was fully characterized in homogeneous DC background field. The study contains measurements of critical current angular dependencies. The critical current of the entire coil and two selected strands under different magnitudes and orientations of external magnetic fields are measured. The critical regions of the coil in different angular regimes are determined. This study brings better understanding of the in- field performance of HTS coils wound on frames with right-angles.

  10. Field Demonstraton of Existing Microhole Coiled Tubing Rig (MCTR) Technology

    Energy Technology Data Exchange (ETDEWEB)

    Kent Perry; Samih Batarseh; Sheriff Gowelly; Thomas Hayes

    2006-05-09

    The performance of an advanced Microhole Coiled Tubing Rig (MCTR) has been measured in the field during the drilling of 25 test wells in the Niobrara formation of Western Kansas and Eastern Colorado. The coiled tubing (CT) rig designed, built and operated by Advanced Drilling Technologies (ADT), was documented in its performance by GTI staff in the course of drilling wells ranging in depth from 500 to nearly 3,000 feet. Access to well sites in the Niobrara for documenting CT rig performance was provided by Rosewood Resources of Arlington, VA. The ADT CT rig was selected for field performance evaluation because it is one of the most advanced commercial CT rig designs that demonstrate a high degree of process integration and ease of set-up and operation. Employing an information collection protocol, data was collected from the ADT CT rig during 25 drilling events that encompassed a wide range of depths and drilling conditions in the Niobrara. Information collected included time-function data, selected parametric information indicating CT rig operational conditions, staffing levels, and field observations of the CT rig in each phase of operation, from rig up to rig down. The data obtained in this field evaluation indicates that the ADT CT rig exhibited excellent performance in the drilling and completion of more than 25 wells in the Niobrara under varied drilling depths and formation conditions. In the majority of the 25 project well drilling events, ROP values ranged between 300 and 620 feet per hour. For all but the lowest 2 wells, ROP values averaged approximately 400 feet per hour, representing an excellent drilling capability. Most wells of depths between 500 and 2,000 feet were drilled at a total functional rig time of less than 16 hours; for wells as deep at 2,500 to 3,000 feet, the total rig time for the CT unit is usually well under one day. About 40-55 percent of the functional rig time is divided evenly between drilling and casing/cementing. The balance of

  11. Field Demonstraton of Existing Microhole Coiled Tubing Rig (MCTR) Technology

    Energy Technology Data Exchange (ETDEWEB)

    Kent Perry; Samih Batarseh; Sheriff Gowelly; Thomas Hayes

    2006-05-09

    The performance of an advanced Microhole Coiled Tubing Rig (MCTR) has been measured in the field during the drilling of 25 test wells in the Niobrara formation of Western Kansas and Eastern Colorado. The coiled tubing (CT) rig designed, built and operated by Advanced Drilling Technologies (ADT), was documented in its performance by GTI staff in the course of drilling wells ranging in depth from 500 to nearly 3,000 feet. Access to well sites in the Niobrara for documenting CT rig performance was provided by Rosewood Resources of Arlington, VA. The ADT CT rig was selected for field performance evaluation because it is one of the most advanced commercial CT rig designs that demonstrate a high degree of process integration and ease of set-up and operation. Employing an information collection protocol, data was collected from the ADT CT rig during 25 drilling events that encompassed a wide range of depths and drilling conditions in the Niobrara. Information collected included time-function data, selected parametric information indicating CT rig operational conditions, staffing levels, and field observations of the CT rig in each phase of operation, from rig up to rig down. The data obtained in this field evaluation indicates that the ADT CT rig exhibited excellent performance in the drilling and completion of more than 25 wells in the Niobrara under varied drilling depths and formation conditions. In the majority of the 25 project well drilling events, ROP values ranged between 300 and 620 feet per hour. For all but the lowest 2 wells, ROP values averaged approximately 400 feet per hour, representing an excellent drilling capability. Most wells of depths between 500 and 2,000 feet were drilled at a total functional rig time of less than 16 hours; for wells as deep at 2,500 to 3,000 feet, the total rig time for the CT unit is usually well under one day. About 40-55 percent of the functional rig time is divided evenly between drilling and casing/cementing. The balance of

  12. Magnetic field uniformity of the practical tri-axial Helmholtz coils systems.

    Science.gov (United States)

    Beiranvand, R

    2014-05-01

    In this paper, effects of the assembly misalignments and the manufacturing mismatches on the magnetic field uniformity of a practical tri-axial Helmholtz coils system have been modeled mathematically. These undesired effects regularly occur in any practical tri-axial Helmholtz coils system. To confirm the mathematical calculations, a tri-axial Helmholtz coils system has been constructed and the uniformity of its magnetic field has been measured under different conditions. The experimental results are in good agreement with the mathematical analyses.

  13. Superconducting and hybrid systems for magnetic field shielding

    Science.gov (United States)

    Gozzelino, L.; Gerbaldo, R.; Ghigo, G.; Laviano, F.; Truccato, M.; Agostino, A.

    2016-03-01

    In this paper we investigate and compare the shielding properties of superconducting and hybrid superconducting/ferromagnetic systems, consisting of cylindrical cups with an aspect ratio of height/radius close to unity. First, we reproduced, by finite-element calculations, the induction magnetic field values measured along the symmetry axis in a superconducting (MgB2) and in a hybrid configuration (MgB2/Fe) as a function of the applied magnetic field and of the position. The calculations are carried out using the vector potential formalism, taking into account simultaneously the non-linear properties of both the superconducting and the ferromagnetic material. On the basis of the good agreement between the experimental and the computed data we apply the same model to study the influence of the geometric parameters of the ferromagnetic cup as well as of the thickness of the lateral gap between the two cups on the shielding properties of the superconducting cup. The results show that in the considered non-ideal geometry, where the edge effect in the flux penetration cannot be disregarded, the superconducting shield is always the most efficient solution at low magnetic fields. However, a partial recovery of the shielding capability of the hybrid configuration occurs if a mismatch in the open edges of the two cups is considered. In contrast, at high magnetic fields the hybrid configurations are always the most effective. In particular, the highest shielding factor was found for solutions with the ferromagnetic cup protruding over the superconducting one.

  14. Magnetic field sensitivity at 7-T using dual-helmholtz transmit-only coil and 12-channel receive-only bended coil.

    Science.gov (United States)

    Kim, Kyoung-Nam; Ryu, Yeunchul; Seo, Jeung-Hoon; Kim, Young-Bo

    2016-11-01

    The purpose of this study was to combine a dual-Helmholtz (DH) transmit (Tx)-only coil and 12-channel receive (Rx)-only bended phased array (PA) coil to improve the magnetic flux (|B1 |) sensitivity in the superior-to-inferior (S-I) direction during human brain magnetic resonance imaging (MRI) at 7-T. The proposed coil combination was primarily implemented by electromagnetic (EM) simulation and compared with the 16-leg birdcage coil and 8-channel PA coil, which are generally used for the Tx- and Rx-only modes, respectively. The optimal coil combinations for the proposed structure were determined by |B1 | field calculations using the |BT(+) | and |BR(-) | fields, which are respectively the transmit and receive components of the |B1 | field. The coil performance was then evaluated by a bench test and 7-T MRI experiment. The results of the computational calculations indicated that the |BT(+) | field of the DH coil was distributed similarly to that of the 16-leg birdcage coil despite the fewer conducting legs of the former. However, the 12-channel Rx-only bended PA coil had clearly higher |BR(-) | profiles compared to the 8-channel PA coil. The results of the 7-T in vivo experiment showed that the proposed combination of the DH Tx-only coil and 12-channel Rx-only bended PA coil had better |B1 | field homogeneity in the sagittal slice as well as higher |B1 | field sensitivity during human brain MRI compared to an 8-channel Rx-only PA coil. SCANNING 38:515-524, © 2015 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  15. Analysis of brushless DC generator incorporating an axial field coil

    Energy Technology Data Exchange (ETDEWEB)

    Moradi, Hassan, E-mail: H_moradi@sbu.ac.i [Department of Electrical and Computer Engineering, Shahid Beheshti University, GC, Tehran (Iran, Islamic Republic of); Afjei, E. [Department of Electrical and Computer Engineering, Shahid Beheshti University, GC, Tehran (Iran, Islamic Republic of)

    2011-07-15

    Highlights: {yields} Magnetic analysis and experiment of a three-phase field assisted BLDC generator. {yields} Confirm the accuracy of the predicted flux-linkage by 2-D FE analysis. {yields} Confirm the accuracy of the FE analysis results by coupling the FE and BE method. {yields} Control the output voltage to a desired level by control the amplitude of the I{sub f}. {yields} Compatible with any application that requires variable speed operation. -- Abstract: This paper describes the magnetic analysis and experiment of a three-phase field assisted brushless DC (BLDC) generator. Unlike conventional BLDC generators, the permanent magnet is replaced with an assisted field winding. The stator and rotor are constructed with two dependent magnetically sets, in which each stator set includes nine salient poles with coil windings, and the rotor comprises of six salient poles. Other pole combinations also are possible. This construction is similar to a homopolar inductor alternator. The DC current in the assisted field winding produces axial flux which makes the rotor magnetically polarized at its ends. The magnetic field flows axially through the rotor shaft and closes through the stator teeth and the machine housing. To evaluate the generator performance, two types of analysis, namely the numerical technique and the experimental study have been utilized. In the numerical analysis, 2-D finite element (FE) analysis has been carried out using a MagNet CAD package (Infolytica Corporation Ltd.), to confirm the accuracy of the predicted flux-linkage characteristics, whereas in the experimental study, a prototype BLDC generator was constructed for verifying the actual performance. Furthermore, the evaluation method based on a hybrid numerical method coupling the finite element (FE) analysis and boundary element (BE) method, has been carried out to confirm the accuracy of the 2-D FE analysis simulation results. It provides not only confirmations of the investigation in results

  16. Reduction of implant RF heating through modification of transmit coil electric field.

    Science.gov (United States)

    Eryaman, Yigitcan; Akin, Burak; Atalar, Ergin

    2011-05-01

    In this work, we demonstrate the possibility to modify the electric-field distribution of a radio frequency (RF) coil to generate electric field-free zones in the body without significantly altering the transmit sensitivity. Because implant heating is directly related to the electric-field distribution, implant-friendly RF transmit coils can be obtained by this approach. We propose a linear birdcage transmit coil with a zero electric-field plane as an example of such implant-friendly coils. When the zero electric-field plane coincides with the implant position, implant heating is reduced, as we demonstrated by the phantom experiments. By feeding RF pulses with identical phases and shapes but different amplitudes to the two orthogonal ports of the coil, the position of the zero electric-field plane can also be adjusted. Although implant heating is reduced with this method, a linear birdcage coil results in a whole-volume average specific absorption rate that is twice that of a quadrature birdcage coil. To solve this issue, we propose alternative methods to design implant-friendly RF coils with optimized electromagnetic fields and reduced whole-volume average specific absorption rate. With these methods, the transmit field was modified to reduce RF heating of implants and obtain uniform transmit sensitivity. Copyright © 2010 Wiley-Liss, Inc.

  17. Development and testing of a 50 KA, pulsed superconducting cable

    Energy Technology Data Exchange (ETDEWEB)

    Wollan; DeClerc, J.; Hamilton, W.; Zeitlin, B.

    1983-05-01

    Prototype cables for 7.5 T, pulsed field application in tokamak poloidal field coils have been designed, fabricated, and evaluated. Successful fabrication of a 10 m superconducting sample represents the largest superconducting cable ever made. Details of the fabrication, the problems expected and encountered, and the solutions to those problems are discussed. Results of stability measurements on the superconducting prototype also are presented.

  18. Study of back quench in the superconducting coils of the barrel toroid of ATLAS due to losses during a "slow" discharge of the magnet

    CERN Document Server

    Sorbi, M

    2001-01-01

    An analysis of the losses in the Al matrix of the conductor and in the casings where the superconducting coils are located, due to a "slow discharge" (heaters of the coils off) of the Barrel Toroid of ATLAS has been carried out. The values of the losses have been calculated and cross checked by means of different analytical and FE approaches, and simple relations have been carried out in order to correlate them with the main electrical parameters of the magnet. With a thermal analysis, the increase of temperature in the superconducting coils due to these extra losses has been calculated. The temperature margin (i.e. difference between current sharing temperature and operating temperature) has been calculated and compared with the temperature margin during the normal run of the magnet. (6 refs).

  19. Resonant Mode Reduction in Radiofrequency Volume Coils for Ultrahigh Field Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Xiaoliang Zhang

    2011-07-01

    Full Text Available In a multimodal volume coil, only one mode can generate homogeneous Radiofrequency (RF field for Magnetic Resonance Imaging. The existence of other modes may increase the volume coil design difficulties and potentially decreases coil performance. In this study, we introduce common-mode resonator technique to high and ultrahigh field volume coil designs to reduce the resonant mode while maintain the homogeneity of the RF field. To investigate the design method, the common-mode resonator was realized by using a microstrip line which was split along the central to become a pair of parallel transmission lines within which common-mode currents exist. Eight common-mode resonators were placed equidistantly along the circumference of a low loss dielectric cylinder to form a volume coil. Theoretical analysis and comparison between the 16-strut common-mode volume coil and a conventional 16-strut volume coil in terms of RF field homogeneity and efficiency was performed using Finite-Difference Time-Domain (FDTD method at 298.2 MHz. MR imaging experiments were performed by using a prototype of the common-mode volume coil on a whole body 7 Tesla scanner. FDTD simulation results showed the reduced number of resonant modes of the common-mode volume coil over the conventional volume coil, while the RF field homogeneity of the two type volume coils was kept at the same level. MR imaging of a water phantom and a kiwi fruit showing the feasibility of the proposed method for simplifying the volume coil design is also presented.

  20. Electromagnetic analysis of a superconducting transformer for high current characterization of cable in conduit conductors in background magnetic field

    Science.gov (United States)

    Wu, Xiangyang; Tan, Yunfei; Fang, Zhen; Jiang, Donghui; Chen, Zhiyou; Chen, Wenge; Kuang, Guangli

    2017-10-01

    A large cable-in-conduit-conductor (CICC) test facility has been designed and fabricated at the High Magnetic Field Laboratory of the Chinese Academy of Sciences (CHMFL) in order to meet the test requirement of the conductors which are applied to the future fusion reactor. The critical component of the test facility is an 80 kA superconducting transformer which consists of a multi-turn primary coil and a minor-turn secondary coil. As the current source of the conductor samples, the electromagnetic performance of the superconducting transformer determines the stability and safety of the test facility. In this paper, the key factors and parameters, which have much impact on the performance of the transformer, are analyzed in detail. The conceptual design and optimizing principles of the transformer are discussed. An Electromagnetic-Circuit coupled model built in ANSYS Multiphysics is successfully used to investigate the electromagnetic characterization of the transformer under the dynamic operation condition.

  1. Detailed 3D models of the induced electric field of transcranial magnetic stimulation coils

    Energy Technology Data Exchange (ETDEWEB)

    Salinas, F S; Lancaster, J L; Fox, P T [Research Imaging Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229 (United States)

    2007-05-21

    Previous models neglected contributions from current elements spanning the full geometric extent of wires in transcranial magnetic stimulation (TMS) coils. A detailed account of TMS coil wiring geometry is shown to provide significant improvements in the accuracy of electric field (E-field) models. Modeling E-field dependence based on the TMS coil's wire width, height, shape and number of turns clearly improved the fit of calculated-to-measured E-fields near the coil body. Detailed E-field models were accurate up to the surface of the coil body (within 0.5% of measured) where simple models were often inadequate (up to 32% different from measured)

  2. A Full-size High Temperature Superconducting Coil Employed in a Wind Turbine Generator Set-up

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Mijatovic, Nenad; Kellers, Jürgen

    2016-01-01

    is tested in LN2 first, and then tested in the set-up so that the magnetic environment in a real generator is reflected. The experimental results are reported, followed by a finite element simulation and a discussion on the deviation of the results. The tested and estimated Ic in LN2 are 148 A and 143 A......A full-size stationary experimental set-up, which is a pole pair segment of a 2 MW high temperature superconducting (HTS) wind turbine generator, has been built and tested under the HTS-GEN project in Denmark. The performance of the HTS coil is crucial to the set-up, and further to the development...

  3. Effect of the different winding methods of coil on electromagnetic field during transcranial magnetic stimulation.

    Science.gov (United States)

    Yang, Shuo; Xu, Guizhi; Wang, Lei; Zhang, Xiu

    2008-01-01

    Transcranial magnetic stimulation (TMS) is a powerful, non-invasive tool for investigating functions in the brain. The target inside the head is stimulated with eddy currents induced in the tissues by the time-varying magnetic field. TMS has been used in several applications in medical and clinical research which include brain mapping, treatment of mood disorder and schizophrenia, treatment of epilepsy, treatment of chronic pain and so on. The stimulation effect can be affected by the stimulation intensity. For coils with the same shape, different winding methods make the coil have different stimulation intensity. In this paper, three different methods for winding circular coils are discussed. The electromagnetic fields induced by the three different circular coils were analyzed. The results show that the circular coil with the pancake coil winding has the strongest stimulation intensity.

  4. A titanium dioxide filled toroidal coil for magnetic resonance imaging at high field

    Science.gov (United States)

    Butterworth, Edward J.

    1999-09-01

    This study demonstrates the advantages of filling the resonating cavity of a radio frequency NMR coil with a substance that more closely matches the dielectric properties of human tissue. The chosen design is a toroidal RF coil of reduced aspect ratio, and the dielectric material of choice is powdered titanium dioxide. RF coil performance is limited significantly by the dielectric discontinuity and consequent wavelength discontinuity between the air-filled cavity and human tissue. Filling the coil with titanium dioxide (with a published relative dielectric constant of 114 for randomly oriented rutile crystals and a measured dielectric constant under operating conditions of 70) alters its electromagnetic properties in a way which approximates human tissue (most of which has a dielectric constant between 50 and 70), without introducing spurious magnetic effects. In particular, brain NMR can benefit from these advantages. Analytic expressions for the electric and magnetic fields within the coil are derived here. The physical and electromagnetic parameters of the coil are developed with reference to these computations. The redesigned and filled resonator focuses the magnetic field lines, producing a more uniform B1 field as compared with the unfilled coil, with reduced power requirements. The filled coil has a well-defined imaging zone, in which the magnetic field is relatively uniform and homogeneous. The Q of the coil is significantly higher than that of conventional designs and is not significantly reduced by loading. Test results and images are presented showing these effects.

  5. A quantitative investigation of the effect of a close-fitting superconducting shield on the coil factor of a solenoid

    DEFF Research Database (Denmark)

    Aarøe, Morten; Monaco, R.; Koshelet, V.

    2009-01-01

    the geometry of the solenoid, but also the nearby magnetic environment. This has important consequences for many cryogenic experiments involving magnetic fields such as the determination of the parameters of Josephson junctions, as well as other superconducting devices. It is proposed to solve the problem...

  6. Magnetic-field sensing coil embedded in ceramic for measuring ambient magnetic field

    Science.gov (United States)

    Takahashi, Hironori

    2004-02-10

    A magnetic pick-up coil for measuring magnetic field with high specific sensitivity, optionally with an electrostatic shield (24), having coupling elements (22) with high winding packing ratio, oriented in multiple directions, and embedded in ceramic material for structural support and electrical insulation. Elements of the coil are constructed from green ceramic sheets (200) and metallic ink deposited on surfaces and in via holes of the ceramic sheets. The ceramic sheets and the metallic ink are co-fired to create a monolithic hard ceramic body (20) with metallized traces embedded in, and placed on exterior surfaces of, the hard ceramic body. The compact and rugged coil can be used in a variety of environments, including hostile conditions involving ultra-high vacuum, high temperatures, nuclear and optical radiation, chemical reactions, and physically demanding surroundings, occurring either individually or in combinations.

  7. Measurement of AC losses in a racetrack superconducting coil made from YBCO coated conductor

    DEFF Research Database (Denmark)

    Seiler, Eugen; Abrahamsen, Asger Bech; Kovac, Jan

    2012-01-01

    to reinforce it. The AC loss is measured versus the transport current Ia with the coil immersed in liquid nitrogen. Measurements at frequencies 21 Hz, 36 Hz and 72 Hz are compared. The AC losses follow I2 a dependence at low current amplitudes and I3 a at high amplitudes. After cutting the inner steel frame...

  8. Temperature dependency of magnetic field drifts of HTS pancake coils for NMR/MRI applications

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyeong Dal; Lee, Se Yeon; Kim, Woo Seok [Dept. of Energy and Electrical Engineering, Korea Polytechnic University, Siheung (Korea, Republic of); Lee, Sang Min [Dept. of Radiology, CHA Bundang Medical Center, CHA University, Seongnam (Korea, Republic of)

    2013-12-15

    We had proposed a winding method so called “Wind-and-Flip”, which enables a persistent current operation of an HTS pancake coil without any electrical joint. In order to improve the magnetic field drift characteristics, a prototype HTS coil with the technique was fabricated, and tested under various temperatures. Because the coil does not have any electric terminals for current leads, an HTS background magnet was used to induce the persistent current in the coil by field cooling process. A conduction cooling system with a GM cryocooler was prepared to keep the operating temperatures of the prototype coil much below the 77 K. We investigated the magnetic field drift characteristics under the various operating temperatures by measuring the center magnetic field with a cryogenic Hall sensor. The persistent current mode operation at 20 ∽ 50K showed a strong possibility of the winding technique for the application such as MRI or NMR.

  9. Pulsed field magnetization strategies and the field poles composition in a bulk-type superconducting motor

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhen, E-mail: zhen.huang@sjtu.edu.cn [Academy of Information Technology and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Ruiz, H.S., E-mail: dr.harold.ruiz@le.ac.uk [Department of Engineering, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Coombs, T.A., E-mail: tac1000@cam.ac.uk [Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom)

    2017-03-15

    Highlights: • Different compositions of the magnetic poles have been obtained depending on the relative orientation of the magnetizing coil and the surfaces of the columns of bulks that conform a magnetic pole. • Two bidimensional models accounting for the electromagnetic response of the top and lateral cross sections of three columns of HTS bulks subjected to multiple pulsed magnetic fields have been created. • An extended PFM strategy has been proposed by considering the magnetization of at least three successive columns of HTS bulks per pole. In the extended PFM strategy the area of each one of the poles can be seen increased by a factor of 200%-400% - Abstract: High temperature superconducting (HTS) bulks offer the potential of trapping and maintaining much higher magnetic loading level compared with the conventional permanent magnets used in rotary machines, although the effective magnetization of multiple HTS bulks with different relative orientations over the surface of cylindrical rotors creates new challenges. In this paper, we present the design and numerical validation of the Pulse Field Magnetization (PFM) strategy considered for the magnetization of the four-pole synchronous fully superconducting motor developed at the University of Cambridge. In a first instance, singular columns of up to five HTS bulks aligned over the height of the rotor were subjected to up to three magnetic pulses of 1.5 T peak, and the experimental results have been simulated by considering the electrical and thermal properties of the system in a 2D approach. The entire active surface of the rotor is covered by HTS bulks of approximately the same dimensions, resulting in an uneven distribution of pole areas with at least one of the poles formed by up to 3 columns of magnetized bulks, with relatively the same peaks of trapped magnetic field. Thus, in order to effectively use the entire area of the superconducting rotor, multiple pulsed fields per column have been applied

  10. High field rf superconductivity: to pulse or not to pulse

    Energy Technology Data Exchange (ETDEWEB)

    Campisi, I.E.

    1984-10-01

    Experimental data on the behavior of superconductors under the application of rf fields of amplitude comparable to their critical fields are sporadic and not always consistent. In many cases the field level at which breakdown in superconducting rf cavities should be expected has not been clearly established. Tests conducted with very short (approx. 1 ..mu..s) rf pulses indicate that in this mode of operation fields close to the critical values can be consistently reached in superconducting cavities without breakdown. The advantages and disadvantages of the pulsed method are discussed compared to those of the more standard continuous wave (cw) systems. 60 references.

  11. Experimental and theoretical investigation of mechanical disturbances in epoxy-impregnated superconducting coils. 1. General introduction

    Energy Technology Data Exchange (ETDEWEB)

    Iwasa, Y. (Massachusetts Inst. of Tech., Cambridge (USA). Francis Bitter National Magnet Lab.; Massachusetts Inst. of Tech., Cambridge (USA). Plasma Fusion Center)

    1985-06-01

    The paper gives a general introduction to the three papers which follow. A brief discussion of the origins and mechanisms of mechanical disturbances within the windings of high performance superconducting magnets is followed by a short summary of each of the three papers.

  12. Critical fields of liquid superconducting metallic hydrogen

    Science.gov (United States)

    Jaffe, J.; Ashcroft, N. W.

    1983-01-01

    Liquid metallic hydrogen, in a fully dissociated state, is predicted at certain densities to pass from dirty to clean and from type II to type I superconducting behavior as temperature is lowered. Previously announced in STAR as N82-29374

  13. Near-field wireless sensing of single and multiple open-ended micro coils

    Directory of Open Access Journals (Sweden)

    A. Yousaf

    2013-05-01

    Full Text Available In this work we present near-field wireless sensing of single and multiple open-ended micro coils using an electrically small loop antenna. Wirelessly characterized parameters of open-ended micro coils include its resonance frequency, quality factor and inductance. Moreover a wireless frequency-dependent analytical model was developed. Micro coil inductance was extracted from the wirelessly measured signal using a constraint-based least-squares approach. Wireless measurements and analytical fit of micro coils are in strong agreement which validates the analytical model. Finite element method (FEM simulations of the coupled system were done in COMSOL Multiphysics.

  14. Oval gradient coils for an open magnetic resonance imaging system with a vertical magnetic field

    Science.gov (United States)

    Matsuzawa, Koki; Abe, Mitsushi; Kose, Katsumi; Terada, Yasuhiko

    2017-05-01

    Existing open magnetic resonance imaging (MRI) systems use biplanar gradient coils for the spatial encoding of signals. We propose using novel oval gradient coils for an open vertical-field MRI. We designed oval gradients for a 0.3 T open MRI system and showed that such a system could outperform a traditional biplanar gradient system while maintaining adequate gradient homogeneity and subject accessibility. Such oval gradient coils would exhibit high efficiency, low inductance and resistance, and high switching capability. Although the designed oval Y and Z coils showed more heat dissipation and less cooling capability than biplanar coils with the same gap, they showed an efficient heat-dissipation path to the surrounding air, which would alleviate the heat problem. The performance of the designed oval-coil system was demonstrated experimentally by imaging a human hand.

  15. A Modified Alderman-Grant Coil makes possible an efficient cross-coil probe for high field solid-state NMR of lossy biological samples

    Science.gov (United States)

    Grant, Christopher V.; Yang, Yuan; Glibowicka, Mira; Wu, Chin H.; Park, Sang Ho; Deber, Charles M.; Opella, Stanley J.

    2009-11-01

    The design, construction, and performance of a cross-coil double-resonance probe for solid-state NMR experiments on lossy biological samples at high magnetic fields are described. The outer coil is a Modified Alderman-Grant Coil (MAGC) tuned to the 1H frequency. The inner coil consists of a multi-turn solenoid coil that produces a B 1 field orthogonal to that of the outer coil. This results in a compact nested cross-coil pair with the inner solenoid coil tuned to the low frequency detection channel. This design has several advantages over multiple-tuned solenoid coil probes, since RF heating from the 1H channel is substantially reduced, it can be tuned for samples with a wide range of dielectric constants, and the simplified circuit design and high inductance inner coil provides excellent sensitivity. The utility of this probe is demonstrated on two electrically lossy samples of membrane proteins in phospholipid bilayers (bicelles) that are particularly difficult for conventional NMR probes. The 72-residue polypeptide embedding the transmembrane helices 3 and 4 of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) (residues 194-241) requires a high salt concentration in order to be successfully reconstituted in phospholipid bicelles. A second application is to paramagnetic relaxation enhancement applied to the membrane-bound form of Pf1 coat protein in phospholipid bicelles where the resistance to sample heating enables high duty cycle solid-state NMR experiments to be performed.

  16. Comparison of magnetic field uniformities for discretized and finite-sized standard $\\cos\\theta$, solenoidal, and spherical coils

    CERN Document Server

    Nouri, N

    2013-01-01

    A significant challenge for experiments requiring a highly uniform magnetic field concerns the identification and design of a discretized and finite-sized magnetic field coil of minimal size. In this work we compare calculations of the magnetic field uniformities and field gradients for three different standard (i.e., non-optimized) types of coils: $\\cos\\theta$, solenoidal, and spherical coils. For an experiment with a particular requirement on either the field uniformity or the field gradient, we show that the volume required by a spherical coil form which satisfies these requirements can be significantly less than the volumes required by $\\cos\\theta$ and solenoidal coil forms.

  17. Surface field in an ensemble of superconducting spheres under external magnetic field

    CERN Document Server

    Peñaranda, A; Ramírez-Piscina, L

    1999-01-01

    We perform calculations of the magnetic field on the surface of an ensemble of superconducting spheres when placed into an external magnetic field, which is the configuration employed in superheated superconducting granule detectors. The Laplace equation is numerically solved with appropriate boundary conditions by means of an iterative procedure and a multipole expansion.

  18. Vibration-induced field fluctuations in a superconducting magnet

    Science.gov (United States)

    Britton, J. W.; Bohnet, J. G.; Sawyer, B. C.; Uys, H.; Biercuk, M. J.; Bollinger, J. J.

    2016-06-01

    Superconducting magnets enable precise control of nuclear and electron spins, and are used in experiments that explore biological and condensed-matter systems, and fundamental atomic particles. In high-precision applications, a common view is that slow (Be+9 electron-spin qubits in the 4.46 -T field of a superconducting magnet. We measure a spin-echo T2 coherence time of ˜6 ms for the Be+9 electron-spin resonance at 124 GHz , limited by part-per-billion fractional fluctuations in the magnet's homogeneous field. Vibration isolation of the magnet improved T2 to ˜50 ms.

  19. Status of the cold test facility for the JT-60SA tokamak toroidal field coils

    Energy Technology Data Exchange (ETDEWEB)

    Abdel Maksoud, Walid, E-mail: walid.abdelmaksoud@cea.fr; Bargueden, Patrick; Bouty, André; Dispau, Gilles; Donati, André; Eppelle, Dominique; Genini, Laurent; Guiho, Patrice; Guihard, Quentin; Joubert, Jean-Michel; Kuster, Olivier; Médioni, Damien; Molinié, Frédéric; Sinanna, Armand; Solenne, Nicolas; Somson, Sébastien; Vieillard, Laurence

    2015-10-15

    Highlights: • The 5 K cryogenic loop includes a 500 W refrigerator and a She cold pump. • The coils are energized thanks to a 25.7 kA power supply and HTS current leads. • Temperature margin tests between 5 K and 7.5 K will be made on each coil. • A magnet safety system protects each double pancake of the coil in case of quench. • Instrumentation is monitored on a 1 Hz to 10 kHz fast acquisition system. - Abstract: JT-60SA is a fusion experiment which is jointly constructed by Japan and Europe and which shall contribute to the early realization of fusion energy, by providing support to the operation of ITER, and by addressing key physics issues for ITER and DEMO. In order to achieve these goals, the existing JT-60U experiment will be upgraded to JT-60SA by using superconducting coils. The 18 TF coils of the JT-60SA device will be provided by European industry and tested in a Cold Test Facility (CTF) at CEA Saclay. The coils will be tested at the nominal current of 25.7 kA and will be cooled with supercritical helium between 5 K and 7.5 K to check the temperature margin against a quench. The main objective of these tests is to check the TF coils performance and hence mitigate the fabrication risks. The most important components of the facility are: a 11.5 m × 6.5 m large cryostat in which the TF coils will be thermally insulated by vacuum; a 500 W helium refrigerator and a valve box to cool the coils down to 5 K and circulate 24 g/s of supercritical helium through the winding pack and through the casing; a power supply and HTS current leads to energize the coil; the control and instrumentation equipment (sensors, PLC's, supervision system, fast data acquisition system, etc.) and the Magnet Safety System (MSS) that protects the coils in case of quench. The paper will give an overview of the design of this large facility and the status of its realization.

  20. Route to topological superconductivity via magnetic field rotation

    Energy Technology Data Exchange (ETDEWEB)

    Loder, Florian; Kampf, Arno P.; Kopp, Thilo [Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg (Germany)

    2015-07-01

    Apart from the very few spin-triplet superconductors with p-wave pairing symmetry, a candidate system for topological superconductivity is a conventional, two-dimensional s-wave superconductor in a magnetic field with a sufficiently strong Rashba spin-orbit coupling. Typically, the required magnetic field to convert the superconductor into a topologically non-trivial state is however by far larger than the upper critical field H{sub c2}, which excludes its realization. Here we argue that this problem is overcome by rotating the magnetic field into the superconducting plane. We explore the topological transitions which occur upon changing the strength and the orientation of the magnetic field and show that an unusual superconducting state with finite-momentum pairing exists, which preserves its topological nature up to an in-plane field orientation. We discuss the realizability of this state at the superconducting interface between LaAlO{sub 3} and SrTiO{sub 3}.

  1. Accurate Calculation of Magnetic Fields in the End Regions of Superconducting Accelerator Magnets using the BEM-FEM Coupling Method

    CERN Document Server

    Kurz, S

    1999-01-01

    In this paper a new technique for the accurate calculation of magnetic fields in the end regions of superconducting accelerator magnets is presented. This method couples Boundary Elements (BEM) which discretize the surface of the iron yoke and Finite Elements (FEM) for the modelling of the nonlinear interior of the yoke. The BEM-FEM method is therefore specially suited for the calculation of 3-dimensional effects in the magnets, as the coils and the air regions do not have to be represented in the finite-element mesh and discretization errors only influence the calculation of the magnetization (reduced field) of the yoke. The method has been recently implemented into the CERN-ROXIE program package for the design and optimization of the LHC magnets. The field shape and multipole errors in the two-in-one LHC dipoles with its coil ends sticking out of the common iron yoke is presented.

  2. Nested Helmholtz coil design for producing homogeneous transient rotating magnetic fields.

    Science.gov (United States)

    Podaru, George; Moore, John; Dani, Raj Kumar; Prakash, Punit; Chikan, Viktor

    2015-03-01

    Electromagnets that can produce strong rotating magnetic fields at kHz frequencies are potentially very useful to exert rotating force on magnetic nanoparticles as small as few nanometers in size. In this article, the construction of a pulsed high-voltage rotating electromagnet is demonstrated based on a nested Helmholtz coil design. The energy for the coils is provided by two high-voltage discharge capacitors. The triggered spark gaps used in the experiments show sufficient accuracy to achieve the high frequency rotating magnetic field. The measured strength of the rotating magnetic field is 200 mT. This magnetic field is scalable by increasing the number of turns on the coils, by reducing the dimensions of the coils and by increasing the discharge current/voltage of the capacitors.

  3. Fabrication of the planar coils for WENDELSTEIN 7-X

    Energy Technology Data Exchange (ETDEWEB)

    Viebke, H. [Max-Planck-Institut fuer Plasmaphysik, Greifswald Branch, Euratom Association, Wendelsteinstrasse 1, D-17491 Greifswald (Germany)]. E-mail: holger.viebke@ipp.mpg.de; Rummel, Th. [Max-Planck-Institut fuer Plasmaphysik, Greifswald Branch, Euratom Association, Wendelsteinstrasse 1, D-17491 Greifswald (Germany); Risse, K. [Max-Planck-Institut fuer Plasmaphysik, Greifswald Branch, Euratom Association, Wendelsteinstrasse 1, D-17491 Greifswald (Germany); Schroeder, R. [Max-Planck-Institut fuer Plasmaphysik, Greifswald Branch, Euratom Association, Wendelsteinstrasse 1, D-17491 Greifswald (Germany); Winter, R. [Tesla Engineering Ltd., Water Lane, Storrington, Sussex RH20 3EA (United Kingdom)

    2005-11-15

    WENDELSTEIN 7-X (W7-X) is a superconducting stellarator, which uses 50 non-planar coils for the main field and 20 planar coils to modify the magnetic configuration. The planar coils are cut into two differently shaped types and designed for 3 T on the plasma axis. A planar coil has an outer diameter of around 4 m. The main elements of planar coils are the winding package, the coil case, the interlayer joints to connect the double layers, and the case cooling with instrumentation. The connection to the coil support structure is performed through forged blocks welded to the casing and bolts. The manufacturing is being performed with a high accuracy to maintain the required symmetry of the magnetic configuration of W7-X. Prior to dispatch the coils pass a works acceptance test at Tesla. After production, all coils are subjected to a functional test at cryogenic temperatures at the Low Temperature Laboratory of CEA at Saclay.

  4. Superconductivity

    CERN Document Server

    Poole, Charles P; Farach, Horacio A

    1995-01-01

    Superconductivity covers the nature of the phenomenon of superconductivity. The book discusses the fundamental principles of superconductivity; the essential features of the superconducting state-the phenomena of zero resistance and perfect diamagnetism; and the properties of the various classes of superconductors, including the organics, the buckministerfullerenes, and the precursors to the cuprates. The text also describes superconductivity from the viewpoint of thermodynamics and provides expressions for the free energy; the Ginzburg-Landau and BCS theories; and the structures of the high

  5. The decay properties of the trapped magnetic field in HTS bulk superconducting actuator by AC controlled magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.B. [Department of Electrical and Electronic Engineering, Okayama University, 3-1-1, Tsushima Naka, Okayama 700-8530 (Japan); Uwani, Y., E-mail: gen422310@s.okayama-u.ac.jp [Department of Electrical and Electronic Engineering, Okayama University, 3-1-1, Tsushima Naka, Okayama 700-8530 (Japan); Joo, J.H.; Kawamoto, R. [Department of Electrical and Electronic Engineering, Okayama University, 3-1-1, Tsushima Naka, Okayama 700-8530 (Japan); Jo, Y.S. [Center for Applied Superconductivity Technology, Korea Electrotechnology Research Institute, Seongju-dong, Changwon 641-120 (Korea, Republic of)

    2011-11-15

    The electric device applications of a high temperature superconducting (HTS) bulk magnet, having stable levitation and suspension properties according to their strong flux pinning force, have been proposed and developed. We have been investigating a three-dimensional (3-D) superconducting actuator using HTS bulks to develop a non-contract transportation device which moves freely in space. It is certain for our proposed 3-D superconducting actuator to be useful as a transporter used in a clean room where silicon wafers, which do not like mechanical contact and dust, are manufactured. The proposed actuator consists of the trapped HTS bulk as a mover and two-dimensionally arranged electromagnets as a stator. Up to now, the electromagnets consisted with iron core and copper coil were used as a stator, and each electromagnet was individually controlled using DC power supplies. In our previous work, the unstable movement characteristics of HTS bulk were observed under the DC operation, and the AC electromagnets driven with AC controlled current was proposed to solve these problems. In general, the trapped magnetic field in HTS bulk was decayed by a time-varying external magnetic field. Thus, it needs to optimize the shapes of AC electromagnets and operating patterns, the decay properties of the trapped magnetic field in the HTS bulk mover by the AC magnetic field should be cleared. In this paper, the influences of the frequency, the overall operating time, the strength of magnetization field and drive current against the decay of trapped magnetic field were experimentally studied using the fabricated AC electromagnets.

  6. Analysing radio-frequency coil arrays in high-field magnetic resonance imaging by the combined field integral equation method.

    Science.gov (United States)

    Wang, Shumin; Duyn, Jeff H

    2006-06-21

    We present the combined field integral equation (CFIE) method for analysing radio-frequency coil arrays in high-field magnetic resonance imaging (MRI). Three-dimensional models of coils and the human body were used to take into account the electromagnetic coupling. In the method of moments formulation, we applied triangular patches and the Rao-Wilton-Glisson basis functions to model arbitrarily shaped geometries. We first examined a rectangular loop coil to verify the CFIE method and also demonstrate its efficiency and accuracy. We then studied several eight-channel receive-only head coil arrays for 7.0 T SENSE functional MRI. Numerical results show that the signal dropout and the average SNR are two major concerns in SENSE coil array design. A good design should be a balance of these two factors.

  7. Levitation of Superconductive Cable in Earth Magnetic Field

    Directory of Open Access Journals (Sweden)

    Bohus Ulrych

    2006-01-01

    Full Text Available The paper represents an introductory study about a superconductive cable levitating in Earth’s magnetic field. Built are two mathematical models of the problem providing both the shape of the arc of the cable and forces acting along it. The theoretical analysis is supplemented with an illustrative example.

  8. Survey of high field superconducting material for accelerator magnets

    Energy Technology Data Exchange (ETDEWEB)

    Scahlan, R.; Greene, A.F.; Suenaga, M.

    1986-05-01

    The high field superconductors which could be used in accelerator dipole magnets are surveyed, ranking these candidates with respect to ease of fabrication and cost as well as superconducting properties. Emphasis is on Nb/sub 3/Sn and NbTi. 27 refs., 2 figs. (LEW)

  9. Nucleation of bulk superconductivity close to critical magnetic fields

    DEFF Research Database (Denmark)

    Fournais, Søren; Kachmar, Ayman

    2011-01-01

    threshold value of the applied magnetic field for which bulk superconductivity contributes to the leading order of the energy. Furthermore, the energy of the bulk is related to that of the Abrikosov problem in a periodic lattice. A key ingredient of the proof is a novel L∞ -bound which is of independent...

  10. Effects of coil orientation on the electric field induced by TMS over the hand motor area.

    Science.gov (United States)

    Laakso, Ilkka; Hirata, Akimasa; Ugawa, Yoshikazu

    2014-01-01

    Responses elicited by transcranial magnetic stimulation (TMS) over the hand motor area depend on the position and orientation of the stimulating coil. In this work, we computationally investigate the induced electric field for multiple coil orientations and locations in order to determine which parts of the brain are affected and how the sensitivity of motor cortical activation depends on the direction of the electric field. The finite element method is used for calculating the electric field induced by TMS in two individual anatomical models of the head and brain. The orientation of the coil affects both the strength and depth of penetration of the electric field, and the field strongly depends on the direction of the sulcus, where the target neurons are located. The coil position that gives the strongest electric field in the target cortical region may deviate from the closest scalp location by a distance on the order of 1 cm. Together with previous experimental data, the results support the hypothesis that the cortex is most sensitive to fields oriented perpendicular to the cortical layers, while it is relatively insensitive to fields parallel to them. This has important implications for targeting of TMS. To determine the most effective coil position and orientation, it is essential to consider both biological (the direction of the targeted axons) and physical factors (the strength and direction of the electric field).

  11. A Novel superconducting toroidal field magnet concept using advanced materials

    Science.gov (United States)

    Schwartz, J.

    1992-03-01

    The plasma physics database indicates that two distinct approaches to tokamak design may lead to commercial fusion reactors: low Aspect ratio, high plasma current, relatively low magnetic field devices, and high Aspect ratio, high field devices. The former requires significant enhancements in plasma performance, while the latter depends primarily upon technology development. The key technology for the commercialization of the high-field approach is large, high magnetic field superconducting magnets. In this paper, the physics motivation for the high field approach and key superconducting magnet (SCM) development issues are reviewed. Improved SCM performance may be obtained from improved materials and/or improved engineering. Superconducting materials ranging from NbTi to high- T c oxides are reviewed, demonstrating the broad range of potential superconducting materials. Structural material options are discussed, including cryogenic steel alloys and fiber-reinforced composite materials. Again, the breadth of options is highlighted. The potential for improved magnet engineering is quantified in terms of the Virial Theorem Limit, and two examples of approaches to highly optimized magnet configurations are discussed. The force-reduced concept, which is a finite application of the force-free solutions to Ampere's Law, appear promising for large SCMs but may be limited by the electromagnetics of a fusion plasma. The Solid Superconducting Cylinder (SSC) concept is proposed. This concept combines the unique properties of high- T c superconductors within a low- T c SCM to obtain (1) significant reductions in the structural material volume, (2) a decoupling of the tri-axial (compressive and tensile) stress state, and (3) a demountable TF magnet system. The advantages of this approach are quantified in terms of a 24 T commercial reactor TF magnet system. Significant reductions in the mechanical stress and the TF radial build are demonstrated.

  12. Analysis of electric field control methods for foil coils in high-voltage linear actuators

    Directory of Open Access Journals (Sweden)

    Beek T.A. van

    2015-12-01

    Full Text Available This paper describes multiple electric field control methods for foil coils in high-voltage coreless linear actuators and their sensitivity to misalignment. The investigated field control methods consist of resistive, refractive, capacitive and geometrical solutions for mitigating electric stress at edges and corners of foil coils. These field control methods are evaluated using 2-D boundary element and finite element methods. A comparison is presented between the field control methods and their ability to mitigate electric stress in coreless linear actuators. Furthermore, the sensitivity to misalignment of the field control methods is investigated.

  13. Checking BEBC superconducting magnet

    CERN Multimedia

    1974-01-01

    The superconducting coils of the magnet for the 3.7 m Big European Bubble Chamber (BEBC) had to be checked, see Annual Report 1974, p. 60. The photo shows a dismantled pancake. By December 1974 the magnet reached again the field design value of 3.5 T.

  14. Vibration-induced field fluctuations in a superconducting magnet

    CERN Document Server

    Britton, J W; Bohnet, J G; Uys, H; Biercuk, M J; Bollinger, J J

    2015-01-01

    Superconducting magnets enable precise control of nuclear and electron spins, and are used in experiments that explore biological and condensed matter systems, and fundamental atomic particles. In high-precision applications, a common view is that that slow (<1 Hz) drift of the homogeneous magnetic field limits control and measurement precision. We report on previously undocumented higher-frequency field noise (10 Hz to 200 Hz) that limits the coherence time of 9Be+ electron-spin qubits in the 4.46 T field of a superconducting magnet. We measure a spin-echo T2 coherence time of ~6 ms for the 9Be+ electron-spin resonance at 124 GHz, limited by part-per-billion fractional fluctuations in the magnet's homogeneous field. Vibration isolation of the magnet improved T2 to ~50 ms.

  15. Superconducting dipole electromagnet

    Science.gov (United States)

    Purcell, John R.

    1977-07-26

    A dipole electromagnet of especial use for bending beams in particle accelerators is wound to have high uniformity of magnetic field across a cross section and to decrease evenly to zero as the ends of the electromagnet are approached by disposing the superconducting filaments of the coil in the crescent-shaped nonoverlapping portions of two intersecting circles. Uniform decrease at the ends is achieved by causing the circles to overlap increasingly in the direction of the ends of the coil until the overlap is complete and the coil is terminated.

