Superconducting Quantum Circuits
Majer, J.B.
2002-01-01
This thesis describes a number of experiments with superconducting cir- cuits containing small Josephson junctions. The circuits are made out of aluminum islands which are interconnected with a very thin insulating alu- minum oxide layer. The connections form a Josephson junction. The current trough
Fermionic models with superconducting circuits
Energy Technology Data Exchange (ETDEWEB)
Las Heras, Urtzi; Garcia-Alvarez, Laura; Mezzacapo, Antonio; Lamata, Lucas [University of the Basque Country UPV/EHU, Department of Physical Chemistry, Bilbao (Spain); Solano, Enrique [University of the Basque Country UPV/EHU, Department of Physical Chemistry, Bilbao (Spain); IKERBASQUE, Basque Foundation for Science, Bilbao (Spain)
2015-12-01
We propose a method for the efficient quantum simulation of fermionic systems with superconducting circuits. It consists in the suitable use of Jordan-Wigner mapping, Trotter decomposition, and multiqubit gates, be with the use of a quantum bus or direct capacitive couplings. We apply our method to the paradigmatic cases of 1D and 2D Fermi-Hubbard models, involving couplings with nearest and next-nearest neighbours. Furthermore, we propose an optimal architecture for this model and discuss the benchmarking of the simulations in realistic circuit quantum electrodynamics setups. (orig.)
Superconducting quantum circuits theory and application
Deng, Xiuhao
Superconducting quantum circuit models are widely used to understand superconducting devices. This thesis consists of four studies wherein the superconducting quantum circuit is used to illustrate challenges related to quantum information encoding and processing, quantum simulation, quantum signal detection and amplification. The existence of scalar Aharanov-Bohm phase has been a controversial topic for decades. Scalar AB phase, defined as time integral of electric potential, gives rises to an extra phase factor in wavefunction. We proposed a superconducting quantum Faraday cage to detect temporal interference effect as a consequence of scalar AB phase. Using the superconducting quantum circuit model, the physical system is solved and resulting AB effect is predicted. Further discussion in this chapter shows that treating the experimental apparatus quantum mechanically, spatial scalar AB effect, proposed by Aharanov-Bohm, can't be observed. Either a decoherent interference apparatus is used to observe spatial scalar AB effect, or a quantum Faraday cage is used to observe temporal scalar AB effect. The second study involves protecting a quantum system from losing coherence, which is crucial to any practical quantum computation scheme. We present a theory to encode any qubit, especially superconducting qubits, into a universal quantum degeneracy point (UQDP) where low frequency noise is suppressed significantly. Numerical simulations for superconducting charge qubit using experimental parameters show that its coherence time is prolong by two orders of magnitude using our universal degeneracy point approach. With this improvement, a set of universal quantum gates can be performed at high fidelity without losing too much quantum coherence. Starting in 2004, the use of circuit QED has enabled the manipulation of superconducting qubits with photons. We applied quantum optical approach to model coupled resonators and obtained a four-wave mixing toolbox to operate photons
Quantum Memristors with Superconducting Circuits
Salmilehto, J.; Deppe, F.; di Ventra, M.; Sanz, M.; Solano, E.
2017-02-01
Memristors are resistive elements retaining information of their past dynamics. They have garnered substantial interest due to their potential for representing a paradigm change in electronics, information processing and unconventional computing. Given the advent of quantum technologies, a design for a quantum memristor with superconducting circuits may be envisaged. Along these lines, we introduce such a quantum device whose memristive behavior arises from quasiparticle-induced tunneling when supercurrents are cancelled. For realistic parameters, we find that the relevant hysteretic behavior may be observed using current state-of-the-art measurements of the phase-driven tunneling current. Finally, we develop suitable methods to quantify memory retention in the system.
Quantum Memristors with Superconducting Circuits
Salmilehto, J.; Deppe, F.; Di Ventra, M.; Sanz, M.; Solano, E.
2017-01-01
Memristors are resistive elements retaining information of their past dynamics. They have garnered substantial interest due to their potential for representing a paradigm change in electronics, information processing and unconventional computing. Given the advent of quantum technologies, a design for a quantum memristor with superconducting circuits may be envisaged. Along these lines, we introduce such a quantum device whose memristive behavior arises from quasiparticle-induced tunneling when supercurrents are cancelled. For realistic parameters, we find that the relevant hysteretic behavior may be observed using current state-of-the-art measurements of the phase-driven tunneling current. Finally, we develop suitable methods to quantify memory retention in the system. PMID:28195193
Flexible Microstrip Circuits for Superconducting Electronics
Chervenak, James; Mateo, Jennette
2013-01-01
Flexible circuits with superconducting wiring atop polyimide thin films are being studied to connect large numbers of wires between stages in cryogenic apparatus with low heat load. The feasibility of a full microstrip process, consisting of two layers of superconducting material separated by a thin dielectric layer on 5 mil (approximately 0.13 mm) Kapton sheets, where manageable residual stress remains in the polyimide film after processing, has been demonstrated. The goal is a 2-mil (approximately 0.051-mm) process using spin-on polyimide to take advantage of the smoother polyimide surface for achieving highquality metal films. Integration of microstrip wiring with this polyimide film may require high-temperature bakes to relax the stress in the polyimide film between metallization steps.
Energy Extraction for the LHC Superconducting Circuits
Dahlerup-Petersen, K; Schmidt, R; Sonnemann, F
2001-01-01
The superconducting magnets of the LHC will be powered in about 1700 electrical circuits. The energy stored in circuits, up to 1.3 GJ, can potentially cause severe damage of magnets, bus bars and current leads. In order to protect the superconducting elements after a resistive transition, the energy is dissipated into a dump resistor installed in series with the magnet chain that is switched into the circuit by opening current breakers. Experiments and simulation studies have been performed to identify the LHC circuits that need energy extraction. The required values of the extraction resistors have been computed. The outcome of the experimental results and the simulation studies are presented and the design of the different energy extraction systems that operate at 600 A and at 13 kA is described.
Feedback control of superconducting quantum circuits
Ristè, D.
2014-01-01
Superconducting circuits have recently risen to the forefront of the solid-state prototypes for quantum computing. Reaching the stage of robust quantum computing requires closing the loop between measurement and control of quantum bits (qubits). This thesis presents the realization of feedback contr
Suspended carbon nanotubes coupled to superconducting circuits
Schneider, B.H.
2014-01-01
Carbon nanotubes are unique candidates to study quantum mechanical properties of a nanomechanical resonator. However to access this quantum regime, present detectors are not yet sensitive enough. In this thesis we couple a carbon nanotube CNT mechanical resonator to a superconducting circuit which i
LHC Report: superconducting circuit powering tests
Mirko Pojer
2015-01-01
After the long maintenance and consolidation campaign carried out during LS1, the machine is getting ready to start operation with beam at 6.5 TeV… the physics community can’t wait! Prior to this, all hardware and software systems have to be tested to assess their correct and safe operation. Most of the cold circuits (those with high current/stored energy) possess a sophisticated magnet protection system that is crucial to detect a transition of the coil from the superconducting to the normal state (a quench) and safely extract the energy stored in the circuits (about 1 GJ per dipole circuit at nominal current). LHC operation relies on 1232 superconducting dipoles with a field of up to 8.33 T operating in superfluid helium at 1.9 K, along with more than 500 superconducting quadrupoles operating at 4.2 or 1.9 K. Besides, many other superconducting and normal resistive magnets are used to guarantee the possibility of correcting all beam parameters, for a total of mo...
Superconductive Signal-Processing Circuits
1994-08-01
September 1991. 13. P. H. Xiao, E. Charbon , A. Sangiovanni-Vincentelli, T. Van Duzer,and S.W. Whiteley, "INDEX: An inductance extractor for superconducting...wideband analog-to-digital to a useful binary representation. In order to achieve an N-bit converter reported earlier [1]. The original design has been...rises, the SQUID Parameter Original Modified switches to the voltage state, and the output goes high. Ic(J1) 337 367 I tA S gaicGate: The comparator
Superconducting circuits for quantum information: an outlook.
Devoret, M H; Schoelkopf, R J
2013-03-08
The performance of superconducting qubits has improved by several orders of magnitude in the past decade. These circuits benefit from the robustness of superconductivity and the Josephson effect, and at present they have not encountered any hard physical limits. However, building an error-corrected information processor with many such qubits will require solving specific architecture problems that constitute a new field of research. For the first time, physicists will have to master quantum error correction to design and operate complex active systems that are dissipative in nature, yet remain coherent indefinitely. We offer a view on some directions for the field and speculate on its future.
Crystalline Silicon Dielectrics for Superconducting Qubit Circuits
Hover, David; Peng, Weina; Sendelbach, Steven; Eriksson, Mark; McDermott, Robert
2009-03-01
Superconducting qubit energy relaxation times are limited by microwave loss induced by a continuum of two-level state (TLS) defects in the dielectric materials of the circuit. State-of-the-art phase qubit circuits employ a micron-scale Josephson junction shunted by an external capacitor. In this case, the qubit T1 time is directly proportional to the quality factor (Q) of the capacitor dielectric. The amorphous capacitor dielectrics that have been used to date display intrinsic Q of order 10^3 to 10^4. Shunt capacitors with a Q of 10^6 are required to extend qubit T1 times well into the microsecond range. Crystalline dielectric materials are an attractive candidate for qubit capacitor dielectrics, due to the extremely low density of TLS defects. However, the robust integration of crystalline dielectrics with superconducting qubit circuits remains a challenge. Here we describe a novel approach to the realization of high-Q crystalline capacitor dielectrics for superconducting qubit circuits. The capacitor dielectric is a crystalline silicon nanomembrane. We discuss characterization of crystalline silicon capacitors with low-power microwave transport measurements at millikelvin temperatures. In addition, we report progress on integrating the crystalline capacitor process with Josephson qubit fabrication.
Nonclassical correlations in superconducting circuits
Energy Technology Data Exchange (ETDEWEB)
Migliore, Rosanna [Dipartimento di Scienze Fisiche ed Astronomiche, Universita di Palermo (Italy); CNR-INFM, UdR CNISM di Palermo, Palermo (Italy); Scala, Matteo [Dipartimento di Scienze Fisiche ed Astronomiche, Universita di Palermo (Italy); Departamento de Optica, Facultad de Fisica, Universidad Complutense, Madrid (Spain); Guccione, Marina; Sanchez-Soto, Luis L. [Dipartimento di Scienze Fisiche ed Astronomiche, Universita di Palermo (Italy); Messina, Antonino [Departamento de Optica, Facultad de Fisica, Universidad Complutense, Madrid (Spain)
2009-05-15
A key step on the road map to solid-state quantum information processing (and to a deeper understanding of many counterintuitive aspects of quantum mechanics) is the generation and manipulation of nonclassical correlations between different quantum systems. Within this framework, we analyze the possibility of generating maximally entangled states in a system of two superconducting flux qubits, as well as the effectof their own environments on the entanglement dynamics. The analysis reported here confirms that the phenomena of sudden birth and sudden death of the entanglement do not depend on the particular measure of the entanglement adopted (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Optimization of the powering tests of the LHC superconducting circuits
Bellesia, B; Denz, R; Fernandez-Robles, C; Pojer, M; Saban, R; Schmidt, R; Solfaroli Camillocci, M; Thiesen, H; Vergara Fernández, A
2010-01-01
The Large Hadron Collider has (LHC) 1572 superconducting circuits which are distributed along the eight 3.5 km LHC sectors [1]. Time and resources during the commissioning of the LHC technical systems were mostly consumed by the powering tests of each circuit. The tests consisted in carrying out several powering cycles at different current levels for each superconducting circuit. The Hardware Commissioning Coordination was in charge of planning, following up and piloting the execution of the test program. The first powering test campaign was carried out in summer 2007 for sector 7-8 with an expected duration of 12 weeks. The experience gained during these tests was used by the commissioning team for minimising the duration of the following powering campaigns to comply with the stringent LHC project deadlines. Improvements concerned several areas: strategy, procedures, control tools, automatization, and resource allocation led to an average daily test rate increase from 25 to 200 tests per day. This paper desc...
Black-box superconducting circuit quantization.
Nigg, Simon E; Paik, Hanhee; Vlastakis, Brian; Kirchmair, Gerhard; Shankar, S; Frunzio, Luigi; Devoret, M H; Schoelkopf, R J; Girvin, S M
2012-06-15
We present a semiclassical method for determining the effective low-energy quantum Hamiltonian of weakly anharmonic superconducting circuits containing mesoscopic Josephson junctions coupled to electromagnetic environments made of an arbitrary combination of distributed and lumped elements. A convenient basis, capturing the multimode physics, is given by the quantized eigenmodes of the linearized circuit and is fully determined by a classical linear response function. The method is used to calculate numerically the low-energy spectrum of a 3D transmon system, and quantitative agreement with measurements is found.
Quantum memristor in a superconducting circuit
Salmilehto, Juha; Sanz, Mikel; di Ventra, Massimiliano; Solano, Enrique
Memristors, resistive elements that retain information of their past, have garnered interest due to their paradigm-changing potential in information processing and electronics. The emergent hysteretic behaviour allows for novel architectural applications and has recently been classically demonstrated in a simplified superconducting setup using the phase-dependent conductance in the tunnel-junction-microscopic model. In this contribution, we present a truly quantum model for a memristor constructed using established elements and techniques in superconducting nanoelectronics, and explore the parameters for feasible operation as well as refine the methods for quantifying the memory retention. In particular, the memristive behaviour is shown to arise from quasiparticle-induced tunneling in the full dissipative model and can be observed in the phase-driven tunneling current. The relevant hysteretic behaviour should be observable using current state-of-the-art measurements for detecting quasiparticle excitations. Our theoretical findings constitute the first quantum memristor in a superconducting circuit and act as the starting point for designing further circuit elements that have non-Markovian characteristics The authors acknowledge support from the CCQED EU project and the Finnish Cultural Foundation.
Superconductive combinational logic circuit using magnetically coupled SQUID array
Energy Technology Data Exchange (ETDEWEB)
Yamanashi, Y., E-mail: yamanasi@ynu.ac.j [Interdisciplinary Research Center, Yokohama National University, Tokiwadai 79-5, Hodogaya-ku, Yokohama 240-8501 (Japan); Umeda, K.; Sai, K. [Department of Electrical and Computer Engineering, Yokohama National University, Tokiwadai 79-5, Hodogaya-ku, Yokohama 240-8501 (Japan)
2010-11-01
In this paper, we propose the development of superconductive combinational logic circuits. One of the difficulties in designing superconductive single-flux-quantum (SFQ) digital circuits can be attributed to the fundamental nature of the SFQ circuits, in which all logic gates have latching functions and are based on sequential logic. The design of ultralow-power superconductive digital circuits can be facilitated by the development of superconductive combinational logic circuits in which the output is a function of only the present input. This is because superconductive combinational logic circuits do not require determination of the timing adjustment and clocking scheme. Moreover, semiconductor design tools can be used to design digital circuits because CMOS logic gates are based on combinational logic. The proposed superconductive combinational logic circuits comprise a magnetically coupled SQUID array. By adjusting the circuit parameters and coupling strengths between neighboring SQUIDs, fundamental combinational logic gates, including the AND, OR, and NOT gates, can be built. We have verified the accuracy of the operations of the fundamental logic gates by analog circuit simulations.
Fabrication and characterization of aluminum airbridges for superconducting microwave circuits
Chen, Zijun; Megrant, A.; Kelly, J.; Barends, R.; Bochmann, J.; Chen, Yu; Chiaro, B.; Dunsworth, A.; Jeffrey, E.; Mutus, J. Y.; O'Malley, P. J. J.; Neill, C.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C.; Cleland, A. N.; Martinis, John M.
2014-02-01
Superconducting microwave circuits based on coplanar waveguides (CPW) are susceptible to parasitic slotline modes which can lead to loss and decoherence. We motivate the use of superconducting airbridges as a reliable method for preventing the propagation of these modes. We describe the fabrication of these airbridges on superconducting resonators, which we use to measure the loss due to placing airbridges over CPW lines. We find that the additional loss at single photon levels is small, and decreases at higher drive powers.
Fabrication and characterization of aluminum airbridges for superconducting microwave circuits
Energy Technology Data Exchange (ETDEWEB)
Chen, Zijun; Kelly, J.; Barends, R.; Bochmann, J.; Chen, Yu; Chiaro, B.; Dunsworth, A.; Jeffrey, E.; Mutus, J. Y.; O' Malley, P. J. J.; Neill, C.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C. [Department of Physics, University of California, Santa Barbara, California 93106-9530 (United States); Megrant, A. [Department of Physics, University of California, Santa Barbara, California 93106-9530 (United States); Department of Materials, University of California, Santa Barbara, California 93106 (United States); Cleland, A. N.; Martinis, John M., E-mail: martinis@physics.ucsb.edu [Department of Physics, University of California, Santa Barbara, California 93106-9530 (United States); California NanoSystems Institute, University of California, Santa Barbara, California 93106-9530 (United States)
2014-02-03
Superconducting microwave circuits based on coplanar waveguides (CPW) are susceptible to parasitic slotline modes which can lead to loss and decoherence. We motivate the use of superconducting airbridges as a reliable method for preventing the propagation of these modes. We describe the fabrication of these airbridges on superconducting resonators, which we use to measure the loss due to placing airbridges over CPW lines. We find that the additional loss at single photon levels is small, and decreases at higher drive powers.
Fabrication and Characterization of Aluminum Airbridges for Superconducting Qubit Circuits
Chen, Zijun; Megrant, Anthony; Kelly, Julian; Barends, Rami; Bochmann, Joerg; Chen, Yu; Chiaro, Benjamin; Dunsworth, Andrew; Jeffrey, Evan; Mutus, Joshua; O'Malley, Peter; Neill, Charles; Roushan, Pedram; Sank, Daniel; Vainsencher, Amit; Wenner, James; White, Theodore; Cleland, Andrew; Martinis, John
2014-03-01
Superconducting circuits based on coplanar waveguides (CPWs) are susceptible to parasitic slotline modes which can lead to loss and decoherence. We motivate the use of superconducting airbridges as a reliable method for preventing the propagation of these modes. We describe the fabrication of these airbridges on superconducting resonators, which we use to measure the loss due to placing airbridges over CPW lines. We find that the additional loss at single photon levels is small, and decreases at higher drive powers. These results pave the way for building airbridge crossovers on more complex qubit circuits.
Observation of the dynamical Casimir effect in a superconducting circuit
Wilson, Christopher
2012-02-01
Modern quantum theory predicts that the vacuum of space is not empty, but instead teeming with virtual particles flitting in and out of existence. While initially a curiosity, it was quickly realized that these vacuum fluctuations had measurable consequences, for instance producing the Lamb shift of atomic spectra and modifying the magnetic moment for the electron. This type of renormalization due to vacuum fluctuations is now central to our understanding of nature. 40 years ago, Moore suggested that a mirror undergoing relativistic motion could convert virtual photons into directly observable real photons. This effect was later named the dynamical Casimir effect (DCE). Using a superconducting circuit, we have observed the DCE for the first time. The circuit consists of a coplanar transmission line with an electrical length that can be changed at a substantial fraction of the speed of light. The length is changed by modulating the inductance of a superconducting quantum interference device (SQUID) at high frequencies (> 10 GHz). In addition to observing the creation of real photons, we observe two-mode squeezing of the emitted radiation, which is a signature of the quantum character of the generation process.
a Thermohydraulic-Quenching Code for Superconducting Magnets in Network Circuits
Feng, Jun; Schultz, Joel; Minervini, Joe
2010-04-01
A thermohydraulic-quench code "Solxport3D-Quench" has been developed for a system of superconducting and normal solenoid magnets with supply network circuits. Each power supply network circuit consists of at least one superconducting magnet with parallel circuits including voltage sources, resistors or diodes. When used for analysis of a magnetic confinement fusion device, the plasma currents and passive structure eddy currents are also included in all scenarios. The simulation starts from superconducting stage for each magnet coil. The superconducting stage switches to quench stage if any one of the superconducting magnets quenches (i.e., exceeding the current sharing temperature.) It is followed by the dumping stage after a given quench detection time. The recovery of the superconducting stage is allowed at any time step before dumping. The currents of each magnetic coil are calculated by a time-difference method. The thermohydraulic parameters during superconducting and quench/dumping stage are obtained by a finite element method. The size and location of each finite element are dynamically defined at each time step during quench and dumping. Calibrations against test data are presented.
Observation of the dynamical Casimir effect in a superconducting circuit.
Wilson, C M; Johansson, G; Pourkabirian, A; Simoen, M; Johansson, J R; Duty, T; Nori, F; Delsing, P
2011-11-16
One of the most surprising predictions of modern quantum theory is that the vacuum of space is not empty. In fact, quantum theory predicts that it teems with virtual particles flitting in and out of existence. Although initially a curiosity, it was quickly realized that these vacuum fluctuations had measurable consequences--for instance, producing the Lamb shift of atomic spectra and modifying the magnetic moment of the electron. This type of renormalization due to vacuum fluctuations is now central to our understanding of nature. However, these effects provide indirect evidence for the existence of vacuum fluctuations. From early on, it was discussed whether it might be possible to more directly observe the virtual particles that compose the quantum vacuum. Forty years ago, it was suggested that a mirror undergoing relativistic motion could convert virtual photons into directly observable real photons. The phenomenon, later termed the dynamical Casimir effect, has not been demonstrated previously. Here we observe the dynamical Casimir effect in a superconducting circuit consisting of a coplanar transmission line with a tunable electrical length. The rate of change of the electrical length can be made very fast (a substantial fraction of the speed of light) by modulating the inductance of a superconducting quantum interference device at high frequencies (>10 gigahertz). In addition to observing the creation of real photons, we detect two-mode squeezing in the emitted radiation, which is a signature of the quantum character of the generation process.
Two-dimensional lattice gauge theories with superconducting quantum circuits
Energy Technology Data Exchange (ETDEWEB)
Marcos, D., E-mail: david.marcos@me.com [Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck (Austria); Widmer, P. [Albert Einstein Center, Institute for Theoretical Physics, Bern University, CH-3012, Bern (Switzerland); Rico, E. [IPCMS (UMR 7504) and ISIS (UMR 7006), University of Strasbourg and CNRS, 67000 Strasbourg (France); Hafezi, M. [Joint Quantum Institute, NIST/University of Maryland, College Park 20742 (United States); Department of Electrical Engineering and Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742 (United States); Rabl, P. [Institute of Atomic and Subatomic Physics, TU Wien, Stadionallee 2, 1020 Wien (Austria); Wiese, U.-J. [Albert Einstein Center, Institute for Theoretical Physics, Bern University, CH-3012, Bern (Switzerland); Zoller, P. [Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck (Austria); Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck (Austria)
2014-12-15
A quantum simulator of U(1) lattice gauge theories can be implemented with superconducting circuits. This allows the investigation of confined and deconfined phases in quantum link models, and of valence bond solid and spin liquid phases in quantum dimer models. Fractionalized confining strings and the real-time dynamics of quantum phase transitions are accessible as well. Here we show how state-of-the-art superconducting technology allows us to simulate these phenomena in relatively small circuit lattices. By exploiting the strong non-linear couplings between quantized excitations emerging when superconducting qubits are coupled, we show how to engineer gauge invariant Hamiltonians, including ring-exchange and four-body Ising interactions. We demonstrate that, despite decoherence and disorder effects, minimal circuit instances allow us to investigate properties such as the dynamics of electric flux strings, signaling confinement in gauge invariant field theories. The experimental realization of these models in larger superconducting circuits could address open questions beyond current computational capability.
Quantum information processing with superconducting circuits: a review
Wendin, G.
2017-10-01
During the last ten years, superconducting circuits have passed from being interesting physical devices to becoming contenders for near-future useful and scalable quantum information processing (QIP). Advanced quantum simulation experiments have been shown with up to nine qubits, while a demonstration of quantum supremacy with fifty qubits is anticipated in just a few years. Quantum supremacy means that the quantum system can no longer be simulated by the most powerful classical supercomputers. Integrated classical-quantum computing systems are already emerging that can be used for software development and experimentation, even via web interfaces. Therefore, the time is ripe for describing some of the recent development of superconducting devices, systems and applications. As such, the discussion of superconducting qubits and circuits is limited to devices that are proven useful for current or near future applications. Consequently, the centre of interest is the practical applications of QIP, such as computation and simulation in Physics and Chemistry.
Stimulating Uncertainty: Amplifying the Quantum Vacuum with Superconducting Circuits
Nation, P D; Blencowe, M P; Nori, Franco
2011-01-01
The ability to generate particles from the quantum vacuum is one of the most pro- found consequences of Heisenberg's uncertainty principle. Although the significance of vacuum fluctuations can be seen throughout physics, the experimental realization of vacuum amplification effects has until now been limited to a few cases. Superconducting circuit devices, driven by the goal to achieve a viable quantum computer, may soon be able to realize the elusive verification of the dynamical Casimir effect and analogue Hawking radiation. This article describes several mechanisms for generating photons from the quantum vacuum and emphasizes their connection to the well-known parametric amplifier from quantum optics. Discussed in detail is the possible realization of each mechanism, or its analogue, in superconducting circuit systems. The ability to selectively engineer these circuit devices highlights the relationship between the various amplification mechanisms.
Colloquium: Stimulating uncertainty: Amplifying the quantum vacuum with superconducting circuits
Nation, P. D.; Johansson, J. R.; Blencowe, M. P.; Nori, Franco
2012-01-01
The ability to generate particles from the quantum vacuum is one of the most profound consequences of Heisenberg’s uncertainty principle. Although the significance of vacuum fluctuations can be seen throughout physics, the experimental realization of vacuum amplification effects has until now been limited to a few cases. Superconducting circuit devices, driven by the goal to achieve a viable quantum computer, have been used in the experimental demonstration of the dynamical Casimir effect, and may soon be able to realize the elusive verification of analog Hawking radiation. This Colloquium article describes several mechanisms for generating photons from the quantum vacuum and emphasizes their connection to the well-known parametric amplifier from quantum optics. Discussed in detail is the possible realization of each mechanism, or its analog, in superconducting circuit systems. The ability to selectively engineer these circuit devices highlights the relationship between the various amplification mechanisms.
Relativistic Quantum Teleportation with superconducting circuits
Friis, Nicolai; Truong, Kevin; Sabín, Carlos; Solano, Enrique; Johansson, Göran; Fuentes, Ivette
2012-01-01
We study the effects of relativistic motion on quantum teleportation and propose a realizable experiment where our results can be tested. We compute bounds on the optimal fidelity of teleportation when one of the observers undergoes non-uniform motion for a finite time. The upper bound to the optimal fidelity is degraded due to the observer's motion however, we discuss how this degradation can be corrected. These effects are observable for experimental parameters that are within reach of cutting-edge superconducting technology.
Non-Abelian Lattice Gauge Theories in Superconducting Circuits
Mezzacapo, A; Sabín, C; Egusquiza, I L; Lamata, L; Solano, E
2015-01-01
We propose a digital quantum simulator of non-Abelian pure-gauge models with a superconducting circuit setup. Within the framework of quantum link models, we build a minimal instance of a pure $SU(2)$ gauge theory, using triangular plaquettes involving geometric frustration. This realization is the least demanding, in terms of quantum simulation resources, of a non-Abelian gauge dynamics. We present two superconducting architectures that can host the quantum simulation, estimating the requirements needed to run possible experiments. The proposal establishes a path to the experimental simulation of non-Abelian physics with solid-state quantum platforms.
Superconducting optoelectronic circuits for neuromorphic computing
Shainline, Jeffrey M; Mirin, Richard P; Nam, Sae Woo
2016-01-01
We propose a hybrid semiconductor-superconductor hardware platform for the implementation of neural networks and large-scale neuromorphic computing. The platform combines semiconducting few-photon light-emitting diodes with superconducting-nanowire single-photon detectors to behave as spiking neurons. These processing units are connected via a network of optical waveguides, and variable weights of connection can be implemented using several approaches. The use of light as a signaling mechanism overcomes the requirement for time-multiplexing that has limited the event rates of purely electronic platforms. The proposed processing units can operate at $20$ MHz with fully asynchronous activity, light-speed-limited latency, and power densities on the order of 1 mW/cm$^2$ for neurons with 700 connections operating at full speed at 2 K. The processing units achieve an energy efficiency of $\\approx 20$ aJ per synapse event. By leveraging multilayer photonics with low-temperature-deposited waveguides and superconducto...
Hybrid quantum circuit with a superconducting qubit coupled to an electron spin ensemble
Energy Technology Data Exchange (ETDEWEB)
Kubo, Yuimaru; Grezes, Cecile; Vion, Denis; Esteve, Daniel; Bertet, Patrice [Quantronics Group, SPEC (CNRS URA 2464), CEA-Saclay, 91191 Gif-sur-Yvette (France); Diniz, Igor; Auffeves, Alexia [Institut Neel, CNRS, BP 166, 38042 Grenoble (France); Isoya, Jun-ichi [Research Center for Knowledge Communities, University of Tsukuba, 305-8550 Tsukuba (Japan); Jacques, Vincent; Dreau, Anais; Roch, Jean-Francois [LPQM (CNRS, UMR 8537), Ecole Normale Superieure de Cachan, 94235 Cachan (France)
2013-07-01
We report the experimental realization of a hybrid quantum circuit combining a superconducting qubit and an ensemble of electronic spins. The qubit, of the transmon type, is coherently coupled to the spin ensemble consisting of nitrogen-vacancy (NV) centers in a diamond crystal via a frequency-tunable superconducting resonator acting as a quantum bus. Using this circuit, we prepare arbitrary superpositions of the qubit states that we store into collective excitations of the spin ensemble and retrieve back into the qubit. We also report a new method for detecting the magnetic resonance of electronic spins at low temperature with a qubit using the hybrid quantum circuit, as well as our recent progress on spin echo experiments.
Superconducting single photon detectors integrated with diamond nanophotonic circuits
Rath, Patrik; Ferrari, Simone; Sproll, Fabian; Lewes-Malandrakis, Georgia; Brink, Dietmar; Ilin, Konstantin; Siegel, Michael; Nebel, Christoph; Pernice, Wolfram
2015-01-01
Photonic quantum technologies promise to repeat the success of integrated nanophotonic circuits in non-classical applications. Using linear optical elements, quantum optical computations can be performed with integrated optical circuits and thus allow for overcoming existing limitations in terms of scalability. Besides passive optical devices for realizing photonic quantum gates, active elements such as single photon sources and single photon detectors are essential ingredients for future optical quantum circuits. Material systems which allow for the monolithic integration of all components are particularly attractive, including III-V semiconductors, silicon and also diamond. Here we demonstrate nanophotonic integrated circuits made from high quality polycrystalline diamond thin films in combination with on-chip single photon detectors. Using superconducting nanowires coupled evanescently to travelling waves we achieve high detection efficiencies up to 66 % combined with low dark count rates and timing resolu...
Digitized adiabatic quantum computing with a superconducting circuit.
Barends, R; Shabani, A; Lamata, L; Kelly, J; Mezzacapo, A; Las Heras, U; Babbush, R; Fowler, A G; Campbell, B; Chen, Yu; Chen, Z; Chiaro, B; Dunsworth, A; Jeffrey, E; Lucero, E; Megrant, A; Mutus, J Y; Neeley, M; Neill, C; O'Malley, P J J; Quintana, C; Roushan, P; Sank, D; Vainsencher, A; Wenner, J; White, T C; Solano, E; Neven, H; Martinis, John M
2016-06-09
Quantum mechanics can help to solve complex problems in physics and chemistry, provided they can be programmed in a physical device. In adiabatic quantum computing, a system is slowly evolved from the ground state of a simple initial Hamiltonian to a final Hamiltonian that encodes a computational problem. The appeal of this approach lies in the combination of simplicity and generality; in principle, any problem can be encoded. In practice, applications are restricted by limited connectivity, available interactions and noise. A complementary approach is digital quantum computing, which enables the construction of arbitrary interactions and is compatible with error correction, but uses quantum circuit algorithms that are problem-specific. Here we combine the advantages of both approaches by implementing digitized adiabatic quantum computing in a superconducting system. We tomographically probe the system during the digitized evolution and explore the scaling of errors with system size. We then let the full system find the solution to random instances of the one-dimensional Ising problem as well as problem Hamiltonians that involve more complex interactions. This digital quantum simulation of the adiabatic algorithm consists of up to nine qubits and up to 1,000 quantum logic gates. The demonstration of digitized adiabatic quantum computing in the solid state opens a path to synthesizing long-range correlations and solving complex computational problems. When combined with fault-tolerance, our approach becomes a general-purpose algorithm that is scalable.
Digitized adiabatic quantum computing with a superconducting circuit
Barends, R.; Shabani, A.; Lamata, L.; Kelly, J.; Mezzacapo, A.; Heras, U. Las; Babbush, R.; Fowler, A. G.; Campbell, B.; Chen, Yu; Chen, Z.; Chiaro, B.; Dunsworth, A.; Jeffrey, E.; Lucero, E.; Megrant, A.; Mutus, J. Y.; Neeley, M.; Neill, C.; O'Malley, P. J. J.; Quintana, C.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C.; Solano, E.; Neven, H.; Martinis, John M.
2016-06-01
Quantum mechanics can help to solve complex problems in physics and chemistry, provided they can be programmed in a physical device. In adiabatic quantum computing, a system is slowly evolved from the ground state of a simple initial Hamiltonian to a final Hamiltonian that encodes a computational problem. The appeal of this approach lies in the combination of simplicity and generality; in principle, any problem can be encoded. In practice, applications are restricted by limited connectivity, available interactions and noise. A complementary approach is digital quantum computing, which enables the construction of arbitrary interactions and is compatible with error correction, but uses quantum circuit algorithms that are problem-specific. Here we combine the advantages of both approaches by implementing digitized adiabatic quantum computing in a superconducting system. We tomographically probe the system during the digitized evolution and explore the scaling of errors with system size. We then let the full system find the solution to random instances of the one-dimensional Ising problem as well as problem Hamiltonians that involve more complex interactions. This digital quantum simulation of the adiabatic algorithm consists of up to nine qubits and up to 1,000 quantum logic gates. The demonstration of digitized adiabatic quantum computing in the solid state opens a path to synthesizing long-range correlations and solving complex computational problems. When combined with fault-tolerance, our approach becomes a general-purpose algorithm that is scalable.
Superconducting Optoelectronic Circuits for Neuromorphic Computing
Shainline, Jeffrey M.; Buckley, Sonia M.; Mirin, Richard P.; Nam, Sae Woo
2017-03-01
Neural networks have proven effective for solving many difficult computational problems, yet implementing complex neural networks in software is computationally expensive. To explore the limits of information processing, it is necessary to implement new hardware platforms with large numbers of neurons, each with a large number of connections to other neurons. Here we propose a hybrid semiconductor-superconductor hardware platform for the implementation of neural networks and large-scale neuromorphic computing. The platform combines semiconducting few-photon light-emitting diodes with superconducting-nanowire single-photon detectors to behave as spiking neurons. These processing units are connected via a network of optical waveguides, and variable weights of connection can be implemented using several approaches. The use of light as a signaling mechanism overcomes fanout and parasitic constraints on electrical signals while simultaneously introducing physical degrees of freedom which can be employed for computation. The use of supercurrents achieves the low power density (1 mW /cm2 at 20-MHz firing rate) necessary to scale to systems with enormous entropy. Estimates comparing the proposed hardware platform to a human brain show that with the same number of neurons (1 011) and 700 independent connections per neuron, the hardware presented here may achieve an order of magnitude improvement in synaptic events per second per watt.
The twin paradox with macroscopic clocks in superconducting circuits
Lindkvist, Joel; Fuentes, Ivette; Dragan, Andrzej; Svensson, Ida-Maria; Delsing, Per; Johansson, Göran
2014-01-01
Time dilation, a striking prediction of Einstein's relativity, plays an important role in applications such as the Global Positioning System. One of the most compelling consequences of time dilation is known as the twin paradox, where a twin at rest ages more than her sibling travelling at relativistic speeds. In this paper, we propose an implementation of the twin paradox in superconducting circuits with velocities as large as a few percent of the speed of light. Ultrafast modulation of the boundary conditions for the electromagnetic field in a microwave cavity simulates a clock moving at relativistic speeds. While previous demonstrations of this effect involve point-like clocks, our superconducting cavity has a finite length, allowing us to investigate the role of clock size as well as interesting quantum effects on time dilation. In particular, our theoretical results show that the travelling twin ages slower for larger cavity lengths and that quantum particle creation, known in this context as the dynamic...
Lift-Off Processing and Superconducting Circuit Coherence
Quintana, C. M.; Megrant, A.; Dunsworth, A.; Chen, Zijun; Chiaro, B.; Barends, R.; Campbell, B.; Chen, Yu; Jeffrey, E.; Kelly, J.; Mutus, J. Y.; Neill, C.; O'Malley, P. J. J.; Roushan, P.; Sank, D.; Wenner, J.; White, T. C.; Cleland, A. N.; Martinis, John M.
2014-03-01
As superconducting circuit coherence continues to increase, careful attention must be paid to device fabrication techniques. Substantial evidence points to dielectric loss from two-level state defects in thin amorphous interfacial regions as a limiting relaxation mechanism for superconducting qubits. Transmon qubits have traditionally been fabricated using lift-off aluminum deposited together with their Josephson junctions; however, improved coherence times have recently been found in transmons which use lift-off metal for only a small fraction of the qubit. To better understand this improvement and predict any remaining limits imposed by the incorporation of lift-off, we characterize the increased loss found in coplanar waveguide resonators formed with lift-off metal. We vary surface treatment such as oxygen ashing and ion milling, and study the effects of double-angle evaporation, e-beam resist residue, and surface roughness on resonator quality factors.
Simulating Zeno physics by a quantum quench with superconducting circuits
Tong, Qing-Jun; An, Jun-Hong; Kwek, L. C.; Luo, Hong-Gang; Oh, C. H.
2014-06-01
Studying out-of-equilibrium physics in quantum systems under quantum quench is of vast experimental and theoretical interest. Using periodic quantum quenches, we present an experimentally accessible scheme to simulate the quantum Zeno and anti-Zeno effects in an open quantum system of a single superconducting qubit interacting with an array of transmission line resonators. The scheme is based on the following two observations: First, compared with conventional systems, the short-time nonexponential decay in our superconducting circuit system is readily observed; and second, a quench-off process mimics an ideal projective measurement when its time duration is sufficiently long. Our results show the active role of quantum quench in quantum simulation and control.
Superconducting IF biasing circuit for low-noise cryogenic applications
Energy Technology Data Exchange (ETDEWEB)
Dochev, D; Monje, R; Vassilev, V; Belitsky, V, E-mail: dimitar.dochev@chalmers.s [Department of Radio and Space Science, Chalmers University of Technology, S-412 96 Gothenburg (Sweden)
2010-06-01
A planar superconducting circuit designed for use in low-noise cryogenic applications is presented. The circuit is a bias-T combined with a 4-8 GHz impedance matching circuitry, which employs entirely planar design with a novel layout. The proposed and tested circuitry is intended to be used with a SIS mixer and incorporates a double section transformer based on microstrip line technology with a total impedance transformation of 5:1 within the frequency band. One of the transformer sections employs a three-line coupled line, which also serves as a DC block capacitor. The microstrip lines were manufactured using superconducting Nb metallization, which provides a conduction loss-free solution at the operation temperature of 4 K. S-parameter measurements at 4 K temperature were performed and found to be in a good agreement with the simulations. The device measured return loss is better than -10 dB within the frequency band. Furthermore, the circuit was tested as a part of 385 - 500 GHz double sideband heterodyne SIS receiver demonstrating a flat noise temperature response of 80 - 90 K over the entire IF band of 4 - 8 GHz.
DEFF Research Database (Denmark)
Däumling, Manfred; Olsen, Søren Krüger; Rasmussen, Carsten;
1998-01-01
be recorded using, for example, a digital oscilloscope. The amplitude decay of the periodic voltage or current accurately reflects the power loss in the system. It consists of two components-an ohmic purely exponential one (from leads, contacts, etc.), and a nonexponential component originating from......A simple way to obtain true ac losses with a resonant circuit containing a superconductor, using the decay of the circuit current, is described. For the measurement a capacitor is short circuited with a superconducting cable. Energy in the circuit is provided by either charging up the capacitors...... with a certain voltage, or letting a de flow in the superconductor. When the oscillations are started-either by opening a switch in case a de is flowing or by closing a switch to connect the charged capacitors with the superconductor-the current (via a Rogowski coil) or the voltage on the capacitor can...
Quantum chemistry and charge transport in biomolecules with superconducting circuits
García-Álvarez, L.; Las Heras, U.; Mezzacapo, A.; Sanz, M.; Solano, E.; Lamata, L.
2016-06-01
We propose an efficient protocol for digital quantum simulation of quantum chemistry problems and enhanced digital-analog quantum simulation of transport phenomena in biomolecules with superconducting circuits. Along these lines, we optimally digitize fermionic models of molecular structure with single-qubit and two-qubit gates, by means of Trotter-Suzuki decomposition and Jordan-Wigner transformation. Furthermore, we address the modelling of system-environment interactions of biomolecules involving bosonic degrees of freedom with a digital-analog approach. Finally, we consider gate-truncated quantum algorithms to allow the study of environmental effects.
Atomic physics and quantum optics using superconducting circuits.
You, J Q; Nori, Franco
2011-06-29
Superconducting circuits based on Josephson junctions exhibit macroscopic quantum coherence and can behave like artificial atoms. Recent technological advances have made it possible to implement atomic-physics and quantum-optics experiments on a chip using these artificial atoms. This Review presents a brief overview of the progress achieved so far in this rapidly advancing field. We not only discuss phenomena analogous to those in atomic physics and quantum optics with natural atoms, but also highlight those not occurring in natural atoms. In addition, we summarize several prospective directions in this emerging interdisciplinary field.
Quantum chemistry and charge transport in biomolecules with superconducting circuits
García-Álvarez, L.; Las Heras, U.; Mezzacapo, A.; Sanz, M.; Solano, E.; Lamata, L.
2016-01-01
We propose an efficient protocol for digital quantum simulation of quantum chemistry problems and enhanced digital-analog quantum simulation of transport phenomena in biomolecules with superconducting circuits. Along these lines, we optimally digitize fermionic models of molecular structure with single-qubit and two-qubit gates, by means of Trotter-Suzuki decomposition and Jordan-Wigner transformation. Furthermore, we address the modelling of system-environment interactions of biomolecules involving bosonic degrees of freedom with a digital-analog approach. Finally, we consider gate-truncated quantum algorithms to allow the study of environmental effects. PMID:27324814
Quantum chemistry and charge transport in biomolecules with superconducting circuits.
García-Álvarez, L; Las Heras, U; Mezzacapo, A; Sanz, M; Solano, E; Lamata, L
2016-06-21
We propose an efficient protocol for digital quantum simulation of quantum chemistry problems and enhanced digital-analog quantum simulation of transport phenomena in biomolecules with superconducting circuits. Along these lines, we optimally digitize fermionic models of molecular structure with single-qubit and two-qubit gates, by means of Trotter-Suzuki decomposition and Jordan-Wigner transformation. Furthermore, we address the modelling of system-environment interactions of biomolecules involving bosonic degrees of freedom with a digital-analog approach. Finally, we consider gate-truncated quantum algorithms to allow the study of environmental effects.
Controlling group velocity in a superconductive quantum circuit
Institute of Scientific and Technical Information of China (English)
Qiu Tian-Hui; Yang Guo-Jian
2012-01-01
We investigate the controllable group velocity of a microwave probe field in a superconductive quantum circuit (SQC) pumped by microwave fields,and the use of such a SQC function as an artificial A-type three-level atom.The exchange between the subluminal and the superluminal states of the probe field can be realized simply by sweeping the pumping intensity,and the superluminal state is usually realized with a lower absorption.This work is one of the efforts to extend the study of electromagnetically induced transparency and its related properties from the lightwave band to the microwave band.
Emulating a mesoscopic system using superconducting quantum circuits
Chen, Yu; Barends, R.; Bochmann, J.; Campbell, B.; Chiaro, B.; Jeffrey, E.; Kelly, J.; Mariantoni, M.; Megrant, A.; Mutus, J.; Neill, C.; O'Malley, P.; Ohya, S.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T.; Cleland, A. N.; Martinis, J. M.
2013-03-01
We demonstrate an emulation of a mesoscopic system using superconducting quantum circuits. Taking advantage of our ReZQu-architectured quantum processor, we controllably splitted a microwave photon and manipulated the splitted photons before they recombined for detection. In this way, we were able to simulate the weak localization effect in mesoscopic systems - a coherent backscattering process due to quantum interference. The influence of the phase coherence was investigated by tuning the coherence time of the quantum circuit, which in turn mimics the temperature effect on the weak localization process. At the end, we demonstrated an effect resembling universal conductance fluctuations, which arises from the frequency beating between different coherent backscattering processes. The universality of the observed fluctuation was shown as the independence of the fluctuation amplitude on detailed experimental conditions.
Lumped element modelling of superconducting circuits with SPICE
Baveco, Maurice Antoine
2015-01-01
In this project research is carried out aimed at benchmarking a general-purpose circuit simulation software tool (”SPICE”). The project lasted for 8 weeks, from 29 June 2015 until 21 August 2015 at Performance Evaluation section at CERN. The goal was to apply it on a model of superconducting magnets, namely the main dipole circuit (RB circuit) of the the LHC (Large Hadron Collider), developed by members of the section. Then the strengths and the flaws of the tool were investigated. Transient effects were the main simulation focus point. In the first stage a simplified RB circuit was modelled in SPICE based on subcircuits. The first results were promising but still not with a perfect agreement. After implementing more detailed subcircuits there is an improvement and promising agreement achieved between SPICE and the results of the paper (PSpice) [2]. In general there are more strengths than drawbacks of simulating with SPICE. For example, it should have a shorter simulation time than PSpice for the same mo...
Observation of the Dynamical Casimir Effect in a Superconducting Circuit
Wilson, C M; Pourkabirian, A; Johansson, J R; Duty, T; Nori, F; Delsing, P
2011-01-01
One of the most surprising predictions of modern quantum theory is that the vacuum of space is not empty. In fact, quantum theory predicts that it teems with virtual particles flitting in and out of existence. While initially a curiosity, it was quickly realized that these vacuum fluctuations had measurable consequences, for instance producing the Lamb shift of atomic spectra and modifying the magnetic moment for the electron. This type of renormalization due to vacuum fluctuations is now central to our understanding of nature. However, these effects provide indirect evidence for the existence of vacuum fluctuations. From early on, it was discussed if it might instead be possible to more directly observe the virtual particles that compose the quantum vacuum. 40 years ago, Moore suggested that a mirror undergoing relativistic motion could convert virtual photons into directly observable real photons. This effect was later named the dynamical Casimir effect (DCE). Using a superconducting circuit, we have observ...
Dynamical Lamb effect versus dissipation in superconducting quantum circuits
Zhukov, A. A.; Shapiro, D. S.; Pogosov, W. V.; Lozovik, Yu. E.
