WorldWideScience

Sample records for superconducting composites cu-2

  1. YBa2Cu3O(7-x) based superconducting thin films by multitarget sputtering

    International Nuclear Information System (INIS)

    Bouteloup, E.; Mercey, B.; Poullain, G.; Brousse, T.; Murray, H.; Raveau, B.

    1990-01-01

    This paper reports a new technique to prepare superconducting YBa 2 Cu 3 O (7-x) thin films. The multitarget sputtering apparatus described below allows the simultaneous and reproducible production of numerous films with a metallic composition close to Y 17% Ba 33% Cu 50% . Superconducting films (R = 0) at 80 K have been produced on polycrystalline zirconia substrates after a high temperature annealing [fr

  2. NQR study in superconducting La2CuO4+δ

    International Nuclear Information System (INIS)

    Ueda, K.; Sugata, T.; Kohori, Y.; Oda, Y.; Kohara, T.

    1992-01-01

    Cu NQR signals were observed around 33.1 and 36.0 MHz together with the antiferromagnetic Cu NMR signals in the superconducting La 2 CuO 4+ δ obtained by annealing in high pressure oxygen gas. The NQR intensity increases with increasing oxygen contents. The nuclear spin-lattice relaxation time, T 1 , of Cu NQR indicates that the paramagnetic phase is in the superconducting state at low temperatures. These results show that the NQR and NMR signals were coming from the Cu sites in the superconducting phase and the antiferromagnetic phase, respectively. No appreciable differences were observed in the Cu NQR spectrum and the relaxation time between the superconducting La 2 CuO 4 + δ samples annealed under the oxygen pressure of 400 ≅ 1200 bar. (orig.)

  3. Magneto-transport properties of Co3O4 nanoparticles added (Cu0.5Tl0.5)Ba2Ca2Cu3O10-δ superconducting phase

    Science.gov (United States)

    Mumtaz, M.; Baig, Mirza Hassan; Waqee-ur-Rehman, M.; Nasir Khan, M.

    2018-05-01

    Solid-state reaction method was used to synthesize Cu0.5Tl0.5Ba2Ca2Cu3O10-δ (CuTl-1223) superconducting phase and sol-gel method was used to prepare cobalt oxide (Co3O4) magnetic nanoparticles. These Co3O4 nanoparticles were added in CuTl-1223 superconducting matrix to get (Co3O4)x/CuTl-1223; x = 0-2.00 wt.% nanoparticles-superconductor composites. The effects of Co3O4 nanoparticles on crystal structure, phase formation, phase purity and infield superconducting transport properties of CuTl-1223 phase were investigated at different operating temperatures and external applied magnetic fields. The crystal structure and phase formation of Co3O4 nanoparticles and CuTl-1223 superconductor were determined by X-ray diffraction (XRD) technique. XRD peaks of Co3O4 nanoparticles were well indexed according to FCC crystal structure and the average particle size of 70 nm was calculated by using Debye-Scherer's formula. The unaltered crystal structure of host CuTl-1223 superconducting phase (i.e. Tetragonal) with the addition of Co3O4 nanoparticles indicated the dispersion of nanoparticles at inter-granular sites. Temperature dependent magneto-transport superconducting properties of (Co3O4)x/CuTl-1223 composites were investigated by zero field cooled (ZFC) and field cooled (FC) magnetic moment versus temperature (M-T) measurements. The onset transition temperatures {TcOnset (K)} was decreased along with the suppression of diamagnetic amplitude of CuTl-1223 superconducting phase with the addition of magnetic Co3O4 nanoparticles. Temperature dependent magnetic hysteresis (M-H loops) measurements of (Co3O4)x/CuTl-1223 composites were carried out at different operating temperatures from 5 K to 150 K. Critical current density (Jc) was calculated from M-H loops measurements by using Bean's model. Like the suppression of TcOnset (K) values, Jc was also decreased with the inclusion of Co3O4 nanoparticles. It was also observed that variation of Jc with H followed the power law Jc =

  4. Fabrication of 2-3 YBa2Cu3O7-x/polymer composite with Tc above liquid nitrogen temperature

    International Nuclear Information System (INIS)

    Wilson, C.M.; Safari, A.

    1990-01-01

    This paper reports on high T c superconducting oxide woven networks fabricated and used to form YBa 2 Cu 3 O 7-x /polymer composites showing a superconducting resistive transition above liquid nitrogen temperature. The ceramic network was produced by soaking biaxially woven carbon fabric in a solution containing the stoichiometric proportions of Y, Ba, and Cu. Decomposition of the infiltrated carbon fabric and reaction of the remaining oxides resulted in a ceramic replica of the original fabric. The fired networks had a strand diameter ∼100 μm and were embedded in a polymer matrix to produce 2--3 superconducting/polymer composites with a superconducting transition of ∼89 K. Linear shrinkage of the networks was constrained during firing, although the radial shrinkage of the superconducting strands occurred freely. XRD of the networks indicated the presence of BaCO 3 , CuO, and BaCuO 2 as impurity phases

  5. Superconducting composites materials

    International Nuclear Information System (INIS)

    Kerjouan, P.; Boterel, F.; Lostec, J.; Bertot, J.P.; Haussonne, J.M.

    1991-01-01

    The new superconductor materials with a high critical current own a large importance as well in the electronic components or in the electrotechnical devices fields. The deposit of such materials with the thick films technology is to be more and more developed in the years to come. Therefore, we tried to realize such thick films screen printed on alumina, and composed mainly of the YBa 2 Cu 3 O 7-δ material. We first realized a composite material glass/YBa 2 Cu 3 O 7-δ , by analogy with the classical screen-printed inks where the glass ensures the bonding with the substrate. We thus realized different materials by using some different classes of glass. These materials owned a superconducting transition close to the one of the pure YBa 2 Cu 3 O 7-δ material. We made a slurry with the most significant composite materials and binders, and screen-printed them on an alumina substrate preliminary or not coated with a diffusion barrier layer. After firing, we studied the thick films adhesion, the alumina/glass/composite material interfaces, and their superconducting properties. 8 refs.; 14 figs.; 9 tabs [fr

  6. Dielectric properties of (CuO,CaO2, and BaO)y/CuTl-1223 composites

    International Nuclear Information System (INIS)

    Mumtaz, M.; Kamran, M.; Nadeem, K.; Jabbar, Abdul; Khan, Nawazish A.; Saleem, Abida; Hussain, S.Tajammul; Kamran, M.

    2013-01-01

    We synthesized (CuO, CaO 2 , and BaO) y /Cu 0.5 Tl 0.5 Ba 2 Ca 2 Cu 3 O 10-δ (y = 0, 5%, 10%, 15%) composites by solid-state reaction and characterized by x-ray diffraction, scanning electron microscopy, dc-resistivity, and Fourier transform infrared spectroscopy. Frequency and temperature dependent dielectric properties such as real and imaginary part of dielectric constant, dielectric loss, and ac-conductivity of these composites are studied by capacitance and conductance measurement as a function of frequency (10 kHz to 10 MHz) and temperature (78 to 300 K). The x-ray diffraction analysis reveals that the characteristic behavior of Cu 0.5 Tl 0.5 Ba 2 Ca 2 Cu 3 O 10-δ superconductor phase and its structure is nearly undisturbed by doping of nanoparticles. The scanning electron microscopy images show the improvement in the intergranular links among the superconducting grains with increasing nanoparticles concentration. Microcracks are healed up with the inclusion of these nanoparticles and superconducting volume fraction is also increased. The dielectric properties of these composites strongly depend upon the frequency and temperature. The zero resistivity critical temperature and dielectric properties show opposite trend with the addition of nanoparticles in Cu 0.5 Tl 0.5 Ba 2 Ca 2 Cu 3 O 10-δ superconductor matrix.

  7. Structure, magnetic and superconducting properties of MoSr2HoCu2O8-δ

    International Nuclear Information System (INIS)

    Balchev, N.; Nenkov, K.; Mihova, G.; Kunev, B.; Pirov, J.; Dimitrov, D.A.

    2009-01-01

    Samples with nominal composition MoSr 2 HoCu 2 O 8-δ were synthesized and their magnetic and superconducting (SC) properties were investigated. The obtained samples are Mo-deficient. It was established that the magnetic order is of a long-range type. The coincidence of the experimental value of the Curie constant and the theoretical one of MoSr 2 HoCu 2 O 8-δ shows that the observed magnetic properties of the samples are determined by the highly dominating phase Mo-1212. The two-step resistive SC transition, together with the absence of both diamagnetism and a peak in the specific heat between the two critical temperatures may be associated with the presence of a granular superconductivity. The effect of the Mo-deficiency on the magnetic and SC properties of MoSr 2 HoCu 2 O 8-δ was discussed

  8. Superconducting composites materials. Materiaux composites supraconducteurs

    Energy Technology Data Exchange (ETDEWEB)

    Kerjouan, P; Boterel, F; Lostec, J; Bertot, J P; Haussonne, J M [Centre National d' Etudes des Telecommunications (CNET), 22 - Lannion (FR)

    1991-11-01

    The new superconductor materials with a high critical current own a large importance as well in the electronic components or in the electrotechnical devices fields. The deposit of such materials with the thick films technology is to be more and more developed in the years to come. Therefore, we tried to realize such thick films screen printed on alumina, and composed mainly of the YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} material. We first realized a composite material glass/YBa{sub 2}Cu{sub 3}O{sub 7-{delta}}, by analogy with the classical screen-printed inks where the glass ensures the bonding with the substrate. We thus realized different materials by using some different classes of glass. These materials owned a superconducting transition close to the one of the pure YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} material. We made a slurry with the most significant composite materials and binders, and screen-printed them on an alumina substrate preliminary or not coated with a diffusion barrier layer. After firing, we studied the thick films adhesion, the alumina/glass/composite material interfaces, and their superconducting properties. 8 refs.; 14 figs.; 9 tabs.

  9. Composite superconducting wires produced by rapid coating in Bi-Sr-Ca-Cu-O metal oxide system

    International Nuclear Information System (INIS)

    Grozav, A.D.; Konopko, L.A.; Leoporda, N.I.

    1989-01-01

    Method for producing superconducting composite wires by dip coating of copper wires in metal-oxide BiSrCaCu 2 O x melt is developed. The thickness of the coating is regulated by the change of dip rate, melt viscosity and by the number of passages through the melt. Wire annealing at 700-800 deg C leads to the production of two phases, one of them being superconducting with T c =80K

  10. Superconductivity in CeCu/sub 2/Si/sub 2/: dependence of Tsub(c) on alloying and stoichiometry

    Energy Technology Data Exchange (ETDEWEB)

    Spille, H; Rauchschwalbe, U; Steglich, F [Technische Hochschule Darmstadt (Germany, F.R.). Inst. fuer Festkoerperphysik

    1938-01-01

    The authors have determined the transition temperatures of the alloy systems (Ce,M)Cu/sub 2/Si/sub 2/ with M = La, Y, Sc, Ce(Cu,T)/sub 2/Si/sub 2/ with T = Ag, Au, Mn, Ru, Rh, Pd and CeCu/sub 2/(Si,Ge)/sub 2/ as well as of CeCu/sub 2/Si/sub 2/ samples with varying stoichiometry. In each case, alloying is found to depress Tsub(c), the critical concentrations necessary to destroy superconductivity ranging between < 1 at.% and 10 at.%. Off-stoichiometry samples with a Cu- or Ce-deficiency of a few at.% are not superconducting, while samples prepared with a comparable excess of Cu or Ce show sharp transitions at Tsub(c) >approx. 600 mK. It is inferred that stoichiometric CeCu/sub 2/Si/sub 2/ contains substantial concentrations of Cu- and Ce-vacancies, which hinder superconductivity. First results on CeCu/sub 2/Si/sub 2/ single crystals, which exhibit bulk superconductivity, are also reported.

  11. Bi2(Sr, Ln)2CuOz (Ln = Nd, Sm) phases: stability, crystal growth and superconducting properties

    International Nuclear Information System (INIS)

    Faqir, H.; Kikuchi, M.; Syono, Y.; Mansori, M.; Satre, P.; Sebaoun, A.; Vacquier, G.

    2000-01-01

    Bi 2 (Sr,Ln) 2 CuO z (Ln = Nd, Sm) single crystals were successfully grown by a self-flux method from stoichiometric and (Bi, Cu)-rich melts. Thermal analysis and thermogravimetry were used to determine stability and the melting sequence of Bi 2 (Sr,Ln) 2 CuO z phases in air. As-grown crystals of the ideal Bi 2 (Sr,Ln) 2 CuO z phase, of dimensions 1x0.5x0.03 mm 3 , exhibit superconducting behaviour with critical temperature T c = 21 K for the Bi 1.9 Sr 1.6 Nd 0.6 CuO z crystal and Tc = 14 K for the Bi 1.8 Sr 1.6 Sm 0.6 CuO z crystal. The compositions of these crystals were homogeneous and close to the stoichiometric composition. We report on the growth of Bi 2 Sr 2-x Sm x CuO z single crystals of large dimensions 9x3x0.03 mm 3 using Bi 2 Sr 1.5 Sm 0.5 CuO z as precursor and Bi 2 CuO 4 as flux. (author)

  12. Studies on Bi-Sr-Ca-Cu-O glasses and superconducting glass ceramics

    International Nuclear Information System (INIS)

    Singh, R.; Zacharias, E.

    1991-01-01

    Bi-Sr-Ca-Cu-O glasses and glass ceramics of various compositions were synthesised. The glass transition temperature varies from 396 to 422degC depending on the glass composition. The bulk glass ceramics of 4334, 4336, 2223 and 4246 compositions show superconductivity when the corresponding glass samples were heat-treated in air at 820degC for 3, 9, 12 and 24 h respectively. X-ray diffraction studies show that the superconducting phase present in all these compositions is Bi 2 Sr 2 Ca 1 Cu 2 O x . The 4334 glass ceramic is almost a single-phase material with a preferred orientation such that the c axis is normal to the sample surface. The 2223 glass ceramic has a higher T c (onset) than the other three compositions indicating the presence of high T c phase (110 K) also. ESR studies on the glass samples indicate the existence of Cu 2+ . The effect of heat treatment on ESR shows that the intensity of resonance decreases with increase in heat-treatment duration. This effect is more pronounced for the 4334 and 2223 compositions. The advantages of synthesizing superconducting materials by glass route are discussed in view of practical applications. (author). 9 refs., 6 figs

  13. Raman scattering spectra of superconducting Bi2Sr2CaCu2O8 single crystals

    International Nuclear Information System (INIS)

    Kirillov, D.; Bozovic, I.; Geballe, T.H.; Kapitulnik, A.; Mitzi, D.B.

    1988-01-01

    Raman spectra of Bi 2 Sr 2 CaCu 2 O 8 single crystals with superconducting phase-transition temperature of 90 K have been studied. The spectra contained phonon lines and electronic continuum. Phonon energies and polarization selection rules were measured. A gap in the electronic continuum spectrum was observed in a superconducting state. Noticeable similarity between Raman spectra of Bi 2 Sr 2 CaCu 2 O 8 and YBa 2 Cu 3 O 7 was found

  14. Raman scattering spectra of superconducting Bi2Sr2CaCu2O8 single crystals

    Science.gov (United States)

    Kirillov, D.; Bozovic, I.; Geballe, T. H.; Kapitulnik, A.; Mitzi, D. B.

    1988-12-01

    Raman spectra of Bi2Sr2CaCu2O8 single crystals with superconducting phase-transition temperature of 90 K have been studied. The spectra contained phonon lines and electronic continuum. Phonon energies and polarization selection rules were measured. A gap in the electronic continuum spectrum was observed in a superconducting state. Noticeable similarity between Raman spectra of Bi2Sr2CaCu2O8 and YBa2Cu3O7 was found.

  15. Annealing effect on superconductivity of La2CuO4 single crystals

    International Nuclear Information System (INIS)

    Tanaka, I.; Takahashi, H.; Kojima, H.

    1992-01-01

    This paper reports that La 2 CuO 4 single crystals grown at an oxygen pressure of 0.2 MPa by TSFZ method are superconducting below 32 K, and show a semiconducting behavior in nonsuperconducting state. The single crystals of La 2 CuO 4 are changed from superconductors to semiconductors by annealing in argon, and are returned to superconductors by annealing at ambient pressure of oxygen. Therefore, superconductivity of the La 2 CuO 4 single crystals is due to excess oxygen

  16. Annealing effect on superconductivity of La2CuO4 single crystals

    International Nuclear Information System (INIS)

    Tanaka, L.; Takahashi, H.; Kojima, H.

    1992-01-01

    La 2 CuO 4 single crystals grown at an oxygen pressure of 0.2 MPa by TSFZ method are superconducting below 32 K, and show a semiconducting behavior in nonsuperconducting state. The single crystals of La 2 CuO 4 are changed from superconductors to semiconductors by annealing in argon, and are returned to superconductors by annealing at ambient pressure of oxygen. Therefore, superconductivity of the La 2 CuO 4 single crystals is due to excess oxygen. (orig.)

  17. Superconductivity in the U(Th)-Y-Ba-Cu-O systems

    International Nuclear Information System (INIS)

    Qin Qizong; He Adi; Jia Weijie; Ma Lidun; Cheng Huansheng; Hua Zhongyi

    1989-01-01

    High T c superconductivity has been observed both resistively and magnetically in the new U(Th)-Y-Ba-Cu-O systems. The zero resistance temperature of the three samples with nominal composition of U 0.1 Y 1.1 Ba 0.8 Cu O 4-z , U 0.15 Y 1.05 Ba 0.8 Cu 4-z and Th 0.3 Y 0.8 Ba 0.8 Cu 4-z is 87K, 79K and 74K, respectively. The result of ac magnetic susceptibility measurement implies that the superconducting state is realized in the U-doped samples below 90K. The stoichimetry of the U-Y-Ba-Cu O superconductors has the aid of Rutherford backscattering and nuclear reaction 16 O(d, p) 17 O. The analytical results show that the 'real composition' of somples may be different from that of the nomial composition. The X ray diffraction analysis of the U-Y-Ba-Cu-O system shows that none of the peaks can be fitted to the uranium oxides and the other raw materiale structure, and its pattern may be attributed to new multiple phases with structure different from the known singlephase superconducting oxides

  18. Superconductivity at 108 K in the simplest non-toxic double-layer cuprate of Ba2CaCu2O4(O,F)2

    International Nuclear Information System (INIS)

    Shirage, P M; Shivagan, D D; Crisan, A; Tanaka, Y; Kodama, Y; Kito, H; Iyo, A

    2008-01-01

    We report the superconductivity in apical fluorine system of Ba 2 CaCu 2 O 6-y F y : the second member of Ba 2 Ca n-1 Cu n O 2n (O,F) 2 homologous series. The polycrystalline samples of Ba 2 CaCu 2 O 6-y F y (F-0212) were synthesized under high pressure as a parameter of nominal fluorine content (y). Samples with y = 2.0 ∼ 1.2 elucidating the very sharp superconducting transitions in temperature dependence of susceptibility from under doping state to slightly over doping state via optimal doping state. A remarkable highest T c of 108 K has been achieved for the sample synthesized from a nominal composition of Ba 2 CaCu 2 O 4.4 F 1.6 . This T c is highest among the double CuO 2 layered system except for that including toxic elements such as Hg and T1. The T c has been systematically controlled from 57 K to 108 K by controlling the doping state, by designing the starting composition of fluorine and oxygen. The strong dependence of the 'a' and 'c' lattice constants were found on the nominal F content. We propose the Ba 2 CaCu 2 O 4 (O,F) 2 as a promising material for practical use due to its high T c and non-toxicity with a simple crystal structure

  19. Superconductivity in alkaline earth-substituted La2CuO/sub 4-y/

    International Nuclear Information System (INIS)

    Bednorz, J.G.; Mueller, K.A.; Takashige, M.

    1987-01-01

    La 2 CuO/sub 4-y/ ceramics containing a few percent of Ca 2+ , Sr 2+ , and Ba 2+ ions have been prepared. Resistivity and susceptibility measurements exhibit superconductive onsets (as in earlier Ba 2+ -containing samples). The onset temperature La 2 CuO/sub 4-y/ with Sr 2+ is higher and its superconductivity-induced diamagnetism larger than that found with Ba 2+ and Ca 2+ . This is proof that the electronic change resulting from alkaline earth-doping, rather than the size effect, is responsible for superconductivity. The ionic radius of Sr 2+ is close to that of La 3+ for which it presumably substitutes

  20. Synthesis, properties and space applications of chemically precipitated YBa/sub 2/Cu/sub 3/O/sub 7-x/ superconducting powders

    International Nuclear Information System (INIS)

    Trivedi, A.; Sundahl, R.C.; Olson, W.L.; Welsh, L.B.; Polak, A.J.; Dolgin, B.P.; Barder, T.J.; Karasek, K.R.; Parker, C.A.

    1988-01-01

    Processing properties of and chemically precipitated YBa/sub 2/Cu/sub 3/O/sub 7-x/ powders were evaluated. The authors have successfully developed a method for precipitating stoichiometric oxalate precursors for YBa/sub 2/Cu/sub 3/O/sub 7-x/ powders. Precipitation and calcination conditions were found to dramatically impact upon key powder characteristics such as particle size, morphology, phase composition and microscopic homogeneity. Four space applications were identified: a superconducting motor/generator, a magnetic bearing, an electromagnetic coupling, and a motor commutator. The primary device, a motor, would make use of superconducting windings and a superconducting flux bottle to improve efficiency

  1. Superconducting properties of La{sub 2-x}Ba{sub 2}CuO{sub 4} under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Schottenhamel, Wolf; Wolter-Giraud, Anja; Buechner, Bernd [Leibniz Institute for Solid State and Materials Research Dresden, IFW Dresden (Germany); Huecker, Markus [Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY (United States)

    2016-07-01

    La{sub 2-x}Ba{sub 2}CuO{sub 4} displays an anomalous doping dependence associated with a deep suppression of superconductivity at the hole concentration x=1/8. The so-called 1/8-anomaly is accompanied by a structural transition in the average rotational symmetry of the CuO{sub 2} planes coinciding with the onset of a charge stripe order. It has been claimed that static stripe order destroys the superconducting phase coherence, while dynamic stripe correlations may promote superconductivity. In order to achieve more information about the relationship between superconductivity, stripe order and crystal structure we performed magnetization measurements under pressure up to 3 GPa on the single crystalline La{sub 2-x}Ba{sub 2}CuO{sub 4} with 0.095 ≤ x ≤ 0.125. Moreover, we relate the magnetization data to pressure dependent X-Ray diffraction studies. This way, we show that the specific superconducting properties as function of pressure are clearly correlated to structural changes.

  2. Y-Ba-Cu-O superconducting film on oxidized silicon

    International Nuclear Information System (INIS)

    Gupta, R.P.; Khokle, W.S.; Dubey, R.C.; Singhal, S.; Nagpal, K.C.; Rao, G.S.T.; Jain, J.D.

    1988-01-01

    We report thick superconducting films of Y-Ba-Cu-O on oxidized silicon substrates. The critical temperatures for onset and zero resistance are 96 and 77 K, respectively. X-ray diffraction analysis predicts 1, 2, 3 composition and orthorhombic phase of the film

  3. Synthesis of high-temperature superconducting oxides and chemical alloying in Cu-O planes

    International Nuclear Information System (INIS)

    Tarascon, J.M.; Barboux, P.; Bagley, B.G.; Green, L.H.; Mckinnon, W.R.; Hull, G.W.

    1988-01-01

    Some methods for synthesis permitting to fabricate dense superconducting ceramics are considered. The Zole-Hell method is the most perspective one among them. Effect of oxygen content in a sample and copper substitution for nickel and zinc on structural, transition and superconducting properties of samples of the La-Sr-Cu-O(1) and Y-Ba-Cu-O(2) systems is studied. Copper substitution is established to suppress superconductivity in system 1 and to decrease T c in system 2, and this effect doesn't depend on the fact whether the substituting 3d-metal is magnetic (nickel) or diamagnetic (zinc). Detailed study of YBa 2 Cu 3 O 7-y properties as a function of oxygen content has shown that superconductivty in this composition can be suppressed as a result of oxygen removal and it can be reduced with its interoduction. The possibility to prepare nonalloyed La 2 CuO 4 in superconducting state as a result of plasma treatment comprises a scientific interest. 27 refs.; 5 figs.; 1 tab

  4. Study of microstructure and superconducting properties of Nb3Al-tapes, obtained by heat treatment of three-layer and multilayer composites Nb/AlCu

    International Nuclear Information System (INIS)

    Korzhov, Valeriy P.

    2012-01-01

    The structure and superconductivity of three- and multilayer composite tapes of Nb/AlCu after high- temperature heating at 1750-1850 0 C for 1-3 seconds were investigated. Three-layer composites of Nb/AlCu/Nb with thickness of 50 microns were obtained by applying a vacuum rolling at 400-450 0 C and subsequent rolling at room temperature. Multilayer lengthy composites of Nb/AlCu obtained by extrusion with subsequent flattening by rolling of complex blank, collected in a special way. The effect of copper on the structure and properties of three-layer tapes was investigated. Copper increased the critical current of the superconductor. The critical current density in multilayered Nb 3 Al-tape reaches the value 8.10 4 A/cm 2 in magnetic field 14 T. The critical bending radius of the tape is 7 mm. Key words: multilayer composite tape, extrusion, rolling, superconducting Nb 3 Al-tape, high- temperature heat treatment, critical current density

  5. Superconducting properties of powder-metallurgically produced Cu-Nb3Sn composite wires

    International Nuclear Information System (INIS)

    Schaper, W.; Wecker, J.; Heine, K.; Bormann, R.; Freyhardt, H.C.

    1988-01-01

    The critical current density of composite superconducting wires can be improved by ternary or quaternary additions. If these additions are incorporated into the A15 phase the upper critical field can be increased. An increase in this field, however, can only be realized if the additions do not strongly deteriorate the critical temperature. An enhanced upper critical field in connection with a favorable grain size of the A15 phase finally leads to improved critical current densities in the entire field range. With these parameters as guidelines, the effects of Ti, In, Ga, and Ge additions to the bronze and of Ta additions to the niobium on the superconducting properties of PM produced Cu-Nb 3 Sn wires were investigated

  6. Current-carrying capacity dependence of composite Bi2Sr2CaCu2O8 superconductors on the liquid coolant conditions

    International Nuclear Information System (INIS)

    Romanovskii, V R; Watanabe, K; Awaji, S; Nishijima, G

    2006-01-01

    The thermal runaway conditions of the composite Bi 2 Sr 2 CaCu 2 O 8 superconductor cooled by liquid helium or liquid hydrogen are compared. The study based on the static analysis of thermoelectric modes was made when the volume fraction of the superconductor in a composite was varied. Some specific trends underlying the onset of thermal runaway in superconducting composites cooled by liquid coolants are discussed. It is stated that the operating modes of superconducting composites may be characterized by stable states during which the current-carrying capacity of a superconductor is not effectively used even with a high amount of superconductor in the composite. These states are possible due to the corresponding temperature variation of the resistivities of the matrix and the superconductor in the high operating temperature range. They have to be considered in experiments when the critical current of a superconductor is determined or when the optimal stable operating modes of the current-carrying elements based on the Bi 2 Sr 2 CaCu 2 O 8 superconductor, which is cooled by liquid coolant, are defined

  7. Influence of Ni and Cu contamination on the superconducting properties of MgB2 filaments

    International Nuclear Information System (INIS)

    Jung, A; Schlachter, S I; Runtsch, B; Ringsdorf, B; Fillinger, H; Orschulko, H; Drechsler, A; Goldacker, W

    2010-01-01

    Technical MgB 2 wires usually have a sheath composite consisting of different metals. For the inner sheath with direct contact to the superconducting filament, chemically inert Nb may be used as a reaction barrier and thermal stabilization is provided by a highly conductive metal like Cu. A mechanical reinforcement can be achieved by the addition of stainless steel. In order to illuminate the influence of defects in the reaction barrier, monofilament in situ wires with direct contact between the MgB 2 filament and frequently applied reactive sheath metals like Cu, Ni or Monel are studied. Reactions of Mg and B with a Cu-containing sheath lead to Cu-based by-products penetrating the whole filament. Reactions with Ni-containing sheaths lead to Ni-based by-products which tend to remain at the filament-sheath interface. Cu and/or Ni contamination of the filament lowers the MgB 2 -forming temperature due to the eutectic reaction between Mg, Ni and Cu. Thus, for the samples heat-treated at low temperatures J C and (partly) T C are increased compared to stainless-steel-sheathed wires. At high heat treatment temperatures uncontaminated filaments lead to the highest J C values. From the point of view of broken reaction barriers in real wires, the contamination of the filament with Cu and/or Ni does not necessarily constrain the superconductivity; it may even improve the properties of the wire, depending on the desired application.

  8. Evidence for unconventional d-wave superconducting state in CeCu{sub 2}Si{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Vieyra, Hugo A.; Geibel, Christoph; Steglich, Frank; Oeschler, Niels [Max-Planck-Institute for Chemical Physics of Solids, Dresden 01187 (Germany); Parker, David [US Naval Research Laboratory, Washington, DC 20375 (United States); Jeevan, Hirale S. [I. Physik. Institut, Georg-August-Universitaet Goettingen, Goettingen 37077 (Germany)

    2010-07-01

    The heavy-fermion CeCu{sub 2}Si{sub 2} represents a prime system to study unconventional superconductivity in the vicinity of a magnetic instability. Within the homogeneity range of pure CeCu{sub 2}Si{sub 2} different ground states can be obtained. S-type crystals exhibit a superconducting transition at T{sub c}=0.6 K, whereas A/S-type show in addition antiferromagnetic order at T{sub N}=0.8 K. In recent years, the synthesis techniques have been optimized in order to obtain large high-quality single crystals with well defined ground state properties. This allows the systematic study of the superconducting order parameter and its variation at the border with magnetic order. In this work, we present angular dependent resistivity measurements on high-quality S- and A/S-type single-crystalline CeCu{sub 2}Si{sub 2} samples. The experimental results for the angular dependence of the upper critical field B{sub c2} as well as theoretical calculations taking into account effects like the strong Pauli paramagnetism, hint towards an unconventional d-wave symmetry of the order parameter in CeCu{sub 2}Si{sub 2}.

  9. Superconducting TlCa2Ba2Cu3O9 thick films

    International Nuclear Information System (INIS)

    1994-01-01

    GE Corporate Research and Development's (GE-CRD) program to develop the two-zone silver addition (TZSA) process for fabricating superconducting films of TlCa 2 Ba 2 Cu 3 O 9 has activities in the areas of (1) precursor preparation, (2) the thallium oxide vapor process, (3) the effects of post-synthesis annealing ambient and temperature on superconducting properties, (4) the influence of film stoichiometry and composition on superconducting properties, (5) microstructure and film growth mechanism, (6) the preparation of thicker films, (7) the fabrication of films on flexible substrates, and (8) process scale-up. As part of its effort under the ANL Pilot Center Agreement, GE-CRD has supplied to ANL a complete two-zone furnace, has provided consultation on its use and on the planning of experiments, has processed ANL samples in GE's furnaces to help define optimum process conditions, and has provided precursor and finished films as requested. These contributions are described more fully in the descriptions of the work performed at ANL presented elsewhere in this report. Under the Pilot Center Agreement work at GE-CRD has been directed toward the optimization of the TZSA process with emphasis on (A) process improvement, (B) effects of silver content on film properties, (C) the relationship between microstructure and J c , and (D) toward the assessment of the compatibility of silver substrates with the process chemistry

  10. Fabrication and characterizations of high-Tc superconducting ceramic/polymer 0--3 composites

    International Nuclear Information System (INIS)

    Du, J.; Unsworth, J.

    1994-01-01

    High-T c superconducting ceramic YBa 2 Cu 3 O 7-x /thermosetting plastic 0--3 composites were fabricated. The structure, physical property, magnetic susceptibility, levitation, and mechanical strength of the composites were accessed. The influence of filler content on these properties was also studied. Although the 0--3 composites lack an electrical superconducting path through materials, the intrinsic diamagnetic properties were preserved. The magnetic superconducting transition temperature was not degraded. The values of magnetic susceptibility and levitation force for the composites were basically proportional to the actual volume fraction of superconducting filler. These new composite materials are most suitable for the applications in levitating vehicles and mechanical bearings

  11. Critical current density in (YBa2Cu3O7-δ)1-x-(PrBa2Cu3O7-δ)x melt-textured composites

    Science.gov (United States)

    Opata, Yuri Aparecido; Monteiro, João Frederico Haas Leandro; Jurelo, Alcione Roberto; Siqueira, Ezequiel Costa

    2018-06-01

    Melt textured (YBa2Cu3O7-δ)1-x-(PrBa2Cu3O7-δ)x composites (x = 0.00 and x = 0.05) were grown using the top seeding method. The effect of the PrBa2Cu3O7-δ phase on the growth process and the modification of the microstructure as well as on the physical properties was analyzed. X-ray analyses indicated that both pure and Pr-doped samples present an orthorhombic superconducting phase. From resistivity measurements for YBa2Cu3O7-δ and (YBa2Cu3O7-δ)0.95-(PrBa2Cu3O7-δ)0.05 samples, the Tcab did not change and was around 90.5 K. However, from magnetic measurements, the superconductivity was observed in critical temperatures TC = 92.9 K and 92.4 K for YBa2Cu3O7-δ and (YBa2Cu3O7-δ)0.95-(PrBa2Cu3O7-δ)0.05 samples, respectively. The YBa2Cu3O7-δ sample showed higher critical current densities than those shown by the (YBa2Cu3O7-δ)0.95-(PrBa2Cu3O7-δ)0.05 sample, with values of JC = 5.85 × 105 A/cm2 and 4.72 × 105 A/cm2, respectively. This paper also discusses the importance of Pr substitution on nano- and micro-meter scales to enhance JC(H).

  12. On the superconductivity of doped La2 Cu O4

    International Nuclear Information System (INIS)

    Vasiliu-Doloc, L.; Apostol, M.

    1992-01-01

    The superconducting critical temperature and the oxygen isotope shift are analyzed as functions of the doping level x for both La 2-x Sr x Cu O 4 and La 2-x Ba x Cu O 4 within the framework of the theory of high-temperature superconductivity that assumes a coupling between the charge carriers and the oxygen-displacive modes of the lattice. It is shown that an energy gap in the electronic structure at q = ± π/4 (1,±1,0) would markedly depress the critical temperature around x = 1/8 , as for low-temperature tetragonal phase of La 2-x Ba x Cu O 4 , even in the absence of the Fermi surface nesting. On the other hand, a slight reduction in the coupling strength of the model, which may arise in the narrow range around x = 0.12, implies an increase in the oxygen-mass exponent of the lattice frequencies, a decrease in the isotope shift of the critical temperature and a depression of the critical temperature as observed experimentally for both compounds. (Author)

  13. Reinforced fluropolymer nanocomposites with high-temperature superconducting Bi2Sr2CaCu2Oy

    Science.gov (United States)

    Jayasree, T. K.

    2014-10-01

    Bismuth Strontium Calcium Copper Oxide (Bi2Sr2CaCu2Oy)/Polyvinylidene fluoride (PVDF) nanocomposite was prepared and their thermal properties were analyzed. The composite consists of the polyvinylidene fluoride (PVDF) as an insulating polymer matrix, and homogenously distributed Bismuth strontium calcium copperoxide (2212) nanoparticles. SEM data shows flaky grains of the superconductor coated and linked by polymer. Differential scanning calorimetry (DSC) results indicated that the melting point was not affected significantly by the addition of BSCCO. However, the addition of superconducting ceramic resulted in an extra melting peak at a lower temperature (145°C). Thermogravimetric analysis of the samples shows that the onset decomposition temperature of the PVDF matrix was decreased by the addition of SC filler.

  14. Unusual behavior of nuclear relaxation in CeCu2Si2 'possible evidence for triplet superconductivity'

    International Nuclear Information System (INIS)

    Kitaoka, Y.; Asayama, K.; Ueda, K.; Kohara, T.

    1984-01-01

    Nuclear relaxation of 63 Cu in the superconducting state of the Kondo-lattice system CeCu 2 Si 2 has been studied with the use of the 63 Cu nuclear quadrupole resonance technique under zero field and down to 65mK. The nuclear spin-lattice relaxation rate (1/T 1 ) decreases drastically just below Tsub(c)=0.67 K down to 0.5Tsub(c) without the apparent enhanced behavior and then is found to be almost temperature independent below 0.3Tsub(c). These results suggest that the superconductivity in CeCu 2 Si 2 is not in the usual BCS regime. The analysis based upon the existing triplet pairing model with an anisotropic energy gap describes well the behavior from Tsub(c) down to 0.5Tsub(c), while the temperature independence below 0.3Tsub(c) remains unexplained. (author)

  15. Characterization of transparent superconductivity Fe-doped CuCrO{sub 2} delafossite oxide

    Energy Technology Data Exchange (ETDEWEB)

    Taddee, Chutirat [Materials Science and Nanotechnology Program, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Kamwanna, Teerasak, E-mail: teekam@kku.ac.th [Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Nanotec-KKU Center of Excellence on Advanced Nanomaterials for Energy Production and Storage, Khon Kaen 40002 (Thailand); Integrated Nanotechnology Research Center (INRC), Khon Kaen University, Khon Kaen 40002 (Thailand); Amornkitbamrung, Vittaya [Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Nanotec-KKU Center of Excellence on Advanced Nanomaterials for Energy Production and Storage, Khon Kaen 40002 (Thailand); Integrated Nanotechnology Research Center (INRC), Khon Kaen University, Khon Kaen 40002 (Thailand)

    2016-09-01

    Graphical abstract: - Highlights: • Effect of Fe substitution on the physical properties in CuCrO{sub 2} is studied. • The substitution of Cr{sup 3+} by Fe{sup 3+} produces a mixed effect on the magnetic properties. • CuCr{sub 1−x}Fe{sub x}O{sub 2} delafossite oxides show transparent superconductivity. - Abstract: Delafossite CuCr{sub 1−x}Fe{sub x}O{sub 2} (0.0 ≤ x ≤ 0.15) semiconductors were synthesized using a self-combustion urea nitrate process. The effects of Fe concentration on its microstructural, optical, magnetic, and electrical properties were investigated. X-ray diffraction (XRD) analysis results revealed the delafossite structure in all the samples. The lattice spacing of CuCr{sub 1−x}Fe{sub x}O{sub 2} slightly increased with increasing substitution of Fe at the Cr sites. The optical properties measured at room temperature using UV–visible spectroscopy showed a weak absorbability in the visible light and near IR regions. The corresponding direct optical band gap was about 3.61 eV, exhibiting transparency in the visible region. The magnetic hysteresis loop measurements showed that the Fe-doped CuCrO{sub 2} samples exhibited ferromagnetic behavior at room temperature. This indicated that the substitution of Fe{sup 3+} for Cr{sup 3+} produced a mixed effect on the magnetic properties of CuCrO{sub 2} delafossite oxide. The temperature dependent resistivity measurements clearly revealed the presence of superconductivity in the CuCr{sub 1−x}Fe{sub x}O{sub 2} with a superconducting transition up to 118 K.

  16. Superconductivity in La1.56Sr0.44CuO4/La2CuO4 Superlattices

    International Nuclear Information System (INIS)

    Bozovic, I.; Suter, A.; Morenzoni, E.; Prokscha, T.; Luetkens, H.; Wojek, B.M.; Logvenov, G.; Gozar, A.

    2011-01-01

    Superlattices of the repeated structure La 1.56 Sr 0.44 CuO 4 /La 2 CuO 4 (LSCO-LCO), where none of the constituents is superconducting, show a superconducting transition of T(prime) c 25 K. In order to elucidate the nature of the superconducting state we have performed a low-energy μSR study. By applying a magnetic field parallel (Meissner state) and perpendicular (vortex state) to the film planes, we could show that superconductivity is sheet like, resulting in a very anisotropic superconducting state. This result is consistent with a simple charge-transfer model, which takes into account the layered structure and the difference in the chemical potential between LCO and LSCO, as well as Sr interdiffusion. Using a pancake-vortex model we could estimate a strict upper limit of the London penetration depth to 380 nm in these superlattices. The temperature dependence of the muon depolarization rate in field cooling experiments is very similar to what is observed in intercalated BSCCO and suggests that vortex-vortex interaction is dominated by electromagnetic coupling but negligible Josephson interaction.

  17. Experimental Observation of Non-'S-Wave' Superconducting Behavior in Bulk Superconducting Tunneling Junctions of Yba2Cu3O7-δ

    Directory of Open Access Journals (Sweden)

    Leandro Jose Guerra

    1998-06-01

    Full Text Available Evidence of non-s-wave superconductivity from normal tunneling experiments in bulk tunneling junctions of YBa2Cu3O7-δ is presented. The I-V and dI/dV characteristics of bulk superconducting tunneling junctions of YBa2Cu3O7-δ have been measured at 77.0K and clear deviation from s-wave superconducting behavior has been observed. The result agrees with d-wave symmetry, and interpreting the data in this way, the magnitude of the superconducting energy gap, 2Δ, is found to be (0.038 ± 0.002 eV. Comparing this energy gap with Tc (2Δ/kB Tc = 5.735, indicates that these high-Tc superconductors are strongly correlated materials, which in contrast with BCS-superconductors are believed to be weakly correlated.

  18. Superconducting thin films of YBa2Cu3O7-x

    International Nuclear Information System (INIS)

    Hudner, J.

    1993-01-01

    Thin films of the high temperature superconductor YBa 2 Cu 3 O 7-x (YBCO) are of significance in fundamental studies of oxide superconductors and for prospected electronic applications based on superconductors operating at liquid nitrogen temperatures (T= 77 K). Synthesis of YBCO thin films is complex and a large part of this thesis has been devoted to the elaboration of various techniques in forming YBCO thin films. A general observation was that synthesis of YBCO films exhibiting high zero-resistivity temperatures temperatures (T c ) ≥ 88 K and elevated critical current densities (J c ) ≥ 10 6 A/cm 2 at 77 K was possible under widely different conditions of film growth. For the BaF 2 -based method, various substrate materials were investigated. Among perovskite related substrates with low losses in the high frequency regime, LaA10 3 was found to yield YBCO films exhibiting the highest quality electrical properties. A study of YBCO film interaction with sapphire substrates was performed. It was suggested that the YBCO film on sapphire consists of weakly coupled superconducting grains. Compositional effects of Y, BA and Cu for MOCVD-YBCO films were examined with respect to morphology, structure, resistivity, as susceptibility and J c (T). High T c :s and J c :s were observed for an anomalous large compositional range of Cu in off-compositional YBCO films. This was shown to be related to the formation of Cu-rich precipitates embedded within a c-Axis oriented stoichiometric YBCO film matrix. Thermal critical current behavior at zero field in thin films of YBCO fabricated by various methods has been studied by three techniques: transport measurements on patterned microbridges, dc magnetization hysteresis loops using the Bean model and non-linear ac susceptibility analysis. Absolute critical current values obtained form the two former techniques when measured on the same YBCO film were observed to differ about a factor of two. The feasibility of non-linear ac

  19. Superconductivity of k-(BEDT-TTF) sub 2 Cu[N(CN) sub 2]I under pressure

    CERN Document Server

    Kushch, N D; Yagubskii, E B; Ishiguro, T

    2001-01-01

    The insulating state of k-(BEDT-TTF) sub 2 Cu[N(CN) sub 2]I salt appearing at ambient pressure at low temperatures is suppressed by hydrostatic pressure. The resistive measurement showed that in high-quality crystals the emerging metallic state reveals superconductivity. The superconducting state with the transition temperature of about 8 K is stable at pressures higher than 0.1 GPa

  20. Superconducting properties and microstructure of YBa2Cu3O7-δ/PrBa2Cu3O7-δ superlattices

    International Nuclear Information System (INIS)

    Lowndes, D.H.; Norton, D.P.; Zheng, X.Y.; Zhu, Shen

    1991-10-01

    Epitaxial YBa 2 Cu 3 O 7-δ /PrBa 2 Cu 3 O 7-δ (YBCO/PBCO) superlattices are tools for systematic, fundamental studies of high-temperature superconductivity. The variation of T c in YBCO/PBCO superlattices can be understood as arising from changes in the interlayer phase coupling between YBCO layers that are highly two-dimensional when they are very thin (∼1--2 c-axis unit cells) and completely isolated from each other. Single-cell-thick YBCO layers, containing isolated pairs of CuO 2 planes, are found to be superconducting at T c ∼ 20 K, in a PBCO matrix. The resistance in the superconducting transition region scales with temperature as expected for the (flux flow) resistance produced by thermally generated 2D vortices, or for a 2D array of superconducting weak links. Relative to both thin-film and single-crystal HTSc specimens, the thin superconducting layers in YBCO/PBCO superlattices exhibit a greatly expanded temperature range over which characteristic 2D dissipation can be observed, as a consequence of the enhanced anisotropy and reduced dimensionality of the YBCO layers. Scanning tunneling microscope studies reveal that YBCO films and YBCO/PBCO superlattices grow unit cell-by-unit cell by a terraced-island growth mechanism. On miscut, near-(001) substrates the terraces are epitaxially aligned with the substrate crystal lattice and spiral growth structures (screw dislocation-mediated growth) are not seen. These observations explain the steps or ''kinks'' that are seen in cross-section Z-contrast TEM images of YBCO/PBCO superlattices. The kinks may correspond physically to regions where the supercurrent must tunnel along the c- axis, and thus may be weak-link barriers. 31 refs., 7 figs

  1. Solidification of Bi2Sr2Ca1Cu2Oy and Bi2Sr1.75Ca0.25CuOy

    International Nuclear Information System (INIS)

    Holesinger, T.G.; Miller, D.J.; Viswanathan, H.K.; Chumbley, L.S.

    1993-01-01

    The solidification processes for the compositions Bi 2 Sr 2 CaCu 2 O y (2212) and Bi 2 Sr 1.75 Ca 0.25 CuO y (2201) were determined as a function of oxygen partial pressure. During solidification in argon, the superconducting phases were generally not observed to form for either composition. In both cases, the solidus is lowered to approximately 750 degree C. Solidification of Bi 2 Sr 1.75 Ca 0.25 CuO y in Ar resulted in a divorced eutectic structure of Bi 2 Sr 2-x Ca x O y (22x) and Cu 2 O while solidification of Bi 2 Sr 2 CaCu 2 O y in Ar resulted in a divorced eutectic structure of Bi 2 Sr 3-x Ca x O y (23x) and Cu 2 O. Solidification of Bi 2 Sr 1.75 Ca 0.25 CuO y in O 2 resulted in large grains of 2201 interspersed with small regions containing the eutectic structure of 22x and CuO/Cu 2 O. Solidification of Bi 2 Sr 2 CaCu 2 O y in partial pressures of 1%, 20%, and 100% oxygen resulted in multiphase samples consisting of 2212, 2201, some alkaline-earth cuprates, and both divorced eutectic structures found during solidification in Ar. For both compositions, these latter structures can be attributed to oxygen deficiencies present in the melt regardless of the overpressure of oxygen. These eutectic structures are unstable and convert into the superconducting phases during subsequent anneals in oxygen. The formation process of the 2212 phase during solidification from the melt was determined to proceed through an intermediate state involving the 2201 phase

  2. Superconducting properties of modified YBa2Cu3O7-δ ceramics

    International Nuclear Information System (INIS)

    Kaleva, G.M.; Politova, E.D.; Kudinova, M.V.; Prutchenko, S.G.; Venevtsev, Yu.N.

    1993-01-01

    In connection with the promising practical applications of high temperature superconductors (HTSC) particular attention has been paid to studying the influence of dopant elements on the properties of HTSC ceramics. According to earlier work, replacement of the yttrium in the compound YBa 2 Cu 3 O 7-8 (1-2-3) by rare earth elements, excluding Ce, Pr, Tb, and Pm, has almost no influence on the superconducting transition temperature (T c ∼ 90 K). Of the alkaline metals, only Sr will displace Ba over a wide range of concentrations (up to 50 at %), but in this case T c is reduced to 86 K. The strongest influence on the superconducting properties results from replacement of copper by 3d transition metals. Introduction of 10 at.% Zn, Co, Fe, Ni, Ti, Mn, or Cr in place of the copper leads to a drastic lowering of T c . At the same time it has been reported that microadditions of individual elements (replacement of Cu by Pd, Ti, and Fe, at a level of 0.1-0.5 at.%,) may elevate conducting phase and improve the contacts between grains, so that, in particular, there is an increase in the critical current density. In view of the possible positive influence which introduction of small quantities of individual elements may have 1-2-3 compounds, in the present work, the authors have studied the action of dopant additions, including complex ones, on this phase, with the goal of improving its superconducting properties. Structural and superconducting properties were studied for samples of YBa 2 (Cu 1- x M x ) 3 O 7-δ , with M = Sb (I), Mn (II), and Sb 1/2 Mn 1/2 (III), and (1-x)Y 1/3 Ba 2/3 CuO 3-δ ·xSr(Sb 1/2 Mn 1/2 )O 3 (IV), using x-ray diffraction, electron microscopy, Mossbauer spectroscopy, as well as changes in the temperature dependence of the resistivity ρ(T)

  3. Raman scattering diagnostics of YBa2Cu3Ox high temperature superconducting films

    International Nuclear Information System (INIS)

    Bagratashvili, V.N.; Burimov, V.N.; Denisov, V.N.

    1988-01-01

    Superconducting YBa 2 Cu 3 O x films produced by laser spraying of ceramic material are investigated by light Raman scattering (LCS). It is shown that using LCS it is possible to obtain data on phase composition and prevailing film orientation and to find optical conditions for their synthesis. The LCS method feature consists in a possibility of non-destructive remote control and high space resolution (several microns). Experimental results have shown that the best parameters (the highest T c and the narrowest Δ T c interval) are typical of films with prevailing orientation of 0 xy crystallite plane parallel to the surface

  4. Investigation of Pb doping on electrical, structural and superconducting properties of YBa2-xPbxCu3O7-δ superconductors

    Science.gov (United States)

    Ezzatpour, S.; Sharifzadegan, L.; Sarvari, F.; Sedghi, H.

    2018-06-01

    In this study the high temperature superconductor YBa2-xPbxCu3O7-δ with doping x = ,0.05,0.1,0.15 were prepared by the standard solid-state reaction method. The effect of Pb substitution on Ba site of YBCO superconducting system, structural, electrical and superconducting properties of Y-based superconductor has been investigated. The measurements of dc resisitivity were performed on all samples with four-probe method using low frequency/lowAC current (4 mA) . The superconducting temperature, Tc, were determined from the resistivity versus temperature (R-T) curves. Results show that Pb doping reduced the cirtical temperature(Tc) and superconductivity properties of our samples. The maximum and the minimum Tc were observed for the samples with x = 0.15 and x = 0.1 respectively. The structure and phase purity of samples were examined by the X-ray powder diffraction technique (XRD) performed by means of D8 Advance Bruker diffractometer with Cu kα radiation. The grain morphology of surface of the samples was analyzed by sacanning electron microscopy (SEM). XRD patterns of polycrystalline materials of composition YBa2-xPbxCu3O7-δ revealed that all prepared samples are orthorhombic. All of the peaks of YBCO and YBa2-xPbxCu3O7-δ have been used for the estimation of volume fractions of the phases and ignored the void peaks.

  5. Effect of CuF2 on the Synthesis and Superconducting Properties of (Bi,Pb)2Sr2Ca2Cu3O10 Bulk Ceramic Samples

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Andersen, Niels Hessel

    2013-01-01

    precursors. In both cases, CuF2 resulted in a clear lowering of the reaction temperature. The superconducting and secondary phase grains are larger in the CuF2 doped samples but the critical transition temperature and the lattice parameters of the high T c phase are not affected. EDS analysis shows...

  6. The Influence of CuFe2O4 Nanoparticles on Superconductivity of MgB2

    Science.gov (United States)

    Novosel, Nikolina; Pajić, Damir; Skoko, Željko; Mustapić, Mislav; Babić, Emil; Zadro, Krešo; Horvat, Joseph

    The influence of CuFe2O4 nanoparticle doping on superconducting properties of Fe-sheated MgB2 wires has been studied. The wires containing 0, 3 and 7.5 wt.% of monodisperse superparamagnetic nanoparticles (˜7 nm) were sintered at 650°C or 750°C for 1 hour in the pure argon atmosphere. X-ray diffraction patterns of doped samples showed very small maxima corresponding to iron boride and an increase in the fraction of MgO phase indicating some interaction of nanoparticles with Mg and B. Both magnetic and transport measurements (performed in the temperature range 2-42 K and magnetic field up to 16 T) showed strong deterioration of the superconducting properties upon doping with CuFe2O4. The transition temperatures, Tc, of doped samples decreased for about 1.4 K per wt.% of CuFe2O4. Also, the irreversibility fields Birr(T) decreased progressively with increasing doping. Accordingly, also the suppression of Jc with magnetic field became stronger. The observed strong deterioration of superconducting properties of MgB2 wires is at variance with reported enhancement of critical currents at higher temperatures (determined from magnetization) in bulk MgB2 samples doped with Fe3O4 nanoparticles. The probable reason for this discrepancy is briefly discussed

  7. Critical current density in (YBa2Cu3O7−δ)1−x–(PrBa2Cu3O7−δ)x melt-textured composites  

    DEFF Research Database (Denmark)

    Opata, Yuri Aparecido; Monteiro, João Frederico Haas Leandro; Jurelo, Alcione Roberto

    2018-01-01

    Melt textured (YBa2Cu3O7−δ)1−x–(PrBa2Cu3O7−δ)x composites (x = 0.00 and x = 0.05) were grown using the top seeding method. The effect of the PrBa2Cu3O7−δ phase on the growth process and the modification of the microstructure as well as on the physical properties was analyzed. X-ray analyses...... indicated that both pure and Pr-doped samples present an orthorhombic superconducting phase. From resistivity measurements for YBa2Cu3O7−δ and (YBa2Cu3O7−δ)0.95–(PrBa2Cu3O7−δ)0.05 samples, the Tcab did not change and was around 90.5 K. However, from magnetic measurements, the superconductivity was observed...... in critical temperatures TC = 92.9 K and 92.4 K for YBa2Cu3O7−δ and (YBa2Cu3O7−δ)0.95–(PrBa2Cu3O7−δ)0.05 samples, respectively. The YBa2Cu3O7−δ sample showed higher critical current densities than those shown by the (YBa2Cu3O7−δ)0.95–(PrBa2Cu3O7−δ)0.05 sample, with values of JC = 5.85 × 105 A/cm2 and 4...

  8. Processing of La/sub 1.8/Sr/sub 0.2/CuO4 and YBa2Cu3O7 superconducting thin films by dual-ion-beam sputtering

    International Nuclear Information System (INIS)

    Madakson, P.; Cuomo, J.J.; Yee, D.S.; Roy, R.A.; Scilla, G.

    1988-01-01

    High quality La/sub 1.8/Sr/sub 0.2/CuO 4 and YBa 2 Cu 3 O 7 superconducting thin films, with zero resistance at 88 K, have been made by dual-ion-beam sputtering of metal and oxide targets at elevated temperatures. The films are about 1.0 μm thick and are single phase after annealing. The substrates investigated are Nd-YAP, MgO, SrF 2 , Si, CaF 2 , ZrO 2 -9% Y 2 O 3 , BaF 2 , Al 2 O 3 , and SrTiO 3 . Characterization of the films was carried out using Rutherford backscattering spectroscopy, resistivity measurements, transmission electron microscopy, x-ray diffraction, and secondary ion mass spectroscopy. Substrate/film interaction was observed in every case. This generally involves diffusion of the substrate into the film, which is accompanied by, for example, the replacement of Ba by Sr in the YBa 2 Cu 2 O 7 structure, in the case of SrTiO 3 substrate. The best substrates were those that did not significantly diffuse into the film and which did not react chemically with the film. In general, the superconducting transition temperature is found to depend on substrate temperature and ion beam energy, film composition, annealing conditions, and the nature and the magnitude of the substrate/film interaction

  9. The growth of large-area superconducting YBa2Cu3O7-x thin films by pulsed laser ablation

    International Nuclear Information System (INIS)

    Lai, H.C.; Chang, C.M.; Lin, R.J.; Liu, R.S.

    1996-01-01

    In-situ growth of 2-in. diameter superconducting YBa 2 Cu 3 O 7-x (YBCO) thin films using an excimer KrF pulsed laser has been studied. Films with critical transition temperature (T c,0 ) of 89±1 K and critical current density (J c,77K ) in excess of 1 x 10 6 A cm -2 have been prepared routinely. Uniformity in film thickness of below ±15% and film composition of ±5% have been measured. The effects of gas nozzle geometry and target evolution during ablation on the superconducting properties and surface morphology of YBCO thin films have also been investigated. (orig.)

  10. Development of microstructure and superconductivity of silver-clad Bi(2223) composite tapes in the process of heat treatment

    International Nuclear Information System (INIS)

    Guo, Y.C.; Liu, H.K.; Dou, S.X.

    1994-01-01

    A systematic study on the development of phase composition, microstructure and superconducting properties (critical temperature Tc and critical current density J c ) in silver-clad (Bi,Pb) 2 Sr 2 Ca 2 Cu 3 O 10 composite tapes during the process of heat treatment has been conducted using X-ray diffraction, scanning electron microscopy and electrical measurements. The correlation between the tape's high Tc phase purity, microstructure and superconducting properties at different heat treatment stages has been carefully analysed and explained. The results indicate that pure high Tc phase, high degree of grain alignment, high mass density and good connection between grains are all essential for superconducting tapes to carry a large current. With the optimized process parameters, a critical current density J c up to 32665 A cm -2 (corresponding critical current, 42.3 A) at 77 K and self-magnetic field for silver-clad (Bi,Pb) 2 Sr 2 Ca 2 Cu 3 O 10 superconducting composite tapes has been achieved. (orig.)

  11. Method of forming a ceramic superconducting composite wire using a molten pool

    International Nuclear Information System (INIS)

    Geballe, T.H.; Feigelson, R.S.; Gazit, D.

    1991-01-01

    This paper describes a method for making a flexible superconductive composite wire. It comprises: drawing a wire of noble metal through a molten material, formed by melting a solid formed by pressing powdered Bi 2 O 3 , CaCO 3 SrCO 3 and CuO in a ratio of components necessary for forming a Bi-Sr-Ca-Cu-O superconductor, into the solid and sintering at a temperature in the range of 750 degrees - 800 degrees C. for 10-20 hours, whereby the wire is coated by the molten material; and cooling the coated wire to solidify the molten material to form the superconductive flexible composite wire without need of further annealing

  12. Competing charge, spin, and superconducting orders in underdoped YBa2Cu3Oy

    DEFF Research Database (Denmark)

    Hücker, M.; Christensen, Niels Bech; Holmes, A. T.

    2014-01-01

    order decreases with underdoping to TCDW~90 K in YBa2Cu3O6.44. Together with a weakened order parameter this suggests a competition between CDW and SDW orders. In addition, the CDW order in YBa2Cu3O6.44 shows the same type of competition with superconductivity as a function of temperature and magnetic...

  13. Disorder and fluctuations in superconducting YBa2Cu3O6.9 films

    International Nuclear Information System (INIS)

    Gauzzi, A.

    1993-01-01

    We have developed the technique of ion-beam sputtering to grow thin (∼ 100 nm) superconducting YBa 2 Cu 3 O 6.9 (YBCO) films. We demonstrate that this technique is suitable for the in-situ deposition at low temperatures ( o C) of uniform films over large areas (≤30 cm 2 ). We found that preferential sputtering effects disappear if low-power ions-beams are used, thus enabling the control of the 1:2:3 composition by using a single stoichiometric target. We have found that the disorder in the crystal, introduced by too high or too low growth temperatures, affects strikingly both, the superconducting and the transport properties of the films. We report evidence that disorder on the atomic scale plays a role equivalent to oxygen doping. The similarity observed between the effects of crystal disorder in our films and the effects of oxygen depletion or Co-doping reported in the literature suggests that the disorder affects mainly the CuO chains. This implies that the local order of the chains controls not only the superconducting properties, as already established in the literature, but also the transport of the carriers in the normal state. Finally, we have investigated the local character of the superconducting state of YBCO by studying the paraconductivity in our films. We have found no indication of critical fluctuations at temperatures ≥5 mK above the zero-resistance critical temperature. Our analysis indicates that the spectrum of mean-field fluctuations is dominated by short-wavelength components and is affected by disorder. As a consequence, the temperature dependence of the critical exponents becomes complex and deviates from the universal predictions of conventional theories. We have explained quantitatively our experimental data and clarified the controversy existing in the literature by using a three-dimensional cut-off approach applied to the Lorentzian spectrum of the Ginzburg-Landau theory. (author) figs., tabs., refs

  14. Superconducting Bi-Sr-Ca-Cu-O thin films from metallo-organic complexes

    International Nuclear Information System (INIS)

    Gruber, H.; Krautz, E.; Fritzer, H.P.; Popitsch, A.

    1991-01-01

    Thin films in the Bi-Sr-Ca-Cu-O system are produced by decomposition of organic precursor compounds containing different metallo-organic complexes. The superconducting phase identified is Bi 2 Sr 2 CaCu 2 O 8+x on (100)-MgO single crystal substrates, polycrystalline Au- and Ag-ribbons and Bi 2 Sr 2 Ca 2 Cu 3 O 10+x on Ag-ribbons. For the 2212-phase a zero resistance temperature of 79 K is found. The 2223-samples on Ag-ribbons show a broad transition at 110 K with a zero resistance at 85 K. SEM and EDX are used for the detection of the microstructure and composition of the prepared films. (orig.)

  15. Heteroepitaxial growth of strained multilayer superconducting thin films of Nd1.83Ce0.17CuOx/YBa2Cu3O7-δ

    International Nuclear Information System (INIS)

    Gupta, A.; Gross, R.; Olsson, E.; Segmueller, A.; Koren, G.; Tsuei, C.C.

    1990-01-01

    Heteroepitaxial growth of strained multilayer thin films of YBa 2 Cu 3 O 7-δ /Nd 1.83 Ce 0.17 CuO x by pulsed-laser deposition is reported. The coherency strain results in biaxial compression of the tetragonal Nd 1.83 Ce 0.17 CuO x layers, whereas the biaxial tension in the YBa 2 Cu 3 O 7-δ layers removes the orthorhombic distortion and makes the unit cell isotropic in the basal plane (a=b). Depending on their oxygen content, either the YBa 2 Cu 3 O 7-δ or the Nd 1.83 Ce 0.17 CuO x layers are superconducting in these multilayers. The strain-induced structural modification has a significant influence on the superconducting transition temperature of the YBa 2 Cu 3 O 7-δ layers

  16. Stoichiometry and superconductive properties of YBaCuO films deposited by spray pyrolysis

    International Nuclear Information System (INIS)

    Conde-Gallardo, A.; Falcony, C.; Ortiz, A.

    1994-01-01

    The dependence of the stoichiometry and the superconducting characteristics of YBaCuO films deposited by spray pyrolysis on the spraying solution composition and the deposition conditions is reported. It has been found that a proper optimization of the starting materials concentration in the spraying solution results in superconducting films with zero resistance temperature of 91 K and a transition to superconducting state within a 3 K range. X-ray diffraction and resistance vs temperature measurements have been used to monitor the crystal composition and the conductive characteristics of the films as a function of the spraying solution composition and the deposition parameters

  17. Comparison of the High-Frequency Magnetic Fluctuations in Insulating and Superconducting La2-xSrxCuO4

    DEFF Research Database (Denmark)

    Hayden, S.M.; Aeppli, G.; Mook, H.A.

    1996-01-01

    Inelastic neutron scattering performed at a spallation source is used to make absolute measurements of the dynamic susceptibility of insulating La2CuO4 and superconducting La1.86Sr0.14CuO4 over the energy range 15 less than or equal to (h) over bar omega less than or equal to 350 meV. The effect...... of Sr doping on the magnetic excitations is to cause a large broadening in the wave vector and a substantial change in the spectrum of the local spin fluctuations. Comparison of the two compositions reveals a new energy scale (h) over bar Gamma = 22 +/- 5 meV in La1.86Sr0.14CuO4....

  18. Sequential Ar-O2 sputtering of Y2O3, BaF2, and CuO targets for preparation of Y-Ba-Cu-O superconducting films without wet-O2 annealing

    International Nuclear Information System (INIS)

    Bhushan, M.; Strauss, A.J.; Finn, M.C.

    1989-01-01

    Superconducting Y-Ba-Cu-O (YBCO) films have been prepared by ex situ O 2 annealing of multilayer films deposited on yttria-stabilized zirconia substrates by sequential rf diode sputtering of Y 2 O 3 , BaF 2 , and CuO targets, all of which are chemically stable. If sputtering is performed in an Ar ambient, the as-deposited films contain sufficient F to require its removal by annealing in wet O 2 at about 800 degree C or above before the superconducting YBCO phase can be formed by annealing in dry O 2 . However, sputtering in an Ar-O 2 ambient greatly reduces the F content, making it possible to obtain the superconducting phase by annealing in dry O 2 only. If the ambient contains about 20% O 2 , films with T c (R=0)>85 K can be prepared without wet-O 2 annealing. The Ar-O 2 process therefore has the potential for in situ preparation of superconducting YBCO films

  19. Direct observation of competition between superconductivity and charge density wave order in YBa2Cu3O6.67

    DEFF Research Database (Denmark)

    Chang, J.; Blackburn, E.; Holmes, A. T.

    2012-01-01

    Superconductivity often emerges in the proximity of, or in competition with, symmetry-breaking ground states such as antiferromagnetism or charge density waves (CDW). A number of materials in the cuprate family, which includes the high transition-temperature (high-Tc) superconductors, show spin...... and charge density wave order. Thus a fundamental question is to what extent do these ordered states exist for compositions close to optimal for superconductivity. Here we use high-energy X-ray diffraction to show that a CDW develops at zero field in the normal state of superconducting YBa2Cu3O6.67 (Tc= 67 K......). This sample has a hole doping of 0.12 per copper and a well-ordered oxygen chain superstructure. Below Tc, the application of a magnetic field suppresses superconductivity and enhances the CDW. Hence, the CDW and superconductivity in this typical high-Tc material are competing orders with similar energy...

  20. Electron scattering rate in epitaxial YBa2Cu3O7 superconducting films

    Science.gov (United States)

    Flik, M. I.; Zhang, Z. M.; Goodson, K. E.; Siegal, M. P.; Phillips, Julia M.

    1992-09-01

    This work determines the electron scattering rate in the a-b plane of epitaxial YBa2Cu3O7 films using two techniques. Infrared spectroscopy yields the scattering rate at temperatures of 10, 78, and 300 K by fitting reflectance data using thin-film optics and a model for the free-carrier conductivity. The scattering rate is also obtained using kinetic theory and an extrapolation of normal-state electrical resistivity data to superconducting temperatures based on the Bloch theory for the phonon-limited electrical resistivity of metals. The scattering rates determined using both techniques are in agreement and show that the electron mean free path in the a-b plane of YBa2Cu3O7 superconducting films is three to four times the coherence length. Hence YBa2Cu3O7 is pure but not in the extreme pure limit. An average defect interaction range of 4 nm is obtained using the defect density resulting from flux-pinning considerations.

  1. Superconductivity and photoacoustic properties of sintered La/sub 1.8/Sr/sub 0.2/CuO/sub 4/

    International Nuclear Information System (INIS)

    Sawan, Y.; Abu-Zeid, M.; Yousef, Y.A.

    1987-01-01

    In this paper the superconductivity transition properties of La/sub 1.8/Sr/sub 0.2/CuO/sub 4/ are investigated by resistivity and photo-acoustic measurements on samples prepared at different thermal prehistories. Samples with onset transition temperature of 40K and zero resistance at 35 K is detected at ambient pressure. The recent discovery of high T/sub c/ superconductivity up to 35 K in the La-Ba-Cu-O system was followed by rapid enthusiasm and intensive investigations in this field. The effect of thermal prehistory on the superconducting properties of La/sub 1.8/Sr/sub 0.2/CuO/sub 4/ and the photoacoustic characteristics of both the prepared superconducting materials as well as that of the initial starting oxides are presented

  2. Mechanical properties of partially meltable superconducting YBa/sub 2/Cu/sub 3/O/sub 7-x/

    International Nuclear Information System (INIS)

    Selvamanickam, V.; Salama, K.

    1988-01-01

    Partial melting has been suggested as a method for the processing of the high temperatures superconducting YBa/sub 2/Cu/sub 3/O/sub 7-x/ to improve the current carrying capacity in this material. The authors have investigated the possibility of using this method for the improvement of bulk mechanical properties in addition to those related to superconductivity. Four parameters, namely, oxygen annealing temperature, melting temperature, melting time and cooling rate are identified and studied. Each parameter is varied individually and its effects on microstructure and mechanical and superconducting properties are examined. The results indicate that the properties of superconducting YBa/sub 2/Cu/sub 3/O/sub 7-x/ can be improved significantly using the proper melting temperature, melting time, cooling rate and oxygen annealing temperature

  3. Growth and transport properties of multilayer superconducting films of Nd1.83Co0.17CuOx/YBa2Cu3O7-δ

    International Nuclear Information System (INIS)

    Gupta, A.; Gross, R.; Olsson, E.; Segmuller, A.; Koren, G.

    1990-01-01

    This paper reports on strained multilayer thin films of YBa 2 Cu 3 O 7-δ /Nd 1.83 Ce 0.17 CuO x that have been prepared by laser ablation deposition. For individual layers below a critical layer thickness of about 250 Angstrom, coherency strain compresses the Nd 1.83 Ce 0.17 CuO x lattice and expands the YBa 2 Cu 3 O 7-δ lattice. The orthorhombic distortion in the YBa 2 Cu 3 O 7-δ layers is also removed. Depending on their oxygen content, either the YBa 2 Cu 3 O 7-δ , or the Nd 1.83 Ce 0.17 CuO x layers are superconducting in these multilayers. The strain-induced structural modification has a significant influence on the superconducting transition temperature and critical current density of the YBa 2 Cu 3 O 7-δ layers. Zero field critical current densities as high as 1.1 x 10 7 A/cm 2 at 77K have been measured for the YBa 2 Cu 3 O 7-δ layers

  4. Infrared refractive index of thin YBa2Cu3O7 superconducting films

    International Nuclear Information System (INIS)

    Zhang, Z.M.; Choi, B.I.; Le, T.A.; Flik, M.I.; Siegal, M.P.; Phillips, J.M.

    1992-01-01

    This work investigates whether thin-film optics with a constant refractive index can be applied to high-T c superconducting thin films. The reflectance and transmittance of YBa 2 Cu 3 O 7 films on LaAlO 3 substrates are measured using a Fourier-transform infrared spectrometer at wavelengths from 1 to 100 μm at room temperature. The reflectance of these superconducting films at 10K in the wavelength region from 2.5 to 25 μm is measured using a cryogenic reflectance accessory. The film thickness varies from 10 to 200 nm. By modeling the frequency-dependent complex conductivity in the normal and superconducting states and applying electromagnetic-wave theory, the complex refractive index of YBa 2 Cu 3 O 7 films is obtained with a fitting technique. It is found that a thickness-independent refractive index can be applied even to a 25nm film, and average values of the spectral refractive index for film thicknesses between 25 and 200 nm are recommended for engineering applications

  5. Growth of high T/sub c/ superconducting Bi4(Ca,Sr)6Cu4O/sub 16+//sub x/ crystals

    International Nuclear Information System (INIS)

    Morris, P.A.; Bonner, W.A.; Bagley, B.G.; Hull, G.W.; Stoffel, N.G.; Greene, L.H.; Meagher, B.; Giroud, M.

    1988-01-01

    To determine intrinsic properties of the newly discovered Bi-Ca-Sr-Cu-O high T/sub c/ superconductors, single crystals are necessary. Compositions in this system have been heat treated to survey the melting temperatures and phase field in which superconductivity is detected. The nucleation and growth of the 85 K phase from the melted composition Bi 4 Ca 3 Sr 3 Cu 4 O/sub 16+//sub x/ is observed to be a kinetically slow process which can be precluded by a sufficiently rapid quench, but post-anneals produce the 85 and 110 K phases in the quenched material. The melted composition (23% Bi 2 O 3 -46% CaO,SrO-31% CuO), after subsequent slow cooling, results in large discrete crystals of the 85 K superconducting phase and a residual flux

  6. Preparation dependent superconductivity in T1CaBa2Cu3O7.5+-d above 100 K

    International Nuclear Information System (INIS)

    Porjesz, T.; Halasz, I.; Traeger, T.; Kovacs, G.; Kirschner, I.; Zsolt, G.; Karman, T.