  16. [Design and field calculation of coil array for transcranial magnetic stimulation (TMS) based on genetic algorithm].

    Science.gov (United States)

    Liu, Jicheng; Huang, Kama; Guo, Lanting; Zhang, Hong; Hu, Yayi

    2005-04-01

    It is the intent of this paper to locate the activation point in Transcranial Magnetic Stimulation (TMS) efficiently. The schemes of coil array in torus shape is presented to get the electromagnetic field distribution with ideal focusing capability. Then an improved adaptive genetic algorithm (AGA) is applied to the optimization of both value and phase of the current infused in each coil. Based on the calculated results of the optimized current configurations, ideal focusing capability is drawn as contour lines and 3-D mesh charts of magnitude of both magnetic and electric field within the calculation area. It is shown that the coil array has good capability to establish focused shape of electromagnetic distribution. In addition, it is also demonstrated that the coil array has the capability to focus on two or more targets simultaneously.

  17. DIGITAL ANALYSIS TECHNOLOGY FOR MORPHOLOGY OF POLYMER CHAIN COILS IN FLOW FIELDS

    Institute of Scientific and Technical Information of China (English)

    Chi-xing Zhou; Hong Zheng; Wei Yu; Ji-feng Yao; Yu-cheng Li

    2005-01-01

    Polymer chain coils with entanglement is a crucial scale of structures in polymer materials since their relaxation times are matching practical processing times. Based on the phenomenological model of polymer chain coils and a new finite element approach, we have designed a computer software including solver, pre- and post-processing modules, and developed a digital analysis technology for the morphology of polymer chain coils in flow fields (DAMPC). Using this technology we may simulate the morphology development of chain coils in various flow fields, such as simple shear flow, elongational flow,and any complex flow at transient or steady state. The applications made up to now show that the software predictions are comparable with experimental results.

  18. Development and testing of a 50-kA, pulsed superconducting cable

    Energy Technology Data Exchange (ETDEWEB)

    Wollan, J.J.; Hamilton, W.C.; DeClerc, J.; Zeitlin, B.A.

    1982-01-01

    Prototype cables for 7.5-T, pulsed field application in tokamak poloidal field coils have been designed, fabricated, and evaluated. Successful fabrication of a 10 m superconducting sample represents the largest superconducting cable ever made. Details of the fabrication, the problems expected and encountered, and the solutions to those problems are discussed. Results of stability measurements on the superconducting prototype also are presented.

  19. Experimental evidence for Froehlich superconductivity in high magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, N. [National High Magnetic Field Laboratory, LANL, MS-E536, Los Alamos, NM (United States)]. E-mail: nharrison@lanl.gov; Mielke, C.H.; Singleton, J. [National High Magnetic Field Laboratory, LANL, MS-E536, Los Alamos, NM (United States); Brooks, J.S. [National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL (United States); Tokumoto, M. [Electrotechnical Laboratory, Tsukuba, Ibaraki (Japan)

    2001-05-14

    Resistivity and irreversible magnetization data taken within the high magnetic field CDW{sub x} phase of the quasi-two-dimensional organic metal {alpha}-(BEDT-TTF){sub 2}KHg(SCN){sub 4} are shown to be consistent with a field-induced inhomogeneous superconducting phase. In-plane skin depth measurements show that the resistive transition on entering the CDW{sub x} phase is both isotropic and representative of the bulk. (author). Letter-to-the-editor.

  20. Decoupling of excitation and receive coils in pulsed magnetic resonance using sinusoidal magnetic field modulation

    Science.gov (United States)

    Tseytlin, Mark; Epel, Boris; Sundramoorthy, Subramanian; Tipikin, Dmitriy; Halpern, Howard J.

    2016-11-01

    In pulsed magnetic resonance, the excitation power is many orders of magnitude larger than that induced by the spin system in the receiving coil or resonator. The receiver must be protected during and immediately after the excitation pulse to allow for the energy stored in the resonator to dissipate to a safe level. The time during which the signal is not detected, the instrumental dead-time, can be shortened by using magnetically decoupled excitation and receive coils. Such coils are oriented, with respect to each other, in a way that minimizes the total magnetic flux produced by one coil in the other. We suggest that magnetically decoupled coils can be isolated to a larger degree by tuning them to separate frequencies. Spins are excited at one frequency, and the echo signal is detected at another. Sinusoidal magnetic field modulation that rapidly changes the Larmor frequency of the spins between the excitation and detection events is used to ensure the resonance conditions for both coils. In this study, the relaxation times of trityl-CD3 were measured in a field-modulated pulsed EPR experiment and compared to results obtained using a standard spin echo method. The excitation and receive coils were tuned to 245 and 256.7 MHz, respectively. Using an available rapid-scan, cross-loop EPR resonator, we demonstrated an isolation improvement of approximately 20-30 dB due to frequency decoupling. Theoretical analysis, numerical simulations, and proof-of-concept experiments demonstrated that substantial excitation-detection decoupling can be achieved. A pulsed L-band system, including a small volume bi-modal resonator equipped with modulation coils, was constructed to demonstrate fivefold dead-time reduction in comparison with the standard EPR experiment. This was achieved by detuning of the excitation and receive coils by 26 MHz and using sinusoidal modulation at 480 kHz.

  1. Letter report for the Superconducting Magnet Development Program, April 1, 1977--June 30, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Fietz, W. A.; Lubell, M. S. [eds.

    1977-11-01

    The results and accomplishments of the Superconducting Magnet Development Program (SCMDP) for the second quarter of the calendar year 1977 are summarized. The presentations are arranged according to projects rather than the group organization by discipline of the Magnetics and Superconductivity Section. The design, procurement, and fabrication of the Large Coil Segment are well under way. Significant progress is reported on the conductor stability and loss experiments for both toroidal field coils and poloidal field coils.

  2. U-shaped Ladder TEM-Coil Structure with Truncated Sensitivity Profile in z-Direction for High Field MRI

    NARCIS (Netherlands)

    Leussler, C.; Wirtz, D.; Wuelbern, J.H.; Vernickel, P.; Forthmann, P.

    2012-01-01

    Conventional TEM-coils [1] come with a sensitivity profile and field-of view (FOV) that is largely extended in the z-direction comparedwith birdcage coils (BC) [2]. There is an analog situation when comparing TEM coil arrays [3] and degenerate birdcages (DBC) [4]. The excess z-FOV leads to safety is

  3. Complex envelope control of pulsed accelerating fields in superconducting cavities

    CERN Document Server

    Czarski, T

    2010-01-01

    A digital control system for superconducting cavities of a linear accelerator is presented in this work. FPGA (Field Programmable Gate Arrays) based controller, managed by MATLAB, was developed to investigate a novel firmware implementation. The LLRF - Low Level Radio Frequency system for FLASH project in DESY is introduced. Essential modeling of a cavity resonator with signal and power analysis is considered as a key approach to the control methods. An electrical model is represented by the non-stationary state space equation for the complex envelope of the cavity voltage driven by the current generator and the beam loading. The electromechanical model of the superconducting cavity resonator including the Lorentz force detuning has been developed for a simulation purpose. The digital signal processing is proposed for the field vector detection. The field vector sum control is considered for multiple cavities driven by one klystron. An algebraic, complex domain model is proposed for the system analysis. The c...

  4. Field Measurement for Superconducting Magnets of ADS Injector I

    CERN Document Server

    Yang, Xiangchen

    2013-01-01

    The superconducting solenoid magnet prototype for ADS injection-I had been fabricated in Beijing Qihuan Mechanical and Electric Engineer Company and tested in Haerbin Institute of Technology (HIT) in Nov, 2012. Batch magnet production was processed after some major revision from the magnet prototype, they include: removing off the perm-alloy shield, extending the iron yoke, using thin superconducting cable, etc. The first one of the batch magnets was tested in the vertical Dewar in HIT in Sept. 2013. Field measurement was carried out at the same time by the measurement platform that seated on the top of the vertical Dewar. This paper will present the field measurement system design, measurement results and discussion on the residual field from the persistent current effect.

  5. Control and data acquisition systems for high field superconducting wigglers

    CERN Document Server

    Batrakov, A; Karpov, G; Kozak, V; Kuzin, M; Kuper, E; Mamkin, V; Mezentsev, N A; Repkov, V V; Selivanov, A; Shkaruba, V A

    2001-01-01

    This paper describes the control and DAQ system of superconducting wigglers with magnetic field range up to 10.3 T. The first version of the system controls a 7 T superconducting wiggler prepared for installation at Bessy-II (Germany). The second one controls a 10 T wiggler which is under testing now at the SPring-8 site (Japan). Both systems are based on VME apparatus. The set of specialized VME modules is elaborated to arrange wiggler power supply control, full time wiggler monitoring, and magnetic field high accuracy measurement and field stabilization. The software for the control of the wigglers is written in C language for VxWorks operation system for a Motorola-162 VME controller. The task initialization, stops and acquisition of the data can be done from the nearest personal computer (FTP host for VME), or from the remote system as well.

  6. Magnet Science and Technology for Basic Research at the High Field Laboratory for Superconducting Materials

    Institute of Scientific and Technical Information of China (English)

    渡辺和雄

    2007-01-01

    Since the first practical cryocooled superconducting magnet using a GM-cryocooler and high temperature superconducting current leads has been demonstrated successfully at the High Field Laboratory for Superconducting Materials (HFLSM), various kinds of cryocooled superconducting magnets in fields up to 15 T have been used to provide access for new research areas in fields of magneto-science. Recently, the HFLSM has succeeded in demonstrating a cryocooed 18 T high temperature superconducting magnet and a high field cryocooled 27.5 T hybrid magnet. Cryocooled magnet technology and basic research using high field magnets at the HFLSM are introduced.

  7. New fully superconducting bearing concept using the difference in irreversibility field of two superconducting components

    Science.gov (United States)

    Patel, A.; Palka, R.; Glowacki, B. A.

    2011-01-01

    One of the major factors limiting levitation force for existing superconducting magnetic bearings is the maximum possible remanence of 1.4 T known to exist for rare-earth permanent magnets. This paper introduces the novel concept of a magnetic bearing which uses the difference in irreversibility field of two superconducting components to allow one component to be field cooled in the field originating from the other component which is first magnetized at a higher temperature. Magnetized (RE)BCO bulks with high trapped fields can be used as one of the components instead of permanent magnets, giving a significant increase in the levitation force density that can be achieved between the two components. This paper focuses on using an MgB2 hollow cylinder for the component which is field cooled. Modelling of the levitation forces that would exist between magnetized YBCO bulks inside a hollow MgB2 cylinder is reported as well as modelling of pulsed field magnetization of the pellets to create high field gradients using MPSC (multi-pulse technique with step-wise cooling). The new design has the potential to achieve levitation force densities over 100 N cm - 2.

  8. High field performance of superconducting magnets using powder metallurgy processed Cu-Nb-Sn and Nb-Al

    Energy Technology Data Exchange (ETDEWEB)

    Zaleski, A.J.; Foner, S.

    1984-06-01

    Small superconducting magnets were fabricated with powder metallurgy processed Nb-Al wire and with powder metallurgy processed multistrand Cu-Nb--Sn wire with 19 tin cores. Tests in a background field of up to 15 T showed that short sample characteristics were achieved for three coils. Upper limits of resistivity were established for both powder metallurgy processed wires. The reacted wires in the magnets gave upper limits of resistivity at 10 T of less than 1.4 x 10/sup -14/ ..cap omega.. cm for the Nb/sub 3/Sn wire, and less than 9 x 10/sup -13/ ..cap omega.. cm for the Nb-Al wire.

  9. Passive Superconducting Flux Conservers for Rotating-Magnetic-Field-Driven Field-Reversed Configurations

    Energy Technology Data Exchange (ETDEWEB)

    Oz, E.; Myers, C. E.; Edwards, M. R.; Berlinger, B.; Brooks, A.; Cohen, S. A.

    2011-01-05

    The Princeton Field-Reversed Configuration (PFRC) experiment employs an odd-parity rotating magnetic field (RMFo) current drive and plasma heating system to form and sustain high-Β plasmas. For radial confinement, an array of coaxial, internal, passive, flux-conserving (FC) rings applies magnetic pressure to the plasma while still allowing radio-frequency RMFo from external coils to reach the plasma. The 3 ms pulse duration of the present experiment is limited by the skin time (τfc) of its room-temperature copper FC rings. To explore plasma phenomena with longer characteristic times, the pulse duration of the next-generation PFRC-2 device will exceed 100 ms, necessitating FC rings with (τfc > 300 ms. In this paper we review the physics of internal, discrete, passive FCs and describe the evolution of the PFRC's FC array. We then detail new experiments that have produced higher performance FC rings that contain embedded high-temperature superconducting (HTS) tapes. Several HTS tape winding configurations have been studied and a wide range of extended skin times, from 0.4 s to over 103 s, has been achieved. The new FC rings must carry up to 3 kA of current to balance the expected PFRC-2 plasma pressure, so the dependence of the HTS-FC critical current on the winding configuration and temperature was also studied. From these experiments, the key HTS-FC design considerations have been identified and HTS-FC rings with the desired performance characteristics have been produced.

  10. Analysis and experimental study of wireless power transfer with HTS coil and copper coil as the intermediate resonators system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiufang [School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); School of Physics and Technology, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Nie, Xinyi [School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Liang, Yilang [School of Physics and Technology, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Lu, Falong [School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Yan, Zhongming, E-mail: wangxiufanghappy@163.com [School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Wang, Yu [School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)

    2017-01-15

    Highlights: • We investigated a kind of system architecture with three coils which the repeater is copper coil or HTS coil. • We simulated the different repeater system and obtained the magnetic field distribution at different distance. • We used helical coil instead of pancake coil which does not use capacitors. • HTS intermediate coil has significant effect on improving the transmission efficiency and lengthening transmission distance than copper intermediate coil. - Abstract: Intermediate resonator (repeater) between transmitter and receiver can significantly increase the distance of wireless power transfer (WPT) and the efficiency of wireless power transfer. The wireless power transfer via strongly coupled magnetic resonances with an high temperature superconducting (HTS) coil and copper coil as intermediate resonators was presented in this paper. The electromagnetic experiment system under different conditions with different repeating coils were simulated by finite element software. The spatial distribution patterns of magnetic induction intensity at different distances were plotted. In this paper, we examined transfer characteristics with HTS repeating coil and copper repeating coil at 77 K and 300 K, respectively. Simulation and experimental results show that HTS and copper repeating coil can effectively enhance the space magnetic induction intensity, which has significant effect on improving the transmission efficiency and lengthening transmission distance. We found that the efficiency and the distance of wireless power transfer system with an HTS coil as repeater is much higher by using of copper coil as repeater.

  11. Superconductivity

    CERN Document Server

    Thomas, D B

    1974-01-01

    A short general review is presented of the progress made in applied superconductivity as a result of work performed in connection with the high-energy physics program in Europe. The phenomenon of superconductivity and properties of superconductors of Types I and II are outlined. The main body of the paper deals with the development of niobium-titanium superconducting magnets and of radio-frequency superconducting cavities and accelerating structures. Examples of applications in and for high-energy physics experiments are given, including the large superconducting magnet for the Big European Bubble Chamber, prototype synchrotron magnets for the Super Proton Synchrotron, superconducting d.c. beam line magnets, and superconducting RF cavities for use in various laboratories. (0 refs).

  12. Thermal-Hydraulic Issues in the ITER Toroidal Field Model Coil (TFMC) Test and Analysis

    Science.gov (United States)

    Zanino, R.; Bagnasco, M.; Fillunger, H.; Heller, R.; Savoldi Richard, L.; Suesser, M.; Zahn, G.

    2004-06-01

    The International Thermonuclear Experimental Reactor (ITER) Toroidal Field Model Coil (TFMC) was tested in the Toska facility of Forschungszentrum Karlsruhe during 2001 (standalone) and 2002 (in the background magnetic field of the LCT coil). The TFMC is a racetrack coil wound in five double pancakes on stainless steel radial plates using Nb3Sn dual-channel cable-in-conduit conductor (CICC) with a thin circular SS jacket. The coil was cooled by supercritical helium in forced convection at nominal 4.5 K and 0.5 MPa. Instrumentation, all outside the coil, included voltage taps, pressure and temperature sensors, as well as flow meters. Additionally, differential pressure drop measurement was available on the two pancakes DP1.1 and DP1.2, equipped with heaters. Two major thermal-hydraulic issues in the TFMC tests will be addressed here: 1) the pressure drop along heated pancakes and the comparison with friction factor correlations; 2) the quench initiation and propagation. Other thermal-hydraulic issues like heat generation and exchange in joints, radial plates, coil case, or the effects of the resistive heaters on the helium dynamics, have been already addressed elsewhere.

  13. Exploring the limits of a very large Nb{sub 3}Sn conductor: the 80 kA conductor of the ITER toroidal field model coil

    Energy Technology Data Exchange (ETDEWEB)

    Duchateau, J.L.; Ciazynski, D.; Guerber, O.; Park, S.H.; Zani, L. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Fietz, W.H.; Ulbricht, A.; Zahn, G. [Association Euratom-FZK Forschungszentrum, Karlsruhe (Germany)

    2003-07-01

    In Phase II experiment of the International Thermonuclear Experimental Reactor (ITER) Toroidal Field Model Coil (TFMC) the operation limits of its 80 kA Nb{sub 3}Sn conductor were explored. To increase the magnetic field on the conductor, the TFMC was tested in presence of another large coil: the EURATOM-LCT coil. Under these conditions the maximum field reached on the conductor, was around 10 tesla. This exploration has been performed at constant current, by progressively increasing the coil temperature and monitoring the coil voltage drop in the current sharing regime. Such an operation was made possible thanks to the very high stability of the conductor. The aim of these tests was to compare the critical properties of the conductor with expectations and assess the ITER TF conductor design. These expectations are based on the documented critical field and temperature dependent properties of the 720 superconducting strands which compose the conductor. In addition the conductor properties are highly dependent on the strain, due to the compression appearing on Nb{sub 3}Sn during the heat treatment of the pancakes and related to the differential thermal compression between Nb{sub 3}Sn and the stainless steel jacket. No precise model exists to predict this strain, which is therefore the main information, which is expected from these tests. The method to deduce this strain from the different tests is presented, including a thermalhydraulic analysis to identify the temperature of the critical point and a careful estimation of the field map across the conductor. The measured strain has been estimated in the range -0.75% to -0.79 %. This information will be taken into account for ITER design and some adjustment of the ITER conductor design is under examination. (authors)

  14. The contrasting magnetic fields of superconducting pulsars and magnetars

    CERN Document Server

    Lander, S K

    2013-01-01

    We study equilibrium magnetic field configurations in a neutron star whose core has type-II superconducting protons. Unlike normal matter, whose equations do not involve any special field strength, those for superconductors contain the lower critical field, of order 10^{15} G. We find that the ratio between this critical field and the smooth-averaged stellar magnetic field at the crust-core boundary is the key feature dictating the field geometry. Our results suggest that pulsar and magnetar-strength fields have notably different configurations. Field decay for neutron stars with B_{pole}\\sim 10^{14} G could thus result in substantial internal rearrangements, with the toroidal field component being pushed out of the core; this may be related to observed magnetar activity.

  15. Improved Field Homogeneity for Transmission Line MRI Coils Using Series Capacitors

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Dong, Yunfeng

    2015-01-01

    High field magnetic resonance imaging (MRI) systems often use short sections of transmission lines for generating and sensing alternating magnetic fields. Due to distributed nature of transmission lines, the generated field is inhomogeneous. This work investigates the application of series capaci...... capacitors to improve the field homogeneity. The resulting magnetic field distribution is estimated analytically and evaluated numerically. The results are compared to a case of a conventional transmission line coil realization....

  16. Dipole antennas for ultrahigh-field body imaging: a comparison with loop coils.

    Science.gov (United States)

    Raaijmakers, A J E; Luijten, P R; van den Berg, C A T

    2016-09-01

    Although the potential of dipole antennas for ultrahigh-field (UHF) MRI is largely recognized, they are still relatively unknown to the larger part of the MRI community. This article intends to provide electromagnetic insight into the general operating principles of dipole antennas by numerical simulations. The major part focuses on a comparison study of dipole antennas and loop coils at frequencies of 128, 298 and 400 MHz. This study shows that dipole antennas are only efficient radiofrequency (RF) coils in the presence of a dielectric and/or conducting load. In addition, the conservative electric fields (E-fields) at the ends of a dipole are negligible in comparison with the induced E-fields in the center. Like loop coils, long dipole antennas perform better than short dipoles for deeply located imaging targets and vice versa. When the optimal element is chosen for each depth, loop coils have higher B1 (+) efficiency for shallow depths, whereas dipole antennas have higher B1 (+) efficiency for large depths. The cross-over point depth decreases with increasing frequency: 11.6, 6.2 and 5.0 cm for 128, 298 and 400 MHz, respectively. For single elements, loop coils demonstrate a better B1 (+) /√SARmax ratio for any target depth and any frequency. However, one example study shows that, in an array setup with loop coil overlap for decoupling, this relationship is not straightforward. The overlapping loop coils may generate increased specific absorption rate (SAR) levels under the overlapping parts of the loops, depending on the drive phase settings. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Integrated Design System of Toroidal Field Coil for CFETR

    Science.gov (United States)

    Luo, Zhiren; Liu, Xufeng; Du, Shuangsong; Wang, Zhongwei; Song, Yuntao

    2016-09-01

    Integrating engineering software is meaningful but challenging for a system code of a fusion device. This issue is seldom considered by system codes currently. Therefore, to discuss the issue, the Integrated Design System of TF Coil (IDS-TFC) has been worked out, which consists of physical calculation, CAD, and Finite Element Analysis (FEA). Furthermore, an Integrated and Automatically Optimized Method (IAOM) has been created to address the integration and interfaces. The method utilizes a geometry parameter to connect each design submodule and achieve automatic optimization. Double-objectives optimization has been realized, confirming it is feasible to integrate and optimize engineering design and physical calculation. Moreover, IDS-TFC can also serve as a useful reference of integrated design processing for subsequent fusion design. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2014GB110000, 2014GB110002)

  18. Design and Performance of the First Dual-Coil Magnet at the Wuhan National High Magnetic Field Center

    Science.gov (United States)

    Peng, T.; Sun, Q. Q.; Zhang, X.; Xu, Q.; Xiao, H. X.; Herlach, F.; Pan, Y.; Li, L.

    2013-03-01

    The first 80 T dual-coil magnet was manufactured and tested at the Wuhan National High Magnetic Field Center (WHMFC). The inner coil consists of 8 layers of 2.8 mm × 4.3 mm CuNb microcomposite wire developed in China; the bore diameter is 14 mm and the outer diameter 135 mm. The outer coil was wound directly on the inner coil with 12 layers of 3 mm × 6 mm soft copper. Each conductor layer of both coils was reinforced by Zylon/epoxy composite. The inner and outer coil were driven by a 1.6 MJ/5.12 mF capacitor bank and by eight 1 MJ/3.2 mF modules, respectively. At the voltage of 14.3 kV for the inner coil and 22 kV for the outer coil, the inner and outer coils produced peak fields of 48.5 T and 34.5 T respectively, which gave a total field of 83 T. This was the first combined operation of the new capacitor banks installed at the WHMFC. We present details of the design, manufacture and test of the dual-coil magnet and discuss crucial material properties. Based on this experience, a second dual-coil magnet will be designed; the enhanced design will be discussed. With the total energy of 12.6 MJ, peak field up to 90 T is expected.

  19. Test results of a 5 kW fully superconducting homopolar motor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. K. [Woosuk University, Wanju (Korea, Republic of); Park, S. H.; Kim, Y.; Lee, S.; Joo, H. G.; Kim, W. S.; Choi, K. [Korea Polytechnic University,Siheong (Korea, Republic of); Hahm, S. Y. [Electrical Engineering and Science Research Institute,Seoul (Korea, Republic of)

    2013-05-15

    The superconducting Homopolar motor is manufactured and tested. Homopolar motor system is simple and solid as the field coil of the motor is fixed near the stator coil without rotating system. In this paper, a 5 kW fully superconducting homopolar motor which has high temperature superconducting armature and field coils is manufactured and tested in liquid nitrogen. The critical current test results of the used 2G superconducting wire, pancake coil for rotor winding and race-track coils for armature winding are reported. Also, the test result of rotating and operating performance is presented. The operating frequency is to be 5 Hz for low-speed rotating. The developed fully superconducting Homopolar motor is the world's first.

  20. Magnetic Field Generation by a Laser-Driven Capacitor-Coil Target

    Science.gov (United States)

    Cheng, Jessica; Gao, Lan

    2016-10-01

    Magnetic fields generated by currents flowing through a capacitor-coil target were characterized using ultrafast proton radiography at the OMEGA EP Laser System. Two 1.25 kJ, 1-ns laser pulses propagated through the laser entrance holes in one foil of the capacitor, and were focused to the other with an intensity of 3 ×1016 W/cm2. The intense laser-solid interaction induced a high voltage between the foils and generated a large current in the connecting coil. The proton data show tens of kA current producing tens of Tesla magnetic fields at the center of the coil. Theoretical lumped circuit models based on the experimental parameters were developed to simulate the target behavior and calculate the time evolution of the current in the coil. The models take into account important elements such as plasmas conditions for building up the voltage, the capacitance between the gap, the resistive heating and skin effect to gain insights on the field generation mechanism. Applications to other coil geometries and magnetic field configurations will also be described.

  1. Magnetization of the joint-free high temperature superconductor (REBa2Cu3Ox coil by field cooling

    Directory of Open Access Journals (Sweden)

    Yali Zheng

    2017-09-01

    Full Text Available Joint-free (REBa2Cu3Ox (REBCO coil based on ‘wind-and-flip’ technique has been developed to generate a persistent magnetic field without power supply. This paper is to study the magnetization characteristics of the joint-free REBCO coil by field cooling, in order to trap higher field. A joint-free pancake coil is wound by REBCO tapes and the field cooling magnetization test is performed on it. An approximate numerical model based on H-formulation is built for this coil to analyze its magnetization behavior, which is validated by the experimental results Analysis show that a persistent direct current is induced in the coil during the field cooling operation, which generates the trapped field. The induced current of the joint-free coil shows an intrinsic non-uniform distribution among turns. Increasing the magnetization field and critical current of REBCO conductors can considerably increase the trapped field. But the trapping factor (the rate of trapped field to background magnetization field reaches a maximum value (60 % for the test coil. This maximum value is an intrinsic characteristics for a fabricated coil, which only depends on the coil’s geometry structure. With a same usage of REBCO tapes, the trapping factor can be improved significantly by optimizing the coil structure to multiple pancakes, and it can approach 100 %.

  2. Performance assessment and optimization of the ITER toroidal field coil joints

    NARCIS (Netherlands)

    Rolando, G.; Foussat, A.; Knaster, J.; Illiin, Y.; Nijhuis, A.

    2013-01-01

    The ITER toroidal field (TF) system features eighteen coils that will provide the magnetic field necessary to confine the plasma. Each winding pack is composed of seven double pancakes (DP) connected through praying hands joints. Shaking hands joints are used to interface the terminals of the conduc

  3. A novel low-E field coil to minimize heating of biological samples in solid-state multinuclear NMR experiments

    Science.gov (United States)

    Dillmann, Baudouin; Elbayed, Karim; Zeiger, Heinz; Weingertner, Marie-Catherine; Piotto, Martial; Engelke, Frank

    2007-07-01

    A novel coil, called Z coil, is presented. Its function is to reduce the strong thermal effects produced by rf heating at high frequencies. The results obtained at 500 MHz in a 50 μl sample prove that the Z coil can cope with salt concentrations that are one order of magnitude higher than in traditional solenoidal coils. The evaluation of the rf field is performed by numerical analysis based on first principles and by carrying out rf field measurements. Reduction of rf heating is probed with a DMPC/DHPC membrane prepared in buffers of increasing salt concentrations. The intricate correlation that exists between the magnetic and electric field is presented. It is demonstrated that, in a multiply tuned traditional MAS coil, the rf electric field E1 cannot be reduced without altering the rf magnetic field. Since the detailed distribution differs when changing the coil geometry, a comparison involving the following three distinct designs is discussed: (1) a regular coil of 5.5 turns, (2) a variable pitch coil with the same number of turns, (3) the new Z coil structure. For each of these coils loaded with samples of different salt concentrations, the nutation fields obtained at a certain power level provide a basis to discuss the impact of the dielectric and conductive losses on the rf efficiency.

  4. A novel low-E field coil to minimize heating of biological samples in solid-state multinuclear NMR experiments.

    Science.gov (United States)

    Dillmann, Baudouin; Elbayed, Karim; Zeiger, Heinz; Weingertner, Marie-Catherine; Piotto, Martial; Engelke, Frank

    2007-07-01

    A novel coil, called Z coil, is presented. Its function is to reduce the strong thermal effects produced by rf heating at high frequencies. The results obtained at 500MHz in a 50 microl sample prove that the Z coil can cope with salt concentrations that are one order of magnitude higher than in traditional solenoidal coils. The evaluation of the rf field is performed by numerical analysis based on first principles and by carrying out rf field measurements. Reduction of rf heating is probed with a DMPC/DHPC membrane prepared in buffers of increasing salt concentrations. The intricate correlation that exists between the magnetic and electric field is presented. It is demonstrated that, in a multiply tuned traditional MAS coil, the rf electric field E(1) cannot be reduced without altering the rf magnetic field. Since the detailed distribution differs when changing the coil geometry, a comparison involving the following three distinct designs is discussed: (1) a regular coil of 5.5 turns, (2) a variable pitch coil with the same number of turns, (3) the new Z coil structure. For each of these coils loaded with samples of different salt concentrations, the nutation fields obtained at a certain power level provide a basis to discuss the impact of the dielectric and conductive losses on the rf efficiency.

  5. Design and performance issues of RF coils utilized in ultra high field MRI: experimental and numerical evaluations.

    Science.gov (United States)

    Ibrahim, Tamer S; Kangarlu, Alayar; Chakeress, Donald W

    2005-07-01

    In this paper, two TEM resonators were evaluated experimentally and numerically at 8 tesla (T) (340 MHz for 1H imaging). The coils were constructed to be 21.2-cm long (standard) and 11-cm long (a proposed less claustrophobic design). The experimental evaluation was done on a single cadaver using an ultra high field, 8 T, whole-body magnet. The numerical modeling was performed using an in-house finite difference time domain packagethat treats the coil and the load (anatomically detailed human head model) as a single system. The coils were tested with quadrature excitation at different coil alignment positions with respect to human head. For head imaging at 8 T, the overall numerical and experimental results demonstrated that when compared to the longer coil, the shorter coil provides superior signal-to-noise ratio, coil sensitivity, and excite field in the biological regions that lie within both of the coils' structures. A study of the RF (excite/receive fields) homogeneity showed variations in the performance of both coils that are mostly dependant on the region of interest and the position of coil with respect to the head. As such, depending on the application, the shorter coil could be effectively utilized.

  6. Three-dimensional magnetic nanoparticle imaging using small field gradient and multiple pickup coils

    Science.gov (United States)

    Sasayama, Teruyoshi; Tsujita, Yuya; Morishita, Manabu; Muta, Masahiro; Yoshida, Takashi; Enpuku, Keiji

    2017-04-01

    We propose a magnetic particle imaging (MPI) method based on third harmonic signal detection using a small field gradient and multiple pickup coils. First, we developed a system using two pickup coils and performed three-dimensional detection of two magnetic nanoparticle (MNP) samples, which were spaced 15 mm apart. In the experiments, an excitation field strength of 1.6 mT was used at an operating frequency of 3 kHz. A DC gradient field with a typical value of 0.2 T/m was also used to produce the so-called field-free line. A third harmonic signal generated by the MNP samples was detected using the two pickup coils, and the samples were then mechanically scanned to obtain field maps. The field maps were subsequently analyzed using the nonnegative least squares method to obtain three-dimensional position information for the MNP samples. The results show that the positions of the two MNP samples were estimated with good accuracy, despite the small field gradient used. Further improvement in MPI performance will be achieved by increasing the number of pickup coils used.

  7. Superconductivity

    Science.gov (United States)

    1989-07-01

    SUPERCONDUCTIVITY HIGH-POWER APPLICATIONS Electric power generation/transmission Energy storage Acoustic projectors Weapon launchers Catapult Ship propulsion • • • Stabilized...temperature superconductive shields could be substantially enhanced by use of high-Tc materials. 27 28 NRAC SUPERCONDUCTIVITY SHIP PROPULSION APPLICATIONS...motor shown in the photograph. As a next step in the evolution of electric-drive ship propulsion technology, DTRC has proposed to scale up the design

  8. Active toroidal field ripple compensation and MHD feedback control coils in FAST

    Energy Technology Data Exchange (ETDEWEB)

    Ramogida, G., E-mail: giuseppe.ramogida@enea.it [Associazione Euratom-ENEA sulla Fusione, ENEA – C.R. Frascati, Via E. Fermi 45, I-00044 Frascati, RM (Italy); Calabrò, G.; Cocilovo, V.; Crescenzi, F.; Crisanti, F.; Cucchiaro, A. [Associazione Euratom-ENEA sulla Fusione, ENEA – C.R. Frascati, Via E. Fermi 45, I-00044 Frascati, RM (Italy); Di Gironimo, G. [Associazione Euratom-ENEA, CREATE – Università di Napoli Federico II, Via Claudio 21, I-80125 Napoli (Italy); Fresa, R. [Università della Basilicata, Via Nazario Sauro 85, I-85100 Potenza (Italy); Fusco, V. [Associazione Euratom-ENEA sulla Fusione, ENEA – C.R. Frascati, Via E. Fermi 45, I-00044 Frascati, RM (Italy); Martin, P. [Associazione Euratom-ENEA, Consorzio RFX, Corso Stati Uniti 4, I-35127, Padova (Italy); Mastrostefano, S. [Associazione Euratom-ENEA, CREATE – DIEI Università di Cassino, Via Di Biasio 43, I-03043 Cassino, FR (Italy); Mozzillo, R. [Associazione Euratom-ENEA, CREATE – Università di Napoli Federico II, Via Claudio 21, I-80125 Napoli (Italy); Nuzzolese, F. [Università della Basilicata, Via Nazario Sauro 85, I-85100 Potenza (Italy); Renno, F. [Associazione Euratom-ENEA, CREATE – Università di Napoli Federico II, Via Claudio 21, I-80125 Napoli (Italy); Rita, C. [Associazione Euratom-ENEA sulla Fusione, ENEA – C.R. Frascati, Via E. Fermi 45, I-00044 Frascati, RM (Italy); Villone, F. [Associazione Euratom-ENEA, CREATE – DIEI Università di Cassino, Via Di Biasio 43, I-03043 Cassino, FR (Italy); Vlad, G. [Associazione Euratom-ENEA sulla Fusione, ENEA – C.R. Frascati, Via E. Fermi 45, I-00044 Frascati, RM (Italy)

    2013-10-15

    Highlights: ► Active Ripple Compensating System (ARCS) consists of 18 off-centre poloidal coils between plasma and Toroidal Field Coils. ► The current in ARCS, adjustable and opposite to that in TFC, reduces the toroidal ripple below 0.2% at any toroidal fields. ► Feedback Active Control System (FACS) consists of two arrays of 9 in-vessel saddle coils fed by an MHD feedback controller. ► FACS allows robust feedback stabilization of low toroidal number MHD modes enabling plasma operations at low safety factor. ► ARCS and FACS are included in the whole FAST model and first engineering assessments show their feasibility and capability. -- Abstract: The Fusion Advanced Study Torus (FAST) has been proposed as a high magnetic field, compact size tokamak providing a flexible integrated environment to study physics and technology issues in ITER and DEMO relevant conditions. FAST has a quite large natural toroidal field ripple (around 1.5%) due to its compactness and to the number of access ports: this ripple must be lowered to an acceptable level to allow safe operations and a good confinement quality. An Active Ripple Compensating System (ARCS) has been designed, based on a set of poloidal coils placed between the plasma chamber and the Toroidal Field Coils (TFCs). These ARCS coils will be fed with adjustable currents, opposite in direction respect to the TFC currents, and will allow lowering the ripple up to zero and beyond. The CAD model of FAST including the ARCS coils has been completed and preliminary electromagnetic and thermal analyses have been carried out. Moreover, a Feedback Active Control System (FACS) composed of two arrays of in-vessel saddle coils has been designed to allow safe high plasma current, low safety factor operation and to mitigate possibly large ELMs effects in FAST. These FACS coils will be fed by a feedback system to control MHD modes: a first engineering assessment of the current requirements has been carried out.

  9. Trapped field of 1.1 T without flux jumps in an MgB2 bulk during pulsed field magnetization using a split coil with a soft iron yoke

    Science.gov (United States)

    Fujishiro, H.; Mochizuki, H.; Ainslie, M. D.; Naito, T.

    2016-08-01

    MgB2 superconducting bulks have promising potential as trapped field magnets. We have achieved a trapped field of B z = 1.1 T on a high-J c MgB2 bulk at 13 K without flux jumps by pulsed field magnetization (PFM) using a split-type coil with a soft iron yoke, which is a record-high trapped field by PFM for bulk MgB2 to date. The flux jumps, which frequently took place using a solenoid-type coil during PFM, were avoided by using the split-type coil, and the B z value was enhanced by the insertion of soft iron yoke. The flux dynamics and heat generation/propagation were analyzed during PFM using a numerical simulation, in which the magnetic flux intruded and attenuated slowly in the bulk and tended to align along the axial direction due to the presence of soft iron yoke. The advantages of the split-type coil and the simultaneous use of a soft iron yoke are discussed.

  10. Investigation of Horizontal Velocity Fields in Stirred Vessels with Helical Coils by PIV

    Directory of Open Access Journals (Sweden)

    Volker Bliem

    2014-01-01

    Full Text Available Horizontal velocity flow fields were measured by particle image velocimetry for a stirred vessel with baffles and two helical coils for enlargement of heat transfer area. The investigation was carried out in a cylindrical vessel with flat base and two different stirrers (radial-flow Rushton turbine and axial-flow propeller stirrer. Combined velocity plots for flow fields at different locations are presented. It was found that helical coils change the flow pattern significantly. Measurements for the axial-flow Rushton turbine showed a strong deflection by the coils, leading to a mainly tangential flow pattern. Behind baffles large areas of unused heat transfer area were found. First results for the axial-flow propeller reveal an extensive absence of fluid movement in the horizontal plane. Improved design considerations for enhanced heat transfer by more compatible equipment compilation are proposed.

  11. Development and testing of a 50-kA, pulsed superconducting cable

    Science.gov (United States)

    Wollan, J. J.; Hamilton, W. C.; Declerc, J.; Zeitlin, B. A.

    1982-11-01

    Prototype cables for 7.5-T, pulsed field application in Tokamak poloidal coils were designed, fabricated, and evaluated. Successful fabrication of a 10 m superconducting sample represents the largest superconducting cable ever made. Details of the fabrication, the problems expected and encountered, and the solutions to those problems are discussed. Results of stability measurements on the superconducting prototype also are presented.

  12. Phase boundary of the hexagonal-prism superconducting network in a magnetic field

    Institute of Scientific and Technical Information of China (English)

    金绍维; 李伟; 易佑民; 甄胜来; 缪胜清

    2002-01-01

    In this paper, we systematically study the phase boundary Tc(H ) of a hexagonal-prism superconducting network inan external magnetic field H of arbitrary magnitude and direction. The result indicates that the phase boundary of thehexagonal-prism superconducting circuit varies more sharply than that of the cubic circuit. The potential applicationsof the hexagonal-prism superconducting circuit are also discussed.

  13. Precise NMR measurement and stabilization system of magnetic field of a superconducting 7 T wave length shifter

    CERN Document Server

    Borovikov, V M; Karpov, G V; Korshunov, D A; Kuper, E A; Kuzin, M V; Mamkin, V R; Medvedko, A S; Mezentsev, N A; Repkov, V V; Shkaruba, V A; Shubin, E I; Veremeenko, V F

    2001-01-01

    The system of measurement and stabilization of the magnetic field in the superconducting 7 T wave length shifter (WLS), designed at Budker Institute of Nuclear Physics are described. The measurements are performed by nuclear magnetic resonance (NMR) magnetometer at two points of the WLS magnetic field. Stabilization of the field is provided by the current pumping system. The stabilization system is based on precise NMR measurement of magnetic field as a feedback signal for computer code which control currents inside the superconducting coils. The problem of the magnetic field measurements with NMR method consists in wide spread of field in the measured area (up to 50 Gs/mm), wide temperature range of WLS operating, small space for probe and influence of iron hysteresis. Special solid-state probes were designed to satisfy this requirements. The accuracy of magnetic field measurements at probe locations is not worse than 20 ppm. For the WLS field of 7 T the reproducibility of the magnetic field of 30 ppm has be...

  14. Magnetoelastic instabilities and vibrations of superconducting-magnet systems

    Energy Technology Data Exchange (ETDEWEB)

    Moon, F.C.

    1982-03-01

    This report describes the research accomplished under Depatment of Energy/NSF grants associated with the structural design of superconducting magnets for magnetic fusion reactors. The main results pertain to magnetomechanical instabilities in toroidal and poloidal field magnets for proposed fusion reactors. One major accomplishment was the building and testing of a 1/75th scale superconducting structural model of a 16 coil Tokamak reactor. Using this model the buckling of toroidal and poloidal field coils under different constraints was observed. A series of dynamic tests were performed, including the effect of currents on natural frequencies, poloidal-toroidal coil interaction, and buckling induced superconducting-normal quench of the coils. The stability of poloidal coils in a toroidal magnet field were investigated with the 16 coil torus. A superconducting poloidal coil was observed to become statically unstable or buckle as the current approached a certain value. Magnetoelastic buckling of other magnet systems such as a yin-yang pair of magnets, Ioffe coils, and discrete coil solenoids were also studied.

  15. Critical Current Measurements in Commercial Tapes, Coils, and Magnets.

    Science.gov (United States)

    Gubser, D. U.; Soulen, R. J., Jr.; Fuller-Mora, W. W.; Francavilla, T. L.

    1996-03-01

    We have measured a number of tapes, coils, and magnets produced by commercial vendors and determined their properties as functions of magnetic field and temperature. The tapes were measured at the National High Magnetic Field Laboratory in magnetic fields to 20 tesla and at temperatures of 4.2 K, 27 K, 65 K, and 77 K. For the tapes we report critical currents and current-voltage characteristics. Six inch diameter coils were measured at NRL in zero magnetic field. Critical currents, current-voltage characteristics, and reliability studies are reported for the coils. Larger 10 inch diameter coils, which are to be used in a 200 hp superconducting motor, were also measured and results will be presented. The talk will also review the status of the most recent tests of the superconducting motor.

  16. Design of a superconducting magnet for CADS

    Institute of Scientific and Technical Information of China (English)

    YANG Xiao-Liang; MA Li-Zhen; WU Vei; ZHENG Shi-Jun; DU Jun-Jie; HAN Shao-Fei; GUAN Ming-Zhi; HE Yuan

    2012-01-01

    This paper describes a superconducting magnet system for the China Accelerator Driven System (CADS).The magnetic field is provided hy one main,two bucking and four racetrack coils.The main coil produces a central field of up to 7 T and the effective length is more than 140 mm,the two bucking coils can shield most of the fringe field,and the four racetrack superconducting coils produce the steering magnetic field.Its leakage field in the cavity zone is about 5 × 10-5 T when the shielding material Niobium and cryogenic permalloy are used as the Meissner shielding and passive shielding respectively.The quench calculations and protection system are also discussed.

  17. Field Quality and Hysteresis of LHC Superconducting Corrector Magnets

    CERN Document Server

    Allitt, M; Giloux, C; Karppinen, M; Khare, P; Lombardi, A M; Maurya, T; Puntambekar, A; Remondino, Vittorio; Santrich-Badal, A; Venturini-Delsolaro, W; Wolf, R

    2004-01-01

    The Large Hadron Collider (LHC) will use some 7600 superconducting corrector magnets. The magnetic field quality is measured at room temperature by 12 magnetic measurement benches employed by the corrector manufacturers. CERN performs magnetic measurements at 4.2 K and at 1.9 K on a small subset of corrector magnets. The paper discusses the correlation between the warm and cold field measurements. The field quality is compared to the target field quality for LHC. Many corrector circuits will be powered in a way which cannot be predicted before LHC will start operation and which even then may change between physics runs. The measured magnetic hysteresis and its influence on possible setting errors during operation is discussed, in particular for the orbit correctors and the tuning/trim quadrupole magnet circuits.

  18. Compact Superconducting Final Focus Magnet Options for the ILC

    CERN Document Server

    Parker, Brett; Escallier, John; Harrison, Michael; He, Ping; Jain, Animesh K; Markiewicz, Thomas W; Marone, Andrew; Maruyama, Takashi; Nosochkov, Yuri; Seryi, Andrei; Wu, Kuo-Chen

    2005-01-01

    We present a compact superconducting final focus (FF) magnet system for the ILC based on recent BNL direct wind technology developments. Direct wind gives an integrated coil prestress solution for small transverse size coils. With beam crossing angles more than 15 mr, disrupted beam from the IP passes outside the coil while incoming beam is strongly focused. A superconducting FF magnet is adjustable to accommodate collision energy changes, i.e. energy scans and low energy calibration runs. A separate extraction line permits optimization of post IP beam diagnostics. Direct wind construction allows adding separate coils of arbitrary multipolarity (such as sextupole coils for local chromaticity correction). In our simplest coil geometry extracted beam sees significant fringe field. Since the fringe field affects the extracted beam, we also study advanced configurations that give either dramatic fringe field reduction (especially critical for gamma-gamma colliders) or useful quadrupole focusing on the outgoing be...