2016-06-01
Superconducting circuits provide a new platform for study of nonstationary cavity QED phenomena. An example of such a phenomenon is the dynamical Lamb effect, which is the parametric excitation of an atom due to nonadiabatic modulation of its Lamb shift. This effect was initially introduced for a natural atom in a varying cavity, while we suggest its realization in a superconducting qubit-cavity system with dynamically tunable coupling. In the present paper, we study the interplay between the dynamical Lamb effect and the energy dissipation, which is unavoidable in realistic systems. We find that despite naive expectations, this interplay can lead to unexpected dynamical regimes. One of the most striking results is that photon generation from vacuum can be strongly enhanced due to qubit relaxation, which opens another channel for such a process. We also show that dissipation in the cavity can increase the qubit excited-state population. Our results can be used for experimental observation and investigation of the dynamical Lamb effect and accompanying quantum effects.
Performance of a Y-Ba-Cu-O superconducting filter/GaAs low noise amplifier hybrid circuit
Bhasin, Kul B.; Toncich, S. S.; Chorey, C. M.; Bonetti, R. R.; Williams, A. E.
1992-01-01
A superconducting 7.3 GHz two-pole microstrip bandpass filter and a GaAs low noise amplifier (LNA) were combined into a hybrid circuit and characterized at liquid nitrogen temperatures. This superconducting/seismology circuit's performance was compared to a gold filter/GaAs LNA hybrid circuit. The superconducting filter/GaAs LNA hybrid circuit showed higher gain and lower noise figure than its gold counterpart.
Aluminium-oxide wires for superconducting high kinetic inductance circuits
Rotzinger, H.; Skacel, S. T.; Pfirrmann, M.; Voss, J. N.; Münzberg, J.; Probst, S.; Bushev, P.; Weides, M. P.; Ustinov, A. V.; Mooij, J. E.
2017-02-01
We investigate thin films of conducting aluminium-oxide, also known as granular aluminium, as a material for superconducting high quality, high kinetic inductance circuits. The films are deposited by an optimised reactive DC magnetron sputter process and characterised using microwave measurement techniques at milli-Kelvin temperatures. We show that, by precise control of the reactive sputter conditions, a high room temperature sheet resistance and therefore high kinetic inductance at low temperatures can be obtained. For a coplanar waveguide resonator with 1.5 kΩ sheet resistance and a kinetic inductance fraction close to unity, we measure a quality factor in the order of 700 000 at 20 mK. Furthermore, we observe a sheet resistance reduction by gentle heat treatment in air. This behaviour is exploited to study the kinetic inductance change using the microwave response of a coplanar wave guide resonator. We find the correlation between the kinetic inductance and the sheet resistance to be in good agreement with theoretical expectations.
Suppression of dephasing by qubit motion in superconducting circuits
Averin, D. V.; Hu, K.; Zhong, Y. P.; Song, C.; Wang, H.; Han, S.
We suggest and demonstrate a protocol which suppresses dephasing due to the low-frequency noise by qubit motion, i.e., transfer of the logical qubit of information in a system of n >= 2 physical qubits. The protocol requires only the nearest-neighbor coupling and is applicable to different qubit structures. Motion of a logical qubit limits the correlation time of the effective noise seen by this qubit and suppresses its decoherence rate. This effect is qualitatively similar to the dynamic decoupling, but relies on the different resource: additional physical qubits, not extra control pulses. In this respect, suggested protocol can serve as the basis for an alternative approach to scalable quantum circuits. We further analyze its effectiveness against noises with arbitrary correlations. Our analysis, together with experiments using up to three superconducting qubits, shows that for the realistic uncorrelated noises, qubit motion increases the dephasing time of the logical qubit as √{ n}. In general, the protocol provides a diagnostic tool for measurements of the noise correlations. This work was supported by the National Basic Research Program of China (2014CB921200, 2012CB927404), US NSF Grants PHY-1314758 and PHY-1314861, the National Natural Science Foundation of China, and Zhejiang Provincial Natural Science Foundation.
Phase-controlled coherent population trapping in superconducting quantum circuits
Institute of Scientific and Technical Information of China (English)
程广玲; 王一平; 陈爱喜
2015-01-01
We investigate the influences of the-applied-field phases and amplitudes on the coherent population trapping behavior in superconducting quantum circuits. Based on the interactions of the microwave fields with a single∆-type three-level fluxonium qubit, the coherent population trapping could be obtainable and it is very sensitive to the relative phase and amplitudes of the applied fields. When the relative phase is tuned to 0 orπ, the maximal atomic coherence is present and coherent population trapping occurs. While for the choice ofπ/2, the atomic coherence becomes weak. Meanwhile, for the fixed relative phaseπ/2, the value of coherence would decrease with the increase of Rabi frequency of the external field coupled with two lower levels. The responsible physical mechanism is quantum interference induced by the control fields, which is indicated in the dressed-state representation. The microwave coherent phenomenon is present in our scheme, which will have potential applications in optical communication and nonlinear optics in solid-state devices.
Hardware-Efficient and Fully Autonomous Quantum Error Correction in Superconducting Circuits
Kapit, Eliot
2016-04-01
Superconducting qubits are among the most promising platforms for building a quantum computer. However, individual qubit coherence times are not far past the scalability threshold for quantum error correction, meaning that millions of physical devices would be required to construct a useful quantum computer. Consequently, further increases in coherence time are very desirable. In this Letter, we blueprint a simple circuit consisting of two transmon qubits and two additional lossy qubits or resonators, which is passively protected against all single-qubit quantum error channels through a combination of continuous driving and engineered dissipation. Photon losses are rapidly corrected through two-photon drive fields implemented with driven superconducting quantum interference device couplings, and dephasing from random potential fluctuations is heavily suppressed by the drive fields used to implement the multiqubit Hamiltonian. Comparing our theoretical model to published noise estimates from recent experiments on flux and transmon qubits, we find that logical state coherence could be improved by a factor of 40 or more compared to the individual qubit T1 and T2 using this technique. We thus demonstrate that there is substantial headroom for improving the coherence of modern superconducting qubits with a fairly modest increase in device complexity.
Hardware-Efficient and Fully Autonomous Quantum Error Correction in Superconducting Circuits.
Kapit, Eliot
2016-04-15
Superconducting qubits are among the most promising platforms for building a quantum computer. However, individual qubit coherence times are not far past the scalability threshold for quantum error correction, meaning that millions of physical devices would be required to construct a useful quantum computer. Consequently, further increases in coherence time are very desirable. In this Letter, we blueprint a simple circuit consisting of two transmon qubits and two additional lossy qubits or resonators, which is passively protected against all single-qubit quantum error channels through a combination of continuous driving and engineered dissipation. Photon losses are rapidly corrected through two-photon drive fields implemented with driven superconducting quantum interference device couplings, and dephasing from random potential fluctuations is heavily suppressed by the drive fields used to implement the multiqubit Hamiltonian. Comparing our theoretical model to published noise estimates from recent experiments on flux and transmon qubits, we find that logical state coherence could be improved by a factor of 40 or more compared to the individual qubit T_{1} and T_{2} using this technique. We thus demonstrate that there is substantial headroom for improving the coherence of modern superconducting qubits with a fairly modest increase in device complexity.
Energy Technology Data Exchange (ETDEWEB)
Blackburn, J.A. (Department of Physics and Computing, Wilfrid Laurier University, Waterloo, ON (Canada)); Smith, H.J.T. (Department of Physics, University of Waterloo, Waterloo, ON (Canada))
1990-09-01
Software packages are now available with which complex analog electronic circuits can be simulated on desktop computers. Using Micro Cap III it is demonstrated that the modeling capabilities of such software can be extended to include {ital superconducting} networks by means of an appropriate equivalent circuit for a Josephson junction.
Nori, Franco
2012-02-01
This talk will present an overview of some of our recent results on atomic physics and quantum optics using superconducting circuits. Particular emphasis will be given to photons interacting with qubits, interferometry, the Dynamical Casimir effect, and also studying Majorana fermions using superconducting circuits.[4pt] References available online at our web site:[0pt] J.Q. You, Z.D. Wang, W. Zhang, F. Nori, Manipulating and probing Majorana fermions using superconducting circuits, (2011). Arxiv. J.R. Johansson, G. Johansson, C.M. Wilson, F. Nori, Dynamical Casimir effect in a superconducting coplanar waveguide, Phys. Rev. Lett. 103, 147003 (2009). [0pt] J.R. Johansson, G. Johansson, C.M. Wilson, F. Nori, Dynamical Casimir effect in superconducting microwave circuits, Phys. Rev. A 82, 052509 (2010). [0pt] C.M. Wilson, G. Johansson, A. Pourkabirian, J.R. Johansson, T. Duty, F. Nori, P. Delsing, Observation of the Dynamical Casimir Effect in a superconducting circuit. Nature, in press (Nov. 2011). P.D. Nation, J.R. Johansson, M.P. Blencowe, F. Nori, Stimulating uncertainty: Amplifying the quantum vacuum with superconducting circuits, Rev. Mod. Phys., in press (2011). [0pt] J.Q. You, F. Nori, Atomic physics and quantum optics using superconducting circuits, Nature 474, 589 (2011). [0pt] S.N. Shevchenko, S. Ashhab, F. Nori, Landau-Zener-Stuckelberg interferometry, Phys. Reports 492, 1 (2010). [0pt] I. Buluta, S. Ashhab, F. Nori. Natural and artificial atoms for quantum computation, Reports on Progress in Physics 74, 104401 (2011). [0pt] I.Buluta, F. Nori, Quantum Simulators, Science 326, 108 (2009). [0pt] L.F. Wei, K. Maruyama, X.B. Wang, J.Q. You, F. Nori, Testing quantum contextuality with macroscopic superconducting circuits, Phys. Rev. B 81, 174513 (2010). [0pt] J.Q. You, X.-F. Shi, X. Hu, F. Nori, Quantum emulation of a spin system with topologically protected ground states using superconducting quantum circuit, Phys. Rev. A 81, 063823 (2010).
Energy Technology Data Exchange (ETDEWEB)
Meister, Selina; Kubala, Bjoern; Gramich, Vera; Mecklenburg, Michael; Stockburger, Juergen T.; Ankerhold, Joachim [Institute for Complex Quantum Systems, Ulm University, Albert-Einstein-Allee 11, 89069 Ulm (Germany)
2015-07-01
Motivated by recent experiments a superconducting hybrid circuit consisting of a voltage biased Josephson junction in series with a resonator is studied. For strong driving the dynamics of the system can be very complex, even in the classical regime. Studying the dissipative dynamics within a Langevin-type description, we obtain well-defined dynamical steady states. In contrast to the well-known case of anharmonic potentials, like the Duffing or parametric oscillator, in our case the non-linearity stems from the peculiar way the external drive couples to the system [2]. We investigate the resonance behaviour of this non-linear hybrid system, in particular when driving at higher- or subharmonics. The resulting down- and up-conversions can be observed both, as resonances in the I-V curve, and in the emitted microwave radiation, which yields additional spectral information.
A novel protection layer of superconducting microwave circuits toward a hybrid quantum system
Lee, Jongmin
2014-01-01
We propose a novel multilayer structure based on Bragg layers that can protect a superconducting microwave resonator from photons and blackbody radiation and have little effect on its quality factor. We also discuss a hybrid quantum system exploiting a superconducting microwave circuit and a two-color evanescent field atom trap, where surface-scattered photons and absorption-induced broadband blackbody radiation might deteriorate the system.
Using Superconducting Qubit Circuits to Engineer Exotic Lattice Systems
Tsomokos, Dimitris; Ashhab, Sahel; Nori, Franco
2011-03-01
We propose an architecture based on superconducting qubits and resonators for the implementation of a variety of exotic lattice systems, such as spin and Hubbard models in higher or fractal dimensions and higher-genus topologies. Spin systems are realized naturally using qubits, while superconducting resonators can be used for the realization of Bose-Hubbard models. Fundamental requirements for these designs, such as controllable interactions between arbitrary qubit pairs, have recently been implemented in the laboratory, rendering our proposals feasible with current technology.
Performance of the Superconducting Corrector Magnet Circuits during the Commissioning of the LHC
Venturini-Delsolaro, W; Ballarino, A; Bellesia, B; Bordry, Frederick; Cantone, A; Casas Lino, M; Castaneda Serra, A; Castillo Trello, C; Catalan-Lasheras, N; Charifoulline, Z; Charrondiere, C; Dahlerup-Petersen, K; D'Angelo, G; Denz, R; Fehér, S; Flora, R; Gruwé, M; Kain, V; Karppinen, M; Khomenko, B; Kirby, G; MacPherson, A; Marqueta Barbero, A; Mess, K H; Modena, M; Mompo, R; Montabonnet, V; le Naour, S; Nisbet, D; Parma, V; Pojer, M; Ponce, L; Raimondo, A; Redaelli, S; Remondino, V; Reymond, H; de Rijk, G; Rijllart, A; Romera Ramirez, I; Saban, R; Sanfilippo, S; Schirm, K; Schmidt, R; Siemko, A; Solfaroli Camillocci, M; Thurel, Y; Thiesen, H; Vergara Fernandez, A; Verweij, A; Wolf, R; Zerlauth, M
2008-01-01
The LHC is a complex machine requiring more than 7400 superconducting corrector magnets distributed along a circumference of 26.7 km. These magnets are powered in 1446 different electrical circuits at currents ranging from 60Â A up to 600 A. Among the corrector circuits the 600 A corrector magnets form the most diverse and differentiated group. All together, about 60000 high current connections had to be made. A fault in a circuit or one of the superconducting connections would have severe consequences for the accelerator operation. All magnets are wound from various types of Nb-Ti superconducting strands, and many contain parallel protection resistors to by-pass the current still flowing in the other magnets of the same circuit when they quench. In this paper the performance of these magnet circuits is presented, focussing on the quench behaviour of the magnets. Quench detection and the performance of the electrical interconnects will be dealt with. The results as measured on the entire circuits are compar...
Maintaining Qubit Coherence in the face of Increased Superconducting Circuit Complexity
Hover, David; Weber, Steve; Rosenberg, Danna; Samach, Gabriel; Sears, Adam; Birenbaum, Jeffrey; Woods, Wayne; Yoder, Jonilyn; Racz, Livia; Kerman, Jamie; Oliver, William D.
Maintaining qubit coherence in the face of increased superconducting circuit complexity is a challenge when designing an extensible quantum computing architecture. We consider this challenge in the context of inductively coupled, long-lived, capacitively-shunted flux qubits. Specifically, we discuss our efforts to mitigate the effects of radiation loss, parasitic chip-modes, cross-coupling, and Purcell decay. Our approach employs numerical modeling of the ideal Hamiltonian and electromagnetic analysis of the circuit, both of which are independently shown to be consistent with experimental results. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) and by the Assistant Secretary of Defense for Research & Engineering under Air Force Contract No. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the US Government.
Short Circuits of a 10 MW High Temperature Superconducting Wind Turbine Generator
DEFF Research Database (Denmark)
Song, Xiaowei (Andy); Liu, Dong; Polinder, Henk
2016-01-01
Direct drive high temperature superconducting (HTS) wind turbine generators have been proposed to tackle challenges for ever increasing wind turbine ratings. Due to smaller reactances in HTS generators, higher fault currents and larger transient torques could occur if sudden short circuits happen...... at generator terminals. In this paper, a finite element model that couples magnetic fields and the generator’s equivalent circuits is developed to simulate short circuit faults. Afterwards, the model is used to study the transient performance of a 10 MW HTS wind turbine generator under four different short...... circuits, i.e., three-phase, phase-phase clear of earth, phase-phase-earth, and phase-earth. The stator current, fault torque, and field current under each short circuit scenario are examined. Also included are the forces experienced by the field winding under short circuits. The results show...
Short Circuits of a 10-MW High-Temperature Superconducting Wind Turbine Generator
DEFF Research Database (Denmark)
Song, Xiaowei (Andy); Liu, Dong; Polinder, Henk
2017-01-01
Direct Drive high-temperature superconducting (HTS) wind turbine generators have been proposed to tackle challenges for ever increasing wind turbine ratings. Due to smaller reactances in HTS generators, higher fault currents and larger transient torques could occur if sudden short circuits take...
Distributed quantum computation with superconducting qubit via LC circuit using dressed states
Institute of Scientific and Technical Information of China (English)
Wu Chao; Fang Mao-Fa; Xiao Xing; Li Yan-Ling; Cao Shuai
2011-01-01
A scheme is proposed where two superconducting qubits driven by a classical field interacting separately with two distant LC circuits connected by another LC circuit through mutual inductance, are used for implementing quantum gates. By using dressed states, quantum state transfer and quantum entangling gate can be implemented. With the help of the time-dependent electromagnetic field, any two dressed qubits can be selectively coupled to the data bus (the last LC circuit), then quantum state can be transferred from one dressed qubit to another and multi-mode entangled state can also be formed. As a result, the promising perspectives for quantum information processing of mesoscopic superconducting qubits are obtained and the distributed and scalable quantum computation can be implemented in this scheme.
Superconducting high current magnetic Circuit: Design and Parameter Estimation of a Simulation Model
Kiefer, Alexander; Reich, Werner Dr
The Large Hadron Collider (LHC) utilizes superconducting main dipole magnets that bend the trajectory of the particle beams. In order to adjust the not completely homogeneous magnetic feld of the main dipole magnets, amongst others, sextupole correctcorrector magnets are used. In one of the 16 corrector magnet circuits placed in the LHC, 154 of these sextupole corrector magnets (MCS) are connected in series. This circuit extends on a 3.35 km tunnel section of the LHC. In 2015, at one of the 16 circuits a fault was detected. The simulation of this circuit is helpful for fnding the fault by applying alternating current at different frequencies. Within this Thesis a PSpice model for the simulation of the superconducting corrector magnet circuit was designed. The physical properties of the circuit and its elements were analyzed and implemented. For the magnets and bus-bars, sub-circuits were created which reflect the parasitic effects of electrodynamics and electrostats. The inductance values and capacitance valu...
Josephson directional amplifier for quantum measurement of superconducting circuits.
Abdo, Baleegh; Sliwa, Katrina; Shankar, S; Hatridge, Michael; Frunzio, Luigi; Schoelkopf, Robert; Devoret, Michel
2014-04-25
We realize a microwave quantum-limited amplifier that is directional and can therefore function without the front circulator needed in many quantum measurements. The amplification takes place in only one direction between the input and output ports. Directionality is achieved by multipump parametric amplification combined with wave interference. We have verified the device noise performances by using it to read out a superconducting qubit and observed quantum jumps. With an improved version of this device, the qubit and preamplifer could be integrated on the same chip.
Effect of Multiphoton Processes on Geometric Quantum Computation in Superconducting Circuit QED
Institute of Scientific and Technical Information of China (English)
CHEN Chang-Yong
2012-01-01
We study the influence of multi-photon processes on the geometric quantum computation in the systems of superconducting qubits based on the displacement-like and the general squeezed operator methods. As an example, we focus on the question about how to implement a two-qubit geometric phase gate using superconducting circuit quantum electrodynamics with both single- and two-photon interaction between the qubits and the cavity modes. We find that the multiphoton processes are not only controllable but also improve the gating speed. The comparison with other physical systems and experimental feasibility are discussed in detail.
Quintana, C. M.; Megrant, A.; Chen, Z.; Dunsworth, A.; Chiaro, B.; Barends, R.; Campbell, B.; Chen, Yu; Hoi, I.-C.; Jeffrey, E.; Kelly, J.; Mutus, J. Y.; O'Malley, P. J. J.; Neill, C.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C.; Cleland, A. N.; Martinis, John M.
2014-08-01
Many superconducting qubits are highly sensitive to dielectric loss, making the fabrication of coherent quantum circuits challenging. To elucidate this issue, we characterize the interfaces and surfaces of superconducting coplanar waveguide resonators and study the associated microwave loss. We show that contamination induced by traditional qubit lift-off processing is particularly detrimental to quality factors without proper substrate cleaning, while roughness plays at most a small role. Aggressive surface treatment is shown to damage the crystalline substrate and degrade resonator quality. We also introduce methods to characterize and remove ultra-thin resist residue, providing a way to quantify and minimize remnant sources of loss on device surfaces.
Energy Technology Data Exchange (ETDEWEB)
Quintana, C. M.; Megrant, A.; Chen, Z.; Dunsworth, A.; Chiaro, B.; Barends, R.; Campbell, B.; Chen, Yu; Hoi, I.-C.; Jeffrey, E.; Kelly, J.; Mutus, J. Y.; O' Malley, P. J. J.; Neill, C.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C.; Cleland, A. N. [Department of Physics, University of California, Santa Barbara, California 93106 (United States); and others
2014-08-11
Many superconducting qubits are highly sensitive to dielectric loss, making the fabrication of coherent quantum circuits challenging. To elucidate this issue, we characterize the interfaces and surfaces of superconducting coplanar waveguide resonators and study the associated microwave loss. We show that contamination induced by traditional qubit lift-off processing is particularly detrimental to quality factors without proper substrate cleaning, while roughness plays at most a small role. Aggressive surface treatment is shown to damage the crystalline substrate and degrade resonator quality. We also introduce methods to characterize and remove ultra-thin resist residue, providing a way to quantify and minimize remnant sources of loss on device surfaces.
Towards phase-coherent caloritronics in superconducting circuits.
Fornieri, Antonio; Giazotto, Francesco
2017-10-06
The emerging field of phase-coherent caloritronics (from the Latin word calor, heat) is based on the possibility of controlling heat currents by using the phase difference of the superconducting order parameter. The goal is to design and implement thermal devices that can control energy transfer with a degree of accuracy approaching that reached for charge transport by contemporary electronic components. This can be done by making use of the macroscopic quantum coherence intrinsic to superconducting condensates, which manifests itself through the Josephson effect and the proximity effect. Here, we review recent experimental results obtained in the realization of heat interferometers and thermal rectifiers, and discuss a few proposals for exotic nonlinear phase-coherent caloritronic devices, such as thermal transistors, solid-state memories, phase-coherent heat splitters, microwave refrigerators, thermal engines and heat valves. Besides being attractive from the fundamental physics point of view, these systems are expected to have a vast impact on many cryogenic microcircuits requiring energy management, and possibly lay the first stone for the foundation of electronic thermal logic.
Consolidation of the LHC Superconducting Circuits: A Major Step towards 14 TeV Collisions
Tock, J Ph; Bordry, F; Fessia, P; Ostojic, R; Perin, A; Prin, H; Savary, F; Scheuerlein, C; Ten Kate, H H J; Verweij, A; Willering, G P
2012-01-01
Following the incident in one of the main dipole circuits of the Large Hadron Collider (LHC) in September 2008, a detailed analysis of all magnet circuits has been performed by a dedicated task force. This analysis has revealed critical issues in the design of the 13 kA splices between the superconducting dipole and quadrupole magnets. These splices have to be consolidated before increasing the beam energy above 4 TeV and operating the LHC at 6.5-7 TeV per beam. The design of the consolidated 13 kA splices is complete and has been reviewed by an international committee of experts. Also, all other types of superconducting circuits have been thoroughly screened for potential safety issues and several important recommendations were established. They were critically assessed and the resulting actions are presented. In addition to the work on the 13 kA splices, other interventions will be performed during the first long shut-down of the LHC to consolidate globally all superconducting circuits. The associated quali...
Mortensen, Henrik Lund; Mølmer, Klaus; Andersen, Christian Kraglund
2016-11-01
We present a method to identify the coupled, normal modes of a superconducting transmission line with an embedded lumped element circuit. We evaluate the effective transmission-line nonlinearities in the case of Kerr-like Josephson interactions in the circuit and in the case where the embedded circuit constitutes a qubit degree of freedom, which is Rabi coupled to the field in the transmission line. Our theory quantitatively accounts for the very high and positive Kerr nonlinearities observed in a recent experiment [M. Rehák, P. Neilinger, M. Grajcar, G. Oelsner, U. Hübner, E. Il'ichev, and H.-G. Meyer, Appl. Phys. Lett. 104, 162604 (2014), 10.1063/1.4873719], and we can evaluate the accomplishments of modified versions of the experimental circuit.
Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip
Schuck, Carsten; Fan, Linran; Ma, Xiao-Song; Poot, Menno; Tang, Hong X
2015-01-01
Quantum information processing holds great promise for communicating and computing data efficiently. However, scaling current photonic implementation approaches to larger system size remains an outstanding challenge for realizing disruptive quantum technology. Two main ingredients of quantum information processors are quantum interference and single-photon detectors. Here we develop a hybrid superconducting-photonic circuit system to show how these elements can be combined in a scalable fashion on a silicon chip. We demonstrate the suitability of this approach for integrated quantum optics by interfering and detecting photon pairs directly on the chip with waveguide-coupled single-photon detectors. Using a directional coupler implemented with silicon nitride nanophotonic waveguides, we observe 97% interference visibility when measuring photon statistics with two monolithically integrated superconducting single photon detectors. The photonic circuit and detector fabrication processes are compatible with standa...
Universal holonomic quantum gates in decoherence-free subspace on superconducting circuits
Xue, Zheng-Yuan; Zhou, Jian; Wang, Z. D.
2015-08-01
To implement a set of universal quantum logic gates based on non-Abelian geometric phases, it is conventional wisdom that quantum systems beyond two levels are required, which is extremely difficult to fulfill for superconducting qubits and appears to be a main reason why only single-qubit gates were implemented in a recent experiment [A. A. Abdumalikov, Jr. et al., Nature (London) 496, 482 (2013), 10.1038/nature12010]. Here we propose to realize nonadiabatic holonomic quantum computation in decoherence-free subspace on circuit QED, where one can use only the two levels in transmon qubits, a usual interaction, and a minimal resource for the decoherence-free subspace encoding. In particular, our scheme not only overcomes the difficulties encountered in previous studies but also can still achieve considerably large effective coupling strength, such that high-fidelity quantum gates can be achieved. Therefore, the present scheme makes realizing robust holonomic quantum computation with superconducting circuits very promising.
Influence of an inner short-circuit on the behaviour of the superconducting magnet
Energy Technology Data Exchange (ETDEWEB)
Zizek, F. (Skoda k.p., Plzen (Czechoslovakia))
1984-01-01
On exciting one of the superconducting quadrupole magnets, voltage pulses were observed on the winding outlets. Over a certain current level the pulses disappeared and a quench of the magnet was registered. A subsequent analysis proved that phenomenon was caused by short-circuiting of the turns inside one of the quadrupole coils. The voltage pulses were caused by repeated quenches of the short-circuited part of the winding. The above effect did not appear until a certain rate of rise of the current was attained.
Rabi model as a quantum coherent heat engine: From quantum biology to superconducting circuits
Altintas, Ferdi; Hardal, Ali Ü. C.; Müstecaplıoǧlu, Özgür E.
2015-02-01
We propose a multilevel quantum heat engine with a working medium described by a generalized Rabi model which consists of a two-level system coupled to a single-mode bosonic field. The model is constructed to be a continuum limit of a quantum biological description of light-harvesting complexes so that it can amplify quantum coherence by a mechanism which is a quantum analog of classical Huygens clocks. The engine operates in a quantum Otto cycle where the working medium is coupled to classical heat baths in the isochoric processes of the four-stroke cycle, while either the coupling strength or the resonance frequency is changed in the adiabatic stages. We found that such an engine can produce work with an efficiency close to the Carnot bound when it operates at low temperatures and in the ultrastrong-coupling regime. The interplay of the effects of quantum coherence and quantum correlations on the engine performance is discussed in terms of second-order coherence, quantum mutual information, and the logarithmic negativity of entanglement. We point out that the proposed quantum Otto engine can be implemented experimentally with modern circuit quantum electrodynamic systems where flux qubits can be coupled ultrastrongly to superconducting transmission-line resonators.
Digital-analog quantum simulation of generalized Dicke models with superconducting circuits
Lamata, Lucas
2017-01-01
We propose a digital-analog quantum simulation of generalized Dicke models with superconducting circuits, including Fermi- Bose condensates, biased and pulsed Dicke models, for all regimes of light-matter coupling. We encode these classes of problems in a set of superconducting qubits coupled with a bosonic mode implemented by a transmission line resonator. Via digital-analog techniques, an efficient quantum simulation can be performed in state-of-the-art circuit quantum electrodynamics platforms, by suitable decomposition into analog qubit-bosonic blocks and collective single-qubit pulses through digital steps. Moreover, just a single global analog block would be needed during the whole protocol in most of the cases, superimposed with fast periodic pulses to rotate and detune the qubits. Therefore, a large number of digital steps may be attained with this approach, providing a reduced digital error. Additionally, the number of gates per digital step does not grow with the number of qubits, rendering the simulation efficient. This strategy paves the way for the scalable digital-analog quantum simulation of many-body dynamics involving bosonic modes and spin degrees of freedom with superconducting circuits. PMID:28256559
The upside of noise: engineered dissipation as a resource in superconducting circuits
Kapit, Eliot
2017-09-01
Historically, noise in superconducting circuits has been considered an obstacle to be removed. A large fraction of the research effort in designing superconducting circuits has focused on noise reduction, with great success, as coherence times have increased by four orders of magnitude in the past two decades. However, noise and dissipation can never be fully eliminated, and further, a rapidly growing body of theoretical and experimental work has shown that carefully tuned noise, in the form of engineered dissipation, can be a profoundly useful tool in designing and operating quantum circuits. In this article, I review important applications of engineered dissipation, including state generation, state stabilization, and autonomous quantum error correction, where engineered dissipation can mitigate the effect of intrinsic noise, reducing logical error rates in quantum information processing. Further, I provide a pedagogical review of the basic noise processes in superconducting qubits (photon loss and phase noise), and argue that any dissipative mechanism which can correct photon loss errors is very likely to automatically suppress dephasing. I also discuss applications for quantum simulation, and possible future research directions.
Digital-analog quantum simulation of generalized Dicke models with superconducting circuits
Lamata, Lucas
2017-03-01
We propose a digital-analog quantum simulation of generalized Dicke models with superconducting circuits, including Fermi- Bose condensates, biased and pulsed Dicke models, for all regimes of light-matter coupling. We encode these classes of problems in a set of superconducting qubits coupled with a bosonic mode implemented by a transmission line resonator. Via digital-analog techniques, an efficient quantum simulation can be performed in state-of-the-art circuit quantum electrodynamics platforms, by suitable decomposition into analog qubit-bosonic blocks and collective single-qubit pulses through digital steps. Moreover, just a single global analog block would be needed during the whole protocol in most of the cases, superimposed with fast periodic pulses to rotate and detune the qubits. Therefore, a large number of digital steps may be attained with this approach, providing a reduced digital error. Additionally, the number of gates per digital step does not grow with the number of qubits, rendering the simulation efficient. This strategy paves the way for the scalable digital-analog quantum simulation of many-body dynamics involving bosonic modes and spin degrees of freedom with superconducting circuits.
Generation of Fock states in a superconducting quantum circuit.
Hofheinz, Max; Weig, E M; Ansmann, M; Bialczak, Radoslaw C; Lucero, Erik; Neeley, M; O'Connell, A D; Wang, H; Martinis, John M; Cleland, A N
2008-07-17
Spin systems and harmonic oscillators comprise two archetypes in quantum mechanics. The spin-1/2 system, with two quantum energy levels, is essentially the most nonlinear system found in nature, whereas the harmonic oscillator represents the most linear, with an infinite number of evenly spaced quantum levels. A significant difference between these systems is that a two-level spin can be prepared in an arbitrary quantum state using classical excitations, whereas classical excitations applied to an oscillator generate a coherent state, nearly indistinguishable from a classical state. Quantum behaviour in an oscillator is most obvious in Fock states, which are states with specific numbers of energy quanta, but such states are hard to create. Here we demonstrate the controlled generation of multi-photon Fock states in a solid-state system. We use a superconducting phase qubit, which is a close approximation to a two-level spin system, coupled to a microwave resonator, which acts as a harmonic oscillator, to prepare and analyse pure Fock states with up to six photons. We contrast the Fock states with coherent states generated using classical pulses applied directly to the resonator.
Anomalous open-circuit voltage from a high-Tc superconducting dynamo
Bumby, C. W.; Jiang, Zhenan; Storey, J. G.; Pantoja, A. E.; Badcock, R. A.
2016-03-01
We report on the behavior of a high-Tc superconducting (HTS) homopolar dynamo which outputs a DC open-circuit voltage when the stator is in the superconducting state, but behaves as a conventional AC alternator when the stator is in the normal state. We observe that this time-averaged DC voltage arises from a change in the shape of the AC voltage waveform that is obtained from a normal conducting stator. The measured DC voltage is proportional to frequency, and decreases with increasing flux gap between the rotor magnet and the HTS stator wire. We observe that the DC output voltage decreases to zero at large flux gaps, although small differences between the normal-conducting and superconducting waveforms are still observed, which we attribute to screening currents in the HTS stator wire. Importantly, the normalised pulse shape is found to be a function of the rotor position angle only. Based on these observations, we suggest that the origin of this unexpected DC effect can be explained by a model first proposed by Giaever, which considers the impact of time-varying circulating eddy currents within the HTS stator wire. Such circulating currents form a superconducting shunt path which "short-circuits" the high field region directly beneath the rotor magnet, at those points in the cycle when the rotor magnet partially overlaps the superconducting stator wire. This reduces the output voltage from the device during these periods of the rotor cycle, leading to partial rectification of the output voltage waveform and hence the emergence of a time-averaged DC voltage.
Qiu, W.; Makise, K.; Terai, H.; Nakamura, Y.; Wang, Z.
2014-05-01
Dielectric loss from two-level systems (TLSs) formed by local defects have shown a significant impact on the qubit coherence time. These defects can originate in the insulation material for superconducting wires isolation or in the Josephson junction tunnel barrier material. Due to the complexity of the qubit circuit fabrication process, identifying the contribution from each decoherence source is challenging. In an effort to address this issue, we have developed superconducting qubit that consists of full epitaxially-grown NbN/AlN/NbN Josephson junctions in NbN coplanar waveguide (CPW) resonator circuit. The dielectric loss introduced from TLFs in tunnel junction barrier has been largely reduced due to the unique epitaxial feature of the tunnel junction. The quality factor Qi of the CPW resonator was measured and the dielectric loss tanδ is 3×10-4. The relaxation time inferred from the measured resonator quality factor was comparable to the qubit relaxation time.
Superconducting quantum circuits at the surface code threshold for fault tolerance.
Barends, R; Kelly, J; Megrant, A; Veitia, A; Sank, D; Jeffrey, E; White, T C; Mutus, J; Fowler, A G; Campbell, B; Chen, Y; Chen, Z; Chiaro, B; Dunsworth, A; Neill, C; O'Malley, P; Roushan, P; Vainsencher, A; Wenner, J; Korotkov, A N; Cleland, A N; Martinis, John M
2014-04-24
A quantum computer can solve hard problems, such as prime factoring, database searching and quantum simulation, at the cost of needing to protect fragile quantum states from error. Quantum error correction provides this protection by distributing a logical state among many physical quantum bits (qubits) by means of quantum entanglement. Superconductivity is a useful phenomenon in this regard, because it allows the construction of large quantum circuits and is compatible with microfabrication. For superconducting qubits, the surface code approach to quantum computing is a natural choice for error correction, because it uses only nearest-neighbour coupling and rapidly cycled entangling gates. The gate fidelity requirements are modest: the per-step fidelity threshold is only about 99 per cent. Here we demonstrate a universal set of logic gates in a superconducting multi-qubit processor, achieving an average single-qubit gate fidelity of 99.92 per cent and a two-qubit gate fidelity of up to 99.4 per cent. This places Josephson quantum computing at the fault-tolerance threshold for surface code error correction. Our quantum processor is a first step towards the surface code, using five qubits arranged in a linear array with nearest-neighbour coupling. As a further demonstration, we construct a five-qubit Greenberger-Horne-Zeilinger state using the complete circuit and full set of gates. The results demonstrate that Josephson quantum computing is a high-fidelity technology, with a clear path to scaling up to large-scale, fault-tolerant quantum circuits.
Fermion-fermion scattering in quantum field theory with superconducting circuits.
García-Álvarez, L; Casanova, J; Mezzacapo, A; Egusquiza, I L; Lamata, L; Romero, G; Solano, E
2015-02-20
We propose an analog-digital quantum simulation of fermion-fermion scattering mediated by a continuum of bosonic modes within a circuit quantum electrodynamics scenario. This quantum technology naturally provides strong coupling of superconducting qubits with a continuum of electromagnetic modes in an open transmission line. In this way, we propose qubits to efficiently simulate fermionic modes via digital techniques, while we consider the continuum complexity of an open transmission line to simulate the continuum complexity of bosonic modes in quantum field theories. Therefore, we believe that the complexity-simulating-complexity concept should become a leading paradigm in any effort towards scalable quantum simulations.
Rabi model as a quantum coherent heat engine: From quantum biology to superconducting circuits
2014-01-01
PHYSICAL REVIEW A 91, 023816 (2015) Rabi model as a quantum coherent heat engine: From quantum biology to superconducting circuits Ferdi Altintas,1 Ali U¨ . C. Hardal,2 and O¨ zgu¨r E. Mu¨stecaplıog˘lu2,* 1Department of Physics, Abant Izzet Baysal University, Bolu, 14280, Turkey 2Department of Physics, Koc¸ University, Sarıyer, ˙Istanbul, 34450, Turkey (Received 10 November 2014; published 12 February 2015) We propose a multilevel quantum heat engine with a working medium de...
Measurement scheme for the Lamb shift in a superconducting circuit with broadband environment
Energy Technology Data Exchange (ETDEWEB)
Gramich, V.; Ankerhold, J. [Institut fuer Theoretische Physik, Universitaet Ulm, Albert-Einstein-Allee 11, D-89069 Ulm (Germany); Solinas, P.; Moettoenen, M. [Department of Applied Physics/COMP, Aalto University, P.O. Box 14100, FIN-00076 Aalto (Finland); Low Temperature Laboratory, Aalto University, P.O. Box 13500, FIN-00076 Aalto (Finland); Pekola, J. P. [Low Temperature Laboratory, Aalto University, P.O. Box 13500, FIN-00076 Aalto (Finland)
2011-11-15
Motivated by recent experiments on quantum mechanical charge pumping in a Cooper pair sluice, we present a measurement scheme for observing shifts of transition frequencies in two-level quantum systems induced by broadband environmental fluctuations. In contrast to quantum optical and related setups based on cavities, the impact of a thermal phase reservoir is considered. A thorough analysis of Lamb and Stark shifts within weak-coupling master equations is complemented by nonperturbative results for the model of an exactly solvable harmonic system. The experimental protocol to measure the Lamb shift in experimentally feasible superconducting circuits is analyzed in detail and supported by numerical simulations.
Multi-photon dressing of an anharmonic superconducting many-level quantum circuit
Energy Technology Data Exchange (ETDEWEB)
Braumueller, Jochen; Cramer, Joel; Schloer, Steffen; Rotzinger, Hannes; Radtke, Lucas; Lukashenko, Alexander; Yang, Ping; Skacel, Sebastian; Probst, Sebastian; Weides, Martin [Karlsruhe Institute of Technology (KIT), Physikalisches Institut, 76131 Karlsruhe (Germany); Marthaler, Michael; Guo, Lingzhen [Karlsruhe Institute of Technology (KIT), Institut fuer Theoretische Festkoerperphysik, 76131 Karlsruhe (Germany); Ustinov, Alexey V. [Karlsruhe Institute of Technology (KIT), Physikalisches Institut, 76131 Karlsruhe (Germany); National University of Science and Technology MISIS, Moscow 119049 (Russian Federation)
2015-07-01
We report on the investigation of a superconducting anharmonic multi-level circuit that is coupled to a harmonic readout resonator. We observe multi-photon transitions via virtual energy levels of our system up to the fifth excited state. The back-action of these higher-order excitations on our readout device is analyzed quantitatively and demonstrated to be in accordance with theoretical expectation. By applying a strong microwave drive we achieve multi-photon dressing of our system which is dynamically coupled by a weak probe tone. The emerging higher-order Rabi sidebands and associated Autler-Townes splittings involving up to five levels of the investigated anharmonic circuit are observed. Experimental results are in good agreement with master equation simulations.
Experiments on two-resonator circuit quantum electrodynamics. A superconducting quantum switch
Energy Technology Data Exchange (ETDEWEB)
Hoffmann, Elisabeth Christiane Maria
2013-05-29
The field of cavity quantum electrodynamics (QED) studies the interaction between light and matter on a fundamental level. In typical experiments individual natural atoms are interacting with individual photons trapped in three-dimensional cavities. Within the last decade the prospering new field of circuit QED has been developed. Here, the natural atoms are replaced by artificial solid state quantum circuits offering large dipole moments which are coupled to quasi-onedimensional cavities providing a small mode volume and hence a large vacuum field strength. In our experiments Josephson junction based superconducting quantum bits are coupled to superconducting microwave resonators. In circuit QED the number of parameters that can be varied is increased and regimes that are not accessible using natural atoms can be entered and investigated. Apart from design flexibility and tunability of system parameters a particular advantage of circuit QED is the scalability to larger system size enabled by well developed micro- and nanofabrication tools. When scaling up the resonator-qubit systems beyond a few coupled circuits, the rapidly increasing number of interacting subsystems requires an active control and directed transmission of quantum signals. This can, for example, be achieved by implementing switchable coupling between two microwave resonators. To this end, a superconducting flux qubit is used to realize a suitable coupling between two microwave resonators, all working in the Gigahertz regime. The resulting device is called quantum switch. The flux qubit mediates a second order tunable and switchable coupling between the resonators. Depending on the qubit state, this coupling can compensate for the direct geometric coupling of the two resonators. As the qubit may also be in a quantum superposition state, the switch itself can be ''quantum'': it can be a superposition of ''on'' and ''off''. This work
Institute of Scientific and Technical Information of China (English)
Xue-Ping Gu; Zhi-Long Yang
2008-01-01
The transient stability of a single machine to infinite-busbar power system with resistor- type superconducting fault current limiters (SFCL) is analyzed under asymmetrical short-circuit fault conditions. The SFCL is considered to introduce a resistance into the three-phase circuits when faults occur. Based on the power-angle curves for different short-circuit conditions of the single-line to ground, double-line to ground and line to line short-circuit faults, the influences of the SFCLs on transient stability are analyzed in detail. The time-domain simulation of transient stability is carried out to verify the analytical results.
Nanofabrication for On-Chip Optical Levitation, Atom-Trapping, and Superconducting Quantum Circuits
Norte, Richard Alexander
a final value of Qm = 5.8(1.1) x 105, representing more than an order of magnitude improvement over the conventional limits of SiO2 for a pendulum geometry. Our technique may enable new opportunities for mechanical sensing and facilitate observations of quantum behavior in this class of mechanical systems. We then give a detailed overview of the techniques used to produce high-aspect-ratio nanostructures with applications in a wide range of quantum optics experiments. The ability to fabricate such nanodevices with high precision opens the door to a vast array of experiments which integrate macroscopic optical setups with lithographically engineered nanodevices. Coupled with atom-trapping experiments in the Kimble Lab, we use these techniques to realize a new waveguide chip designed to address ultra-cold atoms along lithographically patterned nanobeams which have large atom-photon coupling and near 4pi Steradian optical access for cooling and trapping atoms. We describe a fully integrated and scalable design where cold atoms are spatially overlapped with the nanostring cavities in order to observe a resonant optical depth of d0 ≈ 0.15. The nanodevice illuminates new possibilities for integrating atoms into photonic circuits and engineering quantum states of atoms and light on a microscopic scale. We then describe our work with superconducting microwave resonators coupled to a phononic cavity towards the goal of building an integrated device for quantum-limited microwave-to-optical wavelength conversion. We give an overview of our characterizations of several types of substrates for fabricating a low-loss high-frequency electromechanical system. We describe our electromechanical system fabricated on a SiN membrane which consists of a 12 GHz superconducting LC resonator coupled capacitively to the high frequency localized modes of a phononic nanobeam. Using our suspended membrane geometry we isolate our system from substrates with significant loss tangents
Poole, Charles P; Farach, Horacio A
1995-01-01
Superconductivity covers the nature of the phenomenon of superconductivity. The book discusses the fundamental principles of superconductivity; the essential features of the superconducting state-the phenomena of zero resistance and perfect diamagnetism; and the properties of the various classes of superconductors, including the organics, the buckministerfullerenes, and the precursors to the cuprates. The text also describes superconductivity from the viewpoint of thermodynamics and provides expressions for the free energy; the Ginzburg-Landau and BCS theories; and the structures of the high
Preparation and measurement of three-qubit entanglement in a superconducting circuit.
Dicarlo, L; Reed, M D; Sun, L; Johnson, B R; Chow, J M; Gambetta, J M; Frunzio, L; Girvin, S M; Devoret, M H; Schoelkopf, R J
2010-09-30
Traditionally, quantum entanglement has been central to foundational discussions of quantum mechanics. The measurement of correlations between entangled particles can have results at odds with classical behaviour. These discrepancies grow exponentially with the number of entangled particles. With the ample experimental confirmation of quantum mechanical predictions, entanglement has evolved from a philosophical conundrum into a key resource for technologies such as quantum communication and computation. Although entanglement in superconducting circuits has been limited so far to two qubits, the extension of entanglement to three, eight and ten qubits has been achieved among spins, ions and photons, respectively. A key question for solid-state quantum information processing is whether an engineered system could display the multi-qubit entanglement necessary for quantum error correction, which starts with tripartite entanglement. Here, using a circuit quantum electrodynamics architecture, we demonstrate deterministic production of three-qubit Greenberger-Horne-Zeilinger (GHZ) states with fidelity of 88 per cent, measured with quantum state tomography. Several entanglement witnesses detect genuine three-qubit entanglement by violating biseparable bounds by 830 ± 80 per cent. We demonstrate the first step of basic quantum error correction, namely the encoding of a logical qubit into a manifold of GHZ-like states using a repetition code. The integration of this encoding with decoding and error-correcting steps in a feedback loop will be the next step for quantum computing with integrated circuits.
Lift-Off Processing and Aluminum on Silicon Superconducting Circuit Coherence
Dunsworth, Andrew; Megrant, Anthony; Quintana, Chris; Chen, Zijun; Barends, Rami; Chen, Yu; Fowler, Austin; Jeffrey, Evan; Mutus, Josh; Roushan, Pedram; Sank, Daniel; Hoi, Iochun; Campbell, Brooks; Chiaro, Ben; Kelly, Julian; Neil, Charels; O'Malley, Peter; Vainsencher, Amit; Wenner, Jim; White, Ted; Cleland, Andrew; Martinis, John; Martinis Group Team
2015-03-01
Dielctric loss from two level states (TLS's) are a limiting decoherence method in planar superconducting qubits. Previously we have shown that liftoff deposited metal has more loss than etched devices. Current fabrication techniques of Xmon qubit devices limit this loss by using liftoff metal on only a small area of the transmon including the Josephson junctions. However this method leads to excess loss when used on a silicon substrate. I have used quality factor measurments of coplanar waveguide resonator circuits as a tool to measure isolated steps in the liftoff processes. I will report on the effects of these steps and their added loss. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), through the Army Research Office Grant JMAR-05.
New signatures of the dynamical Casimir effect in a superconducting circuit
Rego, Andreson L C; Alves, Danilo T; Farina, C
2014-01-01
We found new signatures of the dynamical Casimir effect (DCE) in the context of superconducting circuits. We show that if the recent experiment made by Wilson {\\it et al}, which brought the DCE into reality for the first time, is repeated with slight modifications (for instance, different values for the capacitance of the SQUID), three remarkable results will show up, namely: {\\it (i)} a quite different spectral distribution for the created particles, deviating from the typical parabolic shape; {\\it (ii)} an enhancement by a factor of approximately $5 \\times 10^3 $ in the number of created particles with half driven frequency of the effective moving mirror and {\\it (iii)} an enhancement by a factor of $3 \\times 10^2$ in the particle creation rate. These results may guide the experimentalists in their search for alternative routes to observe the DCE in future experiments.