    1988-08-01

    Different heat treatment procedures were applied during the sample preparation process, which result in different superconducting properties in the samples of the same nominal composition of TlCaBa 2 Cu 3 O 7.5+-d . It manifests itself in the different critical temperatures having values of 104 K, 107 K and 93 K. The effect of heat treatments is reflected in the structural and magnetic properties as well. (author). 6 refs, 5 figs

  7. Effect of annealing on the superconducting and normal state properties of the doped multifilamentary Cu-Nb composite wires prepared by in situ technique

    International Nuclear Information System (INIS)

    Dubey, S.S.; Dheer, P.N.

    1999-01-01

    The effect of annealing on the superconducting and normal state properties of the Ga-, In-, Ti- and Zr-doped (1 wt%) Cu-Nb composite wires prepared by in situ technique have been investigated in this paper. The wires annealed at 700 C for 10 h and then quenched at room temperature, show a decrease in the superconducting transition temperature, T c , and increase in the transition width, ΔT. Doping of the Cu-Nb wires causes an increase in the normal state resistivity and hence the upper critical field, H C2 . This results in a significant increase of J c . Annealing of these doped samples decreases H C2 and J c . In the case of In- and Ga-doped samples J c shows a marginal improvement at lower field but decreases at higher field. Zr and Ti doping appears to be beneficial for the improved J c in these in situ materials. (orig.)

  8. Thermal cycling in multifilamentary superconducting composites

    International Nuclear Information System (INIS)

    Aragao, E.E.A. de.

    1984-01-01

    NbTi-Cu multifilamentary superconducting composites were embedded, polished, characterized by microscopic techniques, and analyzed in a qualitative and semiquantitative way by energy dispersion technique. The superconductors were submitted to thermal cycling between the ambient temperature and the boiling point of helium (4.2K), for different number of cycles. The aims were to study the correlation between the possible microstructural damages due to thermal stresses arising in the composite during cycling and the variation of properties of the material with the number of cycles as well as to verify the validity of an elastic model for thermal stresses for low temperature cycles. (author)

  9. Superconducting YBa2Cu3O7-x fibers from the thermoplastic gel method

    International Nuclear Information System (INIS)

    Uchikawa, F.; Mackenzie, J.D.

    1989-01-01

    The successful fabrication of ceramic superconducting YBa 2 Cu 3 O 7-x fibers has been investigated. A new method was proposed for synthesis of the fibers through a solution route. The thermoplastic gels were synthesized using Y, Ba, Cu, ethoxides, and diethylenetriamine. The fibers were drawn from the reheated gels. The fibers were characterized by x-ray diffraction, SEM, and shrinkage ratio measurements. The fired and then annealed fiber is shown to have a superconducting transition temperature of 91 K (onset) and zero resistance temperature of 84 K. With regard to the fired fibers, it is found that the surface area increased and superconducting transition temperature decreased with increasing organic content in the initial gel. The usefulness of this method is shown and the structure of the synthesized gel is discussed

  10. Effect of shock pressure on the structure and superconducting properties of Y-Ba-Cu-O in explosively fabricated bulk metal-matrix composites

    Science.gov (United States)

    Murr, L. E.; Niou, C. S.; Pradhan-Advani, M.

    1991-01-01

    While it is now well established that copper-oxide-based power, or virtually any other ceramic superconductor powder, can be consolidated and encapsulated within a metal matrix by explosive consolidation, the erratic superconductivity following fabrication has posed a major problem for bulk applications. The nature of this behavior was found to arise from microstructural damage created in the shock wave front, and the residual degradation in superconductivity was demonstrated to be directly related to the peak shock pressure. The explosively fabricated or shock loaded YBa2Cu3Ox examples exhibit drastically altered rho (or R) - T curves. The deterioration in superconductivity is even more noticeable in the measurement of ac magnetic susceptibility and flux exclusion or shielding fraction which is also reduced in proportion to increasing peak shock pressure. The high frequency surface resistance (in the GHz range) is also correspondingly compromised in explosively fabricated, bulk metal-matrix composites based on YBa2Cu3O7. Transmission electron microscopy (including lattice imaging techniques) is being applied in an effort to elucidate the fundamental (microstructural) nature of the shock-induced degradation of superconductivity and normal state conductivity. One focus of TEM observations has assumed that oxygen displaced from b-chains rather than oxygen-vacancy disorder in the basal plane of oxygen deficient YBa2Cu3Ox may be a prime mechanism. Shock-wave displaced oxygen may also be locked into new positions or interstitial clusters or chemically bound to displaced metal (possibly copper) atoms to form precipitates, or such displacements may cause the equivalent of local lattice cell changes as a result of stoichiometric changes. While the shock-induced suppression of T(sub c) is not desirable in the explosive fabrication of bulk metal-matrix superconductors, it may be turned into an advantage if the atomic-scale distortion can be understood and controlled as local

  11. Growth and superconducting properties of Bi2Sr2Ca2Cu3O10 single crystals

    International Nuclear Information System (INIS)

    Clayton, N; Musolino, N; Giannini, E; Garnier, V; Fluekiger, R

    2004-01-01

    Single crystals of Bi 2 Sr 2 Ca 2 Cu 3 O 10 (Bi-2223) have been grown using the travelling solvent floating zone technique in an image furnace. Annealing the crystals under high pressures of O 2 increased their critical temperature to 109 K, and resulted in sharp superconducting transitions of ΔT c = 1 K. The superconducting anisotropy of Bi-2223 was found to be ∼ 50, from measurements of the lower critical field with the magnetic field applied parallel and perpendicular to the c-axis. The anisotropy of Bi-2223 is significantly reduced compared to that of Bi 2 Sr 2 CaCu 2 O 8 (Bi-2212), and this accounts for the enhanced irreversibility fields in Bi-2223. Furthermore, Bi-2223 has a higher critical current density, and a reduced magnetic relaxation rate compared to Bi-2212, which are both signatures of more effective pinning in Bi-2223 due to its reduced anisotropy

  12. Synthesis and photocatalytic activity of carbon spheres loaded Cu2O/Cu composites

    International Nuclear Information System (INIS)

    Li, Yinhui; Zhao, Mengyao; Zhang, Na; Li, Ruijuan; Chen, Jianxin

    2015-01-01

    Highlights: • Carbon spheres loaded Cu 2 O/Cu composites are obtained by hydrothermal process. • Cu 2 O/Cu nanocrystals grow on the surface of carbon spheres. • The composites with core–shell structure show highly photo-catalytic activity. • The composites can degrade methyl orange under simulated solar light irradiation. • The composites can be used to treat dye wastewater or organic pollutants. - Abstract: In this work, using amylose as carbon source and cupric acetate as copper source, carbon spheres loaded Cu 2 O/Cu composites were obtained by hydrothermal synthesis. The effects of the molar ratios between glucose and Cu(II), and hydrothermal time on the morphology and sizes of the composites were investigated. The result of photocatalytic experiments demonstrated that the composites could degrade methyl orange in aqueous solution under simulated solar light irradiation. The highest degradation rate was achieved to 93.83% when the composites were prepared by hydrothermal synthesis at 180 °C for 16 h and the molar ratio between glucose and Cu(II) was 10/1. The composites, as new and promising materials, can be used to treat dye wastewater or other organic pollutants

  13. Y-Ba-Cu-O superconducting thin films by simultaneous or sequential evaporation

    International Nuclear Information System (INIS)

    Mogro-Campero, A.; Hunt, B.D.; Turner, L.G.; Burrell, M.C.; Balz, W.E.

    1988-01-01

    Superconducting thin films of Y-Ba-Cu-O near the 1:2:3 stoichiometry were produced by simultaneous (coevaporation) and sequential (multilayer) evaporation in the same evaporator. The best film obtained on yttria-stabilized zirconia (YSZ) had a superconducting onset temperature of 104 K, a midpoint T/sub c/ of 92 K, and zero resistance at T≤74 K. Stoichiometry was deduced by inductively coupled plasma emission spectroscopy, and elemental depth profiles were obtained by x-ray photoelectron spectroscopy. Film stoichiometry changes only near the film/substrate boundary for films on YSZ. Films on Si/SiO 2 were not superconducting; depth profiling shows severe changes of film composition with depth. A major theme of this work is process reproducibility, which was found to be poor for coevaporation but improved considerably for sequential evaporation

  14. The relationship of structure to superconductivity in the Pr-Ba-Cu-O system

    Science.gov (United States)

    Minseo, P.

    1994-05-01

    The relation of structure to lack of superconductivity in Pr-Ba-Cu-O was systematically investigated. First, the phase equilibria of this system was studied to find the processing parameters which maximize the cation-site ordering between Pr and Ba ions. Second, a comparative study between superconducting Nd-Ba-Cu-O and nonsuperconducting Pr-Ba-Cu-O was performed by forming solid-solution Nd-Pr-Ba-Cu-O. The relation between structure and superconductivity in Nd(1-x)Pr(x)Ba2Cu3O(7-delta) is investigated. T sub c decreases monotonically with increasing x and superconductivity disappears at around x = 0.3 to 0.4. T sub c is enhanced by 10 K when the sample is processed at an oxygen partial pressure (PO2) of 0.01 atm, followed by oxygenation at 450 C. Depression of T sub c as a function of x and PO2 is explained in terms of a charge-transfer model. It is suggested that destruction of superconductivity in the RE(1-x)Pr(x)Ba2Cu3O(7-delta) (RE=rare-earth) system can be viewed as disruption of four-fold planar coordinated Cu ions in the chain-site due to permanent occupation of extra Pr ions on Ba sites.

  15. Hydrostatic pressure dependence of the superconducting transition temperature of HgBa2CaCu2O6+δ and HgBa2Ca2Cu3O8+δ

    International Nuclear Information System (INIS)

    Klehe, A.K.; Schilling, J.S.

    1994-02-01

    The dependence of the superconducting transition temperature T c (P) on purely hydrostatic pressure to 0.9 GPa has been determined in ac susceptibility studies in a He-gas pressure system for optimally doped ceramic samples of HgBa 2 CaCu 2 O 6+δ and HgBa 2 Ca 2 Cu 3 O 8+δ with superconducting transitions at T c (0) ≅ 126.6 K and 133.9 K, respectively. T c increases reversibly under hydrostatic pressure at the rates, d T c /dP ≅ +1.80 ± 0.06 K/GPa and +1.71 ± 0.05 K/GPa, respectively. Within experimental error, these values are the same as found previously for optimally doped single-layered HgBa 2 CuO 4+δ , where d T c /dP ≅ +1.72 ± 0.05 K/GPa. Remarkably, the logarithmic volume derivative of T c is nearly identical for all three compounds, dln T c /dlnV ≅ -1.20 ± 0.05, even though the bulk modulus differs by more than 30%. This provides strong evidence that a common mechanism is responsible for the pressure dependence of the superconducting state in all three compounds

  16. Structure and superconductivity in (Bi{sub 0.35}Cu{sub 0.65})Sr{sub 2}YCu{sub 2}O{sub 7} and related materials

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, R.A.; Williams, S.P.; Greaves, C. [Univ. of Birmingham (United Kingdom)

    1994-12-31

    The recently reported (Bi/Cu)Sr{sub 2}YCu{sub 2}O{sub 7} phase has been studied by time of flight powder neutron diffraction. The proposed 1212 structure has been confirmed and refinements have shown the oxygen in the (Bi/Cu)O layer is displaced by 0.78{angstrom} from the ideal (1/2,1/2,0) site (P4/mmm space group) along (100). Bond Valence Sum calculations have suggested oxidation states of Bi{sup 5+} and Cu{sup 2+} for the cations in the (Bi/Cu)O layers. The material is non-superconducting and all attempts to induce superconductivity have been unsuccessful. Work on the related material (Ce/Cu)Sr{sub 2}YCu{sub 2}O{sub y} has shown the ideal Ce content to be 0.5 Ce per formula unit. The introduction of Ba (10%) onto the Sr site dramatically increases phase stability and also induces superconductivity (62K).

  17. Filament bundle location influence on coupling losses in superconducting composites

    International Nuclear Information System (INIS)

    Ito, Daisuke; Koizumi, Misao; Hamajima, Takataro; Nakane, Fumoto.

    1983-01-01

    The ac losses in multifilamentary superconducting composites with different superconducting filament bundle positions have been measured using the magnetization method in order to reveal the relation between filament bundle position and coupling losses. Loss components depending on dB/dt in a mixed matrix superconducting composite, whose filament bundle is located in a central region surrounded by an outer stabilizing copper sheath, has been compared with another superconducting composite whose stabilizing copper is located in a central region surrounded by an outer filament bundle. In both conductors, key parameters, such as filament twistpitch, wire diameter and amount of copper stabilizer, were almost the same. Applied magnetic field is 2 Tesla with 0.05-2 Tesla/sec field change rate. Experimental results indicate that coupling losses between filaments in the composite with the filament bundle located in the central region is smaller than the composite with the filament bundle located in the outer region. A similar conclusion was reached theoretically by B. Truck. Coupling loss values obtained by the experiment show good agreement with calculated values with the equations proposed by B. Truck. It is also pointed out that a copper stabilizer, divided by the CuNi barrier into small regions, like a honeycomb, causes anomalous increasing in the copper resistivity due to Ni diffusion during heat treatment. (author)

  18. Structural and superconducting properties of YBa2Cu3-xMxOy (M=Ag, Al

    Directory of Open Access Journals (Sweden)

    S Falahati

    2009-08-01

    Full Text Available   Samples of YBa2Cu3-xAgxOy with x=0, 0.1, 0.15, 0.2, 0.3 and samples of YBa2Cu3-xAlxOy with x=0, 0.01, 0.02, 0.03 and 0.045 are prepared by the sol-gel method. Structural and superconducting properties of samples are studied by electrical resistivity (R-T, X-ray diffraction (XRD and scanning electron microscopy (SEM. All the samples show transition to superconducting state and the transition temperatures of the samples increased with increasing Ag doping up to x=0.15. R-T measurements show a small decrease of TC (zero with increasing Al doping up to x=0.02, and followed by a faster decrease with increasing doping concentration. YBCO grains are better linked with increasing Ag doping. So, Ag has positive effects in superconducting properties of YBCO. The crystal structure of samples was refined by MAUD. These results show tha, Ag is substituted for Cu(1 in YBCO. According to these analysis, we introduce x=0.15 as the optimum value for doping concentration .

  19. Superconductivity drives magnetism in δ -doped La2CuO4

    Science.gov (United States)

    Suter, A.; Logvenov, G.; Boris, A. V.; Baiutti, F.; Wrobel, F.; Howald, L.; Stilp, E.; Salman, Z.; Prokscha, T.; Keimer, B.

    2018-04-01

    Understanding the interplay between different orders in a solid is a key challenge in highly correlated electronic systems. In real systems this is even more difficult since disorder can have strong influence on the subtle balance between these orders and thus can obscure the interpretation of the observed physical properties. Here we present a study on δ -doped La2CuO4 (δ -LCON ) superlattices. By means of molecular beam epitaxy whole LaO2 layers were periodically replaced by SrO2 layers, providing a charge reservoir yet reducing the level of disorder typically present in doped cuprates to an absolute minimum. The induced superconductivity and its interplay with the antiferromagnetic order is studied by means of low-energy muon spin rotation. We find a quasi-two-dimensional superconducting state which couples to the antiferromagnetic order in a nontrivial way. Below the superconducting transition temperature, the magnetic volume fraction increases strongly. The reason could be a charge redistribution of the free carriers due to the opening of the superconducting gap which is possible due to the close proximity and low disorder between the different ordered regions.

  20. Ba2NdZrO5.5 as a potential substrate material for YBa2Cu3O7-δ superconducting films

    International Nuclear Information System (INIS)

    Tovar, H.; Ortiz Diaz, O.; Landinez Tellez, D.A.; Roa-Rojas, J.

    2007-01-01

    The new oxide Ba 2 NdZrO 5.5 (BNZO) has been produced by the standard solid state reaction method. X-ray diffraction analysis (XRD) revealed that this synthesized material has an ordered complex cubic perovskite structure characteristic of A 2 BB'O 6 crystalline structure with a lattice parameter of a = 8.40 Aa. It was established through EDX analysis that there is no trace of impurities. Chemical stability of BNZO with YBa 2 Cu 3 O 7-δ (YBCO) has been studied by means of Rietveld analysis of experimental XRD data on several samples of BNZO-YBCO composites. Quantitative analysis of phases on XRD patterns show that all peaks have been indexed for both BNZO and YBCO, and no extra peak is detectable. YBCO and BNZO remain as two different separate phases in the composites with no chemical reaction. Electrical measurements also revealed that superconducting transition temperature of pure YBCO and BNZO-YBCO composites is 90 K. These favorable characteristics of BNZO show that it can be used as a potential substrate material for deposition of YBCO superconducting films. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Anomalous spectral weight transfer at the superconducting transition of Bi2Sr2CaCu2O8+δ

    International Nuclear Information System (INIS)

    Dessau, D.S.; Wells, B.O.; Shen, Z.; Spicer, W.E.; Arko, A.J.; List, R.S.; Mitzi, D.B.; Kapitulnik, A.

    1991-01-01

    Anomalous spectral weight transfer at the superconducting transition of single-crystalline Bi 2 Sr 2 CaCu 2 O 8+δ was observed by high-resolution angle-resolved photoemission spectroscopy. As the sample goes superconducting, not only is there spectral weight transfer from the gap region to the pileup peak as in BCS theory, but along the Γ-bar M direction there is also some spectral weight transfer from higher binding energies in the form of a dip. In addition, we note that at the superconducting transition there is a decrease (increase) in the occupied spectral weight for the spectra taken along Γ-bar M (Γ-X)

  2. Using Fast Hot Shock Wave Consolidation Technology to Produce Superconducting MgB2

    Directory of Open Access Journals (Sweden)

    T. Gegechkori

    2018-02-01

    Full Text Available The original hot shock wave assisted consolidation method combining high temperature was applied with the two-stage explosive process without any further sintering to produce superconducting materials with high density and integrity. The consolidation of MgB2 billets was performed at temperatures above the Mg melting point and up to 1000oC in partially liquid condition of Mg-2B blend powders. The influence of the type of boron (B isotope in the composition on critical temperature and superconductive properties was evaluated. An example of a hybrid Cu-MgB2Cu superconducting tube is demonstrated and conclusions are discussed.

  3. Cooperative effects in CeCu2Si2

    International Nuclear Information System (INIS)

    Lang, M.; Modler, R.; Ahlheim, U.; Helfrich, R.; Reinders, P.H.P.; Steglich, F.; Assmus, W.; Sun, W.; Bruls, G.; Weber, D.; Luethi, B.

    1991-01-01

    Heavy-fermion superconductivity and other cooperative effects have been explored by thermal expansion, specific heat and ultrasound measurements on CeCu 2 Si 2 single crystals. Crystals annealed under Cu atmosphere show sharp superconducting transitions at Tc max =0.63 K. At the same temperature the ''as grown'', i.e., non-bulk-superconducting, crystals reveal a pronounced phase-transition anomaly, presumably of structural origin. This new transition is associated with an expansion of the volume upon cooling and gives rise to magnetic correlations. Our results indicate a complex interplay between lattice instability, magnetic phenomena and superconductivity in CeCu 2 Si 2 . (orig.)

  4. Two-magnon Raman scattering in dielectric and superconducting YBa2Cu3O6+x crystals

    International Nuclear Information System (INIS)

    Zaitsev, S. V.; Maksimov, A. A.; Tartakovskii, I. I.

    2010-01-01

    Two-magnon Raman scattering in dielectric, as well as superconducting, YBa 2 Cu 3 O 6+x single crystals with mobile oxygen content x = 0.2-0.7 and superconducting transition temperature T c = 0-74 K is studied in detail. Doping with oxygen in the range of x = 0.2-0.5 leads to two-magnon scattering peak broadening and a shift in the spectral position of the peak towards lower energies. The most significant qualitative changes in two-magnon scattering in YBa 2 Cu 3 O 6+x crystals are observed in a narrow oxygen concentration range near x = 0.7. This is explained by a considerable decrease in the correlation length ξ AF of antiferromagnetic (AF) correlations upon an increase in the concentration of free carriers. For instance, doping is accompanied with a reduction of ξ AF to values of several lattice constants a for x ∼ 0.7, a transition to the regime of short-range AF order, and local scattering of light from a small AF cluster with a size of 3 x 4 lattice constants. An increase in the free charge carrier concentration destroys the short-range AF order in a narrow range of the stoichiometry index near x = 0.7. Experimental data also indicate heterogeneity of cuprate planes at microscopic level, which leads to coexistence of superconducting and AF regions in YBa 2 Cu 3 O 6+x super-conducting crystals.

  5. On a possibility of cold fusion in deuterium-saturated YBa2Cu3O7-x ceramics in superconducting state

    International Nuclear Information System (INIS)

    Lipson, A.G.; Sakov, D.M.; Toporov, Yu.P.; Gromov, V.V.; Deryagin, B.V.

    1991-01-01

    A possibility to generate neutrons by deuterated YBa 2 Cu 3 O 7-x ceramics in superconducting (T c ) and normal (T>T c ) states is studied. The presented data points to a relationship between the processes of cold nuclear fusion and high-temperature superconductivity in YBa 2 Cu 3 O 7-x pellets deuterated at T c (77< T<90 K)

  6. Superconductivity in the Sr-Ca-Cu-O system and the phase with infinite-layer structure

    International Nuclear Information System (INIS)

    Shaked, H.; Shimakawa, Y.; Hunter, B.A.; Hitterman, R.L.; Jorgensen, J.D.; Han, P.D.; Payne, D.A.

    1995-01-01

    Superconductivity and structure in samples of (Sr,Ca)CuO 2 with the infinite-layer structure, prepared by high-pressure synthesis, have been studied using magnetic susceptibility measurements, small angle x-ray diffraction, and neutron diffraction. It is found that the superconducting (T c ∼100 K) samples in this system are phase impure and contain, in addition to the infinite-layer phase, members of the two homologous series Sr n-1 Cu n+1 O 2n (n=3,5,...; orthorhombic), and Sr n+1 Cu n O 2n+1+δ (n=1,2,...; tetragonal), as minor phases. Samples with larger phase fractions of the Sr n+1 Cu n O 2n+1+δ compounds showed higher superconducting fractions. Phase-pure infinite-layer samples are not superconducting. Based on these results, and results previously published in the literature, it is proposed that the superconductivity in these infinite-layer samples comes from the tetragonal Sr n+1 Cu n O 2n+1+δ compounds, not from the phase with the infinite-layer structure

  7. Epitaxial YBa2Cu3O7 films on rolled-textured metals for high temperature superconducting applications

    International Nuclear Information System (INIS)

    Norton, D.P.; Park, C.; Prouteau, C.

    1998-04-01

    The epitaxial growth of high temperature superconducting (HTS) films on rolled-textured metal represents a viable approach for long-length superconducting tapes. Epitaxial, 0.5 microm thick YBa 2 Cu 3 O 7 (YBCO) films with critical current densities, J c , greater than 1 MA/cm 2 have been realized on rolled-textured (001) Ni tapes with yttria-stabilized zirconia (YSZ)/CeO 2 oxide buffer layers. This paper describes the synthesis using pulsed-laser deposition (PLD) of epitaxial oxide buffer layers on biaxially-textured metal that comprise the so-called rolling-assisted biaxially-textured substrates (RABiTs trademark). The properties of the buffer and YBa 2 Cu 3 O 7 films on rolled-textured Ni are discussed, with emphasis given to the crystallographic and microstructural properties that determine the superconducting properties of these multilayer structures

  8. Magnetism and superconductivity in Ru{sub 1-x}Sr{sub 2}RECu{sub 2+x}O{sub 8-d} (RE=Gd, Eu) and RuSr{sub 2}Gd{sub 1-y}Ce{sub y}Cu{sub 2}O{sub 8} compounds

    Energy Technology Data Exchange (ETDEWEB)

    Klamut, P.W. [Dept. of Physics, Northern Illinois Univ., DeKalb, IL (United States)]|[Inst. of Low Temperature and Structure Research of Polish Academy of Sciences, Wroclaw (Poland); Dabrowski, B.; Mini, S.M.; Kolesnik, S.; Maxwell, M.; Mais, J. [Dept. of Physics, Northern Illinois Univ., DeKalb, IL (United States); Shengelaya, A.; Keller, H. [Physik-Inst., Univ. Zuerich, Zuerich (Switzerland); Khazanov, R. [Physik-Inst., Univ. Zuerich, Zuerich (Switzerland)]|[Lab. for Muon-Spin Spectroscopy, Paul Scherrer Inst., Villigen PSI (Switzerland); Savic, I. [Physik-Inst., Univ. Zuerich, Zuerich (Switzerland)]|[Faculty of Physics, Univ. of Belgrade, Belgrade (Yugoslavia); Sulkowski, C.; Wlosewicz, D.; Matusiak, M. [Inst. of Low Temperature and Structure Research of Polish Academy of Sciences, Wroclaw (Poland); Wisniewski, A.; Puzniak, R.; Fita, I. [Inst. of Physics of Polish Academy of Sciences, Warszawa (Poland)

    2002-07-01

    We discuss the properties of new superconducting compositions of ruthenocuprates Ru{sub 1-x}Sr{sub 2}RECu{sub 2+x}O{sub 8-d} (RE=Gd, Eu) that were synthesized at 600 atm. of oxygen at 1080 C. By changing ratio between the Ru and Cu, the temperature of superconducting transition (T{sub C}) raises up to T{sub C}{sup max} = 72 K for x=0.3, 0.4. The hole doping achieved along the series increases with Cu{yields}Ru substitution. For x {ne} 0, T{sub C} can be subsequently tuned between T{sub C}{sup max} and 0 K by changing oxygen content in the compounds. The magnetic characteristics of the RE=Gd and Eu based compounds are interpreted as indicative of constrained dimensionality of the superconducting phase. Muon spin rotation experiments reveal the presence of the magnetic transitions at low temperatures (T{sub m}=14-2 K for x=0.1-0.4) that can originate in the response of Ru/Cu sublattice. RuSr{sub 2}Gd{sub 1-y}Ce{sub 1-y}Cu{sub 2}O{sub 8} (0 {<=} y {<=} 0.1) compounds show the simultaneous increase of T{sub N} and decrease of T{sub C} with y. The effect should be explained by the electron doping that occurs with Ce{yields}Gd substitution. Properties of these two series allow us to propose phase diagram for 1212-type ruthenocuprates that links their properties to the hole doping achieved in the systems. Non-superconducting single-phase RuSr{sub 2}GdCu{sub 2}O{sub 8} and RuSr{sub 2}EuCu{sub 2}O{sub 8} are reported and discussed in the context of the properties of substituted compounds. (orig.)

  9. A new way for preparing superconducting materials: the electrochemical oxidation of La2CuO4

    International Nuclear Information System (INIS)

    Wattiaux, A.; Park, J.C.; Grenier, J.C.; Pouchard, M.

    1990-01-01

    The electrochemical oxidation in alkaline medium is described as a new way for preparing superconducting oxides at room temperature. The application of this method to La 2 CuO 4 gave rise to a metallic material with a superconducting behaviour below 39 K and whose physical and chemical features appear as quite promising [fr

  10. New magnetic coherence effect in superconducting La2-xSrxCuO4

    DEFF Research Database (Denmark)

    Mason, T.E.; Schröder, A.; Aeppli, G.

    1996-01-01

    We have used inelastic neutron scattering to examine the magnetic fluctuations at intermediate frequencies in the simplest high temperature superconductor, La2-xSrxCuO4. The suppression of the low energy magnetic response in the superconducting state is accompanied by an increase in the response...

  11. Direct synthesis of RGO/Cu{sub 2}O composite films on Cu foil for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Xiangmao; Wang, Kun [Key Laboratory for Ultrafine Materials of the Ministry of Education, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Zhao, Chongjun, E-mail: chongjunzhao@ecust.edu.cn [Key Laboratory for Ultrafine Materials of the Ministry of Education, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong 2500 (Australia); Qian, Xiuzhen [Key Laboratory for Ultrafine Materials of the Ministry of Education, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Chen, Shi [School of Information Engineering, Wuhan University of Technology, Wuhan 430070 (China); Li, Zhen, E-mail: zhenl@uow.edu.au [Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong 2500 (Australia); Liu, Huakun; Dou, Shixue [Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong 2500 (Australia)

    2014-02-15

    Graphical abstract: RGO/Cu{sub 2}O/Cu composites were synthesized by simple hydrothermal treatment of copper foils with graphene oxide, in which the reduction of graphene oxide and the formation of Cu{sub 2}O nanoparticles simultaneously happened in one-pot reaction. These composites can be directly used as electrodes of supercapacitors with the highest specific capacitance of 98.5 F/g at 1 A g{sup −1}, which is much better than that of CuO or Cu{sub 2}O electrodes. -- Highlights: • The RGO/Cu{sub 2}O/Cu composites were obtained by a friendly method in one step. • Improved capacitance performance is realized by the hydrothermal treatment of graphene oxides with Cu foils. • RGO/Cu{sub 2}O/Cu-200 composites exhibit the largest specific capacitance of 98.5 F g{sup −1} at 1 A g{sup −1}. -- Abstract: Reduced graphene oxide/cuprous oxide (RGO/Cu{sub 2}O) composite films were directly synthesized on the surface of copper foil substrates through a straight redox reaction between GO and Cu foil via a hydrothermal approach. Characterization of the resultant composites with X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and field emission scanning electron microscope (FESEM) confirms the formation of Cu{sub 2}O and reduction of GO, in which Cu{sub 2}O nanoparticles were well covered by RGO. The resultant composites (referred to as RGO/Cu{sub 2}O/Cu) were directly used as electrodes for supercapacitors, and their electrochemical performance was assessed by cyclic voltammetry (CV), galvanostatic charge–discharge (GCD), and electrochemical impedance spectrometry (EIS) in 1 M KOH aqueous solution. A specific capacitance of 98.5 F g{sup −1} at 1 A g{sup −1} was obtained, which is much higher than that of pure Cu{sub 2}O prepared under the same conditions, due to the presence of RGO.

  12. Growth of superconducting Bi/sub 2/Sr/sub 2/CaCu/sub 2/O/sub 8+//sub x/ films on alumina, silicon, and fused quartz

    International Nuclear Information System (INIS)

    Hung, L.S.; Agostinelli, J.A.; Paz-Pujalt, G.R.; Mir, J.M.

    1988-01-01

    Interactions between superconducting Bi/sub 2/Sr/sub 2/CaCu/sub 2/O/sub 8+//sub x/ films and substrates were investigated by ion backscattering, x-ray diffraction, and four-point probe resistivity measurements. During annealing at temperatures above- 800 /sup 0/C, Bi/sub 2/Sr/sub 2/CaCu/sub 2/ oxide films rapidly reacted with alumina, Si, Si covered with SiO/sub 2/, and quartz, resulting in catastrophic failure. Zr-based barrier layers were used to minimize film-substrate interactions. When a single ZrO/sub 2/ layer was interposed between the superconducting oxide film and the underlying substrate, the Bi/sub 2/Sr/sub 2/CaCu/sub 2/ oxide films showed a large-grained polycrystalline microstructure and exhibited the orthorhombic structure. Films on sapphire showed transitions to the superconducting state beginning near 100 K with zero resistance achieved at 70 K. Films on Si and thermally grown SiO/sub 2/ showed a similar drop in resistance around 95 K, whereas the transition was broad and the zero resistance state was not reached. For films on quartz, high thermal stress caused cracking of the superconducting oxide film. Best results were achieved using a barrier composed of a Zr-Si-O mixed layer underneath ZrO/sub 2/. In this case, the films grown on Si and quartz were uniform and showed the onset to superconductivity at 95 K, attaining zero resistance at 70 K

  13. Thermal history dependence of superconducting properties in La2CuO4+δ

    International Nuclear Information System (INIS)

    Hirayama, T.; Nakagawa, M.; Sumiyama, A.; Oda, Y.

    1998-01-01

    We studied the thermal history dependence of the superconducting properties below/above room temperature (RT) in the ceramic La 2 CuO 4-δ with excess oxygen. The phase separation (O-rich phase: superconducting and O-poor phase: antiferromagnetic) was concluded to occur above 373 K, in contrast with the usual report of the phase separation around 320 K. As for the superconducting phases, the well-known T c onset of 32 or 36 K, dependent on thermal history around 200 K, in the samples annealed in high-pressure oxygen gas, was not changed by thermal history between RT and 373 K. The samples electrochemically oxidized at RT included the phase with the high T c of 45 K, which was not changed by thermal history below RT, and the phase with the low T c of 32 or 36 K. The 45 K phase was changed into the low-T c phase by annealing at 373 K. The samples electrochemically oxidized at 333 K, which was accompanied with the diffusion of excess oxygen, showed gradual change of superconducting behavior: the single low-T c (32 or 36 K) phase (oxidation time = 24 h), coexistence of the low-T c phase and the high-T c (45 K) phase (36 h), and the single high T c phase (48 and 72 h). Thus, the single superconducting phase with the high T c of 45 K has been obtained, which showed a metallic behavior in normal resistivity and apparent changes of lattice constant in comparison with that of stoichiometric La 2 CuO 4 . (orig.)

  14. Coexistence of charge density wave and superconductivity in Cu0.10TiSe2

    Science.gov (United States)

    Jat, K. S.; Nagpal, V.; Sagar, A. D.; Neha, P.; Patnaik, S.

    2018-04-01

    We report the synthesis and characterization of Cu intercalated TiSe2 superconductor. The resistivity variation with temperature indicates superconducting transition onset at 3.1K and resistivity drops down to zero at 2.1K. The magnetization measurement provides the diamagnetic transition at 3 K. The upper critical field Hc2, lower critical field Hc1, Ginzburg Landau coherence length (ξ) and penetration depth(λ) are estimated to be 0.93 T, 0.01T, 18.8 nm and 181.5 nm respectively. At 100K, CDW type feature is observed. The coexistence of CDW phase and superconductivity is summarized.

  15. Incommensurate magnetism in non-superconducting PrBa2Cu3O6.92

    DEFF Research Database (Denmark)

    Boothroyd, A.T.; Hill, J.P.; McMorrow, D.F.

    1999-01-01

    We report the discovery of incommensurate magnetic order in non-superconducting single crystals PrBa2Cu3O6.92. Resonant X-ray magnetic scattering at the Pr L-II and L-III edges and high resolution neutron diffraction were used to characterise the magnetic order on the different magnetic sublattices...

  16. Electrochemical performance of electroactive poly(amic acid)-Cu{sup 2+} composites

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Ying [Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun, 130012 (China); Li, Fangfei [State Key Lab of Superhard Materials, Jilin University, Changchun 130012 (China); Hanlon, Ashley M.; Berda, Erik B. [Department of Chemistry and Materials Science Program, University of New Hampshire, Durham, New Hampshire 03824 (United States); Liu, Xincai; Wang, Ce [Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun, 130012 (China); Chao, Danming, E-mail: chaodanming@jlu.edu.cn [Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun, 130012 (China)

    2017-01-15

    Graphical abstract: Electroactive poly(amic acid)-Cu{sup 2+} (EPAA-Cu) composites on the substrates have been prepared, whose electrochemical properties, including electroactivity, electrochromism and anticorrosion, reveal drastic enhancement after incorporation of Cu{sup 2+} ions. - Highlights: • The electroactive poly(amic acid)-Cu{sup 2+} (EPAA-Cu) composites were prepared. • A significant current enhancement phenomenon of EPAA-Cu/ITO electrodes was observed. • EPAA-Cu/ITO electrochromic electrodes reveals a shorter switching times. • Excellent corrosive protection for the CS was achieved by incorporating Cu{sup 2+} ions. - Abstract: Electroactive poly(amic acid)-Cu{sup 2+} (EPAA-Cu) composites on substrates were successfully prepared via nucleophilic polycondensation followed by the use of an immersing method. Analysis of the structure properties of EPAA-Cu composites was performed using scanning electron microscopy (SEM), X-ray photoelectron spectra (XPS) and Fourier-transform infrared spectra (FTIR). A significant current enhancement phenomenon of EPAA-Cu/ITO electrodes was found as evident from cyclic voltammetry (CV) measurements. In addition, Cu{sup 2+} ions were incorporated into the composites and had a positive effect on their electrochromic behaviors decreasing their switching times. The anticorrosive performance of EPAA-Cu composites coatings on the carbon steel in 3.5 wt% NaCl solution were also investigated in detail using tafel plots analysis and electrochemical impedance spectroscopy. The anticorrosive ability of these coatings significantly enhanced through the incorporation of Cu{sup 2+} ions.

  17. Effects of calcium doping on the superconducting properties of top-seeded melt growth processed Y1.5Ba2-xCaxCu3Oy superconductors

    International Nuclear Information System (INIS)

    Park, S.D.; Kim, H.J.; Park, B.J.; Han, Y.H.; Jun, B.-H.; Lee, J.S.; Kim, C.-J.

    2011-01-01

    We study effects of calcium doping in melt processed Y123 superconductors. We examine a superconducting transition temperature and current density. A transition temperature and current density decreases by calcium doping. Calcium doping leads to coarseing of Y211 particles. Y211 refining effect by CeO 2 is disappreared by calcium doping. The effect of calcium doping on the superconducting properties of top seeded melt growth (TSMG) processed Y 1.5 Ba 2-x Ca x Cu 3 O y superconductors was studied in terms of calcium content (X ca ). YBa 2-x Ca x Cu 3 O 7-δ (X ca = 0, 0.005, 0.01, 0.02, 0.04, 0.1, 0.3) powders were synthesized by the powder calcination method. YBa 2-x Ca x Cu 3 O 7-δ powders were mixed with 0.25 mole Y 2 O 3 powder and 1 wt.% CeO 2 as Y 2 BaCuO 5 (Y211) refiner, and finally made into Y 1 . 5 Ba 2-x Ca x Cu 3 O y (Y1.5) + 1 wt.% CeO 2 composition. The single Y123 growth on the top surface was observed up to X ca = 0.1, while the multiple Y123 growth was observed at X ca ≥ 0.1. The superconducting transition temperature (T c ) and critical current density (J c ) of TSMG processed Y1.5 samples were inversely proportional to X ca . The Y211 size increased with increasing X ca due to the enhancement of Y211 coarsening by calcium doping. No Y211 refining effect by CeO 2 was observed in the calcium doped samples. The T c and J c decrease by calcium doping are likely to be due to the calcium incorporation with the Y123 lattice and formation of coarse Y211 particles.

  18. Microimpurity composition of superconducting ceramics

    International Nuclear Information System (INIS)

    Zhiglov, Yu.S.; Poltoratskij, Yu.B.; Protsenko, A.N.; Tuchin, O.V.

    1989-01-01

    Using laser mass spectrometry, the microimpurity composition of YBa 2 Cu 3 O 7-y superconducting ceramics, prepared by routine solid-phase synthesis from extremely pure yttrium and copper oxides and BaCO 3 , is determined. The presence of F, Na, Al, P, Cl, S, K, Ca impurities, which concentration in specimens varies within 10 -3 +5x10 -3 at.% and also Si, Sr, Fe of about 1x10 -1 at.% is established. It is difficult to determine concentrations of C, N, H 2 O impurities because of the presence of background signals of residual gases in the chamber. Using the method of Auger electron spectroscopy, a surface layer of HTSC ceramics grain is studied. The availability of chlorine impurity, which amount considerably exceeds its volume concentration, is determined in near the surface layer. 2 refs.; 2 figs

  19. Effect of magnetic ion Ni doping for Cu in the CuO{sub 2} plane on electronic structure and superconductivity on Y123 cuprate

    Energy Technology Data Exchange (ETDEWEB)

    Cao Shixun; Li Pinglin; Cao Guixin; Zhang Jincang

    2003-05-15

    The YBa{sub 2}Cu{sub 3-x}Ni{sub x}O{sub 7-{delta}} with x=0-0.4 have been studied using positron annihilation technique. The changes of positron annihilation parameters with the Ni substitution concentration x are given. From the change of electronic density n{sub e} and T{sub c}, it would prove that the localized carriers (electron and hole) in Cu-O chain and CuO{sub 2} planes have enormous influence on superconductivity by affecting charge transfer between the reservoir layer and CuO{sub 2} planes.

  20. Effect of substituted rare earth element in (Yb1-xNd x)Ba2Cu3O y thin film on growth orientation and superconducting properties

    International Nuclear Information System (INIS)

    Honda, R.; Ichino, Y.; Yoshida, Y.; Takai, Y.; Matsumoto, K.; Ichinose, A.; Kita, R.; Mukaida, M.; Horii, S.

    2005-01-01

    We studied the orientation and superconducting properties in (Yb 1-x Nd x )Ba 2 Cu 3 O y (Yb/Nd123) thin films as a function of Yb/Nd composition ratio x. As a results, we needed so high oxygen pressure as to increase x for obtaining the c-axis oriented films. J c -B curves in the Yb/Nd123 thin films were superior to that in YBa 2 Cu 3 O y thin film. Since a RE fluctuation in a composition in the Yb/Nd123 thin films was observed with TEM-EDX, we speculated the pinning centers in the Yb/Nd123 thin films were strongly affected by the RE fluctuation

  1. Field ion microscopy and imaging atom-probe mass spectroscopy of superconducting YBa2Cu3O7/sub -//sub x/

    International Nuclear Information System (INIS)

    Kellogg, G.L.; Brenner, S.S.

    1987-01-01

    The structure and composition of the superconducting oxide YBa 2 Cu 3 O/sub 7-//sub x/ have been examined in atomic detail by field ion microscopy and imaging atom-probe mass spectroscopy. The field ion samples were prepared from hot-pressed disks of the oxide powders. Atomic resolution images were obtained with either argon or hydrogen as the imaging gas. Individual layers of atoms were observed which could be field evaporated in a uniform, layer-by-layer manner. Imaging atom-probe analysis of the field ion tips indicated a metal composition which varied noticeably from sample to sample and an oxygen concentration which was consistently much too low

  2. Radio frequency response of Ag-sheathed (Bi, Pb)2Sr2Ca2Cu3O10+x superconducting tapes

    International Nuclear Information System (INIS)

    Grasso, G.

    2000-01-01

    The response of long (Bi,Pb) 2 Sr 2 Ca 2 Cu 3 O 10 conductors fabricated by the oxide-powder-in-tube method to a radio frequency excitation was investigated while employed as the inductive part of large L-C resonating circuits. After removal of the outer silver sheath, superconducting devices cooled down to 77 K showed superior properties compared to equivalent non-superconducting circuits: Bi-based resonators, conceived for a working frequency in the range between 5 and 17 MHz, presented an improvement of the quality factor by a factor of 20. This result opens new perspectives for the application of Bi-based superconducting materials in the detection of a weak radio frequency signal, as in magnetic resonance imaging. (author)

  3. Trapped magnetic field of a superconducting bulk magnet in high- Tc RE-Ba-Cu-O

    International Nuclear Information System (INIS)

    Fujimoto, Hiroyuki; Yoo, Sang Im; Higuchi, Takamitsu; Nakamura, Yuichi; Kamijo, Hiroki; Nagashima, Ken; Murakami, Masato

    1999-01-01

    Superconducting magnets made of high-T c superconductors are promising for industrial applications. It is well known that REBa 2 Cu 3 O 7-x and LRE (light rare-earth) Ba 2 Cu 3 O 7-x superconductors prepared by melt processes have a high critical current density, J c , at 77 K and high magnetic fields. Therefore, the materials are very prospective for high magnetic field application as a superconducting permanent/bulk magnet with liquid-nitrogen refrigeration. LREBaCuO bulks, compared with REBaCuO bulks, exhibit a larger J c in high magnetic fields and a much improved irreversibility field, H irr , at 77 K. In this study, we discuss the possibility and trapped field properties of a superconducting bulk magnet, as well as the melt processing for bulk superconductors and their characteristic superconducting properties. One of the applications is a superconducting magnet for the future magnetically levitated (Maglev) train

  4. Proximity-effect and tunneling in YBa2Cu3O7/metal layered structures

    International Nuclear Information System (INIS)

    Greene, L.H.; Feldmann, W.L.; Barner, J.B.; Farrow, L.A.; Miceli, P.F.; Ramesh, R.; Wilkens, B.J.; Bagley, B.G.; Giroud, M.; Rowell, J.M.

    1990-01-01

    Superconducting thin films of YBa 2 Cu 3 O 7 are prepared in-situ by on-axis sputter deposition from a single, composite target. The planar magnetron target composition of YBa:Cu = 1.08:1.76:4.5 sputtered onto MgO at T ∼ 750 degrees C in a 600 mTorr Ar-O 2 atmosphere yields reproducible superconducting films having T c (R = 0) > 80 K and stoichiometry 1:2:3, that are shiny and of near epitaxial crystalline quality. In order to ensure clean interfaces, YBa 2 Cu 3 O 7 /normal metal bilayers (to form SNS' Josephson junctions) and YBa 2 Cu 3 O 7 /normal metal/insulating barrier trilayers (to form SNIS' proximity tunnel junctions) are grown completely in-situ. (The S' = Pb counter electrode is evaporated ex-situ.) A supercurrent and Shapiro steps are observed in microwave irradiated SNS' (N = Ag) small area (5 x 10 -5 cm 2 junctions. In SNIS' tunnel junctions, high-quality Pb tunnelling is observed

  5. Charge density wave fluctuations in La{sub 2-x}Sr{sub x}CuO{sub 4} and their competition with superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Croft, Thomas; Lester, Christopher; Hayden, Stephen [H.H. Wills Physics Laboratory, University of Bristol (United Kingdom); Bombardi, Alessandro; Senn, Mark [Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, Oxfordshire (United Kingdom)

    2015-07-01

    The recent observations of charge and stripe correlations in YBa{sub 2}Cu{sub 3}O{sub 6+x} and La{sub 2-x}Ba{sub x}CuO{sub 4} has reinvigorated interest in their role in influencing the superconductivity of the cuprates. However, structural complications of these systems makes it difficult to isolate the effect the lattice has in inducing the charge order. Here, we report hard X-ray diffraction measurements on three compositions (x=0.11,0.12,0.13) of the high-temperature superconductor La{sub 2-x}Sr{sub x}CuO{sub 4}, a canonical example of HTS with T{sub c} ∼ 35 K and a simple crystal structure. All samples show charge-density-wave (CDW) order with onset temperatures in the range 51-80 K and ordering wavevectors close to (0.23,0,0.5). We present a phase diagram of La{sub 2-x}Sr{sub x}CuO{sub 4} including the pseudogap phase, CDW and magnetic order.

  6. Lead-doped electron-beam-deposited Bi-Sr-Ca-Cu-O superconducting thin films

    Energy Technology Data Exchange (ETDEWEB)

    Agnihotry, S.A.; Saini, K.K.; Kant, C.; Sharma, C.P.; Ekbote, S.N.; Asthana, P.; Nagpal, K.C.; Chandra, S. (National Physical Lab., New Delhi (India))

    1991-03-20

    Superconducting thin films of the lead-doped Bi-Sr-Ca-Cu-O system have been prepared on (100) single-crystal SrTiO{sub 3} substrates by an electron beam deposition technique using a single sintered pellet as the evaporation source. As-deposited films are amorphous and non-superconducting; post-deposition annealing at an optimized temperature in air has been found to result in crystalline and superconducting films. The superconducting characteristics of the films have been observed to be sensitive not only to the duration and temperature of post-deposition annealing but also to the lead content and the sintering parameters for the pellet to be used as the evaporation source. A pellet with nominal composition Bi{sub 3}Pb{sub 1}Sr{sub 3}Ca{sub 3}Cu{sub 4}O{sub y} that had been sintered for 200 h zero resistivity Tc{sup 0}=112 K. However, films deposited using such a pellet as the evaporation source had Tc{sup 0} {approx equal} 73-78 K, as had the films deposited from a pellet without any lead. We investigated systematically films deposited from pellets with more lead and sintered for different durations. It is evident from these investigations that pellets with nominal composition Bi{sub 3}Pb{sub 2}Sr{sub 3}Ca{sub 3}Cu{sub 4}O{sub y}, i.e. with an excess of lead, and sintered for about 75 h when used as the evaporation source yield films with Tc{sup 0} {approx equal} 100 K when annealed between 835 and 840deg C for an optimized long duration. The films are characterized by X-ray diffraction and energy-dispersive spectroscopy techniques and have been found to be highly c axis oriented. The effect of lead in promoting a high Tc{sup 0}=110 K phase seems to be similar to that in bulk ceramics. (orig.).

  7. Light induced superconductivity in underdoped YBa{sub 2}Cu{sub 3}O{sub x}

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, Stefan [Max-Planck-Institut fuer die Struktur und Dynamik der Materie, Hamburg (Germany); Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany); 4. Physikalisches Institut und Research Center SCoPE, Uni Stuttgart (Germany); Nicoletti, Daniele; Hunt, Cassi; Hu, Wanzheng; Mankowsky, Roman; Foerst, Michael; Gierz, Isabella; Cavalleri, Andrea [Max-Planck-Institut fuer die Struktur und Dynamik der Materie, Hamburg (Germany); Loew, Toshinao; LeTacon, Mathieu; Keimer, Bernhard [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)

    2015-07-01

    Photo-stimulation with femtosecond mid-infrared pulses allows us to induce an inhomogeneous non-equilibrium superconducting state in YBa{sub 2}Cu{sub 3}O{sub x} at temperatures as high as 300 K. Its transient response is probed via THz time-domain spectroscopy. We measure and characterize its complex optical response above and below the superconducting transition temperature T{sub c}: Below T{sub c}, we find an enhancement of the optical signatures of superconducting coherence. Above T{sub c} we find that the incoherent optical properties at equilibrium become highly coherent with optical signatures very similar to the ones for superconductors below T{sub c}. In the course of understanding these observations, ultrafast x-ray experiments at LCLS allow us observing reconstructed crystal structure in the transient superconducting state and the influence of competing CDW-order to the phonon-excitation.

  8. High-temperature superconducting oxide synthesis and the chemical doping of the Cu-O planes

    International Nuclear Information System (INIS)

    Tarascon, J.M.; Barboux, P.; Bagley, B.G.; Greene, L.H.; McKinnon, W.R.; Hull, G.W.

    1987-01-01

    Different synthesis techniques for the preparation of dense superconducting ceramics are discussed, and a sol-gel process is shown to be very promising. The effect of oxygen content, and the effect of substitution of Ni and Zn for copper, on the structural, transport and superconducting properties of the La-Sr-Cu-O and Y-Ba-Cu-O systems are presented. The authors find that substitution on the copper sites destroys T/sub c/ in the La-Sr-Cu-O system and decreases it in the Y-Ba-Cu-O system, and this effect is insensitive as to whether the 3d metal is magnetic (Ni) or diamagnetic (Zn). A detailed study of the YBa/sub 2/Cu/sub 3/O/sub 7-y/ system as a function of oxygen content (y) shows that superconductivity can be destroyed in these materials by the removal of oxygen and restored by reinjecting oxygen; either thermally at 500 0 C or at temperatures (80 0 C) compatible with device processing by means of a novel plasma oxidation process. Of scientific interest, the plasma process induces bulk superconductivity in the undoped La/sub 2/CuO/sub 4/

  9. Effects of Zn doping on crystal structure, Raman spectra and superconductivity of SmBa2Cu3O7−δ systems

    International Nuclear Information System (INIS)

    Xue, Renzhong; Dai, Haiyang; Chen, Zhenping; Li, Tao; Xue, Yuncai

    2013-01-01

    Highlights: ► Zn ions affect significantly the lattice parameter of the SmBa 2 Cu 3−x Zn x O 7−δ (SBCZO) ceramic. ► Raman spectra of SBCZO samples obviously change with increasing Zn doping content. ► The superconducting transition temperature decreases with increasing Zn content. ► Induced lattice disorder and local magnetic moment in CuO 2 planes are related to suppression of T c . -- Abstract: Polycrystalline SmBa 2 Cu 3−x Zn x O 7−δ (SBCZO) (x = 0.0–0.4) samples are prepared by the usual solid-state reaction technique. The effects of Zn doping on the structure, the grain morphology, Raman spectra and electronic transport properties of SBCZO systems have been investigated. The orthorhombic structure of the samples does not change remarkably. The samples become denser and grain boundary becomes unclear with the increase of Zn content. Raman spectra exhibit different features with increasing Zn content which shows that Zn ions act as strong scattering centers to the charge carriers in the CuO 2 planes, enhance the disorder of the CuO 2 planes and increase oxygen depletion in Cu-O chains. The measurements of the resistivity show that the superconducting transition temperature T c decreases rapidly and the superconducting transition width increases gradually with increasing Zn contents. Furthermore, the changes of the samples’ normal state resistivity from metallic to semi-conducting behavior show the increase of heterogeneities with increasing Zn content which causes inter-grain or intra-grain disorders. All the results suggest that lattice disorder in the CuO 2 planes, the oxygen content change in Cu-O chains and local weak superconductivity regions due to the substitution of Zn for Cu are related to the suppression of T c in the SBCZO systems

  10. Fabrication of Y-Ba-Cu-O (123) cuprate superconducting system and study of their electrical and structural properties

    International Nuclear Information System (INIS)

    Ahmed, F.; Hossain, M.K.; Sultana, H.R.; Abdul Hossain, M.; Khan, A.H.

    2005-08-01

    We know that in the YBa 2 Cu 3 O 6+x superconducting system transition temperature T c is highly dependent on the oxygen content in the compound. So, in order to fabricate superconducting YBa 2 Cu 3 O 6+x material under oxygen flow we have fabricated a tube furnace. Superconducting YBa 2 Cu 3 O 7-δ compounds were synthesized by the solid state reaction method. Different pressure for the pellet formation, different sintering and annealing conditions in air or in oxygen atmosphere were carried out to study the effect on the formation of superconducting phase. Samples were characterized by dc electrical resistance and X-ray diffraction. Superconducting Y 1-x Ca x Ba 2 Cu 3 O 7-δ compounds are now under investigation. (author)

  11. Ca doping of TSMTG-YBa2Cu3O7-δ/Y2BaCuO5 composites

    International Nuclear Information System (INIS)

    Delorme, F.; Harnois, C.; Monot-Laffez, I.; Marinel, S.

    2002-01-01

    Calcium doped YBa 2 Cu 3 O 7-δ /Y 2 BaCuO 5 bulk samples have been synthesised by the top-seeding-melt-texture growth (TSMTG) process up to 1 wt.% of CaCO 3 . Calcium additions up to 0.25 wt.% of CaCO 3 do not change the decomposition temperature whereas additions of 1 wt.% of CaCO 3 lead to an increase of the decomposition temperature of about 10 deg. C. This difference is not important enough to change the thermal cycle used to process YBa 2 Cu 3 O 7-δ undoped bulk samples. Microstructure studies show that no precursor or secondary phases containing calcium are present in the samples. Energy dispersive spectroscopy analyses have shown that Ca is present both in the YBa 2 Cu 3 O 7-δ matrix and the Y 2 BaCuO 5 particles. The position of the calcium atoms in the superconducting matrix is discussed. The calcium doped samples present slightly depressed critical temperatures but drastically depressed critical current densities

  12. Effect of lead addition on the formation of superconducting phases in Bi-Sr-Ca-Cu-O ceramics

    International Nuclear Information System (INIS)

    Martinelli, A.E.

    1991-01-01

    Superconducting ceramics with starting composition Bi 2 - x Pb x Sr 2 Ca 2 Cu 3 O y (0,0 ≤ X ≤ 0,6) were prepared in order to investigate the effects of partial substitution of Pb for Bi and sintering time and atmosphere in the formation of superconducting phases. For all samples X-ray diffraction analyses were performed to estimate the amount of superconducting phases; superconductivity was analysed by dc electrical resistance and ac magnetic susceptibility measurements. The main results show that: a) the longer the sintering time (up to 168 h), the larger the volume fraction of superconducting phases with critical temperature (T c ) greater than the temperature of nitrogen liquefaction; b) by partially substituting Pb for Bi it is possible to restrain the formation of 2212 phase (T c = 80 K) and to enhance the amount of 2223 phase (T c = 105 K); C) a heat treatment under oxygen atmosphere before sintering enhances the formation of 2223 phase. (author)

  13. Magnetization of in situ multifilamentary superconducting Nb3Sn-Cu composites

    International Nuclear Information System (INIS)

    Shen, S.S.; Verhoeven, J.D.

    1980-01-01

    Magnetic properties are reported for in situ superconducting Nb 3 Sn composites that have exhibited attractive electrical properties and superior mechanical characteristics. Magnetization measurements were conducted up to 4 T at 4.2 K on a variety of samples of different sizes and twist pitches, and the results are presented in absolute M-H curves and losses per cycle. It is observed that the magnetization of such composites is generally proportional to the size of the wire (approx. 0.25 to 0.51 mm) rather than the fiber size (approx. 10 -7 m), which indicates a strong coupling effect among Nb 3 Sn fibers

  14. Effect of Cu2O morphology on photocatalytic hydrogen generation and chemical stability of TiO2/Cu2O composite.

    Science.gov (United States)

    Zhu, Lihong; Zhang, Junying; Chen, Ziyu; Liu, Kejia; Gao, Hong

    2013-07-01

    Improving photocatalytic activity and stability of TiO2/Cu2O composite is a challenge in generating hydrogen from water. In this paper, the TiO2 film/Cu2O microgrid composite was prepared via a microsphere lithography technique, which possesses a remarkable performance of producing H2 under UV-vis light irradiation, in comparison with pure TiO2 film, Cu2O film and TiO2 film/Cu2O film. More interesting is that in TiO2 film/Cu2O microgrid, photo-corrosion of Cu2O can be retarded. After deposition of Pt on its surface, the photocatalytic activity of TiO2/Cu2O microgrid in producing H2 is improved greatly.

  15. Theoretical and experimental determination of mechanical properties of superconducting composite wire

    International Nuclear Information System (INIS)

    Gray, W.H.; Sun, C.T.

    1976-07-01

    The mechanical properties of a composite superconducting (NbTi/Cu) wire are characterized in terms of the mechanical properties of each constituent material. For a particular composite superconducting wire, five elastic material constants were experimentally determined and theoretically calculated. Since the Poisson's ratios for the fiber and the matrix material were very close, there was essentially no (less than 1 percent) difference among all the theoretical predictions for any individual mechanical constant. Because of the expense and difficulty of producing elastic constant data of 0.1 percent accuracy, and therefore conclusively determining which theory is best, no further experiments were performed

  16. Positron and TSL-studies of superconducting ceramics YBa 2Cu3Oy for various y

    International Nuclear Information System (INIS)

    Aravin, L.G.; Bobolev, A.V.; Gustov, V.V.; Ryzhkov, A.I.; Shantarovich, V.P.; Vydrin, S.N.; Zainullin, R.N.

    1990-01-01

    The effect of oxygen content on the defectivity and structure of the high temperature superconductor YBa 2 Cu 3 O y (6.0 < y < 7.0) has been investigated using positron annihilation lifetime spectroscopy (LS) and thermally stimulated luminescence (TSL). Data analysis and comparison enabled a conclusion on positron trapping by metal (Ba,Cu) but not by oxygen vacancies (contrary to electrons). The trapping rate was sufficiently dependent on oxygen content in the sample. The transition range y between orthorombic (superconducting) and tetragonal (nonsuperconducting) phases was characterized by the increased content of not only oxygen but also metal (Ba,Cu) vacancies

  17. Grain boundaries and defects in superconducting Bi-Sr-Ca-Cu-O ceramics

    International Nuclear Information System (INIS)

    Ramesh, R.; Bagley, B.G.; Tarascon, J.M.; Green, S.M.; Rudee, M.L.; Luo, H.L.

    1990-01-01

    Defects and structural interfaces in superconducting Bi-Sr-Ca-Cu-O have been characterized by transmission electron microscopy. The superconducting phase exhibits frequent variations in the stacking sequence (polytypoids). Dislocations, observed inside the grains, either introduce or accommodate the shear in the a-b plane and the local composition fluctuations. In general, the grains exhibit a platelike morphology with the a-b plane as the grain boundary plane. Grain boundaries along the short edge are generally disordered, whereas those near the long edge generally have a thin layer of the lower T c polytypoid. Coherent intragranular boundaries are also observed

  18. Spin density wave induced disordering of the vortex lattice in superconducting La2−xSrxCuO4

    DEFF Research Database (Denmark)

    Chang, J.; White, J.S.; Laver, M.

    2012-01-01

    We use small-angle neutron scattering to study the superconducting vortex lattice in La2-xSrxCuO4 as a function of doping and magnetic field. We show that near optimally doping the vortex lattice coordination and the superconducting coherence length. are controlled by a Van Hove singularity...

  19. High temperature superconductivity in Zn and Mn substituted (Tl,Cr)Sr2CaCu2O7

    International Nuclear Information System (INIS)

    Lo, S.V.; Abd Shukor, R.

    1999-01-01

    Samples with nominal starting composition (TICr 0 .15)Sr 2 (Ca 1-x M x )Cu 2 O 7 (TI-1212) for x=0 - 0.7 with M= Zn and Mn have been prepared and investigated by powder X-ray diffraction (XRD) and electrical resistance measurements. All sample showed a mixed phase of 1212 and 1201. Dominant 1212-phase was observed for x=0.0-0.5 and x=0.0-0.4, for Zn and Mn series, respectively. The superconducting transition temperature was suppressed when Zn and Mn are substituted at the Ca site. For the Zn series the normal state behavior is metallic throughout the doping range. For the Mn series the normal state behavior is metallic for 0.1≤x≥0.3 and semiconducting like x>0.3. The suppression of T c and formation of the TI-1212 phase are discussed in terms of the ionic radius and valence state of the substituted elements. (author)

  20. Superconducting Cd and Ca doped 123 phase in Cdo.8Ba2(Y0.7Ca0.4) Cu3.5Oy

    International Nuclear Information System (INIS)

    Balchev, N.; Kovachev, V; THOMAS, J.; BIEGER, W.; Konstantinov, K.; Kunev, B.

    1999-01-01

    A new Cd-containing superconductor with nominal composition of Cd 0.8 Ba 2 (Y 0.7 Ca 0.4 ) Cu 3.5 O y and T c = 80 K was synthesized and investigated. The obtained XRD pattern shows that the dominating phase is an orthorhombic 123. It was shown that the presence of Cd and Ca facilitates the 123 phase formation. The results of the EDX analysis on SEM and TEM have shown that the distribution of the Cd and Ca in the samples is inhomogeneous. The two elements enter the 123 phase in most of the investigated crystals and form a new Cd-Ba-Y-Ca-Cu-O superconducting compound

  1. Femtosecond optical detection of quasiparticle dynamics in high-Tc YBa2Cu3O7-δ superconducting thin films

    International Nuclear Information System (INIS)

    Han, S.G.; Vardeny, Z.V.; Wong, K.S.; Symko, O.G.; Koren, G.

    1990-01-01

    Femtosecond dynamics of photogenerated quasiparticles in YBa 2 Cu 3 O 7-δ superconducting thin films shows, at T≤T c , two main electronic processes: (i) quasiparticle avalanche production during hot-carrier thermalization, which takes about 300 fsec; (ii) recombination of quasiparticles to form Cooper pairs, which is completed within 5 psec. In contrastr, nonsuperconducting epitaxial films such as PrBa 2 Cu 2 O 7 and YBa 2 Cu 3 O 6 show regular picosecond electronic response

  2. Raman spectroscopic investigation of superconducting YBa2Cu3O7/sub -//sub x/, semiconducting YBa2Cu3O6/sub +//sub x/, and possible impurity phases

    International Nuclear Information System (INIS)

    Mascarenhas, A.; Geller, S.; Xu, L.C.; Katayama-Yoshida, H.; Pankove, J.I.; Deb, S.K.

    1988-01-01

    A Raman spectroscopic investigation of specimens of superconducting YBa 2 Cu 3 O/sub 7-//sub x/ and of the possible impurity phases YBa 2 Cu 3 O/sub 6+//sub x/ (semiconductor), Y 2 BaCuO 5 , Y 2 Cu 2 O 5 , BaCuO 2 , CuO, Y 2 O 3 , and BaCO 3 indicates that in the range 100--700 cm -1 , there are six characteristic lines belonging to the superconductor. At 13 K, these lines are at 150, 338, 441, 507, 590, and 644 cm -1 . Comparison of the Raman spectra of the superconductor and the semiconductor indicates a mode stiffening of the pair at 338 and 441 cm -1 , but a mode softening of the pair at 507 and 590 cm -1 . A factor group analysis leads to a tentative assignment of the Raman and infrared allowed modes

  3. Phase composition and superconducting properties of (Pb sub 0 sub . sub 6 Sn sub y Cu sub 0 sub . sub 4 sub - sub y)Sr sub 2 (Y sub 1 sub - sub x Ca sub x)Cu sub 2 O sub z

    CERN Document Server

    Balchev, N; Kunev, B; Souleva, A; Tsacheva, T

    2001-01-01

    The effect of Sn-doping in (Pb sub 0 sub . sub 6 Sn sub y Cu sub 0 sub . sub 4 sub - sub y)Sr sub 2 (Y sub 1 sub - sub x Ca sub x)Cu sub 2 O sub z for 0 <= y <= 0.3 and 0 <= x <= 0.7 was investigated. It was established that a nearly pure 1212 phase could be obtained at 0 <= y <= 0.1 and 0 <= x <= 0.3. The obtained X-ray diffraction (XRD) patterns as well as the results of the inductively coupled plasma atomic emission spectrometry (ICP-AES) and energy-dispersive X-ray (EDX) analysis showed that the Sn-substitution was possible in the (Pb,Cu)-1212 phase. Superconductivity was observed at 0.4 <= x <= 0.7. The onset of the diamagnetic transitions varied from 10 to 30 K. The influence of the strong Pb deficiency on the superconducting properties of the samples was discussed. (authors)

  4. Trapping control of phase development in zone melting of Bi-Sr-Ca-Cu-O superconducting fibres

    International Nuclear Information System (INIS)

    Costa, F M; Carrasco, M F; Silva, R F; Vieira, J M

    2003-01-01

    Highly-texturized polycrystalline fibres of the Bi-Sr-Ca-Cu-O system have been grown by the laser floating zone technique at seven different pulling rates: (1.1, 2.2, 4.17, 8.3, 16.7, 33.3, 60.5) x 10 -6 m s -1 . The assessment of the cation segregation at the solid/liquid interface allowed us to calculate their equilibrium and effective distribution coefficients. The equilibrium distribution coefficients (k 0,Bi = 0.55, k 0,Sr = 0.97, k 0,Ca = 1.67, k 0,Cu = 1.10) were estimated using the Burton, Primm and Slichter (BPS) theory by taking into account the determined effective values. The effective distribution coefficients tend to unity as long as the pulling rate increases. The composition profiles along the initial transient region of the solidified fibres show a fast approach to the nominal composition as the pulling rate increases. The outstanding effect of the growth speed on superconducting phase type development is explained based on the solute trapping phenomena. The sequence of crystallization for superconducting phases ('2212' → '4413' → '2201') with pulling rate is a spontaneous effect of the system thermodynamics in order to balance the Bi trapping. This phase sequence corresponds to the smallest change of Bi chemical potential from the liquid phase to the solid phase. A diagram of free energy curves of the interdendritic superconducting phases illustrates the partitionless solidification phenomena at the highest growth speed

  5. Phase stability of superconductive Y1Ba2Cu4O8

    International Nuclear Information System (INIS)

    Hegde, M.S.; Kumaraswamy, B.V.; Pandey, S.P.; Narlikar, A.V.

    1997-01-01

    The stability of the 124 superconductive phase YBa 2 Cu 4 O 8 upon exposure to air and saturated humidity at ambient temperature has been studied by thermogravimetry, X-ray diffraction, and ac susceptometry. Extent of phase conversion was monitored by TG and confirmed by XRD and ac susceptometry. 124 samples upon prolonged exposure to air were found to be no longer phase-pure, with partial conversion to 123 and CuO. On oxygen annealing, reconversion of 123 + GuO to 124 was observed. However, upon prolonged exposure to saturated humid conditions, phase-pure 124 dissociated irreversibly into 211, GuO, and a highly disordered 124-like structure with planar defects along many hkl indices and was found to be nonsuperconducting even up to 60 K

  6. A study on the superconducting properties of YBa2Cu9-xNbxOy thin films

    International Nuclear Information System (INIS)

    Srinivas, S.; Bhatnagar, A.K.; Pinto, R.

    1994-01-01

    Effect of niobium substitution at the copper site in YBa 2 Cu 9 O 7-x was studied in thin film form. The films were deposited by laser ablation technique using the targets of the YBa 2 Cu 3-x Nb x O y where x = 0.0, 0.025, 0.05, 0.1, 0.2, 0.4, 0.8 and 1.0 under identical deposition conditions on SrTiO 9 substrates. Films were characterized by XRD, resistivity, I-V and J c measurements. Films made from x = 0.025 and 0.05 concentrations of Nb substituted targets showed relatively improved superconducting properties compared to that of undoped films. The best 7 realized for x = 0.025 Nb concentration was 1.8 x 10 σ A/cm 2 and for 0.05 Nb concentration it was 3.2x10 σ A/cm 2 at 77K. However, degradation of the superconducting properties, with the increase of x ≥ 0.1 Nb concentration and drastic suppression and complete loss of superconductivity was noticed for x ≥ 0.4. The growth of impurity phase YBa 2 NbO 6 for x = 0.1 and above of Nb concentration was noticed from XRD patterns. However, the site occupancy of Nb could not be confirmed from these studies

  7. Solid-state interaction between nickel and YBa/sub 2/Cu/sub 3/O/sub x/

    Energy Technology Data Exchange (ETDEWEB)

    Champagne, B; Parent, L; Moreau, C

    1989-01-01

    As part of a search for suitable metals for use in composite cables made up of high-temperature superconductors in a metallic matrix, the solid-state reaction between nickel and YBa/sub 2/Cu/sub 3/O/sub x/ was studied. Green compacts of YBa/sub 2/Cu/sub 3/O/sub x/ were hot isostatically pressed (HIPed) in nickel. The microstructure, density and nature of phases present in HIPed parts were characterized. Resistivity measurements indicated that HIPed parts are not superconducting owing to the loss of oxygen and required an annealing step in oxygen for restoring superconductivity. The diffusion of nickel into YBa/sub 2/Cu/sub 3/O/sub x/ as well as the diffusion of Ba, Cu and Y into nickel was very limited. However, a thin interaction zone consisting of a nickel-rich oxide compound was formed at the Ni-YBa/sub 2/Cu/sub 3/O/sub x/ interface. The presence of such an interaction zone could have a detrimental effect on the thermal stabilization of Ni-YBa/sub 2/Cu/sub 3/O/sub x/ composite wires. 7 refs., 6 figs., 1 tab.

  8. Optical constants of Cu(In, Ga)Se{sub 2} for arbitrary Cu and Ga compositions

    Energy Technology Data Exchange (ETDEWEB)

    Minoura, Shota; Kodera, Keita; Nakane, Akihiro; Fujiwara, Hiroyuki, E-mail: fujiwara@gifu-u.ac.jp [Center of Innovative Photovoltaic Systems (CIPS), Gifu University, 1-1 Yanagido, Gifu 501-1193 (Japan); Maekawa, Takuji [Research and Development Headquarters, ROHM Co., Ltd., 21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585 (Japan); Niki, Shigeru [Research Center for Photovoltaic Technologies, National Institute of Advanced Industrial Science and Technology (AIST), Central2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan)

    2015-05-21

    The optical constants of Cu(In, Ga)Se{sub 2} (CIGS)-based polycrystalline layers with different Cu and Ga compositions are parameterized completely up to a photon energy of 6.5 eV assuming several Tauc-Lorentz transition peaks. Based on the modeled optical constants, we establish the calculation procedure for the CIGS optical constants in a two-dimensional compositional space of (Cu, Ga) by taking the composition-induced shift of the critical point energies into account. In particular, we find that the variation of the CIGS optical constants with the Cu composition can be modeled quite simply by a spectral-averaging method in which the dielectric function of the target Cu composition is estimated as a weighted average of the dielectric functions with higher and lower Cu compositions. To express the effect of the Ga composition, on the other hand, an energy shift model reported earlier is adopted. Our model is appropriate for a wide variety of CIGS-based materials having different Cu and Ga compositions, although the modeling error increases slightly at lower Cu compositions [Cu/(In + Ga) < 0.69]. From our model, the dielectric function, refractive index, extinction coefficient, and absorption coefficient for the arbitrary CIGS composition can readily be obtained. The optical database developed in this study is applied further for spectroscopic ellipsometry analyses of CIGS layers fabricated by single and multi-stage coevaporation processes. We demonstrate that the compositional and structural characterizations of the CIGS-based layers can be performed from established analysis methods.