  19. Fabrication of HTS dc Bias Coil for 35 kV/90 MVA SFCL

    Institute of Scientific and Technical Information of China (English)

    Jing-Yin Zhang; Wei-Zhi Gong; Zheng-Jian Cao; Hui Hong; Bo Tian; Yang Wang; Jian-Zhong Wang; Xiao-Ye Niu; Ying Xin

    2008-01-01

    For a saturated iron core fault current limiter, superconductor is the only suitable material to make the dc bias coil, especially when the device is used in a high voltage power grid. Commonly, supercon- ducting wires are used to wind the dc bias coil. Since the performance of the wires changes greatly under magnetic fields, the calculation of the field spatial distraction is essential to the optimization of the superconducting magnet. A superconducting coil with 141000 ampere-turns magnetizing capacity made of 17600 meters of BSCCO 2223 HTS tapes was fabricated. This coil was built for a 35 kV/90 MVA saturated iron-core fault current limiter. Computer simulations on magnetic field distribution were carried out to optimize the structural design, and experiments were done to verify the performance of the coil. The configuration and the key parameters of the coil will be reported in this paper.

  20. High field Nb/sub 3/Sn Axicell insert coils for the Mirror Fusion Test Facility-B (MFTF-B) axicell configuration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Baldi, R.W.; Tatro, R.E.; Scanlan, R.M.; Agarwal, K.L.; Bailey, R.E.; Burgeson, J.E.; Kim, I.K.; Magnuson, G.D.; Mallett, B.D.; Pickering, J.L.

    1984-03-01

    Two 12-tesla superconducting insert coils are being designed by General Dynamics Convair Division for the axicell regions of MFTF-B for Lawrence Livermore National Laboratory. A major challenge of this project is to ensure that combined fabrication and operational strains induced in the conductor are within stringent limitations of the relatively brittle Nb/sub 3/Sn superconductor filaments. These coils are located in the axicell region of MFTF-B. They have a clear-bore diameter of 36.195cm (14.25 inches) and consist of 27 double pancakes (i.e., 54 pancakes per coil) would on an electrically insulated 304LN stainless steel/bobbin helium vessel. Each pancake has 57 turns separated by G-10CR insulation. The complete winding bundle has 4.6 million ampere-turns and uniform current density of 2007 A/cm/sup 2/. In conjunction with the other magnets in the system, they produce a 12-tesla central field and a 12.52-tesla peak field. A multifilamentary Nb/sub 3/Sn conductor was selected to meet these requirements. The conductor consists of a monolithic insert soldered into a copper stabilizer. Sufficient cross-sectional area and work-hardening of the copper stabilizer has been provided for the conductor to self-react the electromagnetic Lorentz force induced hoop stresses with normal operational tensile strains less than 0.07 percent.

  1. Countering the stray magnetic field of the CUSP trap by using additional coils

    CERN Document Server

    Thole, Jelle

    2016-01-01

    The ASACUSA experiment at the Antiproton Decelerator (AD) at CERN tries to measure the Hyperfine Structure (HFS) of Antihydrogen (H ̄) using a Rabi spectroscopy set-up. In measuring this HFS it will yield a very precise test of CPT-symmetry. For this set-up to work a homogeneous magnetic field is needed in the cavity where the Hyperfine transition of H ̄ occurs. Due to the stray fields from the CUSP trap, where H ̄ is produced, additional coils are needed to counter these fields. It is found, using COMSOL simulations, that two coils are suitable for this. Leading to a relative standard deviation of the magnetic field of σB/B = 1.06%.

  2. Zylon-reinforced high magnetic field coils for the K.U. Leuven pulsed field laboratory

    Science.gov (United States)

    Rosseel, K.; Herlach, F.; Boon, W.; Bruynseraede, Y.

    2001-01-01

    PBO Zylon ® fibers have been used for the internal reinforcement of pulsed magnets. Due to the very high packing density (80%) of these fibers, vacuum impregnation of Zylon reinforced coils is difficult. Impregnation test were performed using pressure-vacuum impregnation and wet winding. A prototype series of coils for 60-70 T with 1-2 ms pulse duration was designed and wound, using wet winding for both the internal Zylon and external carbon fiber reinforcement. Special precautions were taken to avoid insulation breakdown at the transitions between conductor layers. Furthermore, axial movement of the conductor wires was restrained by strong axial compression of the coil with a steel shell casing. These modifications were incorporated into an 80 T coil made of Zylon and soft Cu. The design, construction and performance of this coil are discussed.

  3. High-Field Quench Behavior and Protection of $Bi_2 Sr_2 Ca Cu_2 O_x$ Coils: Minimum and Maximum Quench Detection Voltages

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Tengming [Fermilab; Ye, Liyang [NCSU, Raleigh; Turrioni, Daniele [Fermilab; Li, Pei [Fermilab

    2015-01-01

    Small insert coils have been built using a multifilamentary Bi2Sr2CaCu2Ox round wire, and characterized in background fields to explore the quench behaviors and limits of Bi2Sr2CaCu2Ox superconducting magnets, with an emphasis on assessing the impact of slow normal zone propagation on quench detection. Using heaters of various lengths to initiate a small normal zone, a coil was quenched safely more than 70 times without degradation, with the maximum coil temperature reaching 280 K. Coils withstood a resistive voltage of tens of mV for seconds without quenching, showing the high stability of these coils and suggesting that the quench detection voltage shall be greater than 50 mV to not to falsely trigger protection. The hot spot temperature for the resistive voltage of the normal zone to reach 100 mV increases from ~40 K to ~80 K with increasing the operating wire current density Jo from 89 A/mm2 to 354 A/mm2 whereas for the voltage to reach 1 V, it increases from ~60 K to ~140 K, showing the increasing negative impact of slow normal zone propagation on quench detection with increasing Jo and the need to limit the quench detection voltage to < 1 V. These measurements, coupled with an analytical quench model, were used to access the impact of the maximum allowable voltage and temperature upon quench detection on the quench protection, assuming to limit the hot spot temperature to <300 K.

  4. Evaluation method for in situ electric field in standardized human brain for different transcranial magnetic stimulation coils

    Science.gov (United States)

    Iwahashi, Masahiro; Gomez-Tames, Jose; Laakso, Ilkka; Hirata, Akimasa

    2017-03-01

    This study proposes a method to evaluate the electric field induced in the brain by transcranial magnetic stimulation (TMS) to realize focal stimulation in the target area considering the inter-subject difference of the brain anatomy. The TMS is a non-invasive technique used for treatment/diagnosis, and it works by inducing an electric field in a specific area of the brain via a coil-induced magnetic field. Recent studies that report on the electric field distribution in the brain induced by TMS coils have been limited to simplified human brain models or a small number of detailed human brain models. Until now, no method has been developed that appropriately evaluates the coil performance for a group of subjects. In this study, we first compare the magnetic field and the magnetic vector potential distributions to determine if they can be used as predictors of the TMS focality derived from the electric field distribution. Next, the hotspots of the electric field on the brain surface of ten subjects using six coils are compared. Further, decisive physical factors affecting the focality of the induced electric field by different coils are discussed by registering the computed electric field in a standard brain space for the first time, so as to evaluate coil characteristics for a large population of subjects. The computational results suggest that the induced electric field in the target area cannot be generalized without considering the morphological variability of the human brain. Moreover, there was no remarkable difference between the various coils, although focality could be improved to a certain extent by modifying the coil design (e.g., coil radius). Finally, the focality estimated by the electric field was more correlated with the magnetic vector potential than the magnetic field in a homogeneous sphere.

  5. Evaluation method for in situ electric field in standardized human brain for different transcranial magnetic stimulation coils.

    Science.gov (United States)

    Iwahashi, Masahiro; Gomez-Tames, Jose; Laakso, Ilkka; Hirata, Akimasa

    2017-03-21

    This study proposes a method to evaluate the electric field induced in the brain by transcranial magnetic stimulation (TMS) to realize focal stimulation in the target area considering the inter-subject difference of the brain anatomy. The TMS is a non-invasive technique used for treatment/diagnosis, and it works by inducing an electric field in a specific area of the brain via a coil-induced magnetic field. Recent studies that report on the electric field distribution in the brain induced by TMS coils have been limited to simplified human brain models or a small number of detailed human brain models. Until now, no method has been developed that appropriately evaluates the coil performance for a group of subjects. In this study, we first compare the magnetic field and the magnetic vector potential distributions to determine if they can be used as predictors of the TMS focality derived from the electric field distribution. Next, the hotspots of the electric field on the brain surface of ten subjects using six coils are compared. Further, decisive physical factors affecting the focality of the induced electric field by different coils are discussed by registering the computed electric field in a standard brain space for the first time, so as to evaluate coil characteristics for a large population of subjects. The computational results suggest that the induced electric field in the target area cannot be generalized without considering the morphological variability of the human brain. Moreover, there was no remarkable difference between the various coils, although focality could be improved to a certain extent by modifying the coil design (e.g., coil radius). Finally, the focality estimated by the electric field was more correlated with the magnetic vector potential than the magnetic field in a homogeneous sphere.

  6. Transcranial Magnetic Stimulation: An Automated Procedure to Obtain Coil-specific Models for Field Calculations

    DEFF Research Database (Denmark)

    Madsen, Kristoffer Hougaard; Ewald, Lars; Siebner, Hartwig R.

    2015-01-01

    Background: Field calculations for transcranial magnetic stimulation (TMS) are increasingly implemented online in neuronavigation systems and in more realistic offline approaches based on finite-element methods. They are often based on simplified and/or non-validated models of the magnetic vector...... potential of the TMS coils. Objective: To develop an approach to reconstruct the magnetic vector potential based on automated measurements. Methods: We implemented a setup that simultaneously measures the three components of the magnetic field with high spatial resolution. This is complemented by a novel...... approach to determine the magnetic vector potential via volume integration of the measured field. Results: The integration approach reproduces the vector potential with very good accuracy. The vector potential distribution of a standard figure-of-eight shaped coil determined with our setup corresponds well...

  7. Evaluation of persistent-mode operation in a superconducting MgB2 coil in solid nitrogen

    Science.gov (United States)

    Patel, Dipak; Hossain, Md Shahriar Al; See, Khay Wai; Qiu, Wenbin; Kobayashi, Hiroki; Ma, Zongqing; Kim, Seong Jun; Hong, Jonggi; Park, Jin Yong; Choi, Seyong; Maeda, Minoru; Shahabuddin, Mohammed; Rindfleisch, Matt; Tomsic, Mike; Xue Dou, Shi; Kim, Jung Ho

    2016-04-01

    We report the fabrication of a magnesium diboride (MgB2) coil and evaluate its persistent-mode operation in a system cooled by a cryocooler with solid nitrogen (SN2) as a cooling medium. The main purpose of SN2 was to increase enthalpy of the cold mass. For this work, an in situ processed carbon-doped MgB2 wire was used. The coil was wound on a stainless steel former in a single layer (22 turns), with an inner diameter of 109 mm and height of 20 mm without any insulation. The two ends of the coil were then joined to make a persistent-current switch to obtain the persistent-current mode. After a heat treatment, the whole coil was installed in the SN2 chamber. During operation, the resultant total circuit resistance was estimated to be magnetic resonance imaging application.

  8. Electromagnetic fields inside a lossy, multilayered spherical head phantom excited by MRI coils: models and methods.

    Science.gov (United States)

    Liu, Feng; Crozier, Stuart

    2004-05-21

    The precise evaluation of electromagnetic field (EMF) distributions inside biological samples is becoming an increasingly important design requirement for high field MRI systems. In evaluating the induced fields caused by magnetic field gradients and RF transmitter coils, a multilayered dielectric spherical head model is proposed to provide a better understanding of electromagnetic interactions when compared to a traditional homogeneous head phantom. This paper presents Debye potential (DP) and Dyadic Green's function (DGF)-based solutions of the EMFs inside a head-sized, stratified sphere with similar radial conductivity and permittivity profiles as a human head. The DP approach is formulated for the symmetric case in which the source is a circular loop carrying a harmonic-formed current over a wide frequency range. The DGF method is developed for generic cases in which the source may be any kind of RF coil whose current distribution can be evaluated using the method of moments. The calculated EMFs can then be used to deduce MRI imaging parameters. The proposed methods, while not representing the full complexity of a head model, offer advantages in rapid prototyping as the computation times are much lower than a full finite difference time domain calculation using a complex head model. Test examples demonstrate the capability of the proposed models/methods. It is anticipated that this model will be of particular value for high field MRI applications, especially the rapid evaluation of RF resonator (surface and volume coils) and high performance gradient set designs.

  9. Design of a superconducting insert to obtain a high and quasi-uniform magnetic force field

    Energy Technology Data Exchange (ETDEWEB)

    Leveque, Jean [GREEN, University of Nancy BP 239, 54506 Vandoeuvre (France); Netter, Denis [GREEN, University of Nancy BP 239, 54506 Vandoeuvre (France); Quettier, Lionel [DAPNIA, CEA Saclay (France); Mailfert, Alain [INPL, 2 av de la foret de Haye, 54516 Vandoeuvre (France)

    2005-10-01

    In this paper, we study the magnetic force generated by the combination of a solenoid and a superconducting ring insert. We have focused our study on the uniformity of the magnetic force. We use a genetic algorithm to determine the optimal shape of the superconducting ring. We are able to obtain uniformity of 0.5% variance. We also study the influence of several factors on uniformity, such as the critical current of the coil, the ring, and the size of the working area.

  10. Design of Magnetic Shielding and Field Coils for a TES X-Ray Microcalorimeter Test Platform

    Science.gov (United States)

    Miniussi, Antoine R.; Adams, Joseph S.; Bandler, Simon R.; Chervenak, James A.; Datesman, Aaron M.; Doriese, William B.; Eckart, Megan E.; Finkbeiner, Fred M.; Kelley, Richard L.; Kilbourne, Caroline A.; hide

    2017-01-01

    The performance of Transition-Edge Sensors (TES) and their SQUID multiplexed read-outs are very sensitive to the ambient magnetic field from Earth and fluctuations that can arise due to fluctuating magnetic fields outside of the focal plane assembly from the Adiabatic Demagnetization Refrigerator (ADR).Thus, the experimental platform we are building to test the FPA of the X-ray Integral Field Unit (X-IFU) of the Athena mission needs to include a series of shields and a coil in order to meet the following requirement of magnetic field density and uniformity.

  11. Structural analysis of superconducting dipole prototype for HIAF

    CERN Document Server

    Zhang, Xiaoying; Ni, Dongsheng; Chen, Yuquan; Wu, Wei; Ma, Lizhen

    2015-01-01

    The High Intensity Heavy-Ion Accelerator Facility is a new project in the Institute of Modern Physics. The dipole magnets of all rings are conceived as fast cycled superconducting magnet with high magnetic field and large gap, the warm iron and superconducting coil structure (superferric) is adopted. The reasonable structure design of coil and cryostat is very important for reliable operation. Based on the finite element software ANSYS, the mechanical analysis of electromagnetic stress, the thermal stress in the cooling down and the stress in the pumping are showed in detail. According to the analysis result, the supporter structure is the key problem of coil system. With reasonable support's structure design, the stress and the deformation of coil structure can be reduced effectively, which ensure the stable operation of superconducting coil system.

  12. Conceptual design of superconducting magnet systems for the Argonne Tokamak Experimental Power Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.T.; Turner, L.R.; Mills, F.E.; DeMichele, D.W.; Smelser, P.; Kim, S.H.

    1976-01-01

    As an integral effort in the Argonne Tokamak Experimental Power Reactor Conceptual Design, the conceptual design of a 10-tesla, pure-tension superconducting toroidal-field (TF) coil system has been developed in sufficient detail to define a realistic design for the TF coil system that could be built based upon the current state of technology with minimum technological extrapolations. A conceptual design study on the superconducting ohmic-heating (OH) coils and the superconducting equilibrium-field (EF) coils were also completed. These conceptual designs are developed in sufficient detail with clear information on high current ac conductor design, cooling, venting provision, coil structural support and zero loss poloidal coil cryostat design. Also investigated is the EF penetration into the blanket and shield.

  13. Invited Article: Development of high-field superconducting Ioffe magnetic traps

    Science.gov (United States)

    Yang, L.; Brome, C. R.; Butterworth, J. S.; Dzhosyuk, S. N.; Mattoni, C. E. H.; McKinsey, D. N.; Michniak, R. A.; Doyle, J. M.; Golub, R.; Korobkina, E.; O'Shaughnessy, C. M.; Palmquist, G. R.; Seo, P.-N.; Huffman, P. R.; Coakley, K. J.; Mumm, H. P.; Thompson, A. K.; Yang, G. L.; Lamoreaux, S. K.

    2008-03-01

    We describe the design, construction, and performance of three generations of superconducting Ioffe magnetic traps. The first two are low current traps, built from four racetrack shaped quadrupole coils and two solenoid assemblies. Coils are wet wound with multifilament NbTi superconducting wires embedded in epoxy matrices. The magnet bore diameters are 51 and 105mm with identical trap depths of 1.0T at their operating currents and at 4.2K. A third trap uses a high current accelerator-type quadrupole magnet and two low current solenoids. This trap has a bore diameter of 140mm and tested trap depth of 2.8T. Both low current traps show signs of excessive training. The high current hybrid trap, on the other hand, exhibits good training behavior and is amenable to quench protection.

  14. Construction and Performance of Small-Sized Coated Conductor Pancake Coils for Surgical Applications

    Science.gov (United States)

    Ge, Y.; Lewin, R.; Cahill, R.; Mortensen, N.; Jones, H.

    With a view to applying small-sized superconducting coils for magnetic manipulation in surgery, three pancake coils have been built with commercially available (RE)BCO coated conductor using different impregnation methods and tested in liquid nitrogen and liquid helium. This paper presents the design and construction procedures of these pancake coils and subsequent test results including transport current characteristics in background fields are discussed.

  15. Superconductive imaging surface magnetometer

    Science.gov (United States)

    Overton, Jr., William C.; van Hulsteyn, David B.; Flynn, Edward R.

    1991-01-01

    An improved pick-up coil system for use with Superconducting Quantum Interference Device gradiometers and magnetometers involving the use of superconducting plates near conventional pick-up coil arrangements to provide imaging of nearby dipole sources and to deflect environmental magnetic noise away from the pick-up coils. This allows the practice of gradiometry and magnetometry in magnetically unshielded environments. One embodiment uses a hemispherically shaped superconducting plate with interior pick-up coils, allowing brain wave measurements to be made on human patients. another embodiment using flat superconducting plates could be used in non-destructive evaluation of materials.

  16. Magnetic Measurement of the Current Center Line of the Toroidal Field Coil of ITER at Room Temperature

    CERN Document Server

    Deniau, L; Buzio, M; Knaster, J; Savary, F

    2012-01-01

    Geometrical deformations and assembly errors in the ITER Toroidal Field (TF) coils will lead to magnetic field perturbations, which could degrade plasma confinement and eventually lead to disruption. Extensive computational studies of the influence of coil deformations and assembly errors on plasma behavior have given the basis for definition of the geometric tolerance of the Current Centre Line (CCL) of the winding pack of the TF coil. This paper describes an analysis method to establish the feasibility to measure the magnetic CCL locus of the final winding pack (WP) with accuracy better than 1 mm. The proposed method is based on arrays of gradient coils accurately mounted with respect to the WP fiducial marks and datum surfaces. The magnetic measurements will be performed at defined locations around the WP perimeter to characterize accurately the CCL locus. The analysis emphases the robustness and sensitivity of the method versus the measurement location and the TF coil 3D geometrical deformation. The analy...

  17. Bucking Coil Implementation on PMT for Active Cancelling of Magnetic Field

    CERN Document Server

    Gogami, T; Bono, J; Baturin, P; Chen, C; Chiba, A; Chiga, N; Fujii, Y; Hashimoto, O; Kawama, D; Maruta, T; Maxwell, V; Mkrtchyan, A; Nagao, S; Nakamura, S N; Reinhold, J; Shichijo, A; Tang, L; Taniya, N; Wood, S A; Ye, Z

    2013-01-01

    Aerogel and water Cerenkov detectors were employed to tag kaons for a lambda hypernuclear spectroscopic experiment which used the (e,e'K+) reaction in experimental Hall C at Jefferson Lab (JLab E05-115). Fringe fields from the kaon spectrometer magnet yielded ~5 Gauss at the photomultiplier tubes (PMT) for these detectors which could not be easily shielded. As this field results in a lowered kaon detection efficiency, we implemented a bucking coil on each photomultiplier tubes to actively cancel this magnetic field, thus maximizing kaon detection efficiency.

  18. Design of modular coils for a quasi-axisymmetric stellarator with a flexible control of the magnetic field configuration

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, A.; Okamura, S.; Isobe, M.; Suzuki, C.; Nishimura, S.; Watari, T.; Matsuoka, K.

    2002-08-01

    A design of the modular coil system for CHS-qa has been made for the plasma configuration '2b32' with the aspect ratio 3.2. The magnetic field strength and the major radius are 1.5 T and 1.5 m, respectively. The normal component of magnetic field produced by the modular coils is minimized on the plasma boundary to obtain the optimum coil design. We put engineering constraint on the distance between adjacent modular coils and the radius of coil curvature. The dependence of the residual normal component of the field on these conditions is examined, and the realistic values for them are selected. Additional coils to control various properties of the magnetic field configuration (the rotational transform, the magnetic well depth, etc.) have been designed and a flexibility of the magnetic field configuration is realized. For the case that the rotational transform crosses the low-order rational value resulting in magnetic islands, the residues of islands are evaluated with which a further improvement of coil design can be made to eliminate magnetic islands. (author)

  19. Calculation of alternating current losses in stacks and coils made of second generation high temperature superconducting tapes for large scale applications

    DEFF Research Database (Denmark)

    Zermeno, Victor M. R.; Abrahamsen, Asger Bech; Mijatovic, Nenad;

    2013-01-01

    A homogenization method to model a stack of second generation High Temperature Superconducting tapes under AC applied transport current or magnetic field has been obtained. The idea is to find an anisotropic bulk equivalent for the stack such that the geometrical layout of the internal alternatin...

  20. Applied superconductivity

    CERN Document Server

    Newhouse, Vernon L

    1975-01-01

    Applied Superconductivity, Volume II, is part of a two-volume series on applied superconductivity. The first volume dealt with electronic applications and radiation detection, and contains a chapter on liquid helium refrigeration. The present volume discusses magnets, electromechanical applications, accelerators, and microwave and rf devices. The book opens with a chapter on high-field superconducting magnets, covering applications and magnet design. Subsequent chapters discuss superconductive machinery such as superconductive bearings and motors; rf superconducting devices; and future prospec

  1. Phase diagram of rod-coil diblock copolymer melts by self-consistent field theory

    Science.gov (United States)

    Yan, Dadong; Tang, Jiuzhou; Jiang, Ying; Zhang, Xinghua; Chen, Jeff

    A unified phase diagram is presented for rod-coil diblock copolymer melts in the isotropic phase regime as a function of the asymmetric parameter. The study is based on free-energy calculation, which incorporates three-dimensional spatial variations of the volume fraction with angular dependence. The wormlike-chain model is used in a self-consistent field treatment. Body-centered cubic, A15, hexagonal, gyroid, and lamellar structures where the rod segments are packed inside the convex rod-coil interface are found stable. As the conformational asymmetric parameter increases, the A15 phase region expands and the gyroid phase region reduces. The stability of the structures is analyzed by concepts such as packing frustration, spinodal limit, and interfacial curvature.

  2. Local switching of two-dimensional superconductivity using the ferroelectric field effect

    Science.gov (United States)

    Takahashi, K. S.; Gabay, M.; Jaccard, D.; Shibuya, K.; Ohnishi, T.; Lippmaa, M.; Triscone, J.-M.

    2006-05-01

    Correlated oxides display a variety of extraordinary physical properties including high-temperature superconductivity and colossal magnetoresistance. In these materials, strong electronic correlations often lead to competing ground states that are sensitive to many parameters-in particular the doping level-so that complex phase diagrams are observed. A flexible way to explore the role of doping is to tune the electron or hole concentration with electric fields, as is done in standard semiconductor field effect transistors. Here we demonstrate a model oxide system based on high-quality heterostructures in which the ferroelectric field effect approach can be studied. We use a single-crystal film of the perovskite superconductor Nb-doped SrTiO3 as the superconducting channel and ferroelectric Pb(Zr,Ti)O3 as the gate oxide. Atomic force microscopy is used to locally reverse the ferroelectric polarization, thus inducing large resistivity and carrier modulations, resulting in a clear shift in the superconducting critical temperature. Field-induced switching from the normal state to the (zero resistance) superconducting state was achieved at a well-defined temperature. This unique system could lead to a field of research in which devices are realized by locally defining in the same material superconducting and normal regions with `perfect' interfaces, the interface being purely electronic. Using this approach, one could potentially design one-dimensional superconducting wires, superconducting rings and junctions, superconducting quantum interference devices (SQUIDs) or arrays of pinning centres.

  3. Magnetization Studies of Field-Induced Transitions by Using a Single-Turn Coil Technique

    Science.gov (United States)

    Abe, N.; Matsuda, Y. H.; Takeyama, S.; Sato, K.; Kageyama, H.; Nishiwaki, Y.

    2013-03-01

    Some technical improvements for magnetization measurements using a vertical-type single-turn coil (V-STC) method have been attempted. We have chosen LaCoO3, RbCoBr3 and SrCu2(BO3)2 that show interesting field induced magnetic transitions, as test materials. Intriguing features were clearly observed in magnetic fields of up to 100 T. The quality of the data is of comparable to those obtained by a conventional non-destructive pulse magnet.

  4. Proton radiography of magnetic field produced by ultra-intense laser irradiating capacity-coil target

    CERN Document Server

    Wang, W W; Chen, J; Cai, H B; He, S K; Zhou, W M; Shan, L Q; Lu, F; Wu, Y C; Hong, W; Liu, D X; Bi, B; Zhang, F; Xue, F B; Li, B Y; Zhang, B; He, Y L; He, W; Jiao, J L; Dong, K G; Zhang, F Q; Deng, Z G; Zhang, Z M; Cui, B; Han, D; Zhou, K N; Wang, X D; Zhao, Z Q; Cao, L F; Zhang, B H; He, X T; Gu, Y Q

    2014-01-01

    Ultra-intense ultra-short laser is firstly used to irradiate the capacity-coil target to generate magnetic field. The spatial structure and temporal evolution of huge magnetic fields were studied with time-gated proton radiography method. A magnetic flux density of 40T was measured by comparing the proton deflection and particle track simulations. Although the laser pulse duration is only 30fs, the generated magnetic field can last for over 100 picoseconds. The energy conversion efficiency from laser to magnetic field can reach as high as ~20%. The results indicate that tens of tesla (T) magnetic field could be produced in many ultra intense laser facilities around the world, and higher magnetic field could be produced by picosecond lasers.

  5. Technical aspects and manufacturing methods for JT-60SA toroidal field coil casings

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Paolo, E-mail: paolo.rossi@enea.it [ENEA, Via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Cucchiaro, A.; Brolatti, G.; Cocilovo, V.; Ginoulhiac, G.; Polli, G. [ENEA, Via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Gabriele, M.; Di Muzio, F. [Walter Tosto, Via Erasmo Piaggio, 66100 Chieti (Italy); Philips, G.; Tomarchio, V. [JT-60SA European Home Team, Boltzmannstrasse 2, D-85748 Garching (Germany)

    2014-10-15

    Highlights: • A contract between ENEA and Walter Tosto started on July 2012 for the construction of 18 TF coil casings for JT-60SA. • Design and manufacturing of mock-ups representative of straight and curved legs of the casings have been completed. • Final design of the casings has been completed and manufacturing activities have already started and are ongoing. • The completion of the first three casings will be completed within the end of 2013 and the production of all the 18 casings is foreseen by the end of 2015. - Abstract: JT-60SA is a superconducting tokamak machine to be assembled in Naka site, Japan, designed to contribute to the early realization of fusion energy by supporting the exploitation of ITER and research toward DEMO. In the frame of the Broader Approach Agreement a contract between ENEA and Walter Tosto (Chieti, Italy) started on July 2012 for the construction of 18 TF coil casings for JT-60SA. Two different sets of 9 casings each will be progressively delivered, from 2013 to the end of 2015, to ASG Superconductors (Genoa, Italy) and to Alstom (Belfort, France), where the integration of the winding pack into the casing will be carried out. Each TF coil casing (height 7.5 m and width 4.5 m) consists of four main components: one “Straight Leg Outboard” and one “Curved Leg Outboard” both with their own covers, “Straight Leg Inboard” and “Curved Leg Inboard”. The casing components are segmented in forgings and plates made of FM316LNL. The straight leg outboard is composed of two wings welded to a central core and two elbows welded at the ends with a cooling channel installed inside. Elbows of straight leg outboard are segmented in two half-elbows machined from 1 rough forging and welded to the central core made by plate. Welding of wings to the central core is performed in EBW (electron beam welding) and the straight part is welded to the elbows by NGTIG (TIG narrow gap) process. The curved leg outboard is composed of two

  6. Generation of 24.0 T at 4.2 K and 23.4 T at 27 K with a high-temperature superconductor coil in a 22.54 T background field

    Science.gov (United States)

    Ohkura, K.; Sato, K.; Ueyama, M.; Fujikami, Jun; Iwasa, Y.

    1995-09-01

    The 4.2 K and 27 K current-carrying performance of a high-temperature superconducting (HTS) coil was measured in background fields up to 22.54 T generated by a hybrid magnet (Hybrid III) at the MIT Francis Bitter National Magnet Laboratory. The coil, 40 mm winding i.d., 108 mm winding o.d., and 113 mm high, consists of 17 double pancakes, each wound with silver-sheathed BSCCO-2223 tapes. Each pancake is the product of a react-and-wind method. In total, the test coil contains ˜1200 m of BSCCO-2223 conductor weighing ˜7 kg. Prior to the measurements in Hybrid III, the coil was tested in zero background field in the temperature range from 4.2 to 77 K. It was coupled to a Gifford-McMahon type cryocooler and at 15 K generated a peak field of 2.1 T; at 18 K, it generated 1.9 T, operating continuously for ˜50 h. In a 22.54 T background field of Hybrid III, the coil reached critical currents of 116.5 A ([Jc]sc, critical current density based on the BSCCO cross-sectional area only, of 261 A/mm) at 4.2 K and 67 A ([Jc]sc=150 A/mm) at 27 K, establishing record net fields at respective temperatures of 24.0 and 23.4 T for HTS magnets. These currents correspond to overall winding current densities of 47 and 27 A/mm. High-field critical current data for short samples of the tape of the same formulation at 4.2 and 27 K are also presented. Although a [J]sc of 261 A/mm at 24 T and 4.2 K for the test coil is significantly less than ˜600 A/mm for the short samples at the same operating point, if factors such as length, bending, and even differences in defining critical current are considered, the coil and short samples have nearly the same critical current performance. Electromagnetic stresses do not seem to have any negative effects on coil performance. Record fields of 24.0 and 23.4 T were achieved after the test coil had experienced, over a period of 15 months, 20 thermal cycles between room temperature and cryogenic temperatures.

  7. Remote detected Low-Field MRI using an optically pumped atomic magnetometer combined with a liquid cooled pre-polarization coil

    Science.gov (United States)

    Hilschenz, Ingo; Ito, Yosuke; Natsukawa, Hiroaki; Oida, Takenori; Yamamoto, Tetsuya; Kobayashi, Tetsuo

    2017-01-01

    Superconducting quantum interference devices are widely used in basic and clinical biomagnetic measurements such as low-field magnetic resonance imaging and magnetoencephalography primarily because they exhibit high sensitivity at low frequencies and have a wide bandwidth. The main disadvantage of these devices is that they require cryogenic coolants, which are rather expensive and not easily available. Meanwhile, with the advances in laser technology in the past few years, optically pumped atomic magnetometers (OPAMs) have been shown to be a good alternative as they can have adequate noise levels and are several millimeters in size, which makes them significantly easier to use. In this study, we used an OPAM module operating at a Larmor frequency of 5 kHz to acquire NMR and MRI signals. This study presents these initial results as well as our initial attempts at imaging using this OPAM module. In addition, we have designed a liquid-cooled pre-polarizing coil that reduces the measurement time significantly.

  8. Remote detected Low-Field MRI using an optically pumped atomic magnetometer combined with a liquid cooled pre-polarization coil.

    Science.gov (United States)

    Hilschenz, Ingo; Ito, Yosuke; Natsukawa, Hiroaki; Oida, Takenori; Yamamoto, Tetsuya; Kobayashi, Tetsuo

    2017-01-01

    Superconducting quantum interference devices are widely used in basic and clinical biomagnetic measurements such as low-field magnetic resonance imaging and magnetoencephalography primarily because they exhibit high sensitivity at low frequencies and have a wide bandwidth. The main disadvantage of these devices is that they require cryogenic coolants, which are rather expensive and not easily available. Meanwhile, with the advances in laser technology in the past few years, optically pumped atomic magnetometers (OPAMs) have been shown to be a good alternative as they can have adequate noise levels and are several millimeters in size, which makes them significantly easier to use. In this study, we used an OPAM module operating at a Larmor frequency of 5kHz to acquire NMR and MRI signals. This study presents these initial results as well as our initial attempts at imaging using this OPAM module. In addition, we have designed a liquid-cooled pre-polarizing coil that reduces the measurement time significantly.

  9. Pulsed field magnetization strategies and the field poles composition in a bulk-type superconducting motor

    Science.gov (United States)

    Huang, Zhen; Ruiz, H. S.; Coombs, T. A.

    2017-03-01

    High temperature superconducting (HTS) bulks offer the potential of trapping and maintaining much higher magnetic loading level compared with the conventional permanent magnets used in rotary machines, although the effective magnetization of multiple HTS bulks with different relative orientations over the surface of cylindrical rotors creates new challenges. In this paper, we present the design and numerical validation of the Pulse Field Magnetization (PFM) strategy considered for the magnetization of the four-pole synchronous fully superconducting motor developed at the University of Cambridge. In a first instance, singular columns of up to five HTS bulks aligned over the height of the rotor were subjected to up to three magnetic pulses of 1.5 T peak, and the experimental results have been simulated by considering the electrical and thermal properties of the system in a 2D approach. The entire active surface of the rotor is covered by HTS bulks of approximately the same dimensions, resulting in an uneven distribution of pole areas with at least one of the poles formed by up to 3 columns of magnetized bulks, with relatively the same peaks of trapped magnetic field. Thus, in order to effectively use the entire area of the superconducting rotor, multiple pulsed fields per column have been applied under the same experimental conditions, what results in about three times larger magnetic pole areas but with an average drop on the peaks of trapped magnetic field of about 50%.

  10. Thermal and electrical joint test for the helical field coils in the Advanced Toroidal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.L.; Johnson, R.L.

    1985-01-01

    Initial feasibility studies of a number of configurations for the Advanced Toroidal Facility (ATF) resulted in the selection of a resistive copper continuous-coil torsatron as the optimum device considering the physics program, cost, and schedule. Further conceptual design work was directed toward optimization of this configuration and, if possible, a shorter schedule. It soon became obvious that in order to shorten the schedule, a number of design and fabrication activities should proceed in parallel. This was most critical for the vacuum vessel and the helical field (HF) coils. If the HF coils were wound in place on a completed vacuum vessel, the overall schedule would be significantly (greater than or equal to12 months) longer. The approach of parallel scheduel paths requires that the HF coils be segmented into parts of less than or equal to180 of poloidal angle and that joints be made on a turn-by-turn basis when the segments are installed. It was obvious from the outset that the compact and complex geometry of the joint design presented a special challenge in the areas of reliability, assembly, maintenance, disassembly, and cost. Also, electrical, thermal, and force excursions are significant for these joints. A number of soldered, welded, brazed, electroplated, and bolted joints were evaluated. The evaluations examined fabrication feasibility and complexity, thermal-electrical performance at approximately two-thirds of the steady-state design conditions, and installation and assembly processes. Results of the thermal-electrical tests were analyzed and extrapolated to predict performance at peak design parameters. The final selection was a lap-type joint clamped with insulated bolts that pass through the winding packing. 3 refs., 4 figs.

  11. Torus CLAS12-Superconducting Magnet Quench Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kashikhin, V S; Elouadhiri, L; Ghoshal, P K; Kashy, D; Makarov, A; Pastor, O; Quettier, L; Velev, G; Wiseman, M

    2014-06-01

    The JLAB Torus magnet system consists of six superconducting trapezoidal racetrack-type coils assembled in a toroidal configuration. These coils are wound with SSC-36 Nb-Ti superconductor and have the peak magnetic field of 3.6 T. The first coil manufacturing based on the JLAB design began at FNAL. The large magnet system dimensions (8 m diameter and 14 MJ of stored energy) dictate the need for quench protection. Each coil is placed in an aluminum case mounted inside a cryostat and cooled by 4.6 K supercritical helium gas flowing through a copper tube attached to the coil ID. The large coil dimensions and small cryostat thickness drove the design to challenging technical solutions, suggesting that Lorentz forces due to transport currents and eddy currents during quench and various failure scenarios are analyzed. The paper covers the magnet system quench analysis using the OPERA3d Quench code.

  12. Coil system for plasmoid thruster

    Science.gov (United States)

    Eskridge, Richard H. (Inventor); Lee, Michael H. (Inventor); Martin, Adam K. (Inventor); Fimognari, Peter J. (Inventor)

    2010-01-01

    A coil system for a plasmoid thruster includes a bias coil, a drive coil and field coils. The bias and drive coils are interleaved with one another as they are helically wound about a conical region. A first field coil defines a first passage at one end of the conical region, and is connected in series with the bias coil. A second field coil defines a second passage at an opposing end of the conical region, and is connected in series with the bias coil.

  13. Mean field theory of high Tc cuprate superconductivity

    Directory of Open Access Journals (Sweden)

    K. Maki

    2006-09-01

    Full Text Available   Two decades ago the epoch making discovery of high Tc cuprate superconductivity by Bednorz and Müller shocked the world’s superconductivity community. However, already in 1979 and 1980, the first heavy fermion superconductor CeCu2Si2 and organic superconductor (TMTSF2PF6 have been discovered respectively. Also we know now that all these superconductors are unconventional and nodal. Further the quasiparticles in the normal state in these systems are Fermi liquids and the superconducting states are described in terms of generalized BCS wave function. Also the pseudogap phase in underdoped high Tc cuprates is described in terms of d-wave density wave. This implies necessarily that the superconductivity in underdoped cuprates is gossamer (i.e. d-wave superconductivity coexists with d-wave density wave. We shall present some quantitative tests of these new concepts, notions and ideas.

  14. Sensitivity of Niobium Superconducting RF Cavities to Magnetic Field

    CERN Document Server

    Gonnella, Dan

    2015-01-01

    Future particle accelerators such as the the SLAC "Linac Coherent Light Source-II" (LCLS-II) and the proposed Cornell Energy Recovery Linac (ERL) require hundreds of superconducting RF (SRF) cavities operating in continuous wave (CW) mode. In order to achieve economic feasibility of projects such as these, the cavities must achieve a very high intrinsic quality factor (Q0). In order to reach these high Q0's in the case of LCLS-II, nitrogen-doping has been proposed as a cavity preparation technique. When dealing with Q0's greater than 1x10^10, the effects of ambient magnetic field on Q0 become significant. Here we show that the sensitivity that a cavity has to ambient magnetic field is highly dependent on the cavity preparation. Specifically, standard electropolished and 120C baked cavities show a sensitivity of ~0.8 and ~0.6 nOhm/mG trapped, respectively, while nitrogen-doped cavities show a sensitivity of ~2 to 5 nOhm/mG trapped. Less doping results in weaker sensitivity. This difference in sensitivities is ...

  15. Superconducting Pb stripline resonators in parallel magnetic field and their application for microwave spectroscopy

    Science.gov (United States)

    Ebensperger, Nikolaj G.; Thiemann, Markus; Dressel, Martin; Scheffler, Marc

    2016-11-01

    Planar superconducting microwave resonators are key elements in a variety of technical applications and also act as sensitive probes for microwave spectroscopy of various materials of interest in present solid state research. Here superconducting Pb is a suitable material as a basis for microwave stripline resonators. To utilize Pb stripline resonators in a variable magnetic field (e.g. in ESR measurements), the electrodynamics of such resonators in a finite magnetic field has to be fully understood. Therefore we performed microwave transmission measurements (with ample applied power to work in linear response) on superconducting Pb stripline resonators in a variable, parallel magnetic field. We determined surface resistance, penetration depth, as well as real and imaginary parts, {σ }1 and {σ }2, of the complex conductivity of superconducting Pb as a function of a magnetic field. Here we find features reminiscent of those in temperature-dependent measurements, such as a maximum in {σ }1 (coherence peak). At magnetic fields above the critical field of this type-I superconductor we still find a low-loss microwave response, which we assign to remaining superconductivity in the form of filaments within the Pb. Hysteresis effects are found in the quality factor of resonances once the swept magnetic field has exceeded the critical magnetic field. This is due to normal conducting areas that are pinned and can therefore persist in the superconducting phase. Besides zero-field-cooling we show an alternative way to eliminate these even at T\\lt {T}c. Based on our microwave data, we also determine the critical magnetic field and the critical temperature of Pb in a temperature range between 1.6 K and 6.5 K and magnetic fields up to 140 mT, showing good agreement with BCS predictions. We also study a Sn sample in a Pb resonator to demonstrate the applicability of superconducting Pb stripline resonators in the experimental study of other (super-)conducting materials in a

  16. Field Quality and Fabrication Analysis of HQ02 Reconstructed Nb3Sn Coil Cross Sections

    Energy Technology Data Exchange (ETDEWEB)

    Holik, Eddie Frank; Ambrosio, Giorgio; Carbonara, Andrea; Dietderich, Daniel R.; Dimarco, Joseph; Pong, Ian; Sabbi, GianLuca; Santini, Carlo; Schmalzle, Jesse; Wang, Xiaorong

    2017-06-01

    The US LHC Accelerator Research Program (LARP) quadrupole HQ02 was designed and fully tested as part of the low-beta quad development for Hi-Lumi LHC. HQ02’s design is well documented with full fabrication accounting along with full field analysis at low and high current. With this history, HQ02 is an excellent test bed for developing a methodology for measuring turn locations from magnet cross sections and comparing with CAD models and measured field. All 4 coils of HQ02 were cut in identical locations along the magnetic length corresponding to magnetic field measurement and coil metrology. A real-time camera and coordinate measuring equipment was used to plot turn corners. Measurements include systematic and random displacements of winding blocks and individual turns along the magnetic length. The range of cable shifts and the field harmonic range along the length are in agreement, although correlating turn locations and measured harmonics in each cross section is challenging.

  17. A design of novel type superconducting magnet for super-high field functional magnetic resonance imaging by using the harmonic analysis method of magnetic vector potentials

    Institute of Scientific and Technical Information of China (English)

    俎栋林; 郭华; 宋枭禹; 包尚联

    2002-01-01

    The approach of expanding the magnetic scalar potential in a series of Legendre polynomials is suitable for designing a conventional superconducting magnetic resonance imaging magnet of distributed solenoidal configuration. Whereas the approach of expanding the magnetic vector potential in associated Legendre harmonics is suitable for designing a single-solenoid magnet that has multiple tiers, in which each tier may have multiple layers with different winding lengths. A set of three equations to suppress some of the lowest higher-order harmonics is found. As an example, a 4T single-solenoid magnetic resonance imaging magnet with 4 × 6 layers of superconducting wires is de signed The degree of homogeneity in the 0.5m diameter sphere volume is better than 5.8 ppm. The same degree of homogeneity is retained after optimal integralization of turns in each correction layer. The ratio Bm/Bo in the single-solenoid magnet is 30%lower than that in the conventional six-solenoid magnet. This tolerates higher rated superconducting current in the coil. The Lorentz force of the coil in the single-solenoid system is also much lower than in the six-solenoid system. This novel type of magnet possesses significant advantage over conventional magnets, especially when used as a super-high field functional magnetic resonance imaging magnet.

  18. Using a modified 3D-printer for mapping the magnetic field of RF coils designed for fetal and neonatal imaging

    Science.gov (United States)

    Vavoulas, Alexander; Vaiopoulos, Nicholas; Hedström, Erik; Xanthis, Christos G.; Sandalidis, Harilaos G.; Aletras, Anthony H.

    2016-08-01

    An experimental setup for characterizing the magnetic field of MRI RF coils was proposed and tested. The setup consisted of a specially configured 3D-printer, a network analyzer and a mid-performance desktop PC. The setup was tested on a single loop RF coil, part of a phased array for fetal imaging. Then, the setup was used for determining the magnetic field characteristics of a high-pass birdcage coil used for neonatal MR imaging with a vertical static field. The scattering parameter S21, converted into power ratio, was used for mapping the B1 magnetic field. The experimental measurements from the loop coil were close to the theoretical results (R = 0.924). A high degree of homogeneity was measured for the neonatal birdcage RF coil. The development of MR RF coils is time consuming and resource intensive. The proposed experimental setup provides an alternative method for magnetic field characterization of RF coils used in MRI.

  19. Mechanism of notable difference in the field delay times of no-insulation layer-wound and pancake-wound REBCO coils

    Science.gov (United States)

    Suetomi, Y.; Yanagisawa, K.; Nakagome, H.; Hamada, M.; Maeda, H.; Yanagisawa, Y.

    2016-10-01

    The characteristic magnetic field delay time for a no-insulation (NI) REBCO layer-wound coil is three orders of magnitude longer than that for a NI REBCO double-pancake coil. In a NI layer-wound coil, the circumferential current firstly flows along the periphery of the coil winding, and then it diffuses from the top and bottom turns into the middle turns of the winding, resulting in a long characteristic magnetic field delay time due to the current diffusion process. In contrast, the characteristic magnetic field delay time for a NI double-pancake coil is dominated by the circumferential current decay in individual turns. On the basis of a derived scaling law, the characteristic magnetic field delay time for a NI REBCO layer-wound coil for a 400 MHz LTS/REBCO nuclear magnetic resonance (NMR) magnet is 37 h, while that for a NI REBCO double-pancake coil is only magnetic field delay time.

  20. Design and manufacturing of a Wendelstein 7-X demonstration coil

    Energy Technology Data Exchange (ETDEWEB)

    Kronhardt, H. [Preussag Noell GmbH, Wuerzburg (Germany); Dormicchi, O. [Ansalto Energia, Genoa (Italy); Sapper, J. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    1998-07-01

    The large Stellarator experiment Wendelstein 7-X is currently being constructed at the Max-Planck-Institute for Plasma physics (IPP). The magnet system consists of 50 non-planar and 20 planar superconducting coils. A full-size non-planar DEMO coil was built under industrial conditions, to be tested in the background field of the EU-LCT coil at the Forschungszentrum Karlsruhe (FZK). This paper reports the final manufacturing results and data from the warm acceptance test, as well as cryogenic data from strandmeasurements. (author)

  1. Unscented transform-based uncertainty analysis of rotating coil transducers for field mapping

    Science.gov (United States)

    Arpaia, P.; De Matteis, E.; Schiano Lo Moriello, R.