Spectrally resolved single-photon imaging with hybrid superconducting - nanophotonic circuits
Kahl, O; Kovalyuk, V; Vetter, A; Lewes-Malandrakis, G; Nebel, C; Korneev, A; Goltsman, G; Pernice, W
2016-01-01
The detection of individual photons is an inherently binary mechanism, revealing either their absence or presence while concealing their spectral information. For multi-color imaging techniques, such as single photon spectroscopy, fluorescence resonance energy transfer microscopy and fluorescence correlation spectroscopy, wavelength discrimination is essential and mandates spectral separation prior to detection. Here, we adopt an approach borrowed from quantum photonic integration to realize a compact and scalable waveguide-integrated single-photon spectrometer capable of parallel detection on multiple wavelength channels, with temporal resolution below 50 ps and dark count rates below 10 Hz. We demonstrate multi-detector devices for telecommunication and visible wavelengths and showcase their performance by imaging silicon vacancy color centers in diamond nanoclusters. The fully integrated hybrid superconducting-nanophotonic circuits enable simultaneous spectroscopy and lifetime mapping for correlative imagi...
Gain-assisted optical bistability and multistability in superconducting phase quantum circuits
Amini Sabegh, Z.; Maleki, M. A.; Mahmoudi, M.
2017-02-01
We study the absorption and optical bistability (OB) behavior of the superconducting phase quantum circuits in the four-level cascade and closed-loop configurations. It is shown that the OB is established in both configurations and it can be controlled by the intensity and frequency of applied fluxes. It is also demonstrated that the gain-assisted OB is generated in both configurations and can switch to the gain-assisted optical multistability (OM) only by changing the relative phase of applied fluxes in closed-loop quantum system. It is worth noting that the several significant output fluxes with negligible inputs can be seen in bistable behavior of the closed-loop configuration due to the nonlinear processing.
Epitaxial Al2O3 capacitors for low microwave loss superconducting quantum circuits
Directory of Open Access Journals (Sweden)
K.-H. Cho
2013-10-01
Full Text Available We have characterized the microwave loss of high-Q parallel plate capacitors fabricated from thin-film Al/Al2O3/Re heterostructures on (0001 Al2O3 substrates. The superconductor-insulator-superconductor trilayers were grown in situ in a hybrid deposition system: the epitaxial Re base and polycrystalline Al counterelectrode layers were grown by sputtering, while the epitaxial Al2O3 layer was grown by pulsed laser deposition. Structural analysis indicates a highly crystalline epitaxial Al2O3 layer and sharp interfaces. The measured intrinsic (low-power, low-temperature quality factor of the resonators is as high as 3 × 104. These results indicate that low-loss grown Al2O3 is an attractive candidate dielectric for high-fidelity superconducting qubit circuits.
Kumagai, Daisuke; Ohsaki, Hiroyuki; Tomita, Masaru
2016-12-01
A superconducting power cable has merits of a high power transmission capacity, transmission losses reduction, a compactness, etc., therefore, we have been studying the feasibility of applying superconducting power cables to DC electric railway feeding systems. However, a superconducting power cable is required to be cooled down and kept at a very low temperature, so it is important to reveal its thermal and cooling characteristics. In this study, electric circuit analysis models of the system and thermal analysis models of superconducting cables were constructed and the system behaviors were simulated. We analyzed the heat generation by a short circuit accident and transient temperature distribution of the cable to estimate the value of temperature rise and the time required from the accident. From these results, we discussed a feasibility of superconducting cables for DC electric railway feeding systems. The results showed that the short circuit accident had little impact on the thermal condition of a superconducting cable in the installed system.
Charifoulline, Z; Denz, R; Siemko, A; Steckert, J
2012-01-01
The interconnections between the LHC main magnets are made of soldered joints (splices) of two superconducting cables stabilized by a copper bus-bar. After the 2008 LHC incident, caused by a defective interconnection, a new layer of high resolution magnet circuit quench protection (nQPS) has been developed and integrated with the existing systems. It allowed mapping of the resistances of all superconducting splices during the 2009 commissioning campaign. Since April 2010, when the LHC was successfully restarted at 3.5 TeV, every bus bar interconnection is constantly monitored by the nQPS electronics. The acquired data are saved to the LHC Logging Database. The paper will briefly describe the data analysis method and will present the results from the two years of resistance measurements. Although no splice was found with resistance higher than 3.3 n and no significant degradation in time was observed so far, the monitoring of splices will stay active till the end of LHC 4 TeV run. The detected outliers wil...
Superconducting qubit-oscillator circuit beyond the ultrastrong-coupling regime
Yoshihara, Fumiki; Fuse, Tomoko; Ashhab, Sahel; Kakuyanagi, Kosuke; Saito, Shiro; Semba, Kouichi
2017-01-01
The interaction between an atom and the electromagnetic field inside a cavity has played a crucial role in developing our understanding of light-matter interaction, and is central to various quantum technologies, including lasers and many quantum computing architectures. Superconducting qubits have allowed the realization of strong and ultrastrong coupling between artificial atoms and cavities. If the coupling strength g becomes as large as the atomic and cavity frequencies (Δ and ωo, respectively), the energy eigenstates including the ground state are predicted to be highly entangled. There has been an ongoing debate over whether it is fundamentally possible to realize this regime in realistic physical systems. By inductively coupling a flux qubit and an LC oscillator via Josephson junctions, we have realized circuits with g/ωo ranging from 0.72 to 1.34 and g/Δ >> 1. Using spectroscopy measurements, we have observed unconventional transition spectra that are characteristic of this new regime. Our results provide a basis for ground-state-based entangled pair generation and open a new direction of research on strongly correlated light-matter states in circuit quantum electrodynamics.
Coupling an Ensemble of Electrons on Superfluid Helium to a Superconducting Circuit
Directory of Open Access Journals (Sweden)
Ge Yang
2016-03-01
Full Text Available The quantized lateral motional states and the spin states of electrons trapped on the surface of superfluid helium have been proposed as basic building blocks of a scalable quantum computer. Circuit quantum electrodynamics allows strong dipole coupling between electrons and a high-Q superconducting microwave resonator, enabling such sensitive detection and manipulation of electron degrees of freedom. Here, we present the first realization of a hybrid circuit in which a large number of electrons are trapped on the surface of superfluid helium inside a coplanar waveguide resonator. The high finesse of the resonator allows us to observe large dispersive shifts that are many times the linewidth and make fast and sensitive measurements on the collective vibrational modes of the electron ensemble, as well as the superfluid helium film underneath. Furthermore, a large ensemble coupling is observed in the dispersive regime during experiment, and it shows excellent agreement with our numeric model. The coupling strength of the ensemble to the cavity is found to be ≈1 MHz per electron, indicating the feasibility of achieving single electron strong coupling.
Thomas, D B
1974-01-01
A short general review is presented of the progress made in applied superconductivity as a result of work performed in connection with the high-energy physics program in Europe. The phenomenon of superconductivity and properties of superconductors of Types I and II are outlined. The main body of the paper deals with the development of niobium-titanium superconducting magnets and of radio-frequency superconducting cavities and accelerating structures. Examples of applications in and for high-energy physics experiments are given, including the large superconducting magnet for the Big European Bubble Chamber, prototype synchrotron magnets for the Super Proton Synchrotron, superconducting d.c. beam line magnets, and superconducting RF cavities for use in various laboratories. (0 refs).
Kim, Jeong-Gyun; Kang, Haeyong; Kim, Joonggyu; Lee, Young Hee; Suh, Dongseok
A flexible superconducting fiber is prepared by twisting carbon nanotube (CNT) sheets coated with sputter-deposited niobium nitride (NbN) layer to form the shape of yarn. Twisted CNT yarn, which has been extensively studied due to its high flexibility as well as excellent mechanical properties, and NbN, which is a superconducting material with high transition temperature (Tc) and critical magnetic field (Hc), are combined together by the deposition of NbN layer on free-standing CNT-sheet substrate followed by the biscrolling process. We tried many experimental conditions to investigate the superconducting properties of NbN-CNT yarn as a function of NbN thickness and number of CNT-sheet layers, and found out that the superconducting property of NbN on CNT-sheet can be comparable to that of NbN thin film on the normal solid substrate. In addition, the superconducting property survived even under the condition of severe mechanical deformation such as knotting. These results show the potential application of this technology as a large-scale fabrication method of flexible, mechanically robust, high performance superconducting wire. This work is supported by the Institute for Basic Science (IBS-R011-D1), and by the National Research Foundation (BSR-2013R1A1A1076063) funded by the Ministry of Science, ICT & Future Planning, Republic of Korea.
Institute of Scientific and Technical Information of China (English)
Wu Yu-Lin; Deng Hui; Yu Hai-Feng; Xue Guang-Ming; Tian Ye; Li Jie; Chen Ying-Fei
2013-01-01
Besides serving as promising candidates for realizing quantum computing,superconducting quantum circuits are one of a few macroscopic physical systems in which fundamental quantum phenomena can be directly demonstrated and tested,giving rise to a vast field of intensive research work both theoretically and experimentally.In this paper we report our work on the fabrication of superconducting quantum circuits,starting from its building blocks:Al/AlOx/Al Josephson junctions.By using electron beam lithography patterning and shadow evaporation,we have fabricated aluminum Josephson junctions with a controllable critical current density (jc) and wide range of junction sizes from 0.01 μm2 up to 1 μm2.We have carried out systematical studies on the oxidation process in fabricating Al/AlOx/Al Josephson junctions suitable for superconducting flux qubits.Furthermore,we have also fabricated superconducting quantum circuits such as superconducting flux qubits and charge-flux qubits.
1989-07-01
SUPERCONDUCTIVITY HIGH-POWER APPLICATIONS Electric power generation/transmission Energy storage Acoustic projectors Weapon launchers Catapult Ship propulsion • • • Stabilized...temperature superconductive shields could be substantially enhanced by use of high-Tc materials. 27 28 NRAC SUPERCONDUCTIVITY SHIP PROPULSION APPLICATIONS...motor shown in the photograph. As a next step in the evolution of electric-drive ship propulsion technology, DTRC has proposed to scale up the design
Castellano, Maria Gabriella; Grönberg, Leif; Carelli, Pasquale; Chiarello, Fabio; Cosmelli, Carlo; Leoni, Roberto; Poletto, Stefano; Torrioli, Guido; Hassel, Juha; Helistö, Panu
2006-08-01
In order to integrate superconducting qubits with rapid-single-flux-quantum (RSFQ) control circuitry, it is necessary to develop a fabrication process that simultaneously fulfils the requirements of both elements: low critical current density, very low operating temperature (tens of millikelvin) and reduced dissipation on the qubit side; high operation frequency, large stability margins, low dissipated power on the RSFQ side. For this purpose, VTT has developed a fabrication process based on Nb trilayer technology, which allows the on-chip integration of superconducting qubits and RSFQ circuits even at very low temperature. Here we present the characterization (at 4.2 K) of the process from the point of view of the Josephson devices and show that they are suitable to build integrated superconducting qubits.
Sabegh, Z Amini; Maleki, M A; Mahmoudi, M
2015-01-01
We study the propagation and amplification of a microwave field in a four-level cascade quantum system which is realized in a superconducting phase quantum circuit. It is shown that by increasing the microwave pump tones feeding the system, the normal dispersion switches to the anomalous and the gain-assisted superluminal microwave propagation is obtained in this system. Moreover, it is demonstrated that the stimulated microwave field is generated via four-wave mixing without any inversion population in the energy levels of the system (amplification without inversion) and the group velocity of the generated pulse can be controlled by the external oscillating magnetic fluxes. We also show that in some special set of parameters, the absorption-free superluminal generated microwave propagation is obtained in superconducting phase quantum circuit system.
DEFF Research Database (Denmark)
Liu, Dong; Polinder, Henk; Abrahamsen, Asger Bech;
2017-01-01
Superconducting synchronous generators (SCSGs) are drawing more attention in large direct-drive wind turbine applications. Despite low weight and compactness, the short circuit torque of an SCSG may be too high for wind turbine constructions due to a large magnetic air gap of an SCSG. This paper...... aims at assessing the effects of armature winding segmentation on reducing the short circuit torque of 10-MW SCSGs. A concept of armature winding segmentation with multiple power electronic converters is presented. Four SCSG designs using different topologies are examined. Results show that armature...
Lukasik, B.; Goddard, K F; Sykulski, J. K.
2009-01-01
The paper outlines methods developed to obtain circuit parameters of a superconducting synchronous generator with a coreless rotor. The need for full three–dmensional (3D) finite element modeling is emphasized and appropriate techniques devised to estimate relevant equivalent characteristics. The methods described use steady-state ac models, predominantly in the rotor frame of reference; the use of transient or full rotating machine models is avoided.
A Delay Model of Multiple-Valued Logic Circuits Consisting of Min, Max, and Literal Operations
Takagi, Noboru
Delay models for binary logic circuits have been proposed and clarified their mathematical properties. Kleene's ternary logic is one of the simplest delay models to express transient behavior of binary logic circuits. Goto first applied Kleene's ternary logic to hazard detection of binary logic circuits in 1948. Besides Kleene's ternary logic, there are many delay models of binary logic circuits, Lewis's 5-valued logic etc. On the other hand, multiple-valued logic circuits recently play an important role for realizing digital circuits. This is because, for example, they can reduce the size of a chip dramatically. Though multiple-valued logic circuits become more important, there are few discussions on delay models of multiple-valued logic circuits. Then, in this paper, we introduce a delay model of multiple-valued logic circuits, which are constructed by Min, Max, and Literal operations. We then show some of the mathematical properties of our delay model.
Wang, Xin; Miranowicz, Adam; Li, Hong-Rong; Nori, Franco
2016-11-01
Single-photon devices at microwave frequencies are important for applications in quantum information processing and communication in the microwave regime. In this work we describe a proposal of a multioutput single-photon device. We consider two superconducting resonators coupled to a gap-tunable qubit via both its longitudinal and transverse degrees of freedom. Thus, this qubit-resonator coupling differs from the coupling in standard circuit quantum-electrodynamic systems described by the Jaynes-Cummings model. We demonstrate that an effective quadratic coupling between one of the normal modes and the qubit can be induced and this induced second-order nonlinearity is much larger than that for conventional Kerr-type systems exhibiting photon blockade. Assuming that a coupled normal mode is resonantly driven, we observe that the output fields from the resonators exhibit strong sub-Poissonian photon-number statistics and photon antibunching. Contrary to previous studies on resonant photon blockade, the first-excited state of our device is a pure single-photon Fock state rather than a polariton state, i.e., a highly hybridized qubit-photon state. In addition, it is found that the optical state truncation caused by the strong qubit-induced nonlinearity can lead to an entanglement between the two resonators, even in their steady state under the Markov approximation.
A twofold quantum delayed-choice experiment in a superconducting circuit.
Liu, Ke; Xu, Yuan; Wang, Weiting; Zheng, Shi-Biao; Roy, Tanay; Kundu, Suman; Chand, Madhavi; Ranadive, Arpit; Vijay, Rajamani; Song, Yipu; Duan, Luming; Sun, Luyan
2017-05-01
Wave-particle complementarity lies at the heart of quantum mechanics. To illustrate this mysterious feature, Wheeler proposed the delayed-choice experiment, where a quantum system manifests the wave- or particle-like attribute, depending on the experimental arrangement, which is made after the system has entered the interferometer. In recent quantum delayed-choice experiments, these two complementary behaviors were simultaneously observed with a quantum interferometer in a superposition of being closed and open. We suggest and implement a conceptually different quantum delayed-choice experiment by introducing a which-path detector (WPD) that can simultaneously record and neglect the system's path information, but where the interferometer itself is classical. Our experiment is realized with a superconducting circuit, where a cavity acts as the WPD for an interfering qubit. Using this setup, we implement the first twofold delayed-choice experiment, which demonstrates that the system's behavior depends not only on the measuring device's configuration that can be chosen even after the system has been detected but also on whether we a posteriori erase or mark the which-path information, the latter of which cannot be revealed by previous quantum delayed-choice experiments. Our results represent the first demonstration of both counterintuitive features with the same experimental setup, significantly extending the concept of quantum delayed-choice experiment.
Development of a position decoder circuit for PET consisting of GAPD arrays
Energy Technology Data Exchange (ETDEWEB)
Jung, Jin Ho [Department of Electronic Engineering, Sogang University, 1 Sinsu-dong, Mapo-gu. Seoul 121-742 (Korea, Republic of); Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-Dong, Kangnam-Ku, Seoul 135-710 (Korea, Republic of); Choi, Yong, E-mail: ychoi@skku.ed [Department of Electronic Engineering, Sogang University, 1 Sinsu-dong, Mapo-gu. Seoul 121-742 (Korea, Republic of); Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-Dong, Kangnam-Ku, Seoul 135-710 (Korea, Republic of); Hong, Key Jo; Hu, Wei; Kang, Ji Hoon; Min, Byung Jun; Shin, Seung Han; Lim, Hyun Keong; Huh, Yoon Suk [Department of Electronic Engineering, Sogang University, 1 Sinsu-dong, Mapo-gu. Seoul 121-742 (Korea, Republic of); Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-Dong, Kangnam-Ku, Seoul 135-710 (Korea, Republic of); Kim, Eun-Jeong [Mesamedical Co. Ltd., Seoul 137-130 (Korea, Republic of)
2010-09-21
Use of channel reduction techniques that reduce the number of signals transmitted to a data acquisition (DAQ) module can lead to more efficient use of the DAQ module for PET with numerous readout channels. The purpose of this study was to develop a position decoder circuit (PDC) with a capacity to output the digital address and analog pulse of one interacted channel from numerous PET outputs. A PDC capable of reducing the number of readout channels by a factor of 32 was designed and fabricated. PET detector modules consisting of an LYSO scintillator, a 4x4 array Geiger-mode avalanche photodiode (GAPD), and a 16-channel preamplifier were also constructed to evaluate the performance of the PDC developed for this study. The output signal from the PET detector module was transmitted to the DAQ module after a 45 ns delay by the PDC. Using the gain correction circuit implemented in the PDC, gain uniformity for all channels of the PET detector module was improved by 80%. Energy resolution in the PET detector was 20.4% with the PDC and 20.8% without the PDC. Timing resolution was 2.2 ns with the PDC and 1.5 ns without the PDC. A hot-rod phantom image was successfully acquired using proof-of-principle PET with the PDC developed for this study. Experimental results indicate that the PDC developed for this study is not only useful for the reduction of the readout channel number from the PET detector module consisting of GAPD arrays, but also for PET signal processing and PET imaging.
Ketterson, John B
2008-01-01
Conceived as the definitive reference in a classic and important field of modern physics, this extensive and comprehensive handbook systematically reviews the basic physics, theory and recent advances in the field of superconductivity. Leading researchers, including Nobel laureates, describe the state-of-the-art in conventional and unconventional superconductors at a particularly opportune time, as new experimental techniques and field-theoretical methods have emerged. In addition to full-coverage of novel materials and underlying mechanisms, the handbook reflects continued intense research into electron-phone based superconductivity. Considerable attention is devoted to high-Tc superconductivity, novel superconductivity, including triplet pairing in the ruthenates, novel superconductors, such as heavy-Fermion metals and organic materials, and also granular superconductors. What’s more, several contributions address superconductors with impurities and nanostructured superconductors. Important new results on...
Itoh, Tatsuo
1992-01-01
The research effort was continued to design and characterize superconducting transmission line structures. The research during this period was concentrated on the implementation of a superconductor into coplanar waveguide structures. First, the superconducting coplanar waveguide was examined, and compared with a superconducting microstrip line in terms of loss characteristics and their design aspects. Then, the research was carried on the design and characterization of the coplanar waveguide family in the packaging environment. The transition between the coaxial line to the conductor backed coplanar waveguide was also designed for the measurement of the superconducting conductor backed coplanar waveguide.
Hekmati, Arsalan; Aliahmadi, Mehdi
2016-12-01
High temperature superconducting, HTS, synchronous machines benefit from a rotor magnetic shield in order to protect superconducting coils against asynchronous magnetic fields. This magnetic shield, however, suffers from exerted Lorentz forces generated in light of induced eddy currents during transient conditions, e.g. stator windings short-circuit fault. In addition, to the exerted electromagnetic forces, eddy current losses and the associated effects on the cryogenic system are the other consequences of shielding HTS coils. This study aims at investigating the Rotor Magnetic Shield, RMS, performance in HTS synchronous generators under stator winding short-circuit fault conditions. The induced eddy currents in different circumferential positions of the rotor magnetic shield along with associated Joule heating losses would be studied using 2-D time-stepping Finite Element Analysis, FEA. The investigation of Lorentz forces exerted on the magnetic shield during transient conditions has also been performed in this paper. The obtained results show that double line-to-ground fault is of the most importance among different types of short-circuit faults. It was revealed that when it comes to the design of the rotor magnetic shields, in addition to the eddy current distribution and the associated ohmic losses, two phase-to-ground fault should be taken into account since the produced electromagnetic forces in the time of fault conditions are more severe during double line-to-ground fault.
Two-circuit cryogenic system for cooling and cryostating a superconductive turbogenerator
Energy Technology Data Exchange (ETDEWEB)
Vishnev, I.P.; Kalitin, P.P.; Krauze, A.I.
1985-01-01
This paper reports the results of experimentation with a cryogenic system which indicate that the system meets the refrigeration and cryostating requirements of superconductive turbogenerators and the thermal, hydraulic, mechanical and electrical calculation procedures which they have developed and tested and which make it possible to plan similar high-power superconductive electrical devices.
Poole, Charles P; Creswick, Richard J; Prozorov, Ruslan
2014-01-01
Superconductivity, Third Edition is an encyclopedic treatment of all aspects of the subject, from classic materials to fullerenes. Emphasis is on balanced coverage, with a comprehensive reference list and significant graphics from all areas of the published literature. Widely used theoretical approaches are explained in detail. Topics of special interest include high temperature superconductors, spectroscopy, critical states, transport properties, and tunneling. This book covers the whole field of superconductivity from both the theoretical and the experimental point of view. This third edition features extensive revisions throughout, and new chapters on second critical field and iron based superconductors.
Energy Technology Data Exchange (ETDEWEB)
Khan, Umer Amir [Hanyang University, Sa-3dong, Sangrok-gu, Ansan 426-791 (Korea, Republic of); National University of Sciences and Technology, PNEC Campus, Habib Rehmatullah Road, Karachi (Pakistan); Lee, Jong-Geon; Seo, In-Jin [Hanyang University, Sa-3dong, Sangrok-gu, Ansan 426-791 (Korea, Republic of); Amir, Faisal [National University of Sciences and Technology, PNEC Campus, Habib Rehmatullah Road, Karachi (Pakistan); Lee, Bang-Wook, E-mail: bangwook@hanyang.ac.kr [Hanyang University, Sa-3dong, Sangrok-gu, Ansan 426-791 (Korea, Republic of)
2015-11-15
Highlights: • A novel hybrid-type superconducting circuit breaker (SDCCB) is proposed. • SDCCB has SFCL located in the main current path to limit the fault current until the final trip signal. • SFCL in SDCCB suppressed the fast rising DC fault current for a predefined time. • SFCL significantly reduced the DC current breaking stress on SDCCB components. • SDCCB isolated the HVDC faulty line in three, four, and five converter stations MTDC. - Abstract: Voltage source converter-based HVDC systems (VSC-HVDC) are a better alternative than conventional thyristor-based HVDC systems, especially for developing multi-terminal HVDC systems (MTDC). However, one of the key obstacles in developing MTDC is the absence of an adequate protection system that can quickly detect faults, locate the faulty line and trip the HVDC circuit breakers (DCCBs) to interrupt the DC fault current. In this paper, a novel hybrid-type superconducting circuit breaker (SDCCB) is proposed and feasibility analyses of its application in MTDC are presented. The SDCCB has a superconducting fault current limiter (SFCL) located in the main current path to limit fault currents until the final trip signal is received. After the trip signal the IGBT located in the main line commutates the current into a parallel line where DC current is forced to zero by the combination of IGBTs and surge arresters. Fault simulations for three-, four- and five-terminal MTDC were performed and SDCCB performance was evaluated in these MTDC. Passive current limitation by SFCL caused a significant reduction of fault current interruption stress in the SDCCB. It was observed that the DC current could change direction in MTDC after a fault and the SDCCB was modified to break the DC current in both the forward and reverse directions. The simulation results suggest that the proposed SDCCB could successfully suppress the DC fault current, cause a timely interruption, and isolate the faulty HVDC line in MTDC.
Upgrade of the protection system for superconducting circuits in the LHC
Denz, R; Formenti, F; Meß, K H; Siemko, A; Steckert, J; Walckiers, L; Strait, J
2010-01-01
Prior to the re-start of the Large Hadron Collider LHC in 2009 the protection system for superconducting magnets and bus-bars QPS will be substantially upgraded. The foreseen modifications will enhance the capability of the system in detecting problems related to the electrical interconnections between superconducting magnets as well as the detection of so-called aperture symmetric quenches in the LHC main magnets.
DEFF Research Database (Denmark)
Liu, Dong; Polinder, Henk; Abrahamsen, Asger Bech
2015-01-01
To reduce the cost of energy of offshore wind energy conversion, large individual wind turbines of 10 MW or higher power levels are drawing more attention and expected to be desirable. Conventional wind generator systems would be rather large and costly if scaled up to 10 MW. Direct drive...... superconducting generators have been proposed to reduce the generator size, because the electrical machines with superconducting windings are capable of achieving a higher torque density. However, a superconducting machine is likely to produce an excessive torque during a short circuit because of its small...
Khan, Umer Amir; Lee, Jong-Geon; Seo, In-Jin; Amir, Faisal; Lee, Bang-Wook
2015-11-01
Voltage source converter-based HVDC systems (VSC-HVDC) are a better alternative than conventional thyristor-based HVDC systems, especially for developing multi-terminal HVDC systems (MTDC). However, one of the key obstacles in developing MTDC is the absence of an adequate protection system that can quickly detect faults, locate the faulty line and trip the HVDC circuit breakers (DCCBs) to interrupt the DC fault current. In this paper, a novel hybrid-type superconducting circuit breaker (SDCCB) is proposed and feasibility analyses of its application in MTDC are presented. The SDCCB has a superconducting fault current limiter (SFCL) located in the main current path to limit fault currents until the final trip signal is received. After the trip signal the IGBT located in the main line commutates the current into a parallel line where DC current is forced to zero by the combination of IGBTs and surge arresters. Fault simulations for three-, four- and five-terminal MTDC were performed and SDCCB performance was evaluated in these MTDC. Passive current limitation by SFCL caused a significant reduction of fault current interruption stress in the SDCCB. It was observed that the DC current could change direction in MTDC after a fault and the SDCCB was modified to break the DC current in both the forward and reverse directions. The simulation results suggest that the proposed SDCCB could successfully suppress the DC fault current, cause a timely interruption, and isolate the faulty HVDC line in MTDC.
Energy Technology Data Exchange (ETDEWEB)
Chet Nieter
2010-12-01
Superconducting radio frequency (SRF) cavities are a popular choice among researchers designing new accelerators because of the reduced power losses due to surface resistance. However, SRF cavities still have unresolved problems, including the loss of power to stray electrons. Sources of these electrons are field emission from the walls and ionization of background gas, but the predominant source is secondary emission yield (SEY) from electron impact. When the electron motion is in resonance with the cavity fields the electrons strike the cavity surface repeatedly creating a resonant build up of electrons referred to as multipacting. Cavity shaping has successfully reduced multipacting for cavities used in very high energy accelerators. However, multipacting is still a concern for the cavity power couplers, where shaping is not possible, and for cavities used to accelerate particles at moderate velocities. This Phase II project built upon existing models in the VORPAL simulation framework to allow for simulations of multipacting behavior in SRF cavities and their associated structures. The technical work involved allowed existing models of secondary electron generation to work with the complex boundary conditions needed to model the cavity structures. The types of data produced by VORPAL were also expanded to include data common used by cavity designers to evaluate cavity performance. Post-processing tools were also modified to provide information directly related to the conditions that produce multipacting. These new methods were demonstrated by running simulations of a cavity design being developed by researchers at Jefferson National Laboratory to attempt to identify the multipacting that would be an issue for the cavity design being considered. These simulations demonstrate that VORPAL now has the capabilities to assist researchers working with SRF cavities to understand and identify possible multipacting issues with their cavity designs.
Short-circuit experiments on a high Tc-superconducting cable conductor
DEFF Research Database (Denmark)
Tønnesen, Ole; Jensen, E.H.; Traholt, C.
2002-01-01
A high temperature superconductor (HTS) cable conductor (CC) with a critical current of 2.1 kA was tested over a range of short-circuit currents up to 20 kA. The duration of the short-circuit currents is 1 s. Between each short-circuit test the critical current of the HTS CC was measured in order...... to detect degradation due to the short-circuit current. During the over-current testing the current and voltage along the CC were measured as well as its temperature. Significant warming above the critical temperature occurs for short-circuit currents of 10 kA and above. No critical current degradation...
Chancellor, N.; Zohren, S.; Warburton, P. A.
2017-06-01
Quantum annealing provides a way of solving optimization problems by encoding them as Ising spin models which are implemented using physical qubits. The solution of the optimization problem then corresponds to the ground state of the system. Quantum tunneling is harnessed to enable the system to move to the ground state in a potentially high non-convex energy landscape. A major difficulty in encoding optimization problems in physical quantum annealing devices is the fact that many real world optimization problems require interactions of higher connectivity, as well as multi-body terms beyond the limitations of the physical hardware. In this work we address the question of how to implement multi-body interactions using hardware which natively only provides two-body interactions. The main result is an efficient circuit design of such multi-body terms using superconducting flux qubits in which effective N-body interactions are implemented using N ancilla qubits and only two inductive couplers. It is then shown how this circuit can be used as the unit cell of a scalable architecture by applying it to a recently proposed embedding technique for constructing an architecture of logical qubits with arbitrary connectivity using physical qubits which have nearest-neighbor four-body interactions. It is further shown that this design is robust to non-linear effects in the coupling loops, as well as mismatches in some of the circuit parameters.
Lee, Hongseok; Mo, Young Kyu; Kang, Jong O.; Bang, Seungmin; Kim, Junil; Lee, Onyou; Kang, Hyoungku; Hong, Jonggi; Choi, Sukjin; Hong, In Seok; Nam, Seokho; Ahn, Min Chul
2015-10-01
A linear accelerator, called RAON, is being developed as a part of the Rare Isotope Science Project (RISP) at the Institute for Basic Science (IBS). The linear accelerator utilizes an electron cyclotron resonance (ECR) ion source for providing intense highly-charged ion beams to the linear accelerator. The 28-GHz ECR ion source can extract heavy-ion beams from protons to uranium. The superconducting magnet system for the 28-GHz ECR ion source is composed of hexapole coils and four solenoid coils made with low-Tc superconducting wires of NbTi. An electromagnetic force acts on the superconducting magnets due to the magnetic field and flowing current in the case of not only the normal state but also the quench state. In the case of quench on hexapole coils, an unbalanced flowing current among the hexapole coils is generated and causes an unbalanced electromagnetic force. Coil motions and coil strains in the quench state are larger than those in the normal state due to the unbalanced electromagnetic force among hexapole coils. Therefore, an analysis of the electromagnetic characteristics of the superconducting magnet for the 28-GHz ECR ion source on series resistance of the protection circuit in the case of quench should be conducted. In this paper, an analysis of electromagnetic characteristics of Superconducting hexapole coils for the 28-GHz ECR ion source according to the series resistance of the protection circuit in the case of quench performed by using finite-elements-method (FEM) simulations is reported.
Huang, Da
2011-01-01
The consistency of loop regularization (LORE) method is explored in multiloop calculations. A key concept of the LORE method is the introduction of irreducible loop integrals (ILIs) which are evaluated from the Feynman diagrams by adopting the Feynman parametrization and ultraviolet-divergence-preserving(UVDP) parametrization. It is then inevitable for the ILIs to encounter the divergences in the UVDP-parameter space due to the generic overlapping divergences in the 4-dimensional momentum space. By computing the so-called $\\alpha\\beta\\gamma$ integrals arising from two loop Feynman diagrams, we show how to deal with the divergences in the parameter space by applying for the LORE method. By identifying the divergences in the UVDP-parameter space to those in the subdiagrams of two loop diagrams, we arrive at the Bjorken-Drell's analogy between Feynman diagrams and electrical circuits, where the UVDP parameters are associated with the conductance or resistance in the electrical circuits. In particular, the sets o...
Hofherr, Matthias; Wetzstein, Olaf; Engert, Sonja; Ortlepp, Thomas; Berg, Benjamin; Ilin, Konstantin; Henrich, Dagmar; Stolz, Ronny; Toepfer, Hannes; Meyer, Hans-Georg; Siegel, Michael
2012-12-17
We propose an efficient multiplexing technique for superconducting nanowire single-photon detectors based on an orthogonal detector bias switching method enabling the extraction of the average count rate of a set of detectors by one readout line. We implemented a system prototype where the SNSPDs are connected to an integrated cryogenic readout and a pulse merger system based on rapid single flux quantum (RSFQ) electronics. We discuss the general scalability of this concept, analyze the environmental requirements which define the resolvability and the accuracy and demonstrate the feasibility of this approach with experimental results for a SNSPD array with four pixels.
Bahgat Shehata, A.; Stellari, F.
2015-01-01
Time-Resolved Emission (TRE) is a truly non-invasive technique based on the detection of intrinsic light emitted by integrated circuits that is used for the detection of timing related faults from the backside of flip-chip VLSI circuits. Single-photon detectors with extended sensitivity in the Near Infrared (NIR) are used to perform time-correlated single-photon counting measurements and retrieve the temporal distribution of the emitted photons, thus identifying gates switching events. The noise, efficiency and jitter performance of the detector are crucial to enable ultra-low voltage waveform sensitivity. For this reason, cryogenically cooled Superconducting Nanowire Single-Photon Detectors (SNSPDs) offer superior performance compared to state-of-the-art Single-Photon Avalanche Diodes (SPADs). In this paper we will discuss how detector front-end electronics parameters, such as bias current, RF attenuation and comparator threshold, can be tailored to optimize the measurement Signal-to-Noise Ratio (SNR), defined as the ratio between the switching emission peak amplitude and the standard deviation of the noise in the time interval in which there are no photons emitted from the circuit. For example, reducing the attenuation and the threshold of the comparator used to detect switching events may lead to an improvement of the jitter, due to the better discrimination of the detector firing, but also a higher sensitivity to external electric noise disturbances. Similarly, by increasing the bias current, both the detection efficiency and the jitter improve, but the noise increases as well. For these reasons an optimization of the SNR is necessary. For this work, TRE waveforms were acquired from a 32 nm Silicon On Insulator (SOI) chip operating down to 0.4 V using different generations of SNSPD systems.
Huang, Da; Wu, Yue-Liang
2012-07-01
The consistency of loop regularization (LORE) method is explored in multiloop calculations. A key concept of the LORE method is the introduction of irreducible loop integrals (ILIs) which are evaluated from the Feynman diagrams by adopting the Feynman parametrization and ultraviolet-divergence-preserving (UVDP) parametrization. It is then inevitable for the ILIs to encounter the divergences in the UVDP parameter space due to the generic overlapping divergences in the four-dimensional momentum space. By computing the so-called αβγ integrals arising from two-loop Feynman diagrams, we show how to deal with the divergences in the parameter space with the LORE method. By identifying the divergences in the UVDP parameter space to those in the subdiagrams, we arrive at the Bjorken-Drell analogy between Feynman diagrams and electrical circuits. The UVDP parameters are shown to correspond to the conductance or resistance in the electrical circuits, and the divergence in Feynman diagrams is ascribed to the infinite conductance or zero resistance. In particular, the sets of conditions required to eliminate the overlapping momentum integrals for obtaining the ILIs are found to be associated with the conservations of electric voltages, and the momentum conservations correspond to the conservations of electrical currents, which are known as the Kirchhoff laws in the electrical circuits analogy. As a practical application, we carry out a detailed calculation for one-loop and two-loop Feynman diagrams in the massive scalar ϕ 4 theory, which enables us to obtain the well-known logarithmic running of the coupling constant and the consistent power-law running of the scalar mass at two-loop level. Especially, we present an explicit demonstration on the general procedure of applying the LORE method to the multiloop calculations of Feynman diagrams when merging with the advantage of Bjorken-Drell's circuit analogy.
Partial-Measurement Backaction and Nonclassical Weak Values in a Superconducting Circuit
Groen, J.P.; Riste, D.; Tornberg, L.; Cramer, J.; De Groot, P.C.; Picot, T.; Johansson, G.; DiCarlo, L.
2013-01-01
We realize indirect partial measurement of a transmon qubit in circuit quantum electrodynamics by interaction with an ancilla qubit and projective ancilla measurement with a dedicated readout resonator. Accurate control of the interaction and ancilla measurement basis allows tailoring the measuremen
CAD model for circuit parameters of superconducting-based hybrid planar transmission lines
Energy Technology Data Exchange (ETDEWEB)
Mohebbi, Hamid Reza; Hamed Majedi, A, E-mail: hmohebbi@maxwell.uwaterloo.c, E-mail: ahmajedi@maxwell.uwaterloo.c [Integrated Quantum Optoelectronics Lab (IQOL), Department of ECE, Institute for Quantum Computing (IQC), University of Waterloo, Waterloo, N2L 3G1 (Canada)
2009-12-15
Using the concept of surface impedance associated with a superconductor or normal conductor's plate, we extend the CAD (computer aided design) formalisms on modeling and simulation of superconducting and normal transmission lines (STL and NTL) in order to include hybrid transmission lines (HTL). STL and NTL are entirely made of superconductor or normal conductor materials, respectively. In this paper, HTL refers to a planar transmission line (TL) such as parallel plate (PPTL), microstrip ({mu}TL) and coplanar waveguide (CPW) whose ground plate is superconducting and whose top/center strip is a normal conductor or vice versa. We develop and present a set of closed-form equations in a tidy and succinct form for each configuration (STL, NTL and HTL) for widely-used planar TLs (PPTL, {mu}TL and CPW). They can be easily implemented in a systematic way by the user for the purpose of fast TL design. The results obtained with this CAD tool are compared with previously reported results in the literature, and good agreement is observed.
Quantum Bayesian rule for weak measurements of qubits in superconducting circuit QED
Wang, Peiyue; Qin, Lupei; Li, Xin-Qi
2014-01-01
Compared with the quantum trajectory equation, the quantum Bayesian approach has the advantage of being more efficient to infer quantum state under monitoring, based on the integrated output of measurement. For weak measurement of qubits in circuit quantum electrodynamics(cQED), properly accounting for the measurement backaction effects within the Bayesian framework is an important problem of current interest.Elegant work towards this task was carried out by Korotkov in "bad-cavity" and weak-...
Man'ko, M. A.; Man'ko, V. I.
2016-03-01
We show that the density-matrix states of noncomposite qudit systems satisfy entropic and information relations like the subadditivity condition, strong subadditivity condition, and Araki-Lieb inequality, which characterize hidden quantum correlations of observables associated with these indivisible systems. We derive these relations employing a specific map of the entropic inequalities known for density matrices of multiqudit systems to the inequalities for density matrices of single-qudit systems. We present the obtained relations in the form of mathematical inequalities for arbitrary Hermitian N × N-matrices. We consider examples of superconducting qubits and qudits. We discuss the hidden correlations in single- qudit states as a new resource for quantum technologies analogous to the known resource in correlations associated with the entanglement in multiqudit systems.
Enhancing LVRT of DFIG by Using a Superconducting Current Limiter on Rotor Circuit
Directory of Open Access Journals (Sweden)
Flávio Oliveira
2015-12-01
Full Text Available This paper have studied the dynamic of a 2.0 MW Doubly Fed Induction Generator (DFIG during a severe voltage sag. Using the dynamic model of a DFIG, it was possible to determine the current, Electromagnetic Force and flux behavior during three-phase symmetrical voltage dip. Among the technologies of wind turbines the DFIG is widely employed; however, this machine is extremely susceptible to disturbances from the grid. In order to improve DFIG Low Voltage Ride-Through (LVRT, it is proposed a novel solution, using Superconducting Current Limiter (SCL in two arrangements: one, the SCL is placed between the machine rotor and the rotor side converter (RSC, and another placed in the RSC DC-link. The proposal is validated through simulation using PSCAD™/EMTDC™ and according to requirements of specific regulations. The analysis ensure that both SCL arrangements behave likewise, and are effective in decrement the rotor currents during the disturbance.
Li, Hai-Chao; Zhang, Hai-Yang; He, Qing; Ge, Guo-Qin
2016-09-01
We demonstrate the controllable nonlinear microwave modulation in a cyclically driven three-level superconducting Josephson system. By designing two subtle matched conditions in the △-type atom-field configuration, a new physical mechanism - combined action of nonlinear wave mixing and wave interference - is developed and leads to not only amplification but also attenuation for two microwave signals. Our results show that such a nonlinear manipulation of the signal transition from enhancement to damping can be tuned in a large scope by controlling the relative phase and the driving-field frequency and thus the solid-state Josephson system can act as a phase- and frequency-controlled amplitude modulator. Our study opens up a fascinating perspective for its widespread applications in nonlinear optics and quantum information science.
Energy Technology Data Exchange (ETDEWEB)
Zharkov, G. F.
2001-06-01
Based on self-consistent solution of nonlinear GL equations, the phase boundary is found, which divides the regions of first- and second-order phase transitions to normal state of a superconducting cylinder of radius R, placed in magnetic field and remaining in the state of fixed vorticity m. This boundary is a complicated function of the parameters (m,R,{kappa}) ({kappa} is the GL parameter), which does not coincide with the simple phase boundary {kappa}=1/{radical}2, dividing the regions of first- and second-order phase transitions in infinite (open) superconducting systems.
Energy Technology Data Exchange (ETDEWEB)
Kiuchi, Kenji; et al.
2015-07-27
We proposed a new high-resolution single-photon infrared spectrometer for search for radiative decay of cosmic neutrino background (CνB). The superconducting-tunnel-junctions(STJs) are used as a single-photon counting device. Each STJ consists of Nb/Al/Al_{x}O_{y}/Al/Nb layers, and their thicknesses are optimized for the operation temperature at 370 mK cooled by a ^{3}He sorption refrigerator. Our STJs achieved the leak current 250 pA, and the measured data implies that a smaller area STJ fulfills our requirement. FD-SOI MOSFETs are employed to amplify the STJ signal current in order to increase signal-to-noise ratio (S/N). FD-SOI MOSFETs can be operated at cryogenic temperature of 370 mK, which reduces the noise of the signal amplification system. FD-SOI MOSFET characteristics are measured at cryogenic temperature. The Id-Vgs curve shows a sharper turn on with a higher threshold voltage and the Id-Vds curve shows a nonlinear shape in linear region at cryogenic temperature. Taking into account these effects, FD-SOI MOSFETs are available for read-out circuit of STJ detectors. The bias voltage for STJ detectors is 0.4 mV, and it must be well stabilized to deliver high performance. We proposed an FD-SOI MOSFET-based charge integrated amplifier design as a read-out circuit of STJ detectors. The requirements for an operational amplifier used in the amplifier is estimated using SPICE simulation. The op-amp is required to have a fast response (GBW ≥ 100 MHz), and it must have low power dissipation as compared to the cooling power of refrigerator.
Partial-measurement backaction and nonclassical weak values in a superconducting circuit.
Groen, J P; Ristè, D; Tornberg, L; Cramer, J; de Groot, P C; Picot, T; Johansson, G; DiCarlo, L
2013-08-30
We realize indirect partial measurement of a transmon qubit in circuit quantum electrodynamics by interaction with an ancilla qubit and projective ancilla measurement with a dedicated readout resonator. Accurate control of the interaction and ancilla measurement basis allows tailoring the measurement strength and operator. The tradeoff between measurement strength and qubit backaction is characterized through the distortion of a qubit Rabi oscillation imposed by ancilla measurement in different bases. Combining partial and projective qubit measurements, we provide the solid-state demonstration of the correspondence between a nonclassical weak value and the violation of a Leggett-Garg inequality.
Yu, YunSeop; Choi, JungBum
2007-11-01
A half-adder (HA) and a full-adder (FA) using hybrid circuits combining three-gate single-electron transistors (TG-SETs) with metal-oxide-semiconductor field-effect-transistors (MOSFETs) are proposed. The proposed HA consists of three TG-SETs, two enhanced-mode NMOSFETs, and two depletion-mode NMOSFETs, and the proposed FA consists of eight TG-SETs, two enhanced-mode NMOSFETs, and two depletion-mode NMOSFETs. The complexities in the HA and the FA are 7 and 12, respectively, and the worst-case delays in the HA and the FA are 1.48 ns and 2.25 ns, respectively. Compared with the conventional CMOS FA with 0.35 microm technology, the proposed FA can be constructed with 0.43 of devices, and can operate with 3.5 of worst-case delay, 1/534 of average power consumption, and 1/152 of power-delay-product (PDP). The proposed HA and FA can be operated as a half-subtractor (HS) and a full-subtractor (FS) in the case when the levels of the control gates in the HA and the FA are fitly determined. The basic operations of the proposed HA and the proposed FA have been successfully confirmed through SPICE circuit simulation based on the physical device model of TG-SETs.
Quantum Bayesian rule for weak measurements of qubits in superconducting circuit QED
Wang, Peiyue; Qin, Lupei; Li, Xin-Qi
2014-12-01
Compared with the quantum trajectory equation (QTE), the quantum Bayesian approach has the advantage of being more efficient to infer a quantum state under monitoring, based on the integrated output of measurements. For weak measurement of qubits in circuit quantum electrodynamics (cQED), properly accounting for the measurement backaction effects within the Bayesian framework is an important problem of current interest. Elegant work towards this task was carried out by Korotkov in ‘bad-cavity’ and weak-response limits (Korotkov 2011 Quantum Bayesian approach to circuit QED measurement (arXiv:1111.4016)). In the present work, based on insights from the cavity-field states (dynamics) and the help of an effective QTE, we generalize the results of Korotkov to more general system parameters. The obtained Bayesian rule is in full agreement with Korotkov's result in limiting cases and as well holds satisfactory accuracy in non-limiting cases in comparison with the QTE simulations. We expect the proposed Bayesian rule to be useful for future cQED measurement and control experiments.
