WorldWideScience

Sample records for superconducting electro magneto-hydrodynamic

  1. Relativistic conformal magneto-hydrodynamics from holography

    International Nuclear Information System (INIS)

    Buchbinder, Evgeny I.; Buchel, Alex

    2009-01-01

    We use the AdS/CFT correspondence to study first-order relativistic viscous magneto-hydrodynamics of (2+1)-dimensional conformal magnetic fluids. It is shown that the first order magneto-hydrodynamics constructed following Landau and Lifshitz from the positivity of the entropy production is inconsistent. We propose additional contributions to the entropy motivated dissipative current and, correspondingly, new dissipative transport coefficients. We use the strongly coupled M2-brane plasma in external magnetic field to show that the new magneto-hydrodynamics leads to self-consistent results in the shear and sound wave channels.

  2. Surface effects on anti-plane shear waves propagating in magneto-electro-elastic nanoplates

    International Nuclear Information System (INIS)

    Wu, Bin; Zhang, Chunli; Chen, Weiqiu; Zhang, Chuanzeng

    2015-01-01

    Material surfaces may have a remarkable effect on the mechanical behavior of magneto-electro-elastic (or multiferroic) structures at nanoscale. In this paper, a surface magneto-electro-elasticity theory (or effective boundary condition formulation), which governs the motion of the material surface of magneto-electro-elastic nanoplates, is established by employing the state-space formalism. The properties of anti-plane shear (SH) waves propagating in a transversely isotropic magneto-electro-elastic plate with nanothickness are investigated by taking surface effects into account. The size-dependent dispersion relations of both antisymmetric and symmetric SH waves are presented. The thickness-shear frequencies and the asymptotic characteristics of the dispersion relations considering surface effects are determined analytically as well. Numerical results show that surface effects play a very pronounced role in elastic wave propagation in magneto-electro-elastic nanoplates, and the dispersion properties depend strongly on the chosen surface material parameters of magneto-electro-elastic nanoplates. As a consequence, it is possible to modulate the waves in magneto-electro-elastic nanoplates through surface engineering. (paper)

  3. Transient electro-magneto-hydrodynamic two-phase blood flow and thermal transport through a capillary vessel.

    Science.gov (United States)

    Mirza, I A; Abdulhameed, M; Vieru, D; Shafie, S

    2016-12-01

    Therapies with magnetic/electromagnetic field are employed to relieve pains or, to accelerate flow of blood-particles, particularly during the surgery. In this paper, a theoretical study of the blood flow along with particles suspension through capillary was made by the electro-magneto-hydrodynamic approach. Analytical solutions to the non-dimensional blood velocity and non-dimensional particles velocity are obtained by means of the Laplace transform with respect to the time variable and the finite Hankel transform with respect to the radial coordinate. The study of thermally transfer characteristics is based on the energy equation for two-phase thermal transport of blood and particles suspension with viscous dissipation, the volumetric heat generation due to Joule heating effect and electromagnetic couple effect. The solution of the nonlinear heat transfer problem is derived by using the velocity field and the integral transform method. The influence of dimensionless system parameters like the electrokinetic width, the Hartman number, Prandtl number, the coefficient of heat generation due to Joule heating and Eckert number on the velocity and temperature fields was studied using the Mathcad software. Results are presented by graphical illustrations. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. The transverse shear deformation behaviour of magneto-electro-elastic shell

    International Nuclear Information System (INIS)

    Albarody, Thar M. Badri; Al-Kayiem, Hussain H.; Faris, Waleed

    2016-01-01

    Compared to the large number of possible magneto-electro-elastic shell theories, very few exact solutions determining the in-plane stresses, electric displacements and magnetic inductions are possible. While, solving the magneto-electro-elastic shell equations in terms of thermo-magneto-electro-elastic generalized field functions on arbitrary domains and for general conditions exactly are not always possible. In the present work, a linear version of magneto-electro-elastic shell with simply supported boundary conditions, solved exactly, provided that the lamination scheme is cross-ply or anti-symmetric angle-ply laminates. The exact solution that introduced herein can measure the in-plane stresses, electric displacements and magnetic inductions. It also allow for an accurate and usually elegant and conclusive investigation of the various sensations in a shell structure. However, it is important for micro-electro-mechanical shell applications to have an approach available that gives the transverse shear deformation Behaviour for cases that cannot examine experimentally. An investigated examples were accompanied and noteworthy conclusions were drawn which highlight the issues of the implementation of the exact solution, implication of the effects of the material properties, lay-ups of the constituent layers, and shell parameters on the static Behaviour

  5. The transverse shear deformation behaviour of magneto-electro-elastic shell

    Energy Technology Data Exchange (ETDEWEB)

    Albarody, Thar M. Badri; Al-Kayiem, Hussain H. [UniversitiTeknologi PETRONAS, Perak (Malaysia); Faris, Waleed [International Islamic University Malaysia, Perak (Malaysia)

    2016-01-15

    Compared to the large number of possible magneto-electro-elastic shell theories, very few exact solutions determining the in-plane stresses, electric displacements and magnetic inductions are possible. While, solving the magneto-electro-elastic shell equations in terms of thermo-magneto-electro-elastic generalized field functions on arbitrary domains and for general conditions exactly are not always possible. In the present work, a linear version of magneto-electro-elastic shell with simply supported boundary conditions, solved exactly, provided that the lamination scheme is cross-ply or anti-symmetric angle-ply laminates. The exact solution that introduced herein can measure the in-plane stresses, electric displacements and magnetic inductions. It also allow for an accurate and usually elegant and conclusive investigation of the various sensations in a shell structure. However, it is important for micro-electro-mechanical shell applications to have an approach available that gives the transverse shear deformation Behaviour for cases that cannot examine experimentally. An investigated examples were accompanied and noteworthy conclusions were drawn which highlight the issues of the implementation of the exact solution, implication of the effects of the material properties, lay-ups of the constituent layers, and shell parameters on the static Behaviour.

  6. Magneto-optic and electro-optic modulators

    International Nuclear Information System (INIS)

    Hutchinson, D.P.; Ma, C.H.; Price, T.R.; Staats, P.A.; Sluis, K.L.V.

    1982-01-01

    An important aspect of the Faraday rotation diagnostic for tokamak plasma measurement has been the development of suitable polarization modulators for submillimeter wavelength. The problems are to obtain high optical transmission and fast modulation frequencies. In ORNL, the authors have developed both a magneto-optic and an electro-optic submillimeter-wave modulators. These devices have been operated at modulation frequency of approximately 100 kHz, and both have high transmission. The original magneto-optic modulator consists of a 3 mm thick by 1.4 cm diameter 2-111 ferrite disk mounted at the center of an air core coil. Recently, a new ferrite modulator has been tested, which allows a much higher modulation frequency than the original device. A laboratory set-up designed to simulate a plasma heterodyne interferometer/polarimeter experiment has been used to determine the modulator characteristics. A mechanical polarization rotor was used to simulate the rotation by plasma. The transmission of the ferrite disk was 80 % at a wavelength of 0.447 mm. The authors have also performed preliminary measurement on an electro-optic modulator first demonstrated by Fetterman at Lincoln Laboratory, U.S. This device is a classical electro-optic modulator using a cryogenically cooled (4.2 K) LiTaO 3 crystal. Experiments are underway to determine the electro-optic properties of the crystal over the temperature range from 4.2 K to 77 K and over the range of wavelength from 0.118 mm to 0.447 mm. (Wakatsuki, Y.)

  7. Magneto-electro-elastic buckling analysis of nonlocal curved nanobeams

    Science.gov (United States)

    Ebrahimi, Farzad; Reza Barati, Mohammad

    2016-09-01

    In this work, a size-dependent curved beam model is developed to take into account the effects of nonlocal stresses on the buckling behavior of curved magneto-electro-elastic FG nanobeams for the first time. The governing differential equations are derived based on the principle of virtual work and Euler-Bernoulli beam theory. The power-law function is employed to describe the spatially graded magneto-electro-elastic properties. By extending the radius of the curved nanobeam to infinity, the results of straight nonlocal FG beams can be rendered. The effects of magnetic potential, electric voltage, opening angle, nonlocal parameter, power-law index and slenderness ratio on buckling loads of curved MEE-FG nanobeams are studied.

  8. An analytical solution for the magneto-electro-elastic bimorph beam forced vibrations problem

    International Nuclear Information System (INIS)

    Milazzo, A; Orlando, C; Alaimo, A

    2009-01-01

    Based on the Timoshenko beam theory and on the assumption that the electric and magnetic fields can be treated as steady, since elastic waves propagate very slowly with respect to electromagnetic ones, a general analytical solution for the transient analysis of a magneto-electro-elastic bimorph beam is obtained. General magneto-electric boundary conditions can be applied on the top and bottom surfaces of the beam, allowing us to study the response of the bilayer structure to electromagnetic stimuli. The model reveals that the magneto-electric loads enter the solution as an equivalent external bending moment per unit length and as time-dependent mechanical boundary conditions through the definition of the bending moment. Moreover, the influences of the electro-mechanic, magneto-mechanic and electromagnetic coupling on the stiffness of the bimorph stem from the computation of the beam equivalent stiffness constants. Free and forced vibration analyses of both multiphase and laminated magneto-electro-elastic composite beams are carried out to check the effectiveness and reliability of the proposed analytic solution

  9. Magneto-hydrodynamical model for plasma

    Science.gov (United States)

    Liu, Ruikuan; Yang, Jiayan

    2017-10-01

    Based on the Newton's second law and the Maxwell equations for the electromagnetic field, we establish a new 3-D incompressible magneto-hydrodynamics model for the motion of plasma under the standard Coulomb gauge. By using the Galerkin method, we prove the existence of a global weak solution for this new 3-D model.

  10. The boundary element method applied to 3D magneto-electro-elastic dynamic problems

    Science.gov (United States)

    Igumnov, L. A.; Markov, I. P.; Kuznetsov, Iu A.

    2017-11-01

    Due to the coupling properties, the magneto-electro-elastic materials possess a wide number of applications. They exhibit general anisotropic behaviour. Three-dimensional transient analyses of magneto-electro-elastic solids can hardly be found in the literature. 3D direct boundary element formulation based on the weakly-singular boundary integral equations in Laplace domain is presented in this work for solving dynamic linear magneto-electro-elastic problems. Integral expressions of the three-dimensional fundamental solutions are employed. Spatial discretization is based on a collocation method with mixed boundary elements. Convolution quadrature method is used as a numerical inverse Laplace transform scheme to obtain time domain solutions. Numerical examples are provided to illustrate the capability of the proposed approach to treat highly dynamic problems.

  11. Magneto-optic and electro-optic modulators

    International Nuclear Information System (INIS)

    Hutchinson, D.P.; Ma, C.H.; Price, T.R.; Staats, P.A.; Vander Sluis, K.L.

    1982-01-01

    An important aspect of the Faraday rotation diagnostic for tokamak plasma measurements has been the development of suitable polarization modulators for submillimeter wavelengths. The problems are to obtain high optical transmission and fast modulation frequencies. At ORNL we have developed both a magneto-optic and an electro-optic submillimeter-wave modulators. These devices have been operated at modulation frequencies of approximately 100 kHz and both have high transmission

  12. Viscosity and Vorticity in Reduced Magneto-Hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Ilon [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-08-12

    Magneto-hydrodynamics (MHD) critically relies on viscous forces in order for an accurate determination of the electric eld. For each charged particle species, the Braginskii viscous tensor for a magnetized plasma has the decomposition into matrices with special symmetries.

  13. Response of multiphase magneto-electro-elastic sensors under ...

    African Journals Online (AJOL)

    The finite element formulation for coupled magneto-electro-elastic sensor bonded to a mild steel beam with plane stress assumption is presented in this paper. The beam is subjected to harmonic excitation with a point load at tip and a uniformly distributed load along the bottom surface of the mild steel beam. Numerical ...

  14. Free vibration analysis of magneto-electro-thermo-elastic nanobeams resting on a Pasternak foundation

    Science.gov (United States)

    Jandaghian, A. A.; Rahmani, O.

    2016-03-01

    In this study, free vibration analysis of magneto-electro-thermo-elastic (METE) nanobeams resting on a Pasternak foundation is investigated based on nonlocal theory and Timoshenko beam theory. Coupling effects between electric, magnetic, mechanical and thermal loading are considered to derive the equations of motion and distribution of electrical potential and magnetic potential along the thickness direction of the METE nanobeam. The governing equations and boundary conditions are obtained using the Hamilton principle and discretized via the differential quadrature method (DQM). Numerical results reveal the effects of the nonlocal parameter, magneto-electro-thermo-mechanical loading, Winkler spring coefficients, Pasternak shear coefficients and height-to-length ratio on the vibration characteristics of METE nanobeams. It is observed that the natural frequency is dependent on the magnetic, electric, temperature, elastic medium, small-scale coefficient, and height-to-length ratio. These results are useful in the mechanical analysis and design of smart nanostructures constructed from magneto-electro-thermo-elastic materials.

  15. Free vibration analysis of magneto-electro-thermo-elastic nanobeams resting on a Pasternak foundation

    International Nuclear Information System (INIS)

    Jandaghian, A A; Rahmani, O

    2016-01-01

    In this study, free vibration analysis of magneto-electro-thermo-elastic (METE) nanobeams resting on a Pasternak foundation is investigated based on nonlocal theory and Timoshenko beam theory. Coupling effects between electric, magnetic, mechanical and thermal loading are considered to derive the equations of motion and distribution of electrical potential and magnetic potential along the thickness direction of the METE nanobeam. The governing equations and boundary conditions are obtained using the Hamilton principle and discretized via the differential quadrature method (DQM). Numerical results reveal the effects of the nonlocal parameter, magneto-electro-thermo-mechanical loading, Winkler spring coefficients, Pasternak shear coefficients and height-to-length ratio on the vibration characteristics of METE nanobeams. It is observed that the natural frequency is dependent on the magnetic, electric, temperature, elastic medium, small-scale coefficient, and height-to-length ratio. These results are useful in the mechanical analysis and design of smart nanostructures constructed from magneto-electro-thermo-elastic materials. (paper)

  16. Size-dependent electro-magneto-elastic bending analyses of the shear-deformable axisymmetric functionally graded circular nanoplates

    Science.gov (United States)

    Arefi, Mohammad; Zenkour, Ashraf M.

    2017-10-01

    This paper develops nonlocal elasticity equations and magneto-electro-elastic relations to size-dependent electro-magneto-elastic bending analyses of the functionally graded axisymmetric circular nanoplates based on the first-order shear deformation theory. All material properties are graded along the thickness direction based on exponential varying. It is assumed that a circular nanoplate is made from piezo-magnetic materials. The energy method and Ritz approach is employed for the derivation of governing equations of electro-magneto-elastic bending and the solution of the problem, respectively. The nanoplate is subjected to applied electric and magnetic potentials at top and transverse loads while it is rested on Pasternak's foundation. Some important numerical results are presented in various figures to show the influence of applied electric and magnetic potentials, small scale parameter and inhomogeneous index of an exponentially graded nanoplate.

  17. The effect of inhomogeneous initial stress on Love wave propagation in layered magneto-electro-elastic structures

    International Nuclear Information System (INIS)

    Zhang, J; Shen, Y P; Du, J K

    2008-01-01

    The effect of inhomogeneous initial stress on Love wave propagation in layered magneto-electro-elastic structures is investigated in this paper. The coupled magneto-electro-elastic field equations are solved by adopting the Wentzel–Kramers–Brillouin (WKB) approximate approach. Then the phase velocity can be calculated by applying boundary and continuity conditions. A specific example of a structure consisting of a CoFe 2 O 4 layer and a BaTiO 3 substrate is used to illustrate the influence of inhomogeneous initial stress on the phase velocity, corresponding coupled magneto-electric factor and stress fields. The different influence between constant initial stress and inhomogeneous initial stress is discussed and the results are expected to be helpful for the preparation and application of Love wave sensors

  18. Modeling electro-magneto-hydrodynamic thermo-fluidic transport of biofluids with new trend of fractional derivative without singular kernel

    Science.gov (United States)

    Abdulhameed, M.; Vieru, D.; Roslan, R.

    2017-10-01

    This paper investigates the electro-magneto-hydrodynamic flow of the non-Newtonian behavior of biofluids, with heat transfer, through a cylindrical microchannel. The fluid is acted by an arbitrary time-dependent pressure gradient, an external electric field and an external magnetic field. The governing equations are considered as fractional partial differential equations based on the Caputo-Fabrizio time-fractional derivatives without singular kernel. The usefulness of fractional calculus to study fluid flows or heat and mass transfer phenomena was proven. Several experimental measurements led to conclusion that, in such problems, the models described by fractional differential equations are more suitable. The most common time-fractional derivative used in Continuum Mechanics is Caputo derivative. However, two disadvantages appear when this derivative is used. First, the definition kernel is a singular function and, secondly, the analytical expressions of the problem solutions are expressed by generalized functions (Mittag-Leffler, Lorenzo-Hartley, Robotnov, etc.) which, generally, are not adequate to numerical calculations. The new time-fractional derivative Caputo-Fabrizio, without singular kernel, is more suitable to solve various theoretical and practical problems which involve fractional differential equations. Using the Caputo-Fabrizio derivative, calculations are simpler and, the obtained solutions are expressed by elementary functions. Analytical solutions of the biofluid velocity and thermal transport are obtained by means of the Laplace and finite Hankel transforms. The influence of the fractional parameter, Eckert number and Joule heating parameter on the biofluid velocity and thermal transport are numerically analyzed and graphic presented. This fact can be an important in Biochip technology, thus making it possible to use this analysis technique extremely effective to control bioliquid samples of nanovolumes in microfluidic devices used for biological

  19. Wave propagation in magneto-electro-elastic nanobeams via two nonlocal beam models

    Science.gov (United States)

    Ma, Li-Hong; Ke, Liao-Liang; Wang, Yi-Ze; Wang, Yue-Sheng

    2017-02-01

    This paper makes the first attempt to investigate the dispersion behavior of waves in magneto-electro-elastic (MEE) nanobeams. The Euler nanobeam model and Timoshenko nanobeam model are developed in the formulation based on the nonlocal theory. By using the Hamilton's principle, we derive the governing equations which are then solved analytically to obtain the dispersion relations of MEE nanobeams. Results are presented to highlight the influences of the thermo-electro-magnetic loadings and nonlocal parameter on the wave propagation characteristics of MEE nanobeams. It is found that the thermo-electro-magnetic loadings can lead to the occurrence of the cut-off wave number below which the wave can't propagate in MEE nanobeams.

  20. Mathematical methods in electro-magneto-elasticity

    CERN Document Server

    Bardzokas, DI; Filshtinsky, LA

    2007-01-01

    The mechanics of Coupled Fields is a discipline at the edge of modern research connecting Continuum Mechanics with Solid State Physics. It integrates the Mechanics of Continuous Media, Heat Conductivity and the theory of Electromagnetism that are usually studied separately. For an accurate description of the influence of static and dynamic loadings, high temperatures and strong electromagnetic fields in elastic media and constructive installations, a new approach is required; an approach that has the potential to establish a synergism between the above mentioned fields. Throughout the book a vast number of problems are considered: two-dimensional problems of electro-magneto-elasticity as well as static and dynamical problems for piecewise homogenous compound piezoelectric plates weakened by cracks and openings. The boundary conditions, the constructive equations and the mathematical methods for their solution are thoroughly presented, so that the reader can get a clear quantitative and qualitative understandi...

  1. Lumped-Element Dynamic Electro-Thermal model of a superconducting magnet

    Science.gov (United States)

    Ravaioli, E.; Auchmann, B.; Maciejewski, M.; ten Kate, H. H. J.; Verweij, A. P.

    2016-12-01

    Modeling accurately electro-thermal transients occurring in a superconducting magnet is challenging. The behavior of the magnet is the result of complex phenomena occurring in distinct physical domains (electrical, magnetic and thermal) at very different spatial and time scales. Combined multi-domain effects significantly affect the dynamic behavior of the system and are to be taken into account in a coherent and consistent model. A new methodology for developing a Lumped-Element Dynamic Electro-Thermal (LEDET) model of a superconducting magnet is presented. This model includes non-linear dynamic effects such as the dependence of the magnet's differential self-inductance on the presence of inter-filament and inter-strand coupling currents in the conductor. These effects are usually not taken into account because superconducting magnets are primarily operated in stationary conditions. However, they often have significant impact on magnet performance, particularly when the magnet is subject to high ramp rates. Following the LEDET method, the complex interdependence between the electro-magnetic and thermal domains can be modeled with three sub-networks of lumped-elements, reproducing the electrical transient in the main magnet circuit, the thermal transient in the coil cross-section, and the electro-magnetic transient of the inter-filament and inter-strand coupling currents in the superconductor. The same simulation environment can simultaneously model macroscopic electrical transients and phenomena at the level of superconducting strands. The model developed is a very useful tool for reproducing and predicting the performance of conventional quench protection systems based on energy extraction and quench heaters, and of the innovative CLIQ protection system as well.

  2. A generalized electro-magneto-thermo-elastic problem for an infinitely long solid cylinder

    International Nuclear Information System (INIS)

    Tianhu, H.; Xiaogeng, T.; Yapeng, S.; Tianhu, H.

    2005-01-01

    The theory of generalized thermoelasticity, based on the theory of Lord and Shulman with one relaxation time, is used to study the electro-magneto-thermo-elastic interactions in an infinitely long perfectly conducting solid cylinder subjected to a thermal shock on its surface when the cylinder and its adjoining vacuum is subjected to a uniform axial magnetic field. The cylinder deforms because of thermal shock, and due to the application of the magnetic field, there result an induced magnetic and an induced electric field in the cylinder. The Maxwell's equations are formulated and the generalized electro-magneto-thermo-elastic coupled governing equations are established. By means of the Laplace transform and numerical Laplace inversion the problem is solved. The distributions of the considered temperature, stress, displacement, induced magnetic and electric field are represented graphically. From the distributions, it can be found the electromagnetic-thermoelastic coupled effects and the wave type heat propagation in the medium. This indicates that the generalized heat conduction mechanism is completely different from the classic Fourier's in essence. In generalized thermoelasticity theory heat propagates as a wave with finite velocity instead of infinite velocity in medium. (authors)

  3. Fabrication of BaTiO3/Ni composite particles and their electro-magneto responsive properties

    International Nuclear Information System (INIS)

    Lu, Yaping; Gao, Lingxiang; Wang, Lijuan; Xie, Zunyuan; Gao, Meixiang; Zhang, Weiqiang

    2017-01-01

    Graphical abstract: The spherical BaTiO 3 /Ni particles with excellent structure were made by one-step method through fixing the metal Ni(0) reduced by a specific reducing agent (N 2 H 4 ·H 2 O) on the surface of the BaTiO 3 particles with grain diameter of ∼500 nm. BaTiO 3 /Ni particle has double responses of electric and magnetic field simultaneously. Consequentially, coating magnetic metal on BT particle is proposed an effective method to prepare novel electro-magneto responsive particles and one basis of electro-magneto responsive elastomers. - Highlights: • The BaTiO 3 /Ni composite particles were fabricated. • The content of Ni(0) in nickel sheath is 70.2%. • The BaTiO 3 /Ni particles have double responses of electric and magnetic field. - Abstract: BaTiO 3 (BT)/Ni composite particles were made by one-step method through agglomerating the metal Ni(0) nanoparticles reduced by a specific reducing agent (N 2 H 4 ·H 2 O) on the surface of BT sphere with diameter of ∼500 nm. The BT/Ni composite particles were characterized by the means of scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffractometer (XRD) and X-ray photoelectron spectroscopy (XPS). In BT/Ni particles, pure BT spherical particle was coated with Ni nanoparticles agglomerated on its surface. The average thickness of the Ni sheath was ∼30 nm and the content of Ni(0) and Ni (II) in the sheath were 70.2% and 29.8%, respectively. The responsive effects of BT/Ni particles filled in hydrogel elastomer were investigated by the viscoelastic properties. The results indicate that the BT/Ni particles exhibit electro and magneto coordinated responsive properties (E = 1 kV/mm, H = 0.1 T/mm), which is superior to BT particles with individual electro response.

  4. The size-dependent vibration of embedded magneto-electro-elastic cylindrical nanoshells

    International Nuclear Information System (INIS)

    Ke, Liao-Liang; Wang, Yue-Sheng; Yang, Jie; Kitipornchai, Sritawat

    2014-01-01

    Based on the nonlocal Love’s shell theory, this paper develops an embedded magneto-electro-elastic (MEE) cylindrical nanoshell model. This model incorporates effects of the small scale parameter and thermo-electro-magnetic loadings. The surrounding elastic medium is described as the Winkler model characterized by the spring. By using this model and the Hamilton principle, the governing equations and boundary conditions are derived for free vibration of the embedded MEE cylindrical nanoshells. The Navier’s method is first utilized to obtain the analytical solution for the simply supported MEE nanoshell. Then, numerical solutions for MEE nanoshells under various boundary conditions are obtained by using the differential quadrature (DQ) method. A detailed parametric study is conducted to highlight the influences of the nonlocal parameter, temperature rise, external electric potential, external magnetic potential, spring constant, radius-to-thickness ratio and length-to-radius ratio on natural frequencies of MEE nanoshells. (paper)

  5. Fabrication of BaTiO{sub 3}/Ni composite particles and their electro-magneto responsive properties

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yaping [Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi’an 710119 (China); School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119 (China); Gao, Lingxiang, E-mail: gaolx@snnu.edu.cn [Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi’an 710119 (China); School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119 (China); Wang, Lijuan [Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi’an 710119 (China); School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119 (China); Xie, Zunyuan, E-mail: zyxie123@snnu.edu.cn [Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi’an 710119 (China); School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119 (China); Gao, Meixiang [Yulin Vocational and Technical College, Yulin 719000 (China); Zhang, Weiqiang [Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi’an 710119 (China); School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119 (China)

    2017-07-15

    Graphical abstract: The spherical BaTiO{sub 3}/Ni particles with excellent structure were made by one-step method through fixing the metal Ni(0) reduced by a specific reducing agent (N{sub 2}H{sub 4}·H{sub 2}O) on the surface of the BaTiO{sub 3} particles with grain diameter of ∼500 nm. BaTiO{sub 3}/Ni particle has double responses of electric and magnetic field simultaneously. Consequentially, coating magnetic metal on BT particle is proposed an effective method to prepare novel electro-magneto responsive particles and one basis of electro-magneto responsive elastomers. - Highlights: • The BaTiO{sub 3}/Ni composite particles were fabricated. • The content of Ni(0) in nickel sheath is 70.2%. • The BaTiO{sub 3}/Ni particles have double responses of electric and magnetic field. - Abstract: BaTiO{sub 3} (BT)/Ni composite particles were made by one-step method through agglomerating the metal Ni(0) nanoparticles reduced by a specific reducing agent (N{sub 2}H{sub 4}·H{sub 2}O) on the surface of BT sphere with diameter of ∼500 nm. The BT/Ni composite particles were characterized by the means of scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffractometer (XRD) and X-ray photoelectron spectroscopy (XPS). In BT/Ni particles, pure BT spherical particle was coated with Ni nanoparticles agglomerated on its surface. The average thickness of the Ni sheath was ∼30 nm and the content of Ni(0) and Ni (II) in the sheath were 70.2% and 29.8%, respectively. The responsive effects of BT/Ni particles filled in hydrogel elastomer were investigated by the viscoelastic properties. The results indicate that the BT/Ni particles exhibit electro and magneto coordinated responsive properties (E = 1 kV/mm, H = 0.1 T/mm), which is superior to BT particles with individual electro response.

  6. A control strategy for electro-magneto-mechanical system based on virtual system model

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hong Youn; Heo, Hoon [Dept. of Control and Instrumentation Engineering, Korea University, Seoul (Korea, Republic of); Yun, Young Min [TPC Mechatronics Co., Ltd., Incheon (Korea, Republic of)

    2016-09-15

    A new approach to the control of electro-magneto-mechanical system is proposed in this paper. Conventionally, these systems are controlled based on the Maxwell system model via an on-off or PID control technique, which displays acceptable performance in the low frequency region, but not in the high frequency region where position control performance is greatly degraded. In order to improve the performance, a newly developed virtual 2nd order system modeling technique, SSID, is adopted for a complex electro-magnetomechanical system in the study. This technique states that any unknown system exposed to a random disturbance with unknown intensity can be identified in terms of a virtual 2nd order system model via the inverse process of a certain stochastic analysis. As a typical hybrid system, a solenoid valve is used as the target electro-magneto-mechanical system to study the modeling of the virtual 2nd order system. In order to confirm the performance of the proposed control strategy, autotuning PID controller in PWM mode is utilized. Simulations based on the conventional Maxwell system model with control via the bang-bang, autotuning PID, and the proposed virtual 2nd order system model approaches are conducted using MATLAB Simulink. Performance of these three systems in the low and high frequency bands is also compared. The simulation results reveal that the control performance of the virtual 2nd order system model is much improved compared with that of the Maxwell system model under autotuning PID and bang-bang controls in both low and high frequency regions, where the error is drastically reduced to approximately 1/5 of the original value.

  7. Vibration and bending analyses of magneto-electro-thermo-elastic sandwich microplates resting on viscoelastic foundation

    Science.gov (United States)

    Arefi, Mohammad; Zenkour, Ashraf M.

    2017-08-01

    Magneto-electro-thermo-mechanical bending and free vibration analysis of a sandwich microplate using strain gradient theory is expressed in this paper. The sandwich plate is made of a core and two integrated piezo-magnetic face sheets. The structure is subjected to electric and magnetic potentials, thermal loadings, and resting on Pasternak's foundation. Electro-magnetic equations are developed by considering the variation form of Hamilton's principle. The effects of important parameters of this problem such as applied electric and magnetic potentials, direct and shear parameter of foundation, three microlength-scale parameters, and two parameters of temperature rising are investigated on the vibration and bending results of problem.

  8. Dynamic analysis of electro- and magneto-rheological fluid dampers using duct flow models

    International Nuclear Information System (INIS)

    Esteki, Kambiz; Bagchi, Ashutosh; Sedaghati, Ramin

    2014-01-01

    Magneto-rheological (MR) and electro-rheological (ER) fluid dampers provide a semi-active control mechanism for suppressing vibration responses of a structure. MR and ER fluids change their viscosity under the influence of magnetic and electrical fields, respectively, which facilitates automatic control when these fluids are used in damping devices. The existing models, namely the phenomenological models for simulating the behavior of MR and ER dampers, rely on various parameters determined experimentally by the manufacturers for each damper configuration. It is of interest to develop mechanistic models of these dampers which can be applied to various configurations so that their fundamental characteristics can be studied to develop flexible design solutions for smart structures. This paper presents a formulation for dynamic analysis of electro-rheological (ER) and magneto-rheological (MR) fluid dampers in flow and mix mode configurations under harmonic and random excitations. The procedure employs the vorticity transport equation and the regularization function to deal with the unsteady flow and nonlinear behavior of ER/MR fluid in general motion. The finite difference method has been used to solve the governing differential equations. Using the developed approach, the damping force of ER/MR dampers can be calculated under any type of excitation. (paper)

  9. Active control of magneto-hydrodynamic instabilities in hot plasmas

    CERN Document Server

    2015-01-01

    During the past century, world-wide energy consumption has risen dramatically, which leads to a quest for new energy sources. Fusion of hydrogen atoms in hot plasmas is an attractive approach to solve the energy problem, with abundant fuel, inherent safety and no long-lived radioactivity.  However, one of the limits on plasma performance is due to the various classes of magneto-hydrodynamic instabilities that may occur. The physics and control of these instabilities in modern magnetic confinement fusion devices is the subject of this book. Written by foremost experts, the contributions will provide valuable reference and up-to-date research reviews for "old hands" and newcomers alike.

  10. A Tightly Coupled Non-Equilibrium Magneto-Hydrodynamic Model for Inductively Coupled RF Plasmas

    Science.gov (United States)

    2016-02-29

    development a tightly coupled magneto-hydrodynamic model for Inductively Coupled Radio- Frequency (RF) Plasmas. Non Local Thermodynamic Equilibrium (NLTE...for Inductively Coupled Radio-Frequency (RF) Plasmas. Non Local Thermodynamic Equilibrium (NLTE) effects are described based on a hybrid State-to-State...Inductively Coupled Plasma (ICP) torches have wide range of possible applications which include deposition of metal coatings, synthesis of ultra-fine powders

  11. Magneto-optical imaging of vortex arrangements in Pb finite superconducting networks

    International Nuclear Information System (INIS)

    Tsuchiya, Y.; Nakajima, Y.; Tamegai, T.

    2009-01-01

    We have fabricated finite-sized Pb superconducting networks with 10 x 10 square (each 6 x 6 μm 2 ) holes by using the electron beam lithography and vortex arrangements are visualized by using magneto-optical imaging. We find that the vortex penetration at low temperature is controlled by defects in the network. We also find nearly regular arrangements of vortices with defects close to 1/2 and1/3 of the matching field.

  12. Wave dispersion characteristics of axially loaded magneto-electro-elastic nanobeams

    Science.gov (United States)

    Ebrahimi, Farzad; Barati, Mohammad Reza; Dabbagh, Ali

    2016-11-01

    The analysis of wave propagation behavior of a magneto-electro-elastic functionally graded (MEE-FG) nanobeam is performed in the framework of classical beam theory. To capture small-scale effects, the nonlocal elasticity theory of Eringen is applied. Furthermore, the material properties of nanobeam are assumed to vary gradually through the thickness based on power-law form. Nonlocal governing equations of MEE-FG nanobeam have been derived employing Hamilton's principle. The results of present research have been validated by comparing with those of previous investigations. An analytical solution of governing equations is utilized to obtain wave frequencies, phase velocities and escape frequencies. Effects of various parameters such as wave number, nonlocal parameter, gradient index, axial load, magnetic potential and electric voltage on wave dispersion characteristics of MEE-FG nanoscale beams are studied in detail.

  13. Mathematical Modelling and Parameter Identification of an Electro-Magneto-Mechanical Actuator for Vibration Control

    DEFF Research Database (Denmark)

    Darula, Radoslav; Stein, George Juraj; Kallesøe, Carsten Skovmose

    2012-01-01

    Electromechanical systems for vibration control exhibit complex non-linear behaviour. Therefore advanced mathematical tools and appropriate simplifications are required for their modelling. To properly understand the dynamics of such a non-linear system, it is necessary to identify the parameters....... The electric circuit is closed with a shunt resistance connected to the electromagnet. The current induced in the circuit generates additional alternating magnetic force. This force counteracts the original vibration and damps it. In this way the coupled electro-magneto-mechanical system suppresses the forced...

  14. Superconductivity in the 1990's

    International Nuclear Information System (INIS)

    Stekly, Z.J.J.

    1990-01-01

    Superconducting magnets, coils or windings are the basis for a range of major applications in the energy area such as energy storage in superconducting coils, magnets for fusion research, and rotating machinery. Other major applications of superconductivity include high energy physics where 1000 superconducting magnets are operated continuously in the Tevatron at Fermilab in Illinois, over 12,000 superconducting magnets will be required for the superconducting Super Collider being build near Dallas. The largest commercial application of superconductors is in magnets for magnetic resonance imaging (MRI) - a new medical diagnostic imaging technique with about 2,000 systems installed worldwide. These form a sizable technology base on which to evaluate and push forward applications such as magneto hydrodynamic propulsion of seagoing vessels. The attractiveness of which depends ultimately on the characteristics of the superconducting magnet. The magnet itself is a combination of several technology areas - the conductors, magnetics, structures and cryogenics. This paper reviews state-of-the-art in each of the technology areas as they relate to superconductors

  15. Laser patterning: A new approach to measure local magneto-transport properties in multifilamentary superconducting tapes

    International Nuclear Information System (INIS)

    Sanchez Valdes, C.F.; Perez-Penichet, C.; Noda, C.; Arronte, M.; Batista-Leyva, A.J.; Haugen, O.; Johansen, T.H.; Han, Z.; Altshuler, E.

    2007-01-01

    The determination of inter- and intra-filament characteristics in superconducting composites such as BSCCO-Ag tapes is of great importance for material evaluation towards applications. Most attempts to separate the two contributions have relied on indirect methods based on magnetic measurements such as SQUID or magneto-optic imaging techniques. Here we show that laser patterning of superconducting BSCCO-Ag tapes constitutes a simple approach to measure local transport properties in a direct way, even able to separate inter- and intra-filament contributions to the overall transport behavior of the sample

  16. An opto-magneto-mechanical quantum interface between distant superconducting qubits.

    Science.gov (United States)

    Xia, Keyu; Vanner, Michael R; Twamley, Jason

    2014-07-04

    A quantum internet, where widely separated quantum devices are coherently connected, is a fundamental vision for local and global quantum information networks and processing. Superconducting quantum devices can now perform sophisticated quantum engineering locally on chip and a detailed method to achieve coherent optical quantum interconnection between distant superconducting devices is a vital, but highly challenging, goal. We describe a concrete opto-magneto-mechanical system that can interconvert microwave-to-optical quantum information with high fidelity. In one such node we utilise the magnetic fields generated by the supercurrent of a flux qubit to coherently modulate a mechanical oscillator that is part of a high-Q optical cavity to achieve high fidelity microwave-to-optical quantum information exchange. We analyze the transfer between two spatially distant nodes connected by an optical fibre and using currently accessible parameters we predict that the fidelity of transfer could be as high as ~80%, even with significant loss.

  17. Second Law Violation By Magneto-Caloric Effect Adiabatic Phase Transition of Type I Superconductive Particles

    Directory of Open Access Journals (Sweden)

    Peter Keefe

    2004-03-01

    Full Text Available Abstract: The nature of the thermodynamic behavior of Type I superconductor particles, having a cross section less than the Ginzburg-Landau temperature dependent coherence length is discussed for magnetic field induced adiabatic phase transitions from the superconductive state to the normal state. Argument is advanced supporting the view that when the adiabatic magneto-caloric process is applied to particles, the phase transition is characterized by a decrease in entropy in violation of traditional formulations of the Second Law, evidenced by attainment of a final process temperature below that which would result from an adiabatic magneto-caloric process applied to bulk dimensioned specimens.

  18. Investigation of free vibration characteristics for skew multiphase magneto-electro-elastic plate

    Science.gov (United States)

    Kiran, M. C.; Kattimani, S.

    2018-04-01

    This article presents the investigation of skew multiphase magneto-electro-elastic (MMEE) plate to assess its free vibration characteristics. A finite element (FE) model is formulated considering the different couplings involved via coupled constitutive equations. The transformation matrices are derived to transform local degrees of freedom into the global degrees of freedom for the nodes lying on the skew edges. Effect of different volume fraction (Vf) on the free vibration behavior is explicitly studied. In addition, influence of width to thickness ratio, the aspect ratio, and the stacking arrangement on natural frequencies of skew multiphase MEE plate investigated. Particular attention has been paid to investigate the effect of skew angle on the non-dimensional Eigen frequencies of multiphase MEE plate with simply supported edges.

  19. Coupled Thermo-Electro-Magneto-Elastic Response of Smart Stiffened Panels

    Science.gov (United States)

    Bednarcyk, Brett A.; Yarrington, Phillip W.

    2009-01-01

    This report documents the procedures developed for incorporating smart laminate and panel analysis capabilities within the HyperSizer aerospace structural sizing software package. HyperSizer analyzes stiffened panels composed of arbitrary composite laminates through stiffener homogenization, or "smearing " techniques. The result is an effective constitutive equation for the stiffened panel that is suitable for use in a full vehicle-scale finite element analysis via MSC/NASTRAN. The existing thermo-elastic capabilities of HyperSizer have herein been extended to include coupled thermo-electro-magneto-elastic analysis capabilities. This represents a significant step toward realization of design tools capable of guiding the development of the next generation of smart aerospace structures. Verification results are presented that compare the developed smart HyperSizer capability with an ABAQUS piezoelectric finite element solution for a facesheet-flange combination. These results show good agreement between HyperSizer and ABAQUS, but highlight a limitation of the HyperSizer formulation in that constant electric field components are assumed.

  20. Static stability analysis of smart magneto-electro-elastic heterogeneous nanoplates embedded in an elastic medium based on a four-variable refined plate theory

    Science.gov (United States)

    Ebrahimi, Farzad; Barati, Mohammad Reza

    2016-10-01

    In this article, a nonlocal four-variable refined plate theory is developed to examine the buckling behavior of nanoplates made of magneto-electro-elastic functionally graded (MEE-FG) materials resting on Winkler-Pasternak foundation. Material properties of nanoplate change in spatial coordinate based on power-law distribution. The nonlocal governing equations are deduced by employing the Hamilton principle. For various boundary conditions, the analytical solutions of nonlocal MEE-FG plates for buckling problem will be obtained based on an exact solution approach. Finally, dependency of buckling response of MEE-FG nanoplate on elastic foundation parameters, magnetic potential, external electric voltage, various boundary conditions, small scale parameter, power-law index, plate side-to-thickness ratio and aspect ratio will be figure out. These results can be advantageous for the mechanical analysis and design of intelligent nanoscale structures constructed from magneto-electro-thermo-elastic functionally graded materials.

  1. Postbuckling of magneto-electro-elastic CNT-MT composite nanotubes resting on a nonlinear elastic medium in a non-uniform thermal environment

    Science.gov (United States)

    Kamali, M.; Shamsi, M.; Saidi, A. R.

    2018-03-01

    As a first endeavor, the effect of nonlinear elastic foundation on the postbuckling behavior of smart magneto-electro-elastic (MEE) composite nanotubes is investigated. The composite nanotube is affected by a non-uniform thermal environment. A typical MEE composite nanotube consists of microtubules (MTs) and carbon nanotubes (CNTs) with a MEE cylindrical nanoshell for smart control. It is assumed that the nanoscale layers of the system are coupled by a polymer matrix or filament network depending on the application. In addition to thermal loads, magneto-electro-mechanical loads are applied to the composite nanostructure. Length scale effects are taken into account using the nonlocal elasticity theory. The principle of virtual work and von Karman's relations are used to derive the nonlinear governing differential equations of MEE CNT-MT nanotubes. Using Galerkin's method, nonlinear critical buckling loads are determined. Various types of non-uniform temperature distribution in the radial direction are considered. Finally, the effects of various parameters such as the nonlinear constant of elastic medium, thermal loading factor and small scale coefficient on the postbuckling of MEE CNT-MT nanotubes are studied.

  2. Advanced lattice Boltzmann scheme for high-Reynolds-number magneto-hydrodynamic flows

    Science.gov (United States)

    De Rosis, Alessandro; Lévêque, Emmanuel; Chahine, Robert

    2018-06-01

    Is the lattice Boltzmann method suitable to investigate numerically high-Reynolds-number magneto-hydrodynamic (MHD) flows? It is shown that a standard approach based on the Bhatnagar-Gross-Krook (BGK) collision operator rapidly yields unstable simulations as the Reynolds number increases. In order to circumvent this limitation, it is here suggested to address the collision procedure in the space of central moments for the fluid dynamics. Therefore, an hybrid lattice Boltzmann scheme is introduced, which couples a central-moment scheme for the velocity with a BGK scheme for the space-and-time evolution of the magnetic field. This method outperforms the standard approach in terms of stability, allowing us to simulate high-Reynolds-number MHD flows with non-unitary Prandtl number while maintaining accuracy and physical consistency.

  3. Nonlinear electro-magneto-mechanical constitutive modelling of monolayer graphene

    Science.gov (United States)

    Sfyris, D.; Sfyris, G. I.; Bustamante, R.

    2016-04-01

    Using the classical theory of invariants for the specific class of graphene's symmetry, we constitutively characterize electro-magneto-mechanical interactions of graphene at continuum level. Graphene's energy depends on five arguments: the Finger strain tensor, the curvature tensor, the shift vector, the effective electric field intensity and the effective magnetic induction. The Finger strain tensor describes in- surface phenomena, the curvature tensor is responsible for the out-of-surface motions, while the shift vector is used due to the fact that graphene is a multilattice. The electric and the magnetic fields are described by the effective electric field intensity and the effective magnetic induction, respectively. An energy with the above arguments that also respects graphene's symmetries is found to have 42 invariants. Using these invariants, we evaluate all relevant measures by finding derivatives of the energy with respect to the five arguments of the energy. We also lay down the field equations that should be satisfied. These are the Maxwell equations, the momentum equation, the moment of momentum equation and the equation ruling the shift vector. Our framework is general enough to capture fully coupled processes in the finite deformation regime.

  4. Numerical magneto-hydrodynamics for relativistic nuclear collisions

    Energy Technology Data Exchange (ETDEWEB)

    Inghirami, Gabriele [Frankfurt Institute for Advanced Studies, Frankfurt am Main (Germany); Goethe-Universitaet, Institute for Theoretical Physics, Frankfurt am Main (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Forschungszentrum Juelich, John von Neumann Institute for Computing, Juelich (Germany); Del Zanna, Luca [Universita di Firenze, Dipartimento di Fisica e Astronomia, Firenze (Italy); INAF - Osservatorio Astrofisico di Arcetri, Firenze (Italy); INFN - Sezione di Firenze, Firenze (Italy); Beraudo, Andrea [INFN - Sezione di Torino, Torino (Italy); Moghaddam, Mohsen Haddadi [INFN - Sezione di Torino, Torino (Italy); Hakim Sabzevari University, Department of Physics, P. O. Box 397, Sabzevar (Iran, Islamic Republic of); Becattini, Francesco [Universita di Firenze, Dipartimento di Fisica e Astronomia, Firenze (Italy); INFN - Sezione di Firenze, Firenze (Italy); Bleicher, Marcus [Frankfurt Institute for Advanced Studies, Frankfurt am Main (Germany); Goethe-Universitaet, Institute for Theoretical Physics, Frankfurt am Main (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Forschungszentrum Juelich, John von Neumann Institute for Computing, Juelich (Germany)

    2016-12-15

    We present an improved version of the ECHO-QGP numerical code, which self-consistently includes for the first time the effects of electromagnetic fields within the framework of relativistic magneto-hydrodynamics (RMHD). We discuss results of its application in relativistic heavy-ion collisions in the limit of infinite electrical conductivity of the plasma. After reviewing the relevant covariant 3 + 1 formalisms, we illustrate the implementation of the evolution equations in the code and show the results of several tests aimed at assessing the accuracy and robustness of the implementation. After providing some estimates of the magnetic fields arising in non-central high-energy nuclear collisions, we perform full RMHD simulations of the evolution of the quark-gluon plasma in the presence of electromagnetic fields and discuss the results. In our ideal RMHD setup we find that the magnetic field developing in non-central collisions does not significantly modify the elliptic flow of the final hadrons. However, since there are uncertainties in the description of the pre-equilibrium phase and also in the properties of the medium, a more extensive survey of the possible initial conditions as well as the inclusion of dissipative effects are indeed necessary to validate this preliminary result. (orig.)

  5. Thermo-electro-hydrodynamic convection under microgravity: a review

    Energy Technology Data Exchange (ETDEWEB)

    Mutabazi, Innocent; Yoshikawa, Harunori N; Fogaing, Mireille Tadie; Travnikov, Vadim; Crumeyrolle, Olivier [Laboratoire Ondes et Milieux Complexes, UMR 6294, CNRS-Université du Havre, CS 80450, F-76058 Le Havre Cedex (France); Futterer, Birgit; Egbers, Christoph, E-mail: Innocent.Mutabazi@univ-lehavre.fr [Department of Aerodynamics and Fluid Mechanics, Brandenburg University of Technology Cottbus-Senftenberg, Cottbus (Germany)

    2016-12-15

    Recent studies on thermo-electro-hydrodynamic (TEHD) convection are reviewed with focus on investigations motivated by the analogy with natural convection. TEHD convection originates in the action of the dielectrophoretic force generated by an alternating electric voltage applied to a dielectric fluid with a temperature gradient. This electrohydrodynamic force is analogous to Archimedean thermal buoyancy and can be regarded as a thermal buoyancy force in electric effective gravity. The review is concerned with TEHD convection in plane, cylindrical, and spherical capacitors under microgravity conditions, where the electric gravity can induce convection without any complexities arising from geometry or the buoyancy force due to the Earth’s gravity. We will highlight the convection in spherical geometry, comparing developed theories and numerical simulations with the GEOFLOW experiments performed on board the International Space Station (ISS). (paper)

  6. Second Law Violation By Magneto-Caloric Effect Adiabatic Phase Transition of Type I Superconductive Particles

    OpenAIRE

    Keefe, Peter

    2004-01-01

    Abstract: The nature of the thermodynamic behavior of Type I superconductor particles, having a cross section less than the Ginzburg-Landau temperature dependent coherence length is discussed for magnetic field induced adiabatic phase transitions from the superconductive state to the normal state. Argument is advanced supporting the view that when the adiabatic magneto-caloric process is applied to particles, the phase transition is characterized by a decrease in entropy in violation of tradi...

  7. Wave propagation analysis of a size-dependent magneto-electro-elastic heterogeneous nanoplate

    Science.gov (United States)

    Ebrahimi, Farzad; Dabbagh, Ali; Reza Barati, Mohammad

    2016-12-01

    The analysis of the wave propagation behavior of a magneto-electro-elastic functionally graded (MEE-FG) nanoplate is carried out in the framework of a refined higher-order plate theory. In order to take into account the small-scale influence, the nonlocal elasticity theory of Eringen is employed. Furthermore, the material properties of the nanoplate are considered to be variable through the thickness based on the power-law form. Nonlocal governing equations of the MEE-FG nanoplate have been derived using Hamilton's principle. The results of the present study have been validated by comparing them with previous researches. An analytical solution of governing equations is performed to obtain wave frequencies, phase velocities and escape frequencies. The effect of different parameters, such as wave number, nonlocal parameter, gradient index, magnetic potential and electric voltage on the wave dispersion characteristics of MEE-FG nanoscale plates is studied in detail.

  8. Nonlocal strain gradient based wave dispersion behavior of smart rotating magneto-electro-elastic nanoplates

    Science.gov (United States)

    Ebrahimi, Farzad; Dabbagh, Ali

    2017-02-01

    Main object of the present research is an exact investigation of wave propagation responses of smart rotating magneto-electro-elastic (MEE) graded nanoscale plates. In addition, effective material properties of functionally graded (FG) nanoplate are presumed to be calculated using the power-law formulations. Also, it has been tried to cover both softening and stiffness-hardening behaviors of nanostructures by the means of employing nonlocal strain gradient theory (NSGT). Due to increasing the accuracy of the presented model in predicting shear deformation effects, a refined higher-order plate theory is introduced. In order to cover the most enormous circumstances, maximum amount of load generated by plate’s rotation is considered. Furthermore, utilizing a developed form of Hamilton’s principle, containing magneto-electric effects, the nonlocal governing equations of MEE-FG rotating nanoplates are derived. An analytical solution is obtained to solve the governing equations and validity of the solution method is proven by comparing results from present method with those of former attempts. At last, outcomes are plotted in the framework of some figures to show the influences of various parameters such as wave number, nonlocality, length scale parameter, magnetic potential, electric voltage, gradient index and angular velocity on wave frequency, phase velocity and escape frequency of the examined nanoplate.

  9. Thermodynamic restrictions on linear reversible and irreversible thermo-electro-magneto-mechanical processes

    Directory of Open Access Journals (Sweden)

    Sushma Santapuri

    2016-10-01

    Full Text Available A unified thermodynamic framework for the characterization of functional materials is developed. This framework encompasses linear reversible and irreversible processes with thermal, electrical, magnetic, and/or mechanical effects coupled. The comprehensive framework combines the principles of classical equilibrium and non-equilibrium thermodynamics with electrodynamics of continua in the infinitesimal strain regime.In the first part of this paper, linear Thermo-Electro-Magneto-Mechanical (TEMM quasistatic processes are characterized. Thermodynamic stability conditions are further imposed on the linear constitutive model and restrictions on the corresponding material constants are derived. The framework is then extended to irreversible transport phenomena including thermoelectric, thermomagnetic and the state-of-the-art spintronic and spin caloritronic effects. Using Onsager's reciprocity relationships and the dissipation inequality, restrictions on the kinetic coefficients corresponding to charge, heat and spin transport processes are derived. All the constitutive models are accompanied by multiphysics interaction diagrams that highlight the various processes that can be characterized using this framework. Keywords: Applied mathematics, Materials science, Thermodynamics

  10. An analytical study of non-linear behaviour of coupled 2+2x0.5 DOF electro-magneto-mechanical system by a method of multiple scales

    DEFF Research Database (Denmark)

    Darula, Radoslav; Sorokin, Sergey

    2013-01-01

    An electro-magneto-mechanical system combines three physical domains - a mechanical structure, a magnetic field and an electric circuit. The interaction between these domains is analysed for a structure with two degrees of freedom (translational and rotational) and two electrical circuits. Each...... electrical circuit is described by a differential equation of the 1st order, which is considered to contribute to the coupled system by 0.5 DOF. The electrical and mechanical systems are coupled via a magnetic circuit, which is inherently non-linear, due to a non-linear nature of the electro-magnetic force...

  11. Mathematical Modelling and Parameter Identification of an Electro-Magneto-Mechanical Actuator for Vibration Control

    DEFF Research Database (Denmark)

    Darula, Radoslav; Stein, George Juraj; Kallesøe, Carsten Skovmose

    2012-01-01

    . The electric circuit is closed with a shunt resistance connected to the electromagnet. The current induced in the circuit generates additional alternating magnetic force. This force counteracts the original vibration and damps it. In this way the coupled electro-magneto-mechanical system suppresses the forced...... of the electromagnetic circuit in its various operational regimes. The parametric identification supplements mathematical derivations. The analyzed mechanical system is essentially a Single Degree-Of-Freedom (SDOF) oscillatory system augmented by magnetic force influence. The additional magnetic force is generated...... by an electromagnet with armature. The electromagnet is energized by a constant voltage source. The SDOF system is excited by a harmonic force causing vibration of the armature. Due to the reluctance variation of the air gap of the magnetic circuit alternating voltage is generated across the coil terminals...

  12. State of the art of medical devices featuring smart electro-rheological and magneto-rheological fluids

    Directory of Open Access Journals (Sweden)

    Jong-Seok Oh

    2017-10-01

    Full Text Available Recently, smart fluids have drawn significant attention and growing a great interest in a broad range of engineering applications such as automotive and medical areas. In this article, two smart fluids called electro-rheological (ER fluid and magneto-rheological (MR fluid are reviewed in terms of medical applications. Especially, this article describes the attributes and inherent properties of individual medical and rehabilitation devices. The devices surveyed in this article include multi-degree-of-freedom haptic masters for robot surgery, thin membrane touch panels for braille readers, sponge-like tactile sensors to feel human tissues such as liver, rehabilitation systems such as prosthetic leg, and haptic interfaces for dental implant surgery. The operating principle, inherent characteristics and practical feasibility of each medical device or system are fully discussed in details.

  13. Engineering solutions for the electro-polishing of multi-cell superconducting accelerators structures

    International Nuclear Information System (INIS)

    Schulz, E.; Bandelmann, R.; Escherich, K.; Keese, D.; Leenen, M.; Lilje, L.; Matheisen, A.; Morales, H.; Schmueser, P.; Seidel, M.; Steinhau-Kuehl, N.; Tiessen, J.

    2003-01-01

    Due to surface treatment with electro-polishing superconducting niobium resonators can potentially reach accelerating gradients well beyond 35 MV/m at a frequency of 1.3 GHz. The anticipated gradient for the 500GeV version of the TESLA collider is 23.4 MV/m. In view of the extendibility of the collider towards higher energies this technology is therefore of great importance for the TESLA project. In this paper we discuss the engineering aspects of the planned electro-polishing facility at DESY. The facility will allow for the treatment of single cell cavities as well as the standard TESLA 9-cell structure, and also a so called superstructure that consists of 2 x 9 cells. The issues described cover the acid circulation including cooling requirements, the required current densities resulting in the specifications of the electrical circuit, removal of oxyhydrogen gas, rotating feed-through and the overall mechanical layout. Furthermore we report on recent tests of critical components. (author)

  14. Nonlocal free vibration in the pre- and post-buckled states of magneto-electro-thermo elastic rectangular nanoplates with various edge conditions

    Science.gov (United States)

    Ansari, R.; Gholami, R.

    2016-09-01

    Considering the small scale effect together with the influences of transverse shear deformation, rotary inertia and the magneto-electro-thermo-mechanical coupling, the linear free vibration of magneto-electro-thermo-elastic (METE) rectangular nanoplates with various edge supports in pre- and post-buckled states is investigated herein. It is assumed that the METE nanoplate is subjected to the external in-plane compressive loads in combination with magnetic, electric and thermal loads. The Mindlin plate theory, von Kármán hypothesis and the nonlocal theory are utilized to develop a size-dependent geometrically nonlinear plate model for describing the size-dependent linear and nonlinear mechanical characteristics of moderately thick METE rectangular nanoplates. The nonlinear governing equations and the corresponding boundary conditions are derived using Hamilton’s principle which are then discretized via the generalized differential quadrature method. The pseudo-arc length continuation approach is used to obtain the equilibrium postbuckling path of METE nanoplates. By the obtained postbuckling response, and taking a time-dependent small disturbance around the buckled configuration, and inserting them into the nonlinear governing equations, an eigenvalue problem is achieved from which the frequencies of pre- and post-buckled METE nanoplates can be calculated. The effects of nonlocal parameter, electric, magnetic and thermal loadings, length-to-thickness ratio and different boundary conditions on the free vibration response of METE rectangular nanoplates in the pre- and post-buckled states are highlighted.

  15. Wave propagation in a transversely isotropic magneto-electro-elastic solid bar immersed in an inviscid fluid

    Directory of Open Access Journals (Sweden)

    R. Selvamani

    2016-01-01

    Full Text Available Wave propagation in a transversely isotropic magneto-electro-elastic solid bar immersed in an inviscid fluid is discussed within the frame work of linearized three dimensional theory of elasticity. Three displacement potential functions are introduced to uncouple the equations of motion, electric and magnetic induction. The frequency equations that include the interaction between the solid bar and fluid are obtained by the perfect slip boundary conditions using the Bessel functions. The numerical calculations are carried out for the non-dimensional frequency, phase velocity and attenuation coefficient by fixing wave number and are plotted as the dispersion curves. The results reveal that the proposed method is very effective and simple and can be applied to other bar of different cross section by using proper geometric relation.

  16. Study on solar collector utilizing electro-hydrodynamical effect; Denki ryutai rikigaku koka wo riyosuru taiyo shunetsuki no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Sato, M; Aoki, H; Wako, Y [Hachinohe Institute of Technology, Aomori (Japan)

    1997-11-25

    This paper proposes a cone type electro-hydrodynamical (EHD) heat collector, describes its structure and principle, and mentions possibility of improving the heat collecting efficiency. The paper proposes a heat collector with a shape close to a cone. Trees are of cone form so that their every leaf, branch and truck can capture solar energy efficiently. Imitating this fact existing in the natural world, a cone-shaped heat collector was fabricated on a trial basis to discuss its heat collecting efficiency. Furthermore, black round stones are placed in the inner cone of the cone- shaped heat collector of double-glass structure. A low boiling point medium is placed between the inner and outer cones to cause corona discharge in vapor generated by absorbing the solar heat, and generate corona wind for an attempt to accelerate heat transfer into a heat exchanger. Thus, development was made on a cone-shaped high-efficiency heat collector utilizing electro-hydrodynamical (EHD) effect, and elucidation was given on dynamic phenomena of an electro-thermal fluid. Heat transfer in the EHD heat collector has a possibility of being accelerated by generation of ionic wind. In addition, it is thought that there would be an optimum value in applied voltage to increase electric charge supply as a result of corona discharge. 1 ref., 2 figs.

  17. Free vibration analysis of a magneto-electro-elastic doubly-curved shell resting on a Pasternak-type elastic foundation

    International Nuclear Information System (INIS)

    Razavi, Soheil; Shooshtari, Alireza

    2014-01-01

    Free vibration of a simply-supported magneto-electro-elastic doubly-curved thin shell resting on a Pasternak foundation is investigated based on Donnell theory. The rotary inertia effect is considered in the formulation. Maxwell equations for electrostatics and magnetostatics are used to model the electric and magnetic behavior. The partial differential equations of motion are reduced to a single ordinary differential equation and an analytical relation is obtained for the natural frequency. After validation of the present study, several numerical studies is done to investigate the effects of the electric and magnetic potentials, spring and shear coefficients of the Pasternak foundation, and the geometry of the shell on the vibration frequency. (paper)

  18. Comprehensive nonlocal analysis of piezoelectric nanobeams with surface effects in bending, buckling and vibrations under magneto-electro-thermo-mechanical loading

    Science.gov (United States)

    Ebrahimi-Nejad, Salman; Boreiry, Mahya

    2018-03-01

    The bending, buckling and vibrational behavior of size-dependent piezoelectric nanobeams under thermo-magneto-mechano-electrical environment are investigated by performing a parametric study, in the presence of surface effects. The Gurtin-Murdoch surface elasticity and Eringen’s nonlocal elasticity theories are applied in the framework of Euler–Bernoulli beam theory to obtain a new non-classical size-dependent beam model for dynamic and static analyses of piezoelectric nanobeams. In order to satisfy the surface equilibrium equations, cubic variation of stress with beam thickness is assumed for the bulk stress component which is neglected in classical beam models. Results are obtained for clamped - simply-supported (C-S) and simply-supported - simply-supported (S-S) boundary conditions using a proposed analytical solution method. Numerical examples are presented to demonstrate the effects of length, surface effects, nonlocal parameter and environmental changes (temperature, magnetic field and external voltage) on deflection, critical buckling load and natural frequency for each boundary condition. Results of this study can serve as benchmarks for the design and analysis of nanostructures of magneto-electro-thermo-elastic materials.

  19. A visualization instrument to investigate the mechanical-electro properties of high temperature superconducting tapes under multi-fields

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei; Zhang, Xingyi, E-mail: zhangxingyi@lzu.edu.cn; Liu, Cong; Zhang, Wentao; Zhou, Jun; Zhou, YouHe [Key Laboratory of Mechanics on Disaster and Environment in Western China Attached to the Ministry of Education of China, Lanzhou University, Lanzhou, Gansu 730000, People’s Republic of China and Department of Mechanics and Engineering Sciences, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China)

    2016-07-15

    We construct a visible instrument to study the mechanical-electro behaviors of high temperature superconducting tape as a function of magnetic field, strain, and temperature. This apparatus is directly cooled by a commercial Gifford-McMahon cryocooler. The minimum temperature of sample can be 8.75 K. A proportion integration differentiation temperature control is used, which is capable of producing continuous variation of specimen temperature from 8.75 K to 300 K with an optional temperature sweep rate. We use an external loading device to stretch the superconducting tape quasi-statically with the maximum tension strain of 20%. A superconducting magnet manufactured by the NbTi strand is applied to provide magnetic field up to 5 T with a homogeneous range of 110 mm. The maximum fluctuation of the magnetic field is less than 1%. We design a kind of superconducting lead composed of YBa2Cu3O7-x coated conductor and beryllium copper alloy (BeCu) to transfer DC to the superconducting sample with the maximum value of 600 A. Most notably, this apparatus allows in situ observation of the electromagnetic property of superconducting tape using the classical magnetic-optical imaging.

  20. New soliton solution to the longitudinal wave equation in a magneto-electro-elastic circular rod

    Science.gov (United States)

    Seadawy, Aly R.; Manafian, Jalil

    2018-03-01

    This paper examines the effectiveness of an integration scheme which called the extended trial equation method (ETEM) in exactly solving a well-known nonlinear equation of partial differential equations (PDEs). In this respect, the longitudinal wave equation (LWE) that arises in mathematical physics with dispersion caused by the transverse Poisson's effect in a magneto-electro-elastic (MEE) circular rod, which a series of exact traveling wave solutions for the aforementioned equation is formally extracted. Explicit new exact solutions are derived in different form such as dark solitons, bright solitons, solitary wave, periodic solitary wave, rational function, and elliptic function solutions of the longitudinal wave equation. The movements of obtained solutions are shown graphically, which helps to understand the physical phenomena of this longitudinal wave equation. Many other such types of nonlinear equations arising in non-destructive evaluation of structures made of the advanced MEE material can also be solved by this method.