  9. NMR studies of spin excitations in superconducting Bi2Sr2CaCu2O8+δ single crystals

    Science.gov (United States)

    Takigawa, M.; Mitzi, D. B.

    1994-08-01

    The oxygen NMR shift and the Cu nuclear spin-lattice relaxation rate (1/T1) were measured in Bi2.1Sr1.9Ca0.9Cu2.1O8+δ single crystals. While both the shift and 1/(T1T) decrease sharply near Tc, 1/(T1T) becomes nearly constant at low temperatures, indicating a gapless superconducting state with finite density of states at the Fermi level. From the oxygen shift data, the residual spin susceptibility at T=0 is estimated to be 10% of the value at room temperature. Our results are most consistent with a d-wave pairing model with strong (resonant) impurity scattering.

  10. Conventional proximity effect in bilayers of superconducting underdoped $La_{1.88}Sr_{0.12}CuO_4$ islands coated with non superconducting overdoped $La_{1.65}Sr_{0.35}CuO_4$

    OpenAIRE

    Koren, G.; Millo, O.

    2009-01-01

    Following a recent study by our group in which a large $T_c$ enhancement was reported in bilayers of the non-superconducting $La_{1.65}Sr_{0.35}CuO_4$ and superconducting $La_{1.88}Sr_{0.12}CuO_4$ films [Phys. Rev. Lett. \\textbf{101}, 057005 (2008)], we checked if a similar effect occurs when superconducting $La_{1.88}Sr_{0.12}CuO_4$ islands are coated with a continuous layer of the non superconducting $La_{1.65}Sr_{0.35}CuO_4$. We found that no such phenomenon is observed. The bare supercond...

  11. Critical current density, irreversibility line, and flux creep activation energy in silver-sheathed Bi2Sr2Ca2Cu3Ox superconducting tapes

    International Nuclear Information System (INIS)

    Shi, D.; Wang, Z.; Sengupta, S.; Smith, M.; Goodrich, L.F.; Dou, S.X.; Liu, H.K.; Guo, Y.C.

    1992-08-01

    Transport data, magnetic hysteresis and flux creep activation energy experimental results are presented for silver-sheathed high-T c Bi 2 Sr 2 Ca 2 Cu 3 O x superconducting tapes. The 110 K superconducting phase was formed by lead doping in a Bi-Sr-Ca-Cu-0 system. The transport critical current density was measured at 4.0 K to be 0.7 x 10 5 A/cm 2 (the corresponding critical current is 74 A) at zero field and 1.6 x 10 4 A/cm 2 at 12 T for H parallel ab. Excellent grain alignment in the a-b plane was achieved by a short-melting method, which considerably improved the critical current density and irreversibility line. Flux creep activation energy as a function of current is obtained based on the magnetic relaxation measurements

  12. Structural and superconducting properties of oxygen-deficient NdBa sub 2 Cu sub 3 O sub 7 minus. delta

    Energy Technology Data Exchange (ETDEWEB)

    Shaked, H. (Nuclear Research Center-Negev, Post Office Box 9001, Beer Sheva, Israel (IL) Ben Gurion University of the Negev, Post Office Box 653, Beer Sheva, Israel (IL)); Veal, B.W.; Faber, J. Jr.; Hitterman, R.L.; Balachandran, U.; Tomlins, G.; Shi, H.; Morss, L.; Paulikas, A.P. (Argonne National Laboratory, Argonne, Illinois 60439 (USA))

    1990-03-01

    Neutron diffraction was used to determine the structural properties of oxygen deficient NdBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} for 0.09{lt}{delta}{lt}0.74. It was found that superconductivity disappears at the orthorhombic-to-tetragonal phase transition which occurs at {delta}{sub {ital O}{ital T}}=0.45. Structural parameters vary smoothly with {delta} but exhibit a change in slope at the orthorhombic-to-tetragonal transition. The structural properties exhibit the same features found in YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} where {delta}{sub {ital O}{ital T}}=0.65. It is shown that the repulsion energy of oxygen atoms in the O(1) and O(5) sites in NdBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} is smaller than in YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}}. This lower repulsion energy stabilizes the orthorhombic phase at lower values of {delta}. It is argued that the disappearance of superconductivity at the orthorhombic-to-tetragonal transition is an inherent property of the {ital R}Ba{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} ({ital R} denotes rare earth) system.

  13. Effect of Pb and Ag additions on electrical properties Bi2Sr2Ca2Cu3Ox superconductive ceramics

    International Nuclear Information System (INIS)

    Reddi, B.V.; Uskov, E.M.

    1990-01-01

    The influence of Pb and Ag additions on the electrical properties of Bi 2 Sr 2 Ca 2 Cu 3 O x superconducting ceramics has been studied by Hall method. It was found that the Pb additions has more influence on the sample characteristics than Ag. It was found, that Hall EMF at 77 K equal to zero in the samples having some residue resistance

  14. Conductivity fluctuation and superconducting parameters of the YBa2Cu3-x (PO4) x O7-δ material

    International Nuclear Information System (INIS)

    Rojas Sarmiento, M.P.; Uribe Laverde, M.A.; Vera Lopez, E.; Landinez Tellez, D.A.; Roa-Rojas, J.

    2007-01-01

    Synthesis of the YBa 2 Cu 3- x (PO 4 ) x O 7- δ superconducting material by the standard solid-state reaction is reported. DC resistivity measurements reveal the improvement of the critical temperature (T C ) when substitution of phosphate in the Cu sites is performed. A bulk T C =97 K was determined by the criterion of the maximum in the temperature derivative of electrical resistivity. Structure characterization by means the X-ray diffraction technique shows the crystalline appropriated distribution of PO 4 into the CuO 2 superconducting planes. In order to examine the effect of phosphates on the pairing mechanism close to T C , conductivity fluctuation analysis was performed by the method of logarithmic temperature derivative of the conductivity excess. We found the occurrence of Gaussian-like fluctuations. The correlations of the critical exponents with the dimensionality of the fluctuation system for each Gaussian regime were performed by using the Aslamazov-Larkin theory. The Ginzburg number for this superconducting material is predicted and the critical magnetic fields, critical current density and the jump in the specific heat at the critical temperature are theoretically determined

  15. Mechanical properties and bending strain effect on Cu-Ni sheathed MgB2 superconducting tape

    International Nuclear Information System (INIS)

    Fu, Minyi; Chen, Jiangxing; Jiao, Zhengkuan; Kumakura, H.; Togano, K.; Ding, Liren; Zhang, Yong; Chen, Zhiyou; Han, Hanmin; Chen, Jinglin

    2004-01-01

    The Young's modulus (E) of Cu-Ni sheathed MgB 2 monofilament tape was measured using electric method. It is about 8.05 x 10 10 Pa, the same order of Cu and its alloys. We found that the lower E value of the MgB 2 component seemed to relate to the lower filament density. The benefits of pre-compression in filaments were discussed in terms of improving stress distribution in the wires and tapes during winding and operation of superconducting magnets. The magnetic field dependence of J c was investigated on the sample subjected to various strain levels through bending with different radii at 4.2 K

  16. Melt processing of the Bi2Sr2CaCu2Oy superconductor in oxygen and argon atmospheres

    International Nuclear Information System (INIS)

    Holesinger, T.G.; Miller, D.J.; Chumbley, L.S.

    1992-08-01

    Solidification and subsequent annealing of Bi 2 Sr 2 CaCu 2 O y (2212) in oxygen and argon atmospheres were investigated in order to identify alternative processing routes for controlling microstructures and superconducting properties. In addition to 2212, several other phases formed on cooling in O 2 and did not disappear upon subsequent annealing. Crystallization in Ar resulted in a divorced eutetic structure of Bi 2 Sr 3-x Ca x O y and Cu 2 O/CuO. The superconductor was formed on subsequent anneals. Samples melted in Ar and then annealed generally possessed a more uniform microstructure compared with samples that were melted in oxygen and annealed. Compositional measurements of the 2212 phase suggest that CaO segregation in the melt may be minimized with an overall composition such as Bi 2.15 Sr 2 Ca 0.85 Cu 2 O y

  17. Superconductivity in Multiple Phase Sr2Ln1–xCaxGaCu2O7 and Characterization of La2–xSrxCaCu2O6+δ

    NARCIS (Netherlands)

    Cava, R.J.; Dover, R.B. van; Batlogg, B.; Krajewski, J.J.; Schneemeyer, L.F.; Siegrist, T.; Hessen, B.; Chen, H.; Peck, Jr.; Rupp, Jr. L.W.

    1991-01-01

    We have observed the occurrance of superconductivity at temperatures between 40 and 50K for multiple phase samples of Sr2Ln1–xCaxGaCu2O7 treated at 950-1000°C at 25 atmospheres oxygen pressure. We have not been able to find conditions at oxygen pressures of 25 atmospheres or below which make single

  18. Preparation of high critical temperature YBa2Cu3O7 superconducting coatings by thermal spray

    International Nuclear Information System (INIS)

    Lacombe, Jacques

    1991-01-01

    The objective of this research thesis is the elaboration of YBa 2 Cu 3 O 7 superconducting coatings by thermal spray. These coatings must have a high adherence, a high cohesion, and the best possible electrical characteristics. The author first briefly presents physical-chemical characteristics of this ceramic, and proposes a bibliographical synthesis on thick coatings prepared by thermal spray. In the next parts, he studies and describes conditions of elaboration of poly-granular coatings of YBa 2 Cu 3 O 7 , and their structural and electric characteristics [fr

  19. Moessbauer studies of 57Fe substitution of Cu ions in superconducting oxides

    International Nuclear Information System (INIS)

    Saitovitch, E.B.

    1988-01-01

    Since the discovery of high-T c superconductivity in YBa 2 Cu 3 O 7 oxides several studies of metal ions substitutions were reported. The observed depression on T c without a systematic correlation with the charge and magnetic moment of Cu substituents claims for more detailed information about its local properties as can be revealed by 57 Fe Moessbauer spectroscopy. The results for different iron concentrations combined with modifications of the superconducting transition are discussed concerning the presence of magnetic moments on the Fe ions and the preferential occupation of Cu(1) sites, recently confirmed by neutron and electron diffraction experiments. The oxygen coordination for the different iron species are proposed on the basis of their dependence on Fe concentration, their behavior at high temperatures as well as the electron diffraction and electron microscopy measurements reported for Fe: YBa 2 Cu 3 O 7 samples. (author) [pt

  20. Coexistence of superconductivity and magnetism in Er{sub 2}Ba{sub 4}Cu{sub 7}O{sub 14.3}

    Energy Technology Data Exchange (ETDEWEB)

    Mesot, J; Boettger, G; Fischer, P [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Suard, E [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France); Berastegui, P

    1997-09-01

    The Er{sub 2}Ba{sub 4}Cu{sub 7}O{sub 14+{delta}} compounds show a very interesting behaviour upon removing of oxygen. Although the samples remain superconducting when going from {delta}=1 to {delta}=0, our low temperature elastic and inelastic measurements ({delta}<14.3) strongly indicate that a magnetic field is present at the Er site. Such a field could be generated by magnetically active Cu atoms in one of the neighbouring CuO{sub 2} planes. (author) 3 figs., 2 refs.

  1. RF properties of superconducting Pb electroplated onto Cu

    International Nuclear Information System (INIS)

    Delayen, J.R.

    1988-01-01

    The properties of Pb as a superconducting material for high power rf applications are reviewed. The most common method of producing Pb superconducting resonators, which is by electrodeposition of a thin layer on a Cu substrate, is described, and some suggestions for further development are presented. 56 references, 11 figures, 1 table

  2. Effects of out-of-plane disorder on the superconductivity of Bi{sub 2}Sr{sub 2-x}La{sub x}CuO{sub 6+{delta}}

    Energy Technology Data Exchange (ETDEWEB)

    Roehler, Juergen; Trabant, Christoph; Frielingsdorf, Johanna; Djemour, Rabia [Universitaet Koeln, 50937 Koeln (Germany); Martovitsky, Victor [Lebedev-Institute, 119991 Moscow (Russian Federation); Dudy, Lenart; Dwelk, Helmut; Krapf, Alica [Humboldt Universitaet Berlin, 12489 Berlin (Germany)

    2008-07-01

    The effects of out-of-plane substitutional order/disorder on cuprate superconductivity remains to a large extent an unresolved issue. We have investigated the connection between superconductivity and the lattice effects arising from the heterovalent doping of Bi{sub 2}Sr{sub 2-x}La{sub x}CuO{sub 6+{delta}}, x = 0.8-0.1. Decreasing lanthanum content tunes the compound through the entire underdoped and overdoped regimes. Cu-K and La- K EXAFS served as local structural probes, and single crystal X-ray diffraction for the determination of the basic unit cell, and the symmetry of the supercell. The oxygen atoms in the CuO{sub 2} planes were found significantly disordered, dependent on doping, and to exhibit minimum disorder around x{sub opt}=0.33. But the degree of substitutional disorder in the out-of-plane La environment turned out independent on the concentration of the La dopants, the superstructure symmetry, and the crystal growth parameters, whereas T{sub c} depends sensitively on them. No evidence was found for possible concentration dependent site changes of the La dopant from the nominal Sr to the Bi sites. We discuss the probably crucial role of the interstitial oxygen atoms for the superconducting properties of the Bi{sub 2}Sr{sub 2-x}La{sub x}CuO{sub 6+{delta}} system.

  3. Trapped magnetic field of a superconducting bulk magnet in high- T sub c RE-Ba-Cu-O

    CERN Document Server

    Fujimoto, H; Higuchi, T; Nakamura, Y; Kamijo, H; Nagashima, K; Murakami, M

    1999-01-01

    Superconducting magnets made of high-T sub c superconductors are promising for industrial applications. It is well known that REBa sub 2 Cu sub 3 O sub 7 sub - sub x and LRE (light rare-earth) Ba sub 2 Cu sub 3 O sub 7 sub - sub x superconductors prepared by melt processes have a high critical current density, J sub c , at 77 K and high magnetic fields. Therefore, the materials are very prospective for high magnetic field application as a superconducting permanent/bulk magnet with liquid-nitrogen refrigeration. LREBaCuO bulks, compared with REBaCuO bulks, exhibit a larger J sub c in high magnetic fields and a much improved irreversibility field, H sub i sub r sub r , at 77 K. In this study, we discuss the possibility and trapped field properties of a superconducting bulk magnet, as well as the melt processing for bulk superconductors and their characteristic superconducting properties. One of the applications is a superconducting magnet for the future magnetically levitated (Maglev) train.

  4. Structural and superconducting characteristics of YBa2Cu3O7 films grown by fluorine-free metal-organic deposition route

    DEFF Research Database (Denmark)

    Zhao, Yue; Chu, Jingyuan; Qureishy, Thomas

    2018-01-01

    Microstructure and superconducting performance of YBa2Cu3O7 (YBCO) films deposited on LaAlO3 single crystal (LAO) substrates by a fluorine-free metal-organic deposition (FF-MOD) technique, have been studied by means of X-ray reciprocal space mapping (RSM), cross-sectional transmission electron mi...... external magnetic field at 77 K. This work offers an in-depth insight into the correlation between the microstructure and superconductivity in the MOD YBCO films.......Microstructure and superconducting performance of YBa2Cu3O7 (YBCO) films deposited on LaAlO3 single crystal (LAO) substrates by a fluorine-free metal-organic deposition (FF-MOD) technique, have been studied by means of X-ray reciprocal space mapping (RSM), cross-sectional transmission electron....... It is suggested that associated partial dislocations formed at the boundary between the stacking faults and YBCO matrix act as strong linear (or dot) pinning centers. These structural characteristics are well in line with the better superconducting performance of the low fluorine-MOD film, in particular under...

  5. Influence of oxygen stoichiometry on the structure and superconducting transition temperature of YBa 2Cu 3O x

    Science.gov (United States)

    Farneth, W. E.; Bordia, R. K.; McCarron, E. M.; Crawford, M. K.; Flippen, R. B.

    1988-06-01

    A detailed study of the superconducting properties and the crystal symmetry of YBa 2Cu 3O x as a function of oxygen content (x) is presented. We correlate the oxygen content, structure and superconducting transition temperature for YBa 2Cu 3O x (6topotactic intercalation/deintercalation of oxygen. It is shown that the orthorhombic to tetragonal phase transition coincides with a loss in superconductivity for samples prepared both by quenching from high temperature and samples prepared by deoxygenation at low temperature. For the orthorhombic phase, T c monotonically decreases as x goes from 7.0 to 6.4 along with a complementary decrease in the extent of orthorhombic distortion. The decrease in T c, however, is not uniform. For quenched samples it shows a plateau for x ˜ 6.75 to 6.55 and then a rather abrupt drop around x ˜ 6.5. Comparison of our data with the literature indicates that the dependence of superconducting properties and crystal structure on the oxygen content can be a complex function of sample processing history. Samples with the same oxygen content but prepared in different ways may have x-ray powder patterns that are indistinguishable, but significantly different electrical properties.

  6. Microstructure of laser floating zone (LFZ) textured (Bi,Pb)-Sr-Ca-Cu-O superconductor composites

    International Nuclear Information System (INIS)

    Fuente, G.F. de la; Ruiz, M.T.; Sotelo, A.; Larrea, A.; Navarro, R.

    1993-01-01

    Directionally solidified high temperature superconducting (Bi,Pb)-Sr-Ca-Cu-O pure ceramics and composites were obtained using a laser floating zone (LFZ) apparatus. The presence of secondary non-superconducting and metallic phases as well as their solidification habit have been analysed. The influence of the LFZ growth conditions and the precursor composition on the microstructure of the final products was studied using optical and electron microscopies. (orig.)

  7. Plasticizing of YBa2Cu3Ox powders with some organic additions and their effect on superconducting properties of sintered ceramics

    International Nuclear Information System (INIS)

    Pitov, V.A.; Mozhaev, A.P.; Ludra, M.M.

    1992-01-01

    Characteristics of compactibility of YBa 2 Cu 3 O x powders of various granulometric compositions with and without plasticizer additions are studied. As plasticizers paraffin and polyvinyl alcohol are used. Pressed pellet density dependence on compacting pressure logarithm is described by the first-order equation. Effect of granulometric composition and plasticizers on equation coefficients is analysed, attain high-quality plasticizing of all powders, but decreases their sintering ability. Use of plasticizers doesn't decrease the initial temperature of transition into superconducting state of sintered samples, but in a number of cases leads to increase of its width, as well as decrease of oxygen index value. These drawbacks may be completely avoided by careful distillation of plasticizers from pressed samples with subsequent sintering

  8. Interplay of superconductivity and bosonic coupling in the peak-dip-hump structure of Bi2Sr2CaCu2O8 +δ

    Science.gov (United States)

    Miller, Tristan L.; Zhang, Wentao; Ma, Jonathan; Eisaki, Hiroshi; Moore, Joel E.; Lanzara, Alessandra

    2018-04-01

    Because of the important role of electron-boson interactions in conventional superconductivity, it has long been asked whether any similar mechanism is at play in high-temperature cuprate superconductors. Evidence for strong electron-boson coupling is observed in cuprates with angle-resolved photoemission spectroscopy (ARPES), in the form of a dispersion kink and peak-dip-hump structure. What is missing is evidence of a causal relation to superconductivity. Here we revisit the problem using the technique of time-resolved ARPES on Bi2Sr2CaCu2O8 +δ . We focus on the peak-dip-hump structure, and show that laser pulses shift spectral weight into the dip as superconductivity is destroyed on picosecond time scales. We compare our results to simulations of Eliashberg theory in a superconductor with an Einstein boson, and find that the magnitude of the shift in spectral weight depends on the degree to which the bosonic mode contributes to superconductivity. Further study could address one of the longstanding mysteries of high-temperature superconductivity.

  9. Enhanced Thermoelectric Properties of Graphene/Cu2SnSe3 Composites

    Directory of Open Access Journals (Sweden)

    Degang Zhao

    2017-02-01

    Full Text Available Cu2SnSe3 material is regarded as a potential thermoelectric material due to its relatively high carrier mobility and low thermal conductivity. In this study, graphene was introduced into the Cu2SnSe3 powder by ball milling, and the bulk graphene/Cu2SnSe3 thermoelectric composites were prepared by spark plasma sintering. The graphene nanosheets distributed uniformly in the Cu2SnSe3 matrix. Meanwhile, some graphene nanosheets tended to form thick aggregations, and the average length of these aggregations was about 3 μm. With the fraction of graphene increasing, the electrical conductivity of graphene/Cu2SnSe3 samples increased greatly while the Seebeck coefficient was decreased. The introduction of graphene nanosheets can reduce the thermal conductivity effectively resulting from the phonon scattering by the graphene interface. When the content of graphene exceeds a certain value, the thermal conductivity of graphene/Cu2SnSe3 composites starts to increase. The achieved highest figure of merit (ZT for 0.25 vol % graphene/Cu2SnSe3 composite was 0.44 at 700 K.

  10. Atomistic models of Cu diffusion in CuInSe2 under variations in composition

    Science.gov (United States)

    Sommer, David E.; Dunham, Scott T.

    2018-03-01

    We construct an analytic model for the composition dependence of the vacancy-mediated Cu diffusion coefficient in undoped CuInSe2 using parameters from density functional theory. The applicability of this model is supported numerically with kinetic lattice Monte Carlo and Onsager transport tensors. We discuss how this model relates to experimental measurements of Cu diffusion, arguing that our results can account for significant contributions to the bulk diffusion of Cu tracers in non-stoichiometric CuInSe2.

  11. Superconductivity proximate to antiferromagnetism in a copper-oxide monolayer grown on Bi2Sr2CaCu2O8 +δ

    Science.gov (United States)

    Wang, Shuai; Zhang, Long; Wang, Fa

    2018-01-01

    A nodeless superconducting (SC) gap was reported in a recent scanning tunneling spectroscopy experiment of a copper-oxide monolayer grown on a Bi2Sr2CaCu2O8 +δ (Bi2212) substrate [Zhong et al., Sci. Bull. 61, 1239 (2016), 10.1007/s11434-016-1145-4], which is in stark contrast to the nodal d -wave pairing gap in the bulk cuprates. Motivated by this experiment, we first show with first-principles calculations that the tetragonal CuO (T-CuO) monolayer on the Bi2212 substrate is more stable than the commonly postulated CuO2 structure. The T-CuO monolayer is composed of two CuO2 layers sharing the same O atoms. The band structure is obtained by first-principles calculations, and its strong electron correlation is treated with the renormalized mean-field theory. We argue that one CuO2 sublattice is hole doped while the other sublattice remains half filled and may have antiferromagnetic (AF) order. The doped Cu sublattice can show d -wave SC; however, its proximity to the AF Cu sublattice induces a spin-dependent hopping, which splits the Fermi surface and may lead to a full SC gap. Therefore, the nodeless SC gap observed in the experiment could be accounted for by the d -wave SC proximity to an AF order, thus it is extrinsic rather than intrinsic to the CuO2 layers.

  12. Cell percolation model for electrical conduction of granular superconducting composites. 2

    International Nuclear Information System (INIS)

    Horvath, G.; Bankuti, J.

    1990-01-01

    The percolation of the electrical conductivity of the uniform cells is studied in an in-situ elongated granular superconducting composite on the basis of the uniform cell model improved previously. The critical temperatures are determined in the macroscopic superconducting state of the two- and the three-dimensional composites. (author)

  13. Cu2O/CuO Bilayered Composite as a High-Efficiency Photocathode for Photoelectrochemical Hydrogen Evolution Reaction

    Science.gov (United States)

    Yang, Yang; Xu, Di; Wu, Qingyong; Diao, Peng

    2016-10-01

    Solar powered hydrogen evolution reaction (HER) is one of the key reactions in solar-to-chemical energy conversion. It is desirable to develop photocathodic materials that exhibit high activity toward photoelectrochemical (PEC) HER at more positive potentials because a higher potential means a lower overpotential for HER. In this work, the Cu2O/CuO bilayered composites were prepared by a facile method that involved an electrodeposition and a subsequent thermal oxidation. The resulting Cu2O/CuO bilayered composites exhibited a surprisingly high activity and good stability toward PEC HER, expecially at high potentials in alkaline solution. The photocurrent density for HER was 3.15 mA·cm-2 at the potential of 0.40 V vs. RHE, which was one of the two highest reported at the same potential on copper-oxide-based photocathode. The high photoactivity of the bilayered composite was ascribed to the following three advantages of the Cu2O/CuO heterojunction: (1) the broadened light absorption band that made more efficient use of solar energy, (2) the large space-charge-region potential that enabled a high efficiency for electron-hole separation, and (3) the high majority carrier density that ensured a faster charge transportation rate. This work reveals the potential of the Cu2O/CuO bilayered composite as a promising photocathodic material for solar water splitting.

  14. Compositional analysis of YBaCuO superconducting films with ion beam analysis techniques

    International Nuclear Information System (INIS)

    Jones, S.; Timmers, H.; Ophel, T.R.; Elliman, R.G.

    1999-01-01

    High-T c YBa x Cu y O 7-δ superconducting films are being developed for applications such as superconducting quantum interference devices. The carrier concentration, critical current density J c and critical temperature T c of these films depend sensitively on the oxygen content . Stoichiometry, uniformity with depth, homogeneity across the sample and film thickness are also important quantities for their characterisation. It has been shown, for example, that the stoichiometry of the metallic elements affects the growth characteristics and surface morphology of the films. With the deposit ion techniques used, reproducibility of film properties is difficult. The characterisation of YBa x Cu y O 7-δ films with ion beam analysis techniques is complex. Whereas the three metallic elements can be detected with helium beams and Rutherford Backscattering (RBS), the oxygen signal is generally obscured by that from substrate elements. It can be better detected using resonant backscattering with 3.04MeV 4 He ions or nuclear reaction analysis. Elastic Recoil Detection (ERD) with high-energetic (1MeV/amu), heavy beams (Z > 120), enables all elements to be detected and separated in a single experiment. It is well established that ion bombardment induces vacancies in the oxygen sub-lattice, driving the material to change from crystalline to amorphous, the latter phase having a reduced oxygen content. In previous heavy ion ERD measurements of YBa x Cu yO z films with 200MeV 127 I beams, the opaque films became transparent in the beam spot area, indicative of the amorphous phase. The accuracy of the oxygen measurement is therefore questionable. Indeed, using Raman spectroscopy, distortions of the crystalline structure above a fluence of 5 x 10 11 ion/cm 2 and for higher doses some signatures of a reduction in oxygen content have been observed for such beams. It appears therefore that a correct determination of the oxygen content requires either a drastic reduction in fluence or a

  15. Epitaxial growth and superconducting properties of YBa23Cu3O7 thin films and YBa2Cu3O7/Dy(Pr)Ba2Cu3O7 superlattices

    International Nuclear Information System (INIS)

    Triscone, J.M.; Brunner, O.; Antognazza, L.; Kent, A.D.; Fischer, O.; Karkut, M.G.

    1990-01-01

    The authors have prepared in situ REBa 2 Cu 3 O 7 (REBCO) (RE = Y, Pr, Dy) thin films and YBCO/Dy(Pr)BCO superlattices by single target dc planar magnetron sputtering. YBCO/DyBCO superlattices have been realized with modulation wavelength as short as 24 Angstrom, i.e., a unit cell of YBCO alternates with a unit cell of DyBCO, on average. The superconducting properties of such superlattices are indistinguishable from those of single layers. T co 's (zero resistance) are between 85 and 89K, and the residual resistivity ratios are between 2.5 and 3. In contrast to these results, when YBCO is layered with PrBCO, which is insulating, a dramatic change in the superconducting properties is observed. The authors have been able to artificially vary the coupling between single 12 Angstrom unit cell of YBCO by interposing insulating planes of PrBCO. As the YBCO layer separation increases, T c is reduced and the transition broadens showing evidence of 2-D superconducting fluctuations

  16. Effect of strain on the critical-current density of Cu-Nb composites

    International Nuclear Information System (INIS)

    Klein, J.D.; Rose, R.M.

    1987-01-01

    Microfilamentary superconducting composites of Nb fibers in Cu matrices prepared by the stack and draw method were tested for tensile critical-current performance at 4.2 K. The superconducting critical-current densities increased exponentially under the influence of an applied mechanical strain until the onset of Nb fiber plastic deformation. In the elastic range, the critical-current densities conformed to log 10 J/sub c/ = m (strain)+b. In several tests the critical current was increased by more than an order of magnitude by the applied strain. This behavior is consistent with an increase in the upper critical field of the Nb fibers by the applied stress

  17. Stress/strain characteristics of Cu alloy sheath in situ processed MgB2 superconducting wires

    International Nuclear Information System (INIS)

    Katagiri, Kazumune; Kasaba, Koichi; Shoji, Yoshitaka

    2005-01-01

    The mechanical properties of copper and copper alloy (Cu-Zr, Cu-Be and Cu-Cr) sheath in situ PIT-processed MgB 2 superconducting wires were studied at room temperature (RT) and 4.2 K. The effects of stress-strain on the critical current (I c ) of the wires have also been studied at 4.2 K and in magnetic fields up to 5 T. It has been clarified that alloying the Cu sheath significantly increases the yield and flow stresses of the wires at both RT and 4.2 K. The 0.5% flow stresses of the Cu alloy sheath wire were 147-237 MPa, whereas that of Cu was 55 MPa. At RT, serration corresponding to multiple cracking was observed around a strain of 0.4% and the stress-strain curves saturated beyond that point. The strain dependence of I c prior to the critical strain (ε irr ) was different depending on the magnetic field; being almost constant at 2 T and increasing with strain at 5 T. The I c decreased beyond ε irr , which is much larger for Cu alloy sheath wires as compared to Cu sheath wire. This is due to the difference in the residual compressive strain in the MgB 2 core during cooling from the heat-treatment temperature to 4.2 K, which is determined through relaxation by yielding in the sheath materials. The transverse compression tests revealed that the I c of the Cu alloy sheath wire did not degrade up to 314 MPa, which is also higher than that of Cu sheath wire. (author)

  18. Synthesis and characterization of YBaCu2O5-δ compound

    Science.gov (United States)

    Ehsandoust, A.; Sandoghchi, M.; Mokhtari, P.; Akhavan, M.

    2018-05-01

    YBaCu2O5 compound as one of the possible microstructures of Y3Ba5Cu8O19 has been synthesized. The X-ray diffraction analysis of this compound indicates that its formation is accompanied with the formation of YBa2Cu3O7-δ. The observed superconductivity around ∼92 K supports this. So, it seems that YBa2Cu3O7-δ is responsible for the observed superconductivity in YBaCu2O5, and this phase is not an independent superconducting phase. Consequently, the overall effect of the YBaCu2O5 formation during the Y3Ba5Cu8O19 fabrication process could be a reduction in Tc.

  19. Anisotropy in superconducting gap in YBa2Cu3O7-δ

    Science.gov (United States)

    Verma, Sanjeev K.; Kumari, Anita; Gupta, Anushri; Indu, B. D.

    2018-04-01

    Taking into account the modified form of Born-Mayer-Huggins potential (MBMHP) and many body quantum dynamics based Green's function theory via a modified Hamiltonian which includes the effects of electrons, phonons, anharmonicities, defects and electron-phonon interactions; the quasiparticle renormalized frequency has been obtained and numerically analyzed for high temperature superconductor (HTS) cuprate YBa2Cu3O7-δ. This evaluation enables one to calculate superconducting gap (SG) in [100] and [010] direction through the dispersion of renormalized mode. A higher SG found in [010] than [100] direction at different doping level establishing its anisotropic nature.

  20. Synthesis, structural characterization and fluctuation conductivity of HoBa2Cu3O7-δ-SrTiO3 composites

    International Nuclear Information System (INIS)

    Uribe Laverde, M.A.; Landinez Tellez, D.A.; Roa-Rojas, J.

    2010-01-01

    Single-phase polycrystalline samples of HoBa 2 Cu 3 O 7-δ superconductor and SrTiO 3 isolator were produced by means of the solid state reaction technique. After structural characterization of both materials, superconductor-isolator composites were produced with nominal isolator volume percentages between 0% and 10%. Resistivity measurements for the composites and the HoBa 2 Cu 3 O 7-δ sample with different currents evidenced a superconducting transition with critical temperature T C = 92 K, with wider transitions with increasing either isolator content or measurement current. Fluctuation conductivity analyses were carried out to obtain the exponents characterizing the conductivity divergence. Above T C , apart from the typical Gaussian and critical fluctuations an atypical regime with critical exponent about 0.14 is observed as a precursor of the transition. Below T C , it is observed that the coherence transition characteristic exponent increases rapidly with increasing isolator percentage in the composites and does not show important changes when modifying the current in the pure superconductor sample.

  1. Cu-Ti Formation in Nb-Ti/Cu Superconducting Strand Monitored by in situ Techniques

    CERN Document Server

    Pong, I; Pong, Ian; Gerardin, Alexandre; Scheuerlein, Christian; Bottura, Luca

    2010-01-01

    In order to investigate the high temperature exposure effect on Nb-Ti/Cu superconducting strands, as might be encountered in joining by soldering and in cabling annealing, X-ray diffraction and resistometry measurements were performed in situ during heat treatment, and complemented by conventional metallography, mechanical tests and superconducting properties measurements. Changes of the Nb-Ti nanostructure at temperatures above 300 degrees C are manifested in the degradation of critical current in an applied external magnetic field, although degradation at self field was insignificant up to 400 degrees C for several minutes. Above 500 degrees C, the formation of various Cu-Ti intermetallic compounds, due to Ti diffusion from Nb-Ti into Cu, is detected by in situ XRD albeit not resolvable by SEM-EDS. There is a ductile to brittle transition near 600 degrees C, and liquid formation is observed below 900 degrees C. The formation of Cu-Ti causes a delayed reduction of the residual resistivity ratio (RRR) and adv...

  2. Superconductivity in a new YBaCuO compound at 105 K

    International Nuclear Information System (INIS)

    Kirschner, I.; Bankuti, J.; Gal, M.; Torkos, K.; Solymos, K.G.; Horvath, G.

    1987-01-01

    A superconducting transition has been detected in a (Y 0.8 Ba 0.2 )(CuO 4-δ ) 2 compound by electrical and magnetic measurements. The resistivity begins to decrease at 173 K and the zero-resistivity state sets in at 105 K

  3. Pb solubility of the high-temperature superconducting phase Bi2Sr2Ca2Cu3O10+d

    International Nuclear Information System (INIS)

    Kaesche, S.; Majewski, P.; Aldinger, F.

    1994-01-01

    For the nominal composition of Bi 2.27x Pb x Sr 2 Ca 2 Cu 3 O 10+d the lead content was varied from x=0.05 to 0.45. The compositions were examined between 830 degrees C and 890 degrees C which is supposed to be the temperature range over which the so-called 2223 phase (Bi 2 Sr 2 Ca 2 Cu 3 O 10+d ) is stable. Only compositions between x=0.18 to 0.36 could be synthesized in a single phase state. For x>0.36 a lead containing phase with a stoichiometry of Pb 4 (Sr,Ca) 5 CuO d is formed, for x 2 Sr 2 CaCu 2 O 8+d and cuprates are the equilibrium phases. The temperature range for the 2223 phase was found to be 830 degrees C to 890 degrees C but the 2223 phase has extremely varying cation ratios over this temperature range. Former single phase 2223 samples turn to multi phase samples when annealed at slightly higher or lower temperatures. A decrease in the Pb solubility with increasing temperature was found for the 2223 phase

  4. Direct laser writing of superconducting patterns of Y1Ba2Cu3O/sub 7-//sub δ/

    International Nuclear Information System (INIS)

    Gupta, A.; Koren, G.

    1988-01-01

    Direct argon ion laser writing of 40-μm-wide and 3-μm-thick superconducting lines of Y 1 Ba 2 Cu 3 O/sub 7-//sub δ/ on magnesium oxide (MgO) substrate is reported. A 514.5 nm laser beam of 300 mW was focused onto a thin sprayed film of the nitrate precursors (Y:Ba:Cu = 1:2:3) and scanned over it. The laser beam converted oxides along the irradiation path. The film was then ''developed'' by rinsing it in ethanol, which removed the unirradiated areas, but left the irradiated areas intact. This was followed by the standard oven annealing procedure in flowing oxygen. The resistivity of the laser-written lines as a function of temperature showed an onset and completion of the superconducting transition at 82 and 69 K, respectively. The corresponding values of the unpatterned, blanket film were 82 and 77 K, respectively

  5. Annealing treatment effects on structure and superconductivity in Y1Ba2Cu3O/sub 9-//sub x/

    International Nuclear Information System (INIS)

    Beyers, R.; Lim, G.; Engler, E.M.

    1987-01-01

    We report the effects of heat treatment and ambient on the structure and superconducting properties of Y 1 Ba 2 Cu 3 O/sub 9-//sub x/. The structure undergoes an orthorhombic-to-tetragonal transition on heating at about 700 0 C, caused by oxygen loss and disordering of oxygen vacancies on the copper plane between the barium layers. Heat treatments that promote maximum ordering of the oxygen vacancies result in superior superconducting properties

  6. Origin of photovoltaic effect in superconducting YBa2Cu3O6.96 ceramics

    Science.gov (United States)

    Yang, F.; Han, M. Y.; Chang, F. G.

    2015-01-01

    We report remarkable photovoltaic effect in YBa2Cu3O6.96 (YBCO) ceramic between 50 and 300 K induced by blue-laser illumination, which is directly related to the superconductivity of YBCO and the YBCO-metallic electrode interface. There is a polarity reversal for the open circuit voltage Voc and short circuit current Isc when YBCO undergoes a transition from superconducting to resistive state. We show that there exists an electrical potential across the superconductor-normal metal interface, which provides the separation force for the photo-induced electron-hole pairs. This interface potential directs from YBCO to the metal electrode when YBCO is superconducting and switches to the opposite direction when YBCO becomes nonsuperconducting. The origin of the potential may be readily associated with the proximity effect at metal-superconductor interface when YBCO is superconducting and its value is estimated to be ~10–8 mV at 50 K with a laser intensity of 502 mW/cm2. Combination of a p-type material YBCO at normal state with an n-type material Ag-paste forms a quasi-pn junction which is responsible for the photovoltaic behavior of YBCO ceramics at high temperatures. Our findings may pave the way to new applications of photon-electronic devices and shed further light on the proximity effect at the superconductor-metal interface. PMID:26099727

  7. The microscopic twins and their crystal phase in the high Tc Y-Ba-Cu-O and Dy-Ba-Cu-O superconductive ceramics

    International Nuclear Information System (INIS)

    Zu, Z.J.; Chen, Y.L.

    1988-01-01

    Most consider that the structure of Y-Ba- Cu-O and Dy-Ba-Cu-O stable superconductive crystals with high Tc is associated with the right-angled phase. The superconductivity is closely connected with the right-angled character of the crystalline texture; the better the right- angled character, the better the superconductivity. From statistical investigations of examples the authors have discovered that most of the Y-Ba-Cu-O and Dy-Ba-Cu-O superconductivity with high Tc ceramic crystals is in the monoclinic phase, which, consists of microscopic, lamellar, single twins. The long-columnar grains consisting of lamellar twin slabs show the optical characteristics of right-angled phase. The microscopic twinning and grain morphologies are summarized in this paper

  8. Inducing phase decomposition and superconductivity of Bi2Sr2CaCu2Oy single crystals treated in sulphur atmosphere at low temperature

    International Nuclear Information System (INIS)

    Chen, Q.W.; China Univ. of Science and Technology, Hefei, AH; Wu, W.B.; Qian, Y.T.; China Univ. of Science and Technology, Hefei, AH; Wang, L.B.; Li, F.Q.; Zhou, G.E.; Chen, Z.Y.; Zhang, Y.H.

    1995-01-01

    As it has been pointed out, phase decomposition which may be hard to be detected in a polycrystalline system and is likely to correlate with changes in both oxygen content and microstructure, has been observed frequently in annealed single crystals especially at higher temperatures (> 500 C). This is still an open question to some degree because the mechanism of phase decomposition is very complex and is dominated by the composition of the Bi-2212 phase, the condition of heat treatment, and the atmosphere. Hence, inducing oxygen loss at low temperature to avoid the evaporation of Bi atoms and other undetected structure changes which would occur at higher temperature annealing undoubtedly provides important information about the relationship between oxygen loss and phase decomposition, as well as the relationship between oxygen content and superconductivity. In this note, we report on the results of treatments of Bi 2 Sr 2 CaCu 2 O y single crystals in sulphur atmosphere at 160 C. (orig.)

  9. Magnetism and superconductivity of some Tl-Cu oxides

    Science.gov (United States)

    Datta, Timir

    1991-01-01

    Many copper oxide based Thallium compounds are now known. In comparison to the Bi-compounds, the Tl-system shows a richer diversity; i.e., High Temperature Superconductors (HTSC) can be obtained with either one or two Tl-0 layers (m = 1,2); also, the triple-digit phases are easier to synthesize. The value of d, oxygen stoichiometry, is critical to achieving superconductivity. The Tl system is robust to oxygen loss; Tl may be lost or incorporated by diffusion. A diffusion coefficient equal to 10 ms at 900 C was determined. Both ortho-rhombic and tetragonal structures are found, but HTSC behavior is indifferent to the crystal symmetry. This system has the highest T(sub c) confirmed. T(sub c) generally increases with p, the number of CuO layers, but tends to saturate at p = 3. Zero resistance was observed at temperatures as great as 125 K. Most of these HTSC's are hole type, but the Ce-doped specimens may be electronic. The magnetic aspects were studied; because in addition to defining the perfectly diamagnetic ground state as in conventional superconductors, magnetism of the copper oxides show a surprising variety. This is true of both the normal and the superconducting states. Also, due to the large phonon contribution to the specific heat at the high T(sub c) jump, electronic density of states, D(Ef), and coherence length are uncertain, and thus, are estimated from the magnetic results. Results from the Tl-system CuO, LaBaCuO,120 and the Bi-CuO compounds are discussed. The emphasis is on the role of magnetism in the Tl-CuO HTSC, but technological aspects are also pointed out.

  10. Deposition of superconducting (Cu, C)-Ba-O films by pulsed laser deposition at moderate temperature

    International Nuclear Information System (INIS)

    Yamamoto, Tetsuro; Kikunaga, Kazuya; Obara, Kozo; Terada, Norio; Kikuchi, Naoto; Tanaka, Yasumoto; Tokiwa, Kazuyasu; Watanabe, Tsuneo; Sundaresan, Athinarayanan; Shipra

    2007-01-01

    Superconducting (Cu, C)-Ba-O thin films have been epitaxially grown on (100) SrTiO 3 at a low growth temperature of 500-600 deg. C by pulsed laser deposition. The dependences of their crystallinity and transport properties on preparation conditions have been investigated in order to clarify the dominant parameters for carbon incorporation and the emergence of superconductivity. It has been revealed that the CO 3 content in the films increases with increasing both the parameters of partial pressure of CO 2 during film growth and those of growth rate and enhancement of superconducting properties. The present study has also revealed that the structural and superconducting properties of the (Cu, C)-Ba-O films are seriously deteriorated by the irradiation of energetic particles during deposition. Suppression of the radiation damage is another key for a high and uniform superconducting transition. By these optimizations, a superconducting onset temperature above 50 K and a zero-resistance temperature above 40 K have been realized

  11. High-Q Tl2CaBa2Cu2O8 high-Tc superconducting quasi-optical millimeter-wave bandpass filters working at 77 K

    International Nuclear Information System (INIS)

    Zhang, D.; Fetterman, H.R.

    1994-01-01

    Tl 2 CaBa 2 Cu 2 O 8 high-temperature superconducting thin films with T c 's of over 100 K on LaAlO 3 substrates were used to fabricate quasi-optical millimeter-wave bandpass filters. Q-factors of over 400 were achieved, at liquid nitrogen temperatures from these filters at W-band frequencies (75--110 GHz)

  12. Composite superconducting MgB2 wires made by continuous process

    NARCIS (Netherlands)

    Kutukcu, Mehmet; Atamert, Serdar; Scandella, Jean Louis; Hopstock, Ron; Blackwood, Alexander C.; Dhulst, Chris; Mestdagh, Jan; Nijhuis, Arend; Glowacki, Bartek A.

    Previously developed manufacturing technology of a low-cost composite single core MgB2 superconductive wires has been investigated in details using monel sheath and titanium diffusion barrier. In this process Mg and nano-sized B as well as SiC dopant powders were fed continuously to a "U" shaped

  13. Composite superconducting MgB2 wires made by continuous process

    NARCIS (Netherlands)

    Kutukcu, Mehmet; Atamert, Serdar; Scandella, Jean Louis; Hopstock, Ron; Blackwood, Alexander C.; Dhulst, Chris; Mestdagh, Jan; Nijhuis, Arend; Glowacki, Bartek A.

    2018-01-01

    Previously developed manufacturing technology of a low-cost composite single core MgB2 superconductive wires has been investigated in details using monel sheath and titanium diffusion barrier. In this process Mg and nano-sized B as well as SiC dopant powders were fed continuously to a "U" shaped

  14. Microscopic fracture of filaments and its relation to the critical current under bending deformation in (Bi,Pb)2Sr2Ca2Cu3O10 composite superconducting tapes

    International Nuclear Information System (INIS)

    Hojo, Masaki; Nakamura, Mitsuhiro; Matsuoka, Tomoe; Tanaka, Mototsugu; Ochiai, Shojiro; Sugano, Michinaka; Osamura, Kozo

    2003-01-01

    The strain dependence of the critical current, I c , of (Bi,Pb) 2 Sr 2 Ca 2 Cu 3 O 10 (Bi2223)/Ag/Ag-Mg composite superconducting tapes has been studied both experimentally and analytically under bending deformation. Tests have been carried out for one type of tape used in the VAMAS bending round-robin programme. The complex stress-strain behaviour of each component was first analysed in tension. This was done by comparing the stress-strain curves of composite tapes with those of Ag and Ag-Mg alloy tapes. Here, the plastic deformation (work hardening) of Ag and Ag-Mg alloy, and the thermal residual strain due to the manufacturing process were taken into account. The fracture strain of Bi2223 filaments was inversely determined as 0.08% to meet the global tensile stress-strain curve of the composite tape. The calculated stress-strain curves finally agreed well with the experimental results when the as-supplied bending strain was taken into account. Then, the analysis was modified to fit the bending deformation. Here, the movement of the neutral axis due to the non-symmetric and elastic-plastic stress-strain curves of the components and their Bauschinger effect were taken into account. The relative decrease of I c with the increase in the Bi2223 tape curvature was calculated from the volume fraction of the broken filaments. The calculated I c agreed well with the experimental results when the movement of the neutral axis and the Bauschinger effect were taken into account. Microscopic observation of the spatial distribution of the filament fracture indicated that the damage occurred at the outermost layer on the tensile side when the curvature was small, and then the damage front shifted to the inside layers. The observed fracture behaviour of the Bi2223 filament agreed well with the estimated location based on the above analysis

  15. Processing of La(1.8)Sr(0.2)CuO4 and YBa2Cu3O7 superconducting thin films by dual-ion-beam sputtering

    Science.gov (United States)

    Madakson, P.; Cuomo, J. J.; Yee, D. S.; Roy, R. A.; Scilla, G.

    1988-03-01

    High-quality La(1.8)Sr(0.2)CuO4 and YBa2Cu3O7 superconducting thin films, with zero resistance at 88 K, have been made by dual-ion-beam sputtering of metal and oxide targets at elevated temperatures. The films are about 1.0 micron thick and are single phase after annealing. The substrates investigated are Nd-YAP, MgO, SrF2, Si, CaF2, ZrO2-(9 pct)Y2O3, BaF2, Al2O3, and SrTiO3. Characterization of the films was carried out using Rutherford backscattering spectroscopy, resistivity measurements, TEM, X-ray diffraction, and SIMS. Substrate/film interaction was observed in every case. This generally involves diffusion of the substrate into the film, which is accompanied by, for example, the replacement of Ba by Sr in the YBa2Cu2O7 structure, in the case of SrTiO3 substrate. The best substrates were those that did not significantly diffuse into the film and which did not react chemically with the film.

  16. Order parameter in CeCu{sub 2}Si{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Vieyra, Hugo A.; Brando, Manuel; Oeschler, Niels; Seiro, Silvia; Geibel, Christoph; Steglich, Frank [Max-Planck-Institute for Chemical Physics of Solids, Dresden (Germany); Jeevan, Hirale S. [I. Physikalisches Institut, Georg-August-Universitaet Goettingen (Germany); Parker, David [US Naval Research Laboratory, Washington, DC (United States)

    2011-07-01

    Understanding the interplay between magnetism and unconventional superconductivity remains a key challenge in solid-state physics. A clear example is the archetypical heavy-fermion compound CeCu{sub 2}Si{sub 2} which exhibits superconductivity (T{sub c}=600 mK) in the vicinity of a magnetic quantum critical point. It is believed that magnetic fluctuations mediate superconductivity and its order parameter possesses d-wave symmetry, both ideas still under debate. In this work, a high-quality single crystal with a purely superconducting ground state (S type) has been chosen to investigate the low-temperature thermal- and electric-transport characteristics of the superconducting state. Non-vanishing contributions of low-energy quasiparticle excitations to the thermal transport ({kappa}{sub 0}/T>0) suggest the presence of nodal structure in CeCu{sub 2}Si{sub 2}. In turn, angle-dependent resistivity measurements of the upper critical field H{sub c2} point towards unconventional superconductivity with d-wave symmetry of the order parameter. Theoretical calculations reveal the strong influence of Pauli paramagnetic effects and a d{sub xy} symmetry of the gap function.

  17. High Tc superconductivity in YBa2Cu3O7-x studied by PAC and PAS

    International Nuclear Information System (INIS)

    Zhu Shengyun; Li Anli; Zheng Shengnan; Huang Hanchen; Li Donghong; Din Honglin; Du Hongshan; Sun Hancheng

    1993-01-01

    High T c superconductivity has been investigated in YBaCuO by both perturbed angular correlation and positron annihilation spectroscopy techniques as a function of temperature from 77 to 300 K. An abrupt change has been observed in the positron lifetime and Doppler broadening and the electric field gradient and its asymmetry parameter across T c , indicating a transition of two- to one-dimensional Cu-O-Cu chain structure and a charge transfer from CuO layers to CuO chains. An anomaly of the normal state has been demonstrated around 125 K, which is attributed to the structural instability. (orig.)

  18. On the relations among the pseudogap, electronic charge order and Fermi-arc superconductivity in Bi2Sr2CaCu2O8+δ

    International Nuclear Information System (INIS)

    Oda, M; Liu, Y H; Kurosawa, T; Takeyama, K; Ido, M; Momono, N

    2008-01-01

    On the basis of STM/STS, break-junction tunneling and electronic Raman scattering experiments on Bi 2 Sr 2 CaCu 2 O 8+δ reported so far, we suggest that the static, electronic charge order is associated with inhomogeneous electronic states on antinodal parts of the Fermi surface that are outside the Fermi-arc around the node and responsible for the pseudogap, and coexists with the homogeneous superconductivity caused by the pairing of coherent quasiparticles on the Fermi-arc, the so-called 'Fermi-arc superconductivity', in the real space, although the two electronic orders or the corresponding energy gaps compete with each other in the k-space

  19. Disorder and chain superconductivity in YBa2Cu3O7-δ

    International Nuclear Information System (INIS)

    Atkinson, W.A.

    1999-01-01

    The effects of chain disorder on superconductivity in YBa 2 Cu 3 O 7-δ are discussed within the context of a proximity model. Chain disorder causes both pair breaking and localization. The hybridization of chain and plane wave functions reduces the importance of localization, so that the transport anisotropy remains large in the presence of a finite fraction δ of oxygen vacancies. Penetration depth and specific heat measurements probe the pair breaking effects of chain disorder, and are discussed in detail at the level of the self-consistent T-matrix approximation. Quantitative agreement with these experiments is found when chain disorder is present. copyright 1999 The American Physical Society

  20. Superconductivity and spin fluctuations in M-Zr metallic glasses (M = Cu, Ni, Co, and Fe)

    International Nuclear Information System (INIS)

    Altounian, Z.; Strom-Olsen, J.O.

    1983-01-01

    The superconducting transition temperature, upper critical field, and magnetic susceptibility have been measured in four binary metallic glass systems: Cu-Zr, Ni-Zr, Co-Zr, and Fe-Zr. For each alloy system, a full and continuous range of Zr-rich compositions accessible by melt spinning has been examined. For Cu-Zr, the range is 0.75>x>0.30; for Ni-Zr, 0.80>x>0.30; for Co-Zr, 0.80>x>0.48, and for Fe-Zr, 0.80>x>0.55 (x being the concentration of Zr in at. %). The results show clearly the influence of spin fluctuations in reducing the superconducting transition temperature. The data have been successfully analyzed using a modified form of the McMillan equation together with expressions for the Stoner enhanced magnetic susceptibility and the Ginsburg-Landau-Abrikosov-Gor'kov expression for the upper critical field

  1. Raman scattering studies on superconducting YBa/sub 2/Cu/sub 3/O/sub 7-x/, semiconducting YBa/sub 2/Cu/sub 3/O/sub 6+x/, and possible impurity phases

    International Nuclear Information System (INIS)

    Mascarenhas, A.; Katayama-Yoshida, H.; Geller, S.; Pankove, J.I.; Deb, S.K.

    1988-01-01

    A Raman spectroscopic investigation of specimens of superconducting YBa/sub 2/Cu/sub 3/O/sub 7-x/ and semiconducting YBa/sub 2/Cu/sub 3/O/sub 6+x/ indicates that in the range 100 to 700 cm/sup -1/, the characteristic lines of the superconductor at 13 K, are at 150, 338, 441, 507, 590, and 644 cm/sup -1/. Comparison of the Raman spectra of the superconductor and the semiconductor indicates a mode stiffening of the pair at 338 and 441 cm/sup -1/, but a mode softening of the pair at 507 and 590 cm/sup -1/. A factor group analysis leads to a tentative assignment of the Raman and infrared allowed modes. At temperatures 12K ≤ T ≤ 180K the Raman spectra of the superconductor indicate that the phonon mode at 338 cm/sup -1/ has an anomaloys temperature dependence below the superconducting critical temperature (T/sub c/)

  2. Determination of Cu(III) and Cu(II)+Cu(III) in superconducting copper ceramics

    International Nuclear Information System (INIS)

    Nedelcheva, T.; Kostadinova, L.; Stoyanova-Ivanova, A.; Ivanova, I.

    1992-01-01

    Copper(III) and total copper in superconducting Y-Ba-Cu oxide and related compounds can be determinated by two successive iodimetric titrations after the sample has been dissolved under Ar in HCl/KI medium. First, the iodine equivalent to copper(III) is titrated with Na 2 S 2 O 3 solution at pH 4.8, copper(II) being masked with EDTA. The total copper is then determined in the same solution by demasking with acid and iodide, followed by iodimetric titration. The method is both accurate and reproducible. The relative standard deviations for 1.074% copper(III) and 23.37% total copper are 0.8% and 0.3%, respectively. (orig.)

  3. Effective charge separation in BiOI/Cu2O composites with enhanced photocatalytic activity

    Science.gov (United States)

    Xia, Yongmei; He, Zuming; Yang, Wei; Tang, Bin; Lu, Yalin; Hu, Kejun; Su, Jiangbin; Li, Xiaoping

    2018-02-01

    Novel BiOI/Cu2O composites were designed and synthesized for the first time by coupling reduction method at low temperature. The samples were characterized by XRD, XPS, SEM, EDS, HRTEM, UV-vis (DRS), FTIR and photo-electro-chemical (PEC) analysis. Results showed that the BiOI/Cu2O composites consisted of three-dimensional (3D), hierarchical cauliflower-like structure composed of BiOI nanosheet and Cu2O cubic submicrometer structure, the composite absorption band broadened, and the absorption intensity in the visible region strengthened. And the composites exhibited an excellent photocatalytic performance, which might be attributed to the improvement of the composite absorption and effective charge separation in BiOI/Cu2O composites. In addition, the possible photocatalytic mechanism was proposed.

  4. Superconductivity: materials and applications

    International Nuclear Information System (INIS)

    Duchateau, J.L.; Kircher, F.; Leveque, J.; Tixador, P.

    2008-01-01

    This digest paper presents the different types of superconducting materials: 1 - the low-TC superconductors: the multi-filament composite as elementary constituent, the world production of NbTi, the superconducting cables of the LHC collider and of the ITER tokamak; 2 - the high-TC superconductors: BiSrCaCuO (PIT 1G) ribbons and wires, deposited coatings; 3 - application to particle physics: the the LHC collider of the CERN, the LHC detectors; 4 - applications to thermonuclear fusion: Tore Supra and ITER tokamaks; 5 - NMR imaging: properties of superconducting magnets; 6 - applications in electrotechnics: cables, motors and alternators, current limiters, transformers, superconducting energy storage systems (SMES). (J.S.)

  5. Why the compound Yba sub 2 Cu sub 3 O sub 6 is not a superconductor. Pourquoi le compose YBa sub 2 Cu sub 3 O sub 6 n'est-il pas un supraconducteur

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, M [Paris-11, Univ., 91 - Orsay (FR); Gupta, R P [CEA Centre d' Etudes Nucleaire de Saclay, 91 - Gif-sur-Yvette (FR). Dept. de Technologie

    1989-01-01

    A comparative study of the electronic structure of superconducting YBa{sub 2}Cu{sub 3}O{sub 7} and non superconducting YBa{sub 2}Cu{sub 3}O{sub 6} is presented. Our calculation shows that the densities of states at the Cu sites with pyramidal coordination and at its four oxygen neighboring sites in the horizontal planes are very similar in the superconducting and non-superconducting phases. Thus, the bidimensional character is unaltered in the two compounds. However, unlike for YBa{sub 2}Cu{sub 3}O{sub 7}, we find that in YBa{sub 2}Cu{sub 3}O{sub 6}, the Cu atoms of the linear chain sites and the oxygen atoms with which it interacts along the c axis are respectively in the charged state Cu{sup +} and O{sup 2-}; these sites are insulating since the densities of states at the Fermi energy is almost nil. These results suggest the importance of the linear Cu-O chains in the superconducting properties.

  6. A new way for preparing superconducting materials: the electrochemical oxidation of La sub 2 CuO sub 4. Une nouvelle voie d'acces aux oxydes supraconducteurs: l'oxydation electrochimique de La sub 2 CuO sub 4

    Energy Technology Data Exchange (ETDEWEB)

    Wattiaux, A; Park, J C; Grenier, J C; Pouchard, M [Bordeaux-1 Univ., 33 - Talence (FR)

    1990-04-01

    The electrochemical oxidation in alkaline medium is described as a new way for preparing superconducting oxides at room temperature. The application of this method to La{sub 2}CuO{sub 4} gave rise to a metallic material with a superconducting behaviour below 39 K and whose physical and chemical features appear as quite promising.

  7. Crystal substructure and physical properties of the superconducting phase Bi4(Sr,Cr)6Cu4O16μ/sub x/

    International Nuclear Information System (INIS)

    Tarascon, J.M.; Le Page, Y.; Barboux, P.; Bagley, B.G.; Greene, L.H.; McKinnon, W.R.; Hull, G.W.; Giroud, M.; Hwang, D.M.

    1988-01-01

    We have isolated a high-T/sub c/ phase in the Bi-Sr-Ca-Cu-O system of composition Bi 4 (Sr,Ca) 6 Cu 4 O 16 μ/sub x/. The crystal substructure has a tetragonal unit cell (a = 3.817 A, c = 30.6 A) with similarities to both the oxygen-defect perovskites YBa 2 Cu 3 O 7 √/sub x/ and the K 2 NiF 4 structure of La 2 CuO 4 . The oxygen content, determined by titration and thermogravimetric analysis (TGA) experiments, corresponds to a formal oxidation state Cu(2.15). Oxygen can be reversibly depleted in an argon ambient in an amount corresponding to the reduction of the Cu(III) into Cu(II). The compound has a metalliclike resistance above its T/sub c/ near 85 K. Processing this precursor compound by heating to temperatures near its melting point (885 0 C) produces a sharp resistivity drop near 110 K that we show by ac susceptibility and Meissner effect is due to a superconducting transition

  8. Superconductivity at 2.8 K and 1.5 kbar in κ-(BEDT-TTF)2Cu2(CN)3: The first organic superconductor containing a polymeric copper cyanide anion

    International Nuclear Information System (INIS)

    Geiser, Urs; Wang Hau, H.; Carlson, K.D.; Williams, J.M.; Charlier, H.A. Jr.; Heindl, J.E.; Yaconi, G.A.; Love, B.J.; Lathrop, M.W.; Schirber, J.E.; Overmyer, D.L.; Ren, Jingquing; Whangbo, Myung-Hwan

    1991-01-01

    Attempts to synthesize new k-phase superconductors have concentrated on ET salts with complex anions composed of Cu(I) or Ag(I) metal ions and pseudohalide anions. The 'targeted anion approach', by use of a preformed anion found in KCu 2 (CN) 3 .H 2 O and the presence of trace amounts of water, led to the discovery of the first copper-cyanide containing superconductor, K-(ET) 2 Cu 2 (CN) 3 . The crystal structure, superconducting properties, and band electronic structure are described in this article. The complex k-(ET) 2 Cu 2 (CN) 3 is in many ways similar to the superconductor K-(ET) 2 Cu[N(CN) 2 ]Cl, the superconductor with the highest T c reported to date. 28 refs., 3 figs

  9. Positron-annihilation studies of the superconductivity transition in YBa2Cu3O/sub 7-//sub x/

    International Nuclear Information System (INIS)

    Smedskjaer, L.C.; Veal, B.W.; Legnini, D.G.; Paulikas, A.P.; Nowicki, L.J.

    1988-01-01

    Positron-annihilation studies, by Doppler broadening, of the superconducting transition in YBa 2 Cu 3 O/sub 7-//sub x/(x≅0.1) have been made. Below T/sub c/ a large positive temperature dependence of the lineshape parameter is observed, while at (or near) T/sub c/ an almost discontinuous increase in the lineshape parameter takes place. The behavior below T/sub c/ may be consistent with a Bardeen-Cooper-Schrieffer-like theory if an energy band with a small dispersion crosses the Fermi level. The discontinuity is not clearly understood, but may be due to a major change in the electronic structure taking place with the onset of superconductivity

  10. Transport in reversibly laser-modified YBa2Cu3O/sub 7-//sub x/ superconducting thin films

    International Nuclear Information System (INIS)

    Krchnavek, R.R.; Chan, S.; Rogers, C.T.; De Rosa, F.; Kelly, M.K.; Miceli, P.F.; Allen, S.J.

    1989-01-01

    A focused argon ion laser beam in a controlled ambient is used to modify the transport properties of superconducting YBa 2 Cu 3 O/sub 7-//sub x/ thin films. The laser-modified region shows a sharp transition temperature (T/sub c/≅76 K) that is reduced from the unmodified regions of the film (T/sub c/≅87 K). In situ monitoring of the room-temperature electrical resistance is used to control the laser processing and prevent formation of the semiconducting phase. The original properties of the superconducting film can be recovered by plasma oxidation indicating that the laser-induced phase is oxygen deficient

  11. Characterization and modification of the interface of superconducting Nb/Cu cavities by ion beams

    International Nuclear Information System (INIS)

    El Bouanani, M.

    1990-05-01

    Radiofrequency superconducting Nb/Cu cavities for electron beam acceleration are studied in a collaboration between CEA and IN2P3 (CNRS). The quality of superconducting cavity is closely related to the purity of the surface material. In such an aim, carbon and oxygen contaminations at the surface and at the interface of the Nb/Cu device has been measured. Since the niobium film is deposited on copper by magnetron sputtering under argon atmosphere, argon analysis is performed using the resonance in the nuclear reaction Ar 40 (p,γ) 41 K at the proton energy of 1102 keV. In order to simulate the energy deposition occurring during particle acceleration, Nb/Cu samples have been irradiated with a 600 keV argon beam. The element distribution evolution is then followed by RBS and NBS. Ion beam mixing effect in the case of samples with oxygen interface contamination (Nb/Nb + Ox + Cu/Cu) is shown to be enhanced [fr

  12. Raman-scattering results from Y1-xCaxSr2Cu2GaO7

    International Nuclear Information System (INIS)

    Salamon, D.; Liu, R.; Klein, M.V.; Groenke, D.A.; Poeppelmeier, K.R.; Dabrowski, B.; Han, P.D.; Payne, D.A.

    1993-01-01

    We present a Raman-scattering study of Y 1-x Ca x Sr 2 Cu 2 GaO 7 for both the x=0 parent compound and doped compositions with x=0.25 and x=0.40. Extrapolation from YBa 2 Cu 3 O 7-d and other cuprates allows us to assign many of the Raman-active phonon modes in the x=0 material, as well as identify a two-magnon scattering peak, a second-order phonon scattering peak, and a Raman continuum out to 4000 cm -1 . Despite compositional inhomogeneities, the doped superconducting samples show some of the same low-energy phonon features as the x=0 material. There is, however, a doping-dependent shift in the positions of features in the 500--700 cm -1 range, possibly due to Ca locating on Sr sites instead of Y sites. The relative intensities of the phonon peaks in the doped material are also changed from the insulator (x=0), suggesting that a resonant Raman phenomenon is occurring. The temperature-dependent spectra show what appears to be a superconducting dip in the background intensity, but the low superconducting fractions in these samples make this difficult to verify. The doped material also has a Raman continuum out to 4000 cm -1 just as in the x=0 samples, but with the two-magnon and second-order phonon scattering peaks significantly reduced in intensity. This may be a result of changes in the long-range ordering, or another manifestation of the same resonance phenomena occurring at lower energies. Single-crystal samples of the doped material Y 1-x Ca x Sr 2 Cu 2 GaO 7 are necessary for a more conclusive Raman study

  13. Elastic stiffnesses of an Nb-Ti/Cu-composite superconductive wire

    Science.gov (United States)

    Kim, Sudook; Ledbetter, Hassel; Ogi, Hirotsugu

    2000-09-01

    Elastic-stiffness coefficients were determined on a 1.4-mm-diameter wire consisting of superconducting Nb-Ti fibers in a copper matrix, with a polyvinyl-resin coating. The matrix contained 324 Nb-Ti fibers. An electromagnetic-acoustic-resonance method was used to obtain five independent elastic-stiffness coefficients assuming transverse-isotropic symmetry. From these we calculated Young moduli, bulk modulus, and principal Poisson ratios. As a check, we used a mechanical-impulse-excitation method to directly measure the Young modulus in the fiber direction. The three-phase composite wire showed a 10% anisotropy in the Young modulus.

  14. Some crystal chemistry of (Ln,Ce)2CuO4-δ superconductors

    International Nuclear Information System (INIS)

    Goodman, P.; Keating, A.; Myhra, S.; White, T.J.

    1989-01-01

    Compounds of the form (Ln, Sr, Ce) 2 CuO 4-δ (Ln = rare earth element) crystallise as the Nd 2 CuO 4 structure type, K 2 NiF 4 structure type or perfectly and imperfectly ordered intergrowths of these parent structures. These structurally similar phases exhibit superconductivity in which the charge carriers are holes (in Sr-doped material) or electrons (in Ce doped material). In this study, X-ray Photoelectron Spectroscopy (XPS) and High Resolution Electron Microscopy (HREM) were used to investigate the charge balancing mechanisms operating in each superconducting regime and the structural changes accompanying compositional variation. It was found that under slightly reducing conditions charge coupled cation substitutions predominate, whilst at low pO 2 ( -5 atm) perfectly ordered oxygen superlattices form. The structural and electronic changes which accompany deoxygenation were observed in situ during XPS and HREM observations. 29 refs., 8 figs., 3 tabs

  15. Superconducting composite for magnetic bearings

    International Nuclear Information System (INIS)

    Rigney, T.K. II.

    1995-01-01

    A composite includes granules of Type II superconducting material and granules of rare-earth permanent magnets that are distributed in a binder. The composite is a two-phase structure that combines the properties of the superconductor and magnets with the flexibility and toughness of a polymeric material. A bearing made from this composite has the load capacity and stiffness of a permanent magnet bearing with added stability from a Type II superconducting material. 7 figs

  16. The structure of the non-superconducting phase La3Ba3Cu6Osub(14+ x) and its relation to the high - Tc superconductor YBa2Cu3Osub(7 -delta)

    International Nuclear Information System (INIS)

    David, W.I.F.; Harrison, W.T.A.; Ibberson, R.M.; Grasmeder, J.R.; Lanchester, P.

    1987-01-01

    The authors report time-of-flight neutron powder diffraction results, which confirm that the structure of La 3 Ba 3 Cu 6 Osub(14+x) is isomorphous with the tetragonal variant of YBa 2 Cu 3 Osub(7-delta); in particular, the copper coordination and calculated valencies of both compounds agree closely. The apparent contradiction of stoichiometries between these two phases is resolved by ordering of the large cations consistent with a formulation La(Lasub(0.25)Basub(0.75)) 2 Cu 3 Osub(7+1/2x). The present results indicate that there is a remarkable structural stability from RA 2 Cu 3 O 6 to RA 2 Cu 3 Osub(7.2), although superconductivity appears to be confined to the range RA 2 Cu 3 Osub(6.5) to Ra 2 Cu 3 O 7 . (author)

  17. Raman spectra, microstructure and superconducting properties of Sb(III)-YBCO composite superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Elsabawy, Khaled M. [Chemistry Department, Faculty of Science, Tanta University, Tanta (Egypt)]. E-mail: ksabawy@yahoo.com

    2005-11-15

    The pure YBCO (YBa{sub 2}Cu{sub 3}O{sub 7}) and its variant antimony containing composites with general formula; Y{sub 1+x}Sb {sub x}Ba{sub 2}Cu{sub 3}O {sub z}, where x = 0.1, 0.2, 0.4 and 0.6 mol%, respectively, were prepared by the solid-state reaction route. X-ray measurements indicated that Sb{sup 3+} ions have a negligible effect on the main crystalline structure and substitutes Y-sites successfully in lattice structure of 123-YBCO at low concentrations of doping (x = 0.1 {sup {yields}} 0.2). From SE-microscopy mapping and EDX elemental analysis, Sb{sup 3+} was detected qualitatively with good approximation to the actual molar ratio but not observed at 123-YBCO grain boundaries which confirm that antimony (III) has diffused regularly into material bulk of superconducting 123-YBCO-phase at low concentrations. Additions of Sb(III) affected sharply on the main vibrating modes of YBCO regime particularly, on the apical oxygen (O{sub 4}) vibrational mode A {sub 1g}. Magnetic susceptibility measurements proved that antimony oxide additions have slight effect on the transport properties of YBCO-composites regime.

  18. The use of microemulsions for the synthesis of oxalate precursors of YBaCuO superconduction oxide

    International Nuclear Information System (INIS)

    Wang, L.; Zhang, Y.; Muhammed, M.