Advances in quantum control of three-level superconducting circuit architectures
Energy Technology Data Exchange (ETDEWEB)
Falci, G.; Paladino, E. [Dipartimento di Fisica e Astronomia, Universita di Catania (Italy); CNR-IMM UOS Universita (MATIS), Consiglio Nazionale delle Ricerche, Catania (Italy); INFN, Sezione di Catania (Italy); Di Stefano, P.G. [Dipartimento di Fisica e Astronomia, Universita di Catania (Italy); Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Queen' s University Belfast(United Kingdom); Ridolfo, A.; D' Arrigo, A. [Dipartimento di Fisica e Astronomia, Universita di Catania (Italy); Paraoanu, G.S. [Low Temperature Laboratory, Department of Applied Physics, Aalto University School of Science (Finland)
2017-06-15
Advanced control in Lambda (Λ) scheme of a solid state architecture of artificial atoms and quantized modes would allow the translation to the solid-state realm of a whole class of phenomena from quantum optics, thus exploiting new physics emerging in larger integrated quantum networks and for stronger couplings. However control solid-state devices has constraints coming from selection rules, due to symmetries which on the other hand yield protection from decoherence, and from design issues, for instance that coupling to microwave cavities is not directly switchable. We present two new schemes for the Λ-STIRAP control problem with the constraint of one or two classical driving fields being always-on. We show how these protocols are converted to apply to circuit-QED architectures. We finally illustrate an application to coherent spectroscopy of the so called ultrastrong atom-cavity coupling regime. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Extending the lifetime of a quantum bit with error correction in superconducting circuits
Ofek, Nissim; Petrenko, Andrei; Heeres, Reinier; Reinhold, Philip; Leghtas, Zaki; Vlastakis, Brian; Liu, Yehan; Frunzio, Luigi; Girvin, S. M.; Jiang, L.; Mirrahimi, Mazyar; Devoret, M. H.; Schoelkopf, R. J.
2016-08-01
Quantum error correction (QEC) can overcome the errors experienced by qubits and is therefore an essential component of a future quantum computer. To implement QEC, a qubit is redundantly encoded in a higher-dimensional space using quantum states with carefully tailored symmetry properties. Projective measurements of these parity-type observables provide error syndrome information, with which errors can be corrected via simple operations. The ‘break-even’ point of QEC—at which the lifetime of a qubit exceeds the lifetime of the constituents of the system—has so far remained out of reach. Although previous works have demonstrated elements of QEC, they primarily illustrate the signatures or scaling properties of QEC codes rather than test the capacity of the system to preserve a qubit over time. Here we demonstrate a QEC system that reaches the break-even point by suppressing the natural errors due to energy loss for a qubit logically encoded in superpositions of Schrödinger-cat states of a superconducting resonator. We implement a full QEC protocol by using real-time feedback to encode, monitor naturally occurring errors, decode and correct. As measured by full process tomography, without any post-selection, the corrected qubit lifetime is 320 microseconds, which is longer than the lifetime of any of the parts of the system: 20 times longer than the lifetime of the transmon, about 2.2 times longer than the lifetime of an uncorrected logical encoding and about 1.1 longer than the lifetime of the best physical qubit (the |0>f and |1>f Fock states of the resonator). Our results illustrate the benefit of using hardware-efficient qubit encodings rather than traditional QEC schemes. Furthermore, they advance the field of experimental error correction from confirming basic concepts to exploring the metrics that drive system performance and the challenges in realizing a fault-tolerant system.
Extending the lifetime of a quantum bit with error correction in superconducting circuits.
Ofek, Nissim; Petrenko, Andrei; Heeres, Reinier; Reinhold, Philip; Leghtas, Zaki; Vlastakis, Brian; Liu, Yehan; Frunzio, Luigi; Girvin, S M; Jiang, L; Mirrahimi, Mazyar; Devoret, M H; Schoelkopf, R J
2016-08-25
Quantum error correction (QEC) can overcome the errors experienced by qubits and is therefore an essential component of a future quantum computer. To implement QEC, a qubit is redundantly encoded in a higher-dimensional space using quantum states with carefully tailored symmetry properties. Projective measurements of these parity-type observables provide error syndrome information, with which errors can be corrected via simple operations. The 'break-even' point of QEC--at which the lifetime of a qubit exceeds the lifetime of the constituents of the system--has so far remained out of reach. Although previous works have demonstrated elements of QEC, they primarily illustrate the signatures or scaling properties of QEC codes rather than test the capacity of the system to preserve a qubit over time. Here we demonstrate a QEC system that reaches the break-even point by suppressing the natural errors due to energy loss for a qubit logically encoded in superpositions of Schrödinger-cat states of a superconducting resonator. We implement a full QEC protocol by using real-time feedback to encode, monitor naturally occurring errors, decode and correct. As measured by full process tomography, without any post-selection, the corrected qubit lifetime is 320 microseconds, which is longer than the lifetime of any of the parts of the system: 20 times longer than the lifetime of the transmon, about 2.2 times longer than the lifetime of an uncorrected logical encoding and about 1.1 longer than the lifetime of the best physical qubit (the |0〉f and |1〉f Fock states of the resonator). Our results illustrate the benefit of using hardware-efficient qubit encodings rather than traditional QEC schemes. Furthermore, they advance the field of experimental error correction from confirming basic concepts to exploring the metrics that drive system performance and the challenges in realizing a fault-tolerant system.
Agosta, Charles; Fortune, Nathanael; Hannahs, Scott; Park, Ju-Hyun; Schleuter, John; Liang, Lucy; Gao, Shuyao; Bishop-van Horn, Logan; Newman, Max; Gu, Shuyao; Liang, Lucy
New magnetocaloric and specific heat measurements of the high field superconducting state in the organic superconductor κ- (BEDT-TTF)2Cu(NCS)2 are compared to rf penetration depth, magnetic torque, and NMR measurements. The position of the phase lines separating the uniform superconducting state with the FFLO state and the normal state are mostly in good agreement with each other. The order of the phase transitions can only be determined from the calorimetric measurements and will be compared to theory. Results from other organic superconductors show that there is universal behavior. As an example, the distance between the lower and upper magnetic field phase line containing the FFLO state is proportional to the upper critical field. The position of the lower phase line, the Clogston Chandrasakar paramagnetic limit, will be compared to semi empirical calculations based on the specific heat for five different superconductors.
Nori, Franco
2008-03-01
Superconducting (SC) circuits can behave like atoms making transitions between a few energy levels. Such circuits can test quantum mechanics at macroscopic scales and be used to conduct atomic-physics experiments on a silicon chip. This talk overviews a few of our theoretical studies on SC circuits and quantum information processing (QIP) including: SC qubits for single photon generation and for lasing; controllable couplings among qubits; how to increase the coherence time of qubits using a capacitor in parallel to one of the qubit junctions; hybrid circuits involving both charge and flux qubits; testing Bell's inequality in SC circuits; generation of GHZ states; quantum tomography in SC circuits; preparation of macroscopic quantum superposition states of a cavity field via coupling to a SC qubit; generation of nonclassical photon states using a SC qubit in a microcavity; scalable quantum computing with SC qubits; and information processing with SC qubits in a microwave field. Controllable couplings between qubits can be achieved either directly or indirectly. This can be done with and without coupler circuits, and with and without data-buses like EM fields in cavities (e.g., we will describe both the variable-frequency magnetic flux approach and also a generalized double-resonance approach that we introduced). It is also possible to ``turn a quantum bug into a feature'' by using microscopic defects as qubits, and the macroscopic junction as a controller of it. We have also studied ways to implement radically different approaches to QIP by using ``cluster states'' in SC circuits. For a general overview of this field, see, J.Q. You and F. Nori, Phys. Today 58 (11), 42 (2005)
Superconducting Microelectronics.
Henry, Richard W.
1984-01-01
Discusses superconducting microelectronics based on the Josephson effect and its advantages over conventional integrated circuits in speed and sensitivity. Considers present uses in standards laboratories (voltage) and in measuring weak magnetic fields. Also considers future applications in superfast computer circuitry using Superconducting…
Srinivasan, S J; Hoffman, A J; Gambetta, J M; Houck, A A
2011-02-25
We introduce a new type of superconducting charge qubit that has a V-shaped energy spectrum and uses quantum interference to provide independently tunable qubit energy and coherent coupling to a superconducting cavity. Dynamic access to the strong coupling regime is demonstrated by tuning the coupling strength from less than 200 kHz to greater than 40 MHz. This tunable coupling can be used to protect the qubit from cavity-induced relaxation and avoid unwanted qubit-qubit interactions in a multiqubit system.
Dynamics of pi-junction interferometer circuits
DEFF Research Database (Denmark)
Kornkev, V.K.; Mozhaev, P.B.; Borisenko, I.V.;
2002-01-01
The pi-junction superconducting circuit dynamics was studied by means of numerical simulation technique. Parallel arrays consisting of Josephson junctions of both 0- and pi-type were studied as a model of high-T-c grain-boundary Josephson junction. The array dynamics and the critical current...
Dynamics of pi-junction interferometer circuits
DEFF Research Database (Denmark)
Kornkev, V.K.; Mozhaev, P.B.; Borisenko, I.V.
2002-01-01
The pi-junction superconducting circuit dynamics was studied by means of numerical simulation technique. Parallel arrays consisting of Josephson junctions of both 0- and pi-type were studied as a model of high-T-c grain-boundary Josephson junction. The array dynamics and the critical current...
Bozzini, D; Russenschuck, Stephan; Bednarek, M; Jurkiewicz, P; Kotarba, A; Ludwin, J; Olek, S
2008-01-01
A d.c. high voltage test system has been developed to verify automatically the insulation resistance of the powering circuits of the LHC. In the most complex case, up to 72 circuits share the same volume inside cryogenic lines. Each circuit can have an insulation fault versus any other circuit or versus ground. The system is able to connect up to 80 circuits and apply a voltage up to 2 kV D.C. The leakage current flowing through each circuit is measured within a range of 1 nA to 1.6 mA. The matrix of measurements allows characterizing the paths taken by the currents and locating weak points of the insulation between circuits. The system is composed of a D.C. voltage source and a data acquisition card. The card is able to measure with precision currents and voltages and to drive up to 5 high voltage switching modules offering 16 channels each. A LabVIEW application controls the system for an automatic and safe operation. This paper describes the hardware and software design, the testing methodology and the res...
Yamashita, Taro; Miki, Shigehito; Terai, Hirotaka; Makise, Kazumasa; Wang, Zhen
2012-07-15
We demonstrate the successful operation of a multielement superconducting nanowire single-photon detector (SSPD) array integrated with a single-flux-quantum (SFQ) readout circuit in a compact 0.1 W Gifford-McMahon cryocooler. A time-resolved readout technique, where output signals from each element enter the SFQ readout circuit with finite time intervals, revealed crosstalk-free operation of the four-element SSPD array connected with the SFQ readout circuit. The timing jitter and the system detection efficiency were measured to be 50 ps and 11.4%, respectively, which were comparable to the performance of practical single-pixel SSPD systems.
A nanocryotron comparator can connect single-flux-quantum circuits to conventional electronics
Zhao, Qing-Yuan; McCaughan, Adam N.; Dane, Andrew E.; Berggren, Karl K.; Ortlepp, Thomas
2017-04-01
Integration with conventional electronics offers a straightforward and economical approach to upgrading existing superconducting technologies, such as scaling up superconducting detectors into large arrays and combining single flux quantum (SFQ) digital circuits with semiconductor logic gates and memories. However, direct output signals from superconducting devices (e.g., Josephson junctions) are usually not compatible with the input requirements of conventional devices (e.g., transistors). Here, we demonstrate the use of a single three-terminal superconducting-nanowire device, called the nanocryotron (nTron), as a digital comparator to combine SFQ circuits with mature semiconductor circuits such as complementary metal oxide semiconductor (CMOS) circuits. Since SFQ circuits can digitize output signals from general superconducting devices and CMOS circuits can interface existing CMOS-compatible electronics, our results demonstrate the feasibility of a general architecture that uses an nTron as an interface to realize a ‘super-hybrid’ system consisting of superconducting detectors, superconducting quantum electronics, CMOS logic gates and memories, and other conventional electronics.
High-Temperature Superconductivity
Tanaka, Shoji
2006-12-01
A general review on high-temperature superconductivity was made. After prehistoric view and the process of discovery were stated, the special features of high-temperature superconductors were explained from the materials side and the physical properties side. The present status on applications of high-temperature superconductors were explained on superconducting tapes, electric power cables, magnets for maglev trains, electric motors, superconducting quantum interference device (SQUID) and single flux quantum (SFQ) devices and circuits.
Energy Technology Data Exchange (ETDEWEB)
Huang, Da; Wu, Yue-Liang [Chinese Academy of Science, State Key Laboratory of Theoretical Physics (SKLTP), Kavli Institute for Theoretical Physics China (KITPC), Institute of Theoretical Physics, Beijing (China)
2012-07-15
The consistency of loop regularization (LORE) method is explored in multiloop calculations. A key concept of the LORE method is the introduction of irreducible loop integrals (ILIs) which are evaluated from the Feynman diagrams by adopting the Feynman parametrization and ultraviolet-divergence-preserving (UVDP) parametrization. It is then inevitable for the ILIs to encounter the divergences in the UVDP parameter space due to the generic overlapping divergences in the four-dimensional momentum space. By computing the so-called {alpha}{beta}{gamma} integrals arising from two-loop Feynman diagrams, we show how to deal with the divergences in the parameter space with the LORE method. By identifying the divergences in the UVDP parameter space to those in the subdiagrams, we arrive at the Bjorken-Drell analogy between Feynman diagrams and electrical circuits. The UVDP parameters are shown to correspond to the conductance or resistance in the electrical circuits, and the divergence in Feynman diagrams is ascribed to the infinite conductance or zero resistance. In particular, the sets of conditions required to eliminate the overlapping momentum integrals for obtaining the ILIs are found to be associated with the conservations of electric voltages, and the momentum conservations correspond to the conservations of electrical currents, which are known as the Kirchhoff laws in the electrical circuits analogy. As a practical application, we carry out a detailed calculation for one-loop and two-loop Feynman diagrams in the massive scalar {phi}{sup 4} theory, which enables us to obtain the well-known logarithmic running of the coupling constant and the consistent power-law running of the scalar mass at two-loop level. Especially, we present an explicit demonstration on the general procedure of applying the LORE method to the multiloop calculations of Feynman diagrams when merging with the advantage of Bjorken-Drell's circuit analogy. (orig.)
An integrated 500 GHz receiver with superconducting local oscillator
Koshelets, VP; Shitov, SV; Filippenko, LV; Baryshev, AM; Luinge, W; Golstein, H; vandeStadt, H; Gao, [No Value; deGraauw, T
1997-01-01
An integrated quasioptical receiver consisting of a planar double - dipole antenna, SIS mixer and superconducting Flux-Flow Oscillator (FFO) with matching circuits has been designed, fabricated and tested in the frequency range 420-530 GHz. The integrated receiver is very suitable for space applicat
Nonlinearities in Microwave Superconductivity
Ledenyov, Dimitri O.; Ledenyov, Viktor O.
2012-01-01
The research is focused on the modeling of nonlinear properties of High Temperature Superconducting (HTS) thin films, using Bardeen, Cooper, Schrieffer and Lumped Element Circuit theories, with purpose to enhance microwave power handling capabilities of microwave filters and optimize design of microwave circuits in micro- and nano- electronics.
Eichler, C.; Mlynek, J.; Butscher, J.; Kurpiers, P.; Hammerer, K.; Osborne, T. J.; Wallraff, A.
2015-10-01
Improving the understanding of strongly correlated quantum many-body systems such as gases of interacting atoms or electrons is one of the most important challenges in modern condensed matter physics, materials research, and chemistry. Enormous progress has been made in the past decades in developing both classical and quantum approaches to calculate, simulate, and experimentally probe the properties of such systems. In this work, we use a combination of classical and quantum methods to experimentally explore the properties of an interacting quantum gas by creating experimental realizations of continuous matrix product states—a class of states that has proven extremely powerful as a variational ansatz for numerical simulations. By systematically preparing and probing these states using a circuit quantum electrodynamics system, we experimentally determine a good approximation to the ground-state wave function of the Lieb-Liniger Hamiltonian, which describes an interacting Bose gas in one dimension. Since the simulated Hamiltonian is encoded in the measurement observable rather than the controlled quantum system, this approach has the potential to apply to a variety of models including those involving multicomponent interacting fields. Our findings also hint at the possibility of experimentally exploring general properties of matrix product states and entanglement theory. The scheme presented here is applicable to a broad range of systems exploiting strong and tunable light-matter interactions.
13 kA Superconducting Busbars Manufacturing Process
Principe, R; Fornasiere, E
2012-01-01
In the LHC, the superconducting Main Bending magnets and Quadrupole magnets are series-connected electrically in different excitation circuits by means of superconducting busbars, carrying a maximum current of 13 kA. These superconducting busbars consist of a superconducting Rutherford cable thermally and electrically coupled to a copper section all along the length. The function of the copper section is essentially to provide an alternative path for the magnet current in case of resistive transition. The production of these components was originally outsourced. The decision to import the technology at CERN led to a global re-engineering of the standard process. Although based on the procedures adopted during the LHC construction, a few modifications and improvements have been implemented, profiting of the experience gained in the last few years. This document details the manufacturing process of the 13 kA busbars as it is actually performed at CERN, emphasizing the new solutions adopted during the first mon...
Novel Approach to Linear Accelerator Superconducting Magnet System
Energy Technology Data Exchange (ETDEWEB)
Kashikhin, Vladimir; /Fermilab
2011-11-28
Superconducting Linear Accelerators include a superconducting magnet system for particle beam transportation that provides the beam focusing and steering. This system consists of a large number of quadrupole magnets and dipole correctors mounted inside or between cryomodules with SCRF cavities. Each magnet has current leads and powered from its own power supply. The paper proposes a novel approach to magnet powering based on using superconducting persistent current switches. A group of magnets is powered from the same power supply through the common, for the group of cryomodules, electrical bus and pair of current leads. Superconducting switches direct the current to the chosen magnet and close the circuit providing the magnet operation in a persistent current mode. Two persistent current switches were fabricated and tested. In the paper also presented the results of magnetic field simulations, decay time constants analysis, and a way of improving quadrupole magnetic center stability. Such approach substantially reduces the magnet system cost and increases the reliability.
Superconducting Qubits: A Short Review
Devoret, M. H.; Wallraff, A.; Martinis, J. M.
2004-01-01
Superconducting qubits are solid state electrical circuits fabricated using techniques borrowed from conventional integrated circuits. They are based on the Josephson tunnel junction, the only non-dissipative, strongly non-linear circuit element available at low temperature. In contrast to microscopic entities such as spins or atoms, they tend to be well coupled to other circuits, which make them appealling from the point of view of readout and gate implementation. Very recently, new designs ...
Design infrastructure for Rapid Single Flux Quantum circuits
Toepfer, Hannes; Ortlepp, Thomas
2009-11-01
Cryoelectronic integrated circuits based on Rapid Single Flux Quantum (RSFQ) technology are promising candidates for realizing systems exhibiting very high performance in combination with very low-power consumption. Like other superconductive logic circuits, they are characterized by a high switching speed. Their unique feature consists in the particular representation of binary information by means of short transient voltage pulses. The development of RSFQ circuits and systems requires a comprehensive design approach, supported by appropriate tools. Within the recent years, a dedicated design infrastructure has been developed in Europe in close association with a foundry for digital RSFQ integrated circuits. As a result, RSFQ technology has matured to such a level that engineering efforts enable the development of integrated circuits. In the contribution, the basic features of the RSFQ circuit design are addressed within the context of technical and infrastructural issues of implementation from a European perspective.
Superconducting Metallic Glass Transition-Edge-Sensors
Hays, Charles C. (Inventor)
2013-01-01
A superconducting metallic glass transition-edge sensor (MGTES) and a method for fabricating the MGTES are provided. A single-layer superconducting amorphous metal alloy is deposited on a substrate. The single-layer superconducting amorphous metal alloy is an absorber for the MGTES and is electrically connected to a circuit configured for readout and biasing to sense electromagnetic radiation.
Anushat, V; Erokhin, A; Kussul, A; Medvedko, A S
2000-01-01
This article presents the results of modeling and computer simulation of non-linear devices such as the Electromagnetic Driver of a D.C. Circuit Breaker. The mechanical and electromagnetic parts of the Driver are represented as equivalent electrical circuits and all basic processes of the Driver's magnetic circuit are calculated.
Reproducible Operating Margins on a 72800-Device Digital Superconducting Chip (Open Access)
2015-10-28
Reproducible operating margins on a 72800- device digital superconducting chip Quentin P Herr, Joshua Osborne, Micah J A Stoutimore, Harold Hearne...super- conducting-quantum-interference- device circuits [6–8] and even more directly using magnetic imaging [9]. For larger, digital circuits, flux...design and test of reciprocal quantum logic shift-register yield vehicles consisting of up to 72 800 Josephson junction devices per die, the largest
Newhouse, Vernon L
1975-01-01
Applied Superconductivity, Volume II, is part of a two-volume series on applied superconductivity. The first volume dealt with electronic applications and radiation detection, and contains a chapter on liquid helium refrigeration. The present volume discusses magnets, electromechanical applications, accelerators, and microwave and rf devices. The book opens with a chapter on high-field superconducting magnets, covering applications and magnet design. Subsequent chapters discuss superconductive machinery such as superconductive bearings and motors; rf superconducting devices; and future prospec
Phase boundary of the hexagonal-prism superconducting network in a magnetic field
Institute of Scientific and Technical Information of China (English)
金绍维; 李伟; 易佑民; 甄胜来; 缪胜清
2002-01-01
In this paper, we systematically study the phase boundary Tc(H ) of a hexagonal-prism superconducting network inan external magnetic field H of arbitrary magnitude and direction. The result indicates that the phase boundary of thehexagonal-prism superconducting circuit varies more sharply than that of the cubic circuit. The potential applicationsof the hexagonal-prism superconducting circuit are also discussed.
Quantum State Transfer between Charge and Flux Qubits in Circuit-QED
Institute of Scientific and Technical Information of China (English)
WU Qin-Qin; LIAO Jie-Qiao; KUANG Le-Man
2008-01-01
@@ We propose a scheme to implement quantum state transfer in a hybrid circuit quantum electrodynamics (QED)system which consists of a superconducting charge qubit, a flux qubit, and a transmission line resonator (TLR).It is shown that quantum state transfer between the charge qubit and the flux qubit can be realized by using the TLR as the data bus.
From strong to ultrastrong coupling in circuit QED architectures
Energy Technology Data Exchange (ETDEWEB)
Niemczyk, Thomas
2011-08-10
The field of cavity quantum electrodynamics (cavity QED) studies the interaction between light and matter on a fundamental level: a single atom interacts with a single photon. If the atom-photon coupling is larger than any dissipative effects, the system enters the strong-coupling limit. A peculiarity of this regime is the possibility to form coherent superpositions of light and matter excitations - a kind of 'molecule' consisting of an atomic and a photonic contribution. The novel research field of circuit QED extends cavity QED concepts to solid-state based system. Here, a superconducting quantum bit is coupled to an on-chip superconducting one-dimensional waveguide resonator. Owing to the small mode-volume of the resonant cavity, the large dipole moment of the 'artificial atom' and the enormous engineering potential inherent to superconducting quantum circuits, remarkable atom-photon coupling strengths can be realized. This thesis describes the theoretical framework, the development of fabrication techniques and the implementation of experimental characterization techniques for superconducting quantum circuits for circuit QED applications. In particular, we study the interaction between superconducting flux quantum bits and high-quality coplanar waveguide resonators in the strong-coupling limit. Furthermore, we report on the first experimental realization of a circuit QED system operating in the ultrastrong-coupling regime, where the atom-photon coupling rate reaches a considerable fraction of the relevant system frequencies. In these experiments we could observe phenomena that can not be explained within the renowned Jaynes-Cummings model. (orig.)
Entangled States in a Single-Qubit Structure with SQUID Coupled with a Super-conducting Resonator
Institute of Scientific and Technical Information of China (English)
SONG Jian-Wen; LIANG Bao-Long; HAI Wen-Hua; WANG Ji-Suo; ZHONG Hong-Hua; MENG Xiang-Guo; LUO Xiao-Bing
2008-01-01
In this paper, the number-phase quantization scheme of the mesoscopic circuit, which consists of a single-qubit structure with superconducting quantum interference device coupled with a super-conducting resonator, is given. By introducing a unitary matrix and by means of spectral decomposition, the Hamiltonian operator of the system is exactly formulated in compact forms in spin-1/2 notation. The eigenvalues and the eigenstates of the system are investigated. It is found that using this system the entangled states can not only be prepared, but also be manipulated by tuning the magnetic flux through the super-conducting loop.
Lee, Hongseok; Lee, Onyou; Kim, Junil; Bang, Seungmin; Kang, Jong O; Hong, Jonggi; Nam, Seokho; Choi, Sukjin; Hong, In Seok; Ahn, Min Chul; Kang, Hyoungku
2015-01-01
A linear accelerator, called RAON, has been being developed as a part of Rare Isotope Science Project (RISP) by Institute for Basic Science (IBS) [1]. The linear accelerator utilizes an electron cyclotron resonance (ECR) ion source for providing intense highly charged ion beams to the linear accelerator. 28GHz ECR ion source can extract heavy ion beams from proton to uranium. A superconducting magnet system for 28GHz ECR ion source is composed of hexapole coils and four solenoid coils made with low Tc superconducting wires of NbTi [2]. The electromagnetic force acts on the superconducting magnets due to the magnetic field and flowing current in case of not only normal state but also quench state [3]. In case of quench on hexapole coils, unbalanced flowing current among the hexapole coils is generated and it causes unbalanced electromagnetic force. Coil motions and coil strains in quench state are larger than those in normal state due to unbalanced electromagnetic force among hexapole coils. Therefore, analysi...
Interface high-temperature superconductivity
Wang, Lili; Ma, Xucun; Xue, Qi-Kun
2016-12-01
Cuprate high-temperature superconductors consist of two quasi-two-dimensional (2D) substructures: CuO2 superconducting layers and charge reservoir layers. The superconductivity is realized by charge transfer from the charge reservoir layers into the superconducting layers without chemical dopants and defects being introduced into the latter, similar to modulation-doping in the semiconductor superlattices of AlGaAs/GaAs. Inspired by this scheme, we have been searching for high-temperature superconductivity in ultra-thin films of superconductors epitaxially grown on semiconductor/oxide substrates since 2008. We have observed interface-enhanced superconductivity in both conventional and unconventional superconducting films, including single atomic layer films of Pb and In on Si substrates and single unit cell (UC) films of FeSe on SrTiO3 (STO) substrates. The discovery of high-temperature superconductivity with a superconducting gap of ∼20 meV in 1UC-FeSe/STO has stimulated tremendous interest in the superconductivity community, for it opens a new avenue for both raising superconducting transition temperature and understanding the pairing mechanism of unconventional high-temperature superconductivity. Here, we review mainly the experimental progress on interface-enhanced superconductivity in the three systems mentioned above with emphasis on 1UC-FeSe/STO, studied by scanning tunneling microscopy/spectroscopy, angle-resolved photoemission spectroscopy and transport experiments. We discuss the roles of interfaces and a possible pairing mechanism inferred from these studies.
Quantum State Transmission in a Superconducting Charge Qubit-Atom Hybrid.
Yu, Deshui; Valado, María Martínez; Hufnagel, Christoph; Kwek, Leong Chuan; Amico, Luigi; Dumke, Rainer
2016-12-06
Hybrids consisting of macroscopic superconducting circuits and microscopic components, such as atoms and spins, have the potential of transmitting an arbitrary state between different quantum species, leading to the prospective of high-speed operation and long-time storage of quantum information. Here we propose a novel hybrid structure, where a neutral-atom qubit directly interfaces with a superconducting charge qubit, to implement the qubit-state transmission. The highly-excited Rydberg atom located inside the gate capacitor strongly affects the behavior of Cooper pairs in the box while the atom in the ground state hardly interferes with the superconducting device. In addition, the DC Stark shift of the atomic states significantly depends on the charge-qubit states. By means of the standard spectroscopic techniques and sweeping the gate voltage bias, we show how to transfer an arbitrary quantum state from the superconducting device to the atom and vice versa.
Quantum State Transmission in a Superconducting Charge Qubit-Atom Hybrid
Yu, Deshui; Hufnagel, Christoph; Kwek, Leong Chuan; Amico, Luigi; Dumke, Rainer
2016-01-01
Hybrids consisting of macroscopic superconducting circuits and microscopic components, such as atoms and spins, have the potential of transmitting an arbitrary state between different quantum species, leading to the prospective of high-speed operation and long-time storage of quantum information. Here we propose a novel hybrid structure, where a neutral-atom qubit directly interfaces with a superconducting charge qubit, to implement the qubit-state transmission. The highly-excited Rydberg atom located inside the gate capacitor strongly affects the behavior of Cooper pairs in the box while the atom in the ground state hardly interferes with the superconducting device. In addition, the DC Stark shift of the atomic states significantly depends on the charge-qubit states. By means of the standard spectroscopic techniques and sweeping the gate voltage bias, we show how to transfer an arbitrary quantum state from the superconducting device to the atom and vice versa.
Design and Manufacture of the Superconducting Bus-bars for the LHC Main Magnets
Belova, L M; Perinet-Marquet, J L; Ivanov, P; Urpin, C
2002-01-01
The main magnets of the LHC are series-connected electrically in different powering circuits by means of superconducting bus-bars, carrying a maximum current of 13 kA. These superconducting bus-bars consist of a superconducting cable thermally and electrically coupled to a copper profile all along the length. The function of the copper profile is essentially to provide an alternative path for the current in case the superconducting cable loses its superconducting state and returns to normal state because of a transient disturbance or of a normal zone propagation coming from the neighbouring magnets. When a superconducting bus-bar quenches to normal state its temperature must always stay below a safe values of about 100°C while the copper is conducting. When a resistive transition is detected, the protection systems triggers the ramping down of the current from 13000 A to 0. The ramp rate must not exceed a maximum value to avoid the transition of magnets series-connected in the circuit. This paper concerns th...
Generating Squeezed States in Solid State Circuits
Institute of Scientific and Technical Information of China (English)
REN Xin-An; WEN Yi-Huo; ZHANG Li-You; LONG Gui-Lu
2008-01-01
We propose a scheme for generating squeezed states in solid state circuits which consist a superconducting transmission line resonator (STLR), a superconducting Cooper-pair box (CPB) and a nanoelectromechanical resonator (NMR). The nonlinear interaction between the STLR and the CPB can be implemented by setting the external biased flux of the CPB at some certain points. The interaction Hamiltonian between the STLR and the NMR is derived by performing Fr 5hlich transformation on the total Hamiltonian of the combined system. Just by adiabatically keeping the CPB at the ground state, we get the standard parametric down-conversion Hamiltonian, and the squeezed states of the STLR can be easily generated, which is similar to the three-wave mixing in quantum optics.
Gray, Kenneth E.
1979-01-01
A superconducting transistor is formed by disposing three thin films of superconducting material in a planar parallel arrangement and insulating the films from each other by layers of insulating oxides to form two tunnel junctions. One junction is biased above twice the superconducting energy gap and the other is biased at less than twice the superconducting energy gap. Injection of quasiparticles into the center film by one junction provides a current gain in the second junction.
Superconductivity and superconductive electronics
Beasley, M. R.
1990-12-01
The Stanford Center for Research on Superconductivity and Superconductive Electronics is currently focused on developing techniques for producing increasingly improved films and multilayers of the high-temperature superconductors, studying their physical properties and using these films and multilayers in device physics studies. In general the thin film synthesis work leads the way. Once a given film or multilayer structure can be made reasonably routinely, the emphasis shifts to studying the physical properties and device physics of these structures and on to the next level of film quality or multilayer complexity. The most advanced thin films synthesis work in the past year has involved developing techniques to deposit a-axis and c-axis YBCO/PBCO superlattices and related structures. The in-situ feature is desirable because no solid state reactions with accompanying changes in volume, morphology, etc., that degrade the quality of the film involved.
Circuit quantum electrodynamics with a spin qubit.
Petersson, K D; McFaul, L W; Schroer, M D; Jung, M; Taylor, J M; Houck, A A; Petta, J R
2012-10-18
Electron spins trapped in quantum dots have been proposed as basic building blocks of a future quantum processor. Although fast, 180-picosecond, two-quantum-bit (two-qubit) operations can be realized using nearest-neighbour exchange coupling, a scalable, spin-based quantum computing architecture will almost certainly require long-range qubit interactions. Circuit quantum electrodynamics (cQED) allows spatially separated superconducting qubits to interact via a superconducting microwave cavity that acts as a 'quantum bus', making possible two-qubit entanglement and the implementation of simple quantum algorithms. Here we combine the cQED architecture with spin qubits by coupling an indium arsenide nanowire double quantum dot to a superconducting cavity. The architecture allows us to achieve a charge-cavity coupling rate of about 30 megahertz, consistent with coupling rates obtained in gallium arsenide quantum dots. Furthermore, the strong spin-orbit interaction of indium arsenide allows us to drive spin rotations electrically with a local gate electrode, and the charge-cavity interaction provides a measurement of the resulting spin dynamics. Our results demonstrate how the cQED architecture can be used as a sensitive probe of single-spin physics and that a spin-cavity coupling rate of about one megahertz is feasible, presenting the possibility of long-range spin coupling via superconducting microwave cavities.
Superconductivity in aromatic hydrocarbons
Energy Technology Data Exchange (ETDEWEB)
Kubozono, Yoshihiro, E-mail: kubozono@cc.okayama-u.ac.jp [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Research Center of New Functional Materials for Energy Production, Storage and Transport, Okayama University, Okayama 700-8530 (Japan); Japan Science and Technology Agency, ACT-C, Kawaguchi 332-0012 (Japan); Goto, Hidenori; Jabuchi, Taihei [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Yokoya, Takayoshi [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Research Center of New Functional Materials for Energy Production, Storage and Transport, Okayama University, Okayama 700-8530 (Japan); Kambe, Takashi [Department of Physics, Okayama University, Okayama 700-8530 (Japan); Sakai, Yusuke; Izumi, Masanari; Zheng, Lu; Hamao, Shino; Nguyen, Huyen L.T. [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Sakata, Masafumi; Kagayama, Tomoko; Shimizu, Katsuya [Center of Science and Technology under Extreme Conditions, Osaka University, Osaka 560-8531 (Japan)
2015-07-15
Highlights: • Aromatic superconductor is one of core research subjects in superconductivity. Superconductivity is observed in certain metal-doped aromatic hydrocarbons. Some serious problems to be solved exist for future advancement of the research. This article shows the present status of aromatic superconductors. - Abstract: ‘Aromatic hydrocarbon’ implies an organic molecule that satisfies the (4n + 2) π-electron rule and consists of benzene rings. Doping solid aromatic hydrocarbons with metals provides the superconductivity. The first discovery of such superconductivity was made for K-doped picene (K{sub x}picene, five benzene rings). Its superconducting transition temperatures (T{sub c}’s) were 7 and 18 K. Recently, we found a new superconducting K{sub x}picene phase with a T{sub c} as high as 14 K, so we now know that K{sub x}picene possesses multiple superconducting phases. Besides K{sub x}picene, we discovered new superconductors such as Rb{sub x}picene and Ca{sub x}picene. A most serious problem is that the shielding fraction is ⩽15% for K{sub x}picene and Rb{sub x}picene, and it is often ∼1% for other superconductors. Such low shielding fractions have made it difficult to determine the crystal structures of superconducting phases. Nevertheless, many research groups have expended a great deal of effort to make high quality hydrocarbon superconductors in the five years since the discovery of hydrocarbon superconductivity. At the present stage, superconductivity is observed in certain metal-doped aromatic hydrocarbons (picene, phenanthrene and dibenzopentacene), but the shielding fraction remains stubbornly low. The highest priority research area is to prepare aromatic superconductors with a high superconducting volume-fraction. Despite these difficulties, aromatic superconductivity is still a core research target and presents interesting and potentially breakthrough challenges, such as the positive pressure dependence of T{sub c} that is clearly
Superconducting qubits can be coupled and addressed as trapped ions
Liu, Y. X.; Wei, L. F.; Johansson, J. R.; Tsai, J. S.; Nori, F.
2009-03-01
Exploiting the intrinsic nonlinearity of superconducting Josephson junctions, we propose a scalable circuit with superconducting qubits (SCQs) which is very similar to the successful one now being used for trapped ions. The SCQs are coupled to the ``vibrational'' mode provided by a superconducting LC circuit or its equivalent (e.g., a superconducting quantum interference device). Both single-qubit rotations and qubit-LC-circuit couplings and/or decouplings can be controlled by the frequencies of the time-dependent magnetic fluxes. The circuit is scalable since the qubit-qubit interactions, mediated by the LC circuit, can be selectively performed, and the information transfer can be realized in a controllable way. [4pt] Y.X. Liu, L.F. Wei, J.R. Johansson, J.S. Tsai, F. Nori, Superconducting qubits can be coupled and addressed as trapped ions, Phys. Rev. B 76, 144518 (2007). URL: http://link.aps.org/abstract/PRB/v76/e144518
Electron spin resonance detected by a superconducting qubit
Kubo, Y; Grezes, C; Umeda, T; Isoya, J; Sumiya, H; Yamamoto, T; Abe, H; Onoda, S; Ohshima, T; Jacques, V; Dréau, A; Roch, J -F; Auffeves, A; Vion, D; Esteve, D; Bertet, P
2012-01-01
A new method for detecting the magnetic resonance of electronic spins at low temperature is demonstrated. It consists in measuring the signal emitted by the spins with a superconducting qubit that acts as a single-microwave-photon detector, resulting in an enhanced sensitivity. We implement this new type of electron-spin resonance spectroscopy using a hybrid quantum circuit in which a transmon qubit is coupled to a spin ensemble consisting of NV centers in diamond. With this setup we measure the NV center absorption spectrum at 30mK at an excitation level of \\thicksim15\\,\\mu_{B} out of an ensemble of 10^{11} spins.
Simplifying the circuit of Josephson parametric converters
Abdo, Baleegh; Brink, Markus; Chavez-Garcia, Jose; Keefe, George
Josephson parametric converters (JPCs) are quantum-limited three-wave mixing devices that can play various important roles in quantum information processing in the microwave domain, including amplification of quantum signals, transduction of quantum information, remote entanglement of qubits, nonreciprocal amplification, and circulation of signals. However, the input-output and biasing circuit of a state-of-the-art JPC consists of bulky components, i.e. two commercial off-chip broadband 180-degree hybrids, four phase-matched short coax cables, and one superconducting magnetic coil. Such bulky hardware significantly hinders the integration of JPCs in scalable quantum computing architectures. In my talk, I will present ideas on how to simplify the JPC circuit and show preliminary experimental results
Superconducting Qubits and Quantum Resonators
Forn-Díaz, P.
2010-01-01
Superconducting qubits are fabricated "loss-free" electrical circuits on a chip with size features of tens of nanometers. If cooled to cryogenic temperatures below -273 °C they behave as quantum elements, similar to atoms and molecules. Such a qubit can be manipulated by fast-oscillating magnetic fi
High temperature superconducting fault current limiter
Energy Technology Data Exchange (ETDEWEB)
Hull, John R. (Hinsdale, IL)
1997-01-01
A fault current limiter (10) for an electrical circuit (14). The fault current limiter (10) includes a high temperature superconductor (12) in the electrical circuit (14). The high temperature superconductor (12) is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter (10).
Infrared Superconducting Single-Photon Detectors
2012-10-05
group realized small microstrip devices, the next iteration of which may narrow the line width to below 100 nm, entering the single-photon detection...and will explore superconducting detectors with integrated waveguide circuits and novel deposition techniques. 15. SUBJECT...world record quantum cryptography demonstrations [9] and operation of quantum waveguide circuits at telecom wavelengths [10]. Beyond the quantum
A superconducting direct-current limiter with a power of up to 8 MVA
Fisher, L. M.; Alferov, D. F.; Akhmetgareev, M. R.; Budovskii, A. I.; Evsin, D. V.; Voloshin, I. F.; Kalinov, A. V.
2016-12-01
A resistive switching superconducting fault current limiter (SFCL) for DC networks with a nominal voltage of 3.5 kV and a nominal current of 2 kA was developed, produced, and tested. The SFCL has two main units—an assembly of superconducting modules and a high-speed vacuum circuit breaker. The assembly of superconducting modules consists of nine (3 × 3) parallel-series connected modules. Each module contains four parallel-connected 2G high-temperature superconducting (HTS) tapes. The results of SFCL tests in the short-circuit emulation mode with a maximum current rise rate of 1300 A/ms are presented. The SFCL is capable of limiting the current at a level of 7 kA and break it 8 ms after the current-limiting mode begins. The average temperature of HTS tapes during the current-limiting mode increases to 210 K. After the current is interrupted, the superconductivity recovery time does not exceed 1 s.
Mesoscopic entangled coherent states implemented with a circuit quantum electrodynamics system
Institute of Scientific and Technical Information of China (English)
Zhao Ying-Yan; Jiang Nian-Quan
2013-01-01
We show a scheme to generate entangled coherent states in a circuit quantum electrodynamics system,which consists of a nanomechanical resonator,a superconducting Cooper-pair box (CPB),and a superconducting transmission line resonator.In the system,the CPB plays the role of a nonlinear medium and can be conveniently controlled by a gate voltage including direct-current and alternating-current components.The scheme provides a powerful tool for preparing the multipartite mesoscopic entangled coherent states.
High temperature interfacial superconductivity
Bozovic, Ivan [Mount Sinai, NY; Logvenov, Gennady [Port Jefferson Station, NY; Gozar, Adrian Mihai [Port Jefferson, NY
2012-06-19
High-temperature superconductivity confined to nanometer-scale interfaces has been a long standing goal because of potential applications in electronic devices. The spontaneous formation of a superconducting interface in bilayers consisting of an insulator (La.sub.2CuO.sub.4) and a metal (La.sub.1-xSr.sub.xCuO.sub.4), neither of which is superconducting per se, is described. Depending upon the layering sequence of the bilayers, T.sub.c may be either .about.15 K or .about.30 K. This highly robust phenomenon is confined to within 2-3 nm around the interface. After exposing the bilayer to ozone, T.sub.c exceeds 50 K and this enhanced superconductivity is also shown to originate from a 1 to 2 unit cell thick interfacial layer. The results demonstrate that engineering artificial heterostructures provides a novel, unconventional way to fabricate stable, quasi two-dimensional high T.sub.c phases and to significantly enhance superconducting properties in other superconductors. The superconducting interface may be implemented, for example, in SIS tunnel junctions or a SuFET.
Rogalla, Horst
1994-01-01
During the last decades superconducting electronics has been the most prominent area of research for small scale applications of superconductivity. It has experienced quite a stormy development, from individual low frequency devices to devices with high integration density and pico second switching
Superconducting shielded core reactor with reduced AC losses
Energy Technology Data Exchange (ETDEWEB)
Cha, Yung S.; Hull, John R.
2006-04-04
A superconducting shielded core reactor (SSCR) operates as a passive device for limiting excessive AC current in a circuit operating at a high power level under a fault condition such as shorting. The SSCR includes a ferromagnetic core which may be either closed or open (with an air gap) and extends into and through a superconducting tube or superconducting rings arranged in a stacked array. First and second series connected copper coils each disposed about a portion of the iron core are connected to the circuit to be protected and are respectively wound inside and outside of the superconducting tube or rings. A large impedance is inserted into the circuit by the core when the shielding capability of the superconducting arrangement is exceeded by the applied magnetic field generated by the two coils under a fault condition to limit the AC current in the circuit. The proposed SSCR also affords reduced AC loss compared to conventional SSCRs under continuous normal operation.
Tunable superconducting nanoinductors
Energy Technology Data Exchange (ETDEWEB)
Annunziata, Anthony J; Santavicca, Daniel F; Frunzio, Luigi; Rooks, Michael J; Prober, Daniel E [Department of Applied Physics, Yale University, New Haven, CT 06511 (United States); Catelani, Gianluigi [Department of Physics, Yale University, New Haven, CT 06511 (United States); Frydman, Aviad, E-mail: anthony.annunziata@yale.edu, E-mail: daniel.prober@yale.edu [Department of Physics, Bar-Ilan University, Ramat Gan 52900 (Israel)
2010-11-05
We characterize inductors fabricated from ultra-thin, approximately 100 nm wide strips of niobium (Nb) and niobium nitride (NbN). These nanowires have a large kinetic inductance in the superconducting state. The kinetic inductance scales linearly with the nanowire length, with a typical value of 1 nH {mu}m{sup -1} for NbN and 44 pH {mu}m{sup -1} for Nb at a temperature of 2.5 K. We measure the temperature and current dependence of the kinetic inductance and compare our results to theoretical predictions. We also simulate the self-resonant frequencies of these nanowires in a compact meander geometry. These nanowire inductive elements have applications in a variety of microwave frequency superconducting circuits.
Superconducting fault-current limiter and inductor design
Rogers, J. D.; Boenig, H. J.; Chowdhuri, P.; Schermer, R. I.; Wollan, J. J.; Weldon, D. M.
1982-11-01
A superconducting fault current limiter (SFCL) that uses a biased superconducting inductor in a diode or thyristor bridge circuit was analyzed for transmission systems in 69, 138, and 230 rms kV utility transmission systems. The limiter was evaluated for costs with all components, superconducting coil, diode and/or SCR power electronics, high voltage insulation, high voltage bushings and vapor cooled leads, dewar, and refrigerator, included. A design was undertaken for the superconducting cable and coils for both diode and SCR 69 kV limiter circuits.
Superconducting fault-current limiter and inductor design
Energy Technology Data Exchange (ETDEWEB)
Rogers, J.D.; Boenig, H.J.; Chowdhuri, P.; Schermer, R.I.; Wollan, J.J.; Weldon, D.M.
1982-01-01
A superconducting fault current limiter (SFCL) that uses a biased superconducting inductor in a diode or thyristor bridge circuit was analyzed for transmission systems in 69, 138, and 230 rms kV utility transmission systems. The limiter was evaluated for costs with all components - superconducting coil, diode and/or SCR power electronics, high voltage insulation, high voltage bushings and vapor cooled leads, dewar, and refrigerator - included. A design was undertaken for the superconducting cable and coils for both diode and SCR 69 kV limiter circuits.
Characterization of non-contact torque transfer and switching system for superconducting flywheel
Energy Technology Data Exchange (ETDEWEB)
Ikeda, M., E-mail: m208005@sic.shibaura-it.ac.j [Superconducting Materials Laboratory, Shibaura Institute of Technology, 3-7-5, Toyosu, Koto-Ku, Tokyo 135-8548 (Japan); Takeda, K. [Superconducting Materials Laboratory, Shibaura Institute of Technology, 3-7-5, Toyosu, Koto-Ku, Tokyo 135-8548 (Japan); Hasegawa, H.; Seino, H.; Nagashima, K. [Railway Technical Research Institute, 2-8-38 Hikari-cho, Kokubunji, Tokyo 185-8540 (Japan); Murakami, M. [Superconducting Materials Laboratory, Shibaura Institute of Technology, 3-7-5, Toyosu, Koto-Ku, Tokyo 135-8548 (Japan)
2010-11-01
Superconducting flywheel energy storage system can store the energy for a long duration, in that the main body of a flywheel is placed in a vacuum chamber to minimize rotational loss, and is separated from a generation motor. The superconducting flywheel device need a non-contact system which can transfer the rotational torque without contact. A combination of two permanent magnets can transmit the power without contact. We calculated the torque forces and the field distributions of two types of magnetic arrays; repulsive type and Halbach type. Both magnetic circuits have respective inner and outer diameters of 61.5 and 144 mm and consist of eight poles of Fe-Nd-B permanent magnets 30 mm in thickness. We also studied the effects of the number of poles and the size on the transferable torque forces and found that a practical torque transfer and switching systems can be constructed with a combination of permanent magnetic circuits.