  1. Free vibration analysis of embedded magneto-electro-thermo-elastic cylindrical nanoshell based on the modified couple stress theory

    Science.gov (United States)

    Ghadiri, Majid; Safarpour, Hamed

    2016-09-01

    In this paper, size-dependent effect of an embedded magneto-electro-elastic (MEE) nanoshell subjected to thermo-electro-magnetic loadings on free vibration behavior is investigated. Also, the surrounding elastic medium has been considered as the model of Winkler characterized by the spring. The size-dependent MEE nanoshell is investigated on the basis of the modified couple stress theory. Taking attention to the first-order shear deformation theory (FSDT), the modeled nanoshell and its equations of motion are derived using principle of minimum potential energy. The accuracy of the presented model is validated with some cases in the literature. Finally, using the Navier-type method, an analytical solution of governing equations for vibration behavior of simply supported MEE cylindrical nanoshell under combined loadings is presented and the effects of material length scale parameter, temperature changes, external electric potential, external magnetic potential, circumferential wave numbers, constant of spring, shear correction factor and length-to-radius ratio of the nanoshell on natural frequency are identified. Since there has been no research about size-dependent analysis MEE cylindrical nanoshell under combined loadings based on FSDT, numerical results are presented to be served as benchmarks for future analysis of MEE nanoshells using the modified couple stress theory.

  2. New soliton solution to the longitudinal wave equation in a magneto-electro-elastic circular rod

    Directory of Open Access Journals (Sweden)

    Aly R. Seadawy

    2018-03-01

    Full Text Available This paper examines the effectiveness of an integration scheme which called the extended trial equation method (ETEM in exactly solving a well-known nonlinear equation of partial differential equations (PDEs. In this respect, the longitudinal wave equation (LWE that arises in mathematical physics with dispersion caused by the transverse Poisson’s effect in a magneto-electro-elastic (MEE circular rod, which a series of exact traveling wave solutions for the aforementioned equation is formally extracted. Explicit new exact solutions are derived in different form such as dark solitons, bright solitons, solitary wave, periodic solitary wave, rational function, and elliptic function solutions of the longitudinal wave equation. The movements of obtained solutions are shown graphically, which helps to understand the physical phenomena of this longitudinal wave equation. Many other such types of nonlinear equations arising in non-destructive evaluation of structures made of the advanced MEE material can also be solved by this method. Keywords: Extended trial equation method, Longitudinal wave equation in a MEE circular rod, Dark solitons, Bright solitons, Solitary wave, Periodic solitary wave

  3. Development of magneto-plasmonic nanoparticles for multimodal image-guided therapy to the brain

    OpenAIRE

    Tomitaka, Asahi; Arami, Hamed; Raymond, Andrea; Yndart, Adriana; Kaushik, Ajeet; Jayant, Rahul Dev; Takemura, Yasushi; Cai, Yong; Toborek, Michal; Nair, Madhavan

    2017-01-01

    Magneto-plasmonic nanoparticles are one of the emerging multi-functional materials in the field of nanomedicine. Their potential for targeting and multi-modal imaging is highly attractive. In this study, magnetic core / gold shell (MNP@Au) magneto-plasmonic nanoparticles were synthesized by citrate reduction of Au ion on magnetic nanoparticle seeds. Hydrodynamic size and optical property of magneto-plasmonic nanoparticles synthesized with the variation of Au ion and reducing agent concentrati...

  4. Theoretical and experimental investigation on magneto-hydrodynamics of plasma window

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S. Z.; Zhu, K., E-mail: zhukun@pku.edu.cn; Huang, S.; Lu, Y. R.; Yuan, Z. X.; Shi, B. L.; Gan, P. P. [State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Hershcovitch, A. [Brookhaven National Laboratory, Upton, New York 11973-5000 (United States)

    2016-01-15

    As a new device, plasma window has been designed to use plasma discharge to separate atmosphere from vacuum with high difference of pressure. It has many excellent properties, being able to be used as available passage for ion beam with negligible energy loss, also impervious to radiation damage and thermal damage. Normally beam focusing by accelerators is not that easy to achieve within channel of small cross section. 10 mm diameter plasma window's experimental realization could contribute to its further application in accelerator system. In this paper, 10 mm diameter 60 mm long plasma window has first been designed and managed to generate arc discharge with argon gas experimentally. The result proves that it has the ability to separate at least 28.8 kPa (not the upper limit) from 360 Pa with 50 A direct current and 2.5 kW power supplied. Current increase leads to linear inlet pressure increase obviously, while it has less impact on outlet pressure and voltage, coming to the conclusion that the higher current of plasma discharge, the larger pressure difference it creates. Theoretical analysis of 10 mm diameter plasma window in axis symmetrical configuration using argon also has been provided, in which a numerical 2D FLUENT-based magneto-hydrodynamic simulation model is settled. It has a good agreement with experimental result on voltage and mass flow rate when inlet pressure is increased.

  5. Giant magneto-impedance effect on nanocrystalline microwires with conductive layer deposit

    International Nuclear Information System (INIS)

    Wang, R.L.; Zhao, Z.J.; Liu, L.P.; Yuan, W.Z.; Yang, X.L.

    2005-01-01

    In this study, the giant magneto-impedance effect on Fe-based glass-coated nanocrystalline microwires with and without an additional outer copper layer was investigated. Experiment results showed that the magneto-impedance ratio of the wires with a layer of deposited copper is higher at low frequencies and lower at high frequencies (above 50 MHz), as compared to that of the microwires without an outer copper layer. The peak MI magnetic field, corresponding to the maximum of the magneto-impedance ratio shifts towards higher field values with increasing coating thickness of copper layer. The results are explained in terms of electro-magnetic interactions between the conductive layer and the ferromagnetic core

  6. Well-posedness and decay for the dissipative system modeling electro-hydrodynamics in negative Besov spaces

    Science.gov (United States)

    Zhao, Jihong; Liu, Qiao

    2017-07-01

    In Guo and Wang (2012) [10], Y. Guo and Y. Wang developed a general new energy method for proving the optimal time decay rates of the solutions to dissipative equations. In this paper, we generalize this method in the framework of homogeneous Besov spaces. Moreover, we apply this method to a model arising from electro-hydrodynamics, which is a strongly coupled system of the Navier-Stokes equations and the Poisson-Nernst-Planck equations through charge transport and external forcing terms. We show that some weighted negative Besov norms of solutions are preserved along time evolution, and obtain the optimal time decay rates of the higher-order spatial derivatives of solutions by the Fourier splitting approach and the interpolation techniques.

  7. Development and validation of a magneto-hydrodynamic solver for blood flow analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kainz, W; Guag, J; Krauthamer, V; Myklebust, J; Bassen, H; Chang, I [Center for Devices and Radiological Health, FDA, Silver Spring, MD (United States); Benkler, S; Chavannes, N [Schmid and Partner Engineering AG, Zurich (Switzerland); Szczerba, D; Neufeld, E; Kuster, N [Foundation for Research on Information Technology in Society (IT' IS), Zurich (Switzerland); Kim, J H; Sarntinoranont, M, E-mail: wolfgang.kainz@fda.hhs.go [Soft Tissue Mechanics and Drug Delivery Laboratory, Mechanical and Aerospace Engineering, University of Florida, FL (United States)

    2010-12-07

    The objective of this study was to develop a numerical solver to calculate the magneto-hydrodynamic (MHD) signal produced by a moving conductive liquid, i.e. blood flow in the great vessels of the heart, in a static magnetic field. We believe that this MHD signal is able to non-invasively characterize cardiac blood flow in order to supplement the present non-invasive techniques for the assessment of heart failure conditions. The MHD signal can be recorded on the electrocardiogram (ECG) while the subject is exposed to a strong static magnetic field. The MHD signal can only be measured indirectly as a combination of the heart's electrical signal and the MHD signal. The MHD signal itself is caused by induced electrical currents in the blood due to the moving of the blood in the magnetic field. To characterize and eventually optimize MHD measurements, we developed a MHD solver based on a finite element code. This code was validated against literature, experimental and analytical data. The validation of the MHD solver shows good agreement with all three reference values. Future studies will include the calculation of the MHD signals for anatomical models. We will vary the orientation of the static magnetic field to determine an optimized location for the measurement of the MHD blood flow signal.

  8. Rayleigh wave behavior in functionally graded magneto-electro-elastic material

    Science.gov (United States)

    Ezzin, Hamdi; Mkaoir, Mohamed; Amor, Morched Ben

    2017-12-01

    Piezoelectric-piezomagnetic functionally graded materials, with a gradual change of the mechanical and electromagnetic properties have greatly applying promises. Based on the ordinary differential equation and stiffness matrix methods, a dynamic solution is presented for the propagation of the wave on a semi-infinite piezomagnetic substrate covered with a functionally graded piezoelectric material (FGPM) layer. The materials properties are assumed to vary in the direction of the thickness according to a known variation law. The phase and group velocity of the Rayleigh wave is numerically calculated for the magneto-electrically open and short cases, respectively. The effect of gradient coefficients on the phase velocity, group velocity, coupled magneto-electromechanical factor, on the stress fields, the magnetic potential and the mechanical displacement are discussed, respectively. Illustration is achieved on the hetero-structure PZT-5A/CoFe2O4; the obtained results are especially useful in the design of high-performance acoustic surface devices and accurately prediction of the Rayleigh wave propagation behavior.

  9. Magneto-electro-responsive material based on magnetite nanoparticles/polyurethane composites

    International Nuclear Information System (INIS)

    Petcharoen, Karat; Sirivat, Anuvat

    2016-01-01

    Multi-functional materials in actuator applications have been developed toward reversibility and sensitivity under various actuating fields. In this work, magneto-electro-responsive materials consisting of a polyurethane (PU) matrix and its composites embedded with magnetite nanoparticles (MNP) as a dispersed phase were fabricated to tailor the electromechanical properties and bending performance under electric, magnetic, and electromagnetic fields. Due to the superior characteristics of MNP over other magnetic materials, the composites fabricated with electronic polarization were highly responsive under electric field. The highest storage modulus sensitivity belonged to the 1.0% v/v MNP/PU composite which possessed the value of 3.46 at the electric field 2 kV mm"−"1. Moreover, all of the PU composites behaved as an electrostrictive material in which the stress depended quadratically on the electric field. It was demonstrated that the PU composites also possessed very good recoverability, fast response (< 15 s) and large bending angle relative to that of pristine PU under applied electric field. Interestingly, the steady state storage modulus response was attained within the first electrical actuation cycle and the PU composite was a fully reversible material. In addition, it was shown that superparamagnetism was a common characteristic of all fabricated composites under magnetic field. The 3.0%v/v MNP/PU composite provided the largest bending distance up to 23.60 mm, and 14.10 mm under the magnetic field of 5000 G, and the electromagnetic field of 320 G, respectively. In summary, the MNP/PU composite material is a potential candidate to be used as a smart material under the influences of electric and/or magnetic fields over other existing dielectric materials. - Highlights: • MNP/PU composites exhibit a superparamagnetic behavior. • MNP/PU composites show full reversibility under electric field. • 1.0% v/v MNP/PU composite provides the highest sensitivity

  10. Magneto-electro-responsive material based on magnetite nanoparticles/polyurethane composites

    Energy Technology Data Exchange (ETDEWEB)

    Petcharoen, Karat; Sirivat, Anuvat, E-mail: anuvat.s@chula.ac.th

    2016-04-01

    Multi-functional materials in actuator applications have been developed toward reversibility and sensitivity under various actuating fields. In this work, magneto-electro-responsive materials consisting of a polyurethane (PU) matrix and its composites embedded with magnetite nanoparticles (MNP) as a dispersed phase were fabricated to tailor the electromechanical properties and bending performance under electric, magnetic, and electromagnetic fields. Due to the superior characteristics of MNP over other magnetic materials, the composites fabricated with electronic polarization were highly responsive under electric field. The highest storage modulus sensitivity belonged to the 1.0% v/v MNP/PU composite which possessed the value of 3.46 at the electric field 2 kV mm{sup −1}. Moreover, all of the PU composites behaved as an electrostrictive material in which the stress depended quadratically on the electric field. It was demonstrated that the PU composites also possessed very good recoverability, fast response (< 15 s) and large bending angle relative to that of pristine PU under applied electric field. Interestingly, the steady state storage modulus response was attained within the first electrical actuation cycle and the PU composite was a fully reversible material. In addition, it was shown that superparamagnetism was a common characteristic of all fabricated composites under magnetic field. The 3.0%v/v MNP/PU composite provided the largest bending distance up to 23.60 mm, and 14.10 mm under the magnetic field of 5000 G, and the electromagnetic field of 320 G, respectively. In summary, the MNP/PU composite material is a potential candidate to be used as a smart material under the influences of electric and/or magnetic fields over other existing dielectric materials. - Highlights: • MNP/PU composites exhibit a superparamagnetic behavior. • MNP/PU composites show full reversibility under electric field. • 1.0% v/v MNP/PU composite provides the highest

  11. Semi-analytical solution for electro-magneto-thermoelastic creep response of functionally graded piezoelectric rotating disk

    International Nuclear Information System (INIS)

    Loghman, A.; Abdollahian, M.; Jafarzadeh Jazi, A.; Ghorbanpour Arani, A.

    2013-01-01

    Time-dependent electro-magneto-thermoelastic creep response of rotating disk made of functionally graded piezoelectric materials (FGPM) is studied. The disk is placed in a uniform magnetic and a distributed temperature field and is subjected to an induced electric potential and a centrifugal body force. The material thermal, mechanical, magnetic and electric properties are represented by power-law distributions in radial direction. The creep constitutive model is Norton's law in which the creep parameters are also power functions of radius. Using equations of equilibrium, strain-displacement and stress-strain relations in conjunction with the potential-displacement equation a non-homogeneous differential equation containing time-dependent creep strains for displacement is derived. A semi-analytical solution followed by a numerical procedure has been developed to obtain history of stresses, strains, electric potential and creep-strain rates by using Prandtl-Reuss relations. History of electric potential, Radial, circumferential and effective stresses and strains as well as the creep stress rates and effective creep strain rate histories are presented. It has been found that tensile radial stress distribution decreases during the life of the FGPM rotating disk which is associated with major electric potential redistributions which can be used as a sensor for condition monitoring of the FGPM rotating disk. (authors)

  12. Superconducting Qubit Optical Transducer (SQOT)

    Science.gov (United States)

    2015-08-05

    parts on optical signals and any quasiparticle loss caused by optical photons on microwave signals. Using a superconducting 3D cavity as the microwave...plasmonic and quasiparticle losses. 3. The electro-optic material should be easily integrable with superconducting circuits. A fully integrated

  13. Controllable manipulation of superconductivity using magnetic vortices

    International Nuclear Information System (INIS)

    Villegas, J E; Schuller, Ivan K

    2011-01-01

    The magneto-transport of a superconducting/ferromagnetic hybrid structure, consisting of a superconducting thin film in contact with an array of magnetic nanodots in the so-called 'magnetic vortex state', exhibits interesting properties. For certain magnetic states, the stray magnetic field from the vortex array is intense enough to drive the superconducting film into the normal state. In this fashion, the normal-to-superconducting phase transition can be controlled by the magnetic history. The strong coupling between superconducting and magnetic subsystems allows characteristically ferromagnetic properties, such as hysteresis and remanence, to be dramatically transferred into the transport properties of the superconductor.

  14. Coupling a single nitrogen-vacancy center with a superconducting qubit via the electro-optic effect

    Science.gov (United States)

    Li, Chang-Hao; Li, Peng-Bo

    2018-05-01

    We propose an efficient scheme for transferring quantum states and generating entangled states between two qubits of different nature. The hybrid system consists of a single nitrogen-vacancy (NV) center and a superconducting (SC) qubit, which couple to an optical cavity and a microwave resonator, respectively. Meanwhile, the optical cavity and the microwave resonator are coupled via the electro-optic effect. By adjusting the relative parameters, we can achieve high-fidelity quantum state transfer as well as highly entangled states between the NV center and the SC qubit. This protocol is within the reach of currently available techniques, and may provide interesting applications in quantum communication and computation with single NV centers and SC qubits.

  15. Development of magneto-plasmonic nanoparticles for multimodal image-guided therapy to the brain.

    Science.gov (United States)

    Tomitaka, Asahi; Arami, Hamed; Raymond, Andrea; Yndart, Adriana; Kaushik, Ajeet; Jayant, Rahul Dev; Takemura, Yasushi; Cai, Yong; Toborek, Michal; Nair, Madhavan

    2017-01-05

    Magneto-plasmonic nanoparticles are one of the emerging multi-functional materials in the field of nanomedicine. Their potential for targeting and multi-modal imaging is highly attractive. In this study, magnetic core/gold shell (MNP@Au) magneto-plasmonic nanoparticles were synthesized by citrate reduction of Au ions on magnetic nanoparticle seeds. Hydrodynamic size and optical properties of magneto-plasmonic nanoparticles synthesized with the variation of Au ions and reducing agent concentrations were evaluated. The synthesized magneto-plasmonic nanoparticles exhibited superparamagnetic properties, and their magnetic properties contributed to the concentration-dependent contrast in magnetic resonance imaging (MRI). The imaging contrast from the gold shell part of the magneto-plasmonic nanoparticles was also confirmed by X-ray computed tomography (CT). The transmigration study of the magneto-plasmonic nanoparticles using an in vitro blood-brain barrier (BBB) model proved enhanced transmigration efficiency without disrupting the integrity of the BBB, and showed potential to be used for brain diseases and neurological disorders.

  16. Investigation of noninvasive healing of damaged piping system using electro-magneto-mechanical methods

    KAUST Repository

    Mukherjee, Debanjan

    2014-01-01

    Virtually all engineering applications involve the use of piping, conduits and channels. In the petroleum industry, piping systems are extensively employed in upstream and downstream processes. These piping systems often carry fluids that are corrosive, which leads to wear, cavitation and cracking. The replacement of damaged piping systems can be quite expensive, both in terms of capital costs, as well as in operational downtime. This motivates the present research on noninvasive healing of cracked piping systems. In this investigation, we propose to develop computational models for characterizing noninvasive repair strategies involving electromagnetically guided particles. The objective is to heal industrial-piping systems noninvasively, from the exterior of the system, during operation, resulting in no downtime, with minimal relative cost. The particle accumulation at a target location is controlled by external electro-magneto-mechanical means. There are two primary effects that play a role for guiding the particles to the solid-fluid interface/wall: mechanical shear due to the fluid flow, and an electrical or magnetic force. In this work we develop and study a relationship that characterizes contributions of both, and ascertain how this relationship scales with characteristic physical parameters. Characteristic non-dimensional parameters that describe system behavior are derived and their role in design is illustrated. A detailed, fully 3-dimensional discrete element simulation framework is presented, and illustrated using a model problem of magnetically guided particles. The detailed particle behavior is considered to be regulated by three effects: (1) the field strength (2) the mass flow rate and (3) the wall interactions.

  17. An Experimental Setup to Measure the Minimum Trigger Energy for Magneto-Thermal Instability in Nb$_{3}$Sn Strands

    CERN Document Server

    Takala, E; Bremer, J; Balle, C; Bottura, L; Rossi, L

    2012-01-01

    Magneto-thermal instability may affect high critical current density Nb$_{3}$Sn superconducting strands that can quench even though the transport current is low compared to the critical current with important implications in the design of next generation superconducting magnets. The instability is initiated by a small perturbation energy which is considerably lower than the Minimum Quench Energy (MQE). At CERN, a new experimental setup was developed to measure the smallest perturbation energy (Minimum Trigger Energy, MTE) which is able to trigger the magneto-thermal instability in superconducting Nb$_{3}$Sn-strands. The setup is based on Q-switched laser technology which is able to provide a localized perturbation in nano-second time scale. Using this technique the energy deposition into the strand is well defined and reliable. The laser is located outside the cryostat at room temperature. The beam is guided from room temperature on to the superconducting strand by using a UV-enhanced fused silica fibre. The ...

  18. Multi-gap superconductivity in MgB2: Magneto-Raman spectroscopy

    International Nuclear Information System (INIS)

    Blumberg, G.; Mialitsin, A.; Dennis, B.S.; Zhigadlo, N.D.; Karpinski, J.

    2007-01-01

    Electronic Raman scattering studies on MgB 2 single crystals as a function of excitation and polarization have revealed three distinct superconducting features: a clean gap below 37 cm -1 and two coherence peaks at 109 and 78 cm -1 which we identify as the superconducting gaps in π- and σ-bands and as the Leggett's collective mode arising from the fluctuation in the relative phase between two superconducting condensates residing on corresponding bands. The temperature and field dependencies of the superconducting features have been established. A phononic Raman scattering study of the E 2g boron stretching mode anharmonicity and of superconductivity induced self-energy effects is presented. We show that anharmonic two phonon decay is mainly responsible for the unusually large linewidth of the E 2g mode. We observe ∼2.5% hardening of the E 2g phonon frequency upon cooling into the superconducting state and estimate the electron-phonon coupling strength associated with this renormalization

  19. Design and simulation of superconducting Lorentz Force Electrical Impedance Tomography (LFEIT)

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Boyang, E-mail: bs506@cam.ac.uk; Fu, Lin, E-mail: lf359@cam.ac.uk; Geng, Jianzhao, E-mail: jg717@cam.ac.uk; Zhang, Xiuchang, E-mail: xz326@cam.ac.uk; Zhang, Heng, E-mail: hz301@cam.ac.uk; Dong, Qihuan, E-mail: qd210@cam.ac.uk; Li, Chao, E-mail: cl644@cam.ac.uk; Li, Jing, E-mail: jl908@cam.ac.uk; Coombs, T.A., E-mail: tac1000@cam.ac.uk

    2016-05-15

    Highlights: • Design of superconducting magnets using Halbach Array configuration. • Combination of superconducting magnets together with Lorentz Force Electrical Impedance Tomography (LFEIT) system. • Simulation of superconducting LFEIT system based on the theory of magneto-acoustic effect. - Abstract: Lorentz Force Electrical Impedance Tomography (LFEIT) is a hybrid diagnostic scanner with strong capability for biological imaging, particularly in cancer and haemorrhages detection. This paper presents the design and simulation of a novel combination: a superconducting magnet together with LFEIT system. Superconducting magnets can generate magnetic field with high intensity and homogeneity, which could significantly enhance the imaging performance. The modelling of superconducting magnets was carried out using Finite Element Method (FEM) package, COMSOL Multiphysics, which was based on Partial Differential Equation (PDE) model with H-formulation coupling B-dependent critical current density and bulk approximation. The mathematical model for LFEIT system was built based on the theory of magneto-acoustic effect. The magnetic field properties from magnet design were imported into the LFEIT model. The basic imaging of electrical signal was developed using MATLAB codes. The LFEIT model simulated two samples located in three different magnetic fields with varying magnetic strength and homogeneity.

  20. Electro-physical properties of superconducting ceramic thick film prepared by partial melting method.

    Science.gov (United States)

    Lee, Sang Heon

    2013-05-01

    BiSrCaCuO superconductor thick films were prepared at several curing temperatures, and their electro-physical properties were determined to find an optimum fabrication conditions. Critical temperatures of the superconductors were decreased with increasing melting temperature, which was related to the amount of equilibrium phases of the superconducting materials with temperature. The critical temperature of BiSrCaCuO bulk and thick film superconductors were 107 K and 96 K, respectively. The variation of susceptibility of the superconductor thick film formed at 950 degrees C had multi-step-type curve for 70 G externally applied field, whereas, a superconductor thick film formed at 885 degrees C had a single step-type curve like a bulk BiSrCaCuO ceramic superconductor in the temperature-susceptibility curves. A partial melting at 865 degrees C is one of optimum conditions for making a superconductor thick film with a relatively homogeneous phase.

  1. Two-phase electro-hydrodynamic flow modeling by a conservative level set model.

    Science.gov (United States)

    Lin, Yuan

    2013-03-01

    The principles of electro-hydrodynamic (EHD) flow have been known for more than a century and have been adopted for various industrial applications, for example, fluid mixing and demixing. Analytical solutions of such EHD flow only exist in a limited number of scenarios, for example, predicting a small deformation of a single droplet in a uniform electric field. Numerical modeling of such phenomena can provide significant insights about EHDs multiphase flows. During the last decade, many numerical results have been reported to provide novel and useful tools of studying the multiphase EHD flow. Based on a conservative level set method, the proposed model is able to simulate large deformations of a droplet by a steady electric field, which is beyond the region of theoretic prediction. The model is validated for both leaky dielectrics and perfect dielectrics, and is found to be in excellent agreement with existing analytical solutions and numerical studies in the literature. Furthermore, simulations of the deformation of a water droplet in decyl alcohol in a steady electric field match better with published experimental data than the theoretical prediction for large deformations. Therefore the proposed model can serve as a practical and accurate tool for simulating two-phase EHD flow. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Effect of hydrodynamic slippage on electro-osmotic flow in zeta potential patterned nanochannels

    Energy Technology Data Exchange (ETDEWEB)

    Datta, S; Choudhary, J N, E-mail: subhra-datta@iitd.ac.in [Department of Mechanical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India)

    2013-10-01

    The effect of hydrodynamic slippage on the electro-osmotic flow in a nanochannel with thick electrical double layers whose wall surface potential has a periodic axial variation is studied. The equations of Stokes flow are solved exactly with the help of the Navier slip boundary condition and the Debye-Huckel linearization of the equation governing the potential of the electrical double layer. Each periodic cell of the flow field consists of four counter-rotating vortices. The cross-channel profile of the axial velocity at the center of the cell exhibits three extrema and a reversed velocity zone near the channel axis of symmetry. The size of the extrema and that of the reversed velocity zone increases with increase in the degree of slippage. In the limit when the wavelength of axial variation in surface potential is much larger than the channel width, the flow characteristics are interpreted in terms of the lubrication approximation. In the limit when the electrical double layer is much thinner than the channel height, the effect of slip is modeled by a Helmholtz-Smoluchowski apparent slip boundary condition that depends on the pattern wavelength. (paper)

  3. Effect of Anode Change on Heat Transfer and Magneto-hydrodynamic Flow in Aluminum Reduction Cell

    Science.gov (United States)

    Wang, Qiang; Li, Baokuan; Fafard, Mario

    2016-02-01

    In order to explore the impact of anode replacement on heat transfer and magneto-hydrodynamic flow in aluminum smelting cells, a transient three-dimensional coupled mathematical model has been developed. With a steady state magnetic field, an electrical potential approach was used to obtain electromagnetic fields. Joule heating and Lorentz force, which were the source terms in the energy and momentum equations, were updated at each iteration. The phase change of molten electrolyte (bath) was modeled by an enthalpy-based technique in which the mushy zone was treated as a porous medium with porosity equal to the liquid fraction. A reasonable agreement between the test data and simulated results was achieved. Under normal conditions, the bath at the middle of the cell is hotter, while becoming colder at the four corners. Due to the heat extracted from the bath, the temperature of the new cold anode increases over time. The temperature of the bath under the new cold anode therefore quickly drops, resulting in a decrease of the electrical conductivity. More Joule effect is created. In addition, the bath under the new cold anode gradually freezes and flows more slowly. The temperature of the new anode located at the middle of the cell rises faster because of the warmer bath. It is easier to eliminate the effect of anode change when it occurs in the middle of the cell.

  4. Numerical Hydrodynamics in Special Relativity.

    Science.gov (United States)

    Martí, José Maria; Müller, Ewald

    2003-01-01

    This review is concerned with a discussion of numerical methods for the solution of the equations of special relativistic hydrodynamics (SRHD). Particular emphasis is put on a comprehensive review of the application of high-resolution shock-capturing methods in SRHD. Results of a set of demanding test bench simulations obtained with different numerical SRHD methods are compared. Three applications (astrophysical jets, gamma-ray bursts and heavy ion collisions) of relativistic flows are discussed. An evaluation of various SRHD methods is presented, and future developments in SRHD are analyzed involving extension to general relativistic hydrodynamics and relativistic magneto-hydrodynamics. The review further provides FORTRAN programs to compute the exact solution of a 1D relativistic Riemann problem with zero and nonzero tangential velocities, and to simulate 1D relativistic flows in Cartesian Eulerian coordinates using the exact SRHD Riemann solver and PPM reconstruction. Supplementary material is available for this article at 10.12942/lrr-2003-7 and is accessible for authorized users.

  5. Superconducting properties of Ca1−xRExFe2As2 (RE: Rare Earths)

    International Nuclear Information System (INIS)

    Tamegai, T.; Ding, Q.P.; Ishibashi, T.; Nakajima, Y.

    2013-01-01

    Highlights: ► Superconducting properties in rare-earth doped CaFe 2 As 2 single crystals are characterized. ► Sharp resistive transitions with small anisotropy parameter of ∼1.75 are observed. ► Average critical current density is much smaller than other iron-based superconductors. ► Magneto-optical imaging confirms very inhomogeneous superconducting state. -- Abstract: We have grown rare-earth doped CaFe 2 As 2 single crystals and characterized their normal and superconducting properties. Temperature dependence of resistivity and its absolute value suggest good metallic conduction, suppressing antiferromagnetic (AF) transition in the undoped sample. Hall coefficient shows little temperature dependence, consistent with the suppression AF state. Superconducting transitions characterized by resistivity drops in magnetic fields for both parallel to c-axis and ab-plane are reasonably sharp with a weak anisotropy parameter ∼1.75. Despite these observations, average critical current density estimated from the bulk magnetization is orders of magnitude smaller than other typical iron-based superconductors. Magneto-optical imaging confirms very inhomogeneous superconducting state

  6. Magnetism and superconductivity in Eu-based iron pnictides

    Energy Technology Data Exchange (ETDEWEB)

    Zapf, Sina [1. Physikalisches Institut, Universitaet Stuttgart (Germany)

    2015-07-01

    EuFe{sub 2}As{sub 2} is an extraordinary parent compound of the iron pnictides, as it exhibits at low temperatures - additional to the Fe spin density wave - long-range magnetic order of the Eu{sup 2+} local moments. Nevertheless, bulk superconductivity around 30 K can be induced by mechanical pressure or chemical substitution. In this talk we review the remarkable interplay of unconventional superconductivity, itinerant and local magnetism in Eu based iron pnictides. We focus on the appearance of a re-entrant spin glass phase that coexists with superconductivity and an indirect magneto-elastic coupling, enabling the persistent magnetic detwinning by small magnetic fields.

  7. On the convexity of relativistic hydrodynamics

    International Nuclear Information System (INIS)

    Ibáñez, José M; Martí, José M; Cordero-Carrión, Isabel; Miralles, Juan A

    2013-01-01

    The relativistic hydrodynamic system of equations for a perfect fluid obeying a causal equation of state is hyperbolic (Anile 1989 Relativistic Fluids and Magneto-Fluids (Cambridge: Cambridge University Press)). In this report, we derive the conditions for this system to be convex in terms of the fundamental derivative of the equation of state (Menikoff and Plohr1989 Rev. Mod. Phys. 61 75). The classical limit is recovered. Communicated by L Rezzolla (note)

  8. Electro-Hydrodynamics and Kinetic Modeling of Dry and Humid Air Flows Activated by Corona Discharges

    Science.gov (United States)

    P. Sarrette, J.; Eichwald, O.; Marchal, F.; Ducasse, O.; Yousfi, M.

    2016-05-01

    The present work is devoted to the 2D simulation of a point-to-plane Atmospheric Corona Discharge Reactor (ACDR) powered by a DC high voltage supply. The corona reactor is periodically crossed by thin mono filamentary streamers with a natural repetition frequency of some tens of kHz. The study compares the results obtained in dry air and in air mixed with a small amount of water vapour (humid air). The simulation involves the electro-dynamics, chemical kinetics and neutral gas hydrodynamics phenomena that influence the kinetics of the chemical species transformation. Each discharge lasts about one hundred of a nanosecond while the post-discharge occurring between two successive discharges lasts one hundred of a microsecond. The ACDR is crossed by a lateral dry or humid air flow initially polluted with 400 ppm of NO. After 5 ms, the time corresponding to the occurrence of 50 successive discharge/post-discharge phases, a higher NO removal rate and a lower ozone production rate are found in humid air. This change is due to the presence of the HO2 species formed from the H primary radical in the discharge zone.

  9. A semi-analytical analysis of electro-thermo-hydrodynamic stability in dielectric nanofluids using Buongiorno's mathematical model together with more realistic boundary conditions

    Science.gov (United States)

    Wakif, Abderrahim; Boulahia, Zoubair; Sehaqui, Rachid

    2018-06-01

    The main aim of the present analysis is to examine the electroconvection phenomenon that takes place in a dielectric nanofluid under the influence of a perpendicularly applied alternating electric field. In this investigation, we assume that the nanofluid has a Newtonian rheological behavior and verifies the Buongiorno's mathematical model, in which the effects of thermophoretic and Brownian diffusions are incorporated explicitly in the governing equations. Moreover, the nanofluid layer is taken to be confined horizontally between two parallel plate electrodes, heated from below and cooled from above. In a fast pulse electric field, the onset of electroconvection is due principally to the buoyancy forces and the dielectrophoretic forces. Within the framework of the Oberbeck-Boussinesq approximation and the linear stability theory, the governing stability equations are solved semi-analytically by means of the power series method for isothermal, no-slip and non-penetrability conditions. In addition, the computational implementation with the impermeability condition implies that there exists no nanoparticles mass flux on the electrodes. On the other hand, the obtained analytical solutions are validated by comparing them to those available in the literature for the limiting case of dielectric fluids. In order to check the accuracy of our semi-analytical results obtained for the case of dielectric nanofluids, we perform further numerical and semi-analytical computations by means of the Runge-Kutta-Fehlberg method, the Chebyshev-Gauss-Lobatto spectral method, the Galerkin weighted residuals technique, the polynomial collocation method and the Wakif-Galerkin weighted residuals technique. In this analysis, the electro-thermo-hydrodynamic stability of the studied nanofluid is controlled through the critical AC electric Rayleigh number Rec , whose value depends on several physical parameters. Furthermore, the effects of various pertinent parameters on the electro-thermo-hydrodynamic

  10. Size-dependent bending, buckling and vibration of higher-order shear deformable magneto-electro-thermo-elastic rectangular nanoplates

    Science.gov (United States)

    Gholami, Raheb; Ansari, Reza; Gholami, Yousef

    2017-06-01

    The aim of the present study is to propose a unified size-dependent higher-order shear deformable plate model for magneto-electro-thermo-elastic (METE) rectangular nanoplates by adopting the nonlocal elasticity theory to capture the size effect, and by utilizing a generalized shape function to consider the effects of transverse shear deformation and rotary inertia. By considering various shape functions, the proposed plate model can be reduced to the nonlocal plate model based upon the Kirchhoff, Mindlin and Reddy plate theories, as well as the parabolic, trigonometric, hyperbolic and exponential shear deformation plate theories. The governing equations of motion and corresponding boundary conditions of METE nanoplates subjected to external in-plane, transverse loads as well as magnetic, electric and thermal loadings, are obtained using Hamilton’s principle. Then, as in some case studies, the static bending, buckling, and free vibration characteristics of simply-supported METE rectangular nanoplates are investigated based upon the Navier solution approach. Numerical results are provided in order to investigate the influences of various parameters including the nondimensional nonlocal parameter, type of transverse loading, temperature change, applied voltage, and external magnetic potential on the mechanical behaviors of METE nanoplates. Furthermore, comparisons are made between the results predicted by different nonlocal plate models by utilizing the developed unified nonlocal plate model and selecting the associated shape functions. It is illustrated that by using the presented unified nonlocal plate model, the development of a nonlocal plate model based upon any existing higher-order shear deformable plate theory is a simple task.

  11. Research on superconducting generator and materials in Japan

    International Nuclear Information System (INIS)

    Uyeda, K.; Maki, N.; Kurihara, S.; Ueda, A.; Hirose, S.; Itoh, K.

    1988-01-01

    As a first step of application of superconducting technology to electric power equipment, the practical use of superconducting generator is sucessfully developed, enhanced generation efficiency, reduced construction cost, improved stability limit. For the development, it is required to integrated such technical assets as new generator design technology based on detailed analysis of techniques and high strength material for with standing intensive electro-magnetic force. This paper describes history and results of research and development of superconducting generator for experimental machines, the results of feasibility study of pilot generator, and master plan for research and development of superconducting technology for applications to generator and the other power apparatus

  12. Theory of superconducting magnet suspension: main results survey

    International Nuclear Information System (INIS)

    Voevodskii, K.E.; Kochetkov, V.M.

    1981-01-01

    A survey is given of theoretical achievements on electro-dynamic suspension of high speed ground vehicles with superconducting magnets. The problems discussed, are calculation of lift and drag forces acting on a superconducting magnet, the latter moving above a guideway structure which may be of two different types (either conducting sheet or a series of discrete loops); influence of irregularities of the guideway structure; vertical and longitudinal stability of suspension. (author)

  13. Superconducting properties of Ca{sub 1−x}RE{sub x}Fe{sub 2}As{sub 2} (RE: Rare Earths)

    Energy Technology Data Exchange (ETDEWEB)

    Tamegai, T., E-mail: tamegai@ap.t.u-tokyo.ac.jp [Department of Applied Physics, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); JST, Transformative Research-Project on Iron Pnictides (TRIP), Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Ding, Q.P. [Department of Applied Physics, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); JST, Transformative Research-Project on Iron Pnictides (TRIP), Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Ishibashi, T. [Department of Applied Physics, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Nakajima, Y. [Department of Applied Physics, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); JST, Transformative Research-Project on Iron Pnictides (TRIP), Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2013-01-15

    Highlights: ► Superconducting properties in rare-earth doped CaFe{sub 2}As{sub 2} single crystals are characterized. ► Sharp resistive transitions with small anisotropy parameter of ∼1.75 are observed. ► Average critical current density is much smaller than other iron-based superconductors. ► Magneto-optical imaging confirms very inhomogeneous superconducting state. -- Abstract: We have grown rare-earth doped CaFe{sub 2}As{sub 2} single crystals and characterized their normal and superconducting properties. Temperature dependence of resistivity and its absolute value suggest good metallic conduction, suppressing antiferromagnetic (AF) transition in the undoped sample. Hall coefficient shows little temperature dependence, consistent with the suppression AF state. Superconducting transitions characterized by resistivity drops in magnetic fields for both parallel to c-axis and ab-plane are reasonably sharp with a weak anisotropy parameter ∼1.75. Despite these observations, average critical current density estimated from the bulk magnetization is orders of magnitude smaller than other typical iron-based superconductors. Magneto-optical imaging confirms very inhomogeneous superconducting state.

  14. Mapping flux avalanches in MgB2 films-equivalence between magneto-optical imaging and magnetic measurements

    International Nuclear Information System (INIS)

    Colauto, F; Choi, E M; Lee, J Y; Lee, S I; Yurchenko, V V; Johansen, T H; Ortiz, W A

    2007-01-01

    Vortex avalanches are known to occur in MgB 2 films within a certain range of temperatures and magnetic fields. These events, resulting from a thermomagnetic instability, were first revealed by real-time magneto-optical imaging, which exposed dendritic paths of abrupt flux propagation. This very powerful technique has, however, a practical limitation, since sensors that are currently available cannot be used at high magnetic fields. This letter shows that results obtained using dc magnetometry are in good correspondence with those furnished by magneto-optical imaging, demonstrating that the two techniques can be efficiently used as complementary tools to map vortex avalanches in superconducting films. (rapid communication)

  15. Two-dimensional linear elasticity theory of magneto-electro-elastic plates considering surface and nonlocal effects for nanoscale device applications

    Science.gov (United States)

    Wang, Wenjun; Li, Peng; Jin, Feng

    2016-09-01

    A novel two-dimensional linear elastic theory of magneto-electro-elastic (MEE) plates, considering both surface and nonlocal effects, is established for the first time based on Hamilton’s principle and the Lee plate theory. The equations derived are more general, suitable for static and dynamic analyses, and can also be reduced to the piezoelectric, piezomagnetic, and elastic cases. As a specific application example, the influences of the surface and nonlocal effects, poling directions, piezoelectric phase materials, volume fraction, damping, and applied magnetic field (i.e., constant applied magnetic field and time-harmonic applied magnetic field) on the magnetoelectric (ME) coupling effects are first investigated based on the established two-dimensional plate theory. The results show that the ME coupling coefficient has an obvious size-dependent characteristic owing to the surface effects, and the surface effects increase the ME coupling effects significantly when the plate thickness decreases to its critical thickness. Below this critical thickness, the size-dependent effect is obvious and must be considered. In addition, the output power density of a magnetic energy nanoharvester is also evaluated using the two-dimensional plate theory obtained, with the results showing that a relatively larger output power density can be achieved at the nanoscale. This study provides a mathematical tool which can be used to analyze the mechanical properties of nanostructures theoretically and numerically, as well as evaluating the size effect qualitatively and quantitatively.

  16. Anomalous electron doping independent two-dimensional superconductivity

    Science.gov (United States)

    Zhou, Wei; Xing, Xiangzhuo; Zhao, Haijun; Feng, Jiajia; Pan, Yongqiang; Zhou, Nan; Zhang, Yufeng; Qian, Bin; Shi, Zhixiang

    2017-07-01

    Transition metal (Co and Ni) co-doping effects are investigated on an underdoped Ca0.94La0.06Fe2As2 compound. It is discovered that electron doping from substituting Fe with transition metal (TM = Co, Ni) can trigger high-{T}{{c}} superconductivity around 35 K, which emerges abruptly before the total suppression of the innate spin-density-wave/anti-ferromagnetism (SDW/AFM) state. Remarkably, the critical temperature for the high-{T}{{c}} superconductivity remains constant against a wide range of TM doping levels. And the net electron doping density dependence of the superconducting {T}{{c}} based on the rigid band model can be nicely scaled into a single curve for Co and Ni substitutions, in stark contrast to the case of Ba(Fe1-x TM x )2As2. This carrier density independent superconductivity and the unusual scaling behavior are presumably resulted from the interface superconductivity based on the similarity with the interface superconductivity in a La2-x Sr x CuO4-La2CuO4 bilayer. Evidence of the two-dimensional character of the superfluid by angle-resolved magneto-resistance measurements can further strengthen the interface nature of the high-{T}{{c}} superconductivity.

  17. Free vibration and biaxial buckling analysis of magneto-electro-elastic microplate resting on visco-Pasternak substrate via modified strain gradient theory

    Science.gov (United States)

    Jamalpoor, A.; Ahmadi-Savadkoohi, A.; Hosseini-Hashemi, Sh

    2016-10-01

    This paper deals with the theoretical analysis of free vibration and biaxial buckling of magneto-electro-elastic (MEE) microplate resting on Kelvin-Voigt visco-Pasternak foundation and subjected to initial external electric and magnetic potentials, using modified strain gradient theory (MSGT). Kirchhoff plate model and Hamilton’s principle are employed to extract the governing equations of motion. Governing equations were analytically solved to obtain clear closed-form expression for complex natural frequencies and buckling loads using Navier’s approach. Numerical results are presented to reveal variations of natural frequency and buckling load ratio of MEE microplate against different amounts of the length scale parameter, initial external electric and magnetic potentials, aspect ratio, damping and transverse and shear stiffness parameters of the visco-Pasternak foundation, length to thickness ratio, microplate thickness and higher modes. Numerical results of this study illustrate that by increasing thickness-to-material length scale parameter ratio, both natural frequency and buckling load ratio predicted by MSGT and modified couple stress theory are reduced because the non-dimensional length scale parameter tends to decrease the stiffness of structures and make them more flexible. In addition, results show that initial external electric and initial external magnetic potentials have no considerable influence on the buckling load ratio and frequency of MEE microplate as the microplate thickness increases.

  18. Direct observation of the current distribution in thin superconducting strips using magneto-optic imaging

    International Nuclear Information System (INIS)

    Johansen, T.H.; Baziljevich, M.; Bratsberg, H.; Galperin, Y.; Lindelof, P.E.; Shen, Y.; Vase, P.

    1996-01-01

    Magneto-optic imaging was used for a detailed study of the flux and current distribution of a long thin strip of YBa 2 Cu 3 O 7-δ placed in a perpendicular external magnetic field. The inverse magnetic problem, i.e., that of deriving from a field map the underlying current distribution, is formulated and solved for the strip geometry. Applying the inversion to the magneto-optically found field map we find on a model-independent basis the current distribution across the strip to be in remarkable agreement with the profile predicted by the Bean model. The paper also presents results on the behavior of the Bi-doped YIG film with in-plane anisotropy which we use as field indicator, explaining why previous measurements of flux density profiles have displayed surprisingly large deviations from the expected behavior. copyright 1996 The American Physical Society

  19. Magneto-transport properties of Co3O4 nanoparticles added (Cu0.5Tl0.5)Ba2Ca2Cu3O10-δ superconducting phase

    Science.gov (United States)

    Mumtaz, M.; Baig, Mirza Hassan; Waqee-ur-Rehman, M.; Nasir Khan, M.

    2018-05-01

    Solid-state reaction method was used to synthesize Cu0.5Tl0.5Ba2Ca2Cu3O10-δ (CuTl-1223) superconducting phase and sol-gel method was used to prepare cobalt oxide (Co3O4) magnetic nanoparticles. These Co3O4 nanoparticles were added in CuTl-1223 superconducting matrix to get (Co3O4)x/CuTl-1223; x = 0-2.00 wt.% nanoparticles-superconductor composites. The effects of Co3O4 nanoparticles on crystal structure, phase formation, phase purity and infield superconducting transport properties of CuTl-1223 phase were investigated at different operating temperatures and external applied magnetic fields. The crystal structure and phase formation of Co3O4 nanoparticles and CuTl-1223 superconductor were determined by X-ray diffraction (XRD) technique. XRD peaks of Co3O4 nanoparticles were well indexed according to FCC crystal structure and the average particle size of 70 nm was calculated by using Debye-Scherer's formula. The unaltered crystal structure of host CuTl-1223 superconducting phase (i.e. Tetragonal) with the addition of Co3O4 nanoparticles indicated the dispersion of nanoparticles at inter-granular sites. Temperature dependent magneto-transport superconducting properties of (Co3O4)x/CuTl-1223 composites were investigated by zero field cooled (ZFC) and field cooled (FC) magnetic moment versus temperature (M-T) measurements. The onset transition temperatures {TcOnset (K)} was decreased along with the suppression of diamagnetic amplitude of CuTl-1223 superconducting phase with the addition of magnetic Co3O4 nanoparticles. Temperature dependent magnetic hysteresis (M-H loops) measurements of (Co3O4)x/CuTl-1223 composites were carried out at different operating temperatures from 5 K to 150 K. Critical current density (Jc) was calculated from M-H loops measurements by using Bean's model. Like the suppression of TcOnset (K) values, Jc was also decreased with the inclusion of Co3O4 nanoparticles. It was also observed that variation of Jc with H followed the power law Jc =

  20. Magneto-optical investigations of Ag-sheathed Bi-2223 tapes with ferromagnetic shielding

    International Nuclear Information System (INIS)

    Yurchenko, V.V.; Shantsev, D.V.; Galperin, Y.M.; Alamgir, A.K.M.; Han, Z.; Johansen, T.H.

    2007-01-01

    An increase in the critical current and suppression of AC losses in superconducting wires and tapes with soft magnetic sheath have been predicted theoretically and confirmed experimentally. In this work we present the results of magneto-optical investigations on a series of Ag-sheathed Bi-2223 tapes with Ni coating. We visualize distributions of magnetic field at increasing external field and different temperatures, demonstrating a difference between the flux propagation in the superconductor with Ni rims and a reference sample without Ni coating

  1. Magneto-optical investigations of Ag-sheathed Bi-2223 tapes with ferromagnetic shielding

    Energy Technology Data Exchange (ETDEWEB)

    Yurchenko, V.V.; Shantsev, D.V.; Galperin, Y.M. [University of Oslo, Department of Physics, P.O. Box 1048, Blindern, 0316 Oslo (Norway); Alamgir, A.K.M.; Han, Z. [Applied Superconductivity Research Center, Department of Physics, Tsinghua University, Beijing 100084 (China); Johansen, T.H. [University of Oslo, Department of Physics, P.O. Box 1048, Blindern, 0316 Oslo (Norway)], E-mail: tomhj@fys.uio.no

    2007-09-01

    An increase in the critical current and suppression of AC losses in superconducting wires and tapes with soft magnetic sheath have been predicted theoretically and confirmed experimentally. In this work we present the results of magneto-optical investigations on a series of Ag-sheathed Bi-2223 tapes with Ni coating. We visualize distributions of magnetic field at increasing external field and different temperatures, demonstrating a difference between the flux propagation in the superconductor with Ni rims and a reference sample without Ni coating.

  2. Strain-based quench detection for a solenoid superconducting magnet

    International Nuclear Information System (INIS)

    Wang Xingzhe; Guan Mingzhi; Ma Lizhen

    2012-01-01

    In this paper, we present a non-electric quench detection method based on the strain gauge measurement of a superconducting solenoid magnet at cryogenic temperature under an intense magnetic field. Unlike the traditional voltage measurement of quench detection, the strain-based detection method utilizes low-temperature strain gauges, which evidently reduce electromagnetic noise and breakdown, to measure the magneto/thermo-mechanical behavior of the superconducting magnet during excitation. The magnet excitation, quench tests and trainings were performed on a prototype 5 T superconducting solenoid magnet. The transient strains and their abrupt changes were compared with the current, magnetic field and temperature signals collected during excitation and quench tests to indicate that the strain gauge measurements can detect the quench feature of the superconducting magnet. The proposed method is expected to be able to detect the quench of a superconducting coil independently or utilized together with other electrical methods. In addition, the axial quench propagation velocity of the solenoid is evaluated by the quench time lags among different localized strains. The propagation velocity is enhanced after repeated quench trainings. (paper)

  3. Analytical and numerical analyses for a penny-shaped crack embedded in an infinite transversely isotropic multi-ferroic composite medium: semi-permeable electro-magnetic boundary condition

    Science.gov (United States)

    Zheng, R.-F.; Wu, T.-H.; Li, X.-Y.; Chen, W.-Q.

    2018-06-01

    The problem of a penny-shaped crack embedded in an infinite space of transversely isotropic multi-ferroic composite medium is investigated. The crack is assumed to be subjected to uniformly distributed mechanical, electric and magnetic loads applied symmetrically on the upper and lower crack surfaces. The semi-permeable (limited-permeable) electro-magnetic boundary condition is adopted. By virtue of the generalized method of potential theory and the general solutions, the boundary integro-differential equations governing the mode I crack problem, which are of nonlinear nature, are established and solved analytically. Exact and complete coupling magneto-electro-elastic field is obtained in terms of elementary functions. Important parameters in fracture mechanics on the crack plane, e.g., the generalized crack surface displacements, the distributions of generalized stresses at the crack tip, the generalized stress intensity factors and the energy release rate, are explicitly presented. To validate the present solutions, a numerical code by virtue of finite element method is established for 3D crack problems in the framework of magneto-electro-elasticity. To evaluate conveniently the effect of the medium inside the crack, several empirical formulae are developed, based on the numerical results.

  4. Superconducting transition and low-field magnetoresistance of a niobium single crystal at 4.2 deg. K

    International Nuclear Information System (INIS)

    Perriot, G.

    1967-01-01

    We report the study of the electrical resistance of a niobium single crystal, at 4.2 deg. K, from the beginning of the superconductive transition to 80 kilo oersteds. Critical fieldsH c2 and H c3 have been determined. Influences on superconductive transition of current density, field-current angle, crystal orientation and magnetoresistance have been studied. Variation laws of low-field transverse and longitudinal magneto-resistances have been determined. (author) [fr

  5. An introduction to relativistic hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Font, Jose A [Departamento de AstronomIa y AstrofIsica, Universidad de Valencia, Dr. Moliner 50, 46100 Burjassot (Valencia) (Spain)

    2007-11-15

    We review formulations of the equations of (inviscid) general relativistic hydrodynamics and (ideal) magnetohydrodynamics, along with methods for their numerical solution. Both systems can be cast as first-order, hyperbolic systems of conservation laws, following the explicit choice of an Eulerian observer and suitable fluid and magnetic field variables. During the last fifteen years, the so-called (upwind) high-resolution shock-capturing schemes based on Riemann solvers have been successfully extended from classical to relativistic fluid dynamics, both special and general. Nowadays, general relativistic hydrodynamical simulations in relativistic astrophysics are routinely performed, particularly within the test-fluid approximation but also for dynamical spacetimes. While such advances also hold true in the case of the MHD equations, the astrophysical applications investigated so far are still limited, yet the field is bound to witness major developments in the near future. The article also presents a brief overview of numerical techniques, providing state-of-the-art examples of their applicability to general relativistic fluids and magneto-fluids in characteristic scenarios of relativistic astrophysics.

  6. Nano-scale mass sensor based on the vibration analysis of a magneto-electro-elastic nanoplate resting on a visco-Pasternak substrate

    Science.gov (United States)

    Khanmirza, E.; Jamalpoor, A.; Kiani, A.

    2017-10-01

    In this paper, a magneto-electro-elastic nanoplate resting on a visco-Pasternak medium with added concentrated nanoparticles is presented as a mass nanosensor according to the vibration analysis. The MEE nanoplate is supposed to be subject to external electric voltage and magnetic potential. In order to take into account the size effect on the sensitivity of the sensor, the nonlocal elasticity theory in conjunction with the Kirchhoff plate theory is applied. Partial differential equations are derived by implementing Hamilton's variational principle. Equilibrium equations were solved analytically to determine an explicit closed-form statement for both the damped frequency shift and the relative damped frequency shift using Navier's approach. A genetic algorithm (GA) is employed to achieve the optimal added nanoparticle location to gain the most sensitivity performance of the nanosensor. Numerical studies are performed to illustrate the variation of the sensitivity property corresponding to various values of the number of attached nanoparticles, the mass of each nanoparticle, the nonlocal parameter, external electric voltage and magnetic potential, the aspect ratio, and visco-Pasternak parameters. Some numerical outcomes of this paper show that the minimum value of the damped frequency shift occurs for a certain value of the length-to-thickness ratio. Also, it is shown that the external magnetic and external electric potentials have a different effect on the sensitivity property. It is anticipated that the results reported in this work can be considered as a benchmark in future micro-structures issues.

  7. Dispersive effects in radiation transport and radiation hydrodynamics in matter at high density

    International Nuclear Information System (INIS)

    Crowley, B.J.B.

    1983-01-01

    In a recent research program (reported in AWRE 0 20/82) I have investigated the generalisation of the equations of radiation hydrodynamics when electromagnetic radiation is assumed to obey a linear-response dispersion relation of the form nω=kc where the refractive index n depends on the frequency ω and/or wave number k. From the application of the Boltzmann-Liouville transport theory to photons in the short-wavelength (geometrical optics) limit, I derive the energy and momentum equations which, when combined with a classical (Euler-Lagrange-Navier-Stokes) treatment of a fluid material medium in LTE, yield a complete dynamical theory of linear interactions (+ stimulated processes) between incoherent (thermal) radiation and dense, locally isotropic matter. The theory includes an account of pondero-motive forces and electro (magneto) striction. Moreover, it is apparently capable of being generalised to non-linear interactions in which the refractive index depends on the local specific intensity of the radiation field, and, to some extent, to the treatment of high-frequency coherent radiation. The generalisation of various approximated forms of radiation-transport theory (esp. diffusion) has been considered in detail. Some problems remain however. One such is the treatment of anomalous dispersion. Current research work is concentrating on the interesting atomic physics aspects of electromagnetic (esp. radiative) properties of a dispersive material medium

  8. Magnetic hysteresis effects in superconducting coplanar microwave resonators

    Energy Technology Data Exchange (ETDEWEB)

    Bothner, D.; Gaber, T.; Kemmler, M.; Gruenzweig, M.; Ferdinand, B.; Koelle, D.; Kleiner, R. [Universitaet Tuebingen (Germany); Wuensch, S.; Siegel, M. [Karlsruher Institut fuer Technologie (Germany); Mikheenko, P.; Johansen, T.H. [University of Oslo (Norway)

    2013-07-01

    We present experimental data regarding the impact of external magnetic fields on quality factor and resonance frequency of superconducting microwave resonators in a coplanar waveguide geometry. In particular we focus on the influence of magnetic history and show with the assistance of numerical calculations that the found hysteretic behaviour can be well understood with a highly inhomogeneous microwave current density in combination with established field penetration models for type-II superconducting thin films. Furthermore we have used magneto-optical imaging techniques to check the field distribution which we have assumed in our calculations. Finally, we demonstrate that and how the observed hysteretic behaviour can be used to optimize and tune the resonator performance for possible hybrid quantum sytems in magnetic fields.

  9. The Influence of Grain Boundaries on the Properties of Superconducting Radio Frequency Cavity Niobium

    Science.gov (United States)

    Sung, Zu Hawn

    Grain boundaries (GBs) in niobium are multiply connected defects that may be responsible for significant performance degradation in superconducting radio frequency (RF) cavities. Magneto optical (MO) studies show that early flux penetration often occurs at GBs. One possible mechanism is that a locally reduced superconducting gap (Delta) at the GB reduces the depairing current density (Jb) and thus leads to a local reduction of the critical field. Alternatively vortices may penetrate the GB preferentially because of field enhancement at a GB groove, or for other reasons. In all these cases, the effect of high RF fields is to produce additional power dissipation, which in turn produces a reduction in quality factor (Q 0) and leads to a premature quench of the cavity. To further our understanding of the superconducting properties of SRF-quality Nb, we made extensive superconducting characterizations by magneto-optical imaging, which allowed assessment of the uniformity of properties on scales down to about 5 microm and by direct transport voltage-current methods in single and bi-crystals treated by standard cavity optimization treatments of BCP (buffered chemical treatment) and EP (electropolishing). We correlated these superconducting characterizations to microstructural properties using scanning laser and scanning electron microscopy and then thinned some samples to examine them at the nanometer scale using analytical transmission electron microscopy (TEM). We also developed special metallographic sample preparation techniques that allowed us to apply these experimental approaches to very soft superconducting RF niobium in the polished conditions characteristics of a real inner cavity surface. Using MO imaging, we found that GBs can preferentially admit flux penetration when the plane of a GB is aligned parallel to the vector of the external magnetic field. In DC transport in the superconducting state, we found preferential flux flow at the GB and could detect the

  10. Structure and superconductivity of double-doped Mg1-x(Al0.5Li0.5)xB2

    DEFF Research Database (Denmark)

    Xu, G.J.; Grivel, Jean-Claude; Abrahamsen, A.B.

    2003-01-01

    A series of polycrystalline samples of Mg1-x(Al0.5Li0.5)(x)B-2 (0less than or equal toxless than or equal to0.6) were prepared by a solid state reaction method and their structure, superconducting transition temperature and magneto-transport properties were investigated by means of X-ray diffract......A series of polycrystalline samples of Mg1-x(Al0.5Li0.5)(x)B-2 (0less than or equal toxless than or equal to0.6) were prepared by a solid state reaction method and their structure, superconducting transition temperature and magneto-transport properties were investigated by means of X......-ray diffraction (XRD), ac-susceptibility and resistance in varied magnetic fields. The double doping leads to decreases in both the lattice parameters a and c. The superconducting transition temperature (T-c) decreases with double doping, but the T-c is systematically higher than that of the single Al......-doped samples. It is suggested that the hole band filling has little effect on T-c at high doping level, while the disorder induced by doping plays an important role in suppressing T-c. A systematic comparison with Al-doped MgB2 of the structure, superconducting transition and irreversibility field is made. (C...

  11. Structural and magnetic depth profiles of magneto-ionic heterostructures beyond the interface limit

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, DA; Grutter, AJ; Arenholz, E; Liu, K; Kirby, BJ; Borchers, JA; Maranville, BB

    2016-07-22

    Electric field control of magnetism provides a promising route towards ultralow power information storage and sensor technologies. The effects of magneto-ionic motion have been prominently featured in the modification of interface characteristics. Here, we demonstrate magnetoelectric coupling moderated by voltage-driven oxygen migration beyond the interface in relatively thick AlOx/GdOx/Co(15 nm) films. Oxygen migration and Co magnetization are quantitatively mapped with polarized neutron reflectometry under electro-thermal conditioning. The depth-resolved profiles uniquely identify interfacial and bulk behaviours and a semi-reversible control of the magnetization. Magnetometry measurements suggest changes in the microstructure which disrupt long-range ferromagnetic ordering, resulting in an additional magnetically soft phase. X-ray spectroscopy confirms changes in the Co oxidation state, but not in the Gd, suggesting that the GdOx transmits oxygen but does not source or sink it. These results together provide crucial insight into controlling magnetism via magneto-ionic motion, both at interfaces and throughout the bulk of the films.

  12. Energy harvesting using ionic electro-active polymer thin films with Ag-based electrodes

    International Nuclear Information System (INIS)

    Anand, S V; Arvind, K; Bharath, P; Roy Mahapatra, D

    2010-01-01

    In this paper we employ the phenomenon of bending deformation induced transport of cations via the polymer chains in the thickness direction of an electro-active polymer (EAP)–metal composite thin film for mechanical energy harvesting. While EAPs have been applied in the past in actuators and artificial muscles, promising applications of such materials in hydrodynamic and vibratory energy harvesting are reported in this paper. For this, functionalization of EAPs with metal electrodes is the key factor in improving the energy harvesting efficiency. Unlike Pt-based electrodes, Ag-based electrodes have been deposited on an EAP membrane made of Nafion. The developed ionic metal polymer composite (IPMC) membrane is subjected to a dynamic bending load, hydrodynamically, and evaluated for the voltage generated against an external electrical load. An increase of a few orders of magnitude has been observed in the harvested energy density and power density in air, deionized water and in electrolyte solutions with varying concentrations of sodium chloride (NaCl) as compared to Pt-based IPMC performances reported in the published literature. This will have potential applications in hydrodynamic and residual environmental energy harvesting to power sensors and actuators based on micro-and nano-electro-mechanical systems (MEMS and NEMS) for biomedical, aerospace and oceanic applications

  13. Auditory evoked field measurement using magneto-impedance sensors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, K., E-mail: o-kabou@echo.nuee.nagoya-u.ac.jp; Tajima, S.; Song, D.; Uchiyama, T. [Graduate School of Engineering, Nagoya University, Nagoya (Japan); Hamada, N.; Cai, C. [Aichi Steel Corporation, Tokai (Japan)

    2015-05-07

    The magnetic field of the human brain is extremely weak, and it is mostly measured and monitored in the magnetoencephalography method using superconducting quantum interference devices. In this study, in order to measure the weak magnetic field of the brain, we constructed a Magneto-Impedance sensor (MI sensor) system that can cancel out the background noise without any magnetic shield. Based on our previous studies of brain wave measurements, we used two MI sensors in this system for monitoring both cerebral hemispheres. In this study, we recorded and compared the auditory evoked field signals of the subject, including the N100 (or N1) and the P300 (or P3) brain waves. The results suggest that the MI sensor can be applied to brain activity measurement.

  14. Superconducting systems of advanced sources of electrical energy in the USSR

    International Nuclear Information System (INIS)

    Demirchian, K.S.

    1987-01-01

    Two examples illustrating some of the possible applications of the superconductivity effect are discussed in this presentation. One of these examples, the MHD method of energy conversion, illustrates the use of superconducting magnet systems for raising the efficiency of conversion of organic fuel energy to electrical energy. The other example, the magnet system of Tokamak-type fusion facility, illustrates the use of superconductivity in application to new sources of energy. The choice of these examples is governed by the fact that the availability of superconducting systems is essential in both cases. Furthermore, the development of such systems per se presents a major scientific and technical achievement based on extensive studies in the field of solid state physics, electro- and thermophysics and engineering

  15. Optical and magneto-optical properties of zinc-oxide nanostructures grown by the low-temperature chemical route

    Science.gov (United States)

    Willander, M.; Alnoor, H.; Savoyant, A.; Adam, Rania E.; Nur, O.