    2016-03-01

    The uncertainty of a rotating coil transducer for magnetic field mapping is analyzed. Unscented transform and statistical design of experiments are combined to determine magnetic field expectation, standard uncertainty, and separate contributions of the uncertainty sources. For nonlinear measurement models, the unscented transform-based approach is more error-proof than the linearization underlying the "Guide to the expression of Uncertainty in Measurements" (GUMs), owing to the absence of model approximations and derivatives computation. When GUM assumptions are not met, the deterministic sampling strategy strongly reduces computational burden with respect to Monte Carlo-based methods proposed by the Supplement 1 of the GUM. Furthermore, the design of experiments and the associated statistical analysis allow the uncertainty sources domain to be explored efficiently, as well as their significance and single contributions to be assessed for an effective setup configuration. A straightforward experimental case study highlights that a one-order-of-magnitude reduction in the relative uncertainty of the coil area produces a decrease in uncertainty of the field mapping transducer by a factor of 25 with respect to the worst condition. Moreover, about 700 trials and the related processing achieve results corresponding to 5 × 106 brute-force Monte Carlo simulations.

  2. Predictive study of the poloidal field coil insert behaviour under pulsed current tests

    Science.gov (United States)

    Lacroix, B.; Ciazynski, D.; Duchateau, J. L.; Nicollet, S.; Pauty, N.

    2008-02-01

    Within the ITER Poloidal Field conductor design validation, the Poloidal Field Conductor Insert (PFCI) has been manufactured and will be tested in the Central Solenoid Model Coil (CSMC) facility at JAEA Naka (Japan). In this test facility, the PFCI can be tested under ITER-relevant operating conditions, the field produced by the CSMC being varied to simulate the real situation of the PF coils in ITER. Predictive analyses have been performed in order to study the electromagnetic and thermal-hydraulic behaviour of the PFCI, under two scenarios proposed for pulsed current tests. During these scenarios, simulations have been performed with the THEA code, in which classical formulas for the AC losses in a cable have been introduced. The study focuses on the lower part of the winding, which is a 44 m long conductor including a joint. It covers the sample thermal-hydraulic behaviour with particular emphasis on the losses. Due to the overcompaction in the joint area, the total energy dissipated during a scenario can be equivalent in the joint and in the conductor, in spite of the reduced length of the joint (0.45 m). This particular point is discussed and has led to the analysis of the temperature margin in the joint.

  3. Nonlinear Dynamics of a Magnetically Driven Duffing-Type Spring-Magnet Oscillator in the Static Magnetic Field of a Coil

    Science.gov (United States)

    Donoso, Guillermo; Ladera, Celso L.

    2012-01-01

    We study the nonlinear oscillations of a forced and weakly dissipative spring-magnet system moving in the magnetic fields of two fixed coaxial, hollow induction coils. As the first coil is excited with a dc current, both a linear and a cubic magnet-position dependent force appear on the magnet-spring system. The second coil, located below the…

  4. Magnetic field dependence of the superconducting proximity effect in a two atomic layer thin metallic film

    Energy Technology Data Exchange (ETDEWEB)

    Caminale, Michael; Leon Vanegas, Augusto A.; Stepniak, Agnieszka; Oka, Hirofumi; Fischer, Jeison A.; Sander, Dirk; Kirschner, Juergen [Max-Planck-Institut fuer Mikrostrukturphysik, Halle (Germany)

    2015-07-01

    The intriguing possibility to induce superconductivity in a metal, in direct contact with a superconductor, is under renewed interest for applications and for fundamental aspects. The underlying phenomenon is commonly known as proximity effect. In this work we exploit the high spatial resolution of scanning tunneling spectroscopy at sub-K temperatures and in magnetic fields. We probe the differential conductance along a line from a superconducting 9 ML high Pb nanoisland into the surrounding two layer thin Pb/Ag wetting layer on a Si(111) substrate. A gap in the differential conductance indicates superconductivity of the Pb island. We observe an induced gap in the wetting layer, which decays with increasing distance from the Pb island. This proximity length is 21 nm at 0.38 K and 0 T. We find a non-trivial dependence of the proximity length on magnetic field. Surprisingly, we find that the magnetic field does not affect the induced superconductivity up to 0.3 T. However, larger fields of 0.6 T suppress superconductivity in the wetting layer, where the Pb island still remains superconducting. We discuss the unexpected robustness of induced superconductivity in view of the high electronic diffusivity in the metallic wetting layer.

  5. Initial feasibility testing of limited field of view magnetic resonance thermometry using a local cardiac radiofrequency coil.

    Science.gov (United States)

    Volland, Nelly A; Kholmovski, Eugene G; Parker, Dennis L; Hadley, J Rock

    2013-10-01

    The visualization of lesion formation in real time is one potential benefit of carrying out radiofrequency ablation under magnetic resonance (MR) guidance in the treatment of atrial fibrillation. MR thermometry has the potential to detect such lesions. However, performing MR thermometry during cardiac radiofrequency ablation requires high temporal and spatial resolution and a high signal-to-noise ratio. In this study, a local MR coil (2-cm diameter) was developed to investigate the feasibility of performing limited field of view MR thermometry with high accuracy and speed. The local MR coil allowed high-resolution (1 × 1 × 3 mm(3)) image acquisitions in 76.3 ms with a field of view 64 × 32 mm(2) during an open-chest animal experiment. This represents a 4-fold image acquisition acceleration and an 18-fold field of view reduction compared to that achieved using external MR coils. The signal sensitivity achieved using the local coil was over 20 times greater than that achievable using external coils with the same scan parameters. The local coil configuration provided fewer artifacts and sharper and more stable images. These results demonstrate that MR thermometry can be performed in the heart wall and that lesion formation can be observed during radiofrequency ablation procedures in a canine model. Copyright © 2012 Wiley Periodicals, Inc.

  6. Vafa-Witten theorem, vector meson condensates and magnetic-field-induced electromagnetic superconductivity of vacuum

    CERN Document Server

    Chernodub, M N

    2012-01-01

    We show that the electromagnetic superconductivity of vacuum in strong magnetic field background is consistent with the Vafa-Witten theorem because the charged vector meson condensates lock relevant internal global symmetries of QCD with the electromagnetic gauge group.

  7. Magnetic Field-Induced Superconductivity in the Ferromagnet URhGe

    Science.gov (United States)

    Lévy, F.; Sheikin, I.; Grenier, B.; Huxley, A. D.

    2005-08-01

    In several metals, including URhGe, superconductivity has recently been observed to appear and coexist with ferromagnetism at temperatures well below that at which the ferromagnetic state forms. However, the material characteristics leading to such a state of coexistence have not yet been fully elucidated. We report that in URhGe there is a magnetic transition where the direction of the spin axis changes when a magnetic field of 12 tesla is applied parallel to the crystal b axis. We also report that a second pocket of superconductivity occurs at low temperature for a range of fields enveloping this magnetic transition, well above the field of 2 tesla at which superconductivity is first destroyed. Our findings strongly suggest that excitations in which the spins rotate stimulate superconductivity in the neighborhood of a quantum phase transition under high magnetic field.

  8. Spin superconductivity and ac-Josephson effect in Graphene system under strong magnetic field

    Science.gov (United States)

    Liu, Haiwen; Jiang, Hua; Sun, Qing-Feng; Xie, X. C.; Collaborative Innovation Center of Quantum Matter, Beijing, China Collaboration

    We study the spin superconductivity in Graphene system under strong magnetic field. From the microscopically Gor'kov method combined with the Aharonov-Casher effect, we derive the effective Landau-Ginzburg free energy and analyze the time evolution of order parameter, which is confirmed to be the off-diagonal long range order. Meanwhile, we compare the ground state of spin superconductivity to the canted-antiferromagnetic state, and demonstrate the equivalence between these two states. Moreover, we give out the pseudo-field flux quantization condition of spin supercurrent, and propose an experimental measurable ac-Josephson effect of spin superconductivity in this system.

  9. Contrast-enhanced dynamic MRI protocol with improved spatial and time resolution for in vivo microimaging of the mouse with a 1.5-T body scanner and a superconducting surface coil.

    Science.gov (United States)

    Ginefri, Jean-Christophe; Poirier-Quinot, Marie; Robert, Philippe; Darrasse, Luc

    2005-02-01

    Magnetic resonance imaging (MRI) is well suited for small animal model investigations to study various human pathologies. However, the assessment of microscopic information requires a high-spatial resolution (HSR) leading to a critical problem of signal-to-noise ratio limitations in standard whole-body imager. As contrast mechanisms are field dependent, working at high field do not allow to derive MRI criteria that may apply to clinical settings done in standard whole-body systems. In this work, a contrast-enhanced dynamic MRI protocol with improved spatial and time resolution was used to perform in vivo tumor model imaging on the mouse at 1.5 T. The needed sensitivity is provided by the use of a 12-mm superconducting surface coil operating at 77 K. High quality in vivo images were obtained and revealed well-defined internal structures of the tumor. A 3-D HSR sequence with voxels of 59x59x300 microm3 encoded within 6.9 min and a 2-D sequence with subsecond acquisition time and isotropic in-plane resolution of 234 microm were used to analyze the contrast enhancement kinetics in tumoral structures at long and short time scales. This work is a first step to better characterize and differentiate the dynamic behavior of tumoral heterogeneities.

  10. Design, simulation and evaluation of uniform magnetic field systems for head-free eye movement recordings with scleral search coils.

    Science.gov (United States)

    Eibenberger, Karin; Eibenberger, Bernhard; Rucci, Michele

    2016-08-01

    The precise measurement of eye movements is important for investigating vision, oculomotor control and vestibular function. The magnetic scleral search coil technique is one of the most precise measurement techniques for recording eye movements with very high spatial (≈ 1 arcmin) and temporal (>kHz) resolution. The technique is based on measuring voltage induced in a search coil through a large magnetic field. This search coil is embedded in a contact lens worn by a human subject. The measured voltage is in direct relationship to the orientation of the eye in space. This requires a magnetic field with a high homogeneity in the center, since otherwise the field inhomogeneity would give the false impression of a rotation of the eye due to a translational movement of the head. To circumvent this problem, a bite bar typically restricts head movement to a minimum. However, the need often emerges to precisely record eye movements under natural viewing conditions. To this end, one needs a uniform magnetic field that is uniform over a large area. In this paper, we present the numerical and finite element simulations of the magnetic flux density of different coil geometries that could be used for search coil recordings. Based on the results, we built a 2.2 × 2.2 × 2.2 meter coil frame with a set of 3 × 4 coils to generate a 3D magnetic field and compared the measured flux density with our simulation results. In agreement with simulation results, the system yields a highly uniform field enabling high-resolution recordings of eye movements.

  11. Spontaneous electromagnetic superconductivity of vacuum induced by a strong magnetic field: QCD and electroweak theory

    CERN Document Server

    Chernodub, M N; Verschelde, H

    2012-01-01

    Both in electroweak theory and QCD, the vacuum in strong magnetic fields develops charged vector condensates once a critical value of the magnetic field is reached. Both ground states have a similar Abrikosov lattice structure and superconducting properties. It is the purpose of these proceedings to put the condensates and their superconducting properties side by side and obtain a global view on this type of condensates. Some peculiar aspects of the superfluidity and backreaction of the condensates are also discussed.

  12. Persistent-current switch for pancake coils of rare earth-barium-copper-oxide high-temperature superconductor: Design and test results of a double-pancake coil operated in liquid nitrogen (77-65 K) and in solid nitrogen (60-57 K)

    Science.gov (United States)

    Qu, Timing; Michael, Philip C.; Voccio, John; Bascuñán, Juan; Hahn, Seungyong; Iwasa, Yukikazu

    2016-08-01

    We present design and test results of a superconducting persistent current switch (PCS) for pancake coils of rare-earth-barium-copper-oxide, REBCO, high-temperature superconductor (HTS). Here, a REBCO double-pancake (DP) coil, 152-mm ID, 168-mm OD, 12-mm high, was wound with a no-insulation technique. We converted a ˜10-cm long section in the outermost layer of each pancake to a PCS. The DP coil was operated in liquid nitrogen (77-65 K) and in solid nitrogen (60-57 K). Over the operating temperature ranges of this experiment, the normal-state PCS enabled the DP coil to be energized; thereupon, the PCS resumed the superconducting state and the DP coil field decayed with a time constant of 100 h, which would have been nearly infinite, i.e., persistent-mode operation, were the joint across the coil terminals superconducting.

  13. Persistent-current switch for pancake coils of rare earth-barium-copper-oxide high-temperature superconductor: Design and test results of a double-pancake coil operated in liquid nitrogen (77–65 K) and in solid nitrogen (60–57 K)

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Timing; Michael, Philip C.; Bascuñán, Juan; Iwasa, Yukikazu, E-mail: iwasa@jokaku.mit.edu [Francis Bitter Magnet Laboratory, Plasma Science and Fusion Center, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139 (United States); Voccio, John [Wentworth Institute of Technology, 550 Huntington Ave, Boston, Massachusetts 02115 (United States); Hahn, Seungyong [National High Magnetic Field Laboratory, Florida State University, Tallahassee, 2031 Paul Dirac Drive, Florida 32310 (United States)

    2016-08-22

    We present design and test results of a superconducting persistent current switch (PCS) for pancake coils of rare-earth-barium-copper-oxide, REBCO, high-temperature superconductor (HTS). Here, a REBCO double-pancake (DP) coil, 152-mm ID, 168-mm OD, 12-mm high, was wound with a no-insulation technique. We converted a ∼10-cm long section in the outermost layer of each pancake to a PCS. The DP coil was operated in liquid nitrogen (77–65 K) and in solid nitrogen (60–57 K). Over the operating temperature ranges of this experiment, the normal-state PCS enabled the DP coil to be energized; thereupon, the PCS resumed the superconducting state and the DP coil field decayed with a time constant of 100 h, which would have been nearly infinite, i.e., persistent-mode operation, were the joint across the coil terminals superconducting.

  14. Development of superconducting wind turbine generators

    DEFF Research Database (Denmark)

    Jensen, Bogi Bech; Mijatovic, Nenad; Abrahamsen, Asger Bech

    2013-01-01

    speeds, because high magnetic fields can be produced by coils with very little loss. Three different superconducting wind turbine generator topologies have been proposed by three different companies. One is based on low temperature superconductors; one is based on high temperature superconductors...

  15. Fabrication of the helical field coil components for the advanced toroidal facility

    Energy Technology Data Exchange (ETDEWEB)

    Cole, M.J.; Whitson, J.C.; Banks, B.J.

    1987-01-01

    The fabrication techniques used to manufacture the major components of the helical field (HF) coil segments for the Advanced Toroidal Facility (ATF) are described. The major components of an HF coil segment are 14 water-cooled, copper conductors and a T-shaped stainless steel support member (or ''tee''). Twenty-four of these segments were used in the fabrication of two coils for the ATF experiment. The helical shape, accurate position requirements, large size, and potential for high cost required unique approaches to the fabrication of these components. One method of fabrication was to use 44-mm-thick (standard size) plate to form the base and leg of the tee and to join the sections by welding. Because of the tolerance requirements, a thicker plate (70 mm) was used and then contour machined to the final shape. The second approach, conducted in parallel with the first, was to cast the tee as a single piece. The first attempts were to make the casting larger than required, then machine it to final size and shape. The cost of machining either the welded tee or the cast tee was extremely high, so several prototypes were fabricated until a cast tee that required no contour machining was produced. The shape and positional requirements were also the major problems in fabricating the copper conductors, or turns. The approach taken was to make an accurate fixture and position the turns in the fixture, then anneal to remove residual stresses and form the copper turns to the shape of the fixture. The lessons learned in pursuing these fabrication methods are presented. 5 refs., 3 figs.

  16. Quenching in coupled adiabatic coils

    Energy Technology Data Exchange (ETDEWEB)

    Williams, J.E.C.

    1985-03-01

    The prediction of the effects of a quench on stress and temperature is an important aspect of the design of superconducting magnets. Of particular interest, and the exclusive topic of this study, is the prediction of the effects of quenching in coupled adiabatic coils, such as the multi-section windings of a high field NMR spectrometer magnet. The predictive methods used here are based on the measurement of the time of propagation of quench between turns. From this measurement an approximate algorithum for the propagation time is used in a code which solves the linear differential equations for the coil currents and calculates the movement of normal zone boundaries and hence the associated winding resistance.

  17. An Investigation of Coupling of the Internal Kink Mode to Error Field Correction Coils in Tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Lazarus, Edward Alan [ORNL

    2013-01-01

    The coupling of the internal kink to an external m/=1/1 pertubation if studied for profiles that are known to result in a saturated internal kink in the limit of a cylindrical tokamak. It is found from 3D equilibrium calculations that, for A 30 circular plasmas and A=3 elliptical shapes, this coupling of the boundary perturbation to the internal kink is strong; the amplitude of the m/n=1/1 structure at q=1 is large compared to the amplitude applied at the plasma boundary. It is proposed that this excitation, which could readily be applied with error field correction coils, be explored as a mechanism for controlling sawtooth amplitudes in high performance tokamak discharges. This saturated internal kink, resulting from small field errors in proposed as an explanation for the TEXTOR measurements of q0 and the distinction between sawtooth effects on the q-profile observed in TEXTOR and DIII-D.

  18. Processing and characterization of superconducting solenoids made of Bi-2212/Ag-alloy multifilament round wire for high field magnet applications

    Science.gov (United States)

    Chen, Peng

    As the only high temperature superconductor with round wire (RW) geometry, Bi2Sr2CaCu2O8+x (Bi-2212) superconducting wire has the advantages of being multi-filamentary, macroscopically isotropic and twistable. With overpressure (OP) processing techniques recently developed by our group at the National High Magnetic Field Laboratory (NHMFL), the engineering current density (Je) of Bi-2212 RW can be dramatically increased. For example, Je of more than 600 A/mm 2 (4.2 K and 20 T) is achieved after 100 bar OP processing. With these intrinsically beneficial properties and recent processing progress, Bi-2212 RW has become very attractive for high field magnet applications, especially for nuclear magnetic resonance (NMR) magnets and accelerator magnets etc. This thesis summarizes my graduate study on Bi-2212 solenoids for high field and high homogeneity NMR magnet applications, which mainly includes performance study of Bi-2212 RW insulations, 1 bar and OP processing study of Bi-2212 solenoids, and development of superconducting joints between Bi-2212 RW conductors. Electrical insulation is one of the key components of Bi-2212 coils to provide sufficient electrical standoff within coil winding pack. A TiO 2/polymer insulation offered by nGimat LLC was systematically investigated by differential thermal analysis (DTA), thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM), dielectric property measurements, and transport critical current (Ic) property measurements. About 29% of the insulation by weight is polymer. When the Bi-2212 wire is fully heat treated, this decomposes with slow heating to 400 °C in flowing O2. After the full reaction, we found that the TiO2 did not degrade the critical current properties, adhered well to the conductor, and provided a breakdown voltage of more than 100 V. A Bi-2212 RW wound solenoid coil was built using this insulation being offered by nGimat LLC. The coil resistance was constant through coil winding, polymer burn

  19. Design and Fabrication of Helmholtz Coils to Study the Effects of Pulsed Electromagnetic Fields on the Healing Process in Periodontitis: Preliminary Animal Results

    Directory of Open Access Journals (Sweden)

    Haghnegahdar A

    2014-09-01

    Full Text Available Background: Effects of electromagnetic fields on healing have been investigated for centuries. Substantial data indicate that exposure to electromagnetic field can lead to enhanced healing in both soft and hard tissues. Helmholtz coils are devices that generate pulsed electromagnetic fields (PEMF. Objective: In this work, a pair of Helmholtz coils for enhancing the healing process in periodontitis was designed and fabricated. Method: An identical pair of square Helmholtz coils generated the 50 Hz magnetic field. This device was made up of two parallel coaxial circular coils (100 turns in each loop, wound in series which were separated from each other by a distance equal to the radius of one coil (12.5 cm. The windings of our Helmholtz coil was made of standard 0.95mm wire to provide the maximum possible current. The coil was powered by a function generator. Results: The Helmholtz Coils generated a uniform magnetic field between its coils. The magnetic field strength at the center of the space between two coils was 97.6 μT. Preliminary biological studies performed on rats show that exposure of laboratory animals to pulsed electromagnetic fields enhanced the healing of periodontitis. Conclusion: Exposure to PEMFs can lead to stimulatory physiological effects on cells and tissues such as enhanced healing of periodontitis.

  20. Effects of pressure and magnetic field on superconductivity in ZrTe3: local pair-induced superconductivity

    Science.gov (United States)

    Tsuchiya, S.; Matsubayashi, K.; Yamaya, K.; Takayanagi, S.; Tanda, S.; Uwatoko, Y.

    2017-06-01

    In this work, the origin of the highly anisotropic superconducting transition in ZrTe3, where the resistance along the a axis, R a , is reduced at 4 K but those along the b axis, R b , and {c}\\prime axis, R c‧, are reduced at 2 K, was explored with the application of a magnetic field and pressure by the electrical resistance measurements. We found that the behavior of the upper critical field and its anisotropy as well as the pressure dependence determined by the R a measurements are quite similar to those of R b . Moreover, the excess conductivity for R b indicates anomalous behavior. These results support an unconventional origin for the anisotropic transition rather than conventional superconducting fluctuation. The reduction in R a is due to filamentary superconductivity (SC) induced by locally bound electron pairs (local pairs), which correspond to bi-polarons, and the transition of R b corresponds to the emergence of bulk SC originating from the Cooper pairs triggered by the transfer of the local pairs.

  1. A distributed equivalent magnetic current based FDTD method for the calculation of E-fields induced by gradient coils.

    Science.gov (United States)

    Liu, Feng; Crozier, Stuart

    2004-08-01

    This paper evaluates a new, low-frequency finite-difference time-domain method applied to the problem of induced E-fields/eddy currents in the human body resulting from the pulsed magnetic field gradients in MRI. In this algorithm, a distributed equivalent magnetic current is proposed as the electromagnetic source and is obtained by quasistatic calculation of the empty coil's vector potential or measurements therein. This technique circumvents the discretization of complicated gradient coil geometries into a mesh of Yee cells, and thereby enables any type of gradient coil modelling or other complex low frequency sources. The proposed method has been verified against an example with an analytical solution. Results are presented showing the spatial distribution of gradient-induced electric fields in a multi-layered spherical phantom model and a complete body model.

  2. High-field superconductivity at an electronic topological transition in URhGe

    Science.gov (United States)

    Yelland, E. A.; Barraclough, J. M.; Wang, W.; Kamenev, K. V.; Huxley, A. D.

    2011-11-01

    The emergence of superconductivity at high magnetic fields in URhGe is regarded as a paradigm for new state formation approaching a quantum critical point. Until now, a divergence of the quasiparticle mass at the metamagnetic transition was considered essential for superconductivity to survive at magnetic fields above 30T. Here we report the observation of quantum oscillations in URhGe revealing a tiny pocket of heavy quasiparticles that shrinks continuously with increasing magnetic field, and finally disappears at a topological Fermi surface transition close to or at the metamagnetic field. The quasiparticle mass decreases and remains finite, implying that the Fermi velocity vanishes due to the collapse of the Fermi wavevector. This offers a novel explanation for the re-emergence of superconductivity at extreme magnetic fields and makes URhGe the first proven example of a material where magnetic field-tuning of the Fermi surface, rather than quantum criticality alone, governs quantum phase formation.

  3. Superconducting shielded core reactor with reduced AC losses

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Yung S.; Hull, John R.

    2006-04-04

    A superconducting shielded core reactor (SSCR) operates as a passive device for limiting excessive AC current in a circuit operating at a high power level under a fault condition such as shorting. The SSCR includes a ferromagnetic core which may be either closed or open (with an air gap) and extends into and through a superconducting tube or superconducting rings arranged in a stacked array. First and second series connected copper coils each disposed about a portion of the iron core are connected to the circuit to be protected and are respectively wound inside and outside of the superconducting tube or rings. A large impedance is inserted into the circuit by the core when the shielding capability of the superconducting arrangement is exceeded by the applied magnetic field generated by the two coils under a fault condition to limit the AC current in the circuit. The proposed SSCR also affords reduced AC loss compared to conventional SSCRs under continuous normal operation.

  4. Operation of cryostat vacuum vessel of HT-7 superconducting tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Y. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)]. E-mail: yangyu@ipp.ac.cn; Su, M. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2006-11-15

    The superconducting tokamak HT-7 has been in operation for over 10 years. The safe and reliable operation of its cryostat vacuum vessel, which contains the superconducting coils is essential for each experimental run since the superconducting toroidal field coils are contained inside the vessel. In this paper, the operation is reviewed with the emphasis on the analysis on anomalous pressure rises and the corresponding solutions. It is shown that under close monitoring and timely handling, the cryostat vacuum vessel could still satisfy the requirements of the experimental operation despite of the material aging. This provides guideline for vacuum operating of HT-7. The experiences should be valuable for other superconducting projects as well, including a whole superconducting tokamak under construction, EAST.

  5. Superconducting Accelerator Magnets

    CERN Document Server

    Mess, K H; Wolff, S

    1996-01-01

    The main topic of the book are the superconducting dipole and quadrupole magnets needed in high-energy accelerators and storage rings for protons, antiprotons or heavy ions. The basic principles of low-temperature superconductivity are outlined with special emphasis on the effects which are relevant for accelerator magnets. Properties and fabrication methods of practical superconductors are described. Analytical methods for field calculation and multipole expansion are presented for coils without and with iron yoke. The effect of yoke saturation and geometric distortions on field quality is studied. Persistent magnetization currents in the superconductor and eddy currents the copper part of the cable are analyzed in detail and their influence on field quality and magnet performance is investigated. Superconductor stability, quench origins and propagation and magnet protection are addressed. Some important concepts of accelerator physics are introduced which are needed to appreciate the demanding requirements ...

  6. Inhomogeneous superconductivity in organic conductors: the role of disorder and magnetic field.

    Science.gov (United States)

    Haddad, S; Charfi-Kaddour, S; Pouget, J-P

    2011-11-23

    Several experimental studies have shown the presence of spatially inhomogeneous phase coexistence of superconducting and non-superconducting domains in low dimensional organic superconductors. The superconducting properties of these systems are found to be strongly dependent on the amount of disorder introduced in the sample regardless of its origin. The suppression of the superconducting transition temperature T(c) shows a clear discrepancy with the result expected from the Abrikosov-Gor'kov law giving the behavior of T(c) with impurities. On the basis of the time dependent Ginzburg-Landau theory, we derive a model to account for this striking feature of T(c) in organic superconductors for different types of disorder by considering the segregated texture of the system. We show that the calculated T(c) quantitatively agrees with experiments. We also focus on the effect of superconducting fluctuations on the upper critical fields H(c2) of layered superconductors showing slab structure where superconducting domains are sandwiched by non-superconducting regions. We found that H(c2) may be strongly enhanced by such fluctuations.

  7. Analyzing the uniformity of the generated magnetic field by a practical one-dimensional Helmholtz coils system.

    Science.gov (United States)

    Beiranvand, R

    2013-07-01

    Using the Helmholtz coils system is one of the most suitable approaches which have been introduced for generating uniform magnetic fields. In this paper, uniformity of the generated magnetic field by a practical one-dimensional (1D) Helmholtz coils system has been analyzed, mathematically. For this purpose, relationships between the magnetic field uniformity and different practical unavoidable mismatches have been extracted. The theoretical analysis clearly demonstrates the effect of assembly misalignments and manufacturing mismatches on the magnetic field achieved by a practical 1D Helmholtz coils system. The given analyses have been confirmed by the experimental results which are in good agreement with the calculated values. This analysis and the experimental results illustrate that to achieve a very high uniform magnetic field, practical assembly misalignments, and manufacturing mismatches must be as small as possible, and the background magnetic field distortion must be avoided, too. The results of this work are important in the design of instruments and systems where Helmholtz coils are used.

  8. A study of the electromagnetic characteristics of no-insulation GdBCO racetrack coils under an external magnetic ripple field

    Science.gov (United States)

    Choi, Y. H.; Yang, D. G.; Kim, Y. G.; Kim, S. G.; Song, J. B.; Lee, H. G.

    2016-04-01

    Here we report the effect of an external magnetic ripple field on the electromagnetic characteristics of GdBCO racetrack coils being operated with a constant DC current. Two types of GdBCO racetrack coils, one wound without turn-to-turn insulation (NI) and the other wound with Kapton tape (INS), were examined under external ripple fields generated by a permanent magnet mounted on a rotor, which was driven by a separate AC motor. The voltage fluctuations and magnetic field variations were measured with respect to the external ripple field intensity (B ERF), rotating speed, and the operating condition. When the INS and NI coils were exposed to an external ripple field (herein, I op = 80 A, B ERF = 2 mT, and 5 rpm), a voltage fluctuation occurred because a time-varying magnetic field interacted with an electric circuit creating an electromotive force. The peak-to-peak voltage (V pp = 0.29 mV) of the NI coil was ∼1.86 times lower than that (0.54 mV) of the INS coil, because the voltage response of the NI coil lagged behind dB/dt due to the existence of turn-to-turn contact. Furthermore, the V pp of the INS coil increased with increasing B ERF and rotating speed, while those of the NI coil were barely affected due to the delay of electromagnetic induction. In excessive current and ripple field conditions (I op = 1.125 I c, B ERF = 8 mT, and 50 rpm) the INS coil eventually quenched while the NI coil did not, implying that the electromagnetic stability of the NI coil in excessive time-varying field conditions was superior to that of the INS coil.

  9. Development of Ground Coils with Low Eddy Current Loss by Applying the Compression Molding Method after the Coil Winding

    Science.gov (United States)

    Suzuki, Masao; Aiba, Masayuki; Takahashi, Noriyuki; Ota, Satoru; Okada, Shigenori

    In a magnetically levitated transportation (MAGLEV) system, a huge number of ground coils will be required because they must be laid for the whole line. Therefore, stable performance and reduced cost are essential requirements for the ground coil development. On the other hand, because the magnetic field changes when the superconducting magnet passes by, an eddy current will be generated in the conductor of the ground coil and will result in energy loss. The loss not only increases the magnetic resistance for the train running but also brings an increase in the ground coil temperature. Therefore, the reduction of the eddy current loss is extremely important. This study examined ground coils in which both the eddy current loss and temperature increase were small. Furthermore, quantitative comparison for the eddy current loss of various magnet wire samples was performed by bench test. On the basis of the comparison, a round twisted wire having low eddy current loss was selected as an effective ground coil material. In addition, the ground coils were manufactured on trial. A favorable outlook to improve the size accuracy of the winding coil and uneven thickness of molded resin was obtained without reducing the insulation strength between the coil layers by applying a compression molding after winding.

  10. Air core notch-coil magnet with variable geometry for fast-field-cycling NMR.

    Science.gov (United States)

    Kruber, S; Farrher, G D; Anoardo, E

    2015-10-01

    In this manuscript we present details on the optimization, construction and performance of a wide-bore (71 mm) α-helical-cut notch-coil magnet with variable geometry for fast-field-cycling NMR. In addition to the usual requirements for this kind of magnets (high field-to-power ratio, good magnetic field homogeneity, low inductance and resistance values) a tunable homogeneity and a more uniform heat dissipation along the magnet body are considered. The presented magnet consists of only one machined metallic cylinder combined with two external movable pieces. The optimal configuration is calculated through an evaluation of the magnetic flux density within the entire volume of interest. The magnet has a field-to-current constant of 0.728 mT/A, allowing to switch from zero to 0.125 T in less than 3 ms without energy storage assistance. For a cylindrical sample volume of 35 cm(3) the effective magnet homogeneity is lower than 130 ppm.

  11. Influence of standard RF coil materials on surface and buildup dose from a 6 MV photon beam in magnetic field.

    Science.gov (United States)

    Ghila, A; Fallone, B G; Rathee, S

    2016-11-01

    Magnetic resonance guided teletherapy systems aspire to image the patient concurrently with the radiation delivery. Thus, the radiofrequency (RF) coils used for magnetic resonance imaging, placed on or close to patient skin and in close proximity to the treatment volume, would be irradiated leading to modifications of radiation dose to the skin and in the buildup region. The purpose of this work is to measure and assess these dose modifications due to standard off-the-shelf RF coil materials. A typical surface coil was approximated as layered sheets of polycarbonate, copper tape, and Teflon to emulate the base, conductor, and cover, respectively. A separate investigation used additional coil materials, such as copper pipe, plastic coil housing, a typical coil padding material, and a thin copper conductor. The materials were placed in the path of a 6 MV photon beam at various distances from polystyrene phantoms in which the surface and buildup doses were measured. The experiments were performed on a clinical Varian linac with no magnetic field and with a 0.21 T electromagnet producing a magnetic field parallel to the beam central axis. The authors repeated similar experiments in the presence of a 0.22 T magnetic field oriented perpendicular to the beam central axis using an earlier linac-MR prototype, with a biplanar permanent magnet. The radiation detectors used for the measurements were two different parallel plate ion chambers and GAFChromic films. A typical open beam surface dose of 20% (relative to open beam Dmax) was increased to 63% by the coil padding material and to >74% by all other materials when placed in direct contact with the phantom, irrespective of magnetic field presence or orientation. Without a magnetic field, the surface dose decreased as the test materials were moved away from the phantom surface toward the radiation source, reaching between 30% and 40% at 10 cm gap between the phantom and the test materials. In the presence of the transverse

  12. Optimization of capacitor coil targets for generation of mega Gauss level magnetic fields using kJ-ns class lasers

    Science.gov (United States)

    Kumar, Deepak; Collaborative Team

    2016-10-01

    A controlled magnetic field is extremely useful in various laser plasma experiments, especially in the fields of fast ignition, laboratory astrophysics and charged particle beam lensing. MG level fields for such applications can be created by the interaction of a kJ-ns class laser with a capacitor-coil target. Previous experiments with such targets rely on the ablated plasma short circuiting the capacitor target, which causes a current to flow through the coil. In recently concluded experiments at the Prague Asterix Laser Facility we used the Iodine laser (600 J, 350 ps, Iλ2 =1016 -1017 W/cm2) with targets of varying capacitance designed so that the plasma did not short circuit the opposite plates. Such a design is also beneficial for future applications, where the magnetized targets are not affected by the ablated plasma. Spatial and temporal behavior of the magnetic field was inferred by measuring the Faraday rotation through a TGG crystal placed near the coil. A B-dot probe provided qualitative information on the timescale of evolution of current in the coil, and an electron spectrometer measured the distribution of the hot electrons. This talk will describe the experimental setup and the results of magnetic field measurement for various targets.

  13. The design study of the JT-60SU device. No. 3. The superconductor-coils of JT-60SU

    Energy Technology Data Exchange (ETDEWEB)

    Ushigusa, Kenkichi; Mori, Katsuharu; Nakagawa, Syouji [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others

    1997-03-01

    The superconducting coil systems and the cryogenic system for the JT-60 Super Upgrade (JT-60SU) has been designed. Both Nb{sub 3}Al and NbTi as a superconducting wire material are employed in the toroidal coils (D-shaped 18 coils) to realize a high field magnet with a low cost. Significant reduction of the coil weight (150 tons/coil) without losing the coil rigidity has been achieved by connecting two toroidal coils with shear panels. Validity of this design is confirmed by the detailed structural analysis and thermohydraulic analysis. The poloidal coil system consists of 4 central solenoid coils with (NbTi){sub 3}Sn and 6 outer equilibrium field coils with NbTi. This system has an enough capability to supply the flux of 170Vs to produce a 10MA discharge with 200s of flat-top and to make various plasma configurations. The construction procedure of the poloidal coil system is also established under the constraint of the JT-60 site. Two sets of race-track shaped superconducting coils mounted on the top of the machine is designed to compensate the error field inside the vessel by supplying helical (m=2/n=1) magnetic field. By using cryogenic system with a 36kW of cooling capacity, the total cold weight of around 4000tons can be cooled down to 4.5K within one month, and steady heat load of 6.5kW and transient heat load of 9.0MJ can be removed within 30 minutes of discharge repetition rate. (author)

  14. Progress of the ITER Correction Coils in China

    CERN Document Server

    Wei, J; Han, S; Yu, X; Du, S; Li, C; Fang, C; Wang, L; Zheng, W; Liu, L; Wen, J; Li, H; Libeyre, P; Dolgetta, N; Cormany, C; Sgobba, S

    2014-01-01

    The ITER Correction Coils (CC) include three sets of six coils each, distributed symmetrically around the tokamak to correct error fields. Each pair of coils, located on opposite sides of the tokamak, is series connected with polarity to produce asymmetric fields. The manufacturing of these superconducting coils is undergoing qualification of the main fabrication processes: winding into multiple pancakes, welding helium inlet/outlet on the conductor jacket, turn and ground insulation, vacuum pressure impregnation, inserting into an austenitic stainless steel case, enclosure welding, and assembling the terminal service box. It has been proceeding by an intense phase of R\\&D, trials tests, and final adjustment of the tooling. This paper mainly describes the progress in ASIPP for the CC manufacturing process before and on qualification phase and the status of corresponding equipment which are ordered or designed for each process. Some test results for the key component and procedure are also presented.

  15. Method for generating linear current-field characteristics and eliminating charging delay in no-insulation superconducting magnets

    Science.gov (United States)

    Kim, Seokho; Hahn, Seungyong; Kim, Kwangmin; Larbalestier, David

    2017-03-01

    No-insulation (NI) rare-earth barium copper oxide (REBCO) magnets are promising for high field or high temperature superconducting magnets because they simplify quench protection. However, the turn-to-turn leakage current path induced by the absence of insulation introduces nonlinearities into the magnetic fieldcurrent characteristic and significant delay in reaching the desired field. This paper shows that active feedback control can mitigate both the nonlinearity and the charging delay. To verify our approach, simulations and tests were performed with an NI REBCO magnet made of 13 double-pancake coils. A proportional and integral (PI) feedback control of the power supply was adopted which allowed determination of the appropriate PI gains using dynamic simulations of the equivalent circuit of the NI magnet. Feedback control tests were then performed in liquid nitrogen at 77 K. The time to reach 99.5% of the target magnetic field to become essentially steady-state was reduced by more than 2000 times from 850 s without control to 0.4 s with control. The results demonstrate a potential that one of the most significant perceived disadvantages of an NI magnet can essentially be removed by active feedback control of the power supply current.

  16. Demountable, High field High-Temperature Superconductor TF coils for flexible steady-state fusion experiments

    Science.gov (United States)

    Michael, Phillip; Bromberg, Leslie; Vieira, Rui; Minervini, Joseph; Galea, Christopher; Hensley, Sarah; Whyte, Dennis

    2014-10-01

    The excellent properties of HTS materials (e.g., YBCO) at high fields and elevated temperatures (>20 K), offer operational advantages for fusion machines, but results in challenges. For fusion devices, the ability to disassemble the TF coil is very attractive as it provides direct access to maintain the vacuum vessel, first wall and other components in a timely manner. High current conductors, made from multiple thin tapes, are not available but are being developed. Quench protection is a serious issue with HTS magnets, and novel means are needed to detect normal zones and to quickly discharge the magnet. Potential cables designs, demountable magnets and solutions to quench and protection issues for an HTS TF magnet for the Vulcan device (long term PMI studies) will be described. We also describe means for making continuous, persistent loops with HTS tapes. These loops offer an alternative to expensive monoliths for field control for complex geometries, such as stellarator-like fields. Partially supported by US DOE DE-FC02-93ER54186.

  17. Piezoelectric response of a PZT thin film to magnetic fields from permanent magnet and coil combination

    Science.gov (United States)

    Guiffard, B.; Seveno, R.

    2015-01-01

    In this study, we report the magnetically induced electric field E 3 in Pb(Zr0.57Ti0.43)O3 (PZT) thin films, when they are subjected to both dynamic magnetic induction (magnitude B ac at 45 kHz) and static magnetic induction ( B dc) generated by a coil and a single permanent magnet, respectively. It is found that highest sensitivity to B dc——is achieved for the thin film with largest effective electrode. This magnetoelectric (ME) effect is interpreted in terms of coupling between eddy current-induced Lorentz forces (stress) in the electrodes of PZT and piezoelectricity. Such coupling was evidenced by convenient modelling of experimental variations of electric field magnitude with both B ac and B dc induction magnitudes, providing imperfect open circuit condition was considered. Phase angle of E 3 versus B dc could also be modelled. At last, the results show that similar to multilayered piezoelectric-magnetostrictive composite film, a PZT thin film made with a simple manufacturing process can behave as a static or dynamic magnetic field sensor. In this latter case, a large ME voltage coefficient of under B dc = 0.3 T was found. All these results may provide promising low-cost magnetic energy harvesting applications with microsized systems.

  18. The coil orientation dependency of the electric field induced by TMS for M1 and other brain areas

    NARCIS (Netherlands)

    Janssen, A.M.; Oostendorp, T.F.; Stegeman, D.F.

    2015-01-01

    BACKGROUND: The effectiveness of transcranial magnetic stimulation (TMS) depends highly on the coil orientation relative to the subject's head. This implies that the direction of the induced electric field has a large effect on the efficiency of TMS. To improve future protocols, knowledge about the

  19. Statistical analysis for HTS coil considering inhomogeneous Ic distribution of HTS tape

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hong Woo; Lee, Ji Ho; Lee, Woo Seung; Ko, Tae Kuk [Yonsei University, Seoul (Korea, Republic of)

    2015-06-15

    Critical current of high-temperature superconducting (HTS) coil is influenced by its own self magnetic field. Direction and density distribution of the magnetic field around the coil are fixed after the shape of the coil is decided. If the entire part of the HTS tape has homogeneous Ic distribution characteristic, quench would be initiated in fixed location on the coil. However, the actual HTS tape has inhomogeneous Ic distribution along the length. If the Ic distribution of the HTS tape is known, we can expect the spot within the HTS coil that has the highest probability to initiate the quench. In this paper, Ic distribution within the HTS coil under self-field effect is simulated by MATLAB. In the simulation procedure, Ic distribution of the entire part of the HTS tape is assume d to follow Gaussian-distribution by central limit theorem. The HTS coil model is divided into several segments, and the critical current of each segment is calculated based on the-generalized Kim model. Single pancake model is simulated and self-field of HTS coil is calculated by Biot-Savart's law. As a result of simulation, quench-initiating spot in the actual HTS coil can be predicted statistically. And that statistical analysis can help detect or protect the quench of the HTS coil.

  20. Numerical calculation of superheating magnetic fields and currents for superconducting slabs

    Science.gov (United States)

    Landau, I. L.; Rinderer, L.

    1995-08-01

    Numerical calculations of superheating magnetic fields and superheating currents for superconducting slabs for a wide range of the sample thickness are presented. The calculations were made for low values of Ginzburg-Landau parameter κ, i.e., for type-1 superconductors. We propose also experimental procedures to measure superheating fields and currents in films and bulk samples.

  1. Concept of a Cryogenic System for a Cryogen-Free 25 T Superconducting Magnet

    Science.gov (United States)

    Iwai, Sadanori; Takahashi, Masahiko; Miyazaki, Hiroshi; Tosaka, Taizo; Tasaki, Kenji; Hanai, Satoshi; Ioka, Shigeru; Watanabe, Kazuo; Awaji, Satoshi; Oguro, Hidetoshi

    A cryogen-free 25 T superconducting magnet using a ReBCO insert coil that generates 11.5 T in a 14 T background field of outer low-temperature superconducting (LTS) coils is currently under development. The AC loss of the insert coil during field ramping is approximately 8.8 W, which is difficult to dissipate at the operating temperature of the LTS coils (4 K). However, since a ReBCO coil can operate at a temperature above 4 K, the ReBCO insert coil is cooled to about 10 K by two GM cryocoolers, and the LTS coils are independently cooled by two GM/JT cryocoolers. Two GM cryocoolers cool a circulating helium gas through heat exchangers, and the gas is transported over a long distance to the cold stage located on the ReBCO insert coil, in order to protect the cryocoolers from the leakage field of high magnetic fields. The temperature difference of the 2nd cold stage of the GM cryocoolers and the insert coil can be reduced by increasing the gas flow rate. However, at the same time, the heat loss of the heat exchangers increases, and the temperature of the second cold stage is raised. Therefore, the gas flow rate is optimized to minimize the operating temperature of the ReBCO insert coil by using a flow controller and a bypass circuit connected to a buffer tank.

  2. Vortex liquid in magnetic-field-induced superconducting vacuum of quenched lattice QCD

    CERN Document Server

    Braguta, V V; Chernodub, M N; Kotov, A Yu; Polikarpov, M I

    2013-01-01

    In the background of the strong magnetic field the vacuum is suggested to possess an electromagnetically superconducting phase characterised by the emergence of inhomogeneous quark-antiquark vector condensates which carry quantum numbers of the charged rho mesons. The rho-meson condensates are inhomogeneous due to the presence of the stringlike defects ("the rho vortices") which are parallel to the magnetic field (the superconducting vacuum phase is similar to the mixed Abrikosov phase of a type-II superconductor). In agreement with these expectations, we have observed the presence of the rho vortices in numerical simulations of the vacuum of the quenched two-color lattice QCD in strong magnetic field background. We have found that in the quenched QCD the rho vortices form a liquid. The transition between the usual (insulator) phase at low B and the superconducting vortex liquid phase at high B turns out to be very smooth, at least in the quenched QCD.

  3. Theoretical estimates of maximum fields in superconducting resonant radio frequency cavities: Stability theory, disorder, and laminates

    CERN Document Server

    Liarte, Danilo B; Transtrum, Mark K; Catelani, Gianluigi; Liepe, Matthias; Sethna, James P

    2016-01-01

    We review our work on theoretical limits to the performance of superconductors in high magnetic fields parallel to their surfaces. These limits are of key relevance to current and future accelerating cavities, especially those made of new higher-$T_c$ materials such as Nb$_3$Sn, NbN, and MgB$_2$. We summarize our calculations of the so-called superheating field $H_{\\mathrm{sh}}$, beyond which flux will spontaneously penetrate even a perfect superconducting surface and ruin the performance. We briefly discuss experimental measurements of the superheating field, comparing to our estimates. We explore the effects of materials anisotropy and disorder. Will we need to control surface orientation in the layered compound MgB$_2$? Can we estimate theoretically whether dirt and defects make these new materials fundamentally more challenging to optimize than niobium? Finally, we discuss and analyze recent proposals to use thin superconducting layers or laminates to enhance the performance of superconducting cavities. T...