Institute of Scientific and Technical Information of China (English)
王佳成; 姚磊; 梅军; 郑建勇; 于泳
2013-01-01
Introduction was made to the construction of short-circuit experiment platform for the superconducting fault current limiter and its work mode and principle. This paper gave the call process of the experimental data collected from the lower machine DSP to PC’s VB program. The short-circuit experiment of magnesium diboride superconducting fault current limiter was conducted under the conditions of liquid nitrogen. The experiment results show that the platform could correctly relfect the voltages at two sides of large current generator and the superconducting coil currents and effectively measure the temperature variation of the superconducting coil, to lay the foundation for the continuous experiment under the conditions of liquid nitrogen.%介绍了超导限流器短路实验平台的搭建过程及其工作方式与原理，并给出实验数据从下位机DSP采集到上位机VB程序调用的过程。进行了二硼化镁超导限流器在液氮条件下的短路实验，实验结果表明该平台能正确反映大电流发生器两侧电压以及超导线圈电流，并有效测量超导线圈的温度变化，为后续液氦条件下的实验打下了基础。
Ochoa, Agustin
2016-01-01
This book describes a consistent and direct methodology to the analysis and design of analog circuits with particular application to circuits containing feedback. The analysis and design of circuits containing feedback is generally presented by either following a series of examples where each circuit is simplified through the use of insight or experience (someone else’s), or a complete nodal-matrix analysis generating lots of algebra. Neither of these approaches leads to gaining insight into the design process easily. The author develops a systematic approach to circuit analysis, the Driving Point Impedance and Signal Flow Graphs (DPI/SFG) method that does not require a-priori insight to the circuit being considered and results in factored analysis supporting the design function. This approach enables designers to account fully for loading and the bi-directional nature of elements both in the feedback path and in the amplifier itself, properties many times assumed negligible and ignored. Feedback circuits a...
Demonstration of superconducting micromachined cavities
Energy Technology Data Exchange (ETDEWEB)
Brecht, T., E-mail: teresa.brecht@yale.edu; Reagor, M.; Chu, Y.; Pfaff, W.; Wang, C.; Frunzio, L.; Devoret, M. H.; Schoelkopf, R. J. [Department of Applied Physics, Yale University, New Haven, Connecticut 06511 (United States)
2015-11-09
Superconducting enclosures will be key components of scalable quantum computing devices based on circuit quantum electrodynamics. Within a densely integrated device, they can protect qubits from noise and serve as quantum memory units. Whether constructed by machining bulk pieces of metal or microfabricating wafers, 3D enclosures are typically assembled from two or more parts. The resulting seams potentially dissipate crossing currents and limit performance. In this letter, we present measured quality factors of superconducting cavity resonators of several materials, dimensions, and seam locations. We observe that superconducting indium can be a low-loss RF conductor and form low-loss seams. Leveraging this, we create a superconducting micromachined resonator with indium that has a quality factor of two million, despite a greatly reduced mode volume. Inter-layer coupling to this type of resonator is achieved by an aperture located under a planar transmission line. The described techniques demonstrate a proof-of-principle for multilayer microwave integrated quantum circuits for scalable quantum computing.
Compact superconducting coplanar microwave beam splitters
Energy Technology Data Exchange (ETDEWEB)
Baust, Alexander; Haeberlein, Max; Goetz, Jan; Hoffmann, Elisabeth; Menzel, Edwin P.; Schwarz, Manuel J.; Wulschner, Friedrich; Zhong, Ling; Deppe, Frank; Marx, Achim; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TUM, Garching (Germany); Kalb, Norbert; Losinger, Thomas [Physik-Department, TUM, Garching (Germany)
2012-07-01
The recent evolution of circuit quantum electrodynamics systems making use of standing-wave microwave modes towards setups for propagating quantum microwaves has triggered the need for low-loss superconducting microwave beam splitters. Such a device should have ports compatible with the coplanar geometry relevant for circuit QED and, at the same time, be compact allowing for scalability. This combination presents fundamental and technological challenges. In this work, we present the fabrication and characterization of various compact superconducting coplanar microwave beam splitters. In addition, we discuss efforts towards a tunable beam splitter.
Lloris Ruiz, Antonio; Parrilla Roure, Luis; García Ríos, Antonio
2014-01-01
This book presents a complete and accurate study of algebraic circuits, digital circuits whose performance can be associated with any algebraic structure. The authors distinguish between basic algebraic circuits, such as Linear Feedback Shift Registers (LFSRs) and cellular automata, and algebraic circuits, such as finite fields or Galois fields. The book includes a comprehensive review of representation systems, of arithmetic circuits implementing basic and more complex operations, and of the residue number systems (RNS). It presents a study of basic algebraic circuits such as LFSRs and cellular automata as well as a study of circuits related to Galois fields, including two real cryptographic applications of Galois fields.
Accurate Switched-Voltage voltage averaging circuit
金光, 一幸; 松本, 寛樹
2006-01-01
Abstract ###This paper proposes an accurate Switched-Voltage (SV) voltage averaging circuit. It is presented ###to compensated for NMOS missmatch error at MOS differential type voltage averaging circuit. ###The proposed circuit consists of a voltage averaging and a SV sample/hold (S/H) circuit. It can ###operate using nonoverlapping three phase clocks. Performance of this circuit is verified by PSpice ###simulations.
A nanoCryotron comparator can connect single-flux quantum circuits to conventional electronics
Zhao, Qing-Yuan; Dane, Andrew E; Berggren, Karl K; Ortlepp, Thomas
2016-01-01
Integration with conventional electronics offers a straightforward and economical approach to upgrading existing superconducting technologies, such as scaling up superconducting detectors into large arrays and combining single flux quantum (SFQ) digital circuits with semiconductor logic and memories. However, direct output signals from superconducting devices (e.g., Josephson junctions) are usually not compatible with the input requirements of conventional devices (e.g., transistors). Here, we demonstrate the use of a single three-terminal superconducting-nanowire device, called the nanocryotron (nTron), as a digital comparator to combine SFQ circuits with mature semiconductor circuits such as complementary metal oxide semiconductor (CMOS) circuits. Since SFQ circuits can digitize output signals from general superconducting devices and CMOS circuits can interface existing CMOS-compatible electronics, our results demonstrate the feasibility of a general architecture that uses an nTron as an interface to realiz...
Circuit QED with transmon qubits
Energy Technology Data Exchange (ETDEWEB)
Wulschner, Karl Friedrich; Puertas, Javier; Baust, Alexander; Eder, Peter; Fischer, Michael; Goetz, Jan; Haeberlein, Max; Schwarz, Manuel; Xie, Edwar; Zhong, Ling; Deppe, Frank; Fedorov, Kirill; Marx, Achim; Menzel, Edwin; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany); Huebl, Hans [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany); Weides, Martin [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany)
2015-07-01
Superconducting quantum bits are basic building blocks for circuit QED systems. Applications in the fields of quantum computation and quantum simulation require long coherence times. We have fabricated and characterized superconducting transmon qubits which are designed to operate at a high ratio of Josephson energy and charging energy. Due to their low sensitivity to charge noise transmon qubits show good coherence properties. We couple transmon qubits to coplanar waveguide resonators and coplanar slotline resonators and characterize the devices at mK-temperatures. From the experimental data we derive the qubit-resonator coupling strength, the qubit relaxation time and calibrate the photon number in the resonator via Stark shifts.
Hysteresis in a quantized superfluid 'atomtronic' circuit.
Eckel, Stephen; Lee, Jeffrey G; Jendrzejewski, Fred; Murray, Noel; Clark, Charles W; Lobb, Christopher J; Phillips, William D; Edwards, Mark; Campbell, Gretchen K
2014-02-13
Atomtronics is an emerging interdisciplinary field that seeks to develop new functional methods by creating devices and circuits where ultracold atoms, often superfluids, have a role analogous to that of electrons in electronics. Hysteresis is widely used in electronic circuits-it is routinely observed in superconducting circuits and is essential in radio-frequency superconducting quantum interference devices. Furthermore, it is as fundamental to superfluidity (and superconductivity) as quantized persistent currents, critical velocity and Josephson effects. Nevertheless, despite multiple theoretical predictions, hysteresis has not been previously observed in any superfluid, atomic-gas Bose-Einstein condensate. Here we directly detect hysteresis between quantized circulation states in an atomtronic circuit formed from a ring of superfluid Bose-Einstein condensate obstructed by a rotating weak link (a region of low atomic density). This contrasts with previous experiments on superfluid liquid helium where hysteresis was observed directly in systems in which the quantization of flow could not be observed, and indirectly in systems that showed quantized flow. Our techniques allow us to tune the size of the hysteresis loop and to consider the fundamental excitations that accompany hysteresis. The results suggest that the relevant excitations involved in hysteresis are vortices, and indicate that dissipation has an important role in the dynamics. Controlled hysteresis in atomtronic circuits may prove to be a crucial feature for the development of practical devices, just as it has in electronic circuits such as memories, digital noise filters (for example Schmitt triggers) and magnetometers (for example superconducting quantum interference devices).
Latching overcurrent circuit breaker
Moore, M. L.
1970-01-01
Circuit breaker consists of a preset current amplitude sensor, and a lamp-photo-resistor combination in a feedback arrangement which energizes a power switching relay. The ac input power is removed from the load at predetermined current amplitudes.
Entangling distant resonant exchange qubits via circuit quantum electrodynamics
Srinivasa, V.; Taylor, J. M.; Tahan, Charles
2016-11-01
We investigate a hybrid quantum system consisting of spatially separated resonant exchange qubits, defined in three-electron semiconductor triple quantum dots, that are coupled via a superconducting transmission line resonator. Drawing on methods from circuit quantum electrodynamics and Hartmann-Hahn double resonance techniques, we analyze three specific approaches for implementing resonator-mediated two-qubit entangling gates in both dispersive and resonant regimes of interaction. We calculate entangling gate fidelities as well as the rate of relaxation via phonons for resonant exchange qubits in silicon triple dots and show that such an implementation is particularly well suited to achieving the strong coupling regime. Our approach combines the favorable coherence properties of encoded spin qubits in silicon with the rapid and robust long-range entanglement provided by circuit QED systems.
Earth current monitoring circuit for inductive loads
Montabonnet, V; Thurel, Y; Cussac, P
2010-01-01
The search for higher magnetic fields in particle accelerators increasingly demands the use of superconducting magnets. This magnet technology has a large amount of magnetic energy storage during operation at relatively high currents. As such, many monitoring and protection systems are required to safely operate the magnet, including the monitoring of any leakage of current to earth in the superconducting magnet that indicates a failure of the insulation to earth. At low amplitude, the earth leakage current affects the magnetic field precision. At a higher level, the earth leakage current can additionally generate local losses which may definitively damage the magnet or its instrumentation. This paper presents an active earth fault current monitoring circuit, widely deployed in the converters for the CERN Large Hadron Collider (LHC) superconducting magnets. The circuit allows the detection of earth faults before energising the circuit as well as limiting any eventual earth fault current. The electrical stress...
Energy Technology Data Exchange (ETDEWEB)
Wilczek, F. [Institute for Advanced Study, Princeton, NJ (United States)
1997-09-22
The asymptotic freedom of QCD suggests that at high density - where one forms a Fermi surface at very high momenta - weak coupling methods apply. These methods suggest that chiral symmetry is restored and that an instability toward color triplet condensation (color superconductivity) sets in. Here I attempt, using variational methods, to estimate these effects more precisely. Highlights include demonstration of a negative pressure in the uniform density chiral broken phase for any non-zero condensation, which we take as evidence for the philosophy of the MIT bag model; and demonstration that the color gap is substantial - several tens of MeV - even at modest densities. Since the superconductivity is in a pseudoscalar channel, parity is spontaneously broken.
SUPERCONDUCTING PHOTOCATHODES.
Energy Technology Data Exchange (ETDEWEB)
SMEDLEY, J.; RAO, T.; WARREN, J.; SEKUTOWICZ, LANGNER, J.; STRZYZEWSKI, P.; LEFFERS, R.; LIPSKI, A.
2005-10-09
We present the results of our investigation of lead and niobium as suitable photocathode materials for superconducting RF injectors. Quantum efficiencies (QE) have been measured for a range of incident photon energies and a variety of cathode preparation methods, including various lead plating techniques on a niobium substrate. The effects of operating at ambient and cryogenic temperatures and different vacuum levels on the cathode QE have also been studied.
Superconducting fault current limiter for railway transport
Energy Technology Data Exchange (ETDEWEB)
Fisher, L. M., E-mail: LMFisher@niitfa.ru; Alferov, D. F.; Akhmetgareev, M. R.; Budovskii, A. I.; Evsin, D. V.; Voloshin, I. F.; Kalinov, A. V. [National Technical Physics and Automation Research Institute (Russian Federation)
2015-12-15
A resistive switching superconducting fault current limiter (SFCL) for DC networks with voltage of 3.5 kV and nominal current of 2 kA is developed. The SFCL consists of two series-connected units: block of superconducting modules and high-speed vacuum breaker with total disconnection time not more than 8 ms. The results of laboratory tests of superconducting SFCL modules in current limiting mode are presented. The recovery time of superconductivity is experimentally determined. The possibility of application of SFCL on traction substations of Russian Railways is considered.
Simulation of an HTS Synchronous Superconducting Generator
DEFF Research Database (Denmark)
In this work we present a simulation of a synchronous generator with superconducting rotor windings. As many other electrical rotating machines, superconducting generators are exposed to ripple fields that could be produced from a wide variety of sources: short circuit, load change, etc. Unlike...... regular conductors, superconductors, experience high losses when exposed to AC fields. Thus, calculation of such losses is relevant for machine design to avoid quenches and increase performance. Superconducting coated conductors are well known to exhibit nonlinear resistivity, thus making the computation...... of heating losses a cumbersome task. Furthermore, the high aspect ratio of the superconducting materials involved adds a penalty in the time required to perform simulations. The chosen strategy for simulation is as follows: A mechanical torque signal together with an electric load is used to drive the finite...
Simulation of an HTS Synchronous Superconducting Generator
DEFF Research Database (Denmark)
Rodriguez Zermeno, Victor Manuel; Abrahamsen, Asger Bech; Mijatovic, Nenad
2012-01-01
In this work we present a simulation of a synchronous generator with superconducting rotor windings. As many other,electrical rotating machines, superconducting generators are exposed to ripple fields that could be produced from a wide variety of sources: short circuit, load change, mechanical...... torque fluctuations, etc. Unlike regular conductors, superconductors, experience high losses when exposed to AC fields. Thus, calculation of such losses is relevant for machine design to avoid quenches and increase performance. Superconducting coated conductors are well known to exhibit nonlinear...... resistivity, thus making the computation of heating losses a cumbersome task. Furthermore, the high aspect ratio of the superconducting materials involved adds a penalty in the time required to perform simulations. The chosen strategy for simulation is as follows: A mechanical torque signal together...
Quantum memory with millisecond coherence in circuit QED
Reagor, Matthew; Pfaff, Wolfgang; Axline, Christopher; Heeres, Reinier W.; Ofek, Nissim; Sliwa, Katrina; Holland, Eric; Wang, Chen; Blumoff, Jacob; Chou, Kevin; Hatridge, Michael J.; Frunzio, Luigi; Devoret, Michel H.; Jiang, Liang; Schoelkopf, Robert J.
2016-07-01
Significant advances in coherence render superconducting quantum circuits a viable platform for fault-tolerant quantum computing. To further extend capabilities, highly coherent quantum systems could act as quantum memories for these circuits. A useful quantum memory must be rapidly addressable by Josephson-junction-based artificial atoms, while maintaining superior coherence. We demonstrate a superconducting microwave cavity architecture that is highly robust against major sources of loss that are encountered in the engineering of circuit QED systems. The architecture allows for storage of quantum superpositions in a resonator on the millisecond scale, while strong coupling between the resonator and a transmon qubit enables control, encoding, and readout at MHz rates. This extends the maximum available coherence time attainable in superconducting circuits by almost an order of magnitude compared to earlier hardware. Our design is an ideal platform for studying coherent quantum optics and marks an important step towards hardware-efficient quantum computing in Josephson-junction-based quantum circuits.
Powering and Machine Protection of the Superconducting LHC Accelerator
Zerlauth, M
2004-01-01
A very large number of magnets, both superconducting and conventional copper conductor magnets, are installed in the LHC (Large Hadron Collider) for the guidance of the two proton beams around the circumference. In total, the LHC counts 1614 different electrical circuits with 1712 power converters for DC powering of the superconducting and normal conducting magnets. Besides the electrical circuits connecting main magnets for bending and focusing of the two counter-rotating beams, the demanding requirements on the quality of the magnetic fields require a large number of circuits for corrector magnets distributed around the circumference. In total, more than 10000 magnets will need to be connected to the power converters via a large inventory of electrical components such as normal conducting cables and tubes, energy extraction systems, current feedthroughs and superconducting busbars. Depending on the complexity and importance of these electrical circuits and their components, various systems will interact for...
Superconducting Josephson vortex flow transistors
Tavares, P A C
2002-01-01
The work reported in this thesis focuses on the development of high-temperature superconducting Josephson vortex-flow transistors (JVFTs). The JVFT is a particular type of superconducting transistor, i.e. an electromagnetic device capable of delivering gain while keeping the control and output circuits electrically isolated. Devices were fabricated from (100) YBa sub 2 Cu sub 3 O sub 7 sub - subdelta thin films grown by Pulsed Laser Deposition on 24 deg magnesium oxide and strontium titanate bicrystals. The design of the JVFTs was guided by numerical simulations and the devices were optimised for current gain. Improvements were made to the fabrication process in order to accurately pattern the small structures required. The devices exhibited current gains higher than 60 in liquid nitrogen. Gains measured at lower temperatures were significantly higher. As part of the work a data acquisition suite was developed for the characterisation of three-terminal devices and, in particular, of JVFTs.
Superconducting wires and fractional flux
Sá de Melo, C. A. R.
1996-05-01
The quantization of flux quanta in superconductors is revisited and analyzed in a new geometry. The system analyzed is a superconducting wire. The geometry is such that the superconducting wire winds N times around an insulating cylinder and that the wire has its end connected back to its beginning, thus producing an N-loop short circuited solenoid. The winding number N acts as a topological index that controls flux quantization. In this case, fractional flux quanta can be measured through the center of the insulating cylinder, provided that the cylinder radius is small enough. The Little-Parks experiment for an identical geometry is discussed. The period of oscillation of the transition temperature of the wire is found to vary as 1/N in units of flux Φ relative to the flux quantum Φ0. When a SQUID is made in such a geometry the maximal current through the SQUID varies with period Φ0/N.
DEFF Research Database (Denmark)
Staunstrup, Jørgen
1998-01-01
This paper proposes that Interface Consistency is an important issue for the development of modular designs. Byproviding a precise specification of component interfaces it becomes possible to check that separately developedcomponents use a common interface in a coherent matter thus avoiding a very...... significant source of design errors. Awide range of interface specifications are possible, the simplest form is a syntactical check of parameter types.However, today it is possible to do more sophisticated forms involving semantic checks....
Bordin, Lorenzo; Creminelli, Paolo; Mirbabayi, Mehrdad; Noreña, Jorge
2017-03-01
We argue that isotropic scalar fluctuations in solid inflation are adiabatic in the super-horizon limit. During the solid phase this adiabatic mode has peculiar features: constant energy-density slices and comoving slices do not coincide, and their curvatures, parameterized respectively by ζ and Script R, both evolve in time. The existence of this adiabatic mode implies that Maldacena's squeezed limit consistency relation holds after angular average over the long mode. The correlation functions of a long-wavelength spherical scalar mode with several short scalar or tensor modes is fixed by the scaling behavior of the correlators of short modes, independently of the solid inflation action or dynamics of reheating.
Itinerant Ferromagnetism and Superconductivity
Karchev, Naoum
2004-01-01
Superconductivity has again become a challenge following the discovery of unconventional superconductivity. Resistance-free currents have been observed in heavy-fermion materials, organic conductors and copper oxides. The discovery of superconductivity in a single crystal of $UGe_2$, $ZrZn_2$ and $URhGe$ revived the interest in the coexistence of superconductivity and ferromagnetism. The experiments indicate that: i)The superconductivity is confined to the ferromagnetic phase. ii)The ferromag...
100 years of superconductivity
Rogalla, Horst
2011-01-01
Even a hundred years after its discovery, superconductivity continues to bring us new surprises, from superconducting magnets used in MRI to quantum detectors in electronics. 100 Years of Superconductivity presents a comprehensive collection of topics on nearly all the subdisciplines of superconductivity. Tracing the historical developments in superconductivity, the book includes contributions from many pioneers who are responsible for important steps forward in the field.The text first discusses interesting stories of the discovery and gradual progress of theory and experimentation. Emphasizi
Switchable Ultrastrong Coupling in Circuit QED
Peropadre, B.; Forn-Diaz, P.; Solano, E.; Garcia-Ripoll, J.J.
2010-01-01
We propose different designs of switchable coupling between a superconducting flux qubit and a microwave transmission line. They are based on two or more loops of Josephson junctions which are directly connected to a closed (cavity) or open transmission line. In both cases the circuit induces a coup
Minimal resonator loss for circuit quantum electrodynamics
Barends, R.; Vercruyssen, N.; Endo, A.; De Visser, P.J.; Zijlstra, T.; Klapwijk, T.M.; Diener, P.; Yates, S.J.C.; Baselmans, J.J.A.
2010-01-01
We report quality factors of up to 500x10³ in superconducting resonators at the single photon levels needed for circuit quantum electrodynamics. This result is achieved by using NbTiN and removing the dielectric from regions with high electric fields. As demonstrated by a comparison with Ta, the cru
Resonance circuits for adiabatic circuits
Directory of Open Access Journals (Sweden)
C. Schlachta
2003-01-01
Full Text Available One of the possible techniques to reduces the power consumption in digital CMOS circuits is to slow down the charge transport. This slowdown can be achieved by introducing an inductor in the charging path. Additionally, the inductor can act as an energy storage element, conserving the energy that is normally dissipated during discharging. Together with the parasitic capacitances from the circuit a LCresonant circuit is formed.
Quantum Magnetomechanics with Levitating Superconducting Microspheres
Romero-Isart, O; Navau, C; Sanchez, A; Cirac, J I
2011-01-01
We show that by magnetically trapping a superconducting microsphere close to a quantum circuit, it is experimentally feasible to perform ground state cooling and to prepare quantum superpositions of the center-of-mass motion of the microsphere. Due to the absence of clamping losses and time dependent electromagnetic fields, the mechanical motion of micrometer-sized metallic spheres in the Meissner state is predicted to be extremely well isolated from the environment. Hence, we propose to combine the technology of magnetic mictrotraps and superconducting qubits to bring relatively large objects to the quantum regime.
Design Study of Superconducting Coil of 230 MeV Superconducting Cyclotron
Institute of Scientific and Technical Information of China (English)
WANG; Chuan; YIN; Meng; ZHANG; Su-ping; LI; Ming; CUI; Tao; LIN; Jun; LV; Yin-long; GE; Tao; YIN; Zhi-guo; ZHANG; Tian-jue
2015-01-01
The superconducting coil system of CYCIAE-230superconducting proton cyclotron consists of two coil windings,cryostat,GM coolers,and the liquid helium condenser(Fig.1),along with multiple thermometers,pressure gauges,liquid level gauges,load cells,a vacuum pump,a
Energy Technology Data Exchange (ETDEWEB)
Kim, J S; Stewart, G R [Department of Physics, University of Florida, Gainesville, FL 32611-8440 (United States); Kasahara, S; Terashima, T [Research Center for Low Temperature and Materials Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan); Shibauchi, T; Matsuda, Y [Department of Physics, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan)
2011-06-08
We report the specific heat discontinuity, {Delta}C/T{sub c}, at T{sub c} = 28.2 K of a collage of single crystals of BaFe{sub 2}(As{sub 0.7}P{sub 0.3}){sub 2} and compare the measured value of 38.5 mJ mol{sup -1} K{sup -2} with other iron pnictide and iron chalcogenide (FePn/Ch) superconductors. This value agrees well with the trend established by Bud'ko, Ni and Canfield, who found that {Delta}C/T{sub c{proportional_to}}aT{sub c}{sup 2} for 14 examples of doped Ba{sub 1-x}K{sub x}Fe{sub 2}As{sub 2} and BaFe{sub 2-x}TM{sub x}As{sub 2}, where the transition metal TM = Co and Ni. We extend their analysis to include all the FePn/Ch superconductors for which {Delta}C/T{sub c} is currently known and find {Delta}C/T{sub c{proportional_to}}aT{sub c}{sup 1.9} and a = 0.083 mJ mol{sup -1} K{sup -4}. A comparison with the elemental superconductors with T{sub c} > 1 K and with A-15 superconductors shows that, contrary to the FePn/Ch superconductors, electron-phonon-coupled conventional superconductors exhibit a significantly different dependence of {Delta}C on T{sub c}, namely {Delta}C/T{sub c{proportional_to}}T{sub c}{sup 0.9}. However {Delta}C/{gamma}T{sub c} appears to be comparable in all three classes (FePn/Ch, elemental and A-15) of superconductors with, for example, {Delta}C/{gamma}T{sub c} = 2.4 for BaFe{sub 2}(As{sub 0.7}P{sub 0.3}){sub 2}. A discussion of the possible implications of these phenomenological comparisons for the unconventional superconductivity believed to exist in the FePn/Ch is given. (fast track communication)
Superconductivity in compensated and uncompensated semiconductors.
Yanase, Youichi; Yorozu, Naoyuki
2008-12-01
We investigate the localization and superconductivity in heavily doped semiconductors. The crossover from the superconductivity in the host band to that in the impurity band is described on the basis of the disordered three-dimensional attractive Hubbard model for binary alloys. The microscopic inhomogeneity and the thermal superconducting fluctuation are taken into account using the self-consistent 1-loop order theory. The superconductor-insulator transition accompanies the crossover from the host band to the impurity band. We point out an enhancement of the critical temperature Tc around the crossover. Further localization of electron wave functions leads to the localization of Cooper pairs and induces the pseudogap. We find that both the doping compensation by additional donors and the carrier increase by additional acceptors suppress the superconductivity. A theoretical interpretation is proposed for the superconductivity in the boron-doped diamond, SiC, and Si.
Superconductivity in compensated and uncompensated semiconductors
Directory of Open Access Journals (Sweden)
Youichi Yanase and Naoyuki Yorozu
2008-01-01
Full Text Available We investigate the localization and superconductivity in heavily doped semiconductors. The crossover from the superconductivity in the host band to that in the impurity band is described on the basis of the disordered three-dimensional attractive Hubbard model for binary alloys. The microscopic inhomogeneity and the thermal superconducting fluctuation are taken into account using the self-consistent 1-loop order theory. The superconductor-insulator transition accompanies the crossover from the host band to the impurity band. We point out an enhancement of the critical temperature Tc around the crossover. Further localization of electron wave functions leads to the localization of Cooper pairs and induces the pseudogap. We find that both the doping compensation by additional donors and the carrier increase by additional acceptors suppress the superconductivity. A theoretical interpretation is proposed for the superconductivity in the boron-doped diamond, SiC, and Si.
High field superconducting magnets
Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)
2011-01-01
A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.
Emulation of complex open quantum systems using superconducting qubits
Mostame, Sarah; Huh, Joonsuk; Kreisbeck, Christoph; Kerman, Andrew J.; Fujita, Takatoshi; Eisfeld, Alexander; Aspuru-Guzik, Alán
2017-02-01
With quantum computers being out of reach for now, quantum simulators are alternative devices for efficient and accurate simulation of problems that are challenging to tackle using conventional computers. Quantum simulators are classified into analog and digital, with the possibility of constructing "hybrid" simulators by combining both techniques. Here we focus on analog quantum simulators of open quantum systems and address the limit that they can beat classical computers. In particular, as an example, we discuss simulation of the chlorosome light-harvesting antenna from green sulfur bacteria with over 250 phonon modes coupled to each electronic state. Furthermore, we propose physical setups that can be used to reproduce the quantum dynamics of a standard and multiple-mode Holstein model. The proposed scheme is based on currently available technology of superconducting circuits consist of flux qubits and quantum oscillators.
Color-symmetric superconductivity in a phenomenological QCD model
DEFF Research Database (Denmark)
Bohr, Henrik; Providencia, C.; Providencia, J. da
2009-01-01
In this paper, we construct a theory of the NJL type where superconductivity is present, and yet the superconducting state remains, in the average, color symmetric. This shows that the present approach to color superconductivity is consistent with color singletness. Indeed, quarks are free...... in the deconfined phase, but the deconfined phase itself is believed to be a color singlet. The usual description of the color superconducting state violates color singletness. On the other hand, the color superconducting state here proposed is color symmetric in the sense that an arbitrary color rotation leads...
Crisan, Mircea
1989-01-01
This book discusses the most important aspects of the theory. The phenomenological model is followed by the microscopic theory of superconductivity, in which modern formalism of the many-body theory is used to treat most important problems such as superconducting alloys, coexistence of superconductivity with the magnetic order, and superconductivity in quasi-one-dimensional systems. It concludes with a discussion on models for exotic and high temperature superconductivity. Its main aim is to review, as complete as possible, the theory of superconductivity from classical models and methods up t
Merrill, L.C.
1958-10-14
Control circuits for vacuum tubes are described, and a binary counter having an improved trigger circuit is reported. The salient feature of the binary counter is the application of the input signal to the cathode of each of two vacuum tubes through separate capacitors and the connection of each cathode to ground through separate diodes. The control of the binary counter is achieved in this manner without special pulse shaping of the input signal. A further advantage of the circuit is the simplicity and minimum nuruber of components required, making its use particularly desirable in computer machines.
Microstrip filters for measurement and control of superconducting qubits.
Longobardi, Luigi; Bennett, Douglas A; Patel, Vijay; Chen, Wei; Lukens, James E
2013-01-01
Careful filtering is necessary for observations of quantum phenomena in superconducting circuits at low temperatures. Measurements of coherence between quantum states require extensive filtering to protect against noise coupled from room temperature electronics. We demonstrate distributed transmission line filters which cut off exponentially at GHz frequencies and can be anchored at the base temperature of a dilution refrigerator. The compact design makes them suitable to filter many different bias lines in the same setup, necessary for the control and measurement of superconducting qubits.
Lee, Minchul; Choi, Mahn-Soo
2014-08-15
We investigate the mesoscopic resistor-capacitor circuit consisting of a quantum dot coupled to spatially separated Majorana fermion modes in a chiral topological superconductor. We find substantially enhanced relaxation resistance due to the nature of Majorana fermions, which are their own antiparticles and are composed of particle and hole excitations in the same abundance. Further, if only a single Majorana mode is involved, the zero-frequency relaxation resistance is completely suppressed due to a destructive interference. As a result, the Majorana mode opens an exotic dissipative channel on a superconductor which is typically regarded as dissipationless due to its finite superconducting gap.
The Application of High Temperature Superconducting Materials to Power Switches
March, S A; Ballarino, A
2009-01-01
Superconducting switches may find application in superconducting magnet systems that require energy extraction. Such superconducting switches could be bypass-switches that are operated in conjunction with a parallel resistor or dump-switches where all of the energy is dissipated in the switch itself. Bypass-switches are more suited to higher energy circuits as a portion of the energy can be dissipated in the external dump resistor. Dump- switches require less material and triggering energy as a lower switch resistance is needed to achieve the required total dump resistance. Both superconducting bypass-switches and superconducting dump-switches can be ther- mally activated. Switching times that are comparable to those obtained with mechanical bypass-switch systems can be achieved using a co-wound heater that is powered by a ca- pacitor discharge. Switches that have fast thermal diffusion times through the insulation can be modelled as a lumped system whereas those with slow thermal diffusion times were modelle...
Summer Course on the Science and Technology of Superconductivity
Gregory, W D; Mathews, W N; The science and technology of superconductivity
1973-01-01
Since the discovery of superconductivity in 1911 by H. Kamerlingh Onnes, of the order of half a billion dollars has been spent on research directed toward understanding and utiliz ing this phenomenon. This investment has gained us fundamental understanding in the form of a microscopic theory of superconduc tivity. Moreover, superconductivity has been transformed from a laboratory curiosity to the basis of some of the most sensitive and accurate measuring devices known, a whole host of other elec tronic devices, a soon-to-be new international standard for the volt, a prototype generation of superconducting motors and gener ators, and magnets producing the highest continuous magnetic fields yet produced by man. The promise of more efficient means of power transmission and mass transportation, a new generation of superconducting motors and generators, and computers and other electronic devices with superconducting circuit elements is all too clear. The realization of controlled thermonuclear fu...
A transmission calibration method for superconducting resonators
Cataldo, Giuseppe; Barrentine, Emily M; Brown, Ari D; Moseley, Samuel H; U-Yen, Kongpop
2014-01-01
A method is proposed and experimentally explored for \\textit{in-situ} calibration of complex transmission data for superconducting microwave resonators. This cryogenic calibration method accounts for the instrumental transmission response between the vector network analyzer reference plane and the device calibration plane. Once calibrated, the observed resonator response was modeled in detail by two approaches. The first, a phenomenological model based on physically realizable rational functions, enables the extraction of multiple resonance frequencies and widths for coupled resonators without explicit specification of the circuit network. In the second, an ABCD-matrix representation for the distributed transmission line circuit is used to model the observed response from the characteristic impedance and propagation constant. When used in conjunction with electromagnetic simulations, the kinetic inductance fraction can be determined with this method with an accuracy of 2%. Datasets for superconducting microst...
Time Transient Effects in Superconducting Magnets
AUTHOR|(CDS)2051280; Russenschuck, Stephan; Palumbo, Luigi
2004-01-01
The subject of this thesis is the study of time transient effects in super- conducting cables, with applications to accelerator magnets, and the development of a simulation code. The superconducting cables are modeled at the strand level as a lumped resistor, inductor generator circuit. The analysis in time domain of the circuit currents discloses the transient effects. The code developed can solve Rutherford type cable of any size, shape geometry under any exciting external field. The code has been implemented in Roxie where it is used to compute ramp dependent field error and heat losses.
DC Characterization of the Coaxial Superconducting Cable
Šouc, J.; Gömöry, F.; Vojenčiak, M.; Frolek, L.; Isfort, D.; Ehrenberg, J.; Bock, J.
2008-01-01
Coaxial cable model with superconducting core and superconducting shield conductor was constructed and tested in DC regime. While the core was already examined in our previous works, in this contribution the detailed study of the superconducting shield conductor in DC conditions is presented. It consists of 16 ReBCO coated tapes with critical current 35 A each connected in parallel. Using shunts with known values placed in series the currents in individual tapes were possible to measure. Distribution of the total cable current into the individual tapes was monitored and its influence on critical current of the cable is discussed.
Thermodynamic Green functions in theory of superconductivity
Directory of Open Access Journals (Sweden)
N.M.Plakida
2006-01-01
Full Text Available A general theory of superconductivity is formulated within the thermodynamic Green function method for various types of pairing mediated by phonons, spin fluctuations, and strong Coulomb correlations in the Hubbard and t-J models. A rigorous Dyson equation for matrix Green functions is derived in terms of a self-energy as a many-particle Green function. By applying the noncrossing approximation for the self-energy, a closed self-consistent system of equations is obtained, similar to the conventional Eliashberg equations. A brief discussion of superconductivity mediated by kinematic interaction with an estimation of a superconducting transition temperature in the Hubbard model is given.
Nonlinearly Coupled Superconducting Lumped Element Resonators
Collodo, Michele C.; Potočnik, Anton; Rubio Abadal, Antonio; Mondal, Mintu; Oppliger, Markus; Wallraff, Andreas
We study SQUID-mediated tunable coupling between two superconducting on-chip resonators in the microwave frequency range. In this circuit QED implementation, we employ lumped-element type resonators, which consist of Nb thin film structured into interdigitated finger shunt capacitors and meander inductors. A SQUID, functioning as flux dependent and intrinsically nonlinear inductor, is placed as a coupling element together with an interdigitated capacitor between the two resonators (cf. A. Baust et al., Phys Rev. B 91 014515 (2015)). We perform a spectroscopic measurement in a dilution refrigerator and find the linear photon hopping rate between the resonators to be widely tunable as well as suppressible for an appropriate choice of parameters, which is made possible due to the interplay of inductively and capacitively mediated coupling. Vanishing linear coupling promotes nonlinear effects ranging from onsite- to cross-Kerr interaction. A dominating cross-Kerr interaction related to this configuration is notable, as it induces a unique quantum state. In the course of analog quantum simulations, such elementary building blocks can serve as a precursor for more complex geometries and thus pave the way to a number of novel quantum phases of light
Superconducting FCL using a combined inducted magnetic field trigger and shunt coil
Tekletsadik, Kasegn D.
2007-10-16
A single trigger/shunt coil is utilized for combined induced magnetic field triggering and shunt impedance. The single coil connected in parallel with the high temperature superconducting element, is designed to generate a circulating current in the parallel circuit during normal operation to aid triggering the high temperature superconducting element to quench in the event of a fault. The circulating current is generated by an induced voltage in the coil, when the system current flows through the high temperature superconducting element.
Superconducting thin films. (Latest citations from the EI Compendex*plus database). Published Search
Energy Technology Data Exchange (ETDEWEB)
NONE
1997-12-01
The bibliography contains citations concerning the design, fabrication, structures, and properties of superconducting thin films used in microelectronics and optoelectronics. References discuss high temperature superconductors, oxide superconductors, superconducting transition temperatures, critical current density, yttrium barium copper oxide thin films, and yttrium stabilized substrates. Superconducting devices, filters, resonators, and circuits are also reviewed. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)
Simple Superconducting "Permanent" Electromagnet
Israelson, Ulf E.; Strayer, Donald M.
1992-01-01
Proposed short tube of high-temperature-superconducting material like YBa2Cu3O7 acts as strong electromagnet that flows as long as magnetic field remains below critical value and temperature of cylinder maintained sufficiently below superconducting-transition temperature. Design exploits maximally anisotropy of high-temperature-superconducting material.
Basic principle of superconductivity
De Cao, Tian
2007-01-01
The basic principle of superconductivity is suggested in this paper. There have been two vital wrong suggestions on the basic principle, one is the relation between superconductivity and the Bose-Einstein condensation (BEC), and another is the relation between superconductivity and pseudogap.
Coherent oscillations in a superconducting flux qubit without microwave pulses
Energy Technology Data Exchange (ETDEWEB)
Poletto, Stefano; Lisenfeld, Juergen; Lukashenko, Alexander; Ustinov, Alexey V. [Physikalisches Institut III, Universitaet Erlangen-Nuernberg (Germany); Castellano, Maria Gabriella; Chiarello, Fabio [Istituto di Fotonica e Nanotecnologie del CNR, Roma (Italy); Cosmelli, Carlo [Dipartimento di Fisica and INFN, Universita' di Roma La Sapienza (Italy); Carelli, Pasquale [Universita' degli Studi dell' Acquila (Italy)
2008-07-01
We report on observation of coherent oscillations in a superconducting flux qubit by using no microwave excitation but only nanosecond-long dc flux pulses. The investigated circuit is a double-SQUID consisting of a superconducting loop interrupted by a small dc-SQUID, which we control via two bias fluxes {phi}{sub c} and {phi}{sub x}. The potential energy profile of the qubit has the shape of a double well, where the flux {phi}{sub c} controls the height of the barrier between the two minima and the flux {phi}{sub x} changes the potential symmetry. The two computational states of the qubit are identified with the two energy minima and physically correspond to clockwise or anticlockwise circulating currents in the double-SQUID main loop. We observed coherent oscillations, in the frequency range between 8 and 20 GHz, induced by fast pulses of the control flux {phi}{sub c} modulating the barrier between the two potential wells. The quantum dynamics that leads to this kind of oscillations is composed of a non-adiabatic and adiabatic evolution of the two lowest energy states.
Measuring ac-loss in high temperature superconducting cable-conductors using four probe methods
DEFF Research Database (Denmark)
Kühle (fratrådt), Anders Van Der Aa; Træholt, Chresten; Olsen, Søren Krüger;
1999-01-01
Measuring the ac-loss of superconducting cable conductors have many aspects in common with measuring the ac-loss of single superconducting tapes. In a cable conductor all tapes are connected to each other and to the test circuit through normal metal joints in each end. This makes such measurement...
Energy Technology Data Exchange (ETDEWEB)
Kim, J. H.; Park, S. I.; Im, S. H.; Kim, H. M. [Jeju National University, Jeju (Korea, Republic of)
2013-09-15
Superconducting field coils using a high-temperature superconducting (HTS) wires with high current density generate high magnetic field of 2 to 5 [T] and electromagnetic force (Lorentz force) acting on the superconducting field coils also become a very strong from the point of view of a mechanical characteristics. Because mechanical stress caused by these powerful electromagnetic force is one of the factors which worsens the critical current performance and structural characteristics of HTS wire, the mechanical stress analysis should be performed when designing the superconducting field coils. In this paper, as part of structural design of superconducting field coils for 17 MW class superconducting ship propulsion motor, mechanical stress acting on the superconducting field coils was analyzed and structural safety was also determined by the coupling analysis system that is consists of commercial electromagnetic field analysis program and structural analysis program.
Implementing phase-covariant cloning in circuit quantum electrodynamics
Energy Technology Data Exchange (ETDEWEB)
Zhu, Meng-Zheng [School of Physics and Material Science, Anhui University, Hefei 230039 (China); School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000 (China); Ye, Liu, E-mail: yeliu@ahu.edu.cn [School of Physics and Material Science, Anhui University, Hefei 230039 (China)
2016-10-15
An efficient scheme is proposed to implement phase-covariant quantum cloning by using a superconducting transmon qubit coupled to a microwave cavity resonator in the strong dispersive limit of circuit quantum electrodynamics (QED). By solving the master equation numerically, we plot the Wigner function and Poisson distribution of the cavity mode after each operation in the cloning transformation sequence according to two logic circuits proposed. The visualizations of the quasi-probability distribution in phase-space for the cavity mode and the occupation probability distribution in the Fock basis enable us to penetrate the evolution process of cavity mode during the phase-covariant cloning (PCC) transformation. With the help of numerical simulation method, we find out that the present cloning machine is not the isotropic model because its output fidelity depends on the polar angle and the azimuthal angle of the initial input state on the Bloch sphere. The fidelity for the actual output clone of the present scheme is slightly smaller than one in the theoretical case. The simulation results are consistent with the theoretical ones. This further corroborates our scheme based on circuit QED can implement efficiently PCC transformation.
Implementing phase-covariant cloning in circuit quantum electrodynamics
Zhu, Meng-Zheng; Ye, Liu
2016-10-01
An efficient scheme is proposed to implement phase-covariant quantum cloning by using a superconducting transmon qubit coupled to a microwave cavity resonator in the strong dispersive limit of circuit quantum electrodynamics (QED). By solving the master equation numerically, we plot the Wigner function and Poisson distribution of the cavity mode after each operation in the cloning transformation sequence according to two logic circuits proposed. The visualizations of the quasi-probability distribution in phase-space for the cavity mode and the occupation probability distribution in the Fock basis enable us to penetrate the evolution process of cavity mode during the phase-covariant cloning (PCC) transformation. With the help of numerical simulation method, we find out that the present cloning machine is not the isotropic model because its output fidelity depends on the polar angle and the azimuthal angle of the initial input state on the Bloch sphere. The fidelity for the actual output clone of the present scheme is slightly smaller than one in the theoretical case. The simulation results are consistent with the theoretical ones. This further corroborates our scheme based on circuit QED can implement efficiently PCC transformation.
Bhasin, Kul B. (Editor); Heinen, Vernon O. (Editor)
1990-01-01
Various papers on superconductivity applications for IR and microwave devices are presented. The individual topics addressed include: pulsed laser deposition of Tl-Ca-Ba-Cu-O films, patterning of high-Tc superconducting thin films on Si substrates, IR spectra and the energy gap in thin film YBa2Cu3O(7-delta), high-temperature superconducting thin film microwave circuits, novel filter implementation utilizing HTS materials, high-temperature superconductor antenna investigations, high-Tc superconducting IR detectors, high-Tc superconducting IR detectors from Y-Ba-Cu-O thin films, Y-Ba-Cu0-O thin films as high-speed IR detectors, fabrication of a high-Tc superconducting bolometer, transition-edge microbolometer, photoresponse of YBa2Cu3O(7-delta) granular and epitaxial superconducting thin films, fast IR response of YBCO thin films, kinetic inductance effects in high-Tc microstrip circuits at microwave frequencies.
Electrothermal simulation of superconducting nanowire avalanche photodetectors
Marsili, Francesco; Najafi, Faraz; Herder, Charles; Berggren, Karl K.
2011-02-01
We developed an electrothermal model of NbN superconducting nanowire avalanche photodetectors (SNAPs) on sapphire substrates. SNAPs are single-photon detectors consisting of the parallel connection of N superconducting nanowires. We extrapolated the physical constants of the model from experimental data and we simulated the time evolution of the device resistance, temperature and current by solving two coupled electrical and thermal differential equations describing the nanowires. The predictions of the model were in good quantitative agreement with the experimental results.
Multilayer microwave integrated quantum circuits for scalable quantum computing
Brecht, Teresa; Pfaff, Wolfgang; Wang, Chen; Chu, Yiwen; Frunzio, Luigi; Devoret, Michel H.; Schoelkopf, Robert J.
2016-02-01
As experimental quantum information processing (QIP) rapidly advances, an emerging challenge is to design a scalable architecture that combines various quantum elements into a complex device without compromising their performance. In particular, superconducting quantum circuits have successfully demonstrated many of the requirements for quantum computing, including coherence levels that approach the thresholds for scaling. However, it remains challenging to couple a large number of circuit components through controllable channels while suppressing any other interactions. We propose a hardware platform intended to address these challenges, which combines the advantages of integrated circuit fabrication and the long coherence times achievable in three-dimensional circuit quantum electrodynamics. This multilayer microwave integrated quantum circuit platform provides a path towards the realisation of increasingly complex superconducting devices in pursuit of a scalable quantum computer.
Wu, Xiangyang; Tan, Yunfei; Fang, Zhen; Jiang, Donghui; Chen, Zhiyou; Chen, Wenge; Kuang, Guangli
2017-10-01
A large cable-in-conduit-conductor (CICC) test facility has been designed and fabricated at the High Magnetic Field Laboratory of the Chinese Academy of Sciences (CHMFL) in order to meet the test requirement of the conductors which are applied to the future fusion reactor. The critical component of the test facility is an 80 kA superconducting transformer which consists of a multi-turn primary coil and a minor-turn secondary coil. As the current source of the conductor samples, the electromagnetic performance of the superconducting transformer determines the stability and safety of the test facility. In this paper, the key factors and parameters, which have much impact on the performance of the transformer, are analyzed in detail. The conceptual design and optimizing principles of the transformer are discussed. An Electromagnetic-Circuit coupled model built in ANSYS Multiphysics is successfully used to investigate the electromagnetic characterization of the transformer under the dynamic operation condition.
Alonso, Jose R.; Antaya, Timothy A.
2012-01-01
Superconductivity is playing an increasingly important role in advanced medical technologies. Compact superconducting cyclotrons are emerging as powerful tools for external beam therapy with protons and carbon ions, and offer advantages of cost and size reduction in isotope production as well. Superconducting magnets in isocentric gantries reduce their size and weight to practical proportions. In diagnostic imaging, superconducting magnets have been crucial for the successful clinical implementation of magnetic resonance imaging. This article introduces each of those areas and describes the role which superconductivity is playing in them.