    2018-02-01

    We demonstrate that the low temperature synthesis chemical route can be utilized to control the functionality of zinc oxide (ZnO) nanoparticles (NPs) and nanorods (NRs) for optical and magneto-optical performance. Different structural, optical, electro- and magneto-optical results will be displayed and analyzed. In the first part, we show how high quality ZnO NPs can be efficient for photodegradation using ultra-violet radiation. In the second part we will present our recent results on the control of the core defects in cobalt doped ZnO NR. Here and by using electron paramagnetic resonance (EPR) measurements, the substitution of Co2+ ions in the ZnO NRs crystal is shown. The relation between the incorporation and core defects concentration will be discussed. The findings give access to the magnetic anisotropy of ZnO NRs grown by the low temperature chemical route and can lead to demonstrate room temperature ferromagnetism in nanostructures with potential for different device applications.

  16. Hydrodynamic bifurcation in electro-osmotically driven periodic flows

    Science.gov (United States)

    Morozov, Alexander; Marenduzzo, Davide; Larson, Ronald G.

    2018-06-01

    In this paper, we report an inertial instability that occurs in electro-osmotically driven channel flows. We assume that the charge motion under the influence of an externally applied electric field is confined to a small vicinity of the channel walls that, effectively, drives a bulk flow through a prescribed slip velocity at the boundaries. Here, we study spatially periodic wall velocity modulations in a two-dimensional straight channel numerically. At low slip velocities, the bulk flow consists of a set of vortices along each wall that are left-right symmetric, while at sufficiently high slip velocities, this flow loses its stability through a supercritical bifurcation. Surprisingly, the flow state that bifurcates from a left-right symmetric base flow has a rather strong mean component along the channel, which is similar to pressure-driven velocity profiles. The instability sets in at rather small Reynolds numbers of about 20-30, and we discuss its potential applications in microfluidic devices.

  17. Electro-hydrodynamic printing of drugs onto edible substrates

    Science.gov (United States)

    Shen, Yueyang; Elele, Ezinwa; Palle, Prashanth; Khusid, Boris; Basaran, Osman; McGough, Patrick T.; Collins, Robert T.

    2009-11-01

    While most existing drugs are manufactured as tablets using powder processing techniques, there is growing interest in printing drops containing pharmaceutical actives on edible substrates. We have developed a drop-on-demand (DOD) printing method appropriate for either replacing existing manufacturing platforms or enabling personalized medicine that overcomes the various critical challenges facing current DOD technologies. To eliminate adverse effects of electro-chemical reactions at the fluid-electrode interface, the fluid is infused into an electrically insulating nozzle to form a pendant drop that serves as a floating electrode capacitively coupled to external electrodes. A liquid bridge is formed and broken as the voltage applied at the electrode is varied in time. This gentle method for drop deposition has been demonstrated to operate with fluids spanning over three orders of magnitude in viscosity and conductivity. The proposed method has the potential for the evolving field of pharmaceutical and biomedical applications requiring the deposition of fluids at the exact locations with high volume accuracy.

  18. Temperature dependence of filament-coupling in Bi-2223 tapes: magneto-optical study

    International Nuclear Information System (INIS)

    Bobyl, A.V.; Shantsev, D.V.; Galperin, Y.M.; Johansen, T.H.; Baziljevich, M.; Gaevski, M.E.

    2000-01-01

    Coupling through random superconducting bridges between filaments in a multifilamentary Ag-sheathed Bi 2 Sr 2 Ca 2 Cu 3 O 10+δ tape has been investigated by magneto-optical imaging at temperatures from 20 K up to T c . Magnetic flux distributions have been measured on the surface of an intact tape in the remanent state on applying a strong perpendicular magnetic field. The flux distributions observed at low temperatures reflect the arrangement of individual filaments. At high temperatures, the distribution becomes more similar to that for a uniform monocore tape, indicating that superconducting connections appear between the filaments. To discuss the relative contributions of the intra- and inter-filament currents, a simple model based on the Bean critical state was proposed and applied to analyse the temperature dependent behaviour. The inter-filament coupling, increasing with temperature, reaches at 77 K a point where the currents flowing in large inter-filament loops are roughly equal to the intra-filament currents. (author)

  19. Investigation of magneto-hemodynamic flow in a semi-porous channel using orthonormal Bernstein polynomials

    Science.gov (United States)

    Hosseini, E.; Loghmani, G. B.; Heydari, M.; Rashidi, M. M.

    2017-07-01

    In this paper, the problem of the magneto-hemodynamic laminar viscous flow of a conducting physiological fluid in a semi-porous channel under a transverse magnetic field is investigated numerically. Using a Berman's similarity transformation, the two-dimensional momentum conservation partial differential equations can be written as a system of nonlinear ordinary differential equations incorporating Lorentizian magneto-hydrodynamic body force terms. A new computational method based on the operational matrix of derivative of orthonormal Bernstein polynomials for solving the resulting differential systems is introduced. Moreover, by using the residual correction process, two types of error estimates are provided and reported to show the strength of the proposed method. Graphical and tabular results are presented to investigate the influence of the Hartmann number ( Ha) and the transpiration Reynolds number ( Re on velocity profiles in the channel. The results are compared with those obtained by previous works to confirm the accuracy and efficiency of the proposed scheme.

  20. Advanced magneto-optical Kerr effect measurements of superconductors at low temperatures

    Directory of Open Access Journals (Sweden)

    Claudia Stahl

    2017-10-01

    Full Text Available Magneto-optical Kerr-effect (MOKE measurements of superconducting films with soft-magnetic coatings are performed at low temperatures using a laser-based MOKE set-up. An elaborate measurement scheme with internal reference allows the quantitative comparison of the temperature dependent Kerr-amplitude with the magnetic field generated by supercurrents. For this purpose, an amorphous CoFeB thin film exhibiting a large Kerr-signal is deposited directly on top of the YBCO superconductor acting as field sensing layer. It is shown that the resulting magnetic hysteresis loops of the soft-magnetic film can be used to reconstruct the electric properties of the superconductor.

  1. Enhancement of the transverse magneto-optical Kerr effect via resonant tunneling in trilayers containing magneto-optical metals

    Energy Technology Data Exchange (ETDEWEB)

    Girón-Sedas, J. A. [Departamento de Física, Universidad del Valle, AA 25360, Cali (Colombia); Centro de Investigación e Innovación en Bioinformática y Fotónica - CIBioFI, AA 25360 Cali (Colombia); Mejía-Salazar, J. R., E-mail: jrmejia3146@gmail.com [Instituto de Física de São Carlos, Universidade de São Paulo, CP 369, 13560-970 São Carlos, SP (Brazil); Moncada-Villa, E.; Porras-Montenegro, N. [Departamento de Física, Universidad del Valle, AA 25360, Cali (Colombia)

    2016-07-18

    We propose a way to enhance the transverse magneto-optical Kerr effect, by the excitation of resonant tunneling modes, in subwavelength trilayer structures featuring a dielectric slab sandwiched between two magneto-optical metallic layers. Depending on the magneto-optical layer widths, the proposed system may exhibit an extraordinary transverse magneto-optical Kerr effect, which makes it very attractive for the design and engineering of thin-film magneto-optical-based devices for future photonic circuits or fiber optical-communication systems.

  2. Report on evaluation concerning R and D of magneto hydrodynamic (MHD) generation. Introduction; Denji ryutai (MHD) hatsuden no kenkyu kaihatsu ni kansuru hyoka hokokusho. Soron

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1984-03-01

    Evaluation was conducted concerning R and D on magneto hydrodynamic (MHD) generation, with proposals made for the future R and D. As a result of the experimental operation and studies of the Mark 7 machine for MHD generation, a cold wall type generation channel was found promising in the long-term durability under MHD generation conditions. In addition, R and D was conducted on the exhaust gas control system that fulfilled an environmental standard, seed recovery method, grasp of seed coagulation state, etc. The R and D on element technologies were carried out along with the R and D of the Mark 7 and played a role in the backup of its experiment. MHD generation presents a large number of attractive characteristics, with its development expected in the future. However, it seems too early to immediately move on to the next step. Examinations should be made on such matters as comparisons with various kinds of new power generation systems using coal, trends in foreign countries particularly the U-500 project of the Soviet Union, the ideal system for more efficient development, and possibility of international cooperation. (NEDO)

  3. Spin-Lattice Coupling and Superconductivity in Fe Pnictides

    Directory of Open Access Journals (Sweden)

    T. Egami

    2010-01-01

    Full Text Available We consider strong spin-lattice and spin-phonon coupling in iron pnictides and discuss its implications on superconductivity. Strong magneto-volume effect in iron compounds has long been known as the Invar effect. Fe pnictides also exhibit this effect, reflected in particular on the dependence of the magnetic moment on the atomic volume of Fe defined by the positions of the nearest neighbor atoms. Through the phenomenological Landau theory, developed on the basis of the calculations by the density functional theory (DFT and the experimental results, we quantify the strength of the spin-lattice interaction as it relates to the Stoner criterion for the onset of magnetism. We suggest that the coupling between electrons and phonons through the spin channel may be sufficiently strong to be an important part of the superconductivity mechanism in Fe pnictides.

  4. Winding workshop for the ISR low beta Superconducting Quadrupole Prototype

    CERN Multimedia

    1975-01-01

    From right to left one sees the wire spool with its electro-magnetic brake to ensure a constant tension of the superconducting wire, a pulley with a wire length recording and the winding machine. In front on the table a finished coil. In the back the heavy clamping tool. See also 7510213X, 7510213X.

  5. Young's moduli of cables for high field superconductive dipole magnet

    International Nuclear Information System (INIS)

    Yamada, Shunji; Shintomi, Takakazu.

    1983-01-01

    Superconductive dipole magnets for big accelerators are subjected to enormous electro-magnetic force, when they are operated with high field such as 10 Tesla. They should be constructed by means of superconductive cables, which have high Young's modulus, to obtain good performance. To develop such cables we measured the Young's moduli of cables for practical use of accelerator magnets. They are monolithic and compacted strand cables. We measured also Young's moduli of monolithic copper and brass cables for comparison. The obtained data showed the Young's moduli of 35 and 15 GPa for the monolithic and compacted strand cables, respectively. (author)

  6. Postgraduate education on electro-active polymers at Southern Denmark University

    Science.gov (United States)

    Jones, Richard W.

    2009-03-01

    A recently introduced elective to the Master's of Science in Mechatronics program at Southern Denmark University, entitled 'Mechatronics: Design and Build' concentrates on some of the interdisciplinary aspects of Mechatronics Engineering. The 'Motion Control of Mechatronic Devices' is the main theme of this elective. Within this 'theme' the modelling, identification and compensation of nonlinear effects such as friction, stiction and hysteresis are considered. One of the most important components of the elective considers 'Smart Materials' and their use for actuation purposes. The theory, modelling and properties of piezoceramics. magneto- and electro- rheological fluids and dielectric electro active polymers (DEAP) are introduced in the 'Smart Materials' component. This paper initially reviews the laboratory experiments that have been developed for the dielectric electro active polymer section of the 'Mechatronics: Design and Build' elective. In lectures the students are introduced to the basic theory and fabrication of tubular actuators, that use DEAP material based on smart compliant electrode technology. In the laboratory the students to (a) carry out a series of experiments to characterise the tubular actuators, and (b) design a closed-loop position controller and test the performance of the controlled actuator for both step changes in desired position and periodic input reference signals. The last part of this contribution reviews some of the DEAP-based demonstration devices that been developed by Danfoss PolyPower A/S using their PolyPowerTM material which utilizes smart compliant electrode technology.

  7. Electro-mechanical characterization of MgB2 wires for the Superconducting Link Project at CERN

    Science.gov (United States)

    Konstantopoulou, K.; Ballarino, A.; Gharib, A.; Stimac, A.; Garcia Gonzalez, M.; Perez Fontenla, A. T.; Sugano, M.

    2016-08-01

    In previous years, the R & D program between CERN and Columbus Superconductors SpA led to the development of several configurations of MgB2 wires. The aim was to achieve excellent superconducting properties in high-current MgB2 cables for the HL-LHC upgrade. In addition to good electrical performance, the superconductor shall have good mechanical strength in view of the stresses during operation (Lorenz forces and thermal contraction) and handling (tension and bending) during cabling and installation at room temperature. Thus, the study of the mechanical properties of MgB2 wires is crucial for the cable design and its functional use. In the present work we report on the electro-mechanical characterization of ex situ processed composite MgB2 wires. Tensile tests (critical current versus strain) were carried out at 4.2 K and in a 3 T external field by means of a purpose-built bespoke device to determine the irreversible strain limit of the wire. The minimum bending radius of the wire was calculated taking into account the dependence of the critical current with the strain and it was then used to obtain the minimum twist pitch of MgB2 wires in the cable. Strands extracted from cables having different configurations were tested to quantify the critical current degradation. The Young’s modulus of the composite wire was measured at room temperature. Finally, all measured mechanical parameters will be used to optimize an 18-strand MgB2 cable configuration.

  8. Magneto-optical imaging of iron-oxypnictide SmFeAsO1-xFx and SmFeAsO1-y

    International Nuclear Information System (INIS)

    Tamegai, T.; Nakajima, Y.; Tsuchiya, Y.; Iyo, A.; Miyazawa, K.; Shirage, P.M.; Kito, H.; Eisaki, H.

    2009-01-01

    We have prepared iron-oxypnictide SmFeAsO 1-x F x by ambient-pressure technique and SmFeAsO 1-y by high-pressure technique, and characterized their bulk and local magnetic properties by using SQUID magnetometer and magneto-optical imaging. While the high-pressure samples have densities close to the theoretical value, the ambient-pressure samples have several small voids. Despite these structural differences between the two kinds of samples, they both have superconducting transition temperature above 50 K. In addition, magneto-optical images for both samples show similar kinds of inhomogeneities with large current concentrated in several grains and with small intergranular current. The estimated intragranular currents for both samples are over 10 5 A/cm 2 at low temperatures and low fields.

  9. High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate

    Science.gov (United States)

    Witmer, Jeremy D.; Valery, Joseph A.; Arrangoiz-Arriola, Patricio; Sarabalis, Christopher J.; Hill, Jeff T.; Safavi-Naeini, Amir H.

    2017-04-01

    Future quantum networks, in which superconducting quantum processors are connected via optical links, will require microwave-to-optical photon converters that preserve entanglement. A doubly-resonant electro-optic modulator (EOM) is a promising platform to realize this conversion. Here, we present our progress towards building such a modulator by demonstrating the optically-resonant half of the device. We demonstrate high quality (Q) factor ring, disk and photonic crystal resonators using a hybrid silicon-on-lithium-niobate material system. Optical Q factors up to 730,000 are achieved, corresponding to propagation loss of 0.8 dB/cm. We also use the electro-optic effect to modulate the resonance frequency of a photonic crystal cavity, achieving a electro-optic modulation coefficient between 1 and 2 pm/V. In addition to quantum technology, we expect that our results will be useful both in traditional silicon photonics applications and in high-sensitivity acousto-optic devices.

  10. Relativistic viscous hydrodynamics for heavy-ion collisions with ECHO-QGP

    CERN Document Server

    Del Zanna, L; Inghirami, G; Rolando, V; Beraudo, A; De Pace, A; Pagliara, G; Drago, A; Becattini, F

    2013-01-01

    We present ECHO-QGP, a numerical code for $(3+1)$-dimensional relativistic viscous hydrodynamics designed for the modeling of the space-time evolution of the matter created in high energy nuclear collisions. The code has been built on top of the \\emph{Eulerian Conservative High-Order} astrophysical code for general relativistic magneto-hydrodynamics [\\emph{Del Zanna et al., Astron. Astrophys. 473, 11, 2007}] and here it has been upgraded to handle the physics of the Quark-Gluon Plasma. ECHO-QGP features second-order treatment of causal relativistic viscosity effects in both Minkowskian or Bjorken coordinates; partial or complete chemical equilibrium of hadronic species before kinetic freeze-out; initial conditions based on the optical Glauber model, including a Monte-Carlo routine for event-by-event fluctuating initial conditions; a freeze-out procedure based on the Cooper-Frye prescription. The code is extensively validated against several test problems and results always appear accurate, as guaranteed by th...

  11. Plasma-Jet Magneto-Inertial Fusion Burn Calculations

    Science.gov (United States)

    Santarius, John

    2010-11-01

    Several issues exist related to using plasma jets to implode a Magneto-Inertial Fusion (MIF) liner onto a magnetized plasmoid and compress it to fusion-relevant temperatures [1]. The poster will explore how well the liner's inertia provides transient plasma confinement and affects the burn dynamics. The investigation uses the University of Wisconsin's 1-D Lagrangian radiation-hydrodynamics code, BUCKY, which solves single-fluid equations of motion with ion-electron interactions, PdV work, table-lookup equations of state, fast-ion energy deposition, pressure contributions from all species, and one or two temperatures. Extensions to the code include magnetic field evolution as the plasmoid compresses plus dependence of the thermal conductivity on the magnetic field. [4pt] [1] Y.C. F. Thio, et al.,``Magnetized Target Fusion in a Spheroidal Geometry with Standoff Drivers,'' in Current Trends in International Fusion Research, E. Panarella, ed. (National Research Council of Canada, Ottawa, Canada, 1999), p. 113.

  12. A novel nuclear-powered propulsion system for ship

    International Nuclear Information System (INIS)

    Liu Tao; Han Weishi

    2003-01-01

    A novel nuclear-powered propulsion system for ship is presented in this paper. In this system, a minitype liquid sodium-cooled reactor is used as power; alkali-metal thermal-to-electric conversion (AMTEC) cells are utilized to transform the heat energy to electric energy and superconducting magneto-hydrodynamic (MHD) work as propulsion. This nuclear-powered propulsion system has great advantages in low noise, high speed, long survivability and simple manipulation. It has great significance for the development of propulsion system. (author)

  13. CLIQ. A new quench protection technology for superconducting magnets

    CERN Document Server

    Ravaioli, Emmanuele; ten Kate, H H J

    CLIQ, the Coupling-Loss Induced Quench system, is a new method for protecting superconducting magnets after a sudden transition to the normal state. It offers significant advantages over the conventional technology due to its effective mechanism for heating the superconductor relying on coupling loss and its robust electrical design, which makes it more reliable and less interfering with the coil winding process. The analysis of the electro-magnetic and thermal transients during and after a CLIQ discharge allows identifying the system parameters that affect the system performance and defining guidelines for implementing this technology on coils of various characteristics. Most existing superconducting magnets can be protected by CLIQ as convincingly shown by test results performed on magnets of different sizes, superconductor types, geometries, cables and strand parameters. Experimental results are successfully reproduced by means of a novel technique for modeling non-linear dynamic effects in superconducting...

  14. Magneto-plasmonic nanoantennas: Basics and applications

    Directory of Open Access Journals (Sweden)

    Ivan S. Maksymov

    2016-11-01

    Full Text Available Plasmonic nanoantennas are a hot and rapidly expanding research field. Here we overview basic operating principles and applications of novel magneto-plasmonic nanoantennas, which are made of ferromagnetic metals and driven not only by light, but also by external magnetic fields. We demonstrate that magneto-plasmonic nanoantennas enhance the magneto-optical effects, which introduces additional degrees of freedom in the control of light at the nano-scale. This property is used in conceptually new devices such as magneto-plasmonic rulers, ultra-sensitive biosensors, one-way subwavelength waveguides and extraordinary optical transmission structures, as well as in novel biomedical imaging modalities. We also point out that in certain cases ‘non-optical’ ferromagnetic nanostructures may operate as magneto-plasmonic nanoantennas. This undesigned extra functionality capitalises on established optical characterisation techniques of magnetic nanomaterials and it may be useful for the integration of nanophotonics and nanomagnetism on a single chip.

  15. Thermal analysis of the cryocooled superconducting magnet for the liquid helium-free hybrid magnet

    International Nuclear Information System (INIS)

    Ishizuka, Masayuki; Hamajima, Takataro; Itou, Tomoyuki; Sakuraba, Junji; Nishijima, Gen; Awaji, Satoshi; Watanabe, Kazuo

    2010-01-01

    The liquid helium-free hybrid magnet, which consists of an outer large bore cryocooled superconducting magnet and an inner water-cooled resistive magnet, was developed for magneto-science in high fields. The characteristic features of the cryogen-free outsert superconducting magnet are described in detail in this paper. The superconducting magnet cooled by Gifford-McMahon cryocoolers, which has a 360 mm room temperature bore in diameter, was designed to generate high magnetic fields up to 10 T. The hybrid magnet has generated the magnetic field of 27.5 T by combining 8.5 T generation of the cryogen-free superconducting magnet with 19 T generation of the water-cooled resistive magnet. The superconducting magnet was composed of inner Nb 3 Sn coils and outer NbTi coils. In particular, inner Nb 3 Sn coils were wound using high-strength CuNi-NbTi/Nb 3 Sn wires in consideration of large hoop stress. Although the cryocooled outsert superconducting magnet achieved 9.5 T, we found that the outsert magnet has a thermal problem to generate the designed maximum field of 10 T in the hybrid magnet operation. This problem is associated with unexpected AC losses in Nb 3 Sn wires.

  16. Electro-magneto-structural analysis of toroidal coils using finite element method with application of composite theory

    International Nuclear Information System (INIS)

    Miya, Kenzo; Ogawa, Yuichi; Hamada, Taiji; Watanabe, Takayuki; Tagata, Kazunori.

    1985-01-01

    Application of superconducting magnets to magnetic confinement fusion reactors is necessary to generate as strong magnetic field as possible since a huge amount of electrical power is consumed if normal conducting magnets are used. And the strong field from the superconducting magnets generates very large electromagnetic force into structural components. It is thus required to establish a design guideline for the superconducting magnet structures. Development of a computer code to calculate stress-strain state in the complex interior of the magnet could serve the requirements. In this paper mathematical formulations available for the finite element implementation are presented to solve detailed stress and strain in layered components of the magnets. The formulations are based on the composite theory of layered structures. Examples of numerical analysis are presented for electromagnetomechanical analysis of toroidal coils of the R-machine which has been discussed and promoted by Institute of Plasma Physics, Nagoya University. The numerical results are compared with those obtained from the beam-shell model. Significant differences are found at some portions between them indicating validity of the present code ''MAGCOMP''. Detailed stress distributions are shown for each component, which would be furthermore available to analysis and evaluation of quench phenomena. (author)

  17. Application of High-Temperature Superconducting Thin-Film Devices to Electro-Optical and Electronic Warfare Systems

    Science.gov (United States)

    1990-02-01

    superconducting dispersive (chirp) delay line. Bt currents (IB 1 and 1B 2) control states of write junctions (gates 1 and 2). (Counter) clockwise currents...Gavaler, and "S. A. Reihle, "Superconductive Convolver with June- A. I. Braginski, "Optical Response of Epitaxial Films tion Ring Nlixers," IELT Trans

  18. Sensor Applications of Soft Magnetic Materials Based on Magneto-Impedance, Magneto-Elastic Resonance and Magneto-Electricity

    Directory of Open Access Journals (Sweden)

    Alfredo García-Arribas

    2014-04-01

    Full Text Available The outstanding properties of selected soft magnetic materials make them successful candidates for building high performance sensors. In this paper we present our recent work regarding different sensing technologies based on the coupling of the magnetic properties of soft magnetic materials with their electric or elastic properties. In first place we report the influence on the magneto-impedance response of the thickness of Permalloy films in multilayer-sandwiched structures. An impedance change of 270% was found in the best conditions upon the application of magnetic field, with a low field sensitivity of 140%/Oe. Second, the magneto-elastic resonance of amorphous ribbons is used to demonstrate the possibility of sensitively measuring the viscosity of fluids, aimed to develop an on-line and real-time sensor capable of assessing the state of degradation of lubricant oils in machinery. A novel analysis method is shown to sensitively reveal the changes of the damping parameter of the magnetoelastic oscillations at the resonance as a function of the oil viscosity. Finally, the properties and performance of magneto-electric laminated composites of amorphous magnetic ribbons and piezoelectric polymer films are investigated, demonstrating magnetic field detection capabilities below 2.7 nT.

  19. Spectral sum rules and magneto-roton as emergent graviton in fractional quantum Hall effect

    Energy Technology Data Exchange (ETDEWEB)

    Golkar, Siavash; Nguyen, Dung X.; Son, Dam T. [Enrico Fermi Institute, James Franck Institute and Department of Physics,University of Chicago, Chicago, Illinois 60637 (United States)

    2016-01-05

    We consider gapped fractional quantum Hall states on the lowest Landau level when the Coulomb energy is much smaller than the cyclotron energy. We introduce two spectral densities, ρ{sub T}(ω) and ρ̄{sub T}(ω), which are proportional to the probabilities of absorption of circularly polarized gravitons by the quantum Hall system. We prove three sum rules relating these spectral densities with the shift S, the q{sup 4} coefficient of the static structure factor S{sub 4}, and the high-frequency shear modulus of the ground state μ{sub ∞}, which is precisely defined. We confirm an inequality, first suggested by Haldane, that S{sub 4} is bounded from below by |S−1|/8. The Laughlin wavefunction saturates this bound, which we argue to imply that systems with ground state wavefunctions close to Laughlin’s absorb gravitons of predominantly one circular polarization. We consider a nonlinear model where the sum rules are saturated by a single magneto-roton mode. In this model, the magneto-roton arises from the mixing between oscillations of an internal metric and the hydrodynamic motion. Implications for experiments are briefly discussed.

  20. Analysis of Magneto-Piezoelastic Anisotropic Materials

    Directory of Open Access Journals (Sweden)

    Alexander L. Kalamkarov

    2015-05-01

    Full Text Available The paper is concerned with the analysis of magneto-piezoelastic anistropic materials. Analytical modeling of magneto-piezoelastic materials is essential for the design and applications in the smart composite structures incorporating them as actuating and sensing constituents. It is shown that Green’s function method is applicable to time harmonic magneto-elastic-piezoelectricity problems using the boundary integral technique, and the exact analytical solutions are obtained. As an application, a two-dimensional static plane-strain problem is considered to investigate the effect of magnetic field on piezoelectric materials. The closed-form analytical solutions are obtained for a number of boundary conditions for all components of the magneto-piezoelectric field. As a special case, numerical results are presented for two-dimensional static magneto-electroelastic field of a piezoelectric solid subjected to a concentrated line load and an electric charge. The numerical solutions are obtained for three different piezoelectric materials and they demonstrate a substantial dependence of the stress and electric field distribution on the constitutive properties and magnetic flux.

  1. Response of fractal penetration of magnetic flux to disorder landscape in superconducting films

    Science.gov (United States)

    Ye, Zuxin; Li, Qiang; Si, W. D.; Suenaga, M.; Solovyov, V. F.; Johnson, P. D.

    2005-10-01

    Magnetic flux front and induction contours in superconducting YBa2Cu3O7-δ films with defect size stilde ξ (superconducting coherence length) and s≫ξ are studied by magneto-optical imaging. Robust self-affine spatial correlation was observed using scaling analysis in the small pinning disorder-dominated ( stilde ξ) films. The roughness exponent α was determined to be ˜0.66 , independent of numbers of defects (or the film thickness). When the disorder landscape also included a distribution of large defects (s≫ξ) , the flux front and induction contours exhibited self-similarity, with a fractal dimension D determined to be ˜1.33 using the box-counting method. The remarkably different flux penetration patterns were shown to be the manifestation of self-organized criticality at different length scales.

  2. Infrared hot-electron NbN superconducting photodetectors for imaging applications

    International Nuclear Information System (INIS)

    Il'in, K.S.; Gol'tsman, G.N.; Verevkin, A.A.; Sobolewski, Roman

    1999-01-01

    We report an effective quantum efficiency of 340, responsivity >200 A W -1 (>10 4 V W -1 ) and response time of 27±5 ps at temperatures close to the superconducting transition for NbN superconducting hot-electron photodetectors (HEPs) in the near-infrared and optical ranges. Our studies were performed on a few nm thick NbN films deposited on sapphire substrates and patterned into μm-size multibridge detector structures, incorporated into a coplanar transmission line. The time-resolved photoresponse was studied by means of subpicosecond electro-optic sampling with 100 fs wide laser pulses. The quantum efficiency and responsivity studies of our photodetectors were conducted using an amplitude-modulated infrared beam, fibre-optically coupled to the device. The observed picosecond response time and the very high efficiency and sensitivity of the NbN HEPs make them an excellent choice for infrared imaging photodetectors and input optical-to-electrical transducers for superconducting digital circuits. (author)

  3. Magneto-hydrodynamic simulations of Heavy Ion Collisions with ECHO-QGP

    Science.gov (United States)

    Inghirami, G.; Del Zanna, L.; Beraudo, A.; Haddadi Moghaddam, M.; Becattini, F.; Bleicher, M.

    2018-05-01

    It is believed that very strong magnetic fields may induce many interesting physical effects in the Quark Gluon Plasma, like the Chiral Magnetic Effect, the Chiral Separation Effect, a modification of the critical temperature or changes in the collective flow of the emitted particles. However, in the hydrodynamic numerical simulations of Heavy Ion Collisions the magnetic fields have been either neglected or considered as external fields which evolve independently from the dynamics of the fluid. To address this issue, we recently modified the ECHO-QGP code, including for the first time the effects of electromagnetic fields in a consistent way, although in the limit of an infinite electrical conductivity of the plasma (ideal magnetohydrodynamics). In this proceedings paper we illustrate the underlying 3+1 formalisms of the current version of the code and we present the results of its basic preliminary application in a simple case. We conclude with a brief discussion of the possible further developments and future uses of the code, from RHIC to FAIR collision energies.

  4. Electro-optical and Magneto-optical Sensing Apparatus and Method for Characterizing Free-space Electromagnetic Radiation

    Science.gov (United States)

    Zhang, Xi-Cheng; Riordan, Jenifer Ann; Sun, Feng-Guo

    2000-08-29

    Apparatus and methods for characterizing free-space electromagnetic energy, and in particular, apparatus/method suitable for real-time two-dimensional far-infrared imaging applications are presented. The sensing technique is based on a non-linear coupling between a low-frequency electric (or magnetic) field and a laser beam in an electro-optic (or magnetic-optic) crystal. In addition to a practical counter-propagating sensing technique, a co-linear approach is described which provides longer radiated field-optical beam interaction length, thereby making imaging applications practical.

  5. Introducing Magneto-Optical Functions into Soft Materials

    Science.gov (United States)

    2017-05-03

    including organic and bio materials by using magnetic nanomaterials. This final report includes the successful developments of magneto-optical... successful developments of magneto-optical properties in both organic and bio magnetic nanocomposites during the project period of three years...proteins on the photoluminescence of nanodiamond. J. Appl . Phys. 2011, 109 (3), 034704. 7, Xu, H.; Hung, C.E.; Cheng, C.L.; Hu, B., Magneto-electric

  6. Nano-electro-mechanical pump: Giant pumping of water in carbon nanotubes

    Science.gov (United States)

    Farimani, Amir Barati; Heiranian, Mohammad; Aluru, Narayana R.

    2016-05-01

    A fully controllable nano-electro-mechanical device that can pump fluids at nanoscale is proposed. Using molecular dynamics simulations, we show that an applied electric field to an ion@C60 inside a water-filled carbon nanotube can pump water with excellent efficiency. The key physical mechanism governing the fluid pumping is the conversion of electrical energy into hydrodynamic flow with efficiencies as high as 64%. Our results show that water can be compressed up to 7% higher than its bulk value by applying electric fields. High flux of water (up to 13,000 molecules/ns) is obtained by the electro-mechanical, piston-cylinder-like moving mechanism of the ion@C60 in the CNT. This large flux results from the piston-like mechanism, compressibility of water (increase in density of water due to molecular ordering), orienting dipole along the electric field and efficient electrical to mechanical energy conversion. Our findings can pave the way towards efficient energy conversion, pumping of fluids at nanoscale, and drug delivery.

  7. Voltages and electric currents mensuration - class 15 kV - for systems electro-optical and magneto-optical; Medicao de tensoes e correntes - classe 15 kv - por sistemas eletro-opticos e magneto-opticos

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Marcos Rodrigues

    1996-07-01

    The technical feasibility of the development of a novel system measuring of high voltage and current in 15 kV distribution lines was presented. The system is basically the combination of two other systems, one conventional and other electro-optical. The conventional subsystem is based on voltage dividers and magnetic rings while the electro-optical subsystem uses LEDs, resistors, optical-fibers and photodetectors. The system was completely tested in laboratory and its main characteristics are low price, easy of installation and flexibility. Two software for data acquisition by GPIB and A/D boards were also developed. The can provide reports on voltages, currents, power and phase-power. (author)

  8. Hydrodynamic analysis and simulation of a flow cell ammonia electrolyzer

    International Nuclear Information System (INIS)

    Diaz, Luis A.; Botte, Gerardine G.

    2015-01-01

    Highlights: • NH_3 electrooxidation mechanism was validated in a bench scale electrolyzer. • All kinetic parameters for NH_3 electro-oxidation were calculated and verified. • Hydrodynamic behavior of the NH_3 electrolyzer was properly described as a CSTR. • CSTR model was successfully applied to simulate a flow ammonia electrolyzer. - Abstract: The hydrodynamic analysis and simulation of a non-ideal single pass flow cell alkaline ammonia electrolyzer was performed after the scale-up of a well-characterized deposited polycrystalline Pt on Ni anode. The hydrodynamic analysis was performed using the residence time distribution (RTD) test. The results of the hydrodynamic investigation provide additional insights for the kinetic analysis of the ammonia electrooxidation reaction on polycrystalline Pt electrocatalysts -which are typically obtained under controlled flow regime, e.g., rotating disk electrode- by including the flow non-uniformity present in the electrolyzer. Based on the RTD function, the ammonia electrolyzer performance was simulated as a non-steady stirred tank reactor (CSTR) and the unknown kinetic parameters were obtained by fitting the simulation results with an experimental current profile, obtaining an adequate prediction of the ammonia conversion. This simplified approach for the simulation of the ammonia electrolyzer could be implemented in process simulation packages and could be used for the design and scale-up of the process for hydrogen production and wastewater remediation.

  9. Electro-mechanical behaviors of composite superconducting strand with filament breakage

    International Nuclear Information System (INIS)

    Wang, Xu; Gao, Yuanwen; Zhou, Youhe

    2016-01-01

    Highlights: • The electromechanical behaviors of the superconducting (SC) strand are investigated. • A 3D FEM model for bending behaviors and electric properties of strand is developed. • The influence of breakage of filaments on the critical current of SC strand is calculated. • The impact of current transfer length on the electric properties of SC strand is discussed. - Abstract: The bending behaviors of superconducting strand with typical multi-filament twist configuration are investigated based on a three-dimensional finite element method (FEM) model, named as the Multi-filament twist model, of the strand. In this 3D FEM model, the impacts of initial thermal residual stress, filament-breakage and its evaluation are taken into accounts. The mechanical responses of the strand under bending load are studied with the factors taken into consideration one by one. The distribution of the damage of the filaments and its evolution and the movement of the neutral axis caused by it are studied and displayed in detail. Besides, taking the advantages of the Multi-filament twist model, the normalized critical current of the strand under bending load is also calculated based on the invariant temperature and field strain functions. In addition, the non-negligible influences of the pitch length of the filaments on both the mechanical behaviors and the normalized critical current are discussed. The stress-strain characteristics of the strand under tensile load and the normalized critical current of it under axial and bending loads resulting from the Multi-filament twist model show good agreement with the experimental data.

  10. Electro-mechanical behaviors of composite superconducting strand with filament breakage

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xu [Key Laboratory of Mechanics on Environment and Disaster in Western China, The Ministry of Education of China, Lanzhou, Gansu 730000 (China); Department of Mechanics and Engineering Science, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China); Gao, Yuanwen, E-mail: ywgao@lzu.edu.cn [Key Laboratory of Mechanics on Environment and Disaster in Western China, The Ministry of Education of China, Lanzhou, Gansu 730000 (China); Department of Mechanics and Engineering Science, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China); Zhou, Youhe [Key Laboratory of Mechanics on Environment and Disaster in Western China, The Ministry of Education of China, Lanzhou, Gansu 730000 (China); Department of Mechanics and Engineering Science, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China)

    2016-10-15

    Highlights: • The electromechanical behaviors of the superconducting (SC) strand are investigated. • A 3D FEM model for bending behaviors and electric properties of strand is developed. • The influence of breakage of filaments on the critical current of SC strand is calculated. • The impact of current transfer length on the electric properties of SC strand is discussed. - Abstract: The bending behaviors of superconducting strand with typical multi-filament twist configuration are investigated based on a three-dimensional finite element method (FEM) model, named as the Multi-filament twist model, of the strand. In this 3D FEM model, the impacts of initial thermal residual stress, filament-breakage and its evaluation are taken into accounts. The mechanical responses of the strand under bending load are studied with the factors taken into consideration one by one. The distribution of the damage of the filaments and its evolution and the movement of the neutral axis caused by it are studied and displayed in detail. Besides, taking the advantages of the Multi-filament twist model, the normalized critical current of the strand under bending load is also calculated based on the invariant temperature and field strain functions. In addition, the non-negligible influences of the pitch length of the filaments on both the mechanical behaviors and the normalized critical current are discussed. The stress-strain characteristics of the strand under tensile load and the normalized critical current of it under axial and bending loads resulting from the Multi-filament twist model show good agreement with the experimental data.

  11. High field magneto-transport study of YBa{sub 2}Cu{sub 3}O{sub 7}:Ag{sub x} (x = 0.00–0.20)

    Energy Technology Data Exchange (ETDEWEB)

    Rani, Poonam; Pal, Anand; Awana, V.P.S, E-mail: awana@mail.npindia.org

    2014-02-15

    Highlights: •YBCO: Ag{sub x} composites. •High field magneto-transport. •The upper critical field. -- Abstract: We report high field (up to 13 T) magneto transport [ρ(T)H] of YBa{sub 2}Cu{sub 3}O{sub 7} (YBCO):Ag{sub x} (x = 0.0, 0.1 and 0.2) composites. The transport properties are significantly improved by Ag doping on the insulating grain boundaries of YBCO. Pure and Ag diffused YBCO superconducting samples are synthesised through solid state reaction route. Both pure and Ag doped YBCO are superconducting at below 90 K. Though, the T{sub c} (ρ = 0) of YBCO:Ag samples under applied field of 13 T is around 65 K, the same is 45 K for pure YBCO under same applied field. The upper critical field [H{sub c2}(0)], being estimated from ρ(T)H is around 70 T for pristine sample, and is above 190 T for Ag doped samples. The boarding of the resistive transition under applied magnetic field is comparatively less and nearly single step for Ag doped samples, while the same is clearly two step and relatively much larger for the pristine YBCO. The resistive broadening is explained on the basis of changed inter-granular coupling and thermally activated flux flow (TAFF). The TAFF activation energy (U{sub 0}) is found to be linear with applied magnetic field for all the samples, but with nearly an order of magnitude less value for the Ag doped samples. Summarily, it is shown that inclusion of Ag significantly improves the superconducting performance of YBCO:Ag composites, in particular under applied field.

  12. Magneto-optic observation of anomalous Meissner current flow in superconducting thin films with slits

    International Nuclear Information System (INIS)

    Baziljevich, M.; Johansen, T.H.; Bratsberg, H.; Shen, Y.; Vase, P.

    1996-01-01

    Slits patterned into a YBa 2 Cu 3 O 7-δ thin film were observed to obstruct Meissner sheet currents leading to an imbalance in the local Meissner screening properties. The new phenomenon was studied with magneto-optic imaging where twin lobes of opposite flux polarity were seen to form near the slits and inside the Meissner region. The lobe closest to the sample edge is always polarized opposite to the applied field. At weak fields, the anomalous flux generation is reversible. At higher fields, but still sufficiently small to keep the vortex penetration front away from the slits, the anomalous current starts nucleating flux lines which become trapped when the field is removed. copyright 1996 American Institute of Physics

  13. Non-contact optical sensor for detection of glucose concentration using a magneto-optic effect

    Science.gov (United States)

    Ozana, Nisan; Beiderman, Yevgeny; Anand, Arun; Javidi, Baharam; Polani, Sagi; Schwarz, Ariel; Shemer, Amir; García, Javier; Zalevsky, Zeev

    2016-03-01

    In this paper we aim to experimentally verify a speckle based technique for non-contact measurement of glucose concentration in blood stream while the vision for the final device aims to contain a single wristwatch-style device containing an AC (alternating) electro-magnet generated by a solenoid, a laser and a camera. The experiments presented in work are performed in-vitro in order to verify the effects that are responsible for the operation principle. When a glucose substance is inserted into a solenoid generating an alternating magnetic field it exhibits Faraday rotation which affects the temporal changes of the secondary speckle patterns distribution. The temporal frequency resulting from the AC magnetic field was found to have a lock-in amplification role which increased the observability of the relatively small magneto-optic effect. Experimental results to support the proposed concept are presented.

  14. Magneto-therapy of human joint cartilage.

    Science.gov (United States)

    Wierzcholski, Krzysztof; Miszczak, Andrzej

    2017-01-01

    The topic of the present paper concerns the human joint cartilage therapy performed by the magnetic induction field. There is proved the thesis that the applied magnetic field for concrete cartilage illness should depend on the proper relative and concrete values of applied magnetic induction, intensity as well the time of treatment duration. Additionally, very important are frequencies and amplitudes of magnetic field as well as magnetic permeability of the synovial fluid. The research methods used in this paper include: magnetic induction field produced by a new Polish and German magneto electronic devices for the therapy of human joint cartilage diseases, stationary and movable magnetic applicators, magnetic bandage, ferrofluid injections, author's experience gained in Germany research institutes and practical results after measurements and information from patients. The results of this paper concern concrete parameters of time dependent electro-magnetic field administration during the joint cartilage therapy duration and additionally concern the corollaries which are implied from reading values gained on the magnetic induction devices. The main conclusions obtained in this paper are as follows: Time dependent magnetic induction field increases the dynamic viscosity of movable synovial fluid and decreases symptoms of cartilage illness for concrete intensity of magnetic field and concrete field line architecture. The ferrofluid therapy and phospholipids bilayer simultaneously with the administrated external electromagnetic field, increases the dynamic viscosity of movable synovial fluid.

  15. ECR plasma cleaning for superconducting cavities

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Suehiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-02-01

    A superconducting linac has been operating well as a heavy ion energy booster of the tandem accelerator at JAERI since 1994. Forty superconducting quarter wave resonators are used in the linac. They have high performances in average. Some of them are, however, suffering from 'Q-disease' that has been caused by hydrogen absorption into niobium during electro-polishing and the precipitation of niobium-hydrides on the surface at the vicinity of about 120K during precooling. A method of electron cyclotron resonance (ECR) plasma cleaning was applied to spare resonator in order to investigate if it is useful as a curing method of Q-disease. ECR plasma was excited in the resonator by 2.45 GHz microwave in a magnetic field of about 87.5 mT. In the first preliminary experiments, hydrogen, helium, water and oxigen gases were investigated. Every case was done at a pressure of about 3x10{sup -3} Pa. The results show that apparent recovery from Q-disease was found with helium and oxigen gases. (author)

  16. Electro-Fenton decolourisation of dyes in an airlift continuous reactor using iron alginate beads.

    Science.gov (United States)

    Iglesias, O; Rosales, E; Pazos, M; Sanromán, M A

    2013-04-01

    In this study, electro-Fenton dye degradation was performed in an airlift continuous reactor configuration by harnessing the catalytic activity of Fe alginate gel beads. Electro-Fenton experiments were carried out in an airlift reactor with a working volume of 1.5 L, air flow of 1.5 L/min and 115 g of Fe alginate gel beads. An electric field was applied by two graphite bars connected to a direct current power supply with a constant potential drop. In this study, Lissamine Green B and Reactive Black 5 were selected as model dyes. Fe alginate gel beads can be used as an effective heterogeneous catalyst for the degradation of organic dyes in the electro-Fenton process, as they are more efficient than the conventional electrochemical techniques. At optimal working conditions (3 V and pH 2), the continuous process was performed. For both dyes, the degree of decolourisation increases when the residence time augments. Taking into account hydrodynamic and kinetic behaviour, a model to describe the reactor profile was obtained, and the standard deviation between experimental and theoretical data was lower than 6%. The results indicate the suitability of the electro-Fenton technique to oxidise polluted effluents in the presence of Fe alginate gel beads. Moreover, the operation is possible in a continuous airlift reactor, due to the entrapment of iron in the alginate matrix.

  17. Enhanced pinning in superconducting thin films with graded pinning landscapes

    Science.gov (United States)

    Motta, M.; Colauto, F.; Ortiz, W. A.; Fritzsche, J.; Cuppens, J.; Gillijns, W.; Moshchalkov, V. V.; Johansen, T. H.; Sanchez, A.; Silhanek, A. V.

    2013-05-01

    A graded distribution of antidots in superconducting a-Mo79Ge21 thin films has been investigated by magnetization and magneto-optical imaging measurements. The pinning landscape has maximum density at the sample border, decreasing linearly towards the center. Its overall performance is noticeably superior than that for a sample with uniformly distributed antidots: For high temperatures and low fields, the critical current is enhanced, whereas the region of thermomagnetic instabilities in the field-temperature diagram is significantly suppressed. These findings confirm the relevance of graded landscapes on the enhancement of pinning efficiency, as recently predicted by Misko and Nori [Phys. Rev. B 85, 184506 (2012)].

  18. An improved method for quantitative magneto-optical analysis of superconductors

    International Nuclear Information System (INIS)

    Laviano, F; Botta, D; Chiodoni, A; Gerbaldo, R; Ghigo, G; Gozzelino, L; Zannella, S; Mezzetti, E

    2003-01-01

    We report on the analysis method to extract quantitative local electrodynamics in superconductors by means of the magneto-optical technique. First of all, we discuss the calibration procedure to convert the local light intensity values into magnetic induction field distribution and start focusing on the role played by the generally disregarded magnetic induction components parallel to the indicator film plane (in-plane field effect). To account for the reliability of the whole technique, the method used to reconstruct the electrical current density distribution is reported, together with a numerical test example. The methodology is applied to measure local magnetic field and current distributions on a typical YBa 2 Cu 3 O 7-x good quality film. We show how the in-plane field influences the MO measurements, after which we present an algorithm to account for the in-plane field components. The meaningful impact of the correction on the experimental results is shown. Afterwards, we discuss some aspects about the electrodynamics of the superconducting sample

  19. Advanced nanoscopic studies in magneto-electric manganites and high T$_c$ superconductors

    CERN Document Server

    Melo Mendonça, Tânia Manuela; Martins Correia, João Guilherme

    2012-05-01

    Technological advances in materials synthesis and the development of new experimental techniques have created a wealth of information with remarkable implications for understanding the macroscopic properties of systems with strongly correlated electronic properties. These advances allowed the observation of a wide range of exotic phenomena such as high T$_c$ superconductivity, colossal magneto-resistance or, more recently, multiferroic behavior, which are known to be strongly dependent on the nanoscale phenomenology. In fact, several experimental and theoretical studies demonstrated that strongly correlated electron systems are not homogeneous at a local scale due to simultaneously active spin, charge, lattice and/or orbital interactions. Consequently, these systems show nanoscale chemical and electronic disorder, which lead to a rich variety of macroscopic properties. It is under this scope that the nuclear hyperfine techniques are introduced, being particularly useful to infer the local lattice structure, e...

  20. An experimental mechanical switch for 3 kA driven by superconducting coils

    International Nuclear Information System (INIS)

    Herman, H.J.; Ten Haken, B.; Van de Klundert, L.J.M.

    1986-01-01

    Usually mechanical switches that are built for use in superconducting circuits are driven in some way by a rod which is controlled at room temperature. In this paper, an alternative method to drive the electrodes of the switch is reported. In fact the new device is a superconducting relay that uses an antiseries connection of two superconducting air-core coils. The repulsing force of these relay coils enables the switch to be closed by applying a pressure to the electrodes. The off-state is effected by a set of springs which interrupt the electrodes when the coil current is switched off. We realized that this electro-magnetic method of producing large forces could be promising for driving a mechanical switch. The desired method was demonstrated by an experimental model. A switch-on resistance of 8*10 -8 Ω with a switch current of 3 kA and a contact force of 20 kN was measured

  1. Magneto-optical light scattering from ferromagnetic surfaces

    International Nuclear Information System (INIS)

    Gonzalez, M.U.; Armelles, G.; Martinez Boubeta, C.; Cebollada, A.

    2003-01-01

    We have studied the optical and magneto-optical components of the light scattered by the surface of several Fe films with different morphologies. We present a method, based on the ratio between the optical and magneto-optical components of the scattered intensity, to discern the physical origin, either structural or magnetic corrugation, of the light scattered by these ferromagnetic surfaces. Surface versus bulk magnetic information can be separated by magneto-optical light scattering measurements, the scattered light being more sensitive to magnetization differences between surface and bulk than the reflected one

  2. Magneto-optical non-reciprocal devices in silicon photonics

    Directory of Open Access Journals (Sweden)

    Yuya Shoji

    2014-01-01

    Full Text Available Silicon waveguide optical non-reciprocal devices based on the magneto-optical effect are reviewed. The non-reciprocal phase shift caused by the first-order magneto-optical effect is effective in realizing optical non-reciprocal devices in silicon waveguide platforms. In a silicon-on-insulator waveguide, the low refractive index of the buried oxide layer enhances the magneto-optical phase shift, which reduces the device footprints. A surface activated direct bonding technique was developed to integrate a magneto-optical garnet crystal on the silicon waveguides. A silicon waveguide optical isolator based on the magneto-optical phase shift was demonstrated with an optical isolation of 30 dB and insertion loss of 13 dB at a wavelength of 1548 nm. Furthermore, a four port optical circulator was demonstrated with maximum isolations of 15.3 and 9.3 dB in cross and bar ports, respectively, at a wavelength of 1531 nm.

  3. Magneto-Plasmonics and Resonant Interaction of Light with Dynamic Magnetisation in Metallic and All-Magneto-Dielectric Nanostructures.

    Science.gov (United States)

    Maksymov, Ivan S

    2015-04-09

    A significant interest in combining plasmonics and magnetism at the nanoscale gains momentum in both photonics and magnetism sectors that are concerned with the resonant enhancement of light-magnetic-matter interaction in nanostructures. These efforts result in a considerable amount of literature, which is difficult to collect and digest in limited time. Furthermore, there is insufficient exchange of results between the two research sectors. Consequently, the goal of this review paper is to bridge this gap by presenting an overview of recent progress in the field of magneto-plasmonics from two different points of view: magneto-plasmonics, and magnonics and magnetisation dynamics. It is expected that this presentation style will make this review paper of particular interest to both general physical audience and specialists conducting research on photonics, plasmonics, Brillouin light scattering spectroscopy of magnetic nanostructures and magneto-optical Kerr effect magnetometry, as well as ultrafast all-optical and THz-wave excitation of spin waves. Moreover, readers interested in a new, rapidly emerging field of all-dielectric nanophotonics will find a section about all-magneto-dielectric nanostructures.

  4. Magneto-Plasmonics and Resonant Interaction of Light with Dynamic Magnetisation in Metallic and All-Magneto-Dielectric Nanostructures

    Directory of Open Access Journals (Sweden)

    Ivan S. Maksymov

    2015-04-01

    Full Text Available A significant interest in combining plasmonics and magnetism at the nanoscale gains momentum in both photonics and magnetism sectors that are concerned with the resonant enhancement of light-magnetic-matter interaction in nanostructures. These efforts result in a considerable amount of literature, which is difficult to collect and digest in limited time. Furthermore, there is insufficient exchange of results between the two research sectors. Consequently, the goal of this review paper is to bridge this gap by presenting an overview of recent progress in the field of magneto-plasmonics from two different points of view: magneto-plasmonics, and magnonics and magnetisation dynamics. It is expected that this presentation style will make this review paper of particular interest to both general physical audience and specialists conducting research on photonics, plasmonics, Brillouin light scattering spectroscopy of magnetic nanostructures and magneto-optical Kerr effect magnetometry, as well as ultrafast all-optical and THz-wave excitation of spin waves. Moreover, readers interested in a new, rapidly emerging field of all-dielectric nanophotonics will find a section about all-magneto-dielectric nanostructures.

  5. A monitoring of superconducting magnets by acoustic emission

    International Nuclear Information System (INIS)

    Nomura, Harehiko; Tateishi, Hiroshi; Onishi, Toshitada

    1990-01-01

    Since superconducting magnets (SCM) are going to be indispensable to magnetic levitated train, nuclear fusion, magnetic resonating imaging, rotational machines, etc., they must be placed great reliance on its repetitional operations. But without appropriate evaluating methods, these promising techniques must remain still in science levels and hard to be transferable to real human technologies. SCM, being used under dynamical operation with linking other electro-magnetic systems as said above, induce high voltage from which monitoring superconducting to normal transitional voltage is difficult to distinguish. To solve this problem, monitoring SCM by Acoustic Emission (AE) from themselves, have been found effective, in particular, during the dynamical energizing of them. As for a demonstration, this paper will report mainly how to monitor 3 MJ-SCM and a few results of the experiments aquired both by counting and locational mode of AE in pulsed and repeated operations of the magnet. Some discussions on the AE monitorings are also made along the main issues to be solved in future. (author)

  6. Electro-optical memory of a nematic liquid crystal doped by multi-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    L. Dolgov

    2012-10-01

    Full Text Available A pronounced irreversible electro-optical response (memory effect has been recently observed for nematic liquid crystal (LC EBBA doped by multi-walled carbon nanotubes (MWCNTs near the percolation threshold of the MWCNTs (0.02÷0.05 wt. %. It is caused by irreversible homeotropic-to-planar reorientation of LC in an electric field. This feature is explained by electro-hydrodynamically stimulated dispergation of MWCNTs in LC and by the formation of a percolation MWCNT network which acts as a spatially distributed surface stabilizing the planar state of the LC. This mechanism is confirmed by the absence of memory in the EBBA/MWCNT composites, whose original structure is fixed by a polymer. The observed effect suggests new operation modes for the memory type and bistable LC devices, as well as a method for in situ dispergation of carbon nanotubes in LC cells.

  7. Electro photographic materials

    International Nuclear Information System (INIS)

    Buzdugan, A.; Andries, A.; Iovu, M.

    2000-01-01

    The invention relates to the creation of electro photographic materials . The invention allows to extend the material photosensitivity into the infrared range of the spectrum. An electro photographic materials contains an electro conducting base, including a dielectric base 1, for example glass, an electro conducting layer 2, for example of Al, Ni, Cr, an injecting layer 3, consisting of amorphous indium phosphide, a vitreous layer 4 of the arsenic sulphide - antimony sulphide system and a transporting layer 5 of the arsenic sulphide or arsenic selenide

  8. On the influence of the hydrodynamic interactions on the aggregation rate of magnetic spheres in a dilute suspension

    International Nuclear Information System (INIS)

    Cunha, F.R.; Couto, H.L.G.

    2011-01-01

    Magnetostatic attraction may lead to formation of aggregates in stable colloidal magnetic suspensions and magneto-rheological suspensions. The aggregation problem of magnetic composites under differential sedimentation is a key problem in the control of the instability of non-Brownian suspensions. Against these attractive forces are the electrostatic repulsion and the hydrodynamic interactions acting as stabilizing effects to the suspension. This work concerns an investigation of the pairwise interaction of magnetic particles in a dilute sedimenting suspension. We focus attention on suspensions where the Peclet number is large (negligible Brownian motion) and where the Reynolds number (negligible inertia) is small. The suspension is composed of magnetic micro-spheres of different radius and density immersed in a Newtonian fluid moving under the action of gravity. The theoretical calculations are based on direct computations of the hydrodynamic and the magnetic interactions among the rigid spheres in the regime of low particle Reynolds number. From the limiting trajectory in which aggregation occurs, we calculate the collision efficiency, representing the dimensionless rate at which aggregates are formed. The numerical results show clear evidence that the hydrodynamic interactions are of fundamental relevance in the process of magnetic particle aggregation. We compare the stabilizing effects between electrostatic repulsion and hydrodynamic interactions.

  9. On the influence of the hydrodynamic interactions on the aggregation rate of magnetic spheres in a dilute suspension

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, F.R., E-mail: frcunha@unb.b [Universidade de Brasilia, Faculdade de Tecnologia, Depto. de Engenharia Mecanica, Grupo de Mecanica dos Fluidos de Escoamentos Complexos - VORTEX, Campus Universitario Darcy Ribeiro, 70910-900, Brasilia, DF (Brazil); Couto, H.L.G. [Universidade de Brasilia, Faculdade de Tecnologia, Depto. de Engenharia Mecanica, Grupo de Mecanica dos Fluidos de Escoamentos Complexos - VORTEX, Campus Universitario Darcy Ribeiro, 70910-900, Brasilia, DF (Brazil)

    2011-01-15

    Magnetostatic attraction may lead to formation of aggregates in stable colloidal magnetic suspensions and magneto-rheological suspensions. The aggregation problem of magnetic composites under differential sedimentation is a key problem in the control of the instability of non-Brownian suspensions. Against these attractive forces are the electrostatic repulsion and the hydrodynamic interactions acting as stabilizing effects to the suspension. This work concerns an investigation of the pairwise interaction of magnetic particles in a dilute sedimenting suspension. We focus attention on suspensions where the Peclet number is large (negligible Brownian motion) and where the Reynolds number (negligible inertia) is small. The suspension is composed of magnetic micro-spheres of different radius and density immersed in a Newtonian fluid moving under the action of gravity. The theoretical calculations are based on direct computations of the hydrodynamic and the magnetic interactions among the rigid spheres in the regime of low particle Reynolds number. From the limiting trajectory in which aggregation occurs, we calculate the collision efficiency, representing the dimensionless rate at which aggregates are formed. The numerical results show clear evidence that the hydrodynamic interactions are of fundamental relevance in the process of magnetic particle aggregation. We compare the stabilizing effects between electrostatic repulsion and hydrodynamic interactions.

  10. Frequency dependent magneto-transport in charge transfer Co(II) complex

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, Bikash Kumar; Saha, Shyamal K., E-mail: cnssks@iacs.res.in

    2014-09-01

    A charge transfer chelated system containing ferromagnetic metal centers is the ideal system to investigate the magneto-transport and magneto-dielectric effects due to the presence of both electronic as well as magnetic properties and their coupling. Magneto-transport properties in materials are usually studied through dc charge transport under magnetic field. As frequency dependent conductivity is an essential tool to understand the nature of carrier wave, its spatial extension and their mutual interaction, in the present work, we have investigated frequency dependent magneto-transport along with magnetization behavior in [Co{sub 2}(II)-(5-(4-PhMe)-1,3,4-oxadiazole-H{sup +}-2-thiolate){sub 5}](OAc){sub 4} metal complex to elucidate the nature of above quantities and their response under magnetic field in the transport property. We have used the existing model for ac conduction incorporating the field dependence to explain the frequency dependent magneto-transport. It is seen that the frequency dependent magneto-transport could be well explained using the existing model for ac conduction. -Highlights: • Chelated Co(II) complex is synthesized for magneto-transport applications. • Frequency dependent magneto-transport and magnetization behavior are studied. • Nature of carrier wave, its spatial extension is investigated under magnetic field. • Existing model for ac conduction is used with magnetic field dependence.

  11. Capillary filling under electro-osmotic effects in the presence of electromagneto-hydrodynamic effects

    Science.gov (United States)

    Desai, Nikhil; Ghosh, Uddipta; Chakraborty, Suman

    2014-06-01

    We report various regimes of capillary filling dynamics under electromagneto-hydrodynamic interactions, in the presence of electrical double layer effects. Our chosen configuration considers an axial electric field and transverse magnetic field acting on an electrolyte. We demonstrate that for positive interfacial potential, the movement of the capillary front resembles capillary rise in a vertical channel under the action of gravity. We also evaluate the time taken by the capillary front to reach the final equilibrium position for positive interfacial potential and show that the presence of a transverse magnetic field delays the time of travel of the liquid front, thereby sustaining the capillary motion for a longer time. Our scaling estimates reveal that the initial linear regime starts, as well as ends, much earlier in the presence of electrical and magnetic body forces, as compared to the corresponding transients observed under pure surface tension driven flow. We further obtain a long time solution for the capillary imbibition for positive interfacial potential, and derive a scaling estimate of the capillary stopping time as a function of the applied magnetic field and an intrinsic length scale delineating electromechanical influences of the electrical double layer. Our findings are likely to offer alternative strategies of controlling dynamical features of capillary imbibition, by modulating the interplay between electromagnetic interactions, electrical double layer phenomena, and hydrodynamics over interfacial scales.

  12. Analysis of skin permeation-enhancing mechanism of iontophoresis using hydrodynamic pore theory.

    Science.gov (United States)

    Manabe, E; Numajiri, S; Sugibayashi, K; Morimoto, Y

    2000-05-15

    The effects of constant DC iontophoresis (0-1.5 mA/0.966 cm(2)) on the permeation of three hydrophilic compounds, antipyrine (ANP, M.W. 188.23), sucrose (SR, M.W. 342.30) and 1-kestose (KT, M.W. 506.73), through excised hairless rat skin were evaluated using hydrodynamic pore theory. The electro-osmotic flow caused by iontophoresis was measured using deuterium oxide (D(2)O). The penetration-enhancing mechanism of iontophoresis was found to increase solvent flow through electro-osmosis and pore enlargement and/or new pore production in the skin barrier, together with enhancement of electrochemical potential difference across the skin. These effects were closely related to the strength of the current applied. The electro-osmotic flow of D(2)O (J(D(2)O)) greatly enhanced the skin permeation clearance of all hydrophilic penetrants (CL(drug)). Pore production was classified into reversible and irreversible processes, which resulted from lower (0-0.5 mA/0.966 cm(2)) and higher (0.5-1. 5 mA/0.966 cm(2)) currents, respectively. Thus, the enhancing effects of iontophoresis on skin permeation of nonionic hydrophilic compounds can be explained by increase in pore size and higher solvent flow.

  13. Enhanced tunability of magneto-impedance and magneto-capacitance in annealed Metglas/PZT magnetoelectric composites

    Science.gov (United States)

    Leung, Chung Ming; Zhuang, Xin; Xu, Junran; Li, Jiefang; Zhang, Jitao; Srinivasan, G.; Viehland, D.

    2018-05-01

    This report is on a new class of magnetostatically tunable magneto-impedance and magneto-capacitance devices based on a composite of ferromagnetic Metglas and ferroelectric lead zirconate titanate (PZT). Layered magneto-electric (ME) composites with annealed Metglas and PZT were studied in a longitudinal in-plane magnetic field-transverse electric field (L-T) mode. It was found that the degree of tunability was dependent on the annealing temperature of Metglas. An impedance tunability (ΔZ/Z0) of ≥400% was obtained at the electromechanical resonance (EMR) frequency (fr) for a sample with Metglas layers annealed at Ta = 500oC. This tunability is a factor of two higher than for composites with Metglas annealed at 350oC. The tunability of the capacitance, (ΔC/C0), was found to be 290% and -135k% at resonance and antiresonance, respectively, for Ta = 500oC. These results provide clear evidence for improvement in static magnetic field tunability of impedance and capacitance of ME composites with the use of annealed Metglas and are of importance for their potential use in tunable electronic applications.

  14. An ultrahigh-vacuum cryostat for simultaneous scanning tunneling microscopy and magneto-transport measurements down to 400 mK.