    1992-01-01

    Although emulsion technique has been used as an advanced separation method, little attention has been paid to the particular feature of emulsions as a powerful reaction media for synthesis of powders, e.g., precipitation of fine particles. In the present paper, the authors report the use of some microemulsion systems as a reaction media in a controlled coprecipitation of the oxalate precursors of superconducting YBa 2 Cu 3 O 7-δ ceramics. The phase diagram of the system: oil (hydrocarbon) - surfactant (Aerosol Orange T) - water, in the absence and presence of nitric/oxalic acids and nitrates, have been systematically investigated. Several hydrocarbons, n-hexane, n-haptene and n-octane have been tested. The different stability regions of microemulsions have been determined. The oxalate coprecipitation of Y, Ba and Cu from nitrate solution was studied under various operating conditions, pH, ratio of oil/surfactant/water and ratio of Y/Ba/Cu/.H 2 C 2 O 4 2 . The chemical and morphological properties of the oxalate powders obtained in the microemulsion systems have been examined by different techniques, e.g., ICP, TGA, XRD and SEM. By XRD, the optimum products are found to be amorphous oxalate composite with exact required stoichiometry and high homogeneity. The average size of the dispersed particles is 50-70 nm while the mean diameter of the agglomerates is around 300 nm. The best sinters bulk sample has T, (R = 0) at 92 K. These powders are used as fine precursors for the synthesis of high T c superconducting ceramics as bulk material and particularly thick films

  19. Evidence of a Normal-State Pseudogap in Bulk Superconducting Tunneling Junctions of YBa2Cu3O7-δ

    Directory of Open Access Journals (Sweden)

    Leandro Guerra

    1999-12-01

    Full Text Available Planar contact tunneling experiments have been performed on bulk superconducting tunneling junctions of YBa2Cu3O7-δ in the temperature range 77 -295K. A clear depression in the conductance curves measured, attributed to the pseudogap, has been observed in temperatures above Tc (approx. 90K determined from dc resistivity measurements before disappearing at T*=275K. The width of the pseudogap has been quantitatively measured as Dps, ave = 25.6meV from the differential conductance plots. These results agree with the current understanding of the phenomenology and nature of this pseudogap, namely: (I the pseudogap value is relatively temperature-independent; (2 the superconducting gap and the pseudogap have the same d-wave nature; and (3 the superconducting gap evolves from the pseudogap.

  20. Controllable synthesis and enhanced photocatalytic properties of Cu2O/Cu31S16 composites

    International Nuclear Information System (INIS)

    Liu, Xueqin; Li, Zhen; Zhang, Qiang; Li, Fei

    2012-01-01

    Highlights: ► Facile sonochemical route. ► The content of Cu 31 S 16 in the Cu 2 O/Cu 31 S 16 can be easily controlled. ► Structure and optical properties of Cu 2 O/Cu 31 S 16 were discussed. ► Enhanced photocatalytic property of Cu 2 O/Cu 31 S 16 . ► Cu 2 O/Cu 31 S 16 core/shell structures were more stable than single Cu 2 O particles. -- Abstract: The controlled synthesis of Cu 2 O/Cu 31 S 16 microcomposites with hierarchical structures had been prepared via a convenient sonochemical route. Ultrasonic irradiation of a mixture of Cu 2 O and (NH 2 ) 2 CS in an aqueous medium yielded Cu 2 O/Cu 31 S 16 composites. The content of Cu 31 S 16 in the Cu 2 O/Cu 31 S 16 can be easily controlled by adjusting the synthesis time. The Cu 31 S 16 layer not only protected and stabilized Cu 2 O particles, but also prohibited the recombination of photogenerated electrons–holes pair between Cu 31 S 16 and Cu 2 O. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) spectra, ultraviolet–visible (UV–Vis) spectroscopy and photoluminescence (PL) spectroscopy were used to characterize the products. Photocatalytic performance of the Cu 2 O/Cu 31 S 16 hierarchical structures was evaluated by measuring the decomposition rate of methyl orange solution under natural light. To the best of our knowledge, this is the first report on the preparation and photocatalytic activity of Cu 2 O/Cu 31 S 16 microcomposite. Additionally, the Cu 2 O/Cu 31 S 16 core/shell structures were more stable than single Cu 2 O particles during photocatalytic process since the photocatalytic activity of the second reused architecture sample was much higher than that of pure Cu 2 O. The Cu 2 O/Cu 31 S 16 microcomposites may be a good promising candidate for wastewater treatment.

  1. Fine filament NbTi superconductive composite

    International Nuclear Information System (INIS)

    Hong, S.; Grabinsky, G.; Marancik, W.; Pattanayak, D.

    1986-01-01

    The large superconducting magnet for the high energy physics accelerator requires fine filament composite to minimize the field error due to the persistent current in the filaments. New concepts toward the fine filament composite and its cable fabrication are discussed. Two-stage cables of fine wire with intermediate number of filaments were introduced. The first stage was six wires cables around one and in the second stage this was used to produce a Rutherford cable. The advantage of this process is in the ease of billet fabrication since the number of filaments in a single wire is within the range of easy billet fabrication. The disadvantage is in the cable fabrication. One of the major concerns in the fabrication of fine NbTi filaments composite in a copper matrix is the intermetallic compound formation during the extrusion and heat treatment steps. The hard intermetallic particles degrade the uniformity of the filaments and reduce the critical current density. The process of using Nb barrier between the filaments and copper matrix in order to prevent this CuTi intermetallic particle formation is described

  2. Superconducting glass-ceramics in BiSrCaCu2Al0.5Ox---Comparison between rod and powder compacted specimens

    International Nuclear Information System (INIS)

    Hirata, K.; Abe, Y.

    1991-01-01

    Superconducting properties are studied for glass-ceramics which were prepared by reheating glass rods and the glass powder compacts in the BiSrCaCu 2 Al 0.5 O x system, respectively. The glass-ceramic rod specimens obtained by reheating rod glass at 800--830 degree C for 50 h have a T c (R=0) of 85 K, while the disk specimens obtained by reheating the powered glass compacts in the same way do not exhibit superconductivity above 77 K. This difference in superconductivity between the specimens is discussed in terms of crystallization process and the amount of oxygen absorption of the specimens during heating

  3. Smooth surfaces in very thin GdBa2Cu3O7−δ films for application in superconducting tunnel junctions

    International Nuclear Information System (INIS)

    Navarro, H.; Sirena, M.; Kim, Jeehoon; Haberkorn, N.

    2015-01-01

    Highlights: • A detailed study of the morphological properties of GdBa 2 Cu 3 O 7−δ thin films was realized. • The inclusion of a very thin SrTiO 3 buffer layer modifies the surface of the SrTiO 3 substrates. • The inclusion of the buffer layer suppress the three dimensional nucleation in the GdBa 2 Cu 3 O 7−δ film. • GdBa 2 Cu 3 O 7−δ films with large areas free of topological defects and T c close to liquid nitrogen can be obtained. - Abstract: This paper provides a systematic analysis of the morphology and the superconducting critical temperature obtained in very thin GdBa 2 Cu 3 O 7−δ films grown on (0 0 1) SrTiO 3 substrates by DC sputtering. We find that the use of a very thin SrTiO 3 buffer layer (≈2 nm) modify the nucleation of GdBa 2 Cu 3 O 7−δ on the surface of the substrate reducing the formation of 3 dimensional clusters. Our results demonstrate that 16 nm thick GdBa 2 Cu 3 O 7−δ films with an average root-mean-square (RMS) smaller than 1 nm and large surface areas (up 10 μm 2 ) free of 3 dimensional topological defects can be obtained. In films thinner than 24 nm the onset (zero resistance) of superconducting transition of the films is reduced, being close to liquid nitrogen. This fact can be associated with stress reducing the orthorhombicity and slightly drop in oxygen stoichiometry

  4. Reassessment of the electronic state, magnetism, and superconductivity in high-T{sub c} cuprates with the Nd{sub 2}CuO{sub 4} structure

    Energy Technology Data Exchange (ETDEWEB)

    Naito, Michio, E-mail: minaito@cc.tuat.ac.jp [Department of Applied Physics, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588 (Japan); Krockenberger, Yoshiharu; Ikeda, Ai; Yamamoto, Hideki [NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya, Atsugi, Kanagawa 243-0198 (Japan)

    2016-04-15

    Highlights: • The 30-year history of “electron-doped” cuprates is reviewed, including basic physics and material issues. • Undoped cuprates with the Nd{sub 2}CuO{sub 4} (T’) structure are superconducting with T{sub c} over 30 K. • Electron doping by Ce in T’-RE{sub 2}CuO{sub 4} lowers T{sub c} and the highest T{sub c} is obtained at no doping. - Abstract: The electronic phase diagram of the cuprates remains enigmatic and is still a key ingredient to understand the mechanism of high-T{sub c} superconductivity. It has been believed for a long time that parent compounds of cuprates were universally antiferromagnetic Mott insulators (charge-transfer insulators) and that high-T{sub c} superconductivity would develop upon doping holes or electrons in a Mott–Hubbard insulator (“doped Mott-insulator scenario”). However, our recent discovery of superconductivity in the parent compounds of square-planar cuprates with the Nd{sub 2}CuO{sub 4} (T’) structure and the revised electronic phase diagram in T’ cuprates urged a serious reassessment to the above scenario. In this review, we present the main results derived from our synthesis and experiments on T’ cuprates in the undoped or heavily underdoped regime over 20 years, including material issues and basic physics. The key material issue is how to remove excess oxygen ions at the apical site without introducing oxygen vacancies in the CuO{sub 2} planes. In order to put this into practice, the basic knowledge of complex solid-state chemistry in T’ cuprates is required, which is also included in this review.

  5. On the origin of the double superconducting transition in overdoped YBa2Cu3O x

    International Nuclear Information System (INIS)

    Lortz, R.; Tomita, T.; Wang, Y.; Junod, A.; Schilling, J.S.; Masui, T.; Tajima, S.

    2006-01-01

    The superconducting transition in a single overdoped, detwinned YBa 2 Cu 3 O x (YBCO) crystal is studied using four different probes. Whereas the AC and DC magnetic susceptibilities find a dominant transition at 88 K with a smaller effect near 92 K, the specific heat and electrical resistivity reveal only a single transition at 88 K and 92 K, respectively. Under hydrostatic pressures to 0.60 GPa these two transitions shift in opposite directions, their separation increasing. The present experiments clearly show that the bulk transition lies at 88 K and originates from fully oxygenated YBCO; the 92 K transition likely arises from filamentary superconductivity in a minority optimally doped phase (<1%) of YBCO located at or near the crystal surface

  6. The crystal structure of (Nb$_{0.75}$Cu$_{0.25}$)Sn$_{2}$ in the Cu-Nb-Sn system

    CERN Document Server

    Martin, Stefan; Nolze, Gert; Leineweber, Andreas; Leaux, Floriane; Scheuerlein, Christian

    2017-01-01

    During the processing of superconducting Nb$_{3}$Sn wire, several intermediate intermetallic phases including a previously encountered Cu-Nb-Sn phase show up. The yet unknown crystal structure of this phase is now identified by a combination of different experimental techniques and database search to be of the hexagonal NiMg2 type with a proposed composition of about (Nb0.75Cu0.25)Sn2. The structure determination started from an evaluation of the lattice parameters from EBSD Kikuchi patterns from quenched material suggesting hexagonal or orthorhombic symmetry. A database search then led to the hexagonal NiMg2 type structure, the presence of which was confirmed by a Rietveld analysis on the basis of high energy synchrotron X-ray powder diffraction data. Assuming a partial substitution of Nb in orthorhombic NbSn2 by Cu, the change of the valence electron concentration provokes a structural transformation from the CuMg2 type for NbSn2 to the NiMg2 type for (Nb0.75Cu0.25)Sn2. In the previous literature the (Nb0.7...

  7. Magnetic properties and superconducting-fluctuation diamagnetism above Tc in Bi2-xPbxSr2CaCu2O8+δ (x=0.0, 0.1, 0.2, 0.3, 0.5) and

    International Nuclear Information System (INIS)

    Lee, W.C.; Cho, J.H.; Johnston, D.C.

    1991-01-01

    The magnetic susceptibilities χ(T) of the title compounds above and below T c are reported. For the Bi 2-x Pb x Sr 2 CaCu 2 O 8+δ (Bi 2:2:1:2) system, optimization of the phase purity and superconducting properties is found between x=0.2 and 0.3. The χ(T) data for these Bi 2:2:1:2 and for the two Bi 2:2:2:3 samples increase monotonically with temperature from T c up to at least 400 K, exhibiting strong negative curvature below ∼200 K. From theoretical fits to the data in the two-dimensional regime above T c using the static Lawrence-Doniach model as modified by Klemm, we conclude that the negative curvature in χ(T) for each sample arises from superconducting-fluctuation diamagnetism (SFD). The data are thus consistent with a superconducting order parameter of s-wave symmetry. From the fits to the data, the Ginzburg-Landau coherence lengths in the CuO 2 planes were obtained and found to be ξ ab (0)=20.4(2) A for Bi 2:2:1:2 and 11.8(4) A for Bi 2:2:2:3. The value for Bi 2:2:1:2 is comparable to those calculated from upper critical magnetic-field data for this compound (23.5--27.1 A). Our ξ ab (0) values for Bi 2:2:1:2 and Bi 2:2:2:3 are also comparable with that (13.6 A) found from our previous similar analysis of the SFD in YBa 2 Cu 3 O 7 . The possible role of the bridging oxygens out of the CuO 2 plane in Bi 2:2:2:3 and the influence of the dynamics in the fits to the SFD in the Bi-based compounds remain to be addressed

  8. Influence of iodine insertion on the YBaCuO superconducting properties

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, M.; Perrin, C.; Pena, O.; Sergent, M. (Lab. de Chimie du Solide et Inorganique Moleculaire, Univ. de Rennes 1, 35 (France))

    1992-11-01

    YBa[sub 2]Cu[sub 3]O[sub x] (x=6, 6.7 and 7) have been treated under iodine vapours, in evacuated silica tubes. After iodination, YBa[sub 2]Cu[sub 3]O[sub 6] exhibits a tetragonal/orthorhombic structural transition and becomes superconducting with T[sub c] increasing up to 70 K; the T[sub c] of YBa[sub 2]Cu[sub 3]O[sub 6.7] increases progressively from 63 K up to 80 K while the inductive amplitude decreases correlatively; for YBa[sub 2]Cu[sub 3]O[sub 7] only a slight quantity of iodine is inserted in the sample, which does not change the T[sub c] of 91 K, but provokes an important decrease of the inductive amplitude. EDS and SEM observations are used to test the homogeneity of the bromine insertion in the pellets and in the microcrystals. (orig.).

  9. The effect of heat treatment on the properties of (Bi,Pb)2Sr2Ca2Cu3Oδ

    International Nuclear Information System (INIS)

    Fetisov, A.V.; Yasnikov, A.G.; Fotiev, A.A.

    1994-01-01

    In synthesis of (Bi,Pb) 2 Sr 2 Ca 2 Cu 2 O δ (2-2-2-3 phase), which is known to belong to a homologous series of bismuth-based superconductors, several routes have been reported to date to yield materials with a high content, around 95% of the main phase. This phase is characterized by the highest superconducting-transition temperature T c among all known high-T c materials. Based on literature data, heat-treatment conditions are expected to affect strongly the T c of the 2-2-2-3 phase, as they do for other high-T c materials. An optimal oxygen content in 2-2-2-3 was presumed to be the deciding factor for attainment of high T c 's. However, heating below ∼ 870 K in air causes no change in oxygen content in the 2-2-2-3 phase. At the same time, it is oxidizing annealing at T c up to 105-110 K. The conclusions found that changes in oxygen content for (Bi,Pb) 2 Sr 2 Ca 2 Cu 2 O δ (2-2-2-3 phase) do not affect T c , which remains unchanged after shor anneals at 370-1020 Kelvin in different atmospheres. In order to obtain high T c 's, it will suffice to exclude long anneals at 1020-1090 Kelvin from the technology. For the 2-2-2-3 phase, a degradation process, which does not change the composition of the phase, is like that for YBa 2 Cu 3 O 6+delta . Proposed is that different structural planes participate in mass exhanage with an atmosphere: (BiO) planes which do not participate to superconductivity, participate in oxygen exchange; and H 2 O and CO 2 penetrate into the CuO 2 planes, which are responsible for superconductivity in the 2-2-2-3 phase

  10. Thermo-Exfoliated Graphite Containing CuO/Cu2(OH3NO3:(Co2+/Fe3+ Composites: Preparation, Characterization and Catalytic Performance in CO Conversion

    Directory of Open Access Journals (Sweden)

    Vladyslav V. Lisnyak

    2010-01-01

    Full Text Available Thermo-exfoliated graphite (TEG/CuO/Cu2(OH3NO3:(Co2+/Fe3+ composites were prepared using a wet impregnation method and subsequent thermal treatment. The physicochemical characterization of the composites was carried out by powder X-ray diffraction (PXRD, scanning electron microscopy (SEM and Ar temperature-desorption techniques. The catalytic efficiency toward CO conversion to CO2 was examined under atmospheric pressure. Characterization of species adsorbed over the composites taken after the activity tests were performed by means of temperature programmed desorption massspectrometry (TPD MS. (TEG/CuO/Cu2(OH3NO3:(Co2+/Fe3+ composites show superior performance results if lower temperatures and extra treatment with H2SO4 or HNO3 are used at the preparation stages. The catalytic properties enhancements can be related to the Cu2(OH3NO3 phase providing reaction centers for the CO conversion. It has been found that prevalence of low-temperature states of desorbed CO2 over high-temperature ones in the TPD MS spectra is characteristic of the most active composite catalysts.

  11. Ab-initio calculations of superconducting properties of YBa2Cu3O7

    International Nuclear Information System (INIS)

    Zhao, G.L.; Bagayoko, D.

    1999-01-01

    The authors present ab-initio calculations for the electronic structure and superconducting properties of YBa 2 Cu 3 O 7 (YBCO). The electronic structure was calculated using a self-consistent ab-initio LCAO method. They solved the anisotropic Eliashberg gap equation numerically. The strong coupling of the high energy optical phonons around 60--73 meV, with the electrons at the Fermi surface, leads to a high Tc in YBCO. The calculated Tc is about 89 K for μ* = 0.1. The good agreement of the calculated results with experimental measurements and the ab-initio nature of the calculations support the scenario of an anisotropic s-wave superconductor for YBCO

  12. Quenching effect on properties of Bi-Sr-Ca-Cu-O superconducting ceramics of various composition

    International Nuclear Information System (INIS)

    Amitin, E.B.; Gromilov, S.A.; Naumov, V.N.; Royak, A.Ya.; Starikov, M.A.

    1989-01-01

    Bismuth ceramics quenching effect on superconducting properties of samples of various composition is investigated. Two types of quenching effect on sample properties are detected: an increase of superconducting transition temperature T c by 15-20 K; broadening of temperature interval of the phase transition without anynatable T c displacement. X ray diffraction investigations have not detected sufficient differences in diffraction patterns of quenched and non-quenched samples. Within the limits of composition analysis by oxygen (±3%) no change of its content prior to and after quenching is detected. A correlation between the presence of an amorphous phase in a sample and the type of quenching effect is observed: T c increases in ceramics where an amorphous component is detected

  13. Phase equilibria and homogeneity range of the high temperature superconducting compound (Bi,Pb)2+xSr2Ca2Cu3O10+δ

    International Nuclear Information System (INIS)

    Kaesche, S.

    1995-01-01

    For the superconducting cuprates (Bi,Pb) 2+x Sr 2 Ca 2 Cu 3 O 10+y phase equilibria, the homogeneity region, and the phase formation has been studied in the temperture range 800 to 890 C. Sintered samples were prepared by a solid state reaction starting from Bi 2 O 3 , PbO, CuO and carbonates CaCO 3 and SrCO 3 in a three-stage calcination process. For the phase identification polarization microscopy, X-ray diffraction and susceptibility measurements have been applied. Multi-phase regions were determined in the cross section of the quasi-ternary system (Bi,Pb) 2 O 3 -SrO-CaO-CuO with constant Bi/(Bi+Pb) ratio 0.84 taking into account the 2223-phase. The homogeneity region was determined as function of Sr, Ca, Bi and Pb concentration. Its maximum size was found at 850 C

  14. Comparative study of electrical transport and magnetic measurements of Y3Ba5Cu8O18±δ and YBa2Cu3O7-δ compounds: intragranular and intergranular superconducting properties

    Science.gov (United States)

    Slimani, Y.; Hannachi, E.; Ben Salem, M. K.; Ben Azzouz, F.; Ben Salem, M.

    2018-02-01

    We compare the superconducting properties and flux pinning characteristics between YBa2Cu3O7-δ (called Y-123) and Y3Ba5Cu8O18±δ (called Y-358) compounds. Both samples were synthesized through the solid-state reaction. The samples were examined by X-ray diffraction, and scanning electron microscope coupled with energy dispersive spectrometry. The critical current densities of the prepared samples were investigated using current-voltage, magnetization measurements and ac-susceptibility. It is demonstrated that the Y-358 exhibits better superconducting and pinning properties than the Y-123 one. This may be ascribed to the layered structure and the occurrence of a greater number of insulating layers between the CuO2 planes that act as effective pinning sites and consequently conduce to a better fundamental pinning capacity in Y-358.

  15. Microwave surface resistance of YBa2Cu3O/sub 6.9/ superconducting films

    International Nuclear Information System (INIS)

    Martens, J.S.; Beyer, J.B.; Ginley, D.S.

    1988-01-01

    The microwave surface resistance of an YBa 2 Cu 3 O/sub 6.9/ superconducting thick film was measured over the range 7.0--16.7 GHz at 77 K. This was done by placing a sample in a TE 01 /sub n/ wavemeter cavity and observing the change in selectivity of the cavity. The material's surface resistance is of the same order of magnitude as that of silver at 77 K from 8 to 12 GHz and improves about another order at 4.2 K. The power-law behavior of surface resistance with frequency is probably close to quadratic. This is similar to the behavior of low critical temperature superconductors

  16. Recent development of the Cu/Nb-Ti superconducting cables for SSC in Hitachi Cable, Ltd

    International Nuclear Information System (INIS)

    Sakai, S.; Iwaki, G.; Sawada, Y.; Moriai, H.; Ishigami, Y.

    1989-01-01

    In these few years, Cu/Nb-Ti superconducting cables for the dipole magnets of SSC projects have been developed in the industrial scale in Hitachi Cable, Ltd. The features of these developed conductors are as follows. (1) The diameter of Nb-Ti filaments is very small, 4-6 μm. (2) The critical current density (J c ) is very high, 2,850-3,050 A/mm 2 at 5 T on wires, 2750-2950 A/mm 2 at 5 T on cables in industrial scale. The champion J c of wires is 3,460 A/mm 2 at 5 T in the laboratory scale. (3) The RRR Residual Resistivity Ratio values of developed cables is very high, approximately 200, due to the newly developed high purity Oxygen Free Copper (OFC). (4) The conductors have been wound to the 1 m length dipole magnet in Hitachi Ltd., and it has generated 6.7 T in the central magnetic field at 6,595 A. The Cu/Cu-Mn/Nb-Ti composite wires which avoid the possibility of electrical coupling of the filaments have been produced in laboratory scale. The RRR of the copper stabilizer and J c properties have not degraded because of no metallurgical reactions between Cu and Mn, Nb-Ti and Mn. 7 refs., 9 figs., 4 tabs

  17. Experimental evidence for s-wave pairing symmetry in superconducting Cu(x)Bi2Se3 single crystals using a scanning tunneling microscope.

    Science.gov (United States)

    Levy, Niv; Zhang, Tong; Ha, Jeonghoon; Sharifi, Fred; Talin, A Alec; Kuk, Young; Stroscio, Joseph A

    2013-03-15

    Topological superconductors represent a newly predicted phase of matter that is topologically distinct from conventional superconducting condensates of Cooper pairs. As a manifestation of their topological character, topological superconductors support solid-state realizations of Majorana fermions at their boundaries. The recently discovered superconductor Cu(x)Bi(2)Se(3) has been theoretically proposed as an odd-parity superconductor in the time-reversal-invariant topological superconductor class, and point-contact spectroscopy measurements have reported the observation of zero-bias conductance peaks corresponding to Majorana states in this material. Here we report scanning tunneling microscopy measurements of the superconducting energy gap in Cu(x)Bi(2)Se(3) as a function of spatial position and applied magnetic field. The tunneling spectrum shows that the density of states at the Fermi level is fully gapped without any in-gap states. The spectrum is well described by the Bardeen-Cooper-Schrieffer theory with a momentum independent order parameter, which suggests that Cu(x)Bi(2)Se(3) is a classical s-wave superconductor contrary to previous expectations and measurements.

  18. Tuning of catalytic CO2 hydrogenation by changing composition of CuO–ZnO–ZrO2 catalysts

    International Nuclear Information System (INIS)

    Witoon, Thongthai; Kachaban, Nantana; Donphai, Waleeporn; Kidkhunthod, Pinit; Faungnawakij, Kajornsak; Chareonpanich, Metta

    2016-01-01

    Graphical abstract: The catalyst with an optimum composition of Cu:Zn:Zr (38.2:28.6:33.2) exhibited a homogeneous dispersion of metal components, and achieved the highest methanol yield. - Highlights: • A series of CuO–ZnO–ZrO 2 catalysts with different metal compositions were prepared. • Binary CuO–ZrO 2 catalyst exhibited higher methanol selectivity. • Increasing Zn/Cu ratios provided a better inter-dispersion of metal components. • The optimum catalyst composition of Cu–Zn–Zr (CZZ-4) was 38.2:28.6:33.2. • The CZZ-4 achieved the highest methanol yield (219.7 g CH3OH kg cat −1 h −1 ) at 240 °C. - Abstract: CO 2 hydrogenation was carried out over a series of CuO–ZnO–ZrO 2 catalysts prepared via a reverse co-precipitation method. The influence of catalyst compositions on the physicochemical properties of the catalysts as well as their catalytic performance was investigated. The catalysts were characterized by means of N 2 -sorption, X-ray diffraction (XRD), inductively coupled plasma optical emission spectrometry (ICP-OES), scanning electron microscopy (SEM), H 2 -temperature programmed reduction (H 2 -TPR), H 2 and CO 2 temperature-programmed desorption (H 2 - and CO 2 -TPD). The binary CuO–ZrO 2 (67:33) catalyst exhibits the highest methanol selectivity at all reaction temperature and its maximum yield of methanol (144.5 g methanol kg cat −1 h −1 ) is achieved at 280 °C, owing to the strong basic sites and the largest CuO crystallite size. The addition of Zn to the binary CuO–ZrO 2 catalyst causes a higher Cu dispersion and an increased number of active sites for CO 2 and H 2 adsorption. However, the basic strength of the ternary CuO–ZnO–ZrO 2 catalysts is lower than the binary CuO–ZrO 2 catalyst which provides the maximum yield of methanol at lower reaction tempertures (240 and 250 °C), depending on the catalyst compositions. The optimum catalyst composition of Cu–Zn–Zr (38.2:28.6:33.2) gives a superior methanol

  19. Emergent loop-nodal s(±)-wave superconductivity in CeCu(2)Si(2): similarities to the iron-based superconductors.

    Science.gov (United States)

    Ikeda, Hiroaki; Suzuki, Michi-To; Arita, Ryotaro

    2015-04-10

    Heavy-fermion superconductors are prime candidates for novel electron-pairing states due to the spin-orbital coupled degrees of freedom and electron correlations. Superconductivity in CeCu_{2}Si_{2} discovered in 1979, which is a prototype of unconventional (non-BCS) superconductors in strongly correlated electron systems, still remains unsolved. Here we provide the first report of superconductivity based on the advanced first-principles theoretical approach. We find that the promising candidate is an s_{±}-wave state with loop-shaped nodes on the Fermi surface, different from the widely expected line-nodal d-wave state. The dominant pairing glue is magnetic but high-rank octupole fluctuations. This system shares the importance of multiorbital degrees of freedom with the iron-based superconductors. Our findings reveal not only the long-standing puzzle in this material, but also urge us to reconsider the pairing states and mechanisms in all heavy-fermion superconductors.

  20. Determination of the inter- and intra-granular critical currents in superconducting YBa2Cu3O7 welds

    International Nuclear Information System (INIS)

    Bozzo, B; Iliescu, S; Bartolome, E; Palau, A; Granados, X; Puig, T; Obradors, X; Amoros, J; Carrera, M

    2005-01-01

    A method for determining simultaneously the inter- and intra-grain critical currents has been developed in welded YBa 2 Cu 3 O 7 (YBCO) ceramics by solving the Inverse Problem for local maps of the magnetic field in the remanent state. From that current distribution, the current density flowing through the superconducting weld as well as the current density circulating inside the grains can be deduced. The method is discussed and it is applied to several examples of YBCO/Ag/YBCO welds. The results obtained show that it is possible to obtain superconducting joints with a quality at the same level as that of the starting material

  1. Superconductivity in LaCu 6 and possible applications

    Science.gov (United States)

    Herrmannsdörfer, Thomas; Pobell, Frank; Sebek, Josef; Svoboda, Pavel

    2003-05-01

    We have measured the ac susceptibility and resistivity of highly pure samples of the intermetallic compound LaCu6 down to ultralow temperatures. We have prepared the samples by arc melting of stoichiometric amounts of 99.99% La and 99.9999% Cu in a water-cooled copper crucible under Ar protective atmosphere and analysed them by X-ray diffraction and SQUID magnetometry. At T⩽Tc=0.16 K we observe a superconducting transition. Due to the manifold physical properties of isostructural ReCu6 compounds (e.g. RE = Ce: heavy fermion system, RE=Pr: hyperfine enhanced nuclear spin system, RE = Nd: electronic antiferromagnet), numerous studies of interplay phenomena may become possible in the quasibinary compounds RE1-xLaxCu6, respectively.

  2. High-Tc superconductivity of Tl-Ba-Ca-Cu-O samples

    International Nuclear Information System (INIS)

    Porjesz, T.; Kirschner, I.; Kovacs, G.

    1988-08-01

    A TlBaCaCuO 4.5+x compound has been investigated from the point of view of superconductivity. Depending on the heat treatment, one part of the sample exhibits superconductivity with an onset of 121 K and zero resistivity of 106 K and the other part of them shows a sharp drop in resistivity at 130 K which hints at an existence of superconducting grains. This picture was confirmed by magnetic and ESR measurements giving possibility for estimation of critical magnetic fields. (author). 5 refs, 6 figs

  3. Superconductivity in volumetric and film ceramics Bi-Sr-Ca-Cu-O

    International Nuclear Information System (INIS)

    Sukhanov, A.A.; Ozmanyan, Kh.R.; Sandomirskij, B.B.

    1988-01-01

    A superconducting transition with T c0 =82-95 K and T c (R=0)=82-72 K was observed in volumetric and film Bi(Sr 1-x Ca x ) 2 Cu 3 O y samples obtained by solid-phase reaction. Temperature dependences of resistance critical current and magnetic susceptibility are measured

  4. Superconductivity in Bi-Sr-Ca-Cu-O bulk and film ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, A A; Ozmanian, KH R; Sandomirskii, B B

    1988-07-01

    A superconducting transition with Tc0 = 82-95 K and Tc(R = 0) = 82-72 K was observed in Bi(Sr/1-x/Ca/x/)2Cu3O(y) bulk and film specimens obtained via a solid-phase reaction. Temperature dependences of the resistance, critical current, and magnetic susceptibility were measured.

  5. Effect of oxygen content on the electrical transport and superconducting properties of Pb0.5Sr2.5Y0.6Ca0.4Cu2O7-y

    International Nuclear Information System (INIS)

    Ruan, K.Q.; China Univ. of Science and Technology, Hefei, AH; Jin, H.; China Univ. of Science and Technology, Hefei, AH; Feng, Y.; China Univ. of Science and Technology, Hefei, AH; Zhou, Y.Q.; China Univ. of Science and Technology, Hefei, AH; Chui, X.D.; China Univ. of Science and Technology, Hefei, AH; Wang, C.Y.; China Univ. of Science and Technology, Hefei, AH; Cao, L.Z.; China Univ. of Science and Technology, Hefei, AH; Wang, L.B.; Zhang, Y.H.

    1997-01-01

    Two kinds of methods have been used to synthesize Pb 0.5 Sr 2.5 Y 0.6 Ca 0.4 Cu 2 O 7-y samples. The synthesized sample using the first method shows superconductivity, while that using the second method exhibits a localized behavior at low temperatures Thermogravimetric analysis (TGA) and electrical transport measurements have been carried out on superconducting and nonsuperconducting samples grown under the two kinds of synthesis conditions and the effect of oxygen content on the transport and superconducting properties is discussed briefly. (orig.)

  6. Synthesis and study of electrical properties of nonsuperconducting and low-Tc phases of Tl-Ba-Ca-Cu-O (TBCCO) superconducting materials

    International Nuclear Information System (INIS)

    Ahmed, F.; Samadder, A.M; Sultana, H.R.; Abul Hossain, M.; Khan, A.H.

    2005-09-01

    Samples of Tl-Ba-Ca-Cu-O system having nominal compositions of Tl 2 Ba 2 Ca 2n Cu 3+n O y (n=1, 2) have been synthesized. Sintering under different conditions were carried out to study their effect on the formation of superconductivity. In the present study it is found that all the samples prepared at temperature >850 deg. C show the dominance of nonsuperconducting phases. One sample prepared at well below the conventional sintering temperatures (655 deg. C) shows the formation of the low-T c phase of TBCCO system with T c =80K. In two samples simultaneous presence of two values of a∼b∼ namely 5.45A and 3.84A has been identified. (author)

  7. Electrical transport effects due to oxygen content modifications in a Bi2Sr2CaCu2O8+δ superconducting whisker

    International Nuclear Information System (INIS)

    Cagliero, Stefano; Agostino, Angelo; Bonometti, Elisabetta; Truccato, Marco

    2007-01-01

    We report a set of resistivity measurements along the a-axis of a Bi 2 Sr 2 CaCu 2 O 8+δ microscopic superconducting whisker. The effect of the storage environment on sample ageing has been studied, considering both an air atmosphere at 273 K and a helium atmosphere at about 300 K for an overall storage time of about 100 days. It is clearly shown that the material underwent a remarkable resistivity increase of 26% at 260 K accompanied by a decrease in the critical temperature of 0.6 K during the whole ageing period. The helium atmosphere increased the average process rate by about two orders of magnitude. The present results are in agreement with previous findings on room temperature structural modifications in Bi 2 Sr 2 CaCu 2 O 8+δ whiskers and can be ascribed to oxygen depletion phenomena from the material

  8. Electronic structures of PrBa2Cu3O7, Pr2Ba4Cu7O15-y(y=0,1), and PrBa2Cu4O8 based on LSDA+U method

    International Nuclear Information System (INIS)

    Tavana, A.; Shirazi, M.; Akhavan, M.

    2009-01-01

    The electronic structures of PrBa 2 Cu 3 O 7 (Pr123), Pr 2 Ba 4 Cu 7 O 15-y (Pr247), and PrBa 2 Cu 4 O 8 (Pr124) cuprates have been obtained using density-functional theory in the local spin density approximation plus onsite Coulomb interaction (LSDA+U). Onsite Hubbard correlation, U, has been considered for Pr-f and Cu-d orbitals and the effects of considering these correlation corrections on the Pr-O hybridizations have been inspected. Results imply that the Pr ionization state in Pr123 system is constituted from two different configurations, and the energy of the f states in these two configurations has an important role in superconductivity properties of the system. Our calculations also show that in both Pr124 and Pr247 systems, suppression of superconductivity is weaker than that in the Pr123 system. This occurs due to the weaker Pr-O bond in both Pr124 and Pr247 systems. The role of the double chain and single chain on the conduction properties of these compounds has been investigated. We have also studied the effect of oxygen deficiency in Pr247 system, which seems to revive superconductivity in this system. Investigating the hole carriers in the CuO 2 plane shows a correlation between superconductivity suppression and hole decrement in the planes. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  9. Synthesis, structural characterization and fluctuation conductivity of HoBa{sub 2}Cu{sub 3}O{sub 7-{delta}-}SrTiO{sub 3} composites

    Energy Technology Data Exchange (ETDEWEB)

    Uribe Laverde, M.A., E-mail: mauribel@bt.unal.edu.c [Grupo de Fisica de Nuevos Materiales, Departamento de Fisica, Universidad Nacional de Colombia, Bogota (Colombia); Landinez Tellez, D.A.; Roa-Rojas, J. [Grupo de Fisica de Nuevos Materiales, Departamento de Fisica, Universidad Nacional de Colombia, Bogota (Colombia)

    2010-12-15

    Single-phase polycrystalline samples of HoBa{sub 2}Cu{sub 3}O{sub 7-{delta}} superconductor and SrTiO{sub 3} isolator were produced by means of the solid state reaction technique. After structural characterization of both materials, superconductor-isolator composites were produced with nominal isolator volume percentages between 0% and 10%. Resistivity measurements for the composites and the HoBa{sub 2}Cu{sub 3}O{sub 7-{delta}} sample with different currents evidenced a superconducting transition with critical temperature T{sub C} = 92 K, with wider transitions with increasing either isolator content or measurement current. Fluctuation conductivity analyses were carried out to obtain the exponents characterizing the conductivity divergence. Above T{sub C}, apart from the typical Gaussian and critical fluctuations an atypical regime with critical exponent about 0.14 is observed as a precursor of the transition. Below T{sub C}, it is observed that the coherence transition characteristic exponent increases rapidly with increasing isolator percentage in the composites and does not show important changes when modifying the current in the pure superconductor sample.

  10. First-principles calculation of the superconducting gap function due to electron-electron interaction for YBa2Cu3O/sub 7-//sub x/

    International Nuclear Information System (INIS)

    Chui, S.T.; Kasowski, R.V.; Hsu, W.Y.

    1989-01-01

    We argue that because of the anisotropic nature of YBa 2 Cu 3 O/sub 7-//sub x/, one-dimensional-type charge- and spin-density fluctuations produce an effective attraction that overcomes the electron-electron Coulomb repulsion, but only at large distances. This effective attraction is further enhanced by band-structure effects such that a substantial superconducting transition temperature can be obtained. Without making any assumption of the symmetry of the gap function, we solve the Bardeen-Cooper-Schrieffer (BCS) superconducting gap equation for the six bands closest to the Fermi level. A highly anisotropic gap function with a maximum of about 0.11 eV is found. From the linearized gap equation, a transition temperature of about 0.035 eV is obtained. This is about one-quarter the maximum of the gap function, consistent with the experimental ratio of the transition temperature to the gap determined from tunneling, infrared, and nuclear quadrupole resonance measurements. The important participants to the superconducting pair come from electrons close to planar copper [Cu(2)] and chain oxygen [O(1) and O(4)] sites, consistent with recent quadrupole resonance measurements. Our calculation produces a coherence length of the order of 30 A in the xy direction, the same order of magnitude as the experimental result and considerably smaller than the conventional magnitude of ordinary BCS materials. Similar calculations for YBa 2 Cu 3 O/sub 6.5/ where periodic O vacancies are introduced along the one-dimensional Cu-O chains shows that the transition temperature is reduced by half

  11. Destruction of superconductivity in the Bi2Sr2Ca1-xGdxCu2-yLiyO8+d system

    International Nuclear Information System (INIS)

    Jayaram, B.; Lanchester, P.C.; Weller, M.T.

    1991-01-01

    We have measured the T c , resistivity, and magnetoresistivity of a series of Bi 2 Sr 2 Ca 1-x Gd x Cu 2-y Li y O 8+d samples, with x=0 and 0.4 and 0≤y≤0.6. We find that the suppression of T c , the logarithmic variation of the resistivity above the superconducting transition, and the field-independent nature of the temperature variation of magnetoresistivity illustrate the enhancement of the Coulomb interaction with increasing normal-state resistivity (ρ n ). We also find a gradual crossover from a logarithmic to an exponential dependence with increasing ρ n

  12. Critical current density of four-CuO2-layer T1Ba2Ca3Cu4O11-δ

    International Nuclear Information System (INIS)

    Zhang, L.; Liu, J.Z.; Shelton, R.N.

    1998-01-01

    Full text: A key requirement for technological application is to have superconductors with high critical current density at practical operating temperatures and magnetic fields. The critical current density is strongly related to underlying properties of high T c superconductors, such as layering, anisotropy and other intrinsic material structures. The thallium-based superconductors attracted much attention at early stage mainly due to their high superconducting transitions. Recent studies show that these materials appear to be a better choice for achieving higher critical current density because of a stronger interlayer coupling between superconducting layers. Single crystals of TlBa 2 Ca 3 Cu 4 O 11-δ were grown by a self-flux method. This material is a strong-layered superconductor with four-CuO 2 -planes in a unit cell and a superconducting transition temperature of 128K. Our experimental results show that TlBa 2 Ca 3 Cu 4 O 11-δ crystals have high irreversibility line, large critical current density and high upper critical field. The impact of layering and the number of Cu-O layers on flux pinning, critical current density and other magnetic properties will also be discussed

  13. High-temperature electrical properties of the Bi2.1Sr1.9(Ca1-xYx)Cu2Oy solid solution

    International Nuclear Information System (INIS)

    Hong, Byungsun; Mason, T.O.

    1993-01-01

    By a combination of conventional physical property measurements and high temperature electrical property studies, the solid solution limit, transport parameters, and potential defect regimes of the Bi 2.1 Sr 1.9 (Ca 1 - x Y x )Cu 2 O y solid solution were established. A continuous solid solution extends to x = 0.7 or 0.8. The electrical properties indicate that the product of the hole density-of-states and mobility for semiconducting compositions is approximately an order of magnitude smaller than for the other p-type superconducting cuprates. A pronounced drop in hole concentration accompanies the tetragonal-to-orthorhombic transition at x = 0.5, where after superconductivity disappears. The electrical properties also indicate that a composition x ≥ 0.7 is the appropriate ''reference'' compound for the solid solution series. Upon doping this yttrium-rich insulating composition with calcium, holes are introduced. With increased calcium content (decreased yttrium content) the system exhibits several defect regimes reminiscent of the behavior in the La 2 - x AE x CuO 4 (AE = Sr or Ba) system. Oxygen defects (interstitial and vacancies) are believed to play an important role in the defect structure

  14. Relationship between superconducting transition temperature and number of CuO2 layers in mercury-based superconductors

    International Nuclear Information System (INIS)

    Chen Xiaojia; Xu Zhuan; Jiao Zhengkuan; Zhang Qirui

    1997-01-01

    The nonmonotonic dependence of the superconducting transition temperature on the number of CuO 2 layers (n) per unit cell for mercury-based cuprate systems is investigated with the framework of the electrostatic model and the Ginsburg-Landau theory. It is found that the largest value of the normalized density of states is 1.8 when n=3, which corresponds to the highest T c in this series. Using reasonable parameters we predict an upper limit of T c of 160 K. (orig.)

  15. Proximity-coupled CuO2 planes in high-Tc superconductors: evidence from pressure experiments up to 34 GPa on Y2Ba4Cu7O15.32

    International Nuclear Information System (INIS)

    Eenige, E.N. van; Griessen, R.; Heeck, K.; Schnack, H.G.; Wijngaarden, R.J.; Genoud, J.Y.; Graf, T.; Junod, A.; Muller, J.

    1992-01-01

    The Tc of superconducting Y 2 Ba 4 Cu 7 O 15.32 is measured up to a pressure of 33.7 GPa. After an initial increase from 95 K to 101.7 K a decrease down to 26.6 K is found, with a clear kink at 22 GPa. We demonstrate that Y 2 Ba 4 Cu 7 O 15.32 behaves as a multilayer of YBa 2 Cu 3 O 7 and YBa 2 Cu 4 O 8 building blocks coupled via the proximity effect. These data are not consistent with the idea that the coupling of two adjacent CuO 2 planes is necessary for superconductivity. (orig.)

  16. Superconductivity in volumetric and film ceramics Bi-Sr-Ca-Cu-O

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, A A; Ozmanyan, Kh R; Sandomirskij, B B

    1988-07-10

    A superconducting transition with T/sub c0/=82-95 K and T/sub c/(R=0)=82-72 K was observed in volumetric and film Bi(Sr/sub 1-x/Ca/sub x/)/sub 2/Cu/sub 3/O/sub y/ samples obtained by solid-phase reaction. Temperature dependences of resistance critical current and magnetic susceptibility are measured.

  17. Method of quantitative analysis of superconducting metal-conducting composite materials

    International Nuclear Information System (INIS)

    Bogomolov, V.N.; Zhuravlev, V.V.; Petranovskij, V.P.; Pimenov, V.A.

    1990-01-01

    Technique for quantitative analysis of superconducting metal-containing composite materials, SnO 2 -InSn, WO 3 -InW, Zn)-InZn in particular, has been developed. The method of determining metal content in a composite is based on the dependence of superconducting transition temperature on alloy composition. Sensitivity of temperature determination - 0.02K, error of analysis for InSn system - 0.5%

  18. Structural disorder and its effect on the superconducting transition temperature in the organic superconductor κ-(BEDT-TTF)2Cu[N(CN)2]Br

    International Nuclear Information System (INIS)

    Su, X.; Zuo, F.; Schlueter, J.A.; Kelly, M.E.; Williams, J.M.

    1998-01-01

    In this paper, we report direct evidence of a structural transition in the organic superconductor κ-(BEDT-TTF) 2 Cu[N(CN) 2 ]Br near 80 K and the effect of disorder on the superconducting transition temperature. By cooling the sample from above 80 K, the interlayer magnetoresistance displays a bumplike feature, which increases sharply with increasing cooling rate. The rapidly cooled sample has a much larger resistivity and a lower transition temperature, which decreases linearly with increasing resistivity near the transition temperature. We propose that rapid cooling quenches the sample into a disordered state. Localized moments in the disordered state reduce the superconducting transition temperature. copyright 1998 The American Physical Society

  19. Growth and properties of oxygen- and ion-doped Bi2Sr2CaCu2O8+δ single crystals

    International Nuclear Information System (INIS)

    Mitzi, D.B.; Lombardo, L.W.; Kapitulnik, A.; Laderman, S.S.; Jacowitz, R.D.

    1990-01-01

    A directional solidification method for growing large single crystals in the Bi 2 Sr 2 CaCu 2 O 8+δ system is reported. Ion doping, with replacement of La for Sr and Y for Ca, as well as oxygen doping in these crystals has been explored. Doped and undoped crystals have been characterized using microprobe analysis, x-ray diffraction, thermogravimetric analysis, and magnetic and Hall measurements. Ion doping results in little change of the superconducting transition for substitution levels below 20--25%, while beyond this level the Meissner signal broadens and the low-temperature Meissner signal decreases. Microprobe analysis and x-ray diffraction performed on these more highly substituted single crystals provide evidence for inhomogeneity and phase segregation into regions of distinct composition. Annealing unsubstituted crystals in increasing partial pressures of oxygen reversibly depresses the superconducting transition temperature from 90 (as made) to 77 K (oxygen pressure annealed), while the carrier concentrations, as determined from Hall effect measurements, increase from n=3.1(3)x10 21 cm -3 (0.34 holes per Cu site) to 4.6(3)x10 21 cm -3 (0.50 holes per Cu site)

  20. An investigation about the improvement of Tc for the n-type superconductor Nd2-xCexCuO4

    International Nuclear Information System (INIS)

    Wang Cong; Liang Jingkui; Chen Xiaolong; Min Jinrong; Cheng Xiangrong; Zhuang Weidong; Rao Guanghui

    1994-01-01

    Nd 2-x Ce x CuO 4 (x = 0.12 to 0.18) with T onset = 17 to 26 K is synthesized from the nominal composition of Nd 2-x Ce x CuO 4 + nSrCuO 2 (+nCaCuO 2 ) (n = 1, 2) under standard conditions without high pressure treatment. The sintering temperature, atmosphere, and synthetic procedure are important for the superconductivity of Nd 2-x Ce x CuO 4 . It is difficult to build up n blocks of SrCuO 2 , CaCuO 2 , or CdCuO 2 on Nd 2-x Ce x CuO 4 so as to add CuO 2 layers. In addition, the crystal structure and electrical resistance of Nd 2-x Ce x CuO 4 are studied. (orig.)

  1. Nano-fabricated superconducting radio-frequency composites, method for producing nano-fabricated superconducting rf composites

    Science.gov (United States)

    Norem, James H.; Pellin, Michael J.

    2013-06-11

    Superconducting rf is limited by a wide range of failure mechanisms inherent in the typical manufacture methods. This invention provides a method for fabricating superconducting rf structures comprising coating the structures with single atomic-layer thick films of alternating chemical composition. Also provided is a cavity defining the invented laminate structure.

  2. Electric currents in REBaCuO superconducting tapes

    Czech Academy of Sciences Publication Activity Database

    Jirsa, Miloš; Rameš, Michal; Ďuran, Ivan; Melíšek, T.; Kováč, P.; Viererbl, L.

    2017-01-01

    Roč. 30, č. 4 (2017), 1-8, č. článku 045010. ISSN 0953-2048 EU Projects: European Commission(XE) 633053 - EUROfusion Institutional support: RVO:68378271 ; RVO:61389021 Keywords : superconducting tapes * REBaCuO * critical currents * induction and transport * pinning force density * magnetic relaxation * neutron irradiation Subject RIV: BM - Solid Matter Physics ; Magnetism; BL - Plasma and Gas Discharge Physics (UFP-V) OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.); Fluids and plasma physics (including surface physics) (UFP-V) Impact factor: 2.878, year: 2016

  3. Accurate determination of the composition of Y-Ba-Cu-O superconductor by spectrophotometry, gravimetry and flame AAS

    International Nuclear Information System (INIS)

    Bruneel, E; Verbauwhede, D; Vyver, D Van de; Schaubroeck, J; Hoste, S; Driessche, I Van

    2005-01-01

    A procedure for the accurate analytical determination of yttrium, barium and copper in an YBa 2 Cu 3 O x superconductor is described. After dissolution of the material the concentration of Y and Cu was spectrophotometrically determined as an Y-Arsenazo III and a Cu-Nitroso-R-salt complex, respectively. Ba was determined either gravimetrically as BaCrO 4 , after precipitation using a K 2 CrO 4 solution or using flame atomic absorption spectroscopy (AAS). An accuracy better than 0.7% and a coefficient of variation better then 1.2% are obtained. It is illustrated that this analytical procedure can be used to determine the composition of a bulk superconducting YBa 2 Cu 3 O x sample. For determination of Ba in thin films we suggest the use of flame AAS, with an accuracy of 0.03% and a coefficient of variation of 1.7%

  4. Laser writing of superconducting patterns on YBa2Cu3Ox films

    International Nuclear Information System (INIS)

    Dye, R.C.; Muenchausen, R.E.; Nogar, N.S.; Mukherjee, A.; Brueck, S.R.J.

    1990-01-01

    A novel process for the direct laser writing of thin-film high T c patterns is demonstrated. The process consists of deposition of a high quality film (308 nm laser ablation from a YBa 2 Cu 3 O x target with a 750 degree C substrate temperature and a 150 mTorr O 2 ambient), annealing in an inert atmosphere (Ar at 400 degree C for 5--20 min) to reduce the oxygen content and depress or eliminate the superconducting transition temperature, and direct-write laser heating (1.06 μm at ∼0.5 kW/cm 2 for ∼5 min) in an oxygen atmosphere at ∼590 Torr to selectively regenerate the high T c material. rf eddy current and four-point resistivity probe results confirm this process for both SrTiO 3 and LaAlO 3 substrates. Scanning electron micrographs indicate that this is a very mild processing sequence with no observable changes in film morphology

  5. Epitaxial YBa2Cu3O7 on biaxially textured (001) Ni: An approach to high critical current density superconducting tapes

    International Nuclear Information System (INIS)

    Norton, D.P.; Goyal, A.; Budai, J.D.

    1997-01-01

    In-plane aligned, c-axis oriented YBa 2 Cu 3 O 7 (YBCO) films with superconducting critical current densities, J c , as high as 700,000 amperes per square centimeter at 77 kelvin have been grown on thermo-mechanically, rolled-textured (001) Ni tapes using pulsed-laser deposition. Epitaxial growth of oxide buffer layers directly on biaxially textured Ni, formed by recrystallization of cold-rolled pure Ni, enables the growth of 1.5 micrometer-thick YBCO films with superconducting properties that are comparable to those observed for epitaxial films on single crystal oxide substrates. This result represents a viable approach for producing long-length superconducting tapes for high current, high field applications at 77 kelvin

  6. Superconductivity and thermal property of MgB2/aluminum matrix composite materials fabricated by 3-dimensional penetration casting method

    International Nuclear Information System (INIS)

    Matsuda, Kenji; Saeki, Tomoaki; Nishimura, Katsuhiko; Ikeno, Susumu; Mori, Katsunori; Yabumoto, Yukinobu

    2006-01-01

    Superconductive MgB 2 /Al composite material with low and high volume fractions of particles were fabricated by our special pre-packing technique and 3-dimensional penetration casting method. The composite material showed homogeneous distribution of MgB 2 particles in the Al-matrix with neither any aggregation of particles nor defects such as cracks or cavities. The critical temperature of superconducting transition (T C ) was determined by electrical resistivity and magnetization to be about 37-39 K. Specific heat measurements further supported these T C findings. The Meissner effect was also verified in the liquid He, in which a piece of the composite floated above a permanent magnet. The thermal conductivity of the MgB 2 /Al composite material was about 25 W/K·m at 30K, a value much higher than those found for NbTi or Nb 3 Sn superconducting wires normally used in practice, which are 0.5 and 0.2 W/K·m at 10 K, respectively. A billet of the superconducting material was successfully hot-extruded, forming a rod. The same as the billet sample, the rod showed an onset T C of electrical resistivity of 39 K. (author)

  7. Melt processing of Bi-Ca-Sr-Cu-O superconductors

    International Nuclear Information System (INIS)

    Zanotto, E.D.; Cronin, J.P.; Dutta, B.

    1988-01-01

    Several Bi-Ca-Sr-Cu-O compositions were melted in Al/sub 2/O/sub 3/ or Pt crucibles at temperatures between 1050C and 1200C. As-quenched specimens crystallized from the upper surfaces, while the bottom layers were glassy. Glass formation was improved for higher Bi/sub 2/O/sub 3/ concentrations. The crystalline portions were highly conductive, while the glassy layers were insulating. Both did not show superconductivity down to 10K. Thermal treatment in air caused a dramatic effect on the electronic properties; and annealing at 865C for long periods converted the two types of specimens (previously glassy or crystalline) to superconductors, at least for one composition. Aluminum impurity (up to 8.6 atom. pct.) had no detectable effect on the transition temperatures, i.e., T/sub c/ 85K for all superconducting samples. The flake-like (Bi/sub 2/Ca/sub 1/Sr/sub 2/Cu/sub 2/) phase, reported by other authors, was responsible for superconductivity

  8. Microstructure, Mechanical and Tribological Properties of Ag/Bi2Sr2CaCu2O x Self-lubricating Composites

    Science.gov (United States)

    Tang, Hua; Zhang, Du; Wang, Yuqi; Zhang, Yi; Ji, Xiaorui; Song, Haojie; Li, Changsheng

    2014-01-01

    Ag/Bi2Sr2CaCu2O x self-lubricating composites were successfully fabricated by a facile powder metallurgy method. The structure and morphology of the as-synthesized composites and the worn surface after tribometer testing are characterized by using X-ray diffraction and scanning electron microscopy together with energy dispersive spectrometry. The results indicated that self-lubricating composites are composed of superconductor phase and Ag phase. Moreover, the effects of Ag on mechanical and tribological properties of the novel composites were investigated. The friction test results showed that the friction coefficient of the pure Bi2212 against stainless steel is about 0.40 at ambient temperature and abruptly decreases to about 0.17 when the temperature is cooled to 77 K. The friction coefficients of the composites from room temperature to high temperature were lower and more stable than those of pure Bi2Sr2CaCu2O x . When the content of Ag is 10 wt.%, the Ag/Bi2Sr2CaCu2O x composites exhibited excellent tribological performance, the improved tribological properties are attributed to the formation of soft metallic Ag films at the contacted zone of the composites.

  9. Distinctive behavior of superconducting fluctuations and pseudogap in nearly optimally doped single crystal of HgBa2CuO4+δ

    International Nuclear Information System (INIS)

    Grbic, M.S.; Barisic, N.; Dulcic, A.; Kupcic, I.; Li, Y.; Zhao, X.; Yu, G.; Dressel, M.; Greven, M.; Pozek, M.

    2010-01-01

    We have applied an unconventional microwave measurement approach to a nearly optimally doped HgBa 2 CuO 4+δ single crystal. The sample geometry assured the total lateral penetration of microwaves due to weak c-axis screening currents. With this configuration, one can achieve excellent sensitivity to small changes in conductivity. The data show that the pseudogap opens at T*=185(15)K, which is almost twice the superconducting critical temperature T c =94.3 K. In contrast, the superconducting fluctuation regime is clearly confined to a narrow temperature range T c ' ∼105(2)K, far below T*. This is confirmed by the magnetic field dependence of the microwave absorption. Hence, our results support the distinction between the physical processes of pseudogap and the superconducting ordering.

  10. Crystal structure and superconductivity of YBa2(Cu1-xFex)3Oy prepared by various heat treatments

    International Nuclear Information System (INIS)

    Katsuyama, Shigeru; Kosuge, Koji; Ueda, Yutaka

    1989-01-01

    The heat treatments of (a) slow cooling from 850 C in O 2 gas, which is an ordinary one, (b) quenching into liq. N 2 from 930 C in air followed by oxidation below 400 C in O 2 gas and (c) heating at 800 C in N 2 gas followed by oxidation below 400 C in O 2 gas stabilize the orthorhombic phase up to x=0.02, 0.04 and 0.12, respectively. The extension of the orthorhombic region seems to be due to the change of ratio of Fe1 to Fe2 and clustering for Fe ions in the Cu1-0 planes, which has been deduced from the results of 57 Fe Moessbauer measurements etc. The order of T c of the samples with the same iron concentration prepared by the above heat treatments is T c (c) T c (a) T c (b). The experimental results seem to show that one-dimensional Cu1-0 chains play a very important role in superconductivity as well as the two-dimensional Cu2-0 planes

  11. Optically induced lattice deformations, electronic structure changes, and enhanced superconductivity in YBa2Cu3O6.48

    Directory of Open Access Journals (Sweden)

    R. Mankowsky

    2017-07-01

    Full Text Available Resonant optical excitation of apical oxygen vibrational modes in the normal state of underdoped YBa2Cu3O6+x induces a transient state with optical properties similar to those of the equilibrium superconducting state. Amongst these, a divergent imaginary conductivity and a plasma edge are transiently observed in the photo-stimulated state. Femtosecond hard x-ray diffraction experiments have been used in the past to identify the transient crystal structure in this non-equilibrium state. Here, we start from these crystallographic features and theoretically predict the corresponding electronic rearrangements that accompany these structural deformations. Using density functional theory, we predict enhanced hole-doping of the CuO2 planes. The empty chain Cu dy2-z2 orbital is calculated to strongly reduce in energy, which would increase c-axis transport and potentially enhance the interlayer Josephson coupling as observed in the THz-frequency response. From these results, we calculate changes in the soft x-ray absorption spectra at the Cu L-edge. Femtosecond x-ray pulses from a free electron laser are used to probe changes in absorption at two photon energies along this spectrum and provide data consistent with these predictions.

  12. Magnetic properties of polycrystalline PrxY1-xBa2Cu3O7-δ

    International Nuclear Information System (INIS)

    Stari, C.; Rivera, V.A.G.; Lanfredi, A.J.C.; Cardoso, C.A.; Leite, E.R.; Mombru, A.W.; Araujo-Moreira, F.M.

    2008-01-01

    In this work, we report a part of a systematic study of the influence of the synthesis routes on the properties of polycrystalline samples of Pr x Y 1-x Ba 2 Cu 3 O 7-δ . We have prepared high-quality samples of this material by following a sol-gel method, associated with heat treatment in both an inert argon and an oxygen atmospheres in order to compare their influence on the formation of the superconducting phase. Magnetic measurement (AC susceptibility) show that the superconducting transition temperature (T C ) increases in samples prepared in argon when compared to those prepared in oxygen, for the same composition and Pr fraction less than 0.5. In addition to this, preliminary results of AC and DC magnetic susceptibility show superconductivity for samples with Pr fraction higher than 0.5 (and up to 0.9) prepared under argon flux, which may indicate the existence of stable superconductivity for all compositions, including pure Pr-123

  13. Role of thermal analysis in the study of superconductor YBa2Cu3O7-δ

    International Nuclear Information System (INIS)

    Virkar, A.N.

    1993-01-01

    The interstitial oxygen atoms along the b-axis of the orthorhombic unit cell of superconducting phase of YBa 2 Cu 3 O 7 form a chain of Cu-O-Cu-O located in the perovskite basal plane and these chains are interpreted to be responsible for superconductivity. Superconductivity can be strongly suppressed by introducing oxygen defects into the chain sites. The characteristic chain structure disappears in the non-superconducting tetragonal phase. Thus orthorhombic to tetragonal transformation takes place by an order-disorder transition between filled and vacant oxygen sites in the basal plane which results in the loss of superconductivity in oxygen deficient YBa 2 Cu 3 O 7-δ phase. (author). 12 refs., 8 figs

  14. Femtosecond optical detection of quasiparticle dynamics in high- T sub c YBa sub 2 Cu sub 3 O sub 7 minus. delta. superconducting thin films

    Energy Technology Data Exchange (ETDEWEB)

    Han, S.G.; Vardeny, Z.V.; Wong, K.S.; Symko, O.G. (Department of Physics, University of Utah, Salt Lake City, UT (USA)); Koren, G. (Department of Physics, Technion, 32000 Haifa (Israel))

    1990-11-19

    Femtosecond dynamics of photogenerated quasiparticles in YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} superconducting thin films shows, at {ital T}{le}{ital T}{sub {ital c}}, two main electronic processes: (i) quasiparticle avalanche production during hot-carrier thermalization, which takes about 300 fsec; (ii) recombination of quasiparticles to form Cooper pairs, which is completed within 5 psec. In contrastr, nonsuperconducting epitaxial films such as PrBa{sub 2}Cu{sub 2}O{sub 7} and YBa{sub 2}Cu{sub 3}O{sub 6} show regular picosecond electronic response.

  15. Antiferromagnetic ordering in superconducting YBa2Cu3O6.5

    DEFF Research Database (Denmark)

    Sidis, Y.; Ulrich, C.; Bourges, P.

    2001-01-01

    Commensurate antiferromagnetic ordering has been observed in the superconducting high-T-c. cuprate YBa2Cu3O6.5 (T-c = 55 K) by polarized and unpolarized elastic neutron scattering. The magnetic peak intensity exhibits a marked enhancement at T-c. Zero-field muon-spin-resonance experiments...

  16. Influence of various parameters on the elaboration of superconducting oxides. Influence de divers parametres sur la synthese d'oxydes supraconducteurs

    Energy Technology Data Exchange (ETDEWEB)

    Remy, F; Monnereau, O; Vacquier, G; Sorbier, J P; Fournel, A [Aix-Marseille-1 Univ., 13 - Marseille (FR); Mokrani, R [Aix-Marseille-3 Univ., 13 - Marseille (FR)

    1989-01-01

    Several oxides able to give rise to a high T{sub c} superconductivity have been studied. Samples were prepared in both series: La(Ba{sub 2-x}La{sub x}) Cu{sub 3}O{sub 7+y} and YBa{sub 2} (Cu{sub 3-x}Ag{sub x})O{sub 7-y}. The evolution of the resistance versus the composition has been studied on sintered samples. The results assess the importance of the experimental conditions of the synthesis. In the system La(Ba{sub 2-x}La{sub x})Cu{sub 3}O{sub 7+y} our results complete the work of Segre et al. and precise composition at which the superconductivity transition disappear for the profit of the semiconductive behaviour. The samples YBa{sub 2}(Cu{sub 3-x}Ag{sub x})O{sub 7-y} has for x = 0 electrical properties very dependent of the thermal treatment. Some characteristic data are shown. The partial substitution of Cu by Ag for x {ge} 1 enables to keep the superconducting behaviour.

  17. RE-Ba-Cu-O for high functional superconducting permanent magnet

    International Nuclear Information System (INIS)

    Yoo, S.I.; Higuchi, T.; Sakai, N.; Murakami, M.; Fujimoto, H.

    1998-01-01

    Among various potential applications of melt-textured RE-Ba-Cu-O (REBCO, RE: rare earth elements) superconductors, we have examined the bulk application as the superconducting permanent magnet, especially for the magnetically-levitated (MAGLEV) train. Compared with Y-Ba-Cu-O (YBCO), oxygen-controlled melt-growth (OCMG)-processed LREBCO (LRE: light rare earth elements) bulk superconductors are more promising for this application because of larger critical current density (J c ) values in high field and higher irreversibility field (B irr ) within the range of the liquid nitrogen refrigeration (63-77 K), implying that even higher trapped fields (B t ) are achievable in principle. In this paper, material requirements of superconducting bulks for the MAGLEV train are first presented and then processing aspects for the fabrication of good LREBCO bulks are described. (orig.)

  18. Bi--Sr--Ca--Cu--O superconducting films fabricated using metal alkoxides

    International Nuclear Information System (INIS)

    Katayama, S.; Sekine, M.

    1991-01-01

    Superconducting films in the Bi--Sr--Ca--Cu--O systems were made using metal alkoxides. To prepare a dip-coating solution using a mixed alkoxide solution, insoluble Cu and Bi alkoxides were dissolved by modification with 2-dimethylaminoethanol and formation of a double alkoxide, respectively. Formation of the double alkoxides of Bi with Ca or Sr was confirmed using FT-IR and 1 H-NMR. Bi--Sr--Ca--Cu--O films on yttria-stabilized ZrO 2 and single crystal MgO(100) substrates were made using this solution. The films were closely oriented along the c-axis perpendicular to the substrate. The film on MgO(100) fired at 850 degree C for 48 h showed two resistance drops around 115 and 85 K, corresponding to the high-T c and low-T c phases, respectively, and zero resistance at 72 K

  19. Radiation resistant organic composites for superconducting fusion magnets

    International Nuclear Information System (INIS)

    Nishijima, S.; Okada, T.

    1993-01-01

    Organic composite materials (usually reinforced by glas fibers: GFRP) are to be used in fusion superconducting magnets as insulating and/or structural materials. The fusion superconducting magnets are operated under radiation environments and hence the radiation induced degradation of magnet components is ought to be estimated. Among the components the organic composite materials were evaluated to be the most radiation sensitive. Consequently the development of radiation resistant organic composite materials is thought one of the 'key' technologies for fusion superconducting magnets. The mechanism of radiation-induced degradation was studied and the degradation of interlaminar shear strength (ILSS) was found to be the intrinsic phenomenon which controlled the overall degradation of organic composite materials. The degradation of ILSS was studied changing matrix resin, reinforcement and type of fabrics. The possible combination of the organic composites for the fusion superconducting magnet will be discussed. (orig.)

  20. Analysis of process parameters in the laser deposition of YBa{sub 2}Cu{sub 3}O{sub 7} superconducting films by using SVR

    Energy Technology Data Exchange (ETDEWEB)

    Cai, C.Z., E-mail: caiczh@gmail.com [Department of Applied Physics, Chongqing University, Chongqing 401331 (China); Xiao, T.T. [Department of Applied Physics, Chongqing University, Chongqing 401331 (China); Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, CAEP, P.O. Box 919-988, Mianyang 621900 (China); Tang, J.L.; Huang, S.J. [Department of Applied Physics, Chongqing University, Chongqing 401331 (China)

    2013-10-15

    Highlights: • Proposed new ideas and strategies to improve energy storage density for SMES system. • One is to increase the effective current density in the superconducting coils. • Another is to optimize the configuration of the SMES coil. • A new conceive of energy compression is also proposed. -- Abstract: There are several process parameters in the growth of YBa{sub 2}Cu{sub 3}O{sub 7} superconducting films by using pulsed laser deposition (PLD). The relationship between the response and process parameters is highly nonlinear and quite complicated. It is very valuable to quantitatively estimate the response under different deposition parameters. In this study, according to an experimental data set on the superconducting transition temperature (T{sub c}) and relative resistance ratio (r{sub R}) of 17 samples of YBa{sub 2}Cu{sub 3}O{sub 7} films deposited under various parameters, the support vector regression (SVR) combined with particle swarm optimization (PSO), was proposed to predict the T{sub c} and r{sub R} for YBa{sub 2}Cu{sub 3}O{sub 7} films. The prediction performance of SVR was compared with that of multiple regression analysis (MRA) models. The results strongly support that the generalization ability of SVR model consistently surpasses that of MRA via leave-one-out cross validation (LOOCV). The mean absolute percentage errors for T{sub c} and r{sub R} are 0.37% and 1.51% respectively via LOOCV test of SVR. Sensitivity analysis discovered the most sensitive parameters affecting the T{sub c} and r{sub R}. This study suggests that the established SVR model can be used to accurately foresee the T{sub c} and r{sub R}. And it can be used to optimizing the deposition parameters in the development of YBa{sub 2}Cu{sub 3}O{sub 7} films via PLD.

  1. Multiple superconducting transition and phase separation in melt-textured YBa{sub 2}Cu{sub 3}O{sub 7−d}

    Energy Technology Data Exchange (ETDEWEB)

    Menegotto Costa, R. [Instituto de Matemática, Estatística e Física, Universidade Federal do Rio Grande (FURG), Campus Carreiros, Rio Grande, RS (Brazil); Dias, F.T. [Instituto de Física e Matemática, Universidade Federal de Pelotas (UFPel), Caixa Postal 354, 96010-900 Pelotas, RS (Brazil); Pureur, P., E-mail: ppureur@if.ufrgs.br [Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Caixa Postal 15051, 91501-970 Porto Alegre, RS (Brazil); Obradors, X. [Institut de Ciéncia de Materials de Barcelona, CSIC, Universitat Autònoma de Barcelona, 08193 Bellaterra (Spain)

    2013-12-15

    Highlights: •We report on experimental measurements of the temperature derivative of the resistivity in the region encompassing the superconducting transition in melt-textured samples of the YBa{sub 2}Cu{sub 3}O{sub 7−d} cuprate superconductor. •A complex and subtle multi-peak structure is observed in d{ρ}/dT. •We develop a new method to quantitatively describe the resistive transition of a multi-phased superconductor. •The pseudo-spectral structure observed in d{ρ}/dT is ascribed to a phase separation phenomenon driven by the ordering of labile oxygen atoms in the Cu–O chain substructure. -- Abstract: We report on careful measurements of the temperature derivative of the resistivity, dρ/dT, in the region encompassing the superconducting transition of melt-textured samples of the YBa{sub 2}Cu{sub 3}O{sub 7−d} cuprate superconductor. Measurements were carried out in orientations parallel and perpendicular to the Cu − O{sub 2} atomic planes in the presence of small magnetic fields applied parallel to the current orientation. The dρ/dT results reveal the occurrence of complex multi-peak structures that were analyzed with a new method based on the assumption that a simple series association of conductivities is adequate for describing the resistive transition of multiphased superconductors. We ascribe the multi-peak structure observed in the derivative measurements to a subtle and complex phase separation phenomenon leading to the stabilization of domains having slightly different electronic properties that are related to the ordering of labile oxygen atoms in the YBa{sub 2}Cu{sub 3}O{sub 7−d} chain sub-structure.

  2. Zinc substitution effects on the superconducting properties of Nd1.85Ce0.15CuO4-δ

    International Nuclear Information System (INIS)

    Garcia-Vazquez, V.; Mazumdar, S.; Falco, C.M.; Barlingay, C.; Risbud, S.H.

    1990-01-01

    With the discovery of the electron superconductors, a new dimension was added to research in the field of high-temperature superconductivity. Studies of these materials should help elucidate the mechanism responsible for high-temperature superconductivity, as well as improve strategies for finding new superconductors. In this paper, we discuss the superconducting structural properties of Nd 1.85 Ce 0.15 (Cu 1-y Zn y )O 4 as a function of the Zn concentration y. Detailed comparisons with previous results of similar substitution studies in the single-CuO 2 -layer hole superconductor La 1.85 Sr 0.15 CuO 4 also are made. We have found that the non-magnetic element Zn has a detrimental effect on the T'-phase electron superconductor, and that this effect is as strong as in the T-phase hole superconductor. Theoretical implications and the question of electron-hole symmetry are also discussed

  3. Conductivity fluctuation and superconducting parameters of the YBa{sub 2}Cu{sub 3-} {sub x} (PO{sub 4}) {sub x} O{sub 7-} {sub {delta}} material

    Energy Technology Data Exchange (ETDEWEB)

    Rojas Sarmiento, M.P. [Grupo de Fisica de Nuevos Materiales, Departamento de Fisica, Universidad Nacional de Colombia, AA 14490, Bogota DC (Colombia); Uribe Laverde, M.A. [Grupo de Fisica de Nuevos Materiales, Departamento de Fisica, Universidad Nacional de Colombia, AA 14490, Bogota DC (Colombia); Vera Lopez, E. [Grupo de Superficies, Electroquimica y Corrosion, UPTC, Tunja (Colombia); Landinez Tellez, D.A. [Grupo de Fisica de Nuevos Materiales, Departamento de Fisica, Universidad Nacional de Colombia, AA 14490, Bogota DC (Colombia); Roa-Rojas, J. [Grupo de Fisica de Nuevos Materiales, Departamento de Fisica, Universidad Nacional de Colombia, AA 14490, Bogota DC (Colombia)]. E-mail: jroar@unal.edu.co

    2007-09-01

    Synthesis of the YBa{sub 2}Cu{sub 3-} {sub x} (PO{sub 4}) {sub x} O{sub 7-} {sub {delta}} superconducting material by the standard solid-state reaction is reported. DC resistivity measurements reveal the improvement of the critical temperature (T {sub C}) when substitution of phosphate in the Cu sites is performed. A bulk T {sub C}=97 K was determined by the criterion of the maximum in the temperature derivative of electrical resistivity. Structure characterization by means the X-ray diffraction technique shows the crystalline appropriated distribution of PO{sub 4} into the CuO{sub 2} superconducting planes. In order to examine the effect of phosphates on the pairing mechanism close to T {sub C}, conductivity fluctuation analysis was performed by the method of logarithmic temperature derivative of the conductivity excess. We found the occurrence of Gaussian-like fluctuations. The correlations of the critical exponents with the dimensionality of the fluctuation system for each Gaussian regime were performed by using the Aslamazov-Larkin theory. The Ginzburg number for this superconducting material is predicted and the critical magnetic fields, critical current density and the jump in the specific heat at the critical temperature are theoretically determined.