  4. A multiple-field coupled resistive transition model for superconducting Nb3Sn

    Science.gov (United States)

    Yang, Lin; Ding, He; Zhang, Xin; Qiao, Li

    2016-12-01

    A study on the superconducting transition width as functions of the applied magnetic field and strain is performed in superconducting Nb3Sn. A quantitative, yet universal phenomenological resistivity model is proposed. The numerical simulation by the proposed model shows predicted resistive transition characteristics under variable magnetic fields and strain, which in good agreement with the experimental observations. Furthermore, a temperature-modulated magnetoresistance transition behavior in filamentary Nb3Sn conductors can also be well described by the given model. The multiple-field coupled resistive transition model is helpful for making objective determinations of the high-dimensional critical surface of Nb3Sn in the multi-parameter space, offering some preliminary information about the basic vortex-pinning mechanisms, and guiding the design of the quench protection system of Nb3Sn superconducting magnets.

  5. Estimating effects from trapped magnetic fluxes in superconducting magnetic levitation measurement

    Institute of Scientific and Technical Information of China (English)

    Masakazu Nakanishi

    2008-01-01

    Superconducting magnetic levitation measurement is one of the most promising approaches to define mass standard based on the fundamental physical constants. However, the present system has unknown factors causing error larger than 50 ppm. We examined the effects of magnetic fluxes trapped in the superconducting coil and the superconducting floating body. When fluxes were trapped in either coil or floating body, their effects were able to be cancelled by reversing polarities of current and magnetic field, as had been believed. However, fluxes trapped in both coil and body induced an attractive force between them and caused error. In order to reduce the fluxes, the coil and the floating body should be cooled in low magnetic field in magnetic and electromagnetic shields.

  6. Effect of power parameter and induction coil on magnetic field in cold crucible during continuous melting and directional solidification

    Directory of Open Access Journals (Sweden)

    Chen Ruirun

    2012-02-01

    Full Text Available Bottomless electromagnetic cold crucible is a new apparatus for continuous melting and directional solidification; however, improving its power efficiency and optimizing the configuration are important for experiment and production. In this study, a 3-D finite element (FE method based on experimental verification was applied to calculate the magnetic flux density (Bz. The effects of the power parameters and the induction coil on the magnetic field distribution in the cold crucible were investigated. The results show that higher current intensity and lower frequency are beneficial to the increase of Bz at both the segment midpoint and the slit location. The induction coil with racetrack section can induce greater Bz, and a larger gap between the induction coil and the shield ring increases Bz. The mechanism for this effect is also discussed.

  7. A Simple System to Measure Superconducting Transition Temperature at High Pressure

    Institute of Scientific and Technical Information of China (English)

    YU Yong; ZHAI Guang-Jie; JIN Chang-Qing

    2009-01-01

    A simple hydride system is fabricated to measure the superconducting transition temperature Tc under high pressure using a diamond anvil cell (DAC). The system is designed with centrosymetric coils around the diamond that makes it easy to keep balance between the pick-up coil and the inductance coil, while the superconducting states can be modulated with a low-frequency small external magnetic field. Using the device we successfully obtain the Tc evolution as a function of applied pressure up to 10 GPa for YBa2 Cu3O6+δ superconductor single crystal.

  8. Lightweight MgB2 superconducting 10 MW wind generator

    Science.gov (United States)

    Marino, I.; Pujana, A.; Sarmiento, G.; Sanz, S.; Merino, J. M.; Tropeano, M.; Sun, J.; Canosa, T.

    2016-02-01

    The offshore wind market demands a higher power rate and more reliable turbines in order to optimize capital and operational costs. The state-of-the-art shows that both geared and direct-drive conventional generators are difficult to scale up to 10 MW and beyond due to their huge size and weight. Superconducting direct-drive wind generators are considered a promising solution to achieve lighter weight machines. This work presents an innovative 10 MW 8.1 rpm direct-drive partial superconducting generator using MgB2 wire for the field coils. It has a warm iron rotor configuration with the superconducting coils working at 20 K while the rotor core and the armature are at ambient temperature. A cooling system based on cryocoolers installed in the rotor extracts the heat from the superconducting coils by conduction. The generator's main parameters are compared against a permanent magnet reference machine, showing a significant weight and size reduction. The 10 MW superconducting generator concept will be experimentally validated with a small-scale magnetic machine, which has innovative components such as superconducting coils, modular cryostats and cooling systems, and will have similar size and characteristics as the 10 MW generator.

  9. AC stabilities in superconducting magnetic shielding body with shorted low AC loss Nb{sub 3}Sn coil; Nb{sub 3}Sn kansen jiki shaheitai no koryu anteisei

    Energy Technology Data Exchange (ETDEWEB)

    Aizawa, N.; Nii, A.; Ito, Y.; Onishi, T. [Hokkaido Univ., Hokkaido (Japan); Shibuya, M. [Engineering Research Association for Superconductive Genertion Equipment and Materials, Osaka (Japan)

    1999-06-07

    In this study, the superconducting magnetic shielding body conductively cooled by the small refrigerating machine at the intermediate temperature (10K-14K) was examined with the aim of a magnetic shielding type superconducting current limiter as closed as maintenance-free. Nb{sub 3}Sn coil closed the two ends was an object as a magnetic shielding body. In case of such a cooling system, the research of the stability was indispensable because of possible normal conduction transition in addition of disturbance into tapes. Then, the method to use the thyristor bypass circuit was examined in order to establish the stabilization method. As for the simulation, the normal conduction transition of the low AC loss Nb{sub 3}Sn coil which AC transferred in the constant-voltage power source, and the recovery characteristics of superconductivity were analyzed in the liquid helium. As a result of evaluating the stability in the constant-voltage power source, it was shown that the current attenuated by the resistance, and the exothermic reaction was controlled even if the disturbance happened and quenched. From these results, it was clarified that the stabilization method to establish the thyristor bypass circuit was effective for improvement on the stability of the superconductor. (NEDO)

  10. Reliability data to improve high magnetic field coil design for high velocity coilguns.

    Energy Technology Data Exchange (ETDEWEB)

    Kaye, Ronald John; Mann, Gregory Allen

    2003-09-01

    Coilguns have demonstrated their capability to launch projectiles to 1 km/s, and there is interest in their application for long-range precision strike weapons. However, the incorporation of cooling systems for repetitive operation will impact the mechanical design and response of the future coils. To assess the impact of such changes, an evaluation of the ruggedness and reliability of the existing 50 mm bore coil designed in 1993 was made by repeatedly testing at stress levels associated with operation in a coilgun. A two-coil testbed has been built with a static projectile where each coil is energized by its own capacitor bank. Simulation models of the applied forces generated in this testbed have been created with the SLINGSHOT circuit code to obtain loads equivalent to the worst-case anticipated in a 50 mm coilgun that could launch a 236 g projectile to 2 km/s. Bench measurements of the seven remaining coils built in 1993 have been used to evaluate which coils were viable for testing, and only one was found defective. Measurements of the gradient of the effective coil inductance in the presence of the projectile were compared to values from SLINGSHOT, and the agreement is excellent. Repeated testing of the HFC5 coil built in 1993 has demonstrated no failures after 205 shots, which is an order of magnitude greater than any number achieved in previous testing. Although this testing has only been done on two coils, the results are encouraging as it demonstrates there are no fundamental weak links in the design that will cause a very early failure. Several recommendations for future coil designs are suggested based on observations of this study.

  11. 改进型Helmholtz线圈及其磁场均匀性的分析%An improved Helmholtz coil and analysis of its magnetic field homogeneity

    Institute of Scientific and Technical Information of China (English)

    王健; 佘守宪; 张思炯

    2001-01-01

    提出将Helmholtz线圈改为3个同半径的串联线圈,以得到改进型的Helmholtz线圈.经计算得到了改进型Helmholtz线圈磁场的简单公式,对公式的分析表明:改进型Helmholtz线圈的均匀磁场区比一般Helmholtz线圈大得多.%An improved Helmholtz coil is designed by replacing Helmholtz coil with three coils with the same radius connected in series.Simple formulas are derived for the magnetic field of the improved Helmholtz coil.Numerical results demonstrate that the uniform region of magnetic field for the improved Helmholtz coil is larger than that of Helmholtz coil.

  12. Enhancement of critical current in mesoscopic superconducting strips by external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Ilin, Konstantin; Henrich, Dagmar; Luck, Yannick; Fuchs, Lea; Meckbach, Johannes Maximilian; Siegel, Michael [Institut fuer Mikro- und Nanoelektronische Systeme, Karlsruher Institut fuer Technologie, Hertzstrasse 16, 76187 Karlsruhe (Germany)

    2013-07-01

    Current crowding in superconducting mesoscopic strips with bends results in decrease of critical current in these structures with respect to the strips without geometrical non-uniformities. Recently it has been shown that Meissner currents induced by externally applied magnetic field of appropriate direction allow to suppress this effect so that I{sub c}(B) can exceed I{sub c}(0). Experimental dependencies of critical current in mesoscopic bended strips made from ultra-thin superconducting films on externally applied magnetic field and their comparison to the theoretical predictions are presented and discussed.

  13. Finite-element simulations of field and current distributions in multifilamentary superconducting films

    Energy Technology Data Exchange (ETDEWEB)

    Lucarelli, Andrea [Laboratorium fuer Festkoerperphysik, ETH-Zuerich, CH-8093 Zuerich (Switzerland); Grilli, Francesco [Ecole Polytechnique Montreal, Montreal (Canada); Luepke, Gunter [Department of Applied Science, The College of William and Mary, Williamsburg, VA 23187-8795 (United States); Haugan, Timothy J; Barnes, Paul N [Air Force Research Laboratory, Wright-Patterson AFB, OH 45433-7919 (United States)

    2009-10-15

    We present a finite-element model for computing current and field distributions in multifilamentary superconducting thin films subjected to simultaneous effects of a transport ac current and a perpendicularly applied dc field. The model is implemented in the finite-element software package COMSOL Multiphysics and this solves Maxwell equations using a highly nonlinear resistivity to describe electrical superconducting characteristics. The time-dependent magnetic flux, current distributions, and ac losses are studied for different distances between filaments. We find that increasing the interfilamentary distance affects the transport and screening current distributions, reducing both the magnetic coupling and ac losses.

  14. Experimental validation of field cooling simulations for linear superconducting magnetic bearings

    Energy Technology Data Exchange (ETDEWEB)

    Dias, D H N; Motta, E S; Sotelo, G G; De Andrade Jr, R, E-mail: ddias@coe.ufrj.b [Laboratorio de aplicacao de Supercondutores (LASUP), Universidade Federal do Rio de Janeiro, Rio de Janeiro (Brazil)

    2010-07-15

    For practical stability of a superconducting magnetic bearing the refrigeration process must occur with the superconductor in the presence of the magnetic field (a field cooling (FC) process). This paper presents an experimental validation of a method for simulating this system in the FC case. Measured and simulated results for a vertical force between a high temperature superconductor and a permanent magnet rail are compared. The main purpose of this work is to consolidate a simulation tool that can help in future projects on superconducting magnetic bearings for MagLev vehicles.

  15. High-pass bird-cage coil for nuclear-magnetic resonance

    Science.gov (United States)

    Watkins, Joel C.; Fukushima, Eiichi

    1988-06-01

    Cylindrical bird-cage coils generate uniform magnetic fields transverse to the cylinder axis for use in the large sample nuclear-magnetic resonance (NMR) experiments. We describe the design and construction of an eight-rung high-pass bird-cage coil to operate at 80 MHz in a cylindrical bore of a superconducting magnet. The coil is 12.7 cm in diameter by 30.5 cm long and has a 7-cm-diam region in the center where the field intensity is within 10% of the average.

  16. Superconducting Magnetic Energy Storage:. Conventional and Trapped Field

    Science.gov (United States)

    Rabinowitz, Mario

    Superconducting magnetic energy storage (SMES) is a most efficient system for energy storage because it stores energy directly in electrical form. The SMES concept is described and analyzed with an examination of its economic viability. The impact of high-temperature supeconductivity on SMES is explored, and a trapped energy storage (TES) innovation that may have beneficial technical and economic ramifications is introduced. In addition to presenting a broad overview, this paper may be of help to those making an evaluation of the potential impact of SMES/TES on the development of new energy sources, and to determine for which energy sources it is most appropriate.

  17. Characterization of high temperature superconductor cables for magnet toroidal field coils of the DEMO fusion power plant

    Energy Technology Data Exchange (ETDEWEB)

    Bayer, Christoph M.

    2017-05-01

    Nuclear fusion is a key technology to satisfy the basic demand for electric energy sustainably. The official EUROfusion schedule foresees a first industrial DEMOnstration Fusion Power Plant for 2050. In this work several high temperature superconductor sub-size cables are investigated for their applicability in large scale DEMO toroidal field coils. Main focus lies on the electromechanical stability under the influence of high Lorentz forces at peak magnetic fields of up to 12 T.

  18. A cryogen-free ultralow-field superconducting quantum interference device magnetic resonance imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob, E-mail: ihahn@caltech.edu [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 (United States)

    2014-09-15

    Magnetic resonance imaging (MRI) at microtesla fields using superconducting quantum interference device (SQUID) detection has previously been demonstrated, and advantages have been noted. Although the ultralow-field SQUID MRI technique would not need the heavy superconducting magnet of conventional MRI systems, liquid helium required to cool the low-temperature detector still places a significant burden on its operation. We have built a prototype cryocooler-based SQUID MRI system that does not require a cryogen. The SQUID detector and the superconducting gradiometer were cooled down to 3.7 K and 4.3 K, respectively. We describe the prototype design, characterization, a phantom image, and areas of further improvements needed to bring the imaging performance to parity with conventional MRI systems.

  19. A cryogen-free ultralow-field superconducting quantum interference device magnetic resonance imaging system

    Science.gov (United States)

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2014-09-01

    Magnetic resonance imaging (MRI) at microtesla fields using superconducting quantum interference device (SQUID) detection has previously been demonstrated, and advantages have been noted. Although the ultralow-field SQUID MRI technique would not need the heavy superconducting magnet of conventional MRI systems, liquid helium required to cool the low-temperature detector still places a significant burden on its operation. We have built a prototype cryocooler-based SQUID MRI system that does not require a cryogen. The SQUID detector and the superconducting gradiometer were cooled down to 3.7 K and 4.3 K, respectively. We describe the prototype design, characterization, a phantom image, and areas of further improvements needed to bring the imaging performance to parity with conventional MRI systems.

  20. Race-track coils for a 3 MW HTS ship motor

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, E., E-mail: ueno-eisaku@sei.co.jp; Kato, T.; Hayashi, K.

    2014-09-15

    Highlights: • Sumitomo Electric manufactured the HTS field coils for a 3 MW HTS ship motor. • The motor was developed and successfully passed the loading test by Kawasaki Heavy. • We tested and obtained the basic data to evaluate the 20-year durability of coils. - Abstract: Since the discovery of high-temperature superconductivity (HTS), Sumitomo Electric has been developing silver-sheathed Bi2223 superconducting wire and products. Ship propulsion motors are one of the most promising applications of HTS. Sumitomo Electric Industries, Ltd. (SEI) has recently manufactured 24 large racetrack coils, using 70 km long DI-BSCCO wires, for use in a 3 MW HTS motor developed by Kawasaki Heavy Industries, Ltd. (KHI). The 3 MW HTS motor, using our newly developed racetrack coils, has successfully passed the loading test. It is particularly important that the HTS field coils used in ship propulsion motors can withstand the expansive forces repeatedly applied to them. As racetrack type coils have straight sections, the support mechanism they require to withstand expansive forces is very different from that of circular coils. Therefore, we ran tests and obtained the basic data to evaluate the 20-year durability of racetrack coils against the repeatedly applied expansive forces expected in domestic ship propulsion motors.

  1. Shielding Electric Fields to Prevent Coalescence of Emulsions in Microfluidic Channels Using a 3D Metallic Coil

    Directory of Open Access Journals (Sweden)

    Jingmei Li

    2015-09-01

    Full Text Available In microfluidics, electric fields are widely used to assist the generation and the manipulation of droplets or jets. However, uncontrolled electric field can disrupt the operation of an integrated microfluidic system, for instance, through undesired coalescence of droplets, undesired changes in the wettability of the channel wall or unexpected death of cells. Therefore, an approach to control the distribution of electric fields inside microfluidic channels is needed. Inspired by the electro-magnetic shielding effect in electrical and radiation systems, we demonstrate the shielding of electric fields by incorporating 3D metallic coils in microfluidic devices. Using the degree of coalescence of emulsion drops as an indicator, we have shown that electric fields decrease dramatically in micro-channels surrounded by these conductive metallic coils both experimentally and numerically. Our work illustrates an approach to distribute electric fields in integrated microfluidic networks by selectively installing metallic coils or electrodes, and represents a significant step towards large-scale electro-microfluidic systems.

  2. Field Coil Constant Frequency Response Measurement%磁场线圈常数的频率响应测量

    Institute of Scientific and Technical Information of China (English)

    张伟; 汤元会

    2016-01-01

    线圈常数是磁场线圈的重要技术指标。分析了线圈常数的频率响应产生原因,提出基于感应线圈法的测量方法,并运用测量相对比值以消除测量误差。通过对三段巴凯尔圆环磁场线圈的频率响应测量结果表明,该方法的理论分析结果与实际测量结果基本一致。%The coil constant is an important parameter of field coil. Analysis of the causes of coil constant frequency response,puts forward measurement method based on the induction coil,and uses the measurement of relative ratio to eliminate the measurement error. The three section of the Bakel ring magnetic field frequency response measurement results show that,the results of theoretical analysis of the method is consistent with the actual measured results.

  3. Enhanced Field Emission Studies on Niobium Surfaces Relevant to High Field Superconducting Radio-Frequency Devices

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tong [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2002-09-18

    Enhanced field emission (EFE) presents the main impediment to higher acceleration gradients in superconducting niobium (Nb) radiofrequency cavities for particle accelerators. The strength, number and sources of EFE sites strongly depend on surface preparation and handling. The main objective of this thesis project is to systematically investigate the sources of EFE from Nb, to evaluate the best available surface preparation techniques with respect to resulting field emission, and to establish an optimized process to minimize or eliminate EFE. To achieve these goals, a scanning field emission microscope (SFEM) was designed and built as an extension to an existing commercial scanning electron microscope (SEM). In the SFEM chamber of ultra high vacuum, a sample is moved laterally in a raster pattern under a high voltage anode tip for EFE detection and localization. The sample is then transferred under vacuum to the SEM chamber equipped with an energy-dispersive x-ray spectrometer for individual emitting site characterization. Compared to other systems built for similar purposes, this apparatus has low cost and maintenance, high operational flexibility, considerably bigger scan area, as well as reliable performance. EFE sources from planar Nb have been studied after various surface preparation, including chemical etching and electropolishing, combined with ultrasonic or high-pressure water rinse. Emitters have been identified, analyzed and the preparation process has been examined and improved based on EFE results. As a result, field-emission-free or near field-emission-free surfaces at ~140 MV/m have been consistently achieved with the above techniques. Characterization on the remaining emitters leads to the conclusion that no evidence of intrinsic emitters, i.e., no fundamental electric field limit induced by EFE, has been observed up to ~140 MV/m. Chemically etched and electropolished Nb are compared and no significant difference is observed up to ~140 MV/m. To

  4. Design and Construction of a Prototype Solenoid Coil for MICE Coupling Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Li; Pan, Heng; Guo, XingLong; Xu, FengYu; Liu, XiaoKun; Wu, Hong; Zheng, ShiXian; Green, Michael A; Li, Derun; Virostek, Steve; Zisman, Michael

    2010-06-28

    A superconducting coupling solenoid mounted around four conventional RF cavities, which produces up to 2.6 T central magnetic field to keep the muons within the cavities, is to be used for the Muon Ionization Cooling Experiment (MICE). The coupling coil made from copper matrix NbTi conductors is the largest of three types of magnets in MICE both in terms of 1.5 m inner diameter and about 13MJ stored magnetic energy at full operation current of 210A. The stress induced inside the coil assembly during cool down and magnet charging is relatively high. In order to validate the design method and develop the coil winding technique with inside-wound SC splices required for the coupling coil, a prototype coil made from the same conductor and with the same diameter and thickness but only one-fourth long as the coupling coil was designed and fabricated by ICST. The prototype coil was designed to be charged to strain conditions that are equivalent or greater than would be encountered in the coupling coil. This paper presents detailed design of the prototype coil as well as developed coil winding skills. The analyses on stress in the coil assembly and quench process were carried out.

  5. High field septum magnet using a superconducting shield for the Future Circular Collider

    CERN Document Server

    AUTHOR|(CDS)2069375

    2017-01-01

    A zero-field cooled superconducting shield is proposed to realize a high-field (3–4 T) septum magnet for the Future Circular Collider hadron-hadron (FCC-hh) ring. Three planned prototypes using different materials and technical solutions are presented, which will be used to evaluate the feasibility of this idea as a part of the FCC study. The numerical simulation methods are described to calculate the field patterns around such a shield. A specific excitation current configuration is presented that maintains a fairly homogeneous field outside of a rectangular shield in a wide range of field levels from 0 to 3 Tesla. It is shown that a massless septum configuration (with an opening in the shield) is also possible and gives satisfactory field quality with realistic superconducting material properties.

  6. Optimal Design for Open MR/Superconducting Magnet with Active Shielding

    Institute of Scientific and Technical Information of China (English)

    Chun-zhong WANG; Qiu-liang WANG; Lan-kai LI; Ming RONG; You-yuan ZHOU

    2010-01-01

    The optimal design method for an open Magnetic Resonance Imaging(MRI)superconducting magnet with an active shielding configuration is proposed Firstly,three pairs of current rings are employed as seed coils.By optimizing the homogeneity of Diameter Sphere Volume(DSV),the positions and currents of the seed coils will be obtained.Secondly,according to the positions and currents of the seed coils,the current density of superconducting wires is determined,and then the original sections for the coils can be achieved.An optimization for the homogeneity based on the constrained nonlinear optimization method is employed to determine the coils with homogeneity.Thirdly,the magnetic field generated by previous coils is set as the background field,then add two coils with reverse current,and optimize the stray field line of 5 Gauss in a certain scope.Finally,a further optimization for the homogeneity is used to get final coils.This method can also be used in the design of other axisymmettic superconducting MRI magnets.

  7. Acute enhancement of the upper critical field for superconductivity approaching a quantum critical point in URhGe

    Science.gov (United States)

    Lévy, F.; Sheikin, I.; Huxley, A.

    2007-07-01

    When a pure material is tuned to the point where a continuous phase-transition line is crossed at zero temperature, known as a quantum critical point (QCP), completely new correlated quantum ordered states can form. These phases include exotic forms of superconductivity. However, as superconductivity is generally suppressed by a magnetic field, the formation of superconductivity ought not to be possible at extremely high field. Here, we report that as we tune the ferromagnet, URhGe, towards a QCP by applying a component of magnetic field in the material's easy magnetic plane, superconductivity survives in progressively higher fields applied simultaneously along the material's magnetic hard axis. Thus, although superconductivity never occurs above a temperature of 0.5K, we find that it can survive in extremely high magnetic fields, exceeding 28T.

  8. Acute enhancement of the upper critical field for superconductivity approaching a quantum critical point in URhGe

    Energy Technology Data Exchange (ETDEWEB)

    Levy, F.; Huxley, A. [CEA, SPSMS, DRFMC, F-38054 Grenoble, (France); Levy, F.; Sheikin, I. [CNRS, GHMFL, F-38042 Grenoble, (France); Huxley, A. [Univ Edinburgh, Scottish Univ Phys Alliance, Sch Phys, Edinburgh EH9 3JZ, Midlothian, (United Kingdom)

    2007-07-01

    When a pure material is tuned to the point where a continuous phase-transition line is crossed at zero temperature, known as a quantum critical point (QCP), completely new correlated quantum ordered states can form. These phases include exotic forms of superconductivity. However, as superconductivity is generally suppressed by a magnetic field, the formation of superconductivity ought not to be possible at extremely high field. Here, we report that as we tune the ferromagnet, URhGe, towards a QCP by applying a component of magnetic field in the material's easy magnetic plane, superconductivity survives in progressively higher fields applied simultaneously along the material's magnetic hard axis. Thus, although superconductivity never occurs above a temperature of 0.5 K, we find that it can survive in extremely high magnetic fields, exceeding 28 T. (authors)

  9. Superconducting inductive displacement detection of a microcantilever

    Energy Technology Data Exchange (ETDEWEB)

    Vinante, A., E-mail: anvinante@fbk.eu [Istituto di Fotonica e Nanotecnologie, CNR - Fondazione Bruno Kessler, I-38123 Povo, Trento (Italy)

    2014-07-21

    We demonstrate a superconducting inductive technique to measure the displacement of a micromechanical resonator. In our scheme, a type I superconducting microsphere is attached to the free end of a microcantilever and approached to the loop of a dc Superconducting Quantum Interference Device (SQUID) microsusceptometer. A local magnetic field as low as 100 μT, generated by a field coil concentric to the SQUID, enables detection of the cantilever thermomechanical noise at 4.2 K. The magnetomechanical coupling and the magnetic spring are in good agreement with image method calculations assuming pure Meissner effect. These measurements are relevant to recent proposals of quantum magnetomechanics experiments based on levitating superconducting microparticles.

  10. Field Quality of the Short Superconducting Dipole Models for the LHC

    CERN Document Server

    Ang, Z; Sanfilippo, S; Siemko, A; Tommasini, D; Venturini-Delsolaro, W; Walckiers, L

    2002-01-01

    A full characterization of the magnetic field in warm and cold conditions was performed as a part of the standard test on the LHC 1-m long superconducting dipole models. Furthermore, dedicated measurement campaigns addressed the effect of current cycles and quenches on field quality. Powering and quenches were found to generate characteristic instabilities in the geometric harmonics. Detailed results are presented on this phenomenon, as well as correlations between warm and cold measurements and field reconstructions.

  11. Field quality of the short superconducting dipole models for the LHC

    CERN Document Server

    Venturini-Delsolaro, W; Bottura, L; Sanfilippo, S; Siemko, A; Tommasini, D; Walckiers, L

    2002-01-01

    A full characterization of the magnetic field in warm and cold conditions was performed as a part of the standard test on the LHC 1- m long superconducting dipole models. Furthermore, dedicated measurement campaigns addressed the effect of current cycles and quenches on field quality. Powering and quenches were found to generate characteristic instabilities in the geometric harmonics. Detailed results are presented on this phenomenon, as well as correlations between warm and cold measurements and field reconstructions. (9 refs).

  12. Null space imaging: nonlinear magnetic encoding fields designed complementary to receiver coil sensitivities for improved acceleration in parallel imaging.

    Science.gov (United States)

    Tam, Leo K; Stockmann, Jason P; Galiana, Gigi; Constable, R Todd

    2012-10-01

    To increase image acquisition efficiency, we develop alternative gradient encoding strategies designed to provide spatial encoding complementary to the spatial encoding provided by the multiple receiver coil elements in parallel image acquisitions. Intuitively, complementary encoding is achieved when the magnetic field encoding gradients are designed to encode spatial information where receiver spatial encoding is ambiguous, for example, along sensitivity isocontours. Specifically, the method generates a basis set for the null space of the coil sensitivities with the singular value decomposition and calculates encoding fields from the null space vectors. A set of nonlinear gradients is used as projection imaging readout magnetic fields, replacing the conventional linear readout field and phase encoding. Multiple encoding fields are used as projections to capture the null space information, hence the term null space imaging. The method is compared to conventional Cartesian SENSitivity Encoding as evaluated by mean squared error and robustness to noise. Strategies for developments in the area of nonlinear encoding schemes are discussed. The null space imaging approach yields a parallel imaging method that provides high acceleration factors with a limited number of receiver coil array elements through increased time efficiency in spatial encoding.

  13. Magnetic Field Design of Coil-Dominated Magnets Wound With Coated Conductors

    OpenAIRE

    Takahashi, Keita; Amemiya, Naoyuki; Nakamura, Taketsune; MORI, YOSHIHARU; Ogitsu, Toru; Yoshimoto, Masahiro; WATANABE, Ikuo; Yoshiyuki, Takeshi

    2012-01-01

    Coil-dominated magnets wound with coated conductors were designed for an FFAG accelerator for carbon therapy, which was designed by applying linear approximation. When designing the coil-end of the magnets, we applied differential geometry. To apply the differential geometry to three-dimensional windings with coated conductors, we introduced the concept of generalized flat-wise bending. Thereby, the combination of flat-wise bending and torsion was considered as bending of developable surface....

  14. High critical current density and enhanced irreversibility field in superconducting MgB2 thin films.

    Science.gov (United States)

    Eom, C B; Lee, M K; Choi, J H; Belenky, L J; Song, X; Cooley, L D; Naus, M T; Patnaik, S; Jiang, J; Rikel, M; Polyanskii, A; Gurevich, A; Cai, X Y; Bu, S D; Babcock, S E; Hellstrom, E E; Larbalestier, D C; Rogado, N; Regan, K A; Hayward, M A; He, T; Slusky, J S; Inumaru, K; Haas, M K; Cava, R J

    2001-05-31

    The discovery of superconductivity at 39 K in magnesium diboride offers the possibility of a new class of low-cost, high-performance superconducting materials for magnets and electronic applications. This compound has twice the transition temperature of Nb3Sn and four times that of Nb-Ti alloy, and the vital prerequisite of strongly linked current flow has already been demonstrated. One possible drawback, however, is that the magnetic field at which superconductivity is destroyed is modest. Furthermore, the field which limits the range of practical applications-the irreversibility field H*(T)-is approximately 7 T at liquid helium temperature (4.2 K), significantly lower than about 10 T for Nb-Ti (ref. 6) and approximately 20 T for Nb3Sn (ref. 7). Here we show that MgB2 thin films that are alloyed with oxygen can exhibit a much steeper temperature dependence of H*(T) than is observed in bulk materials, yielding an H* value at 4.2 K greater than 14 T. In addition, very high critical current densities at 4.2 K are achieved: 1 MA cm-2 at 1 T and 105 A cm-2 at 10 T. These results demonstrate that MgB2 has potential for high-field superconducting applications.

  15. Electric-Field-Induced Superconductivity Detected by Magnetization Measurements of an Electric-Double-Layer Capacitor

    NARCIS (Netherlands)

    Kasahara, Yuichi; Nishijima, Takahiro; Sato, Tatsuya; Takeuchi, Yuki; Ye, Jianting; Yuan, Hongtao; Shimotani, Hidekazu; Iwasa, Yoshihiro

    We report evidence for superconductivity induced by the application of strong electric fields onto the surface of a band insulator, ZrNCl, provided by the observation of a shielding diamagnetic signal. We introduced an electric-double-layer capacitor configuration and in situ magnetization

  16. Influence of Superconductivity on Crystal Electric Field Transitions in La1-xTbxAl2

    DEFF Research Database (Denmark)

    Feile, R.; Loewenhaupt, M.; Kjems, Jørgen

    1981-01-01

    Inelastic neutron scattering from the crystal electric field transitions in La1-xTbxAl2 single crystals has revealed an abrupt increase in the lifetimes of these transitions when the system becomes superconducting. An increase in the integrated intensities is also observed. The lifetime effects...

  17. Electric-Field-Induced Superconductivity Detected by Magnetization Measurements of an Electric-Double-Layer Capacitor

    NARCIS (Netherlands)

    Kasahara, Yuichi; Nishijima, Takahiro; Sato, Tatsuya; Takeuchi, Yuki; Ye, Jianting; Yuan, Hongtao; Shimotani, Hidekazu; Iwasa, Yoshihiro

    2011-01-01

    We report evidence for superconductivity induced by the application of strong electric fields onto the surface of a band insulator, ZrNCl, provided by the observation of a shielding diamagnetic signal. We introduced an electric-double-layer capacitor configuration and in situ magnetization measureme

  18. Electric-Field-Induced Superconductivity Detected by Magnetization Measurements of an Electric-Double-Layer Capacitor

    NARCIS (Netherlands)

    Kasahara, Yuichi; Nishijima, Takahiro; Sato, Tatsuya; Takeuchi, Yuki; Ye, Jianting; Yuan, Hongtao; Shimotani, Hidekazu; Iwasa, Yoshihiro

    2011-01-01

    We report evidence for superconductivity induced by the application of strong electric fields onto the surface of a band insulator, ZrNCl, provided by the observation of a shielding diamagnetic signal. We introduced an electric-double-layer capacitor configuration and in situ magnetization measureme

  19. Effective field theories for superconducting systems with multiple Fermi surfaces

    Science.gov (United States)

    Braga, P. R.; Granado, D. R.; Guimaraes, M. S.; Wotzasek, C.

    2016-11-01

    In this work we investigate the description of superconducting systems with multiple Fermi surfaces. For the case of one Fermi surface we re-obtain the result that the superconductor is more precisely described as a topological state of matter. Studying the case of more than one Fermi surface, we obtain the effective theory describing a time reversal symmetric topological superconductor. These results are obtained by employing a general procedure to construct effective low energy actions describing states of electromagnetic systems interacting with charges and defects. The procedure consists in taking into account the proliferation or dilution of these charges and defects and its consequences for the low energy description of the electromagnetic response of the system. We find that the main ingredient entering the low energy characterization of the system with more than one Fermi surface is a non-conservation of the canonical supercurrent triggered by particular vortex configurations.

  20. Effective field theories for superconducting systems with multiple Fermi surfaces

    CERN Document Server

    Braga, P R; Guimaraes, M S; Wotzasek, C

    2016-01-01

    In this work we investigate the description of superconducting systems with multiple Fermi surfaces. For the case of one Fermi surface we re-obtain the result that the superconductor is more precisely described as a topological state of matter. Studying the case of more than one Fermi surface, we obtain the effective theory describing a time reversal symmetric topological superconductor. These results are obtained by employing a general procedure to construct effective low energy actions describing states of electromagnetic systems interacting with charges and defects. The procedure consists in taking into account the proliferation or dilution of these charges and defects and its consequences for the low energy description of the electromagnetic response of the system. We find that the main ingredient entering the low energy characterization of the system with more the one Fermi surface is a non-conservation of the canonical supercurrent triggered by particular vortex configurations.

  1. Effective field theories for superconducting systems with multiple Fermi surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Braga, P.R., E-mail: pedro.rangel.braga@gmail.com [Departamento de Física Teórica, Instituto de Física, UERJ - Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, 20550-013 Maracanã, Rio de Janeiro (Brazil); Granado, D.R., E-mail: diegorochagrana@uerj.br [Departamento de Física Teórica, Instituto de Física, UERJ - Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, 20550-013 Maracanã, Rio de Janeiro (Brazil); Department of Physics and Astronomy, Ghent University, Krijgslaan 281-S9, 9000 Gent (Belgium); Guimaraes, M.S., E-mail: msguimaraes@uerj.br [Departamento de Física Teórica, Instituto de Física, UERJ - Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, 20550-013 Maracanã, Rio de Janeiro (Brazil); Wotzasek, C., E-mail: clovis@if.ufrj.br [Instituto de Física, Universidade Federal do Rio de Janeiro, 21941-972, Rio de Janeiro (Brazil)

    2016-11-15

    In this work we investigate the description of superconducting systems with multiple Fermi surfaces. For the case of one Fermi surface we re-obtain the result that the superconductor is more precisely described as a topological state of matter. Studying the case of more than one Fermi surface, we obtain the effective theory describing a time reversal symmetric topological superconductor. These results are obtained by employing a general procedure to construct effective low energy actions describing states of electromagnetic systems interacting with charges and defects. The procedure consists in taking into account the proliferation or dilution of these charges and defects and its consequences for the low energy description of the electromagnetic response of the system. We find that the main ingredient entering the low energy characterization of the system with more than one Fermi surface is a non-conservation of the canonical supercurrent triggered by particular vortex configurations.

  2. Statistical analysis of the Nb3Sn strand production for the ITER toroidal field coils

    Science.gov (United States)

    Vostner, A.; Jewell, M.; Pong, I.; Sullivan, N.; Devred, A.; Bessette, D.; Bevillard, G.; Mitchell, N.; Romano, G.; Zhou, C.

    2017-04-01

    The ITER toroidal field (TF) strand procurement initiated the largest Nb3Sn superconducting strand production hitherto. The industrial-scale production started in Japan in 2008 and finished in summer 2015. Six ITER partners (so-called Domestic Agencies, or DAs) are in charge of the procurement and involved eight different strand suppliers all over the world, of which four are using the bronze route (BR) process and four the internal-tin (IT) process. In total more than 500 tons have been produced including excess material covering losses during the conductor manufacturing process, in particular the cabling. The procurement is based on a functional specification where the main strand requirements like critical current, hysteresis losses, Cu ratio and residual resistance ratio are specified but not the strand production process or layout. This paper presents the analysis on the data acquired during the quality control (QC) process that was carried out to ensure the same conductor performance requirements are met by the different strand suppliers regardless of strand design. The strand QC is based on 100% billet testing and on applying statistical process control (SPC) limits. Throughout the production, samples adjacent to the strand pieces tested by the suppliers are cross-checked (‘verified’) by their respective DAs reference labs. The level of verification was lowered from 100% at the beginning of the procurement progressively to approximately 25% during the final phase of production. Based on the complete dataset of the TF strand production, an analysis of the SPC limits of the critical strand parameters is made and the related process capability indices are calculated. In view of the large-scale production and costs, key manufacturing parameters such as billet yield, number of breakages and piece-length distribution are also discussed. The results are compared among all the strand suppliers, focusing on the difference between BR and IT processes. Following

  3. An improved FEM model for computing transport AC loss in coils made of RABiTS YBCO coated conductors for electric machines

    DEFF Research Database (Denmark)

    Ainslie, Mark D; Rodriguez Zermeno, Victor Manuel; Hong, Zhiyong

    2011-01-01

    AC loss can be a significant problem for any applications that utilize or produce an AC current or magnetic field, such as an electric machine. The authors investigate the electromagnetic properties of high temperature superconductors with a particular focus on the AC loss in superconducting coils...... Superconductivity Group's all-superconducting permanent magnet synchronous motor design. To validate the modeling results, the transport AC loss of a stator coil is measured using an electrical method based on inductive compensation by means of a variable mutual inductance. Finally, the implications of the findings...... on the performance of the motor are discussed....

  4. Estimation of critical current distribution in Bi2Sr2CaCu2O x cables and coils using a self-consistent model

    Science.gov (United States)

    Liu, Donghui; Xia, Jing; Yong, Huadong; Zhou, Youhe

    2016-06-01

    Superconducting magnets can generate high magnetic fields. Multi-filamentary Ag-alloy sheathed Bi2Sr2CaCu2O x (Bi-2212) round wire can have a high critical current density in a very high magnetic field. Thus, Bi-2212 has great potential for the development of high-field magnets. For safe and reliable operation of superconducting magnets, it is necessary to estimate the critical current during the design of cables and coils. In this paper, we extend the self-consistent model proposed by Zermeño et al to study the critical current of Bi-2212 cables and coils. First, based on the distribution of Bi-2212 filaments and the experimental test of the critical current of a single strand, the critical currents in cables and coils are calculated. The self-field effect on the critical current is also analyzed. Then, we use an equivalent model to to estimate critical current of large superconducting coils. The equivalent model can effectively estimate the critical current in coils. Using the equivalent model, the results of coils in self-field and high field are compared and discussed. The method and results could be useful for the design of high-field coils.

  5. Ripple Field AC Losses in 10-MW Wind Turbine Generators With a MgB2 Superconducting Field Winding

    DEFF Research Database (Denmark)

    Liu, Dong; Polinder, Henk; Magnusson, Niklas

    2016-01-01

    Superconducting (SC) synchronous generators are proposed as a promising candidate for 10-20-MW direct-drive wind turbines because they can have low weights and small sizes. A common way of designing an SC machine is to use SC wires with high current-carrying capability in the dc field winding...

  6. An improved FEM model for computing transport AC loss in coils made of RABiTS YBCO coated conductors for electric machines

    Science.gov (United States)

    Ainslie, Mark D.; Rodriguez-Zermeno, Victor M.; Hong, Zhiyong; Yuan, Weijia; Flack, Timothy J.; Coombs, Timothy A.

    2011-04-01

    AC loss can be a significant problem for any applications that utilize or produce an AC current or magnetic field, such as an electric machine. The authors investigate the electromagnetic properties of high temperature superconductors with a particular focus on the AC loss in superconducting coils made from YBCO coated conductors for use in an all-superconducting electric machine. This paper presents an improved 2D finite element model for the cross-section of such coils, based on the H formulation. The model is used to calculate the transport AC loss of a racetrack-shaped coil using constant and magnetic field-dependent critical current densities, and the inclusion and exclusion of a magnetic substrate, as found in RABiTS (rolling-assisted biaxially textured substrate) YBCO coated conductors. The coil model is based on the superconducting stator coils used in the University of Cambridge EPEC Superconductivity Group's all-superconducting permanent magnet synchronous motor design. To validate the modeling results, the transport AC loss of a stator coil is measured using an electrical method based on inductive compensation by means of a variable mutual inductance. Finally, the implications of the findings on the performance of the motor are discussed.

  7. Optimized Superconducting Quadrupole Arrays for Multiple Beam Transport

    Energy Technology Data Exchange (ETDEWEB)

    Meinke, Rainer, B.; Goodzeit, Carl, L.; Ball, Millicent, J.

    2005-09-20

    This research project advanced the development of reliable, cost-effective arrays of superconducting quadrupole magnets for use in multi-beam inertial fusion accelerators. The field in each array cell must be identical and meet stringent requirements for field quality and strength. An optimized compact array design using flat double-layer pancake coils was developed. Analytical studies of edge termination methods showed that it is feasible to meet the requirements for field uniformity in all cells and elimination of stray external field in several ways: active methods that involve placement of field compensating coils on the periphery of the array or a passive method that involves use of iron shielding.

  8. Operational Merits of Maritime Superconductivity

    Science.gov (United States)

    Ross, R.; Bosklopper, J. J.; van der Meij, K. H.

    The perspective of superconductivity to transfer currents without loss is very appealing in high power applications. In the maritime sector many machines and systems exist in the roughly 1-100 MW range and the losses are well over 50%, which calls for dramatic efficiency improvements. This paper reports on three studies that aimed at the perspectives of superconductivity in the maritime sector. It is important to realize that the introduction of superconductivity comprises two technology transitions namely firstly electrification i.e. the transition from mechanical drives to electric drives and secondly the transition from normal to superconductive electrical machinery. It is concluded that superconductivity does reduce losses, but its impact on the total energy chain is of little significance compared to the investments and the risk of introducing a very promising but as yet not proven technology in the harsh maritime environment. The main reason of the little impact is that the largest losses are imposed on the system by the fossil fueled generators as prime movers that generate the electricity through mechanical torque. Unless electric power is supplied by an efficient and reliable technology that does not involve mechanical torque with the present losses both normal as well as superconductive electrification of the propulsion will hardly improve energy efficiency or may even reduce it. One exception may be the application of degaussing coils. Still appealing merits of superconductivity do exist, but they are rather related to the behavior of superconductive machines and strong magnetic fields and consequently reduction in volume and mass of machinery or (sometimes radically) better performance. The merits are rather convenience, design flexibility as well as novel applications and capabilities which together yield more adequate systems. These may yield lower operational costs in the long run, but at present the added value of superconductivity rather seems more

  9. Quasiparticle entropy in the high-field superconducting phase of CeCoIn(5).

    Science.gov (United States)

    Tokiwa, Y; Bauer, E D; Gegenwart, P

    2012-09-14

    The heavy-fermion superconductor CeCoIn(5) displays an additional transition within its superconducting (SC) state, whose nature is characterized by high-precision studies of the isothermal field dependence of the entropy, derived from combined specific heat and magnetocaloric effect measurements at temperatures T≥100  mK and fields H≤12  T aligned along different directions. For any of these conditions, we do not observe an additional entropy contribution upon tuning at constant temperature by magnetic field from the homogeneous SC into the presumed Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) SC state. By contrast, for H∥[100] a reduction of entropy was found that quantitatively agrees with the expectation for spin-density-wave order without FFLO superconductivity. Our data exclude the formation of a FFLO state in CeCoIn(5) for out-of-plane field directions, where no spin-density-wave order exists.

  10. Investigation of the Periodic Magnetic Field Modulation in LHC Superconducting Dipoles

    CERN Document Server

    Pugnat, P; Siemko, A

    2002-01-01

    The windings of high-field accelerator magnets are usually made of Rutherford-type superconducting cables. The magnetic field distribution along the axis of such magnets exhibits a periodic modulation with a wavelength equal to the twist pitch length of the cable used in the winding. This effect, resulting from quasi-persistent currents, was investigated with a Hall probes array inserted inside the aperture of the LHC superconducting dipoles, both in short models and full-scale prototypes. The amplitude and the time dependence of this periodic field oscillation have been studied as a function of the magnet current history. The origin and the impact on the LHC dipoles stability of the non-uniform current redistribution producing such a field modulation are discussed.

  11. Pressure-induced superconductivity in a ferromagnet, UGe sub 2 : resistivity measurements in a magnetic field

    CERN Document Server

    Kobayashi, T C; Tateiwa, N; Amaya, K; Haga, Y; Settai, R; Onuki, Y

    2002-01-01

    Electrical resistivity measurements in a magnetic field are carried out on UGe sub 2 which exhibits pressure-induced superconductivity. The superconductivity is observed from 1.06 to 1.44 GPa. In the temperature and field dependences of the resistivity at P > P sub C where the ferromagnetic ordering disappears, it is observed that the application of an external field along the a-axis increases the coefficient A of the Fermi-liquid behaviour (propor to AT sup 2) abruptly - corresponding to the metamagnetic transition. The characteristic enhancement of H sub C sub 2 is reconfirmed for H || a-axis. The upper critical field of H sub C sub 2 is anisotropic: H sub C sub 2 (T) exhibits positive curvature for H || b-axis and H || c-axis.