    Science.gov (United States)

    Liebmann, Marcus; Bindel, Jan Raphael; Pezzotta, Mike; Becker, Stefan; Muckel, Florian; Johnsen, Tjorven; Saunus, Christian; Ast, Christian R; Morgenstern, Markus

    2017-12-01

    We present the design and calibration measurements of a scanning tunneling microscope setup in a 3 He ultrahigh-vacuum cryostat operating at 400 mK with a hold time of 10 days. With 2.70 m in height and 4.70 m free space needed for assembly, the cryostat fits in a one-story lab building. The microscope features optical access, an xy table, in situ tip and sample exchange, and enough contacts to facilitate atomic force microscopy in tuning fork operation and simultaneous magneto-transport measurements on the sample. Hence, it enables scanning tunneling spectroscopy on microstructured samples which are tuned into preselected transport regimes. A superconducting magnet provides a perpendicular field of up to 14 T. The vertical noise of the scanning tunneling microscope amounts to 1 pm rms within a 700 Hz bandwidth. Tunneling spectroscopy using one superconducting electrode revealed an energy resolution of 120 μeV. Data on tip-sample Josephson contacts yield an even smaller feature size of 60 μeV, implying that the system operates close to the physical noise limit.

  15. An ultrahigh-vacuum cryostat for simultaneous scanning tunneling microscopy and magneto-transport measurements down to 400 mK

    Science.gov (United States)

    Liebmann, Marcus; Bindel, Jan Raphael; Pezzotta, Mike; Becker, Stefan; Muckel, Florian; Johnsen, Tjorven; Saunus, Christian; Ast, Christian R.; Morgenstern, Markus

    2017-12-01

    We present the design and calibration measurements of a scanning tunneling microscope setup in a 3He ultrahigh-vacuum cryostat operating at 400 mK with a hold time of 10 days. With 2.70 m in height and 4.70 m free space needed for assembly, the cryostat fits in a one-story lab building. The microscope features optical access, an xy table, in situ tip and sample exchange, and enough contacts to facilitate atomic force microscopy in tuning fork operation and simultaneous magneto-transport measurements on the sample. Hence, it enables scanning tunneling spectroscopy on microstructured samples which are tuned into preselected transport regimes. A superconducting magnet provides a perpendicular field of up to 14 T. The vertical noise of the scanning tunneling microscope amounts to 1 pmrms within a 700 Hz bandwidth. Tunneling spectroscopy using one superconducting electrode revealed an energy resolution of 120 μeV. Data on tip-sample Josephson contacts yield an even smaller feature size of 60 μeV, implying that the system operates close to the physical noise limit.

  16. Tunable magneto-conductance and magneto-electroluminescence in polymer light-emitting electrochemical planar devices

    Energy Technology Data Exchange (ETDEWEB)

    Geng, R.; Mayhew, N. T.; Nguyen, T. D., E-mail: ngtho@uga.edu [Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602 (United States)

    2013-12-09

    We report studies of magneto-conductance (MC) and magneto-electroluminescence (MEL) in polymer light-emitting electrochemical planar devices using “super-yellow” poly-(phenylene vinylene). We observed consistent negative MC while MEL becomes positive when electroluminescence quantum efficiency (ELQE) increases. At an optimal ELQE, the MC has a much narrower width than the MEL, indicating that the MC and MEL do not share a common origin. However, MC reverses and has the same width as MEL when exposed to a threshold laser power. We show that the e-h pair model can explain the positive MEL and MC while the negative MC can be explained by the bipolaron model.

  17. Tunable magneto-conductance and magneto-electroluminescence in polymer light-emitting electrochemical planar devices

    International Nuclear Information System (INIS)

    Geng, R.; Mayhew, N. T.; Nguyen, T. D.

    2013-01-01

    We report studies of magneto-conductance (MC) and magneto-electroluminescence (MEL) in polymer light-emitting electrochemical planar devices using “super-yellow” poly-(phenylene vinylene). We observed consistent negative MC while MEL becomes positive when electroluminescence quantum efficiency (ELQE) increases. At an optimal ELQE, the MC has a much narrower width than the MEL, indicating that the MC and MEL do not share a common origin. However, MC reverses and has the same width as MEL when exposed to a threshold laser power. We show that the e-h pair model can explain the positive MEL and MC while the negative MC can be explained by the bipolaron model

  18. Thermo-hydrodynamic lubrication in hydrodynamic bearings

    CERN Document Server

    Bonneau, Dominique; Souchet, Dominique

    2014-01-01

    This Series provides the necessary elements to the development and validation of numerical prediction models for hydrodynamic bearings. This book describes the thermo-hydrodynamic and the thermo-elasto-hydrodynamic lubrication. The algorithms are methodically detailed and each section is thoroughly illustrated.

  19. Thermal properties of a large-bore cryocooled 10 T superconducting magnet for a hybrid magnet

    International Nuclear Information System (INIS)

    Ishizuka, M.; Hamajima, T.; Itou, T.; Sakuraba, J.; Nishijima, G.; Awaji, S.; Watanabe, K.

    2010-01-01

    A cryocooled 10 T superconducting magnet with a 360 mm room temperature bore has been developed for a hybrid magnet. The superconducting magnet cooled by four Gifford-McMahon cryocoolers has been designed to generate a magnetic field of 10 T. Since superconducting wires composed of coils were subjected to large hoop stress over 150 MPa and Nb 3 Sn superconducting wires particularly showed a low mechanical strength due to those brittle property, Nb 3 Sn wires strengthened by NbTi-filaments were developed for the cryocooled superconducting magnet. We have already reported that the hybrid magnet could generate the resultant magnetic field of 27.5 T by adding 8.5 T from the superconducting magnet and 19 T from a water-cooled Bitter resistive magnet, after the water-cooled resistive magnet was inserted into the 360 mm room temperature bore of the cryocooled superconducting magnet. When the hybrid magnet generated the field of 27.5 T, it achieved the high magnetic-force field (B x ∂Bz/∂z) of 4500 T 2 /m, which was useful for magneto-science in high fields such as materials levitation research. In this paper, we particularly focus on the cause that the cryocooled superconducting magnet was limited to generate the designed magnetic field of 10 T in the hybrid magnet operation. As a result, it was found that there existed mainly two causes as the limitation of the magnetic field generation. One was a decrease of thermal conductive passes due to exfoliation from the coil bobbin of the cooling flange. The other was large AC loss due to both a thick Nb 3 Sn layer and its large diameter formed on Nb-barrier component in Nb 3 Sn wires.

  20. Magneto-induced large deformation and high-damping performance of a magnetorheological plastomer

    International Nuclear Information System (INIS)

    Liu, Taixiang; Gong, Xinglong; Xu, Yangguang; Pang, Haoming; Xuan, Shouhu

    2014-01-01

    A magnetorheological plastomer (MRP) is a new kind of soft magneto-sensitive polymeric composite. This work reports on the large magneto-deforming effect and high magneto-damping performance of MRPs under a quasi-statical shearing condition. We demonstrate that an MRP possesses a magnetically sensitive malleability, and its magneto-mechanical behavior can be analytically described by the magneto-enhanced Bingham fluid-like model. The magneto-induced axial stress, which drives the deformation of the MRP with 70 wt % carbonyl iron powder, can be tuned in a large range from nearly 0.0 kPa to 55.4 kPa by an external 662.6 kA m −1 magnetic field. The damping performance of an MRP has a significant correlation with the magnetic strength, shear rate, carbonyl iron content and shear strain amplitude. For an MRP with 60 wt % carbonyl iron powder, the relative magneto-enhanced damping effect can reach as high as 716.2% under a quasi-statically shearing condition. Furthermore, the related physical mechanism is proposed, and we reveal that the magneto-induced, particle-assembled microstructure directs the magneto-mechanical behavior of the MRP. (paper)

  1. Progress in nano-electro optics characterization of nano-optical materials and optical near-field interactions

    CERN Document Server

    Ohtsu, Motoichi

    2005-01-01

    This volume focuses on the characterization of nano-optical materials and optical-near field interactions. It begins with the techniques for characterizing the magneto-optical Kerr effect and continues with methods to determine structural and optical properties in high-quality quantum wires with high spatial uniformity. Further topics include: near-field luminescence mapping in InGaN/GaN single quantum well structures in order to interpret the recombination mechanism in InGaN-based nano-structures; and theoretical treatment of the optical near field and optical near-field interactions, providing the basis for investigating the signal transport and associated dissipation in nano-optical devices. Taken as a whole, this overview will be a valuable resource for engineers and scientists working in the field of nano-electro-optics.

  2. EMHD micro-pumping of a non-conducting shear-thinning fluid under EDL phenomena

    International Nuclear Information System (INIS)

    Gaikwad, Harshad; Borole, Chetan; Basu, Dipankar N.; Mondal, Pranab K.

    2016-01-01

    The Electro-Magneto-Hydrodynamic (EMHD) pumping of a binary fluid system constituted by one non-conducting shear-thinning fluid (top layer) by exploiting the transverse momentum exchange through the interfacial viscous shearing effect from a conducting Newtonian fluid layer (bottom layer) in a microfluidic channel is investigated. An externally applied electric field drives the conducting fluid layer under the influence of an applied magnetic field as well. The study reveals that the volume transport of shear-thinning fluid gets augmented for low magnetic field strength, higher electrical double layer (EDL) effect, low viscosity ratio and moderate potential ratio. It is also established that the volumetric flow rate reduces significantly for the higher magnetic field strength. (author)

  3. One-Dimensional Burn Dynamics of Plasma-Jet Magneto-Inertial Fusion

    Science.gov (United States)

    Santarius, John

    2009-11-01

    This poster will discuss several issues related to using plasma jets to implode a Magneto-Inertial Fusion (MIF) liner onto a magnetized plasmoid and compress it to fusion-relevant temperatures [1]. The problem of pure plasma jet convergence and compression without a target present will be investigated. Cases with a target present will explore how well the liner's inertia provides transient plasma stability and confinement. The investigation uses UW's 1-D Lagrangian radiation-hydrodynamics code, BUCKY, which solves single-fluid equations of motion with ion-electron interactions, PdV work, table-lookup equations of state, fast-ion energy deposition, and pressure contributions from all species. Extensions to the code include magnetic field evolution as the plasmoid compresses plus dependence of the thermal conductivity and fusion product energy deposition on the magnetic field.[4pt] [1] Y.C. F. Thio, et al.,``Magnetized Target Fusion in a Spheroidal Geometry with Standoff Drivers,'' in Current Trends in International Fusion Research, E. Panarella, ed. (National Research Council of Canada, Ottawa, Canada, 1999), p. 113.

  4. Electro-Deposition Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The electro-deposition laboratory can electro-deposit various coatings onto small test samples and bench level prototypes. This facility provides the foundation for...

  5. Magneto-radiotherapy: using magnetic fields to guide dose deposition

    International Nuclear Information System (INIS)

    Nettelbeck, H.; Lerch, M.; Takacs, G.; Rosenfeld, A.

    2006-01-01

    Full text: Magneto-radiotherapy is the application of magnetic fields during radiotherapy procedures. It aims to improve the quality of cancer treatment by using magnetic fields to 1 g uide the dose-deposition of electrons in tissue. Monte Carlo (MC) studies have investigated magneto-radiotherapy applied to conventional photon and electron linac beams. In this study, a combination of MC PENELOPE simulations and physical experiments were done to investigate magneto-radiotherapy applied to MRT (Microbeam Radiation Therapy) and conventional linac radiotherapy.

  6. High-frequency magneto-impedance in metastable metallic materials: An overview

    International Nuclear Information System (INIS)

    Vinai, F.; Coisson, M.; Tiberto, P.

    2006-01-01

    The giant magneto-impedance effect (GMI) is a common feature of a wide class of metastable ferromagnetic alloys. This effect can be enhanced by submitting the as-prepared materials to suitable thermal treatments. Recently, a remarkably high magneto-impedance response has been observed in the GHz region for several systems. The increase in miniaturization of telecommunication devices dramatically increases the working frequencies; as a consequence, the interest in studying magneto-impedance effect leads to microwave region. In this paper, analogies and differences among the magneto-transport effect observed in ferromagnetic metastable alloys will be highlighted and discussed from the experimental point of view in a wide range of frequencies

  7. Non-equilibrium spin and charge transport in superconducting heterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Thalmann, Marcel; Rudolf, Marcel; Braun, Julian; Pietsch, Torsten; Scheer, Elke [Department of Physics, University of Konstanz, Universitaetsstrasse 10, 78464 Konstanz (Germany)

    2015-07-01

    Ferromagnet Superconductance (F/S) junctions are rich in exciting quantum-physical-phenomena, which are still poorly understood but may provide bright prospects for new applications. In contrast to conventional normal-metal proximity systems, Andreev reflection is suppressed for singlet cooper pairs in F/S heterostructures. However, long-range triplet pairing may be observed in S/F systems with non-collinear magnetization or spin-active interfaces. Herein, we investigate non-equilibrium transport properties of lateral S/F heterojunctions, defined via electron beam lithography. In particular we focus microwave- and magneto-transport spectroscopy on conventional type-I (Al, Pb, Zn) and type-II (Nb) superconductors in combination with strong transition metal ferromagnets (Ni, Co, Fe). A cryogenic HF readout platform and advanced electronic filtering is developed and results on Al-based heterojunctions are shown.

  8. Proposal for electro-optic multiplier based on dual transverse electro-optic Kerr effect.

    Science.gov (United States)

    Li, Changsheng

    2008-10-20

    A novel electro-optic multiplier is proposed, which can perform voltage multiplication operation by use of the Kerr medium exhibiting dual transverse electro-optic Kerr effect. In this kind of Kerr medium, electro-optic phase retardation is proportional to the square of its applied electric field, and orientations of the field-induced birefringent axes are only related to the direction of the field. Based on this effect, we can design an electro-optic multiplier by selecting the crystals of 6/mmm, 432, and m3m classes and isotropic Kerr media such as glass. Simple calculation demonstrates that a kind of glass-ceramic material with a large Kerr constant can be used for the design of the proposed electro-optic multiplier.

  9. Magneto-optical response in bimetallic metamaterials

    Science.gov (United States)

    Atmatzakis, Evangelos; Papasimakis, Nikitas; Fedotov, Vassili; Vienne, Guillaume; Zheludev, Nikolay I.

    2018-01-01

    We demonstrate resonant Faraday polarization rotation in plasmonic arrays of bimetallic nano-ring resonators consisting of Au and Ni sections. This metamaterial design allows the optimization of the trade-off between the enhancement of magneto-optical effects and plasmonic dissipation. Nickel sections corresponding to as little as 6% of the total surface of the metamaterial result in magneto-optically induced polarization rotation equal to that of a continuous nickel film. Such bimetallic metamaterials can be used in compact magnetic sensors, active plasmonic components, and integrated photonic circuits.

  10. Magneto-photoconductivity of three dimensional topological insulator bismuth telluride

    Science.gov (United States)

    Cao, Bingchen; Eginligil, Mustafa; Yu, Ting

    2018-03-01

    Magnetic field dependence of the photocurrent in a 3D topological insulator is studied. Among the 3D topological insulators bismuth telluride has unique hexagonal warping and spin texture which has been studied by photoemission, scanning tunnelling microscopy and transport. Here, we report on low temperature magneto-photoconductivity, up to 7 T, of two metallic bismuth telluride topological insulator samples with 68 and 110 nm thicknesses excited by 2.33 eV photon energy along the magnetic field perpendicular to the sample plane. At 4 K, both samples exhibit negative magneto-photoconductance below 4 T, which is as a result of weak-antilocalization of Dirac fermions similar to the previous observations in electrical transport. However the thinner sample shows positive magneto-photoconductance above 4 T. This can be attributed to the coupling of surface states. On the other hand, the thicker sample shows no positive magneto-photoconductance up to 7 T since there is only one surface state at play. By fitting the magneto-photoconductivity data of the thicker sample to the localization formula, we obtain weak antilocalization behaviour at 4, 10, and 20 K, as expected; however, weak localization behaviour at 30 K, which is a sign of surface states masked by bulk states. Also, from the temperature dependence of phase coherence length bulk carrier-carrier interaction is identified separately from the surface states. Therefore, it is possible to distinguish surface states by magneto-photoconductivity at low temperature, even in metallic samples.

  11. Prospects for the medium- and long-term development of China`s electric power industry and analysis of the potential market for superconductivity technology

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z. [Bob Lawrence and Associates, Inc., Alexandria, VA (United States)

    1998-05-01

    First of all, overall economic growth objectives in China are concisely and succinctly specified in this report. Secondly, this report presents a forecast of energy supply and demand for China`s economic growth for 2000--2050. In comparison with the capability of energy construction in China in the future, a gap between supply and demand is one of the important factors hindering the sustainable development of Chain`s economy. The electric power industry is one of China`s most important industries. To adopt energy efficiency through high technology and utilizing energy adequately is an important technological policy for the development of China`s electric power industry in the future. After briefly describing the achievements of China`s electric power industry, this report defines the target areas and policies for the development of hydroelectricity and nuclear electricity in the 2000s in China, presents the strategic position of China`s electric power industry as well as objectives and relevant plans of development for 2000--2050. This report finds that with the discovery of superconducting electricity, the discovery of new high-temperature superconducting (HTS) materials, and progress in materials techniques, the 21st century will be an era of superconductivity. Applications of superconductivity in the energy field, such as superconducting storage, superconducting transmission, superconducting transformers, superconducting motors, its application in Magneto-Hydro-Dynamics (MHD), as well as in nuclear fusion, has unique advantages. Its market prospects are quite promising. 12 figs.

  12. Dynamic Characteristics of Magneto-Fluid Supports

    Directory of Open Access Journals (Sweden)

    V. A. Chernobai

    2008-01-01

    Full Text Available The paper considers a vibro-protective magneto-fluid support that uses elastic properties of magnetic fluid with a free surface in magnetic field.The paper has experimentally revealed that the analyzed structure is characterized by better noise absorbing characteristics.The conducted experiments have made it possible to conclude that there is a possibility to use vibro-protective magneto-fluid supports within the frequency range from 0 to 300 Hz, amplitudes up to 2 mm and unit load up to 2,5 · 10 4 Н/м².

  13. Magneto-dependent stress relaxation of magnetorheological gels

    KAUST Repository

    Xu, Yangguang; Liu, Taixiang; Liao, G J; Lubineau, Gilles

    2017-01-01

    The stress relaxation behaviors of magnetorheological (MR) gels under stepwise shear loading are systematically investigated. The particle-enhanced effect, the magneto-induced effect, and the temperature-enhanced effect on the stress relaxation of MR gels are discussed. For further analysis of the magneto-induced stress relaxation mechanism in MR gels, a phenomenological model is established to describe the stress relaxation behavior of the matrix and the magnetic particle chains. All characteristic parameters introduced in the model, i.e. relaxation time, instantaneous modulus, and stable modulus, have well-defined physical meanings and are fitted based on the experimental results. The influence of each parameter on the macroscopic response is discussed and it is found that the relaxation stress induced by the magneto-mechanical coupling effect plays an important role in the stress relaxation process of MR gels.

  14. Magneto-dependent stress relaxation of magnetorheological gels

    KAUST Repository

    Xu, Yangguang

    2017-09-01

    The stress relaxation behaviors of magnetorheological (MR) gels under stepwise shear loading are systematically investigated. The particle-enhanced effect, the magneto-induced effect, and the temperature-enhanced effect on the stress relaxation of MR gels are discussed. For further analysis of the magneto-induced stress relaxation mechanism in MR gels, a phenomenological model is established to describe the stress relaxation behavior of the matrix and the magnetic particle chains. All characteristic parameters introduced in the model, i.e. relaxation time, instantaneous modulus, and stable modulus, have well-defined physical meanings and are fitted based on the experimental results. The influence of each parameter on the macroscopic response is discussed and it is found that the relaxation stress induced by the magneto-mechanical coupling effect plays an important role in the stress relaxation process of MR gels.

  15. Magnetic composite Hydrodynamic Pump with Laser Induced Graphene Electrodes

    KAUST Repository

    Khan, Mohammed Asadullah; Hristovski, Ilija R.; Marinaro, Giovanni; Kosel, Jü rgen

    2017-01-01

    A polymer based magneto hydrodynamic pump capable of actuating saline fluids is presented. The benefit of this pumping concept to operate without any moving parts is combined with simple and cheap fabrication methods and a magnetic composite material, enabling a high level of integration. The operating principle, fabrication methodology and flow characteristics of the pump are detailed. The pump electrodes are created by laser printing of polyimide, while the permanent magnet is molded from an NdFeB powder - polydimethylsiloxane (PDMS) composite. The cross-section area of the pump is 240 mm $^2$ . The electrode length is 5 mm. The magnetic characteristics of the NdFeB-PDMS composite indicate high degree of magnetization, which increases the pump efficiency. Using a saline solution similar to seawater, the pump produces 3.4 mm/s flow velocity at a voltage of 7.5V and a current density of 30 mA/cm $^2$ .

  16. Magnetic composite Hydrodynamic Pump with Laser Induced Graphene Electrodes

    KAUST Repository

    Khan, Mohammed Asadullah

    2017-05-24

    A polymer based magneto hydrodynamic pump capable of actuating saline fluids is presented. The benefit of this pumping concept to operate without any moving parts is combined with simple and cheap fabrication methods and a magnetic composite material, enabling a high level of integration. The operating principle, fabrication methodology and flow characteristics of the pump are detailed. The pump electrodes are created by laser printing of polyimide, while the permanent magnet is molded from an NdFeB powder - polydimethylsiloxane (PDMS) composite. The cross-section area of the pump is 240 mm $^2$ . The electrode length is 5 mm. The magnetic characteristics of the NdFeB-PDMS composite indicate high degree of magnetization, which increases the pump efficiency. Using a saline solution similar to seawater, the pump produces 3.4 mm/s flow velocity at a voltage of 7.5V and a current density of 30 mA/cm $^2$ .

  17. [Magneto-laser therapy of chronic gastritis in children and adolescents].

    Science.gov (United States)

    Zviagin, A A; Nikolaenko, E A

    2008-01-01

    The efficiency of transcutaneous magneto-laser treatment as a component of combined therapy of chronic gastritis in children and adolescents (aged 5-17 years) was compared with that of pharmacotherapy and low-intensity laser therapy. The patients were allocated to three groups of 25 persons each. Patients of group 1 were given only drug therapy, those in group 2 were treated with pharmaceuticals and low-intensity laser therapy. The patients comprising group 3 were subjected to the action of magneto-laser radiation. Magneto-laser therapy was shown to result in a significantly more expressed improvement of clinical and morphological characteristics of the patients compared with pharmacotherapy alone. There was no significant difference between effects of magneto-laser and low-intensity laser radiation.

  18. New, Coupling Loss Induced, Quench Protection System for Superconducting Accelerator Magnets

    CERN Document Server

    Ravaioli, E; Giloux, C; Kirby, G; ten Kate, H H J; Verweij, A P

    2014-01-01

    Email Print Request Permissions Save to Project A new and promising method for the protection of superconducting high-field magnets is developed and tested on the so-called MQXC quadrupole magnet at the CERN magnet test facility. The method relies on a capacitive discharge system inducing, during a few periods, an oscillation of the transport current in the superconducting cable of the coil. The corresponding fast change of the local magnetic field introduces a high coupling-current loss, which, in turn, causes a fast quench of a large fraction of the coil due to enhanced temperature. Results of measured discharges at various levels of transport current are presented and compared to discharges by quenching the coils using conventional quench heaters and an energy extraction system. The hot-spot temperature in the quenching coil is deduced from the coil voltage and current. The results are compared to simulations carried out using a lumped-element dynamic electro-thermal model of the so-called MQX...

  19. Synthesis of immunotargeted magneto-plasmonic nanoclusters.

    Science.gov (United States)

    Wu, Chun-Hsien; Sokolov, Konstantin

    2014-08-22

    Magnetic and plasmonic properties combined in a single nanoparticle provide a synergy that is advantageous in a number of biomedical applications including contrast enhancement in novel magnetomotive imaging modalities, simultaneous capture and detection of circulating tumor cells (CTCs), and multimodal molecular imaging combined with photothermal therapy of cancer cells. These applications have stimulated significant interest in development of protocols for synthesis of magneto-plasmonic nanoparticles with optical absorbance in the near-infrared (NIR) region and a strong magnetic moment. Here, we present a novel protocol for synthesis of such hybrid nanoparticles that is based on an oil-in-water microemulsion method. The unique feature of the protocol described herein is synthesis of magneto-plasmonic nanoparticles of various sizes from primary blocks which also have magneto-plasmonic characteristics. This approach yields nanoparticles with a high density of magnetic and plasmonic functionalities which are uniformly distributed throughout the nanoparticle volume. The hybrid nanoparticles can be easily functionalized by attaching antibodies through the Fc moiety leaving the Fab portion that is responsible for antigen binding available for targeting.

  20. An interfacially plasticized electro-responsive hydrogel for transdermal electro-activated and modulated (TEAM) drug delivery

    NARCIS (Netherlands)

    Indermun, S.; Choonara, Y.E.; Kumar, Pradeep; Toit, Du L.C.; Modi, G.; Luttge, R.; Pillay, V.

    2014-01-01

    This paper highlights the use of hydrogels in controlled drug delivery, and their application in stimuli responsive, especially electro-responsive, drug release. electro-conductive hydrogels (ECHs) displaying electro-responsive drug release were synthesized from semi-interpenetrating networks

  1. Superconductivity

    International Nuclear Information System (INIS)

    Palmieri, V.

    1990-01-01

    This paper reports on superconductivity the absence of electrical resistance has always fascinated the mind of researchers with a promise of applications unachievable by conventional technologies. Since its discovery superconductivity has been posing many questions and challenges to solid state physics, quantum mechanics, chemistry and material science. Simulations arrived to superconductivity from particle physics, astrophysic, electronics, electrical engineering and so on. In seventy-five years the original promises of superconductivity were going to become reality: a microscopical theory gave to superconductivity the cloth of the science and the level of technological advances was getting higher and higher. High field superconducting magnets became commercially available, superconducting electronic devices were invented, high field accelerating gradients were obtained in superconductive cavities and superconducting particle detectors were under study. Other improvements came in a quiet progression when a tornado brought a revolution in the field: new materials had been discovered and superconductivity, from being a phenomenon relegated to the liquid Helium temperatures, became achievable over the liquid Nitrogen temperature. All the physics and the technological implications under superconductivity have to be considered ab initio

  2. Magneto-Seebeck effect in magnetic tunnel junctions with perpendicular anisotropy

    Directory of Open Access Journals (Sweden)

    Keyu Ning

    2017-01-01

    Full Text Available As one invigorated filed of spin caloritronics combining with spin, charge and heat current, the magneto-Seebeck effect has been experimentally and theoretically studied in spin tunneling thin films and nanostructures. Here we analyze the tunnel magneto-Seebeck effect in magnetic tunnel junctions with perpendicular anisotropy (p-MTJs under various measurement temperatures. The large tunnel magneto-Seebeck (TMS ratio up to −838.8% for p-MTJs at 200 K is achieved, with Seebeck coefficient S in parallel and antiparallel states of 6.7 mV/K and 62.9 mV/K, respectively. The temperature dependence of the tunnel magneto-Seebeck can be attributed to the contributing transmission function and electron states at the interface between CoFeB electrode and MgO barrier.

  3. Introduction to hydrodynamics

    International Nuclear Information System (INIS)

    Wilkins, M.L.

    1979-01-01

    Various aspects of hydrodynamics and elastic--plastic flow are introduced for the purpose of defining hydrodynamic terms and explaining what some of the important hydrodynamic concepts are. The first part covers hydrodynamic theory; and discussed fundamental hydrodynamic equations, discontinuities, and shock, detonation, and elastic--plastic waves. The second part deals with applications of hydrodynamic theory to material equations of state, spall, Taylor instabilities, and detonation pressure measurements

  4. Large magneto-conductance and magneto-electroluminescence in exciplex-based organic light-emitting diodes at room temperature

    Science.gov (United States)

    Ling, Yongzhou; Lei, Yanlian; Zhang, Qiaoming; Chen, Lixiang; Song, Qunliang; Xiong, Zuhong

    2015-11-01

    In this work, we report on large magneto-conductance (MC) over 60% and magneto-electroluminescence (MEL) as high as 112% at room temperature in an exciplex-based organic light-emitting diode (OLED) with efficient reverse intersystem crossing (ISC). The large MC and MEL are individually confirmed by the current density-voltage characteristics and the electroluminescence spectra under various magnetic fields. We proposed that this type of magnetic field effect (MFE) is governed by the field-modulated reverse ISC between the singlet and triplet exciplex. The temperature-dependent MFEs reveal that the small activation energy of reverse ISC accounts for the large MFEs in the present exciplex-based OLEDs.

  5. Tuning Coler Magnetic Current Apparatus with Magneto-Acoustic Resonance

    Science.gov (United States)

    Ludwig, Thorsten

    An attempt was made to tune the Coler magnetic current apparatus with the magneto acoustic resonance of the magnetic rods. Measurements with a replica of the famous Coler "Magnetstromapparat" were conducted. In order to tune the acoustic, magnetic and electric resonance circuits of the Coler device the magneto-acoustic resonance was measured with a frequency scan through a function generator and a lock-in amplifier. The frequency generator was powering a driving coil, while the lock-in was connected to a pickup coil. Both coils were placed on a magnetic rod. Resonances were observed up to the 17th harmonic. The quality Q of the observed resonances was 270. To study the magneto-acoustic resonance in the time domain a pair of Permendur rods were employed. The magneto-acoustic resonances of the Permendur rods were observed with an oscilloscope. Spectra of the magneto acoustic resonance were measured for the Permendur rods and for a Coler replica magnet in the frequency range from 25 kHz to 380 kHz. The next step was to bring the resonances of the Permendur rods close together so that they overlap. The 10thharmonic was chosen because it was close to the 180 kHz that Hans Coler related to ferromagnetism. Further more magneto-acoustic coupling between the Permendur rods was studied. Finally the question was explored if Hans Coler converted vacuum fluctuations via magnetic and acoustic resonance into electricity. There is a strong connection between magnetism and quantum field zero point energy (ZPE). An outlook is given on next steps in the experiments to unveil the working mechanism of the Coler magnetic current apparatus.

  6. Performance of magneto-optical glass in optical current transducer application

    International Nuclear Information System (INIS)

    Shen, Yan; Lu, Yunhe; Liu, Zhao; Yu, Xueliang; Zhang, Guoqing; Yu, Wenbin

    2015-01-01

    First, a theoretical analysis was performed on the effect of temperature on the performance of the sensing element of paramagnetic rare earth-doped magneto-optical glass material that can be used in an optical current transducer application. The effect comprises two aspects: the linear birefringence and the Verdet constant. On this basis, rare earth-doped glass temperature characteristics were studied, and the experimental results indicated that the linear birefringence of rare earth-doped glass increased with increasing temperature, while its magneto-optical sensitivity decreased. Comparative experiments performed for various concentrations of rare earth dopant in the glass revealed that changes in the dopant concentration had no significant effect on the performance of magneto-optical glass. At last, a comparison between rare earth-doped magneto-optical and diamagnetic dense flint glass showed that the sensitivity of the former was six times that of the latter, although the temperature stability of the former was poorer. - Highlights: • Theoretical analysis on the effects of temperature on RE glass. • Rare earth doping leads to higher magneto-optical sensitivity. • The sensitivity of the RE glass is six times that of the dense flint glass

  7. Comparison of the magneto-Peltier and magneto-Seebeck effects in magnetic tunnel junctions

    NARCIS (Netherlands)

    Shan, J.; Dejene, F. K.; Leutenantsmeyer, J. C.; Flipse, J.; Munzenberg, M.; van Wees, B. J.

    2015-01-01

    Understanding heat generation and transport processes in a magnetic tunnel junction (MTJ) is a significant step towards improving its application in current memory devices. Recent work has experimentally demonstrated the magneto-Seebeck effect in MTJs, where the Seebeck coefficient of the junction

  8. Holes in magneto electrostatic traps

    International Nuclear Information System (INIS)

    Jones, R.

    1996-01-01

    We observe that in magneto electrostatic confinement (MEC) devices the magnetic surfaces are not always equipotentials. The lack of symmetry in the equipotential surfaces can result in holes in MEC plasma traps. (author)

  9. Superconductivity

    CERN Document Server

    Thomas, D B

    1974-01-01

    A short general review is presented of the progress made in applied superconductivity as a result of work performed in connection with the high-energy physics program in Europe. The phenomenon of superconductivity and properties of superconductors of Types I and II are outlined. The main body of the paper deals with the development of niobium-titanium superconducting magnets and of radio-frequency superconducting cavities and accelerating structures. Examples of applications in and for high-energy physics experiments are given, including the large superconducting magnet for the Big European Bubble Chamber, prototype synchrotron magnets for the Super Proton Synchrotron, superconducting d.c. beam line magnets, and superconducting RF cavities for use in various laboratories. (0 refs).

  10. Melt formed superconducting joint between superconducting tapes

    International Nuclear Information System (INIS)

    Benz, M.G.; Knudsen, B.A.; Rumaner, L.E.; Zaabala, R.J.

    1992-01-01

    This patent describes a superconducting joint between contiguous superconducting tapes having an inner laminate comprised of a parent-metal layer selected from the group niobium, tantalum, technetium, and vanadium, a superconductive intermetallic compound layer on the parent-metal layer, a reactive-metal layer that is capable of combining with the parent-metal and forming the superconductive intermetallic compound, the joint comprising: a continuous precipitate of the superconductive intermetallic compound fused to the tapes forming a continuous superconducting path between the tapes

  11. Final Report. Hydrodynamics by high-energy-density plasma flow and hydrodynamics and radiative hydrodynamics with astrophysical application

    International Nuclear Information System (INIS)

    R Paul Drake

    2004-01-01

    OAK-B135 This is the final report from the project Hydrodynamics by High-Energy-Density Plasma Flow and Hydrodynamics and Radiation Hydrodynamics with Astrophysical Applications. This project supported a group at the University of Michigan in the invention, design, performance, and analysis of experiments using high-energy-density research facilities. The experiments explored compressible nonlinear hydrodynamics, in particular at decelerating interfaces, and the radiation hydrodynamics of strong shock waves. It has application to supernovae, astrophysical jets, shock-cloud interactions, and radiative shock waves

  12. Waveguide-Plasmon Polaritons Enhance Transverse Magneto-Optical Kerr Effect

    Directory of Open Access Journals (Sweden)

    Lars E. Kreilkamp

    2013-11-01

    Full Text Available Magneto-optical effects in ferrimagnetic or ferromagnetic materials are usually too weak for potential applications. The transverse magneto-optical Kerr effect (TMOKE in ferromagnetic films is typically on the order of 0.1%. Here, we demonstrate experimentally the enhancement of TMOKE due to the interaction of particle plasmons in gold nanowires with a photonic waveguide consisting of magneto-optical material, where hybrid waveguide-plasmon polaritons are excited. We achieve a large TMOKE that modulates the transmitted light intensity by 1.5%, accompanied by high transparency of the system. Our concept may lead to novel devices of miniaturized photonic circuits and switches, which are controllable by an external magnetic field.

  13. Remarkable effects of disorder on superconductivity of single atomic layers of lead on silicon

    Science.gov (United States)

    Brun, Christophe

    2015-03-01

    It is well known that conventional superconductivity is very robust against non-magnetic disorder. Nevertheless for thin and ultrathin films the structural properties play a major role in determining the superconducting properties, through a subtle interplay between disorder and Coulomb interactions. Unexpectedly, in 2010 superconductivity was discovered in single atomic layers of lead and indium grown on silicon substrate using scanning tunneling spectroscopy and confirmed later on by macroscopic transport measurements. Such well-controlled and tunable crystalline monolayers are ideal systems for studying the influence of various kinds of structural defects on the superconducting properties at the atomic and mesoscopic scale. In particular, Pb monolayers offer the opportunity of probing new effects of disorder because not only superconductivity is 2D but also the electronic wave functions are 2D. Our study of two Pb monolayers of different crystal structures by very-low temperature STM (300 mK) under magnetic field reveals unexpected results involving new spatial spectroscopic variations. Our results show that although the sheet resistance of the Pb monolayers is much below the resistance quantum, strong non-BCS corrections appear leading to peak heights fluctuations in the dI/dV tunneling spectra at a spatial scale much smaller than the superconducting coherence length. Furthermore, strong local evidence of the signature of Rashba effect on the superconductivity of the Pb/Si(111) monolayer is revealed through filling of in gap states and local spatial variations of this filling. Finally the nature of vortices in a monolayer is found to be very sensitive to the properties of step edges areas. This work was supported by University Pierre et Marie Curie UPMC `Emergence' project, French ANR Project `ElectroVortex,' ANR-QuDec and Templeton Foundation (40381), ARO (W911NF-13-1-0431) and CNRS PICS funds. Partial funding by US-DOE Grant DE-AC02-07CH1.

  14. Hexapole-compensated magneto-optical trap on a mesoscopic atom chip

    DEFF Research Database (Denmark)

    Jöllenbeck, S.; Mahnke, J.; Randoll, R.

    2011-01-01

    Magneto-optical traps on atom chips are usually restricted to small atomic samples due to a limited capture volume caused primarily by distorted field configurations. Here we present a magneto-optical trap based on a millimeter-sized wire structure which generates a magnetic field with minimized...... distortions. Together with the loading from a high-flux two-dimensional magneto-optical trap, we achieve a loading rate of 8.4×1010 atoms/s and maximum number of 8.7×109 captured atoms. The wire structure is placed outside of the vacuum to enable a further adaptation to new scientific objectives. Since all...

  15. Enhanced methanol electro-oxidation reaction on Pt-CoOx/MWCNTs hybrid electro-catalyst

    International Nuclear Information System (INIS)

    Nouralishahi, Amideddin; Rashidi, Ali Morad; Mortazavi, Yadollah; Khodadadi, Abbas Ali; Choolaei, Mohammadmehdi

    2015-01-01

    Highlights: • Promoting effects of Cobalt oxide on methanol electro-oxidation over Pt/MWCNTs are investigated. • Higher activity, about 2.9 times, and enhanced stability are observed on Pt-CoO x /MWCNTs. • Electrochemical active surface area of Pt nanoparticles is significantly improved upon CoO x addition. • Bi-functional mechanism is facilitated in presence of CoO x . - Abstract: The electro-catalytic behavior of Pt-CoO x /MWCNTs in methanol electro-oxidation reaction (MOR) is investigated and compared to that of Pt/MWCNTs. The electro-catalysts were synthesized by an impregnation method using NaBH 4  as the reducing agent. The morphological and physical characteristics of samples are examined by XRD, TEM, ICP and EDS techniques. In the presence of CoO x , Pt nanoparticles were highly distributed on the support with an average particle size of 2 nm, an obvious decrease from 5.1 nm for Pt/MWCNTs. Cyclic voltammetry, CO-stripping, Chronoamperometry, and electrochemical impedance spectroscopy (EIS) measurements are used to study the electrochemical behavior of the electro-catalysts. The results revealed a considerable enhancement in the oxidation kinetics of CO ads on Pt active sites by the participation of CoO x . Compared to Pt/MWCNTs, Pt-CoO x /MWCNTs sample has a larger electrochemical active surface area (ECSA) and higher electro-catalytic activity and stability toward methanol electro-oxidation. According to the results of cyclic voltammetry, the forward anodic peak current density enhances more than 89% at the optimum atomic ratio of Pt:Co = 2:1. Furthermore, inclusion of cobalt oxide species causes the onset potential of methanol electro-oxidation reaction to shift 84 mV to negative values compared to that on Pt/MWCNTs. Based on EIS data, dehydrogenation of methanol is the rate-determining step of MOR on both Pt/MWCNTs and Pt-CoO x /MWCNTs, at small overpotentials. However, at higher overpotentials, the oxidation of adsorbed oxygen-containing groups

  16. Combined photothermal therapy and magneto-motive ultrasound imaging using multifunctional nanoparticles

    Science.gov (United States)

    Mehrmohammadi, Mohammad; Ma, Li L.; Chen, Yun-Sheng; Qu, Min; Joshi, Pratixa; Chen, Raeanna M.; Johnston, Keith P.; Emelianov, Stanislav

    2010-02-01

    Photothermal therapy is a laser-based non-invasive technique for cancer treatment. Photothermal therapy can be enhanced by employing metal nanoparticles that absorb the radiant energy from the laser leading to localized thermal damages. Targeting of nanoparticles leads to more efficient uptake and localization of photoabsorbers thus increasing the effectiveness of the treatment. Moreover, efficient targeting can reduce the required dosage of photoabsorbers; thereby reducing the side effects associated with general systematic administration of nanoparticles. Magnetic nanoparticles, due to their small size and response to an external magnetic field gradient have been proposed for targeted drug delivery. In this study, we investigate the applicability of multifunctional nanoparticles (e.g., magneto-plasmonic nanoparticles) and magneto-motive ultrasound imaging for image-guided photothermal therapy. Magneto-motive ultrasound imaging is an ultrasound based imaging technique capable of detecting magnetic nanoparticles indirectly by utilizing a high strength magnetic field to induce motion within the magnetically labeled tissue. The ultrasound imaging is used to detect the internal tissue motion. Due to presence of the magnetic component, the proposed multifunctional nanoparticles along with magneto-motive ultrasound imaging can be used to detect the presence of the photo absorbers. Clearly the higher concentration of magnetic carriers leads to a monotonic increase in magneto-motive ultrasound signal. Thus, magnetomotive ultrasound can determine the presence of the hybrid agents and provide information about their location and concentration. Furthermore, the magneto-motive ultrasound signal can indicate the change in tissue elasticity - a parameter that is expected to change significantly during the photothermal therapy. Therefore, a comprehensive guidance and assessment of the photothermal therapy may be feasible through magneto-motive ultrasound imaging and

  17. Quasi-One-Dimensional Intermittent Flux Behavior in Superconducting Films

    Directory of Open Access Journals (Sweden)

    A. J. Qviller

    2012-01-01

    Full Text Available Intermittent filamentary dynamics of the vortex matter in superconductors is found in films of YBa_{2}Cu_{3}O_{7-δ} deposited on tilted substrates. Deposition of this material on such substrates creates parallel channels of easy flux penetration when a magnetic field is applied perpendicular to the film. As the applied field is gradually increased, magneto-optical imaging reveals that flux penetrates via numerous quasi-one-dimensional jumps. The distribution of flux avalanche sizes follows a power law, and data collapse is obtained by finite-size scaling, with the depth of the flux front used as crossover length. The intermittent behavior shows no threshold value in the applied field, in contrast to conventional flux jumping. The results strongly suggest that the quasi-one-dimensional flux jumps are of a different nature than the thermomagnetic dendritic (branching avalanches that are commonly found in superconducting films.

  18. Magneto-optical properties of InSb for terahertz applications

    Directory of Open Access Journals (Sweden)

    Jan Chochol

    2016-11-01

    Full Text Available Magneto-optical permittivity tensor spectra of undoped InSb, n-doped and p-doped InSb crystals were determined using the terahertz time-domain spectroscopy (THz-TDS and the Fourier transform far-infrared spectroscopy (far-FTIR. A Huge polar magneto-optical (MO Kerr-effect (up to 20 degrees in rotation and a simultaneous plasmonic behavior observed at low magnetic field (0.4 T and room temperature are promising for terahertz nonreciprocal applications. We demonstrate the possibility of adjusting the the spectral rage with huge MO by increase in n-doping of InSb. Spectral response is modeled using generalized magneto-optical Drude-Lorentz theory, giving us precise values of free carrier mobility, density and effective mass consistent with electric Hall effect measurement.

  19. Mode conversion in magneto photonic crystal fibre

    International Nuclear Information System (INIS)

    Otmani, Hamza; Bouchemat, Mohamed; Hocini, Abdesselam; Boumaza, Touraya; Benmerkhi, Ahlem

    2017-01-01

    The first concept of an integrated isolator was based on nonreciprocal TE–TM mode conversion, the nonreciprocal coupling between these modes is caused by the Faraday rotation if the magnetization is aligned along the z–axis, parallel to mode propagation. We propose to study this magneto-optical phenomenon, by the simulation of magneto photonic crystal fibre (MPCF), it consists of a periodic triangular lattice of air-holes filled with magnetic fluid which consists of magnetic nanoparticles into a BIG (Bismuth Iron Garnet) fibre. We simulated the influence of gyrotropy and the wavelength, and calculated Faraday rotation and modal birefringence. In this fibre the light is guided by internal total reflection, like classical fibres. However it was shown that they could function on a mode conversion much stronger than conventional fibres. - Highlights: • We propose to study mode conversion TE–TM, by the simulation of magneto photonic crystal fibre (MPCF). • We simulated the influence of gyrotropy. • We simulated the wavelength. • We calculated Faraday rotation. • We calculated modal birefringence.

  20. On nonlinear thermo-electro-elasticity.

    Science.gov (United States)

    Mehnert, Markus; Hossain, Mokarram; Steinmann, Paul

    2016-06-01

    Electro-active polymers (EAPs) for large actuations are nowadays well-known and promising candidates for producing sensors, actuators and generators. In general, polymeric materials are sensitive to differential temperature histories. During experimental characterizations of EAPs under electro-mechanically coupled loads, it is difficult to maintain constant temperature not only because of an external differential temperature history but also because of the changes in internal temperature caused by the application of high electric loads. In this contribution, a thermo-electro-mechanically coupled constitutive framework is proposed based on the total energy approach. Departing from relevant laws of thermodynamics, thermodynamically consistent constitutive equations are formulated. To demonstrate the performance of the proposed thermo-electro-mechanically coupled framework, a frequently used non-homogeneous boundary-value problem, i.e. the extension and inflation of a cylindrical tube, is solved analytically. The results illustrate the influence of various thermo-electro-mechanical couplings.

  1. Superconductivity

    CERN Document Server

    Poole, Charles P; Farach, Horacio A

    1995-01-01

    Superconductivity covers the nature of the phenomenon of superconductivity. The book discusses the fundamental principles of superconductivity; the essential features of the superconducting state-the phenomena of zero resistance and perfect diamagnetism; and the properties of the various classes of superconductors, including the organics, the buckministerfullerenes, and the precursors to the cuprates. The text also describes superconductivity from the viewpoint of thermodynamics and provides expressions for the free energy; the Ginzburg-Landau and BCS theories; and the structures of the high

  2. Electro-weak theory

    International Nuclear Information System (INIS)

    Deshpande, N.G.

    1980-01-01

    By electro-weak theory is meant the unified field theory that describes both weak and electro-magnetic interactions. The development of a unified electro-weak theory is certainly the most dramatic achievement in theoretical physics to occur in the second half of this century. It puts weak interactions on the same sound theoretical footing as quantum elecrodynamics. Many theorists have contributed to this development, which culminated in the works of Glashow, Weinberg and Salam, who were jointly awarded the 1979 Nobel Prize in physics. Some of the important ideas that contributed to this development are the theory of beta decay formulated by Fermi, Parity violation suggested by Lee and Yang, and incorporated into immensely successful V-A theory of weak interactions by Sudarshan and Marshak. At the same time ideas of gauge invariance were applied to weak interaction by Schwinger, Bludman and Glashow. Weinberg and Salam then went one step further and wrote a theory that is renormalizable, i.e., all higher order corrections are finite, no mean feat for a quantum field theory. The theory had to await the development of the quark model of hadrons for its completion. A description of the electro-weak theory is given

  3. Magnetic design and method of a superconducting magnet for muon g - 2/EDM precise measurements in a cylindrical volume with homogeneous magnetic field

    Science.gov (United States)

    Abe, M.; Murata, Y.; Iinuma, H.; Ogitsu, T.; Saito, N.; Sasaki, K.; Mibe, T.; Nakayama, H.

    2018-05-01

    A magnetic field design method of magneto-motive force (coil block (CB) and iron yoke) placements for g - 2/EDM measurements has been developed and a candidate placements were designed under superconducting limitations of current density 125 A/mm2 and maximum magnetic field on CBs less than 5.5 T. Placements of CBs and an iron yoke with poles were determined by tuning SVD (singular value decomposition) eigenmode strengths. The SVD was applied on a response matrix from magneto-motive forces to the magnetic fields in the muon storage region and two-dimensional (2D) placements of magneto-motive forces were designed by tuning the magnetic field eigenmode strengths obtained by the magnetic field. The tuning was performed iteratively. Magnetic field ripples in the azimuthal direction were minimized for the design. The candidate magnetic design had five CBs and an iron yoke with center iron poles. The magnet satisfied specifications of homogeneity (0.2 ppm peak-to-peak in 2D placements (the cylindrical coordinate of the radial position R and axial position Z) and less than 1.0 ppm ripples in the ring muon storage volume (0.318 m 0.0 m) for the spiral muon injection from the iron yoke at top.

  4. Enhanced Faraday rotation in one dimensional magneto-plasmonic structure due to Fano resonance

    Science.gov (United States)

    Sadeghi, S.; Hamidi, S. M.

    2018-04-01

    Enhanced Faraday rotation in a new type of magneto-plasmonic structure with the capability of Fano resonance, has been reported theoretically. A magneto-plasmonic structure composed of a gold corrugated layer deposited on a magneto-optically active layer was studied by means of Lumerical software based on finite-difference time-domain. In our proposed structure, plasmonic Fano resonance and localized surface plasmon have induced enhancement in magneto-optical Faraday rotation. It is shown that the influence of geometrical parameters in gold layer offers a desirable platform for engineering spectral position of Fano resonance and enhancement of Faraday rotation.

  5. Results of the research on electrode and insulation wall material in fiscal 1977. Large scale technological development 'R and D on magneto hydrodynamic generation'; 1977 nendo denkyoku oyobi zetsuenheki zairyo ni kansuru kenkyu seika

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-06-01

    Results of research in fiscal 1977 were compiled concerning electrodes and insulation wall materials, the research conducted by the material working group of the magneto hydrodynamic (MHD) generation R and D liaison conference. Researches on trial manufacturing of duct materials for MHD generation were conducted for a Si{sub 3}N{sub 4}-MgO, Si{sub 3}N{sub 4}-Spinel, Spinel and Sialon based insulation wall material, MgO-BN based insulation wall material, tin oxide based electrode material, cold press ZrO{sub 2}-CeO{sub 2} and ZrO{sub 2}-Y{sub 2}O{sub 2} based electrode material, hot press hot hydrostatic pressure ZrO{sub 2}-CeO{sub 2} based electrode material, cermet based electrode material, etc. In the investigation and measurement of basic characteristics, these materials were put through various tests such as 1,300 degree C-300 hr-K{sub 2}SO{sub 4} immersion test, thermal shock resistance, thermal expansibility, oxidation resistance of oxide/nitride based materials. In addition, selection of materials for MHD generation, as well as the examination and degradation analysis of dynamic characteristics, was carried out by simulation of MHD generation, which provided data of various electrodes such as consumption, electrical characteristics (electrode lowering voltage, critical current, etc.) and thermal characteristics (surface temperature, heat flow velocity, etc.) (NEDO)

  6. Magneto-paper electrophoresis in the separation of inorganic ions

    International Nuclear Information System (INIS)

    Mukherjee, H.G.; Datta, S.K.

    1983-01-01

    A comparative study of the separation of lanthanide ions by paper electrophoresis and magneto-paper electrophoresis is reported. The separation of La(III)-Gd(III), La(III)-Dy(III), Lu(III)-Gd(III), Lu(III)-Ho(III) etc. was achieved by magneto paper electrophoresis using 0.1M KCl as carrier electrolyte. Separation of different oxidation states of the same element like Cu(I)-Cu(II), Ce(III)-Ce(IV), Mn(CN) 6 3 - -Mn(CN) 6 4 - , Co(C 2 O 4 ) 2 2 - -Co(C 2 O 4 ) 3 3 - , V(CN) 6 3 - -VO(CN) 5 3 - , W(CN) 8 4 - -W(CN) 8 3 - and Ru(CN) 6 3 - Ru(CN) 6 4 - was also achieved by magneto paper electrophoretic technique using different carrier electrolytes. (Author)

  7. Influence of the linear magneto-electric effect on the lateral shift of light reflected from a magneto-electric film

    International Nuclear Information System (INIS)

    Dadoenkova, Yu S; Petrov, R V; Bichurin, M I; Bentivegna, F F L; Dadoenkova, N N; Lyubchanskii, I L

    2016-01-01

    We present a theoretical investigation of the lateral shift of an infrared light beam reflected from a magnetic film deposited on a non-magnetic dielectric substrate, taking into account the linear magneto-electric interaction in the magnetic film. We use the stationary phase method to evaluate the lateral shift. It is shown that the magneto-electric coupling leads to a six-fold enhancement of the lateral shift amplitude of a p-(s-) polarized incident beam reflected into a s-(p-) polarized beam. A reversal of the magnetization in the film leads to a nonreciprocal sign change of the lateral shift. (paper)

  8. Superconductivity

    International Nuclear Information System (INIS)

    Taylor, A.W.B.; Noakes, G.R.

    1981-01-01

    This book is an elementray introduction into superconductivity. The topics are the superconducting state, the magnetic properties of superconductors, type I superconductors, type II superconductors and a chapter on the superconductivity theory. (WL)

  9. Magneto-optic studies of magnetic oxides

    International Nuclear Information System (INIS)

    Gehring, Gillian A.; Alshammari, Marzook S.; Score, David S.; Neal, James R.; Mokhtari, Abbas; Fox, A. Mark

    2012-01-01

    A brief review of the use of magneto-optic methods to study magnetic oxides is given. A simple method to obtain the magnetic circular dichroism (MCD) of a thin film on a transparent substrate is described. The method takes full account of multiple reflections in the film and substrate. Examples of the magneto-optic spectra of Co-doped ZnO, Fe 3 O 4 , and GdMnO 3 are given. The Maxwell–Garnett method is used to describe the effects of metallic cobalt inclusions in Co:ZnO samples, and the change of the MCD spectra of Fe 3 O 4 at the Verwey temperature is discussed. Data showing different MCD signals at different energies is presented for GdMnO 3 .

  10. Superconductivity

    International Nuclear Information System (INIS)

    Onnes, H.K.

    1988-01-01

    The author traces the development of superconductivity from 1911 to 1986. Some of the areas he explores are the Meissner Effect, theoretical developments, experimental developments, engineering achievements, research in superconducting magnets, and research in superconducting electronics. The article also mentions applications shown to be technically feasible, but not yet commercialized. High-temperature superconductivity may provide enough leverage to bring these applications to the marketplace

  11. Superconductivity

    International Nuclear Information System (INIS)

    Andersen, N.H.; Mortensen, K.

    1988-12-01

    This report contains lecture notes of the basic lectures presented at the 1st Topsoee Summer School on Superconductivity held at Risoe National Laboratory, June 20-24, 1988. The following lecture notes are included: L.M. Falicov: 'Superconductivity: Phenomenology', A. Bohr and O. Ulfbeck: 'Quantal structure of superconductivity. Gauge angle', G. Aeppli: 'Muons, neutrons and superconductivity', N.F. Pedersen: 'The Josephson junction', C. Michel: 'Physicochemistry of high-T c superconductors', C. Laverick and J.K. Hulm: 'Manufacturing and application of superconducting wires', J. Clarke: 'SQUID concepts and systems'. (orig.) With 10 tabs., 128 figs., 219 refs

  12. Theory of superconductivity

    International Nuclear Information System (INIS)

    Crisan, M.

    1988-01-01

    This book discusses the most important aspects of the theory. The phenomenological model is followed by the microscopic theory of superconductivity, in which modern formalism of the many-body theory is used to treat most important problems such as superconducting alloys, coexistence of superconductivity with the magnetic order, and superconductivity in quasi-one-dimensional systems. It concludes with a discussion on models for exotic and high temperature superconductivity. Its main aim is to review, as complete as possible, the theory of superconductivity from classical models and methods up to the 1987 results on high temperature superconductivity. Contents: Phenomenological Theory of Superconductivity; Microscopic Theory of Superconductivity; Theory of Superconducting Alloys; Superconductors in a Magnetic Field; Superconductivity and Magnetic Order; Superconductivity in Quasi-One-Dimensional Systems; and Non-Conventional Superconductivity

  13. Applied superconductivity

    CERN Document Server

    Newhouse, Vernon L

    1975-01-01

    Applied Superconductivity, Volume II, is part of a two-volume series on applied superconductivity. The first volume dealt with electronic applications and radiation detection, and contains a chapter on liquid helium refrigeration. The present volume discusses magnets, electromechanical applications, accelerators, and microwave and rf devices. The book opens with a chapter on high-field superconducting magnets, covering applications and magnet design. Subsequent chapters discuss superconductive machinery such as superconductive bearings and motors; rf superconducting devices; and future prospec

  14. Electro-optic transceivers for terahertz-wave applications

    International Nuclear Information System (INIS)

    Chen, Q.; Tani, M.; Jiang, Zhiping; Zhang, X.-C.

    2001-01-01

    Because of the reciprocal behavior of the optical rectification and the electro-optic effect in a nonlinear optical crystal, an electro-optic transceiver can alternately transmit pulsed electromagnetic radiation (optical rectification) and detect the return signal (electro-optic effect) in the same crystal. However, the optimal condition of the electro-optic transceiver may be very different from that of the spatially separated emitter and receiver. We present a detailed description of the crystal-orientation dependence of the electro-optic terahertz devices (transmitter, receiver, and transceiver). It is found that for a (110) zinc-blende electro-optical crystal, the efficiency of the electro-optic transceiver will be optimized when the angle between the polarization of the optical pump beam and the crystallographic z axis [0,0,1] is 26 degree. Meanwhile, for a (111) crystal, the angle between the optical beam and the crystallographic direction [-1,-1,2] should be 23 degree. The experimental results from a (110) ZnTe transceiver verify theoretical calculations and demonstrate a direct way to optimize the working efficiency of an electro-optic terahertz transceiver. [copyright] 2001 Optical Society of America

  15. Vortex 'puddles' and magic vortex numbers in mesoscopic superconducting disks

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, M R; Milosevic, M V; Bending, S J [Department of Physics, University of Bath - Claverton Down, Bath, BA2 7AY (United Kingdom); Clem, J R [Ames Laboratory Department of Physics and Astronomy - Iowa State University, Ames, IA 50011-3160 (United States); Tamegai, T, E-mail: mrc61@cam.ac.u [Department of Applied Physics, University of Tokyo - Hongo, Bunkyo-ku, Tokyo 113-8627 (Japan)

    2009-03-01

    The magnetic properties of a superconducting disk change dramatically when its dimensions become mesoscopic. Unlike large disks, where the screening currents induced by an applied magnetic field are strong enough to force vortices to accumulate in a 'puddle' at the centre, in a mesoscopic disk the interaction between one of these vortices and the edge currents can be comparable to the intervortex repulsion, resulting in a destruction of the ordered triangular vortex lattice structure at the centre. Vortices instead form clusters which adopt polygonal and shell-like structures which exhibit magic number states similar to those of charged particles in a confining potential, and electrons in artificial atoms. We have fabricated mesoscopic high temperature superconducting Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+delta} disks and investigated their magnetic properties using magneto-optical imaging (MOI) and high resolution scanning Hall probe microscopy (SHPM). The temperature dependence of the vortex penetration field measured using MOI is in excellent agreement with models of the thermal excitation of pancake vortices over edge barriers. The growth of the central vortex puddle has been directly imaged using SHPM and magic vortex numbers showing higher stability have been correlated with abrupt jumps in the measured local magnetisation curves.

  16. Electro-optic diffraction grating tuned laser

    International Nuclear Information System (INIS)

    Hughes, R.S.

    1975-01-01

    An electro-optic diffraction grating tuned laser comprising a laser medium, output mirror, retro-reflective grating and an electro-optic diffraction grating beam deflector positioned between the laser medium and the reflective diffraction grating is described. An optional angle multiplier may be used between the electro-optic diffraction grating and the reflective grating. (auth)

  17. Magneto-acoustic intensification of the cleaning process phosphatidic concentrate

    Directory of Open Access Journals (Sweden)

    E. A. Shestakova

    2017-01-01

    Full Text Available In work propose an efficient technology and machine-instrumental scheme of purification of phosphatidic concentrate magneto-acoustic method with application of the distillation of the alcoholic solvent from the modified cuts of vegetable oil. Processing in ultrasound 10 W/cm2 in pulsed magnetic field of 2 T to provide high-quality lecythidaceae product in the form of granules insoluble in alcohol fraction and a fat part with the low value for waste, are absorbed by the silica gel. The research objective is to study the influence of hydrodynamic effects on the complex processes of Association and deassociation free fatty acids and other related lipids in the composition waste of deodorization of the sunflower oils, the rationale for the use of silica gel as an efficient neutralizing and adsorbing agent, the definition of rational modes of process of obtaining high-quality lecythidaceae product in vacuum molecular distillation. The relevance of the work «Improvement of process and equipment for distillation cuts of vegetable oils processed in ultrasound» is that now in Russia practically there are no domestic scientific works in this direction. The proposed technology of modified sunflower lecitinov, allows you to receive as graded lecithin with acetonrastvorimyh substances more than 60%, and fat-free egg lecithin with acetonnerastvorimyh substances to 95% with an increased content of physiologically valuable groups of phospholipids.

  18. Fundamentals of electro-engineering I

    International Nuclear Information System (INIS)

    Rapsik, M.; Smola, M.; Bohac, M.; Mucha, M.

    2004-01-01

    This is the text-book of the fundamentals of electro-engineering. It contains the following chapters: (1) Selected terms in electro-engineering; (2) Fundamental electric values; (3) Energy and their transformations; (4) Water, hydro-energy and hydro-energetic potential of the Slovak Republic; (5) Nuclear power engineering; (6) Conventional thermal power plants; (7) Heating and cogeneration of electric power and heat production; (8) Equipment of electricity supply system; (9) Measurements in electro-engineering ; (10) Regulation of frequency and voltage, electric power quality

  19. Electro-optic polymers for high speed modulators

    NARCIS (Netherlands)

    Balakrishnan, M.; Diemeer, Mart; Driessen, A.; Faccini, M.; Verboom, Willem; Reinhoudt, David; Leinse, Arne; Megret, P.; Wuilpart, M.; Bette, S.; Staquet, N.

    2005-01-01

    Different electro-optic polymer systems are analyzed with respect to their electro-optic activity, glass transition temperature $(T_g)$ and photodefinable properties. The polymers tested are polysulfone (PS) and polycarbonate (PC). The electro-optic chromophore,

  20. Magneto-optic studies of magnetic oxides

    Energy Technology Data Exchange (ETDEWEB)

    Gehring, Gillian A., E-mail: g.gehring@shef.ac.uk [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom); Alshammari, Marzook S.; Score, David S.; Neal, James R.; Mokhtari, Abbas; Fox, A. Mark [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom)

    2012-10-15

    A brief review of the use of magneto-optic methods to study magnetic oxides is given. A simple method to obtain the magnetic circular dichroism (MCD) of a thin film on a transparent substrate is described. The method takes full account of multiple reflections in the film and substrate. Examples of the magneto-optic spectra of Co-doped ZnO, Fe{sub 3}O{sub 4}, and GdMnO{sub 3} are given. The Maxwell-Garnett method is used to describe the effects of metallic cobalt inclusions in Co:ZnO samples, and the change of the MCD spectra of Fe{sub 3}O{sub 4} at the Verwey temperature is discussed. Data showing different MCD signals at different energies is presented for GdMnO{sub 3}.

  1. Superconductivity

    International Nuclear Information System (INIS)

    Caruana, C.M.

    1988-01-01

    Despite reports of new, high-temperature superconductive materials almost every day, participants at the First Congress on Superconductivity do not anticipate commercial applications with these materials soon. What many do envision is the discovery of superconducting materials that can function at much warmer, perhaps even room temperatures. Others hope superconductivity will usher in a new age of technology as semiconductors and transistors did. This article reviews what the speakers had to say at the four-day congress held in Houston last February. Several speakers voiced concern that the Reagan administration's apparent lack of interest in funding superconductivity research while other countries, notably Japan, continue to pour money into research and development could hamper America's international competitiveness

  2. Transport of magneto-nanoparticles during electro-osmotic flow in a micro-tube in the presence of magnetic field for drug delivery application

    Science.gov (United States)

    Mondal, A.; Shit, G. C.