  4. Accurate determination of the composition of Y-Ba-Cu-O superconductor by spectrophotometry, gravimetry and flame AAS

    Energy Technology Data Exchange (ETDEWEB)

    Bruneel, E [Department of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281(S3), 9000 Ghent (Belgium); Verbauwhede, D [Department of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281(S3), 9000 Ghent (Belgium); Vyver, D Van de [Department of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281(S3), 9000 Ghent (Belgium); Schaubroeck, J [Departement Industriele Wetenschappen, Hogeschool Gent, Schoonmeerstraat 52 9000 Ghent (Belgium); Hoste, S [Department of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281(S3), 9000 Ghent (Belgium); Driessche, I Van [Department of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281(S3), 9000 Ghent (Belgium)

    2005-06-01

    A procedure for the accurate analytical determination of yttrium, barium and copper in an YBa{sub 2}Cu{sub 3}O{sub x} superconductor is described. After dissolution of the material the concentration of Y and Cu was spectrophotometrically determined as an Y-Arsenazo III and a Cu-Nitroso-R-salt complex, respectively. Ba was determined either gravimetrically as BaCrO{sub 4}, after precipitation using a K{sub 2}CrO{sub 4} solution or using flame atomic absorption spectroscopy (AAS). An accuracy better than 0.7% and a coefficient of variation better then 1.2% are obtained. It is illustrated that this analytical procedure can be used to determine the composition of a bulk superconducting YBa{sub 2}Cu{sub 3}O{sub x} sample. For determination of Ba in thin films we suggest the use of flame AAS, with an accuracy of 0.03% and a coefficient of variation of 1.7%.

  5. Synthesis of Cu{sub 2}O/graphene/rutile TiO{sub 2} nanorod ternary composites with enhanced photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Mingxuan, E-mail: mingxuansun@sues.edu.cn; Fang, Yalin; Wang, Ying; Sun, Shanfu; He, Jia; Yan, Zhi

    2015-11-25

    A ternary composite of Cu{sub 2}O, graphene and rutile TiO{sub 2} nanorods was prepared using Cu(CH{sub 3}COO){sub 2}·H{sub 2}O, graphene oxide and TiCl{sub 4} as the starting materials and its enhanced photocatalytic performance was demonstrated. Graphene/TiO{sub 2} nanorod composites (GT) were obtained by a simple hydrothermal method and then, Cu{sub 2}O was coupled onto the surface of graphene/rutile TiO{sub 2} to form Cu{sub 2}O/graphene/rutile TiO{sub 2} nanorod (CGT) composites via a chemical bath deposition process. The as-prepared sample was characterized by X-ray diffraction (XRD), emission field scanning electron microscope (FE-SEM), transmission electron microscopy (TEM), specific surface area analyzer (BET), Raman spectroscopy and ultraviolet–visible diffuse reflectance spectroscopy (UV–vis DRS). It is found that the introduction of graphene and Cu{sub 2}O has little effect on the morphology of TiO{sub 2} nanorods with average dimensions of 140 nm (length) × 30 nm (diameter) (L/D ratio ≈5). A red shift of light absorption edge and more absorption in the visible light region were observed for the resulted ternary samples compared with TiO{sub 2} and graphene/TiO{sub 2} composites. The photocatalytic activity was evaluated by the photodegradation of methylene blue under visible light irradiation, which showed 2.8 times corresponding enhancement of the degradation efficiency for the ternary composites compared with TiO{sub 2}. This work provides a new strategy to improve the visible light response of TiO{sub 2} and facilitate its application in environmental remediation. - Highlights: • A ternary composite of Cu{sub 2}O/graphene/rutile TiO{sub 2} nanorods were successfully fabricated. • Red shift and more absorption in the visible light region were observed for the ternary composites. • Improved photocatalytic degradation was detected with the introduction of Cu{sub 2}O and graphene. • Both Cu{sub 2}O and graphene played an important role

  6. Interaction of RBa sub 2 Cu sub 3 O sub x (R = Y or Nd) coatings with alumina and zirconia substrates. [YBaCuO; NdBaCuO

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, C; Parent, L; Champagne, B; Dallaire, S [National Research Council of Canada, Industrial Materials Research Inst., Boucherville, PQ (Canada)

    1989-12-10

    As-deposited YBa{sub 2}Cu{sub 3}O{sub x} coatings by plasma spraying are not superconducting because of their inadequate crystalline structure and low oxygen content. A post-deposition heat treatment in oxygen is required to restore the appropriate superconducting YBa{sub 2}Cu{sub 3}O{sub x} structure. During heat treatment, deterimental reactions between coatings and substrates may occur and lead to the degradation or destruction of the coating superconducting properties. In the present paper, interactions of RBa{sub 2}Cu{sub 3}O{sub x} (R = Y, Nd) coatings with alumina and zirconia substrates are examined. The modifications of the coating electrical properties and microstructure are studied using X-ray diffraction, energy dispersive X-ray analysis and resistivity measurements. Coating degradation is shown to occur by diffusion of the barium atoms out of the coating leading to the formation of Y{sub 2}BaCuO{sub 5} and CuO in yttrium-based coatings, and to the formation of nonstoichiometric Nd{sub 1+y}Ba{sub 2-y}Cu{sub 3}O{sub x} and CuO in neodymium-based coatings. The coating degradation is more important on alumina substrates that on zirconia substrates for both yttrium- and neodymium-based coatings. (orig.).

  7. Fe site occupancy and superconductivity in Y1-zCazBaz(Cu1-xFex)3O6+y

    International Nuclear Information System (INIS)

    Smith, M.G.; Taylor, R.D.; Oesterreicher, H.

    1990-01-01

    X-ray diffraction and 57 Fe Moessbauer spectroscopy studies show that partial substitution of Ca for Y in Y 1-z Ca z Ba 2 (Cu 1-x Fe x ) 3 O 6+y (0.05 ≤ z ≤ 0.15,0.003 ≤ x ≤ 0.20) result in increased Fe solubility and a larger percentage of Fe occupancy of the Cu(2) plane site (prepared conventionally). Materials with z > 0.00 have a slightly depressed superconducting transition onset temperature T c relative to the z = 0.00 compounds. It is also shown that Fe occupancy of the Cu(2) site in Y 1-z Ca z Ba 2 (Cu 1-x Fe x ) 3 O 6+y can be substantially increased when these materials are treated at high temperatures in inert atmospheres followed by oxygenation at low temperatures. T c decreases more rapidly in these latter materials compared to the conventionally prepared ones. Implications concerning ordered Fe cluster formation and superconducting pair breaking in the Cu(2) site are drawn. 7 refs., 4 tabs

  8. A new fabrication process for YBa2Cu4O8 superconducting filaments by the solution spinning method under ambient pressure

    International Nuclear Information System (INIS)

    Goto, T.; Kojima, K.

    1992-01-01

    The Y 1 Ba 2 Cu 4 O 8 superconducting filament has successfully been prepared by dry-spinning through a homogeneous aqueous solution containing Y, Ba and Cu acetates, polyvinyl alcohol and other organic acids. After removing volatile components, the 124 filament is obtained by heating at 780deg C for 3 h. A decomposition of the 124 filament is investigated for introducing fine flux-pinning centers into the 123 filament. A high transport J c value of 1900 A/cm 2 at 77 K and at 0 T is attained for the 123 filament through the decomposition of the 124 filament. (orig.)

  9. Superconducting materials arrangement and realization process

    International Nuclear Information System (INIS)

    Pribat, D.; Dieumegard, D.; Garry, G.; Mercandalli, L.

    1989-01-01

    Thin and stable layers of the superconducting oxychloride YBa Cu OF with an accurate content of oxygen and fluorine can be obtained by the invention. The superconducting material is deposited on a substrate and encapsulated in an ionic conductor for adjustment of stoichiometry. Composition of the superconductor can be adjusted by electrolysis [fr

  10. Microstructures and superconducting properties of Y-Ba-Cu and Bi-Sr-Ca-Cu oxide wires and coils prepared by the explosive compaction technique

    International Nuclear Information System (INIS)

    Hagino, S.; Suzuki, M.; Takeshita, T.; Takashima, K.; Tonda, H.

    1989-01-01

    It has been shown that explosive compaction technique can be used to densify metal, and ceramics powders and their mixtures. The authors discuss how they applied this technique to produce silver sheathed superconducting oxide wires and coils (Y-B-Cu-O and Bi-Sr-Ca-Cu-O). The wires and coils to be compacted were placed into metal tube and the tube was filled with SiC powder as a pressure propagating medium and the tube was compacted by a cylindrically axisymmetric method. The wires and coils compacted were then heat-treated in order to improve grain boundary connections of superconducting oxide crystalline grains. The oxide cores heat-treated were seen to be very dense, and a part of a Y-Ba-Cu oxide coil which was heat-treated optimally was found to have a critical current density higher than 13,000A/cm 2 at 77K

  11. Superconductivity in LaCu{sub 6} and possible applications

    Energy Technology Data Exchange (ETDEWEB)

    Herrmannsdoerfer, Thomas; Pobell, Frank; Sebek, Josef; Svoboda, Pavel

    2003-05-15

    We have measured the ac susceptibility and resistivity of highly pure samples of the intermetallic compound LaCu{sub 6} down to ultralow temperatures. We have prepared the samples by arc melting of stoichiometric amounts of 99.99% La and 99.9999% Cu in a water-cooled copper crucible under Ar protective atmosphere and analysed them by X-ray diffraction and SQUID magnetometry. At T{<=}T{sub c}=0.16 K we observe a superconducting transition. Due to the manifold physical properties of isostructural ReCu{sub 6} compounds (e.g. RE = Ce: heavy fermion system, RE=Pr: hyperfine enhanced nuclear spin system, RE = Nd: electronic antiferromagnet), numerous studies of interplay phenomena may become possible in the quasibinary compounds RE{sub 1-x}La{sub x}Cu{sub 6}, respectively.

  12. A study on the superconducting properties of YBa{sub 2}Cu{sub 9-x}Nb{sub x}O{sup y} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Srinivas, S.; Bhatnagar, A.K. [Univ. of Hyderabad (India); Pinto, R. [Solid State Electronics Group, Bombay (India)] [and others

    1994-12-31

    Effect of niobium substitution at the copper site in YBa{sub 2}Cu{sub 9}O{sub 7-x} was studied in thin film form. The films were deposited by laser ablation technique using the targets of the YBa{sub 2}Cu{sub 3-x}Nb{sub x}O{sub y} where x = 0.0, 0.025, 0.05, 0.1, 0.2, 0.4, 0.8 and 1.0 under identical deposition conditions on SrTiO{sub 9} <100> substrates. Films were characterized by XRD, resistivity, I-V and J{sub c} measurements. Films made from x = 0.025 and 0.05 concentrations of Nb substituted targets showed relatively improved superconducting properties compared to that of undoped films. The best 7 realized for x = 0.025 Nb concentration was 1.8 x 10{sup {sigma}} A/cm{sup 2} and for 0.05 Nb concentration it was 3.2x10{sup {sigma}} A/cm{sup 2} at 77K. However, degradation of the superconducting properties, with the increase of x {ge} 0.1 Nb concentration and drastic suppression and complete loss of superconductivity was noticed for x {ge} 0.4. The growth of impurity phase YBa{sub 2}NbO{sub 6} for x = 0.1 and above of Nb concentration was noticed from XRD patterns. However, the site occupancy of Nb could not be confirmed from these studies.

  13. Interdiffusion studies on high-Tc superconducting YBa2Cu3O7-δ thin films on Si(111) with a NiSi2/ZrO2 buffer layer

    DEFF Research Database (Denmark)

    Aarnink, W.A.M.; Blank, D.H.A.; Adelerhof, D.J.

    1991-01-01

    Interdiffusion studies on high-T(c) superconducting YBa2Cu3O7-delta thin films with thickness in the range of 2000-3000 angstrom, on a Si(111) substrate with a buffer layer have been performed. The buffer layer consists of a 400 angstrom thick epitaxial NiSi2 layer covered with 1200 angstrom...... of polycrystalline ZrO2. YBa2Cu3O7-delta films were prepared using laser ablation. The YBa2Cu3O7-delta films on the Si/NiSi2/ZrO2 substrates are of good quality; their critical temperatures T(c,zero) and T(c,onset) have typical values of 85 and 89 K, respectively. The critical current density j(c) at 77 K equaled 4...... x 10(4) A/cm2. With X-ray analysis (XRD), only c-axis orientation has been observed. The interdiffusion studies, using Rutherford backscattering spectrometry (RBS) and scanning Auger microscopy (SAM) show that the ZrO2 buffer layer prevents severe Si diffusion to the YBa2Cu3O7-delta layer, the Si...

  14. Growth orientation and superconducting properties of YBa2Cu3O7-δ films prepared by the low-fluorine sol-gel process

    International Nuclear Information System (INIS)

    Lei Li; Zhao Gaoyang; Xu Hui; Zhao Juanjuan

    2010-01-01

    YBa 2 Cu 3 O 7-δ (YBCO) films were deposited on (100)-oriented LaAlO 3 (LAO) single crystal substrates by the dip-coating process using low-fluorine solution. Their microstructures were characterized with the aid of X-ray diffractometry, scanning electron microscopy and high-resolution transmission electron microscopy. Their superconducting properties were measured by the standard four-probe method. The experiment results show that the film obtained under high enough humidity conditions exhibits better c-axis texture and superconducting properties than the film under a relatively low humidity conditions. Based on the classical nucleation and chemical reaction thermodynamics theory, the underlying crystalline and growth mechanisms of YBCO films under certain humidity conditions are explained in combination with our experimental results. It is suggested that the unreacted intermediate phases such as BaF 2 and CuO aggregated in the YBCO grain boundary will cause lattice distortion in the YBCO matrix and further induce the formation of a-axis oriented YBCO grains as crystallization proceeds. Therefore, it is believed that the relative content of water vapor within the heat-treatment atmosphere plays quite an important role in the preparation of c-axis oriented YBCO film with good superconducting properties. (semiconductor materials)

  15. Microstructure and mechanical properties investigation of in situ TiB2 and ZrB2 reinforced Al-4Cu composites

    Science.gov (United States)

    Lutfi Anis, Ahmad; Ramli, Rosmamuhammadani; Darham, Widyani; Zakaria, Azlan; Talari, Mahesh Kumar

    2016-02-01

    Conventional Al-Cu alloys exhibit coarse grain structure leading to inferior mechanical properties in as-cast condition. Expensive thermo-mechanical treatments are needed to improve microstructure and corresponding mechanical properties. In situ Al-based composites were developed to improve mechanical properties by dispersion strengthening and grain refinement obtained by the presence of particulates in the melt during solidification. In this work Al-4Cu - 3TiB2 and Al-4Cu-3ZrB2 in situ composites were prepared by liquid casting method. XRD, electron microscopy and mechanical tests were performed on suitably sectioned and metallographically prepared surfaces to investigate the phase distribution, hardness and tensile properties. It was found that the reinforcement particles were segregated along the grain boundaries of Al dendrites. Tensile fracture morphology for both Al-4Cu - 3TiB2 and Al-4Cu-3ZrB2 were analyzed and compared to determine the fracture propagation mechanism in the composites. Al-4Cu-3ZrB2 in situ composites displayed higher strength and hardness compared to Al-4Cu-3TiB2 which could be ascribed to the stronger interfacial bonding between the Al dendrites and ZrB2 particulates as evidenced from fractographs.

  16. Synthesis, characterization, phase diagrams and superconducting and normal state magnetic properties of La2-xSrxCuO4 (0 ≤ x ≤ 0.08) and electrochemically oxidized La2-xSrxCuO4+δ (0 ≤ x ≤ 0.33, 0 ≤ δ ≤ 0.12)

    International Nuclear Information System (INIS)

    Chou, F.

    1993-08-01

    La 2-x Sr x CuO 4 (0 ≤ x ≤ 0.15) can all be intercalated with oxygen by a novel electrochemical oxidation method. Bulk superconductivity is found with an onset T c ∼ 40 K for the whole range 0.01 ≤ x ≤ 0.15; for x = 0.25 and 0.33, the electrochemical oxidation did not improve the superconducting properties. The magnetic susceptibility χ(T = 50--320 K) data for La 2 CuO 4.11 and La 1.92 Sr 0.08 CuO 4.07 are nearly identical with those of conventionally prepared La 1.85 Sr 0.15 CuO 4 , indicating that the hole doping level (p) in the CuO 2 planes of the three compounds is nearly the same. Combined thermogravimetric analysis and iodometric titration experiments indicate that part of the intercalated oxygen has a formal valence close to -1. The maximum doped-hole concentration in the CuO 2 planes that can be achieved from combined Sr-doping and electrochemical oxygen doping for 0 ≤ x ≤ 0.15 is p ∼ 0.16 holes/formula unit. Oxygen can also intercalate into single crystal La 2 CuO 4 through a slow electrochemical oxidation process. The required low current and long time for the charging process reflects that the oxygen intercalation for a single crystal is limited by its small specific surface area and long diffusion distance. The anisotropic superconducting, magnetic and transport properties are summarized and compared with those of polycrystalline La 2 CuO 4+δ as well as of YBa 2 Cu 3 O 7-δ and La 2-x Sr x CuO 4 single crystals. The single crystal La 2 CuO 4+δ has a maximum T c ∼ 40 K, which is lower than that (T c ∼ 42--45) of the corresponding polycrystalline samples. The magnetic phase diagram of La 2-x Sr x CuO 4 in the antiferromagnetic (AF) regime (0 ≤ x ≤ 0.02) has been derived from 139 La NQR studies from 4 to 250 K

  17. Charge Aspects of Composite Pair Superconductivity

    Science.gov (United States)

    Flint, Rebecca

    2014-03-01

    Conventional Cooper pairs form from well-defined electronic quasiparticles, making the internal structure of the pair irrelevant. However, in the 115 family of superconductors, the heavy electrons are forming as they pair and the internal pair structure becomes as important as the pairing mechanism. Conventional spin fluctuation mediated pairing cannot capture the direct transition from incoherent local moments to heavy fermion superconductivity, but the formation of composite pairs favored by the two channel Kondo effect can. These composite pairs are local d-wave pairs formed by two conduction electrons in orthogonal Kondo channels screening the same local moment. Composite pairing shares the same symmetries as magnetically mediated pairing, however, only composite pairing necessarily involves a redistribution of charge within the unit cell originating from the internal pair structure, both as a monopole (valence change) and a quadrupole effect. This redistribution will onset sharply at the superconducting transition temperature. A smoking gun test for composite pairing is therefore a sharp signature at Tc - for example, a cusp in the Mossbauer isomer shift in NpPd5Al2 or in the NQR shift in (Ce,Pu)CoIn5.

  18. Superconducting Dy1-x(Gd,Yb)xBa2Cu3O7-δ thin films made by Chemical Solution Deposition

    DEFF Research Database (Denmark)

    Opata, Yuri Aparecido; Wulff, Anders Christian; Hansen, Jørn Otto Bindslev

    2016-01-01

    Dy1-x(Gd or Yb)xBa2Cu3O7-δ samples were prepared using chemical solution deposition (CSD), based on trifluoroacetate metal-organic decomposition (MOD) methods. X-ray diffraction results demonstrated the formation of the RE123 superconducting phase with a strong in-plane and out-of-plane texture. c...

  19. About the role of silver in high temperature reactions of Y1 Ba2 Cu3 O7-σ superconductor ceramic

    International Nuclear Information System (INIS)

    Fiscina, J.E.; Esparza, D.A.

    1995-01-01

    Superconducting properties vs. firing protocol was studied in Ag-Y 1 Ba 2 Cu 3 O 7-σ composite. We present, as a part of a more complete study, R vs. T characterization. DTA-TGA measurements and SEM-EDAX analysis

  20. Momentum Dependence of Charge Excitations in YBa2Cu3O7-δ and Nd2-xCexCuO4

    Science.gov (United States)

    Ishii, Kenji

    2006-03-01

    Resonant inelastic x-ray scattering (RIXS) studies at Cu K-edge on high-Tc superconducting cuprates, YBa2Cu3O7-δ and Nd2-xCexCuO4 are presented. The superconductivity occurs in the vicinity of the Mott insulating state and it is important to clarify the nature of the Mott gap and its doping dependence. Because RIXS has an advantage that we can measure charge excitation in a wide energy-momentum space, it gives a unique opportunity to study the electronic structure of materials. We apply this technique to high-Tc superconducting cuprates. In particular the electronic structure of strongly correlated metals is in the focus of our RIXS study. The experiments were performed at BL11XU of SPring-8, Japan, where a specially designed spectrometer for inelastic x-ray scattering is installed. In optimally doped YBa2Cu3O7-δ, anisotropic spectra are observed in the ab plane of a twin-free crystal. The Mott gap excitation from the one-dimensional CuO chain is enhanced at 2 eV near the zone boundary of the chain direction, while the excitation from the CuO2 plane is broad at 1.5-4 eV and almost independent of momentum. Theoretical calculation based on the one-dimensional and two-dimensional Hubbard model reproduces the observed features in the RIXS spectra when smaller values of the on-site Coulomb energy of the chain than that of the plane are assumed. This means that the charge transfer gap of the chain is smaller than that of the plane. On the other hand, both interband excitation across the Mott gap and intraband excitation in the upper Hubbard band are observed in the electron-doped Nd2-xCexCuO4. The intensity of the interband excitation is concentrated at ˜ 2 eV near the zone boundary while a dispersion relation with a momentum-dependent width emerges in the intraband excitation. The author would like to acknowledge to his collaborators, K. Tsutsui, Y. Endoh, T. Tohyama, K. Kuzushita, T. Inami, K. Ohwada, M. Hoesch, M. Tsubota, Y. Murakami, J. Mizuki, S. Maekawa, T

  1. Formation of high-Tc YBa2Cu3O(7-delta) films on Y2BaCuO5 substrate

    Science.gov (United States)

    Wang, W. N.; Lu, H. B.; Lin, W. J.; Yao, P. C.; Hsu, H. E.

    1988-07-01

    High-Tc superconducting YBa2Cu3O(7-delta) films have been successfully prepared on green Y2BaCuO5 (2115) ceramic substrate. The films have been formed by RF sputtering and screen printing with post annealing at 925 C. Regarding superconducting features, the sharp resistivity drop with Tc onset around 95 K (midpoint 84 K) and 99 K (midpoint 89 K) has been observed for RF sputtered and printed films respectively. Both films show the excellent adhesion towards the 2115 substrate. Powder X-ray diffraction profiles indicate a majority of 1237 phase with preferred orientation for RF sputtered thin film.

  2. Low field anisotropic properties of a single crystals of superconducting YBa2Cu3O7-δ

    International Nuclear Information System (INIS)

    Hammann, J.; Ocio, M.; Vincent, E.; Bertinotti, A.; Luzet, D.

    1987-09-01

    Low field (0.4G≤H≤3G) magnetization measurements have been performed on small single crystals of superconducting YBa 2 Cu 3 O 7.δ using a SQUID magnetometer. They revealed anisotropic properties in the temperature dependences of the shielding and the Meissner effects. A sharp unique transition at 95 K is observed with the field parallel to c. In the perpendicular direction a second transition line seems to be crossed at T* = 84 K. This temperature T* remains constant in the range of fields investigated

  3. Composite ceramic superconducting wires for electric motor applications

    Science.gov (United States)

    Halloran, John W.

    1990-07-01

    Several types of HTSC wire have been produced and two types of HTSC motors are being built. Hundreds of meters of Ag- clad wire were fabricated from YBa2Cu3O(7-x) (Y-123) and Bi2Ca2Sr2Cu3O10 (BiSCCO). The dc homopolar motor coils are not yet completed, but multiple turns of wire have been wound on the coil bobbins to characterize the superconducting properties of coiled wire. Multifilamentary conductors were fabricated as cables and coils. The sintered polycrystalline wire has self-field critical current densities (Jc) as high as 2800 A/sq cm, but the Jc falls rapidly with magnetic field. To improve Jc, sintered YBCO wire is melt textured with a continuous process which has produced textures wire up to 0.5 meters long with 77K transport Jc above 11, 770 A/sq cm2 in self field and 2100 A/sq cm2 at 1 telsa. The Emerson Electric dc homopolar HTSC motor has been fabricated and run with conventional copper coils. A novel class of potential very powerful superconducting motors have been designed to use trapped flux in melt textures Y-123 as magnet replicas in an new type of permanent magnet motor. The stator element and part of the rotor of the first prototype machine exist, and the HTSC magnet replica segments are being fabricated.

  4. Oxygen stoichiometry and its influence on superconductivity in Bi2Sr2CaCu2O8+x

    International Nuclear Information System (INIS)

    Krishnaraj, P.; Lelovic, M.; Eror, N.G.; Balachandran, U.

    1994-01-01

    Bi 2 Sr 2 CaCu 2 O 8+x (2212) was synthesized from freeze-dried precursors. The oxygen content of 2212 was determined as a function of temperature and oxygen partial pressure and the variation of Tc with oxygen content was determined. It was found that 2212 without excess oxygen (x = 0) is superconducting. This points to the role of the (Bi-O) ∞ layers as a source for holes in 2212. Four probe resistivity measurements were also performed on 2212. The nature of oxygen intercalation and oxygen removal in 2212 was studied by thermogravimetry and resistivity. It was also found that samples of 2212 with the same oxygen content had different T c 's depending on thermal history. This difference in T c is thought to arise from oxygen occupying different sites in the lattice while maintaining the same total oxygen content

  5. Preparation of YBaCuO superconducting tape by RF magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Fukutomi, Masao; Akutsu, Nakao; Tanaka, Yoshiaki; Asano, Toshihisa; Maeda, Hiroshi (National Research Inst. for Metals, Tsukuba (Japan); Mitsui Mining and Smelting Co., Ltd., Tokyo (Japan))

    1989-04-01

    The effect of buffer layers, conditions of film preparation, and the relation between superconducting characteristics and bombardment of high energy ions on films were discussed in an attempt to fabricate YBaCuO films on metallic substrates by sputtering. Hastelloy-X tapes and Chromel (Ni-10Cr) fine wires were used as metallic substrates, and MgO films as buffer layers, which were provided by sputtering a MgO sintered target and annealing. As a result, superconducting films were favorably obtained on the Hastelloy tapes with the MgO buffer layers, however, counter diffusion at the interface of the film and layer was unavoidable in annealing. C axis-highly oriented film with high zero resistance Tc was obtained in such an arrangement of the target and substrate as to lower the effect of 0{sup {minus}} ion resputtering, resulting in the most favorable Tc=80.4K. YBaCuO superconducting films could be also deposited on a bundle of Chromel fine wires preliminarily. 11 refs., 7 figs.

  6. Experimental evidence for vortex-glass superconductivity in Y-Ba-Cu-O

    International Nuclear Information System (INIS)

    Koch, R.H.; Foglietti, V.; Gallagher, W.J.; Koren, G.; Gupta, A.; Fisher, M.P.A.

    1989-01-01

    We demonstrate experimentally the existence of a continuous phase transition between a normal and a true superconducting phase (with zero linear resistivity) in epitaxial films of Y-Ba-Cu-O in strong magnetic fields fields, H much-gt H c1 . The nonlinear I-V curves show scaling behavior near the transition and the relevant critical exponents are extracted. These exponents are consistent with values expected for freezing into a superconducting vortex-glass phase

  7. Significant enhancement in volumetric and gravimetric capacitance of Cu-TiO2/PPY composite for supercapacitor application

    Science.gov (United States)

    Purty, B.; Choudhary, R. B.

    2018-04-01

    Copper doped titanium dioxide-polypyrrole (Cu-TiO2/PPY) composite was successfully synthesized via chemical oxidative in-situ polymerization process. The structural and morphological properties of Cu-TiO2/PPY composite were investigated using X-ray diffractometer (XRD), field emission electron microscopy (FESEM) and transmission electron microscopy(TEM) techniques. The electrochemical properties of as-synthesized composite were studied using cyclic voltammetry (CV), galvanostatic charge discharge (GCD) and electrochemical impedance spectroscopic (EIS) techniques. The novel Cu-TiO2/PPY composite showed enhanced volumetric capacitance ˜714 F cm-1 and gravimetric capacitance ˜674 F g-1 at 1 A g-1. In addition an excellent coulombic efficiency and comparabley low charge transfer resistance than pure PPY suggests improved supercapacitive performance of Cu-TiO2/PPY composite as an electrode material.

  8. Manufacturing of superconductive silver/ceramic composites

    DEFF Research Database (Denmark)

    Seifi, Behrouz; Bech, Jakob Ilsted; Eriksen, Morten

    2000-01-01

    Manufacturing of superconducting metal/ceramic composites is a rather new discipline within materials forming processes. High Temperature SuperConductors, HTSC, are manufactured applying the Oxide-Powder-In-Tube process, OPIT. A ceramic powder containing lead, calcium, bismuth, strontium, and cop......Manufacturing of superconducting metal/ceramic composites is a rather new discipline within materials forming processes. High Temperature SuperConductors, HTSC, are manufactured applying the Oxide-Powder-In-Tube process, OPIT. A ceramic powder containing lead, calcium, bismuth, strontium...

  9. Structure of the non-superconducting phase La/sub 3/Ba/sub 3/Cu/sub 6/Osub(14+ x) and its relation to the high - Tc superconductor YBa/sub 2/Cu/sub 3/Osub(7 -delta)

    Energy Technology Data Exchange (ETDEWEB)

    David, W.I.F.; Harrison, W.T.A.; Ibberson, R.M.; Grasmeder, J.R.; Lanchester, P.

    1987-07-23

    The authors report time-of-flight neutron powder diffraction results, which confirm that the structure of La/sub 3/Ba/sub 3/Cu/sub 6/Osub(14 + x) is isomorphous with the tetragonal variant of YBa/sub 2/Cu/sub 3/Osub(7-delta); in particular, the copper coordination and calculated valencies of both compounds agree closely. The apparent contradiction of stoichiometries between these two phases is resolved by ordering of the large cations consistent with a formulation La(Lasub(0.25)Basub(0.75))/sub 2/Cu/sub 3/Osub(7 + 1/2x). The present results indicate that there is a remarkable structural stability from RA/sub 2/Cu/sub 3/O/sub 6/ to RA/sub 2/Cu/sub 3/Osub(7.2), although superconductivity appears to be confined to the range RA/sub 2/Cu/sub 3/Osub(6.5) to Ra/sub 2/Cu/sub 3/O/sub 7/.

  10. Stability of Tl-Ba-Ca-Cu-O Superconducting Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Siegal, M.P.; Overmyer, D.L.; Venturini, E.L.; Padilla, R.R.; Provencio, P.N.

    1999-08-23

    We report the stability of TlBa{sub 2}CaCu{sub 2}O{sub 7} (Tl-1212) and Tl{sub 2}Ba{sub 2}CaCu{sub 2}O{sub 8} (T1-2212) thin films and by inference, the stability of TlBa{sub 2}Ca{sub 2}Cu{sub 3}O{sub 9} (Tl-1223) and Tl{sub 2}Ba{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10} (Tl-2223) thin films, under a variety of conditions. In general, we observe that the stability behavior of the single Tl-O layer materials (Tl-1212 and Tl-1223)are similar and the double Tl-O layer materials (Tl-2212 and Tl-2223) are similar. All films are stable with repeated thermal cycling to cryogenic temperatures. Films are also stable in acetone and methanol. Moisture degrades film quality rapidly, especially in the form of vapor. Tl-1212 is more sensitive to vapor than Tl-2212. These materials are stable to high temperatures in either N{sub 2}, similar to vacuum for the cuprates, and O{sub 2} ambients. While total degradation of properties (superconducting and structural) occur at the same temperatures for all phases, 600 C in N{sub 2} and 700 C in O{sub 2}, the onset of degradation occurs at somewhat lower temperatures for Tl-1212 than for Tl-2212 films. In all cases, sample degradation is associated with Tl depletion from the films.

  11. Composite metallic sheathes: the key to low-cost, high strength (Bi,Pb)2Sr2Ca2Cu3O10-based tapes?

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude

    2007-01-01

    (Bi, Pb)(2)Sr2Ca2Cu3O10-based superconducting tapes were prepared by the powder- in- tube process, using a bimetallic sheath consisting of Ag and Ni. Ag was in contact with the superconducting ceramic core and acted as a protective layer against reaction between the external Ni sheath and the cor...

  12. Influence of iridium doping in MgB2 superconducting wires

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude

    2018-01-01

    MgB2 wires with iridium doping were manufactured using the in-situ technique in a composite Cu-Nb sheath. Reaction was performed at 700°C, 800°C or 900°C for 1h in argon atmosphere. A maximum of about 1.5 at.% Ir replaces Mg in MgB2. The superconducting transition temperature is slightly lowered...... by Ir doping. The formation of IrMg3 and IrMg4 secondary phase particles is evidenced, especially for a nominal stoichiometry with 2.0 at.% Ir doping. The critical current density and accommodation field of the wires are strongly dependent on the Ir content and are generally weakened in the presence...

  13. Measurement of unique magnetic and superconducting phases in oxygen-doped high-temperature superconductors La2-xSrxCuO4+y

    DEFF Research Database (Denmark)

    Udby, Linda; Larsen, Jacob; Christensen, Niels Bech

    2013-01-01

    We present a combined magnetic neutron scattering and muon spin rotation study of the nature of the magnetic and superconducting phases in electronically phase separated La2-xSrxCuO4+y, x=0.04, 0.065, 0.09. For all samples, we find long-range modulated magnetic order below TN≃Tc=39 K. In sharp co...

  14. Cation composition and oxygen content dependence of crystal structure and T sub c for Tl sub 2 sub - sub x Ba sub 2 Ca sub 2 Cu sub 3 sub + sub z O sub y

    CERN Document Server

    Idemoto, Y; Koura, N; Kamiyama, T; Oikawa, K; Izumi, F

    2003-01-01

    Tl sub 2 sub - sub x Ba sub 2 Ca sub 2 Cu sub 3 sub + sub z O sub y (Tl-2223 system) superconducting oxides with various Tl contents and Cu contents were prepared. We investigated the relation between crystal structure and superconducting property dependence of Tl and Cu content. First, we obtained an almost single-phase material at a Tl content 2-x = 1.7 and the Tl-2223 phase remained the main phase in the region of 2 - x >= 0.631 of Tl sub 2 sub - sub x Ba sub 2 Ca sub 2 Cu sub 3 O sub y. T sub c was about 120 K for the Tl-2223 in a wide range of 0.631 <= 2 - x <= 1.761. Second, we obtained a single-phase at 2 - x = 1.777 and Cu content 3 + z = 3.284 of Tl sub 2 sub - sub x Ba sub 2 Ca sub 2 Cu sub 3 sub + sub z O sub y. The T sub c (zero) dependence of Cu/Tl ratio, showed a maximum value of 122 K at Cu/Tl ratio = 2.026. Based on results of crystal structure refinements by powder neutron diffraction, it was found that the change in bond length and angle dependence of average Cu valence were similar fo...

  15. Pb solubility of the high-temperature superconducting phase Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10+d}

    Energy Technology Data Exchange (ETDEWEB)

    Kaesche, S.; Majewski, P.; Aldinger, F. [Max-Planck-Institut fuer Metallforschung, Stuttgart (Germany)] [and others

    1994-12-31

    For the nominal composition of Bi{sub 2.27x}Pb{sub x}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10+d} the lead content was varied from x=0.05 to 0.45. The compositions were examined between 830{degrees}C and 890{degrees}C which is supposed to be the temperature range over which the so-called 2223 phase (Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10+d}) is stable. Only compositions between x=0.18 to 0.36 could be synthesized in a single phase state. For x>0.36 a lead containing phase with a stoichiometry of Pb{sub 4}(Sr,Ca){sub 5}CuO{sub d} is formed, for x<0.18 mainly Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+d} and cuprates are the equilibrium phases. The temperature range for the 2223 phase was found to be 830{degrees}C to 890{degrees}C but the 2223 phase has extremely varying cation ratios over this temperature range. Former single phase 2223 samples turn to multi phase samples when annealed at slightly higher or lower temperatures. A decrease in the Pb solubility with increasing temperature was found for the 2223 phase.

  16. Smooth surfaces in very thin GdBa{sub 2}Cu{sub 3}O{sub 7−δ} films for application in superconducting tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, H., E-mail: henrynavarro@cab.cnea.gov.ar [Instituto Balseiro, Universidad Nacional de Cuyo & CNEA, 8400 Bariloche (Argentina); Centro Atómico Bariloche, Comisión Nacional de Energía Atómica. Av. Bustillo 9500, 8400 San Carlos de Bariloche (Argentina); Sirena, M. [Instituto Balseiro, Universidad Nacional de Cuyo & CNEA, 8400 Bariloche (Argentina); Centro Atómico Bariloche, Comisión Nacional de Energía Atómica. Av. Bustillo 9500, 8400 San Carlos de Bariloche (Argentina); Kim, Jeehoon [Department of Physics, Pohang University of Science and Technology, Pohang (Korea, Republic of); CALDES, Institute for Basic Science, Pohang (Korea, Republic of); Haberkorn, N. [Instituto Balseiro, Universidad Nacional de Cuyo & CNEA, 8400 Bariloche (Argentina); Centro Atómico Bariloche, Comisión Nacional de Energía Atómica. Av. Bustillo 9500, 8400 San Carlos de Bariloche (Argentina)

    2015-03-15

    Highlights: • A detailed study of the morphological properties of GdBa{sub 2}Cu{sub 3}O{sub 7−δ} thin films was realized. • The inclusion of a very thin SrTiO{sub 3} buffer layer modifies the surface of the SrTiO{sub 3} substrates. • The inclusion of the buffer layer suppress the three dimensional nucleation in the GdBa{sub 2}Cu{sub 3}O{sub 7−δ} film. • GdBa{sub 2}Cu{sub 3}O{sub 7−δ} films with large areas free of topological defects and T{sub c} close to liquid nitrogen can be obtained. - Abstract: This paper provides a systematic analysis of the morphology and the superconducting critical temperature obtained in very thin GdBa{sub 2}Cu{sub 3}O{sub 7−δ} films grown on (0 0 1) SrTiO{sub 3} substrates by DC sputtering. We find that the use of a very thin SrTiO{sub 3} buffer layer (≈2 nm) modify the nucleation of GdBa{sub 2}Cu{sub 3}O{sub 7−δ} on the surface of the substrate reducing the formation of 3 dimensional clusters. Our results demonstrate that 16 nm thick GdBa{sub 2}Cu{sub 3}O{sub 7−δ} films with an average root-mean-square (RMS) smaller than 1 nm and large surface areas (up 10 μm{sup 2}) free of 3 dimensional topological defects can be obtained. In films thinner than 24 nm the onset (zero resistance) of superconducting transition of the films is reduced, being close to liquid nitrogen. This fact can be associated with stress reducing the orthorhombicity and slightly drop in oxygen stoichiometry.

  17. Transport properties of YBa2Cu3O7/PrBa2Cu3O7 superlattices

    International Nuclear Information System (INIS)

    Jakob, G.; Hahn, T.; Stoelzel, C.; Tome-Rosa, C.; Adrian, H.

    1992-01-01

    We investigated the transport properties of high-quality YBa 2 Cu 3 O 7 /PrBa 2 Cu 3 O 7 superlattices. The exceptional structural order of the superlattices resulted in satellite peaks up to the ninth order in X-ray diffraction diagrams and high Tc values. We find high superconducting critical transport current densities j c even for ultrafine modulated superlattices which proves the existence of nearly continuous YBa 2 Cu 3 O 7 layers. The activation energy U is found to be constant or to have a linear temperatures dependence over a wide temperature range. (orig.)

  18. On the origin of the double superconducting transition in overdoped YBa{sub 2}Cu{sub 3}O {sub x}

    Energy Technology Data Exchange (ETDEWEB)

    Lortz, R. [Department of Condensed Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, CH-1211 Geneva 4 (Switzerland)]. E-mail: Rolf.Lortz@physics.unige.ch; Tomita, T. [Department of Physics, Washington University, CB 1105, One Brookings Dr., St. Louis, MO 63130 (United States); Wang, Y. [Department of Condensed Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, CH-1211 Geneva 4 (Switzerland); Junod, A. [Department of Condensed Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, CH-1211 Geneva 4 (Switzerland); Schilling, J.S. [Department of Physics, Washington University, CB 1105, One Brookings Dr., St. Louis, MO 63130 (United States); Masui, T. [Department of Physics, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Tajima, S. [Department of Physics, Osaka University, Toyonaka, Osaka 560-0043 (Japan)

    2006-02-15

    The superconducting transition in a single overdoped, detwinned YBa{sub 2}Cu{sub 3}O {sub x} (YBCO) crystal is studied using four different probes. Whereas the AC and DC magnetic susceptibilities find a dominant transition at 88 K with a smaller effect near 92 K, the specific heat and electrical resistivity reveal only a single transition at 88 K and 92 K, respectively. Under hydrostatic pressures to 0.60 GPa these two transitions shift in opposite directions, their separation increasing. The present experiments clearly show that the bulk transition lies at 88 K and originates from fully oxygenated YBCO; the 92 K transition likely arises from filamentary superconductivity in a minority optimally doped phase (<1%) of YBCO located at or near the crystal surface.

  19. Thermal conductivity of La2-xSrxCuO4 (0.05 ≤ x ≤ 0.22)

    International Nuclear Information System (INIS)

    Yan, J-Q; Zhou, J-S; Goodenough, J B

    2004-01-01

    A systematic study of the thermal conductivity of single-crystal samples of the La 2-x Sr x CuO 4 superconductive system and comparison with that of La 1.60-x Nd o.40 Sr x CuO 4 0.15 and 0.20) have demonstrated that this measurement is a useful indirect probe of mechanisms that suppress phonons. The data distinguish octahedral-site rotational or charge-order fluctuations above a structural order-disorder transition and two-phase fluctuations associated with locally cooperative atomic displacements within two-dimensional sheets that segregate hole-rich and hole-poor regions in a mixed-valent system. The former suppress phonons in both the basal plane and along the apical axis, whereas the latter only suppress phonons in the basal plane. The data support a spinodal phase segregation below room temperature into the parent and the superconductive phases in the underdoped compositional range as well as the superconductive and metallic phases in the overdoped compositions; they also support the existence of locally cooperative bond-length fluctuations in the normal state of the superconductive phase that prevent the formation of a percolative matrix capable of supporting phonons. Restoration of the phonons below T c signals a long-range, dynamic ordering of the bond-length fluctuations which implies stabilization of a travelling charge-density wave with possible hybridization of electrons and phonons below T c to give heavy vibrons that pair in the superconductive phase

  20. Microstructural and superconducting properties of high current metal-organic chemical vapor deposition YBa2Cu3O7-δ coated conductor wires

    International Nuclear Information System (INIS)

    Holesinger, T G; Maiorov, B; Ugurlu, O; Civale, L; Chen, Y; Xiong, X; Xie, Y; Selvamanickam, V

    2009-01-01

    Metal-organic chemical vapor deposition (MOCVD) on flexible, ion beam assisted deposition MgO templates has been used to produce high critical current density (J c ) (Y,Sm) 1 Ba 2 Cu 3 O y (REBCO) films suitable for use in producing practical high temperature superconducting (HTS) coated conductor wires. Thick films on tape were produced with sequential additions of 0.7 μm of REBCO via a reel-to-reel progression through a custom-designed MOCVD reactor. Multi-pass processing for thick film deposition is critically dependent upon minimizing surface secondary phase formation. Critical currents (I c s) of up to 600 A/cm width (t = 2.8 μm, J c = 2.6 MA cm -2 , 77 K, self-field) were obtained in short lengths of HTS wires. These high performance MOCVD films are characterized by closely spaced (Y,Sm) 2 O 3 nanoparticle layers that may be tilted relative to the film normal and REBCO orientation. Small shifts in the angular dependence of J c in low and intermediate applied magnetic fields can be associated with the tilted nanoparticle layers. Also present in these films were YCuO 2 nanoplates aligned with the YBCO matrix (short dimension perpendicular to the film normal), threading dislocations, and oriented composite defects (OCDs). The latter structures consist of single or multiple a-axis oriented grains coated on each side with insulating (Y,Sm) 2 O 3 or CuO. The OCDs formed a connected network of insulating phases by the end of the fourth pass. Subsequent attempts at adding additional layers did not increase I c . There is an inconsistency between the measured J c and the observed microstructural degradation that occurs with each additional layer, suggesting that previously deposited layers are improving with each repeated reactor pass. These dynamic changes suggest a role for post-processing to optimize superconducting properties of as-deposited films, addressing issues associated with reproducibility and manufacturing yield.

  1. Superconducting films of YBaCuO

    International Nuclear Information System (INIS)

    Coelho, A.L.

    1991-01-01

    Thick films of YBa 2 Cu 3 O 7 - x have been prepared on alumina and YSZ (Yttria-stabilized zirconia) substrates by the screen printing technique. Several experimental conditions have been studied, for instance: sintering time, temperature, thickness and atmosphere annealed. The resulting films have been characterized by X-ray diffraction, AC electrical resistance, AC susceptibility and scanning electron microscopy. The surface and cross-section have been observed with an optical microscope. The X-ray diffraction patterns have been compared with a typical pattern and that has indicated the good quality of the samples. AC resistance and its temperature dependence have been measured in the standard four-probe configuration. Films thickness has been estimated in the scanning electron microscope. This technique has been suitable for production of high T c superconducting films being a simple and inexpensive method. (author)

  2. Synthesis of the phase with T sub c =110 K in Bi(Pb)-Sr-Ca-Cu-O superconducting ceramics. Sintez fazy T sub c =110 K sverkhprovodyashchej keramiki sostava Bi(Pb)-Sr-Ca-Cu-O

    Energy Technology Data Exchange (ETDEWEB)

    Dubovitskij, A V; Makarov, E F; Makova, M K; Merzhanov, V A; Topnikov, V N [AN SSSR, Moscow (USSR). Inst. Khimicheskoj Fiziki

    1991-05-01

    Synthesis of 110 K single-phase bismuth ceramics (BiPb){sub 2}Sr{sub 2}Ca{sub n-1}Cu{sub n}O{sub x} was conducted in narrow temperature and time range. Diffusion of bismuth ions is proposed to be the decisive factor of synthesis of bismuth ceramics. The diffusion depends on prehistory of basic burden preparation and on its dispersivity and homogeneity in particluar. Optimal time of synthesis for lead doped ceramics of 2223 composition, synthesized from initial nitrate components, is equal to 65 h at 850 deg C. The role of Pb{sup 2+} ions is probably reduced to decrease of diffusion mobility of Bi{sup 3+} ions over the bismuth sublattice. Ceramics doping with CdO and CdCl{sub 2} compounds instead of lead stabilizes superconductivity in bismuth ceramics, but with worth superconducting parameters.

  3. Solubility and superconductivity in RE(Ba2-xREx)Cu3O7+δ (RE = Nd, Sm, Eu, Gd, Dy)

    International Nuclear Information System (INIS)

    Zhang, K.; Dabrowski, B.; Segre, C.U.; Hinks, D.G.; Schuller, I.K.; Jorgensen, J.D.; Slaski, M.

    1987-10-01

    Solid solutions of RE(Ba 2-x RE x )Cu 3 O 7- δ (RE=Nd,Sm,Eu,Gd,Dy) for x=0 to x=0.5 have been investigated. X-ray and resistivity measurements show that there exists a solid solution region, through which, the structure changes from orthorhombic to tetragonal and the superconducting properties are depressed. The solubility limits depend strongly on the size of the rare-earth ion, with the smallest (Dy) showing no appreciable solubility. The superconducting transition temperature versus x for all of the rare-earth ion substitutions falls on a universal curve, indicating that the Ba sites are extremely ionic and magnetically isolated. 20 refs., 4 figs

  4. Generic superconducting phase behavior in high-Tc cuprates: Tc variation with hole concentration in YBa2Cu3O7-δ

    International Nuclear Information System (INIS)

    Tallon, J.L.; Bernhard, C.; Shaked, H.; Hitterman, R.L.; Jorgensen, J.D.

    1995-01-01

    A direct determination of the relationship between T c and hole concentration p for Y 1-x Ca x Ba 2 Cu 3 O 7-δ is obtained by investigating the properties of the fully oxygen-deficient (δ∼1.0) compound for which p=x/2. Measurements of T c , the thermoelectric power S, and bond-valence sums calculated from neutron-diffraction refinements for various values of x and δ allow the full determination of the relations p=p(δ), T c =T c (p), and S=S(T,p) confirming that YBa 2 Cu 3 O 7-δ satisfies the same universal relations in these quantities as the other high-T c superconducting cuprates

  5. Enhancement of the superconducting properties of TlBa2CaCu2O7+δ thin films via postannealing

    International Nuclear Information System (INIS)

    Siegal, M.P.; Venturini, E.L.; Newcomer, P.P.; Morosin, B.; Overmyer, D.L.; Dominguez, F.; Dunn, R.

    1995-01-01

    The superconducting properties of TlBa 2 CaCu 2 O 7+δ (Tl-1212) films are greatly enhanced by annealing in unreactive ambients such as nitrogen at temperatures ranging from T a =250--600 degree C. The transition temperature, T c , of these Tl-1212 films as-grown in oxygen is 70 K. Annealing for 1 h at 250 degree C elevates T c above 90 K. T c further increases and sharpens for T a =600 degree C. In addition, subtle changes occur in the microstructure correlating with improved critical current density. These results indicate that Tl-1212 films may be of greater relevance for electronics applications than previously believed. copyright 1995 American Institute of Physics

  6. Microstructure development of in situ porous TiO/Cu composites

    International Nuclear Information System (INIS)

    Qin, Q.D.; Huang, B.W.; Li, W.; Shao, F.

    2016-01-01

    An in situ porous TiO/Cu composite is successfully prepared using powder metallurgy by the reaction of Ti_2CO and Cu powder. Ti_2CO powder is produced by the carbothermic reduction of titanium dioxide (TiO_2) at 1000 °C. Morphological examination of the composite shows that the porosity of composites lies in the range between 10.2% and 35.2%. As the volume fraction of TiO increases, the size of TiO becomes more fine. Scanning electron microscopy (SEM) of the fracture morphology indicates that TiO particles and the Cu matrix are connected by a Cu–Ti phase. - Highlights: • An porous TiO/Cu composite is successfully prepared by powder metallurgy technology. • The porosity of composites lies in the range between 10.2% and 35.2%. • The TiO particles and the Cu matrix are connected by a Cu-Ti phase.

  7. Facile synthesis of uniform hierarchical composites CuO-CeO{sub 2} for enhanced dye removal

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Pan; Niu, Helin, E-mail: niuhelin@ahu.edu.cn; Chen, Jingshuai, E-mail: cjshuai@126.com; Song, Jiming; Mao, Changjie; Zhang, Shengyi [Anhui University, Department of Chemistry, Key Laboratory of Functional Inorganic Materials of Anhui Province (China); Gao, Yuanhao [Xuchang University, Institute of Surface Micro and Nano Materials (China); Chen, Changle [University of Science and Technology of China, CAS Key Laboratory of Soft Matter Chemistry (China)

    2016-12-15

    The hierarchically shaped CuO-CeO{sub 2} composites were prepared through a facile solvothermal method without using any template. The as-prepared products were characterized by X-ray powder diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, and N{sub 2} adsorption–desorption analysis. In the characterization, we found that CuO-CeO{sub 2} composites were showed uniform size and morphology which were consisted of the secondary nanoflakes interconnected with each other. Most interestingly, the composites showed efficient performance to remove methyl blue and Congo red dyes from water with maximum adsorption capacities of 2131.24 and 1072.09 mg g{sup −1}, respectively. In addition, because of their larger surface area and the unique hierarchical structures, the adsorption performance of the CuO-CeO{sub 2} composites is much better than the materials of CuO and CeO{sub 2}.

  8. TEM characterization of Al-C-Cu-Al2O3 composites produced by mechanical milling

    International Nuclear Information System (INIS)

    Santos-Beltran, A.; Gallegos-Orozco, V.; Estrada-Guel, I.; Bejar-Gomez, L.; Espinosa-Magana, F.; Miki-Yoshida, M.; Martinez-Sanchez, R.

    2007-01-01

    Novel Al-based composites (Al-C-Cu-Al 2 O 3 ) obtained by mechanical milling (MM), were characterized by transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS). Analyses of composites were carried out in both, the as-milled and the as-sintered conditions. C nanoparticles were found in the as-milled condition and Al 2 O 3 nanofibers were found in as-sintered products, as determined by EELS. C and Cu react with Al to crystallize in Al 3 C 4 and Al 2 Cu structures, respectively

  9. Superconductivity: materials and applications; La supraconductivite: materiaux et apllications

    Energy Technology Data Exchange (ETDEWEB)

    Duchateau, J.L. [CEA Cadarache, 13 - Saint Paul lez Durance (France); Kircher, F. [CEA Saclay, 91 - Gif sur Yvette (France); Leveque, J. [Groupe de Recherche en Electrotechnique et Electronique de Nancy, GREEN - UHP, 54 - Vandoeuvre les Nancy (France); Tixador, P. [INP/Institut Neel, 38 - Grenoble (France)

    2008-07-01

    This digest paper presents the different types of superconducting materials: 1 - the low-TC superconductors: the multi-filament composite as elementary constituent, the world production of NbTi, the superconducting cables of the LHC collider and of the ITER tokamak; 2 - the high-TC superconductors: BiSrCaCuO (PIT 1G) ribbons and wires, deposited coatings; 3 - application to particle physics: the the LHC collider of the CERN, the LHC detectors; 4 - applications to thermonuclear fusion: Tore Supra and ITER tokamaks; 5 - NMR imaging: properties of superconducting magnets; 6 - applications in electrotechnics: cables, motors and alternators, current limiters, transformers, superconducting energy storage systems (SMES). (J.S.)

  10. A study on the development of high-Tc superconducting wire

    International Nuclear Information System (INIS)

    Won, Dong Yeon; Chang, In Soon; Lee, Jong Min; Um, Tae Yoon; Hong, Kyae Won; Lee, Ho Jin; Lee, Hee Kwun; Kim, Chan Joong; Park, Soon Dong; Kim, Woo Gon; Kim, Ki Baek; Kwon, Sun Chil

    1992-10-01

    On this study Y-Ba-Cu-O was prepared by partial melt process and superconducting wire was fabricated by powder-in-tube method. First, mechancial properties, electrical properties, microstructure and oxygen diffusion behavior were observed. Second, through fabricated superconducting wire, conceptual design, composition and plasticity of filament superconducting wire were investigated. (Author)

  11. Proton induced changes of the texturing degree of superconducting YBaCuO ceramics

    International Nuclear Information System (INIS)

    Kalanov, M.U.

    2004-01-01

    Full text: The aim of this work was to improve conducting properties of superconducting yttrium ceramics by means of proton-induced increase in the texturing degree. The object were single-phase (98 %), isotropic YBa 2 Cu 3 O 7-δ (δ ≅ 0.05) ceramic pellets of 12 mm in diameter and 0.6 mm of thickness, with the average grain size of 14 μm, the lattice parameters a r ≅ 3.822, b r ≅ 3.883 and c r ≅ 11.673 A, the density ∼ 5.1 g.cm -3 , the specific resistance ∼ 3 mΩ· cm in the normal state, had the superconducting T c ≅ 91 K. The samples were irradiated at the cyclotron U-150 of the INP AS RUz with 18 MeV-protons within the range of fluences 1014 - 10 15 cm -2 at the beam current of 20 nA and 300 K. The structure characteristics of samples were determined at the diffractometer DRON-UM1 (λ CuKα 1.54178 A). Electrophysical parameters were measured with the four-probe technique at the direct current of 10 mA. The texturing degree was determined by the formula F t = P t - P o /1 - P o , where P o and P t are the ratios of the (00L) reflection intensity sum to that of all (HKL) structure lines for isotropic and textured ceramics, respectively. The diffraction spectrum of the sample irradiated with the proton fluence of 2·10 14 cm -2 demonstrated a noticeable decrease in the {HKL} reflection intensities and simultaneous increase in those of {00L}. By this the value of ρ (100 K) decreased in 3 times, and the T c by 0.3 K, the superconducting transition broadened and the resistivity slope of the temperature dependence increased. Further growth of the {{00L} line intensities at elevated doses (4·10 14 † 8·10 14 cm -2 ) did not occur, yet the ρ (100 K) value rose fast, the T c dropped, and the character of conductivity changed from metallic to semiconducting. Such anomaly in the structure characteristics and superconducting properties of the irradiated YBa 2 Cu 3 O 7-δ ceramics can be explained by formation of the texture on the sample surface

  12. Pb induces superconductivity in Bi2Se3 analyzed by point contact spectroscopy

    OpenAIRE

    Arevalo-López, P.; López-Romero, R. E.; Escudero, R.

    2015-01-01

    Some topological insulators become superconducting when doped with Cu and Pd. Superconductivity in a non-superconductor may be induced by proximity effect: i.e. Contacting a non-superconductor with a superconductor. The superconducting macroscopic wave function will induce electronic pairing into the normal compound. In the simplest topological insulator, Bi$_2$Se$_3$, superconductivity may be induced with Pb. We studied with point contact junctions formed by contacting Bi$_2$Se$_3$ crystals ...

  13. Structural studies of type N superconductive compounds: R2-xCexCuO4±δ (R = Gd, Eu, Sm, Nd, Pr); influences of chemical treatments on physical properties

    International Nuclear Information System (INIS)

    Vigoureux, P.

    1995-06-01

    Different chemical treatments of R 2-x Ce x CuO 4±δ compounds monocrystals (gadolinium, europium, samarium, neodymium and praseodymium cuprates) modify their physical properties especially their superconductive properties. The presented chemical treatments are: the substitution of the trivalent rare earth element R by an other trivalent lanthanide, its substitution by tetravalent cerium, and heat treatment under low oxygen pressure. After these chemical treatments, structural modifications are observed by neutrons and X-rays diffraction, and allow to precise their actions: size effect of the rare earth element on the deformation of the CuO 2 planes, links between deformation and superconductivity and magnetic properties. (A.B.)

  14. The relationship between open volume defects and deposition conditions of superconducting thin-film YBa sub 2 Cu sub 3 O sub 7 sub - sub x

    CERN Document Server

    Zhou, X Y; Jiang, H; Bauer-Kugelmann, W; Duffy, J A; Koegel, G; Triftshaeuser, W

    1997-01-01

    The relationship between the open volume defects and the deposition conditions of superconducting thin-film YBa sub 2 Cu sub 3 O sub 7 sub - sub x was studied by the position lifetime technique. Using a low-energy pulsed positron system, positron lifetime as a function of implantation energy was measured on epitaxial superconducting thin-film YBa sub 2 Cu sub 3 O sub 7 sub - sub x deposited on yttrium stabilized cubic zirconia substrates (YSZ) with pulsed laser deposition in a partial pressure of air under different conditions. The results show that the type of open volume defect is independent of deposition conditions such as the substrate temperature, T sub s , and the air pressure, P sub a. The defect concentration increases with decreasing T sub s and increasing P sub a. (author). Letter-to-the-editor

  15. Retrograde densification in Bi2Sr2CaCu2O8 superconductors

    International Nuclear Information System (INIS)

    Johnson, D.W. Jr.; Rhodes, W.W.

    1989-01-01

    Bi 2 Sr 2 CaCu 2 O 8 was prepared using the mixed oxide-carbonate method and sintered at temperatures ranging from 850 degrees to 911 degrees C. The samples were characterized for density, mechanical strength, phase composition, microstructure, and superconducting transition temperatures. A unique retrograde densification characteristic is demonstrated in the temperature range 850 degrees to 890 degrees C whereby the material first becomes less dense as the sintering temperature is raised, and only in a narrow temperature range from 900 degrees to 905 degrees C does the material densify then with the formation of a liquid phase. This retrograde densification, coupled with a narrow sintering range overlapping the melting temperature, makes this compound a difficult one to process

  16. Controlled Synthesis of Heterostructured SnO2-CuO Composite Hollow Microspheres as Efficient Cu-Based Catalysts for the Rochow Reaction

    Directory of Open Access Journals (Sweden)

    Hezhi Liu

    2018-04-01

    Full Text Available In this work, we report the design and synthesis of a series of heterostructured SnO2-CuO hollow microspherical catalysts (H-SnO2(x-CuO, x is the weight ratio of Sn/Cu for the Rochow reaction. The microspherical catalysts with nanosheets and nanoparticles as building blocks were prepared by a facile one-pot hydrothermal method coupled with calcination. When tested for the Rochow reaction, the prepared H-SnO2(0.2-CuO composite exhibited higher dimethyldichlorosilane selectivity (88.2% and Si conversion (36.7% than the solid CuO, hollow CuO and other H-SnO2(x-CuO microspherical samples, because in the former there is a stronger synergistic interaction between CuO and SnO2.

  17. Directly coupled direct current superconducting quantum interference device magnetometers based on ramp-edge Ag:YBa2Cu3O7-x/PrBa2Cu3O7-x/Ag:YBa2Cu3O7-x junctions

    International Nuclear Information System (INIS)

    Jia, Q.X.; Yan, F.; Mombourquette, C.; Reagor, D.

    1998-01-01

    Directly coupled dc superconducting quantum interference device (SQUID) magnetometers on LaAlO 3 substrates were fabricated using ramp-edge superconductor/normal-metal/superconductor junctions, where Ag-doped YBa 2 Cu 3 O 7-x was used for the electrode and PrBa 2 Cu 3 O 7-x for the normal-metal barrier. A flux noise of 8x10 -6 Φ 0 Hz -1/2 at 10 kHz measured with a dc bias current was achieved at 75 K, which corresponded to a field sensitivity of 400fTHz -1/2 for a magnetometer with a pick-up loop area of 8.5mmx7.5mm. Most significantly, the noise floor increased at lower frequencies with a frequency dependence slightly less than 1/f. The field noise of the SQUID magnetometers increased by only 25% after cycling the devices from zero field to 500 mG. In a static earth close-quote s magnetic field background, the field noise of the SQUID magnetometers increased by less than a factor of 2. copyright 1998 American Institute of Physics

  18. Effect of Sintering Time and Diameter on Bi-Pb-Sr-Ca-Cu-O Superconducting Wire Formation with TiO2 Dopant by Silver (Ag Tube

    Directory of Open Access Journals (Sweden)

    Cindy Al Kindi

    2018-01-01

    Full Text Available Pengaruh waktu sintering dan diameter terhadap pembentukan kawat superkonduktor Bi-Pb-Sr-Ca-Cu-O dengan dopan TiO2 menggunakan tabung perak (Ag menjadi penting untuk dibahas karena hal ini berpengaruh terhadap adanya suhu kritis yang merupakan syarat penting superkonduktor. Pada penelitian ini ada beberapa tahap yang dilakukan yaitu preparasi bahan, proses permesinan, penarikan kawat dan proses perlakuan panas. Serbuk BPSCCO dengan dopan TiO2 dimasukkan ke dalam tabung perak (Ag dan dikalsinasi pada temperatur 820oC selama 20 jam, lalu proses penarikan (Rolling sampai diameter 6 mm dan 2,6 mm serta sintering dilakukan pada temperatur 850oC selama 9 jam dan 30 jam untuk masing-masing ukuran diameter dengan dua kali proses sintering. Hasil penelitian menunjukkan bahwa kawat superkonduktor memiliki suhu kritis yaitu Tc onset = 99 K dan Tc zero = 70 K. Waktu yang sangat berpengaruh pada pembentukan fasa superkonduktor yaitu sintering selama 9 jam sedangkan untuk ukuran diameter kawat yang memiliki suhu kritis yaitu 6 mm, sedangkan waktu sintering selama 30 jam dapat merubah fasa BPSCCO sehingga tidak terbentuk superkonduktor melainkan konduktor dan semikonduktor. Pada diameter 2,6 mm belum menjadi ukuran yang tepat pada pembentukan kawat superkonduktor.   The influence of sintering time and diameter on the formation of Bi-Pb-Sr-Ca-Cu-O superconducting wire with doped TiO2 by silver (Ag tube becomes important to be discussed because of the presence of critical temperature which is an essential condition in superconductors. In this research there are several steps must be done that is: material preparation, machine process, wire drawing and heat process. BPSCCO powder with dopant TiO2 filled into silver (Ag tube with calcination temperature at 820oC for 20 h, then rolling process to diameter 6 mm and 2,6 mm with sintering temperature at 850oC for 9 h and 30 h for each size of diameter by twice sintering process. The results showed that

  19. Microstructure development of in situ porous TiO/Cu composites

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Q.D., E-mail: 58124812@qq.com [Department of Materials & Metallurgy Engineering, Guizhou Institute of Technology, No.1 Caiguan Road, Guiyang 550003 (China); 2011 Special Functional Materials Collaborative Innovation Center of Guizhou Province, No.1 Caiguan Road, Guiyang 550003 (China); Huang, B.W. [Department of Materials & Metallurgy Engineering, Guizhou Institute of Technology, No.1 Caiguan Road, Guiyang 550003 (China); 2011 Special Functional Materials Collaborative Innovation Center of Guizhou Province, No.1 Caiguan Road, Guiyang 550003 (China); Li, W. [Department of Materials Engineering, Zhengzhou Technology College, No. 81 Zhengshang Road, Zhengzhou, 450051 (China); Shao, F. [2011 Special Functional Materials Collaborative Innovation Center of Guizhou Province, No.1 Caiguan Road, Guiyang 550003 (China)

    2016-07-05

    An in situ porous TiO/Cu composite is successfully prepared using powder metallurgy by the reaction of Ti{sub 2}CO and Cu powder. Ti{sub 2}CO powder is produced by the carbothermic reduction of titanium dioxide (TiO{sub 2}) at 1000 °C. Morphological examination of the composite shows that the porosity of composites lies in the range between 10.2% and 35.2%. As the volume fraction of TiO increases, the size of TiO becomes more fine. Scanning electron microscopy (SEM) of the fracture morphology indicates that TiO particles and the Cu matrix are connected by a Cu–Ti phase. - Highlights: • An porous TiO/Cu composite is successfully prepared by powder metallurgy technology. • The porosity of composites lies in the range between 10.2% and 35.2%. • The TiO particles and the Cu matrix are connected by a Cu-Ti phase.

  20. μ+ SR study of antiferromagnetism and superconductivity in oxygen deficient YBa2Cu3Ox

    International Nuclear Information System (INIS)

    Brewer, J.H.; Carolan, J.; Chaklader, A.C.D.; Hardy, W.N.; Hayden, M.; Kaplan, N.; Kempton, J.; Kiefl, R.F.; Kreitzman, S.R.; Kulpa, A.; Luke, G.M.; Riseman, T.M.; Roehmer, G.; Schleger, P.; Williams, D.L.; Ansaldo, E.J.; Kossler, W.J.; Watanabe, Y.; Yamazaki, T.

    1987-12-01

    Positive muon spin rotation and relaxation (μ + SR) measurements of the oxygen-deficient perovskite YBa 2 Cu 3 O x have revealed local antiferromagnetic (AFM) order for 6.0 ≤ ∼ x ≤ ∼ 6.4 with a Neel temperature T N that decreases rapidly with increasing oxygen content x. For carefully annealed samples with 6.35 ≤ ∼ x ≤ ∼ 6.5 the superconducting (SC) transition temperature T C increases smoothly with x from 25 K at x=6.348 to 60 K at x=6.507. Two such samples with x = 6.348 and x = 6.400 seem to 'switch' from SC to AFM at low temperatures. (Author) (10 refs., 3 figs.)

  1. Crystalline phases and electronic structures in superconducting Bi endash Sr endash Ca endash Cu oxides

    International Nuclear Information System (INIS)

    Giardina, M.D.; Feduzi, R.; Inzaghi, D.; Manara, A.; Giori, C.; Sora, I.N.; Dallacasa, V.

    1997-01-01

    Two classes of samples, designated A and B, of layered Bi endash Sr endash Ca endash Cu oxides having the same nominal composition 4:3:3:4, but different thermal histories, were investigated by using field modulated microwave absorption (ESR), powder x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), and x-ray absorption near the edge structure (XANES). Previous electrical resistivity measurements showed that the B samples only presented two superconducting phases with midpoints of the transition temperatures at ∼80K and ∼105K. The microwave absorption technique indicated instead the presence of islands which became superconducting at the above-mentioned temperatures also in the A samples. The crystalline and electronic structures of the two types of samples are illustrated and discussed. A plausible theoretical interpretation of the experimental results, based on a quantum percolation model with Coulomb interaction, is also given. copyright 1997 Materials Research Society

  2. Critical parameters in the sputter-deposition of NdBa{sub 2}Cu{sub 3}O{sub 7-{delta}} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hakuraku, Y.; Yokoyama, N.; Doi, T.; Inoue, T. [Faculty of Engineering, Kagoshima University, Koorimoto, Kagoshima 890, (Japan); Mori, Z.; Koba, S. [Yatsushiro National College of Technology, Yatsushiro 866 (Japan)

    1999-08-01

    A superconducting thin film of NdBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (NBCO) was prepared on an MgO(100) substrate by dc magnetron sputtering. Superconducting properties as well as features such as resistivity at room temperature and surface morphology were improved by optimizing the composition of sputtering target and critical parameters such as substrate temperature and oxidation gas pressure. A highly c-axis oriented thin film with T{sub c} (zero resistance temperature) = 95.2 K was obtained reproducibly with NdBa{sub 2}Cu{sub 3.2}O{sub 7-{delta}} off-stoichiometric target sputtering. T{sub c} = 95.2 K was 8 K higher than that deposited by stoichiometric target sputtering. Critical current density was 1x10{sup 6} A cm{sup -2} at 77 K, and surface roughness was 35 nm. (author)

  3. High T[sub c] superconductivity in YBa[sub 2]Cu[sub 3]O[sub 7-x] studied by PAC and PAS

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Shengyun (China Inst. of Atomic Energy, Beijing, BJ (China)); Li Anli (China Inst. of Atomic Energy, Beijing, BJ (China)); Zheng Shengnan (China Inst. of Atomic Energy, Beijing, BJ (China)); Huang Hanchen (China Inst. of Atomic Energy, Beijing, BJ (China)); Li Donghong (China Inst. of Atomic Energy, Beijing, BJ (China)); Din Honglin (China Inst. of Atomic Energy, Beijing, BJ (China)); Du Hongshan (China Inst. of Atomic Energy, Beijing, BJ (China)); Sun Hancheng (China Inst. of Atomic Energy, Beijing, BJ (China))

    1993-11-01

    High T[sub c] superconductivity has been investigated in YBaCuO by both perturbed angular correlation and positron annihilation spectroscopy techniques as a function of temperature from 77 to 300 K. An abrupt change has been observed in the positron lifetime and Doppler broadening and the electric field gradient and its asymmetry parameter across T[sub c], indicating a transition of two- to one-dimensional Cu-O-Cu chain structure and a charge transfer from CuO layers to CuO chains. An anomaly of the normal state has been demonstrated around 125 K, which is attributed to the structural instability. (orig.)