  12. A target field design of open multi-purpose RF coil for musculoskeletal MR imaging at 3T.

    Science.gov (United States)

    Gao, Fei; Zhang, Rui; Zhou, Diange; Wang, Xiaoying; Huang, Kefu; Zhang, Jue

    2016-10-01

    Musculoskeletal MR imaging under multi-angle situations plays an increasingly important role in assessing joint and muscle tissues system. However, there are still limitations due to the closed structures of most conventional RF coils. In this study, a time-harmonic target-field method was employed to design open multi-purpose coil (OMC) for multi-angle musculoskeletal MR imaging. The phantom imaging results suggested that the proposed OMC could achieve homogeneously distributed magnetic field and high signal-to-noise ratio (SNR) of 239.04±0.83 in the region of interest (ROI). The maximum temperature in the heating hazard test was 16°C lower than the standard regulation, which indicated the security of the designed OMC. Furthermore, to demonstrate the effectiveness of the proposed OMC for musculoskeletal MR imaging, especially for multi-angle imaging, a healthy volunteer was examined for MR imaging of elbow, ankle and knee using OMC. The in vivo imaging results showed that the proposed OMC is effective for MR imaging of musculoskeletal tissues at different body parts, with satisfied B1 field homogeneity and SNR. Moreover, the open structure of the OMC could provide a large joint movement region. The proposed open multi-purpose coil is feasible for musculoskeletal MR imaging, and potentially, it is more suitable for the evaluation of musculoskeletal tissues under multi-angle conditions. Copyright © 2016. Published by Elsevier Inc.

  13. LETTER TO THE EDITOR: Experimental evidence for Fröhlich superconductivity in high magnetic fields

    Science.gov (United States)

    Harrison, N.; Mielke, C. H.; Singleton, J.; Brooks, J. S.; Tokumoto, M.

    2001-05-01

    Resistivity and irreversible magnetization data taken within the high magnetic field CDWx phase of the quasi-two-dimensional organic metal α-(BEDT-TTF)2KHg(SCN)4 are shown to be consistent with a field-induced inhomogeneous superconducting phase. In-plane skin depth measurements show that the resistive transition on entering the CDWx phase is both isotropic and representative of the bulk.

  14. Electromagnetic characteristics of a superconducting magnet for the 28 GHz ECR ion source according to the series resistance of the protection circuit

    Science.gov (United States)

    Lee, Hongseok; Mo, Young Kyu; Kang, Jong O.; Bang, Seungmin; Kim, Junil; Lee, Onyou; Kang, Hyoungku; Hong, Jonggi; Choi, Sukjin; Hong, In Seok; Nam, Seokho; Ahn, Min Chul

    2015-10-01

    A linear accelerator, called RAON, is being developed as a part of the Rare Isotope Science Project (RISP) at the Institute for Basic Science (IBS). The linear accelerator utilizes an electron cyclotron resonance (ECR) ion source for providing intense highly-charged ion beams to the linear accelerator. The 28-GHz ECR ion source can extract heavy-ion beams from protons to uranium. The superconducting magnet system for the 28-GHz ECR ion source is composed of hexapole coils and four solenoid coils made with low-Tc superconducting wires of NbTi. An electromagnetic force acts on the superconducting magnets due to the magnetic field and flowing current in the case of not only the normal state but also the quench state. In the case of quench on hexapole coils, an unbalanced flowing current among the hexapole coils is generated and causes an unbalanced electromagnetic force. Coil motions and coil strains in the quench state are larger than those in the normal state due to the unbalanced electromagnetic force among hexapole coils. Therefore, an analysis of the electromagnetic characteristics of the superconducting magnet for the 28-GHz ECR ion source on series resistance of the protection circuit in the case of quench should be conducted. In this paper, an analysis of electromagnetic characteristics of Superconducting hexapole coils for the 28-GHz ECR ion source according to the series resistance of the protection circuit in the case of quench performed by using finite-elements-method (FEM) simulations is reported.

  15. Using a modified 3D-printer for mapping the magnetic field of RF coils designed for fetal and neonatal imaging.

    Science.gov (United States)

    Vavoulas, Alexander; Vaiopoulos, Nicholas; Hedström, Erik; Xanthis, Christos G; Sandalidis, Harilaos G; Aletras, Anthony H

    2016-08-01

    An experimental setup for characterizing the magnetic field of MRI RF coils was proposed and tested. The setup consisted of a specially configured 3D-printer, a network analyzer and a mid-performance desktop PC. The setup was tested on a single loop RF coil, part of a phased array for fetal imaging. Then, the setup was used for determining the magnetic field characteristics of a high-pass birdcage coil used for neonatal MR imaging with a vertical static field. The scattering parameter S21, converted into power ratio, was used for mapping the B1 magnetic field. The experimental measurements from the loop coil were close to the theoretical results (R=0.924). A high degree of homogeneity was measured for the neonatal birdcage RF coil. The development of MR RF coils is time consuming and resource intensive. The proposed experimental setup provides an alternative method for magnetic field characterization of RF coils used in MRI. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Experimental and theoretical investigation of mechanical disturbances in epoxy-impregnated superconducting coils. 2. Shear-stress-induced epoxy fracture as the principal source of premature quenches and training theoretical analysis

    Science.gov (United States)

    Bobrov, E. S.; Williams, J. E. C.; Iwasa, Y.

    An epoxy-impregnated superconducting winding may be considered structurally as a unidirectional composite consisting of superconducting wires embedded in a matrix of epoxy resin. The epoxy, because of its low strength and brittleness at low temperatures, is susceptible to brittle fracture which occurs under stresses induced initially during the cooldown (by differential thermal contractions of epoxy and metal) and subsequently during the magnet charge-up (by the Lorentz forces). Various modes of matrix failure are discussed and analysed. For the composite winding represented by four principal characteristics - geometry; constituent material properties; winding boundary conditions; and microcracks which become stress concentration sites for the initiation of further cracking. It is demonstrated that the transverse shear stresses induced by Lorentz forces in windings with cylindrical symmetry are principally responsible for premature magnet quenches. It is further demonstrated that to minimize shear stresses and thus prevent epoxy fracture in the winding, the whole winding body must not be restrained by the coil form and must be free to take its natural shape as the magnet is energized. This unrestrained winding support design is called the floating coil concept. The conclusions of the analysis agree both qualitatively and quantitatively with experimental results reported in the next two parts of this work.

  17. Uncertainty analysis of the magnetic field measurement by the translating coil method in axisymmetric magnets

    Science.gov (United States)

    Arpaia, Pasquale; De Vito, Luca; Kazazi, Mario

    2016-12-01

    In the uncertainty assessment of magnetic flux measurements in axially symmetric magnets by the translating coil method, the Guide to the Uncertainty in Measurement and its supplement cannot be applied: the voltage variation at the coil terminals, which is the actual measured quantity, affects the flux estimate and its uncertainty. In this paper, a particle filter, implementing a sequential Monte-Carlo method based on Bayesian inference, is applied. At this aim, the main uncertainty sources are analyzed and a model of the measurement process is defined. The results of the experimental validation point out the transport system and the acquisition system as the main contributions to the uncertainty budget.

  18. Superconducting magnets for MRI

    Energy Technology Data Exchange (ETDEWEB)

    Williams, J.E.

    1984-08-01

    Three types of magnets are currently used to provide the background field required for magnet resonance imaging (MRI). (i) Permanent magnets produce fields of up to 0.3 T in volumes sufficient for imaging the head or up to 0.15 T for whole body imaging. Cost and simplicity of operation are advantages, but relatively low field, weight (up to 100 tonnes) and, to a small extent, instability are limitations. (ii) Water-cooled magnets provide fields of up to 0.25 T in volumes suitable for whole body imaging, but at the expense of power (up to 150 kW for 0.25 T) and water-cooling. Thermal stability of the field requires the maintenance of constant temperature through periods both of use and of quiescence. (iii) Because of the limitations imposed by permanent and resistive magnets, particularly on field strength, the superconducting magnet is now most widely used to provide background fields of up to 2 T for whole body MRI. It requires very low operating power and that only for refrigeration. Because of the constant low temperature, 4.2 K, at which its stressed structure operates, its field is stable. The following review deals principally with superconducting magnets for MRI. However, the sections on field analysis apply to all types of magnet and the description of the source terms of circular coils and of the principals of design of solenoids apply equally to resistive solenoidal magnets.

  19. Microwave observation of magnetic field penetration of high-T/sub c/ superconducting oxides

    Energy Technology Data Exchange (ETDEWEB)

    Khachaturyan, K.; Weber, E.R.; Tejedor, P.; Stacy, A.M.; Portis, A.M.

    1987-12-01

    Microwave methods, using a conventional EPR spectrometer, have been applied to a study of magnetic field penetration of the high-T/sub c/ superconducting oxides La/sub 1.85/Sr/sub 0.15/CuO/sub 4/, YBa/sub 2/Cu/sub 3/O/sub 7/, and EuBa/sub 2/Cu/sub 3/O/sub 7/. Signals over 10/sup 5/ times the sensitivity limit of the EPR spectrometer were obtained. Huge low-field peaks were observed in the superconducting phase for magnetic fields below 10 G. The peak signal decreased exponentially with temperature just below T/sub c/. These observations are taken as evidence of the spin-glass features of these materials and of fluxoid penetration of intrinsic Josephson junctions.

  20. RF Head Coil Design with Improved RF Magnetic Near-Fields Uniformity for Magnetic Resonance Imaging (MRI) Systems.

    Science.gov (United States)

    Sohn, Sung-Min; DelaBarre, Lance; Gopinath, Anand; Vaughan, John Thomas

    2014-08-01

    Higher magnetic field strength in magnetic resonance imaging (MRI) systems offers higher signal-to-noise ratio (SNR), contrast, and spatial resolution in MR images. However, the wavelength in ultra-high fields (7 tesla and beyond) becomes shorter than the human body at the Larmor frequency with increasing static magnetic field (B0) of MRI system. At short wavelengths, interference effect appears resulting in non- uniformity of the RF magnetic near-field (B1) over the subject and MR images may have spatially anomalous contrast. The B1 near-field generated by the transverse electromagnetic (TEM) RF coil's microstrip line element has a maximum near the center of its length and falls off towards both ends. In this study, a double trapezoidal shaped microstrip transmission line element is proposed to obtain uniform B1 field distribution by gradual impedance variation. Two multi-channel RF head coils with uniform and trapezoidal shape elements were built and tested with a phantom at 7T MRI scanner for comparison. The simulation and experimental results show stronger and more uniform B1(+) near-field with the trapezoidal shape.

  1. Electromagnetic superconductivity of vacuum induced by strong magnetic field: Numerical evidence in lattice gauge theory

    Energy Technology Data Exchange (ETDEWEB)

    Braguta, V.V. [IHEP, Protvino, Moscow region, 142284 (Russian Federation); ITEP, B. Cheremushkinskaya str. 25, Moscow, 117218 (Russian Federation); Buividovich, P.V. [ITEP, B. Cheremushkinskaya str. 25, Moscow, 117218 (Russian Federation); JINR, Joliot-Curie str. 6, Dubna, Moscow region, 141980 (Russian Federation); Institute of Theoretical Physics, University of Regensburg, Universitaetsstrasse 31, D-93053 Regensburg (Germany); Chernodub, M.N., E-mail: maxim.chernodub@lmpt.univ-tours.fr [CNRS, Laboratoire de Mathematiques et Physique Theorique, Universite Francois-Rabelais Tours, Parc de Grandmont, 37200 Tours (France); Department of Physics and Astronomy, University of Gent, Krijgslaan 281, S9, B-9000 Gent (Belgium); Kotov, A.Yu.; Polikarpov, M.I. [ITEP, B. Cheremushkinskaya str. 25, Moscow, 117218 (Russian Federation); MIPT, Institutskii per. 9, Dolgoprudny, Moscow region, 141700 (Russian Federation)

    2012-12-05

    Using numerical simulations of quenched SU(2) gauge theory we demonstrate that an external magnetic field leads to spontaneous generation of quark condensates with quantum numbers of electrically charged {rho} mesons if the strength of the magnetic field exceeds the critical value eB{sub c}=0.927(77) GeV{sup 2} or B{sub c}=(1.56{+-}0.13) Dot-Operator 10{sup 16} Tesla. The condensation of the charged {rho} mesons in strong magnetic field is a key feature of the magnetic-field-induced electromagnetic superconductivity of the vacuum.

  2. Spontaneous Electromagnetic Superconductivity of Vacuum in a Strong Magnetic Field: Evidence from the Nambu-Jona-Lasinio Model

    Science.gov (United States)

    Chernodub, M. N.

    2011-04-01

    Using an extended Nambu-Jona-Lasinio model as a low-energy effective model of QCD, we show that the vacuum in a strong external magnetic field (stronger than 1016T) experiences a spontaneous phase transition to an electromagnetically superconducting state. The unexpected superconductivity of, basically, empty space is induced by emergence of quark-antiquark vector condensates with quantum numbers of electrically charged rho mesons. The superconducting phase possesses an anisotropic inhomogeneous structure similar to a periodic Abrikosov lattice in a type-II superconductor. The superconducting vacuum is made of a new type of vortices which are topological defects in the charged vector condensates. The superconductivity is realized along the axis of the magnetic field only. We argue that this effect is absent in pure QED.

  3. Pulsed, High Power Microwave Processing of Field Emission in Superconducting Cavities

    Energy Technology Data Exchange (ETDEWEB)

    I.E. Campisi

    1992-08-03

    The phenomenon of field emission is very well known: electrons are extracted from within the solid state potential well of a metal and are emitted from the metal's surface under the presence of an accelerating potential. In many accelerators, electromagnetic energy is delivered to charged particles by means of microwave cavities excited in modes with electric field components aligned along the particles trajectory. If the mode used is of the TM type (most accelerators operate in the TM{sub 010} mode), then a surface electric field inside the cavities exists which can produce field emitted electrons when allowed by the phase of the fields. These field emitted currents can cause considerable current loading and bremsstrahlung radiation in normal conducting cavities (mostly copper), but in superconducting cavities they have the additional effect of locally heating the superconducting material above its transition temperature and causing performance degradation of the cavities and eventually quenches (transition to the normal conducting state). At present this phenomenon constitutes the limiting factor in superconducting cavity performance, and is receiving a great deal of attention. Several diagnostic methods have been developed to detect, locate and characterize the sources of field-emitted electrons. Methods have also been proposed and tested which decrease the incidence of field emission sites on metal surfaces, but the most effective method to date requires high temperature firing of the superconducting structures in an ultra high vacuum. This can be done only if the cavities are completely removed from their cryostat, a lengthy and costly process. In this paper the properties and advantages are examined of a different method for field emission processing, which does not require a cavity disassembly and which can be performed in situ. The method described makes use of short, high peak power RF pulses to reach high electric fields for a short time. At the same

  4. Quasi-two-dimensional superconductivity in FeSe0.3Te0.7 thin films and electric-field modulation of superconducting transition.

    Science.gov (United States)

    Lin, Zhu; Mei, Chenguang; Wei, Linlin; Sun, Zhangao; Wu, Shilong; Huang, Haoliang; Zhang, Shu; Liu, Chang; Feng, Yang; Tian, Huanfang; Yang, Huaixin; Li, Jianqi; Wang, Yayu; Zhang, Guangming; Lu, Yalin; Zhao, Yonggang

    2015-09-18

    We report the structural and superconducting properties of FeSe0.3Te0.7 (FST) thin films with different thicknesses grown on ferroelectric Pb(Mg1/3Nb2/3)0.7Ti0.3O3 substrates. It was shown that the FST films undergo biaxial tensile strains which are fully relaxed for films with thicknesses above 200 nm. Electrical transport measurements reveal that the ultrathin films exhibit an insulating behavior and superconductivity appears for thicker films with Tc saturated above 200 nm. The current-voltage curves around the superconducting transition follow the Berezinskii-Kosterlitz-Thouless (BKT) transition behavior and the resistance-temperature curves can be described by the Halperin-Nelson relation, revealing quasi-two-dimensional phase fluctuation in FST thin films. The Ginzburg number decreases with increasing film thickness indicating the decrease of the strength of thermal fluctuations. Upon applying electric field to the heterostructure, Tc of FST thin film increases due to the reduction of the tensile strain in FST. This work sheds light on the superconductivity, strain effect as well as electric-field modulation of superconductivity in FST films.

  5. Insulation and Heat Treatment of Bi-2212 Wire for Wind-and-React Coils

    Energy Technology Data Exchange (ETDEWEB)

    Peter K. F. Hwang

    2007-10-22

    Higher Field Magnets demand higher field materials such as Bi-2212 round superconducting wire. The Bi-2212 wire manufacture process depends on the coil fabrication method and wire insulation material. Considering the wind-and-react method, the coil must unifirmly heated to the melt temperature and uniformly cooled to the solidification temperature. During heat treat cycle for tightly wound coils, the leakage melt from conductor can chemically react with insulation on the conductor and creat short turns in the coils. In this research project, conductor, insulation, and coils are made to systemically study the suitable insulation materials, coil fabrication method, and heat treatment cycles. In this phase I study, 800 meters Bi-2212 wire with 3 different insulation materials have been produced. Best insulation material has been identified after testing six small coils for insulation integrity and critical current at 4.2 K. Four larger coils (2" dia) have been also made with Bi-2212 wrapped with best insulation and with different heattreatment cycle. These coils were tested for Ic in a 6T background field and at 4.2 K. The test result shows that Ic from 4 coils are very close to short samples (1 meter) result. It demonstrates that HTS coils can be made with Bi-2212 wire with best insulation consistently. Better wire insulation, improving coil winding technique, and wire manufacture process can be used for a wide range of high field magnet application including acclerators such as Muon Collider, fusion energy research, NMR spectroscopy, MRI, and other industrial magnets.

  6. The effect of magnetic field on the intrinsic detection efficiency of superconducting single-photon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Renema, J. J.; Rengelink, R. J.; Komen, I.; Wang, Q.; Kes, P.; Aarts, J.; Exter, M. P. van; Dood, M. J. A. de [Huygens-Kamerlingh Onnes Lab, Leiden University, Niels Bohrweg 2, 2333 CA Leiden (Netherlands); Gaudio, R.; Hoog, K. P. M. op ' t; Zhou, Z.; Fiore, A. [COBRA Research Institute, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Sahin, D. [COBRA Research Institute, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Centre for Quantum Photonics, H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Driessen, E. F. C. [Univ. Grenoble Alpes, INAC-SPSMS, 38000 Grenoble (France); CEA, INAC-SPSMS, 38000 Grenoble (France)

    2015-03-02

    We experimentally investigate the effect of a magnetic field on photon detection in superconducting single-photon detectors (SSPDs). At low fields, the effect of a magnetic field is through the direct modification of the quasiparticle density of states of the superconductor, and magnetic field and bias current are interchangeable, as is expected for homogeneous dirty-limit superconductors. At the field where a first vortex enters the detector, the effect of the magnetic field is reduced, up until the point where the critical current of the detector starts to be determined by flux flow. From this field on, increasing the magnetic field does not alter the detection of photons anymore, whereas it does still change the rate of dark counts. This result points at an intrinsic difference in dark and photon counts, and also shows that no enhancement of the intrinsic detection efficiency of a straight SSPD wire is achievable in a magnetic field.

  7. Brushless exciters using a high temperature superconducting field winding

    Science.gov (United States)

    Garces, Luis Jose; Delmerico, Robert William; Jansen, Patrick Lee; Parslow, John Harold; Sanderson, Harold Copeland; Sinha, Gautam

    2008-03-18

    A brushless exciter for a synchronous generator or motor generally includes a stator and a rotor rotatably disposed within the stator. The rotor has a field winding and a voltage rectifying bridge circuit connected in parallel to the field winding. A plurality of firing circuits are connected the voltage rectifying bridge circuit. The firing circuit is configured to fire a signal at an angle of less than 90.degree. or at an angle greater than 90.degree.. The voltage rectifying bridge circuit rectifies the AC voltage to excite or de-excite the field winding.

  8. Superconducting Bulk Magnets: Very High Trapped Fields and Cracking

    OpenAIRE

    Gruss, S; Fuchs, G.; Krabbes, G.; Verges, P.; Stover, G.; Muller, K. -H.; Fink, J; L. Schultz

    2001-01-01

    Improved trapped fields are reported for bulk melt-textured YBa2Cu3O7-x (YBCO) material in the temperature range between 20 K and 50 K. Trapped fields up to 12.2 T were obtained at 22 K on the surface of single YBCO disks (with Ag and Zn additions). In YBCO mini-magnets, maximum trapped fields of 16 T (at 24 K) and of 11.2 T (at 47 K) were achieved using (Zn + Ag) and Zn additions, respectively. In all cases, the YBCO disks were encapsulated in steel tubes in order to reinforce the material a...

  9. Embedding dynamical mean-field theory for superconductivity in layered materials and heterostructures

    Science.gov (United States)

    Petocchi, Francesco; Capone, Massimo

    2016-06-01

    We study layered systems and heterostructures of s -wave superconductors by means of a suitable generalization of dynamical mean-field theory. In order to reduce the computational effort, we consider an embedding scheme in which a relatively small number of active layers is embedded in an effective potential accounting for the effect of the rest of the system. We introduce a feedback of the active layers on the embedding potential that improves on previous approaches and essentially eliminates the effects of the finiteness of the active slab allowing for cheap computation of very large systems. We extend the method to the superconducting state, and we benchmark the approach by means of simple paradigmatic examples showing some examples on how an interface affects the superconducting properties. As examples, we show that superconductivity can penetrate from an intermediate coupling superconductor into a weaker coupling one for around ten layers, and that the first two layers of a system with repulsive interaction can turn superconducting by proximity effects even when charge redistribution is inhibited.

  10. Analysis of quench in the NHMFL REBCO prototype coils for the 32 T Magnet Project

    Science.gov (United States)

    Breschi, M.; Cavallucci, L.; Ribani, P. L.; Gavrilin, A. V.; Weijers, H. W.

    2016-05-01

    A 32 T all-superconductive magnet with high field REBCO inner coils is under development at the National High Magnetic Field Laboratory, Tallahassee, Florida, USA. As part of the development activity, two prototype coils with full scale radial dimensions and final design features, but with reduced axial length were constructed. The prototype coils consist of six dry-wound double pancakes modules with uninsulated conductor and insulated stainless steel cowind. Quench studies on one of the prototype coils at 4.2 K in self-field and in a background magnetic field of 15 T were performed by activating a set of quench protection heaters. In this paper, we present a numerical analysis of the experimental results of the quench tests of one of the prototype coils. The numerical analysis was carried out through a coupled electro-thermal FEM model developed at the University of Bologna. The model is based on the coupling with distributed contact resistances of the coil pancakes described as 2D elements. A homogenization procedure of the REBCO tape and other coil materials is presented, which allows reducing the number of degrees of freedom and the computational effort. The model is applied to the analysis of the current and voltage evolutions during the experimental quench tests on the prototype coil.

  11. Performance of a 14-T CuNb/Nb3Sn Rutherford coil with a 300 mm wide cold bore

    Science.gov (United States)

    Oguro, Hidetoshi; Watanabe, Kazuo; Awaji, Satoshi; Hanai, Satoshi; Ioka, Shigeru; Sugimoto, Masahiro; Tsubouchi, Hirokazu

    2016-08-01

    A large-bore 14-T CuNb/Nb3Sn Rutherford coil was developed for a 25 T cryogen-free superconducting magnet. The magnet consisted of a low-temperature superconducting (LTS) magnet of NbTi and Nb3Sn Rutherford coils, and a high-temperature superconducting magnet. The Nb3Sn Rutherford coil was fabricated by the react-and-wind method for the first time. The LTS magnet reached the designed operation current of 854 A without a training quench at a 1 h ramp rate. The central magnetic field generated by the LTS magnet was measured by a Hall sensor to be 14.0 T at 854 A in a 300 mm cold bore.

  12. A criterion for the nature of the superconducting transition in strongly interacting field theories : Holographic approach

    CERN Document Server

    Kim, Ki-Seok; Kim, Youngman; Ko, Yumi

    2011-01-01

    It is beyond the present techniques based on perturbation theory to reveal the nature of phase transitions in strongly interacting field theories. Recently, the holographic approach has provided us with an effective dual description, mapping strongly coupled conformal field theories to classical gravity theories. Resorting to the holographic superconductor model, we propose a general criterion for the nature of the superconducting phase transition based on effective interactions between vortices. We find "tricritical" points in terms of the chemical potential for U(1) charges and an effective Ginzburg-Landau parameter, where vortices do not interact to separate the second order (repulsive) from the first order (attractive) transitions. We interpret the first order transition as the Coleman-Weinberg mechanism, arguing that it is relevant to superconducting instabilities around quantum criticality.

  13. Field-dependent critical state of high-Tc superconducting strip simultaneously exposed to transport current and perpendicular magnetic field

    Science.gov (United States)

    Xue, Cun; He, An; Yong, Huadong; Zhou, Youhe

    2013-12-01

    We present an exact analytical approach for arbitrary field-dependent critical state of high-Tc superconducting strip with transport current. The sheet current and flux-density profiles are derived by solving the integral equations, which agree with experiments quite well. For small transport current, the approximate explicit expressions of sheet current, flux-density and penetration depth for the Kim model are derived based on the mean value theorem for integration. We also extend the results to the field-dependent critical state of superconducting strip in the simultaneous presence of applied field and transport current. The sheet current distributions calculated by the Kim model agree with experiments better than that by the Bean model. Moreover, the lines in the Ia-Ba plane for the Kim model are not monotonic, which is quite different from that the Bean model. The results reveal that the maximum transport current in thin superconducting strip will decrease with increasing applied field which vanishes for the Bean model. The results of this paper are useful to calculate ac susceptibility and ac loss.

  14. Field-dependent critical state of high-Tc superconducting strip simultaneously exposed to transport current and perpendicular magnetic field

    Directory of Open Access Journals (Sweden)

    Cun Xue

    2013-12-01

    Full Text Available We present an exact analytical approach for arbitrary field-dependent critical state of high-Tc superconducting strip with transport current. The sheet current and flux-density profiles are derived by solving the integral equations, which agree with experiments quite well. For small transport current, the approximate explicit expressions of sheet current, flux-density and penetration depth for the Kim model are derived based on the mean value theorem for integration. We also extend the results to the field-dependent critical state of superconducting strip in the simultaneous presence of applied field and transport current. The sheet current distributions calculated by the Kim model agree with experiments better than that by the Bean model. Moreover, the lines in the Ia-Ba plane for the Kim model are not monotonic, which is quite different from that the Bean model. The results reveal that the maximum transport current in thin superconducting strip will decrease with increasing applied field which vanishes for the Bean model. The results of this paper are useful to calculate ac susceptibility and ac loss.

  15. Field-dependent critical state of high-Tc superconducting strip simultaneously exposed to transport current and perpendicular magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Cun; He, An; Yong, Huadong; Zhou, Youhe, E-mail: zhouyh@lzu.edu.cn [Key Laboratory of Mechanics on Disaster and Environment in Western China attached to the Ministry of Education of China, and Department of Mechanics and Engineering Sciences, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China)

    2013-12-15

    We present an exact analytical approach for arbitrary field-dependent critical state of high-T{sub c} superconducting strip with transport current. The sheet current and flux-density profiles are derived by solving the integral equations, which agree with experiments quite well. For small transport current, the approximate explicit expressions of sheet current, flux-density and penetration depth for the Kim model are derived based on the mean value theorem for integration. We also extend the results to the field-dependent critical state of superconducting strip in the simultaneous presence of applied field and transport current. The sheet current distributions calculated by the Kim model agree with experiments better than that by the Bean model. Moreover, the lines in the I{sub a}-B{sub a} plane for the Kim model are not monotonic, which is quite different from that the Bean model. The results reveal that the maximum transport current in thin superconducting strip will decrease with increasing applied field which vanishes for the Bean model. The results of this paper are useful to calculate ac susceptibility and ac loss.

  16. Proposal of High-Frequency Magnetic Field Immunity Test for Medical Devices, and Design and Development of Coil for the Test

    Science.gov (United States)

    Yamamoto, Takahiko; Koshiji, Kohji

    Medical devices have been obliged to satisfy electromagnetic compatibility by revision of the pharmaceutical affairs law. However, even if the medical devices satisfy the electromagnetic compatibility based on the law, it is not necessarily safe. Sometimes, malfunctions of cardiac pacemaker are caused by the magnetic field leaked from an induction heating cooker. In this paper, a new method of electromagnetic susceptability (EMS) evaluation is proposed, and a loop coil for the magnetic field immunity test in the frequency range from 10kHz to 3MHz is designed and developed. As a result, the loop coil made on an experimental basis generated uniform magnetic field with a fluctuation within 3.3dB in the loop coil pane and 5.6dB along the coil axis.

  17. Effects of rippled fields due to ferritic inserts and ELM mitigation coils on energetic ion losses in a 15 MA inductive scenario in ITER

    Science.gov (United States)

    Shinohara, K.; Tani, K.; Oikawa, T.; Putvinski, S.; Schaffer, M.; Loarte, A.

    2012-09-01

    The energetic ion loss has been assessed using the F3D-OFMC code for a 15 MA inductive scenario with Q = 10 and the latest information on the first wall geometry, the implementation of ferritic inserts (FI) and the ELM mitigation/control coils. Alpha particles and NB ions generated by the neutral beam injectors with the injection energy of 1 MeV are well confined and the heat load on the first wall is negligibly small and allowable for the magnetic background by the toroidal field coils and FI. However, an increase in the loss of these energetic ions is observed when the magnetic field by the ELM coils is applied. The increase in the loss fraction is larger for NB ions than for alpha particles under the ELM coil field. The origin of the expelled NB ions is dominantly trapped ions generated in the peripheral region due to a high-density plasma of the 15 MA scenario.

  18. Topological superconductivity in Rashba semiconductors without a Zeeman field

    Energy Technology Data Exchange (ETDEWEB)

    Kotetes, Panagiotis [Karlsruhe Institute of Technology (Germany)

    2015-07-01

    I propose new hybrid devices based on multichannel Rashba semiconductors, which harbor Majorana fermions (MFs) without a Zeeman field. In contrast, magnetic fluxes, supercurrents or electric fields can be employed, yielding an enhanced device manipulability. The generic topological phase diagram exhibits features of quantum criticality and a rich interplay of phases with 0, 1 or 2 MFs per edge. The most prominent and experimentally feasible implementation, relies on the already existing platforms of InAs-2DEG on top of a Josephson junction. Appropriate design of the latter device, allows phases with 1 or 2 MFs, both detectable in zero-bias anomaly peaks with a single or double unit of conductance. The absence of the Zeeman field in these devices could be assisting for a Kondo-peak-free interpretation of the expected MF signatures.

  19. Magnetic field and temperature dependence of the critical vortex velocity in type-II superconducting films.

    Science.gov (United States)

    Grimaldi, G; Leo, A; Cirillo, C; Attanasio, C; Nigro, A; Pace, S

    2009-06-24

    We study the vortex dynamics in the instability regime induced by high dissipative states well above the critical current in Nb superconducting strips. The magnetic field and temperature behavior of the critical vortex velocity corresponding to the observed dynamic instability is ascribed to intrinsic non-equilibrium phenomena. The Larkin-Ovchinnikov (LO) theory of electronic instability in high velocity vortex motion has been applied to interpret the temperature dependence of the critical vortex velocity. The magnetic field dependence of the vortex critical velocity shows new features in the low-field regime not predicted by LO.

  20. Magnetic field and temperature dependence of the critical vortex velocity in type-II superconducting films

    Energy Technology Data Exchange (ETDEWEB)

    Grimaldi, G; Leo, A; Cirillo, C; Attanasio, C; Nigro, A; Pace, S [CNR-INFM Laboratorio Regionale SuperMat, Via Salvador Allende, I-84081 Baronissi (Italy)], E-mail: grimaldi@sa.infn.it

    2009-06-24

    We study the vortex dynamics in the instability regime induced by high dissipative states well above the critical current in Nb superconducting strips. The magnetic field and temperature behavior of the critical vortex velocity corresponding to the observed dynamic instability is ascribed to intrinsic non-equilibrium phenomena. The Larkin-Ovchinnikov (LO) theory of electronic instability in high velocity vortex motion has been applied to interpret the temperature dependence of the critical vortex velocity. The magnetic field dependence of the vortex critical velocity shows new features in the low-field regime not predicted by LO.

  1. Theoretical estimates of maximum fields in superconducting resonant radio frequency cavities: stability theory, disorder, and laminates

    Science.gov (United States)

    Liarte, Danilo B.; Posen, Sam; Transtrum, Mark K.; Catelani, Gianluigi; Liepe, Matthias; Sethna, James P.

    2017-03-01

    Theoretical limits to the performance of superconductors in high magnetic fields parallel to their surfaces are of key relevance to current and future accelerating cavities, especially those made of new higher-T c materials such as Nb3Sn, NbN, and MgB2. Indeed, beyond the so-called superheating field {H}{sh}, flux will spontaneously penetrate even a perfect superconducting surface and ruin the performance. We present intuitive arguments and simple estimates for {H}{sh}, and combine them with our previous rigorous calculations, which we summarize. We briefly discuss experimental measurements of the superheating field, comparing to our estimates. We explore the effects of materials anisotropy and the danger of disorder in nucleating vortex entry. Will we need to control surface orientation in the layered compound MgB2? Can we estimate theoretically whether dirt and defects make these new materials fundamentally more challenging to optimize than niobium? Finally, we discuss and analyze recent proposals to use thin superconducting layers or laminates to enhance the performance of superconducting cavities. Flux entering a laminate can lead to so-called pancake vortices; we consider the physics of the dislocation motion and potential re-annihilation or stabilization of these vortices after their entry.

  2. Atomically flat superconducting nanofilms: multiband properties and mean-field theory

    Science.gov (United States)

    Shanenko, A. A.; Aguiar, J. Albino; Vagov, A.; Croitoru, M. D.; Milošević, M. V.

    2015-05-01

    Recent progress in materials synthesis enabled fabrication of superconducting atomically flat single-crystalline metallic nanofilms with thicknesses down to a few monolayers. Interest in such nano-thin systems is attracted by the dimensional 3D-2D crossover in their coherent properties which occurs with decreasing the film thickness. The first fundamental aspect of this crossover is dictated by the Mermin-Wagner-Hohenberg theorem and concerns frustration of the long-range order due to superconductive fluctuations and the possibility to track its impact with an unprecedented level of control. The second important aspect is related to the Fabri-Pérot modes of the electronic motion strongly bound in the direction perpendicular to the nanofilm. The formation of such modes results in a pronounced multiband structure that changes with the nanofilm thickness and affects both the mean-field behavior and superconductive fluctuations. Though the subject is very rich in physics, it is scarcely investigated to date. The main obstacle is that there are no manageable models to study a complex magnetic response in this case. Full microscopic consideration is rather time consuming, if practicable at all, while the standard Ginzburg-Landau theory is not applicable. In the present work we review the main achievements in the subject to date, and construct and justify an efficient multiband mean-field formalism which allows for numerical and even analytical treatment of nano-thin superconductors in applied magnetic fields.

  3. Ideal charge-density-wave order in the high-field state of superconducting YBCO

    Science.gov (United States)

    Jang, H.; Lee, W.-S.; Nojiri, H.; Matsuzawa, S.; Yasumura, H.; Nie, L.; Maharaj, A. V.; Gerber, S.; Liu, Y.-J.; Mehta, A.; Bonn, D. A.; Liang, R.; Hardy, W. N.; Burns, C. A.; Islam, Z.; Song, S.; Hastings, J.; Devereaux, T. P.; Shen, Z.-X.; Kivelson, S. A.; Kao, C.-C.; Zhu, D.; Lee, J.-S.

    2016-12-01

    The existence of charge-density-wave (CDW) correlations in cuprate superconductors has now been established. However, the nature of the CDW ground state has remained uncertain because disorder and the presence of superconductivity typically limit the CDW correlation lengths to only a dozen unit cells or less. Here we explore the field-induced 3D CDW correlations in extremely pure detwinned crystals of YBa2Cu3O2 (YBCO) ortho-II and ortho-VIII at magnetic fields in excess of the resistive upper critical field (Hc2Hc2) where superconductivity is heavily suppressed. We observe that the 3D CDW is unidirectional and possesses a long in-plane correlation length as well as significant correlations between neighboring CuO2 planes. It is significant that we observe only a single sharply defined transition at a critical field proportional to Hc2Hc2, given that the field range used in this investigation overlaps with other high-field experiments including quantum oscillation measurements. The correlation volume is at least two to three orders of magnitude larger than that of the zero-field CDW. This is by far the largest CDW correlation volume observed in any cuprate crystal and so is presumably representative of the high-field ground state of an “ideal” disorder-free cuprate.

  4. Fabrication of Chemically Doped, High Upper Critical Field Magnesium Diboride Superconducting Wires

    Energy Technology Data Exchange (ETDEWEB)

    Marzik, James, V.

    2005-10-13

    Controlled chemical doping of magnesium diboride (MgB2) has been shown to substantially improve its superconducting properties to the levels required for high field magnets, but the doping is difficult to accomplish through the usual route of solid state reaction and diffusion. Further, superconducting cables of MgB2 are difficult to fabricate because of the friable nature of the material. In this Phase I STTR project, doped and undoped boron fibers were made by chemical vapor deposition (CVD). Several >100m long batches of doped and undoped fiber were made by CVD codeposition of boron plus dopants. Bundles of these fibers infiltrated with liquid magnesium and subsequently converted to MgB2 to form Mg-MgB2 metal matrix composites. In a parallel path, doped boron nano-sized powder was produced by a plasma synthesis technique, reacted with magnesium to produce doped MgB2 superconducting ceramic bodies. The doped powder was also fabricated into superconducting wires several meters long. The doped boron fibers and powders made in this program were fabricated into fiber-metal composites and powder-metal composites by a liquid metal infiltration technique. The kinetics of the reaction between boron fiber and magnesium metal was investigated in fiber-metal composites. It was found that the presence of dopants had significantly slowed the reaction between magnesium and boron. The superconducting properties were measured for MgB2 fibers and MgB2 powders made by liquid metal infiltration. Properties of MgB2 products (Jc, Hc2) from Phase I are among the highest reported to date for MgB2 bulk superconductors. Chemically doped MgB2 superconducting magnets can perform at least as well as NbTi and NbSn3 in high magnetic fields and still offer an improvement over the latter two in terms of operating temperature. These characteristics make doped MgB2 an effective material for high magnetic field applications, such as magnetic confined fusion, and medical MRI devices. Developing

  5. Magnetic-field-induced superconducting state in Zn nanowires driven in the normal state by an electric current.

    Science.gov (United States)

    Chen, Yu; Snyder, S D; Goldman, A M

    2009-09-18

    Four-terminal resistance measurements have been carried out on Zn nanowires formed using electron-beam lithography. When driven resistive by current, these wires reenter the superconducting state upon application of small magnetic fields. The data are qualitatively different from those of previous experiments on superconducting nanowires, which revealed either negative magnetoresistance near T_{c} or high-magnetic-field-enhanced critical currents.

  6. Multipacting phenomenon at high electric fields of superconducting cavities

    Institute of Scientific and Technical Information of China (English)

    Zhu Feng; D.Proch; Hao Jian-Kui

    2005-01-01

    Recently multipacting(MP) recalculation of the TeV Energy Superconductiong Linear Accelerator (TESLA)resonator was performed. In addition to the normal MP which occurs at a peak electric field of around 40MV/m for the TESLA cavity, another type of multipacting with resonant electron trajectory that is far from the equator is also seen.It occurs at a gradient around 60MV/m to 70MV/m. This result seems to explain some experimental observations.

  7. CERN News: Selection of the type of superconducting coil for the Omega project; New intensity records at the proton synchrotron; Progress with the Spiral Reader film measuring equipment; New technique at transition energy on the proton synchrotron; CERN Courier 10th anniversary; Equipment travelling from and to Serpukhov

    CERN Multimedia

    1969-01-01

    CERN News: Selection of the type of superconducting coil for the Omega project; New intensity records at the proton synchrotron; Progress with the Spiral Reader film measuring equipment; New technique at transition energy on the proton synchrotron; CERN Courier 10th anniversary; Equipment travelling from and to Serpukhov

  8. Electromagnetic, stress and thermal analysis of the Superconducting Magnet

    CERN Document Server

    Ren, Yong

    2015-01-01

    Within the framework of the National Special Project for Magnetic Confined Nuclear Fusion Energy of China, the design of a superconducting magnet project as a test facility of the Nb3Sn coil or NbTi coil for the Chinese Fusion Engineering Test Reactor (CFETR) has been carried out not only to estimate the relevant conductor performance but also to implement a background magnetic field for CFETR CS insert and toroidal field (TF) insert coils. The superconducting magnet is composed of two parts: the inner part with Nb3Sn cable-in-conduit conductor (CICC) and the outer part with NbTi CICC. Both parts are connected in series and powered by a single DC power supply. The superconducting magnet can be cooled with supercritical helium at inlet temperature of 4.5 K. The total inductance and stored energy of the superconducting magnet are about 0.278 H and 436.6 MJ at an operating current of 56 kA respectively. An active quench protection circuit was adopted to transfer the stored magnetic energy of the superconducting ...

  9. Po Superconducting Magnet:detail of the windings

    CERN Multimedia

    1982-01-01

    The Po superconducting dipole was built as a prototype beam transport magnet for the SPS extracted proton beam Po. Its main features were: coil aperture 72 mm, length 5 m, room-temperature yoke, NbTi cable conductor impregnated with solder, nominal field 4.2 T at 4.7 K (87% of critical field). It reached its nominal field without any quench. The photo shows a detail of the inner layer winding before superposing the outer layer to form the complete coil of a pole. Worth noticing is the interleaved glass-epoxy sheet (white) with grooved channels for the flow of cooling helium. See also 8307552X.

  10. Topology Optimization of a High-Temperature Superconducting Field Winding of a Synchronous Machine

    DEFF Research Database (Denmark)

    Pozzi, Matias; Mijatovic, Nenad; Jensen, Bogi Bech

    2013-01-01

    genetic algorithm with local optimization search based on on/off sensitivity analysis. The results show an optimal HTS coil distribution, achieving compact designs with a maximum of approximately 22% of the available space for the field winding occupied with HTS tape. In addition, this paper describes......This paper presents topology optimization (TO) of the high-temperature superconductor (HTS) field winding of an HTS synchronous machine. The TO problem is defined in order to find the minimum HTS material usage for a given HTS synchronous machine design. Optimization is performed using a modified...

  11. Armature reaction effects on a high temperature superconducting field winding of an synchronous machine: experimental results

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech

    2014-01-01

    This paper presents experimental results from the Superwind laboratory setup. Particular focus in the paper has been placed on describing and quantifying the influence of armature reaction on performance of the HTS filed winding. Presented experimental results have confirmed the HTS field winding...... sensitivity to both armature reaction intensity and angular position with respect to the HTS coils. Furthermore, the characterization of the HTS field winding has been correlated to the electromagnetic torque of the machine where the maximal Ic reduction of 21% has been observed for the maximum torque....

  12. Armature reaction effects on a high temperature superconducting field winding of an synchronous machine: experimental results

    Science.gov (United States)

    Mijatovic, Nenad; Jensen, Bogi Bech

    2014-05-01

    This paper presents experimental results from the Superwind laboratory setup. Particular focus in the paper has been placed on describing and quantifying the influence of armature reaction on performance of the HTS filed winding. Presented experimental results have confirmed the HTS field winding sensitivity to both armature reaction intensity and angular position with respect to the HTS coils. Furthermore, the characterization of the HTS field winding has been correlated to the electromagnetic torque of the machine where the maximal Ic reduction of 21% has been observed for the maximum torque.

  13. Quasi permanent superconducting magnet of very high field

    Science.gov (United States)

    Ren, Y.; Liu, J.; Weinstein, R.; Chen, I. G.; Parks, D.; Xu, J.; Obot, V.; Foster, C.

    1993-01-01

    We report on persistent field in a quasi-permanent magnet made of high temperature superconductor. The material has an average of 40 percent molar excess of Y, relative to Y1Ba2Cu3O7 and has been irradiated with high energy light ions at 200 MeV. The magnet, which traps 1.52 T at 77.3 K, traps nearly 4 T at 64.5 K. No evidence of giant flux jump or sample cracking was observed.

  14. Superconducting proximity effect in three-dimensional topological insulators in the presence of a magnetic field

    Science.gov (United States)

    Burset, Pablo; Lu, Bo; Tkachov, Grigory; Tanaka, Yukio; Hankiewicz, Ewelina M.; Trauzettel, Björn

    2015-11-01

    The proximity-induced pair potential in a topological insulator-superconductor hybrid features an interesting superposition of a conventional spin-singlet component from the superconductor and a spin-triplet one induced by the surface state of the topological insulator. This singlet-triplet superposition can be altered by the presence of a magnetic field. We study the interplay between topological order and superconducting correlations performing a symmetry analysis of the induced pair potential, using Green functions techniques to theoretically describe ballistic junctions between superconductors and topological insulators under magnetic fields. We relate a change in the conductance from a gapped profile into one with a zero-energy peak with the transition into a topologically nontrivial regime where the odd-frequency triplet pairing becomes the dominant component in the pair potential. The nontrivial regime, which provides a signature of odd-frequency triplet superconductivity, is reached for an out-of-plane effective magnetization with strength comparable to the chemical potential of the superconductor or for an in-plane one, parallel to the normal-superconductor interface, with strength of the order of the superconducting gap. Strikingly, in the latter case, a misalignment with the interface yields an asymmetry with the energy in the conductance unless the total contribution of the topological surface state is considered.

  15. Superconducting Switch for Fast On-Chip Routing of Quantum Microwave Fields

    Science.gov (United States)

    Pechal, M.; Besse, J.-C.; Mondal, M.; Oppliger, M.; Gasparinetti, S.; Wallraff, A.