    2017-11-01

    In this paper, we have examined the motion of magnetic-nanoparticles and the flow characteristics of biofluid in a micro-tube in the presence of externally applied magnetic field and electrokinetic effects. In the drug delivery system, the motion of the magnetic nanoparticles as carriers is important for therapeutic procedure in the treatment of tumor cells, infections and removing blood clots. The unidirectional electro-osmotic flow of biofluid is driven by the combined effects of pulsatile pressure gradient and electrokinetic force. The governing equation for unsteady electromagnetohydrodynamic flow subject to the no-slip boundary condition has been solved numerically by using Crank-Nicolson implicit finite difference scheme. We have analyzed the variation of axial velocity, velocity distribution of magnetic nanoparticles, volumetric flow rate and wall shear stress for various values of the non-dimensional parameters. The study reveals that blood flow velocity, carriers velocity and flow rate are strongly influenced by the electro-osmotic parameter as well as the Hartmann number. The particle mass parameter as well as the particle concentration parameter have efficient capturing effect on magnetic nanoparticles during blood flow through a micro-tube for drug delivery.

  3. Novel design of a self powered and self sensing magneto-rheological damper

    International Nuclear Information System (INIS)

    Ferdaus, Mohammad Meftahul; Rashid, M M; Bhuiyan, M M I; Muthalif, Asan Gani Bin Abdul; Hasan, M R

    2013-01-01

    Magneto-rheological (MR) dampers are semi-active control devices and use MR fluids. Magneto-rheological dampers have successful applications in mechatronics engineering, civil engineering and numerous areas of engineering. At present, traditional MR damper systems, require a isolated power supply and dynamic sensor. This paper presents the achievability and accuracy of a self- powered and self-sensing magneto-rheological damper using harvested energy from the vibration and shock environment in which it is deployed and another important part of this paper is the increased yield stress of the Magneto rheological Fluids. Magneto rheological fluids using replacement of glass beads for Magnetic Particles to surge yield stress is implemented here. Clearly this shows better result on yield stress, viscosity, and settling rate. Also permanent magnet generator (PMG) is designed and attached to a MR damper. For evaluating the self-powered MR damper's vibration mitigating capacity, an Engine Mount System using the MR damper is simulated. The ideal stiffness of the PMG for the Engine Mount System (EMS) is calculated by numerical study. The vibration mitigating performance of the EMS employing the self-powered and self sensing MR damper is theoretically calculated and evaluated in the frequency domain

  4. Novel design of a self powered and self sensing magneto-rheological damper

    Science.gov (United States)

    Meftahul Ferdaus, Mohammad; Rashid, M. M.; Bhuiyan, M. M. I.; Muthalif, Asan Gani Bin Abdul; Hasan, M. R.

    2013-12-01

    Magneto-rheological (MR) dampers are semi-active control devices and use MR fluids. Magneto-rheological dampers have successful applications in mechatronics engineering, civil engineering and numerous areas of engineering. At present, traditional MR damper systems, require a isolated power supply and dynamic sensor. This paper presents the achievability and accuracy of a self- powered and self-sensing magneto-rheological damper using harvested energy from the vibration and shock environment in which it is deployed and another important part of this paper is the increased yield stress of the Magneto rheological Fluids. Magneto rheological fluids using replacement of glass beads for Magnetic Particles to surge yield stress is implemented here. Clearly this shows better result on yield stress, viscosity, and settling rate. Also permanent magnet generator (PMG) is designed and attached to a MR damper. For evaluating the self-powered MR damper's vibration mitigating capacity, an Engine Mount System using the MR damper is simulated. The ideal stiffness of the PMG for the Engine Mount System (EMS) is calculated by numerical study. The vibration mitigating performance of the EMS employing the self-powered & self sensing MR damper is theoretically calculated and evaluated in the frequency domain.

  5. Enhanced methanol electro-oxidation reaction on Pt-CoO{sub x}/MWCNTs hybrid electro-catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Nouralishahi, Amideddin, E-mail: Nouralishahi@ut.ac.ir [Catalysis and Nanostructured Materials Research Laboratory, School of Chemical Engineering, University of Tehran, P.O. Box 11155/4563, Tehran (Iran, Islamic Republic of); Caspian Faculty of Engineering, University of Tehran, P.O. Box 43841-119, Rezvanshahr (Iran, Islamic Republic of); Catalysis and Nanotechnology Research Division, Research Institute of Petroleum Industry (RIPI), P.O. Box 14665-1998, Tehran (Iran, Islamic Republic of); Rashidi, Ali Morad, E-mail: Rashidiam@ripi.ir [Catalysis and Nanotechnology Research Division, Research Institute of Petroleum Industry (RIPI), P.O. Box 14665-1998, Tehran (Iran, Islamic Republic of); Mortazavi, Yadollah, E-mail: Mortazav@ut.ac.ir [Catalysis and Nanostructured Materials Research Laboratory, School of Chemical Engineering, University of Tehran, P.O. Box 11155/4563, Tehran (Iran, Islamic Republic of); Khodadadi, Abbas Ali, E-mail: Khodadad@ut.ac.ir [Catalysis and Nanostructured Materials Research Laboratory, School of Chemical Engineering, University of Tehran, P.O. Box 11155/4563, Tehran (Iran, Islamic Republic of); Choolaei, Mohammadmehdi, E-mail: Choolaeimm@ripi.ir [Catalysis and Nanotechnology Research Division, Research Institute of Petroleum Industry (RIPI), P.O. Box 14665-1998, Tehran (Iran, Islamic Republic of)

    2015-04-30

    Highlights: • Promoting effects of Cobalt oxide on methanol electro-oxidation over Pt/MWCNTs are investigated. • Higher activity, about 2.9 times, and enhanced stability are observed on Pt-CoO{sub x}/MWCNTs. • Electrochemical active surface area of Pt nanoparticles is significantly improved upon CoO{sub x} addition. • Bi-functional mechanism is facilitated in presence of CoO{sub x}. - Abstract: The electro-catalytic behavior of Pt-CoO{sub x}/MWCNTs in methanol electro-oxidation reaction (MOR) is investigated and compared to that of Pt/MWCNTs. The electro-catalysts were synthesized by an impregnation method using NaBH{sub 4} as the reducing agent. The morphological and physical characteristics of samples are examined by XRD, TEM, ICP and EDS techniques. In the presence of CoO{sub x}, Pt nanoparticles were highly distributed on the support with an average particle size of 2 nm, an obvious decrease from 5.1 nm for Pt/MWCNTs. Cyclic voltammetry, CO-stripping, Chronoamperometry, and electrochemical impedance spectroscopy (EIS) measurements are used to study the electrochemical behavior of the electro-catalysts. The results revealed a considerable enhancement in the oxidation kinetics of CO{sub ads} on Pt active sites by the participation of CoO{sub x}. Compared to Pt/MWCNTs, Pt-CoO{sub x}/MWCNTs sample has a larger electrochemical active surface area (ECSA) and higher electro-catalytic activity and stability toward methanol electro-oxidation. According to the results of cyclic voltammetry, the forward anodic peak current density enhances more than 89% at the optimum atomic ratio of Pt:Co = 2:1. Furthermore, inclusion of cobalt oxide species causes the onset potential of methanol electro-oxidation reaction to shift 84 mV to negative values compared to that on Pt/MWCNTs. Based on EIS data, dehydrogenation of methanol is the rate-determining step of MOR on both Pt/MWCNTs and Pt-CoO{sub x}/MWCNTs, at small overpotentials. However, at higher overpotentials, the

  6. Regularity criteria for the 3D magneto-micropolar fluid equations via ...

    Indian Academy of Sciences (India)

    3D magneto-micropolar fluid equations. It involves only the direction of the velocity and the magnetic field. Our result extends to the cases of Navier–Stokes and MHD equations. Keywords. Magneto-micropolar fluid equations; regularity criteria; direction of velocity. 2010 Mathematics Subject Classification. 35Q35, 76W05 ...

  7. Magneto-optic and converse magnetoelectric effects in a ferromagnetic liquid crystal.

    Science.gov (United States)

    Mertelj, Alenka; Osterman, Natan; Lisjak, Darja; Copič, Martin

    2014-12-07

    We have studied the response of ferromagnetic liquid crystals to external magnetic and electric fields, and compared it to the usual response of nematic liquid crystals (NLCs). We have observed effects, which are not present in a pure NLC and are a consequence of the coupling between the nematic director and the magnetization. The electro-optic effect, which is in the ferromagnetic phase the same as in the pure NLC, is accompanied by a converse magnetoelectric effect. The magneto-optic effect differs completely from the one observed in the pure NLC, where it is a quadratic effect and it only appears when a magnetic field larger than a critical field is applied perpendicular to the director. In the ferromagnetic NLC in addition to the response to the perpendicular field, there is also a qualitatively different response to the parallel field. Contrary to the pure NLC no critical field needs to be exceeded for the system to respond to a perpendicular field, but a critical field needs to be exceeded to observe a response to the field parallel to the director and antiparallel to the magnetization. The critical field is in this case two orders of magnitude smaller than the critical field of the magnetic Frederiks transition in the pure NLC. The experimental observations are well described by a simple macroscopic theory.

  8. Effective-mass model and magneto-optical properties in hybrid perovskites

    OpenAIRE

    Yu, Z. G.

    2016-01-01

    Hybrid inorganic-organic perovskites have proven to be a revolutionary material for low-cost photovoltaic applications. They also exhibit many other interesting properties, including giant Rashba splitting, large-radius Wannier excitons, and novel magneto-optical effects. Understanding these properties as well as the detailed mechanism of photovoltaics requires a reliable and accessible electronic structure, on which models of transport, excitonic, and magneto-optical properties can be effici...

  9. Polymer Coatings Reduce Electro-osmosis

    Science.gov (United States)

    Herren, Blair J.; Snyder, Robert; Shafer, Steven G.; Harris, J. Milton; Van Alstine, James M.

    1989-01-01

    Poly(ethylene glycol) film controls electrostatic potential. Electro-osmosis in quartz or glass chambers reduced or reversed by coating inside surface of chambers with monomacromolecular layers of poly(ethylene glycol). Stable over long times. Electrostatic potential across surface of untreated glass or plastic chamber used in electro-phoresis is negative and attracts cations in aqueous electrolyte. Cations solvated, entrains flow of electrolyte migrating toward cathode. Electro-osmotic flow interferes with desired electrophoresis of particles suspended in electrolyte. Polymer coats nontoxic, transparent, and neutral, advantageous for use in electrophoresis.

  10. Experimental study of the anisotropic magneto-Seebeck effect in (Ga,Mn)As thin films

    Energy Technology Data Exchange (ETDEWEB)

    Althammer, Matthias; Krupp, Alexander T.; Brenninger, Thomas; Venkateshvaran, Deepak; Opel, Matthias; Gross, Rudolf; Goennenwein, Sebastian T.B. [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Dreher, Lukas [Walter Schottky Institut, Technische Universitaet Muenchen, Garching (Germany); Schoch, Wladimir; Limmer, Wolfgang [Abteilung Halbleiterphysik, Universitaet Ulm, Ulm (Germany)

    2011-07-01

    In analogy to anisotropic magnetoresistance (AMR), the thermopower of ferromagnetic materials also characteristically depends on the orientation of the magnetization vector. This anisotropic magneto-thermopower - or anisotropic magneto-Seebeck effect (AMS) - has only scarcely been studied to date. Taking the ferromagnetic semiconductor (Ga,Mn)As with its large magneto-resistive effects as a prototype example, we have measured the evolution of both the AMR and the AMS effects at liquid He temperatures as a function of the orientation of a magnetic field applied in the (Ga,Mn)As film plane, for different, fixed magnetic field magnitudes. Our data show that the AMS effect can be adequately modeled only if the symmetry of the (Ga,Mn)As crystal is explicitly taken into account. We quantitatively compare our AMR and AMS measurements with corresponding model calculations, and address the validity of the Mott relations linking the magneto-resistance and the magneto-Seebeck coefficients.

  11. Broadbanding of circularly polarized patch antenna by waveguided magneto-dielectric metamaterial

    Directory of Open Access Journals (Sweden)

    Xin Mi Yang

    2015-12-01

    Full Text Available Design of bandwidth-enhanced circularly polarized (CP patch antenna using artificial magneto-dielectric substrate was investigated. The artificial magneto-dielectric material adopted here takes the form of waveguided metamaterial (WG-MTM. In particular, the embedded meander line (EML structure was employed as the building element of the WG-MTM. As verified by the retrieved effective medium parameters, the EML-based waveguided magneto-dielectric metamaterial (WG-MDM exhibits two-dimensionally isotropic magneto-dielectric property with respect to TEM wave excitations applied in two orthogonal directions. A CP patch antenna loaded with the EML-based WG-MDM (WG-MDM antenna has been proposed and its design procedure is described in detail. Simulation results show that the impedance and axial ratio bandwidths of the WG-MDM antenna have increased by 125% and 133%, respectively, compared with those obtained with pure dielectric substrate offering the same patch size. The design of the novel WG-MDM antenna was also validated by measurement results, which show good agreement with their simulated counterparts.

  12. Elasto-hydrodynamic lubrication

    CERN Document Server

    Dowson, D; Hopkins, D W

    1977-01-01

    Elasto-Hydrodynamic Lubrication deals with the mechanism of elasto-hydrodynamic lubrication, that is, the lubrication regime in operation over the small areas where machine components are in nominal point or line contact. The lubrication of rigid contacts is discussed, along with the effects of high pressure on the lubricant and bounding solids. The governing equations for the solution of elasto-hydrodynamic problems are presented.Comprised of 13 chapters, this volume begins with an overview of elasto-hydrodynamic lubrication and representation of contacts by cylinders, followed by a discussio

  13. Elementary classical hydrodynamics

    CERN Document Server

    Chirgwin, B H; Langford, W J; Maxwell, E A; Plumpton, C

    1967-01-01

    Elementary Classical Hydrodynamics deals with the fundamental principles of elementary classical hydrodynamics, with emphasis on the mechanics of inviscid fluids. Topics covered by this book include direct use of the equations of hydrodynamics, potential flows, two-dimensional fluid motion, waves in liquids, and compressible flows. Some general theorems such as Bernoulli's equation are also considered. This book is comprised of six chapters and begins by introducing the reader to the fundamental principles of fluid hydrodynamics, with emphasis on ways of studying the motion of a fluid. Basic c

  14. Superconductivity in Pb inverse opal

    International Nuclear Information System (INIS)

    Aliev, Ali E.; Lee, Sergey B.; Zakhidov, Anvar A.; Baughman, Ray H.

    2007-01-01

    Type-II superconducting behavior was observed in highly periodic three-dimensional lead inverse opal prepared by infiltration of melted Pb in blue (D = 160 nm), green (D = 220 nm) and red (D = 300 nm) opals and followed by the extraction of the SiO 2 spheres by chemical etching. The onset of a broad phase transition (ΔT = 0.3 K) was shifted from T c = 7.196 K for bulk Pb to T c = 7.325 K. The upper critical field H c2 (3150 Oe) measured from high-field hysteresis loops exceeds the critical field for bulk lead (803 Oe) fourfold. Two well resolved peaks observed in the hysteresis loops were ascribed to flux penetration into the cylindrical void space that can be found in inverse opal structure and into the periodic structure of Pb nanoparticles. The red inverse opal shows pronounced oscillations of magnetic moment in the mixed state at low temperatures, T 0.9T c has been observed for all of the samples studied. The magnetic field periodicity of resistivity modulation is in good agreement with the lattice parameter of the inverse opal structure. We attribute the failure to observe pronounced modulation in magneto-resistive measurement to difficulties in the precision orientation of the sample along the magnetic field

  15. Rich magneto-absorption spectra of AAB-stacked trilayer graphene.

    Science.gov (United States)

    Do, Thi-Nga; Shih, Po-Hsin; Chang, Cheng-Peng; Lin, Chiun-Yan; Lin, Ming-Fa

    2016-06-29

    A generalized tight-binding model is developed to investigate the feature-rich magneto-optical properties of AAB-stacked trilayer graphene. Three intragroup and six intergroup inter-Landau-level (inter-LL) optical excitations largely enrich magneto-absorption peaks. In general, the former are much higher than the latter, depending on the phases and amplitudes of LL wavefunctions. The absorption spectra exhibit single- or twin-peak structures which are determined by quantum modes, LL energy spectra and Fermion distribution. The splitting LLs, with different localization centers (2/6 and 4/6 positions in a unit cell), can generate very distinct absorption spectra. There exist extra single peaks because of LL anti-crossings. AAB, AAA, ABA, and ABC stackings considerably differ from one another in terms of the inter-LL category, frequency, intensity, and structure of absorption peaks. The main characteristics of LL wavefunctions and energy spectra and the Fermi-Dirac function are responsible for the configuration-enriched magneto-optical spectra.

  16. Magneto-acoustic resonance in a non-uniform current carrying plasma column

    OpenAIRE

    Vaclavik, J.

    2017-01-01

    The forced radial magneto-acoustic oscillations in a plasma column with nonuniform mass density and temperature are investigated. It turns out that the oscillations have a resonant character similar to that of the magneto-acoustic oscillations in a uniform plasma column. The properties of the axial and azimuthal components of the oscillating magnetic field are discussed in detail

  17. Image correction in magneto-optical microscopy

    DEFF Research Database (Denmark)

    Paturi, P.; Larsen, B.H.; Jacobsen, B.A.

    2003-01-01

    An image-processing procedure that assures correct determination of the magnetic field distribution of magneto-optical images is presented. The method remedies image faults resulting from sources that are proportional to the incident light intensity, such as different types of defects...

  18. Automated Object-Oriented Simulation Framework for Modelling of Superconducting Magnets at CERN

    CERN Document Server

    Maciejewski, Michał; Bartoszewicz, Andrzej

    The thesis aims at designing a flexible, extensible, user-friendly interface to model electro thermal transients occurring in superconducting magnets. Simulations are a fundamental tool for assessing the performance of a magnet and its protection system against the effects of a quench. The application is created using scalable and modular architecture based on object-oriented programming paradigm which opens an easy way for future extensions. What is more, each model composed of thousands of blocks is automatically created in MATLAB/Simulink. Additionally, the user is able to automatically run sets of simulations with varying parameters. Due to its scalability and modularity the framework can be easily used to simulate wide range of materials and magnet configurations.

  19. Magneto-optical system for high speed real time imaging

    Science.gov (United States)

    Baziljevich, M.; Barness, D.; Sinvani, M.; Perel, E.; Shaulov, A.; Yeshurun, Y.

    2012-08-01

    A new magneto-optical system has been developed to expand the range of high speed real time magneto-optical imaging. A special source for the external magnetic field has also been designed, using a pump solenoid to rapidly excite the field coil. Together with careful modifications of the cryostat, to reduce eddy currents, ramping rates reaching 3000 T/s have been achieved. Using a powerful laser as the light source, a custom designed optical assembly, and a high speed digital camera, real time imaging rates up to 30 000 frames per seconds have been demonstrated.

  20. Interface superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Gariglio, S., E-mail: stefano.gariglio@unige.ch [DQMP, Université de Genève, 24 Quai E.-Ansermet, CH-1211 Genève (Switzerland); Gabay, M. [Laboratoire de Physique des Solides, Bat 510, Université Paris-Sud 11, Centre d’Orsay, 91405 Orsay Cedex (France); Mannhart, J. [Max Planck Institute for Solid State Research, 70569 Stuttgart (Germany); Triscone, J.-M. [DQMP, Université de Genève, 24 Quai E.-Ansermet, CH-1211 Genève (Switzerland)

    2015-07-15

    Highlights: • We discuss interfacial superconductivity, a field boosted by the discovery of the superconducting interface between LaAlO. • This system allows the electric field control and the on/off switching of the superconducting state. • We compare superconductivity at the interface and in bulk doped SrTiO. • We discuss the role of the interfacially induced Rashba type spin–orbit. • We briefly discuss superconductivity in cuprates, in electrical double layer transistor field effect experiments. • Recent observations of a high T{sub c} in a monolayer of FeSe deposited on SrTiO{sub 3} are presented. - Abstract: Low dimensional superconducting systems have been the subject of numerous studies for many years. In this article, we focus our attention on interfacial superconductivity, a field that has been boosted by the discovery of superconductivity at the interface between the two band insulators LaAlO{sub 3} and SrTiO{sub 3}. We explore the properties of this amazing system that allows the electric field control and on/off switching of superconductivity. We discuss the similarities and differences between bulk doped SrTiO{sub 3} and the interface system and the possible role of the interfacially induced Rashba type spin–orbit. We also, more briefly, discuss interface superconductivity in cuprates, in electrical double layer transistor field effect experiments, and the recent observation of a high T{sub c} in a monolayer of FeSe deposited on SrTiO{sub 3}.

  1. Superconducting coil and method of stress management in a superconducting coil

    Science.gov (United States)

    McIntyre, Peter M.; Shen, Weijun; Diaczenko, Nick; Gross, Dan A.

    1999-01-01

    A superconducting coil (12) having a plurality of superconducting layers (18) is provided. Each superconducting layer (18) may have at least one superconducting element (20) which produces an operational load. An outer support structure (24) may be disposed outwardly from the plurality of layers (18). A load transfer system (22) may be coupled between at least one of the superconducting elements (20) and the outer support structure (24). The load transfer system (22) may include a support matrix structure (30) operable to transfer the operational load from the superconducting element (20) directly to the outer support structure (24). A shear release layer (40) may be disposed, in part, between the superconducting element (20) and the support matrix structure (30) for relieving a shear stress between the superconducting element (20) and the support matrix structure (30). A compliant layer (42) may also be disposed, in part, between the superconducting element (20) and the support matrix structure (30) for relieving a compressive stress on the superconducting element (20).

  2. Enhanced magneto-plasmonic effect in Au/Co/Au multilayers caused by exciton–plasmon strong coupling

    Energy Technology Data Exchange (ETDEWEB)

    Hamidi, S.M., E-mail: m_hamidi@sbu.ac.ir; Ghaebi, O.

    2016-09-15

    In this paper, we have investigated magneto optical Kerr rotation using the strong coupling of exciton–plasmon. For this purpose, we have demonstrated strong coupling phenomenon using reflectometry measurements. These measurements revealed the formation of two split polaritonic extrema in reflectometry as a function of wavelength. Then we have shown exciton–plasmon coupling in dispersion diagram which presented an anti-crossing between the polaritonic branches. To assure the readers of strong coupling, we have shown an enhanced magneto-optical Kerr rotation by comparing the reflectometry results of strong coupling of surface Plasmon polariton of Au/Co/Au multilayer and R6G excitons with surface Plasmon polariton magneto-optical kerr effect experimental setup. - Highlights: • The magneto optical Kerr rotation has been investigated by using the strong coupling of exciton–plasmon. • We have shown exciton–plasmon coupling in dispersion diagram which presented an anti-crossing between the polaritonic branches. • Strong coupling of surface plasmon polariton and exciton have been yielded to the enhanced magneto-optical Kerr effect. • Plasmons in Au/Co/Au multilayer and exciton in R6G have been coupled to enhance magneto-optical activity.

  3. Vladimir Igorevich Arnold (1937–2010)

    Indian Academy of Sciences (India)

    IAS Admin

    History is full of examples of scientists who made early brilliant contributions ... equations, symplectic geometry, real algebraic geometry, the calculus of variations, hydrodynamics, and magneto-hydrodynamics, often discovering links between.

  4. Improvement of the superconducting transition and demagnetization factor in YBa2Cu3O7-δ single crystals by laser cutting

    International Nuclear Information System (INIS)

    Bhattacharya, A.; Grupp, D.E.; Goldman, A.M.; Welp, U.

    1996-01-01

    Single crystals of YBa 2 Cu 3 O 7-δ have been cut into disc shapes using an excimer laser. The bulk superconducting transition was found to be sharpened in all cases measured. This is associated with the removal of material at the edges which may be depleted of oxygen or otherwise damaged. The magneto-optical images for one crystal have been correlated with the optical image. The angular dependence of the demagnetizing factor for field applied in the plane was drastically reduced in disc-shaped crystals relative to rectangular ones. The field of first flux entry was also increased. copyright 1996 American Institute of Physics

  5. Superconductivity

    International Nuclear Information System (INIS)

    Kakani, S.L.; Kakani, Shubhra

    2007-01-01

    The monograph provides readable introduction to the basics of superconductivity for beginners and experimentalists. For theorists, the monograph provides nice and brief description of the broad spectrum of experimental properties, theoretical concepts with all details, which theorists should learn, and provides a sound basis for students interested in studying superconducting theory at the microscopic level. Special chapter on the theory of high-temperature superconductivity in cuprates is devoted

  6. Magneto-hydrodynamically stable axisymmetric mirrorsa)

    Science.gov (United States)

    Ryutov, D. D.; Berk, H. L.; Cohen, B. I.; Molvik, A. W.; Simonen, T. C.

    2011-09-01

    Making axisymmetric mirrors magnetohydrodynamically (MHD) stable opens up exciting opportunities for using mirror devices as neutron sources, fusion-fission hybrids, and pure-fusion reactors. This is also of interest from a general physics standpoint (as it seemingly contradicts well-established criteria of curvature-driven instabilities). The axial symmetry allows for much simpler and more reliable designs of mirror-based fusion facilities than the well-known quadrupole mirror configurations. In this tutorial, after a summary of classical results, several techniques for achieving MHD stabilization of the axisymmetric mirrors are considered, in particular: (1) employing the favorable field-line curvature in the end tanks; (2) using the line-tying effect; (3) controlling the radial potential distribution; (4) imposing a divertor configuration on the solenoidal magnetic field; and (5) affecting the plasma dynamics by the ponderomotive force. Some illuminative theoretical approaches for understanding axisymmetric mirror stability are described. The applicability of the various stabilization techniques to axisymmetric mirrors as neutron sources, hybrids, and pure-fusion reactors are discussed; and the constraints on the plasma parameters are formulated.

  7. Magneto-hydrodynamically stable axisymmetric mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Ryutov, D. D.; Cohen, B. I.; Molvik, A. W. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Berk, H. L. [University of Texas, Austin, Texas 78712 (United States); Simonen, T. C. [University of California, Berkeley, California 94720 (United States)

    2011-09-15

    Making axisymmetric mirrors magnetohydrodynamically (MHD) stable opens up exciting opportunities for using mirror devices as neutron sources, fusion-fission hybrids, and pure-fusion reactors. This is also of interest from a general physics standpoint (as it seemingly contradicts well-established criteria of curvature-driven instabilities). The axial symmetry allows for much simpler and more reliable designs of mirror-based fusion facilities than the well-known quadrupole mirror configurations. In this tutorial, after a summary of classical results, several techniques for achieving MHD stabilization of the axisymmetric mirrors are considered, in particular: (1) employing the favorable field-line curvature in the end tanks; (2) using the line-tying effect; (3) controlling the radial potential distribution; (4) imposing a divertor configuration on the solenoidal magnetic field; and (5) affecting the plasma dynamics by the ponderomotive force. Some illuminative theoretical approaches for understanding axisymmetric mirror stability are described. The applicability of the various stabilization techniques to axisymmetric mirrors as neutron sources, hybrids, and pure-fusion reactors are discussed; and the constraints on the plasma parameters are formulated.

  8. A complex-polarization-propagator protocol for magneto-chiral axial dichroism and birefringence dispersion

    DEFF Research Database (Denmark)

    Cukras, Janusz; Kauczor, Joanna; Norman, Patrick

    2016-01-01

    A computational protocol for magneto-chiral dichroism and magneto-chiral birefringence dispersion is presented within the framework of damped response theory, also known as complex polarization propagator theory, at the level of time-dependent Hartree–Fock and time-dependent density functional th...

  9. Superconductivity

    International Nuclear Information System (INIS)

    Langone, J.

    1989-01-01

    This book explains the theoretical background of superconductivity. Includes discussion of electricity, material fabrication, maglev trains, the superconducting supercollider, and Japanese-US competition. The authors reports the latest discoveries

  10. ac superconducting articles

    International Nuclear Information System (INIS)

    Meyerhoff, R.W.

    1977-01-01

    A noval ac superconducting cable is described. It consists of a composite structure having a superconducting surface along with a high thermally conductive material wherein the superconducting surface has the desired physical properties, geometrical shape and surface finish produced by the steps of depositing a superconducting layer upon a substrate having a predetermined surface finish and shape which conforms to that of the desired superconducting article, depositing a supporting layer of material on the superconducting layer and removing the substrate, the surface of the superconductor being a replica of the substrate surface

  11. Magneto-optic gradient effect in domain-wall images: at the crossroads of magneto-optics and micromagnetics

    Czech Academy of Sciences Publication Activity Database

    Kamberský, Vladimír; Schäfer, R.

    2011-01-01

    Roč. 84, č. 1 (2011), 013815/1-013815/6 ISSN 1050-2947 Institutional research plan: CEZ:AV0Z10100521 Keywords : edge and boundary effects * reflection and refraction * diffraction and scattering * magneto-optical effects * theory * models * numerical simulation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.878, year: 2011

  12. High-temperature superconductivity

    International Nuclear Information System (INIS)

    Ginzburg, V.L.

    1987-07-01

    After a short account of the history of experimental studies on superconductivity, the microscopic theory of superconductivity, the calculation of the control temperature and its possible maximum value are presented. An explanation of the mechanism of superconductivity in recently discovered superconducting metal oxide ceramics and the perspectives for the realization of new high-temperature superconducting materials are discussed. 56 refs, 2 figs, 3 tabs

  13. Superconducting accelerator technology

    International Nuclear Information System (INIS)

    Grunder, H.A.; Hartline, B.K.

    1986-01-01

    Modern and future accelerators for high energy and nuclear physics rely increasingly on superconducting components to achieve the required magnetic fields and accelerating fields. This paper presents a practical overview of the phenomenon of superconductivity, and describes the design issues and solutions associated with superconducting magnets and superconducting rf acceleration structures. Further development and application of superconducting components promises increased accelerator performance at reduced electric power cost

  14. Medically relevant ElectroNeedle technology development.

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Carrie Frances; Thomas, Michael Loren; McClain, Jaime L.; Harper, Jason C.; Achyuthan, Komandoor E.; Ten Eyck, Gregory A.

    2008-11-01

    ElectroNeedles technology was developed as part of an earlier Grand Challenge effort on Bio-Micro Fuel Cell project. During this earlier work, the fabrication of the ElectroNeedles was accomplished along with proof-of-concept work on several electrochemically active analytes such as glucose, quinone and ferricyanide. Additionally, earlier work demonstrated technology potential in the field of immunosensors by specifically detecting Troponin, a cardiac biomarker. The current work focused upon fabrication process reproducibility of the ElectroNeedles and then using the devices to sensitively detect p-cresol, a biomarker for kidney failure or nephrotoxicity. Valuable lessons were learned regarding fabrication assurance and quality. The detection of p-cresol was accomplished by electrochemistry as well as using fluorescence to benchmark ElectroNeedles performance. Results from these studies will serve as a guide for the future fabrication processes involving ElectroNeedles as well as provide the groundwork necessary to expand technology applications. One paper has been accepted for publication acknowledging LDRD funding (K. E. Achyuthan et al, Comb. Chem. & HTS, 2008). We are exploring the scope for a second paper describing the applications potential of this technology.

  15. Quantitative magneto-optical investigation of superconductor/ferromagnet hybrid structures.

    Science.gov (United States)

    Shaw, G; Brisbois, J; Pinheiro, L B G L; Müller, J; Blanco Alvarez, S; Devillers, T; Dempsey, N M; Scheerder, J E; Van de Vondel, J; Melinte, S; Vanderbemden, P; Motta, M; Ortiz, W A; Hasselbach, K; Kramer, R B G; Silhanek, A V

    2018-02-01

    We present a detailed quantitative magneto-optical imaging study of several superconductor/ferromagnet hybrid structures, including Nb deposited on top of thermomagnetically patterned NdFeB and permalloy/niobium with erasable and tailored magnetic landscapes imprinted in the permalloy layer. The magneto-optical imaging data are complemented with and compared to scanning Hall probe microscopy measurements. Comprehensive protocols have been developed for calibrating, testing, and converting Faraday rotation data to magnetic field maps. Applied to the acquired data, they reveal the comparatively weaker magnetic response of the superconductor from the background of larger fields and field gradients generated by the magnetic layer.

  16. Quantitative magneto-optical investigation of superconductor/ferromagnet hybrid structures

    Science.gov (United States)

    Shaw, G.; Brisbois, J.; Pinheiro, L. B. G. L.; Müller, J.; Blanco Alvarez, S.; Devillers, T.; Dempsey, N. M.; Scheerder, J. E.; Van de Vondel, J.; Melinte, S.; Vanderbemden, P.; Motta, M.; Ortiz, W. A.; Hasselbach, K.; Kramer, R. B. G.; Silhanek, A. V.

    2018-02-01

    We present a detailed quantitative magneto-optical imaging study of several superconductor/ferromagnet hybrid structures, including Nb deposited on top of thermomagnetically patterned NdFeB and permalloy/niobium with erasable and tailored magnetic landscapes imprinted in the permalloy layer. The magneto-optical imaging data are complemented with and compared to scanning Hall probe microscopy measurements. Comprehensive protocols have been developed for calibrating, testing, and converting Faraday rotation data to magnetic field maps. Applied to the acquired data, they reveal the comparatively weaker magnetic response of the superconductor from the background of larger fields and field gradients generated by the magnetic layer.

  17. Electrical and magneto transport properties of

    Indian Academy of Sciences (India)

    samples. The morphology of crystal grains shows that the grains are nearly uniform in size and spherical. Electrical .... 1.5406 Å) in angular steps of 0.02 .... table to scattering by impurities, defects, grain boundaries .... because of different orientations of opposite spins, an energy ... 2000 Colossal magneto resistance oxides.

  18. Superconducting technology

    International Nuclear Information System (INIS)

    2010-01-01

    Superconductivity has a long history of about 100 years. Over the past 50 years, progress in superconducting materials has been mainly in metallic superconductors, such as Nb, Nb-Ti and Nb 3 Sn, resulting in the creation of various application fields based on the superconducting technologies. High-T c superconductors, the first of which was discovered in 1986, have been changing the future vision of superconducting technology through the development of new application fields such as power cables. On basis of these trends, future prospects of superconductor technology up to 2040 are discussed. In this article from the viewpoints of material development and the applications of superconducting wires and electronic devices. (author)

  19. Invariant description of solutions of hydrodynamic-type systems in hodograph space: hydrodynamic surfaces

    International Nuclear Information System (INIS)

    Ferapontov, E.V.

    2002-01-01

    Hydrodynamic surfaces are solutions of hydrodynamic-type systems viewed as non-parametrized submanifolds of the hodograph space. We propose an invariant differential-geometric characterization of hydrodynamic surfaces by expressing the curvature form of the characteristic web in terms of the reciprocal invariants. (author)

  20. Robust Position Control of Electro-mechanical Systems

    OpenAIRE

    Rong Mei; Mou Chen

    2013-01-01

    In this work, the robust position control scheme is proposed for the electro-mechanical system using the disturbance observer and backstepping control method. To the external unknown load of the electro-mechanical system, the nonlinear disturbance observer is given to estimate the external unknown load. Combining the output of the developed nonlinear disturbance observer with backstepping technology, the robust position control scheme is proposed for the electro-mechanical system. The stabili...

  1. Magneto-structural correlations in exchange coupled systems

    International Nuclear Information System (INIS)

    Willett, R.D.; Gatteschi, D.; Kahn, O.

    1985-01-01

    This book contains 19 chapters. Some of the chapter titles are: Optical Spectroscophy; The Basis of Spin-Hamiltonian Theory; Inelastic Neutorn Scattering From Clusters; Magneto-structural Correlations in Bioinorganic Chemistry; and Magnetic Exchange Interactions Propagated by Multi-Atom Bridges

  2. Superconductivity

    CERN Document Server

    Ketterson, John B

    2008-01-01

    Conceived as the definitive reference in a classic and important field of modern physics, this extensive and comprehensive handbook systematically reviews the basic physics, theory and recent advances in the field of superconductivity. Leading researchers, including Nobel laureates, describe the state-of-the-art in conventional and unconventional superconductors at a particularly opportune time, as new experimental techniques and field-theoretical methods have emerged. In addition to full-coverage of novel materials and underlying mechanisms, the handbook reflects continued intense research into electron-phone based superconductivity. Considerable attention is devoted to high-Tc superconductivity, novel superconductivity, including triplet pairing in the ruthenates, novel superconductors, such as heavy-Fermion metals and organic materials, and also granular superconductors. What’s more, several contributions address superconductors with impurities and nanostructured superconductors. Important new results on...

  3. Faraday effect in hybrid magneto-plasmonic photonic crystals.

    Science.gov (United States)

    Caballero, B; García-Martín, A; Cuevas, J C

    2015-08-24

    We present a theoretical study of the Faraday effect in hybrid magneto-plasmonic crystals that consist of Au-Co-Au perforated membranes with a periodic array of sub-wavelength holes. We show that in these hybrid systems the interplay between the extraordinary optical transmission and the magneto-optical activity leads to a resonant enhancement of the Faraday rotation, as compared to purely ferromagnetic membranes. In particular, we determine the geometrical parameters for which this enhancement is optimized and show that the inclusion of a noble metal like Au dramatically increases the Faraday rotation over a broad bandwidth. Moreover, we show that the analysis of the Faraday rotation in these periodically perforated membranes provides a further insight into the origin of the extraordinary optical transmission.

  4. Superconductivity revisited

    CERN Document Server

    Dougherty, Ralph

    2013-01-01

    While the macroscopic phenomenon of superconductivity is well known and in practical use worldwide in many industries, including MRIs in medical diagnostics, the current theoretical paradigm for superconductivity (BCS theory) suffers from a number of limitations, not the least of which is an adequate explanation of high temperature superconductivity. This book reviews the current theory and its limitations and suggests new ideas and approaches in addressing these issues. The central objective of the book is to develop a new, coherent, understandable theory of superconductivity directly based on molecular quantum mechanics.

  5. Hydrangea-like magneto-fluorescent nanoparticles through thiol-inducing assembly

    Science.gov (United States)

    Chen, Shun; Zhang, Junjun; Song, Shaokun; Xiong, Chuanxi; Dong, Lijie

    2017-01-01

    Magneto-fluorescent nanoparticles (NPs), recognized as an emerging class of materials, have drawn much attention because of their potential applications. Due to surface functionalization and thiol-metal bonds, a simple method has been put forward for fabricating hydrangea-like magneto-fluorescent Fe3O4-SH@QD NPs, through assembling thiol-modified Fe3O4 NPs with sub-size multi-layer core/shell CdSe/CdS/ZnS QDs. After a refined but controllable silane hydrolysis process, thiol-modified Fe3O4 was fabricated, resulting in Fe3O4-SH@QD NPs with QDs, while preventing the quenching of the QDs. As a result, the core Fe3O4 NPs were 18 nm in diameter, while the scattered CdSe/CdS/ZnS QDs were 7 nm in diameter. The resultant magneto-fluorescent Fe3O4-SH@QD NPs exhibit efficient fluorescence, superparamagnetism at room temperature, and rapid response to the external field, which make them ideal candidates for difunctional probes in MRI and bio-labels, targeting and photodynamic therapy, and cell tracking and separation.

  6. Electro-active sensor, method for constructing the same; apparatus and circuitry for detection of electro-active species

    Science.gov (United States)

    Buehler, Martin (Inventor)

    2009-01-01

    An electro-active sensor includes a nonconductive platform with a first electrode set attached with a first side of a nonconductive platform. The first electrode set serves as an electrochemical cell that may be utilized to detect electro-active species in solution. A plurality of electrode sets and a variety of additional electrochemical cells and sensors may be attached with the nonconductive platform. The present invention also includes a method for constructing the aforementioned electro-active sensor. Additionally, an apparatus for detection and observation is disclosed, where the apparatus includes a sealable chamber for insertion of a portion of an electro-active sensor. The apparatus allows for monitoring and detection activities. Allowing for control of attached cells and sensors, a dual-mode circuitry is also disclosed. The dual-mode circuitry includes a switch, allowing the circuitry to be switched from a potentiostat to a galvanostat mode.

  7. High field superconducting magnets

    Science.gov (United States)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  8. Modern trends in superconductivity and superfluidity

    CERN Document Server

    Kagan, M Yu

    2013-01-01

    This book concisely presents the latest trends in the physics of superconductivity and superfluidity and magnetism in novel systems, as well as the problem of BCS-BEC crossover in ultracold quantum gases and high-Tc superconductors. It further illuminates the intensive exchange of ideas between these closely related fields of condensed matter physics over the last 30 years of their dynamic development. The content is based on the author’s original findings obtained at the Kapitza Institute, as well as advanced lecture courses he held at the Moscow Engineering Physical Institute, Amsterdam University, Loughborough University and LPTMS Orsay between 1994 and 2011. In addition to the findings of his group, the author discusses the most recent concepts in these fields, obtained both in Russia and in the West. The book consists of 16 chapters which are divided into four parts. The first part describes recent developments in superfluid hydrodynamics of quantum fluids and solids, including the fashionable subject...

  9. Modelling of the quenching process in complex superconducting magnet systems

    International Nuclear Information System (INIS)

    Hagedorn, D.; Rodriguez-Mateos, F.

    1992-01-01

    This paper reports that the superconducting twin bore dipole magnet for the proposed Large Hadron Collider (LHC) at CERN shows a complex winding structure consisting of eight compact layers each of them electromagnetically and thermally coupled with the others. This magnet is only one part of an electrical circuit; test and operation conditions are characterized by different circuits. In order to study the quenching process in this complex system, design adequate protection schemes, and provide a basis for the dimensioning of protection devices such as heaters, current breakers and dump resistors, a general simulation tool called QUABER has been developed using the analog system analysis program SABER. A complete set of electro-thermal models has been crated for the propagation of normal regions. Any network extension or modification is easy to implement without rewriting the whole set of differential equations

  10. Magneto-optical observation of twisted vortices in type-II superconductors

    Science.gov (United States)

    Indenbom, M. V.; van der Beek, C. J.; Berseth, V.; Benoit, W.; D'Anna, G.; Erb, A.; Walker, E.; Flükiger, R.

    1997-02-01

    When magnetic flux penetrates a type-II superconductor, it does so as quantized flux lines or vortex lines, so called because each is surrounded by a supercurrent vortex. Interactions between such vortices lead to a very rich and well characterized phenomenology for this 'mixed state'. But an outstanding question remains: are individual vortex lines 'strong', or can they easily be cut and made to pass through one another? The concept of vortex cutting was originally proposed to account for dissipation observed in superconducting wires oriented parallel to an applied magnetic field, where the vortex lines and transport current should be in a force-free configuration1-6. Previous experiments, however, have been unable to establish the vortex topology in the force-free configuration or the size of the energy barrier for vortex cutting. Here we report magneto-optical images of YBa2Cu3O7-δ samples in the force-free configuration which show that thousands of vortex lines can twist together to form highly stable structures. In some cases, these 'vortex twisters' interact with one another to produce wave-like dynamics. Our measurements also determine directly the current required to initiate vortex cutting, and show that it is much higher than that needed to overcome the pinning of vortices by material defects. This implies that thermodynamic phases of entangled vortices7-10 are intrinsically stable and may occupy a significant portion of the mixed-state phase diagram for type-II superconductors.

  11. Enhanced methanol electro-oxidation activity of Pt/MWCNTs electro-catalyst using manganese oxide deposited on MWCNTs

    International Nuclear Information System (INIS)

    Nouralishahi, Amideddin; Khodadadi, Abbas Ali; Mortazavi, Yadollah; Rashidi, Alimorad; Choolaei, Mohammadmehdi

    2014-01-01

    Highlights: • Promoting effects of manganese oxide (MnO x ) on methanol electro-oxidation over Pt/MWCNTs are studied. • 3.3 times higher activity and improved stability are observed on Pt/MnO x -MWCNTs in MOR. • Both hydrogen spill over and bi-functional mechanism are facilitated in presence of MnO x . • MnO x significantly enhances electrochemical active surface area and dispersion of Pt nanoparticles. • Proton conductivity of electrocatalyst layer is improved upon MnO x incorporation. - Abstract: Electro-oxidation of methanol on platinum nanoparticles supported on a nanocomposite of manganese oxide (MnO x ) and multi-wall carbon nanotubes (MWCNTs) is investigated. The morphology, structure, and chemical composition of the electro-catalysts are characterized by TEM, XRD, EDS, TGA, and H 2 -TPR. The electro-catalytic properties of electrodes are examined by cyclic voltammetry, CO-stripping, electrochemical impedance spectroscopy (EIS), and linear sweep voltammetry (LSV). Compared to Pt/MWCNTs, the Pt/MnO x -MWCNTs electro-catalyst exhibits about 3.3 times higher forward peak current density, during cyclic voltammetry, and 4.6 times higher exchange current density in methanol electro-oxidation reaction. In addition, deposition of manganese oxide onto MWCNTs dramatically increases the electrochemical active surface area from 29.7 for Pt/MWCNTs to 89.4 m 2 g −1 Pt for Pt/MnO x -MWCNTs. The results of long-term cyclic voltammetry show superior stability of Pt nanoparticles upon addition of manganese oxide to the support. Furthermore, the kinetics of formation of the chemisorbed OH groups improves upon manganese oxide incorporation. This leads to a lower onset potential of CO ads oxidation on Pt/MnO x -MWCNTs than on Pt/MWCNTs

  12. Solar Observations on Magneto-Convection

    Science.gov (United States)

    1989-05-31

    Technical Library National Solar Observatory Sunspot, NM 88349 Karl - Schwarzschild -Strasse 1 8046 Garching bei Mundhen Solar Observations On Magneto...Schmidt, Hermann-Ulrich Schmidt, Hans-Christoph Thomas (eds.) Max-Planck-Institut fir Physik und Astrophysik Institut fiur Astrophysik Karl ... Schwarzschild -St-. 1 D-8046 Garching, FklG 14TIS CRiA.&l DTIC TA. U~Jar,iou8:ed B ......... ... Distribution I -- Availability COcý----- Avail and or Dist special

  13. Magneto-Electric Dipole Antenna Arrays

    OpenAIRE

    Gupta, Shulabh; Jiang, Li Jun; Caloz, Christophe

    2014-01-01

    A planar magneto-electric (ME) dipole antenna array is proposed and demonstrated by both full-wave analysis and experiments. The proposed structure leverages the infinite wavelength propagation characteristic of composite right/left-handed (CRLH) transmission lines to form high-gain magnetic radiators combined with radial conventional electric radiators, where the overall structure is excited by a single differential feed. The traveling-wave type nature of the proposed ME-dipole antenna enabl...

  14. Superconductivity in Medicine

    Science.gov (United States)

    Alonso, Jose R.; Antaya, Timothy A.

    2012-01-01

    Superconductivity is playing an increasingly important role in advanced medical technologies. Compact superconducting cyclotrons are emerging as powerful tools for external beam therapy with protons and carbon ions, and offer advantages of cost and size reduction in isotope production as well. Superconducting magnets in isocentric gantries reduce their size and weight to practical proportions. In diagnostic imaging, superconducting magnets have been crucial for the successful clinical implementation of magnetic resonance imaging. This article introduces each of those areas and describes the role which superconductivity is playing in them.

  15. Status of work on superconducting quarter wave resonators at JAERI

    International Nuclear Information System (INIS)

    Takeuchi, S.

    1988-01-01

    A superconducting heavy ion linac is being proposed for the JAERI-tandem booster. For the accelerating structure of the tandem booster which ought to accelerate heavy ions of wide range of mass numbers, quarter wave resonator (QWR)s are suitable because of their wide ion-velocity acceptance. Ions of hydrogen to bismuth from the JAERI tandem can be accelerated by β = 0.1 QWRs. The excellent result of a niobium QWR at Argonne National Laboratory was a motive for the development of niobium QWRs. Further considerations on the design were required, because the Argonne's QWR did not have beam ports nor frequency tuners. As a result of considerations on these points, it has been decided to have an oval cylinder for the outer conductor. The prototype resonator has been built and tested. The fabrication techniques of explosive bonding, electron beam welding and heat treatment were found to be available in domestic companies in 1984. After obtaining niobium and niobium-clad-copper materials in 1985, the prototype resonator was built in 1985-86. Electro-polishing was done in their laboratory. Tests at 4.2 K have been repeated several times in combination of treatments of the niobium surface. The work is proceeding to the construction of a buncher and a prototype linac unit which are composed of superconducting QWRs. 4 references, 4 figures, 2 tables

  16. Superconductivity in technology

    International Nuclear Information System (INIS)

    Komarek, P.

    1976-01-01

    Physics, especially high energy physics and solid state physics was the first area in which superconducting magnets were used but in the long run, the most extensive application of superconductivity will probably be in energy technology. Superconducting power transmission cables, magnets for energy conversion in superconducting electrical machines, MHD-generators and fusion reactors and magnets for energy storage are being investigated. Magnets for fusion reactors will have particularly large physical dimensions, which means that much development effort is still needed, for there is no economic alternative. Superconducting surfaces in radio frequency cavities can give Q-values up to a factor of 10 6 higher than those of conventional resonators. Particle accelerators are the important application. And for telecommunication, simple coaxial superconducting radio frequency cables seem promising. The tunnel effect in superconducting junctions is now being developed commercially for sensitive magnetometers and may soon possibly feature in the memory cells of computer devices. Hence superconductivity can play an important role in the technological world, solving physical and technological problems and showing economic advantages as compared with possible conventional techniques, bearing also in mind the importance of reliability and safety. (author)

  17. Periodic reversal of magneto-optic Faraday rotation on uniaxial birefringence crystal with ultrathin magnetic films

    Directory of Open Access Journals (Sweden)

    C. W. Su

    2013-07-01

    Full Text Available An experimental approach of inclined incidence magneto-optic Faraday effect observed in the polar plane is applied. Three samples containing ferromagnetic cobalt ultrathin films on a semiconductor zinc oxide (0001 single crystal substrate with in-plane and out-of-plane anisotropy are evaluated. Through the fine adjustment of crossed polarizers in the magneto-optic effect measurement completely recorded the detail optical and magneto-optical responses from the birefringent crystal substrate and the magnetic film, especially for the signal induced from the substrate with uniaxial optical axis. The angle dependency of interference phenomena periodically from the optical and magneto-optical responses is attributed to the birefringence even in the absence of a magnetic field. The new type of observation finds that the transmission Faraday intensity in the oblique incidence includes a combination of polarization rotations, which results from optical compensation from the substrate and magneto-optical Faraday effects from the film. The samples grown at different rates and examined by this method exhibit magnetic structure discriminations. This result can be applied in the advanced polarized-light technologies to enhance the spatial resolution of magnetic surfaces with microstructural information under various magnetic field direction.

  18. Tertiary treatment of landfill leachate by an integrated Electro-Oxidation/Electro-Coagulation/Electro-Reduction process: Performance and mechanism.

    Science.gov (United States)

    Ding, Jing; Wei, Liangliang; Huang, Huibin; Zhao, Qingliang; Hou, Weizhu; Kabutey, Felix Tetteh; Yuan, Yixing; Dionysiou, Dionysios D

    2018-06-05

    This study presents an integrated Electro-Oxidation/Electro-Coagulation/Electro-Reduction (EO/EC/ER) process for tertiary landfill leachate treatment. The influence of variables including leachate characteristics and operation conditions on the performance of EO/EC/ER process was evaluated. The removal mechanisms were explored by comparing results of anode, cathode, and bipolar electrode substitution experiments. The performance of the process in a scaled-up reactor was investigated to assure the feasibility of the process. Results showed that simultaneous removal of carbonaceous and nitrogenous pollutants was achieved under optimal conditions. Ammonia removal was due to the free chlorine generation of EO while organic matter degradation was achieved by both EO and EC processes. Nitrate removal was attributed to both ER and EC processes, with the higher removal achieved by ER process. In a scaled-up reactor, the EO/EC/ER process was able to remove 50-60% organic matter and 100% ammonia at charge of 1.5 Ah/L with energy consumption of 15 kW h/m 3 . Considering energy cost, the process is more efficient to meet the requirement of organic removal efficiency less than 70%. These results show the feasibility and potential of the EO/EC/ER process as an alternative tertiary treatment to achieve the simultaneous removal of organic matter, ammonia, nitrate, and color of leachate. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Magneto-caloric and magneto-resistive properties of La0.67Ca0.33-xSrxMnO3

    International Nuclear Information System (INIS)

    Reves Dinesen, Anders

    2004-08-01

    This thesis presents results of an experimental investigation of magneto-caloric and magneto-resistive properties of a series of polycrystalline Ca- and Sr-doped lanthanum manganites, La 0.67 Ca 0.33-x Sr x MnO 3 (0≤ x ≤ 0.33), with the perovskite structure. The samples consisted of sintered oxide powders prepared the glycine-nitrate combustion technique. The compounds were ferromagnetic and showed a Curie transition in the temperature range 267370 K (T C increased with increasing x). An analysis of the structural properties was carried out by means of x-ray diffraction and the Rietveld technique. The variation of the Ca/Sr ratio was found to cause a transition from orthorhombic to rhombohedral symmetry in the composition range 0.110 0.67 Ca 0.33-x Sr x MnO 3 samples was measured directly and indirectly (by means of magnetization measurements). All the samples showed a magnetocaloric effect in the vicinity of T C . A model for the mag-netocaloric effect based on Weiss mean field theory and classical theories for heat capacities was developed. The model provided reasonable predictions of the magneto-caloric properties of the samples. The compounds with low Sr content showed a magnetocaloric effect comparable to that of Gadolinium, the prototypical working material for magnetic refrigeration at room temperature. A less comprehensive part of the investigation regarded the magneto-resistive properties of the La 0.67 Ca 0.33-x Sr x MnO 3 system. It was found that th polycrystalline nature of the compounds played a decisive role for the magnetotransport properties. Characteristic grain boundary effects, such as a low-field magnetoresistance, which is absent in single-crystalline perovskites, were observed. The low-field effect is usually ascribed to spin-dependent scattering in grain boundaries. Qualitatively the results obtained for the La 0.67 Ca 0.33-x Sr x MnO 3 samples were consistent with this model. The resistivity contribution arising from the presence of

  20. A non-commutative formula for the isotropic magneto-electric response

    International Nuclear Information System (INIS)

    Leung, Bryan; Prodan, Emil

    2013-01-01

    A non-commutative formula for the isotropic magneto-electric response of disordered insulators under magnetic fields is derived using the methods of non-commutative geometry. Our result follows from an explicit evaluation of the Ito derivative with respect to the magnetic field of the non-commutative formula for the electric polarization reported in Schulz-Baldes and Teufel (2012 arXiv:1201.4812v1). The quantization, topological invariance and connection to a second Chern number of the magneto-electric response are discussed in the context of three-dimensional, disordered, time-reversal or inversion symmetric topological insulators. (paper)

  1. Photoinduced electro-optics measurements of biosilica transformation to cristobalite

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Ido [Department of Chemistry and the Institute of Nanotechnology, Bar-Ilan University, Ramat-Gan 52900 (Israel); Aluma, Yaniv; Ilan, Micha [Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801 (Israel); Kityk, Iwan [Institute of Electronic Systems, Faculty of Electrical Engineering, Czestochowa University, Czestochowa 42-201 (Poland); Mastai, Yitzhak, E-mail: Yitzhak.Mastai@biu.ac.il [Department of Chemistry and the Institute of Nanotechnology, Bar-Ilan University, Ramat-Gan 52900 (Israel)

    2015-03-15

    In this paper we studied the photoinduced electro optics effects in the thermal transformation process of biosilica to cristobalite, at a relatively low temperature and ambient pressure. This process was characterized by a variety of standards techniques with emphasis on linear electro optic effect measurements. Overall we demonstrated that photoinduced electro optics measurements are very sensitive to the transformation from amorphous structure of silica in the natural sponge samples to laminar string morphology of cristobalite. With this technique we could probe the change in the samples chirality from achiral bio silica to chiral cristobalite structure. Furthermore it is shown that natural biosilica have photoinduced linear electro optics respond indicating the chiral natural of biosilica. - Graphical abstract: The phase transformation of biosilica from marine sponges to Cristobalite under thermal treatment was investigated using photoinduced electro optics measurements. The figure shows the changes of the electro-optic coefficient of cristobalite and biosilica. - Highlights: • We examine phase transformation of biosilica. • We report transition from amorphous biosilica to crystalline Cristobalite. • Biosilica transformation to Cristobalite at temperature of 850 °C. • Biosilica transformation is studied with photoinduced measurements. • We examine changes in the photoinduced linear electro optics properties.

  2. Photoinduced electro-optics measurements of biosilica transformation to cristobalite

    International Nuclear Information System (INIS)

    Fuchs, Ido; Aluma, Yaniv; Ilan, Micha; Kityk, Iwan; Mastai, Yitzhak

    2015-01-01

    In this paper we studied the photoinduced electro optics effects in the thermal transformation process of biosilica to cristobalite, at a relatively low temperature and ambient pressure. This process was characterized by a variety of standards techniques with emphasis on linear electro optic effect measurements. Overall we demonstrated that photoinduced electro optics measurements are very sensitive to the transformation from amorphous structure of silica in the natural sponge samples to laminar string morphology of cristobalite. With this technique we could probe the change in the samples chirality from achiral bio silica to chiral cristobalite structure. Furthermore it is shown that natural biosilica have photoinduced linear electro optics respond indicating the chiral natural of biosilica. - Graphical abstract: The phase transformation of biosilica from marine sponges to Cristobalite under thermal treatment was investigated using photoinduced electro optics measurements. The figure shows the changes of the electro-optic coefficient of cristobalite and biosilica. - Highlights: • We examine phase transformation of biosilica. • We report transition from amorphous biosilica to crystalline Cristobalite. • Biosilica transformation to Cristobalite at temperature of 850 °C. • Biosilica transformation is studied with photoinduced measurements. • We examine changes in the photoinduced linear electro optics properties

  3. Suitable combination of noble/ferromagnetic metal multilayers for enhanced magneto-plasmonic biosensing.

    Science.gov (United States)

    Regatos, David; Sepúlveda, Borja; Fariña, David; Carrascosa, Laura G; Lechuga, Laura M

    2011-04-25

    We present a theoretical and experimental study on the biosensing sensitivity of Au/Co/Au multilayers as transducers of the magneto-optic surface-plasmon-resonance (MOSPR) sensor. We demonstrate that the sensing response of these magneto-plasmonic (MP) transducers is a trade-off between the optical absorption and the magneto-optical activity, observing that the MP multilayer with larger MO effect does not provide the best sensing response. We show that it is possible to design highly-sensitive MP transducers able to largely surpass the limit of detection of the conventional surface-plasmon-resonance (SPR) sensor. This was proved comparing the biosensing performance of both sensors for the label-free detection of short DNA chains hybridization. For this purpose, we used and tested a novel label-free biofunctionalization protocol based on polyelectrolytes, which increases the resistance of MP transducers in aqueous environments.

  4. Fabrication of Continuous Microfibers Containing Magnetic Nanoparticles by a Facile Magneto-Mechanical Drawing

    Science.gov (United States)

    Li, Jin-Tao; Jia, Xian-Sheng; Yu, Gui-Feng; Yan, Xu; He, Xiao-Xiao; Yu, Miao; Gong, Mao-Gang; Ning, Xin; Long, Yun-Ze

    2016-09-01

    A facile method termed magneto-mechanical drawing is used to produce polymer composite microfibers. Compared with electrospinning and other fiber spinning methods, magneto-mechanical drawing uses magnetic force generated by a permanent magnet to draw droplets of polymer/magnetic nanoparticle suspensions, leading to fabrication of composite microfibers. In addition, because of the rotating collector, it is easy to control the fiber assembly such as fibrous array in parallel or crossed fibrous structure. The general applicability of this method has also been proved by spinning different polymers and magnetic nanoparticles. The resultant fibers exhibit good superparamagnetic behavior at room temperature and ultrahigh stretchability (~443.8 %). The results indicate that magneto-mechanical drawing is a promising technique to fabricate magnetic and stretchable microfibers and devices.

  5. Design and analysis of a magneto-rheological damper for an all terrain vehicle

    Science.gov (United States)

    Krishnan Unni, R.; Tamilarasan, N.

    2018-02-01

    A shock absorber design intended to replace the existing conventional shock absorber with a controllable system using a Magneto-rheological damper is introduced for an All Terrain Vehicle (ATV) that was designed for Baja SAE competitions. Suspensions are a vital part of an All Terrain Vehicles as it endures various surfaces and requires utmost attention while designing. COMSOL multi-physics software is used for applications that have coupled physics problems and is a unique tool that is used for the designing and analysis phase of the Magneto-rheological damper for the considered application and the model is optimized based on Taguchi using DOE software. The magneto-rheological damper is designed to maximize the damping force with the measured geometric constraints for the All Terrain Vehicle.

  6. Direct electro-optic effect in langasites and α-quartz

    Science.gov (United States)

    Ivanov, Vadim

    2018-05-01

    Strain-constant (clamped) electro-optic coefficients r11S of langasite La3Ga5SiO14 (LGS), langatate La3Ga5.5Ta0.5O14 (LGT), catangasite Ca3TaGa3Si2O14 (CTGS) and α-quartz are measured at 1540 nm in the frequency range of 3-25 MHz. Experimental ratio of clamped and unclamped electro-optic coefficients r11S/r11T is 0.97 for LGS, 0.91 for LGT, 0.31 for CTGS, and 0.49 for quartz. Most of direct electro-optic effect in LGS and LGT is associated with lanthanum ions: clamped electro-optic coefficient r11S in lanthanum-free CTGS is 14 times less than in LGS. Low piezoelectric contribution to unclamped electro-optic coefficient r11T makes LGS and LGT promising materials for electro-optic devices, whose performance can be deteriorated by piezoelectric effect, especially, for high-voltage optical voltage sensors.

  7. Achieving precision in high density batch mode micro-electro-discharge machining

    International Nuclear Information System (INIS)

    Richardson, Mark T; Gianchandani, Yogesh B

    2008-01-01

    This paper reports a parametric study of batch mode micro-electro-discharge machining (µEDM) of high density features in stainless steel. Lithographically fabricated copper tools with single cross, parallel line and 8 × 8 circle/square array features of 5–100 µm width and 5–75 µm spacing were used to quantify trends in machining tolerance and the impact of debris accumulation. As the tool feature density is increased, debris accumulation effects begin to dominate, eventually degrading both tool and workpiece. Two independent techniques for mitigating this debris buildup are separately investigated. The first is a passivation coating which suppresses spurious discharges triggered from the sidewalls of the machining tool. By this method, the mean tool wear rate decreases from a typical of about 34% to 1.7% and machining non-uniformity reduces from 4.9 µm to 1.1 µm across the workpiece. The second technique involves a two-step machining process that enhances the hydrodynamic removal of machining debris compared to standard methods. This improves surface and edge finish, machining time and tool wear

  8. Gold nanocrystals in high-temperature superconducting films: Creation of pinning patterns of choice

    Energy Technology Data Exchange (ETDEWEB)

    Katzer, Christian; Michalowski, Peter; Schmidl, Frank; Seidel, Paul [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, 07743 Jena (Germany); Stahl, Claudia; Treiber, Sebastian; Schuetz, Gisela [Max-Planck-Institut fuer Intelligente Systeme, Heisenbergstrasse 3, 70569 Stuttgart (Germany); Christiani, Georg [Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstrasse 1, 70569 Stuttgart (Germany); Albrecht, Joachim [Hochschule Aalen, Beethovenstrasse 1, 73430 Aalen (Germany)

    2013-07-01

    Many superconducting thin film devices require a spatially resolved current carrying capability due to different boundary conditions. On the one hand, the critical current density and the pinning of flux lines respectively should be high to reduce flux noise in the antenna regions of gradiometers; on the other hand, the critical current density of the Josephson junctions itself must not be too high to ensure a proper functionality. We report that adding gold nanoparticles during the preparation process of epitaxial YBa{sub 2}Cu{sub 3}O{sub 7-δ} thin films offers the possibility of creating spatially varying flux pinning properties, thus allowing to locally enhance the critical current density up to a factor of two. Magneto-optical investigations as well as transport measurements will be presented, indicating that an Au particle induced modification of the YBCO pinning properties allows the engineering of the critical current landscape on the sub-micrometre scale.