  4. Electronic structures of PrBa{sub 2}Cu{sub 3}O{sub 7}, Pr{sub 2}Ba{sub 4}Cu{sub 7}O{sub 15-y}(y=0,1), and PrBa{sub 2}Cu{sub 4}O{sub 8} based on LSDA+U method

    Energy Technology Data Exchange (ETDEWEB)

    Tavana, A. [Magnet Research Laboratory (MRL), Department of Physics, Sharif University of Technology, Tehran (Iran); Department of Physics, University of Mohaghegh Ardabili, Ardabil (Iran); Shirazi, M.; Akhavan, M. [Magnet Research Laboratory (MRL), Department of Physics, Sharif University of Technology, Tehran (Iran)

    2009-10-15

    The electronic structures of PrBa{sub 2}Cu{sub 3}O{sub 7} (Pr123), Pr{sub 2}Ba{sub 4}Cu{sub 7}O{sub 15-y} (Pr247), and PrBa{sub 2}Cu{sub 4}O{sub 8} (Pr124) cuprates have been obtained using density-functional theory in the local spin density approximation plus onsite Coulomb interaction (LSDA+U). Onsite Hubbard correlation, U, has been considered for Pr-f and Cu-d orbitals and the effects of considering these correlation corrections on the Pr-O hybridizations have been inspected. Results imply that the Pr ionization state in Pr123 system is constituted from two different configurations, and the energy of the f states in these two configurations has an important role in superconductivity properties of the system. Our calculations also show that in both Pr124 and Pr247 systems, suppression of superconductivity is weaker than that in the Pr123 system. This occurs due to the weaker Pr-O bond in both Pr124 and Pr247 systems. The role of the double chain and single chain on the conduction properties of these compounds has been investigated. We have also studied the effect of oxygen deficiency in Pr247 system, which seems to revive superconductivity in this system. Investigating the hole carriers in the CuO{sub 2} plane shows a correlation between superconductivity suppression and hole decrement in the planes. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  5. Local structure and superconductivity in La2-xBaxCuO4 for x=0.125 and x=0.15

    International Nuclear Information System (INIS)

    Billinge, S.J.L.; Kwei, G.H.; Takagi, H.

    1993-01-01

    This paper reviews our recent work on characterising the structural and electronic transitions in La 2-x Ba x CuO 4 . This is a high-temperature superconductor which shows interesting an interesting interrelationship between structure and atomic properties. We have used x-ray and neutron diffraction to characterize the structure and show tat the current understanding of the structural phase transitions, and their relationship to the superconductivity, is incomplete

  6. Development of Pb-rich (Bi, Pb) sub 3 Sr sub 2 Ca sub 2 Cu sub 1 O sub x phase during reformation of lead doped 2223 superconducting phase from melt quenched glass. [BiPbSrCaCuO

    Energy Technology Data Exchange (ETDEWEB)

    Oezkan, N; Glowacki, B A [IRC in Superconductivity, Univ. of Cambridge (United Kingdom)

    1992-05-01

    The reformation process of the lead doped superconducting 2223 phase from the melt quenched glass was investigated. It was shown that during the crystallisation of the glass a new lead rich phase, Bi{sub 0.5}Pb{sub 3}Sr{sub 2}Ca{sub 2}Cu{sub 1}O{sub x}, was formed and severe copper segregation was observed. The volume fraction of the high Tc 2223 phase increased with annealing time for an annealing temperature of 840degC. A glass sample annealed at 840degC for 150 h showed two superconducting transitions Tc = 107 K and Tc = 70 K. (orig.).

  7. Growth and properties of oxygen- and ion-doped Bi2Sr2CaCu2O8+δ single crystals

    Science.gov (United States)

    Mitzi, D. B.; Lombardo, L. W.; Kapitulnik, A.; Laderman, S. S.; Jacowitz, R. D.

    1990-04-01

    A directional solidification method for growing large single crystals in the Bi2Sr2CaCu2O8+δ system is reported. Ion doping, with replacement of La for Sr and Y for Ca, as well as oxygen doping in these crystals has been explored. Doped and undoped crystals have been characterized using microprobe analysis, x-ray diffraction, thermogravimetric analysis, and magnetic and Hall measurements. Ion doping results in little change of the superconducting transition for substitution levels below 20-25%, while beyond this level the Meissner signal broadens and the low-temperature Meissner signal decreases. Microprobe analysis and x-ray diffraction performed on these more highly substituted single crystals provide evidence for inhomogeneity and phase segregation into regions of distinct composition. Annealing unsubstituted crystals in increasing partial pressures of oxygen reversibly depresses the superconducting transition temperature from 90 (as made) to 77 K (oxygen pressure annealed), while the carrier concentrations, as determined from Hall effect measurements, increase from n=3.1(3)×1021 cm-3 (0.34 holes per Cu site) to 4.6(3)×1021 cm-3 (0.50 holes per Cu site). No degradation of the Meissner transition or other indications of inhomogeneity or phase segregation with doping are noted, suggesting that oxygen-doped Bi2Sr2CaCu2O8+δ is a suitable system for pursuing doping studies. The decrease in Tc with concentration for 0.34<=n<=0.50 indicates that a high-carrier-concentration regime exists in which Tc decreases with n and suggests that this decrease does not arise from material inhomogeneity or other materials problems. An examination of the variation of Tc with the density of states and lattice constants for all of the doped and undoped superconducting samples considered here indicates that changes in Tc with doping are primarily affected by changes in the density of states (or carrier concentration) rather than by structural variation induced by the doping.

  8. Structure analysis of mutually incommensurate composite crystal (Ca0.5Y0.5)0.8CuO2

    International Nuclear Information System (INIS)

    Gotoh, Y.; Yamaguchi, I.; Takeya, S.; Fujihisa, H.; Honda, K.; Ito, T.; Oka, K.; Yamaguchi, H.

    2006-01-01

    Single-crystal X-ray structure analysis of mutually incommensurate (Ca 0.5 Y 0.5 ) 0.8 CuO 2 , 'Ca 2 Y 2 Cu 5 O 1 ' has been performed by the composite approach which leads to average substructures and their relative arrangement. The composite crystal structure of (Ca 0.5 Y 0.5 ) 0.8 CuO 2 has the CuO 2 substructure and the Ca 0.5 Y 0.5 substructure. The CuO 2 substructure with a 1 = 10.598(2) A, b = 6.189(2) A, c 1 = 2.825(2) A, β 1 = 90.19(4) o , V 1 = 185.4(1) A 3 , Z = 4 and space group F2/m has the plane of edge-shared one-dimensional CuO 2 chains along the c-axis. The Ca 0.5 Y 0.5 substructure with a 2 = 10.629(2) A, b = 6.189(2) A, c 2 3.517(1) A, β 2 = 94.36(3) o , V 2 = 230.7(1) A 3 , Z = 4 and space group F2/m forms the sheet of (Ca, Y) atoms in the ac-plane. By considering (3 + 1)-dimensional superspace group symmetry, it is concluded that the incommensurate composite crystal structure of (Ca 0.5 Y 0.5 ) 0.8 CuO 2 should be described by the combination of F2/m for the CuO 2 substructure and F2/c for the Ca 0.5 Y 0.5 substructure. The composite approach has made clear that the plane of CuO 2 chains and the sheet of (Ca, Y) atoms stack alternately to form a mutually incommensurate composite crystal with layered substructures

  9. Structural study of Sr{sub 2}CuO{sub 3+delta} by neutron powder diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Shimakawa, Y. [NEC Corp., Tsukuba (Japan). Fundamental Research Labs.; Jorgensen, J.D.; Mitchell, J.F.; Hunter, B.A. [Argonne National Lab., IL (United States); Shaked, S. [Israel Atomic Energy Commission, Beersheba (Israel). Nuclear Research Center-Negev][Ben-Gurion Univ. of the Negev, Beersheba (Israel). Dept. of Physics; Hinks, D.G.; Hitterman, R.L. [Argonne National Lab., IL (United States); Hiroi, Z.; Takano, M. [Kyoto Univ., Uji (Japan). Inst. for Chemical Research

    1996-11-01

    Average crystal structures of superconducting Sr{sub 2}CuO{sub 3+{delta}} synthesized at ambient pressure from a hydroxometallate precursor were refined from neutron powder diffraction data. A simplified model was used to fit the modulated superstructures. Both compounds have an oxygen deficient La{sub 2}CuO{sub 4}-type tetragonal T structure with O vacancies located in the CuO{sub 2} planes, not in the Sr{sub 2}O{sub 2} layers. This raises important questions about the superconductivity in Sr{sub 2}CuO{sub 3+{delta}} reported to be a 70 K superconductor.

  10. Property-porosity relationships for polymer-impregnated superconducting ceramic composite

    International Nuclear Information System (INIS)

    Salib, S.; Vipulanandan, C.

    1990-01-01

    A thermoplastic polymer, poly(methyl methacrylate) (PMMA), was used to improve the flexural properties of the high-temperature superconducting ceramic (YBa 2 Cu 3 O 7-δ ). Ceramic specimens with different porosities were prepared by dry compacting 12.5-mm-diameter disk specimens at various uniaxial pressures. Density-pressure relationships have been developed for before- and after-sintering conditions. The PMMA polymer was impregnated into the porous ceramic at room temperature. The mechanical properties were evaluated by concentrically loading simply supported disk specimens. The load-displacement responses were analyzed using the finite-element method. Impregnation of PMMA polymer at room temperature increased the flexural strength and modulus of the superconducting ceramic without affecting its electrical properties. The flexural properties depended on the porosity of the ceramics, and, hence, linear and nonlinear property-porosity relationships have been used to characterize the behavior of superconducting ceramic with an without the polymer

  11. Coulomb-Gas scaling law for a superconducting Bi(2+y)Sr(2-x-y)La(x)CuO(6+delta) thin films in magnetic fields

    Science.gov (United States)

    Zhang; Deltour; Zhao

    2000-10-16

    The electrical transport properties of epitaxial superconducting Bi(2+y)Sr(2-x-y)La(x)CuO(6+delta) thin films have been studied in magnetic fields. Using a modified Coulomb-gas scaling law, we can fit all the magnetic field dependent low resistance data with a universal scaling curve, which allows us to determine a relation between the activation energy of the thermally activated flux flow resistance and the characteristic temperature scaling parameters.

  12. Aging behavior of an in-situ TiB2/Al-Cu-Li-x matrix composite

    International Nuclear Information System (INIS)

    Shen, Yanwei; Hong, Tianran; Geng, Jiwei; Han, Gaoyang; Chen, Dong; Li, Xianfeng; Wang, Haowei

    2017-01-01

    Transmission electron microscopy, differential scanning calorimetry and hardness tests have been performed on an in-situ TiB 2 /Al-3.3Cu-1.0Li-0.60Mg-0.40Ag-0.14Zr-0.13Si composite to study its aging behavior at 175 °C. A cubic phase suspected to be the σ (Al 5 Cu 6 Mg 2 ) phase or its variant is precipitated at all aging stages studied, and this phase is not typically observed in the Al-Cu-Li alloys. The primary hardening (aging for 3 h) phases consist of δ′ (Al 3 Li), β′ (Al 3 Zr) and the cubic phase. After aging for 18 h, all precipitates including T 1 (Al 2 CuLi), S (Al 2 CuMg), θ′ (Al 2 Cu), δ′, β′ and the cubic phase have appeared, and the formation of T 1 and S results in a rapid increase in hardness. With prolonging of aging time, the apparent coarsening of T 1 and S results in a decline in hardness. - Highlights: •The aging behavior of an in-situ TiB 2 /Al-Cu-Li-x composite was studied. •A cubic phase suspected to be σ (Al 5 Cu 6 Mg 2 ) or its variant was precipitated. •The hardness change was dominated by the evolution of T 1 (Al 2 CuLi) and S (Al 2 CuMg).

  13. Properties induced by mechanical milling in the system Sr1-xCaxCuO2

    International Nuclear Information System (INIS)

    Herrero, E.; Gonzalez-Calbet, J.M.; Alonso, J.; Vallet-Regi, M.; Hernando, A.

    1998-01-01

    The Sr 1-x Ca x CuO 2 system has been prepared by a mechanical milling process. The X-ray diffraction study shows that the orthorhombic structure characteristic of SrCuO 2 is preserved in the compositional range 0≤x≤0.7 but a decreasing of crystallinity is observed as the milling time increases. The substitution of Sr by Ca and the milling time plays an important role on the magnetic properties. A superconducting transition is observed for x=0 and 280 h of milling. For x=0.4, an extraordinarily high value of diamagnetic susceptibility is observed between 450 and 500 h of milling. (orig.)

  14. Cation substitution studies in YBa2Cu3O7-d structure

    International Nuclear Information System (INIS)

    Matacotta, F.C.; Segre, C.U.; Infante, C.; Ramos Arhuis, J.; Ma, B.; Ganguly, P.

    1990-04-01

    The suppression of superconductivity by the substitution of divalent cations such as Sr or Ca at Y and Ba sites in Y Ba 2 Cu 3 O 7-d and the substitution of Pr for La in LaCaBaCu 3 O 7-d has been examined by ac susceptibility and infra-red spectroscopy. The latter has been found to be particularly useful in obtaining information at the microscopic level regarding the influence of substitution at the planes and at the chains. The studies give support for the model of enhancement of superconductivity by charge fluctuations in the chains. the systematics of the changes in the electrical resistivity in La 1-x Pr x CaBaCu 3 O 7-d is examined in terms of the percolation models and the existence of a minimum sheet resistance for superconductivity. The role of the various substituents in stabilizing the structure and also in the mechanism for superconductivity is examined in terms of a model for the structure of the superconducting A m Cu n O y copper oxides on the basis of AX 3 close-packing and the uniaxial magnetic interaction model. (author). 12 refs, 6 figs

  15. Microstructure and functional properties of micro- and nanostructure metal composites obtained by diffusion welding and rolling of multilayer packages

    Energy Technology Data Exchange (ETDEWEB)

    Korzhov, Valery P.; Karpov, Michael I., E-mail: korzhov@issp.ac.ru [Institute of Solid State Physics, Russian Academy of Sciences, Chernogolovka (Russian Federation)

    2011-07-01

    Multilayered nanostructure composites of Cu/Fe, Cu/Nb, and Cu/(Nb/NbTi) with an ≤10 nm the average thickness of individual layers mechanical and superconducting properties which are implemented immediately after rolling, and micro- and nanostructure composites of Ni/Al, Ti/Ni, and (Cu/Nb)/Cu12Sn functional properties which, in contrast to the first, are manifested after rolling and heat treatment were investigated. Composites of (Cu/Nb)/Cu12Sn in final form were a multilayer tape of superconducting compound Nb{sub 3}Sn. Welding of stacks carried by heat treatment under pressure and rolling mill in a vacuum with heating to 900-950°C and large (∼30%) compression in a single pass. The microstructure was investigated by scanning electron microscopy and X-ray analysis. For superconducting composites critical current density and upper critical magnetic field were measured. Shown that the pinning of superconducting vortices in alloys of NbTi are occurred at interlayer Nb- NbTi boundaries. Change in hardness and strength of multilayer composites under rolling deformation is described by the expression of the Hall-Petch relationship, in which instead of the grain size appeared thick of layers. Key words: multilayered composite, micro- and nanostructure, NbTi alloy, superconducting compound, rolling, heat treatment, the superconducting properties, hardness, strength, superconducting vortices, the Hall-Petch expression.

  16. Fabrication of extruded wire of MgB2/Al composite material and its superconducting property and microstructure

    Czech Academy of Sciences Publication Activity Database

    Matsuda, K.; Nishimura, K.; Ikeno, S.; Mori, K.; Aoyama, S.; Yabumoto, Y.; Hishinuma, Y.; Müllerová, Ilona; Frank, Luděk; Yurchenko, V. V.; Johansen, T. H.

    2008-01-01

    Roč. 97, - (2008), 012230:1-6 E-ISSN 1742-6596. [European Conference on Applied Superconductivity /8./ - EUCAS 2007. Brussels, 16.09.2007-20.09.2007] Institutional research plan: CEZ:AV0Z20650511 Keywords : MgB2/Al composite * superconductors * electron microscopy Subject RIV: JI - Composite Materials

  17. Superconductivity and spin gap in the zigzag-chain t-J model simulating a CuO double chain in Pr2Ba4Cu7O15-δ

    International Nuclear Information System (INIS)

    Sano, Kazuhiro; Ono, Yoshiaki

    2007-01-01

    Using the numerical diagonalization method, we examine the one-dimensional t 1 -t 2 -J 1 -J 2 model (zigzag-chain t-J model) which is an effective model for metallic CuO double chains in the super-conductor Pr 2 Ba 4 Cu 7 O 15-δ . Based on the Tomonaga-Luttinger liquid theory, we calculate the Luttinger liquid parameter K ρ as a function of the electron density n. It is found that superconductivity is realized in the parameter region, which is in accordance with experimental results. We show the phase diagram of a spin gap in the t 2 /|t 1 |-n plane by analyzing the expectation value of the twist operator Z σ in the spin sector. The spin gap appears in the region with a large t 2 /|t 1 |, where the phase boundary at half filling is consistent with that of the known frustrated quantum spin system. The analysis also suggests that the estimated value of the spin gap reaches ∼100 K in the realistic parameter region of Pr 2 Ba 4 Cu 7 O 15-δ . (author)

  18. Bi-based superconducting fibers with high critical parameters

    International Nuclear Information System (INIS)

    Huo Yujing; He Yusheng; Liu Menglin; Mao Sining; Cai Liying; Wang Ying; Zhang Jincang; He Aisheng; Wang Jinsong

    1991-01-01

    Superconducting fibers of Bi(Pb)-Sr-Ca-Cu-O high Tc superconducting materials have been prepared by means of the laser-heated pedestal growth (LHPG) method. The highest zero resistance temperature T c0 reaches is 114K, and the highest critical current density J c (77K, O T) is greater than 5000 A/cm 2 . As-grown superconducting fibers were successfully fabricated without post growth heat treatment. Amorphous materials were used for the first time to make high quality fibers. The influence of growth conditions, thermal treatment and the composition of the fibers were discussed. (author). 5 refs., 7 figs., 3 tabs

  19. Electrical and structural properties of GdBa2Cu3-xVxO7-x

    International Nuclear Information System (INIS)

    Javanmard, H.; Bazargan, S.; Akhavan, M.

    2007-01-01

    Full text: It is well known that the characteristics of the CuO 2 planes are essential for understanding the unconventional superconductivity and the anomalous transport behavior of the normal state in cuprate superconductors. Continuous efforts have been devoted to the study of effects of substitution for Cu, which are of great importance for understanding the role of Cu in high-Tc superconductivity. The bulk samples of GdBa 2 Cu 3-x V x O 7-x with 0.0 4+ in the compound, and because of the high tendency of the V 4+ for achieving the octahedral structure, it appears that vanadium enters the chains, which accounts for the observed changes in the crystal structure and superconducting properties. (authors)

  20. The role of Ca substitution on the nature of the superconducting transition of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}}

    Energy Technology Data Exchange (ETDEWEB)

    Jaeckel, S.T.; Lopes, L.F.; Nunes, S.E.; Mendonca, A.P.A.; Lopes, R.F.; Vieira, V.N. [Universidade Federal de Pelotas, RS (Brazil). Inst. de Fisica e Matematica; Pureur, P.; Pimentel Junior, J.L.; Rosa, F.M. [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Inst. de Fisica; Ferreira, L.M. [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil). Centro de Ciencias Naturais e Humanas

    2012-07-01

    Full text: In this work we report the results of an experimental study about the superconducting transition of Ca- doped YBa{sub 2}Cu{sub 3}O{sub 7-{delta}}samples. Temperature dependent in-plane resistivity measurements were carried out on Y{sub 1-x}Ca{sub x}Ba{sub 2}Cu{sub 3}O{sub 7-{delta}} single crystals with Ca content x = 0, 0.01, 0.05, 0.10. The samples were studied under hydrostatic pressure conditions (P {<=}15 kbar) and applied magnetic fields (H {<=} 2500 Oe) with H parallel to the c-axis. From the analysis of the contribution of superconducting fluctuations to the electrical conductivity we identified a fluctuation regime described by the small exponent {lambda}{sub cr} = 0.20 in a narrow temperature range immediately above the critical temperature. The origin of this fluctuation regime is still unclear. A possibility is that it may be a precursor to a weakly first-order pairing transition. The evolution of this super-critical regime with pressure and magnetic field for our Ca-doped samples is distinct from results reported in the literature for pure and other divalent substituted YBa{sub 2}Cu{sub 3}O{sub 7-{delta}}samples. Our results indicate that Ca doping favors the stabilization of the super-critical regime. (author)

  1. Elastic flux creep in the mixed state of superconducting L2-xCexCuO4 single crystals

    International Nuclear Information System (INIS)

    Crusellas, M.A.; Fabrega, L.; Fontcuberta, J.; Martinez, B.; Obradors, X.; Pinol, S.

    1994-01-01

    We have performed measurements of the I-V characteristics and magnetic relaxation on L 2-x Ce x CuO 4 (L = Pr, Sm) superconducting single crystals (H//c), well below the critical temperature (T c ∼ 20 K). From both sets of data we have determined the current dependence of the effective flux creep energy barriers. An U(J) ∼-1nJ has been clearly identified in a region of the (H,T) plane. The relevance of the elastic properties of the vortex system on the flux creep energies is discussed. (orig.)

  2. Anomalous properties of PrBa2Cu3O7: a comment

    International Nuclear Information System (INIS)

    Sampathkumaran, E.V.

    1992-01-01

    Considerable attention has been paid in the literature to understand the suppression of superconductivity and the large Neel temperature of the Pr sub-lattice in PrBa 2 Cu 3 O 7 . Here we briefly recall the superconducting and magnetic anomalies noted earlier in other Pr based systems due to the partial delocalisation of the Pr-4f orbital to show that the gross anomalous features observed for PrBa 2 Cu 4 O 7 are not unique. (orig.)

  3. Influence of Precursor Composition on the Microstructure and Superconducting Properties of Dy-Ba-Cu-O filaments

    International Nuclear Information System (INIS)

    Ikebe, Y; Ban, E; Matsuoka, Y; Nishijima, G; Watanabe, K

    2006-01-01

    Dy-Ba-Cu-O filaments have been successfully fabricated by a solution spinning method. The relationship between the partial melting temperature and the transport J c value at 77 K of the filamentary sample was systematically investigated. Two kinds of precursor filaments with starting composition of Dy:Ba:Cu = 1.18:2.12:3.09 (sample A)and Dy:Ba:Cu = 1.00:2.00:3.00 (sample B) were partially melted in 1%O 2 + Ar atmospheric gas and oxygenated in pure 100% O 2 gas. Samples partially melted at a wide temperature range of 990-1040 deg. C had J c values higher than 10 4 A/cm 2 . Both sample A and sample B partially melted at 1020 deg. C exhibited the maximum J c value higher than 4.2 x 10 4 A/cm 2 and 2.0 x 10 4 A/cm 2 , respectively. These samples had a dense microstructure consisting predominantly of Dy123 and finely dispersed Dy211 particles. The Dy211 particles with a diameter of about 1μm were finely dispersed in sample A, while the particles with a diameter of about 5μm were observed in sample B. The J c values of both samples were maintained about 2.0 x 10 3 A/cm 2 up to 14 T

  4. Oxygen isotope effect in YBa2Cu3O7 prepared by burning YBa2Cu3 in 16O and 18O

    Science.gov (United States)

    Yvon, Pascal J.; Schwarz, R. B.; Pierce, C. B.; Bernardez, L.; Conners, A.; Meisenheimer, R.

    1989-04-01

    We prepared YBa2Cu3 powder by ball milling a 2:1 molar mixture of the intermetallics BaCu and CuY. We synthesized YBa2Cu3(16O)7-x and YBa2Cu3(18O)7-x by oxidizing the YBa2Cu3 powder in 16O and 18O. The 16O/18O ratios were determined by laser-ionization and sputtering-ionization mass spectroscopy. The YBa2Cu3(160)7-x sample had 99.8 at. %16O, and the YBa2Cu3(18O)7-x sample had 96.5 at. %18O. Susceptibility measurements of the superconducting transition temperature (Tc=91.7 K for 16O; half-point transition at 84 K show an isotope effect of 0.4+/-0.1 K.

  5. Anomalous superconducting spin-valve effect in NbN/FeN/Cu/FeN/FeMn multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Tae Jong; Kim, Dong Ho [Yeungnam University, Gyeongsan (Korea, Republic of)

    2017-09-15

    We have studied magnetic and transport properties of NbN/FeN/Cu/FeN/FeMn spin-valve structure. In-plane magnetic moment exhibited typical hysteresis loops of spin valves in the normal state of NbN film at 20 K. On the other hand, the magnetic hysteresis loop in the superconducting state exhibited more complex behavior in which exchange bias provided by antiferrmagnetic FeMn layer to adjacent FeN layer was disturbed by superconductivity. Because of this, the ideal superconducting spin-valve effect was not detected. Instead the stray field originated from unsaturated magnetic states dominated the transport properties of NbN/FeN/Cu/FeN/FeMn multilayer.

  6. The effect of CuO chains on the local density of states in the vortex phase of YBa2Cu3O7

    International Nuclear Information System (INIS)

    Atkinson, W A

    2009-01-01

    We examine the effects of the CuO chains on the density of states in the vortex phase in YBa 2 Cu 3 O 7 , via a calculation based on the tight-binding proximity model. In this model, chain superconductivity results from single-electron hopping between the intrinsically normal chains and intrinsically superconducting CuO 2 planes. The calculations are based on self-consistent solutions of the Bogolyubov-de Gennes equations for a bilayer consisting of a single CuO 2 layer and a single CuO chain layer. We find that, in addition to the dispersing resonances found in single-layer models, there are a second set of dispersing resonances, associated with the induced gap in the chain layer. These new resonances are highly anisotropic and distort the vortex core shape.

  7. CuGaTe2-CuAlTe2 system

    International Nuclear Information System (INIS)

    Bodnar', I.V.

    2003-01-01

    The results of studies on the chemical interaction in the CuGaTe 2 -CuAlTe 2 as well as on the thermal and optical properties of the formed solid solutions are presented. It is shown, that continuous number of solid solutions are formed in the CuGaTe 2 -CuAlTe 2 system, which crystallize in the chalcopyrite structure. The diagram of state of this system is plotted. The thermal expansion of these materials is studied through the dilatometric method. The linear dependence of the thermal expansion coefficient on the composition is established. The concentration dependences of the forbidden zone width diverge from the linearity [ru

  8. Scalable production of Cu@C composites for cross-coupling catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Bu, Lijuan [Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081 (China); Ming, Hai, E-mail: lunaticmh@163.com [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China)

    2015-10-15

    Highlights: • Cu@C core–shell composite was prepared by reduction of [Cu(NH{sub 3}){sub 4}]{sup 2+} with glucose. • The carbon shell in Cu@C can be tuned to the different degree of carbonization. • The Cu@C composites were utilized to catalyze the C−N cross coupling reaction. • The catalytic ability of Cu@C depends on the degree of shell-carbonization. - Abstract: A novel Cu@C core–shell microstructure was prepared by reduction of [Cu(NH{sub 3}){sub 4}]{sup 2+} with glucose using a mild hydrothermal process. The carbon shell of such Cu@C composite can be tuned to different carbonization degrees just through varying the calcination conditions. The structural properties of as-prepared Cu@C were investigated in detail by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron micrographs (TEM) and Raman spectra. In addition, these Cu@C composites were firstly used to catalyze the C−N cross coupling of amines with iodobenzene. Among them, the catalytic ability of Cu@C composites increased as their surface carbon’s carburization degree improved.

  9. Fluctuation-induced conductivity in melt-textured Pr-doped YBa2Cu3O7-δ composite superconductor

    DEFF Research Database (Denmark)

    Opata, Yuri Aparecido; Monteiro, João Frederico Haas Leandro; Siqueira, Ezequiel Costa

    2018-01-01

    In this study, the effects of thermal fluctuations on the electrical conductivity in melt-textured YBa2Cu3O7-δ, Y0.95Pr0.05Ba2Cu3O7-δ and (YBa2Cu3O7-δ)0.95–(PrBa2Cu3O7-δ)0.05 composite superconductor were considered. The composite superconductor samples were prepared through the top seeding method...... using melt-textured NdBa2Cu3O7-d seeds. The resistivity measurements were performed with a low-frequency, low-current AC technique in order to extract the temperature derivative and analyze the influence of the praseodymium ion on the normal superconductor transition and consequently on the fluctuation...

  10. Time-resolved X-ray diffraction study on superconducting YBa{sub 2}Cu{sub 3}O{sub 7} epitaxially grown on SrTiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Luebcke, A.

    2007-07-01

    In this PhD thesis time-resolved X-ray diffraction in optical pump - X-ray probe scheme was applied for the first time to a High-Temperature Superconductor in the superconducting state. The aim was to study the possible lattice response to optical Cooper pair breaking. As sample a thin YBa{sub 2}Cu{sub 3}O{sub 7} film with a superconducting transition temperature of T{sub c}=90 K, epitaxially grown on a SrTiO{sub 3} single crystal was used. (orig.)

  11. Crossover from BCS to composite boson (local pair) superconductivity in quasi-2D systems

    International Nuclear Information System (INIS)

    Gorbar, E.V.; Loktev, V.M.; Sharapov, S.G.

    1995-01-01

    The crossover from cooperative Cooper pairing to independent bound state (composite bosons) formation and condensation in quasi-2 D systems is studied. It is shown that at low carrier density the critical superconducting temperature is equal to the temperature of Bose-condensation of ideal quasi-2 D Bose-gas with heavy dynamical mass, meanwhile at high densities the BCS result remains valid. 15 refs

  12. Bi4Sr3Ca3Cu4O16 galss and superconducting glass ceramics

    International Nuclear Information System (INIS)

    Zheng, H.; Mackenzie, J.D.

    1988-01-01

    Bi 4 Sr 3 Ca 3 Cu 4 O 16 glass has been successfully fabricated by the melting process. Glass transition temperature, crystallization temperature, and liquid temperature of the glass are 434, 478, and 833 0 C, respectively. After the glass is heat treated at 800 0 C, a glass ceramic is formed. A comparison of the x-ray-diffraction pattern of the superconducting Bi 4 Sr 3 Ca 3 Cu 4 O/sub 16+//sub x/ ceramic to the Bi 4 Sr 3 Ca 3 Cu 4 O 16 glass ceramic revealed preferred orientation in the glass ceramic crystals. The superconducting transition temperatures T/sub c//sub (onset)/ and T/sub c//sub (zero)/ of the glass ceramics are 100 and 45 K, respectively

  13. Mechanism of superconductivity in Yb sub 1 sub - sub x Ca sub x (Ba sub 0 sub . sub 8 Sr sub O sub . sub 2) sub 2 Cu sub 3 O sub 6 sub + subdelta

    CERN Document Server

    Anvekar, T S; Sarode, P R; Kamat-Dalal, V N; Narlikar, Anant V

    2002-01-01

    EXAFS, X-ray Rietveld refinement and infra-red absorption measurements have been made on Yb sub 1 sub - sub x Ca sub x (Ba sub 0 sub . sub 8 Sr sub 0 sub . sub 2) sub 2 Cu sub 3 O sub 6 sub + subdelta in order to understand the effect of Ca doping on the local structure of planar Cu ion. The study indicates that restoration of superconductivity is due to oxidation of copper ions in the CuO sub 2 planes. (author)

  14. Study by neutrons diffusion and X-rays of structural and magnetic properties of Bi{sub 2}Sr{sub 2}Ca{sub n-1}Cu{sub n}O{sub 2n+4+{delta}} type superconductive cuprates; Etude par diffusion des neutrons et des rayons X des proprietes structurales et magnetiques des cuprates supraconducteurs de type Bi{sub 2}Sr{sub 2}Ca{sub n-1}Cu{sub n}O{sub 2n+4+{delta}}

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliu-Doloc, L

    1995-09-22

    In this work we have used inelastic and elastic neutron and X-ray scattering techniques for characterizing the incommensurate structural distortions in compounds belonging to the family Bi{sub 2}Sr{sub 2}Ca{sub n-1}Cu{sub n}O{sub 2n+4+{delta}} of high-Tc superconducting cuprates. We have searched the existence of structural instabilities specific of the CuO{sub 2} planes and of magnetic instabilities. The modulated structure of the 2212 phase has been refined from single-crystal neutron diffraction results and importance of distortion of CuO{sub 2} planes has thus been determined. It is shown that the additional oxygen is not ordered three-dimensionally within the modulated structure and that the information about it is contained in diffuse scattering results. A model of the short-range order associated with additional oxygen atoms is proposed and discussed. The temperature studies of the long-range order have shown a great stability of the amplitude and period of the incommensurate distortion wave in the one-layer, as well as in the double-layer compounds, either superconducting or insulating. We find such a behaviour to be highly incompatible with a distortion resulting from a charge-density-wave instability. The results we have obtained indicate that the bismuth-based high-Tc superconducting cuprates have essentially the same physics of the CuO{sub 2} planes as the previous two families, La{sub 2-x}Sr{sub x}CuO{sub 4} and YBa{sub 2}Cu{sub 3}O{sub 6+{delta}}, being at the proximity of three instabilities: a metal-insulator transition, an antiferromagnetic instability and a structural instability specific of the CuO{sub 2} planes. (author).

  15. Superconductivity in the Bi-Sr-Ca-Cu-O compounds some characteristics

    International Nuclear Information System (INIS)

    Escudero, R.

    1989-01-01

    The authors have prepared 90% single phase bulk samples of the 110K superconducting phase of the Bi-Sr- Ca-Cu-O compounds with different Pb amounts. This paper presents critical superconducting temperatures (zero resistance) of up to 109K were measured in the bulk samples. X-ray powder diffraction patterns of the almost isolated 110K phase. Computer simulated diffractograms were obtained, which are in general agreement with the measured ones. A discussion of the role of Pb in the stability of the 110K phase in this compounds is presented. Tunnelling measurements were made using Bi-based material. The authors studied break junctions and point contact junctions. The energy gap was determined to be about 25.5 meV and the ratio 2Δ/KBTc = 7.5. The data also show structure at energies of 67 and 120 meV

  16. Site-selective doping and superconductivity in (La/sub 1-//sub y/Pr/sub y/)(Ba/sub 2-//sub x/La/sub x/)Cu3O/sub 7+//sub δ/

    International Nuclear Information System (INIS)

    Mitzi, D.B.; Feffer, P.T.; Newsam, J.M.; Webb, D.J.; Klavins, P.; Jacobson, A.J.; Kapitulnik, A.

    1988-01-01

    Samples in the quaternary system (La/sub 1-//sub y/Pr/sub y/)(Ba/sub 2-//sub x/La/sub x/)Cu 3 O/sub 7+//sub δ/ have been prepared and characterized using x-ray and neutron diffraction, thermogravimetric analysis, and transport and magnetic measurements. Pr substitutes on the oxygen-depleted La layers for y>0.0, while La substitutes on the Ba sites for x>0.0. The effect of doping on each site is inferred to be primarily local, affecting immediately adjacent Cu-O layers. The similar suppression of superconductivity that accompanies doping on each of the two distinct sites apparently correlates with the degree of oxidation of the Cu-O sheets (and not the chains), indicating that the sheets support the high temperature superconductivity. Comparison of orthorhombic and tetragonal samples with similar Ba:La ratios (and y = 0) demonstrates that the orthorhombic phase yields the largest Meissner signals and highest transition temperatures in the La(Ba/sub 2-//sub x/La/sub x/)Cu 3 O/sub 7+//sub δ/ system

  17. Chemical reactivities of the superconducting oxides, YBa2Cu3Oy and BiSrCaCu2Oy

    International Nuclear Information System (INIS)

    Toyama, Hisashi; Mizuno, Noritaka; Misono, Makoto

    1989-01-01

    The chemical reactivities of YBa 2 Cu 3 O y and BiSrCaCu 2 O y with various gases have been studied. It was found that large quantities of NO, CO, and NO 2 were rapidly absorbed (or intercalated) in the bulk of YBa 2 Cu 3 O y (T c : 90 K) at 573 K. The amount absorbed was in the order NO ∼ CO ∼ NO 2 > O 2 ∼ CO 2 > N 2 O ∼ 0. The amount for NO was more than two times the amount of YBa 2 Cu 3 O y in molar ratio and elongation by about 0.2 angstrom along c-axis was observed. NO absorbed was almost completely recovered as NO by the evacuation at 773 K. This absorption-desorption cycle proceeded reversively. The electronic resistivity at 573 K of YBa 2 Cu 3 O y increased upon the NO absorption and was restored by the evacuation at 773 K. CO was also absorbed rapidly accompanied by evolution of CO 2 . BiSrCaCu 2 O y did not absorb either NO or CO

  18. Depth profiling of superconducting thin films using rare gas ion sputtering with laser postionization

    International Nuclear Information System (INIS)

    Pallix, J.B.; Becker, C.H.; Missert, N.; Char, K.; Hammond, R.H.

    1988-01-01

    Surface analysis by laser ionization (SALI) has been used to examine a high-T/sub c/ superconducting thin film of nominal composition YBa 2 Cu 3 O 7 deposited on SrTiO 3 (100) by reactive magnetron sputtering. The main focus of this work was to probe the compositional uniformity and the impurity content throughout the 1800 A thick film having critical current densities of 1 to 2 x 10 6 A/cm 2 . SALI depth profiles show this film to be more uniform than thicker films (∼1 μm, prepared by electron beam codeposition) which were studied previously, yet the data show that some additional (non-superconducting) phases derived from Y, Ba, Cu, and O are still present. These additional phases are studied by monitoring the atomic and diatomic-oxide photoion profiles and also the depth profiles of various clusters (e.g. Y 2 O 2 + , Y 2 O 3 + , Y 3 O 4 + , Ba 2 O + , Ba 2 O 2 + , BaCu + , BaCuO + , YBaO 2 + , YSrO 2 + , etc.). A variety of impurities are observed to occur throughout the film including rather large concentrations of Sr. Hydroxides, F, Cl, and CO/sub x/ are evident particularly in the sample's near surface region (the top ∼100 A)

  19. Depth profiling of superconducting thin films using rare gas ion sputtering with laser postionization

    Science.gov (United States)

    Pallix, J. B.; Becker, C. H.; Missert, N.; Char, K.; Hammond, R. H.

    1988-02-01

    Surface analysis by laser ionization (SALI) has been used to examine a high-Tc superconducting thin film of nominal composition YBa2Cu3O7 deposited on SrTiO3 (100) by reactive magnetron sputtering. The main focus of this work was to probe the compositional uniformity and the impurity content throughout the 1800 Å thick film having critical current densities of 1 to 2×106 A/cm2. SALI depth profiles show this film to be more uniform than thicker films (˜1 μm, prepared by electron beam codeposition) which were studied previously, yet the data show that some additional (non-superconducting) phases derived from Y, Ba, Cu, and O are still present. These additional phases are studied by monitoring the atomic and diatomic-oxide photoion profiles and also the depth profiles of various clusters (e.g. Y2O2+, Y2O3+, Y3O4+, Ba2O+, Ba2O2+, BaCu+, BaCuO+, YBaO2+, YSrO2+, etc.). A variety of impurities are observed to occur throughout the film including rather large concentrations of Sr. Hydroxides, F, Cl, and COx are evident particularly in the sample's near surface region (the top ˜100 Å).

  20. Bi sub 2 Sr sub 2 Ca sub n sub - sub 1 Cu sub n O sub y films sputtered on substrates of Bi sub 2 Sr sub 2 CuO sub y single crystals

    CERN Document Server

    Katsurahara, K; Matsumoto, K; Fujiwara, N; Tanaka, H; Kishida, S

    2003-01-01

    We prepared Bi sub 2 Sr sub 2 CaCu sub 2 O sub y (Bi-2212) films on substrates of Bi sub 2 Sr sub 2 CuO sub y (Bi-2201) single crystals by a rf magnetron sputtering method, where He and O sub 2 mixture sputtering gas and an off-axis geometry were used. The EPMA measurement indicated that the films deposited on the Bi-2201 single crystal had approximately the same composition as those on MgO substrate, which showed a Bi-221 single-phase. The film deposited on the Bi-2201 single crystal post-annealed at 500degC for 0.5h showed a metallic temperature dependent resistance in the normal state and the superconducting transition (T sub c sup o sup n sup s sup e sup t) of about 80 K. Therefore, the Bi-2212 films are considerate to grow on the substrate of the Bi-2201 singe crystal. (author)

  1. Hole filling and interlayer coupling in YBa2Cu3O7/PrBa2Cu3O7 superlattices

    International Nuclear Information System (INIS)

    Biagini, M.; Calandra, C.; Ossicini, S.

    1995-01-01

    Charge transfer effects in YBa 2 Cu 3 O 7 /PrBa 2 Cu 3 O 7 superlattices have been proposed by many authors as the origin of the experimentally observed strong depression of the critical temperature. We performed self-consistent LMTO-ASA calculations and found that no remarkable change in the electronic structure of the superconducting CuO 2 planes occurs in the studied structures, when the PBCO layer thickness is varied. The observed depression of the critical temperature does not seem to be originated intrinsically by a severe modification of the electronic structure or by the hole-filling mechanism. (orig.)

  2. Resistance pressure sensor based on Ag/Cu/sub 2/O-PEPC-NiPc/Al composite

    International Nuclear Information System (INIS)

    Khan, A.; Karimov, K.S.; Shah, M.

    2011-01-01

    This work reports on the fabrication and investigation of pressure sensor based on Ag/Cu/sub 2/O-PEPC-NiPc/Al composite. The active layer of the composite was deposited by drop-casting of the blend Cu/sub 2/O-PEPC-NiPc on flexible substrate. The thin film of the blend consist of cuprous oxide (Cu/sub 2/O) micropowder, (5 wt. %), poly-N-epoxypropyl carbazole (PEPC), (2 wt. %) and nickel phthalocyanine (NiPc) micropowder, (3 wt. %) in benzol (1 ml). The film thickness of the composite is in the range of 20-30 mu m. It is found that the fabricated sensor is sensitive to pressure and showed good repeatability. The decrease in resistance of the sensor is observed 10 times by increasing the external uniaxial pressure up to 11.7 kNm/sup -2/. The experimentally obtained results are compared with the simulated results and showed reasonable agreement with each other. (author)

  3. Effect of rare-earth composition on microstructure and pinning properties of Zr-doped (Gd,Y)Ba2Cu3Ox superconducting tapes

    International Nuclear Information System (INIS)

    Selvamanickam, V; Zhang, Y; Guevara, A; Shi, T; Yao, Y; Majkic, G; Galtsyan, E; Chen, Y; Lei, C; Miller, D J

    2012-01-01

    The effect of changing Gd + Y content from 1.2 to 1.6 in the precursor of (Gd,Y)Ba 2 Cu 3 O 7 superconducting thin film tapes made by metal organic chemical vapor deposition (MOCVD) at a constant Gd:Y ratio and a fixed Zr content of 7.5% has been studied. The influence of changing the Gd:Y ratio from Gd = 0 to Y= 0 in 0.2 mol steps at a constant Gd + Y content of 1.2 in the precursor has also been investigated at a fixed Zr content of 7.5%. The critical current of these films is found to vary significantly as a function of rare-earth content as well as a function of rare-earth type. Even for a fixed Zr content, it is found that the critical current in the orientation of magnetic field parallel to the a–b plane and that in the orientation of field perpendicular to the a–b plane can be systematically varied with changing Gd + Y content as well as with changing Gd:Y ratio. The nanoscale defect structures along the a–b plane and along the c-axis are found to be sensitive to these changes in rare-earth content and type. (paper)

  4. Effect of Sintering Time on Superconducting Wire Bi-Pb-Sr-Ca-Cu-O With Dopant MgO Sheated Ag Using Powder in Tube Method

    Directory of Open Access Journals (Sweden)

    Hariyati Lubis

    2018-01-01

      DAFTAR PUSTAKA Abbas M.M., Abass L.K and Salman U., (2012, Influences of Sintering Time on the Tc of Bi2-xCuxPb0.3Sr2Ca2Cu3010+ High Temperature Superconductors, Energy Procedia 18, 215-224  Abbas, M.M., Abbas, L.K., Bahedh, H.S. 2015. Superconducting Properties of Bi2-SbxPb0,3Sr1,9Ba0,1Ca2Cu3O10+δ Compounds. Journal of Applied Science Research. 11. 22: 164-172 Darsono, N., Imaduddin, A., Raju, K., Yoon, D.H., (2015, Synthesis and Characterization of Bi1.6Pb0.4Sr2Ca2Cu3O7 Superconducting Oxide by High-Energy Milling, J Supercond Nov Magn. E. Chew,. (2010, Superconducting Transformer Design And Construction, University of Canterbury, Christchurch, New Zealand. March Hamadneh, I., Halim, S. A., dan Lee, C. K., (2006,  Characterization of Bi1.6Pb0.4Sr2Ca2Cu3Oy Ceramic Superconductor Prepared Via Coprecipitation Method at Different Sintering Time, J. Mater. Sci, 41: 5526-5530. Hermiz G.Y., Aljurani B.A., Beayaty M.A., (2014, Effect of Mn Substitution on the Superconducting Properties of Bi1.7Pb0,3Sr2Ca2-xMnxCu3O10+, International Journal Of Engineering and Advanced Technology (IJEAT. 3. 4: 213-217 John R Hull, (2003, Applications of high-temperature superconductors in power technology, Reports on Progress in Physics, Volume 66, Number 11 Lu, X.Y., Yi, D., Chen, H., Nagata, A. 2016. Effect of Sn, MgO and Ag2O mix-doping on the formation and superconducting properties of Bi-2223 Ag/tapes. Physics Procedia. 81: 129-132 Meretliev Sh., Sadykov K.B., Berkeliev A., (2000, Doping of High Temperature Superconductors, Turk J Phy.24: 39-48 Mohammed, N. H., Ramadhan A., Ali I. A., Ibrahim, I. H., dan Hassan, M. S, (2012, Optimizing the Preparation Conditions of Bi-2223 Superconducting Phase Using PbO and PbO2, Materials Sciences and Applications, 3: 224-233. Roumie, M., Marhaba, S., Awad R., Kork M., Hassan I., Mawassi R., (2014, Effect of Fe2O3 Nano-Oxide Addition on the Superconducting Properties of the (Bi,Pb-2223 Phase, Journal of Supercond Nov Magn, 27: 143-153 Serkan

  5. Growth orientation and superconducting properties of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} films prepared by the low-fluorine sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Lei Li; Zhao Gaoyang; Xu Hui; Zhao Juanjuan, E-mail: leili813@gmail.co [School of Materials Science and Engineering, Xi' an University of Technology, Xi' an 710048 (China)

    2010-08-15

    YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (YBCO) films were deposited on (100)-oriented LaAlO{sub 3} (LAO) single crystal substrates by the dip-coating process using low-fluorine solution. Their microstructures were characterized with the aid of X-ray diffractometry, scanning electron microscopy and high-resolution transmission electron microscopy. Their superconducting properties were measured by the standard four-probe method. The experiment results show that the film obtained under high enough humidity conditions exhibits better c-axis texture and superconducting properties than the film under a relatively low humidity conditions. Based on the classical nucleation and chemical reaction thermodynamics theory, the underlying crystalline and growth mechanisms of YBCO films under certain humidity conditions are explained in combination with our experimental results. It is suggested that the unreacted intermediate phases such as BaF{sub 2} and CuO aggregated in the YBCO grain boundary will cause lattice distortion in the YBCO matrix and further induce the formation of a-axis oriented YBCO grains as crystallization proceeds. Therefore, it is believed that the relative content of water vapor within the heat-treatment atmosphere plays quite an important role in the preparation of c-axis oriented YBCO film with good superconducting properties. (semiconductor materials)

  6. Coherent Voltage Oscillations in Superconducting Polycrystalline Y1Ba2Cu3O7-x

    International Nuclear Information System (INIS)

    Altinkok, A; Yetis, H; Olutas, M; Kilic, K; Kilic, A; Cetin, O

    2006-01-01

    We have investigated the voltage response of superconducting polycrystalline bulk Y 1 Ba 2 Cu 3 O 7-x (YBCO) material to a bidirectional square wave current with long periods and dc current by means of the evolution of the voltage-time (V-t) curves near the critical temperature. In a well-defined range of amplitudes and periods of driving current, and temperatures, it was observed that a non-linear response to bidirectional square wave current rides on a time independent background voltage value and manifests itself as regular sinusoidal-like voltage oscillations. It was found that the non-linear response disappears when the bidirectional current was switched to dc current. The spectral content of the voltage oscillations analyzed by the Fast Fourier Transform of the corresponding V-t curves revealed that the fundamental harmonics is comparable to the frequency of bidirectional square wave current. The coherent voltage oscillations were discussed mainly in terms of the dynamic competition between pinning and depinning together with the disorder in the coupling strength between the superconducting grains (i.e Josephson coupling effects). The density fluctuations and semi-elastic coupling of the flux lines with the pinning centers were also considered as possible physical mechanisms in the interpretation of the experimental results

  7. Surface and grain boundary modifications of YBa2Cu3O7-δ ceramics by plasma-enhanced fluorination

    International Nuclear Information System (INIS)

    Magro, C.; Heintz, J.M.; Etourneau, J.; Tressaud, A.; Cardinaud, C.; Turban, G.; Hudakova, N.

    1994-01-01

    The radiofrequency plasma technique involving mixtures of CF 4 + O 2 gases has been applied to the treatment of high T c superconducting oxides (YBa 2 Cu 3 O 7-δ ). The investigation of the various experimental parameters of the process has shown that the improvement of the critical current density J c mainly depends on the inlet precursor composition CF 4 + τ % O 2 , on the total pressure, and on the reaction time. The presence of fluorine in the bulk of the ceramics has been observed from electron microprobe analysis, together with an increase of the open-quotes Cu 3+ close quotes content. The plasma enhanced fluorination (PEF) treatment improves the superconducting properties of the materials: both values of the resistivity in the normal state and of the superconducting transition width are reduced and the critical transition temperature is improved of about 1 K. Mechanisms of interaction between the reactive species of the plasma and YBa 2 Cu 3 O 7-δ ceramics have been proposed through detailed angle resolved X-ray photoelectron spectroscopic analyses. At the surface of the outer grains, the plasma treatment removes (OH) - and (CO 3 ) 2- species contained in the degradation layer and gives rise to a fluoride-rich layer. In the bulk of the material the occurrence of metal-fluorine bonds in the superconducting phase has to be assumed. Moreover, interactions between atomic fluorine and grain boundaries result in an improvement of intergranular magnetic behavior, according to a.c. susceptibility measurements. An increase of the oxidation state of copper has also been detected, confirming the oxidizing effect of the plasma treatment

  8. Properties of Y Ba2 Cu3 O7-δ-Ag superconductors prepared by the citrate method

    International Nuclear Information System (INIS)

    Fonseca, F.C.; Muccillo, R.

    1996-01-01

    Y Ba 2 Cu 3 O 7-δ (123) ceramic superconductor and YBa 2 Cu 3 O 7-δ - Ag composite superconductors have been prepared by the citrate method. Microstructural analysis has been done by X-ray diffractometry and optical ceramography. The superconducting behaviour has been studied by 4-probe dc resistivity in the 77 K - 140 K temperature range. Silver percolation in the ceramic matrix was studied by electrical resistivity measurements at room temperature; the percolation threshold was found to be approximately 25 vol% (35.5 wt%) Ag. Specimens with silver addition showed improvement in the flexural strength of the 123 compound. The main results show that the critical temperature does not depend on the silver content in the composite specimens, and that approximately 3 wt% (1.8 vol%) Ag doping yields an optimized composite superconductor from the microstructural point of view, with platelet-like grain shapes. (author)

  9. Superconducting thin films of Bi-Sr-Ca-Cu-O by laser ablation

    International Nuclear Information System (INIS)

    Bedekar, M.M.

    1992-01-01

    The discovery of a new class of copper oxide superconductors has led to the development of three major systems that exhibit superconducting properties. The Bi-Sr-Ca-Cu-O superconductors offer intrinsic advantages due to the high T c , chemical inertness and tolerance for a range of compositions. However, thin film research on these materials has progressed more slowly than the other cuprate systems. This dissertation examines the film growth, by laser ablation, of the Bi-Sr-Ca-Cu-O superconductors and the effect of the deposition parameters such as the laser target interaction, substrate temperature, target to substrate distance, deposition and cooling pressure, target type and processing and the substrate type. CO 2 laser ablation was shown to give rise to a non-stoichiometric material transfer due to the low fluences and long pulse lengths. In situ superconducting thin films with T c(0) 's of 76 K could be deposited using the KrF laser at substrate temperatures of 5 degrees C to 20 degrees C below phases. Lower temperatures gave rise to a mixture of 2201 and glassy phases. An increase in the target to substrate distance led to a deterioration of the electrical and structural properties of the films due to a decrease in the energy for film formation. A maximum in T c(0) was observed at 450 mtorr as the deposition pressure was varied between 200 to 700 mtorr. Optimum oxygen incorporation could be achieved by cooling the films in high oxygen pressures and the best films were obtained with 700 torr cooling pressure. The oxygen deficiency of the hot pressed targets led to inferior properties compared to the conventionally sintered targets. The microwave surface resistance of the films measured at 35 GHz showed an onset at 80 K and dropped below that of copper at 30 K. The study of the laser ablation process in this system revealed the presence of a stoichiometric forward directed component and a diffuse evaporation component

  10. Bi-Sr-Ca-Cu-O superconducting thin films: theory and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Yavuz, M [Department of Mechanical Engineering and Mechatronics Engineering Program, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Boybay, M S [Department of Mechanical Engineering and Mechatronics Engineering Program, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Elbuken, C [Department of Mechanical Engineering and Mechatronics Engineering Program, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Andrews, M J [Los Alamos National Lab, PO Box 1663, Mail Stop B 296, Los Alamos, NM 87545 (United States); Hu, C R [Department of Physics, Texas A and M University, College Station, Texas 77843 (United States); Ross, J H [Department of Physics, Texas A and M University, College Station, Texas 77843 (United States)

    2006-06-01

    The interest of this paper centers on fabrication and characterization and modeling of vortices in high temperature superconducting thin films. As a first step, the magnetic vertices of the superconducting matrix were modeled. As a second, Bi-Sr-Ca-Cu-O thin films were grown using Pulsed Laser Ablation (PLD) on single crystal MgO substrates as magnetic templates for the potential use for Nano and Microelectronic circuits, and were characterized by x-ray diffraction, electron, and atomic force microscopy. The third step (future work) will be observation and pinning of these vortices using Bitter decoration.

  11. Effect of composition on the fabrication and properties of Ag-Cu alloy sheathed (Bi,Pb)2223 tapes

    International Nuclear Information System (INIS)

    Nakamura, Yuichi; Nakashima, Sohei; Inada, Ryoji; Oota, Akio

    2004-01-01

    To achieve high J c values as well as high mechanical strength, the effects of Ag-Cu alloy sheath and initial composition of precursor on the microstructure and J c properties of Ag-Cu alloy sheathed tapes were investigated. The alkaline-earth cuprate particles were found to form preferentially near the interface between superconducting core and sheath. Although the worse (Bi,Pb)2223 purity and microstructure of alloy sheathed tapes, the reduction of J c values of the tapes was small especially in 7-filaments tapes. This might be explained by the well grain alignment of (Bi,Pb)2223 into the middle region of the filament due to the high strength of alloy sheath. The usage of the Cu deficient composition was effective to reduce the total amount of 14:24 particle while the filament thickness should be thin to maintain J c values for Ag-Cu alloy sheathed tapes due to the lack of Cu diffusion from the sheath to convert 2212 into (Bi,Pb) in the middle region of the filament

  12. Preparation and microwave-infrared absorption of reduced graphene oxide/Cu-Ni ferrite/Al2O3 composites

    Science.gov (United States)

    De-yue, Ma; Xiao-xia, Li; Yu-xiang, Guo; Yu-run, Zeng

    2018-01-01

    Reduced graphene oxide (RGO)/Cu-Ni ferrite/Al2O3 composite was prepared by solvothermal method, and its properties were characterized by SEM, x-ray diffraction, energy-dispersive x-ray spectroscopy and FTIR. The electromagnetic parameters in 2-18 GHz and mid-infrared (IR) spectral transmittance of the composite were measured, respectively. The results show that Cu0.7Ni0.3Fe2O4 nanoparticles with an average size of tens nanometers adsorb on surface of RGO, and meanwhile, Al2O3 nanoparticles adhere to the surface of Cu0.7Ni0.3Fe2O4 nanoparticles and RGO. The composite has both dielectric and magnetic loss mechanism. Its reflection loss is lower than -19 dB in 2-18 GHz, and the maximum of -23.2 dB occurs at 15.6 GHz. With the increasing of Al2O3 amount, its reflection loss becomes lower and the maximum moves towards low frequency slightly. Compared with RGO/Cu-Ni ferrite composites, its magnetic loss and reflection loss slightly reduce with the increasing of Al2O3 amount, and the maximum of reflection loss shifts from a low frequency to a high one. However, its broadband IR absorption is significantly enhanced owing to nano-Al2O3. Therefore, RGO/Cu-Ni ferrite/Al2O3 composites can be used as excellent broadband microwave and IR absorbing materials, and maybe have broad application prospect in electromagnetic shielding, IR absorbing and coating materials.

  13. Synthesis and photocatalytic CO2 reduction performance of Cu2O/Coal-based carbon nanoparticle composites

    Science.gov (United States)

    Dedong, Zhang; Maimaiti, Halidan; Awati, Abuduheiremu; Yisilamu, Gunisakezi; Fengchang, Sun; Ming, Wei

    2018-05-01

    The photocatalytic reduction of CO2 into hydrocarbons provides a promising approach to overcome the challenges of environmental crisis and energy shortage. Here we fabricated a cuprous oxide (Cu2O) based composite photocatalyst consisting of Cu2O/carbon nanoparticles (CNPs). To prepare the CNPs, coal samples from Wucaiwan, Xinjiang, China, were first treated with HNO3, followed by hydrogen peroxide (H2O2) oxidation to strip nanocrystalline carbon from coal. After linking with oxygen-containing group such as hydroxyl, coal-based CNPs with sp2 carbon structure and multilayer graphene lattice structure were synthesized. Subsequently, the CNPs were loaded onto the surface of Cu2O nanoparticles prepared by in-situ reduction of copper chloride (CuCl2·2H2O). The physical properties and chemical structure of the Cu2O/CNPs as well as photocatalytic activity of CO2/H2O reduction into CH3OH were measured. The results demonstrate that the Cu2O/CNPs are composed of spherical particles with diameter of 50 nm and mesoporous structure, which are suitable for CO2 adsorption. Under illumination of visible light, electron-hole pairs are generated in Cu2O. Thanks to the CNPs, the fast recombination of electron-hole pairs is suppressed. The energy gradient formed on the surface of Cu2O/CNPs facilitates the efficient separation of electron-hole pairs for CO2 reduction and H2O oxidation, leading to enhanced photocatalytic activity.

  14. Properties of Y Ba2 Cu3 O7-x-Ag prepared by the citrate technique

    International Nuclear Information System (INIS)

    Fonseca, Fabio Coral

    1996-01-01

    Y Ba 2 Cu 3 O 7-x (Y123) ceramic superconductor and YBa 2 Cu 3 O 7-x- Ag composite superconductors have been prepared by the citrate technique. Microstructural analysis has been done by X-ray diffractometry and optical ceramography. The superconducting behavior has been studied by 4 probe dc electrical resistivity in the 77 K - 140 K temperature range. Silver percolation in the ceramic matrix was studied by electrical resistivity measurements at room temperature; the percolation threshold was found to be approximately 25 vol. % (35.5 wt. %) Ag. Specimens with silver addition showed improvement in the flexural strength of the Y123 compound. The main results show that the critical temperatures does not depend on the silver content in the composite specimens, the normal state electrical behavior of the superconductor is affected by silver addition and approximately 3 wt. % (1.8 vol. %) Ag doping yields and optimized composite superconductor from the electrical, mechanical and microstructural pont of view, with platelet-like grain shapes. (author)

  15. The effect of nano-size ZrO2 powder addition on the microstructure and superconducting properties of single-domain Y-Ba-Cu-O bulk superconductors

    International Nuclear Information System (INIS)

    Iida, K; Babu, N H; Reddy, E S; Shi, Y-H; Cardwell, D A

    2005-01-01

    The effect of nano-size ZrO 2 powder addition on the microstructure and superconducting properties of Y-Ba-Cu-O single grain bulk superconductors has been investigated. Significant pushing phenomena of Y 2 BaCuO 5 (Y-211) particles, particularly in the c growth sector, were observed even with a small amount of ZrO 2 added to the precursor powder. An increase in Y-211 particle pushing was observed with increasing ZrO 2 content, leading to an inhomogeneous bulk microstructure. In addition, a growth cycle consisting of a Y-211 free layer-porous narrow layer-Y-211 high concentration layer was observed for samples prepared with 0.25 wt% ZrO 2 in both the a and c growth sectors. The extent of the growth of single grain Y-Ba-Cu-O (YBCO) decreased with increasing ZrO 2 content due to increased pushing of Y-211 particles towards molten liquid. The superconducting transition temperature, T c , of the ZrO 2 containing YBCO samples was sharp but depressed slightly (by up to 1 K) compared with an undoped YBCO grain, indicating a relative insensitivity of T c to ZrO 2 content. Finally, the sensitivity of critical current density, J c , to applied magnetic field in large grain bulk YBCO containing ZrO 2 was observed to depend critically on position due to the inhomogeneous sample microstructure

  16. Structural and superconducting properties of La2−xNdxCuO4+y (0≤x≤0.5) prepared by room temperature chemical oxidation

    DEFF Research Database (Denmark)

    Rial, C.; Morán, E.; Alario-Franco, M.A.

    1997-01-01

    The systematic characterization of the structural and superconducting properties of room temperature chemically oxidized T/O La2-xNdxCuO4+y (0 less than or equal to x less than or equal to 0.5) has been performed by neutron powder diffraction and magnetic susceptibility measurements. Similarities...

  17. Effects of graphene oxide doping on the structural and superconducting properties of YBa2Cu3O7-δ

    Science.gov (United States)

    Dadras, S.; Falahati, S.; Dehghani, S.

    2018-05-01

    In this research we reported the effects of graphene oxide (GO) doping on the structural and superconducting properties of YBa2Cu3O7-δ (YBCO) high temperature superconductors. We synthesized YBCO powder by sol-gel method. After calcination, the powder mixed with different weight percent (0, 0.1, 0.3, 0.7, 1 wt.%) of GO. Refinement of X-ray diffraction (XRD) was carried out by material analysis using diffraction (MAUD) program to obtain the structural parameters such as lattice parameters, site occupancy of different atoms and orthorhombicity value for the all samples. Results show that GO doping does not change the structure of YBCO compound, Cu (1), Cu (2) and oxygen sites occupancy. It seems that GO remains between the grains and can play the role of weak links. We found that GO addition to YBCO compound increases transition temperature (TC). The oxygen contents of the all GO-doped samples are increased with respect to the pure one. The strain (ɛ) of the samples obtained from Williamson-Hall method, varies with increasing of GO doping. The scanning electron microscopy (SEM) images of the samples show better YBCO grain connections by GO doping.

  18. Superconducting gap anisotropy and d-wave pairing in YBa2Cu3O7-δ

    Science.gov (United States)

    Verma, Sanjeev K.; Gupta, Anushri; Kumari, Anita; Indu, B. D.

    2018-02-01

    Considering Born-Mayer-Huggins potential as a most suitable potential to study the dynamical properties of high-temperature superconductors (HTS), the many-body quantum dynamics to obtain phonon Green’s functions has been developed via a Hamiltonian that incorporates the contributions of harmonic electron and phonon fields, phonon field anharmonicities, defects and electron-phonon interactions without considering BCS structure. This enables one to develop the quasiparticle renormalized frequency dispersion in the representative high-temperature cuprate superconductor YBa2Cu3O7-δ. The superconducting gap shows substantial changes with increased doping. The in-plane gap study revealed a v-shape gap with a nodal point along kx = ±ky direction for optimum doping (δ = 0.16) and the nodal point vanished in underdoped and overdoped regimes. The dx2-y2 pairing symmetry is observed at optimum doping with the presence of s or dxy components ( < 3%) in underdoped and overdoped regimes.

  19. Synthesis and electrical properties of (Pb,Co)Sr2(Y,Ca)Cu2Oz

    Science.gov (United States)

    Tashiro, T.; Maeda, T.; Abe, R.; Takechi, S.; Takahashi, T.; Haruta, M.; Horii, S.

    One of related materials to high-temperature superconductors (HTSC's) with nominal compositions of (Pb0.5Co0.5)Sr2(Y1xCax)Cu2Oz (x=0∼0.6) is synthesized and characterized. All samples are nearly single-phase, and its crystal structure is likely to be so-called "1-2-1-2" type which is one of typical structures of HTSC's. Electrical resistivity is decreased as x increases. While superconductivity is not observed at temperatures between room-temperature and 20 K for all samples, temperature dependence of the resistivity exhibits metallic behavior down to 150 K for x=0.5. Phase formation and transport behavior are discussed focusing on mixed valence-state of Co2+ and Co3+.

  20. High-frequency properties of superconducting Y-Ba-Cu-oxide thin films

    International Nuclear Information System (INIS)

    Ramakrishnan, E.S.; Su, M.; Howng, W.

    1992-01-01

    rf and microwave properties of superconducting YBa 2 Cu 3 O 7-x thin films were measured and analyzed using a coplanar resonator structure. The films were developed by sequential electron-beam evaporation of the metals followed by postanneal processing. dc properties of the films were obtained from resistance-temperature and current-voltage measurements to evaluate the transition temperature and current densities. High-frequency properties were measured from 70 to 10 K and in the frequency range 1--3 GHz to determine the film characteristics as compared to pure copper films on the same substrates

  1. Aging behavior of an in-situ TiB{sub 2}/Al-Cu-Li-x matrix composite

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yanwei; Hong, Tianran; Geng, Jiwei; Han, Gaoyang; Chen, Dong; Li, Xianfeng, E-mail: brucelee75cn@sjtu.edu.cn; Wang, Haowei

    2017-02-15

    Transmission electron microscopy, differential scanning calorimetry and hardness tests have been performed on an in-situ TiB{sub 2}/Al-3.3Cu-1.0Li-0.60Mg-0.40Ag-0.14Zr-0.13Si composite to study its aging behavior at 175 °C. A cubic phase suspected to be the σ (Al{sub 5}Cu{sub 6}Mg{sub 2}) phase or its variant is precipitated at all aging stages studied, and this phase is not typically observed in the Al-Cu-Li alloys. The primary hardening (aging for 3 h) phases consist of δ′ (Al{sub 3}Li), β′ (Al{sub 3}Zr) and the cubic phase. After aging for 18 h, all precipitates including T{sub 1} (Al{sub 2}CuLi), S (Al{sub 2}CuMg), θ′ (Al{sub 2}Cu), δ′, β′ and the cubic phase have appeared, and the formation of T{sub 1} and S results in a rapid increase in hardness. With prolonging of aging time, the apparent coarsening of T{sub 1} and S results in a decline in hardness. - Highlights: •The aging behavior of an in-situ TiB{sub 2}/Al-Cu-Li-x composite was studied. •A cubic phase suspected to be σ (Al{sub 5}Cu{sub 6}Mg{sub 2}) or its variant was precipitated. •The hardness change was dominated by the evolution of T{sub 1} (Al{sub 2}CuLi) and S (Al{sub 2}CuMg).

  2. Microstructural and superconducting properties of high current metal-organic chemical vapor deposition YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} coated conductor wires

    Energy Technology Data Exchange (ETDEWEB)

    Holesinger, T G; Maiorov, B; Ugurlu, O; Civale, L [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Chen, Y; Xiong, X; Xie, Y; Selvamanickam, V [SuperPower, Inc., Schenectady, NY 12304 (United States)

    2009-04-15

    Metal-organic chemical vapor deposition (MOCVD) on flexible, ion beam assisted deposition MgO templates has been used to produce high critical current density (J{sub c}) (Y,Sm){sub 1}Ba{sub 2}Cu{sub 3}O{sub y} (REBCO) films suitable for use in producing practical high temperature superconducting (HTS) coated conductor wires. Thick films on tape were produced with sequential additions of 0.7 {mu}m of REBCO via a reel-to-reel progression through a custom-designed MOCVD reactor. Multi-pass processing for thick film deposition is critically dependent upon minimizing surface secondary phase formation. Critical currents (I{sub c}s) of up to 600 A/cm width (t = 2.8 {mu}m, J{sub c} = 2.6 MA cm{sup -2}, 77 K, self-field) were obtained in short lengths of HTS wires. These high performance MOCVD films are characterized by closely spaced (Y,Sm){sub 2}O{sub 3} nanoparticle layers that may be tilted relative to the film normal and REBCO orientation. Small shifts in the angular dependence of J{sub c} in low and intermediate applied magnetic fields can be associated with the tilted nanoparticle layers. Also present in these films were YCuO{sub 2} nanoplates aligned with the YBCO matrix (short dimension perpendicular to the film normal), threading dislocations, and oriented composite defects (OCDs). The latter structures consist of single or multiple a-axis oriented grains coated on each side with insulating (Y,Sm){sub 2}O{sub 3} or CuO. The OCDs formed a connected network of insulating phases by the end of the fourth pass. Subsequent attempts at adding additional layers did not increase I{sub c}. There is an inconsistency between the measured J{sub c} and the observed microstructural degradation that occurs with each additional layer, suggesting that previously deposited layers are improving with each repeated reactor pass. These dynamic changes suggest a role for post-processing to optimize superconducting properties of as-deposited films, addressing issues associated with

  3. Carbon Fiber Reinforced Carbon-Al-Cu Composite for Friction Material.

    Science.gov (United States)

    Cui, Lihui; Luo, Ruiying; Ma, Denghao

    2018-03-31

    A carbon/carbon-Al-Cu composite reinforced with carbon fiber 2.5D-polyacrylonitrile-based preforms was fabricated using the pressureless infiltration technique. The Al-Cu alloy liquids were successfully infiltrated into the C/C composites at high temperature and under vacuum. The mechanical and metallographic properties, scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive spectroscopy (EDS) of the C/C-Al-Cu composites were analyzed. The results showed that the bending property of the C/C-Al-Cu composites was 189 MPa, whereas that of the pure carbon slide material was only 85 MPa. The compressive strength of C/C-Al-Cu was 213 MPa, whereas that of the pure carbon slide material was only 102 MPa. The resistivity of C/C-Al-Cu was only 1.94 μΩm, which was lower than that of the pure carbon slide material (29.5 μΩm). This finding can be attributed to the "network conduction" structure. Excellent wettability was observed between Al and the carbon matrix at high temperature due to the existence of Al₄C₃. The friction coefficients of the C/C, C/C-Al-Cu, and pure carbon slide composites were 0.152, 0.175, and 0.121, respectively. The wear rate of the C/C-Al-Cu composites reached a minimum value of 2.56 × 10 -7 mm³/Nm. The C/C-Al-Cu composite can be appropriately used as railway current collectors for locomotives.

  4. Angle-resolved-photoemission study of Bi2Sr2CaCu2O8+δ: Metallicity of the Bi-O plane

    International Nuclear Information System (INIS)

    Wells, B.O.; Shen, Z.; Dessau, D.S.; Spicer, W.E.; Olson, C.G.; Mitzi, D.B.; Kapitulnik, A.; List, R.S.; Arko, A.

    1990-01-01

    We have performed high-resolution angle-resolved-photoemission experiments on Bi 2 Sr 2 CaCu 2 O 8+δ single crystals with different annealing histories. By depositing a small amount of Au on the surface, we were able to distinguish electronic states associated with the Bi-O surface layer. We found that the Bi-O atomic surface layer is metallic and superconducting for samples that were high-temperature annealed in oxygen but not for as-grown samples. The Cu-O plane is found to be superconducting in all samples

  5. Fabrication of full high-T sub c superconducting YBa sub 2 Cu sub 3 O sub 7 sub - sub x trilayer junctions using a polishing technique

    CERN Document Server

    Kuroda, K; Takami, T; Ozeki, T

    2003-01-01

    We have successfully fabricated full high-T sub c superconducting YBa sub 2 Cu sub 3 O sub 7 sub - sub x (YBCO)/PrBa sub 2 Cu sub 3 O sub 7 sub - sub x (PBCO)/YBCO trilayer junctions, which have a simple device structure, such as a Pb-alloy-based Josephson tunneling junction. It has been demonstrated that a polishing technique is extremely useful in the fabrication process: it is effective in smoothing a coarse surface and gentling the slopes of the edges, or decreasing the slope angles. Owing to the polishing technique, the PBCO barrier layer and the upper YBCO layer have been notably thinned: the thicknesses of these layers are 10 nm and 250 nm, respectively. Junctions with the dimensions of 5 mu m x 5 mu m showed resistively shunted junction-like current-voltage curves with a typical critical current density of 110 A/cm sup 2 at 4.2 K. Furthermore, the operation of superconducting quantum interference devices has been demonstrated. (author)

  6. Physical and chemical properties of YBa2Cu3O7 thin films

    International Nuclear Information System (INIS)

    El-Samahi, M.I.