    2016-08-01

    A switch capable of routing microwave signals at cryogenic temperatures is a desirable component for state-of-the-art experiments in many fields of applied physics, including but not limited to quantum-information processing, communication, and basic research in engineered quantum systems. Conventional mechanical switches provide low insertion loss but disturb operation of dilution cryostats and the associated experiments by heat dissipation. Switches based on semiconductors or microelectromechanical systems have a lower thermal budget but are not readily integrated with current superconducting circuits. Here we design and test an on-chip switch built by combining tunable transmission-line resonators with microwave beam splitters. The device is superconducting and as such dissipates a negligible amount of heat. It is compatible with current superconducting circuit fabrication techniques, operates with a bandwidth exceeding 100 MHz, is capable of handling photon fluxes on the order of 1 05 μ s-1 , equivalent to powers exceeding -90 dBm , and can be switched within approximately 6-8 ns. We successfully demonstrate operation of the device in the quantum regime by integrating it on a chip with a single-photon source and using it to route nonclassical itinerant microwave fields at the single-photon level.

  16. Optimal Bitter Coil Solenoid

    CERN Document Server

    Kobelev, V

    2016-01-01

    Bitter coil is an electromagnet used for the generation of exceptionally strong magnetic fields. The upper bound of magnet flux density is restricted by several factors. One principal restriction is the high stresses due to Lorentz forces in the coil. The Lorentz forces generate the distributed body force, which acts as the pressure of magnetic field. The common radial thickness profile of the Bitter coil is constant. In this paper the possibility of optimization by means of non-constant radial thickness profile of the Bitter coil is studied. The close form expression for optimal thickness profile is obtained. Both designs are compared and the considerable improvement of magnetic flux density is demonstrated. Moreover, the optimal design improves the shape of cooling channels. Namely, the highest cross-section of cooling channel is at the most thermally loaded inner surface of the coil.

  17. Coupling erbium spins to a three-dimensional superconducting cavity at zero magnetic field

    Science.gov (United States)

    Chen, Yu-Hui; Fernandez-Gonzalvo, Xavier; Longdell, Jevon J.

    2016-08-01

    We experimentally demonstrate the coupling at zero magnetic field of an isotopically pure erbium-doped yttrium orthosilicate crystal (167Er:YSO ) to a three-dimensional superconducting cavity with a Q factor of 105. A tunable loop-gap resonator is used and its resonance frequency is tuned to observe the hyperfine transitions of the erbium sample. The observed spectrum differs from what is predicted by the published spin Hamiltonian parameters. The narrow cavity linewidth also enables the observation of asymmetric line shapes for these hyperfine transitions. Such a broadly tunable superconducting cavity (from 1.6 to 4.0 GHz in the current design) is a promising device for building hybrid quantum systems.

  18. Coupling erbium spins to a three-dimensional superconducting cavity at zero magnetic field

    CERN Document Server

    Chen, Yu-Hui; Longdell, Jevon J

    2015-01-01

    We experimentally demonstrate the coupling of an erbium doped crystal to a three-dimensional superconducting cavity of a $10^5$ $Q$-factor at zero magnetic field. A tunable loop-gap resonator is used to match the cavity frequency to the hyperfine transitions of an erbium sample. The observed spectrum differs from what predicted by the published spin Hamiltonian parameters. The narrow cavity linewidth also enables the observations of asymmetric lineshapes of these hyperfine transitions, which are understood as the super-hyperfine interactions between the erbium ions and their adjacent yttrium ions. Such a broadly tunable superconducting cavity architecture, from 1.6 GHz to 4.0 GHz in the current design, is promising in building hybrid quantum systems.

  19. Design and manufacturing status of trim coils for the Wendelstein 7-X stellarator experiment

    Energy Technology Data Exchange (ETDEWEB)

    Riße, K., E-mail: konrad.risse@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, Greifswald (Germany); Rummel, Th.; Freundt, S.; Dudek, A.; Renard, S.; Bykov, V.; Köppen, M. [Max-Planck-Institut für Plasmaphysik, Greifswald (Germany); Langish, S.; Neilson, G.H.; Brown, Th.; Chrzanowski, J.; Mardenfeld, M.; Malinowski, F.; Khodak, A.; Zhao, X. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Eksaa, G. [Everson Tesla Inc., Nazareth, PA (United States)

    2013-10-15

    Highlights: ► The trim coil system will fine tune the main magnetic field during plasma operation by reducing the magnetic field errors. ► The coil design and operational parameters are fixed, the manufacturing is running. ► The coils are equipped with temperature sensors and a voltage tap system to monitor the coil temperature. ► The max. operational deflection is in the order of 4.5 mm; the max. shearing stress across bond planes is of order 16 MPa. ► Special clamps equipped with elastomeric pads allow fixing the coils on the outer cryostat wall. -- Abstract: The stellarator fusion experiment Wendelstein 7-X (W7-X) is currently under construction at the Max-Planck-Institut für Plasmaphysik in Greifswald, Germany. The main magnetic field will be provided by a superconducting magnet system which generates a fivefold toroidal periodic magnetic field. However, unavoidable tolerances can result in small deviations of the magnetic field which disturb the toroidal periodicity. In order to have a tool to influence these field errors five additional normal conducting trim coils were designed to allow fine tuning of the main magnetic field during plasma operation. In the frame of an international cooperation the trim coils will be contributed by the US partners. Princeton Plasma Physics Laboratory has accomplished several tasks to develop the final design ready for manufacturing e.g. detailed manufacturing design for the winding and for the coil connection area. The design work was accompanied by a detailed analysis of resulting forces and moments to prove the design. The manufacturing of the coils is running at Everson Tesla Inc; the first two coils were received at IPP.

  20. Evaluation of the Chondromalacia Patella Using a Microscopy Coil: Comparison of the Two-Dimensional Fast Spin Echo Techniques and the Three-Dimensional Fast Field Echo Techniques

    OpenAIRE

    2011-01-01

    Objective We wanted to compare the two-dimensional (2D) fast spin echo (FSE) techniques and the three-dimensional (3D) fast field echo techniques for the evaluation of the chondromalacia patella using a microscopy coil. Materials and Methods Twenty five patients who underwent total knee arthroplasty were included in this study. Preoperative MRI evaluation of the patella was performed using a microscopy coil (47 mm). The proton density-weighted fast spin echo images (PD), the fat-suppressed PD...

  1. On the magnetic field evolution time-scale in superconducting neutron star cores

    Science.gov (United States)

    Passamonti, Andrea; Akgün, Taner; Pons, José A.; Miralles, Juan A.

    2017-08-01

    We revisit the various approximations employed to study the long-term evolution of the magnetic field in neutron star cores and discuss their limitations and possible improvements. A recent controversy on the correct form of the induction equation and the relevant evolution time-scale in superconducting neutron star cores is addressed and clarified. We show that this ambiguity in the estimation of time-scales arises as a consequence of nominally large terms that appear in the induction equation, but which are, in fact, mostly irrotational. This subtlety leads to a discrepancy by many orders of magnitude when velocity fields are absent or ignored. Even when internal velocity fields are accounted for, only the solenoidal part of the electric field contributes to the induction equation, which can be substantially smaller than the irrotational part. We also argue that stationary velocity fields must be incorporated in the slow evolution of the magnetic field as the next level of approximation.

  2. Decrease of the surface resistance in superconducting niobium resonator cavities by the microwave field

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, Gianluigi [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Dhakal, Pashupati [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Gurevich, Alexander V. [Old Dominion University, Norfolk, VA (United States)

    2014-03-03

    Measurements of the quality factor, Q, of Nb superconducting microwave resonators often show that Q increases by {approx_equal} 10%–30% with increasing radio-frequency (rf) field, H, up to {approx} 15-20 mT. Recent high temperature heat treatments can amplify this rf field-induced increase of Q up to {approx_equal} 50%–100% and extend it to much higher fields, but the mechanisms of the enhancement of Q(H) remain unclear. Here, we suggest a method to reveal these mechanisms by measuring temperature dependencies of Q at different rf field amplitudes. We show that the increase of Q(H) does not come from a field dependent quasi-particles activation energy or residual resistance, but rather results from the smearing of the density of state by the rf field.

  3. The Effect of the Feedback Controller on Superconducting Tokamak AC Losses + AC-CRPP user manual

    Energy Technology Data Exchange (ETDEWEB)

    Schaerz, B.; Bruzzone, P.; Favez, J.Y.; Lister, J.B.; Zapretilina, E

    2001-11-01

    Superconducting coils in a Tokamak are subject to AC losses when the field transverse to the coil current varies. A simple model to evaluate the AC losses has been derived and benchmarked against a complete model used in the ITER design procedure. The influence of the feedback control strategy on the AC losses is examined using this model. An improved controller is proposed, based on this study. (author)

  4. A new field correction scheme for superconducting undulators by modification the iron pole geometry

    Energy Technology Data Exchange (ETDEWEB)

    Chunjarean, S [Suranaree University of Technology (SUT), Nakhon Ratchasima (Thailand); Jan, J C; Hwang, C H [National Synchrotron Radiation Research Center (NSRRC), Hsinchu Science Park, Taiwan (China); Lin, P H [Synchrotron Light Research Institute (Public Organization), SLRI, Nakhon Ratchasima (Thailand); Wiedemann, H, E-mail: Chunjarean@gmail.com [Stanford University, Stanford, CA (United States)

    2011-05-15

    Permanent magnet material undulators are used in many research facilities worldwide to produce high brightness synchrotron radiation for basic and applied research. Their effectiveness is limited in low energy storage rings because of a lack of sufficient magnetic field intensity. Superconducting undulators can produce higher fields and therefore higher photon energies, especially at lower electron beam energies. Undulator radiation is emitted in a line spectrum where the fundamental wavelength is determined by the undulator period and strength, beam energy and harmonic number. For a given beam energy, use of these higher harmonics is desirable, because they allow the provision of higher photon energies as high as soft or hard x-rays from 1 to 10 keV. The photon flux in such harmonics is however strongly dependent on the integrity of the periodic properties of the magnetic field. Small field and phase errors will reduce the photon intensity dramatically. Correction methods as employed for permanent magnet material undulators are not applicable in superconducting undulators. In this paper, we discuss a new approach for field corrections based on a variation of the magnetic field saturation properties of individual poles. We demonstrate its efficiency in ensuring photon fluxes which are close to theoretical expectations.

  5. Effect of temperature and magnetic field on two-flavor superconducting quark matter

    Science.gov (United States)

    Mandal, Tanumoy; Jaikumar, Prashanth

    2016-10-01

    We investigate the effect of turning on temperature for the charge neutral phase of two-flavor color superconducting (2SC) dense quark matter in the presence of constant external magnetic field. Within the Nambu-Jona-Lasinio model, by tuning the diquark coupling strength, we study the interdependent evolution of the quark Bardeen-Cooper-Schrieffer gap and dynamical mass as functions of temperature and magnetic field. We find that magnetic field B ≳0.02 GeV2 (1 018 G ) leads to anomalous temperature behavior of the gap in the gapless 2SC phase (moderately strong coupling), reminiscent of previous results in the literature found in the limit of weak coupling without magnetic field. The 2SC gap in the strong coupling regime is abruptly quenched at ultrahigh magnetic field due to the mismatched Fermi surfaces of up and down quarks imposed by charge neutrality and oscillation of the gap due to Landau level quantization. The dynamical quark mass also displays strong oscillation and magnetic catalysis at high magnetic field, although the latter effect is tempered by nonzero temperature. We discuss the implications for newly born compact stars with superconducting quark cores.

  6. Superconductivity and magnetic field induced spin density waves in the (TMTTF)2X family

    Science.gov (United States)

    Balicas, L.; Behnia, K.; Kang, W.; Canadell, E.; Auban-Senzier, P.; Jérome, D.; Ribault, M.; Fabre, J. M.

    1994-10-01

    We report magnetotransport measurements in the quasi one dimensional (Q-1-D) organic conductor (TMTTF)2Br at pressures up to 26 kbar, clown to 0.45 K in magnetic fields up to 19 T along the c^{ast} direction. It is found that a superconducting ground state is stabilized under 26 kbar at T_C = 0.8 K. No magnetic field induced spin density wave (FISDW) transitions are observed below 19T unlike other Q-1-D superconductors pertaining to the selenium series. The computed amplitude of the interchain coupling along transverse directions is unable to explain the missing; FISDW instability.

  7. Behaviour of a turbogenerator with a superconducting field winding considering the third dimension

    Energy Technology Data Exchange (ETDEWEB)

    Bischof, H.

    1987-01-01

    The system equations and system parameters must be known for the mathematical description of the behaviour of a turbogenerator with a superconducting field winding. They are approximately derived from a two dimensional field calculation. Therefore, the generator is described by a shell model. Adapting the impedance loci of the model to those of the real generator, the influence of the third dimension is included. The verification of the resulting machine model is shown by the comparison of simulation results and measurements. Furthermore, it is shown that remarkable reduction of the mechanical stresses on the cylindrical rotor construction during transients is achieved by a free rotatable outer damper cylinder.

  8. Multipole Field Effects for the Superconducting Parallel-Bar Deflecting/Crabbing Cavities

    Energy Technology Data Exchange (ETDEWEB)

    De Silva, Payagalage Subashini Uddika [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States) and Old Dominion University, Norfolk, VA (United States); Delayen, Jean Roger [Old Dominion University, Norfolk, VA (United States)

    2012-09-01

    The superconducting parallel-bar deflecting/crabbing cavity is currently being considered as one of the design options in rf separation for the Jefferson Lab 12 GeV upgrade and for the crabbing cavity for the proposed LHC luminosity upgrade. Knowledge of multipole field effects is important for accurate beam dynamics study of rf structures. The multipole components can be accurately determined numerically using the electromagnetic surface field data in the rf structure. This paper discusses the detailed analysis of those components for the fundamental deflecting/crabbing mode and higher order modes in the parallel-bar deflecting/crabbing cavity.

  9. Field-induced magnetic phases in the normal and superconducting states of ErNi2B2C

    DEFF Research Database (Denmark)

    Jensen, A.; Toft, K.N.; Abrahamsen, A.B.;

    2004-01-01

    We present a comprehensive neutron-diffraction study of the magnetic structures of ErNi2B2C in the presence of a magnetic field applied along [010], [110], or [001]. In zero field, the antiferromagnetic structure is transversely polarized with Qapproximate to0.55a* and the moments along the b...... no hysteresis and stays stable up to a field close to the upper critical field of superconductivity, when the field is applied along [010]. Except for this possible effect, the influences of the superconducting electrons on the magnetic structures are not directly visible. Another peculiarity is that Q rotates...

  10. Superconducting multiturn flux transformers for radio frequency superconducting quantum interference devices

    OpenAIRE

    Yi, H. R.; Zhang, Y; Schubert, J.; Zander, W.; Zeng, X. H.; Klein, N

    2000-01-01

    This article describes three planar layouts of superconducting multiturn flux transformers integrated with a coplanar resonator for radio frequency (rf) superconducting quantum interference device (SQUID) magnetometers. The best magnetic field noise values of 22 and 11.5 fT/Hz(1/2) in the white noise regime were obtained for the layout with two input coils and the layout with the labyrinth resonator, respectively. Excess low-frequency noise (about 200 fT/Hz(1/2) at 10 Hz) was present. Compute...

  11. α/β coiled coils.

    Science.gov (United States)

    Hartmann, Marcus D; Mendler, Claudia T; Bassler, Jens; Karamichali, Ioanna; Ridderbusch, Oswin; Lupas, Andrei N; Hernandez Alvarez, Birte

    2016-01-15

    Coiled coils are the best-understood protein fold, as their backbone structure can uniquely be described by parametric equations. This level of understanding has allowed their manipulation in unprecedented detail. They do not seem a likely source of surprises, yet we describe here the unexpected formation of a new type of fiber by the simple insertion of two or six residues into the underlying heptad repeat of a parallel, trimeric coiled coil. These insertions strain the supercoil to the breaking point, causing the local formation of short β-strands, which move the path of the chain by 120° around the trimer axis. The result is an α/β coiled coil, which retains only one backbone hydrogen bond per repeat unit from the parent coiled coil. Our results show that a substantially novel backbone structure is possible within the allowed regions of the Ramachandran space with only minor mutations to a known fold.

  12. Regularized estimation of magnitude and phase of multi-coil b1 field via Bloch-Siegert B1 mapping and coil combination optimizations.

    Science.gov (United States)

    Zhao, Feng; Fessler, Jeffrey A; Wright, Steven M; Noll, Douglas C

    2014-10-01

    Parallel excitation requires fast and accurate B1 map estimation. Bloch-Siegert (BS) B1 mapping is very fast and accurate over a large dynamic range. When applied to multi-coil systems, however, this phase-based method may produce low signal-to-noise ratio estimates in low magnitude regions due to localized excitation patterns of parallel excitation systems. Also, the imaging time increases with the number of coils. In this work, we first propose to modify the standard BS B1 mapping sequence so that it avoids the scans required by previous B1 phase estimation methods. A regularized method is then proposed to jointly estimate the magnitude and phase of multi-coil B1 maps from BS B1 mapping data, improving estimation quality by using the prior knowledge of the smoothness of B1 magnitude and phase. Lastly, we use Cramer-Rao lower bound analysis to optimize the coil combinations, to improve the quality of the raw data for B1 estimation. The proposed methods are demonstrated by simulations and phantom experiments.

  13. Advanced Examination Techniques Applied to the Assessment of Vacuum Pressure Impregnation (VPI) of ITER Correction Coils

    CERN Document Server

    Sgobba, Stefano; Samain, Valerie; Libeyre, Paul; Cecillon, Alexandre; Dawid, J

    2014-01-01

    The ITER Magnet System includes a set of 18 superconducting correction coils (CC) which are used to compensate the error field modes arising from geometrical deviations caused by manufacturing and assembly tolerances. The turn and ground insulation are electrically insulated with a multi-layer fiberglass polyimide interleaved composite, impregnated with epoxy resin using vacuum pressure impregnation (VPI). Adequate high voltage insulation (5 kV), mechanical strength and rigidity of the winding pack should be achieved after impregnation and curing of the insulation system. VPI is an effective process to avoid defects such dry spots and incomplete wet out. This insulation technology has also been developed since several years for application to large superconducting coils and more recently to ITER CC. It allows the coils to be impregnated without impacting on their functional characteristics. One of the critical challenges associated with the construction of the CC is the qualification of the VPI insulation. Se...

  14. A Consideration on Increasing Current Density in Normal Conducting Toroidal Field Coil for Spherical Tokamak Power Plant

    Institute of Scientific and Technical Information of China (English)

    Song Yuntao; Satoshi NISHIO

    2005-01-01

    The center post is the most critical component as an inboard part of the toroidal field coil for the low aspect ratio tokamak. During the discharge it endures not only a tremendous ohmic heating owing to its carrying a rather high current but also a large nuclear heating and irradiation owing to the plasma operation. All the severe operating conditions, including the structure stress intensity and the stability of the structure, largely limit the maximum allowable current density. But in order to contain a very high dense plasma, it is hoped that the fusion power plant system can operate with a much high maximum magnetic field BT ≥12 T~15 T in the center post. A new method is presented in this paper to improve the maximum magnetic field up to 17 T and to investigate the possibility of the normal conducting center post to be used in the future fusion tokamak power plant.

  15. Advanced Control Scenario of High-Performance Steady-State Operation for JT-60 Superconducting Tokamak

    Institute of Scientific and Technical Information of China (English)

    H. Tamai; Y. Kamada; A. Sakasai; S. Ishida; G. Kurita; M. Matsukawa; K. Urata; S. Sakurai; K. Tsuchiya; A. Morioka; Y. M. Miura; K. Kizu

    2004-01-01

    Plasma control on high-βN steady-state operation for JT-60 superconducting modification is discussed. Accessibility to high-βN exceeding the free-boundary limit is investigated with the stabilising wall of reduced-activated ferritic steel and the active feedback control of the in-vessel non-axisymmetric field coils. Taking the merit of superconducting magnet, advanced plasma control for steady-state high performance operation could be expected.

  16. Method and apparatus for connecting high voltage leads to a high temperature super-conducting transformer

    Science.gov (United States)

    Golner, Thomas M.; Mehta, Shirish P.

    2005-07-26

    A method and apparatus for connecting high voltage leads to a super-conducting transformer is provided that includes a first super-conducting coil set, a second super-conducting coil set, and a third super-conducting coil set. The first, second and third super-conducting coil sets are connected via an insulated interconnect system that includes insulated conductors and insulated connectors that are utilized to connect the first, second, and third super-conducting coil sets to the high voltage leads.

  17. Proceedings of the sixth Japan--US workshop on high-field superconducting materials and standard procedures for high-field superconducting materials testing

    Energy Technology Data Exchange (ETDEWEB)

    Tachikawa, K. (ed.) (Tokai Univ., Kanagawa (Japan). Faculty of Engineering); Yamafuji, K. (ed.) (Kyushu Univ., Fukuoka (Japan). Dept. of Electronics); Wada, H. (ed.) (National Research Inst. for Metals, Tsukuba, Ibaraki (Japan)); Ekin, J.W. (ed.) (National Inst. of Standards and Technology, Boulder, CO (United States)); Suenaga, M. (ed.) (Brookhaven National Lab., Upton, NY (United States))

    1989-01-01

    High critical current densities and high magnetic fields are needed for most important energy application of both conventional and high-Tc superconductors. This workshop brought together those engaged research on high-field superconductors in Japan and the US to present recent research results on performance of new high-field superconducting materials and to discuss the most promising directions for research, specifically as it relates to the fusion energy needs of both countries. Topics covered included critical currents, irradiation effects, ac losses, magnetization properties, and new fabrication processes for conventional superconductors. An entire session was devoted to presentations on the properties of Nb[sub 3]Al superconductors. Large magnet research programs for energy applications were reviewed, including the tokamak fusion machine at JAERI, the joint US-Japan Nb[sub 3]Sn poloidal-field-coll development program, and the proposed International Thermonuclear Experimental Reactor (ITER) project. Results were also presented on the VAMAS round robin in three areas; J[sub c], stress effects, and ac losses. Finally, some current research results on experimental high-[Tc] superconductors were reviewed, with particular emphasis on new fabrication processes and the factors limiting the critical current in high-current conductors. Separate abstracts have been prepared.

  18. Proceedings of the sixth Japan--US workshop on high-field superconducting materials and standard procedures for high-field superconducting materials testing

    Energy Technology Data Exchange (ETDEWEB)

    Tachikawa, K. [ed.] [Tokai Univ., Kanagawa (Japan). Faculty of Engineering; Yamafuji, K. [ed.] [Kyushu Univ., Fukuoka (Japan). Dept. of Electronics; Wada, H. [ed.] [National Research Inst. for Metals, Tsukuba, Ibaraki (Japan); Ekin, J.W. [ed.] [National Inst. of Standards and Technology, Boulder, CO (United States); Suenaga, M. [ed.] [Brookhaven National Lab., Upton, NY (United States)

    1989-12-31

    High critical current densities and high magnetic fields are needed for most important energy application of both conventional and high-Tc superconductors. This workshop brought together those engaged research on high-field superconductors in Japan and the US to present recent research results on performance of new high-field superconducting materials and to discuss the most promising directions for research, specifically as it relates to the fusion energy needs of both countries. Topics covered included critical currents, irradiation effects, ac losses, magnetization properties, and new fabrication processes for conventional superconductors. An entire session was devoted to presentations on the properties of Nb{sub 3}Al superconductors. Large magnet research programs for energy applications were reviewed, including the tokamak fusion machine at JAERI, the joint US-Japan Nb{sub 3}Sn poloidal-field-coll development program, and the proposed International Thermonuclear Experimental Reactor (ITER) project. Results were also presented on the VAMAS round robin in three areas; J{sub c}, stress effects, and ac losses. Finally, some current research results on experimental high-{Tc} superconductors were reviewed, with particular emphasis on new fabrication processes and the factors limiting the critical current in high-current conductors. Separate abstracts have been prepared.

  19. Magnetic field expulsion in superconducting granular ceramics and in polymer/superconductor composites

    Energy Technology Data Exchange (ETDEWEB)

    Benlhachemi, A. [Univ. de Toulon et du Var, La Garde (France). Lab. des Materiaux Multiphases et Interfaces]|[Lab. de Chimie des Solides, Faculte des Sciences, Univ. Ibnou Zohr, Agadir (Morocco); Fremy, M.A.; Breandon, C.; Tatarenko, H.; Gavarri, J.R. [Univ. de Toulon et du Var, La Garde (France). Lab. des Materiaux Multiphases et Interfaces; Benyaich, H. [Lab. de Chimie des Solides, Faculte des Sciences, Univ. Ibnou Zohr, Agadir (Morocco)

    1998-05-01

    The magnetic interaction between a permanent magnet and superconducting ceramics such as YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} and Bi{sub 1.6}Pb{sub 0.4}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub (10+} {sub de} {sub lta)} depend on the superconducting state of each phase and on the junctions between grains. In the case of polymer/superconductor composites, screening effects depend on the volume fraction of superconductor. Measurements of the evolution of the levitation force (F=A/d{sup {gamma}}) as a function of the interaction distance d are used to characterize the effective response of the ceramics or composites to the magnetic flux penetration. Some of the abnormal variations of the exponent {gamma} and of the term A (in F=A/d{sup {gamma}}) could be reinterpreted in terms of a change in superconducting regime. Other observed variations of {gamma} should be due to the variation of the effective field from the cylindrical magnet. (orig.) 19 refs.

  20. Cooling profiles of laser induced temperature fields for superconducting vanadium nitrate products

    Science.gov (United States)

    Emetere, Moses Eterigho

    2016-01-01

    The flexibility of vanadium nitrate makes it a good constituent for emerging superconductors. Its thermal instability engenders a disordered structure when doped by insulating constituents. The physics of the heat source i.e. the probe laser was theoretical derived to avoid deficiency of the superconducting material at low laser energy density. The mathematical experimentation was accomplished by queering the energy balance and heat conductivity of the individual constituents of the reagent. In-depth analysis of the layered distribution of laser induced temperature fields was carried out by cooling the compound via the forced convective cooling technique to about 150 °C. The material was gradual heated via the laser probe to its superconducting state. The structural defect which explained different state of the thermal outcomes were explained and proven to correspond with experimental outcomes. The temperature distribution under the irradiating laser intensity (0.45 W) shows an effective decay rate probability density function which is peculiar to the concept of photoluminescence. The dynamics of the electronic structure of thermally-excited superconducting materials is hinged on the complementary stoichiometry signatures, thermal properties amongst others. The maximum possible critical temperatures of the inter-layer were calculated to be about 206 K.

  1. Thermal and mechanical properties of advanced impregnation materials for HTS cables and coils

    Science.gov (United States)

    Bagrets, N.; Otten, S.; Weiss, K.-P.; Kario, A.; Goldacker, W.

    2015-12-01

    In the growing field of high-temperature superconducting (HTS) applications, finding an appropriate impregnation material for cables and coils remains a challenging task. In HTS cables and coils, tapes have to be able to withstand mechanical loads during operation. Impregnation is playing a role as mechanical stabilization. However, material properties usually change significantly when going to low temperatures which can decrease performance of superconducting devices. For example, a large mismatch in thermal expansion between a conductor and impregnation material at low temperatures can lead to delamination and to degradation of the critical current. Impregnation materials can insulate tapes thermally which can lead to damage of the superconducting device in case of quench. Thus, thermal conductivity is an important property which is responsible for the temperature distribution in a superconducting cable or in a coil. Due to Lorentz forces acting on structural materials in a superconducting device, the mechanical properties of these materials should be investigated at operating temperatures of this device. Therefore, it is important to identify an advanced impregnation material meeting all specific requirements. In this paper, thermal and mechanical properties of impregnation material candidates with added fillers are presented in a temperature range from 300 K to 4 K.

  2. Minimax Current Density Coil Design

    CERN Document Server

    Poole, Michael; Lopez, Hector Sanchez; Ng, Michael; Crozier, Stuart; 10.1088/0022-3727/43/9/095001

    2010-01-01

    'Coil design' is an inverse problem in which arrangements of wire are designed to generate a prescribed magnetic field when energized with electric current. The design of gradient and shim coils for magnetic resonance imaging (MRI) are important examples of coil design. The magnetic fields that these coils generate are usually required to be both strong and accurate. Other electromagnetic properties of the coils, such as inductance, may be considered in the design process, which becomes an optimization problem. The maximum current density is additionally optimized in this work and the resultant coils are investigated for performance and practicality. Coils with minimax current density were found to exhibit maximally spread wires and may help disperse localized regions of Joule heating. They also produce the highest possible magnetic field strength per unit current for any given surface and wire size. Three different flavours of boundary element method that employ different basis functions (triangular elements...

  3. A visualization instrument to investigate the mechanical-electro properties of high temperature superconducting tapes under multi-fields

    Science.gov (United States)

    Liu, Wei; Zhang, Xingyi; Liu, Cong; Zhang, Wentao; Zhou, Jun; Zhou, YouHe

    2016-07-01

    We construct a visible instrument to study the mechanical-electro behaviors of high temperature superconducting tape as a function of magnetic field, strain, and temperature. This apparatus is directly cooled by a commercial Gifford-McMahon cryocooler. The minimum temperature of sample can be 8.75 K. A proportion integration differentiation temperature control is used, which is capable of producing continuous variation of specimen temperature from 8.75 K to 300 K with an optional temperature sweep rate. We use an external loading device to stretch the superconducting tape quasi-statically with the maximum tension strain of 20%. A superconducting magnet manufactured by the NbTi strand is applied to provide magnetic field up to 5 T with a homogeneous range of 110 mm. The maximum fluctuation of the magnetic field is less than 1%. We design a kind of superconducting lead composed of YBa2Cu3O7-x coated conductor and beryllium copper alloy (BeCu) to transfer DC to the superconducting sample with the maximum value of 600 A. Most notably, this apparatus allows in situ observation of the electromagnetic property of superconducting tape using the classical magnetic-optical imaging.

  4. Development of a Superconducting Magnet System for the ONR/General Atomics Homopolar Motor

    Science.gov (United States)

    Schaubel, K. M.; Langhorn, A. R.; Creedon, W. P.; Johanson, N. W.; Sheynin, S.; Thome, R. J.

    2006-04-01

    This paper describes the design, testing and operational experience of a superconducting magnet system presently in use on the Homopolar Motor Program. The homopolar motor is presently being tested at General Atomics in San Diego, California for the U.S Navy Office of Naval Research. The magnet system consists of two identical superconducting solenoid coils housed in two cryostats mounted integrally within the homopolar motor housing. The coils provide the static magnetic field required for motor operation and are wound using NbTi superconductor in a copper matrix. Each magnet is conduction cooled using a Gifford McMahon cryocooler. The coils are in close proximity to the iron motor housing requiring a cold to warm support structure with high stiffness and strength. The design of the coils, cold to warm support structure, cryogenic system, and the overall magnet system design will be described. The test results and operational experience will also be described.

  5. First performance test of a 25 T cryogen-free superconducting magnet

    Science.gov (United States)

    Awaji, Satoshi; Watanabe, Kazuo; Oguro, Hidetoshi; Miyazaki, Hiroshi; Hanai, Satoshi; Tosaka, Taizo; Ioka, Shigeru

    2017-06-01

    A 25 T cryogen-free superconducting magnet (25T-CSM) was developed and installed at the High Field Laboratory for Superconducting Materials (HFLSM), IMR, Tohoku University. The 25T-CSM consists of a high-temperature superconducting (HTS) coil and a low-temperature superconducting (LTS) coil. A high-strength CuNb/Nb3Sn Rutherford cable with a reinforcing stabilizer CuNb composite is adopted for the middle LTS section coil. All the coils were impregnated using an epoxy resin for conduction cooling. Initially, a GdBa2Cu3O y (Gd123) coil was designed as the HTS insert coil, and then a Bi2Sr2Ca2Cu3O y (Bi2223) coil was also developed. The HTS insert and the LTS (CuNb/Nb3Sn and NbTi) outsert coils are cooled by two 4K GM and two GM/JT cryocoolers, respectively. The LTS coils successfully generated a central magnetic field of 14 T at an operating current of 854 A without any training quench. The Gd123 coil generated 10.15 T at an operating current of 132.6 A in the absence of a background field. Subsequently, the operating current of the Gd123 insert was increased in a step-by-step manner under a background field of 14 T. The Gd123 coil could be operated up to 124.0 A stably, which corresponds to 23.55 T, but quenched at around 124.6 A (23.61 T). The Bi2223 insert coil using a Ni-alloy reinforced Bi2223 tape successfully generated 11.48 T at an operation current of 204.7A in a stand-alone test and 24.57 T in a background field of 14 T. The differences between the calculated and the measured values of the central magnetic fields are about 0.4 T for the Gd123 insert and 0.1 T for the Bi2223 insert around 24 T.

  6. The distribution of 3D superconductivity near the second critical field

    Science.gov (United States)

    Kachmar, Ayman; Nasrallah, Marwa

    2016-09-01

    We study the minimizers of the Ginzburg-Landau energy functional with a uniform magnetic field in a three dimensional bounded domain. The functional depends on two positive parameters, the Ginzburg-Landau parameter and the intensity of the applied magnetic field, and acts on complex-valued functions and vector fields. We establish a formula for the distribution of the L 2-norm of the minimizing complex-valued function (order parameter). The formula is valid in the regime where the Ginzburg-Landau parameter is large and the applied magnetic field is close to and strictly below the second critical field—the threshold value corresponding to the transition from the superconducting to the normal phase in the bulk of the sample. Earlier results are valid in 2D domains and for the L 4-norm in 3D domains.

  7. Superior homogeneity of trapped magnetic field in superconducting MgB2 bulk magnets

    Science.gov (United States)

    Ishihara, A.; Akasaka, T.; Tomita, M.; Kishio, K.

    2017-03-01

    Homogeneity of trapped magnetic field in radial and circumferential directions of high temperature superconducting bulk magnets, MgB2 (T c ˜38.3 K) and YBa2Cu3O y (T c ˜91.5 K), have been measured. In polycrystalline MgB2 bulks, the circularity of trapped magnetic field in a cylindrical disk is over 97% at 20-32.5 K, while that of YBa2Cu3O y was ˜87% at 77 K. Magnetic field distribution of MgB2 bulk was satisfactorily homogeneous and these measurements suggest MgB2 bulks with highly efficient cryocoolers should be very useful for novel high field permanent magnet applications.

  8. Superconductivity in the Tungsten Bronzes

    Science.gov (United States)

    Wu, Phillip; Ishii, Satoshi; Tanabe, Kenji; Munakata, Ko; Hammond, Robert H.; Tokiwa, Kazuyasu; Geballe, Theodore H.; Beasley, Malcolm R.

    2015-03-01

    Via pulsed laser deposition and post-annealing, high quality K-doped WO3-y films with reproducible transport properties are obtained. A home built two-coil mutual inductance setup is used to probe the behavior of the films in the superconducting and normal state. The inverse penetration depths and dissipation peaks are measured as a function of temperature and field. Separately, via thin film deposition techniques, we report for the first time stable crystalline hexagonal WO3 on substrates. In order to tune the physical properties of the undoped material, we utilized an ionic liquid gating technique. We observe an insulator-to-metal transition, showing the ionic liquid gate to be a viable technique to alter the electrical transport properties of this material. By comparing the alkali and ionic liquid gated WO3, we conclude with some remarks regarding how superconductivity arises in this system.

  9. A new ring-shape high-temperature superconducting trapped-field magnet

    Science.gov (United States)

    Sheng, Jie; Zhang, Min; Wang, Yawei; Li, Xiaojian; Patel, Jay; Yuan, Weijia

    2017-09-01

    This paper presents a new trapped-field magnet made of second-generation high-temperature superconducting (2G HTS) rings. This so-called ring-shape 2G HTS magnet has the potential to provide much stronger magnetic fields relative to existing permanent magnets. Compared to existing 2G HTS trapped- field magnets, e.g. 2G HTS bulks and stacks, this new ring-shape 2G HTS magnet is more flexible in size and can be made into magnets with large dimensions for industrial applications. Effective magnetization is the key to being able to use trapped-field magnets. Therefore, this paper focuses on the magnetization mechanism of this new magnet using both experimental and numerical methods. Unique features have been identified and quantified for this new type of HTS magnet in the field cooling and zero field cooling process. The magnetization mechanism can be understood by the interaction between shielding currents and the penetration of external magnetic fields. An accumulation in the trapped field was observed by using multiple pulse field cooling. Three types of demagnetization were studied to measure the trapped-field decay for practical applications. Our results show that this new ring-shape HTS magnet is very promising in the trapping of a high magnetic field. As a super-permanent magnet, it will have a significant impact on large-scale industrial applications, e.g. the development of HTS machines with a very high power density and HTS magnetic resonance imaging devices.

  10. Fermion-fermion scattering in quantum field theory with superconducting circuits.

    Science.gov (United States)

    García-Álvarez, L; Casanova, J; Mezzacapo, A; Egusquiza, I L; Lamata, L; Romero, G; Solano, E

    2015-02-20

    We propose an analog-digital quantum simulation of fermion-fermion scattering mediated by a continuum of bosonic modes within a circuit quantum electrodynamics scenario. This quantum technology naturally provides strong coupling of superconducting qubits with a continuum of electromagnetic modes in an open transmission line. In this way, we propose qubits to efficiently simulate fermionic modes via digital techniques, while we consider the continuum complexity of an open transmission line to simulate the continuum complexity of bosonic modes in quantum field theories. Therefore, we believe that the complexity-simulating-complexity concept should become a leading paradigm in any effort towards scalable quantum simulations.

  11. Structural and low-field magnetic characterization of superconducting MgB{sub 2} wires

    Energy Technology Data Exchange (ETDEWEB)

    Kilic, A. [Faculty of Sciences, Department of Physics, Ankara University, 06100-Tandogan/Ankara (Turkey); Okur, S. [Izmir Institute of Technology, Department of Physics, 35437-Urla/Izmir (Turkey); Gueclue, N. [Faculty of Sciences and Art, Department of Physics, Gaziosmanpasa University, 60100-Taslicftlik/Tokat (Turkey)]. E-mail: guclu06@hotmail.com; Koelemen, U. [Faculty of Sciences and Art, Department of Physics, Gaziosmanpasa University, 60100-Taslicftlik/Tokat (Turkey); Uzun, O. [Faculty of Sciences and Art, Department of Physics, Gaziosmanpasa University, 60100-Taslicftlik/Tokat (Turkey); Oezyuezer, L. [Izmir Institute of Technology, Department of Physics, 35437-Urla/Izmir (Turkey); Gencer, A. [Faculty of Sciences, Department of Physics, Ankara University, 06100-Tandogan/Ankara (Turkey)

    2004-10-01

    Superconducting MgB{sub 2} composite wires were prepared by packing blend of MgB{sub 2} inside of Cu tubes using powder in tube (PIT) method. The produced samples of the wires were then characterised by using SEM, XRD and AC susceptibility measurements. The measured fundamental susceptibility is compared with Bean model. We have obtained an empirical functions for the penetration field H{sub p} = H{sub {alpha}}(1-t){sup {beta}}, where t is the reduced temperature. In addition, ac losses were calculated at the same fixed temperatures to compare theoretical solutions. There is a qualitative agreement between the experimental results and theory.

  12. Tokamak Physics EXperiment (TPX): Toroidal field magnet design, development and manufacture. SDRL 32, Coil assembly documentation. Volume 5

    Energy Technology Data Exchange (ETDEWEB)

    Weber, C.M. [Babcock and Wilcox Co., Lynchburg, VA (United States)

    1995-08-18

    This document is intended to address the contract requirement for providing coil assembly documentation, as required in the applicable Statement of Work: `Provide preliminary procedures and preliminary design and supporting analysis of the equipment, fixtures, and hardware required to integrate and align the impregnated coil assemblies with the coil cases and intercoil structure. Each of the three major processes associated with the coil case and intercoil structure (ICS), TF Case Fabrication, Coil Preparation for Case Assembly are examined in detail. The specific requirements, processes, equipment, and technical concerns for each of these assembly processes is presented.

  13. Compensation of the magnetization current induced sextupole error at LHC injection field by short lumped permanent sextupole magnets, incorporated into the end configuration of superconducting dipoles

    CERN Document Server

    Asner, A

    1985-01-01

    Compensation of the magnetization current induced sextupole error at LHC injection field by short lumped permanent sextupole magnets, incorporated into the end configuration of superconducting dipoles

  14. Progress in the manufacture of the cable-in-conduit Nb{sub 3}Sn outsert coils for the 45 Tesla Hybrid Magnet

    Energy Technology Data Exchange (ETDEWEB)

    Painter, T.A.; Miller, J.R.; Summers, L.T. [Florida State Univ., Tallahassee, FL (United States). National High Magnetic Field Lab.] [and others

    1994-07-01

    The 45 Tesla Hybrid Magnet is being built in a collaborative effort between the National High Magnetic Field Laboratory at Florida State University and the Francis Bitter National Magnet Laboratory at the Massachusetts Institute of Technology. The Hybrid Magnet combines a resistive insert magnet with two Nb3Sn and one NbTi superconducting cable-in-conduit outsert coil to produce the required field on axis. The Nb3Sn outsert coils are being built at Intermagnetics General Corporation under contract with FSU. A design summary for the entire 100 MJ outsert magnet is presented. The design criteria and manufacturing status for the two Nb3Sn outsert coils are described.

  15. RAPID COMMUNICATION: High performance superconducting wire in high applied magnetic fields via nanoscale defect engineering

    Science.gov (United States)

    Wee, Sung Hun; Goyal, Amit; Zuev, Yuri L.; Cantoni, Claudia

    2008-09-01

    High temperature superconducting (HTS) wires capable of carrying large critical currents with low dissipation levels in high applied magnetic fields are needed for a wide range of applications. In particular, for electric power applications involving rotating machinery, such as large-scale motors and generators, a high critical current, Ic, and a high engineering critical current density, JE, in applied magnetic fields in the range of 3-5 Tesla (T) at 65 K are required. In addition, exceeding the minimum performance requirements needed for these applications results in a lower fabrication cost, which is regarded as crucial to realize or enable many large-scale bulk applications of HTS materials. Here we report the fabrication of short segments of a potential superconducting wire comprised of a 4 µm thick YBa2Cu3O7-δ (YBCO) layer on a biaxially textured substrate with a 50% higher Ic and JE than the highest values reported previously. The YBCO film contained columns of self-assembled nanodots of BaZrO3 (BZO) roughly oriented along the c-axis of YBCO. Although the YBCO film was grown at a high deposition rate, three-dimensional self-assembly of the insulating BZO nanodots still occurred. For all magnetic field orientations, minimum Ic and JE at 65 K, 3 T for the wire were 353 A cm-1 and 65.4 kA cm-2, respectively.

  16. Fracture behaviors of thin superconducting films with field-dependent critical current density

    Energy Technology Data Exchange (ETDEWEB)

    He, An; Xue, Cun; Yong, Huadong; Zhou, Youhe, E-mail: zhouyh@lzu.edu.cn

    2013-09-15

    Highlights: • The fracture behaviors of superconducting films for the Kim model are studied. • The profile of stress intensity factor is generally the same as magnetostriction. • The crack problem of two collinear cracks is also researched for the Kim model. -- Abstract: The fracture behaviors under electromagnetic force with field-dependent critical current density in thin superconducting film are investigated. Applying finite element method, the energy release rates and stress intensity factors of one central crack versus applied field and crack length are obtained for the Bean model and Kim model. It is interesting that the profile of the stress intensity factor is generally the same as the magnetostrictive behavior during one full cycle applied field. Furthermore, the crack problem of two collinear cracks with respect to crack length and distance is also researched for the Kim model. The results show that the energy release rates and stress intensity factors of the two collinear cracks at left tip and right tip are remarkably different for relatively small crack distance and long crack length. This work can offer good estimations and provide a basis for interpretation of cracking and mechanical failure of HTS thin films in numerous real situations.

  17. An equivalent distributed magnetic current based FDTD method for the calculation of E-fields induced by gradient coils in MRI.

    Science.gov (United States)

    Crozier, S; Liu, F; Wei, Q

    2004-01-01

    This paper evaluates a low-frequency FDTD method applied to the problem of induced E-fields/eddy currents in the human body resulting from the pulsed magnetic field gradients in MRI. In this algorithm, a distributed equivalent magnetic current (DEMC) is proposed as the electromagnetic source and is obtained by quasistatic calculation of the empty coil's vector potential or measurements therein. This technique circumvents the discretizing of complicated gradient coil geometries into a mesh of Yee cells, and thereby enables any type of gradient coil modeling or other complex low frequency sources. The proposed method has been verified against an example with an analytical solution. Results are presented showing the spatial distribution of gradient-induced electric fields in a multilayered spherical phantom model and a complete body model.

  18. Trapped magnetic field of a superconducting bulk magnet in high- T sub c RE-Ba-Cu-O

    CERN Document Server

    Fujimoto, H; Higuchi, T; Nakamura, Y; Kamijo, H; Nagashima, K; Murakami, M

    1999-01-01

    Superconducting magnets made of high-T sub c superconductors are promising for industrial applications. It is well known that REBa sub 2 Cu sub 3 O sub 7 sub - sub x and LRE (light rare-earth) Ba sub 2 Cu sub 3 O sub 7 sub - sub x superconductors prepared by melt processes have a high critical current density, J sub c , at 77 K and high magnetic fields. Therefore, the materials are very prospective for high magnetic field application as a superconducting permanent/bulk magnet with liquid-nitrogen refrigeration. LREBaCuO bulks, compared with REBaCuO bulks, exhibit a larger J sub c in high magnetic fields and a much improved irreversibility field, H sub i sub r sub r , at 77 K. In this study, we discuss the possibility and trapped field properties of a superconducting bulk magnet, as well as the melt processing for bulk superconductors and their characteristic superconducting properties. One of the applications is a superconducting magnet for the future magnetically levitated (Maglev) train.

  19. Trapped magnetic field of a superconducting bulk magnet in high- T{sub c} RE-Ba-Cu-O

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Hiroyuki; Yoo, Sang Im; Higuchi, Takamitsu; Nakamura, Yuichi; Kamijo, Hiroki; Nagashima, Ken [Railway Technical Research Institute, Tokyo (Japan); Murakami, Masato [International Superconductivity Technology Center, Tokyo (Japan)

    1999-07-01

    Superconducting magnets made of high-T{sub c} superconductors are promising for industrial applications. It is well known that REBa{sub 2}Cu{sub 3}O{sub 7-x} and LRE (light rare-earth) Ba{sub 2}Cu{sub 3}O{sub 7-x} superconductors prepared by melt processes have a high critical current density, J{sub c}, at 77 K and high magnetic fields. Therefore, the materials are very prospective for high magnetic field application as a superconducting permanent/bulk magnet with liquid-nitrogen refrigeration. LREBaCuO bulks, compared with REBaCuO bulks, exhibit a larger J{sub c} in high magnetic fields and a much improved irreversibility field, H{sub irr}, at 77 K. In this study, we discuss the possibility and trapped field properties of a superconducting bulk magnet, as well as the melt processing for bulk superconductors and their characteristic superconducting properties. One of the applications is a superconducting magnet for the future magnetically levitated (Maglev) train.