  9. Magneto-optic properties and optical parameter of thin MnCo films

    Directory of Open Access Journals (Sweden)

    E Attaran Kakhki

    2009-09-01

    Full Text Available Having precise hysterics loop of thin ferroelectric and ferromagnetic layers for optical switching and optical storages are important. A hysterieses loop can be achieved from a phenomenon call the magneto-optic effect. The magneto-optic effect is the rotation of a linear polarized electromagnetic wave propagated through a ferromagnetic medium. When light is transmitted through a layer of magnetic material the result is called the Faraday effects and in the reflection mode Kerr effect. In the present work we prepared a thin layer of MnxCo3-xO4 (0≤ x ≤ 1 and a binary form of MnO/Co3O4 by the spray pyrolysis method. The films have been characterized by a special set up of magneto-optic hysterics loop plotter containing a polarized He- Ne laser beam and a special electronic circuit. Faraday rotation were measured for these films by hysterics loop plotter and their optical properties were also obtained by spatial software designed for this purpose according to Swane Poel theoretical method. The measurements show that the samples at diluted Mn study has are ferromagnetic and the magneto-optic rotation show a good enhance respect to the single Co layers. Also, the study has shown that the MnCo oxide layer have two different energy gaps and by increasing of Mn this energy decreases and fall to 0.13 eV.

  10. Bioinspired fabrication of magneto-optic hierarchical architecture by hydrothermal process from butterfly wing

    International Nuclear Information System (INIS)

    Peng Wenhong; Hu Xiaobin; Zhang Di

    2011-01-01

    We developed a green solution to incorporate nano-Fe 3 O 4 into the hierarchical architecture of a natural butterfly wing, thus obtaining unique magneto-optic nanocomposites with otherwise unavailable photonic features. Morphological characterization and Fourier Transform Infrared-Raman Spectroscope measurements indicate the assembly of Fe 3 O 4 nanocrystallites. The magnetic and optical responses of Fe 3 O 4 /wing show a coupling effect between the biological structure and magnetic material. The saturation magnetization and coercivity values of the as-prepared magneto-optic architecture varied with change of subtle structure. Such a combination of nano-Fe 3 O 4 and natural butterfly wing might create novel magneto-optic properties, and the relevant ideas could inspire the investigation of magneto-optical devices. - Highlights: → We develop a green, easy controlled hydrothermal process to synthesize magnetite hierarchical architecture. → The optical response of Fe 3 O 4 /wing exhibits a coupling effect between the structure and material. → The saturation magnetization value is mediated by shape anisotropy and the stress of different subtle structure, which has provided unique insights into studying the mysterious magnetic property of magnetite.

  11. A general one-dimension nonlinear magneto-elastic coupled constitutive model for magnetostrictive materials

    International Nuclear Information System (INIS)

    Zhang, Da-Guang; Li, Meng-Han; Zhou, Hao-Miao

    2015-01-01

    For magnetostrictive rods under combined axial pre-stress and magnetic field, a general one-dimension nonlinear magneto-elastic coupled constitutive model was built in this paper. First, the elastic Gibbs free energy was expanded into polynomial, and the relationship between stress and strain and the relationship between magnetization and magnetic field with the polynomial form were obtained with the help of thermodynamic relations. Then according to microscopic magneto-elastic coupling mechanism and some physical facts of magnetostrictive materials, a nonlinear magneto-elastic constitutive with concise form was obtained when the relations of nonlinear strain and magnetization in the polynomial constitutive were instead with transcendental functions. The comparisons between the prediction and the experimental data of different magnetostrictive materials, such as Terfenol-D, Metglas and Ni showed that the predicted magnetostrictive strain and magnetization curves were consistent with experimental results under different pre-stresses whether in the region of low and moderate field or high field. Moreover, the model can fully reflect the nonlinear magneto-mechanical coupling characteristics between magnetic, magnetostriction and elasticity, and it can effectively predict the changes of material parameters with pre-stress and bias field, which is useful in practical applications

  12. Effective-medium theory for nonlinear magneto-optics in magnetic granular alloys: cubic nonlinearity

    International Nuclear Information System (INIS)

    Granovsky, Alexander B.; Kuzmichov, Michail V.; Clerc, J.-P.; Inoue, Mitsuteru

    2003-01-01

    We propose a simple effective-medium approach for calculating the effective dielectric function of a magnetic metal-insulator granular alloy in which there is a weakly nonlinear relation between electric displacement D and electric field E for both constituent materials of the form D i =ε i (0) E i +χ i (3) |E i | 2 E i . We assume that linear ε i (0) and cubic nonlinear χ i (3) dielectric functions are diagonal and linear with magnetization non-diagonal components. For such metal-insulator composite magneto-optical effects depend on a light intensity and the effective cubic dielectric function χ eff (3) can be significantly greater (up to 10 3 times) than that for constituent materials. The calculation scheme is based on the Bergman and Stroud-Hui theory of nonlinear optical properties of granular matter. The giant cubic magneto-optical nonlinearity is found for composites with metallic volume fraction close to the percolation threshold and at a resonance of optical conductivity. It is shown that a composite may exhibit nonlinear magneto-optics even when both constituent materials have no cubic magneto-optical nonlinearity

  13. Magneto-optical extinction trend inversion in ferrofluids

    Energy Technology Data Exchange (ETDEWEB)

    Shulyma, S.I., E-mail: kiw_88@mail.ru; Tanygin, B.M., E-mail: b.m.tanygin@gmail.com; Kovalenko, V.F.; Petrychuk, M.V.

    2016-10-15

    Effects of pulse magnetic field on the optical transmission properties of thin ferrofluid (FF) layers were experimentally investigated. It was observed that, under an influence of an external uniform magnetic field, pulses applied to the samples surfaces in normal direction decrease the optical transmission with further returning it to its original state, even before the end of the field pulse. The dependencies of the observed effects on the magnetic pulse magnitude and the samples thickness were investigated. The experimental results are explained using FF columnar aggregates growth and lateral coalescence under influence of a magnetic field, leading to a light scattering type Rayleigh-to-Mie transition. Further evolution of this process comes to a geometrical optics scale and respective macroscopic observable opaque FF columnar aggregates emergence. These changes of optical transmission are non-monotonic during the magnetic field pulse duration with minimal value in the case of Mie scattering, which is known as a magneto-optical extinction trend inversion. The residual inversion was detected after the external magnetic field pulse falling edge. Using molecular dynamics simulation, we showed that a homogeneous external magnetic field is enough for the formation of columnar aggregates and their fusion. The results clarify the known Li theory (Li et al., 2004, 2007), implying an inhomogeneous field as a required prerequisite for the magneto-optical extinction trend inversion phenomenon. - Highlights: • Ferrofluid columnar aggregates have been observed in a homogeneous magnetic field. • Magneto-optical extinction trend inversion is related to the Mie light scattering. • Crucial role of columnar aggregates growth and lateral coalescence has been revealed. • Residual extinction trend inversion was observed after the field switch off.

  14. Magneto-optical extinction trend inversion in ferrofluids

    International Nuclear Information System (INIS)

    Shulyma, S.I.; Tanygin, B.M.; Kovalenko, V.F.; Petrychuk, M.V.

    2016-01-01

    Effects of pulse magnetic field on the optical transmission properties of thin ferrofluid (FF) layers were experimentally investigated. It was observed that, under an influence of an external uniform magnetic field, pulses applied to the samples surfaces in normal direction decrease the optical transmission with further returning it to its original state, even before the end of the field pulse. The dependencies of the observed effects on the magnetic pulse magnitude and the samples thickness were investigated. The experimental results are explained using FF columnar aggregates growth and lateral coalescence under influence of a magnetic field, leading to a light scattering type Rayleigh-to-Mie transition. Further evolution of this process comes to a geometrical optics scale and respective macroscopic observable opaque FF columnar aggregates emergence. These changes of optical transmission are non-monotonic during the magnetic field pulse duration with minimal value in the case of Mie scattering, which is known as a magneto-optical extinction trend inversion. The residual inversion was detected after the external magnetic field pulse falling edge. Using molecular dynamics simulation, we showed that a homogeneous external magnetic field is enough for the formation of columnar aggregates and their fusion. The results clarify the known Li theory (Li et al., 2004, 2007), implying an inhomogeneous field as a required prerequisite for the magneto-optical extinction trend inversion phenomenon. - Highlights: • Ferrofluid columnar aggregates have been observed in a homogeneous magnetic field. • Magneto-optical extinction trend inversion is related to the Mie light scattering. • Crucial role of columnar aggregates growth and lateral coalescence has been revealed. • Residual extinction trend inversion was observed after the field switch off.

  15. Advanced magneto-optical microscopy: Imaging from picoseconds to centimeters - imaging spin waves and temperature distributions (invited

    Directory of Open Access Journals (Sweden)

    Necdet Onur Urs

    2016-05-01

    Full Text Available Recent developments in the observation of magnetic domains and domain walls by wide-field optical microscopy based on the magneto-optical Kerr, Faraday, Voigt, and Gradient effect are reviewed. Emphasis is given to the existence of higher order magneto-optical effects for advanced magnetic imaging. Fundamental concepts and advances in methodology are discussed that allow for imaging of magnetic domains on various length and time scales. Time-resolved imaging of electric field induced domain wall rotation is shown. Visualization of magnetization dynamics down to picosecond temporal resolution for the imaging of spin-waves and magneto-optical multi-effect domain imaging techniques for obtaining vectorial information are demonstrated. Beyond conventional domain imaging, the use of a magneto-optical indicator technique for local temperature sensing is shown.

  16. Magneto Transport of CVD Carbon in Artificial Opals

    Science.gov (United States)

    Wang, Lei; Yin, Ming; Arammash, Fauzi; Datta, Timir

    2014-03-01

    Magneto-transport of carbon inverse opal structures were investigated in the 2.5 to 300 K temperatures and magnetic fields in the 0-10T regime. Qualitatively, our observations lie between those reported by previous researchers. Over this temperature range, transport (in zero magnetic field) is non-metallic; the resistance decreased with rising temperature however the temperature dependent behavior is not activated, as observed with variable range hopping. In three-dimensions, such behavior can also be the result of weak localization and electron-electron interactions; in particular the change in conductivity is a polynomial in fractional powers of absolute temperature. At sub-helium temperature regimes the relative magneto resistance is measured to be ~ 0.1 percent per Tesla. Results of data analysis for several different scenarios will be reported. DOD award #60177-RT-H from the ARO.

  17. Understanding and application of superconducting materials

    International Nuclear Information System (INIS)

    Moon, Byeong Mu; Lee, Chun Heung

    1997-02-01

    This book deals with superconducting materials, which contains from basic theory to application of superconducting materials. The contents of this book are mystery of superconducting materials, properties of superconducting materials, thermodynamics of superconducting materials, theoretical background of superconducting materials, tunnelling and quantum interference, classification and properties of superconducting materials, high temperature superconducting materials, production and analysis of superconducting materials and application of superconducting materials.

  18. Multi-dimensional electro-omosis consolidation of clays

    NARCIS (Netherlands)

    Yuan, J.; Hicks, M.A.; Dijkstra, J.

    2012-01-01

    Electro-osmosis consolidation is an innovative and effective ground improvement method for soft clays. But electro-osmosis is also a very complicated process, as the mechanical behaviour, and hydraulic and electrical properties of the soil are changing rapidly during the treatment process; this

  19. Magnetic field induced augmented thermal conduction phenomenon in magneto-nanocolloids

    International Nuclear Information System (INIS)

    Katiyar, Ajay; Dhar, Purbarun; Nandi, Tandra; Das, Sarit K.

    2016-01-01

    Magnetic field induced augmented thermal conductivity of magneto-nanocolloids involving nanoparticles, viz. Fe_2O_3, Fe_3O_4, NiO and Co_3O_4 dispersed in different base fluids have been reported. Experiments reveal the augmented thermal transport under external applied magnetic field. A maximum thermal conductivity enhancement ∼114% is attained at 7.0 vol% concentration and 0.1 T magnetic flux density for Fe_3O_4/EG magneto-nanocolloid. However, a maximum ∼82% thermal conductivity enhancement is observed for Fe_3O_4/kerosene magneto-nanocolloid for the same concentration but relatively at low magnetic flux density (∼0.06 T). Thereby, a strong effect of fluid as well as particle physical properties on the chain formation propensity, leading to enhanced conduction, in such systems is observed. Co_3O_4 nanoparticles show insignificant effect on the thermal conductivity enhancement of MNCs due to their minimal magnetic moment. A semi-empirical approach has been proposed to understand the mechanism and physics behind the thermal conductivity enhancement under external applied magnetic field, in tune with near field magnetostatic interactions as well as Neel relaxivity of the magnetic nanoparticles. Furthermore, the model is able to predict the phenomenon of enhanced thermal conductivity as a function of physical parameters and shows good agreement with the experimental observations. - Highlights: • Heat conduction in magneto-nanocolloids augments tremendously under magnetic field. • Oxide nanoparticles of Fe, Ni and Co dispersed in variant base fluids are used. • Enhancement in heat conduction is due to the formation of thermally conductive chains. • Proposed semi-empirical model shows good agreement with the experimental results.

  20. Magneto x-ray study of a gadolinium-iron amorphous alloy

    International Nuclear Information System (INIS)

    Keller, E.N.

    1985-01-01

    This work reports the measurement of the magnetic x-ray absorption of an amorphous Gd-Fe ferrimagnetic thin film. The Gd to Fe concentration in the sample was 1:4. The magnetic x-ray effect is the x-ray analog of magneto-optic absorption effects. Magneto x-ray effects arise when a solid has different indices of refraction for right and left circularly polarized x-rays. The difference in absorption of left and right circularly polarized x-rays is called the magneto x-ray absorption. This absorption is proportional to the net spin of the final state density of states. At the L3 edge, the main x-ray transition is from initial Gd(2p) core states to final Gd(5d) unoccupied states. Since the 5d states have a net spin polarization in ferromagnetic Gd, this experiment hoped to directly observe how that polarization changes for Gd in the alloy. The magneto x-ray absorption at the Gd L3 edge will be proportional to the sign and amount of the net spin polarization of the 5d electrons. The magnetic x-ray absorption coefficient was found to be at least 0.0005 smaller than the linear absorption coefficient at the Gd white line energy. This was measured for the amorphous alloy at room temperature. Lock-in techniques were used to obtain the small limit to the absorption. A simple model for the size of the magnetic x-ray absorption coefficient in Gd suggests that the Gd(5d) net spin polarization is less than 0.01 Bohr magnetons per atom

  1. Magneto-optical Kerr spectroscopy of noble metals

    Science.gov (United States)

    Uba, L.; Uba, S.; Antonov, V. N.

    2017-12-01

    Magneto-optical (MO) response of the noble metals Cu, Ag, and Au in the joint experimental and ab initio theoretical study is reported. The magneto-optical polar Kerr effect (MOKE) spectra of the noble-metal films were measured with the high sensitivity in the applied magnetic field of 1.5 T over the photon energy range 0.74-5.8 eV. Complete set of the optical conductivity tensor elements was determined precisely from the MOKE and the optical spectra measured at the same energy points. The importance of the off-diagonal intraband Drude-type transitions is demonstrated explicitly for each noble metal and found to be a substantial contribution to the observed spectra. It is shown that the first-principles calculations using the spin-polarized fully relativistic Dirac linear-muffin-tin-orbital method with the inclusion of correlation effects by GGA+U approach reproduce well the experimental spectra and allow to explain the microscopic origin of the noble metals' magneto-optical response in terms of interband transitions. Although the energy band structures of Cu, Ag, and Au are very similar, there are some distinctive differences in bandwidths and the energy positions of the bands (especially in X and L symmetry points), mainly due to different spin-orbit splitting and differences in the spatial extent of 3 d , 4 d , and 5 d valence wave functions of noble metals. It was found that the small differences in the band positions lead to significant differences in the MO properties of three noble metals. Although the spin-orbit interaction in Au is about six times larger than in Cu, and approximately two times larger than in Ag, the absolute value of Kerr rotation in Au is of the same magnitude as in Cu and one order of magnitude smaller as compared to Ag. The sharp Kerr effect spectral peak in Ag is not due to the electronic interband transitions, but rather to the plasma-edge splitting. The band-by-band decomposition of the Cu, Ag, and Au MO spectra is presented and the

  2. Submicron superconducting structures

    International Nuclear Information System (INIS)

    Golovashkin, A.I.; Lykov, A.N.

    1986-01-01

    An overview of works concerning superconducting structures of submicron dimensions and a system of such structures is given. It is noted that usage of the above structures in superconducting microelectronics permits, first, to increase the element packing density, to decrease the signal transmission time, capacity, power dissipated in high-frequency applications. Secondly, negligible coherence length in transition metals, their alloys and high-temperature compounds also restrict the dimensions of superconducting weak couplings when the 'classical' Josephson effect is displayed. The most effective methods for production of submicron superconducting structures are the following: lithography, double scribering. Recently the systems of superconducting submicron elements are extensively studied. It is shown that such systems can be phased by magnetic field

  3. Development of Magneto-Resistive Angular Position Sensors for Space Applications

    Science.gov (United States)

    Hahn, Robert; Langendorf, Sven; Seifart, Klaus; Slatter, Rolf; Olberts, Bastian; Romera, Fernando

    2015-09-01

    Magnetic microsystems in the form of magneto- resistive (MR) sensors are firmly established in automobiles and industrial applications. They measure path, angle, electrical current, or magnetic fields. MR technology opens up new sensor possibilities in space applications and can be an enabling technology for optimal performance, high robustness and long lifetime at reasonable costs. In a recent assessment study performed by HTS GmbH and Sensitec GmbH under ESA Contract a market survey has confirmed that space industry has a very high interest in novel, contactless position sensors based on MR technology. Now, a detailed development stage is pursued, to advance the sensor design up to Engineering Qualification Model (EQM) level and to perform qualification testing for a representative pilot space application.The paper briefly reviews the basics of magneto- resistive effects and possible sensor applications and describes the key benefits of MR angular sensors with reference to currently operational industrial and space applications. The results of the assessment study are presented and potential applications and uses of contactless magneto-resistive angular sensors for spacecraft are identified. The baseline mechanical and electrical sensor design will be discussed. An outlook on the EQM development and qualification tests is provided.

  4. Far-Infrared Magneto-Optical Studies in Germanium and Indium-Antimonide at High Intensities

    Science.gov (United States)

    Leung, Michael

    Observations of nonlinear magneto-optical phenomena occurring in p-type Germanium and n-type Indium Antimonide are reported. These include multi-photon ionization of impurity states, and a new observation, the magneto-photon ionization of impurity states, and a new observation, the magneto-photon drag effect. A novel source of far-infrared radiation has been used. This source uses a pulsed CO(,2) LASER to optically pump a super-radiant cell, generating light with intensities up to 100 KW/cm('2) and wavelengths from 66 (mu)m to 496 (mu)m in a pulse of 150 nanoseconds duration. The Germanium samples were doped with Gallium, which is a shallow acceptor with an ionization potential of 11 meV. At liquid Helium temperature virtually all charge carriers are bound to acceptor sites. However, the high intensity radiation unexpectedly ionizes the acceptors. This is demonstrated through measurements of photoconductivity, transmission and the photo-Hall Effect. This observation is unexpected because the photon energy is one-fourth the ionization potential. Rate equations describing sequential multiphoton excitations are in agreement with the experimental results. The intermediate states are postulated to be acceptor exciton band states. Studies of the photoexcited mobility at 496 (mu)m suggest that at non-saturating levels of photoexcitation, the primary scattering mechanism of hot holes in Germanium is by neutral impurities. A new magneto-optical effect, the magneto-photon drag effect, has been studied in both Germanium and Indium Antimonide. This is simply the absorption of momentum by free carriers, from an incident photon field. It has been found that the mechanism for this effect is different in the two materials. In Germanium, the effect occurs when carriers make optical transitions from the heavy hole band to the light hole band. Thus, the magneto-optical behavior depends heavily upon the band structure. On the other hand, a modified Drude model (independent electron

  5. Properties of Exchange Coupled All-garnet Magneto-Optic Thin Film Multilayer Structures

    Science.gov (United States)

    Nur-E-Alam, Mohammad; Vasiliev, Mikhail; Kotov, Viacheslav A.; Balabanov, Dmitry; Akimov, Ilya; Alameh, Kamal

    2015-01-01

    The effects of exchange coupling on magnetic switching properties of all-garnet multilayer thin film structures are investigated. All-garnet structures are fabricated by sandwiching a magneto-soft material of composition type Bi1.8Lu1.2Fe3.6Al1.4O12 or Bi3Fe5O12:Dy2O3 in between two magneto-hard garnet material layers of composition type Bi2Dy1Fe4Ga1O12 or Bi2Dy1Fe4Ga1O12:Bi2O3. The fabricated RF magnetron sputtered exchange-coupled all-garnet multilayers demonstrate a very attractive combination of magnetic properties, and are of interest for emerging applications in optical sensors and isolators, ultrafast nanophotonics and magneto-plasmonics. An unconventional type of magnetic hysteresis behavior not observed previously in magnetic garnet thin films is reported and discussed. PMID:28788043

  6. Properties of Exchange Coupled All-garnet Magneto-Optic Thin Film Multilayer Structures

    Directory of Open Access Journals (Sweden)

    Mohammad Nur-E-Alam

    2015-04-01

    Full Text Available The effects of exchange coupling on magnetic switching properties of all-garnet multilayer thin film structures are investigated. All-garnet structures are fabricated by sandwiching a magneto-soft material of composition type Bi1.8Lu1.2Fe3.6Al1.4O12 or Bi3Fe5O12:Dy2O3 in between two magneto-hard garnet material layers of composition type Bi2Dy1Fe4Ga1O12 or Bi2Dy1Fe4Ga1O12:Bi2O3. The fabricated RF magnetron sputtered exchange-coupled all-garnet multilayers demonstrate a very attractive combination of magnetic properties, and are of interest for emerging applications in optical sensors and isolators, ultrafast nanophotonics and magneto-plasmonics. An unconventional type of magnetic hysteresis behavior not observed previously in magnetic garnet thin films is reported and discussed.

  7. Ground-state magneto-optical resonances in cesium vapor confined in an extremely thin cell

    International Nuclear Information System (INIS)

    Andreeva, C.; Cartaleva, S.; Petrov, L.; Slavov, D.; Atvars, A.; Auzinsh, M.; Blush, K.

    2007-01-01

    Experimental and theoretical studies are presented related to the ground-state magneto-optical resonance observed in cesium vapor confined in an extremely thin cell (ETC), with thickness equal to the wavelength of the irradiating light. It is shown that utilization of the ETC allows one to examine the formation of a magneto-optical resonance on the individual hyperfine transitions, thus distinguishing processes resulting in dark (reduced absorption) or bright (enhanced absorption) resonance formation. We report experimental evidence of bright magneto-optical resonance sign reversal in Cs atoms confined in an ETC. A theoretical model is proposed based on the optical Bloch equations that involves the elastic interaction processes of atoms in the ETC with its walls, resulting in depolarization of the Cs excited state, which is polarized by the exciting radiation. This depolarization leads to the sign reversal of the bright resonance. Using the proposed model, the magneto-optical resonance amplitude and width as a function of laser power are calculated and compared with the experimental ones. The numerical results are in good agreement with those of experiment

  8. Electro-optical Detection of Charged Particles

    International Nuclear Information System (INIS)

    Lazarus, D.M.

    2001-01-01

    The electric field of charged particles can induce transient changes in the polarization of light that produce sub-picosecond modulation of a laser beam. This is a consequence of the electro-optical effect in which the presence of the electric field in an electro-optical medium produces a change in the index of refraction of the medium resulting in a phase retardation between polarization components parallel and perpendicular to the electric field. We have observed the electro-optical effect due to 10 picosecond electron beam bunches with rise times that were limited by the bandwidth of our data acquisition system. This technology is being applied to particle beam diagnostics and has the potential to produce charged particle detectors combining excellent spatial resolution with unprecedented temporal precision.

  9. Academic training: Applied superconductivity

    CERN Multimedia

    2007-01-01

    LECTURE SERIES 17, 18, 19 January from 11.00 to 12.00 hrs Council Room, Bldg 503 Applied Superconductivity : Theory, superconducting Materials and applications E. PALMIERI/INFN, Padova, Italy When hearing about persistent currents recirculating for several years in a superconducting loop without any appreciable decay, one realizes that we are dealing with a phenomenon which in nature is the closest known to the perpetual motion. Zero resistivity and perfect diamagnetism in Mercury at 4.2 K, the breakthrough during 75 years of several hundreds of superconducting materials, the revolution of the "liquid Nitrogen superconductivity"; the discovery of still a binary compound becoming superconducting at 40 K and the subsequent re-exploration of the already known superconducting materials: Nature discloses drop by drop its intimate secrets and nobody can exclude that the last final surprise must still come. After an overview of phenomenology and basic theory of superconductivity, the lectures for this a...

  10. Surface Characterization of Nb Samples Electro-polished Together With Real Superconducting Radio-frequency Accelerator Cavities

    International Nuclear Information System (INIS)

    Zhao, Xin; Geng, Rong-Li; Tyagi, P.V.; Hayano, Hitoshi; Kato, Shigeki; Nishiwaki, Michiru; Saeki, Takayuki; Sawabe, Motoaki

    2010-01-01

    We report the results of surface characterizations of niobium (Nb) samples electropolished together with a single cell superconducting radio-frequency accelerator cavity. These witness samples were located in three regions of the cavity, namely at the equator, the iris and the beam-pipe. Auger electron spectroscopy (AES) was utilized to probe the chemical composition of the topmost four atomic layers. Scanning electron microscopy with energy dispersive X-ray for elemental analysis (SEM/EDX) was used to observe the surface topography and chemical composition at the micrometer scale. A few atomic layers of sulfur (S) were found covering the samples non-uniformly. Niobium oxide granules with a sharp geometry were observed on every sample. Some Nb-O granules appeared to also contain sulfur.

  11. Exchange bias and bistable magneto-resistance states in amorphous TbFeCo thin films

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaopu, E-mail: xl6ba@virginia.edu; Ma, Chung T.; Poon, S. Joseph, E-mail: sjp9x@virginia.edu [Department of Physics, University of Virginia, Charlottesville, Virginia 22904 (United States); Lu, Jiwei [Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Devaraj, Arun [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Spurgeon, Steven R.; Comes, Ryan B. [Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States)

    2016-01-04

    Amorphous TbFeCo thin films sputter deposited at room temperature on thermally oxidized Si substrate are found to exhibit strong perpendicular magnetic anisotropy. Atom probe tomography, scanning transmission electron microscopy, and energy dispersive X-ray spectroscopy mapping have revealed two nanoscale amorphous phases with different Tb atomic percentages distributed within the amorphous film. Exchange bias accompanied by bistable magneto-resistance states has been uncovered near room temperature by magnetization and magneto-transport measurements. The exchange anisotropy originates from the exchange interaction between the ferrimagnetic and ferromagnetic components corresponding to the two amorphous phases. This study provides a platform for exchange bias and magneto-resistance switching using single-layer amorphous ferrimagnetic thin films that require no epitaxial growth.

  12. Microstructural effects on the magnetic and magneto-transport properties of electrodeposited Ni nanowire arrays

    International Nuclear Information System (INIS)

    Chen, Shu-Fang; Wei, Hao Han; Liu, Chuan-Pu; Hsu, C Y; Huang, J C A

    2010-01-01

    The magnetic and magneto-transport properties of Ni nanowire (NW) arrays, fabricated by electrodeposition in anodic-aluminum-oxide (AAO) templates, have been investigated. The AAO pores have diameters ranging from 35 to 75 nm, and the crystallinity of the Ni NW arrays could change from poly-crystalline to single-crystalline with the [111] and [110] orientations based on the electrodeposition potential. Notably, double switching magnetization loops and double-peaked magnetoresistance curves were observed in [110]-oriented NWs. The crystalline orientation of the Ni NW arrays is found to influence the corresponding magnetic and magneto-transport properties significantly. These magnetic behaviors are dominated by the competition between the magneto-crystalline and shape anisotropy.

  13. Magneto-plasmonics as a tool for magnetic field sensing

    Czech Academy of Sciences Publication Activity Database

    Vlček, J.; Lesňák, M.; Pištora, J.; Otipka, P.; Sobota, Jaroslav

    2013-01-01

    Roč. 58, č. 9 (2013), s. 260-264 ISSN 0447-6441 Institutional support: RVO:68081731 Keywords : plasmon resonance * magneto-optics * sensors * response factors Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  14. Crosslinked polyimide electro-optic materials

    Energy Technology Data Exchange (ETDEWEB)

    Kowalczyk, T.C.; Kosc, T.Z.; Singer, K.D. [Case Western Reserve University, Department of Physics, Cleveland, Ohio 44106-7079 (United States); Beuhler, A.J.; Wargowski, D.A. [Amoco Research Center, Amoco Chemical Co., Naperville, Illinois 60566 (United States); Cahill, P.A.; Seager, C.H.; Meinhardt, M.B. [Sandia National Laboratories, Division 1811, Albuquerque, New Mexico 87185-1407 (United States); Ermer, S. [Lockheed Research and Development Division, Palo Alto, California 94304 (United States)

    1995-11-15

    We report studies of the optical and electro-optic properties of guest--host polymeric nonlinear optical materials based on aromatic, fluorinated, fully imidized, organic soluble, thermally, and photochemically crosslinkable, guest--host polyimides. We have introduced temperature stable nonlinear optical chromophores into these polyimides and studied optical losses, electric field poling, electro-optic properties, and orientational stability. We measured electro-optic coefficients of 5.5 and 12.0 pm/V for ((2,6-Bis(2-(3-(9-(ethyl)carbazolyl))ethenyl)4H-pyran-4-ylidene)propanedinitrile) (4-(Dicyanomethylene)-2-methyl-6-(p -dimethylaminostyryl)-4H-pyran) DCM-doped guest--host systems at 800 nm using a poling field of 1.3 MV/cm. Poling induced nonlinearities in single-layer films were in agreement with the oriented gas model, but were lower in three-layer films due to voltage division across the layers. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  15. Synthesis of Immunotargeted Magneto-plasmonic Nanoclusters

    OpenAIRE

    Wu, Chun-Hsien; Sokolov, Konstantin

    2014-01-01

    Magnetic and plasmonic properties combined in a single nanoparticle provide a synergy that is advantageous in a number of biomedical applications including contrast enhancement in novel magnetomotive imaging modalities, simultaneous capture and detection of circulating tumor cells (CTCs), and multimodal molecular imaging combined with photothermal therapy of cancer cells. These applications have stimulated significant interest in development of protocols for synthesis of magneto-plasmonic nan...

  16. Dissipative relativistic hydrodynamics

    International Nuclear Information System (INIS)

    Imshennik, V.S.; Morozov, Yu.I.

    1989-01-01

    Using the comoving reference frame in the general non-inertial case, the relativistic hydrodynamics equations are derived with an account for dissipative effects in the matter. From the entropy production equation, the exact from for the dissipative tensor components is obtained. As a result, the closed system of equations of dissipative relativistic hydrodynamics is obtained in the comoving reference frame as a relativistic generalization of the known Navier-Stokes equations for Lagrange coordinates. Equations of relativistic hydrodynamics with account for dissipative effects in the matter are derived using the assocoated reference system in general non-inertial case. True form of the dissipative tensor components is obtained from entropy production equation. Closed system of equations for dissipative relativistic hydrodynamics is obtained as a result in the assocoated reference system (ARS) - relativistic generalization of well-known Navier-Stokes equations for Lagrange coordinates. Equation system, obtained in this paper for ARS, may be effectively used in numerical models of explosive processes with 10 51 erg energy releases which are characteristic for flashes of supernovae, if white dwarf type compact target suggested as presupernova

  17. The state of superconductivity

    International Nuclear Information System (INIS)

    Clark, T.D.

    1981-01-01

    The present status of applications based on the phenomena of superconductivity are reviewed. Superconducting materials, large scale applications, the Josephson effect and its applications, and superconductivity in instrumentation, are considered. The influence that superconductivity has had on modern theories of elementary particles, such as gauge symmetry breaking, is discussed. (U.K.)

  18. Superconductivity - applications

    International Nuclear Information System (INIS)

    The paper deals with the following subjects: 1) Electronics and high-frequency technology, 2) Superconductors for energy technology, 3) Superconducting magnets and their applications, 4) Electric machinery, 5) Superconducting cables. (WBU) [de

  19. Giant magneto-resistance devices

    CERN Document Server

    Hirota, Eiichi; Inomata, Koichiro

    2002-01-01

    This book deals with the application of giant magneto-resistance (GMR) effects to electronic devices. It will appeal to engineers and graduate students in the fields of electronic devices and materials. The main subjects are magnetic sensors with high resolution and magnetic read heads with high sensitivity, required for hard-disk drives with recording densities of several gigabytes. Another important subject is novel magnetic random-access memories (MRAM) with non-volatile non-destructive and radiation-resistant characteristics. Other topics include future GMR devices based on bipolar spin transistors, spin field-effect transistors (FETs) and double-tunnel junctions.

  20. Electro-optic methods for longitudinal bunch diagnostics at FLASH

    International Nuclear Information System (INIS)

    Steffen, B.R.

    2007-07-01

    Precise measurements of the temporal profile of sub-picosecond electron bunches are of high interest for the optimization and operation of VUV and X-ray free electron lasers. In this thesis, the shortest electro-optic signals measured so far for electron bunch diagnostics are presented, reaching a time resolution of better than 50 fs (rms). The e ects that introduce signal distortions and limit the time resolution are studied in numerical simulations for different electro-optic detection materials and techniques. The time resolution is mainly limited by lattice resonances of the electro-optic crystal. Electro-optic signals as short as 54 fs (rms) are obtained with gallium phosphide (GaP) crystals in a crossed polarizer detection scheme using temporally resolved electro-optic detection. Measuring near crossed polarization, where the electro-optic signal is proportional to the velocity field of the relativistic electron bunch, the shortest obtained signal width is 70 fs (rms). The electro-optic signals are compared to electron bunch shapes that are measured simultaneously with a transverse deflecting structure with 20 fs resolution. Numerical simulations using the bunch shapes as determined with the transverse deflecting cavity as input data are in excellent agreement with electro-optical signals obtained with GaP, both for temporally and spectrally resolved measurements. In the case of zinc telluride (ZnTe) the observed signals are slightly broader and significantly smaller than expected from simulations. These discrepancies are probably due to the poor optical quality of the available ZnTe crystals. (orig.)

  1. Electro-optic methods for longitudinal bunch diagnostics at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Steffen, B.R.

    2007-07-15

    Precise measurements of the temporal profile of sub-picosecond electron bunches are of high interest for the optimization and operation of VUV and X-ray free electron lasers. In this thesis, the shortest electro-optic signals measured so far for electron bunch diagnostics are presented, reaching a time resolution of better than 50 fs (rms). The e ects that introduce signal distortions and limit the time resolution are studied in numerical simulations for different electro-optic detection materials and techniques. The time resolution is mainly limited by lattice resonances of the electro-optic crystal. Electro-optic signals as short as 54 fs (rms) are obtained with gallium phosphide (GaP) crystals in a crossed polarizer detection scheme using temporally resolved electro-optic detection. Measuring near crossed polarization, where the electro-optic signal is proportional to the velocity field of the relativistic electron bunch, the shortest obtained signal width is 70 fs (rms). The electro-optic signals are compared to electron bunch shapes that are measured simultaneously with a transverse deflecting structure with 20 fs resolution. Numerical simulations using the bunch shapes as determined with the transverse deflecting cavity as input data are in excellent agreement with electro-optical signals obtained with GaP, both for temporally and spectrally resolved measurements. In the case of zinc telluride (ZnTe) the observed signals are slightly broader and significantly smaller than expected from simulations. These discrepancies are probably due to the poor optical quality of the available ZnTe crystals. (orig.)

  2. AB INITIO calculations of magneto-optical effects

    Czech Academy of Sciences Publication Activity Database

    Kuneš, Jan; Oppeneer, P. M.

    2002-01-01

    Roč. 2, - (2002), s. 141-146 ISSN 1346-7948 R&D Projects: GA AV ČR IAA1010214 Institutional research plan: CEZ:AV0Z1010914 Keywords : electronic structure * ab initio calculation * polar magneto-optical Kerr effect * transitiom metal * uranium intermetallics * CrO 2 Subject RIV: BM - Solid Matter Physics ; Magnetism

  3. Commissioning and modification of the low temperature scanning polarization microscope (TTSPM) and imaging of the local magnetic flux density distribution in superconducting niobium samples

    International Nuclear Information System (INIS)

    Gruenzweig, Matthias Sebastian Peter

    2014-01-01

    possible to image the magnetization reversal process and thus the formation (or destruction) and the migration of an ''Interfacial Domain Wall'' (IDW) in such a Fe 1-x Tb x / vertical stroke Co/Pt vertical stroke n -heterostructure. Part II of the dissertation is about the magneto-optical imaging of superconducting Niobium coplanar microwave resonators as well as of a Niobium single crystal. By means of the magneto-optical images of the resonators, important findings about magnetic hysteresis effects in such coplanar microwave resonators could be achieved. It was also possible to confirm the results of transmission spectroscopy experiments on those coplanar resonators, which were performed in a previous dissertation of Daniel Bothner. Additionally, it was possible to show that initially inserted Abrikosov vortices can be almost completely removed from the coplanar resonators again by properly cycling the magnetic field. On the basis of magneto-optical images of a 2 mm thick Niobium single crystal, it was possible to observe dendritic avalanches in a superconducting bulk material for the first time. Here, the dendritic avalanches only appear in a very narrow temperature interval of about a tenth of a Kelvin below the critical temperature T c of the Niobium single crystal. Below this threshold temperature the magnetic flux penetrates nearly homogeneously into the single crystal. The observed dendritic avalanches in the bulk single crystal near T c have features which are identical to those seen in thin films at low temperatures caused by thermomagnetic instability. Therefore, one can conclude that the dendritic avalanches in the single crystal are formed in a thin superconducting layer at the surface of the single crystal, which can be formed under certain conditions near T c .

  4. Effect of magneto rheological damper on tool vibration during hard turning

    Science.gov (United States)

    Paul, P. Sam; Varadarajan, A. S.

    2012-12-01

    Recently, the concept of hard turning has gained considerable attention in metal cutting as it can apparently replace the traditional process cycle of turning, heat treating, and finish grinding for assembly of hard wear resistant steel parts. The present investigation aims at developing a magneto rheological (MR) fluid damper for suppressing tool vibration and promoting better cutting performance during hard turning. The magneto rheological Fluid acts as a viscoelastic spring with non-linear vibration characteristics that are controlled by the composition of the magneto rheological fluid, the shape of the plunger and the electric parameters of the magnetizing field. Cutting experiments were conducted to arrive at a set of electrical, compositional and shape parameters that can suppress tool vibration and promote better cutting performance during turning of AISI 4340 steel of 46 HRC with minimal fluid application using hard metal insert with sculptured rake face. It was observed that the use of MR fluid damper reduces tool vibration and improves the cutting performance effectively. Also commercialization of this idea holds promise to the metal cutting industry.

  5. Study of magneto-thermal coupled phenomena in High Temperature Superconductors

    International Nuclear Information System (INIS)

    Berger, Kevin

    2006-01-01

    Theoretical study of HTS devices requires to solve magneto-thermal coupled equations. As coupling effects are very important in these materials, the development of numerical tools is almost unavoidable. A computer code based on the Finite Difference Method was developed in this direction, making it possible to solve 1D and 2D problems. It is then possible to numerically simulate the behavior of HTS. Study of the losses in a Bi-2223 current lead, fed by an alternating current at 50 Hz, subjected to a DC magnetic field and immersed in a liquid nitrogen bath, is then carried out in a theoretical and experimental way. Thermal instabilities were observed experimentally. This phenomenon was studied starting from the search for the stable and unstable steady state solutions. For a given current and magnetic field, a maximum temperature above which recovery of the superconducting state is not possible could be defined. YBCO pellets can trap strong magnetic fields and be used as very powerful cryo-magnets. The dynamic response of these pellets, subjected to variations of a magnetic field, is studied in a detailed way (current density, magnetic field and temperature distributions). Results of the simulations show significant differences when the influences of the magnetic field and temperature are taken into account in the electrical law E(J). An optimum of the maximum magnetic field to apply leading to a maximum of trapped flux could be given. This information is of great interest as it enables the design of the most effective pulse magnetization device. (author) [fr

  6. Relativistic hydrodynamics

    CERN Document Server

    Luciano, Rezzolla

    2013-01-01

    Relativistic hydrodynamics is a very successful theoretical framework to describe the dynamics of matter from scales as small as those of colliding elementary particles, up to the largest scales in the universe. This book provides an up-to-date, lively, and approachable introduction to the mathematical formalism, numerical techniques, and applications of relativistic hydrodynamics. The topic is typically covered either by very formal or by very phenomenological books, but is instead presented here in a form that will be appreciated both by students and researchers in the field. The topics covered in the book are the results of work carried out over the last 40 years, which can be found in rather technical research articles with dissimilar notations and styles. The book is not just a collection of scattered information, but a well-organized description of relativistic hydrodynamics, from the basic principles of statistical kinetic theory, down to the technical aspects of numerical methods devised for the solut...

  7. Basic Study of Superconductive Actuator

    OpenAIRE

    涌井, 和也; 荻原, 宏康

    2000-01-01

    There are two kinds of electromagnetic propulsion ships : a superconductive electromagnetic propulsion ship and a superconductive electricity propulsion ship. A superconductive electromagnetic propulsion ship uses the electromagnetic force (Lorenz force) by the interaction between a magnetic field and a electric current. On the other hand, a superconductive electricity propulsion ship uses screws driven by a superconductive motor. A superconductive propulsion ship technique has the merits of ...

  8. 100 years of superconductivity

    CERN Document Server

    Rogalla, Horst

    2011-01-01

    Even a hundred years after its discovery, superconductivity continues to bring us new surprises, from superconducting magnets used in MRI to quantum detectors in electronics. 100 Years of Superconductivity presents a comprehensive collection of topics on nearly all the subdisciplines of superconductivity. Tracing the historical developments in superconductivity, the book includes contributions from many pioneers who are responsible for important steps forward in the field.The text first discusses interesting stories of the discovery and gradual progress of theory and experimentation. Emphasizi

  9. Polycrystalline La1-xSrxMnO3 films on silicon: Influence of post-Deposition annealing on structural, (Magneto-)Optical, and (Magneto-)Electrical properties

    Science.gov (United States)

    Thoma, Patrick; Monecke, Manuel; Buja, Oana-Maria; Solonenko, Dmytro; Dudric, Roxana; Ciubotariu, Oana-Tereza; Albrecht, Manfred; Deac, Iosif G.; Tetean, Romulus; Zahn, Dietrich R. T.; Salvan, Georgeta

    2018-01-01

    The integration of La1-xSrxMnO3 (LSMO) thin film technology into established industrial silicon processes is regarded as challenging due to lattice mismatch, thermal expansion, and chemical reactions at the interface of LSMO and silicon. In this work, we investigated the physical properties of thin La0.73Sr0.27MnO3 films deposited by magnetron sputtering on silicon without a lattice matching buffer layer. The influence of a post-deposition annealing treatment on the structural, (magneto-)optical, and (magneto-)electrical properties was investigated by a variety of techniques. Using Rutherford backscattering spectroscopy, atomic force microscopy, Raman spectroscopy, and X-ray diffraction we could show that the thin films exhibit a polycrystalline, rhombohedral structure after a post-deposition annealing of at least 700 °C. The dielectric tensor in the spectral range from 1.7 eV to 5 eV determined from spectroscopic ellipsometry in combination with magneto-optical Kerr effect spectroscopy was found to be comparable to that of lattice matched films on single crystal substrates reported in literature [1]. The values of the metal-isolator transition temperature and temperature-dependent resistivities also reflect a high degree of crystalline quality of the thermally treated films.

  10. Superconducting current in a bisoliton superconductivity model

    International Nuclear Information System (INIS)

    Ermakov, V.N.; Kruchinin, S.P.; Ponezha, E.A.

    1991-01-01

    It is shown that the transition into a superconducting state with the current which is described by a bisoliton superconductivity model is accompanied by the deformation of the spectrum of one-particle states of the current carriers. The deformation value is proportional to the conducting current force. The residuaby resistance in such state is absent

  11. The magneto-optical properties of non-uniform graphene nanoribbons

    Science.gov (United States)

    Chung, Hsien-Ching; Lin, Ming-Fa

    2015-03-01

    When synthesizing few-layer graphene nanoribbons (GNRs), non-uniform GNRs would be made simultaneously. Recently, the non-uniform GNRs, which is a stack of two GNRs with unequal widths, have been fabricated by mechanically exfoliated from bulk graphite. Some theoretical predictions have been reported, such as gap opening and transport properties. Under the influence of magnetic fields, magnetic quantization takes place and drastically changes the electronic properties. By tuning the geometric configuration, four categories of magneto-electronic spectra are exhibited. (1) The spectrum is mostly contributed by quasi-Landau levels (QLLs) of monolayer GNRs. (2) The spectrum displays two groups of QLLs, and the non-uniform GNR behaves like a bilayer one. (3) An intermediate category, the spectrum is composite disordered. (4) The spectrum presents the coexistence of monolayer and bilayer spectra. In this work, the magneto-electronic and optical properties for different geometric configurations are given, such as energy dispersions, density of states, wave functions, and magneto-absorption spectra are presented. Furthermore, the transformation between monolayer and bilayer spectra as well as the coexistence of monolayer and bilayer spectra are discussed in detail. One of us (Hsien-Ching Chung) thanks Ming-Hui Chung and Su-Ming Chen for financial support. This work was supported in part by the National Science Council of Taiwan under Grant Number 98-2112-M-006-013-MY4.

  12. Asymptotic study of a magneto-hydro-dynamic system

    International Nuclear Information System (INIS)

    Benameur, J.; Ibrahim, S.; Majdoub, M.

    2003-01-01

    In this paper, we study the convergence of solutions of a Magneto-Hydro-Dynamic system. On the torus T 3 , the proof is based on Schochet's methods, whereas in the case of the whole space R 3 , we use Strichartz's type estimates. (author)

  13. Coexistence of magnetism and superconductivity in the hole doped FeAs-based superconducting compound

    International Nuclear Information System (INIS)

    Lu, T.P.; Wu, C.C.; Chou, W.H.; Lan, M.D.

    2010-01-01

    The magnetic and superconducting properties of the Sm-doped FeAs-based superconducting compound were investigated under wide ranges of temperature and magnetic field. After the systematical magnetic ion substitution, the superconducting transition temperature decreases with increasing magnetic moment. The hysteresis loop of the La 0.87-x Sm x Sr 0.13 FeAsO sample shows a superconducting hysteresis and a paramagnetic background signal. The paramagnetic signal is mainly attributed to the Sm moments. The experiment demonstrates that the coexistence of magnetism and superconductivity in the hole doped FeAs-based superconducting compounds is possible. Unlike the electron doped FeAs-based superconducting compounds SmFeAsOF, the hole doped superconductivity is degraded by the substitution of La by Sm. The hole-doped and electron-doped sides are not symmetric.

  14. Recent development of hydrodynamic modeling

    Science.gov (United States)

    Hirano, Tetsufumi

    2014-09-01

    In this talk, I give an overview of recent development in hydrodynamic modeling of high-energy nuclear collisions. First, I briefly discuss about current situation of hydrodynamic modeling by showing results from the integrated dynamical approach in which Monte-Carlo calculation of initial conditions, quark-gluon fluid dynamics and hadronic cascading are combined. In particular, I focus on rescattering effects of strange hadrons on final observables. Next I highlight three topics in recent development in hydrodynamic modeling. These include (1) medium response to jet propagation in di-jet asymmetric events, (2) causal hydrodynamic fluctuation and its application to Bjorken expansion and (3) chiral magnetic wave from anomalous hydrodynamic simulations. (1) Recent CMS data suggest the existence of QGP response to propagation of jets. To investigate this phenomenon, we solve hydrodynamic equations with source term which exhibits deposition of energy and momentum from jets. We find a large number of low momentum particles are emitted at large angle from jet axis. This gives a novel interpretation of the CMS data. (2) It has been claimed that a matter created even in p-p/p-A collisions may behave like a fluid. However, fluctuation effects would be important in such a small system. We formulate relativistic fluctuating hydrodynamics and apply it to Bjorken expansion. We found the final multiplicity fluctuates around the mean value even if initial condition is fixed. This effect is relatively important in peripheral A-A collisions and p-p/p-A collisions. (3) Anomalous transport of the quark-gluon fluid is predicted when extremely high magnetic field is applied. We investigate this possibility by solving anomalous hydrodynamic equations. We found the difference of the elliptic flow parameter between positive and negative particles appears due to the chiral magnetic wave. Finally, I provide some personal perspective of hydrodynamic modeling of high energy nuclear collisions

  15. Heuristic Enhancement of Magneto-Optical Images for NDE

    Science.gov (United States)

    Cacciola, Matteo; Megali, Giuseppe; Pellicanò, Diego; Calcagno, Salvatore; Versaci, Mario; Morabito, FrancescoCarlo

    2010-12-01

    The quality of measurements in nondestructive testing and evaluation plays a key role in assessing the reliability of different inspection techniques. Each different technique, like the magneto-optic imaging here treated, is affected by some special types of noise which are related to the specific device used for their acquisition. Therefore, the design of even more accurate image processing is often required by relevant applications, for instance, in implementing integrated solutions for flaw detection and characterization. The aim of this paper is to propose a preprocessing procedure based on independent component analysis (ICA) to ease the detection of rivets and/or flaws in the specimens under test. A comparison of the proposed approach with some other advanced image processing methodologies used for denoising magneto-optic images (MOIs) is carried out, in order to show advantages and weakness of ICA in improving the accuracy and performance of the rivets/flaw detection.

  16. Numerical and experimental study on the steady cone-jet mode of electro-centrifugal spinning

    Science.gov (United States)

    Hashemi, Ali Reza; Pishevar, Ahmad Reza; Valipouri, Afsaneh; Pǎrǎu, Emilian I.

    2018-01-01

    This study focuses on a numerical investigation of an initial stable jet through the air-sealed electro-centrifugal spinning process, which is known as a viable method for the mass production of nanofibers. A liquid jet undergoing electric and centrifugal forces, as well as other forces, first travels in a stable trajectory and then goes through an unstable curled path to the collector. In numerical modeling, hydrodynamic equations have been solved using the perturbation method—and the boundary integral method has been implemented to efficiently solve the electric potential equation. Hydrodynamic equations have been coupled with the electric field using stress boundary conditions at the fluid-fluid interface. Perturbation equations were discretized by a second order finite difference method, and the Newton method was implemented to solve the discretized non-linear system. Also, the boundary element method was utilized to solve electrostatic equations. In the theoretical study, the fluid was described as a leaky dielectric with charges only on the surface of the jet traveling in dielectric air. The effect of the electric field induced around the nozzle tip on the jet instability and trajectory deviation was also experimentally studied through plate-plate geometry as well as point-plate geometry. It was numerically found that the centrifugal force prevails on electric force by increasing the rotational speed. Therefore, the alteration of the applied voltage does not significantly affect the jet thinning profile or the jet trajectory.

  17. Development of a NDI system using the magneto-optical method. 2. Remote sensing using the novel magneto-optical inspection system

    International Nuclear Information System (INIS)

    Lee, Jinyi; Shoji, Tetsuo

    1999-01-01

    A new remote sensing system using the magneto-optical method is developed for inspection of flaws introduced during service operation where routine inspection is difficult because of difficult inaccessibility to the components. Among the advantages of non-destructive inspection (NDI) based on the magneto-optical sensor are: real time inspection, elimination of electrical noise and high spatial resolution. Remote sensing of flaws is achieved using the basic principles of Faraday effect, optical permeability, and diffraction of a laser by the domain walls. This paper describes a novel remote NDI system using the principles of optics and LMF. The main characteristic of the system is that image data and LMF information can be obtained simultaneously. It is possible to carry out remote and high speed inspection of cracks from the intensity of reflected light, and to estimate the size of a crack effectively with their diverse data. The advantages of this NDI system are demonstrated using two specimens. (author)

  18. Ultracold molecules for the masses: Evaporative cooling and magneto-optical trapping

    Science.gov (United States)

    Stuhl, B. K.

    While cold molecule experiments are rapidly moving towards their promised benefits of precision spectroscopy, controllable chemistry, and novel condensed phases, heretofore the field has been greatly limited by a lack of methods to cool and compress chemically diverse species to temperatures below ten millikelvin. While in atomic physics these needs are fulfilled by laser cooling, magneto-optical trapping, and evaporative cooling, until now none of these techniques have been applicable to molecules. In this thesis, two major breakthroughs are reported. The first is the observation of evaporative cooling in magnetically trapped hydroxyl (OH) radicals, which potentially opens a path all the way to Bose-Einstein condensation of dipolar radicals, as well as allowing cold- and ultracold-chemistry studies of fundamental reaction mechanisms. Through the combination of an extremely high gradient magnetic quadrupole trap and the use of the OH Λ-doublet transition to enable highly selective forced evaporation, cooling by an order of magnitude in temperature was achieved and yielded a final temperature no higher than 5mK. The second breakthrough is the successful application of laser cooling and magneto-optical trapping to molecules. Motivated by a proposal in this thesis, laser cooling of molecules is now known to be technically feasible in a select but substantial pool of diatomic molecules. The demonstration of not only Doppler cooling but also two-dimensional magneto-optical trapping in yttrium (II) oxide, YO, is expected to enable rapid growth in the availability of ultracold molecules—just as the invention of the atomic magneto-optical trap stimulated atomic physics twenty-five years ago.

  19. Effective-medium theory for nonlinear magneto-optics in magnetic granular alloys: cubic nonlinearity

    Energy Technology Data Exchange (ETDEWEB)

    Granovsky, Alexander B. E-mail: granov@magn.ru; Kuzmichov, Michail V.; Clerc, J.-P.; Inoue, Mitsuteru

    2003-03-01

    We propose a simple effective-medium approach for calculating the effective dielectric function of a magnetic metal-insulator granular alloy in which there is a weakly nonlinear relation between electric displacement D and electric field E for both constituent materials of the form D{sub i}={epsilon}{sub i}{sup (0)}E{sub i} +{chi}{sub i}{sup (3)}|E{sub i}|{sup 2}E{sub i}. We assume that linear {epsilon}{sub i}{sup (0)} and cubic nonlinear {chi}{sub i}{sup (3)} dielectric functions are diagonal and linear with magnetization non-diagonal components. For such metal-insulator composite magneto-optical effects depend on a light intensity and the effective cubic dielectric function {chi}{sub eff}{sup (3)} can be significantly greater (up to 10{sup 3} times) than that for constituent materials. The calculation scheme is based on the Bergman and Stroud-Hui theory of nonlinear optical properties of granular matter. The giant cubic magneto-optical nonlinearity is found for composites with metallic volume fraction close to the percolation threshold and at a resonance of optical conductivity. It is shown that a composite may exhibit nonlinear magneto-optics even when both constituent materials have no cubic magneto-optical nonlinearity.

  20. Propagation of electro-kinetic waves in magnetized GaN semiconductor with nano-sized ion colloids

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, Ajay [Government College, Garoth, Dist. Mandsaur (M P) (India); Sharma, Giriraj, E-mail: grsharma@gmail.com [SRJ Government Girls’ College, Neemuch (M P) (India); Jat, K. L. [Swami Vivekanand Government P G College, Neemuch (M P) (India); Rishi, M. P. [Shahid Bhagat Singh Government P G College, Jaora, Dist Ratlam (M P) (India)

    2015-07-31

    Based on hydrodynamic model of multi-component plasma, an analytical study on propagation of longitudinal electro-kinetic (LEK) waves in wurtzite and zincblende structures of GaN is carried out. Nano-sized ion colloids (NICs) are embedded in the sample by the technique of ion-implantation. The implanted NICs are considered massive by an order as compared to the host lattice points and do not participate in Based LEK perturbations. Though, the NICs are continuously bombarded by the electrons as well as the holes yet, the former acquires a net negative charge owing to relatively higher mobility of electrons and consequently results into depletion of electron density in the medium. It i s found that the presence of charged NICs significantly modifies the dispersion and amplification characteristics of LEK waves in magnetized GaN semiconductor plasma and their role becomes increasingly effective as the fraction of charge on them increases.

  1. Propagation of electro-kinetic waves in magnetized GaN semiconductor with nano-sized ion colloids

    International Nuclear Information System (INIS)

    Saxena, Ajay; Sharma, Giriraj; Jat, K. L.; Rishi, M. P.

    2015-01-01

    Based on hydrodynamic model of multi-component plasma, an analytical study on propagation of longitudinal electro-kinetic (LEK) waves in wurtzite and zincblende structures of GaN is carried out. Nano-sized ion colloids (NICs) are embedded in the sample by the technique of ion-implantation. The implanted NICs are considered massive by an order as compared to the host lattice points and do not participate in Based LEK perturbations. Though, the NICs are continuously bombarded by the electrons as well as the holes yet, the former acquires a net negative charge owing to relatively higher mobility of electrons and consequently results into depletion of electron density in the medium. It i s found that the presence of charged NICs significantly modifies the dispersion and amplification characteristics of LEK waves in magnetized GaN semiconductor plasma and their role becomes increasingly effective as the fraction of charge on them increases

  2. Magnetic field induced augmented thermal conduction phenomenon in magneto-nanocolloids

    Energy Technology Data Exchange (ETDEWEB)

    Katiyar, Ajay, E-mail: ajay_cim@rediffmail.com [Research and Innovation Centre (DRDO), Indian Institute of Technology Madras Research Park, Chennai 600 113 (India); Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600 036 (India); Dhar, Purbarun, E-mail: purbarun@iitrpr.ac.in [Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600 036 (India); Nandi, Tandra, E-mail: tandra_n@rediffmail.com [Defence Materials and Stores Research and Development Establishment (DRDO), G.T. Road, Kanpur 208 013 (India); Das, Sarit K., E-mail: skdas@iitrpr.ac.in [Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600 036 (India)

    2016-12-01

    Magnetic field induced augmented thermal conductivity of magneto-nanocolloids involving nanoparticles, viz. Fe{sub 2}O{sub 3}, Fe{sub 3}O{sub 4}, NiO and Co{sub 3}O{sub 4} dispersed in different base fluids have been reported. Experiments reveal the augmented thermal transport under external applied magnetic field. A maximum thermal conductivity enhancement ∼114% is attained at 7.0 vol% concentration and 0.1 T magnetic flux density for Fe{sub 3}O{sub 4}/EG magneto-nanocolloid. However, a maximum ∼82% thermal conductivity enhancement is observed for Fe{sub 3}O{sub 4}/kerosene magneto-nanocolloid for the same concentration but relatively at low magnetic flux density (∼0.06 T). Thereby, a strong effect of fluid as well as particle physical properties on the chain formation propensity, leading to enhanced conduction, in such systems is observed. Co{sub 3}O{sub 4} nanoparticles show insignificant effect on the thermal conductivity enhancement of MNCs due to their minimal magnetic moment. A semi-empirical approach has been proposed to understand the mechanism and physics behind the thermal conductivity enhancement under external applied magnetic field, in tune with near field magnetostatic interactions as well as Neel relaxivity of the magnetic nanoparticles. Furthermore, the model is able to predict the phenomenon of enhanced thermal conductivity as a function of physical parameters and shows good agreement with the experimental observations. - Highlights: • Heat conduction in magneto-nanocolloids augments tremendously under magnetic field. • Oxide nanoparticles of Fe, Ni and Co dispersed in variant base fluids are used. • Enhancement in heat conduction is due to the formation of thermally conductive chains. • Proposed semi-empirical model shows good agreement with the experimental results.

  3. Magneto-optic Doppler analyzer: a new instrument to measure mesopause winds

    Science.gov (United States)

    Williams, Bifford P.; Tomczyk, Steven

    1996-11-01

    The magneto-optic Doppler analyzer (MODA) is a new type of passive optical instrument that one can use to measure the Doppler shift of the sodium nightglow emitted at approximately 91 km near the mesopause. From this measurement, horizontal wind signatures are inferred. The MODA is based on a sodium vapor magneto-optic filter that provides inherent wavelength stability at a low cost. The instrument has been used to take nightly zonal and meridional wind measurements since October 1994 at Niwot Ridge, Colorado (40 N, 105 W). We obtained an internally consistent wind signal and measured the semidiurnal tide for several seasons.

  4. High-current applications of superconductivity

    International Nuclear Information System (INIS)

    Komarek, P.

    1995-01-01

    The following topics were dealt with: superconducting materials, design principles of superconducting magnets, magnets for research and engineering, superconductivity for power engineering, superconductivity in nuclear fusion technology, economical considerations

  5. Dependence of Magnetic Field Quality on Collar Supplier and Dimensions in the Main LHC Dipole

    CERN Document Server

    Bellesia, B; Santoni, C; Todesco, E

    2006-01-01

    In order to keep the electro-magnetic forces and to minimize conductor movements, the superconducting coils of the main Large Hadron Collider dipoles are held in place by means of austenitic steel collars. Two suppliers provide the collars necessary for the whole LHC production, which has now reached more than 800 collared coils. In this paper we first assess if the different collar suppliers origin a noticeable difference in the magnetic field quality measured at room temperature. We then analyze the measurements of the collar dimensions carried out at the manufacturers, comparing them to the geometrical tolerances. Finally we use a magneto-static model to evaluate the expected spread in the field components induced by the actual collar dimensions. These spreads are compared to the magnetic measurements at room temperature over the magnet production in order to identify if the collars, rather than other components or assembly process, can account for the measured magnetic field effects. It has been found tha...

  6. Asymptotic study of a magneto-hydro-dynamic system

    Energy Technology Data Exchange (ETDEWEB)

    Benameur, J [Institut Preparatoire aux Etudes d' Ingenieurs de Monastir (Tunisia); Ibrahim, S [Faculte des Sciences de Bizerte, Departement de Mathematiques, Bizerte (TN); [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)]. E-mail: slim.ibrahim@fsb.rnu.tn; Majdoub, M [Faculte des Sciences de Tunis, Departement de Mathematiques, Tunis (Tunisia)

    2003-01-01

    In this paper, we study the convergence of solutions of a Magneto-Hydro-Dynamic system. On the torus T{sup 3}, the proof is based on Schochet's methods, whereas in the case of the whole space R{sup 3}, we use Strichartz's type estimates. (author)

  7. 1999 Review of superconducting dipole and quadrupole magnets for particle accelerators

    International Nuclear Information System (INIS)

    Devred, A.