    1991-12-01

    Investigations were carried out to determine the influence of different annealing processes on the superconducting properties of the YBa 2 Cu 3 O 7 thin films. The samples were produced by means of coevaporation of Cu, Y and Ba on polycrystalline yttria stabilized (YSZ) ZrO 2 and single crystal SrTiO 3 (001) substrates. Subsequently, the as-deposited films were subjected to two different annealing methods to crystallize the superconducting phase YBa 2 Cu 3 O 7 : (i) heating up, annealing and cooling in an oxygen atmosphere and (ii) heating up in an innert gas atmosphere up to the maximum annealing temperature (T max ) and then annealing and cooling under oxygen. (orig.)

  7. The mechanical deformation of superconducting BiSrCaCuO/Ag composites

    International Nuclear Information System (INIS)

    Han, Z.; Skov-Hansen, P.; Freltoft, T.

    1997-01-01

    The mechanical deformation of BiSrCaCuO/Ag composites made by the powder-in-tube method is a multi-step process. The main difficulty is that the mechanical properties of the ceramic powder are very different from those of the Ag sheath. A key parameter is the core density, which changes during mechanical deformation. In this review, basic concepts of the classical mechanical deformation theory are briefly discussed. Simple descriptions of deformation processes like pressing, rolling, drawing and extrusion are also presented. The term 'freedom parameter', Δ f , is introduced to illustrate the influence of various constraint factors on the mass-flow behaviour. Simple pictures including mass redistribution and the powder-flow model are presented for interpreting the plastic deformation process of the composites. Experimental results are reviewed and our proposed pictures and models are applied for discussion. (author)

  8. Ceramic superconductor/metal composite materials employing the superconducting proximity effect

    Science.gov (United States)

    Holcomb, Matthew J.

    2002-01-01

    Superconducting composite materials having particles of superconducting material disposed in a metal matrix material with a high electron-boson coupling coefficient (.lambda.). The superconducting particles can comprise any type of superconductor including Laves phase materials, Chevrel phase materials, A15 compounds, and perovskite cuprate ceramics. The particles preferably have dimensions of about 10-500 nanometers. The particles preferably have dimensions larger than the superconducting coherence length of the superconducting material. The metal matrix material has a .lambda. greater than 0.2, preferably the .lambda. is much higher than 0.2. The metal matrix material is a good proximity superconductor due to its high .lambda.. When cooled, the superconductor particles cause the metal matrix material to become superconducting due to the proximity effect. In cases where the particles and the metal matrix material are chemically incompatible (i.e., reactive in a way that destroys superconductivity), the particles are provided with a thin protective metal coating. The coating is chemically compatible with the particles and metal matrix material. High Temperature Superconducting (HTS) cuprate ceramic particles are reactive and therefore require a coating of a noble metal resistant to oxidation (e.g., silver, gold). The proximity effect extends through the metal coating. With certain superconductors, non-noble metals can be used for the coating.

  9. Sorption properties of the activated carbon-zeolite composite prepared from coal fly ash for Ni(2+), Cu(2+), Cd(2+) and Pb(2+).

    Science.gov (United States)

    Jha, Vinay Kumar; Matsuda, Motohide; Miyake, Michihiro

    2008-12-15

    Composite materials of activated carbon and zeolite have been prepared successfully by activating coal fly ash (CFA) by fusion with NaOH at 750 degrees C in N(2) followed by hydrothermal treatments under various conditions. Uptake experiments for Ni(2+), Cu(2+), Cd(2+) and Pb(2+) were performed with the materials thus obtained from CFA. Of the various composite materials, that were obtained by hydrothermal treatment with NaOH solution (ca. 4M) at 80 degrees C (a composite of activated carbon and zeolite X/faujasite) proved to be the most suitable for the uptake of toxic metal ions. The relative selectivity of the present sorbents for the various ions was Pb(2+)>Cu(2+)>Cd(2+)>Ni(2+), with equilibrium uptake capacities of 2.65, 1.72, 1.44 and 1.20mmol/g, respectively. The sorption isotherm was a good fit to the Langmuir isotherm and the sorption is thought to progress mainly by ion exchange with Na(+). The overall reaction is pseudo-second order with rate constants of 0.14, 0.17, 0.21 and 0.20Lg/mmol min for the uptake of Pb(2+), Cu(2+), Cd(2+) and Ni(2+), respectively.

  10. Direct observation of interlayer Josephson vortices in heavily Pb-doped Bi2Sr2CaCu2Oy by scanning superconducting quantum interference device microscopy

    International Nuclear Information System (INIS)

    Kasai, Junpei; Hasegawa, Tetsuya; Okazaki, Noriaki; Koinuma, Hideomi; Nakayama, Yuri; Shimoyama, Jun-ichi; Kishio, Kohji; Motohashi, Teruki; Matsumoto, Yuji

    2006-01-01

    Josephson vortices trapped in cross-sectional edge surfaces of Pb 0.6 Bi 1.4 Sr 2 CaCu 2 O y has been directly observed by using a scanning superconducting quantum interference device (SQUID) microscope. The magnetic field distribution B z around each vortex is substantially anisotropic, compared with the usual vortex in the ab-plane, and is extended over 100 μm toward the in-plane direction. By fitting a theoretical B z function to experimental ones, c-axis penetration depth λ c was estimated to be 11.2 ±0.7 μm, which is in good agreement with the literature value, 12.6 μm, obtained from the Josephson plasma edge frequency. (author)

  11. Gauge Model of High-Tc Superconductivity

    International Nuclear Information System (INIS)

    Ng, Sze Kui

    2012-01-01

    A simple gauge model of superconductivity is presented. The seagull vertex term of this gauge model gives an attractive potential between electrons for the forming of Cooper pairs of superconductivity. This gauge model gives a unified description of superconductivity and magnetism including antiferromagnetism, pseudogap phenomenon, stripes phenomenon, paramagnetic Meissner effect, Type I and Type II supeconductivity and high-T c superconductivity. The doping mechanism of superconductivity is found. It is shown that the critical temperature T c is related to the ionization energies of elements and can be computed by a formula of T c . For the high-T c superconductors such as La 2-x Sr x CuO 4 , Y Ba 2 Cu 3 O 7 , and MgB 2 , the computational results of T c agree with the experimental results.

  12. LT-STM/STS observation of definite superconducting gap states on the multistage crystal surface of Bi2Sr2CaCu2O8+x

    International Nuclear Information System (INIS)

    Murakami, Hironaru; Aoki, Ryozo

    1996-01-01

    Low temperature STM/STS observations have been carried out on cleaved BSCCO crystal surfaces. The authors have succeeded in detection of a special layer, probably a CuO 2 or Ca layer exposed on the surface. The STS spectrum which was reproducibly observed on this special site shows a considerably anisotropic but distinct superconducting gap structure with a definite and flat gap bottom region. This gap structure shows significantly different characteristic from another gap structure observed on the BiO layer, which shows a rounded shape at the gap bottom region without any indication of a finite gap state

  13. Characterisation of an optimised high current MgO/Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8.21} composite conductor using pulsed transport currents with pulsed magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Glowacki, B A; Gilewski, A; Rogacki, K; Kursumovic, A; Evetts, J E; Jones, H; Henson, R; Tsukamoto, O

    2003-01-15

    High temperature superconducting conductors are already used in hybrid magnets to produce fields that enhance the performance of conventional magnets made from A-15 type low temperature superconducting wires. For such applications it is vital that the interdependence of the critical parameters such as critical current versus magnetic field can be mapped under high field and high current conditions. However these superconductors have high critical currents even at fields over 20 T, making accurate measurements difficult due to the thermal and mechanical problems. In this paper, we compare measurements on the fully optimised Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8.21} flat rigid conductors using an innovative pulsed high transport current and pulsed high field technique. We show how analysis of the voltage signal from Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8.21} tape in pulsed conditions may be used to extract the critical current under quasi-stationary conditions.

  14. Effect of microwave-enhanced superconductivity in YBa2Cu3O7 bi-crystalline grain boundary weak-links

    International Nuclear Information System (INIS)

    Fu, C.M.; Chen, C.M.; Lin, H.C.

    1994-01-01

    We have studied systematically the effect of microwave irradiation on the temperature dependent resistivity R(T) and the current-voltage (I-V) characteristics of YBa 2 Cu 3 O 7-x (YBCO) bicrystalline grain boundary weak-links (GBWLs), with grain boundary of three different tilt angles. The superconducting transition temperature, T c , has significant enhancement upon microwave irradiation. The microwave enhanced T c is increased as a function of incidence microwave power, but limited to an optimum power level. The GBWLs of 45 degrees tilt boundary has shown to be most sensitive to the microwave irradiation power, and the GBWLs of 36.8 degrees tilt boundary has displayed a moderate response. In contrast, no enhancement of T c was observed in the GBWLs of 24 degrees tilt boundary, as well as in the uniform films. Under the microwave irradiation, the R(T) dependence is hysteretic as the transition taken from superconducting state to normal state and vice versa. Mechanisms associated with the redistribution of nonequilibrium quasiparticles under microwave irradiation are discussed

  15. Observation of a common symmetry for the pseudogap and the superconducting order parameter near the surface of underdoped YBa2Cu3O6+x

    International Nuclear Information System (INIS)

    Koren, G.; Shkedy, L.; Polturak, E.

    2004-01-01

    Measurements of the angular dependence of conductance spectra in the a-b plane of underdoped YBa 2 Cu 3 O 6+x junctions are reported. At zero magnetic field the superconducting gap shows a vertical bar d+is vertical bar-like symmetry. Application of a magnetic field strongly suppresses this gap leaving only the pseudogap feature which also shows a vertical bar d+is vertical bar-like angular dependence. We thus observe the same symmetry for the superconducting gap and the pseudogap characterizing the YBCO electrodes near the interface with the barrier. An H c2 value of ∼5 T of the secondary (is) order parameter can also be deduced from our results

  16. Critical current properties in superconducting melt processed Y-Ba-Cu-O

    International Nuclear Information System (INIS)

    Matsushita, Teruo

    1993-01-01

    The critical current density in bulk superconducting Y-Ba-Cu-O has been remarkably improved by employing the so-called melt process. However, its value is still far below those reported in single-crystalline thin films. Important key factors that determine the critical current density are the flux pinning mechanism and defective structures such as cracks or weak links. In this article, these factors in melt-processed Y-Ba-Cu-O are argued from various measurements of the critical current density on the microstructure dependence, the magnetic field dependence, the temperature dependence, the history effect, the longitudinal field effect and the imaginary ac susceptibility. As for the pinning mechanism, it is concluded that the dominant pinning centers in the high temperature region around 77 K are normal 211 (Y 2 BaCuO 5 ) particles, while small defects such as lattice defects or oxygen deficiencies seem to be dominant in the lower temperature region. It is suggested that much finer normal particles should be introduced in order to improve the critical current density especially at higher temperatures. From the rapid decrease of the critical current density with elevating temperature below 30 K, some kind of weak links are considered to still remain in these materials. However, the observed critical current density did not depend on the history of application of the magnetic field and a large enhancement of the critical current density was observed in the longitudinal field geometry at 4.2 K. These results suggest that the weak links in these materials are of much different kind from those at large angle grain boundaries in sintered polycrystalline materials. From the X-ray diffraction measurements, a domain structure of a mean domain size of about 100 μm was found. These domain boundaries may cause weak links in melt-processed Y-Ba-Cu-O. It is also shown that the typical size of channels of flowing current can be obtained by the imaginary ac susceptibility

  17. Fabrication and evaluation of atmospheric plasma spraying WC-Co-Cu-MoS2 composite coatings

    International Nuclear Information System (INIS)

    Yuan Jianhui; Zhu Yingchun; Zheng Xuebing; Ji Heng; Yang Tao

    2011-01-01

    Research highlights: → Protective WC-Co-based coatings containing solid lubricant Cu and MoS 2 used in wear applications were investigated in this study. → It was found that the MoS 2 composition in the feed powder was kept in WC-Co-Cu-MoS 2 coatings, and the decomposition and decarburization of WC in APS process were improved. → Combining the wear resistance of WC with the lubricating properties of Cu and MoS 2 has an extremely beneficial effect on improving the tribological performance of the resulting coating. - Abstract: Protective WC-Co-based coatings containing solid lubricant Cu and MoS 2 used in wear applications were investigated in this study. These coatings were deposited on mild steel substrates by atmospheric plasma spraying (APS). The feedstock powders were prepared by mechanically mixing the solid lubricant powders and WC-Co powder, followed by sintering and crushing the mixtures to avoid different particle flighting trajectories at plasma. The tribological properties of the coatings against stainless steel balls were examined by ball-on-disk (BOD) tribometer under normal atmospheric condition. The microstructure of the coatings was studied by optical microscope, scanning electron microscope and X-ray diffraction. It was found that the MoS 2 composition in the feed powder was kept in WC-Co-Cu-MoS 2 coatings, and the decomposition and decarburization of WC in APS process were improved, which were attributed to the protection of Cu around them. The friction and wear behaviors of all the WC-Co-Cu-MoS 2 coatings were superior to that of WC-Co coating. Such behavior was associated to different wear mechanisms operating for WC-Co coating and the WC-Co-Cu-MoS 2 coatings.

  18. Features of pseudogap and superconductivity states of YBa sub 2 Cu sub 3 O sub 7 sub - sub x

    CERN Document Server

    Misochko, O V; Dekorsy, T; Helm, M

    2002-01-01

    The relaxation dynamics of the lattice and low-energy quasi-particles of the YBa sub 2 Cu sub 3 O sub 7 sub - sub x superconductor is studied through the light reflection method within the wide temperature range. It is shown that for T > T sub c there exist two areas of temperature with qualitatively and quantitatively different excitation dynamics and the transition between these areas is of the hysteresis character. It is established also, that the character of the change in the relaxation dynamics of the charge carriers in the superconducting state indicates the anisotropic gap with zeroes on the Fermi surface

  19. Infiltrated TiC/Cu composites

    International Nuclear Information System (INIS)

    Frage, N.; Froumin, N.; Rubinovich, L.; Dariel, M.P.

    2001-01-01

    One approach for the fabrication of ceramic-metal composites is based on the pressureless impregnation of a porous ceramic preform by a molten metal. Molten Cu does not react with TiC and the wetting angle is close to 90 o . Nonetheless, molten Cu readily impregnates partially sintered TiC preforms. A model that describes the dependence of the critical contact angle for spontaneous impregnation by molten metals in partially sintered preforms on the level of densification and on the morphology of the particles was developed. For high aspect ratios of the particles forming the preform, wetting angles close to 90 o still allow impregnation by the molten metal. The results of the model were confirmed by infiltration of partially sintered TiC preforms with molten Cu and by fabrication of the TiC/Cu composites with various ceramic-to metal ratios. Decreasing of the metal content in the composite from 50 vol.% to 10 vol.% leads to a hardness increase from 250 to 1800 HV, and to the decrease of the bending strength from 960 to 280 MPa. The resistivity of these TiC/Cu composites decreases from 142 ohm cm to 25 ohm cm. (author)

  20. Microstructural characterization and compression properties of TiC0.61/Cu(Al) composite synthesized from Cu and Ti3AlC2 powders

    International Nuclear Information System (INIS)

    Huang, Zhenying; Bonneville, Joel; Zhai, Hongxiang; Gauthier-Brunet, Veronique

    2014-01-01

    Highlights: • Submicro-layered TiC 0.61 /Cu(Al) nanocomposite. • MAX phase. • High yield stress. • Deformation mechanism. - Abstract: A new submicro-layered TiC 0.61 /Cu(Al) composite has been prepared by hot-pressing a mixture of 50 vol.% Ti 3 AlC 2 and 50 vol.% Cu powders at 1150 °C and 30 MPa. It is shown that the initial reinforcement Ti 3 AlC 2 particles have, after synthesis, an unusual microstructure, which consists of submicron-thick layers of TiC 0.61 and Cu(Al) alloy. Both the width of the TiC 0.61 and Cu(Al) layers are ∼150 nm. Thus, the Ti 3 AlC 2 particles are decomposed into the TiC 0.61 phase, while the additional Al atoms provided by Ti 3 AlC 2 diffuse into the molten Cu matrix at high temperature. Compression tests were performed at constant strain rate in the temperature range 20–800 °C. The new designed TiC 0.61 /Cu(Al) composite has both a high yield stress, σ 0.2 measured at 0.2% strain offset, and a high ultimate compressive strength, σ UCS , which is attributed to strong interface bonding between TiC 0.61 and Cu(Al) phase. For instance, at 20 and 200 °C, σ 0.2 is 770 MPa and 700 MPa, while σ UCS is 1.18 GPa and 1 GPa, respectively. Plastic deformation takes place in the Cu(Al) matrix. Wavy slip lines are observed indicating that cross-slip could be the dominant deformation mechanism

  1. Enhanced flux pinning properties in superconducting YBa2Cu3O7−z films by a novel chemical doping approach

    International Nuclear Information System (INIS)

    Wang, W.T.; Pu, M.H.; Lei, M.; Zhang, H.; Wang, Z.; Zhang, H.; Cheng, C.H.; Zhao, Y.

    2013-01-01

    Highlights: • Pure and Co-doped YBCO films were prepared by newly-developed chemical method. • The doped films have much denser and smoother surface microstructures. • Significantly enhanced fux-pinning properties have been obtained for dilute Co-doped flm. -- Abstract: Pure and cobalt-doped superconducting YBa 2 Cu 3 O 7−z (YBCO) films were prepared on (0 0 l) LaAlO 3 substrate by a newly developed polymer-assisted metal organic deposition method. The cobalt-doped YBCO films display much denser and smoother surface microstructures and the superconducting transition temperature T c spans a small range of 1.7 K with the doping levels. Significantly enhanced flux-pinning properties have been obtained for dilute cobalt-doped film. This may be attributed to the good grain connections and the effective flux pinning centers introduced by cobalt doping

  2. Annihilation of positrons with the electrons of chemical bonds of the superconducting CuO-polyhedrons in the HTSC materials

    International Nuclear Information System (INIS)

    Arutyunov, N.Yu.; Trashchakov, V.Yu.

    1989-01-01

    Angular distribution parameters of annihilation photon pairs emitted from R-Ba 2 Cu 3 O 7-x (x≤0.2; R=Y, Nd, Lu) specimens after injection and subsequent annihilation of positrons in them. It is shown that annihilation of thermalized positrons proceeds advantageously with electrons of chemical bonds of O(4)-Cu(I)-O(I) polyhedrons in R-Ba-Cu-O oxides. In an orthorhombic phase positrons are mostly delocalized in rows of ordered stoichiometric vacancies. The result obtained provides to recommend the methods of positron diagnostics for studying parameters of electron state density in superconducting structural groups of high-temperature superconductors. 2 refs.; 1 fig

  3. Novel Preparation of Nano-Composite CuO-Cr2O3 Using Ctab-Template Method and Efficient for Hydrogenation of Biomass-Derived Furfural

    Science.gov (United States)

    Yan, Kai; Wu, Xu; An, Xia; Xie, Xianmei

    2013-02-01

    A simple route to fabricate nano-composite oxides CuO-Cr2O3 using hexadecyltrimethylammonium bromide (CTAB)-templated Cu-Cr hydrotalcite as the precursor is presented. This novel method is based on CTAB-templating effect for mesostructure directing and using the cheap metal nitrate, followed by removal of CTAB. It was indicated that the nano-composite CuO-Cr2O3 was formed during the removal of CTAB. X-ray diffraction (XRD) and transitional electronic microscopy (TEM) revealed nice nano-composite oxides CuO-Cr2O3 were formed with high crystallinity. N2 adsorption and desorption indicated that a high surface area of 170.5 m2/g with a pore size of 2.7 nm of the nano-composite CuO-Cr2O3 was facilely resulted. The as-synthesized nano-composite oxides CuO-Cr2O3 display good catalytic activities for hydrogenation of furfural to furfuryl alcohol, whereas 86% selectivity was achieved at 75% conversion of furfural.

  4. Layer-by-layer deposition of superconducting Sr-Ca-Cu-O films by the spray pyrolysis technique

    International Nuclear Information System (INIS)

    Pawar, S.H.; Pawaskar, P.N.; Ubale, M.J.; Kulkarni, S.B.

    1995-01-01

    Layer-by-layer deposition of Sr-Ca-Cu-O films has been carried out using the spray pyrolysis technique. Reagent-grade nitrates of strontium, calcium and copper were used to prepare starting solutions for spray pyrolysis. A two-step procedure was used for every layer of the constituents in the sequence Sr-Cu-Ca-Cu-Sr: first, deposition onto silver substrate at 350 C, then firing at T≥450 C, both at atmospheric pressure. The films were 2-3 μm thick and showed adequate adhesion to the substrate. The films were then characterised by studying their electron micrographs, X-ray diffraction patterns and electrical resistivity. The films showed superconductivity below 104 K. ((orig.))

  5. Disorder in YBa2Cu3O7 by entropy measurements and by rf dissipation

    International Nuclear Information System (INIS)

    Acrivos, J.V.; Inthnin, R.; Bustillo, C.; Lei, M.C.; Hellmoldt, D.

    1989-01-01

    Experiments, that characterize the disorder present in Type II superconducting ceramics, are reported Electrochemical measurements at 298>T>150 K>T c ∼ 92 K, in the cell: Cu|CuBr 2 .05 M in CH 3 OH|1:2:3|Pt and/orCu, obtain important thermochemical information, ΔH cell = 30 kJ/mole e - and ΔS cell = 212 J/K/mole e - ± 15%. This suggests that the 1:2:3 phase is disordered. The rf dissipation measurements of superconducting lamellae dispersed in a matrix give information on the effects of the static and rf fields on the mixed state

  6. LaNiO3 buffer layers for high critical current density YBa2Cu3O7-δ and Tl2Ba2CaCu2O8-δ films

    International Nuclear Information System (INIS)

    Carlson, C.M.; Parilla, P.A.; Siegal, M.P.; Ginley, D.S.; Wang, Y.; Blaugher, R.D.; Price, J.C.; Overmyer, D.L.; Venturini, E.L.

    1999-01-01

    We demonstrate high critical current density superconducting films of YBa 2 Cu 3 O 7-δ (YBCO) and Tl 2 Ba 2 CaCu 2 O 8-δ (Tl-2212) using LaNiO 3 (LNO) buffer layers. YBCO films grown on an LNO buffer layer have only a slightly lower J c (5 K, H=0) than films grown directly on a bare LaAlO 3 substrate. YBCO films grown on LNO buffer layers exhibit minor microstructural disorder and enhanced flux pinning. LNO-buffered Tl-2212 samples show large reductions in J c at all temperatures and fields compared to those grown on bare LaAlO 3 , correlating to both a-axis grain and nonsuperconducting phase formation. LNO could be a promising buffer layer for both YBCO and Tl-based superconducting films in coated conductor applications. copyright 1999 American Institute of Physics

  7. LaNiO3 Buffer Layers for High Critical Current Density YBa2Cu3O7δ and Tl2Ba2CaCu2O8δ Films

    International Nuclear Information System (INIS)

    Carlson, C.M.; Parilla, P.A.; Siegal, M.P.; Ginley, D.S.; Wang, Y.-T.; Blaugher, R.D.; Price, J.C.; Overmyer, D.L.; Venturini, E.L.

    1999-01-01

    We demonstrate high critical current density superconducting films of YBa 2 Cu 3 O 7-δ (YBCO) and Tl 2 Ba 2 CaCu 2 O 8-δ (Tl-2212) using LaNiO 3 (LNO) buffer layers. YBCO films grown on an LNO buffer layer have only a slightly lower J c (5K, H=0) than films grown directly on a bare LaAlO 3 substrate. It is noteworthy that YBCO films grown on LNO buffer layers exhibit minor microstructural disorder and enhanced flux pinning. LNO-buffered Tl-2212 samples show large reductions in J c at all temperatures and fields compared to those grown on bare LaAlO 3 , correlating to both a-axis grain and nonsuperconducting phase formation. With additional optimization, LNO could be a promising buffer layer for both YBCO and Tl-based superconducting films, perhaps ideally suited for coated conductor applications

  8. Synthesis of Ordered Mesoporous CuO/CeO2 Composite Frameworks as Anode Catalysts for Water Oxidation

    Directory of Open Access Journals (Sweden)

    Vassiliki Markoulaki Ι

    2015-11-01

    Full Text Available Cerium-rich metal oxide materials have recently emerged as promising candidates for the photocatalytic oxygen evolution reaction (OER. In this article, we report the synthesis of ordered mesoporous CuO/CeO2 composite frameworks with different contents of copper(II oxide and demonstrate their activity for photocatalytic O2 production via UV-Vis light-driven oxidation of water. Mesoporous CuO/CeO2 materials have been successfully prepared by a nanocasting route, using mesoporous silica as a rigid template. X-ray diffraction, electron transmission microscopy and N2 porosimetry characterization of the as-prepared products reveal a mesoporous structure composed of parallel arranged nanorods, with a large surface area and a narrow pore size distribution. The molecular structure and optical properties of the composite materials were investigated with Raman and UV-Vis/NIR diffuse reflectance spectroscopy. Catalytic results indicated that incorporation of CuO clusters in the CeO2 lattice improved the photochemical properties. As a result, the CuO/CeO2 composite catalyst containing ~38 wt % CuO reaches a high O2 evolution rate of ~19.6 µmol·h−1 (or 392 µmol·h−1·g−1 with an apparent quantum efficiency of 17.6% at λ = 365 ± 10 nm. This OER activity compares favorably with that obtained from the non-porous CuO/CeO2 counterpart (~1.3 µmol·h−1 and pure mesoporous CeO2 (~1 µmol·h−1.

  9. Preparation of YBa2Cu3O7 films by low pressure MOCVD using liquid solution sources

    International Nuclear Information System (INIS)

    Weiss, F.; Froehlich, K.; Haase, R.; Labeau, M.; Selbmann, D.; Senateur, J.P.; Thomas, O.

    1993-01-01

    A hybrid low pressure MOCVD process is described for reproducible preparation of superconducting thin films of YBa 2 Cu 3 O 7 . The process uses a single solution source of Y, Ba, and Cu β-diketonates dissolved in suitable organic solvents. This liquid precursor is atomized using an ultrasonic aerosol generator and transported as small droplets (∼1μm) into a CVD reactor where solvent and precursor are first evaporated before deposition takes place at low pressure on heated substrates in a cold wall geometry. This process allows, with stable evaporation rates for all three precursors, to grow in-situ superconducting films with constant composition from film to film. Thin and thick films with high critical temperatures and critical currents have been obtained (Tc>80K, Jc>10 4 A/cm 2 at 77K in self field) which are highly c-axis oriented. Experimental details of this new process are described and the effects of different process parameters are studied in order to improve the quality of the deposited layers. (orig.)

  10. Superconducting thin films of Bi-Sr-Ca-Cu-O by laser ablation

    Science.gov (United States)

    Bedekar, M. M.; Safari, A.; Wilber, W.

    1992-11-01

    Superconducting thin films of Bi-Sr-Ca-Cu-O have been deposited by KrF excimer laser ablation. The best in situ films showed a Tc onset of 110 K and a Tc(0) of 76 K. A study of the laser plume revealed the presence of two distinct regimes. The forward directed component increased with fluence and the film composition was stoichiometric in this region. This is in agreement with the results on the 123 system by Venkatesan et al. [1]. The film properties were found to be critically dependent on the substrate temperature and temperatures close to melting gave rise to 2212 and 2223 phases. At lower temperatures, 2201 and amorphous phases were obtained. The film morphology and superconducting properties were a function of the target to substrate distance and the oxygen pressure during deposition and cooling. An increase in the target to substrate distance led to a deterioration of the properties due to the energy consideration for the formation of 2212 and 2223 phases. The best films were obtained using cooling pressures of 700 Torr. The microwave surface resistance of the films measured at 35 GHz dropped below that of copper at 30 K. Film growth was studied using X-ray diffraction and STM/AFM. This work is a discussion of the role of the different variables on the film properties.

  11. Electronic Raman scattering in Bi2Sr2CaCu2O8=δ

    International Nuclear Information System (INIS)

    Quilty, J.W.; Trodahl, H.J.; Pooke, D.

    1996-01-01

    Full text: High-T c superconductors exhibit a definite Electronic Raman Scattering (ERS) continuum, which most materials do not. Typically, the continuum is relatively flat in the normal state, while below T c the ERS spectrum shows reduced scattering at the lowest Raman shifts and a peak close to the superconducting gap energy. The behaviour below T c is due to the breaking of Cooper pairs and reflects the superconducting density of states, hence revealing the superconducting gap. Through an appropriate choice of incident and scattered polarisation vectors, the electronic Raman continuum of high-T c superconductors may also be used to reveal information on the symmetry of the superconducting gap. Previous studies of the electronic continuum show that a broad peak associated with the superconducting gap forms in the continuum below T c in these materials, when compared to the normal-state. We report temperature and polarisation dependent ERS measurements on differently-doped Bi 2 Sr 2 CaCu 2 O 8+δ (Bi2212) single crystals, within a temperature range of 300 K to 10 K

  12. Development of a short sample test facility for evaluating superconducting wires

    International Nuclear Information System (INIS)

    Singh, M.R.; Kulkarni, D.G.; Sahni, V.C.; Ravikumar, G.; Patel, K.L.

    2002-01-01

    In this paper we describe a short sample test facility we have set up at Bhabha Atomic Research Centre (BARC). This facility has been used to measure critical currents of NbTi/Cu composite superconducting wires by recording V versus I data at 4.2 K. It offers sample current as large as 1500 A and a transverse magnetic field up to 7.4 T. A power law, V ∼I n( H) is fitted to the resistive transition region to estimate the exponent n, which is a measure of the uniformity of superconducting filaments in composite wires. It is observed that inadequate thermal stabilization of sample wire results in thermal runaway, which limits the V-I data to∼ 2μ V . This in turn affects the reliability of estimated filament uniformity. To mitigate this problem, we have used a sample holder made of OFHC-Cu which enhances thermal stabilization of the sample. With this sample holder, the results of measurements carried out on wires developed by the Atomic Fuel Division, BARC show a high filament uniformity (n ∼ 58). (author)

  13. Comparison of water degradation of YBaCuO superconducting films made from different structures

    International Nuclear Information System (INIS)

    Chang, C.; Tsai, J.A.

    1988-01-01

    Immersion of YBaCuO superconducting films in water has shown a large difference in degradation between structures with and without silver. For the structures containing silver layers and depositing at a high temperature, superconducting films with zero resistance at 87 K remain superconductive at 77 K after 5 h immersion in water, with an increase in room-temperature film resistance by a factor of 4; the contact resistance remains low after 60 h of immersion, allowing the measurement at low temperatures. For the structures containing no silver and depositing at room temperature, the contact resistance rapidly increases with immersion times, making the measurement at 77 K difficult after 5 min of immersion. Changes in the sharpness of the superconductive transition, and structures of the films due to the water immersion are also compared

  14. High temperature superconducting films by rf magnetron sputtering

    International Nuclear Information System (INIS)

    Kadin, A.M.; Ballentine, P.H.

    1989-01-01

    The authors have produced sputtered films of Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O by rf magnetron sputtering from an oxide target consisting of loose reacted powder. The use of a large 8-inch stoichiometric target in the magnetron mode permits films located above the central region to be free of negative-ion resputtering effects, and hence yields reproducible, uniform stoichiometric compositions for a wide range of substrate temperatures. Superconducting YBCO films have been obtained either by sputtering at low temperatures followed by an 850 0 C oxygen anneal, or alternatively by depositing onto substrates heated to ∼600 - 650 0 C and cooling in oxygen. Films prepared by the former method on cubic zirconia substrate consist of randomly oriented crystallites with zero resistance above 83 K. Those deposited on zirconia at medium temperatures without the high-temperature anneal contain smooth partially oriented crystallites, with a slightly depressed T/sub c/ ∼75K. Finally, superconducting films have been deposited on MgO using a BiSrCaCu/sub 2/O/sub x/ powder target

  15. Interaction of Ag with YBa2Cu3O7-x

    International Nuclear Information System (INIS)

    Shamrai, V.F.; Efimov, Yu.V.; Frolova, T.M.; Myasnikova, E.A.; Postnikov, A.M.

    1992-01-01

    The aim of the work was to investigate the effect of Ag (0.3 to 20 mass%) on the structure, the composition and some superconducting and magnetic properties of Y-HTSC. The alloys were studied by scanning electron microscopy (in secondary and elastically backscattering electron mode) and X-ray diffraction analysis (DRON-2.0; CuKα-radiation). T c was measured by both resistive and inductive methods at T >> 77 K. The resistivity was determined by four-point technique (Ag solder) at 100 to 300 K and with 1 mA (operating current). Magnetic flux penetration was studied by a mechanical method in sound frequency interval. (orig./MM) [de

  16. Superconducting oxide thin films by ion beam sputtering

    International Nuclear Information System (INIS)

    Kobrin, P.H.; DeNatale, J.F.; Housley, R.M.; Flintoff, J.F.; Harker, A.B.

    1987-01-01

    Superconducting thin films of ternary copper oxides from the Y-Ba-Cu-O and La-Sr-Cu-O systems have been deposited by ion beam sputtering of ceramic targets. Crystallographic orientation of the polycrystalline films has been shown to vary with substrate identity, deposition temperature and annealing temperature. The onset of the superconductive transition occurs near 90K in the Y-Ba-Cu-O system. Fe impurities of < 0.2% have been found to inhibit the superconducting transition, probably by migrating to the grain boundaries

  17. Transverse- and zero-field μSR [muon-spin-rotation] investigation of magnetism and superconductivity in (Y1-xPrx)Ba2Cu3O7

    International Nuclear Information System (INIS)

    Cooke, D.W.; Jahan, M.S.; Kwok, R.S.; Lichti, R.L.; Adams, T.R.; Boekema, C.; Dawson, W.K.; Kebede, A.; Schwegler, J.; Crow, J.E.; Mihalsin, T.

    1990-01-01

    Zero-field muon-spin-rotation (μSR) measurements on (Y 1-x Pr x )Ba 2 Cu 3 O 7 [x = 1.0, 0.8, 0.6, and 0.54] show evidence for antiferromagnetic ordering of the Cu moments within the Cu--O planes, with Neel temperatures 285,220, 35, 30, and 20 K respectively. For x = 1.0 the local muon magnetic field is ∼16 mT, but decreases to ∼12 mT at 17 K, due to additional magnetic ordering. The zero-field data, in conjunction with transport data, allow construction of a complete diagram for this system. Transverse-field (1 kOe) μSR data for x = 0.2 (T c = 75 K) show that the muon depolarization is determined primarily by the Cu nuclear moments for T>T c . Fitting the superconducting-state data to a BCS model yields an extrapolated zero-temperature magnetic penetration depth of 2170 angstrom. 9 refs., 3 figs

  18. Processing-property relations in YBa2Cu3O(6+x) superconductors

    Science.gov (United States)

    Safari, A.; Wachtman, J. B., Jr.; Parkhe, V.; Caracciolo, R.; Jeter, D.

    Processing of YBa2Cu3O(6+x) superconducting samples by employing different precursor powder preparation techniques such as ball milling, attrition milling, and narrow particle size distribution powder preparation through coprecipitation by spraying will be discussed. CuO coated with oxalates shows the lowest resistance above Tc up to room temperature. The extent of corrosion by water has been studied by employing magnetic susceptibility, XPS, and X-ray diffraction. Superconducting samples are affected to a considerable extent when treated in water at 60 C and the severity of the attack increases with time.

  19. Microstructures and mechanical properties of Cu/Ti{sub 3}SiC{sub 2}/C/MWCNTs composites prepared by vacuum hot-pressing sintering

    Energy Technology Data Exchange (ETDEWEB)

    Xiaosong, Jiang, E-mail: xsjiang@yeah.net [School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Liu, Wanxia; Li, Jingrui [School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Shao, Zhenyi [Department of Mechanical Engineering, Chengdu Technological University, Chengdu, Sichuan 610031 (China); Zhu, Degui [School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)

    2015-01-05

    Highlights: • Cu/Ti{sub 3}SiC{sub 2}/C/MWCNTs composites were prepared using vacuum hot-pressing sintering. • Dispersions of MWCNTs were prepared using 10 μg/ml gallic acid aqueous solution. • MWCNTs content has no effect on generation of TiC and Cu{sub 9}Si to effect matrix’s performance. - Abstract: Cu/Ti{sub 3}SiC{sub 2}/C/MWCNTs composites were prepared by vacuum hot-pressing sintering. Microstructures and mechanical properties of Cu/Ti{sub 3}SiC{sub 2}/C/MWCNTs composites with different multi-walled carbon nanotubes contents have been systematically investigated. The microstructures of the composites were examined by optical microscopy, X-ray diffraction, back scattered electron imaging, scanning electron microscope and energy dispersive spectrometer. The mechanical properties were determined from Brinell hardness and tensile tests. The results demonstrated that there was an optimum value of MWCNTs content which has an impact on microstructures and mechanical properties of Cu/Ti{sub 3}SiC{sub 2}/C/MWCNTs composites. Based on MWCNTs content on properties and microstructure of Cu/Ti{sub 3}SiC{sub 2}/C/MWCNTs composites, effects of MWCNTs on improvement of the composites and strengthening mechanism have been analyzed.

  20. Elaboration, microstructure, propriétés électriques et magnétiques de matériaux textures dans les systèmes Nd-Ce-Cu-O et Bi-Sr-Ca-Cu-O

    Science.gov (United States)

    Dhalenne, G.; Trouilleux, L.; Jegoudez, J.; Revcolevschi, A.; Monod, P.; Kormann, R.; Ganne, J. P.; Motohira, N.; Kitazawa, K.

    1991-11-01

    Superconducting textured materials were grown from the melt by a floating zone technique in the Nd-Ce-Cu-O and Bi-Sr-Ca-Cu-O systems. The influence of growth conditions and starting compositions on the microstructures and phase composition of the samples were studied by optical microscopy under polarized light, electron microprobe analysis and X-ray diffraction. The superconducting properties of these samples were examined by both electrical resistivity and magnetic measurements. A very strong influence of the microstructure on the superconducting properties as well as a magnetic and electrical anisotropy were shown. In the case of the Bi-Sr-Ca-Cu-O system, critical current densities ranging from 1 600 to 3 000 A.cm^{-2} were measured at 77 K. Des matériaux supraconducteurs texturés ont été élaborés à partir de l'état liquide dans les systèmes Nd-Ce-Cu-O et Bi-Sr-Ca-Cu-O par une technique de fusion de zone. L'influence des conditions de croissance et des compositions initiales sur la microstructure des échantillons a été étudiée par microscopie optique en lumière polarisée, microsonde électronique et diffraction des rayons X. Les propriétés supraconductrices des échantillons ont été examinées par des mesures électriques et magnétiques. Il a été observé une forte influence de la microstructure sur les propriétés supraconductrices ainsi qu'une anisotropie électrique et magnétique. Dans le cas du système Bi-Sr-Ca-Cu-O, les densités de courant critique mesurées à 77 K sont comprises entre 1 600 et 3 000 A.cm^{-2}.

  1. Ag doped (Bi1.6Pb0.4Sr2CaCu2O8+δ textured rods

    Directory of Open Access Journals (Sweden)

    Díez, J. C.

    2008-06-01

    Full Text Available In this work, superconducting samples of (Bi1.6Pb0.4Sr2CaCu2O8+δ with Ag additions have been studied. (Bi1.6Pb0.4Sr2CaCu2O8+δ + x wt.% Ag (with x = 0, 1 and 3 powders were synthesized using a sol-gel method. The obtained powders were used as precursors to fabricate long textured cylindrical bars through a floating zone melting method. A drastic change on the microstructure has been found when comparing with undoped Bi2Sr2CaCu2O8+δ samples. The results showed that electrical resistivity at room temperature, critical current as well as flexural strength are improved when Ag is added to these Pb doped samples, while critical temperature does not change. On the other hand, it has been found that samples with composition (Bi1.6Pb0.4Sr2CaCu2O8+δ + Ag shown E-I curves with very high sharpness values on the zone of the superconducting to normal transition, reaching n-values (E∼In as high as 45 at 65K.Se han preparado polvos cerámicos de composición (Bi1.6Pb0.4Sr2CaCu2O8+δ + x % Ag en peso (con x = 0, 1 y 3 mediante un proceso sol-gel. Estos polvos se han utilizado para fabricar precursores que se texturaron por medio del método de fusión zonal flotante. Se ha encontrado un gran cambio en la microestructura cuando se compara con muestras de composición pura Bi2Sr2CaCu2O8+δ. Tanto la resistividad eléctrica a temperatura ambiente, como la corriente crítica, así como la resistencia a flexión se mejoran cuando la Ag se adiciona a estas muestras dopadas con Pb, mientras que no se observa cambio en la temperatura crítica. Por otra parte, se ha encontrado que las muestras de composición (Bi1.6Pb0.4Sr2CaCu2O8+δ + Ag presentan una gran pendiente de la curva E-I en la zona de transición entre el estado superconductor y el estado normal. Con estas composiciones, se han encontrado valores de n (E∼In de hasta 45 a 65K.

  2. Comparative study of electronic structure and charge transport in isostructural cuprates YBa2Cu3O7 and PrBa2Cu3O7

    International Nuclear Information System (INIS)

    Kormilets, V.I.

    1997-01-01

    The self-consistent calculations of electronic structure and charge distribution in YBa 2 Cu 3 O 7 and PrBa 2 Cu 3 O 7 crystals were performed by the method of linear muffin-tin orbitals with full potentials (FP-LMTO). It is revealed that the substitution of Pr for Y results in the charge transfer from a CuO chain to a CuO 2 plane. In its turn, this results in partial innihilation of holes responsible for superconductivity. The effect is analogous to that arisen from the removal of oxygen atoms from CuO chains. It is shown that the degree of covalence of 1-2-3 compounds being considered constitutes and essential value and decreases with pr substitution for Y

  3. Oxygen vacancy rich Cu2O based composite material with nitrogen doped carbon as matrix for photocatalytic H2 production and organic pollutant removal.

    Science.gov (United States)

    Lu, Lele; Xu, Xinxin; Yan, Jiaming; Shi, Fa-Nian; Huo, Yuqiu

    2018-02-06

    A nitrogen doped carbon matrix supported Cu 2 O composite material (Cu/Cu2O@NC) was fabricated successfully with a coordination polymer as precursor through calcination. In this composite material, Cu 2 O particles with a size of about 6-10 nm were dispersed evenly in the nitrogen doped carbon matrix. After calcination, some coordinated nitrogen atoms were doped in the lattice of Cu 2 O and replace oxygen atoms, thus generating a large number of oxygen vacancies. In Cu/Cu2O@NC, the existence of oxygen vacancies has been confirmed by electron spin resonance (ESR) and X-ray photoelectron spectroscopy (XPS). Under visible light irradiation, Cu/Cu2O@NC exhibits excellent H 2 production with the rate of 379.6 μmol h -1 g -1 . Its photocatalytic activity affects organic dyes, such as Rhodamine B (RhB) and methyl orange (MO). In addition to photocatalysis, Cu/Cu2O@NC also exhibits striking catalytic activity in reductive conversion of 4-nitrophenol to 4-aminophenol with in presence of sodium borohydride (NaBH 4 ). The conversion efficiency reaches almost 100% in 250 s with the quantity of Cu/Cu2O@NC as low as 5 mg. The outstanding H 2 production and organic pollutants removal are attributed to the oxygen vacancy. We expect that Cu/Cu2O@NC will find its way as a new resource for hydrogen energy as well as a promising material in water purification.

  4. Influence of laser sputtering parameters on orientation of cerium oxide buffer layer on sapphire and properties of YBa2Cu3Ox superconducting film

    International Nuclear Information System (INIS)

    Mozhaev, P.B.; Ovsyannikov, G.A.; Skov, J.L.

    1999-01-01

    Effect of laser sputtering parameters on crystalline properties of CeO 2 buffer layers grown on (1102) orientation sapphire substrate and on properties of YBa 2 Cu 3 O x superconducting thin films was studied. It was shown that depending on the sputtering conditions one might observe growth of CeO 2 (100) and (111) orientations. Varying heater temperature, chamber pressure and density of laser ray energy on the target one managed to obtain mono-oriented buffer layer of the desired orientation [ru

  5. On the localisation of charge carriers and suppression of superconductivity by praseodymium in systems derived from YBa2Cu3O7-d

    International Nuclear Information System (INIS)

    Infante, C.; El Mously, M.K.; Dayal, R.; Husain, M.; Siddiqi, S.A.; Ganguly, P.

    1990-04-01

    The effect of Pr substitution in suppressing T c in LaCaBaCu 3 O 7-d and Y 0.8 Ca 0.2 Ba 2 Cu 3 O 6+d has been studied. Infra-red spectroscopy and a model based on ionic radii considerations were used to examine the location of Pr ions and the influence of Pr and Ca ions on hole localisation on chains and planes. For this purpose the series PrBa 2-x Ca x Cu 3 O 7-d was also studied. The main conclusions are that Pr ions play a role in suppressing T c by exchange scattering and to some extent by the hole filling mechanism involving the formation of Pr 4+ . The Pr ions in La 1-x Pr x CaBaCu 3 O 7-d exist in both the Y and Ba sites. The magnitude of the resistivity at the insulator-metal transition for the polycrystalline samples is consistent with an anisotropic superconductor in which superconductivity accompanies metallization. The rate of suppression of T c is similar as in Y 1-x Pr x Ba 2 Cu 3 O 7d but it is suggested that a percolation model may explain the results more adequately than the Abrikosov-Gorkov theory. (author). 48 refs, 10 figs, 1 tab

  6. Phase compatibilities of YBa2Cu3O(9-delta) type structure in quintenary systems Y-Ba-Cu-O-X (impurity)

    Science.gov (United States)

    Karen, P.; Fjellvag, H.; Kjekshus, A.

    1990-01-01

    Electrical transport properties of the oxidic high T(sub c) superconductors are significantly affected by the presence of minor amounts of various elements adventing as impurities, e.g., from the chemical environment during manufacturing. YBa2Cu3O(9-delta) is prone to an extinction of the superconductivity on (partial) substitution of all four elemental components. E.g., Pr (for Y), La (for Ba), Zn (for Cu) or peroxygroup (for O) substituents will alter some of the superconductivity preconditions, like mixed valence state in Cu3O7/O(9-delta) network or structural distortion of the network. Although various pseudoternary chemical equilibrium phase diagrams of the Y(O)-Ba(O)-Cu(O) system now are available, no consensus is generally shown, however, this is partly due to lack of compatible definitions of the equilibrium conditions. Less information is available about the phase compatibilities in the appropriate quaternary phase diagram (including oxygen) and virtually no information exists about any pentenary phase diagrams (including one impurity). Unfortunately, complexity of such systems, stemming both from number of quaternary or pentenary compounds and from visualizing the five-component phase system, limits this presentation to more or less close surroundings of the YBa2Cu3O(9-delta) type phase in appropriate pseudoquaternary or pseudopseudoternary diagrams, involving Y-Ba-Cu and O, O-CO2, alkaline metals, Mg and alkaline earths, and Sc and most of the 3-d and 4-f elements. The systems were investigated by means of x ray diffraction, neutron diffraction and chemical analytical methods on samples prepared by sol-gel technique from citrates. The superconductivity was characterized by measuring the diamagnetic susceptibility by SQUID.

  7. Muon spin depolarization in Gd- and EuBa2Cu3Ox

    International Nuclear Information System (INIS)

    Cooke, D.W.; Hutson, R.L.; Kwok, R.S.; Maez, M.; Rempp, H.; Schillaci, M.E.; Smith, J.L.; Willis, J.O.; Lichti, R.L.; Chan, K.C.; Boekema, C.; Weathersby, S.; Oostens, J.

    1989-01-01

    Positive muon spin rotation (μSR) measurements on Gd- and EuBa 2 Cu 3 O x (x ∼ 7) have been conducted in the temperature interval 4 - 300 K. For each sample, muons stop both at grain boundaries and within the superconducting grains. Measured magnetic field penetration depths are 1550 and 1900 Angstrom for two specimens of GdBa 2 Cu 3 O x , and 1350 Angstrom for EuBa 2 Cu 3 O x

  8. Fabrication of a Cu{sub 2}O/Au/TiO{sub 2} composite film for efficient photocatalytic hydrogen production from aqueous solution of methanol and glucose

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xi; Dong, Haitai; Hu, Zhe; Qi, Zhong; Li, Laisheng, E-mail: llsh@scnu.edu.cn

    2017-05-15

    Highlights: • A Cu{sub 2}O/Au/TiO{sub 2} film was synthesized successfully. • Hydrogen production of Cu{sub 2}O/Au/TiO{sub 2} film improved significantly. • The highest hydrogen production rate of the film was 125.3 mmol/h/m{sup 2}. • A Z-scheme charge transfer pathway was proposed. - Abstract: A novel Cu{sub 2}O/Au/TiO{sub 2} photocatalyst composite film was fabricated on a copper substrate for photocatalytic hydrogen production. The composite films, Cu{sub 2}O/Au/TiO{sub 2}, were stepwise synthesized by using electrochemical deposition, photodeposition, and coating methods. First, a Cu{sub 2}O film was synthesized using the electrochemical deposition method, after which Au was deposited onto the Cu{sub 2}O film through in-site photodeposition. Finally, TiO{sub 2} was coated on the surface of the Cu{sub 2}O/Au film. Its morphology and surface chemical composition was characterized by SEM, TEM, XRD and XPS. The optical characteristics (UV–Vis DRS, PL spectrum) of the films were also examined. The photocatalytic hydrogen production rate of the Cu{sub 2}O/Au/TiO{sub 2} composite film from a 20% vol. methanol solution increased to125.3 mmol/h/m{sup 2} under 300 W xenon lamp light irradiation. Compared to the TiO{sub 2} (13.5 mmol/h/m{sup 2}) film and Cu{sub 2}O/TiO{sub 2} film (83.2 mmol/h/m{sup 2}), the Cu{sub 2}O/Au/TiO{sub 2} film showed excellent photocatalytic performance for hydrogen generation. The Cu{sub 2}O/Au/TiO{sub 2} film has highly effective photocatalytic properties, which are attributed to the Z-scheme system and can not only enhance the absorption of solar light but also suppress the recombination of photogenerated electron-hole pairs. It is worth noting that by introducing Au into the interface of Cu{sub 2}O/TiO{sub 2}, the surface plasmon resonance (SPR)-induced local electric field formed at the Au site induces a Z-scheme charge transfer pathway inside the composite film (Cu{sub 2}O/Au/TiO{sub 2}), which promotes both the charge of the

  9. LaNiO(3) Buffer Layers for High Critical Current Density YBa(2)Cu(3)O(7-delta) and Tl(2)Ba(2)CaCu(2)O(8-delta) Films

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, C.M.; Parilla, P.A.; Siegal, M.P.; Ginley, D.S.; Wang, Y.-T.; Blaugher, R.D.; Price, J.C.; Overmyer, D.L.; Venturini, E.L.

    1999-08-24

    We demonstrate high critical current density superconducting films of YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} (YBCO) and Tl{sub 2}Ba{sub 2}CaCu{sub 2}O{sub 8{minus}{delta}} (Tl-2212) using LaNiO{sub 3} (LNO) buffer layers. YBCO films grown on an LNO buffer layer have only a slightly lower J{sub c} (5K, H=0) than films grown directly on a bare LaAlO{sub 3} substrate. It is noteworthy that YBCO films grown on LNO buffer layers exhibit minor microstructural disorder and enhanced flux pinning. LNO-buffered Tl-2212 samples show large reductions in J{sub c} at all temperatures and fields compared to those grown on bare LaAlO{sub 3}, correlating to both a-axis grain and nonsuperconducting phase formation. With additional optimization, LNO could be a promising buffer layer for both YBCO and Tl-based superconducting films, perhaps ideally suited for coated conductor applications.

  10. Giant Overlap between the Magnetic and Superconducting Phases of CeAu_{2}Si_{2} under Pressure

    Directory of Open Access Journals (Sweden)

    Z. Ren

    2014-09-01

    Full Text Available High pressure provides a powerful means for exploring unconventional superconductivity which appears mostly on the border of magnetism. Here, we report the discovery of pressure-induced heavy-fermion superconductivity up to 2.5 K in the antiferromanget CeAu_{2}Si_{2} (T_{N}≈10  K. Remarkably, the magnetic and superconducting phases are found to overlap across an unprecedentedly wide pressure interval from 11.8 to 22.3 GPa. Moreover, both the bulk T_{c} and T_{M} are strongly enhanced when increasing the pressure from 16.7 to 20.2 GPa. T_{c} reaches a maximum at a pressure slightly below p_{c}≈22.5  GPa, at which magnetic order disappears. Furthermore, the scaling behavior of the resistivity provides evidence for a continuous delocalization of the Ce 4f electrons associated with a critical end point lying just above p_{c}. We show that the maximum T_{c} of CeAu_{2}Si_{2} actually occurs at almost the same unit-cell volume as that of CeCu_{2}Si_{2} and CeCu_{2}Ge_{2}, and when the Kondo and crystal-field splitting energies become comparable. Dynamical mean-filed theory calculations suggest that the peculiar behavior in pressurized CeAu_{2}Si_{2} might be related to its Ce-4f orbital occupancy. Our results not only provide a unique example of the interplay between superconductivity and magnetism, but also underline the role of orbital physics in understanding Ce-based heavy-fermion systems.

  11. Novel-structured electrospun TiO2/CuO composite nanofibers for high efficient photocatalytic cogeneration of clean water and energy from dye wastewater.

    Science.gov (United States)

    Lee, Siew Siang; Bai, Hongwei; Liu, Zhaoyang; Sun, Darren Delai

    2013-08-01

    It is still a challenge to photocatalytically cogenerate clean water and energy from dye wastewater owing to the relatively low photocatalytic efficiency of photocatalysts. In this study, novel-structured TiO2/CuO composite nanofibers were successfully fabricated via facile electrospinning. For the first time, the TiO2/CuO composite nanofibers demonstrated multifunctional ability for concurrent photocatalytic organic degradation and H2 generation from dye wastewater. The enhanced photocatalytic activity of TiO2/CuO composite nanofibers was ascribed to its excellent synergy of physicochemical properties: 1) mesoporosity and large specific surface area for efficient substrate adsorption, mass transfer and light harvesting; 2) red-shift of the absorbance spectra for enhanced light utilization; 3) long nanofibrous structure for efficient charge transfer and ease of recovery, 4) TiO2/CuO heterojunctions which enhance the separation of electrons and holes and 5) presence of CuO which serve as co-catalyst for the H2 production. The TiO2/CuO composite nanofibers also exhibited rapid settleability by gravity and uncompromised reusability. Thus, the as-synthesized TiO2/CuO composite nanofibers represent a promising candidate for highly efficient concurrent photocatalytic organic degradation and clean energy production from dye wastewater. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Effect of the laser sputtering parameters on the orientation of a cerium oxide buffer layer on sapphire and the properties of a YBa2Cu3Ox superconducting film

    DEFF Research Database (Denmark)

    Mozhaev, P. B.; Ovsyannikov, G. A.; Skov, Johannes

    1999-01-01

    The effect of the laser sputtering parameters on the crystal properties of CeO2 buffer layers grown on a (1 (1) under bar 02) sapphire substrate and on the properties of superconducting YBa2Cu3Ox thin films are investigated. It is shown that (100) and (111) CeO2 growth is observed, depending on t...

  13. On the Fermi surface of YBa2Cu3O7-δ

    International Nuclear Information System (INIS)

    Peter, M.; Manuel, A.A.; Hoffmann, L.; Sadowski, W.

    1992-01-01

    We show that the signature of a Fermi surface sheet of YBa 2 Cu 3 O 7-δ may be obtained unambiguously from twinned crystals. Comparison of electron-positron momentum density from YBa 2 Cu 3 O 7-δ measured both in insulating and (superconducting) twinned phases leads to a decisive further proof of the existence of the Fermi surface in the metallic YBa 2 Cu 3 O 7-δ . In addition, measurements on untwinned YBA 2 Cu 3 O 7-δ single crystals reveal also a ridge Fermi surface sheet attributed by band structure calculations to CuO chains. 14 refs., 3 figs

  14. Study of the magnetic properties of CeCu{sub 2}(Si{sub 1-x}Ge{sub x}){sub 2} by means of neutron scattering; Untersuchung der magnetischen Eigenschaften von CeCu{sub 2}(Si{sub 1-x}Ge{sub x}){sub 2} mittels Neutronenstreuung

    Energy Technology Data Exchange (ETDEWEB)

    Faulhaber, Enrico

    2008-07-01

    In 1979 the first heavy-fermion superconductor CeCu{sub 2}Si{sub 2} was discovered by Steglich et al. The system is near a quantum critical point (QCP), where the magnetic order is just suppressed. The distance to the QCP can be varied with hydrostatic pressure as well as by germanium substitution on the silicon site. Next to the superconductivity in CeCu{sub 2}Si{sub 2} one finds distinct magnetic phases while increasing the germanium content. CeCu{sub 2}Si{sub 2} shows a magnetic order of a spin-density-type below T{sub N}-0.8 K, whereas the heavy fermion system CeCu{sub 2}Ge{sub 2} orders below T{sub N}=4.1 K as an antiferromagnet. The focus of this thesis is on neutron-diffraction in the system CeCu{sub 2}(Si{sub 1-x}Ge{sub x}){sub 2}. Starting with a sample with a high germanium content of x=0.45, the magnetic structures are investigated in detail. Following a step-by-step approach, samples with reduced x are investigated subsequently to figure out the properties of pure CeCu{sub 2}Si{sub 2}, which were not accessible before. Furthermore, the complex interaction between magnetism and superconductivity is investigated in detail. Using a specially designed setup, the ac-susceptibility could be recorded simultaneously during the neutron diffraction experiments. Due to the direct correlation between antiferromagnetic signals and diamagnetic features, the microscopic coexistence of superconductivity and magnetic order can be ruled out. Instead, a phase separation on the microscopic scale is found. (orig.)

  15. Cation disorder and gas phase equilibrium in an YBa 2Cu 3O 7- x superconducting thin film

    Science.gov (United States)

    Shin, Dong Chan; Ki Park, Yong; Park, Jong-Chul; Kang, Suk-Joong L.; Yong Yoon, Duk

    1997-02-01

    YBa 2Cu 3O 7- x superconducting thin films have been grown by in situ off-axis rf sputtering with varying oxygen pressure, Ba/Y ratio in a target, and deposition temperature. With decreasing oxygen pressure, increasing Ba/Y ratio, increasing deposition temperature, the critical temperature of the thin films decreased and the c-axis length increased. The property change of films with the variation of deposition variables has been explained by a gas phase equilibrium of the oxidation reaction of Ba and Y. Applying Le Chatelier's principle to the oxidation reaction, we were able to predict the relation of deposition variables and the resultant properties of thin films; the prediction was in good agreement with the experimental results. From the relation between the three deposition variables and gas phase equilibrium, a 3-dimensional processing diagram was introduced. This diagram has shown that the optimum deposition condition of YBa 2Cu 3O 7- x thin films is not a fixed point but can be varied. The gas phase equilibrium can also be applied to the explanation of previous results that good quality films were obtained at low deposition temperature using active species, such as O, O 3, and O 2+.

  16. Novel interplay between high-Tc superconductivity and antiferromagnetism in Tl-Based Six-CuO2-layered cuprates. 205Tl- and 63Cu-NMR probes

    International Nuclear Information System (INIS)

    Mukuda, Hidekazu; Shiki, Nozomu; Kimoto, Naoki; Yashima, Mitsuharu; Kitaoka, Yoshio; Tokiwa, Kazuyasu; Iyo, Akira

    2016-01-01

    We report 63 Cu- and 205 Tl-NMR studies on six-layered (n = 6) high-T c superconducting (SC) cuprate TlBa 2 Ca 5 Cu 6 O 14+δ (Tl1256) with T c ∼ 100 K, which reveal that antiferromagnetic (AFM) order takes place below T N ∼ 170 K. In this compound, four underdoped inner CuO 2 planes [n(IP) = 4] sandwiched by two outer planes (OPs) are responsible for the onset of AFM order, whereas the nearly optimally-doped OPs responsible for the onset of bulk SC. It is pointed out that an increase in the out-of-plane magnetic interaction within an intra-unit-cell causes T N ∼ 45 K for Tl1245 with n(IP) = 3 to increase to ∼170 K for Tl1256 with n(IP) = 4. It is remarkable that the marked increase in T N and the AFM moments for the IPs does not bring about any reduction in T c , since T c ∼ 100 K is maintained for both compounds with nearly optimally doped OP. We highlight the fact that the SC order for n ≥ 5 is mostly dominated by the long-range in-plane SC correlation even in the multilayered structure, which is insensitive to the magnitude of T N and the AFM moments at the IPs or the AFM interaction among the IPs. These results demonstrate a novel interplay between the SC and AFM orders when the charge imbalance between the IPs and OP is significantly large. (author)

  17. Superconducting thallium cuprates obtained by substitution of copper for thallium in the double-thallium layer cuprate (Tl2212)

    International Nuclear Information System (INIS)

    Gopalakrishnan, J.; Shivakumara, C.; Manivannan, V.

    1994-01-01

    A new series of superconducting thallium cuprates of nominal composition, (Tl 2-x Cu x )Ba 2 CaCu 2 O 8 (0 c s in the range 110--99K. The phases are metastable, decomposing at higher temperatures (∼1,150K) to a mixture of thallium cuprates, CuO and BaCuO 2 . Significantly, x=1 member decomposes at 1,150K to mixture of Tl2223, CuO and BaCuO 2 . Chemical titrations involving oxidation of bromide ions reveals that the copper substituting for thallium in (Tl 2-x Cu x )Ba 2 CaCu 2 O 8 most likely occurs in the III oxidation state for x≤0.25 and in a mixed state (II,III) state for x>0.25

  18. Al-Si/Al2O3 in situ composite prepared by displacement reaction of CuO/Al system

    Directory of Open Access Journals (Sweden)

    Zhang Jing

    2010-02-01

    Full Text Available Al2O3 particle-reinforced ZL109 composite was prepared by in situ reaction between CuO and Al. The microstructure was observed by means of OM, SEM and TEM. The Al2O3 particles in sub-micron sizes distribute uniformly in the matrix, and the Cu displaced from the in situ reaction forms net-like alloy phases with other alloy elements. The hardness and the tensile strength of the composites at room temperature have a slight increase as compared to that of the matrix. However, the tensile strength at 350 ℃ has reached 90.23 MPa, or 16.92 MPa higher than that of the matrix. The mechanism of the reaction in the CuO/Al system was studied by using of differential scanning calorimetry(DSC and thermodynamic calculation. The reaction between CuO and Al involves two steps. First, CuO reacts with Al to form Cu2O and Al2O3 at the melting temperature of the matrix alloy, and second, Cu2O reacts with Al to form Cu and Al2O3 at a higher temperature. At ZL109 casting temperature of 750–780 ℃, the second step can also take place because of the effect of exothermic reaction of the first step.

  19. Strategic Research on Performance Optimization of YBa2Cu3O7 Coated Conductors

    International Nuclear Information System (INIS)

    Aytug, Tolga; Christen, David K.; Kim, Kyunghoon; Lupini, Andrew R.; Paranthaman, Mariappan Parans; Polat, Ozgur; Thompson, James R.; Xiong, X.; Selvamanickam, V.; Meyer, Harry M. III; Qiu, Xiaofeng

    2008-01-01

    Practical applications of second generation (2G) high temperature superconductor (HTS) wires require high critical current density, Jc, at high temperatures and magnetic fields. It has been well established that Jc can be increased via nanostructural engineering of artificial pinning centers within the HTS matrix. In the present work, composite LaMnO3:MgO (LMO:MgO) cap buffer layers with varying MgO contents 5 vol% up to 75 vol% have been grown on homo-epi MgO/IBAD(MgO) substrates to enhance the performance of YBa2Cu3O7-x (YBCO) films. Results showed formation of phase separated MgO nanocolumns within the LMO matrix. The impact of these nanocolumns on the superconducting properties of YBCO films deposited on the nanostructured layer was investigated by electrical transport measurements. Such YBCO films showed better in-field performance compared to that of YBCO films on standard LMO cap films. In particular, measurements of the field-angle dependence revealed c-axis correlated pinning for YBCO films on these composite cap layers. The present results demonstrate a practical approach to obtain high performance superconducting wires.

  20. DC magnetization of random Y1Ba2Cu3O8-δ/Ag bulk composites

    International Nuclear Information System (INIS)

    Ash, C.L.; Harris, D.C.; Calabrese, J.J.; Garland, J.C.

    1994-01-01

    It is commonly believed that high-field magnetization measurements of superconducting/normal metal bulk composites probe only the intragranular nature of the superconducting constituent. According to this view, the measured magnetic moment divided by the volume of superconducting material should be independent of the volume fraction of superconductor. We have tested this hypothesis by measuring the dc magnetization at 10K in magnetic fields to 5T of a series of YBCO/Ag bulk composites with 0 ≤ p ≤ 1.0, where p is the volume fraction of superconductor. We find that the magnetization hysteresis curves for p ≥ 0.70 are nearly identical, while those for the p < 0.70 samples fall inside the p ≥ 0.70 curves. Two possible interpretations are (i) that variations in Ag content alters the superconducting properties of individual YBCO grains, and (ii) that the p-dependent variations in the YBCO clusters affects the demagnetization factor for samples with p < 0.70. (orig.)

  1. CNTs Modified and Enhanced Cu Matrix Composites

    Directory of Open Access Journals (Sweden)

    ZHANG Wen-zhong

    2016-12-01

    Full Text Available The composite powders of 2%-CNTs were prepared by wet ball milling and hydrogen annealing treatment-cold pressing sintering was used to consolidate the ball milled composite powders with different modifications of the CNTs. The results show that the length of the CNTs is shortened, ports are open, and amorphous carbon content is increased by ball milling. And after a mixed acid purification, the impurity on the surface of the CNTs is completely removed,and a large number of oxygen-containing reactive groups are introduced; the most of CNTs can be embedded in the Cu matrix and the CNTs have a close bonding with the Cu matrix, forming the lamellar composite structure, then, ultrafine-grained composite powders can be obtained by hydrogen annealing treatment. Shortening and purification of the CNTs are both good for dispersion and bonding of CNTs in the Cu matrix, and the tensile strength and hardness of the composites after shortening and purification reaches the highest, and is 296MPa and 139.8HV respectively, compared to the matrix, up to 123.6% in tensile strength and 42.9% in hardness, attributed to the fine grain strengthening and load transferring.

  2. Synthesis and characterization of superconducting YBCO powder

    International Nuclear Information System (INIS)

    Praveen, B.; Karki, T.; Krishnamoorthi, J.

    2008-01-01

    Full text: Superconducting yttrium barium copper oxide power has been synthesized through solid state sintering method - milling and sintering - using Y 2 O 3 , BaCo 3 and CuO powders. XRD result of the milled and sintered powder reveals that the powder that has formed contains YBa 2 Cu 3 O 6.5 superconducting phase. Results obtained by SEM/EDAX show the distribution of the different elements. Experiments carried out by intermediate firing and final annealing in oxygen controlled atmosphere show the diffusion of oxygen in preformed YBa 2 Cu 3 O 6.5 and their results are discussed

  3. Density and critical current of metal-sheathed superconducting YBa2Cu3Oy ceramics deformed by hydroextrusion and subsequent drawing-rolling

    International Nuclear Information System (INIS)

    Karpov, M.I.; Korzhov, V.P.; Gnesin, B.A.; Snegirev, A.A.

    1994-01-01

    The critical-current density j c in ceramic superconductors is strongly dependent on texture, which is determined by the orientation of ceramic grains with respect to the specimen axes and by the misalignment between grains. Y ceramics with prolate grains aligned parallel to the long axis of the specimen were obtained by melt solidification. Such ceramics exhibited j c = 18500 A/cm 2 at 77 K in zero magnetic field. Texturing was also achieved by rolling Ag-sheathed powder of superconducting ceramics. This method ensured critical current densities (2-7) x 10 3 A/cm 2 in Y, Bi, and Tl ceramics. In flat ceramic samples, the grains of a superconducting phase were oriented in such a way that the crystallographic c axis was perpendicular to the rolling plane. In this work, the authors studied the effect of rolling deformation on the current-carrying capacity j c and density p of metal-sheathed YBa 2 Cu 3 O y ceramics that were first subjected to hydroextrusion and drawing at ∼20, 550, and 700 degrees C. The data obtained for j c and p were compared with the texture factor

  4. Stability of the Superconducting d-Wave Pairing Toward the Intersite Coulomb Repulsion in CuO_2 Plane

    Science.gov (United States)

    Val'kov, V. V.; Dzebisashvili, D. M.; Korovushkin, M. M.; Barabanov, A. F.

    2018-06-01

    Taking into account the real crystalline structure of the CuO_2 plane and the strong spin-fermion coupling, we study the influence of the intersite Coulomb repulsion between holes on the Cooper instability of the spin-polaron quasiparticles in cuprate superconductors. The analysis shows that only the superconducting d-wave pairing is implemented in the whole region of doping, whereas the solutions of the self-consistent equations for the s-wave pairing are absent. It is shown that intersite Coulomb interaction V_1 between the holes located at the nearest oxygen ions does not affect the d-wave pairing, because its Fourier transform V_q vanishes in the kernel of the corresponding integral equation. The intersite Coulomb interaction V_2 of quasiparticles located at the next-nearest oxygen ions does not vanish in the integral equations, however, but it is also shown that the d-wave pairing is robust toward this interaction for physically reasonable values of V_2.

  5. Numerical analysis of transport phenomena in Y-Ba-Cu-O melt during growth of superconducting crystal Y123 by Czochralski method

    Science.gov (United States)

    Szmyd, J. S.; Suzuki, K.

    2003-10-01

    In 1993, at the Superconductivity Research Laboratory (SRL), International Superconductivity Technology Centre (ISTEC), in Tokyo, continuous growth of large single crystals of YBa 2Cu 3O 7- x (Y123) was achieved by the application of a modified Czochralski method. This paper presents the numerical computations of the flow, thermal and Y concentration fields in the Ba-Cu-O melt for Y123 single crystal growth by this modified method. The finite volume method was used to calculate the fluid flow, heat transfer and yttrium distribution in the melt with staggered numerical grid. The flow in the melt was modelled as an incompressible Newtonian and Boussinesque fluid. Calculations are presented for a combined flow regime of buoyancy-driven natural convection and crystal-rotation-driven forced convection.