Enhanced superconductivity of fullerenes
Energy Technology Data Exchange (ETDEWEB)
Washington, II, Aaron L.; Teprovich, Joseph A.; Zidan, Ragaiy
2017-06-20
Methods for enhancing characteristics of superconductive fullerenes and devices incorporating the fullerenes are disclosed. Enhancements can include increase in the critical transition temperature at a constant magnetic field; the existence of a superconducting hysteresis over a changing magnetic field; a decrease in the stabilizing magnetic field required for the onset of superconductivity; and/or an increase in the stability of superconductivity over a large magnetic field. The enhancements can be brought about by transmitting electromagnetic radiation to the superconductive fullerene such that the electromagnetic radiation impinges on the fullerene with an energy that is greater than the band gap of the fullerene.
Superconducting microfabricated ion traps
Wang, Shannon X; Labaziewicz, Jaroslaw; Dauler, Eric; Berggren, Karl; Chuang, Isaac L
2010-01-01
We fabricate superconducting ion traps with niobium and niobium nitride and trap single 88Sr ions at cryogenic temperatures. The superconducting transition is verified and characterized by measuring the resistance and critical current using a 4-wire measurement on the trap structure, and observing change in the rf reflection. The lowest observed heating rate is 2.1(3) quanta/sec at 800 kHz at 6 K and shows no significant change across the superconducting transition, suggesting that anomalous heating is primarily caused by noise sources on the surface. This demonstration of superconducting ion traps opens up possibilities for integrating trapped ions and molecular ions with superconducting devices.
Superconducting material development
1987-09-01
A superconducting compound was developed that showed a transition to a zero-resistance state at 65 C, or 338 K. The superconducting material, which is an oxide based on strontium, barium, yttrium, and copper, continued in the zero-resistance state similar to superconductivity for 10 days at room temperature in the air. It was also noted that measurements of the material allowed it to observe a nonlinear characteristic curve between current and voltage at 65 C, which is another indication of superconductivity. The research results of the laboratory experiment with the superconducting material will be published in the August edition of the Japanese Journal of Applied Physics.
Protective link for superconducting coil
Umans, Stephen D.
2009-12-08
A superconducting coil system includes a superconducting coil and a protective link of superconducting material coupled to the superconducting coil. A rotating machine includes first and second coils and a protective link of superconducting material. The second coil is operable to rotate with respect to the first coil. One of the first and second coils is a superconducting coil. The protective link is coupled to the superconducting coil.
Verification of the predictive capabilities of the 4C code cryogenic circuit model
Zanino, R.; Bonifetto, R.; Hoa, C.; Richard, L. Savoldi
2014-01-01
The 4C code was developed to model thermal-hydraulics in superconducting magnet systems and related cryogenic circuits. It consists of three coupled modules: a quasi-3D thermal-hydraulic model of the winding; a quasi-3D model of heat conduction in the magnet structures; an object-oriented a-causal model of the cryogenic circuit. In the last couple of years the code and its different modules have undergone a series of validation exercises against experimental data, including also data coming from the supercritical He loop HELIOS at CEA Grenoble. However, all this analysis work was done each time after the experiments had been performed. In this paper a first demonstration is given of the predictive capabilities of the 4C code cryogenic circuit module. To do that, a set of ad-hoc experimental scenarios have been designed, including different heating and control strategies. Simulations with the cryogenic circuit module of 4C have then been performed before the experiment. The comparison presented here between the code predictions and the results of the HELIOS measurements gives the first proof of the excellent predictive capability of the 4C code cryogenic circuit module.
Superconductivity in transition metals.
Slocombe, Daniel R; Kuznetsov, Vladimir L; Grochala, Wojciech; Williams, Robert J P; Edwards, Peter P
2015-03-13
A qualitative account of the occurrence and magnitude of superconductivity in the transition metals is presented, with a primary emphasis on elements of the first row. Correlations of the important parameters of the Bardeen-Cooper-Schrieffer theory of superconductivity are highlighted with respect to the number of d-shell electrons per atom of the transition elements. The relation between the systematics of superconductivity in the transition metals and the periodic table high-lights the importance of short-range or chemical bonding on the remarkable natural phenomenon of superconductivity in the chemical elements. A relationship between superconductivity and lattice instability appears naturally as a balance and competition between localized covalent bonding and so-called broken covalency, which favours d-electron delocalization and superconductivity. In this manner, the systematics of superconductivity and various other physical properties of the transition elements are related and unified.
Superconductivity in Ca-doped graphene laminates
Chapman, J.; Su, Y.; Howard, C. A.; Kundys, D.; Grigorenko, A. N.; Guinea, F.; Geim, A. K.; Grigorieva, I. V.; Nair, R. R.
2016-01-01
Despite graphene’s long list of exceptional electronic properties and many theoretical predictions regarding the possibility of superconductivity in graphene, its direct and unambiguous experimental observation has not been achieved. We searched for superconductivity in weakly interacting, metal decorated graphene crystals assembled into so-called graphene laminates, consisting of well separated and electronically decoupled graphene crystallites. We report robust superconductivity in all Ca-doped graphene laminates. They become superconducting at temperatures (Tc) between ≈4 and ≈6 K, with Tc’s strongly dependent on the confinement of the Ca layer and the induced charge carrier concentration in graphene. We find that Ca is the only dopant that induces superconductivity in graphene laminates above 1.8 K among several dopants used in our experiments, such as potassium, caesium and lithium. By revealing the tunability of the superconducting response through doping and confinement of the metal layer, our work shows that achieving superconductivity in free-standing, metal decorated monolayer graphene is conditional on an optimum confinement of the metal layer and sufficient doping, thereby bringing its experimental realization within grasp. PMID:26979564
Superconductivity in Ca-doped graphene laminates
Chapman, J.; Su, Y.; Howard, C. A.; Kundys, D.; Grigorenko, A. N.; Guinea, F.; Geim, A. K.; Grigorieva, I. V.; Nair, R. R.
2016-03-01
Despite graphene’s long list of exceptional electronic properties and many theoretical predictions regarding the possibility of superconductivity in graphene, its direct and unambiguous experimental observation has not been achieved. We searched for superconductivity in weakly interacting, metal decorated graphene crystals assembled into so-called graphene laminates, consisting of well separated and electronically decoupled graphene crystallites. We report robust superconductivity in all Ca-doped graphene laminates. They become superconducting at temperatures (Tc) between ≈4 and ≈6 K, with Tc’s strongly dependent on the confinement of the Ca layer and the induced charge carrier concentration in graphene. We find that Ca is the only dopant that induces superconductivity in graphene laminates above 1.8 K among several dopants used in our experiments, such as potassium, caesium and lithium. By revealing the tunability of the superconducting response through doping and confinement of the metal layer, our work shows that achieving superconductivity in free-standing, metal decorated monolayer graphene is conditional on an optimum confinement of the metal layer and sufficient doping, thereby bringing its experimental realization within grasp.
Sample of superconducting wiring (Niobium Titanium)
About NbTi cable: The cable consists of 36 strands of superconducting wire, each strand has a diameter of 0.825 mm and houses 6300 superconducting filaments of niobium-titanium (Nb-Ti, a superconducting alloy). Each filament has a diameter of about 0.006 mm, i.e. 10 times smaller than a typical human hair. The filaments are embedded in a high-purity copper matrix. Copper is a normal conducting material. The filaments are in the superconductive state when the temperature is below about -263ºC (10.15 K). When the filaments leave the superconductive state, the copper acts as conductor transports the electrical current. Each strand of The NbTi cable (at superconducting state) has a current density of up to above 2000 A/mm2 at 9 T and -271ºC (2.15 K). A cable transport a current of about 13000 A at 10 T and -271ºC (2.15 K). About LHC superconducting wiring: The high magnetic fields needed for the LHC can only be reached using superconductors. At very low temperatures, superconductors have no electrical resista...
Sample of superconducting wiring (Niobium Titanium)
About NbTi cable: The cable consists of 36 strands of superconducting wire, each strand has a diameter of 0.825 mm and houses 6300 superconducting filaments of niobium-titanium (Nb-Ti, a superconducting alloy). Each filament has a diameter of about 0.006 mm, i.e. 10 times smaller than a typical human hair. The filaments are embedded in a high-purity copper matrix. Copper is a normal conducting material. The filaments are in the superconductive state when the temperature is below about -263ºC (10.15 K). When the filaments leave the superconductive state, the copper acts as conductor transports the electrical current. Each strand of The NbTi cable (at superconducting state) has a current density of up to above 2000 A/mm2 at 9 T and -271ºC (2.15 K). A cable transport a current of about 13000 A at 10 T and -271ºC (2.15 K). About LHC superconducting wiring: The high magnetic fields needed for the LHC can only be reached using superconductors. At very low temperatures, superconductors have no electrical resistan...
Superconductivity in Ca-doped graphene laminates.
Chapman, J; Su, Y; Howard, C A; Kundys, D; Grigorenko, A N; Guinea, F; Geim, A K; Grigorieva, I V; Nair, R R
2016-03-16
Despite graphene's long list of exceptional electronic properties and many theoretical predictions regarding the possibility of superconductivity in graphene, its direct and unambiguous experimental observation has not been achieved. We searched for superconductivity in weakly interacting, metal decorated graphene crystals assembled into so-called graphene laminates, consisting of well separated and electronically decoupled graphene crystallites. We report robust superconductivity in all Ca-doped graphene laminates. They become superconducting at temperatures (Tc) between ≈4 and ≈6 K, with Tc's strongly dependent on the confinement of the Ca layer and the induced charge carrier concentration in graphene. We find that Ca is the only dopant that induces superconductivity in graphene laminates above 1.8 K among several dopants used in our experiments, such as potassium, caesium and lithium. By revealing the tunability of the superconducting response through doping and confinement of the metal layer, our work shows that achieving superconductivity in free-standing, metal decorated monolayer graphene is conditional on an optimum confinement of the metal layer and sufficient doping, thereby bringing its experimental realization within grasp.
DEFF Research Database (Denmark)
2010-01-01
A switch-mode power circuit comprises a controllable element and a control unit. The controllable element is configured to control a current in response to a control signal supplied to the controllable element. The control unit is connected to the controllable element and provides the control...
Superconductivity in gallium-implanted silicon; Supraleitung in Gallium-implantiertem Silizium
Energy Technology Data Exchange (ETDEWEB)
Skrotzki, Richard
2016-07-12
The following thesis is devoted to the electrical characterization of 10 nm thin layers consisting of amorphous Ga nanoclusters embedded in Ga-doped polycrystalline Si. The preparation of the layers is realized via ion implantation in Si wafers plus subsequent thermal annealing. Electrical-transport measurements in magnetic fields of up to 50 T show that the layers undergo two structural superconductor-insulator transitions upon variation of the annealing parameters. Structural analyzes based on TEM investigations reveal an underlying transformation of the size and distance of the clusters. This influences the interplay of the superconducting cluster coupling and capacitive charging energy as well as the extent of thermal and quantum fluctuations. In the superconducting regime (Tc ∼ 7 K) a double-reentrant phenomenon is observed. Here, magnetic fields of several Tesla facilitate superconductivity in an anisotropic way. A qualitative explanation is given via a self-developed theoretical model based on phase-slip events for Josephson-junction arrays. With respect to applications regarding sensor technology and quantum logic circuits the layers are successfully micro- and nanostructured via photolithography and FIB. This allows for the first observation of the Little-Parks effect in a nanostructure of amorphous Ga.
DC operating points of transistor circuits
Trajkovic, Ljiljana
Finding a circuit's dc operating points is an essential step in its design and involves solving systems of nonlinear algebraic equations. Of particular research and practical interests are dc analysis and simulation of electronic circuits consisting of bipolar junction and field-effect transistors (BJTs and FETs), which are building blocks of modern electronic circuits. In this paper, we survey main theoretical results related to dc operating points of transistor circuits and discuss numerical methods for their calculation.
A method of extracting operating parameters of a quantum circuit
Sete, Eyob A.; Block, Maxwell; Scheer, Michael; Zanoci, Cris; Vahidpour, Mehrnoosh; Thompson, Dane; Rigetti, Chad
Rigorous simulation-driven design methods are an essential component of traditional integrated circuit design. We adapt these techniques to the design and development of superconducting quantum integrated circuits by combining classical finite element analysis in the microwave domain with Brune circuit synthesis by Solgun [PhD thesis 2014] and BKD Hamiltonian analysis by Burkard et al. [Phys. Rev. B 69, 064503 (2004)]. Using the Hamiltonian of the quantum circuit, constructed using the synthesized equivalent linear circuit and the nonlinear Josephson junctions' contributions, we extract operating parameters of the quantum circuit such as resonance coupling strength, dispersive shift, qubit anharmonicitiy, and decoherence rates for single-and multi-port quantum circuits. This approach has been experimentally validated and allows the closed-loop iterative simulation-driven development of quantum information processing devices.
Hybrid quantum circuit with implanted erbium ions
Energy Technology Data Exchange (ETDEWEB)
Probst, S.; Rotzinger, H.; Tkalčec, A. [Physikalisches Institut, Karlsruhe Institute of Technology, D-76128 Karlsruhe (Germany); Kukharchyk, N.; Wieck, A. D. [Angewandte Festkörperphysik, Ruhr-Universität Bochum, Universitätsstraße 150, D-44780 Bochum (Germany); Wünsch, S.; Siegel, M. [Institut für Mikro- und Nanoelektronische Systeme, Karlsruhe Institute of Technology, D-76189 Karlsruhe (Germany); Ustinov, A. V. [Physikalisches Institut, Karlsruhe Institute of Technology, D-76128 Karlsruhe (Germany); Laboratory of Superconducting Metamaterials, National University of Science and Technology “MISIS,” Moscow 119049 (Russian Federation); Bushev, P. A. [Experimentalphysik, Universität des Saarlandes, D-66123 Saarbrücken (Germany)
2014-10-20
We report on hybrid circuit quantum electrodynamics experiments with focused ion beam implanted Er{sup 3+} ions in Y{sub 2}SiO{sub 5} coupled to an array of superconducting lumped element microwave resonators. The Y{sub 2}SiO{sub 5} crystal is divided into several areas with distinct erbium doping concentrations, each coupled to a separate resonator. The coupling strength is varied from 5 MHz to 18.7 MHz, while the linewidth ranges between 50 MHz and 130 MHz. We confirm the paramagnetic properties of the implanted spin ensemble by evaluating the temperature dependence of the coupling. The efficiency of the implantation process is analyzed and the results are compared to a bulk doped Er:Y{sub 2}SiO{sub 5} sample. We demonstrate the integration of these engineered erbium spin ensembles with superconducting circuits.
Arai, Y.; Seino, H.; Yoshizawa, K.; Nagashima, K.
2013-11-01
We have been developing superconducting magnetic bearing for flywheel energy storage system to be applied to the railway system. The bearing consists of a superconducting coil as a stator and bulk superconductors as a rotor. A flywheel disk connected to the bulk superconductors is suspended contactless by superconducting magnetic bearings (SMBs). We have manufactured a small scale device equipped with the SMB. The flywheel was rotated contactless over 2000 rpm which was a frequency between its rigid body mode and elastic mode. The feasibility of this SMB structure was demonstrated.
Hybrid circuit cavity quantum electrodynamics with a micromechanical resonator.
Pirkkalainen, J-M; Cho, S U; Li, Jian; Paraoanu, G S; Hakonen, P J; Sillanpää, M A
2013-02-14
Hybrid quantum systems with inherently distinct degrees of freedom have a key role in many physical phenomena. Well-known examples include cavity quantum electrodynamics, trapped ions, and electrons and phonons in the solid state. In those systems, strong coupling makes the constituents lose their individual character and form dressed states, which represent a collective form of dynamics. As well as having fundamental importance, hybrid systems also have practical applications, notably in the emerging field of quantum information control. A promising approach is to combine long-lived atomic states with the accessible electrical degrees of freedom in superconducting cavities and quantum bits (qubits). Here we integrate circuit cavity quantum electrodynamics with phonons. Apart from coupling to a microwave cavity, our superconducting transmon qubit, consisting of tunnel junctions and a capacitor, interacts with a phonon mode in a micromechanical resonator, and thus acts like an atom coupled to two different cavities. We measure the phonon Stark shift, as well as the splitting of the qubit spectral line into motional sidebands, which feature transitions between the dressed electromechanical states. In the time domain, we observe coherent conversion of qubit excitation to phonons as sideband Rabi oscillations. This is a model system with potential for a quantum interface, which may allow for storage of quantum information in long-lived phonon states, coupling to optical photons or for investigations of strongly coupled quantum systems near the classical limit.
Photodetection of propagating quantum microwaves in circuit QED
Energy Technology Data Exchange (ETDEWEB)
Romero, Guillermo [Departamento de Fisica, Universidad de Santiago de Chile, USACH, Casilla 307, Santiago 2 (Chile); Garcia-Ripoll, Juan Jose [Instituto de Fisica Fundamental, CSIC, Serrano 113-bis, 28006 Madrid (Spain); Solano, Enrique [Departamento de Quimica Fisica, Universidad del PaIs Vasco - Euskal Herriko Unibertsitatea, Apdo. 644, 48080 Bilbao (Spain)], E-mail: enrique_solano@ehu.es
2009-12-15
We develop the theory of a metamaterial composed of an array of discrete quantum absorbers inside a one-dimensional waveguide that implements a high-efficiency microwave photon detector. A basic design consists of a few metastable superconducting nanocircuits spread inside and coupled to a one-dimensional waveguide in a circuit QED setup. The arrival of a propagating quantum microwave field induces an irreversible change in the population of the internal levels of the absorbers, due to a selective absorption of photon excitations. This design is studied using a formal but simple quantum field theory, which allows us to evaluate the single-photon absorption efficiency for one and many absorber setups. As an example, we consider a particular design that combines a coplanar coaxial waveguide with superconducting phase qubits, a natural but not exclusive playground for experimental implementations. This work and a possible experimental realization may stimulate the possible arrival of 'all-optical' quantum information processing with propagating quantum microwaves, where a microwave photodetector could play a key role.
Robust Concurrent Remote Entanglement Between Two Superconducting Qubits
Directory of Open Access Journals (Sweden)
A. Narla
2016-09-01
Full Text Available Entangling two remote quantum systems that never interact directly is an essential primitive in quantum information science and forms the basis for the modular architecture of quantum computing. When protocols to generate these remote entangled pairs rely on using traveling single-photon states as carriers of quantum information, they can be made robust to photon losses, unlike schemes that rely on continuous variable states. However, efficiently detecting single photons is challenging in the domain of superconducting quantum circuits because of the low energy of microwave quanta. Here, we report the realization of a robust form of concurrent remote entanglement based on a novel microwave photon detector implemented in the superconducting circuit quantum electrodynamics platform of quantum information. Remote entangled pairs with a fidelity of 0.57±0.01 are generated at 200 Hz. Our experiment opens the way for the implementation of the modular architecture of quantum computation with superconducting qubits.
Robust Concurrent Remote Entanglement Between Two Superconducting Qubits
Narla, A.; Shankar, S.; Hatridge, M.; Leghtas, Z.; Sliwa, K. M.; Zalys-Geller, E.; Mundhada, S. O.; Pfaff, W.; Frunzio, L.; Schoelkopf, R. J.; Devoret, M. H.
2016-07-01
Entangling two remote quantum systems that never interact directly is an essential primitive in quantum information science and forms the basis for the modular architecture of quantum computing. When protocols to generate these remote entangled pairs rely on using traveling single-photon states as carriers of quantum information, they can be made robust to photon losses, unlike schemes that rely on continuous variable states. However, efficiently detecting single photons is challenging in the domain of superconducting quantum circuits because of the low energy of microwave quanta. Here, we report the realization of a robust form of concurrent remote entanglement based on a novel microwave photon detector implemented in the superconducting circuit quantum electrodynamics platform of quantum information. Remote entangled pairs with a fidelity of 0.57 ±0.01 are generated at 200 Hz. Our experiment opens the way for the implementation of the modular architecture of quantum computation with superconducting qubits.
Kirchhoff voltage law corrected for radiating circuits
Lara, Vitor
2014-01-01
When a circular loop composed by a RLC is put to oscillate, the oscillation will eventually vanish in an exponentially decaying current, even considering superconducting wires, due to the emission of electric and magnetic dipole radiation. In this work we propose a modification on the Kirchhoff voltage law by adding the radiative contributions to the energy loss as an effective resistance, whose value is relatively small when compared to typical resistance value, but fundamental to describe correctly real circuits. We have also analysed the change in the pattern of the radiation spectra emitted by the circuit as we vary both the effective and electrical resistance.
Institute of Scientific and Technical Information of China (English)
舒彬; 陈志莉; 任安林; 信赢
2012-01-01
Superconducting Fault Current Limiter (SFCL) has superior properties as a new fault current limiting device. SFCLs are able to contribute significantly to the solution to fault current problem. This paper discusses the demands and challenges in the application of SFCLs to power grids. Technical and economical comparisons with conventional fault current control technologies are presented. Finally the marketing path of SFCLs is analyzed. The 220 kV SFCLs promise better technical & economic benefits and they represent an important breakthrough in promoting the application of SFCLs. With further technological development and cost reduction, they may finally be applied to 500 kV power grids and MV networks with DGs.%作为一种新型限流设备,超导限流器以其优越的特性,将在解决短路电流问题上发挥重要作用.讨论了不同电压等级电网对超导限流器的应用需求及设计要求,并通过与传统方案的技术经济比较,分析了其市场发展路径.220 kV级SFCI将以其综合技术经济优势打开应用的突破口,随着技术不断提高及成本降低,将在500 kV电网和分布式配电网中得到广泛应用.
Frontiers in Superconducting Materials
Narlikar, Anant V
2005-01-01
Frontiers in Superconducting Materials gives a state-of-the-art report of the most important topics of the current research in superconductive materials and related phenomena. It comprises 30 chapters written by renowned international experts in the field. It is of central interest to researchers and specialists in Physics and Materials Science, both in academic and industrial research, as well as advanced students. It also addresses electronic and electrical engineers. Even non-specialists interested in superconductivity might find some useful answers.
Superconducting energy recovery linacs
Ben-Zvi, Ilan
2016-10-01
High-average-power and high-brightness electron beams from a combination of laser photocathode electron guns and a superconducting energy recovery linac (ERL) is an emerging accelerator science with applications in ERL light sources, high repetition rate free electron lasers , electron cooling, electron ion colliders and more. This paper reviews the accelerator physics issues of superconducting ERLs, discusses major subsystems and provides a few examples of superconducting ERLs.
Exploring the physics of superconducting qubits strongly coupled to microwave frequency photons
Energy Technology Data Exchange (ETDEWEB)
Wallraff, Andreas [ETH Zurich (Switzerland)
2013-07-01
Using modern micro and nano-fabrication techniques combined with superconducting materials we realize electronic circuits the properties of which are governed by the laws of quantum mechanics. In such circuits the strong interaction of photons with superconducting quantum two-level systems allows us to probe fundamental quantum properties of light and to develop components for applications in quantum information technology. Here, I present experiments in which we have created and probed entanglement between stationary qubits and microwave photons freely propagating down a transmission line. In these experiments we use superconducting parametric amplifiers realized in our lab to detect both qubit and photon states efficiently. Using similar techniques we aim at demonstrating a deterministic scheme for teleportation of quantum states in a macroscopic system based on superconducting circuits.
Characterization of superconducting multilayers samples
Antoine, C Z; Berry, S; Bouat, S; Jacquot, J F; Villegier, J C; Lamura, G; Gurevich, A
2009-01-01
Best RF bulk niobium accelerating cavities have nearly reached their ultimate limits at rf equatorial magnetic field H 200 mT close to the thermodynamic critical field Hc. In 2006 Gurevich proposed to use nanoscale layers of superconducting materials with high values of Hc > HcNb for magnetic shielding of bulk niobium to increase the breakdown magnetic field inside SC RF cavities [1]. Depositing good quality layers inside a whole cavity is rather difficult but we have sputtered high quality samples by applying the technique used for the preparation of superconducting electronics circuits and characterized these samples by X-ray reflectivity, dc resistivity (PPMS) and dc magnetization (SQUID). Dc magnetization curves of a 250 nm thick Nb film have been measured, with and without a magnetron sputtered coating of a single or multiple stack of 15 nm MgO and 25 nm NbN layers. The Nb samples with/without the coating clearly exhibit different behaviors. Because SQUID measurements are influenced by edge an...
DC superconducting fault current limiter
Tixador, P.; Villard, C.; Cointe, Y.
2006-03-01
There is a lack of satisfying solutions for fault currents using conventional technologies, especially in DC networks, where a superconducting fault current limiter could play a very important part. DC networks bring a lot of advantages when compared to traditional AC ones, in particular within the context of the liberalization of the electric market. Under normal operation in a DC network, the losses in the superconducting element are nearly zero and only a small, i.e. a low cost, refrigeration system is then required. The absence of zero crossing of a DC fault current favourably accelerates the normal zone propagation. The very high current slope at the time of the short circuit in a DC grid is another favourable parameter. The material used for the experiments is YBCO deposited on Al2O3 as well as YBCO coated conductors. The DC limitation experiments are compared to AC ones at different frequencies (50-2000 Hz). Careful attention is paid to the quench homogenization, which is one of the key issues for an SC FCL. The University of Geneva has proposed constrictions. We have investigated an operating temperature higher than 77 K. As for YBCO bulk, an operation closer to the critical temperature brings a highly improved homogeneity in the electric field development. The material can then absorb large energies without degradation. We present tests at various temperatures. These promising results are to be confirmed over long lengths.
Fundamentals of Superconducting Nanoelectronics
Sidorenko, Anatolie
2011-01-01
This book demonstrates how the new phenomena in superconductivity on the nanometer scale (FFLO state, triplet superconductivity, Crossed Andreev Reflection, synchronized generation etc.) serve as the basis for the invention and development of novel nanoelectronic devices and systems. It demonstrates how rather complex ideas and theoretical models, like odd-pairing, non-uniform superconducting state, pi-shift etc., adequately describe the processes in real superconducting nanostructues and novel devices based on them. The book is useful for a broad audience of readers, researchers, engineers, P
Superconductive imaging surface magnetometer
Overton, Jr., William C.; van Hulsteyn, David B.; Flynn, Edward R.
1991-01-01
An improved pick-up coil system for use with Superconducting Quantum Interference Device gradiometers and magnetometers involving the use of superconducting plates near conventional pick-up coil arrangements to provide imaging of nearby dipole sources and to deflect environmental magnetic noise away from the pick-up coils. This allows the practice of gradiometry and magnetometry in magnetically unshielded environments. One embodiment uses a hemispherically shaped superconducting plate with interior pick-up coils, allowing brain wave measurements to be made on human patients. another embodiment using flat superconducting plates could be used in non-destructive evaluation of materials.
Superconducting optical modulator
Bunt, Patricia S.; Ference, Thomas G.; Puzey, Kenneth A.; Tanner, David B.; Tache, Nacira; Varhue, Walter J.
2000-12-01
An optical modulator based on the physical properties of high temperature superconductors has been fabricated and tested. The modulator was constructed form a film of Yttrium Barium Copper Oxide (YBCO) grown on undoped silicon with a buffer layer of Yttria Stabilized Zirconia. Standard lithographic procedures were used to pattern the superconducting film into a micro bridge. Optical modulation was achieved by passing IR light through the composite structure normal to the micro bridge and switching the superconducting film in the bridge region between the superconducting and non-superconducting states. In the superconducting state, IR light reflects from the superconducting film surface. When a critical current is passed through the micro bridge, it causes the film in this region to switch to the non-superconducting state allowing IR light to pass through it. Superconducting materials have the potential to switch between these two states at speeds up to 1 picosecond using electrical current. Presently, fiber optic transmission capacity is limited by the rate at which optical data can be modulated. The superconducting modulator, when combined with other components, may have the potential to increase the transmission capacity of fiber optic lines.
Basic Study of Superconductive Actuator
涌井, 和也; 荻原, 宏康
2000-01-01
There are two kinds of electromagnetic propulsion ships : a superconductive electromagnetic propulsion ship and a superconductive electricity propulsion ship. A superconductive electromagnetic propulsion ship uses the electromagnetic force (Lorenz force) by the interaction between a magnetic field and a electric current. On the other hand, a superconductive electricity propulsion ship uses screws driven by a superconductive motor. A superconductive propulsion ship technique has the merits of ...
Energy Technology Data Exchange (ETDEWEB)
Ruck, B.
1998-07-01
Superconducting digital circuits based on the concept of rapid single quantum logic (RSFQ) offer high speed operation at very low power dissipation. The product of switching time and dissipated power of these circuits is very small compared to semiconductor devices. However, due the cooling demands of superconducting circuits, reasonable applications are only those where the higher performance justifies higher cooling costs. RSFQ circuits in niobium technology are already well developed. High temperature superconductors (HTSC) like YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} allow operation temperatures above the temperature of liquid helium and higher clock frequencies due to the larger energy gap. Unfortunately, the technology for HTSC is still immature. In this work, different aspects of HTSC RSFQ circuits have been investigated, with the emphasis on multilayer technology and on measurements of the bit error rate. In addition, a first step towards a three-dimensional integration of low temperature RSFQ circuits was developed. A new device consisting of two vertically stacked separately shunted Nb/AlO{sub x}Al/Nb Josephson junctions was used to test the possibility of three dimensional integration for RSFQ circuits for the first time. A T-flipflop was designed its operation as a voltage divider was verified experimentally. For HTSC circuits, basic devices like resistors and multilayer structures, e.g., cross overs, insulating layers and inductances with groundplane were fabricated, and the electrical properties were investigated. These devices are indispensable for a future technology allowing the realization of more complex circuits. Based on stacked bicrystal junctions in multilayer technology, a first order delta sigma modulator for analog to digital conversion was designed and characterized by electrical measurements. (orig.)
Chen, Wai-Kai
2009-01-01
Featuring hundreds of illustrations and references, this book provides the information on analog and VLSI circuits. It focuses on analog integrated circuits, presenting the knowledge on monolithic device models, analog circuit cells, high performance analog circuits, RF communication circuits, and PLL circuits.
Engineering interactions between superconducting qubits and phononic nanostructures
Arrangoiz-Arriola, Patricio; Safavi-Naeini, Amir H.
2016-12-01
Nanomechanical systems can support highly coherent microwave-frequency excitations at cryogenic temperatures. However, generating sufficient coupling between these devices and superconducting quantum circuits is challenging due to the vastly different length scales of acoustic and electromagnetic excitations. Here we demonstrate a general method for calculating piezoelectric interactions between quantum circuits and arbitrary phononic nanostructures. We illustrate our technique by studying the coupling between a transmon qubit and bulk acoustic-wave, Lamb-wave, and phononic crystal resonators, and show that very large coupling rates are possible in all three cases. Our results suggest a route to phononic circuits and systems that are nonlinear at the single-phonon level.
Short Circuit Tests First Step of LHC Hardware Commissioning Completion
Barbero-Soto, E; Bordry, Frederick; Casas Lino, M P; Coelingh, G J; Cumer, G; Dahlerup-Petersen, K; Guillaume, J C; Inigo-Golfin, J; Montabonnet, V; Nisbet, D; Pojer, M; Principe, R; Rodríguez-Mateos, F; Saban, R; Schmidt, R; Thiesen, H; Vergara-Fernández, A; Zerlauth, M; Castaneda Serra, A; Romera Ramirez, I
2008-01-01
For the two counter rotating beams in the Large Hadron Collider (LHC) about 8000 magnets (main dipole and quadrupole magnets, corrector magnets, separation dipoles, matching section quadrupoles etc.) are powered in about 1500 superconducting electrical circuits. The magnets are powered by power converters that have been designed for the LHC with a current between 60 and 13000A. Between October 2005 and September 2007 the so-called Short Circuit Tests were carried-out in 15 underground zones where the power converters of the superconducting circuits are placed. The tests aimed to qualify the normal conducting equipments of the circuits such as power converters and normal conducting high current cables. The correct operation of interlock and energy extraction systems was validated. The infrastructure systems including AC distribution, water and air cooling and the control systems was also commissioned. In this paper the results of the two year test campaign are summarized with particular attention to problems e...
Photodiode circuits for retinal prostheses.
Loudin, J D; Cogan, S F; Mathieson, K; Sher, A; Palanker, D V
2011-10-01
Photodiode circuits show promise for the development of high-resolution retinal prostheses. While several of these systems have been constructed and some even implanted in humans, existing descriptions of the complex optoelectronic interaction between light, photodiode, and the electrode/electrolyte load are limited. This study examines this interaction in depth with theoretical calculations and experimental measurements. Actively biased photoconductive and passive photovoltaic circuits are investigated, with the photovoltaic circuits consisting of one or more diodes connected in series, and the photoconductive circuits consisting of a single diode in series with a pulsed bias voltage. Circuit behavior and charge injection levels were markedly different for platinum and sputtered iridium-oxide film (SIROF) electrodes. Photovoltaic circuits were able to deliver 0.038 mC/cm(2) (0.75 nC/phase) per photodiode with 50- μm platinum electrodes, and 0.54-mC/cm(2) (11 nC/phase) per photodiode with 50-μ m SIROF electrodes driven with 0.5-ms pulses of light at 25 Hz. The same pulses applied to photoconductive circuits with the same electrodes were able to deliver charge injections as high as 0.38 and 7.6 mC/cm(2) (7.5 and 150 nC/phase), respectively. We demonstrate photovoltaic stimulation of rabbit retina in-vitro, with 0.5-ms pulses of 905-nm light using peak irradiance of 1 mW/mm(2). Based on the experimental data, we derive electrochemical and optical safety limits for pixel density and charge injection in various circuits. While photoconductive circuits offer smaller pixels, photovoltaic systems do not require an external bias voltage. Both classes of circuits show promise for the development of high-resolution optoelectronic retinal prostheses.
A small scale remote cooling system for a superconducting cyclotron magnet
Haug, F.; Berkowitz Zamorra, D.; Michels, M.; Gomez Bosch, R.; Schmid, J.; Striebel, A.; Krueger, A.; Diez, M.; Jakob, M.; Keh, M.; Herberger, W.; Oesterle, D.
2017-02-01
Through a technology transfer program CERN is involved in the R&D of a compact superconducting cyclotron for future clinical radioisotope production, a project led by the Spanish research institute CIEMAT. For the remote cooling of the LTc superconducting magnet operating at 4.5 K, CERN has designed a small scale refrigeration system, the Cryogenic Supply System (CSS). This refrigeration system consists of a commercial two-stage 1.5 W @ 4.2 K GM cryocooler and a separate forced flow circuit. The forced flow circuit extracts the cooling power of the first and the second stage cold tips, respectively. Both units are installed in a common vacuum vessel and, at the final configuration, a low loss transfer line will provide the link to the magnet cryostat for the cooling of the thermal shield with helium at 40 K and the two superconducting coils with two-phase helium at 4.5 K. Currently the CSS is in the testing phase at CERN in stand-alone mode without the magnet and the transfer line. We have added a “validation unit” housed in the vacuum vessel of the CSS representing the thermo-hydraulic part of the cyclotron magnet. It is equipped with electrical heaters which allow the simulation of the thermal loads of the magnet cryostat. A cooling power of 1.4 W at 4.5 K and 25 W at the thermal shield temperature level has been measured. The data produced confirm the design principle of the CSS which could be validated.
1979-01-01
The U-shaped wire devices in the upper photo are Digi-Klipsm; aids to compact packaging of electrical and electronic devices. They serve as connectors linking the circuitry of one circuit board with another in multi-board systems. Digi-Klips were originally developed for Goddard Space Flight Center to meet a need for lightweight, reliable connectors to replace hand-wired connections formerly used in spacecraft. They are made of beryllium copper wire, noted for its excellent conductivity and its spring-like properties, which assure solid electrical contact over a long period of time.
Manipulating the quantum state of an electrical circuit.
Vion, D; Aassime, A; Cottet, A; Joyez, P; Pothier, H; Urbina, C; Esteve, D; Devoret, M H
2002-05-03
We have designed and operated a superconducting tunnel junction circuit that behaves as a two-level atom: the "quantronium." An arbitrary evolution of its quantum state can be programmed with a series of microwave pulses, and a projective measurement of the state can be performed by a pulsed readout subcircuit. The measured quality factor of quantum coherence Qphi approximately 25,000 is sufficiently high that a solid-state quantum processor based on this type of circuit can be envisioned.
Developing a Domain Model for Relay Circuits
DEFF Research Database (Denmark)
Haxthausen, Anne Elisabeth
2009-01-01
the statics as well as the dynamics of relay circuits, i.e. how a relay circuit can be composed legally from electrical components as well as how the components may change state over time. Finally the circuit model is transformed into an executable model, and we show how a concrete circuit can be defined......In this paper we stepwise develop a domain model for relay circuits as used in railway control systems. First we provide an abstract, property-oriented model of networks consisting of components that can be glued together with connectors. This model is strongly inspired by a network model...... for railways madeby Bjørner et.al., however our model is more general: the components can be of any kind and can later be refined to e.g. railway components or circuit components. Then we show how the abstract network model can be refined into an explicit model for relay circuits. The circuit model describes...
Graphene: Carbon's superconducting footprint
Vafek, Oskar
2012-02-01
Graphene exhibits many extraordinary properties, but superconductivity isn't one of them. Two theoretical studies suggest that by decorating the surface of graphene with the right species of dopant atoms, or by using ionic liquid gating, superconductivity could yet be induced.
Superconducting cavities for LEP
1983-01-01
Above: a 350 MHz superconducting accelerating cavity in niobium of the type envisaged for accelerating electrons and positrons in later phases of LEP. Below: a small 1 GHz cavity used for investigating the surface problems of superconducting niobium. Albert Insomby stays on the right. See Annual Report 1983 p. 51.
Academic training: Applied superconductivity
2007-01-01
LECTURE SERIES 17, 18, 19 January from 11.00 to 12.00 hrs Council Room, Bldg 503 Applied Superconductivity : Theory, superconducting Materials and applications E. PALMIERI/INFN, Padova, Italy When hearing about persistent currents recirculating for several years in a superconducting loop without any appreciable decay, one realizes that we are dealing with a phenomenon which in nature is the closest known to the perpetual motion. Zero resistivity and perfect diamagnetism in Mercury at 4.2Â K, the breakthrough during 75 years of several hundreds of superconducting materials, the revolution of the "liquid Nitrogen superconductivity"; the discovery of still a binary compound becoming superconducting at 40 K and the subsequent re-exploration of the alreadyÂ known superconducting materials: Nature discloses drop by drop its intimate secrets and nobody can exclude that the last final surprise must still come. After an overview ofÂ phenomenology and basic theory of superconductivity, the lectures for this a...
Strong, G.H.; Faught, M.L.
1963-12-24
A device for safety rod counting in a nuclear reactor is described. A Wheatstone bridge circuit is adapted to prevent de-energizing the hopper coils of a ball backup system if safety rods, sufficient in total control effect, properly enter the reactor core to effect shut down. A plurality of resistances form one arm of the bridge, each resistance being associated with a particular safety rod and weighted in value according to the control effect of the particular safety rod. Switching means are used to switch each of the resistances in and out of the bridge circuit responsive to the presence of a particular safety rod in its effective position in the reactor core and responsive to the attainment of a predetermined velocity by a particular safety rod enroute to its effective position. The bridge is unbalanced in one direction during normal reactor operation prior to the generation of a scram signal and the switching means and resistances are adapted to unbalance the bridge in the opposite direction if the safety rods produce a predetermined amount of control effect in response to the scram signal. The bridge unbalance reversal is then utilized to prevent the actuation of the ball backup system, or, conversely, a failure of the safety rods to produce the predetermined effect produces no unbalance reversal and the ball backup system is actuated. (AEC)
Implementation of Traveling Odd Schrödinger Cat States in Circuit-QED
Directory of Open Access Journals (Sweden)
Jaewoo Joo
2016-10-01
Full Text Available We propose a realistic scheme of generating a traveling odd Schrödinger cat state and a generalized entangled coherent state in circuit quantum electrodynamics (circuit-QED. A squeezed vacuum state is used as the initial resource of nonclassical states, which can be created through a Josephson traveling-wave parametric amplifier, and travels through a transmission line. Because a single-photon subtraction from the squeezed vacuum gives an odd Schrödinger cat state with very high fidelity, we consider a specific circuit-QED setup consisting of the Josephson amplifier creating the traveling resource in a line, a beam-splitter coupling two transmission lines, and a single photon detector located at the end of the other line. When a single microwave photon is detected by measuring the excited state of a superconducting qubit in the detector, a heralded cat state is generated with high fidelity in the opposite line. For example, we show that the high fidelity of the outcome with the ideal cat state can be achieved with appropriate squeezing parameters theoretically. As its extended setup, we suggest that generalized entangled coherent states can be also built probabilistically and that they are useful for microwave quantum information processing for error-correctable qudits in circuit-QED.
Thermal analysis of superconducting undulator cryomodules
Shiroyanagi, Y.; Doose, C.; Fuerst, J.; Harkay, K.; Hasse, Q.; Ivanyushenkov, Y.; Kasa, M.
2015-12-01
A cryocooler-cooled superconducting undulator (SCU0) has been operating in the Advanced Photon Source (APS) storage ring since January of 2013. Based on lessons learned from the construction and operation of SCU0, a second superconducting undulator (SCU1) has been built and cold tested stand-alone. An excess cooling capacity measurement and static heat load analysis show a large improvement of cryogenic performance of SCU1 compared with SCU0. ANSYS-based thermal analysis of these cryomodules incorporating all the cooling circuits was completed. Comparisons between measured and calculated temperatures at the three operating conditions of the cryomodule (static, beam heat only, beam heat and magnet current) will be presented.
Superconducting nanowire single-photon imager
Zhao, Qing-Yuan; Calandri, Niccolò; Dane, Andrew E; McCaughan, Adam N; Bellei, Francesco; Wang, Hao-Zhu; Santavicca, Daniel F; Berggren, Karl K
2016-01-01
Detecting spatial and temporal information of individual photons is a crucial technology in today's quantum information science. Among the existing single-photon detectors, superconducting nanowire single-photon detectors (SNSPDs) have been demonstrated with a sub-50 ps timing jitter, near unity detection efficiency1, wide response spectrum from visible to infrared and ~10 ns reset time. However, to gain spatial sensitivity, multiple SNSPDs have to be integrated into an array, whose spatial and temporal resolutions are limited by the multiplexing circuit. Here, we add spatial sensitivity to a single nanowire while preserving the temporal resolution from an SNSPD, thereby turning an SNSPD into a superconducting nanowire single-photon imager (SNSPI). To achieve an SNSPI, we modify a nanowire's electrical behavior from a lumped inductor to a transmission line, where the signal velocity is slowed down to 0.02c (where c is the speed of light). Consequently, we are able to simultaneously read out the landing locati...
Superconducting NbN microstrip detectors
Energy Technology Data Exchange (ETDEWEB)
Wedenig, R.; Niinikoski, T.O. E-mail: niinikos@cernvm.cern.ch; Berglund, P.; Kyynaeraeinen, J.; Costa, L.; Valtonen, M.; Linna, R.; Salmi, J.; Seppae, H.; Suni, I
1999-09-01
Superconducting NbN strip transmission line counters and coupling circuits were processed on silicon wafers using thin-film techniques, and they were characterized with several methods to verify the design principles. The stripline circuits, designed using microwave design rules, were simulated using a circuit design tool enhanced to include modelling of the superconducting lines. The strips, etched out of the 282 nm thick top NbN film with resistivity 284 {mu}{omega} cm at 20 K, have critical temperatures in the range 12-13 K and a critical current density approximately J{sub c}(0)=3.3x10{sup 5} A/cm{sup 2}. The linearized heat transfer coefficient between the strip and the substrate is approximately 1.1x10{sup 5} W/m{sup 2} K and the healing length is about 1.6 {mu}m between 3 and 5 K temperatures. Traversing 5 MeV {alpha}-particles caused the strips to quench. No events due to electrons could be detected in agreement with the predicted signal amplitude which is below the noise threshold of our wideband circuitry. The strip bias current and hence the signal amplitude were limited due to a microbridge at the isolator step of the impedance transformer.
Superconducting NbN microstrip detectors
Wedenig, R; Berglund, P; Kyynäräinen, J; Da Costa, L N; Valtonen, M J; Linna, R; Salmi, J; Seppä, H; Suni, I
1999-01-01
Superconducting NbN strip transmission line counters and coupling circuits were processed on silicon wafers using thin film techniques, and they were characterized with several methods to verify the design principles. The stripline circuits, designed using microwave design rules, were simulated using a circuit design tool enhanced to include modelling of the superconducting lines. The strips, etched out of the 282 nm thick top NbN film with resistivity 284 µ?cm at 20 K, have critical temperatures in the range 12 to 13 K and a critical current density approximately Jc(0) = 3.3·105 A/cm2. The linearized heat transfer coefficient between the strip and the substrate is approximately 1.1·105 W/(m2K) and the healing length is about 1.6 µm between 3 and 5 K temperatures. Traversing 5 MeV a-particles caused the strips to quench. No events due to electrons could be detected in agreement with the predicted signal amplitude which is below the noise threshold of our wideband circuitry. The strip bias current and henc...
Economical Aspects of Superconducting Cable
Ohya, Masayoshi
High-temperature superconducting (HTS) cables are expected to resolve technical problems with power grids because they put large-capacity, low-loss power transmission into a compact package. One problem is replacing old 275-kV oil filled (OF) cables with cross-linked polyethylene insulated vinyl sheath cables (XLPE cables). This is difficult because XLPE cable has a lower transmission capacity than OF cable. In addition, the high concentration of public infrastructure underground makes it extremely difficult to build new ones. However, if 66-kV HTS cables can be installed inside existing underground conduits and can achieve a power capacity equivalent to conventional 275-kV cables, construction costs could be significantly reduced. Moreover, if XLPE cables are used for a 1,000 MVA-class transmission line, then three circuits of nine 275-kV single-core cables would be required, which would incur a transmission loss of 90 W/m/cct. Three circuits of three 66-kV Three-in-One HTS cables, however, with an AC loss of 1 W/m/ph@3 kA, heat invasion of 2 W/m, and cooling system efficiency of 0.1, would reduce transmission loss to less than three-fifths that of XLPE cables.
Collective of mechatronics circuit
Energy Technology Data Exchange (ETDEWEB)
NONE
1987-02-15
This book is composed of three parts, which deals with mechatronics system about sensor, circuit and motor. The contents of the first part are photo sensor of collector for output, locating detection circuit with photo interrupts, photo sensor circuit with CdS cell and lamp, interface circuit with logic and LED and temperature sensor circuit. The second part deals with oscillation circuit with crystal, C-R oscillation circuit, F-V converter, timer circuit, stability power circuit, DC amp and DC-DC converter. The last part is comprised of bridge server circuit, deformation bridge server, controlling circuit of DC motor, controlling circuit with IC for PLL and driver circuit of stepping motor and driver circuit of Brushless.