    1999-12-01

    The quest for elementary particles has promoted the development of particle accelerators producing beams of increasingly higher energies. In a synchrotron-type accelerator, the particle energy is directly proportional to the product of the machine's radius times the bending magnets' field strength. Present proton experiments at the TeV scale require facilities with circumferences ranging from a few to tens of kilometers and relying on a large number (several hundreds to several thousands) of high field dipole magnets and high field gradient quadrupole magnets. These electro-magnets use high current density, low critical temperature superconducting cables and are cooled down at liquid helium temperature. They are among the most costly and the most challenging components of the machine. After explaining what are the various types of accelerator magnets and why they are needed (section 1), we present a brief history of large superconducting particle accelerators, and we detail ongoing superconducting accelerator magnet R and D programs around the world (Section 2). Then, we review the superconducting materials that are available at industrial scale (chiefly, NbTi and Nb3Sn), and we describe the manufacturing of NbTi wires and cables (section 3). We also present the difficulties of processing and insulating Nb3Sn conductors which, so far, have limited the use of this material in spite of its superior performances. We continue by presenting the complex formalism used to represent two-dimensional fields (section 4), and we discuss the two-dimensional current distributions that are the most appropriate for generating pure dipole and pure quadrupole fields (section 5). We explain how these ideal distributions can be approximated by so-called cosθ and cos 2 θ coil designs and we describe the difficulties of realizing coil ends. Next, we present the mechanical design concepts that have been developed to restrain magnet coils and to ensure proper conductor positioning

  8. 1999 Review of superconducting dipole and quadrupole magnets for particle accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Devred, A. [CEA/Saclay, Dept. d' Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l' Instrumentation Associee (DAPNIA), 91 - Gif-sur-Yvette (France); CERN, Conseil Europeen pour la recherche nucleaire, Laboratoire europeen pour la physique des particules Geneve (Switzerland)

    1999-12-01

    The quest for elementary particles has promoted the development of particle accelerators producing beams of increasingly higher energies. In a synchrotron-type accelerator, the particle energy is directly proportional to the product of the machine's radius times the bending magnets' field strength. Present proton experiments at the TeV scale require facilities with circumferences ranging from a few to tens of kilometers and relying on a large number (several hundreds to several thousands) of high field dipole magnets and high field gradient quadrupole magnets. These electro-magnets use high current density, low critical temperature superconducting cables and are cooled down at liquid helium temperature. They are among the most costly and the most challenging components of the machine. After explaining what are the various types of accelerator magnets and why they are needed (section 1), we present a brief history of large superconducting particle accelerators, and we detail ongoing superconducting accelerator magnet R and D programs around the world (Section 2). Then, we review the superconducting materials that are available at industrial scale (chiefly, NbTi and Nb3Sn), and we describe the manufacturing of NbTi wires and cables (section 3). We also present the difficulties of processing and insulating Nb3Sn conductors which, so far, have limited the use of this material in spite of its superior performances. We continue by presenting the complex formalism used to represent two-dimensional fields (section 4), and we discuss the two-dimensional current distributions that are the most appropriate for generating pure dipole and pure quadrupole fields (section 5). We explain how these ideal distributions can be approximated by so-called cos{theta} and cos{sup 2}{theta} coil designs and we describe the difficulties of realizing coil ends. Next, we present the mechanical design concepts that have been developed to restrain magnet coils and to ensure proper

  9. Hydrodynamic optical soliton tunneling

    Science.gov (United States)

    Sprenger, P.; Hoefer, M. A.; El, G. A.

    2018-03-01

    A notion of hydrodynamic optical soliton tunneling is introduced in which a dark soliton is incident upon an evolving, broad potential barrier that arises from an appropriate variation of the input signal. The barriers considered include smooth rarefaction waves and highly oscillatory dispersive shock waves. Both the soliton and the barrier satisfy the same one-dimensional defocusing nonlinear Schrödinger (NLS) equation, which admits a convenient dispersive hydrodynamic interpretation. Under the scale separation assumption of nonlinear wave (Whitham) modulation theory, the highly nontrivial nonlinear interaction between the soliton and the evolving hydrodynamic barrier is described in terms of self-similar, simple wave solutions to an asymptotic reduction of the Whitham-NLS partial differential equations. One of the Riemann invariants of the reduced modulation system determines the characteristics of a soliton interacting with a mean flow that results in soliton tunneling or trapping. Another Riemann invariant yields the tunneled soliton's phase shift due to hydrodynamic interaction. Soliton interaction with hydrodynamic barriers gives rise to effects that include reversal of the soliton propagation direction and spontaneous soliton cavitation, which further suggest possible methods of dark soliton control in optical fibers.

  10. Sub-nanosecond time-resolved near-field scanning magneto-optical microscope.

    Science.gov (United States)

    Rudge, J; Xu, H; Kolthammer, J; Hong, Y K; Choi, B C

    2015-02-01

    We report on the development of a new magnetic microscope, time-resolved near-field scanning magneto-optical microscope, which combines a near-field scanning optical microscope and magneto-optical contrast. By taking advantage of the high temporal resolution of time-resolved Kerr microscope and the sub-wavelength spatial resolution of a near-field microscope, we achieved a temporal resolution of ∼50 ps and a spatial resolution of microscope, the magnetic field pulse induced gyrotropic vortex dynamics occurring in 1 μm diameter, 20 nm thick CoFeB circular disks has been investigated. The microscope provides sub-wavelength resolution magnetic images of the gyrotropic motion of the vortex core at a resonance frequency of ∼240 MHz.

  11. Magneto-Rheological Damper - An Experimental Study

    OpenAIRE

    Lozoya-Santos , Jorge De-Jesus; Morales-Menéndez , Rubén; Ramirez-Mendoza , Ricardo; Tudon-Martınez , Juan ,; Sename , Olivier; Dugard , Luc

    2012-01-01

    International audience; A Magneto-Rheological (MR) damper is evaluated under exhaustive experimental scenarios, generating a complete database. The obtained database includes classical tests and new proposals emphasizing the frequency contents. It also includes the impact of the electric current fluctuations. The variety of the performed experiments allows to study the MR damper force dynamics. A brief description of the damper behavior and a categorization of experiments based on driving con...

  12. Hydrodynamic cavitation for sonochemical effects.

    Science.gov (United States)

    Moholkar, V S; Kumar, P S; Pandit, A B

    1999-03-01

    A comparative study of hydrodynamic and acoustic cavitation has been made on the basis of numerical solutions of the Rayleigh-Plesset equation. The bubble/cavity behaviour has been studied under both acoustic and hydrodynamic cavitation conditions. The effect of varying pressure fields on the collapse of the cavity (sinusoidal for acoustic and linear for hydrodynamic) and also on the latter's dynamic behaviour has been studied. The variations of parameters such as initial cavity size, intensity of the acoustic field and irradiation frequency in the case of acoustic cavitation, and initial cavity size, final recovery pressure and time for pressure recovery in the case of hydrodynamic cavitation, have been found to have significant effects on cavity/bubble dynamics. The simulations reveal that the bubble/cavity collapsing behaviour in the case of hydrodynamic cavitation is accompanied by a large number of pressure pulses of relatively smaller magnitude, compared with just one or two pulses under acoustic cavitation. It has been shown that hydrodynamic cavitation offers greater control over operating parameters and the resultant cavitation intensity. Finally, a brief summary of the experimental results on the oxidation of aqueous KI solution with a hydrodynamic cavitation set-up is given which supports the conclusion of this numerical study. The methodology presented allows one to manipulate and optimise of specific process, either physical or chemical.

  13. Solitonic Dispersive Hydrodynamics: Theory and Observation

    Science.gov (United States)

    Maiden, Michelle D.; Anderson, Dalton V.; Franco, Nevil A.; El, Gennady A.; Hoefer, Mark A.

    2018-04-01

    Ubiquitous nonlinear waves in dispersive media include localized solitons and extended hydrodynamic states such as dispersive shock waves. Despite their physical prominence and the development of thorough theoretical and experimental investigations of each separately, experiments and a unified theory of solitons and dispersive hydrodynamics are lacking. Here, a general soliton-mean field theory is introduced and used to describe the propagation of solitons in macroscopic hydrodynamic flows. Two universal adiabatic invariants of motion are identified that predict trapping or transmission of solitons by hydrodynamic states. The result of solitons incident upon smooth expansion waves or compressive, rapidly oscillating dispersive shock waves is the same, an effect termed hydrodynamic reciprocity. Experiments on viscous fluid conduits quantitatively confirm the soliton-mean field theory with broader implications for nonlinear optics, superfluids, geophysical fluids, and other dispersive hydrodynamic media.

  14. Laser activated superconducting switch

    International Nuclear Information System (INIS)

    Wolf, A.A.

    1976-01-01

    A superconducting switch or bistable device is described consisting of a superconductor in a cryogen maintaining a temperature just below the transition temperature, having a window of the proper optical frequency band for passing a laser beam which may impinge on the superconductor when desired. The frequency of the laser is equal to or greater than the optical absorption frequency of the superconducting material and is consistent with the ratio of the gap energy of the switch material to Planck's constant, to cause depairing of electrons, and thereby normalize the superconductor. Some embodiments comprise first and second superconducting metals. Other embodiments feature the two superconducting metals separated by a thin film insulator through which the superconducting electrons tunnel during superconductivity

  15. Superconductivity and ferromagnetism in topological insulators

    Science.gov (United States)

    Zhang, Duming

    exist when topological insulators are interfaced with superconductors. The observation of Majorana fermions would not only be fundamentally important, but would also lead to applications in fault-tolerant topological quantum computation. By interfacing topological insulator nanoribbons with superconducting electrodes, we observe distinct signatures of proximity-induced superconductivity, which is found to be present in devices with channel lengths that are much longer than the normal transport characteristic lengths. This might suggest preferential coupling of the proximity effect to a ballistic surface channel of the topological insulator. In addition, when the electrodes are in the superconducting state, we observe periodic magnetoresistance oscillations which suggest the formation of vortices in the proximity-induced region of the nanoribbons. Our results demonstrate that proximity-induced superconductivity and vortices can be realized in our nanoribbon geometry, which accomplishes a first important step towards the search for Majorana fermions in condensed matter. In Chapter 5, I will discuss experiments on a magnetically-doped topological insulator (Mn-doped Bi2Se3) to induce a surface state gap. The metallic Dirac cone surface states of a topological insulator are expected to be protected against small perturbations by time-reversal symmetry. However, these surface states can be dramatically modified and a finite energy gap can be opened at the Dirac point by breaking the time-reversal symmetry via magnetic doping. The interplay between magnetism and topological surface states is predicted to yield novel phenomena of fundamental interest such as a topological magneto-electric effect, a quantized anomalous Hall effect, and the induction of magnetic monopoles. Our systematic measurements reveal a close correlation between the onset of ferromagnetism and quantum corrections to diffusive transport, which crosses over from the symplectic (weak anti-localization) to the

  16. Superconducting linac

    International Nuclear Information System (INIS)

    Bollinger, L.M.; Shepard, K.W.; Wangler, T.P.

    1978-01-01

    This project has two goals: to design, build, and test a small superconducting linac to serve as an energy booster for heavy ions from an FN tandem electrostatic accelerator, and to investigate various aspects of superconducting rf technology. The main design features of the booster are described, a status report on various components (resonators, rf control system, linac control system, cryostats, buncher) is given, and plans for the near future are outlined. Investigations of superconducting-linac technology concern studies on materials and fabrication techniques, resonator diagnostic techniques, rf-phase control, beam dynamics computer programs, asymmetry in accelerating field, and surface-treatment techniques. The overall layout of the to-be-proposed ATLAS, the Argonne Tandem-Linac Accelerator System, is shown; the ATLAS would use superconducting technology to produce beams of 5 to 25 MeV/A. 6 figures

  17. Superconductivity and electron microscopy

    International Nuclear Information System (INIS)

    Hawkes, P.W.; Valdre, U.

    1977-01-01

    In this review article, two aspects of the role of superconductivity in electron microscopy are examined: (i) the development of superconducting devices (mainly lenses) and their incorporation in electron microscopes; (ii) the development of electron microscope techniques for studying fundamental and technological problems associated with superconductivity. The first part opens with a brief account of the relevant properties of conventional lenses, after which the various types of superconducting lenses are described and their properties compared. The relative merits and inconveniences of superconducting and conventional lenses are examined, particular attention being paid to the spherical and chromatic aberration coefficients at accelerating voltages above a megavolt. This part closes with a survey of the various microscope designs that have been built or proposed, incorporating superconducting components. In the second part, some methods that have been or might be used in the study of superconductivity in the electron microscope are described. A brief account of the types of application for which they are suitable is given. (author)

  18. Superconductivity in transition metals.

    Science.gov (United States)

    Slocombe, Daniel R; Kuznetsov, Vladimir L; Grochala, Wojciech; Williams, Robert J P; Edwards, Peter P

    2015-03-13

    A qualitative account of the occurrence and magnitude of superconductivity in the transition metals is presented, with a primary emphasis on elements of the first row. Correlations of the important parameters of the Bardeen-Cooper-Schrieffer theory of superconductivity are highlighted with respect to the number of d-shell electrons per atom of the transition elements. The relation between the systematics of superconductivity in the transition metals and the periodic table high-lights the importance of short-range or chemical bonding on the remarkable natural phenomenon of superconductivity in the chemical elements. A relationship between superconductivity and lattice instability appears naturally as a balance and competition between localized covalent bonding and so-called broken covalency, which favours d-electron delocalization and superconductivity. In this manner, the systematics of superconductivity and various other physical properties of the transition elements are related and unified. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  19. Temperature dependence of the domain wall magneto-Seebeck effect: avoiding artifacts of lead contributions

    Science.gov (United States)

    Fernández Scarioni, Alexander; Krzysteczko, Patryk; Sievers, Sibylle; Hu, Xiukun; Schumacher, Hans W.

    2018-06-01

    We study the resistive and thermopower signatures of a single domain wall in a magnetic nanowire in the temperature range from 4 K to 204 K. The results are compared to the anisotropic magnetoresistance (AMR) and anisotropic magneto-Seebeck (AMS) data of the whole permalloy nanowire. The AMS ratio of the nanowire reveals a sign change at a temperature of 98 K, while the AMR ratio is positive over the complete temperature range. This behavior is also observed for the domain wall, allowing an attribution of the measured signatures to the domain wall magneto-Seebeck and domain wall magnetoresistive contributions. However, the observed zero crossing of the AMS ratio, in both types of measurements is not expected for permalloy, since the Mott formula predicts a temperature dependency of the AMS identical to the AMR. We discuss the origin of this behavior and can attribute it to the contributions of the lead and the protective platinum layer used in our devices. A correction scheme is presented and applied. Such contributions could also play a role in the analysis of magneto-Seebeck effects in other nanoscale devices, such as the tunnel magneto-Seebeck effect of magnetic tunnel junctions.

  20. Large-Scale Description of Interacting One-Dimensional Bose Gases: Generalized Hydrodynamics Supersedes Conventional Hydrodynamics

    Science.gov (United States)

    Doyon, Benjamin; Dubail, Jérôme; Konik, Robert; Yoshimura, Takato

    2017-11-01

    The theory of generalized hydrodynamics (GHD) was recently developed as a new tool for the study of inhomogeneous time evolution in many-body interacting systems with infinitely many conserved charges. In this Letter, we show that it supersedes the widely used conventional hydrodynamics (CHD) of one-dimensional Bose gases. We illustrate this by studying "nonlinear sound waves" emanating from initial density accumulations in the Lieb-Liniger model. We show that, at zero temperature and in the absence of shocks, GHD reduces to CHD, thus for the first time justifying its use from purely hydrodynamic principles. We show that sharp profiles, which appear in finite times in CHD, immediately dissolve into a higher hierarchy of reductions of GHD, with no sustained shock. CHD thereon fails to capture the correct hydrodynamics. We establish the correct hydrodynamic equations, which are finite-dimensional reductions of GHD characterized by multiple, disjoint Fermi seas. We further verify that at nonzero temperature, CHD fails at all nonzero times. Finally, we numerically confirm the emergence of hydrodynamics at zero temperature by comparing its predictions with a full quantum simulation performed using the NRG-TSA-abacus algorithm. The analysis is performed in the full interaction range, and is not restricted to either weak- or strong-repulsion regimes.

  1. Simulación del comportamiento de diversos modelos de amortiguadores magneto-reológicos mediante Modelica

    OpenAIRE

    Arranz Iglesias, Javier

    2011-01-01

    El presente proyecto fin de carrera consta de 8 capítulos, siendo el primero de ellos la introducción. En el capítulo 2: Se introduce el sistema de suspensión, así como los elementos de los que consta y los tipos de sistemas atendiendo a diversas clasificaciones. En el capítulo 3: Se trata el amortiguador magneto-reológico, los fluidos magneto-reológicos y sus aplicaciones. En el capítulo 4: Se exponen los diferentes modelos de caracterización del comportamiento de los amortiguadores magneto-...

  2. Hydrodynamic escape from planetary atmospheres

    Science.gov (United States)

    Tian, Feng

    Hydrodynamic escape is an important process in the formation and evolution of planetary atmospheres. Due to the existence of a singularity point near the transonic point, it is difficult to find transonic steady state solutions by solving the time-independent hydrodynamic equations. In addition to that, most previous works assume that all energy driving the escape flow is deposited in one narrow layer. This assumption not only results in less accurate solutions to the hydrodynamic escape problem, but also makes it difficult to include other chemical and physical processes in the hydrodynamic escape models. In this work, a numerical model describing the transonic hydrodynamic escape from planetary atmospheres is developed. A robust solution technique is used to solve the time dependent hydrodynamic equations. The method has been validated in an isothermal atmosphere where an analytical solution is available. The hydrodynamic model is applied to 3 cases: hydrogen escape from small orbit extrasolar planets, hydrogen escape from a hydrogen rich early Earth's atmosphere, and nitrogen/methane escape from Pluto's atmosphere. Results of simulations on extrasolar planets are in good agreement with the observations of the transiting extrasolar planet HD209458b. Hydrodynamic escape of hydrogen from other hypothetical close-in extrasolar planets are simulated and the influence of hydrogen escape on the long-term evolution of these extrasolar planets are discussed. Simulations on early Earth suggest that hydrodynamic escape of hydrogen from a hydrogen rich early Earth's atmosphere is about two orders magnitude slower than the diffusion limited escape rate. A hydrogen rich early Earth's atmosphere could have been maintained by the balance between the hydrogen escape and the supply of hydrogen into the atmosphere by volcanic outgassing. Origin of life may have occurred in the organic soup ocean created by the efficient formation of prebiotic molecules in the hydrogen rich early

  3. Electro-active bio-films: formation, characterization and mechanisms

    International Nuclear Information System (INIS)

    Parot, Sandrine

    2007-01-01

    Some bacteria, which are able to exchange electrons with a conductive material without mediator form on conductive surfaces electro-active bio-films. This bacterial property has been recently discovered (2001). Objectives of this work are to develop electro-active bio-films in various natural environments from indigenous flora, then through complementary electrochemical techniques (chrono-amperometry and cyclic voltammetry), to evaluate electro-activity of isolates coming from so-formed bio-films and to characterize mechanisms of electron transfer between bacteria and materials. First, electro-active bio-films have been developed under chrono-amperometry in garden compost and in water coming from Guyana mangrove. These bio-films were respectively able to use an electrode as electron acceptor (oxidation) or as electron donor (reduction). In compost, results obtained in chrono-amperometry and cyclic voltammetry suggest a two-step electron transfer: slow substrate consumption, then rapid electron transfer between bacteria and the electrode. Thereafter, the ability to reduce oxygen was demonstrated with cyclic voltammetry for facultative aerobic isolates from compost bio-films (Enterobacter spp. and Pseudomonas spp.) and for aerobic isolates obtained from marine electro-active bio-films (Roseobacter spp. in majority). Finally, bio-films inducing current increase in chrono-amperometry were developed in bioreactor with synthetic medium from a pure culture of isolates. Hence, for the first time, electro-activity of several anaerobic strains of Geobacter bremensis isolated from compost bio-films was highlighted. (author) [fr

  4. Linear arrangement of metallic and superconducting defects in a thin superconducting sample

    International Nuclear Information System (INIS)

    Barba-Ortega, J.; Sardella, Edson; Albino Aguiar, J.

    2013-01-01

    Highlights: • We study the influence of superconducting and metallic defects on the vortex configurations in a thin mesoscopic disk. • We found that the vortex–defect interaction leads to interesting vortex configurations. • The first vortex entry is always (never) found sitting on the metallic (superconducting) defect position. -- Abstract: The vortex matter in a superconducting disk with a linear configuration of metallic and superconducting defects is studied. Effects associated to the pinning (anti-pinning) force of the metallic (superconducting) defect on the vortex configuration and on the thermodynamic critical fields are analyzed in the framework of the Ginzburg Landau theory. We calculate the loop of the magnetization, vorticity and free energy curves as a function of the magnetic field for a thin disk. Due to vortex–defect attraction for a metallic defect (repulsion for a superconducting defect), the vortices always (never) are found to be sitting on the defect position

  5. Superconducting state mechanisms and properties

    CERN Document Server

    Kresin, Vladimir Z; Wolf, Stuart A

    2014-01-01

    'Superconducting State' provides a very detailed theoretical treatment of the key mechanisms of superconductivity, including the current state of the art (phonons, magnons, and plasmons). A very complete description is given of the electron-phonon mechanism responsible for superconductivity in the majority of superconducting systems, and the history of its development, as well as a detailed description of the key experimental techniques used to study the superconducting state and determine the mechanisms. In addition, there are chapters describing the discovery and properties of the key superconducting compounds that are of the most interest for science, and applications including a special chapter on the cuprate superconductors. It provides detailed treatments of some very novel aspects of superconductivity, including multiple bands (gaps), the "pseudogap" state, novel isotope effects beyond BCS, and induced superconductivity.

  6. Enhanced superconductivity of fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Washington, II, Aaron L.; Teprovich, Joseph A.; Zidan, Ragaiy

    2017-06-20

    Methods for enhancing characteristics of superconductive fullerenes and devices incorporating the fullerenes are disclosed. Enhancements can include increase in the critical transition temperature at a constant magnetic field; the existence of a superconducting hysteresis over a changing magnetic field; a decrease in the stabilizing magnetic field required for the onset of superconductivity; and/or an increase in the stability of superconductivity over a large magnetic field. The enhancements can be brought about by transmitting electromagnetic radiation to the superconductive fullerene such that the electromagnetic radiation impinges on the fullerene with an energy that is greater than the band gap of the fullerene.

  7. New Magneto-Inductive DC Magnetometer for Space Missions

    Science.gov (United States)

    Moldwin, M.; Bronner, B.; Regoli, L.; Thoma, J.; Shen, A.; Jenkins, G.; Cutler, J.

    2017-12-01

    A new magneto-inductive DC magnetometer is being developed at the University of Michigan that provides fluxgate quality measurements in a low mass, volume, power and cost package. The magnetometer enables constellation-class missions not only due to its low-resource requirements, but also its potential for commercial integrated circuit fabrication. The magneto-inductive operating principle is based on a simple resistance-inductor (RL) circuit and involves measurement of the time it takes to charge and discharge the inductor between an upper and lower threshold by means of a Schmitt trigger oscillator. This time is proportional to the inductance that in turn is proportional to the field strength. We have modeled the operating principle in the circuit simulator SPICE and have built a proto-type using modified commercial sensors. The performance specifications include a dynamic range over the full-Earth's field, sampling rates up to 80 Hz, sensor and electronics mass of about 30 g, circuit board and sensor housing volume of magnetometer.

  8. A hydrodynamic formalism for Brownian systems

    International Nuclear Information System (INIS)

    Pina, E.; Rosales, M.A.

    1981-01-01

    A formal hydrodynamic approach to Brownian motion is presented and the corresponding equations are derived. Hydrodynamic quantities are expressed in terms of the physical variables characterizing the Brownian systems. Contact is made with the hydrodynamic model of Quantum Mechanics. (author)

  9. Design and analysis of magneto rheological fluid brake for an all terrain vehicle

    Science.gov (United States)

    George, Luckachan K.; Tamilarasan, N.; Thirumalini, S.

    2018-02-01

    This work presents an optimised design for a magneto rheological fluid brake for all terrain vehicles. The actuator consists of a disk which is immersed in the magneto rheological fluid surrounded by an electromagnet. The braking torque is controlled by varying the DC current applied to the electromagnet. In the presence of a magnetic field, the magneto rheological fluid particle aligns in a chain like structure, thus increasing the viscosity. The shear stress generated causes friction in the surfaces of the rotating disk. Electromagnetic analysis of the proposed system is carried out using finite element based COMSOL multi-physics software and the amount of magnetic field generated is calculated with the help of COMSOL. The geometry is optimised and performance of the system in terms of braking torque is carried out. Proposed design reveals better performance in terms of braking torque from the existing literature.

  10. A Novel Defect Inspection Method for Semiconductor Wafer Based on Magneto-Optic Imaging

    Science.gov (United States)

    Pan, Z.; Chen, L.; Li, W.; Zhang, G.; Wu, P.

    2013-03-01

    The defects of semiconductor wafer may be generated from the manufacturing processes. A novel defect inspection method of semiconductor wafer is presented in this paper. The method is based on magneto-optic imaging, which involves inducing eddy current into the wafer under test, and detecting the magnetic flux associated with eddy current distribution in the wafer by exploiting the Faraday rotation effect. The magneto-optic image being generated may contain some noises that degrade the overall image quality, therefore, in this paper, in order to remove the unwanted noise present in the magneto-optic image, the image enhancement approach using multi-scale wavelet is presented, and the image segmentation approach based on the integration of watershed algorithm and clustering strategy is given. The experimental results show that many types of defects in wafer such as hole and scratch etc. can be detected by the method proposed in this paper.

  11. Hole superconductivity

    International Nuclear Information System (INIS)

    Hirsch, J.E.; Marsiglio, F.

    1989-01-01

    The authors review recent work on a mechanism proposed to explain high T c superconductivity in oxides as well as superconductivity of conventional materials. It is based on pairing of hole carriers through their direct Coulomb interaction, and gives rise to superconductivity because of the momentum dependence of the repulsive interaction in the solid state environment. In the regime of parameters appropriate for high T c oxides this mechanism leads to characteristic signatures that should be experimentally verifiable. In the regime of conventional superconductors most of these signatures become unobservable, but the characteristic dependence of T c on band filling survives. New features discussed her include the demonstration that superconductivity can result from repulsive interactions even if the gap function does not change sign and the inclusion of a self-energy correction to the hole propagator that reduces the range of band filling where T c is not zero

  12. Emergent Higgsless Superconductivity

    Directory of Open Access Journals (Sweden)

    Cristina Diamantini M.

    2017-01-01

    Full Text Available We present a new Higgsless model of superconductivity, inspired from anyon superconductivity but P- and T-invariant and generalizable to any dimension. While the original anyon superconductivity mechanism was based on incompressible quantum Hall fluids as average field states, our mechanism involves topological insulators as average field states. In D space dimensions it involves a (D-1-form fictitious pseudovector gauge field which originates from the condensation of topological defects in compact lowenergy effective BF theories. There is no massive Higgs scalar as there is no local order parameter. When electromagnetism is switched on, the photon acquires mass by the topological BF mechanism. Although the charge of the gapless mode (2 and the topological order (4 are the same as those of the standard Higgs model, the two models of superconductivity are clearly different since the origins of the gap, reflected in the high-energy sectors are totally different. In 2D thi! s type of superconductivity is explicitly realized as global superconductivity in Josephson junction arrays. In 3D this model predicts a possible phase transition from topological insulators to Higgsless superconductors.

  13. Superconducting Fullerene Nanowhiskers

    Directory of Open Access Journals (Sweden)

    Yoshihiko Takano

    2012-04-01

    Full Text Available We synthesized superconducting fullerene nanowhiskers (C60NWs by potassium (K intercalation. They showed large superconducting volume fractions, as high as 80%. The superconducting transition temperature at 17 K was independent of the K content (x in the range between 1.6 and 6.0 in K-doped C60 nanowhiskers (KxC60NWs, while the superconducting volume fractions changed with x. The highest shielding fraction of a full shielding volume was observed in the material of K3.3C60NW by heating at 200 °C. On the other hand, that of a K-doped fullerene (K-C60 crystal was less than 1%. We report the superconducting behaviors of our newly synthesized KxC60NWs in comparison to those of KxC60 crystals, which show superconductivity at 19 K in K3C60. The lattice structures are also discussed, based on the x-ray diffraction (XRD analyses.

  14. Electro-chemical grinding

    Science.gov (United States)

    Feagans, P. L.

    1972-01-01

    Electro-chemical grinding technique has rotation speed control, constant feed rates, and contour control. Hypersonic engine parts of nickel alloys can be almost 100% machined, keeping tool pressure at virtual zero. Technique eliminates galling and permits constant surface finish and burr-free interrupted cutting.

  15. Evidence for a vortex-glass transition in superconducting Ba(Fe0.9Co0.1)2As2.

    Science.gov (United States)

    Prando, G; Giraud, R; Aswartham, S; Vakaliuk, O; Abdel-Hafiez, M; Hess, C; Wurmehl, S; Wolter, A U B; Büchner, B

    2013-12-18

    Measurements of magneto-resistivity and magnetic susceptibility were performed on single crystals of superconducting Ba(Fe0.9Co0.1)2As2 close to the conditions of optimal doping. The high quality of the investigated samples allows us to reveal dynamic scaling behaviour associated with a vortex-glass phase transition in the limit of a weak degree of quenched disorder. Accordingly, the dissipative component of the ac susceptibility is reproduced well within the framework of Havriliak-Negami relaxation, assuming a critical power-law divergence for the characteristic correlation time τ of the vortex dynamics. Remarkably, the random disorder introduced by the Fe1-xCox chemical substitution is found to act on the vortices as a much weaker quenched disorder than previously reported for cuprate superconductors such as Y1-xPrxBa2Cu3O7-δ.

  16. SQUID magnetometry and magneto-optics of epitaxial EuS

    International Nuclear Information System (INIS)

    Rumpf, K.; Granitzer, P.; Krenn, H.; Kellner, W.; Pascher, H.; Kirchschlager, R.; Janecek, S.

    2004-01-01

    The complicated (H,T)-magnetic phase diagram of EuS is caused by the critical balance between nearest and next nearest neighbour exchange interaction (J NN = 0.119 K and J NNN =-0.1209 K) and leads to various spin arrangements NNSS..., NSN..., NNS, NNN... [NS denotes opposite ferromagnetic order in adjacent (111) planes]. Beside the subtle local exchange of 5d-t 2g electrons and localized holes with neighbouring Eu-4f spins, obviously also the strain status influences the occurrence of these different phases. We investigate the magnetic ordering phenomenon in a strained 2.5 μm EuS film on BaF 2 substrate by SQUID magnetometry and magneto-optics like spectral Faraday- and Kerr-effect measurements for temperatures from 2 K up to 200 K and for magnetic field up to 5 T. The magneto-optical probe monitors the local environment of the photoexcited electron-hole pair, called magnetic exciton, located within a ferromagnetic surrounding (photoinduced magnetic polaron), whereas the integral magnetization measured by SQUID is most sensitive to long-range magnetic ordering. In spite of the dissimilarity of measurement techniques we find an influence of the long-range magnetic order (e.g. of the NNS- or NNN-matrix) on the non-resonant Kerr reflection. The complementarity of SQUID and magneto-optical methods is stringent only in the (resonant) spectral range, where magnetic polarons are formed. (author)

  17. Superconducting quantum electronics

    International Nuclear Information System (INIS)

    Kose, V.

    1989-01-01

    This book reviews recent accomplishments, presents new results and discusses possible future developments of superconducting quantum electronics and high T c superconductivity. The three main parts of the book deal with fundamentals, sensitive detectors, and precision metrology. New results reported include: correct equivalent circuits modelling superconducting electronic devices; exact solution of the Mattis-Bardeen equations describing various experiments for thin films; complete theoretical description and experimental results for a new broad band spectrum analyzer; a new Josephson junction potentiometer allowing tracing of unknown voltage ratios back to well-known frequency ratios; and fast superconducting SQUID shift registers enabling the production of calculable noise power spectra in the microwave region

  18. Jumping magneto-electric states of electrons in semiconductor multiple quantum wells

    International Nuclear Information System (INIS)

    Pfeffer, Pawel; Zawadzki, Wlodek

    2011-01-01

    Orbital and spin electron states in semiconductor multiple quantum wells in the presence of an external magnetic field transverse to the growth direction are considered. Rectangular wells of GaAs/GaAlAs and InAs/AlSb are taken as examples. It is shown that, in addition to magneto-electric states known from one-well systems, there appear magneto-electric states having a much stronger dependence of energies on a magnetic field and exhibiting an interesting anti-crossing behavior. The origin of these states is investigated and it is shown that the strong field dependence of the energies is related to an unusual 'jumping' behavior of their wavefunctions between quantum wells as the field increases. The ways of investigating the jumping states by means of interband magneto-luminescence transitions or intraband cyclotron-like transitions are considered and it is demonstrated that the jumping states can be observed. The spin g factors of electrons in the jumping states are calculated using the real values of the spin–orbit interaction and bands' nonparabolicity for the semiconductors in question. It is demonstrated that the jumping states offer a wide variety of the spin g factors

  19. X-ray magneto-optic KERR effect studies of spring magnet heterostructures.

    Energy Technology Data Exchange (ETDEWEB)

    Kortright, J. B.; Kim, S.-K.; Fullerton, E. E.; Jiang, J. S.; Bader, S. D.

    2000-11-01

    The complex 3-dimensional magnetization reversal behavior of Sin-Co/Fe exchange spring films is used to test the sensitivity of different resonant soft x-ray magneto-optical Kerr effect (MOKE) measurements to changes in longitudinal and transverse moments within the SOIIFe layer and to changes in these moments in depth within the Fe layer. As in the visible MOKE, changes in longitudinal and net transverse moments are resolved by measuring both Kerr rotation and intensity loops in the near the Fe 2p core resonance. These x-ray MOKE signals measured using linear incident polarization are more directly interpreted in terms of longitudinal and transverse moments than are the same signals measured using elliptical polarization. Varying photon energy near the Fe L3line is shown to be an effective means of resolving distinctly different reversal behavior at the top and bottom of the 20 nm thick Fe layer resulting from the strong exchange coupling at the Sin-Co/Fe interface. Measured x-ray MOKE spectra and signals are in qualitative agreement with those calculated using standard magneto-optical formalisms incorporating interference between different layers and measured helicity-dependent magneto-optical constants for Fe.

  20. Superconductivity in graphite intercalation compounds

    International Nuclear Information System (INIS)

    Smith, Robert P.; Weller, Thomas E.; Howard, Christopher A.; Dean, Mark P.M.; Rahnejat, Kaveh C.; Saxena, Siddharth S.; Ellerby, Mark

    2015-01-01

    Highlights: • Historical background of graphite intercalates. • Superconductivity in graphite intercalates and its place in the field of superconductivity. • Recent developments. • Relevant modeling of superconductivity in graphite intercalates. • Interpretations that pertain and questions that remain. - Abstract: The field of superconductivity in the class of materials known as graphite intercalation compounds has a history dating back to the 1960s (Dresselhaus and Dresselhaus, 1981; Enoki et al., 2003). This paper recontextualizes the field in light of the discovery of superconductivity in CaC 6 and YbC 6 in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how these relate to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity, and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition

  1. Superconductivity in graphite intercalation compounds

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Robert P. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Weller, Thomas E.; Howard, Christopher A. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Dean, Mark P.M. [Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY 11973 (United States); Rahnejat, Kaveh C. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Saxena, Siddharth S. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Ellerby, Mark, E-mail: mark.ellerby@ucl.ac.uk [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom)

    2015-07-15

    Highlights: • Historical background of graphite intercalates. • Superconductivity in graphite intercalates and its place in the field of superconductivity. • Recent developments. • Relevant modeling of superconductivity in graphite intercalates. • Interpretations that pertain and questions that remain. - Abstract: The field of superconductivity in the class of materials known as graphite intercalation compounds has a history dating back to the 1960s (Dresselhaus and Dresselhaus, 1981; Enoki et al., 2003). This paper recontextualizes the field in light of the discovery of superconductivity in CaC{sub 6} and YbC{sub 6} in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how these relate to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity, and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.

  2. How to fake hydrodynamic signals

    Energy Technology Data Exchange (ETDEWEB)

    Romatschke, Paul [Department of Physics, 390 UCB, University of Colorado at Boulder, Boulder, CO (United States); Center for Theory of Quantum Matter, University of Colorado, Boulder, CO 80309 (United States)

    2016-12-15

    Flow signatures in experimental data from relativistic ion collisions, are usually interpreted as a fingerprint of the presence of a hydrodynamic phase during the evolution of these systems. I review some theoretical ideas to ‘fake’ this hydrodynamic behavior in p+A and A+A collisions. I find that transverse flow and femtoscopic measurements can easily be forged through non-hydrodynamic evolution, while large elliptic flow requires some non-vanishing interactions in the hot phase.

  3. Theory-inspired development of organic electro-optic materials

    Energy Technology Data Exchange (ETDEWEB)

    Dalton, Larry R., E-mail: dalton@chem.washington.ed [Department of Chemistry, Bagley Hall 202D, Box 351700, University of Washington, Seattle, Washington 98195-1700 (United States); Department of Electrical Engineering, Bagley Hall 202D, Box 351700, University of Washington, Seattle, Washington 98195-1700 (United States)

    2009-11-30

    Real-time, time-dependent density functional theory (RTTDDFT) and pseudo-atomistic Monte Carlo-molecular dynamics (PAMCMD) calculations have been used in a correlated manner to achieve quantitative definition of structure/function relationships necessary for the optimization of electro-optic activity in organic materials. Utilizing theoretical guidance, electro-optic coefficients (at telecommunication wavelengths) have been increased to 500 pm/V while keeping optical loss to less than 2 dB/cm. RTTDDFT affords the advantage of permitting explicit treatment of time-dependent electric fields, both applied fields and internal fields. This modification has permitted the quantitative simulation of the variation of linear and nonlinear optical properties of chromophores and the electro-optic activity of materials with optical frequency and dielectric permittivity. PAMCMD statistical mechanical calculations have proven an effective means of treating the full range of spatially-anisotropic intermolecular electrostatic interactions that play critical roles in defining the degree of noncentrosymmetric order that is achieved by electric field poling of organic electro-optic materials near their glass transition temperatures. New techniques have been developed for the experimental characterization of poling-induced acentric order including a modification of variable angle polarization absorption spectroscopy (VAPAS) permitting a meaningful correlation of theoretical and experimental data related to poling-induced order for a variety of complex organic electro-optic materials.

  4. Theory-inspired development of organic electro-optic materials

    International Nuclear Information System (INIS)

    Dalton, Larry R.

    2009-01-01

    Real-time, time-dependent density functional theory (RTTDDFT) and pseudo-atomistic Monte Carlo-molecular dynamics (PAMCMD) calculations have been used in a correlated manner to achieve quantitative definition of structure/function relationships necessary for the optimization of electro-optic activity in organic materials. Utilizing theoretical guidance, electro-optic coefficients (at telecommunication wavelengths) have been increased to 500 pm/V while keeping optical loss to less than 2 dB/cm. RTTDDFT affords the advantage of permitting explicit treatment of time-dependent electric fields, both applied fields and internal fields. This modification has permitted the quantitative simulation of the variation of linear and nonlinear optical properties of chromophores and the electro-optic activity of materials with optical frequency and dielectric permittivity. PAMCMD statistical mechanical calculations have proven an effective means of treating the full range of spatially-anisotropic intermolecular electrostatic interactions that play critical roles in defining the degree of noncentrosymmetric order that is achieved by electric field poling of organic electro-optic materials near their glass transition temperatures. New techniques have been developed for the experimental characterization of poling-induced acentric order including a modification of variable angle polarization absorption spectroscopy (VAPAS) permitting a meaningful correlation of theoretical and experimental data related to poling-induced order for a variety of complex organic electro-optic materials.

  5. Electro/powder separation process

    International Nuclear Information System (INIS)

    Dunn, J.P.

    1977-01-01

    A report is presented to introduce the ELECTRO/POWDER process to the P/M Industry. The process effectively uses electrostatic forces to convey, sort, meter, and blend fine powders. The major advantages of this separating process consist of the processing of primary particles, low particle energy due to particle velocity control and the pattern of particle movement over the sieve (vertical oscillation of particles above the sieve aperture). The report briefly describes the forces involved in both mechanical and sieving devices, with major emphasis on the operating principles of this process. Sieve separation of particulates is basically the result of two physical separating processes which occur simultaneously or independently; separation (dispersion) of particulates from each other and the size separation by passage through fixed apertures. In order to accomplish this goal, mechanical sieving devices utilize various motions to induce shear forces between the sieve surface and the particulates, and between the particulates themselves. It is noted that the ELECTRO/POWDER process is making steady progress in becoming an industrial tool for sieving and feeding of fine particles. Its potential extends into both the blending and admixing of powders, either by incorporating two opposing feeders, one being charged with the opposite polarity or by modifying the ELECTRO/SIEVE to incorporate more than one input and a solid electrode to replace the sieve electrode

  6. Modern high-temperature superconductivity

    International Nuclear Information System (INIS)

    Ching Wu Chu

    1988-01-01

    Ever since the discovery of superconductivity in 1911, its unusual scientific challenge and great technological potential have been recognized. For the past three-quarters of a century, superconductivity has done well on the science front. This is because sueprconductivity is interesting not only just in its own right but also in its ability to act as a probe to many exciting nonsuperconducting phenomena. For instance, it has continued to provide bases for vigorous activities in condensed matter science. Among the more recent examples are heavy-fermion systems and organic superconductors. During this same period of time, superconductivity has also performed admirably in the applied area. Many ideas have been conceived and tested, making use of the unique characteristics of superconductivity - zero resistivity, quantum interference phenomena, and the Meissner effect. In fact, it was not until late January 1987 that it became possible to achieve superconductivity with the mere use of liquid nitrogen - which is plentiful, cheap, efficient, and easy to handle - following the discovery of supercondictivity above 90 K in Y-Ba-Cu-O, the first genuine quaternary superconductor. Superconductivity above 90 K poses scientific and technological challenges not previously encountered: no existing theories can adequately describe superconductivity above 40 K and no known techniques can economically process the materials for full-scale applications. In this paper, therefore, the author recalls a few events leading to the discovery of the new class of quaternary compounds with a superconducting transition temperature T c in the 90 K range, describes the current experimental status of high-temperature superconductivity and, finally, discusses the prospect of very-high-temperature superconductivity, i.e., with a T c substantially higher than 100 K. 97 refs., 7 figs

  7. Magneto-Optical Thin Films for On-Chip Monolithic Integration of Non-Reciprocal Photonic Devices.

    Science.gov (United States)

    Bi, Lei; Hu, Juejun; Jiang, Peng; Kim, Hyun Suk; Kim, Dong Hun; Onbasli, Mehmet Cengiz; Dionne, Gerald F; Ross, Caroline A

    2013-11-08

    Achieving monolithic integration of nonreciprocal photonic devices on semiconductor substrates has been long sought by the photonics research society. One way to achieve this goal is to deposit high quality magneto-optical oxide thin films on a semiconductor substrate. In this paper, we review our recent research activity on magneto-optical oxide thin films toward the goal of monolithic integration of nonreciprocal photonic devices on silicon. We demonstrate high Faraday rotation at telecommunication wavelengths in several novel magnetooptical oxide thin films including Co substituted CeO₂ -δ , Co- or Fe-substituted SrTiO 3- δ , as well as polycrystalline garnets on silicon. Figures of merit of 3~4 deg/dB and 21 deg/dB are achieved in epitaxial Sr(Ti 0.2 Ga 0.4 Fe 0.4 )O 3- δ and polycrystalline (CeY₂)Fe₅O 12 films, respectively. We also demonstrate an optical isolator on silicon, based on a racetrack resonator using polycrystalline (CeY₂)Fe₅O 12 /silicon strip-loaded waveguides. Our work demonstrates that physical vapor deposited magneto-optical oxide thin films on silicon can achieve high Faraday rotation, low optical loss and high magneto-optical figure of merit, therefore enabling novel high-performance non-reciprocal photonic devices monolithically integrated on semiconductor substrates.

  8. Optical and magneto-optical characterization of TbFeCo thin films in trilayer structures

    International Nuclear Information System (INIS)

    McGahan, W.A.; He, P.; Chen, L.; Bonafede, S.; Woollam, J.A.; Sequeda, F.; McDaniel, T.; Do, H.

    1991-01-01

    A series of TbFeCo films ranging in thickness from 100 to 800 A have been deposited in trilayer structures on silicon wafer substrates, with Si 3 N 4 being employed as the dielectric material. These films have been characterized both optically and magneto-optically by variable angle of incidence spectroscopic ellipsometry, normal angle of incidence reflectometry, and normal angle of incidence Kerr spectroscopy. From these measurements, the optical constants n and k have been determined for the TbFeCo films, as well as the magneto-optical constants Q1 and Q2. Results are presented that demonstrate the lack of dependence of these constants on the thickness of the TbFeCo film, and which can be used for calculating the expected optical and magneto-optical response of any multilayer structure containing similar TbFeCo films

  9. Modelling electro-active polymers with a dispersion-type anisotropy

    Science.gov (United States)

    Hossain, Mokarram; Steinmann, Paul

    2018-02-01

    We propose a novel constitutive framework for electro-active polymers (EAPs) that can take into account anisotropy with a chain dispersion. To enhance actuation behaviour, particle-filled EAPs become promising candidates nowadays. Recent studies suggest that particle-filled EAPs, which can be cured under an electric field during the manufacturing time, do not necessarily form perfect anisotropic composites, rather they create composites with dispersed chains. Hence in this contribution, an electro-mechanically coupled constitutive model is devised that considers the chain dispersion with a probability distribution function in an integral form. To obtain relevant quantities in discrete form, numerical integration over the unit sphere is utilized. Necessary constitutive equations are derived exploiting the basic laws of thermodynamics that result in a thermodynamically consistent formulation. To demonstrate the performance of the proposed electro-mechanically coupled framework, we analytically solve a non-homogeneous boundary value problem, the extension and inflation of an axisymmetric cylindrical tube under electro-mechanically coupled load. The results capture various electro-mechanical couplings with the formulation proposed for EAP composites.

  10. Inhomogeneous superconductivity in a ferromagnet

    International Nuclear Information System (INIS)

    Kontos, T.; Aprili, M.; Lesueur, J.; Genet, F.; Boursier, R.; Grison, X.

    2003-01-01

    We have studied a new superconducting state where the condensate wave function resulting from conventional pairing, is modified by an exchange field. Superconductivity is induced into a ferromagnetic thin film (F) by the proximity effect with a superconducting reservoir (S). We observed oscillations of the superconducting order parameter induced in F as a function of the distance from the S/F interface. They originate from the finite momentum transfer provided to Cooper pairs by the splitting of the spin up and down bands. We measured the superconducting density of states in F by tunneling spectroscopy and the Josephson critical current when F is coupled with a superconducting counter-electrode. Negative values of the superconducting order parameter are revealed by capsized tunneling spectra in F and a negative Josephson coupling (π-junction)

  11. Drying brick masonry by electro-osmosis

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Rörig-Dalgaard, Inge

    2006-01-01

    When a fine grained, porous medium is applied an electric DC field, transport of matter occurs, and the transport mechanism in focus of the present study is electro-osmosis, which is transport of water. In laboratory it was shown possible to transport water inside a brick and brick/mortar system...... movement of water towards the cathode was seen. Thus the basis for utilizing the electro-osmotic effect for drying brick masonry is present, but proper electrodes still needs to be developed....

  12. WORKSHOP: Radiofrequency superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1984-10-15

    The Second Workshop on Radiofrequency Superconductivity was held at CERN from 23-27 July, four years after the first, organized at Karlsruhe. 35 invited talks were presented to the about 80 participants from Australia, Brazil, Europe, Japan and the United States. For the first time, ten Laboratories operating or planning superconducting accelerators for heavy ions participated and shared their experience with the community proposing the use of superconducting accelerating sections for electron accelerators.

  13. WORKSHOP: Radiofrequency superconductivity

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    The Second Workshop on Radiofrequency Superconductivity was held at CERN from 23-27 July, four years after the first, organized at Karlsruhe. 35 invited talks were presented to the about 80 participants from Australia, Brazil, Europe, Japan and the United States. For the first time, ten Laboratories operating or planning superconducting accelerators for heavy ions participated and shared their experience with the community proposing the use of superconducting accelerating sections for electron accelerators

  14. Process for producing clad superconductive materials

    International Nuclear Information System (INIS)

    Cass, R.B.; Ott, K.C.; Peterson, D.E.

    1992-01-01

    This patent describes a process for fabricating superconducting composite wire. It comprises placing a superconductive precursor admixture capable of undergoing self propagating combustion in stoichiometric amounts sufficient to form a superconductive product within an oxygen-porous metal tube; sealing one end of the tube; igniting the superconductive precursor admixture whereby the superconductive precursor admixture endburns along the length of the admixture; and cross-section reducing the tube at a rate substantially equal to the rate of burning of the superconductive precursor admixture and at a point substantially planar with the burnfront of the superconductive precursor mixture, whereby a clad superconductive product is formed in situ

  15. Organic superconductivity

    International Nuclear Information System (INIS)

    Jerome, D.

    1980-01-01

    We present the experimental evidences for the existence of a superconducting state in the Quasi One Dimensional organic conductor (TMTSF) 2 PF 6 . Superconductivity occuring at 1 K under 12 kbar is characterized by a zero resistance diamagnetic state. The anistropy of the upper critical field of this type II superconductor is consistent with the band structure anistropy. We present evidences for the existence of large superconducting precursor effects giving rise to a dominant paraconductive contribution below 40 K. We also discuss the anomalously large pressure dependence of T sb(s), which drops to 0.19 K under 24 kbar in terms of the current theories. (author)

  16. Superconducting nanostructured materials

    International Nuclear Information System (INIS)

    Metlushko, V.

    1998-01-01

    Within the last year it has been realized that the remarkable properties of superconducting thin films containing a periodic array of defects (such as sub-micron sized holes) offer a new route for developing a novel superconducting materials based on precise control of microstructure by modern photolithography. A superconductor is a material which, when cooled below a certain temperature, loses all resistance to electricity. This means that superconducting materials can carry large electrical currents without any energy loss--but there are limits to how much current can flow before superconductivity is destroyed. The current at which superconductivity breaks down is called the critical current. The value of the critical current is determined by the balance of Lorentz forces and pinning forces acting on the flux lines in the superconductor. Lorentz forces proportional to the current flow tend to drive the flux lines into motion, which dissipates energy and destroys zero resistance. Pinning forces created by isolated defects in the microstructure oppose flux line motion and increase the critical current. Many kinds of artificial pinning centers have been proposed and developed to increase critical current performance, ranging from dispersal of small non-superconducting second phases to creation of defects by proton, neutron or heavy ion irradiation. In all of these methods, the pinning centers are randomly distributed over the superconducting material, causing them to operate well below their maximum efficiency. We are overcome this drawback by creating pinning centers in aperiodic lattice (see Fig 1) so that each pin site interacts strongly with only one or a few flux lines

  17. Magneto-transport properties of a random distribution of few-layer graphene patches

    International Nuclear Information System (INIS)

    Iacovella, Fabrice; Mitioglu, Anatolie; Pierre, Mathieu; Raquet, Bertrand; Goiran, Michel; Plochocka, Paulina; Escoffier, Walter; Trinsoutrot, Pierre; Vergnes, Hugues; Caussat, Brigitte; Conédéra, Véronique

    2014-01-01

    In this study, we address the electronic properties of conducting films constituted of an array of randomly distributed few layer graphene patches and investigate on their most salient galvanometric features in the moderate and extreme disordered limit. We demonstrate that, in annealed devices, the ambipolar behaviour and the onset of Landau level quantization in high magnetic field constitute robust hallmarks of few-layer graphene films. In the strong disorder limit, however, the magneto-transport properties are best described by a variable-range hopping behaviour. A large negative magneto-conductance is observed at the charge neutrality point, in consistency with localized transport regime

  18. Charge-order driven multiferroic and magneto-dielectric properties of rare earth manganates

    International Nuclear Information System (INIS)

    Serrao, Claudy Rayan; Sahu, Jyoti Ranjan; Ghosh, Anirban

    2010-01-01

    Charge-order driven magnetic ferroelectricity is shown to occur in several rare earth manganates of the general formula, Ln 1-x A x MnO 3 (Ln rare earth, A = alkaline earth). Charge-ordered manganates exhibit dielectric constant anomalies around the charge-ordering or the antiferromagnetic transition temperature. Magnetic fields have a marked effect on the dielectric properties of these compounds, indicating the presence of coupling between the magnetic and electrical order parameters. Magneto-dielectric properties are retained in small particles of the manganates. The observation of magneto-ferroelectricity in these manganates is in accordance with theoretical predictions. (author)

  19. Progress in magneto-encephalography; Les progres de la magnetoencephalographie

    Energy Technology Data Exchange (ETDEWEB)

    Dehaene, St. [CEA Saclay, Institut d' Imagerie Biomedicale - NeuroSpin, Dir. des Sciences du Vivant, 91 - Gif-sur-Yvette (France); Fermon, C. [CEA Saclay, Direction des Sciences de la Matiere, 91 - Gif-sur-Yvette (France)

    2008-07-01

    Researchers looking for a higher temporal resolution of cognitive functions are turning to magneto-encephalography (MEG) as an extension to MRI. Progress made in MEG imaging, especially in terms of the sensors employed, is opening up a broader range of applications. (authors)

  20. Magneto-thermal conduction and magneto-caloric effect in poly and nano crystalline forms of multiferroic GdCrO3

    International Nuclear Information System (INIS)

    Uma, S; Philip, J

    2014-01-01

    Gadolinium chromite, GdCrO 3 , belongs to the family of rare earth chromites, exhibiting multiferroism with coupling between electric polarization and magnetic ordering. It is understood that the interaction between Gd 3+ and Cr 3+ ions is responsible for switchable polarization in this system. Below Néel temperature the spins of Cr 3+ ions interact in anti-parallel through super exchange mechanism, giving rise to antiferromagnetic ordering at around 169 K in poly and nanocrystalline phases of this material. In order to understand the nature of spin–lattice coupling and magnon–phonon interaction in the intermediate temperature range (150–250 K), the magneto-thermal conduction and magneto-caloric effect in poly and nanocrystalline forms of this material are reported. These properties show anomalies around 169 K, which is described as due to spin–phonon coupling. When particle sizes are reduced to nanometer scales, thermal conductivity decreases significantly while specific heat capacity increases. The former is explained as due to reduction in phonon mean free path and phonon scattering from nanoparticle interfaces, while the latter is ascribed to contributions from Einstein oscillators at weakly bound atoms at the interfaces of nanocrystals. (paper)

  1. Hydrodynamical description of collective flow

    OpenAIRE

    Huovinen, Pasi

    2003-01-01

    I review how hydrodynamical flow is related to the observed flow in ultrarelativistic heavy ion collisions and how initial conditions, equation of state and freeze-out temperature affect flow in hydrodynamical models.

  2. Compliant electro-thermal microactuators

    DEFF Research Database (Denmark)

    Jonsmann, Jacques; Sigmund, Ole; Bouwstra, Siebe

    1999-01-01

    This paper describes design, microfabrication and characterisation of topology optimised compliant electro-thermal microactuators. The actuators are fabricated by a fast prototyping process using laser micromachining and electroplating. Actuators are characterised with respect to displacement...

  3. The Correspondence of Michael Faraday Pt 6 1860-1867

    CERN Document Server

    Frank, James

    2012-01-01

    Michael Faraday (1791-1867) was one of the most important men of science in nineteenth century Britain. His discoveries of electro-magnetic rotations (1821) and electro-magnetic induction (1831) laid the foundations of the modern electrical industry. His discovery of the magneto-optical effect and diamagnetism (1845) led him to formulate the field theory of electro-magnetism, which forms one of the cornerstones of modern physics.These and a whole host of other fundamental discoveries in physics and chemistry, together with his lecturing at the Royal Institution, his work for the state (includi

  4. Superconducting Wind Turbine Generators

    Directory of Open Access Journals (Sweden)

    Yunying Pan

    2016-08-01

    Full Text Available Wind energy is well known as a renewable energy because its clean and less polluted characteristic, which is the foundation of development modern wind electricity. To find more efficient wind turbine is the focus of scientists around the world. Compared from conventional wind turbines, superconducting wind turbine generators have advantages at zero resistance, smaller size and lighter weight. Superconducting wind turbine will inevitably become the main trends in this area. This paper intends to introduce the basic concept and principle of superconductivity, and compare form traditional wind turbine to obtain superiority, then to summary three proposed machine concept.While superconductivity have difficulty  in modern technology and we also have proposed some challenges in achieving superconducting wind turbine finally.

  5. Superconducting cermets

    International Nuclear Information System (INIS)

    Goyal, A.; Funkenbusch, P.D.; Chang, G.C.S.; Burns, S.J.

    1988-01-01

    Two distant classes of superconducting cermets can be distinguished, depending on whether or not a fully superconducting skeleton is established. Both types of cermets have been successfully fabricated using non-noble metals, with as high as 60wt% of the metal phase. The electrical, magnetic and mechanical behavior of these composites is discussed

  6. Superconducting transition and low-field magnetoresistance of a niobium single crystal at 4.2 deg. K; Transition supraconductrice et magnetoresistance en champ faible d'un echantillon monocristallin de niobium a 4.2 deg. K

    Energy Technology Data Exchange (ETDEWEB)

    Perriot, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires. Service de physique du solide et de resonnance magnetique

    1967-01-01

    We report the study of the electrical resistance of a niobium single crystal, at 4.2 deg. K, from the beginning of the superconductive transition to 80 kilo oersteds. Critical fieldsH{sub c2} and H{sub c3} have been determined. Influences on superconductive transition of current density, field-current angle, crystal orientation and magnetoresistance have been studied. Variation laws of low-field transverse and longitudinal magneto-resistances have been determined. (author) [French] La variation de la resistance electrique d'un monocristal cylindrique de niobium a ete etudiee, a 4,2 deg. K, depuis le debut de la transition supraconductrice jusqu'a 80 kilooersteds. Les champs critiques H{sub c2} et H{sub c3} ont ete determines. On a etudie l'influence de la densite de courant, de l'angle champ-courant, de l'anisotropie cristalline et de la magnetoresistance sur la transition supraconductrice. Les lois de variation des magnetoresistances transversale et longitudinale ont ete determinees dans le domaine des champs faibles. (auteur)

  7. On-line irradiation testing of a Giant Magneto-Resistive (GMR) sensor

    Energy Technology Data Exchange (ETDEWEB)

    Olfert, J.; Luloff, B.; MacDonald, D.; Lumsden, R., E-mail: jeff.olfert@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2016-06-15

    Magneto-resistive sensors are rapidly gaining favour for magnetic field sensing applications owing to their high sensitivity, small size, and low cost. Their metallic, nonsemiconductor construction makes them excellent candidates for use in the harsh environments present in nuclear and space applications. In this work, a commercially available magneto-resistive sensor was irradiated up to a total gamma dose of 2 MGy (200 Mrad), and online testing was performed to monitor the sensor throughout the irradiation to detect any degradation. No significant evidence of degradation of the sensor characteristics was observed. A very small (< 1%) change in the bridge balance of the sensor as a function of accumulated dose was detected. (author)

  8. Circular heat and momentum flux radiated by magneto-optical nanoparticles

    Science.gov (United States)

    Ott, A.; Ben-Abdallah, P.; Biehs, S.-A.

    2018-05-01

    In the present article we investigate the heat and momentum fluxes radiated by a hot magneto-optical nanoparticle in its surroundings under the action of an external magnetic field. We show that the flux lines circulate in a confined region at a nanometric distance from the particle around the axis of the magnetic field in a vortexlike configuration. Moreover we prove that the spatial orientation of these vortices (clockwise or counterclockwise) is associated with the contribution of optical resonances with topological charges m =+1 or m =-1 to the thermal emission. This work paves the way for a geometric description of heat and momentum transport in lattices of magneto-optical particles. Moreover it could have important applications in the field of energy storage as well as in thermal management at nanoscale.

  9. Rational design of organic electro-optic materials

    CERN Document Server

    Dalton, L R

    2003-01-01

    Quantum mechanical calculations are used to optimize the molecular first hyperpolarizability of organic chromophores and statistical mechanical calculations are used to optimize the translation of molecular hyperpolarizability to macroscopic electro-optic activity (to values of greater than 100 pm V sup - sup 1 at telecommunications wavelengths). Macroscopic material architectures are implemented exploiting new concepts in nanoscale architectural engineering. Multi-chromophore-containing dendrimers and dendronized polymers not only permit optimization of electro-optic activity but also of auxiliary properties including optical loss (both absorption and scattering), thermal and photochemical stability and processability. New reactive ion etching and photolithographic techniques permit the fabrication of three-dimensional optical circuitry and the integration of that circuitry with semiconductor very-large-scale integration electronics and silica fibre optics. Electro-optic devices have been fabricated exploiti...

  10. Rf superconducting devices

    International Nuclear Information System (INIS)

    Hartwig, W.H.; Passow, C.

    1975-01-01

    Topics discussed include (1) the theory of superconductors in high-frequency fields (London surface impedance, anomalous normal surface resistance, pippard nonlocal theory, quantum mechanical model, superconductor parameters, quantum mechanical calculation techniques for the surface, impedance, and experimental verification of surface impedance theories); (2) residual resistance (separation of losses, magnetic field effects, surface resistance of imperfect and impure conductors, residual loss due to acoustic coupling, losses from nonideal surfaces, high magnetic field losses, field emission, and nonlinear effects); (3) design and performance of superconducting devices (design considerations, materials and fabrication techniques, measurement of performance, and frequency stability); (4) devices for particle acceleration and deflection (advantages and problems of using superconductors, accelerators for fast particles, accelerators for particles with slow velocities, beam optical devices separators, and applications and projects under way); (5) applications of low-power superconducting resonators (superconducting filters and tuners, oscillators and detectors, mixers and amplifiers, antennas and output tanks, superconducting resonators for materials research, and radiation detection with loaded superconducting resonators); and (6) transmission and delay lines

  11. Superconducting Ferromagnetic Nanodiamond.

    Science.gov (United States)

    Zhang, Gufei; Samuely, Tomas; Xu, Zheng; Jochum, Johanna K; Volodin, Alexander; Zhou, Shengqiang; May, Paul W; Onufriienko, Oleksandr; Kačmarčík, Jozef; Steele, Julian A; Li, Jun; Vanacken, Johan; Vacík, Jiri; Szabó, Pavol; Yuan, Haifeng; Roeffaers, Maarten B J; Cerbu, Dorin; Samuely, Peter; Hofkens, Johan; Moshchalkov, Victor V

    2017-06-27

    Superconductivity and ferromagnetism are two mutually antagonistic states in condensed matter. Research on the interplay between these two competing orderings sheds light not only on the cause of various quantum phenomena in strongly correlated systems but also on the general mechanism of superconductivity. Here we report on the observation of the electronic entanglement between superconducting and ferromagnetic states in hydrogenated boron-doped nanodiamond films, which have a superconducting transition temperature T c ∼ 3 K and a Curie temperature T Curie > 400 K. In spite of the high T Curie , our nanodiamond films demonstrate a decrease in the temperature dependence of magnetization below 100 K, in correspondence to an increase in the temperature dependence of resistivity. These anomalous magnetic and electrical transport properties reveal the presence of an intriguing precursor phase, in which spin fluctuations intervene as a result of the interplay between the two antagonistic states. Furthermore, the observations of high-temperature ferromagnetism, giant positive magnetoresistance, and anomalous Hall effect bring attention to the potential applications of our superconducting ferromagnetic nanodiamond films in magnetoelectronics, spintronics, and magnetic field sensing.

  12. Superconductivity and its application

    International Nuclear Information System (INIS)

    Spadoni, M.

    1988-01-01

    This paper, after a short introduction to superconductivity and to multifilamentary superconducting composites is aiming to review the state of the art and the future perspective of some of the applications of the superconducting materials. The main interest is focussed to large scale applications like, for istance, magnets for accelerators or fusion reactors, superconducting system for NMR thomography, etc. A short paragraph is dedicated to applications for high sensitivity instrumentation. The paper is then concluded by some considerations about the potentialities of the newly discovered high critical temperature materials

  13. WORKSHOPS: Radiofrequency superconductivity

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    In the continual push towards higher energy particle beams, superconducting radiofrequency techniques now play a vital role, highlighted in the fifth workshop on radiofrequency superconductivity, held at DESY from 19 - 24 August 1991

  14. WORKSHOPS: Radiofrequency superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1992-01-15

    In the continual push towards higher energy particle beams, superconducting radiofrequency techniques now play a vital role, highlighted in the fifth workshop on radiofrequency superconductivity, held at DESY from 19 - 24 August 1991.

  15. 'Speedy' superconducting circuits

    International Nuclear Information System (INIS)

    Holst, T.