  6. Preparation of high critical temperature YBa{sub 2}Cu{sub 3}O{sub 7} superconducting coatings by thermal spray; Elaboration par projection a chaud de revetements supraconducteurs a haute temperature critique de type YBa{sub 2}Cu{sub 3}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Lacombe, Jacques

    1991-09-20

    The objective of this research thesis is the elaboration of YBa{sub 2}Cu{sub 3}O{sub 7} superconducting coatings by thermal spray. These coatings must have a high adherence, a high cohesion, and the best possible electrical characteristics. The author first briefly presents physical-chemical characteristics of this ceramic, and proposes a bibliographical synthesis on thick coatings prepared by thermal spray. In the next parts, he studies and describes conditions of elaboration of poly-granular coatings of YBa{sub 2}Cu{sub 3}O{sub 7}, and their structural and electric characteristics [French] Des revetements epais de YBa{sub 2}Cu{sub 3}O{sub 7} ont ete elabores par projection a chaud sur des substrats d'acier inoxydable revetus d'une sous-couche de Ni-Cr-Al-Y. Les principales etapes du processus de fabrication sont les suivantes: - preparation de la poudre par voie humide selon un procede mis au point au C.E.R.E.M., - realisation des revetements epais par projection a chaud de cette poudre selon trois differentes techniques: projection plasma atmospherique, projection plasma sous pression reduite, projection flamme oxyacetylenique. - traitement thermique en deux etapes des revetements pour recristalliser la phase YBa{sub 2}Cu{sub 3}O{sub 7} et la reoxygener (traitement thermique dans un four sous oxygene). Les depots elabores selon cette voie sont adherents et homogenes a la fois en composition et en morphologie. La phase supraconductrice YBa{sub 2}Cu{sub 3}O{sub 7} determinee par diffraction de rayons X est bien cristallisee; elle se presente sous forme de plaquettes d'environ 10 μm de long et 1 μm d'epaisseur sans orientation preferentielle. Les revetements realises par projection plasma atmospherique presentent les meilleures caracteristiques electriques: Tc(R=0) = 90.5K; ΔTc = 1K; ρ (300 K) = 0.7 - 0.8 mΩ.cm; Jc(77 K,0 T) = 1000 A/cm{sup 2}. Les proprietes d'ecrantage magnetique ont ete comparees a celles de materiaux utilises pour le blindage magnetique

  7. Thermal properties of GdSr{sub 2}RuCu{sub 2}O{sub 8-{delta}} based mixtures in the GdSr{sub 2}RuO{sub 6}-CuO pseudo-binary system

    Energy Technology Data Exchange (ETDEWEB)

    Gombos, Marcello [Laboratorio Regionale Supermat CNR-INFM Via Salvador Allende, I-84081 Baronissi (Italy); Dipartimento di Fisica ' E.R.Caianiello' , Universita di Salerno, Via Salvador Allende, I-84081 Baronissi (Italy)], E-mail: gombos@sa.infn.it; Ciancio, Regina; Vecchione, Antonio; Pace, Sandro [Laboratorio Regionale Supermat CNR-INFM Via Salvador Allende, I-84081 Baronissi (Italy); Dipartimento di Fisica ' E.R.Caianiello' , Universita di Salerno, Via Salvador Allende, I-84081 Baronissi (Italy)

    2007-09-01

    GdSr{sub 2}RuCu{sub 2}O{sub 8-{delta}} (Gd1212) rutheno-cuprate compound is widely studied because it shows the coexistence of superconductivity and highly anisotropic magnetic ordering in the same cell. Anyway the nature of the magnetic ordering is still debated and the fabrication of macroscopic samples oriented along a crystallographic axis, that could help to clarify its details, appears to be quite difficult. For this reason, accurate investigation on Gd1212 incongruent melting reaction, producing liquid copper oxide and the solid GdSr{sub 2}RuO{sub 6} (Gd1210), appears to be necessary to improve the fabrication of crystallographically oriented bulk superconducting samples. Thermo-gravimetric and differential thermal measurements were performed to analyse the thermal behaviour up to 1200 deg. C and the melting temperatures of different mixtures of Gd1212 with Gd1210 or CuO, in view to perform a scan of the whole CuO-Gd1212-Gd1210 coexistence line of the Gd-Sr-Ru-Cu-O phase diagram. Dependence on the atmosphere and the formation of different spurious phases was also studied.

  8. Microstructure and superconducting properties of Ca substituted Y(Ba1−xCax2Cu3O7−δ ceramics prepared by thermal treatment method

    Directory of Open Access Journals (Sweden)

    Mustafa Mousa Dihom

    Full Text Available The effect of Ca substitution in Ba site of Y(Ba1−xCax2Cu3O7−δ, (x = 0.00, 0.04, 0.08, 0.1 and 0.125, ceramics prepared by thermal treatment method was investigated. Surface morphology, structural and superconducting were studied using field emission electron microscope (FESEM, X-ray Diffraction (XRD and four-probe method. FESEM analysis showed an increasing of samples’ grain size, homogeneity and compactness with increasing of Ca substitution. From XRD, the samples had orthorhombic crystal structure of space group Pmmm besides small amount of unknown peaks. The critical temperature (Tc R=zero decreased from 87 K for the pure sample to 80 K for sample with x = 0.08, and it remained the same for samples with x ⩾ 0.08. Sample with x = 0.04 showed the sharpest superconducting transition (ΔTc, which could be due to good microstructure morphology and better crystallinity. Keywords: YBa2Cu3O7−δ, Ca substitution, Thermal treatment, X-ray Diffraction, Orthorhombic, Critical temperature

  9. Composition-dependent nanostructure of Cu(In,Ga)Se{sub 2} powders and thin films

    Energy Technology Data Exchange (ETDEWEB)

    Schnohr, C.S., E-mail: c.schnohr@uni-jena.de [Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena (Germany); Kämmer, H.; Steinbach, T.; Gnauck, M. [Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena (Germany); Rissom, T.; Kaufmann, C.A.; Stephan, C. [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Schorr, S. [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Institut für Geologische Wissenschaften, Freie Universität Berlin, Malteserstr. 74-100, 12249 Berlin (Germany)

    2015-05-01

    Atomic-scale structural parameters of Cu(In,Ga)Se{sub 2} powders and polycrystalline thin films were determined as a function of the In and Cu contents using X-ray absorption spectroscopy. No difference in the two sample types is observed for the average bond lengths demonstrating the strong tendency towards bond length conservation typical for tetrahedrally coordinated semiconductors. In contrast, the bond length variation is significantly smaller in the thin films than in the powders, particularly for Cu-poor material. This difference in the nanostructure is proposed to originate from differences in the preparation conditions, most prominently from the different history of Cu composition. - Highlights: • Cu(In,Ga)Se{sub 2} powders and thin films are studied with X-ray absorption spectroscopy. • Structural parameters are determined as a function of the In and Cu contents. • The element-specific average bond lengths are identical for powders and thin films. • The Ga-Se/In-Se bond length variation is smaller for thin films than for powders. • The differences are believed to stem from the different history of the Cu content.

  10. Conductivity and superconductivity of (Bi,Pb)-Sr-Ca-Cu-O

    International Nuclear Information System (INIS)

    Gazda, M.; Kusz, B.; Klimczuk, T.; Natali, R.; Stizza, S.

    2007-01-01

    The (Bi,Pb)-Sr-Ca-Cu-O glass-ceramics may be considered as disordered metal and superconductor. Depending on the heat treatment conditions the materials are either composed of the oval grains of the 2212 or 2201 phases embedded in the insulating matrix or they mainly contain the 2212 plate-like crystallites weakly connected one with another. The materials have large resistivity and usually large negative temperature coefficient of resistivity (TCR). The granular and disordered character of the materials is also reflected in their superconducting properties. Both the normal-state and superconducting properties correlate one with another. The glass-ceramic samples were obtained by annealing the amorphous solid at temperatures between 840 and 860 deg. C. The measurements of the temperature dependence of resistivity in annealed samples were carried out with the conventional four-terminal method in a temperature range from 3 to 300 K

  11. Irreversibility Curve on Y1–xLuxBa2Cu3O7–δ (x=0.4, 0.5 and 0.6) superconducting

    International Nuclear Information System (INIS)

    Grimaldos, J F Cepeda; Supelano G, I; Santos, A Sarmiento; Chiquillo, M V; Martínez B, D; Vargas, C A Parra

    2014-01-01

    The irreversibility line in the H–T plane divides the irreversible and reversible behaviour of the magnetization which is of importance for the characterization of high T c superconductors. In this work, we report the production of Y 1–X Lu X Ba 2 Cu 3 O 7–δ (X=0.4, 0.5 and 0.6) superconducting system using the usual solid state reaction method. The irreversibility line H–T plane for the Y 1–X Lu X Ba 2 Cu 3 O 7–δ polycrystalline sample was investigated. The curves of magnetization ZFC (cero field cooled)- FC (field cooled) were measured in magnetic fields between 100 Oe and 4000 Oe, and allowed to obtain the values for irreversibility and critical temperatures

  12. Exact mapping of the dx2-y2 Cooper-pair wavefunction onto the spin fluctuations in cuprates: the Fermi surface as a driver for 'high Tc' superconductivity

    International Nuclear Information System (INIS)

    McDonald, Ross D; Harrison, Neil; Singleton, John

    2009-01-01

    We propose that the extraordinarily high superconducting transition temperatures in the cuprates are driven by an exact mapping of the d x 2 -y 2 Cooper-pair wavefunction onto the incommensurate spin fluctuations observed in neutron-scattering experiments. This is manifested in the direct correspondence between the inverse of the incommensurability factor δ seen in inelastic neutron-scattering experiments and the measured superconducting coherence length ξ 0 . Strikingly, the relationship between ξ 0 and δ is valid for both La 2-x Sr x CuO 4 and YBa 2 Cu 3 O 7-x , suggesting a common mechanism for superconductivity across the entire hole-doped cuprate family. Using data from recent quantum-oscillation experiments in the cuprates, we propose that the fluctuations responsible for superconductivity are driven by a Fermi-surface instability. On the basis of these findings, one can specify the optimal characteristics of a solid that will exhibit 'high T c ' superconductivity. (fast track communication)

  13. Electronic structure of Pr doped into superconducting Bi-Pb-Sr-Ca-Cu-O ceramics

    International Nuclear Information System (INIS)

    Egorov, A.I.; Karazhanova, G.I.; Smirnov, Yu.P.; Sovestnov, A.E.; Tyunis, A.V.; Shaburov, V.A.

    1992-07-01

    The shift of K α 1 and K β 1 X-ray lines of Pr in HTS-ceramic Bi 1.7 Pb 0.3 Sr 2-x Pr x Ca 2 Cu 3 O y (0,10≤x≤0,50, refer to PrF 3 ) are measured experimentally. The valence m(x), the charge q(x) and the 4f(x)-, 5d(x)-levels population of Pr are determined from experimental shifts. It is found that the Pr valence is near 3; the small valence increasing m≅3,04 at x=0,1 is observed. The small of Pr 5d-electron localization in ceramics in comparison with PrF 3 is revealed (∼0,1-0,2 5d-electron per Pr-atom). The probable cause of the superconductivity suppression in Y 1-x Pr xB a 2 Cu 3 O 7-δ system is discussed. 26 refs.; 6 figs.; 1 tab

  14. The effect of the ceramic core initial phase composition on the Ag-sheathed Bi-2223 tapes critical properties

    International Nuclear Information System (INIS)

    Nikulin, A.D.; Shikov, A.K.; Khlebova, N.E.; Antipova, E.V.; Dontsova, E.V.; Kazakov, E.G.; Medvedev, M.I.; Kozlenkova, N.I.; Shishov, V.N.; Akimov, I.I.

    1993-01-01

    Ag - sheathed superconducting tapes were fabricated using ''powder-in-tube'' method with powders of Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3.2 O x chemical composition prepared by the ''freeze-drying'' tecnique and taken as a core materials. The effect of ceramic core initial phase composition: the mixture of oxide non-superconducting phases - OP (typeI) and 50% OP + 50% OP ''2212''- phase (type II) on the critical current density was investigated as well as the ''annealing - cold pressing'' parameters. Multifilamentary superconducting tapes and the pancake coils were fabricated. (orig.)

  15. The influence of growth parameters on the structure and composition of CuGaS2 epilayers grown by MOVPE

    International Nuclear Information System (INIS)

    Branch, M.S.; Berndt, P.R.; Leitch, A.W.R.; Botha, J.R.; Weber, J.

    2006-01-01

    The influence of various growth parameters on the composition and structure of MOVPE-grown CuGaS 2 is presented. The Cu content of the grown layers is shown to decrease in the direction of the carrier gas flow, whilst the Ga and S content are shown to increase. Changing the flow of Cu(hfac) 2 .Et 3 N to vary the I/III ratio in the vapour phase has a greater effect on the composition of grown epilayers than changing the flow of TEGa. This is indicative of Cu being the minority species present at the growth interface. A larger rate of decrease in the Cu content with an increase in both TEGa and DtBS flows suggests pre-reactions between Cu(hfac) 2 .Et 3 N and both TEGa and DtBS precursors. Lower substrate temperatures are suggested to be thermodynamically unfavourable for the growth of CuGaS 2 , yet enhance the formation of Ga x S y phases. The surface morphology of Cu-rich layers are typically inferior with a high density of crystallites, whilst Cu-poor epilayers are characteristically smooth with a single XRD reflection attributed to the (004) plane of c-axis-orientated epitaxial material

  16. Strength and thermal stability of Cu-Al2O3 composite obtained by internal oxidation

    Directory of Open Access Journals (Sweden)

    Jovanovic, M. T.

    2010-12-01

    Full Text Available The objective of the work is to study the effects of the high-energy milling on strengthening, thermal stability and electrical conductivity of Cu-Al2O3 composite. The prealloyed copper powders, atomized in inert gas and containing 3 wt. % Al, were milled up to 20 h in the planetary ball mill to oxidize in situ aluminium with oxygen from the air. Composite compacts were obtained by hot-pressing in an argon atmosphere at 800 °C for 3 h under the pressure of 35MPa. The microstructural characterization was performed by the optical microscope, scanning electron microscope (SEM, transmission electron microscope (TEM and X-ray diffraction analysis (XRD. The microhardness, electrical conductivity and density measurements were also carried out. The effect of internal oxidation and high-energy milling on strengthening of Cu-Al2O3 composite was significant, The increase of the microhardness of composite compacts (292 HV is almost threefold comparing to compacts processed from the as-received Cu-3 wt. % Al powder (102 HV. The grain size of Cu-Al2O3 compacts processed from 5 and 20 h-milled powders was 75 and 45 nm, respectively. The small increase in the grain size and the small microhardness drop indicate the high thermal stability of Cu-Al2O3 composite during high-temperature exposure at 800 °C.El objetivo del trabajo es el estudio de los efectos de la pulverización con altas energías sobre la resistencia, estabilidad térmica y conductividad eléctrica del compuesto Cu-Al2O3. El polvo pre-aleado de cobre, obtenido a través de la atomización con gas inerte y con un contenido de 3wt. % Al, se molió durante 20 h en el molino planetario de bolas dando lugar a la oxidación in situ del aluminio con el oxígeno del aire. El compuesto compactado se ha obtenido mediante prensado en caliente en atmósfera de argón a 800 °C durante 3 h y a una presión de 35MPa. La caracterización microestructural se hizo a través de microscopia óptica, microscopia

  17. Microstructure and composition of electromagnetically-characterized YBa2Cu3O7-δ grain boundaries

    International Nuclear Information System (INIS)

    Babcock, S.E.; Zhang, Na; Cai, Xue Yu; Larbalestier, D.C.; Gao, Yufei; Merkle, K.L.; Kaiser, D.L.

    1991-01-01

    The electrical character (flux-pinning, Josephson junction, or resistive) of the grain boundaries in approximately twenty flux-grown YBa 2 Cu 3 O 7-δ bicrystals was determined in previous studies. A selection of these same bicrystals now have been thinned for study by transmission and scanning transmission electron microscopy. High-spatial resolution imaging and analytical techniques reveal microstructural differences among these boundaries that are consistent with their diverse electrical characteristics. The observations offer preliminary insight into some of the feature that control the grain boundary superconducting properties and re-emphasize the very fine scale on which the grain boundary electrical character is determined. 11 refs., 6 figs

  18. Effect of rare-earth composition on microstructure and pinning properties of Zr-doped (Gd, Y)Ba{sub 2}Cu{sub 3}O{subx} superconducting tapes.

    Energy Technology Data Exchange (ETDEWEB)

    Selvamanickam, V.; Chen, Y.; Zhang, Y.; Guevara, A.; Shi, T.; Yao, Y.; Majkic, G.; Lei, C.; Galtsyan, E.; Miller, D. J. (Materials Science Division); (Univ. Houston); (SuperPower Inc.)

    2012-01-01

    The effect of changing Gd + Y content from 1.2 to 1.6 in the precursor of (Gd,Y)Ba{sub 2}Cu{sub 3}O{sub 7} superconducting thin film tapes made by metal organic chemical vapor deposition (MOCVD) at a constant Gd:Y ratio and a fixed Zr content of 7.5% has been studied. The influence of changing the Gd:Y ratio from Gd = 0 to Y= 0 in 0.2 mol steps at a constant Gd + Y content of 1.2 in the precursor has also been investigated at a fixed Zr content of 7.5%. The critical current of these films is found to vary significantly as a function of rare-earth content as well as a function of rare-earth type. Even for a fixed Zr content, it is found that the critical current in the orientation of magnetic field parallel to the a-b plane and that in the orientation of field perpendicular to the a-b plane can be systematically varied with changing Gd + Y content as well as with changing Gd:Y ratio. The nanoscale defect structures along the a-b plane and along the c-axis are found to be sensitive to these changes in rare-earth content and type.

  19. Revisiting 63Cu NMR evidence for charge order in superconducting La1.885Sr0.115CuO4

    Science.gov (United States)

    Imai, T.; Takahashi, S. K.; Arsenault, A.; Acton, A. W.; Lee, D.; He, W.; Lee, Y. S.; Fujita, M.

    2017-12-01

    The presence of charge and spin stripe order in the La2CuO4 -based family of superconductors continues to lead to new insight on the unusual ground-state properties of high-Tc cuprates. Soon after the discovery of charge stripe order at Tcharge≃65 K in Nd3 + co-doped La1.48Nd0.4Sr0.12CuO4 (Tc≃6 K) [Tranquada et al., Nature (London) 375, 561 (1995), 10.1038/375561a0], Hunt et al. demonstrated that La1.48Nd0.4Sr0.12CuO4 and superconducting La2 -xSrxCuO4 with x ˜1 /8 (Tc≃30 K) share nearly identical NMR anomalies near Tcharge of the former [Phys. Rev. Lett. 82, 4300 (1999), 10.1103/PhysRevLett.82.4300]. Their inevitable conclusion that La1.885Sr0.115CuO4 also undergoes charge order at a comparable temperature became controversial, because diffraction measurements at the time were unable to detect Bragg peaks associated with charge order. Recent advances in x-ray diffraction techniques finally led to definitive confirmations of the charge order Bragg peaks in La1.885Sr0.115CuO4 with an onset at as high as Tcharge≃80 K. Meanwhile, improved instrumental technology has enabled routine NMR measurements that were not feasible two decades ago. Motivated by these new developments, we revisit the charge order transition of a La1.885Sr0.115CuO4 single crystal based on 63Cu NMR techniques. We demonstrate that 63Cu NMR properties of the nuclear spin Iz=-1/2 to +1/2 central transition below Tcharge exhibit unprecedentedly strong dependence on the measurement time scale set by the separation time τ between the 90∘ and 180∘ radio-frequency pulses; a new kind of anomalous, very broad winglike 63Cu NMR signals gradually emerge below Tcharge only for extremely short τ ≲4 μ s , while the spectral weight INormal of the normal NMR signals is progressively wiped out. The NMR linewidth and relaxation rates depend strongly on τ below Tcharge, and their enhancement in the charge ordered state indicates that charge order turns on strong but inhomogeneous growth of Cu spin

  20. Superconductivity applications for infrared and microwave devices; Proceedings of the Meeting, Orlando, FL, Apr. 19, 20, 1990

    Science.gov (United States)

    Bhasin, Kul B.; Heinen, Vernon O.

    1990-10-01

    Various papers on superconductivity applications for IR and microwave devices are presented. The individual topics addressed include: pulsed laser deposition of Tl-Ca-Ba-Cu-O films, patterning of high-Tc superconducting thin films on Si substrates, IR spectra and the energy gap in thin film YBa2Cu3O(7-delta), high-temperature superconducting thin film microwave circuits, novel filter implementation utilizing HTS materials, high-temperature superconductor antenna investigations, high-Tc superconducting IR detectors, high-Tc superconducting IR detectors from Y-Ba-Cu-O thin films, Y-Ba-Cu0-O thin films as high-speed IR detectors, fabrication of a high-Tc superconducting bolometer, transition-edge microbolometer, photoresponse of YBa2Cu3O(7-delta) granular and epitaxial superconducting thin films, fast IR response of YBCO thin films, kinetic inductance effects in high-Tc microstrip circuits at microwave frequencies.

  1. Electron stimulated desorption of positive and negative oxygen ions from YBa{sub 2}Cu{sub 3}O{sub 7} surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, A. [Technion-Israel Inst. of Tech., Haifa (Israel). Solid State Inst.; Moss, S.D.; Paterson, P.J.K. [Royal Melbourne Inst. of Tech., VIC (Australia); McCubbery, D. [La Trobe Univ., Bundoora, VIC (Australia); Petravic, M. [Australian National Univ., Canberra, ACT (Australia)

    1996-12-31

    The electron stimulated desorption (ESD) of positive and negative oxygen ion from superconducting YBa{sub 2}Cu{sub 3}O{sub 7} surfaces was studied. Based on ion desorption yield measurements as function of electron kinetic energy, primary excitations leading to positive and negative oxygen ion desorption are suggested. To the best of the authors` knowledge this is the first study on electron energy dependent ESD from YBa{sub 2}Cu{sub 3}O{sub 7} surfaces. The YBa{sub 2}Cu{sub 3}O{sub 7} samples were prepared from BaCO{sub 3}, Y{sub 2}O{sub 3} and CuO using standard high temperature sintering and annealing procedures. Slices 2 mm thick were cut and further annealed at 400 C in flowing oxygen for 24 hours prior to insertion into the ultrahigh vacuum (UHV) chamber for ESD. The near surface composition and chemical state of the annealed sample after exposure to air was examined by Auger and XPS analysis. These measurements suggest that the ESD experiments were performed on samples of similar near surface and bulk composition with some OH- chemisorbed groups and Cl surface contaminations and that negative and positive oxygen ion desorption may be initiated via a primary core level ionization. 10 refs., 3 figs.

  2. Electron stimulated desorption of positive and negative oxygen ions from YBa{sub 2}Cu{sub 3}O{sub 7} surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, A [Technion-Israel Inst. of Tech., Haifa (Israel). Solid State Inst.; Moss, S D; Paterson, P J.K. [Royal Melbourne Inst. of Tech., VIC (Australia); McCubbery, D [La Trobe Univ., Bundoora, VIC (Australia); Petravic, M [Australian National Univ., Canberra, ACT (Australia)

    1997-12-31

    The electron stimulated desorption (ESD) of positive and negative oxygen ion from superconducting YBa{sub 2}Cu{sub 3}O{sub 7} surfaces was studied. Based on ion desorption yield measurements as function of electron kinetic energy, primary excitations leading to positive and negative oxygen ion desorption are suggested. To the best of the authors` knowledge this is the first study on electron energy dependent ESD from YBa{sub 2}Cu{sub 3}O{sub 7} surfaces. The YBa{sub 2}Cu{sub 3}O{sub 7} samples were prepared from BaCO{sub 3}, Y{sub 2}O{sub 3} and CuO using standard high temperature sintering and annealing procedures. Slices 2 mm thick were cut and further annealed at 400 C in flowing oxygen for 24 hours prior to insertion into the ultrahigh vacuum (UHV) chamber for ESD. The near surface composition and chemical state of the annealed sample after exposure to air was examined by Auger and XPS analysis. These measurements suggest that the ESD experiments were performed on samples of similar near surface and bulk composition with some OH- chemisorbed groups and Cl surface contaminations and that negative and positive oxygen ion desorption may be initiated via a primary core level ionization. 10 refs., 3 figs.

  3. Synthesis of Y{sub 1-x}Al{sub x}Ba{sub 2}Cu{sub 3}O{sub 7-δ} via combustion route: Effects of Al{sub 2}O{sub 3} nanoparticles on superconducting properties

    Energy Technology Data Exchange (ETDEWEB)

    Mohd Suan, Mohd Shahadan, E-mail: mohdshahadan@utem.edu.my [Department of Engineering Materials, Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, 76100 Durian Tunggal, Melaka (Malaysia); Johan, Mohd Rafie [Nanomaterial Engineering Research Group, Advanced Materials Research Laboratory, Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2017-02-01

    Combustion reaction was used to synthesis Al{sub 2}O{sub 3} nanoparticles embedded Y{sub 1-x}Al{sub x}Ba{sub 2}Cu{sub 3}O{sub 7-δ} simultaneously. The effects of Al{sub 2}O{sub 3} nanoparticles with nominal molar mass (x{sub mol}) of 0.02, 0.04, 0.06, 0.08 and 0.10 towards the critical current density J{sub C} of Y{sub 1-x}Al{sub x}Ba{sub 2}Cu{sub 3}O{sub 7-δ} were verified by magnetic measurement. Resulted XRD patterns revealed that the calcined samples consist of pure Al{sub 2}O{sub 3} and Y{sub 1-x}Al{sub x}Ba{sub 2}Cu{sub 3}O{sub 7-δ} phases which had been confirmed by EDX results. The SEM images showed that Al{sub 2}O{sub 3} nanoparticles (~10 nm) were distributed in polycrystalline YBa{sub 2}Cu{sub 3}O{sub 7-δ} grains and grain boundaries. The presence of higher concentration of Al{sub 2}O{sub 3} nanoparticles has developed Al{sup 3+} rich spots which diffused within the YBa{sub 2}Cu{sub 3}O{sub 7-δ} superconducting matrix to form Y{sub 1-x}Al{sub x}Ba{sub 2}Cu{sub 3}O{sub 7-δ} and was confirmed by EDX analysis. The samples were electrically superconducting at temperature above 85 K as measured by using standard four-probe technique. The magnetic field (H) dependent magnetization (M), M-H hysteresis loops measured at 77 K for x{sub mol}≤0.06 samples are significantly improved attributed to the increase of trapped fluxes in the samples. Remarkable increase of magnetic J{sub C} (H) in Al{sub 2}O{sub 3} nanoparticles added samples compared to the as prepared polycrystalline YBa{sub 2}Cu{sub 3}O{sub 7-δ} sample indicating strong pinning effect. It is suggested that well-distributed Al{sub 2}O{sub 3} nanoparticles in the polycrystalline YBa{sub 2}Cu{sub 3}O{sub 7-δ} matrix achieved via auto-combustion reaction has efficiently pin the magnetic vortex. The magnetic J{sub C} was optimized to ~6 kAcm{sup -2} in x{sub mol}=0.06 sample. On the other hand, insignificant magnetic J{sub C} improvement in x{sub mol}≥0.08 samples is probably resulted from the

  4. Determining superconducting parameters from analysis of magnetization fluctuation for CaLaBaCu3O7-δ superconductor

    International Nuclear Information System (INIS)

    Parra Vargas, C.A.; Landinez Tellez, D.A.; Roa-Rojas, J.

    2007-01-01

    In this work, we report analysis of magnetization fluctuations for the CaLaBaCu 3 O 7- δ superconducting system. We describe a procedure for extracting the penetration depth λ(T) and the coherence length ξ parameters from the magnetization, as a function of the applied magnetic field. This procedure takes the vortex fluctuation into account. The data of the magnetization excess ΔM(T) are analyzed for different values of temperature in the interval from 65 to 73 K. For several magnetic fields we observed a crossover in the magnetization curves at the characteristic temperature value T *=72.2 K. We calculated the data of magnetization excess from the curves of magnetization as a function of the logarithm of the applied field. This procedure was performed for polycrystalline samples of CaLaBaCu 3 O 7- δ by using the proposition of Bulaevskii, Ledvij and Kogan. We notice that the values for these superconducting parameters are in agreement with reports for high-temperature superconductors

  5. Density and superconducting properties of metal-sheathed YBa2Cu3Oy ceramic processed by hydrostatic extrusion

    International Nuclear Information System (INIS)

    Karpov, M.I.; Korzhov, V.P.; Artamoshin, A.V.; Prokopenko, V.M.

    1994-01-01

    Brittle materials can be deformed without cracking and rupturing using hydrostatic extrusion, which provides the greatest pore annihilation in powder-processed materials and allows large degrees of one-step deformation, which is favorable for texturing. Earlier, a casting slip prepared by mixing a starting powder of Y-based ceramic with an organic binder was conventionally extruded to produce a wire 150 μm in diameter. After special sintering, the critical-current density in the material attained a few hundred amperes per square centimeter at 77 K, and the wire could be rolled into a winding ≥0.3 m in diameter. Hydrostatic extrusion of an assembly composed of Y-based ceramic in a bimetallic Nb/Cu tube 30 mm in diameter was used to produce rods 6 mm in diameter; drawing of these rods yielded samples of wire 2 to 3 mm in diameter. It was shown that the extrusion pressure and strain substantially influence the yield of the rupture-free wire. No signs of rupturing, cracking, or necking were observed in wire extruded at pressures ≤700 MPa and degrees of deformation ≤50%. A pronounced instability of the hydrostatic extrusion, the appearance of defects, and even the rupture of the rods were caused by an increase in the pressure up to 2000 MPa and in the degree of one-step deformation up to 80%. In this work, the authors focus on the possibility of producing thin YBa 2 Cu 3 O y superconductors using only hydrostatic extrusion. They determined the parameters for the hydrostatic extrusion of the metal-sheathed YBa 2 Cu 3 O y ceramic to a diameter of 3 mm or to a rectangular cross section. Effects of the ceramic core, and of the reduction coefficient on superconducting-transition parameters and the critical-current density of the ceramic were examined

  6. Introduction of artificial pinning centre in {open_quotes}Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8}{close_quotes} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Majewski, P.; Aldinger, F. [Max-Planck-Institut fuer Metallforschung, Stuttgart (Germany); Elschner, S. [Hoechst AG, Frankfurt am Main (Germany)] [and others

    1994-12-31

    Considering the phase equilibrium diagram of the system Bi{sub 2}O{sub 3}-SrO-CaO-CuO, single phase {open_quotes}Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8}{close_quotes} ceramics have been transformed by a simple annealing procedure into multi phase samples. The transformation results in the formation of second phases and in an increase of the intra grain critical current density at 1 T of five times. This increase is believed to express improved pinning properties of the superconducting crystals. The prepared pinning centres are believed to be e.g. coherent precipitates (Guinier-Preston-zones) within the superconducting crystals.

  7. X-ray photoemission studies of Zn doped Cu1-xTl xBa2Ca2Cu 3-yZn yO10-δ (y = 0, 2.65) superconductors

    International Nuclear Information System (INIS)

    Khan, Nawazish A.; Mumtaz, M.; Ahadian, M.M.; Iraji-zad, Azam

    2007-01-01

    The X-ray photoemission (XPS) measurements of Cu 1-x Tl x Ba 2 Ca 2 Cu 3-y Zn y O 10-δ (y = 0, 2.65) superconductors have been performed and compared. These studies revealed that the charge state of thallium in the Cu 0.5 Tl 0.5 Ba 2 O 4-δ charge reservoir layer in Zn doped samples is Tl 1+ , while it is a mix of Tl 1+ and Tl 2+ in Zn free samples. The binding energy of Ba atoms in the Zn doped samples is shifted to higher energy, which when considered along with the presence of Tl 1+ suggested that it more efficiently directed the carriers to ZnO 2 and CuO 2 planes. The evidence of improved inter-plane coupling witnessed in X-ray diffraction is also confirmed by XPS measurements of Ca atoms in the Zn doped samples. The shift of the valance band spectrum in these Zn doped samples to higher energies suggested that the electrons at the top edge of the valance band were tied to a higher binding energy (relative to samples without Zn doping), which most likely resulted in a much lower energy state of the system in the superconducting state. The stronger superconducting state arising out of these effects is witnessed in the form of increased T c (R 0), J c and the extent of diamagnetism in the final compound

  8. Development of in-Situ Al-Si/CuAl2 Metal Matrix Composites: Microstructure, Hardness, and Wear Behavior

    Directory of Open Access Journals (Sweden)

    Mahmoud M. Tash

    2016-06-01

    Full Text Available In the present work, in-situ metal matrix composites were fabricated through squeeze casting. The copper particles were dispersed with different weight percentages (3%, 6%, 10%, and 15% into Al-12% Si piston alloy. Also, heat treatments were performed at 380 °C and 450 °C for holding times of 6 and 18 h. The microstructures, X-ray diffractometer (XRD pattern, hardness, and wear characteristics were evaluated. The results showed that these copper particles have reacted with the aluminum under all of the aforementioned processing conditions resulting in the formation of fine copper aluminide intermetallics. Most of the intermetallics were CuAl2, while AlCu appeared in a small ratio. Additionally, these intermetallics were homogenously distributed within the alloy matrix with up to 6% Cu addition. The amounts of those intermetallics increased after performing heat treatment. Most of these intermetallics were CuAl2 at 380 °C, while the Cu-rich intermetallics appeared at 450 °C. Increasing the holding time to 18 h, however, led to grain coarsening and resulted in the formation of some cracks. The hardness of the resulting composite materials was improved. The hardness value reached to about 170 HV after heat treating at 380 °C for 8 h. The wear resistance of the resulting composite materials was remarkably improved, especially at lower additions of Cu and at the lower heat treatment temperature.

  9. CO2-laser ablation of Bi-Sr-Ca-Cu oxide by millisecond pulse lengths

    Science.gov (United States)

    Meskoob, M.; Honda, T.; Safari, A.; Wachtman, J. B.; Danforth, S.; Wilkens, B. J.

    1990-03-01

    We have achieved ablation of Bi-Sr-Ca-Cu oxide from single targets of superconducting pellets by CO2-laser pulses of l ms length to grow superconducting thin films. Upon annealing, the 6000-Å thin films have a Tc (onset) of 90 K and zero resistance at 78 K. X-ray diffraction patterns indicate the growth of single-phase thin films. This technique allows growth of uniform single-phase superconducting thin films of lateral area greater than 1 cm2.

  10. Magnetic transitions in the system YBa2Cu/sub 2.8/Co/sub 0.2/O/sub 6+y/

    International Nuclear Information System (INIS)

    Miceli, P.F.; Tarascon, J.M.; Barboux, P.; Greene, L.H.; Bagley, B.G.; Hull, G.W.; Giroud, M.; Rhyne, J.J.; Neumann, D.A.; National Institute of Standards and Technology, Gaithersburg, Maryland 20899)

    1989-01-01

    We have studied the oxygen dependence of the two magnetic transitions (antiferromagnetic ordering of chains and planes) in YBa 2 Cu/sub 2.8/Co/sub 0.2/O/sub 6+y/ using neutron scattering. It is found that both transition temperatures increase with decreasing oxygen concentration. At y approx. 0.37 ( equivalent to y 0 ) the two transition temperatures are equal, so that chains and planes order at a single transition temperature for y less than or equal to y/sub 0/. For y=1 the compound is superconducting at 60 K. Therefore, this system qualitatively exhibits the magnetic and superconducting properties of pure YBa 2 Cu 3 O/sub 6+y/ while providing important insight on the oxygen dependence of chain site magnetic ordering. A discussion is presented which also includes results on Ni and Al substitutions

  11. The reaction process of the Bi-Sr-Ca-Cu-O system and the forming mechanism of the 2212 superconducting phase

    International Nuclear Information System (INIS)

    Xiong Guohong; Wang Minquan; Fan Xianping; Tang Xiaoming

    1993-01-01

    The reaction process and the reaction behavior of each component in the Bi-Sr-Ca-Cu-O system are presented in this paper. It reveals that the reaction is carried out in three different stages: forming of an insulating interphase at 680 C-790 C, forming of the 2212 superconducting phase at 790 C-860 C and forming of semiconducting phases in the presence of the liquid phase at 860 C-970 C. It is also confirmed that the 2212 superconducting phase (T c =85 K) is formed by the reaction of a trinary interphase together with CuO, SrO and CaO. A new two-step method is presented to prepare the 2212 superconducting phase by a presynthesized interphase. (orig.)

  12. The reaction process of the Bi-Sr-Ca-Cu-O system and the forming mechanism of the 2212 superconducting phase

    Science.gov (United States)

    Xiong, Guohong; Wang, Minquan; Fan, Xianping; Tang, Xiaoming

    1993-02-01

    The reaction process and the reaction behavior of each component in the Bi-Sr-Ca-Cu-O system are presented in this paper. It reveals that the reaction is carried out in three different stages: forming of an insulating interphase at 680°C 790°C, forming of the 2212 superconducting phase at 790°C 860°C and forming often semiconducting phases in the presence of the liquid phase at 860°C 970°C. It is also confirmed that the 2212 superconducting phase ( T c=85 K) is formed by the reaction of a trinary interphase together with CuO, SrO and CaO. A new two-step method is presented to prepare the 2212 superconducting phase by a presynthesized interphase.

  13. The reaction process of the Bi-Sr-Ca-Cu-O system and the forming mechanism of the 2212 superconducting phase

    Energy Technology Data Exchange (ETDEWEB)

    Xiong Guohong (Zhejiang Univ., Hangzhou (China). Dept. of Materials Science and Engineering); Wang Minquan (Zhejiang Univ., Hangzhou (China). Dept. of Materials Science and Engineering); Fan Xianping (Zhejiang Univ., Hangzhou (China). Dept. of Materials Science and Engineering); Tang Xiaoming (Zhejiang Univ., Hangzhou (China). Center for Analysis and Measurement)

    1993-02-01

    The reaction process and the reaction behavior of each component in the Bi-Sr-Ca-Cu-O system are presented in this paper. It reveals that the reaction is carried out in three different stages: forming of an insulating interphase at 680 C-790 C, forming of the 2212 superconducting phase at 790 C-860 C and forming of semiconducting phases in the presence of the liquid phase at 860 C-970 C. It is also confirmed that the 2212 superconducting phase (T[sub c]=85 K) is formed by the reaction of a trinary interphase together with CuO, SrO and CaO. A new two-step method is presented to prepare the 2212 superconducting phase by a presynthesized interphase. (orig.)

  14. Electronic structures of PrBa2Cu3O7 and PrBa2Cu4O8 systems based on LSDA+U approach

    International Nuclear Information System (INIS)

    Shirazi, M.; Tavana, A.; Akhavan, M.

    2007-01-01

    Full text: The electronic structures of PrBa 2 Cu 3 O 7 (Pr123) and PrBa 2 Cu 4 O 8 (Pr124) have been obtained by means of the density functional theory in the local spin density approximation plus on-site Coulomb interaction. The correlation correction has been applied to the Cu 3d and Pr 4f states. Calculations show that the localized Pr-O bands form near the Fermi surface and do not cross the Fermi level. Comparison of the hole absorbing ability of pfy and the pdy states shows that pfy state has dominant role in grabbing holes from the system and causes Pr124 to be non-superconducting like Pr123. We suggest that hybridization of Pr and O atoms in Pr124 system is weaker than Pr123 compound and this may be the reason for the higher critical doping of Pr by which the superconductivity is completely suppressed. Displacement of the conduction bands at the Fermi level is the criterion of Cu (3dx2-y2) character, and when Cu (3dx2-y2) character is stronger in a band, the band displaces more intensively under applying the correction Ucu. We estimate the hole-concentration from this displacement, and good agreement with experiment is seen. The displacement of the CuO 2 plane bands in the minority and majority spin channels in Pr124 is less than that in Pr123. Displacement of the double chain bands in Pr124 is higher than the single chain bands in Pr123. This feature is related to a stronger Cu (3dx2-y2) character in the double chain. So, the spin and conduction features of the Pr124 double chains are stronger than Pr123 single chain, which is the origin of metallic behavior of Pr124 at low temperatures.(authors)

  15. Electronic structures of PrBa2Cu3O7 and PrBa2Cu4O8 systems based on LSDA+U approach

    International Nuclear Information System (INIS)

    Shirazi, M.; Tavana, A.; Akhavan, M.

    2007-01-01

    Full text: The electronic structures of PrBa 2 Cu 3 O 7 (Pr123) and PrBa 2 Cu 4 O 8 (Pr124) have been obtained by means of the density functional theory in the local spin density approximation plus on-site Coulomb interaction. The correlation correction has been applied to the Cu 3d and Pr 4f states. Calculations show that the localized Pr-O bands form near the Fermi surface and do not cross the Fermi level. Comparison of the hole absorbing ability of pfy and the pdy states shows that pfy state has dominant role in grabbing holes from the system and causes Pr124 to be non-superconducting like Pr123. We suggest that hybridization of Pr and O atoms in Pr124 system is weaker than Pr123 compound and this may be the reason for the higher critical doping of Pr by which the superconductivity is completely suppressed. Displacement of the conduction bands at the Fermi level is the criterion of Cu (3dx2-y2) character, and when Cu (3dx2-y2) character is stronger in a band, the band displaces more intensively under applying the correction Ucu. We estimate the hole-concentration from this displacement, and good agreement with experiment is seen. The displacement of the CuO 2 plane bands in the minority and majority spin channels in Pr124 is less than that in Pr123. Displacement of the double chain bands in Pr124 is higher than the single chain bands in Pr123. This feature is related to a stronger Cu (3dx2-y2) character in the double chain. So, the spin and conduction features of the Pr124 double chains are stronger than Pr123 single chain, which is the origin of metallic behavior of Pr124 at low temperatures. (authors)

  16. Surface characterization of superconductive Nd1Ba2Cu3Oy thin films using scanning probe microscopes

    International Nuclear Information System (INIS)

    Ting, W.; Badaye, M.; Itti, R.; Morishita, T.; Koshizuka, N.; Tanaka, S.

    1996-01-01

    Recently, superconductive Nd 1 Ba 2 Cu 3 O y (Nd123) thin films with high superconducting transition temperature (T c ) have been successfully fabricated at the authors institute employing the standard laser ablation method. In this paper, they report parts of the results of surface characterization of the Nd123 thin films using an ultrahigh vacuum scanning tunneling microscope/spectroscopy (UHV-STM/STS) and an atomic force microscope (AFM) system operated in air. Clear spiral pattern is observed on the surfaces of Nd123 thin films by STM and AFM, suggesting that films are formed by two-dimensional island growth mode at the final growing stage. Contour plots of the spirals show that the step heights of the spirals are not always the integer or half integer numbers of the c-axis parameter of the structure. This implies that the surface natural termination layer of the films may not be unique. Surface atomic images of the as-prepared Nd123 thin films are obtained employing both STM and AFM. STS measurements show that most of the surfaces are semiconductive, or sometimes even metallic. The results of STS measurements together with the fact that they are able to see the surface atomic images using scanning probe microscopes suggest that exposure to air does not cause serious degradation to the as-prepared surfaces of Nd123 thin films

  17. Electrical and percolative behavior of Sr2YSbO6-YBa2Cu3O7-δ composites

    International Nuclear Information System (INIS)

    Ortiz-Diaz, O.; Landinez Tellez, D.A.; Perez, F.; Tovar, H.; Roa-Rojas, J.

    2007-01-01

    We found that a mixture of materials Sr 2 YSbO 6 insulator with YBa 2 Cu 3 O 7-δ superconductor is a system where the particles of superconductor and insulator materials are found coexisting in a composite with two well-defined separate phases. Electrical transport properties and percolation behavior have been studied by electrical resistivity measurements at room temperature on several samples of composites with different vol.% of YBa 2 Cu 3 O 7-δ . Resistivity measurements agree with the equation which describes the conductivity in percolation theory. However, critical exponent t=6.65 is greater than universal value t∼2. Furthermore, there is a non-negligible conductivity below percolation threshold while it is expected to be zero in ideal percolative systems. Nevertheless, percolative behavior in this region was found and, critical exponent value s was determined to be s=0.75 in agreement with universal value

  18. Positron annihilation studies in the high-temperature superconductors YBa2Cu3Osub(7-x) and HoBa2Cu3Osub(7-x)

    International Nuclear Information System (INIS)

    Mandal, P.; Poddar, A.; Nambissan, P.M.G.; Choudhury, P.; Ghosh, B.; Sen, P.; Majumdar, C.K.

    1988-01-01

    In the high-Tsub(c) superconductors YBa 2 Cu 3 Osub(7-x) and HoBa 2 Cu 3 Osub(7-x) the Doppler-broadened positron annihilation lineshape parameter is studied as a function of temperature. Anomalies are detected around the transition temperature found by resistance measurements, giving indirect support for an electronic mechanism for superconductivity. The positron lifetimes in these compounds are measured at room temperature and are found to be similar. The origins of the several lifetimes found and their intensities are discussed. (author)

  19. Fabrication of low adhesive superhydrophobic surfaces using nano Cu/Al2O3 Ni–Cr composited electro-brush plating

    International Nuclear Information System (INIS)

    Chen, Tianchi; Ge, Shirong; Liu, Hongtao; Sun, Qinghe; Zhu, Wei; Yan, Wei; Qi, Jianwei

    2015-01-01

    Highlights: • We fabricate a low adhesive superhydrophobic nano Cu/Al 2 O 3 composited Ni–Cr coating via brush plating. • We investigate the influence of process parameters on hydrophobic properties process. • We discuss the formation mechanism of structures on the surface and using water rebound height to explain the low adhesive force mechanism. - Abstract: Superhydrophobic nano Cu/Al 2 O 3 Ni–Cr composited coating with a low adhesive force was deposited onto the Q345 carbon steel via electro-brush plating. Surface morphologies of nano Cu/Al 2 O 3 Ni–Cr composited coating were investigated by scanning electron microscope (SEM). Chemical compositions were characterized by energy dispersive spectroscopy (EDS). First of all, by adjusting different process parameters such as working voltage, relative velocity, Cu particles concentration and plating time, we obtain the most optimal parameters: working voltage is 15 V, relative velocity is 4.8 m/min, Cu particles concentration is 5 g/L and plating time is 60 s. Under the best process parameters, the water contact angle reaches to 156° and a sliding angle is less than 2° on the nano Cu/Al 2 O 3 Ni–Cr coating. Then the mechanism of the superhydrophobic and low adhesion characteristic of this surface were explained by Cassie's model. Low adhesive force can be characterized by max rebound height of water droplet. As a result, to achieve low adhesive surface it is necessary to decrease the fraction of the solid/liquid interface under the water droplet. Finally the coating was proved to have an excellent self-cleaning performance.

  20. Morphology and chemical composition of Cu/Sn/Cu and Cu(5 at-%Ni)/Sn/Cu(5 at-%Ni) interconnections

    NARCIS (Netherlands)

    Wierzbicka-Miernik, A.; Wojewoda-Budka, J.; Litynska-Dobrzynska, L.; Kodentsov, A.; Zieba, P.

    2012-01-01

    In the present paper, scanning and transmission electron microscopies as well as energy dispersive X-ray spectroscopy investigations were performed to describe the morphology and chemical composition of the intermetallic phases growing in Cu/Sn/Cu and Cu(Ni)/Sn/Cu(Ni) interconnections during the

  1. Flux creep in Bi2Sr2CaCu2O8 epitaxial films

    International Nuclear Information System (INIS)

    Zeldov, E.; Amer, N.M.; Koren, G.; Gupta, A.

    1990-01-01

    We incorporate the experimentally deduced flux line potential well structure into the flux creep model. Application of this approach to the resistive transition in Bi 2 Sr 2 CaCu 2 O 8 epitaxial films explains the power law voltage-current characteristics and the nonlinear current dependence of the activation energy. The results cannot be accounted for by a transition into a superconducting vortex-glass phase

  2. Electrical conductivity in AlN-CuO composites

    International Nuclear Information System (INIS)

    Azad, A.M.; Cheng, H.S.

    1999-01-01

    Water vapor is an important constituent of any gas and in many applications is regarded as a contaminant that needs to be monitored and controlled. It is also immense importance in the pyrohydrolytic reaction of new exotic non-oxide engineering ceramics such as silicon carbide and silicon nitride. Together with CO/sub 2/, water vapor is the largest contributor to the 'greenhouse' effect. Thus there is a need for greater attention to humidity sensor selection for a given application. AlN-CuO composites (2% is equal or < CuO is equal or < 50% by weight) have been studied to exploit them as novel humidity sensors over wide ranges of moisture levels and temperature. Development of benign microstructure with open porosity has been attempted by varying the composition and firing conditions. The impedance data acquired on the composites over the frequency range 5 Hz to 13 MHz, revealed a bulk response in the form of a single semicircular relaxation in the complex Z/sup */-plane. A systematic variation of electrical conductivity with CuO content in the composites has been explained in the light of percolation theory. (author)

  3. Positron-annihilation studies on the YBa2Cu4O8 superconductor

    International Nuclear Information System (INIS)

    Sundar, C.S.; Bharathi, A.; Jean, Y.C.; Hor, P.H.; Meng, R.L.; Xue, Y.Y.; Huang, Z.J.; Chu, C.W.

    1990-01-01

    Positron-lifetime and Doppler-broadened annihilation-radiation line-shape parameter S in YBa 2 Cu 4 O 8 are observed to decrease with temperature below T c . The calculation of the positron-density distribution shows that the maximum of the positron density is in the region between the Cu-O double chains. The correlation between the temperature dependence of annihilation parameters and the positron-density distribution is discussed. The decrease in annihilation parameters below T c is understood in terms of a local electron transfer from the CuO 2 layers to the Cu-O chains in the superconducting state

  4. Hot Deformation Behavior and Processing Maps of Diamond/Cu Composites

    Science.gov (United States)

    Zhang, Hongdi; Liu, Yue; Zhang, Fan; Zhang, Di; Zhu, Hanxing; Fan, Tongxiang

    2018-06-01

    The hot deformation behaviors of 50 vol pct uncoated and Cr-coated diamond/Cu composites were investigated using hot isothermal compression tests under the temperature and strain rate ranging from 1073 K to 1273 K (800 °C to 1000 °C) and from 0.001 to 5 s-1, respectively. Dynamic recrystallization was determined to be the primary restoration mechanism during deformation. The Cr3C2 coating enhanced the interfacial bonding and resulted in a larger flow stress for the Cr-coated diamond/Cu composites. Moreover, the enhanced interfacial affinity led to a higher activation energy for the Cr-coated diamond/Cu composites (238 kJ/mol) than for their uncoated counterparts (205 kJ/mol). The strain-rate-dependent constitutive equations of the diamond/Cu composites were derived based on the Arrhenius model, and a high correlation ( R = 0.99) was observed between the calculated flow stresses and experimental data. With the help of processing maps, hot extrusions were realized at 1123 K/0.01 s-1 and 1153 K/0.01 s-1 (850 °C/0.01 s-1 and 880 °C/0.01 s-1) for the uncoated and coated diamond/Cu composites, respectively. The combination of interface optimization and hot extrusion led to increases of the density and thermal conductivity, thereby providing a promising route for the fabrication of diamond/Cu composites.

  5. 139La and 63Cu NMR investigation of charge order in La2CuO4 +y (Tc=42 K)

    Science.gov (United States)

    Imai, T.; Lee, Y. S.

    2018-03-01

    We report 139La and 63Cu NMR investigation of the successive charge order, spin order, and superconducting transitions in superoxygenated La2CuO4 +y single crystal with stage-4 excess oxygen order at Tstage≃290 K. We show that the stage-4 order induces tilting of CuO6 octahedra below Tstage, which in turn causes 139La NMR line broadening. The structural distortion continues to develop far below Tstage, and completes at Tcharge≃60 K, where charge order sets in. This sequence is reminiscent of the the charge-order transition in Nd codoped La1.88Sr0.12CuO4 that sets in once the low-temperature tetragonal phase is established. We also show that the paramagnetic 63Cu NMR signals are progressively wiped out below Tcharge due to enhanced low-frequency spin fluctuations in charge-ordered domains, but the residual 63Cu NMR signals continue to exhibit the characteristics expected for optimally doped superconducting CuO2 planes. This indicates that charge order in La2CuO4 +y does not take place uniformly in space. In addition, unlike the typical second-order magnetic phase transitions, low-frequency Cu spin fluctuations as probed by 139La nuclear spin-lattice relaxation rate do not exhibit critical divergence at Tspin(≃Tc ) =42 K. These findings, including the spatially inhomogeneous nature of the charge-ordered state, are qualitatively similar to the case of La1.885Sr0.115CuO4 [Imai et al., Phys. Rev. B 96, 224508 (2017), 10.1103/PhysRevB.96.224508 and Arsenault et al., Phys. Rev. B 97, 064511 (2018), 10.1103/PhysRevB.97.064511], but both charge and spin order take place more sharply in the present case.

  6. Infrared processed Cu composites reinforced with WC particles

    International Nuclear Information System (INIS)

    Deshpande, P.K.; Li, J.H.; Lin, R.Y.

    2006-01-01

    Copper matrix composites with WC particle reinforcements have been prepared with an innovative infrared infiltration technique. The volume content of the reinforcement particles in the composite is about 53%. The relative composite density of as high as 99.9% has been obtained with this process. The electric conductivity of composites prepared in this study as determined by a four-point probe method, is similar to commercially available Cu/W composites containing 52 vol% tungsten. Microhardness, microstructure and wear resistance of the composites were also determined. The microstructure of Cu/WC composite reveals excellent wetting between the two constituent phases, WC and copper. The microhardness values of all completely infiltrated Cu/WC composites were in the range of 360-370 HV which is significantly higher than the microhardness of pure copper, 65 HV. Wear resistance of the composites was determined with a pin on disk wear test technique. The wear test results show that composites prepared in this study performed much better than those commercially available Cu/W composites by more than two-fold against silicon carbide abrasive disks

  7. The critical state stability in textured Bi2Sr2CaCu2O8+δ superconductor

    International Nuclear Information System (INIS)

    Nabialek, A.; Niewczas, M.

    2006-01-01

    The influence of parameters such as temperature, density of the critical current j c , sample dimensions and heat exchange conditions on the critical state stability has been studied in thin samples of textured Bi 2 Sr 2 CaCu 2 O 8+δ (BSCCO) superconductor, in an external magnetic field perpendicular to the wide surface of the samples. The results show that stability of the superconductor against flux jumps increases with decreasing sample thickness. A composite-like sample consisting of two superconducting slabs glued together exhibits critical state stability as a bulk sample of the same thickness while it is less stable against flux jumping than the unit slab. The field of the first flux jump H fj1 decreases with increasing magnetic field sweep rate. For a given temperature there exists a critical sweep rate below which flux jumps vanish. These observations are interpreted in terms of the current distribution in thin superconducting samples characterized by a strong demagnetizing factor. The results are compared with a model developed for samples characterized by negligible demagnetizing effects. The critical state stability in BSCCO has been discussed in terms of the diffusion of heat and of the magnetic flux within the superconductor and the influence of heat exchange on these conditions

  8. Atomic-level studies of superconducting YBa2Cu3O/sub 7-x/

    International Nuclear Information System (INIS)

    Kellogg, G.L.; Brenner, S.S.

    1987-01-01

    The transmission electron microscope, field ion microscope, and imaging atom-probe mass spectrometer have been used to examine the structure and composition of field-emitter ''tips'' prepared from hot-pressed samples of YBa 2 Cu 3 O/sub 7-x/. Transmission electron microscope images of the tip apex clearly show periodic defect structures which are interpreted as twins boundaries. Field ion microscope images reveal the structure of the samples in atomic resolution and indicate that the material can be field evaporated in a uniform, layer-by-layer fashion. Imaging atom-probe mass spectra contain signals corresponding to all of the constituent elements with intensities fairly consistent with the 1-2-3 ratio of the metals, but highly deficient in oxygen

  9. Dielectric properties of glasses prepared by quenching melts of superconducting Bi-Ca-Sr-Cu-O cuprates

    Energy Technology Data Exchange (ETDEWEB)

    Varma, K. B. R.; Subbanna, G. N.; Ramakrishnan, T. V.; Rao, C. N. R.

    1989-07-03

    Glasses obtained from quenching melts of superconducting bismuth cuprates of the formula Bi/sub 2/(Ca,Sr)/sub /ital n/+1/Cu/sub /ital n//O/sub 2/ital n/+4/ with /ital n/=1 and 3 exhibit novel dielectric properties. They possess relatively high dielectric constants as well as high electrical conductivity. The novel dielectric properties of these cuprate glasses are likely to be of electronic origin. They exhibit a weak microwave absorption due to the presence of microcrystallites.

  10. Anomalous electron doping independent two-dimensional superconductivity

    Science.gov (United States)

    Zhou, Wei; Xing, Xiangzhuo; Zhao, Haijun; Feng, Jiajia; Pan, Yongqiang; Zhou, Nan; Zhang, Yufeng; Qian, Bin; Shi, Zhixiang

    2017-07-01

    Transition metal (Co and Ni) co-doping effects are investigated on an underdoped Ca0.94La0.06Fe2As2 compound. It is discovered that electron doping from substituting Fe with transition metal (TM = Co, Ni) can trigger high-{T}{{c}} superconductivity around 35 K, which emerges abruptly before the total suppression of the innate spin-density-wave/anti-ferromagnetism (SDW/AFM) state. Remarkably, the critical temperature for the high-{T}{{c}} superconductivity remains constant against a wide range of TM doping levels. And the net electron doping density dependence of the superconducting {T}{{c}} based on the rigid band model can be nicely scaled into a single curve for Co and Ni substitutions, in stark contrast to the case of Ba(Fe1-x TM x )2As2. This carrier density independent superconductivity and the unusual scaling behavior are presumably resulted from the interface superconductivity based on the similarity with the interface superconductivity in a La2-x Sr x CuO4-La2CuO4 bilayer. Evidence of the two-dimensional character of the superfluid by angle-resolved magneto-resistance measurements can further strengthen the interface nature of the high-{T}{{c}} superconductivity.

  11. Inter-plane coupling in Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}}: impact of disorder and of magnetic field; Couplage interplan dans Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}}: effet du desordre et du champ magnetique

    Energy Technology Data Exchange (ETDEWEB)

    Spathis, P

    2006-07-01

    The first part of this work is dedicated to the impact of structure disorder on the superconducting properties of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}}. The quantity of disorder has been monitored through the irradiation with 2.5 MeV electrons. The Josephson plasma resonance has enabled us to study the impact of disorder on the inter-plan coupling. The second part is devoted to the properties of the mixed state of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}}. When a magnetic field is applied transversely, it generates, for low inductions, a network of quantized flux lines called vortexes. The lamellar nature of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} implies that the vortexes generated are a piling up of low interacting magnetic dipoles. It is now well proved that inside the mixed phase, the solid vortex phase turns itself into a vortex liquid through a first order phase transformation. When the magnetic field is applied longitudinally to the CuO{sub 2} planes, a part of supra-currents are generated through Josephson effect. The consecutive vortexes are called Josephson vortexes and their cores are located between 2 superconducting planes. The first chapter recalls essential features of superconductivity and highlights the lamellar structure of cuprates. The second chapter describes the resonant cavity perturbation technique. The 2 last chapters deal respectively with the impact of energetic electron irradiation and with the impact of a slanting magnetic field on the phase coherence. (A.C.)

  12. Study of magnetic fluctuations in superconducting cuprates with high critical temperature; Etude des fluctuations magnetiques dans les cuprates supraconducteurs a haute temperature critique

    Energy Technology Data Exchange (ETDEWEB)

    Sidis, Y

    1995-11-27

    Elastic and inelastic neutron scattering has been used to study the magnetic properties of YBa{sub 2} Cu{sub 3} O{sub 6+x} (YBCO) and of La{sub 2} CuO{sub 4} (LSCO), non-doped and doped with Zn or various amounts of oxygen. The influence of the variation of the composition on magnetic and superconducting properties has been measured. (C.B.) 182 refs.

  13. Influence of calcium on transport properties, band spectrum and superconductivity of YBa2Cu3O(y) and YBa(1.5)La(0.5)Cu3O(y)

    Science.gov (United States)

    Gasumyants, V. E.; Vladimirskaya, E. V.; Patrina, I. B.

    1995-01-01

    The comparative investigation of transport phenomena in Y(1-x)Ca(x)Ba2Cu3O(y) (0 is less than x is less than 0.25; 6.96 is greater than y is greater than 6.87 and 6.73 is less than x is less than 6.53); Y(1-x)Ca(x)Ba(1.5)La(0.5)Cu3O(y) (0 is less than x is less than 0.5; 7.12 is greater than y is greater than 6.96) and YBa(2-x)La(x)Cu3O(y) (0 is less than x is less than 0.5; 6.95 is less than y is less than 7.21) systems have been carried out. The temperature dependencies of resistivity and thermopower have been measured. It was found that the S(T) dependencies take some additional features with Ca content increase. The results obtained have been analyzed on the basis of the phenomenological theory of electron transport in the case of the narrow conductive band. The main parameters of the band spectrum (the band filling with electrons degree and the total effective band width) have been determined. The dependencies of these from contents of substituting elements are discussed. Analyzing the results obtained simultaneously with the tendencies in oxygen content and critical temperature change we have confirmed the conclusion that the oxygen sublattice disordering has a determinant effect on band structure parameters and superconductive properties of YBa2Cu3O(y). The results obtained suggest that Ca gives rise to some peculiarities in band spectrum of this compound.

  14. Unsynchronized resonance of covalent bonds in the superconducting state

    International Nuclear Information System (INIS)

    Costa, Marconi B.S.; Bastos, Cristiano C.; Pavao, Antonio C.

    2012-01-01

    Daft calculations performed on different cluster models of cuprates (LaBa 2 Cu 3 O 6.7 , La 1.85 Sr 0.15 CuO 4 , YBa 2 Cu 3 O 7 , TlBa 2 Ca 2 Cu 3 O 8.78 , HgBa 2 Ca 2 Cu 3 O 8.27 ), metallic systems (Nb 3 Ge, MgB 2 ) and the pnictide LaO 0.92 F 0.08 FeAs made evident the occurrence of un synchronized resonance of covalent bonds in the superconducting state, as predicted by Paling's resonating valence bond Rb) theory. For cuprates, the un synchronized resonance involves electron transfer between Cu atoms accompanied by a decrease in the charge of the La, Sr, Y and Ca atoms. For MgB 2 , electron transfer occurs in the Mg layer, while the B layer behaves as charge reservoir. For Nb 3 Ge, unsynchronized resonance occurs among the Ge atoms, which should be responsible for charge transfer. For LaO 0.92 F 0.08 FeAs, the results suggest that both La-O and Fe-As layers are involved in the mechanism of superconductivity. The identification of unsynchronized resonances in these systems provides evidence which supports RVB as a suitable theory for high-temperature superconductivity (high-TC). (author)

  15. Properties of different temperature annealed Cu(In,Ga)Se{sub 2} and Cu(In,Ga){sub 2}Se{sub 3.5} films prepared by RF sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Yu Zhou; Liu Lian; Yan Yong; Zhang Yanxia; Li Shasha; Yan Chuanpeng; Zhang Yong [Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle, Ministry of Education of China, Superconductivity and New Energy R and D Center (SNERDC), Mail Stop 165, Southwest Jiaotong University, Chengdu 610031 (China); Zhao Yong, E-mail: yzhao@swjtu.edu.cn [Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle, Ministry of Education of China, Superconductivity and New Energy R and D Center (SNERDC), Mail Stop 165, Southwest Jiaotong University, Chengdu 610031 (China); School of Materials Science and Engineering, University of New South Wales, Sydney 2052, NSW (Australia)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer The Cu(In,Ga)Se{sub 2} and Cu(In,Ga)2Se{sub 3.5} films follow different process to form CIGS phase. Black-Right-Pointing-Pointer Composition loss of the annealed Cu(In,Ga)Se{sub 2} and Cu(In,Ga){sub 2}Se{sub 3.5} films are different. Black-Right-Pointing-Pointer Hexagonal CuSe phase exhibits unique transport feature. Black-Right-Pointing-Pointer Conductivity of the CIGS films is affected by the 'variable range hopping' mechanism. - Abstract: We have investigated the effect of annealing temperature on structural, compositional, electrical properties of the one-step RF sputtered Cu(In,Ga)Se{sub 2} and Cu(In,Ga){sub 2}Se{sub 3.5} films. After the annealing at various temperatures, loss of Se element is significant for the Cu(In,Ga)Se{sub 2} films and meanwhile composition of the annealed Cu(In,Ga){sub 2}Se{sub 3.5} films keeps almost constant. The as-deposited Cu(In,Ga)Se{sub 2} and Cu(In,Ga){sub 2}Se{sub 3.5} films show amorphous structure and they follow different transformation process to form chalcopyrite structure. Electrical conductivity of the annealed CIGS films related to their chemical composition. Cu(In,Ga)Se{sub 2} films annealed at 150 Degree-Sign C show unique electron transport mechanism for the formation of hexagonal CuSe phase. Electrical conductivity of the chalcopyrite structure films are dominated by the 'variable range hopping' transport mechanism. The annealed Cu(In,Ga){sub 2}Se{sub 3.5} films present higher density of disorders than the annealed Cu(In,Ga)Se{sub 2} films for their significant Cu deficient composition.

  16. Hole-doping effects on the magnetic properties of the La4Ba2Cu2O10 ferromagnet

    International Nuclear Information System (INIS)

    Mizuno, F.; Masuda, H.; Hirabayashi, I.; Tanaka, S.; Mochiku, T.; Asano, H.; Izumi, F.

    1992-01-01

    Hole-doping effects by Ba substitution for La in La 4-x Ba 2+x Cu 2 O 10 (0 ≤ x ≤ 1) have been studied to explore the possibilities of its metal-insulator transition and superconductivity. We have not detected any symptoms for metal-insulator transition, but found certain evidence for the hole-doping effect. We observed the dilution effect of Cu 2+ spin by non-magnetic Cu 3+ on the ferromagnetic transition temperature and the reduction of effective magnetic moment. (orig.)

  17. Automatic development of normal zone in composite MgB2/CuNi wires with different diameters

    Science.gov (United States)

    Jokinen, A.; Kajikawa, K.; Takahashi, M.; Okada, M.

    2010-06-01

    One of the promising applications with superconducting technology for hydrogen utilization is a sensor with a magnesium-diboride (MgB2) superconductor to detect the position of boundary between the liquid hydrogen and the evaporated gas stored in a Dewar vessel. In our previous experiment for the level sensor, the normal zone has been automatically developed and therefore any energy input with the heater has not been required for normal operation. Although the physical mechanism for such a property of the MgB2 wire has not been clarified yet, the deliberate application might lead to the realization of a simpler superconducting level sensor without heater system. In the present study, the automatic development of normal zone with increasing a transport current is evaluated for samples consisting of three kinds of MgB2 wires with CuNi sheath and different diameters immersed in liquid helium. The influences of the repeats of current excitation and heat cycle on the normal zone development are discussed experimentally. The aim of this paper is to confirm the suitability of MgB2 wire in a heater free level sensor application. This could lead to even more optimized design of the liquid hydrogen level sensor and the removal of extra heater input.

  18. The influence of growth parameters on the structure and composition of CuGaS{sub 2} epilayers grown by MOVPE

    Energy Technology Data Exchange (ETDEWEB)

    Branch, M.S. [Physics Department, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa)]. E-mail: Matthew.Branch@nmmu.ac.za; Berndt, P.R. [Physics Department, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa); Leitch, A.W.R. [Physics Department, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa); Botha, J.R. [Physics Department, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa); Weber, J. [Institute for Low Temperature Physics, University of Technology, D-01062 Dresden (Germany)

    2006-04-01

    The influence of various growth parameters on the composition and structure of MOVPE-grown CuGaS{sub 2} is presented. The Cu content of the grown layers is shown to decrease in the direction of the carrier gas flow, whilst the Ga and S content are shown to increase. Changing the flow of Cu(hfac){sub 2}.Et{sub 3}N to vary the I/III ratio in the vapour phase has a greater effect on the composition of grown epilayers than changing the flow of TEGa. This is indicative of Cu being the minority species present at the growth interface. A larger rate of decrease in the Cu content with an increase in both TEGa and DtBS flows suggests pre-reactions between Cu(hfac){sub 2}.Et{sub 3}N and both TEGa and DtBS precursors. Lower substrate temperatures are suggested to be thermodynamically unfavourable for the growth of CuGaS{sub 2}, yet enhance the formation of Ga{sub x}S{sub y} phases. The surface morphology of Cu-rich layers are typically inferior with a high density of crystallites, whilst Cu-poor epilayers are characteristically smooth with a single XRD reflection attributed to the (004) plane of c-axis-orientated epitaxial material.

  19. Microstructural characterization and compression properties of TiC{sub 0.61}/Cu(Al) composite synthesized from Cu and Ti{sub 3}AlC{sub 2} powders

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhenying, E-mail: zhyhuang@bjtu.edu.cn [Institute of Material Science and Engineering, School of Mechanical and Electronic Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Institut PPRIME, Département de Physique et Mécanique des Matériaux, CNRS, Université de Poitiers, ENSMA, UPR 3346, SP2MI, Téléport 2 Boulevard Marie et Pierre Curie, BP 30179, F86962 Futuroscope Chasseneuil Cedex (France); Bonneville, Joel [Institut PPRIME, Département de Physique et Mécanique des Matériaux, CNRS, Université de Poitiers, ENSMA, UPR 3346, SP2MI, Téléport 2 Boulevard Marie et Pierre Curie, BP 30179, F86962 Futuroscope Chasseneuil Cedex (France); Zhai, Hongxiang [Institute of Material Science and Engineering, School of Mechanical and Electronic Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Gauthier-Brunet, Veronique [Institut PPRIME, Département de Physique et Mécanique des Matériaux, CNRS, Université de Poitiers, ENSMA, UPR 3346, SP2MI, Téléport 2 Boulevard Marie et Pierre Curie, BP 30179, F86962 Futuroscope Chasseneuil Cedex (France); and others

    2014-07-25

    Highlights: • Submicro-layered TiC{sub 0.61}/Cu(Al) nanocomposite. • MAX phase. • High yield stress. • Deformation mechanism. - Abstract: A new submicro-layered TiC{sub 0.61}/Cu(Al) composite has been prepared by hot-pressing a mixture of 50 vol.% Ti{sub 3}AlC{sub 2} and 50 vol.% Cu powders at 1150 °C and 30 MPa. It is shown that the initial reinforcement Ti{sub 3}AlC{sub 2} particles have, after synthesis, an unusual microstructure, which consists of submicron-thick layers of TiC{sub 0.61} and Cu(Al) alloy. Both the width of the TiC{sub 0.61} and Cu(Al) layers are ∼150 nm. Thus, the Ti{sub 3}AlC{sub 2} particles are decomposed into the TiC{sub 0.61} phase, while the additional Al atoms provided by Ti{sub 3}AlC{sub 2} diffuse into the molten Cu matrix at high temperature. Compression tests were performed at constant strain rate in the temperature range 20–800 °C. The new designed TiC{sub 0.61}/Cu(Al) composite has both a high yield stress, σ{sub 0.2} measured at 0.2% strain offset, and a high ultimate compressive strength, σ{sub UCS}, which is attributed to strong interface bonding between TiC{sub 0.61} and Cu(Al) phase. For instance, at 20 and 200 °C, σ{sub 0.2} is 770 MPa and 700 MPa, while σ{sub UCS} is 1.18 GPa and 1 GPa, respectively. Plastic deformation takes place in the Cu(Al) matrix. Wavy slip lines are observed indicating that cross-slip could be the dominant deformation mechanism.

  20. Transport properties of YBa2Cu3O7/PrBa2Cu3O7-superlattices

    International Nuclear Information System (INIS)

    El Tahan, Ayman Mohamed Moussa

    2010-01-01

    The understanding of the coupling between superconducting YBa 2 Cu 3 O 7 (YBCO) layers decoupled by non superconducting PrBa 2 Cu 3 O 7 (PBCO) layers in c-axis oriented superlattices was the aim of this thesis. For this purpose two conceptually different kind of transport experiments have been performed. In the first type of transport experiments the current is flowing parallel to the layers. Here the coupling is probed indirectly using magnetic vortex lines, which are penetrating the superlattice. Movement of the vortex segments in neighbouring YBCO layers is more or less coherent depending on the thickness of both the superconducting and non superconducting layers. This in-plane transport was measured either by sending an external current through bridges patterned in the superlattice or by an induced internal current. The vortex-creep activation energy U was determined by analysis of the in-plane resistive transition in an external magnetic field B oriented along the c-axis. The activation energies for two series of superlattices were investigated. In one series the thickness of the YBCO layers was constant (n Y =4 unit cells) and the number of the PBCO unit cells was varied, while in the other the number of PBCO layers was constant (n P =4) and n Y varied. The correlation length of the vortex system was determined to be 80 nm along the c-axis direction. It was found that even a single PBCO unit cell in a superlattice effectively cuts the flux lines into shorter weakly coupled segments, and the coupling of the vortex systems in neighbouring layers is negligible already for a thickness of four unit cells of the PBCO layers. A characteristic variation of the activation energy for the two series of superlattices was found, where U 0 is proportional to the YBCO thickness. A change in the variation of U 0 with the current I in the specimen was observed. The analysis of standard dc magnetization relaxation data obtained for a series superlattices revealed the