Superconductivity in carbon nanomaterials
Dlugon, Katarzyna
The purpose of this thesis is to explain the phenomenon of superconductivity in carbon nanomaterials such as graphene, fullerenes and carbon nanotubes. In the introductory chapter, there is a description of superconductivity and how it occurs at critical temperature (Tc) that is characteristic and different to every superconducting material. The discovery of superconductivity in mercury in 1911 by Dutch physicist Heike Kamerlingh Onnes is also mentioned. Different types of superconductors, type I and type II, low and high temperatures superconductors, as well as the BCS theory that was developed in 1957 by Bardeen, Cooper, and Schrieffer, are also described in detail. The BCS theory explains how Cooper's pairs are formed and how they are responsible for the superconducting properties of many materials. The following chapters explain superconductivity in doped fullerenes, graphene and carbon nanotubes, respectively. There is a thorough explanation followed by many examples of different types of carbon nanomaterials in which small changes in chemical structure cause significant changes in superconducting properties. The goal of this research was not only to take into consideration well known carbon based superconductors but also to search for the newest available materials such as the fullerene nanowhiskers discovered quite recently. There is also a presentation of fairly new ideas about inducing superconductivity in a monolayer of graphene which is more challenging than inducing superconductivity in graphite by simply intercalating metal atoms between its graphene sheets. An effort has been taken to look for any available information about carbon nanomaterials that have the potential to superconduct at room temperature, mainly because discovery of such materials would be a real revolution in the modern world, although no such materials have been discovered yet.
Eckhardt, Matt
2014-03-01
Tunneling spectroscopy is an important technique used to measure the superconducting energy gap, a feature that is at the heart of the nature of superconductivity in various materials. In this presentation, we report the progress and results in developing high-resolution tunneling spectroscopy experimental platforms in a helium three cryostat, a 3 Kelvin cryocooler and a helium dip-tester. The experimental team working in a liberal arts university is a multi-disciplinary group consisting of one physics major, chemisty majors and a biology major. Students including non-physics majors learned and implemented current-voltage measurement techniques, vacuum system engineering, built electronic boxes and amplifier circuits from scratch, built custom multi-conductor cables for thermometry and current-voltage measurements, and performed conductance measurements. We report preliminary results. Acknowledgments: We acknowledge support from National Science Foundation Grant # DMR-1206561.
LS1 Report: short-circuit tests
Katarina Anthony
2014-01-01
As the LS1 draws to an end, teams move from installation projects to a phase of intense testing. Among these are the so-called 'short-circuit tests'. Currently under way at Point 7, these tests verify the cables, the interlocks, the energy extraction systems, the power converters that provide current to the superconducting magnets and the cooling system. Thermal camera images taken during tests at point 4 (IP4). Before putting beam into the LHC, all of the machine's hardware components need to be put to the test. Out of these, the most complicated are the superconducting circuits, which have a myriad of different failure modes with interlock and control systems. While these will be tested at cold - during powering tests to be done in August - work can still be done beforehand. "While the circuits in the magnets themselves cannot be tested at warm, what we can do is verify the power converter and the circuits right up to the place the cables go into the magn...
Barth, W
1976-01-01
The contribution of the Karlsruhe Institut fur Experimental Kernphysik to the RF particle separator at the SPS/CERN consists of the two superconducting deflectors and their Hell-cryostats with the cryogenic and vacuum accessories. The cryostats have to fulfil specifications concerning tightness, thermal insulation, adjustment of the cavities to the beam and reliability. Corresponding cryogenic and RF tests are performed in Karlsruhe before a 300 W refrigerator simulating normal and emergency conditions. Following a description of cryostats design the results of these measurements are compared with the specifications. Operating experience with the cryostats in closed circuit with the refrigerator are reported. (5 refs).
Unexpected Nonlinear Effects in Superconducting Transition-Edge Sensors
Sadleir, John
2016-01-01
When a normal metal transitions into the superconducting state the DC resistance drops from a finite value to zero over some finite transition width in temperature, current, and magnetic field. Superconducting transition-edge sensors (TESs) operate within this transition region and uses resistive changes to measure deposited thermal energy. This resistive transition is not perfectly smooth and a wide range of TES designs and materials show sub-structure in the resistive transition (as seen in smooth nonmonotonic behavior, jump discontinuities, and hysteresis in the devices current-voltage relation and derivatives of the resistance with respect to temperature, bias current, and magnetic field). TES technology has advanced to the point where for many applications this structure is the limiting factor in performance and optimization consists of finding operating points away from these structures. For example, operating at or near this structure can lead to nonlinearity in the detectors response and gain scale, limit the spectral range of the detector by limiting the usable resistive range, and degrade energy resolution. The origin of much of this substructure is unknown. This presentation investigates a number of possible sources in turn. First we model the TES as a superconducting weak-link and solve for the characteristic differential equations current and voltage time dependence. We find:(1) measured DC biased current-voltage relationship is the time-average of a much higher frequency limit cycle solution.(2) We calculate the fundamental frequency and estimate the power radiated from the TES treating the bias leads as an antennae.(3) The solution for a set of circuit parameters becomes multivalued leading to current transitions between levels.(4)The circuit parameters can change the measure resistance and mask the true critical current. As a consequence the TES resistance surface is not just a function of temperature, current, and magnetic field but is also a
Quantum Fluctuation in Thermal Vacuum State for Mesoscopic LC Electric Circuit
Institute of Scientific and Technical Information of China (English)
FAN Hong-Yi; LIANG Xian-Ting
2000-01-01
We consider the quantization of LC (inductance-capacitance) circuit at a finite temperature T as any practical circuits always produce Joule heat except for superconductivity. It is shown that the quantum mechanical zeropoint fluctuations of both charge and current increase with upgoing T. Thermal field dynamics is used in ourdiscussion.
Commutation circuit for an HVDC circuit breaker
Premerlani, William J.
1981-01-01
A commutation circuit for a high voltage DC circuit breaker incorporates a resistor capacitor combination and a charging circuit connected to the main breaker, such that a commutating capacitor is discharged in opposition to the load current to force the current in an arc after breaker opening to zero to facilitate arc interruption. In a particular embodiment, a normally open commutating circuit is connected across the contacts of a main DC circuit breaker to absorb the inductive system energy trapped by breaker opening and to limit recovery voltages to a level tolerable by the commutating circuit components.
The superconducting spin valve and triplet superconductivity
Energy Technology Data Exchange (ETDEWEB)
Garifullin, I.A., E-mail: ilgiz_garifullin@yahoo.com [Zavoisky Physical-Technical Institute, Kazan Scientific Center of Russian Academy of Sciences, 420029 Kazan (Russian Federation); Leksin, P.V.; Garif' yanov, N.N.; Kamashev, A.A. [Zavoisky Physical-Technical Institute, Kazan Scientific Center of Russian Academy of Sciences, 420029 Kazan (Russian Federation); Fominov, Ya.V. [L. D. Landau Institute for Theoretical Physics RAS, 119334 Moscow (Russian Federation); Moscow Institute of Physics and Technology, 141700 Dolgoprudny (Russian Federation); Schumann, J.; Krupskaya, Y.; Kataev, V.; Schmidt, O.G. [Leibniz Institute for Solid State and Materials Research IFW Dresden, D-01171 Dresden (Germany); Büchner, B. [Leibniz Institute for Solid State and Materials Research IFW Dresden, D-01171 Dresden (Germany); Institut für Festkörperphysik, Technische Universität Dresden, D-01062 Dresden (Germany)
2015-01-01
A review of our recent results on the spin valve effect is presented. We have used a theoretically proposed spin switch design F1/F2/S comprising a ferromagnetic bilayer (F1/F2) as a ferromagnetic component, and an ordinary superconductor (S) as the second interface component. Based on it we have prepared and studied in detail a set of multilayers CoO{sub x}/Fe1/Cu/Fe2/S (S=In or Pb). In these heterostructures we have realized for the first time a full spin switch effect for the superconducting current, have observed its sign-changing oscillating behavior as a function of the Fe2-layer thickness and finally have obtained direct evidence for the long-range triplet superconductivity arising due to noncollinearity of the magnetizations of the Fe1 and Fe2 layers. - Highlights: • We studied a spin switch design F1/F2/S. • We prepared a set of multilayers CoOx/Fe1/Cu/Fe2/S (S=In or Pb). • The full spin switch effect for the superconducting current was realized. • We observed its oscillating behavior as a function of the Fe2-layer thickness. • We obtained direct evidence for the long-range triplet superconductivity.
Nanoscale constrictions in superconducting coplanar waveguide resonators
Energy Technology Data Exchange (ETDEWEB)
Jenkins, Mark David; Naether, Uta; Ciria, Miguel; Zueco, David; Luis, Fernando, E-mail: fluis@unizar.es [Instituto de Ciencia de Materiales de Aragón, CSIC—Universidad de Zaragoza, 50009 Zaragoza (Spain); Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza (Spain); Sesé, Javier [Instituto de Nanociencia de Aragón, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza (Spain); Atkinson, James; Barco, Enrique del [Department of Physics, University of Central Florida, Orlando, Florida 32816 (United States); Sánchez-Azqueta, Carlos [Dpto. de Ingeniería Electrónica y Telecomunicaciones, Universidad de Zaragoza, 50009 Zaragoza (Spain); Majer, Johannes [Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, 1020 Vienna (Austria)
2014-10-20
We report on the design, fabrication, and characterization of superconducting coplanar waveguide resonators with nanoscopic constrictions. By reducing the size of the center line down to 50 nm, the radio frequency currents are concentrated and the magnetic field in its vicinity is increased. The device characteristics are only slightly modified by the constrictions, with changes in resonance frequency lower than 1% and internal quality factors of the same order of magnitude as the original ones. These devices could enable the achievement of higher couplings to small magnetic samples or even to single molecular spins and have applications in circuit quantum electrodynamics, quantum computing, and electron paramagnetic resonance.
Circuit electromechanics with single photon strong coupling
Energy Technology Data Exchange (ETDEWEB)
Xue, Zheng-Yuan, E-mail: zyxue@scnu.edu.cn; Yang, Li-Na [Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, and School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Zhou, Jian, E-mail: jianzhou8627@163.com [Department of Electronic Communication Engineering, Anhui Xinhua University, Hefei 230088 (China); Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, and School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China)
2015-07-13
In circuit electromechanics, the coupling strength is usually very small. Here, replacing the capacitor in circuit electromechanics by a superconducting flux qubit, we show that the coupling among the qubit and the two resonators can induce effective electromechanical coupling which can attain the strong coupling regime at the single photon level with feasible experimental parameters. We use dispersive couplings among two resonators and the qubit while the qubit is also driven by an external classical field. These couplings form a three-wave mixing configuration among the three elements where the qubit degree of freedom can be adiabatically eliminated, and thus results in the enhanced coupling between the two resonators. Therefore, our work constitutes the first step towards studying quantum nonlinear effect in circuit electromechanics.
Superconducting phase domains for memory applications
Bakurskiy, S.V.; Klenov, N.V.; Soloviev, I.I.; Kupriyanov, M..Y.; Golubov, A.
2016-01-01
In this work, we study theoretically the properties of S-F/N-sIS type Josephson junctions in the frame of the quasiclassical Usadel formalism. The structure consists of two superconducting electrodes (S), a tunnel barrier (I), a combined normal metal/ferromagnet (N/F) interlayer, and a thin supercon
Tunneling in superconducting structures
Shukrinov, Yu. M.
2010-12-01
Here we review our results on the breakpoint features in the coupled system of IJJ obtained in the framework of the capacitively coupled Josephson junction model with diffusion current. A correspondence between the features in the current voltage characteristics (CVC) and the character of the charge oscillations in superconducting layers is demonstrated. Investigation of the correlations of superconducting currents in neighboring Josephson junctions and the charge correlations in neighboring superconducting layers reproduces the features in the CVC and gives a powerful method for the analysis of the CVC of coupled Josephson junctions. A new method for determination of the dissipation parameter is suggested.
Superconductivity in doped insulators
Energy Technology Data Exchange (ETDEWEB)
Emery, V.J. [Brookhaven National Lab., Upton, NY (United States); Kivelson, S.A. [California Univ., Los Angeles, CA (United States). Dept. of Physics
1995-12-31
It is shown that many synthetic metals, including high temperature superconductors are ``bad metals``, with such a poor conductivity that the usual meanfield theory of superconductivity breaks down because of anomalously large classical and quantum fluctuations of the phase of the superconducting order parameter. It is argued that the supression of a first order phase transition (phase separation) by the long-range Coulomb interaction leads to high temperature superconductivity accompanied by static or dynamical charge inhomogeneIty. Evidence in support of this picture for high temperature superconductors is described.
Superconducting quantum node for entanglement and storage of microwave radiation.
Flurin, E; Roch, N; Pillet, J D; Mallet, F; Huard, B
2015-03-06
Superconducting circuits and microwave signals are good candidates to realize quantum networks, which are the backbone of quantum computers. We have realized a quantum node based on a 3D microwave superconducting cavity parametrically coupled to a transmission line by a Josephson ring modulator. We first demonstrate the time-controlled capture, storage, and retrieval of an optimally shaped propagating microwave field, with an efficiency as high as 80%. We then demonstrate a second essential ability, which is the time-controlled generation of an entangled state distributed between the node and a microwave channel.
Superconducting Quantum Node for Entanglement and Storage of Microwave Radiation
Flurin, E.; Roch, N.; Pillet, J. D.; Mallet, F.; Huard, B.
2015-03-01
Superconducting circuits and microwave signals are good candidates to realize quantum networks, which are the backbone of quantum computers. We have realized a quantum node based on a 3D microwave superconducting cavity parametrically coupled to a transmission line by a Josephson ring modulator. We first demonstrate the time-controlled capture, storage, and retrieval of an optimally shaped propagating microwave field, with an efficiency as high as 80%. We then demonstrate a second essential ability, which is the time-controlled generation of an entangled state distributed between the node and a microwave channel.
Superconducting Detectors for Superlight Dark Matter.
Hochberg, Yonit; Zhao, Yue; Zurek, Kathryn M
2016-01-08
We propose and study a new class of superconducting detectors that are sensitive to O(meV) electron recoils from dark matter-electron scattering. Such devices could detect dark matter as light as the warm dark-matter limit, m(X)≳1 keV. We compute the rate of dark-matter scattering off of free electrons in a (superconducting) metal, including the relevant Pauli blocking factors. We demonstrate that classes of dark matter consistent with terrestrial and cosmological or astrophysical constraints could be detected by such detectors with a moderate size exposure.
Analog circuit design designing dynamic circuit response
Feucht, Dennis
2010-01-01
This second volume, Designing Dynamic Circuit Response builds upon the first volume Designing Amplifier Circuits by extending coverage to include reactances and their time- and frequency-related behavioral consequences.
European roadmap on superconductive electronics - status and perspectives
Energy Technology Data Exchange (ETDEWEB)
Anders, S. [Institute of Photonic Technology (IPHT), Department of Quantum Detection, Albert-Einstein-Str. 9, 07745 Jena (Germany); Blamire, M.G. [University of Cambridge, Department of Materials Science, Pembroke St, Cambridge CB2 3QZ (United Kingdom); Buchholz, F.-Im. [Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig (Germany); Crete, D.-G. [Unite Mixte de Physique CNRS/THALES, 1 Avenue Augustin Fresnel, 91767 Palaiseau CEDEx (France); Cristiano, R. [Istituto di Cibernetica CNR, Via Campi Flegrei 34, 80078 Napoli (Italy); Febvre, P. [University of Savoie, IMEP-LAHC, CNRS UMR 5130, Campus scientifique, 73376 Le Bourget du Lac Cedex (France); Fritzsch, L. [Institute of Photonic Technology (IPHT), Department of Quantum Detection, Albert-Einstein-Str. 9, 07745 Jena (Germany); Herr, A. [Chalmers University of Technology, Department of Microtechnology and Nanoscience - MC2, SE-412 96 Goeteborg (Sweden); Il' ichev, E. [Institute of Photonic Technology (IPHT), Department of Quantum Detection, Albert-Einstein-Str. 9, 07745 Jena (Germany); Kohlmann, J. [Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig (Germany); Kunert, J., E-mail: juergen.kunert@ipht-jena.d [Institute of Photonic Technology (IPHT), Department of Quantum Detection, Albert-Einstein-Str. 9, 07745 Jena (Germany); Meyer, H.-G. [Institute of Photonic Technology (IPHT), Department of Quantum Detection, Albert-Einstein-Str. 9, 07745 Jena (Germany); Niemeyer, J. [Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig (Germany); Ortlepp, T. [Technische Universitaet Ilmenau, Theoretische Elektrotechnik, PF 10 05 65 D-98684 Ilmenau (Germany); Rogalla, H. [University of Twente, Fac. Science and Technology, P.O. Box 217, 7500 AE Enschede (Netherlands); Schurig, T. [Physikalisch-Technische Bundesanstalt (PTB), Berlin, Abbestr. 2-12, 10587 Berlin (Germany)
2010-12-15
Executive Summary: For four decades semiconductor electronics has followed Moore's law: with each generation of integration the circuit features became smaller, more complex and faster. This development is now reaching a wall so that smaller is no longer any faster. The clock rate has saturated at about 3-5 GHz and the parallel processor approach will soon reach its limit. The prime reason for the limitation the semiconductor electronics experiences is not the switching speed of the individual transistor, but its power dissipation and thus heat. Digital superconductive electronics is a circuit- and device-technology that is inherently faster at much less power dissipation than semiconductor electronics. It makes use of superconductors and Josephson junctions as circuit elements, which can provide extremely fast digital devices in a frequency range - dependent on the material - of hundreds of GHz: for example a flip-flop has been demonstrated that operated at 750 GHz. This digital technique is scalable and follows similar design rules as semiconductor devices. Its very low power dissipation of only 0.1 {mu}W per gate at 100 GHz opens the possibility of three-dimensional integration. Circuits like microprocessors and analogue-to-digital converters for commercial and military applications have been demonstrated. In contrast to semiconductor circuits, the operation of superconducting circuits is based on naturally standardized digital pulses the area of which is exactly the flux quantum {Phi}{sub 0}. The flux quantum is also the natural quantization unit for digital-to-analogue and analogue-to-digital converters. The latter application is so precise, that it is being used as voltage standard and that the physical unit 'Volt' is defined by means of this standard. Apart from its outstanding features for digital electronics, superconductive electronics provides also the most sensitive sensor for magnetic fields: the Superconducting Quantum Interference
European roadmap on superconductive electronics - status and perspectives
Anders, S.; Blamire, M. G.; Buchholz, F.-Im.; Crété, D.-G.; Cristiano, R.; Febvre, P.; Fritzsch, L.; Herr, A.; Il'ichev, E.; Kohlmann, J.; Kunert, J.; Meyer, H.-G.; Niemeyer, J.; Ortlepp, T.; Rogalla, H.; Schurig, T.; Siegel, M.; Stolz, R.; Tarte, E.; ter Brake, H. J. M.; Toepfer, H.; Villegier, J.-C.; Zagoskin, A. M.; Zorin, A. B.
2010-12-01
Executive SummaryFor four decades semiconductor electronics has followed Moore’s law: with each generation of integration the circuit features became smaller, more complex and faster. This development is now reaching a wall so that smaller is no longer any faster. The clock rate has saturated at about 3-5 GHz and the parallel processor approach will soon reach its limit. The prime reason for the limitation the semiconductor electronics experiences is not the switching speed of the individual transistor, but its power dissipation and thus heat. Digital superconductive electronics is a circuit- and device-technology that is inherently faster at much less power dissipation than semiconductor electronics. It makes use of superconductors and Josephson junctions as circuit elements, which can provide extremely fast digital devices in a frequency range - dependent on the material - of hundreds of GHz: for example a flip-flop has been demonstrated that operated at 750 GHz. This digital technique is scalable and follows similar design rules as semiconductor devices. Its very low power dissipation of only 0.1 μW per gate at 100 GHz opens the possibility of three-dimensional integration. Circuits like microprocessors and analogue-to-digital converters for commercial and military applications have been demonstrated. In contrast to semiconductor circuits, the operation of superconducting circuits is based on naturally standardized digital pulses the area of which is exactly the flux quantum Φ0. The flux quantum is also the natural quantization unit for digital-to-analogue and analogue-to-digital converters. The latter application is so precise, that it is being used as voltage standard and that the physical unit ‘Volt’ is defined by means of this standard. Apart from its outstanding features for digital electronics, superconductive electronics provides also the most sensitive sensor for magnetic fields: the Superconducting Quantum Interference Device (SQUID). Amongst
Fractional linear systems and electrical circuits
Kaczorek, Tadeusz
2015-01-01
This monograph covers some selected problems of positive and fractional electrical circuits composed of resistors, coils, capacitors and voltage (current) sources. The book consists of 8 chapters, 4 appendices and a list of references. Chapter 1 is devoted to fractional standard and positive continuous-time and discrete-time linear systems without and with delays. In chapter 2 the standard and positive fractional electrical circuits are considered and the fractional electrical circuits in transient states are analyzed. Descriptor linear electrical circuits and their properties are investigated in chapter 3, while chapter 4 is devoted to the stability of fractional standard and positive linear electrical circuits. The reachability, observability and reconstructability of fractional positive electrical circuits and their decoupling zeros are analyzed in chapter 5. The fractional linear electrical circuits with feedbacks are considered in chapter 6. In chapter 7 solutions of minimum energy control for standa...
Superconducting Microwave Electronics at Lewis Research Center
Warner, Joseph D.; Bhasin, Kul B.; Leonard, Regis F.
1991-01-01
Over the last three years, NASA Lewis Research Center has investigated the application of newly discovered high temperature superconductors to microwave electronics. Using thin films of YBa2Cu3O7-delta and Tl2Ca2Ba2Cu3Ox deposited on a variety of substrates, including strontium titanate, lanthanum gallate, lanthanum aluminate and magnesium oxide, a number of microwave circuits have been fabricated and evaluated. These include a cavity resonator at 60 GHz, microstrip resonators at 35 GHz, a superconducting antenna array at 35 GHz, a dielectric resonator at 9 GHz, and a microstrip filter at 5 GHz. Performance of some of these circuits as well as suggestions for other applications are reported.
Superconducting wind turbine generators
DEFF Research Database (Denmark)
Abrahamsen, Asger Bech; Mijatovic, Nenad; Seiler, Eugen
2010-01-01
, the main challenge of the superconducting direct drive technology is to prove that the reliability is superior to the alternative drive trains based on gearboxes or permanent magnets. A strategy of successive testing of superconducting direct drive trains in real wind turbines of 10 kW, 100 kW, 1 MW and 10...... offshore turbines of 8 and 10 MW have been determined from an up-scaling of an existing 5 MW turbine and the necessary properties of the superconducting drive train are discussed. We have found that the absence of the gear box is the main benefit and the reduced weight and size is secondary. However...... MW generator and it is concluded that the present production capacity of coated conductors must be increased by a factor of 36 by 2020, resulting in a ten times lower price of the tape in order to reach a realistic price level for the superconducting drive train....
Magnetic and superconducting nanowires
DEFF Research Database (Denmark)
Piraux, L.; Encinas, A.; Vila, L.
2005-01-01
magnetic and superconducting nanowires. Using different approaches entailing measurements on both single wires and arrays, numerous interesting physical properties have been identified in relation to the nanoscopic dimensions of these materials. Finally, various novel applications of the nanowires are also...
Superconductivity fundamentals and applications
Buckel, Werner
2004-01-01
This is the second English edition of what has become one of the definitive works on superconductivity in German -- currently in its sixth edition. Comprehensive and easy to understand, this introductory text is written especially with the non-specialist in mind. The authors, both long-term experts in this field, present the fundamental considerations without the need for extensive mathematics, describing the various phenomena connected with the superconducting state, with liberal insertion of experimental facts and examples for modern applications. While all fields of superconducting phenomena are dealt with in detail, this new edition pays particular attention to the groundbreaking discovery of magnesium diboride and the current developments in this field. In addition, a new chapter provides an overview of the elements, alloys and compounds where superconductivity has been observed in experiments, together with their major characteristics. The chapter on technical applications has been considerably expanded...
A superconducting large-angle magnetic suspension
Downer, James R.; Anastas, George V., Jr.; Bushko, Dariusz A.; Flynn, Frederick J.; Goldie, James H.; Gondhalekar, Vijay; Hawkey, Timothy J.; Hockney, Richard L.; Torti, Richard P.
1992-01-01
SatCon Technology Corporation has completed a Small Business Innovation Research (SBIR) Phase 2 program to develop a Superconducting Large-Angle Magnetic Suspension (LAMS) for the NASA Langley Research Center. The Superconducting LAMS was a hardware demonstration of the control technology required to develop an advanced momentum exchange effector. The Phase 2 research was directed toward the demonstration for the key technology required for the advanced concept CMG, the controller. The Phase 2 hardware consists of a superconducting solenoid ('source coils') suspended within an array of nonsuperconducting coils ('control coils'), a five-degree-of-freedom positioning sensing system, switching power amplifiers, and a digital control system. The results demonstrated the feasibility of suspending the source coil. Gimballing (pointing the axis of the source coil) was demonstrated over a limited range. With further development of the rotation sensing system, enhanced angular freedom should be possible.
Superconducting gap anomaly in heavy fermion systems
Indian Academy of Sciences (India)
G C Rout; M S Ojha; S N Behera
2008-04-01
The heavy fermion system (HFS) is described by the periodic Anderson model (PAM), treating the Coulomb correlation between the -electrons in the mean-field Hartree-Fock approximation. Superconductivity is introduced by a BCS-type pairing term among the conduction electrons. Within this approximation the equation for the superconducting gap is derived, which depends on the effective position of the energy level of the -electrons relative to the Fermi level. The latter in turn depends on the occupation probability f of the -electrons. The gap equation is solved self-consistently with the equation for f; and their temperature dependences are studied for different positions of the bare -electron energy level, with respect to the Fermi level. The dependence of the superconducting gap on the hybridization leads to a re-entrant behaviour with increasing strength. The induced pairing between the -electrons and the pairing of mixed conduction and -electrons due to hybridization are also determined. The temperature dependence of the hybridization parameter, which characterizes the number of electrons with mixed character and represents the number of heavy electrons is studied. This number is shown to be small. The quasi-particle density of states (DOS) shows the existence of a pseudo-gap due to superconductivity and the signature of a hybridization gap at the Fermi level. For the choice of the model parameters, the DOS shows that the HFS is a metal and undergoes a transition to the gap-less superconducting state.
Analog circuit design designing waveform processing circuits
Feucht, Dennis
2010-01-01
The fourth volume in the set Designing Waveform-Processing Circuits builds on the previous 3 volumes and presents a variety of analog non-amplifier circuits, including voltage references, current sources, filters, hysteresis switches and oscilloscope trigger and sweep circuitry, function generation, absolute-value circuits, and peak detectors.
Superconductivity and symmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Sarasua, L.G., E-mail: sarasua@fisica.edu.uy [Instituto de Fisica, Facultad de Ciencias, Universidad de la Republica, Montevideo (Uruguay)
2012-02-15
In the present work we consider the relation between superconductivity and spontaneous gauge symmetry breaking (SGBS). We show that ODLRO does not require in principle SBGS, even in the presence of particle number fluctuations, by examining exact solutions of a fermionic pairing model. The criteria become equivalent if a symmetry breaking field is allowed, which can be attributed to the interaction with the environment. However, superconducting states without SBGS are not forbidden.
Photoemission, Correlation and Superconductivity:
Abrecht, M.; Ariosa, D.; Cloëtta, D.; Pavuna, D.; Perfetti, L.; Grioni, M.; Margaritondo, G.
We review some of the problems still affecting photoemission as a probe of high-temperature superconductivity, as well as important recent results concerning their solution. We show, in particular, some of the first important results on thin epitaxial films grown by laser ablation, which break the monopoly of cleaved BCSCO in this type of experiments. Such results, obtained on thin LSCO, may have general implications on the theory of high-temperature superconductivity.
Superconductivity in heavily boron-doped silicon carbide
Directory of Open Access Journals (Sweden)
Markus Kriener, Takahiro Muranaka, Junya Kato, Zhi-An Ren, Jun Akimitsu and Yoshiteru Maeno
2008-01-01
Full Text Available The discoveries of superconductivity in heavily boron-doped diamond in 2004 and silicon in 2006 have renewed the interest in the superconducting state of semiconductors. Charge-carrier doping of wide-gap semiconductors leads to a metallic phase from which upon further doping superconductivity can emerge. Recently, we discovered superconductivity in a closely related system: heavily boron-doped silicon carbide. The sample used for that study consisted of cubic and hexagonal SiC phase fractions and hence this led to the question which of them participated in the superconductivity. Here we studied a hexagonal SiC sample, free from cubic SiC phase by means of x-ray diffraction, resistivity, and ac susceptibility.
Intrinsic superconductivity in ABA-stacked trilayer graphene
Directory of Open Access Journals (Sweden)
Haiwen Liu
2012-12-01
Full Text Available We study the phonon-mediated superconductivity in light doped ABA-stacked trilayer graphene system by means of two theoretical models. We find superconducting transition temperature TC can be greatly enlarged by tuning the Fermi energy away from neutral point. Utilizing realistic parameters, we find Tc is approximately 1 K even under weak doping condition EF = 0.1 eV. Specifically, we give out the analytical expression for superconductivity gap △ and superconducting transition temperature Tc for negative-U Hubbard model. Further, we consider the thermal fluctuation and calculate the Berezinskii-Kosterlitz-Thouless critical temperature TBKT. Besides, we consider a two-band BCS model in comparision with the negative-U Hubbard model. The results for both models are qualitatively consistent. Our study provides a promising possibility for realizing intrinsic superconductivity in multilayer graphene systems.
Emergent Higgsless Superconductivity
Directory of Open Access Journals (Sweden)
Cristina Diamantini M.
2017-01-01
Full Text Available We present a new Higgsless model of superconductivity, inspired from anyon superconductivity but P- and T-invariant and generalizable to any dimension. While the original anyon superconductivity mechanism was based on incompressible quantum Hall fluids as average field states, our mechanism involves topological insulators as average field states. In D space dimensions it involves a (D-1-form fictitious pseudovector gauge field which originates from the condensation of topological defects in compact lowenergy effective BF theories. There is no massive Higgs scalar as there is no local order parameter. When electromagnetism is switched on, the photon acquires mass by the topological BF mechanism. Although the charge of the gapless mode (2 and the topological order (4 are the same as those of the standard Higgs model, the two models of superconductivity are clearly different since the origins of the gap, reflected in the high-energy sectors are totally different. In 2D thi! s type of superconductivity is explicitly realized as global superconductivity in Josephson junction arrays. In 3D this model predicts a possible phase transition from topological insulators to Higgsless superconductors.
Superconducting Fullerene Nanowhiskers
Directory of Open Access Journals (Sweden)
Yoshihiko Takano
2012-04-01
Full Text Available We synthesized superconducting fullerene nanowhiskers (C_{60}NWs by potassium (K intercalation. They showed large superconducting volume fractions, as high as 80%. The superconducting transition temperature at 17 K was independent of the K content (x in the range between 1.6 and 6.0 in K-doped C_{60} nanowhiskers (K_{x}C_{60}NWs, while the superconducting volume fractions changed with x. The highest shielding fraction of a full shielding volume was observed in the material of K_{3.3}C_{60}NW by heating at 200 °C. On the other hand, that of a K-doped fullerene (K-C_{60} crystal was less than 1%. We report the superconducting behaviors of our newly synthesized K_{x}C_{60}NWs in comparison to those of K_{x}C_{60} crystals, which show superconductivity at 19 K in K_{3}C_{60}. The lattice structures are also discussed, based on the x-ray diffraction (XRD analyses.
Emulating weak localization using a solid-state quantum circuit.
Chen, Yu; Roushan, P; Sank, D; Neill, C; Lucero, Erik; Mariantoni, Matteo; Barends, R; Chiaro, B; Kelly, J; Megrant, A; Mutus, J Y; O'Malley, P J J; Vainsencher, A; Wenner, J; White, T C; Yin, Yi; Cleland, A N; Martinis, John M
2014-10-14
Quantum interference is one of the most fundamental physical effects found in nature. Recent advances in quantum computing now employ interference as a fundamental resource for computation and control. Quantum interference also lies at the heart of sophisticated condensed matter phenomena such as Anderson localization, phenomena that are difficult to reproduce in numerical simulations. Here, employing a multiple-element superconducting quantum circuit, with which we manipulate a single microwave photon, we demonstrate that we can emulate the basic effects of weak localization. By engineering the control sequence, we are able to reproduce the well-known negative magnetoresistance of weak localization as well as its temperature dependence. Furthermore, we can use our circuit to continuously tune the level of disorder, a parameter that is not readily accessible in mesoscopic systems. Demonstrating a high level of control, our experiment shows the potential for employing superconducting quantum circuits as emulators for complex quantum phenomena.
Energy Technology Data Exchange (ETDEWEB)
Ruck, B.; Chong, Y.; Dittmann, R.; Engelhardt, A.; Sodtke, E.; Siegel, M. [Institut fur Schicht- und Ionentechnik (ISI), Forschungszentrum Julich GmbH, 52425 Juelich (Germany)
1999-11-01
We have designed, fabricated and successfully tested a first-order delta-sigma modulator using a high-temperature superconducting multilayer technology with bicrystal Josephson junctions. The circuit has been fabricated on a SrTiO{sub 3} bicrystal substrate. The YBa{sub 2}Cu{sub 3}O{sub 7}/SrTiO{sub 3}/YBa{sub 2}Cu{sub 3}O{sub 7} trilayer was fabricated by laser deposition. The bottom layer served as a superconducting ground plane. The Josephson junctions were formed at the bicrystal line in the upper layer. The integrator resistance has been made from a Pd/Au thin film. The circuit consists of a dc-SFQ converter, a Josephson transmission line, a comparator, an L/R integrator and an output stage. The correct operation of the modulatorhas been tested using dc measurements. The linearity of the modulator was studied by measuring the harmonic distortions of a 19.5 kHz sine wave input signal. From the recorded spectrum, a minimum resolution of at least 5 bits can be estimated. This accuracy was limited by the noise of the preamplifier. The correct operation of the current feedback loop was demonstrated by cutting the feedback inductance. (author)
Ruck, B.; Chong, Y.; Dittmann, R.; Engelhardt, A.; Sodtke, E.; Siegel, M.
1999-11-01
We have designed, fabricated and successfully tested a first-order delta-sigma modulator using a high-temperature superconducting multilayer technology with bicrystal Josephson junctions. The circuit has been fabricated on a SrTiO3 bicrystal substrate. The YBa2Cu3O7/SrTiO3/YBa2Cu3O7 trilayer was fabricated by laser deposition. The bottom layer served as a superconducting groundplane. The Josephson junctions were formed at the bicrystal line in the upper layer. The integrator resistance has been made from a Pd/Au thin film. The circuit consists of a dc-SFQ converter, a Josephson transmission line, a comparator, an L/R integrator and an output stage. The correct operation of the modulator has been tested using dc measurements. The linearity of the modulator was studied by measuring the harmonic distortions of a 19.5 kHz sine wave input signal. From the recorded spectrum, a minimum resolution of at least 5 bits can be estimated. This accuracy was limited by the noise of the preamplifier. The correct operation of the current feedback loop was demonstrated by cutting the feedback inductance.
The superconducting spin valve and triplet superconductivity
Garifullin, I. A.; Leksin, P. V.; Garif`yanov, N. N.; Kamashev, A. A.; Fominov, Ya. V.; Schumann, J.; Krupskaya, Y.; Kataev, V.; Schmidt, O. G.; Büchner, B.
2015-01-01
A review of our recent results on the spin valve effect is presented. We have used a theoretically proposed spin switch design F1/F2/S comprising a ferromagnetic bilayer (F1/F2) as a ferromagnetic component, and an ordinary superconductor (S) as the second interface component. Based on it we have prepared and studied in detail a set of multilayers CoOx/Fe1/Cu/Fe2/S (S=In or Pb). In these heterostructures we have realized for the first time a full spin switch effect for the superconducting current, have observed its sign-changing oscillating behavior as a function of the Fe2-layer thickness and finally have obtained direct evidence for the long-range triplet superconductivity arising due to noncollinearity of the magnetizations of the Fe1 and Fe2 layers.
Strong coupling of an Er3+-doped YAlO3 crystal to a superconducting resonator
Tkalčec, A.; Probst, S.; Rieger, D.; Rotzinger, H.; Wünsch, S.; Kukharchyk, N.; Wieck, A. D.; Siegel, M.; Ustinov, A. V.; Bushev, P.
2014-08-01
Quantum memories are integral parts of both quantum computers and quantum communication networks. Naturally, such a memory is embedded into a hybrid quantum architecture, which has to meet the requirements of fast gates, long coherence times, and long distance communication. Erbium-doped crystals are well suited as a microwave quantum memory for superconducting circuits with additional access to the optical telecom C band around 1.55 μm. Here, we report on circuit QED experiments with an Er3+:YAlO3 crystal and demonstrate strong coupling to a superconducting lumped element resonator. The low magnetic anisotropy of the host crystal allows for attaining the strong coupling regime at relatively low magnetic fields, which are compatible with superconducting circuits. In addition, Ce3+ impurities were detected in the crystal, which showed strong coupling as well.
Circuit, Thermal and Cost Characteristics of Impulse Magnetizing Circuits
Institute of Scientific and Technical Information of China (English)
2000-01-01
This paper describes the development of circuit, thermal and cost model for a capacitor discharge impulse megnetizer and compares simulations to measurements from an actual system. We used a cost structure consisting of five major subsystems for cost modeling. Especially, we estimated the potential for cost reductions impulse magnetizer as a function of time using the learning curve.
Energy Technology Data Exchange (ETDEWEB)
Xie, Edwar; Baust, Alexander; Zhong, Ling; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany); Anderson, Gustav; Wang, Lujun; Eder, Peter; Fischer, Michael; Goetz, Jan; Haeberlein, Max; Schwarz, Manuel; Wulschner, Karl Friedrich; Deppe, Frank; Fedorov, Kirill; Huebl, Hans; Menzel, Edwin [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Marx, Achim [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany)
2015-07-01
In typical circuit QED systems on-chip superconducting qubits are coupled to integrated coplanar microwave resonators. Due to the planar geometry, the resonators are often a limiting factor regarding the total coherence of the system. Alternatively, similar hybrid systems can be realized using 3D microwave cavities. Here, we present design considerations for the 3D microwave cavity as well as the superconducting transmon qubit. Moreover, we show experimental data of a high purity aluminum cavity demonstrating quality factors above 1.4 .10{sup 6} at the single photon level and a temperature of 50 mK. Our experiments also demonstrate that the quality factor is less dependent on the power compared to planar resonator geometries. Furthermore, we present strategies for tuning both the cavity and the qubit individually.
Loss and Inductance Investigation in Superconducting Cable Conductors
DEFF Research Database (Denmark)
Olsen, Søren Krüger; Tønnesen, Ole; Træholt, Chresten
1999-01-01
An important parameter in the design and optimization of a superconducting cable conductor is the control of the current distribution among single tapes and layers. This distribution is to a large degree determined by inductances, since the resistances are low. The self and mutual inductances...... of the layers are therefore studied theoretically. The current distribution between the superconducting layers is monitored as a function of transport current, and the results are compared with the expected current distribution given by our electrical circuit model.The AC-losses are measured as a function...... of transport current and current distribution.This presentation is based on a number of experiments performed on prototype superconducting cable conductors. The critical current (1uV/cm) of the conductor at 77K was 1590 A (cable #1) and 3240 A (cable #2) respectively.At an rms current of 2 kA (50 Hz) the AC...
Broadband sample holder for microwave spectroscopy of superconducting qubits.
Averkin, A S; Karpov, A; Shulga, K; Glushkov, E; Abramov, N; Huebner, U; Il'ichev, E; Ustinov, A V
2014-10-01
We present a practical design and implementation of a broadband sample holder suitable for microwave experiments with superconducting integrated circuits at millikelvin temperatures. Proposed design can be easily integrated in standard dilution cryostats, has flat pass band response in a frequency range from 0 to 32 GHz, allowing the RF testing of the samples with substrate size up to 4 × 4 mm(2). The parasitic higher modes interference in the holder structure is analyzed and prevented via design considerations. The developed setup can be used for characterization of superconducting parametric amplifiers, bolometers, and qubits. We tested the designed sample holder by characterizing of a superconducting flux qubit at 20 mK temperature.
Applications of the superconducting lossless resistor in electric power systems
Energy Technology Data Exchange (ETDEWEB)
Qian Ping; Chen Jiyan; Hua Rong; Chen Zhongming
2003-04-15
The main features and some very useful applications of the superconducting lossless resistor (LLR) in electric power systems are introduced in this paper. According our opinion, there are two different kinds of LLR, i.e., the time-variant LLR (Tv-LLR) and the time-invariant LLR (Ti-LLR). First, Tv-LLR is well suited for developing new type of the fault-current limiter (FCL) since it has no heat energy dissipated from its superconducting element during current-limiting process. Second, it may be used to produce the high voltage circuit breaker with current limiting ability. While Ti-LLR may be used to manufacture a new type of the superconducting transformer, with compact volume, lightweight and with continuously regulated turn-ratio (so it familiarized as time-variable transformer, TVT)
Analytical Solution for the Current Distribution in Multistrand Superconducting Cables
Bottura, L; Fabbri, M G
2002-01-01
Current distribution in multistrand superconducting cables can be a major concern for stability in superconducting magnets and for field quality in particle accelerator magnets. In this paper we describe multistrand superconducting cables by means of a distributed parameters circuit model. We derive a system of partial differential equations governing current distribution in the cable and we give the analytical solution of the general system. We then specialize the general solution to the particular case of uniform cable properties. In the particular case of a two-strand cable, we show that the analytical solution presented here is identical to the one already available in the literature. For a cable made of N equal strands we give a closed form solution that to our knowledge was never presented before. We finally validate the analytical solution by comparison to numerical results in the case of a step-like spatial distribution of the magnetic field over a short Rutherford cable, both in transient and steady ...
Measurements of the superconducting proximity effect in Pd/Al NS bilayers at GHz frequencies
Nersisyan, Ani; Manenti, Riccardo; Peterer, Michael; Magnusson, Einar; Tancredi, Giovanna; Patterson, Andrew; Leek, Peter
The superconducting proximity effect, well known since the 1960s, describes superconductivity in the case of a superconductor contacted to a normal metal, and is typically studied experimentally using transport techniques such as tunneling spectroscopy. Here we will present studies of the superconducting proximity effect in thin film palladium/aluminum NS bilayers using microwave frequency lumped element LC resonators. Measurements of the resonance frequency and quality factor as a function of temperature and film thickness reveal properties of the NS bilayers such as the critical temperature and penetration depth. Our results should be useful for understanding losses in superconducting quantum circuits that incorporate thin normal layers, and, in the particular case of Pd, should aid in design of hybrid superconducting quantum devices incorporating carbon nanotubes with high contact transparency
Deterministic entanglement of photons in two superconducting microwave resonators
Wang, H; Bialczak, Radoslaw C; Lenander, M; Lucero, Erik; Neeley, M; O'Connell, A; Sank, D; Weides, M; Wenner, J; Yamamoto, T; Yin, Y; Zhao, J; Martinis, John M; Cleland, A N
2010-01-01
Quantum entanglement, one of the defining features of quantum mechanics, has been demonstrated in a variety of nonlinear spin-like systems. Quantum entanglement in linear systems has proven significantly more challenging, as the intrinsic energy level degeneracy associated with linearity makes quantum control more difficult. Here we demonstrate the quantum entanglement of photon states in two independent linear microwave resonators, creating N-photon NOON states as a benchmark demonstration. We use a superconducting quantum circuit that includes Josephson qubits to control and measure the two resonators, and we completely characterize the entangled states with bipartite Wigner tomography. These results demonstrate a significant advance in the quantum control of linear resonators in superconducting circuits.
2012-01-01
The scaling down of technology in CMOS circuits, results in the down scaling of threshold voltage thereby increasing the sub-threshold leakage current. An IC consists of many circuits of which some circuits consists critical path like full adder, whereas some circuits like multiplexer and decoder has no specified critical path. LECTOR is a technique for designing leakage power reduced CMOS circuits without affecting the dynamic power dissipation, which can be used for circuits with no specifi...
Pridham, G J
2013-01-01
Solid-State Circuits provides an introduction to the theory and practice underlying solid-state circuits, laying particular emphasis on field effect transistors and integrated circuits. Topics range from construction and characteristics of semiconductor devices to rectification and power supplies, low-frequency amplifiers, sine- and square-wave oscillators, and high-frequency effects and circuits. Black-box equivalent circuits of bipolar transistors, physical equivalent circuits of bipolar transistors, and equivalent circuits of field effect transistors are also covered. This volume is divided
Simple Autonomous Chaotic Circuits
Piper, Jessica; Sprott, J.
2010-03-01
Over the last several decades, numerous electronic circuits exhibiting chaos have been proposed. Non-autonomous circuits with as few as two components have been developed. However, the operation of such circuits relies on the non-ideal behavior of the devices used, and therefore the circuit equations can be quite complex. In this paper, we present two simple autonomous chaotic circuits using only opamps and linear passive components. The circuits each use one opamp as a comparator, to provide a signum nonlinearity. The chaotic behavior is robust, and independent of nonlinearities in the passive components. Moreover, the circuit equations are among the algebraically simplest chaotic systems yet constructed.
Santiago, John
2013-01-01
Circuits overloaded from electric circuit analysis? Many universities require that students pursuing a degree in electrical or computer engineering take an Electric Circuit Analysis course to determine who will ""make the cut"" and continue in the degree program. Circuit Analysis For Dummies will help these students to better understand electric circuit analysis by presenting the information in an effective and straightforward manner. Circuit Analysis For Dummies gives you clear-cut information about the topics covered in an electric circuit analysis courses to help
Circuits in the Sun: Solar Panel Physics
Gfroerer, Tim
2013-01-01
Typical commercial solar panels consist of approximately 60 individual photovoltaic cells connected in series. Since the usual Kirchhoff rules apply, the current is uniform throughout the circuit, while the electric potential of the individual devices is cumulative. Hence, a solar panel is a good analog of a simple resistive series circuit, except…
Circuits in the Sun: Solar Panel Physics
Gfroerer, Tim
2013-01-01
Typical commercial solar panels consist of approximately 60 individual photovoltaic cells connected in series. Since the usual Kirchhoff rules apply, the current is uniform throughout the circuit, while the electric potential of the individual devices is cumulative. Hence, a solar panel is a good analog of a simple resistive series circuit, except…
Current limiter circuit system
Energy Technology Data Exchange (ETDEWEB)
Witcher, Joseph Brandon; Bredemann, Michael V.
2017-09-05
An apparatus comprising a steady state sensing circuit, a switching circuit, and a detection circuit. The steady state sensing circuit is connected to a first, a second and a third node. The first node is connected to a first device, the second node is connected to a second device, and the steady state sensing circuit causes a scaled current to flow at the third node. The scaled current is proportional to a voltage difference between the first and second node. The switching circuit limits an amount of current that flows between the first and second device. The detection circuit is connected to the third node and the switching circuit. The detection circuit monitors the scaled current at the third node and controls the switching circuit to limit the amount of the current that flows between the first and second device when the scaled current is greater than a desired level.