    1994-01-01

    The most promising concept for realizing ultra-fast superconducting digital circuits is the Rapid Single Flux Quantum (RSFQ) logic. The basic physical principle behind RSFQ logic, which include the storage and transfer of individual magnetic flux quanta in Superconducting Quantum Interference Devices (SQUIDs), is explained. A Set-Reset flip-flop is used as an example of the implementation of an RSFQ based circuit. Finally, the outlook for high-temperature superconducting materials in connection with RSFQ circuits is discussed in some details. (au)

  16. Hydrodynamics and stellar winds an introduction

    CERN Document Server

    Maciel, Walter J

    2014-01-01

    Stellar winds are a common phenomenon in the life of stars, from the dwarfs like the Sun to the red giants and hot supergiants, constituting one of the basic aspects of modern astrophysics. Stellar winds are a hydrodynamic phenomenon in which circumstellar gases expand towards the interstellar medium. This book presents an elementary introduction to the fundamentals of hydrodynamics with an application to the study of stellar winds. The principles of hydrodynamics have many other applications, so that the book can be used as an introduction to hydrodynamics for students of physics, astrophysics and other related areas.

  17. Superconductivity

    International Nuclear Information System (INIS)

    Buller, L.; Carrillo, F.; Dietert, R.; Kotziapashis, A.

    1989-01-01

    Superconductors are materials which combine the property of zero electric resistance with the capability to exclude any adjacent magnetic field. This leads to many large scale applications such as the much publicized levitating train, generation of magnetic fields in MHD electric generators, and special medical diagnostic equipment. On a smaller-scale, superconductive materials could replace existing resistive connectors and decrease signal delays by reducing the RLC time constants. Thus, a computer could operate at much higher speeds, and consequently at lower power levels which would reduce the need for heat removal and allow closer spacing of circuitry. Although technical advances and proposed applications are constantly being published, it should be recognized that superconductivity is a slowly developing technology. It has taken scientists almost eighty years to learn what they now know about this material and its function. The present paper provides an overview of the historical development of superconductivity and describes some of the potential applications for this new technology as it pertains to the electronics industry

  18. Study on the flow reduction of forced flow superconducting magnet and its stable operation condition

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, Makoto [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2001-03-01

    The forced flow superconducting coil especially made from a Cable-in-Conduit Conductor (CICC) is applied for large-scale devices such as fusion magnets and superconducting magnet energy storage (SMES) because it has high mechanical and electrical performance potential. The flow reduction phenomena caused by AC loss generation due to the pulsed operation was found based on the experimental results of three forced flow superconducting coils. And relation between the AC loss generation and flow reduction was defined from viewpoint of the engineering design and operation of the coils. Also the mechanism of flow reduction was investigated and stable operation condition under the flow reduction was clarified for forced flow superconducting coils. First, experiments of three different large-scale superconducting coils were carried out and experimental database of the flow reduction by AC loss generation was established. It was found experimentally that the flow reduction depends on the AC loss generation (W/m{sup 3}) in all of coils. It means the stable operation condition is defined not only the electro magnetism of superconducting coil but also flow condition. Mechanism of the flow reduction was investigated based on the experimental database. Hydraulics was applied to supercritical helium as a coolant. Also performances of the cryogenic pump by which coolant are supplied to the coil and friction of the superconductor as cooling path is considered for hydraulic estimation. The flow reduction of the coil is clarified and predictable by the equations of continuity, momentum and energy balance. Also total mass flow rate of coolant was discussed. The estimation method in the design phase was developed for total mass flow rate which are required under the flow reduction by AC losses. The friction of the superconductor and performance of cryogenic pump should be required for precise prediction of flow reduction. These values were obtained by the experiment data of coil and

  19. Development of superconducting magnetic bearing using superconducting coil and bulk superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Seino, H; Nagashima, K; Arai, Y [Railway Technical Research Institute, Hikari-cho 2-8-38, Kokubunji-shi, Tokyo (Japan)], E-mail: seino@rtri.or.jp

    2008-02-01

    The authors conducted a study on superconducting magnetic bearing, which consists of superconducting rotor and stator to apply the flywheel energy-storage system for railways. In this study, high temperature bulk superconductor (HTS bulk) was combined with superconducting coils to increase the load capacity of the bearing. In the first step of the study, the thrust rolling bearing was selected for application by using liquid nitrogen cooled HTS bulk. 60mm-diameter HTS bulks and superconducting coil which generated a high gradient of magnetic field by cusp field were adopted as a rotor and a stator for superconducting magnetic bearing, respectively. The results of the static load test and the rotation test, creep of the electromagnetic forces caused by static flux penetration and AC loss due to eccentric rotation were decreased to the level without any problems in substantial use by using two HTS bulks. In the result of verification of static load capacity, levitation force (thrust load) of 8900N or more was supportable, and stable static load capacity was obtainable when weight of 460kg was levitated.

  20. Development of superconducting magnetic bearing using superconducting coil and bulk superconductor

    International Nuclear Information System (INIS)

    Seino, H; Nagashima, K; Arai, Y

    2008-01-01

    The authors conducted a study on superconducting magnetic bearing, which consists of superconducting rotor and stator to apply the flywheel energy-storage system for railways. In this study, high temperature bulk superconductor (HTS bulk) was combined with superconducting coils to increase the load capacity of the bearing. In the first step of the study, the thrust rolling bearing was selected for application by using liquid nitrogen cooled HTS bulk. 60mm-diameter HTS bulks and superconducting coil which generated a high gradient of magnetic field by cusp field were adopted as a rotor and a stator for superconducting magnetic bearing, respectively. The results of the static load test and the rotation test, creep of the electromagnetic forces caused by static flux penetration and AC loss due to eccentric rotation were decreased to the level without any problems in substantial use by using two HTS bulks. In the result of verification of static load capacity, levitation force (thrust load) of 8900N or more was supportable, and stable static load capacity was obtainable when weight of 460kg was levitated

  1. Sound waves in (2+1) dimensional holographic magnetic fluids

    International Nuclear Information System (INIS)

    Buchbinder, Evgeny I.; Buchel, Alex; Vazquez, Samuel E.

    2008-01-01

    We use the AdS/CFT correspondence to study propagation of sound waves in strongly coupled (2+1) dimensional conformal magnetic fluids. Our computation provides a nontrivial consistency check of the viscous magneto-hydrodynamics of Hartnoll-Kovtun-Mueller-Sachdev to leading order in the external field. Depending on the behavior of the magnetic field in the hydrodynamic limit, we show that it can lead to further attenuation of sound waves in the (2+1) dimensional conformal plasma, or reduce the speed of sound. We present both field theory and dual supergravity descriptions of these phenomena. While to the leading order in momenta the dispersion of the sound waves obtained from the dual supergravity description agrees with the one predicted from field theory, we find a discrepancy at higher order. This suggests that further corrections to HKMS magneto-hydrodynamics are necessary.

  2. Hydrogel Walkers with Electro-Driven Motility for Cargo Transport.

    Science.gov (United States)

    Yang, Chao; Wang, Wei; Yao, Chen; Xie, Rui; Ju, Xiao-Jie; Liu, Zhuang; Chu, Liang-Yin

    2015-08-28

    In this study, soft hydrogel walkers with electro-driven motility for cargo transport have been developed via a facile mould-assisted strategy. The hydrogel walkers consisting of polyanionic poly(2-acrylamido-2-methylpropanesulfonic acid-co-acrylamide) exhibit an arc looper-like shape with two "legs" for walking. The hydrogel walkers can reversibly bend and stretch via repeated "on/off" electro-triggers in electrolyte solution. Based on such bending/stretching behaviors, the hydrogel walkers can move their two "legs" to achieve one-directional walking motion on a rough surface via repeated "on/off" electro-triggering cycles. Moreover, the hydrogel walkers loaded with very heavy cargo also exhibit excellent walking motion for cargo transport. Such hydrogel systems create new opportunities for developing electro-controlled soft systems with simple design/fabrication strategies in the soft robotic field for remote manipulation and transportation.

  3. Electro Spray Method for Flexible Display

    Science.gov (United States)

    2016-05-12

    AFRL-AFOSR-JP-TR-2016-0095 Electro Spray Method for Flexible Display Yukiharu Uraoka NARA INSTITUTE OF SCIENCE AND TECHNOLOGY Final Report 11/26/2016...DATES COVERED (From - To)  20 Mar 2013 to 19 May 2016 4. TITLE AND SUBTITLE Electro Spray Method for Flexible Display 5a.  CONTRACT NUMBER 5b.  GRANT...NUMBER FA2386-13-1-4024 5c.  PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) Yukiharu Uraoka 5d.  PROJECT NUMBER 5e.  TASK NUMBER 5f.   WORK UNIT NUMBER 7

  4. Magneto-Optical Thin Films for On-Chip Monolithic Integration of Non-Reciprocal Photonic Devices

    Directory of Open Access Journals (Sweden)

    Mehmet Cengiz Onbasli

    2013-11-01

    Full Text Available Achieving monolithic integration of nonreciprocal photonic devices on semiconductor substrates has been long sought by the photonics research society. One way to achieve this goal is to deposit high quality magneto-optical oxide thin films on a semiconductor substrate. In this paper, we review our recent research activity on magneto-optical oxide thin films toward the goal of monolithic integration of nonreciprocal photonic devices on silicon. We demonstrate high Faraday rotation at telecommunication wavelengths in several novel magnetooptical oxide thin films including Co substituted CeO2−δ, Co- or Fe-substituted SrTiO3−δ, as well as polycrystalline garnets on silicon. Figures of merit of 3~4 deg/dB and 21 deg/dB are achieved in epitaxial Sr(Ti0.2Ga0.4Fe0.4O3−δ and polycrystalline (CeY2Fe5O12 films, respectively. We also demonstrate an optical isolator on silicon, based on a racetrack resonator using polycrystalline (CeY2Fe5O12/silicon strip-loaded waveguides. Our work demonstrates that physical vapor deposited magneto-optical oxide thin films on silicon can achieve high Faraday rotation, low optical loss and high magneto-optical figure of merit, therefore enabling novel high-performance non-reciprocal photonic devices monolithically integrated on semiconductor substrates.

  5. Transformation magneto-statics and illusions for magnets

    Science.gov (United States)

    Sun, Fei; He, Sailing

    2014-10-01

    Based on the form-invariant of Maxwell's equations under coordinate transformations, we extend the theory of transformation optics to transformation magneto-statics, which can design magnets through coordinate transformations. Some novel DC magnetic field illusions created by magnets (e.g. rescaling magnets, cancelling magnets and overlapping magnets) are designed and verified by numerical simulations. Our research will open a new door to designing magnets and controlling DC magnetic fields.

  6. Superconductivity basics and applications to magnets

    CERN Document Server

    Sharma, R G

    2015-01-01

    This book presents the basics and applications of superconducting magnets. It explains the phenomenon of superconductivity, theories of superconductivity, type II superconductors and high-temperature cuprate superconductors. The main focus of the book is on the application to superconducting magnets to accelerators and fusion reactors and other applications of superconducting magnets. The thermal and electromagnetic stability criteria of the conductors and the present status of the fabrication techniques for future magnet applications are addressed. The book is based on the long experience of the author in studying superconducting materials, building magnets and numerous lectures delivered to scholars. A researcher and graduate student will enjoy reading the book to learn various aspects of magnet applications of superconductivity. The book provides the knowledge in the field of applied superconductivity in a comprehensive way.

  7. Ab-initio study of the magneto-optical properties of the ultrathin films of Fe{sub n}/Au(001)

    Energy Technology Data Exchange (ETDEWEB)

    Boukelkoul, Mebarek, E-mail: boukelkoul_mebarek@yahoo.fr [Laboratoire de Physique Quantique et Systèmes Dynamiques, Faculté des sciences, Université Sétif1, Sétif, 19000 Algeria (Algeria); Haroun, Mohamed Fahim [Laboratoire de Physique Quantique et Systèmes Dynamiques, Faculté des sciences, Université Sétif1, Sétif, 19000 Algeria (Algeria); Haroun, Abdelhalim [Laboratoire de Physique Quantique et Systèmes Dynamiques, Faculté des sciences, Université Sétif1, Sétif, 19000 Algeria (Algeria); IPCMS, UMR 7504 CNRS-UNISTRA, 23 Rue du Loess, Strasbourg, 67034 France (France)

    2016-12-15

    With the aim of understand the microscopic origin of the magneto-optical response in the Fe ultrathin films, we used the first principle full-relativistic Spin-Polarized Relativistic Linear Muffin-Tin Orbitals with Atomic Sphere Approximation. We performed an ab-initio study of the structural, magnetic and magneto-optical properties of Fe deposited on semi-infinite Au(001). The structure and growth of the film leads to a pseudomorphic body centered tetragonal structure with tetragonality ratio c/a=1.62, and the pseudomorphic growth is found to be larger than 3 monolayers. The magnetic study revealed a ferromagnetic phase with a large magnetic moment compared to the bulk one. The magneto-optical response is calculated via the polar magneto-optical Kerr effect over a photon energy range up to 10 eV. The most important features of the Kerr rotation spectra are interpreted trough the interband transitions between localized states.

  8. Constraining properties of high-density matter in neutron stars with magneto-elastic oscillations

    Science.gov (United States)

    Gabler, Michael; Cerdá-Durán, Pablo; Stergioulas, Nikolaos; Font, José A.; Müller, Ewald

    2018-05-01

    We discuss torsional oscillations of highly magnetized neutron stars (magnetars) using two-dimensional, magneto-elastic-hydrodynamical simulations. Our model is able to explain both the low- and high-frequency quasi-periodic oscillations (QPOs) observed in magnetars. The analysis of these oscillations provides constraints on the breakout magnetic-field strength, on the fundamental QPO frequency, and on the frequency of a particularly excited overtone. By performing a new set of simulations, we are able to derive for the first time empirical relations for a self consistent model including a superfluid core which describe these constraints quantitatively. We use these relations to generically constrain properties of high-density matter in neutron stars, employing Bayesian analysis. In spite of current uncertainties and computational approximations, our model-dependent Bayesian posterior estimates for SGR 1806-20 yield a magnetic-field strength \\bar{B}˜ 2.1^{+1.3}_{-1.0}× 10^{15} G and a crust thickness of Δ r = 1.6^{+0.7}_{-0.6} km, which are both in remarkable agreement with observational and theoretical expectations, respectively (1σ error bars are indicated). Our posteriors also favour the presence of a superfluid phase in the core, a relatively low stellar compactness, M/R star, and high shear speeds at the base of the crust, cs > 1.4 × 108 cm s-1. Although the procedure laid out here still has large uncertainties, these constraints could become tighter when additional observations become available.

  9. Electro-Optical Laser Technology. Curriculum Utilization. Final Report.

    Science.gov (United States)

    Nawn, John H.

    This report describes a program to prepare students for employment as laser technicians and laser operators and to ensure that they have the necessary skills required by the industry. The objectives are to prepare a curriculum and syllabus for an associate degree program in Electro-Optical Laser Technology. The 2-year Electro-Optical Laser program…

  10. A novel magneto-optical crystal Yb:TbVO4

    Science.gov (United States)

    Zhu, Xianchao; Tu, Heng; Hu, Zhanggui

    2018-04-01

    Highly transparent Yb:TbVO4 single crystal with dimensions of Ø27 × 41 mm3 alomost without scattering defects has been successfully grown by Czochralski technique. The spectra, thermal properties and laser-induced damage threshold were investigated in detailed. The Faraday rotation (FR) measurement was carried out by means of extinction method. The Verdet constant comes up to 80 rad m-1 T-1 at 1064 nm, significantly larger than TbVO4 (58 rad m-1 T-1) and TGG (40 rad m-1 T-1) reported. Meanwhile, the as-grown crystal presents lower absorption coefficient and higher magneto-optical figure of merit at measured wavelength in comparison with TGG. Moreover, the crystal exhibits a substantially improved extinction ratio (42 dB) in contrast with TbVO4 (29 dB), and exceeds the highest value of TGG (40 dB). These advantages make Yb:TbVO4 a highly promising magneto-optical material candidate for optical isolators in the visible-near infrared region.

  11. Magneto-plasmonic study of aligned Ni, Co and Ni/Co multilayer in polydimethylsiloxane as magnetic field sensor

    Energy Technology Data Exchange (ETDEWEB)

    Hamidi, Seyedeh Mehri, E-mail: M_hamidi@sbu.ac.ir [Magneto-plasmonic Lab, Laser and Plasma Research Institute, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Mosaeii, Babak; Afsharnia, Mina [Magneto-plasmonic Lab, Laser and Plasma Research Institute, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Aftabi, Ali [Physics Department, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Najafi, Mojgan [Department of Materials Engineering, Hamedan University of Technology, Hamedan (Iran, Islamic Republic of)

    2016-11-01

    We report the magneto-optical properties of aligned cobalt, Nickel and nickel/ Cobalt multilayer nanowires embedded in polydimethylsiloxane matrix. The NWs prepared by electrodeposition method in anodic alumina template and then dispersed in ethanol and placed in a heater to evaporate the ethanol and finally dispersed in polydimethylsiloxane matrix to reach to the composite. The used external magnetic field arranges the nanowires and our aligned nanowires were investigated by magneto-optical surface plasmon resonance techniques in two easy and hard axis configurations. Our results show the sufficient sensitivity in magneto-optical surface plasmon resonance of Nickel and cobalt arrays nanowires and because the different modulation mechanism in Ni and Co nanodisks, in Ni/Co multilayer we see the magnetization modulation of the excitation angle in accordance with magnetic field modulation of the SPP wave vector in each nanodisk. Finally, we show that the Ni/Co multilayer aligned nanowires can be used as efficient magnetic field sensor. - Highlights: • The magneto-optical properties of aligned multilayer nanowires has been investigated. • We see the sufficient sensitivity in magneto-optical surface plasmon resonance of Ni and Co nanowires. • The magnetic modulation mechanism in Ni/Co multilayer has been changed by angular modulation. • The magnetization modulation of the excitation angle accompanying the SPP wave vector modulation takes place in each nanodisk of multilayer.

  12. Bioactivity of cellulose acetate/hydroxyapatite nanoparticle composite fiber by an electro-spinning process.

    Science.gov (United States)

    Kwak, Dae Hyun; Lee, Eun Ju; Kim, Deug Joong

    2014-11-01

    Hydroxyapatite/cellulose acetate composite webs were fabricated by an electro-spinning process. This electro-spinning process makes it possible to fabricate complex three-dimensional shapes. Nano fibrous web consisting of cellulose acetate and hydroxyapatite was produced from their mixture solution by using an electro-spinning process under high voltage. The surface of the electro-spun fiber was modified by a plasma and alkaline solution in order to increase its bioactivity. The structure, morphology and properties of the electro-spun fibers were investigated and an in-vitro bioactivity test was evaluated in simulated body fluid (SBF). Bioactivity of the electro-spun web was enhanced with the filler concentration and surface treatment. The surface changes of electro-spun fibers modified by plasma and alkaline solution were investigated by FT-IR (Fourier Transform Infrared Spectroscopy) and XPS (X-ray Photoelectron Spectroscopy).

  13. Magneto-optical and transport studies of ZnO-based dilute magnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Behan, A.J. [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom); Neal, J.R. [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom)]. E-mail: J.R.Neal@Sheffield.ac.uk; Ibrahim, R.M. [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom); Mokhtari, A. [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom); Ziese, M. [Universitaet Leipzig, Fakultaet fuer Physik und Geowissenschaften, Abteilung Supra leitung und Magnetismus, Linnestrasse 5, 04103 Leipzig (Germany); Blythe, H.J. [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom); Fox, A.M. [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom); Gehring, G.A. [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom)

    2007-03-15

    Thin film samples of ZnO doped with V were grown on sapphire substrates by pulsed laser deposition (PLD). The magnetization was measured by SQUID magnetometry and the films were found to be ferromagnetic at room temperature. The transmission, Faraday rotation and magnetic circular dichroism were measured as a function of frequency at room temperature over an energy range of 1.5-4.0 eV and carrier concentrations were determined from Hall effect measurements. Clear magneto-optical signals that are ferromagnetic in origin were observed at the ZnO band edge and the optimal conditions for observing large ferromagnetic magneto-optic signals are discussed.

  14. Magneto-optical and magnetic properties in a Co/Pd multilayered thin film

    Energy Technology Data Exchange (ETDEWEB)

    Nwokoye, Chidubem A. [Institute for Magnetics Research, Department of Electrical and Computer Engineering, The George Washington University, DC 20052 (United States); Naval Air Systems Command, Avionics, Sensors and E*Warfare Department, Patuxent River, MD 20670 (United States); Bennett, Lawrence H., E-mail: lbennett@gwu.edu [Institute for Magnetics Research, Department of Electrical and Computer Engineering, The George Washington University, DC 20052 (United States); Della Torre, Edward, E-mail: edt@gwu.edu [Institute for Magnetics Research, Department of Electrical and Computer Engineering, The George Washington University, DC 20052 (United States); Ghahremani, Mohammadreza [Institute for Magnetics Research, Department of Electrical and Computer Engineering, The George Washington University, DC 20052 (United States); Narducci, Frank A. [Naval Air Systems Command, Avionics, Sensors and E*Warfare Department, Patuxent River, MD 20670 (United States)

    2017-01-01

    The paper describes investigation of ferromagnetism at low temperatures. We explored the magneto-optical properties, influenced by photon–magnon interactions, of a ferromagnetic Co/Pd multilayered thin film below and above the magnon Bose–Einstein Condensation (BEC) temperature. Analyses of SQUID and MOKE low temperature experimental results reveal a noticeable phase transition in both magnetic and magneto-optical properties of the material at the BEC temperature. - Highlights: • The results show the effect of a non-zero chemical potential on the magnetization. • The MOKE and SQUID results show a phase transition point at the same temperature. • Magnon BEC is a major influence of the observed phase transition temperature.

  15. The influence of the statistical distributed parameters of the shape of the magneto-resistive transition of a HTc superconductor

    International Nuclear Information System (INIS)

    Grobnic, D.; Popescu, I.M.

    1993-01-01

    As a result of their granular structure the conductance of ceramic high temperature superconductors depends strongly on the characteristics of the parameter distribution. To study the influence of these distributions of the magneto-resistive transition from normal to superconductive state, a mathematical model was used. This model simulates the superconductor sample, considered as large three-dimensional collection of Josephson tunnel junctions. Each individual junction, according to the values of the parameters that define it, in a given environment (temperature, magnetic field and current density) allows or not the supercurrent to flow with a given probability. The bond percolation problem was solved using a Monte Carlo procedure. To solve the random resistor network formed, a sparse matrix package was used. As parameters that defined Josephson junction which choose the resistance of the normal junction state and the critical temperature of the grain. We considered the normal junction resistance as obeying a log normal distribution and the critical temperature, a Gaussian one. The influences of the relative dispersion of the first distribution and the dispersion of the critical temperature distribution on the shape of the resistivity versus magnetic field was studied. (Author)

  16. Superconductivity application technologies. Superconducting quadrupole magnet and cooling system for KEK B factory

    International Nuclear Information System (INIS)

    Tsuchiya, Kiyosumi; Yamaguchi, Kiyoshi; Sakurabata, Hiroaki; Seido, Masahiro; Matsumoto, Kozo.

    1997-01-01

    At present in National Laboratory for High Energy Physics (KEK), the construction of B factory is in progress. By colliding 8 GeV electrons and 3.5 GeV positrons, this facility generates large amounts of B mesons and anti-B mesons, and performs the elementary particle experiment of high accuracy. It is the collision type accelerator of asymmetric two-ring type comprising 8 GeV and 3.5 GeV rings. In the field of high energy physics, superconductivity technology has been put to practical use. As the objects of superconductivity technology, there are dipole magnet for bending beam, quadrupole magnet for adjusting beam, large solenoid magnet used for detector and so on. Superconducting magnets which are indispensable for high energy, superconducting wire material suitable to accelerators, and the liquid helium cooling system for maintaining superconducting magnets at 4.4 K are reported. The technologies of metallic conductors and making their coils have advanced rapidly, and also cooling technology has advanced, accordingly, superconductivity technology has reached the stage of practical use perfectly. (K.I.)

  17. Electro-Optics/Low Observables Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Electro-Optics/Low Observables Laboratory supports graduate instruction for students enrolled in the Low Observables program. Its purpose is to introduce these...

  18. Bifunctional Pt-Si Alloys for Small Organic Molecule Electro-oxidation

    DEFF Research Database (Denmark)

    Permyakova, Anastasia Aleksandrovna; Suntivich, Jin; Han, Binghong

    Designing highly active catalysts for electro-oxidation of small organic molecules can help to reduce the anodic overpotential for more efficient utilization of hydrocarbon fuels. The challenge in developing more active electrocatalysts for electro-oxidation reactions is to satisfy the stringent...... adsorption site. We will discuss the enhanced activity of Pt-Si alloys for small organic molecule oxidation, which can be attributed to the improved CO electro-oxidation kinetics on Pt-Si....

  19. Superconducting magnets and cryogenics for the steady state superconducting tokamak SST-1

    International Nuclear Information System (INIS)

    Saxena, Y.C.

    2000-01-01

    SST-1 is a steady state superconducting tokamak for studying the physics of the plasma processes in tokamak under steady state conditions and to learn technologies related to the steady state operation of the tokamak. SST-1 will have superconducting magnets made from NbTi based conductors operating at 4.5 K temperature. The design of the superconducting magnets and the cryogenic system of SST-1 tokamak are described. (author)

  20. Microbial electro-catalysis in fuel cell

    International Nuclear Information System (INIS)

    Dumas, Claire

    2007-01-01

    Microbial fuel cells (MFC) are devices that ensure the direct conversion of organic matter into electricity using bacterial bio-films as the catalysts of the electrochemical reactions. This study aims at improving the comprehension of the mechanisms involved in electron transfer pathways between the adhered bacteria and the electrodes. This optimization of the MFC power output could be done, for example, in exploring and characterizing various electrode materials. The electrolysis experiments carried out on Geobacter sulfurreducens deal with the microbial catalysis of the acetate oxidation, on the one hand, and the catalysis of the fumarate reduction on the other hand. On the anodic side, differences in current densities appeared on graphite, DSA R and stainless steel (8 A/m 2 , 5 A/m 2 and 0.7 A/m 2 respectively). These variations were explained more by materials roughness differences rather than their nature. Impedance spectroscopy study shows that the electro-active bio-film developed on stainless steel does not seem to modify the evolution of the stainless steel oxide layer, only the imposed potential remains determining. On the cathodic side, stainless steel sustained current densities more than twenty times higher than those obtained with graphite electrodes. The adhesion study of G. sulfurreducens on various materials in a flow cell, suggests that the bio-films resist to the hydrodynamic constraints and are not detached under a shear stress threshold value. The installation of two MFC prototypes, one in a sea station and the other directly in Genoa harbour (Italy) confirms some results obtained in laboratory and were promising for a MFC scale-up. (author) [fr

  1. Mathematical Model of the One-stage Magneto-optical Sensor Based on Faraday Effect

    Science.gov (United States)

    Babaev, O. G.; Paranin, V. D.; Sinitsin, L. I.

    2018-01-01

    The aim of this work is to refine a model of magneto-optical sensors based on Faraday’s longitudinal magneto-optical effect. The tasks of the study include computer modeling and analysis of the transfer characteristic of a single-stage magneto-optical sensor for various polarization of the input beam and non-ideal optical components. The proposed mathematical model and software make it possible to take into account the non-ideal characteristics of film polaroids observed in operation in the near infrared region and at increased temperatures. On the basis of the results of the model analysis it was found that the dependence of normalized transmission T(γ2) has periodic nature. Choosing the angle (γ 2-γ 1) makes it possible to shift the initial operation point and change the sensitivity dT/dγ 2. The influence of the input beam polarization increases with the increase of polaroid parameter deviation from ideal and shows itself as reduction of modulation depth and angular shift of the sensor conversion response.

  2. Iron Oxide and Gold Based Magneto-Plasmonic Nanostructures for Medical Applications: A Review

    Directory of Open Access Journals (Sweden)

    Thi Thuy Nguyen

    2018-03-01

    Full Text Available Iron oxide and gold-based magneto-plasmonic nanostructures exhibit remarkable optical and superparamagnetic properties originating from their two different components. As a consequence, they have improved and broadened the application potential of nanomaterials in medicine. They can be used as multifunctional nanoprobes for magneto-plasmonic heating as well as for magnetic and optical imaging. They can also be used for magnetically assisted optical biosensing, to detect extreme traces of targeted bioanalytes. This review introduces the previous work on magneto-plasmonic hetero-nanostructures including: (i their synthesis from simple “one-step” to complex “multi-step” routes, including seed-mediated and non-seed-mediated methods; and (ii the characterization of their multifunctional features, with a special emphasis on the relationships between their synthesis conditions, their structures and their properties. It also focuses on the most important progress made with regard to their use in nanomedicine, keeping in mind the same aim, the correlation between their morphology—namely spherical and non-spherical, core-satellite and core-shell, and the desired applications.

  3. Steady shear characteristic and behavior of magneto-thermo-elasticity of isotropic MR elastomers

    International Nuclear Information System (INIS)

    Gao, Wei; Wang, Xingzhe

    2016-01-01

    The magneto-thermo-elastic steady shear behaviors of isotropic smart composites of silicon rubber matrix randomly filled with ferromagnetic particles, commonly referred to as magnetorheological (MR) elastomers, are investigated experimentally and theoretically in the present study. The strip specimens of the MR elastomer composite with different ferromagnetic particle concentrations are fabricated and implemented for lap-shear tests under both magnetic and thermal fields. It is illustrated that the magneto-thermo-elastic shear modulus of the MR elastomer is markedly enhanced with the volume fraction of ferromagnetic particles and the applied external magnetic field, while the shear modulus is decreased with the environment temperature. To qualitatively elucidate the magneto-thermo-elastic shear performance of this kind of magnetic smart composites, a modified constitutive of hyperelasticity is suggested taking into account the influence of magnetic field and temperature on the magnetic potential energy and strain energy. The theoretical modeling predictions on the stress–strain behaviors for different applied magnetic fields and environment temperatures are compared to experimental observations to demonstrate a good agreement. (paper)

  4. Magnetic thaw-down and boil-off due to magneto acceptors in 2DEG

    International Nuclear Information System (INIS)

    Chaubet, C.; Raymond, A.; Bisotto, I.; Harmand, J. C.; Kubisa, M.; Zawadzki, W.

    2013-01-01

    The Quantum Hall Effect (QHE) and Shubnikov-de Haas effect are investigated experimentally using n type modulation-doped GaAs/GaAlAs quantum wells (QWs) additionally doped in the well with beryllium acceptor atoms. It is presently shown that the localized magneto-acceptor (MA) states which possess discrete energies above the corresponding Landau levels (LLs) lead to two observable effects in magneto-transport: magnetic thaw-down and magnetic boil-off of 2D electrons. Both effects are related to the fact that electrons occupying the localized MA states cannot conduct. Thus in the thaw-down effect the electrons fall down from the MA states to the free Landau states. This leads to a shift of the Hall plateau towards higher magnetic fields as a consequence of an increase of the 2D electron density N S . In the boil-off effect the electrons are pushed from the free Landau states to the empty MA states under high enough Hall electric field. This process has an avalanche character leading to a dramatic increase of magneto-resistance, consequence of a decrease of N S

  5. Vector superconductivity in cosmic strings

    International Nuclear Information System (INIS)

    Dvali, G.R.; Mahajan, S.M.

    1992-03-01

    We argue that in most realistic cases, the usual Witten-type bosonic superconductivity of the cosmic string is automatically (independent of the existence of superconducting currents) accompanied by the condensation of charged gauge vector bosons in the core giving rise to a new vector type superconductivity. The value of the charged vector condensate is related with the charged scalar expectation value, and vanishes only if the latter goes to zero. The mechanism for the proposed vector superconductivity, differing fundamentally from those in the literature, is delineated using the simplest realistic example of the two Higgs doublet standard model interacting with the extra cosmic string. It is shown that for a wide range of parameters, for which the string becomes scalarly superconducting, W boson condensates (the sources of vector superconductivity) are necessarily excited. (author). 14 refs

  6. Study on Separation of Structural Isomer with Magneto-Archimedes method

    Science.gov (United States)

    Kobayashi, T.; Mori, T.; Akiyama, Y.; Mishima, F.; Nishijima, S.

    2017-09-01

    Organic compounds are refined by separating their structural isomers, however each separation method has some problems. For example, distillation consumes large energy. In order to solve these problems, new separation method is needed. Considering organic compounds are diamagnetic, we focused on magneto-Archimedes method. With this method, particle mixture dispersed in a paramagnetic medium can be separated in a magnetic field due to the difference of the density and magnetic susceptibility of the particles. In this study, we succeeded in separating isomers of phthalic acid as an example of structural isomer using MnCl2 solution as the paramagnetic medium. In order to use magneto-Archimedes method for separating materials for food or medicine, we proposed harmless medium using oxygen and fluorocarbon instead of MnCl2 aqueous solution. As a result, the possibility of separating every structural isomer was shown.

  7. Separation of Flame and Nonflame-retardant Plastics Utilizing Magneto-Archimedes Method

    International Nuclear Information System (INIS)

    Misawa, Kohei; Kobayashi, Takayuki; Mori, Tatsuya; Akiyama, Yoko; Nishijima, Shigehiro; Mishima, Fumihito

    2017-01-01

    In physical recycling process, the quality of recycled plastics becomes usually poor in case various kinds of plastic materials are mixed. In order to solve the problem, we tried to separate flame and nonflame-retardant plastics used for toner cartridges as one example of mixed plastics by using magneto-Archimedes method. By using this method, we can control levitation and settlement of the particles in the medium by controlling the density and magnetic susceptibility of the medium and the magnetic field. In this study, we introduced the separation system of plastics by the combination of wet type specific gravity separation and magneto-Archimedes separation. In addition, we examined continuous and massive separation by introducing the system which can separate the plastics continuously in the flowing fluid. (paper)

  8. Electro-osmotic flows inside triangular microchannels

    International Nuclear Information System (INIS)

    Vocale, P; Spiga, M; Geri, M; Morini, G L

    2014-01-01

    This work presents a numerical investigation of both pure electro-osmotic and combined electro-osmotic/pressure-driven flows inside triangular microchannels. A finite element analysis has been adopted to solve the governing equations for the electric potential and the velocity field, accounting for a finite thickness of the electric double layer. The influence of non-dimensional parameters such as the aspect ratio of the cross-section, the electrokinetic diameter and the ratio of the pressure force to the electric force on the flow behavior has been investigated. Numerical results point out that the velocity field is significantly influenced by the aspect ratio of the cross section and the electrokinetic diameter. More specifically, the aspect ratio plays an important role in determining the maximum volumetric flow rate, while the electrokinetic diameter is crucial to establishing the range of pressures that may be sustained by the electro-osmotic flow. Numerical results are also compared with two correlations available in the literature which enable to assess the volumetric flow rate and the pressure head for microchannels featuring a rectangular, a trapezoidal or an elliptical cross-section.

  9. Magneto-optical imaging of polycrystalline FeTe1-xSex prepared at various conditions

    International Nuclear Information System (INIS)

    Ding, Q.; Taen, T.; Mohan, S.; Nakajima, Y.; Tamegai, T.

    2011-01-01

    High-quality FeTe 1-x Se x polycrystals with T c ∼ 14 K were prepared by sintering at different temperatures. Intragranular critical current density of FeTe 1-x Se x polycrystals estimated from M-H curve is 5 x 10 4 A/cm 2 at 5 K under zero field. The observed intragranular J c value was confirmed by the magneto-optical images in the remanent state. The weak-link feature of FeTe 1-x Se x polycrystals is also revealed through magneto-optical imaging. We have prepared high-quality polycrystalline FeTe 1-x Se x by sintering at different temperatures and characterized their structural and magnetic properties with X-ray diffraction, magnetization measurements, and magneto-optical imaging. The intragranular J c was estimated to be 5 x 10 4 A/cm 2 , which is smaller than the single crystal, but still in the range for practical applications.

  10. State of the art of control schemes for smart systems featuring magneto-rheological materials

    International Nuclear Information System (INIS)

    Choi, Seung-Bok; Do, Phu Xuan; Li, Weihua; Yu, Miao; Fu, Jie; Du, Haiping

    2016-01-01

    This review presents various control strategies for application systems utilizing smart magneto-rheological fluid (MRF) and magneto-rheological elastomers (MRE). It is well known that both MRF and MRE are actively studied and applied to many practical systems such as vehicle dampers. The mandatory requirements for successful applications of MRF and MRE include several factors: advanced material properties, optimal mechanisms, suitable modeling, and appropriate control schemes. Among these requirements, the use of an appropriate control scheme is a crucial factor since it is the final action stage of the application systems to achieve the desired output responses. There are numerous different control strategies which have been applied to many different application systems of MRF and MRE, summarized in this review. In the literature review, advantages and disadvantages of each control scheme are discussed so that potential researchers can develop more effective strategies to achieve higher control performance of many application systems utilizing magneto-rheological materials. (topical review)

  11. Electronic properties of newly-discovered doped semiconductors. Superconductivity in diamond and transport properties of RuIn{sub 3}; Elektronische Eigenschaften neuer dotierter Halbleiter. Supraleitung im Diamant und Transporteigenschaften von RuIn{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanov, D.A.

    2006-08-01

    The properties of the boron-doped diamond are sensitive to the boron concentration. A semiconducting behaviour occurs at low boron concentration and transport properties are given by a hopping-mechanism. The conductivity increases for higher boron concentration. The Mott metal to insulator transition takes place at a critical boron concentration. In the metallic phase superconductivity is observed. The critical temperatures of the superconducting transition are below 3 K. In this work, the influence of boron to the electronic properties, like conductivity and magneto resistance, was studied in the vicinity of the metal to insulator transition point. The superconducting properties (critical temperature, upper critical field) were studied down to 50 mK and compared to the conventional theory of the electron-phonon coupled superconductors. The properties of polycrystalline RuIn{sub 3} are reported in few publications to be metallic. In this work single crystals of this material were grown and analysed. We observe a semiconducting behaviour with an intrinsic gap of 0.4-0.5 eV. The previously reported metallic behaviour could be interpreted in this work as influence of the elementary indium in the samples. The measurements of the specific heat at low temperatures and LDA band structure calculations confirm the semiconducting properties and the value of the semiconducting gap. (orig.)

  12. Compression of magnetized target in the magneto-inertial fusion

    Science.gov (United States)

    Kuzenov, V. V.

    2017-12-01

    This paper presents a mathematical model, numerical method and results of the computer analysis of the compression process and the energy transfer in the target plasma, used in magneto-inertial fusion. The computer simulation of the compression process of magnetized cylindrical target by high-power laser pulse is presented.

  13. Precision Munition Electro-Sciences Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility allows the characterization of the electro-magnetic environment produced by a precision weapon in free flight. It can measure the radiofrequency (RF)...

  14. Foreword: Focus on Superconductivity in Semiconductors

    Directory of Open Access Journals (Sweden)

    Yoshihiko Takano

    2008-01-01

    Full Text Available Since the discovery of superconductivity in diamond, much attention has been given to the issue of superconductivity in semiconductors. Because diamond has a large band gap of 5.5 eV, it is called a wide-gap semiconductor. Upon heavy boron doping over 3×1020 cm−3, diamond becomes metallic and demonstrates superconductivity at temperatures below 11.4 K. This discovery implies that a semiconductor can become a superconductor upon carrier doping. Recently, superconductivity was also discovered in boron-doped silicon and SiC semiconductors. The number of superconducting semiconductors has increased. In 2008 an Fe-based superconductor was discovered in a research project on carrier doping in a LaCuSeO wide-gap semiconductor. This discovery enhanced research activities in the field of superconductivity, where many scientists place particular importance on superconductivity in semiconductors.This focus issue features a variety of topics on superconductivity in semiconductors selected from the 2nd International Workshop on Superconductivity in Diamond and Related Materials (IWSDRM2008, which was held at the National Institute for Materials Science (NIMS, Tsukuba, Japan in July 2008. The 1st workshop was held in 2005 and was published as a special issue in Science and Technology of Advanced Materials (STAM in 2006 (Takano 2006 Sci. Technol. Adv. Mater. 7 S1.The selection of papers describe many important experimental and theoretical studies on superconductivity in semiconductors. Topics on boron-doped diamond include isotope effects (Ekimov et al and the detailed structure of boron sites, and the relation between superconductivity and disorder induced by boron doping. Regarding other semiconductors, the superconducting properties of silicon and SiC (Kriener et al, Muranaka et al and Yanase et al are discussed, and In2O3 (Makise et al is presented as a new superconducting semiconductor. Iron-based superconductors are presented as a new series of high

  15. Hydrodynamics of electrons in graphene

    Science.gov (United States)

    Lucas, Andrew; Chung Fong, Kin

    2018-02-01

    Generic interacting many-body quantum systems are believed to behave as classical fluids on long time and length scales. Due to rapid progress in growing exceptionally pure crystals, we are now able to experimentally observe this collective motion of electrons in solid-state systems, including graphene. We present a review of recent progress in understanding the hydrodynamic limit of electronic motion in graphene, written for physicists from diverse communities. We begin by discussing the ‘phase diagram’ of graphene, and the inevitable presence of impurities and phonons in experimental systems. We derive hydrodynamics, both from a phenomenological perspective and using kinetic theory. We then describe how hydrodynamic electron flow is visible in electronic transport measurements. Although we focus on graphene in this review, the broader framework naturally generalizes to other materials. We assume only basic knowledge of condensed matter physics, and no prior knowledge of hydrodynamics.

  16. Status of RF superconductivity at Argonne

    International Nuclear Information System (INIS)

    Shepard, K.W.

    1990-01-01

    Development of a superconducting slow-wave structures began at Argonne National Laboratory (ANL) in 1971, and led to the first superconducting heavy-ion linac (ATLAS - the Argonne Tandem-Linac Accelerator System). The Physics Division at ANL has continued to develop superconducting RF technology for accelerating heavy-ions, with the result that the linac has been in an almost continuous process of upgrade and expansion. In 1987, the Engineering Physics Division at ANL began developing of superconducting RF components for the acceleration of high-brightness proton and deuterium beams. The two divisions collaborate in work on several applications of RF superconductivity, and also in work to develop the technology generally. The present report briefly describes major features of the superconducting heavy-ion linac (very-low-velocity superconducting linac, positive ion injector), proton accelerating structures (superconducting resonant cavities for acceleration of high-current proton and deuteron beams, RF properties of oxide superconductors), and future work. Both divisions expect to continue a variety of studies, frequently in collaboration, to advance the basic technology of RF superconductivity. (N.K.)

  17. Unconventional superconductivity in heavy-fermion compounds

    Energy Technology Data Exchange (ETDEWEB)

    White, B.D. [Department of Physics, University of California, San Diego, La Jolla, CA 92093 (United States); Center for Advanced Nanoscience, University of California, San Diego, La Jolla, CA 92093 (United States); Thompson, J.D. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Maple, M.B., E-mail: mbmaple@ucsd.edu [Department of Physics, University of California, San Diego, La Jolla, CA 92093 (United States); Center for Advanced Nanoscience, University of California, San Diego, La Jolla, CA 92093 (United States)

    2015-07-15

    Highlights: • Quasiparticles in heavy-fermion compounds are much heavier than free electrons. • Superconductivity involves pairing of these massive quasiparticles. • Quasiparticle pairing mediated by magnetic or quadrupolar fluctuations. • We review the properties of superconductivity in heavy-fermion compounds. - Abstract: Over the past 35 years, research on unconventional superconductivity in heavy-fermion systems has evolved from the surprising observations of unprecedented superconducting properties in compounds that convention dictated should not superconduct at all to performing explorations of rich phase spaces in which the delicate interplay between competing ground states appears to support emergent superconducting states. In this article, we review the current understanding of superconductivity in heavy-fermion compounds and identify a set of characteristics that is common to their unconventional superconducting states. These core properties are compared with those of other classes of unconventional superconductors such as the cuprates and iron-based superconductors. We conclude by speculating on the prospects for future research in this field and how new advances might contribute towards resolving the long-standing mystery of how unconventional superconductivity works.

  18. Superconducting wires and methods of making thereof

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xingchen; Sumption, Michael D.; Peng, Xuan

    2018-03-13

    Disclosed herein are superconducting wires. The superconducting wires can comprise a metallic matrix and at least one continuous subelement embedded in the matrix. Each subelement can comprise a non-superconducting core, a superconducting layer coaxially disposed around the non-superconducting core, and a barrier layer coaxially disposed around the superconducting layer. The superconducting layer can comprise a plurality of Nb.sub.3Sn grains stabilized by metal oxide particulates disposed therein. The Nb.sub.3Sn grains can have an average grain size of from 5 nm to 90 nm (for example, from 15 nm to 30 nm). The superconducting wire can have a high-field critical current density (J.sub.c) of at least 5,000 A/mm.sup.2 at a temperature of 4.2 K in a magnetic field of 12 T. Also described are superconducting wire precursors that can be heat treated to prepare superconducting wires, as well as methods of making superconducting wires.

  19. Superconducting magnet development in Japan

    International Nuclear Information System (INIS)

    Yasukochi, K.

    1983-01-01

    The present state of R and D works on the superconducting magnet and its applications in Japan are presented. On electrical rotating machines, 30 MVA superconducting synchronous rotary condenser (Mitsubishi and Fuji) and 50 MVA generator are under construction. Two ways of ship propulsion by superconducting magnets are developing. A superconducting magnetically levitated and linear motor propelled train ''MAGLEV'' was developed by the Japan National Railways (JNR). The superconducting magnet development for fusion is the most active field in Japan. The Cluster Test program has been demonstrated on a 10 T Nb 3 Sn coil and the first coil of Large Coil Task in IEA collaboration has been constructed and the domestic test was completed in JAERI. These works are for the development of toroidal coils of the next generation tokamak machine. R and D works on superconducting ohmic heating coil are in progress in JAERI and ETL. The latter group has constructed 3.8 MJ pulsed coil. A high ramp rate of changing field in pulsed magnet, 200 T/s, has been tested successfully. High Energy Physics Laboratory (KEK) are conducting active works. The superconducting μ meson channel and π meson channel have been constructed and are operating successfully. KEK has also a project of big accelerator named ''TRISTAN'', which is similar to ISABELLE project of BNL. Superconducting synchrotron magnets are developed for this project. The development of superconducting three thin wall solenoid has been started. One of them, CDF, is progressing under USA-Japan collaboration

  20. Superconducting joint of Bi-2223/Ag superconducting tapes by diffusion bonding

    International Nuclear Information System (INIS)

    Guo Wei; Zou Guisheng; Wu Aiping; Wang Yanjun; Bai Hailin; Ren Jialie

    2009-01-01

    61-Filaments Bi-2223/Ag superconducting tapes have been joined by diffusion bonding. The critical currents (I C s) of the joints are obtained by using standard four probe method under no magnetic field in the liquid nitrogen. The microstructures of the joints are evaluated by the electron microscope in electron backscatter diffraction mode and the phase compositions of the superconducting cores of the joint and the original tape are determined by X-ray diffraction (XRD). The results show diffusion bonding is effective bonding technique for HTS tapes, and the bonding time is reduced greatly from hundreds of hours to a few hours, and the bonding pressure also changes from 140-4000 MPa to 3 MPa. Furthermore, the diffusion bonding joints sustain superconducting properties, and the critical current ratios (CCR O ) of the joints are in the range of 35%-80%. Microstructures of the typical joint display a good bonding and some defects existed in traditional method are avoided. XRD results show that the phase compositions of the superconducting cores have no obvious changes before and after diffusion bonding, which offers physical and material bases for high superconducting property of the joints.

  1. Superconductivity in doped Dirac semimetals

    Science.gov (United States)

    Hashimoto, Tatsuki; Kobayashi, Shingo; Tanaka, Yukio; Sato, Masatoshi

    2016-07-01

    We theoretically study intrinsic superconductivity in doped Dirac semimetals. Dirac semimetals host bulk Dirac points, which are formed by doubly degenerate bands, so the Hamiltonian is described by a 4 ×4 matrix and six types of k -independent pair potentials are allowed by the Fermi-Dirac statistics. We show that the unique spin-orbit coupling leads to characteristic superconducting gap structures and d vectors on the Fermi surface and the electron-electron interaction between intra and interorbitals gives a novel phase diagram of superconductivity. It is found that when the interorbital attraction is dominant, an unconventional superconducting state with point nodes appears. To verify the experimental signature of possible superconducting states, we calculate the temperature dependence of bulk physical properties such as electronic specific heat and spin susceptibility and surface state. In the unconventional superconducting phase, either dispersive or flat Andreev bound states appear between point nodes, which leads to double peaks or a single peak in the surface density of states, respectively. As a result, possible superconducting states can be distinguished by combining bulk and surface measurements.

  2. Oscillatory magneto-convection under magnetic field modulation

    OpenAIRE

    Kiran, Palle; Bhadauria, B.S.; Narasimhulu, Y.

    2017-01-01

    In this paper we investigate an oscillatory mode of nonlinear magneto-convection under time dependant magnetic field. The time dependant magnetic field consists steady and oscillatory parts. The oscillatory part of the imposed magnetic field is assumed to be of third order. An externally imposed vertical magnetic field in an electrically conducting horizontal fluid layer is considered. The finite amplitude analysis is discussed while perturbing the system. The complex Ginzburg-Landau model is...

  3. Remarks on stability of magneto-elastic shocks

    Directory of Open Access Journals (Sweden)

    Włodzimierz Domański

    2015-12-01

    Full Text Available The problem of stability of plane shock waves for a model of perfect magnetoelasticityis investigated. Important mathematical properties, like loss of strict hyperbolicityand loss of genuine nonlinearity, and their consequences for the stability ofmagneto-elastic shocks are discussed. It is shown that some of these shocks do not satisfyclassical Lax stability conditions. Both compressible and incompressible models ofmagneto-elasticity are discussed.[b]Keywords[/b]: perfect magneto-elasticity, shock waves, stability conditions

  4. Cobalt nanoparticles deposited and embedded in AlN: Magnetic, magneto-optical, and morphological properties

    International Nuclear Information System (INIS)

    Huttel, Y.; Gomez, H.; Clavero, C.; Cebollada, A.; Armelles, G.; Navarro, E.; Ciria, M.; Benito, L.; Arnaudas, J.I.; Kellock, A.J.

    2004-01-01

    We present a structural, morphological, magnetic, and magneto-optical study of cobalt nanoparticles deposited on 50 A ring AlN/c-sapphire substrates and embedded in an AlN matrix. The dependence of the properties of Co nanoclusters deposited on AlN with growth temperature and amount of deposited Co are studied and discussed. Also we directly compare the properties of as grown and AlN embedded Co nanoclusters and show that the AlN matrix has a strong impact on their magnetic and magneto-optical properties

  5. Superconductivity: materials and applications

    International Nuclear Information System (INIS)

    Duchateau, J.L.; Kircher, F.; Leveque, J.; Tixador, P.

    2008-01-01

    This digest paper presents the different types of superconducting materials: 1 - the low-TC superconductors: the multi-filament composite as elementary constituent, the world production of NbTi, the superconducting cables of the LHC collider and of the ITER tokamak; 2 - the high-TC superconductors: BiSrCaCuO (PIT 1G) ribbons and wires, deposited coatings; 3 - application to particle physics: the the LHC collider of the CERN, the LHC detectors; 4 - applications to thermonuclear fusion: Tore Supra and ITER tokamaks; 5 - NMR imaging: properties of superconducting magnets; 6 - applications in electrotechnics: cables, motors and alternators, current limiters, transformers, superconducting energy storage systems (SMES). (J.S.)

  6. Superconductivity in power engineering

    International Nuclear Information System (INIS)

    1989-01-01

    This proceedings volume presents 24 conference papers and 15 posters dealing with the following aspects: 1) Principles and elementary aspects of high-temperature superconductivity (3 plenary lectures); 2) Preparation, properties and materials requirements of metallic or oxide superconductors (critical current behaviour, soldered joints, structural studies); 3) Magnet technology (large magnets for thermonuclear fusion devices; magnets for particle accelerators and medical devices); 4) Magnetic levitation and superconductivity; 5) Cryogenics; 6) Energy storage systems using superconducting coils (SMES); 7) Superconducting power transmission cables, switches, transformers, and generator systems for power plant; 8) Supporting activities, industrial aspects, patents. There are thirty-eight records in the ENERGY database relating to individual conference papers. (MM) [de

  7. Factors impacting the electro conductivity variations of clayey soils

    International Nuclear Information System (INIS)

    Ouhadi, V. R.; Goodarzi, A. R.

    2007-01-01

    The variation of pore fluid properties in soil has a major effect on soil behaviour. This effect is a function of pore fluid properties and soil mineralogy. Such variation usually happens in the reservoirs of dams or in some geotechnical projects. The electro conductivity measurement is a simple method to monitor any variation in the pore fluid of soils. electro conductivity is the ability of a material to transmit (conduct) an electrical current. This paper focuses attention on the effect of soil-pore fluid interaction on the electro conductivity of clayey soils. A set of physico-chemical experiments are performed and the role of different factors including soil pH, soil mineralogy, soil: water ratio, cation and anion effects are investigated. The results of this study indicate that for soil that has a relatively low CEC, the anion type is an important factor, while the cation type does not noticeably affect the electro conductivity of the soil-solution. However, for such soil, an electrolyte property, i.e. its solubility, is much more effective than the CEC of the soil. In addition, it was observed that in the presence of neutral salts such as pore fluid, the pH of the soil-solution decreases causing an increase in the electro conductivity of the soil sample

  8. A simple experimental setup for magneto-dielectric measurements

    Energy Technology Data Exchange (ETDEWEB)

    Manimuthu, P.; Shanker, N. Praveen; Kumar, K. Saravana; Venkateswaran, C., E-mail: cvunom@hotmail.com

    2014-09-01

    The increasing demand for the multiferroic materials calls for the need of an experimental setup that will facilitate magneto-dielectric coupling measurements. A connector setup designed makes it possible to measure and analyze the dielectric properties of the material under the influence of a magnetic field. The salient feature of this setup is in its incorporation with the already existing experimental facilities.

  9. A simple experimental setup for magneto-dielectric measurements

    International Nuclear Information System (INIS)

    Manimuthu, P.; Shanker, N. Praveen; Kumar, K. Saravana; Venkateswaran, C.

    2014-01-01

    The increasing demand for the multiferroic materials calls for the need of an experimental setup that will facilitate magneto-dielectric coupling measurements. A connector setup designed makes it possible to measure and analyze the dielectric properties of the material under the influence of a magnetic field. The salient feature of this setup is in its incorporation with the already existing experimental facilities

  10. High-Tc superconducting electric motors

    International Nuclear Information System (INIS)

    Schiferl, R.; Stein, J.

    1992-01-01

    In this paper, the advantages and limitations of using superconductors in motors are discussed. A synchronous motor with a high temperature superconducting field winding for pump and fan drive applications is described and some of its unique design features are identified. A 10,000 horsepower superconducting motor design is presented. The critical field and current density requirements for high temperature superconducting wire in motors is discussed. Finally, recent progress in superconducting wire performance is presented

  11. Infrared magneto-spectroscopy of two-dimensional and three-dimensional massless fermions: A comparison

    Energy Technology Data Exchange (ETDEWEB)

    Orlita, M., E-mail: milan.orlita@lncmi.cnrs.fr [Laboratoire National des Champs Magnétiques Intenses, CNRS-UJF-UPS-INSA, 38042 Grenoble (France); Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2 (Czech Republic); Faugeras, C.; Barra, A.-L.; Martinez, G.; Potemski, M. [Laboratoire National des Champs Magnétiques Intenses, CNRS-UJF-UPS-INSA, 38042 Grenoble (France); Basko, D. M. [LPMMC UMR 5493, Université Grenoble 1/CNRS, B.P. 166, 38042 Grenoble (France); Zholudev, M. S. [Laboratoire Charles Coulomb (L2C), UMR CNRS 5221, GIS-TERALAB, Université Montpellier II, 34095 Montpellier (France); Institute for Physics of Microstructures, RAS, Nizhny Novgorod GSP-105 603950 (Russian Federation); Teppe, F.; Knap, W. [Laboratoire Charles Coulomb (L2C), UMR CNRS 5221, GIS-TERALAB, Université Montpellier II, 34095 Montpellier (France); Gavrilenko, V. I. [Institute for Physics of Microstructures, RAS, Nizhny Novgorod GSP-105 603950 (Russian Federation); Mikhailov, N. N.; Dvoretskii, S. A. [A.V. Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090 (Russian Federation); Neugebauer, P. [Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart (Germany); Berger, C. [School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Institut Néel/CNRS-UJF BP 166, F-38042 Grenoble Cedex 9 (France); Heer, W. A. de [School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2015-03-21

    Here, we report on a magneto-optical study of two distinct systems hosting massless fermions—two-dimensional graphene and three-dimensional HgCdTe tuned to the zero band gap condition at the point of the semiconductor-to-semimetal topological transition. Both materials exhibit, in the quantum regime, a fairly rich magneto-optical response, which is composed from a series of intra- and interband inter-Landau level resonances with for massless fermions typical √(B) dependence. The impact of the system's dimensionality and of the strength of the spin-orbit interaction on the optical response is also discussed.

  12. Electro-optic and magneto-dielectric properties of multifunctional nitride and oxide materials

    Science.gov (United States)

    Dixit, Ambesh

    Materials that simultaneously exhibit different physical properties provide a rich area of research leading to the development of new devices. For example, materials having a strong coupling between charge and spin degrees of freedom are essential to realizing a new class of devices referred to generally as spintronics. However, these multifunctional systems pose new scientific challenges in understanding the origin and mechanisms for cross-control of different functionalities. The core of this Ph.D. dissertation deals with multifunctional nitride and oxide compound semiconductors as well as multiferroic magnetic oxide systems by investigating structural, optical, electrical, magnetic, magnetodielectric and magnetoelectric properties. Thin films of InN nitride compound semiconductors and closely related alloys have been investigated to understand the effects of intrinsic defects on the materials properties while considering possible applications of highly degenerate InN thin films. As grown rf sputtered InN films on c-axis (0001) sapphire exhibit highly degenerate n-type behaviour due to oxygen defects introduced during growth. The effect of oxygen in InN matrix has been further investigated by intentionally adding oxygen into the films. These studies confirm that oxygen is one of the main sources of donor electrons in degenerate InN. Above some critical concentration of oxygen, secondary phases of In 2O3 and In-O-N complexes were formed. It was also possible to tune the carrier concentration to produce changes in the plasmon frequency, which varied from 0.45 eV to 0.8 eV. This characteristic energy scale suggests that these highly degenerate InN thin films could be used for thermophotovoltaic cells, optical filters, and other IR electro-optic applications. To probe the magnetism in transition metal doped InN system, In 0.98Cr0.02N and In0.95Cr0.05N thin films were fabricated. Our results suggest that these films develop ferromagnetic order above room temperature

  13. Black brane entropy and hydrodynamics

    NARCIS (Netherlands)

    Booth, I.; Heller, M.P.; Spaliński, M.

    2010-01-01

    A generalization of entropy to near-equilibrium phenomena is provided by the notion of a hydrodynamic entropy current. Recent advances in holography have lead to the formulation of fluid-gravity duality, a remarkable connection between the hydrodynamics of certain strongly coupled media and dynamics

  14. Black brane entropy and hydrodynamics

    NARCIS (Netherlands)

    Booth, I.; Heller, M.P.; Spaliński, M.

    2011-01-01

    A generalization of entropy to near-equilibrium phenomena is provided by the notion of a hydrodynamic entropy current. Recent advances in holography have lead to the formulation of fluid-gravity duality, a remarkable connection between the hydrodynamics of certain strongly coupled media and dynamics

  15. Shape Stability of the LHC Superconducting Dipole Mechanical Model and Experimental Investigations

    CERN Document Server

    La China, M; Scandale, Walter

    2006-01-01

    The aim of this work is the study of the geometry of the main superconducting dipole for the Large Hadron Collider from the manufacturing process throughout the pre-operative stages to predict the respect of the tight tolerance, imposed by the beam dynamic, in both nominal and chancy working conditions. Expected and unexpected situations have been approached through the development of dedicate models and tests with the purpose of evaluating their impact on magnet geometry. In our study we used structural models of different complexity for different purposes. For example we used analytical models in conjunction with the cold mass geometry database to simulate the overall effect of individual geometry corrections or to discriminate elastic from inelastic measured deformations. By means of finite element models, instead, we investigated the effect of mechanic loads as induced by road transport, or the effect of electro-magnetic forces arising in working conditions. As the assembly complexity prevents from deduci...

  16. Future electro-optical sensors and processing in urban operations

    NARCIS (Netherlands)

    Grönwall, C.; Schwering, P.B.; Rantakokko, J.; Benoist, K.W.; Kemp, R.A.W.; Steinvall, O.; Letalick, D.; Björkert, S.

    2013-01-01

    In the electro-optical sensors and processing in urban operations (ESUO) study we pave the way for the European Defence Agency (EDA) group of Electro-Optics experts (IAP03) for a common understanding of the optimal distribution of processing functions between the different platforms. Combinations of

  17. Electro-spun PLA-PEG-yarns for tissue engineering applications

    NARCIS (Netherlands)

    Kruse, Magnus; Greuel, Marc; Kreimendahl, Franziska; Schneiders, Thomas; Bauer, Benedict; Gries, Thomas; Jockenhoevel, Stefan

    2018-01-01

    Electro-spinning is widely used in tissue-engineered applications mostly in form of non-woven structures. The development of e-spun yarn opens the door for textile fabrics which combine the micro to nanoscale dimension of electro-spun filaments with three-dimensional (3D) drapable textile fabrics.

  18. Superconducting magnets for a muon collider

    International Nuclear Information System (INIS)

    Green, M.A.

    1996-01-01

    The existence of a muon collider will be dependent on the use of superconducting magnets. Superconducting magnets for the μ - μ + collider will be found in the following locations: the π - π + capture system, the muon phase rotation system, the muon cooling system, the recirculating acceleration system, the collider ring, and the collider detector system. This report describes superconducting magnets for each of these sections except the detector. In addition to superconducting magnets, superconducting RF cavities will be found in the recirculating accelerator sections and the collider ring. The use of superconducting magnets is dictated by the need for high magnetic fields in order to reduce the length of various machine components. The performance of all of the superconducting magnets will be affected the energy deposited from muon decay products. (orig.)

  19. Topics in fluctuating nonlinear hydrodynamics

    International Nuclear Information System (INIS)

    Milner, S.T.

    1986-01-01

    Models of fluctuating nonlinear hydrodynamics have enjoyed much success in explaining the effect of long-wavelength fluctuations in diverse hydrodynamic systems. This thesis explores two such problems; in both, the body of hydrodynamic assumptions powerfully constrains the predictions of a well-posed theory. The effects of layer fluctuations in smectic-A liquid crystals are first examined. The static theory (introduced by Grinstein and Pelcovits) is reviewed. Ward identities, resulting from the arbitrariness of the layering direction, are derived and exploited. The static results motivate an examination of dynamic fluctuation effects. A new sound-damping experiment is proposed that would probe singular dependence of viscosities on applied stress. A theory of Procaccia and Gitterman that reaction rates of chemically reacting binary mixtures are drastically reduced near their thermodynamic critical points is analyzed. Hydrodynamic arguments and Van Hove theory are applied, concluding that the PG idea is drastically slowed, and spatially varying composition fluctuations are at best slowed down over a narrow range of wavenumbers

  20. Magneto-plasma separating technologies and their possible application for conversion spent fuel and radioactive waste

    International Nuclear Information System (INIS)

    Kovtun, Yu.V.; Skyibenko, Je.Yi.; Yuferov, V.B.

    2007-01-01

    A problem of spent fuel (SF) and radioactive waste (RAW) processing is considered in the views of using magneto-plasma technologies. Basing on this analysis, the block-diagram of RAW processing by the technology using a magneto-plasma separator is offered. The paper describes the device for material element separation, where the main physical mechanism of plasma formation and heating are collective processes involved by the plasma-beam interaction. The dimensions of a pilot-separating device are determined