  20. Race-track coils for a 3 MW HTS ship motor

    Science.gov (United States)

    Ueno, E.; Kato, T.; Hayashi, K.

    2014-09-01

    Since the discovery of high-temperature superconductivity (HTS), Sumitomo Electric has been developing silver-sheathed Bi2223 superconducting wire and products. Ship propulsion motors are one of the most promising applications of HTS. Sumitomo Electric Industries, Ltd. (SEI) has recently manufactured 24 large racetrack coils, using 70 km long DI-BSCCO wires, for use in a 3 MW HTS motor developed by Kawasaki Heavy Industries, Ltd. (KHI). The 3 MW HTS motor, using our newly developed racetrack coils, has successfully passed the loading test. It is particularly important that the HTS field coils used in ship propulsion motors can withstand the expansive forces repeatedly applied to them. As racetrack type coils have straight sections, the support mechanism they require to withstand expansive forces is very different from that of circular coils. Therefore, we ran tests and obtained the basic data to evaluate the 20-year durability of racetrack coils against the repeatedly applied expansive forces expected in domestic ship propulsion motors.

  1. Experimental Study on Current Decay Characteristics of Persistent Current HTS Magnet by Alternating Magnetic Field

    Science.gov (United States)

    Park, Young Gun; Lee, Chang Young; Hwang, Young Jin; Lee, Woo Seung; Lee, Jiho; Jo, Hyun Chul; Chung, Yoon Do; Ko, Tae Kuk

    This paper deals with a current decay characteristics of a high temperature superconducting (HTS) magnet operated in persistent current mode (PCM). In superconducting synchronous machine applications such as linear synchronous motor (LSM), the superconducting coil is designed to operate in the PCM to obtain steady magnetic field with DC transport current. This superconducting magnet operates on a direct current, but it can be exposed to alternating magnetic field due to the armature winding. When the magnet is subjected to an external time-varying magnetic field, it is possible to result in a decay of the current in PCM system due to AC loss. In this research, a PCM system with armature coil which generates time-varying magnetic field was fabricated to verify current decay characteristics by external alternating magnetic field. The current decay rate was measured by using a hall sensor as functions of amplitude and frequency of armature coil.

  2. C-axis Resistivity of Superconductive FeSe Single Crystals: Upper Critical Field and its Angular Behavior

    Science.gov (United States)

    Sadakov, A. V.; Romanova, T. A.; Knyazev, D. A.; Chareev, D. A.; Martovitsky, V. P.

    We report out-of-plane magnetotransport ρc(B, T) measurements for a high quality superconducting FeSe single crystals in magnetic fields up to 9 Tesla. Samples, grown from the flux under a permanent gradient of temperature with [001] crystallographic orientation were put in magnetic field parallel to ab-plane. The samples were rotated around c-axis, and its superconducting transitions R(H) were measured for each fixed angle in several temperatures. We show that Hc2 is anisotropic in these relatively small fields, with Hc2||a/Hc2||b being ∼1.2 for T=8.3K.

  3. A model for correlating 4. 2-K performance with room-temperature mechanical characteristics in superconducting test dipole magnets for the Superconducting Super Collider (SSC)

    Energy Technology Data Exchange (ETDEWEB)

    Ige, O.O.; Lyon, R.H.; Iwasa, Y. (Francis Bitter National Magnet Laboratory Plasma Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States))

    1992-03-15

    The longitudinal attenuation of impact-generated pulses in ten superconducting dipole magnets was measured at room temperature. A lumped-parameter model was constructed for the collared dipole. Using the method of nonlinear least-squares, the model was used to estimate the internal damping in the main components of the dipoles and the coupling resistances between the components: collars, inner, and outer coils. A positive correlation was found between the collar-inner coil coupling resistance and the 4.2-K performance of the magnets: the higher the coupling resistance, the fewer the number of quenches required to reach design operating current. There was virtually no correlation between any of the other internal or coupling resistances and 4.2-K performance. These observations are explained in terms of frictional slip of the inner coil against the collars causing premature quenches. The magnets are more susceptible to quenches at the collar-inner coil interface than at the collar-outer coil interface because the inner coil is subject to higher fields and forces. The experiment is potentially useful as a technique for screening high-performance superconducting magnets such as Superconducting Super Collider (SSC) dipoles at room temperature.

  4. Origin of dc voltage in type II superconducting flux pumps: field, field rate of change, and current density dependence of resistivity

    Science.gov (United States)

    Geng, J.; Matsuda, K.; Fu, L.; Fagnard, J.-F.; Zhang, H.; Zhang, X.; Shen, B.; Dong, Q.; Baghdadi, M.; Coombs, T. A.

    2016-03-01

    Superconducting flux pumps are the kind of devices which can generate direct current into superconducting circuit using external magnetic field. The key point is how to induce a dc voltage across the superconducting load by ac fields. Giaever (1966 IEEE Spectr. 3 117) pointed out flux motion in superconductors will induce a dc voltage, and demonstrated a rectifier model which depended on breaking superconductivity. van de Klundert et al (1981 Cryogenics 21 195, 267) in their review(s) described various configurations for flux pumps all of which relied on inducing the normal state in at least part of the superconductor. In this letter, following their work, we reveal that a variation in the resistivity of type II superconductors is sufficient to induce a dc voltage in flux pumps and it is not necessary to break superconductivity. This variation in resistivity is due to the fact that flux flow is influenced by current density, field intensity, and field rate of change. We propose a general circuit analogy for travelling wave flux pumps, and provide a mathematical analysis to explain the dc voltage. Several existing superconducting flux pumps which rely on the use of a travelling magnetic wave can be explained using the analysis enclosed. This work can also throw light on the design and optimization of flux pumps.

  5. Superconductivity of lead

    Energy Technology Data Exchange (ETDEWEB)

    Boorse, H.A.; Cook, D.B.; Zemansky, W.M.

    1950-06-01

    Numerous determinations of the zero-field transition temperature of lead have been made. All of these observations except that of Daunt were made by the direct measurement of electrical resistance. Daunt`s method involved the shielding effect of persistent currents in a hollow cylinder. In the authors work on columbium to be described in a forthcoming paper an a.c. induction method was used for the measurement of superconducting transitions. The superconductor was mounted as a cylindrical core of a coil which functioned as the secondary of a mutual inductance. The primary coil was actuated by an oscillator which provided a maximum a.c. field within the secondary of 1.5 oersteds at a frequency of 1000 cycles per second. The secondary e.m.f. which was dependent for its magnitude on the permeability of the core was amplified, rectifie, and observed on a recording potentiometer. During the application of this method to the study of columbium it appeared that a further check on the zero-field transition temperature of lead would be worth while especially if agreement between results for very pure samples could be obtained using this method. Such result would help in establishing the lead transition temperature as a reasonably reproducible reference point in the region between 4 deg and 10 deg K.

  6. High-resolution small field-of-view magnetic resonance image acquisition system using a small planar coil and a pneumatic manipulator in an open MRI scanner.

    Science.gov (United States)

    Miki, Kohei; Masamune, Ken

    2015-10-01

    Low-field open magnetic resonance imaging (MRI) is frequently used for performing image-guided neurosurgical procedures. Intraoperative magnetic resonance (MR) images are useful for tracking brain shifts and verifying residual tumors. However, it is difficult to precisely determine the boundary of the brain tumors and normal brain tissues because the MR image resolution is low, especially when using a low-field open MRI scanner. To overcome this problem, a high-resolution MR image acquisition system was developed and tested. An MR-compatible manipulator with pneumatic actuators containing an MR signal receiver with a small radiofrequency (RF) coil was developed. The manipulator had five degrees of freedom for position and orientation control of the RF coil. An 8-mm planar RF coil with resistance and inductance of 2.04 [Formula: see text] and 1.00 [Formula: see text] was attached to the MR signal receiver at the distal end of the probe. MR images of phantom test devices were acquired using the MR signal receiver and normal head coil for signal-to-noise ratio (SNR) testing. The SNR of MR images acquired using the MR signal receiver was 8.0 times greater than that of MR images acquired using the normal head coil. The RF coil was moved by the manipulator, and local MR images of a phantom with a 2-mm grid were acquired using the MR signal receiver. A wide field-of-view MR image was generated from a montage of local MR images. A small field-of-view RF system with a pneumatic manipulator was integrated in a low-field MRI scanner to allow acquisition of both wide field-of-view and high-resolution MR images. This system is promising for image-guided neurosurgery as it may allow brain tumors to be observed more clearly and removed precisely.

  7. Insulating process for HT-7U central solenoid model coils

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The HT-7U superconducting Tokamak is a whole superconducting magnetically confined fusion device. The insulating system of its central solenoid coils is critical to its properties. In this paper the forming of the insulating system and the vacuum-pressure-impregnating (VPI) are introduced, and the whole insulating process is verified under the superconducting experiment condition.

  8. Composite ceramic superconducting wires for electric motor applications

    Science.gov (United States)

    Halloran, John W.

    1990-07-01

    Several types of HTSC wire have been produced and two types of HTSC motors are being built. Hundreds of meters of Ag- clad wire were fabricated from YBa2Cu3O(7-x) (Y-123) and Bi2Ca2Sr2Cu3O10 (BiSCCO). The dc homopolar motor coils are not yet completed, but multiple turns of wire have been wound on the coil bobbins to characterize the superconducting properties of coiled wire. Multifilamentary conductors were fabricated as cables and coils. The sintered polycrystalline wire has self-field critical current densities (Jc) as high as 2800 A/sq cm, but the Jc falls rapidly with magnetic field. To improve Jc, sintered YBCO wire is melt textured with a continuous process which has produced textures wire up to 0.5 meters long with 77K transport Jc above 11, 770 A/sq cm2 in self field and 2100 A/sq cm2 at 1 telsa. The Emerson Electric dc homopolar HTSC motor has been fabricated and run with conventional copper coils. A novel class of potential very powerful superconducting motors have been designed to use trapped flux in melt textures Y-123 as magnet replicas in an new type of permanent magnet motor. The stator element and part of the rotor of the first prototype machine exist, and the HTSC magnet replica segments are being fabricated.

  9. submitter 16 T $Nb_{3}Sn$ Racetrack Model Coil Test Result

    CERN Document Server

    Perez, J C; Bajko, M; Bottura, L; Bordini, B; Chiuchiolo, A; De Rijk, G; Ferracin, P; Feuvrier, J; Grosclaude, P; Juchno, M; Rochepault, E; Rysti, J; Sarasola, X

    2016-01-01

    In the framework of the European project EuCARD, the High Field Magnet project, led by a CERN-CEA collaboration, implied the development of a large aperture $Nb_{3}Sn$ dipole magnet called FRESCA2. The magnet uses four double-pancake block-type coils, each about 1.5 m long. In order to characterize strand and cable properties, as well as to qualify the coil fabrication process, CERN started in 2012 the design and fabrication of the Racetrack Model Coil (RMC) magnet, a short model magnet using the same cable as FRESCA2 magnet with only two flat double-pancake coils about 0.8 m long. In 2013, two superconducting coils have been fabricated, making use of two different types of superconductor. In 2014 and 2015, the coils were tested both in a single and in a double-coil configuration in a support structure based on an external aluminum shell pre-loaded with water-pressurized bladders. In this paper, we describe the design of the RMC magnet and its coils, provide the main parameters of the superconductor, and repo...

  10. Narrow dip around zero magnetic field in magnetization hysteresis loops of thin YBCO superconducting films

    Energy Technology Data Exchange (ETDEWEB)

    Delimova, L [Wihuri Physical Laboratory, Department of Physics, University of Turku, FIN-20014 Turku (Finland); Liniichuk, I [A F Ioffe Physico-Technical Institute, St. Petersburg (Russian Federation); Laehderanta, E [Wihuri Physical Laboratory, Department of Physics, University of Turku, FIN-20014 Turku (Finland); Safonchik, M [Wihuri Physical Laboratory, Department of Physics, University of Turku, FIN-20014 Turku (Finland); Traito, K B [Wihuri Physical Laboratory, Department of Physics, University of Turku, FIN-20014 Turku (Finland)

    2003-01-01

    A narrow dip is observed around zero magnetic field in magnetization curves M(B) of superconducting YBCO films with about 10 nm thickness. This anomaly occurs in the same field range with an anomaly of ac surface impedance Z(B) found recently in thin YBCO films. Because the thickness of our films is considerably less than the London penetration depth, two-dimensional limit of the critical state model is applied. In the framework of this model the magnetic field dependence of the critical current density j{sub c}(B) is found. The obtained j{sub c}(B) function agrees well with that found in the ac surface impedance investigation.

  11. Defect Formation in Superconducting Rings: External Fields and Finite-Size Effects

    Science.gov (United States)

    Weir, D. J.; Monaco, R.; Rivers, R. J.

    2013-06-01

    Consistent with the predictions of Kibble and Zurek, scaling behaviour has been seen in the production of fluxoids during temperature quenches of superconducting rings. However, deviations from the canonical behaviour arise because of finite-size effects and stray external fields. Technical developments, including laser heating and the use of long Josephson tunnel junctions, have improved the quality of data that can be obtained. With new experiments in mind we perform large-scale 3D simulations of quenches of small, thin rings of various geometries with fully dynamical electromagnetic fields, at nonzero externally applied magnetic flux. We find that the outcomes are, in practise, indistinguishable from those of much simpler Gaussian analytical approximations in which the rings are treated as one-dimensional systems and the magnetic field fluctuation-free.

  12. Fracture behaviors of thin superconducting films with field-dependent critical current density

    Science.gov (United States)

    He, An; Xue, Cun; Yong, Huadong; Zhou, Youhe

    2013-09-01

    The fracture behaviors under electromagnetic force with field-dependent critical current density in thin superconducting film are investigated. Applying finite element method, the energy release rates and stress intensity factors of one central crack versus applied field and crack length are obtained for the Bean model and Kim model. It is interesting that the profile of the stress intensity factor is generally the same as the magnetostrictive behavior during one full cycle applied field. Furthermore, the crack problem of two collinear cracks with respect to crack length and distance is also researched for the Kim model. The results show that the energy release rates and stress intensity factors of the two collinear cracks at left tip and right tip are remarkably different for relatively small crack distance and long crack length. This work can offer good estimations and provide a basis for interpretation of cracking and mechanical failure of HTS thin films in numerous real situations.

  13. MR-based measurements and simulations of the magnetic field created by a realistic transcranial magnetic stimulation (TMS) coil and stimulator.

    Science.gov (United States)

    Mandija, Stefano; Petrov, Petar I; Neggers, Sebastian F W; Luijten, Peter R; van den Berg, Cornelis A T

    2016-11-01

    Transcranial magnetic stimulation (TMS) is an emerging technique that allows non-invasive neurostimulation. However, the correct validation of electromagnetic models of typical TMS coils and the correct assessment of the incident TMS field (BTMS ) produced by standard TMS stimulators are still lacking. Such a validation can be performed by mapping BTMS produced by a realistic TMS setup. In this study, we show that MRI can provide precise quantification of the magnetic field produced by a realistic TMS coil and a clinically used TMS stimulator in the region in which neurostimulation occurs. Measurements of the phase accumulation created by TMS pulses applied during a tailored MR sequence were performed in a phantom. Dedicated hardware was developed to synchronize a typical, clinically used, TMS setup with a 3-T MR scanner. For comparison purposes, electromagnetic simulations of BTMS were performed. MR-based measurements allow the mapping and quantification of BTMS starting 2.5 cm from the TMS coil. For closer regions, the intra-voxel dephasing induced by BTMS prohibits TMS field measurements. For 1% TMS output, the maximum measured value was ~0.1 mT. Simulations reflect quantitatively the experimental data. These measurements can be used to validate electromagnetic models of TMS coils, to guide TMS coil positioning, and for dosimetry and quality assessment of concurrent TMS-MRI studies without the need for crude methods, such as motor threshold, for stimulation dose determination. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Artificial Neural Networks: a viable tool to design heat load smoothing strategies for the ITER Toroidal Field coils

    Science.gov (United States)

    Froio, A.; Bonifetto, R.; Carli, S.; Quartararo, A.; Savoldi, L.; Zanino, R.

    2015-12-01

    In superconducting tokamaks, cryoplants provide the helium needed to cool the superconducting magnet systems. The evaluation of the heat load from the magnets to the cryoplant is fundamental for the design of the latter and the assessment of suitable strategies to smooth the heat load pulses induced by the pulsed plasma scenarios is crucial for the operation. Here, a simplified thermal-hydraulic model of an ITER Toroidal Field (TF) magnet, based on Artificial Neural Networks (ANNs), is developed and inserted into a detailed model of the ITER TF winding and casing cooling circuits based on the state-of-the-art 4C code, which also includes active controls. The low computational effort requested by such a model allows performing a fast parametric study, to identify the best smoothing strategy during standard plasma operation. The ANNs are trained using 4C simulations, and the predictive capabilities of the simplified model are assessed against 4C simulations, both with and without active smoothing, in terms of accuracy and computational time.

  15. 100 years of superconductivity

    CERN Document Server

    Rogalla, Horst

    2011-01-01

    Even a hundred years after its discovery, superconductivity continues to bring us new surprises, from superconducting magnets used in MRI to quantum detectors in electronics. 100 Years of Superconductivity presents a comprehensive collection of topics on nearly all the subdisciplines of superconductivity. Tracing the historical developments in superconductivity, the book includes contributions from many pioneers who are responsible for important steps forward in the field.The text first discusses interesting stories of the discovery and gradual progress of theory and experimentation. Emphasizi

  16. Magnetic field dependence of the coupling efficiency of a superconducting transmission line due to the proximity effect

    NARCIS (Netherlands)

    Zhu, S.; Zijlstra, T.; Golubov, A.A.; Van den Bemt, M.; Baryshev, A.M.; Klapwijk, T.M.

    2009-01-01

    The coupling efficiency of a Nb superconducting transmission line has been measured using a Fourier transform spectrometer for different magnetic fields. It is found that the coupling decreases with increasing magnetic field when the frequency is close to the gap of the Nb superconductor. This is at

  17. Development and Manufacture of the Coil End Spacers of the LHC Pre-series Dipoles

    CERN Document Server

    Farina, E; Perini, D; Schiappapietra, A; Seneé, L

    2002-01-01

    The coil end spacers play an important role in the performance of superconducting coils, as their shape and location determine the mechanical stability of the conductors in the coil ends (and hence the overall coil training performance) and the local field quality. The dipole end spacers are often of a size and a geometry difficult to be industrially series manufactured and measured. Efficiency of the production and related costs are a key issue to achieve the required production rate of the LHC main dipoles at an affordable price. For the latter reasons, a design approach integrating state-of-the-art CAD/CAM optimization techniques allowing to considerably decrease design and machining time was implemented. This paper gives examples and describes the design criteria, the computation methods, the machining and measuring procedures adopted to carry out the pre-series production.

  18. Testing of Nb3Sn quadrupole coils using magnetic mirror structure

    Energy Technology Data Exchange (ETDEWEB)

    Zlobin, A.V.; Andreev, N.; Barzi, E.; Bossert, R.; Chlachidze, G.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.; Novitski, I.; Tartaglia, M.; Tompkins, J.C.; /Fermilab

    2009-07-01

    This paper describes the design and parameters of a quadrupole mirror structure for testing the mechanical, thermal and quench performance of single shell-type superconducting quadrupole coils at field, current and force levels similar to that of real magnet. The concept was experimentally verified by testing two quadrupole coils, previously used in quadrupole models, in the developed mirror structure in the temperature range from 4.5 to 1.9 K. The coils were instrumented with voltage taps, heaters, and strain gauges to monitor their mechanical and thermal properties and quench performance. A new quadrupole coil made of improved Nb{sub 3}Sn RRP-108/127 strand and cable insulation based on E-glass tape was also tested using this structure. The fabrication and test results of the quadrupole mirror models are reported and discussed.

  19. Testing of Nb3Sn quadrupole coils using magnetic mirror structure

    Energy Technology Data Exchange (ETDEWEB)

    Zlobin, A.V.; Andreev, N.; Barzi, E.; Bossert, R.; Chlachidze, G.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.; Novitski, I.; Tartaglia, M.; Tompkins, J.C.; /Fermilab

    2009-07-01

    This paper describes the design and parameters of a quadrupole mirror structure for testing the mechanical, thermal and quench performance of single shell-type superconducting quadrupole coils at field, current and force levels similar to that of real magnet. The concept was experimentally verified by testing two quadrupole coils, previously used in quadrupole models, in the developed mirror structure in the temperature range from 4.5 to 1.9 K. The coils were instrumented with voltage taps, heaters, and strain gauges to monitor their mechanical and thermal properties and quench performance. A new quadrupole coil made of improved Nb{sub 3}Sn RRP-108/127 strand and cable insulation based on E-glass tape was also tested using this structure. The fabrication and test results of the quadrupole mirror models are reported and discussed.

  20. A superconducting transformer system for high current cable testing.

    Science.gov (United States)

    Godeke, A; Dietderich, D R; Joseph, J M; Lizarazo, J; Prestemon, S O; Miller, G; Weijers, H W

    2010-03-01

    This article describes the development of a direct-current (dc) superconducting transformer system for the high current test of superconducting cables. The transformer consists of a core-free 10,464 turn primary solenoid which is enclosed by a 6.5 turn secondary. The transformer is designed to deliver a 50 kA dc secondary current at a dc primary current of about 50 A. The secondary current is measured inductively using two toroidal-wound Rogowski coils. The Rogowski coil signal is digitally integrated, resulting in a voltage signal that is proportional to the secondary current. This voltage signal is used to control the secondary current using a feedback loop which automatically compensates for resistive losses in the splices to the superconducting cable samples that are connected to the secondary. The system has been commissioned up to 28 kA secondary current. The reproducibility in the secondary current measurement is better than 0.05% for the relevant current range up to 25 kA. The drift in the secondary current, which results from drift in the digital integrator, is estimated to be below 0.5 A/min. The system's performance is further demonstrated through a voltage-current measurement on a superconducting cable sample at 11 T background magnetic field. The superconducting transformer system enables fast, high resolution, economic, and safe tests of the critical current of superconducting cable samples.

  1. Design and fabrication of a superconducting magnet for an 18 GHz electron cyclotron resonance ion∕photon source NFRI-ECRIPS.

    Science.gov (United States)

    You, H-J; Jang, S-W; Jung, Y-H; Lho, T-H; Lee, S-J

    2012-02-01

    A superconducting magnet was designed and fabricated for an 18 GHz ECR ion∕photon source, which will be installed at National Fusion Research Institute (NFRI) in South Korea. The magnetic system consists of a set of four superconducting coils for axial mirror field and 36 pieces of permanent magnets for hexapolar field. The superconducting coils with a cryocooler (1.5 W @ 4.2 K) allow one to reach peak mirror fields of 2.2 T in the injection and those of 1.5 T in the extraction regions on the source axis, and the resultant hexapolar field gives 1.35 T on the plasma chamber wall. The unbalanced magnetic force between the coils and surrounding yoke has been minimized to 16 ton by a coil arrangement and their electrical connection, and then was successfully suspended by 12 strong thermal insulating supports made of large numbers of carbon fibers. In order to block radiative thermal losses, multilayer thermal insulations are covered on the coil windings as well as 40-K aluminum thermal shield. Also new schemes of quench detection and safety system (coil divisions, quench detection coils, and heaters) were employed. For impregnation of the windings a special epoxy has been selected and treated to have a higher breaking strength and a higher thermal conductivity, which enables the superconductors to be uniformly and rapidly cooled down or heated during a quench.

  2. The Future of Superconducting Technology for Particle Accelerators

    CERN Document Server

    Yamamoto, Akira

    2015-01-01

    Introduction: - Colliders constructed and operated - Future High Energy Colliders under Study - Superconducting Phases and Applications - Possible Choices among SC Materials Superconducting Magnets and the Future - Advances in SC Magnets for Accelerators - Nb3Sn for realizing Higher Field - NbTi to Nb3Sn for realizing High Field (> 10 T) - HL-LHC as a critical milestone for the Future of Acc. Magnet Technology - Nb3Sn Superconducting Magnets (> 11 T)and MgB2 SC Links for HL-LHC - HL-LHC, 11T Dipole Magnet - Nb3Sn Quadrupole (MQXF) at IR - Future Circular Collider Study - Conductor development (1998-2008) - Nb3Sn conductor program - 16 T Dipole Options and R&D sharing - Design Study and Develoment for SppC in China - High-Field Superconductor and Magnets - HTS Block Coil R&D for 20 T - Canted Cosine Theta (CCT) Coil suitable with Brittle HTS Conductor - A topic at KEK: S-KEKB IRQs just integrated w/ BELLE-II ! Superconducting RF and the Future - Superconducting Phases and Applications - Poss...

  3. Influence of field strength, coil type and image resolution on assessment of synovitis by unenhanced MRI - a comparison with contrast-enhanced MRI

    Energy Technology Data Exchange (ETDEWEB)

    Eshed, Iris [The Sheba Medical Center, Department of Diagnostic Imaging, Tel Hashomer (Israel); Tel Aviv University, Sackler School of Medicine, Tel Aviv (Israel); Krabbe, Simon; Axelsen, Mette; Pedersen, Susanne Juhl [Copenhagen University Hospital Glostrup, Copenhagen Center for Arthritis Research, Center for Rheumatology and Spine Diseases, Copenhagen (Denmark); Oestergaard, Mikkel [Copenhagen University Hospital Glostrup, Copenhagen Center for Arthritis Research, Center for Rheumatology and Spine Diseases, Copenhagen (Denmark); Copenhagen University Hospital Gentofte, Department of Rheumatology/C, Copenhagen (Denmark); Boeyesen, Pernille [Diakonhjemmet Hospital, Department of Rheumatology, Oslo (Norway); Moeller, Jakob M. [Copenhagen University Hospital at Herlev, Department of Radiology, Copenhagen (Denmark); Therkildsen, Flemming [Metropolitan University College, Copenhagen (Denmark); Madsen, Ole Rintek [Copenhagen University Hospital Gentofte, Department of Rheumatology/C, Copenhagen (Denmark)

    2015-04-01

    To explore if the reliability of synovitis assessment by unenhanced MRI is influenced by different MRI field-strengths, coil types and image resolutions in RA patients. Forty-one RA patients and 12 healthy controls underwent hand MRI (wrist and 2{sup nd}-5{sup th} metacarpophalangeal joints) at 4 different field-strengths (0.23 T/0.6 T/1.5 T/3.0 T) on the same day. Seven protocols using a STIR sequence with different field-strengths, coils (flex coils/dedicated phased-array extremity coils) and resolution were applied and scored blindly for synovitis (OMERACT-RAMRIS method). A 1.5 T post-contrast T1-weighted sequence was used as gold standard reference. Fair-good agreement (ICC=0.38-0.72) between the standard reference and the different STIR protocols (best agreement with extremity coil and small voxel size at 1.5 T). The accuracy for presence/absence of synovitis was very high per person (0.80-1.0), and moderate-high per joint (0.63-0.85), whereas exact agreements on scores were moderate (0.50-0.66). The intrareader agreement (15 patients and 3 controls) on presence/absence of synovitis was very high (0.87-1.0). Unenhanced MRI using STIR sequence is only moderately reliable for assessing hand synovitis in RA, when contrast-enhanced MRI is considered the gold standard reference. Contrast injection, field strength and coil type influence synovitis assessment, and should be considered before performing MRI in clinical trials and practice. (orig.)

  4. Collaring of Po Superconducting Dipole

    CERN Multimedia

    1983-01-01

    The picture shows the placing of a stack of stainless steel collars around the superconducting coils.Pre-assembled collar stacks were placed under and on top of the coils,the collars interleaving as comb teeth. During the following collaring operation of compression under a press the collars were locked together by means of side wedges. See also photos 8211532X, 7903168

  5. Symmetric dynamic behaviour of a superconducting proximity array with respect to field reversal

    Science.gov (United States)

    Lankhorst, M.; Poccia, N.

    2017-01-01

    As the complexity of strongly correlated systems and high temperature superconductors increases, so does also the essential complexity of defects found in these materials and the complexity of the supercurrent pathways. It can be therefore convenient to realize a solid-state system with regular supercurrent pathways and without the disguising effects of disorder in order to capture the essential characteristics of a collective dynamics. Using a square array of superconducting islands placed on a normal metal, we observe a state in which magnetic field-induced vortices are frozen in the dimples of the egg crate potential by their strong repulsion interaction. In this system a dynamic vortex Mott insulator transition has been previously observed. In this work, we will show the symmetric dynamic behaviour with respect to field reversal and we will compare it with the asymmetric behaviour observed at the dynamic vortex Mott transition.

  6. Heating rate and spin flip lifetime due to near field noise in layered superconducting atom chips

    CERN Document Server

    Fermani, Rachele; Zhang, Bo; Lim, Michael J; Dumke, Rainer

    2009-01-01

    We theoretically investigate the heating rate and spin flip lifetimes due to near field noise for atoms trapped close to layered superconducting structures. In particular, we compare the case of a gold layer deposited above a superconductor with the case of a bare superconductor. We study a niobium-based and a YBCO-based chip. For both niobium and YBCO chips at a temperature of 4.2 K, we find that the deposition of the gold layer can have a significant impact on the heating rate and spin flip lifetime, as a result of the increase of the near field noise. At a chip temperature of 77 K, this effect is less pronounced for the YBCO chip.

  7. Quasiperiodic superconducting V/Zr multilayers: critical magnetic fields and crossover

    Science.gov (United States)

    Fogel, N. Ya.; Cherkasova, V. G.; Mikhailov, M. Yu.; Bomze, Yu. V.; Yuzephovich, O. I.; Dmitrenko, I. M.; Stetsenko, A. N.

    1998-08-01

    Critical magnetic fields parallel and perpendicular to the planes of quasiperiodic superconducting Fibonacci multilayers (ML) consisting of vanadium and zirconium are measured. The temperature dependence of the parallel critical field Hc∥ displays two crossovers. The Hc∥(T) dependence is of square-root type in the vicinity of the transition temperature Tc and linear at low temperatures. Between these temperature intervals, the dependence follows a power law: Hc∥˜(1-T/Tc)α, α=0,78±0,02. The complex nature of this dependence can be explained in the framework of the Ginzburg-Landau theory for a quasiperiodic ML, as well as by the scaling theory for fractal multilayers which takes into account the different structure length scales in the case of ML with a complex sequence of layers.

  8. The Effect of Temperature Dependence of AC Losses in a Bi-2223/Ag Insert of an 8-T Superconducting Magnet

    DEFF Research Database (Denmark)

    Wang, Lei; Wang, Qiuliang; Wang, Hui;

    2016-01-01

    A conduction-cooled split-gap superconducting magnet system with a center field of 8 T has been designed and fabricated in the Institute of Electrical Engineering, Chinese Academy of Sciences. The system consists of two Bi-2223/Ag coils and six NbTi coils. Due to a large aspect ratio of the high...... dependence relations of the critical current density .1c are considered. The calculations are carried out in three steps. First, to estimate the magnitude of ac losses rapidly in the Bi-2223/Ag coils, the ac losses are calculated when the Bi-2223/Ag and NbTi coils are simultaneously charged, in which...... the temperature distribution is not considered. Second, the temperature variation is considered to calculate the ac losses under the same operating conditions with those in the first case. Finally, the NbTi coils are charged first, followed by the Bi-2223/Ag coils; the ac losses calculated are less than those...

  9. Genotoxic Effects of Superconducting Static Magnetic Fields (SMFs) on Wheat (Triticum aestivum) Pollen Mother Cells (PMCs)

    Science.gov (United States)

    Zhang, Pingping; Yin, Ruochun; Chen, Zhiyou; Wu, Lifang; Yu, Zengliang

    2007-04-01

    The effects of superconducting static magnetic fields (SMFs) on the pollen mother cells (PMCs) of wheat were investigated in order to evaluate the possible genotoxic effect of such non-ionizing radiation. The seeds of wheat were exposed to static magnetic fields with either different magnetic flux densities (0, 1, 3, 5 and 7 Tesla) for 5 h or different durations (1, 3 and 5 h) at a magnetic flux density of 7 Tesla. The seeds were germinated at 23oC after exposure and the seedlings were transplanted into the field. The PMCs from young wheat ears were taken and slides were made following the conventional method. The genotoxic effect was evaluated in terms of micronucleus (MN), chromosomal bridge, lagging chromosome and fragments in PMCs. Although the exposed groups of a low field intensity (below 5 Tesla) showed no statistically significant difference in the aberration frequency compared with the unexposed control groups and sham exposed groups, a significant increase in the chromosomal bridge, lagging chromosome, triple-polar segregation or micronucleus was observed at a field strength of 5 Tesla or 7 Tesla, respectively. The analysis of dose-effect relationships indicated that the increased frequency of meiotic abnormal cells correlated with the flux density of the magnetic field and duration, but no linear relationship was observed. Such statistically significant differences indicated a potential genotoxic effect of high static magnetic fields above 5 T.

  10. Genotoxic Effects of Superconducting Static Magnetic Fields (SMFs) on Wheat (Triticum aestivum) Pollen Mother Cells (PMCs)

    Institute of Scientific and Technical Information of China (English)

    ZHANG Pingping; YIN Ruochun; CHEN Zhiyou; WU Lifang; YU Zengliang

    2007-01-01

    The effects of superconducting static magnetic fields (SMFs) on the pollen mother cells (PMCs) of wheat were investigated in order to evaluate the possible genotoxic effect of such non-ionizing radiation.The seeds of wheat were exposed to static magnetic fields with either different magnetic flux densities (0,1,3,5 and 7 Tesla) for 5 h or different durations (1,3 and 5 h) at a magnetic flux density of 7 Tesla.The seeds were germinated at 23℃ after exposure and the seedlings were transplanted into the field.The PMCs from young wheat ears were taken and slides were made following the conventional method.The genotoxic effect was evaluated in terms of micronucleus (MN),chromosomal bridge,lagging chromosome and fragments in PMCs.Although the exposed groups of a low field intensity (below 5 Tesla) showed no statistically significant difference in the aberration frequency compared with the unexposed control groups and sham exposed groups,a significant increase in the chromosomal bridge,lagging chromosome,triple-polar segregation or micronucleus was observed at a field strength of 5 Tesla or 7 Tesla,respectively.The analysis of dose-effect relationships indicated that the increased frequency of meiotic abnormal cells correlated with the flux density of the magnetic field and duration,but no linear relationship was observed.Such statistically significant differences indicated a potential genotoxic effect of high static magnetic fields above 5 T.

  11. Numerical analysis of the superconducting magnet outer vessel of a Maglev train by a structural and electromagnetic coupling method

    Science.gov (United States)

    Matsue, H.; Demachi, K.; Miya, K.

    2001-09-01

    The harmonic magnetic field generated by the ground coils can cause vibration of the superconducting magnet, which must be reduced as it generates heat in the liquid helium temperature range. Therefore, it is important for the design of lighter magnets to exactly estimate the electromagnetic force on the superconducting magnet. Some causes of the vibration were analyzed by the structural and electromagnetic coupling FEM-BEM method.

  12. Study of field-limiting defects in superconducting RF cavities for electron-accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Aderhold, Sebastian

    2015-02-15

    Superconducting radio-frequency resonators made from niobium are an integral part of many accelerator projects. Their main advantage are the low ohmic losses resulting in the possibility for a long pulse structure and high duty cycles up to continous wave (cw) operation. The European X-Ray Free-Electron Laser (XFEL) and the International Linear Collider (ILC) are based on this technology. In some cases the resonators reach accelerating electric fields close to the theoretical limit of bulk niobium. Yet most resonators are limited at lower fields and mass production for large scale accelerator projects suffers from the spread in the achievable gradient per resonator. The main limitations are field emission and the breakdown of superconductivity (quench). While field emission is mostly attributed to the overall surface cleanliness of the resonator, quench is usually associated with local defects. Optical inspection of the inner surface of the resonators with unprecedented resolution, accuracy and a special illumination has been established at DESY and used to study such local surface defects. More than 30 resonators have been inspected. Distinctive features from these inspections have been catalogued and assessed for their potential risk for the performance of the resonator. Several confirmed quenching defects could be extracted for further analysis and could be traced back to likely origins in the production process. A new, automated set-up for optical inspection of large series of resonators, named OBACHT, has been developed and successfully commissioned. Its design includes the minimal need for operator interference, reproducibility, robustness and versatility, in order to fit the requirements for application both in a laboratory and in a production environment. To facilitate the comparison of the results obtained during the global R and D effort on resonators for the ILC, the ILC global yield database has been established. The yield and selection rules for the

  13. Enhanced charge stripe order in superconducting La2-xBaxCuO4 in high magnetic fields

    Science.gov (United States)

    Huecker, M.; Zimmermann, M. V.; Xu, Z. J.; Wen, J. S.; Gu, G. D.; Tranquada, J. M.

    2013-03-01

    There is mounting evidence for a proximity of the superconducting ground state in the cuprates to competing states with static spin and/or charge density modulations. One such competing state is the spin and charge stripe phase in La2-xBaxCuO4. By means of high energy (100 keV) x-ray diffraction we have studied the effect of a high magnetic field (H||c) on the charge stripe order in a broad range of doping (0.095 <= x <= 0.155). We find that the field can significantly enhance the charge stripe order, but only at temperatures and dopings where it coexists with bulk superconductivity at zero field. The field also increases stripe correlations between the planes, which can result in an enhanced frustration of the interlayer Josephson coupling. Close to the famous x =1/8 compound, where zero field stripe order is pronounced and bulk superconductivity is suppressed, charge stripe order is independent of the field. The results imply that static stripe order and three-dimensionally coherent superconductivity are competing ground states. The work at Brookhaven was supported by the Office of Basic Energy Sciences, Division of Materials Science and Engineering, U.S. Department of Energy (DOE), under Contract No. DE-AC02-98CH10886.

  14. Trapped fields up to 2 T in a 12 mm square stack of commercial superconducting tape using pulsed field magnetization

    Science.gov (United States)

    Patel, A.; Hopkins, S. C.; Glowacki, B. A.

    2013-03-01

    The ability of superconductors to sustain persistent currents has been well exploited with (RE)BCO superconducting bulks, which can be magnetized to form a compact source of high magnetic field. However, thin films can also sustain persistent currents, which can be utilized by stacking them in layers to create a type of composite bulk. Such a stack is capable of trapping higher fields than a bulk, as reported in this paper. 12 mm wide, 55 μm thick commercial (RE)BCO tape from Superpower Inc was cut into 12 mm by 12 mm squares, stacked together and magnetized at temperatures between 10 and 77.4 K using a sequence of pulsed magnetic fields. The results are compared to a commercial 14 mm diameter YBCO bulk, showing that the stack of tapes outperformed the bulk at temperatures below approximately 60 K. Particularly high trapped fields were achieved below 50 K, with a maximum of 2.0 T at 10 K measured 0.8 mm from the stack surface. The maximum trapped field possible for a stack of tapes increases significantly with decreasing temperature down to 10 K, rather than saturating at a higher temperature as in the case of a bulk, due to superior thermal stability. The Jc, thermal and mechanical properties of commercial (RE)BCO tapes give them great potential for use as trapped field magnets activated by pulsed magnetic fields.

  15. Electromagnetic fields and torque for a rotating gyroscope with a superconducting shield

    Science.gov (United States)

    Ebner, C.; Sung, C. C.

    1975-01-01

    In a proposed experiment, a measurement is to be made of the angular precession of a rotating superconducting gyroscope for the purpose of testing different general-relativity theories. For various reasons having to do with the design of the experiment, the superconducting shield surrounding the gyroscope is not spherically symmetric and produces a torque. There are two distinct features of the shield which lead to a torque on the gyroscope. First, its shape is a sphere intersected by a plane. If the angular momentum of the gyroscope is not parallel to the rotational symmetry axis of the shield, there is a torque which is calculated. Second, there are small holes in the spherical portion of the shield. The earth's field can penetrate through these holes and give an additional torque which is also calculated. In the actual experiment, these torques must be accurately known or made very small in order to obtain meaningful results. The present calculation is sufficiently general for application over a wide range of experimental design parameters.

  16. Resistive current states in wide superconducting films in zero magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Dmitriev, V M [B Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, 61103 Kharkiv (Ukraine); Zolochevskii, I V [B Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, 61103 Kharkiv (Ukraine)

    2006-04-15

    The temperature dependence of the current-voltage characteristics of high-quality thin films of tin from 7 to 50 {mu}m thick are investigated in the absence of an external magnetic field. For the first time, we have experimentally observed phase slip centres (PSCs) and phase slip lines (PSLs) on the same superconducting tin film with known parameters in the temperature intervals corresponding to the mechanisms of their formation and existence. We have shown that the states of a wide film with increasing transport current appear in the following order: the superconducting state for current less than critical; the resistive vortex state for current more than critical, but less than maximum current for the uniform flux flow (instability current); the critical state due to the onset of instability of the steady pattern of viscous motion of the vortices; a vortex-free resistive state with PSLs for current more than instability current, but less than the upper critical current; and the normal state at a current higher than the upper critical current.

  17. Thermodynamic Critical Field and Superconducting Fluctuation of Vortices for High Temperature Cuprate Superconductor La-214

    CERN Document Server

    Yung Moo Hu

    2001-01-01

    charge carriers. The dimensional crossover from 2D to 3D occurs in the strongly underdoped regime when the c-axis coherence distance zeta sub c becomes comparable to the spacing between adjacent CuO sub 2 layers s at sufficiently high magnetic fields near H sub c sub 2. Thermodynamics has been studied systematically for the high temperature cuprate superconductor La sub 2 sub - sub x Sr sub x CuO sub 4 sub - subdelta, La-214, in the entire superconductive region from strongly underdoped to strongly overdoped regimes. Magnetization studies with H(parallel)c have been made in order to investigate the changes in free energy of the system as the number of carriers is reduced. Above the superconducting transition temperature, the normal-state magnetization exhibits a two-dimensional Heisenberg antiferromagnetic behavior. Below T sub c , magnetization data are thermodynamically reversible over large portions of the H-T plane, so the free energy is well defined in these regions. As the Sr concentration is varied ove...

  18. Design criteria for warm temperature dielectric superconducting dc cables: Impact of co-pole magnetic fields

    Science.gov (United States)

    Grant, P. M.; Hassenzahl, W. V.; Gregory, B.; Eckroad, S. W.

    2008-02-01

    HTSC dc superconducting cables are under consideration for a variety of applications ranging from bi-directional interties between regional ac grids ("back-to-backs"), internal connection within, and out-feeds from, low voltage solar or wind farm generators, and up to multi-gigawatt transmission trunks linking remote nuclear clusters to urban load centers. In every instance, there are two principal design choices - coaxial, or "cold temperature dielectric; and mono-axial, also termed "warm temperature dielectric." In the former, both poles may be serviced by concentric conductors in the same physical package, separated by insulation held at the temperature necessary for superconducting operation, and in the latter, the poles are contained in two separate cables of more or less conventional design, each holding a cryostat enclosing the superconductor surrounded by a dielectric material at ambient temperature. Both have "pluses and minuses." CTD has the advantage of compactness, but requires a cryogenic dielectric, whereas WTD is simpler to manufacture and less costly overall as well. However, depending on the dimensional separation of the two poles and their containment infrastructure, WTD can experience considerable outward compressive physical forces and some reduction in critical state properties due to interpenetration of their respective magnetic fields. Recent progress in introducing homogeneous pinning in YBCO coated conductors could considerably ameliorate this latter issue, and thus the WTD design could engage a range of applications formerly out of reach of BSCCO tapes. We will examine these two issues in detail.

  19. Electric field-induced superconducting transition of insulating FeSe thin film at 35 K.

    Science.gov (United States)

    Hanzawa, Kota; Sato, Hikaru; Hiramatsu, Hidenori; Kamiya, Toshio; Hosono, Hideo

    2016-04-12

    It is thought that strong electron correlation in an insulating parent phase would enhance a critical temperature (Tc) of superconductivity in a doped phase via enhancement of the binding energy of a Cooper pair as known in high-Tc cuprates. To induce a superconductor transition in an insulating phase, injection of a high density of carriers is needed (e.g., by impurity doping). An electric double-layer transistor (EDLT) with an ionic liquid gate insulator enables such a field-induced transition to be investigated and is expected to result in a high Tc because it is free from deterioration in structure and carrier transport that are in general caused by conventional carrier doping (e.g., chemical substitution). Here, for insulating epitaxial thin films (∼10 nm thick) of FeSe, we report a high Tc of 35 K, which is 4× higher than that of bulk FeSe, using an EDLT under application of a gate bias of +5.5 V. Hall effect measurements under the gate bias suggest that highly accumulated electron carrier in the channel, whose area density is estimated to be 1.4 × 10(15) cm(-2) (the average volume density of 1.7 × 10(21) cm(-3)), is the origin of the high-Tc superconductivity. This result demonstrates that EDLTs are useful tools to explore the ultimate Tc for insulating parent materials.

  20. Ultra-high quality factors in superconducting niobium cavities in ambient magnetic fields up to 190 mG

    CERN Document Server

    Romanenko, A; Crawford, A C; Sergatskov, D A; Melnychuk, O

    2014-01-01

    Ambient magnetic field, if trapped in the penetration depth, leads to the residual resistance and therefore sets the limit for the achievable quality factors in superconducting niobium resonators for particle accelerators. Here we show that a complete expulsion of the magnetic flux can be performed and leads to: 1) record quality factors $Q > 2\\times10^{11}$ up to accelerating gradient of 22 MV/m; 2) $Q\\sim3\\times10^{10}$ at 2 K and 16 MV/m in up to 190 mG magnetic fields. This is achieved by large thermal gradients at the normal/superconducting phase front during the cooldown. Our findings open up a way to ultra-high quality factors at low temperatures and show an alternative to the sophisticated magnetic shielding implemented in modern superconducting accelerators.