Multi-qubit circuit quantum electrodynamics
Energy Technology Data Exchange (ETDEWEB)
Viehmann, Oliver
2013-09-03
Circuit QED systems are macroscopic, man-made quantum systems in which superconducting artificial atoms, also called Josephson qubits, interact with a quantized electromagnetic field. These systems have been devised to mimic the physics of elementary quantum optical systems with real atoms in a scalable and more flexible framework. This opens up a variety of possible applications of circuit QED systems. For instance, they provide a promising platform for processing quantum information. Recent years have seen rapid experimental progress on these systems, and experiments with multi-component circuit QED architectures are currently starting to come within reach. In this thesis, circuit QED systems with multiple Josephson qubits are studied theoretically. We focus on simple and experimentally realistic extensions of the currently operated circuit QED setups and pursue investigations in two main directions. First, we consider the equilibrium behavior of circuit QED systems containing a large number of mutually noninteracting Josephson charge qubits. The currently accepted standard description of circuit QED predicts the possibility of superradiant phase transitions in such systems. However, a full microscopic treatment shows that a no-go theorem for superradiant phase transitions known from atomic physics applies to circuit QED systems as well. This reveals previously unknown limitations of the applicability of the standard theory of circuit QED to multi-qubit systems. Second, we explore the potential of circuit QED for quantum simulations of interacting quantum many-body systems. We propose and analyze a circuit QED architecture that implements the quantum Ising chain in a time-dependent transverse magnetic field. Our setup can be used to study quench dynamics, the propagation of localized excitations, and other non-equilibrium features in this paradigmatic model in the theory of non-equilibrium thermodynamics and quantumcritical phenomena. The setup is based on a
Energy Technology Data Exchange (ETDEWEB)
Kikuma, T.; Tomita, M.; Ishiyama, A. [Waseda Univ., Tokyo (Japan)
1999-11-10
For the purpose of we examining the effect of characteristics and ac loss under real machine operating environment of the alternating current superconductivity winding for a realization of the superconductive AC machine vessel, cylindrical shortness first linear guiding motor which used NbTi/CuNi superconducting cable for the primary winding was produced experimentally. The coil number was increased from 6 in 14 this time, and the optimization of the primary current was done, and the improvement on characteristics was attempted. Here, starting torque characteristics, quenching detection protection control circuit are reported. (NEDO)
Analysis of FCL effect caused by superconducting DC cables for railway systems
Nishihara, Taichi; Hoshino, Tsutomu; Tomita, Masaru
2017-02-01
DC superconducting cable that is expected for railway system has been developed in the world, since the introduction effects were expected to energy saving. However, behaviour under unsteady states such as a short circuit accident are not entirely clear, and appropriate method of protection has not been established. Therefore, simulation model of the superconducting cable under direct current system was built and analyzed. Analysis result suggests the superconducting cable has the effect of Fault Current Limited (FCL) and critical current rise was effective method for temperature-rise suppression under unsteady states. Trade-off between cable temperature rise and overcurrent was confirmed.
Effect of mutual inductance coupling on superconducting flux qubit decoherence
Institute of Scientific and Technical Information of China (English)
Yanyan Jiang; Hualan Xu; Yinghua Ji
2009-01-01
In the Born-Markov approximation and two-level approximation, and using the Bloch-Redfield equation, the decoherence property of superconducting quantum circuit with a flux qubit is investigated. The influence on decoherence of the mutual inductance coupling between the circuit components is complicated. The mutual inductance coupling between different loops will decrease the decoherence time. However, the mutual inductance coupling of the same loop, in a certain interval, will increase the decoherence time. Therefore, we can control the decoherence time by changing the mutual inductance parameters such as the strength and direction of coupling.
Simon, R. A.
1986-01-01
Electrical properties of solenoids imitated for tests of control circuits. Simulation circuit imitates voltage and current responses of two engine-controlling solenoids. Used in tests of programs of digital engine-control circuits, also provides electronic interface with circuits imitating electrical properties of pressure sensors and linear variable-differential transformers. Produces voltages, currents, delays, and discrete turnon and turnoff signals representing operation of solenoid in engine-control relay. Many such circuits used simulating overall engine circuitry.
Circuit For Control Of Electromechanical Prosthetic Hand
Bozeman, Richard J., Jr.
1995-01-01
Proposed circuit for control of electromechanical prosthetic hand derives electrical control signals from shoulder movements. Updated, electronic version of prosthesis, that includes two hooklike fingers actuated via cables from shoulder harness. Circuit built around favored shoulder harness, provides more dexterous movement, without incurring complexity of computer-controlled "bionic" or hydraulically actuated devices. Additional harness and potentiometer connected to similar control circuit mounted on other shoulder. Used to control stepping motor rotating hand about prosthetic wrist to one of number of angles consistent with number of digital outputs. Finger-control signals developed by circuit connected to first shoulder harness transmitted to prosthetic hand via sliprings at prosthetic wrist joint.
Nanoscale superconducting memory based on the kinetic inductance of asymmetric nanowire loops
Murphy, Andrew; Averin, Dmitri V.; Bezryadin, Alexey
2017-06-01
The demand for low-dissipation nanoscale memory devices is as strong as ever. As Moore’s law is staggering, and the demand for a low-power-consuming supercomputer is high, the goal of making information processing circuits out of superconductors is one of the central goals of modern technology and physics. So far, digital superconducting circuits could not demonstrate their immense potential. One important reason for this is that a dense superconducting memory technology is not yet available. Miniaturization of traditional superconducting quantum interference devices is difficult below a few micrometers because their operation relies on the geometric inductance of the superconducting loop. Magnetic memories do allow nanometer-scale miniaturization, but they are not purely superconducting (Baek et al 2014 Nat. Commun. 5 3888). Our approach is to make nanometer scale memory cells based on the kinetic inductance (and not geometric inductance) of superconducting nanowire loops, which have already shown many fascinating properties (Aprili 2006 Nat. Nanotechnol. 1 15; Hopkins et al 2005 Science 308 1762). This allows much smaller devices and naturally eliminates magnetic-field cross-talk. We demonstrate that the vorticity, i.e., the winding number of the order parameter, of a closed superconducting loop can be used for realizing a nanoscale nonvolatile memory device. We demonstrate how to alter the vorticity in a controlled fashion by applying calibrated current pulses. A reliable read-out of the memory is also demonstrated. We present arguments that such memory can be developed to operate without energy dissipation.
Nanoscience and Engineering in Superconductivity
Moshchalkov, Victor; Lang, Wolfgang
2010-01-01
For emerging energy saving technologies, superconducting materials with superior performance are needed. Such materials can be developed by manipulating the 'elementary building blocks' through nanostructuring. For superconductivity the 'elementary blocks' are Cooper pair and fluxon (vortex). This book presents new ways how to modify superconductivity and vortex matter through nanostructuring and the use of nanoscale magnetic templates. The basic nano-effects, vortex and vortex-antivortex patterns, vortex dynamics, Josephson phenomena, critical currents, and interplay between superconductivity
Qubit lattice coherence induced by electromagnetic pulses in superconducting metamaterials.
Ivić, Z; Lazarides, N; Tsironis, G P
2016-07-12
Quantum bits (qubits) are at the heart of quantum information processing schemes. Currently, solid-state qubits, and in particular the superconducting ones, seem to satisfy the requirements for being the building blocks of viable quantum computers, since they exhibit relatively long coherence times, extremely low dissipation, and scalability. The possibility of achieving quantum coherence in macroscopic circuits comprising Josephson junctions, envisioned by Legett in the 1980's, was demonstrated for the first time in a charge qubit; since then, the exploitation of macroscopic quantum effects in low-capacitance Josephson junction circuits allowed for the realization of several kinds of superconducting qubits. Furthermore, coupling between qubits has been successfully achieved that was followed by the construction of multiple-qubit logic gates and the implementation of several algorithms. Here it is demonstrated that induced qubit lattice coherence as well as two remarkable quantum coherent optical phenomena, i.e., self-induced transparency and Dicke-type superradiance, may occur during light-pulse propagation in quantum metamaterials comprising superconducting charge qubits. The generated qubit lattice pulse forms a compound "quantum breather" that propagates in synchrony with the electromagnetic pulse. The experimental confirmation of such effects in superconducting quantum metamaterials may open a new pathway to potentially powerful quantum computing.
Qubit lattice coherence induced by electromagnetic pulses in superconducting metamaterials
Ivić, Z.; Lazarides, N.; Tsironis, G. P.
2016-07-01
Quantum bits (qubits) are at the heart of quantum information processing schemes. Currently, solid-state qubits, and in particular the superconducting ones, seem to satisfy the requirements for being the building blocks of viable quantum computers, since they exhibit relatively long coherence times, extremely low dissipation, and scalability. The possibility of achieving quantum coherence in macroscopic circuits comprising Josephson junctions, envisioned by Legett in the 1980’s, was demonstrated for the first time in a charge qubit; since then, the exploitation of macroscopic quantum effects in low-capacitance Josephson junction circuits allowed for the realization of several kinds of superconducting qubits. Furthermore, coupling between qubits has been successfully achieved that was followed by the construction of multiple-qubit logic gates and the implementation of several algorithms. Here it is demonstrated that induced qubit lattice coherence as well as two remarkable quantum coherent optical phenomena, i.e., self-induced transparency and Dicke-type superradiance, may occur during light-pulse propagation in quantum metamaterials comprising superconducting charge qubits. The generated qubit lattice pulse forms a compound ”quantum breather” that propagates in synchrony with the electromagnetic pulse. The experimental confirmation of such effects in superconducting quantum metamaterials may open a new pathway to potentially powerful quantum computing.
Qubit lattice coherence induced by electromagnetic pulses in superconducting metamaterials
Ivić, Z.; Lazarides, N.; Tsironis, G. P.
2016-01-01
Quantum bits (qubits) are at the heart of quantum information processing schemes. Currently, solid-state qubits, and in particular the superconducting ones, seem to satisfy the requirements for being the building blocks of viable quantum computers, since they exhibit relatively long coherence times, extremely low dissipation, and scalability. The possibility of achieving quantum coherence in macroscopic circuits comprising Josephson junctions, envisioned by Legett in the 1980’s, was demonstrated for the first time in a charge qubit; since then, the exploitation of macroscopic quantum effects in low-capacitance Josephson junction circuits allowed for the realization of several kinds of superconducting qubits. Furthermore, coupling between qubits has been successfully achieved that was followed by the construction of multiple-qubit logic gates and the implementation of several algorithms. Here it is demonstrated that induced qubit lattice coherence as well as two remarkable quantum coherent optical phenomena, i.e., self-induced transparency and Dicke-type superradiance, may occur during light-pulse propagation in quantum metamaterials comprising superconducting charge qubits. The generated qubit lattice pulse forms a compound ”quantum breather” that propagates in synchrony with the electromagnetic pulse. The experimental confirmation of such effects in superconducting quantum metamaterials may open a new pathway to potentially powerful quantum computing. PMID:27403780
Towards chains of tunable and nonlinear superconducting microwave resonators
Energy Technology Data Exchange (ETDEWEB)
Fischer, Michael; Wulschner, Friedrich; Schaumburger, Udo; Haeberlein, Max; Fedorov, Kirill; Goetz, Jan; Xie, Edwar [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Schwarz, Manuel; Eder, Peter; Menzel, Edwin; Zhong, Ling; Deppe, Frank; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany); Marx, Achim [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany)
2015-07-01
We present an experimental feasibility study of chains of tunable and nonlinear superconducting microwave resonators within the realm of circuit QED. We describe the fabrication and experimental characterization of the components required to realize nonlinear resonators with tunable anharmonicity, capacitively coupled resonator chains and on-chip parallel plate capacitors. We discuss possible error sources in the fabrication and characterization processes. Furthermore, simulations based on existing theories are performed to identify accessible parameter ranges.
Connectivity and superconductivity
Rubinstein, Jacob
2000-01-01
The motto of connectivity and superconductivity is that the solutions of the Ginzburg--Landau equations are qualitatively influenced by the topology of the boundaries, as in multiply-connected samples. Special attention is paid to the "zero set", the set of the positions (also known as "quantum vortices") where the order parameter vanishes. The effects considered here usually become important in the regime where the coherence length is of the order of the dimensions of the sample. It takes the intuition of physicists and the awareness of mathematicians to find these new effects. In connectivity and superconductivity, theoretical and experimental physicists are brought together with pure and applied mathematicians to review these surprising results. This volume is intended to serve as a reference book for graduate students and researchers in physics or mathematics interested in superconductivity, or in the Schrödinger equation as a limiting case of the Ginzburg--Landau equations.
Large Superconducting Magnet Systems
Védrine, P.
2014-07-17
The increase of energy in accelerators over the past decades has led to the design of superconducting magnets for both accelerators and the associated detectors. The use of Nb−Ti superconducting materials allows an increase in the dipole field by up to 10 T compared with the maximum field of 2 T in a conventional magnet. The field bending of the particles in the detectors and generated by the magnets can also be increased. New materials, such as Nb3Sn and high temperature superconductor (HTS) conductors, can open the way to higher fields, in the range 13–20 T. The latest generations of fusion machines producing hot plasma also use large superconducting magnet systems.
A Singularity in the Kirchhoff's Circuit Equations
Harsha, N R Sree
2016-01-01
Students often have difficulty in understanding qualitatively the behaviour of simple electric circuits. In particular, as different studies have shown, they find multiple batteries connected in multiple loops difficult to analyse. In a recent paper [Phys. Educ. 50 568 (2015)], we showed such an electric circuit, which consists of ideal batteries connected in parallel, that couldn't be solved by the existing circuit analysis methods. In this paper, we shall introduce a new mathematical method of solving simple electric circuits from the solutions of more general circuits and show that the currents, in this particular circuit, take the indeterminate 0/0 form. We shall also present some of the implications of teaching the method. We believe that the description presented in this paper should help the instructors in teaching the behaviour of multiple batteries connected in parallel.
Nonlinear optics quantum computing with circuit QED.
Adhikari, Prabin; Hafezi, Mohammad; Taylor, J M
2013-02-08
One approach to quantum information processing is to use photons as quantum bits and rely on linear optical elements for most operations. However, some optical nonlinearity is necessary to enable universal quantum computing. Here, we suggest a circuit-QED approach to nonlinear optics quantum computing in the microwave regime, including a deterministic two-photon phase gate. Our specific example uses a hybrid quantum system comprising a LC resonator coupled to a superconducting flux qubit to implement a nonlinear coupling. Compared to the self-Kerr nonlinearity, we find that our approach has improved tolerance to noise in the qubit while maintaining fast operation.
Macroscopic Quantum Criticality in a Circuit QED
Wang, Y D; Nori, F; Quan, H T; Sun, C P; Liu, Yu-xi; Nori, Franco
2006-01-01
Cavity quantum electrodynamic (QED) is studied for two strongly-coupled charge qubits interacting with a single-mode quantized field, which is provided by a on-chip transmission line resonator. We analyze the dressed state structure of this superconducting circuit QED system and the selection rules of electromagnetic-induced transitions between any two of these dressed states. Its macroscopic quantum criticality, in the form of ground state level crossing, is also analyzed, resulting from competition between the Ising-type inter-qubit coupling and the controllable on-site potentials.
Integrated superconducting detectors on semiconductors for quantum optics applications
Kaniber, M.; Flassig, F.; Reithmaier, G.; Gross, R.; Finley, J. J.
2016-05-01
Semiconductor quantum photonic circuits can be used to efficiently generate, manipulate, route and exploit nonclassical states of light for distributed photon-based quantum information technologies. In this article, we review our recent achievements on the growth, nanofabrication and integration of high-quality, superconducting niobium nitride thin films on optically active, semiconducting GaAs substrates and their patterning to realize highly efficient and ultra-fast superconducting detectors on semiconductor nanomaterials containing quantum dots. Our state-of-the-art detectors reach external detection quantum efficiencies up to 20 % for ~4 nm thin films and single-photon timing resolutions <72 ps. We discuss the integration of such detectors into quantum dot-loaded, semiconductor ridge waveguides, resulting in the on-chip, time-resolved detection of quantum dot luminescence. Furthermore, a prototype quantum optical circuit is demonstrated that enabled the on-chip generation of resonance fluorescence from an individual InGaAs quantum dot, with a linewidth <15 μeV displaced by 1 mm from the superconducting detector on the very same semiconductor chip. Thus, all key components required for prototype quantum photonic circuits with sources, optical components and detectors on the same chip are reported.
Circuit modeling for electromagnetic compatibility
Darney, Ian B
2013-01-01
Very simply, electromagnetic interference (EMI) costs money, reduces profits, and generally wreaks havoc for circuit designers in all industries. This book shows how the analytic tools of circuit theory can be used to simulate the coupling of interference into, and out of, any signal link in the system being reviewed. The technique is simple, systematic and accurate. It enables the design of any equipment to be tailored to meet EMC requirements. Every electronic system consists of a number of functional modules interconnected by signal links and power supply lines. Electromagnetic interference
Superconducting rf development at ATLAS
Energy Technology Data Exchange (ETDEWEB)
Shepard, K.W.; Kedzie, M.; Clifft, B.E. [Argonne National Lab., IL (United States); Roy, A.; Potukuchi, P. [Nuclear Science Centre, New Delhi (India); Givens, J.; Potter, J.; Crandall, K. [AccSys Technology, Inc., Pleasanton, CA (United States); Added, N. [Sao Paulo Univ., SP (Brazil)
1993-12-31
The ATLAS superconducting heavy-ion linac began operation in 1978 and has operated nearly continuously since that time, while undergoing a series of upgrades and expansions, the most recent being the ``uranium upgrade`` completed earlier this year and described below. In its present configuration the ATLAS linac consists of an array of 64 resonant cavities operating from 48 to 145 MHz, which match a range of particle velocities .007 < {beta} = v/c < .2. The linac provides approximately 50 MV of effective accelerating potential for ions of q/m > 1/10 over the entire periodic table. Delivered beams include 5 {minus} 7 pnA of {sup 238}U{sup 39+} at 1535 MeV. At present more than 10{sup 6} cavity-hours of operation at surface electric fields of 15 MV/m have been accumulated. Superconducting structure development at ATLAS is aimed at improving the cost/performance of existing low velocity structures both for possible future ATLAS upgrades, and also for heavy-ion linacs at other institutions. An application of particular current interest is to develop structures suitable for accelerating radioactive ion beams. Such structures must accelerate very low charge to mass ratio beams and must also have very large transverse acceptance.
Design of a 75-140 GHz high-pass printed circuit board dichroic filter
Kim, Dong Hwi; Mohyuddin, Wahab; Woo, Dong Sik; Choi, Hyun Chul; Kim, Kang Wook
2017-03-01
A new high-performing PCB (Printed Circuit Board) dichroic filter, which can be used for the KSTAR (Korea Superconducting Tokamak Advanced Research) electron cyclotron emission imaging system, is proposed. The current dichroic filter consists of a triangular lattice array of circular holes on the 6-mm thick metal plate, while circular hole spacing limitation caused relatively narrow passband (˜20 GHz). On the other hand, the proposed PCB dichroic filter utilizes the inexpensive commercial PCB fabrication process with a flexible adjustment of circular hole spacing. Therefore, the proposed PCB dichroic filter provides significantly wider passband (˜60 GHz with 0.84 dB insertion loss) with much reduced weight and expense. Also, it is shown that a steep skirt property can be obtained with the thick PCB filter substrate. The design process, fabrication, and measurement results of the new PCB dichroic filter are described.
Failed theories of superconductivity
Schmalian, Joerg
2010-01-01
Almost half a century passed between the discovery of superconductivity by Kammerlingh Onnes and the theoretical explanation of the phenomenon by Bardeen, Cooper and Schrieffer. During the intervening years the brightest minds in theoretical physics tried and failed to develop a microscopic understanding of the effect. A summary of some of those unsuccessful attempts to understand superconductivity not only demonstrates the extraordinary achievement made by formulating the BCS theory, but also illustrates that mistakes are a natural and healthy part of the scientific discourse, and that inapplicable, even incorrect theories can turn out to be interesting and inspiring.
Superconducting magnetic quadrupole
Energy Technology Data Exchange (ETDEWEB)
Kim, J.W.; Shepard, K.W.; Nolen, J.A.
1995-08-01
A design was developed for a 350 T/m, 2.6-cm clear aperture superconducting quadrupole focussing element for use in a very low q/m superconducting linac as discussed below. The quadrupole incorporates holmium pole tips, and a rectangular-section winding using standard commercially-available Nb-Ti wire. The magnet was modeled numerically using both 2D and 3D codes, as a basis for numerical ray tracing using the quadrupole as a linac element. Components for a prototype singlet are being procured during FY 1995.
Fingerprints of Mott Superconductivity
Institute of Scientific and Technical Information of China (English)
王强华
2003-01-01
We improve a previous theory of doped Mott insulators with duality between pairing and magnetism by a further duality transform. As the result we obtained a quantum Ginzburg-Landau theory describing the Cooper pair condensate and the dual of spin condensate. We address the superconductivity by doping a Mott insulator,which we call the Mott superconductivity. Some fingerprints of such novelty in cuprates are the scaling between neutron resonance energy and superfluid density, and the induced quantized spin moment by vortices or Zn impurity (together with circulating charge super-current to be checked by experiments).
Hidden circuits and argumentation
Leinonen, Risto; Kesonen, Mikko H. P.; Hirvonen, Pekka E.
2016-11-01
Despite the relevance of DC circuits in everyday life and schools, they have been shown to cause numerous learning difficulties at various school levels. In the course of this article, we present a flexible method for teaching DC circuits at lower secondary level. The method is labelled as hidden circuits, and the essential idea underlying hidden circuits is in hiding the actual wiring of DC circuits, but to make their behaviour evident for pupils. Pupils are expected to find out the wiring of the circuit which should enhance their learning of DC circuits. We present two possible ways to utilise hidden circuits in a classroom. First, they can be used to test and enhance pupils’ conceptual understanding when pupils are expected to find out which one of the offered circuit diagram options corresponds to the actual circuit shown. This method aims to get pupils to evaluate the circuits holistically rather than locally, and as a part of that aim this method highlights any learning difficulties of pupils. Second, hidden circuits can be used to enhance pupils’ argumentation skills with the aid of argumentation sheet that illustrates the main elements of an argument. Based on the findings from our co-operating teachers and our own experiences, hidden circuits offer a flexible and motivating way to supplement teaching of DC circuits.
Electromagnetic, stress and thermal analysis of the Superconducting Magnet
Ren, Yong
2015-01-01
Within the framework of the National Special Project for Magnetic Confined Nuclear Fusion Energy of China, the design of a superconducting magnet project as a test facility of the Nb3Sn coil or NbTi coil for the Chinese Fusion Engineering Test Reactor (CFETR) has been carried out not only to estimate the relevant conductor performance but also to implement a background magnetic field for CFETR CS insert and toroidal field (TF) insert coils. The superconducting magnet is composed of two parts: the inner part with Nb3Sn cable-in-conduit conductor (CICC) and the outer part with NbTi CICC. Both parts are connected in series and powered by a single DC power supply. The superconducting magnet can be cooled with supercritical helium at inlet temperature of 4.5 K. The total inductance and stored energy of the superconducting magnet are about 0.278 H and 436.6 MJ at an operating current of 56 kA respectively. An active quench protection circuit was adopted to transfer the stored magnetic energy of the superconducting ...
Energy Technology Data Exchange (ETDEWEB)
Souza, G.A.; Carvalho, C.L.; Torsoni, G.B.; Rodrigues, V.D.; Souza, E.J.; Zadorosny, R. [UNESP, Ilha Solteira, SP (Brazil). Fac. de Engenharia. Grupo de Desenvolvimento e Aplicacoes de Materiais (GDAM)
2011-07-01
Full text: Since the discovery of high temperature superconductors (HTS) many studies have been performed, in terms to discover new materials with higher critical temperature and its potential applications. Technological advances have induced to use superconductor materials in the development of new devices that have higher processing speed, storage capacity and are miniaturized, what may imply in great evolution in the electronic area. Thinking about that advances and looking to supply some requirements, this work proposed to prepare a printed circuit board (PCB) with a superconductor thin film using an inexpensive and conventional photographic method. This work was divided in two steps: synthesis of the precursor solution and film preparation for superconductor printed circuit. In the preparation of superconductor thin film was considered to use the 2223 phase of the BSCCO system, which has been doped with Pb (BPSCCO) for stabilizing the same, and it presents a critical temperature around 110 K. This film was prepared from a precursor solution based on similar method developed by M. P. Pechini. The printed circuit was created by the photographic method of heat transfer which consisted of creation a circuit layout, with different dimensions and printed on photo paper (Epson S041140). The layout was transferred to the FR4 printed copper clad laminate was made with the household clothes iron. The precursor solution was deposited on Si substrate by spin-coating. The control of film thickness was performed by the deposition number that in this case was done five subsequent depositions to obtain an ideal thickness. Between each deposition the film was submitted to calcinations in order to eliminate organic matter. After that the film was submitted a heat treatment around 820 deg C / 5 minutes to obtain the expected superconducting phase and coupling and the grain growth. Film characterizations were made using optical microscopy, XRD and EDX, to check the dimensions and
Intuitive analog circuit design
Thompson, Marc
2013-01-01
Intuitive Analog Circuit Design outlines ways of thinking about analog circuits and systems that let you develop a feel for what a good, working analog circuit design should be. This book reflects author Marc Thompson's 30 years of experience designing analog and power electronics circuits and teaching graduate-level analog circuit design, and is the ideal reference for anyone who needs a straightforward introduction to the subject. In this book, Dr. Thompson describes intuitive and ""back-of-the-envelope"" techniques for designing and analyzing analog circuits, including transistor amplifi
The circuit designer's companion
Williams, Tim
2013-01-01
The Circuit Designer's Companion covers the theoretical aspects and practices in analogue and digital circuit design. Electronic circuit design involves designing a circuit that will fulfill its specified function and designing the same circuit so that every production model of it will fulfill its specified function, and no other undesired and unspecified function.This book is composed of nine chapters and starts with a review of the concept of grounding, wiring, and printed circuits. The subsequent chapters deal with the passive and active components of circuitry design. These topics are foll
Quantum computer of wire circuit architecture
Moiseev, S A; Andrianov, S N
2010-01-01
First solid state quantum computer was built using transmons (cooper pair boxes). The operation of the computer is limited because of using a number of the rigit cooper boxes working with fixed frequency at temperatures of superconducting material. Here, we propose a novel architecture of quantum computer based on a flexible wire circuit of many coupled quantum nodes containing controlled atomic (molecular) ensembles. We demonstrate wide opportunities of the proposed computer. Firstly, we reveal a perfect storage of external photon qubits to multi-mode quantum memory node and demonstrate a reversible exchange of the qubits between any arbitrary nodes. We found optimal parameters of atoms in the circuit and self quantum modes for quantum processing. The predicted perfect storage has been observed experimentally for microwave radiation on the lithium phthalocyaninate molecule ensemble. Then also, for the first time we show a realization of the efficient basic two-qubit gate with direct coupling of two arbitrary...
Joo, Jaewoo; Ginossar, Eran
2016-06-01
We propose a deterministic scheme for teleporting an unknown qubit state through continuous-variable entangled states in superconducting circuits. The qubit is a superconducting two-level system and the bipartite quantum channel is a microwave photonic entangled coherent state between two cavities. A Bell-type measurement performed on the hybrid state of solid and photonic states transfers a discrete-variable unknown electronic state to a continuous-variable photonic cat state in a cavity mode. In order to facilitate the implementation of such complex protocols we propose a design for reducing the self-Kerr nonlinearity in the cavity. The teleporation scheme enables quantum information processing operations with circuit-QED based on entangled coherent states. These include state verification and single-qubit operations with entangled coherent states. These are shown to be experimentally feasible with the state of the art superconducting circuits.
Joo, Jaewoo; Ginossar, Eran
2016-06-01
We propose a deterministic scheme for teleporting an unknown qubit state through continuous-variable entangled states in superconducting circuits. The qubit is a superconducting two-level system and the bipartite quantum channel is a microwave photonic entangled coherent state between two cavities. A Bell-type measurement performed on the hybrid state of solid and photonic states transfers a discrete-variable unknown electronic state to a continuous-variable photonic cat state in a cavity mode. In order to facilitate the implementation of such complex protocols we propose a design for reducing the self-Kerr nonlinearity in the cavity. The teleporation scheme enables quantum information processing operations with circuit-QED based on entangled coherent states. These include state verification and single-qubit operations with entangled coherent states. These are shown to be experimentally feasible with the state of the art superconducting circuits.
Superconducting Magnets for Particle Accelerators
Rossi, L
2012-01-01
Superconductivity has been the most influential technology in the field of accelerators in the last 30 years. Since the commissioning of the Tevatron, which demonstrated the use and operability of superconductivity on a large scale, superconducting magnets and rf cavities have been at the heart of all new large accelerators. Superconducting magnets have been the invariable choice for large colliders, as well as cyclotrons and large synchrotrons. In spite of the long history of success, superconductivity remains a difficult technology, requires adequate R&D and suitable preparation, and has a relatively high cost. Hence, it is not surprising that the development has also been marked by a few setbacks. This article is a review of the main superconducting accelerator magnet projects; it highlights the main characteristics and main achievements, and gives a perspective on the development of superconducting magnets for the future generation of very high energy colliders.
Spin-orbit-coupled superconductivity.
Lo, Shun-Tsung; Lin, Shih-Wei; Wang, Yi-Ting; Lin, Sheng-Di; Liang, C-T
2014-06-25
Superconductivity and spin-orbit (SO) interaction have been two separate emerging fields until very recently that the correlation between them seemed to be observed. However, previous experiments concerning SO coupling are performed far beyond the superconducting state and thus a direct demonstration of how SO coupling affects superconductivity remains elusive. Here we investigate the SO coupling in the critical region of superconducting transition on Al nanofilms, in which the strength of disorder and spin relaxation by SO coupling are changed by varying the film thickness. At temperatures T sufficiently above the superconducting critical temperature T(c), clear signature of SO coupling reveals itself in showing a magneto-resistivity peak. When T superconductivity. By studying such magneto-resistivity peaks under different strength of spin relaxation, we highlight the important effects of SO interaction on superconductivity.
Superconducting and hybrid systems for magnetic field shielding
Gozzelino, L.; Gerbaldo, R.; Ghigo, G.; Laviano, F.; Truccato, M.; Agostino, A.
2016-03-01
In this paper we investigate and compare the shielding properties of superconducting and hybrid superconducting/ferromagnetic systems, consisting of cylindrical cups with an aspect ratio of height/radius close to unity. First, we reproduced, by finite-element calculations, the induction magnetic field values measured along the symmetry axis in a superconducting (MgB2) and in a hybrid configuration (MgB2/Fe) as a function of the applied magnetic field and of the position. The calculations are carried out using the vector potential formalism, taking into account simultaneously the non-linear properties of both the superconducting and the ferromagnetic material. On the basis of the good agreement between the experimental and the computed data we apply the same model to study the influence of the geometric parameters of the ferromagnetic cup as well as of the thickness of the lateral gap between the two cups on the shielding properties of the superconducting cup. The results show that in the considered non-ideal geometry, where the edge effect in the flux penetration cannot be disregarded, the superconducting shield is always the most efficient solution at low magnetic fields. However, a partial recovery of the shielding capability of the hybrid configuration occurs if a mismatch in the open edges of the two cups is considered. In contrast, at high magnetic fields the hybrid configurations are always the most effective. In particular, the highest shielding factor was found for solutions with the ferromagnetic cup protruding over the superconducting one.
Sample of superconducting wiring (Niobium Titanium)
About NbTi cable: The cable consists of 36 strands of superconducting wire, each strand has a diameter of 0.825 mm and houses 6300 superconducting filaments of niobium-titanium (Nb-Ti, a superconducting alloy). Each filament has a diameter of about 0.006 mm, i.e. 10 times smaller than a typical human hair. The filaments are embedded in a high-purity copper matrix. Copper is a normal conducting material. The filaments are in the superconductive state when the temperature is below about -263ºC (10.15 K). When the filaments leave the superconductive state, the copper acts as conductor transports the electrical current. Each strand of The NbTi cable (at superconducting state) has a current density of up to above 2000 A/mm2 at 9 T and -271ºC (2.15 K). A cable transport a current of about 13000 A at 10 T and -271ºC (2.15 K). About LHC superconducting wiring: The high magnetic fields needed for the LHC can only be reached using superconductors. At very low temperatures, superconductors have no electrical resis...
New Fast Response Thin Film-Based Superconducting Quench Detectors
Dudarev, A; van de Camp, W; Ravaioli, E; Teixeira, A; ten Kate, H H J
2014-01-01
Quench detection on superconducting bus bars and other devices with a low normal zone propagation velocity and low voltage build-up is quite difficult with conventional quench detection techniques. Currently, on ATLAS superconducting bus bar sections, superconducting quench detectors (SQD) are mounted to detect quench events. A first version of the SQD essentially consists of an insulated superconducting wire glued to a superconducting bus line or windings, which in the case of a quench rapidly builds up a relatively high resistance that can be easily and quietly detected. We now introduce a new generation of drastically improved SQDs. The new version makes the detection of quenches simpler, more reliable, and much faster. Instead of a superconducting wire, now a superconducting thin film is used. The layout of the sensor shows a meander like pattern that is etched out of a copper coated 25 mu m thick film of Nb-Ti glued in between layers of Kapton. Since the sensor is now much smaller and thinner, it is easi...
A New Low Voltage P-MOS Bulk Driven Current Mirror Circuit
Directory of Open Access Journals (Sweden)
Anuj Dugaya
2013-08-01
Full Text Available This work proposes a new low voltage current mirror circuit using bulk driven technique. Bulk driventechnique is used to reduce the threshold of PMOS used in low voltage current mirror circuits (LVCM.TheProposed circuit consist of 4 PMOS and 5 NMOS. The proposed circuit operated at +0.85 V supplyvoltage.The bandwidth of this circuit has also been enhanced using resistive compensation technique. Theproposed circuit has been simulated in Cadence Design Environment in UMC 180nm CMOS technology. Atransfer characteristic of the proposed circuit has been discussed. The proposed circuit find application inlow voltage and low power analog integrated circuits.
Energy Technology Data Exchange (ETDEWEB)
Ciovati, Gianluigi [JLAB
2015-02-01
This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.
Superconducting Technology Assessment
2005-08-01
of Nb/Al- Nx /NbTiN junctions for SIS mixer applications,” IEEE Trans. Appl. Superconduct., vol. 11, pp. 76–79, Mar. 2001. [48] M. Gurvitch, W. A...Another connector developed by IBM for commercial applications using a dendritic interposer technology. A “beam-on-pad” approach developed by Siemens
Hybrid superconducting neutron detectors
Energy Technology Data Exchange (ETDEWEB)
Merlo, V.; Lucci, M.; Ottaviani, I. [Dipartimento di Fisica, Università Tor Vergata, Via della Ricerca Scientifica, I-00133 Roma (Italy); Salvato, M.; Cirillo, M. [Dipartimento di Fisica, Università Tor Vergata, Via della Ricerca Scientifica, I-00133 Roma (Italy); CNR SPIN Salerno, Università di Salerno, Via Giovanni Paolo II, n.132, 84084 Fisciano (Italy); Scherillo, A. [Science and Technology Facility Council, ISIS Facility Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Celentano, G. [ENEA Frascati Research Centre, Via. E. Fermi 45, 00044 Frascati (Italy); Pietropaolo, A., E-mail: antonino.pietropaolo@enea.it [ENEA Frascati Research Centre, Via. E. Fermi 45, 00044 Frascati (Italy); Mediterranean Institute of Fundamental Physics, Via Appia Nuova 31, 00040 Marino, Roma (Italy)
2015-03-16
A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, {sup 10}B + n → α + {sup 7}Li, with α and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current I{sub c}, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.
Levitation Kits Demonstrate Superconductivity.
Worthy, Ward
1987-01-01
Describes the "Project 1-2-3" levitation kit used to demonstrate superconductivity. Summarizes the materials included in the kit. Discusses the effect demonstrated and gives details on how to obtain kits. Gives an overview of the documentation that is included. (CW)
1995-01-01
Engineers work in a clean room on one of the superconducting cavities for the upgrade to the LEP accelerator, known as LEP-2. The use of superconductors allow higher electric fields to be produced so that higher beam energies can be reached.
Niobium superconducting cavity
CERN PhotoLab
1980-01-01
This 5-cell superconducting cavity, made from bulk-Nb, stems from the period of general studies, not all directed towards direct use at LEP. This one is dimensioned for 1.5 GHz, the frequency used at CEBAF and also studied at Saclay (LEP RF was 352.2 MHz). See also 7908227, 8007354, 8209255, 8210054, 8312339.
Jean Leyder
2000-01-01
The LHC is the next step in CERN's quest to unravel the mysteries of the Universe. It will accelerate protons to energies never before achieved in laboratories, and to hold them on course it will use powerful superconducting magnets on an unprecedented scale.
Coupled superconducting flux qubits
Plantenberg, J.H.
2007-01-01
This thesis presents results of theoretical and experimental work on superconducting persistent-current quantum bits. These qubits offer an attractive route towards scalable solid-state quantum computing. The focus of this work is on the gradiometer flux qubit which has a special geometric design, t
Checking BEBC superconducting magnet
1974-01-01
The superconducting coils of the magnet for the 3.7 m Big European Bubble Chamber (BEBC) had to be checked, see Annual Report 1974, p. 60. The photo shows a dismantled pancake. By December 1974 the magnet reached again the field design value of 3.5 T.
Nonequilibrium superconducting detectors
Cristiano, R.; Ejrnaes, M.; Esposito, E.; Lisitskyi, M. P.; Nappi, C.; Pagano, S.; Perez de Lara, D.
2006-03-01
Nonequilibrium superconducting detectors exploit the early stages of the energy down cascade which occur after the absorption of radiation. They operate on a short temporal scale ranging from few microseconds down to tens of picoseconds. In such a way they provide fast counting capability, high time discrimination and also, for some devices, energy sensitivity. Nonequilibrium superconducting detectors are developed for their use both in basic science and in practical applications for detection of single photons or single ionized macromolecules. In this paper we consider two devices: distributed readout imaging detectors (DROIDs) based on superconducting tunnel junctions (STJs), which are typically used for high-speed energy spectroscopy applications, and hot-electron superconductive detectors (HESDs), which are typically used as fast counters and time discriminators. Implementation of the DROID geometry to use a single superconductor is discussed. Progress in the fabrication technology of NbN nanostructured HESDs is presented. The two detectors share the high sensitivity that makes them able to efficiently detect even single photons down to infrared energy.
Nonequilibrium superconducting detectors
Energy Technology Data Exchange (ETDEWEB)
Cristiano, R [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Ejrnaes, M [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); INFN Sezione di Napoli, 80126 Naples (Italy); Esposito, E [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Lisitskyi, M P [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Nappi, C [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Pagano, S [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Dipartimento di Fisica, Universita di Salerno, 84081 Baronissi (Saudi Arabia) (Italy); Perez de Lara, D [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy)
2006-03-15
Nonequilibrium superconducting detectors exploit the early stages of the energy down cascade which occur after the absorption of radiation. They operate on a short temporal scale ranging from few microseconds down to tens of picoseconds. In such a way they provide fast counting capability, high time discrimination and also, for some devices, energy sensitivity. Nonequilibrium superconducting detectors are developed for their use both in basic science and in practical applications for detection of single photons or single ionized macromolecules. In this paper we consider two devices: distributed readout imaging detectors (DROIDs) based on superconducting tunnel junctions (STJs), which are typically used for high-speed energy spectroscopy applications, and hot-electron superconductive detectors (HESDs), which are typically used as fast counters and time discriminators. Implementation of the DROID geometry to use a single superconductor is discussed. Progress in the fabrication technology of NbN nanostructured HESDs is presented. The two detectors share the high sensitivity that makes them able to efficiently detect even single photons down to infrared energy.
Patrice Loiez
1999-01-01
This cross-section through a strand of superconducting matieral as used in the LHC shows the 8000 Niobium-Titanium filaments embedded like a honeycomb in copper. When cooled to 1.9 degrees above absolute zero in the LHC accelerator, these filaments will have zero resistance and so will carry a high electric current with no energy loss.
Superconducting doped topological materials
Energy Technology Data Exchange (ETDEWEB)
Sasaki, Satoshi, E-mail: sasaki@sanken.osaka-u.ac.jp [Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Mizushima, Takeshi, E-mail: mizushima@mp.es.osaka-u.ac.jp [Department of Materials Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); Department of Physics, Okayama University, Okayama 700-8530 (Japan)
2015-07-15
Highlights: • Studies on both normal- and SC-state properties of doped topological materials. • Odd-parity pairing systems with the time-reversal-invariance. • Robust superconductivity in the presence of nonmagnetic impurity scattering. • We propose experiments to identify the existence of Majorana fermions in these SCs. - Abstract: Recently, the search for Majorana fermions (MFs) has become one of the most important and exciting issues in condensed matter physics since such an exotic quasiparticle is expected to potentially give rise to unprecedented quantum phenomena whose functional properties will be used to develop future quantum technology. Theoretically, the MFs may reside in various types of topological superconductor materials that is characterized by the topologically protected gapless surface state which are essentially an Andreev bound state. Superconducting doped topological insulators and topological crystalline insulators are promising candidates to harbor the MFs. In this review, we discuss recent progress and understanding on the research of MFs based on time-reversal-invariant superconducting topological materials to deepen our understanding and have a better outlook on both the search for and realization of MFs in these systems. We also discuss some advantages of these bulk systems to realize MFs including remarkable superconducting robustness against nonmagnetic impurities.
Coupled superconducting flux qubits
Plantenberg, J.H.
2007-01-01
This thesis presents results of theoretical and experimental work on superconducting persistent-current quantum bits. These qubits offer an attractive route towards scalable solid-state quantum computing. The focus of this work is on the gradiometer flux qubit which has a special geometric design, t
Applications of Superconductivity
Goodkind, John M.
1971-01-01
Presents a general review of current practical applications of the properties of superconducters. The devices are classified into groups according to the property that is of primary importance. The article is inteded as a first introduction for students and professionals. (Author/DS)
Levitation Kits Demonstrate Superconductivity.
Worthy, Ward
1987-01-01
Describes the "Project 1-2-3" levitation kit used to demonstrate superconductivity. Summarizes the materials included in the kit. Discusses the effect demonstrated and gives details on how to obtain kits. Gives an overview of the documentation that is included. (CW)
ISR Superconducting Quadrupoles
1977-01-01
Michel Bouvier is preparing for curing the 6-pole superconducting windings inbedded in the cylindrical wall separating liquid helium from vacuum in the quadrupole aperture. The heat for curing the epoxy glue was provided by a ramp of infrared lamps which can be seen above the slowly rotating cylinder. See also 7703512X, 7702690X.
High temperature interface superconductivity
Energy Technology Data Exchange (ETDEWEB)
Gozar, A., E-mail: adrian.gozar@yale.edu [Yale University, New Haven, CT 06511 (United States); Bozovic, I. [Yale University, New Haven, CT 06511 (United States); Brookhaven National Laboratory, Upton, NY 11973 (United States)
2016-02-15
Highlight: • This review article covers the topic of high temperature interface superconductivity. • New materials and techniques used for achieving interface superconductivity are discussed. • We emphasize the role played by the differences in structure and electronic properties at the interface with respect to the bulk of the constituents. - Abstract: High-T{sub c} superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-T{sub c} Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both ‘passive’ hetero-structures as well as surface-induced effects by external gating are discussed. We conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.
Resistor Extends Life Of Battery In Clocked CMOS Circuit
Wells, George H., Jr.
1991-01-01
Addition of fixed resistor between battery and clocked complementary metal oxide/semiconductor (CMOS) circuit reduces current drawn from battery. Basic idea to minimize current drawn from battery by operating CMOS circuit at lowest possible current consistent with use of simple, fixed off-the-shelf components. Prolongs lives of batteries in such low-power CMOS circuits as watches and calculators.
A new approach to hull consistency
Directory of Open Access Journals (Sweden)
Kolev Lubomir
2016-06-01
Full Text Available Hull consistency is a known technique to improve the efficiency of iterative interval methods for solving nonlinear systems describing steady-states in various circuits. Presently, hull consistency is checked in a scalar manner, i.e. successively for each equation of the nonlinear system with respect to a single variable. In the present poster, a new more general approach to implementing hull consistency is suggested which consists in treating simultaneously several equations with respect to the same number of variables.
Switching transients in a superconducting coil
Energy Technology Data Exchange (ETDEWEB)
Owen, E.W.; Shimer, D.W.
1983-11-18
A study is made of the transients caused by the fast dump of large superconducting coils. Theoretical analysis, computer simulation, and actual measurements are used. Theoretical analysis can only be applied to the simplest of models. In the computer simulations two models are used, one in which the coil is divided into ten segments and another in which a single coil is employed. The circuit breaker that interrupts the current to the power supply, causing a fast dump, is represented by a time and current dependent conductance. Actual measurements are limited to measurements made incidental to performance tests on the MFTF Yin-yang coils. It is found that the breaker opening time is the critical factor in determining the size and shape of the transient. Instantaneous opening of the breaker causes a lightly damped transient with large amplitude voltages to ground. Increasing the opening time causes the transient to become a monopulse of decreasing amplitude. The voltages at the external terminals are determined by the parameters of the external circuit. For fast opening times the frequency depends on the dump resistor inductance, the circuit capacitance, and the amplitude on the coil current. For slower openings the dump resistor inductance and the current determine the amplitude of the voltage to ground at the terminals. Voltages to ground are less in the interior of the coil, where transients related to the parameters of the coil itself are observed.
Electrical Circuits and Water Analogies
Smith, Frederick A.; Wilson, Jerry D.
1974-01-01
Briefly describes water analogies for electrical circuits and presents plans for the construction of apparatus to demonstrate these analogies. Demonstrations include series circuits, parallel circuits, and capacitors. (GS)
DEFF Research Database (Denmark)
Hansen, Kristoffer Arnsfelt; Miltersen, Peter Bro; Vinay, V
2006-01-01
We consider the computational power of constant width polynomial size cylindrical circuits and nondeterministic branching programs. We show that every function computed by a Pi2 o MOD o AC0 circuit can also be computed by a constant width polynomial size cylindrical nondeterministic branching...... program (or cylindrical circuit) and that every function computed by a constant width polynomial size cylindrical circuit belongs to ACC0....
REA, Editors of
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Electric Circuits I includes units, notation, resistive circuits, experimental laws, transient circuits, network theorems, techniques of circuit analysis, sinusoidal analysis, polyph
Treu, Jr., Charles A.
1999-08-31
A piezoelectric motor drive circuit is provided which utilizes the piezoelectric elements as oscillators and a Meacham half-bridge approach to develop feedback from the motor ground circuit to produce a signal to drive amplifiers to power the motor. The circuit automatically compensates for shifts in harmonic frequency of the piezoelectric elements due to pressure and temperature changes.
Louwsma, S.M.; Vertregt, Maarten
2010-01-01
A sampling circuit for sampling a signal is disclosed. The sampling circuit comprises a plurality of sampling channels adapted to sample the signal in time-multiplexed fashion, each sampling channel comprising a respective track-and-hold circuit connected to a respective analogue to digital converte
Louwsma, S.M.; Vertregt, Maarten
2011-01-01
A sampling circuit for sampling a signal is disclosed. The sampling circuit comprises a plurality of sampling channels adapted to sample the signal in time-multiplexed fashion, each sampling channel comprising a respective track-and-hold circuit connected to a respective analogue to digital converte
DEFF Research Database (Denmark)
2009-01-01
A load testing circuit a circuit tests the load impedance of a load connected to an amplifier. The load impedance includes a first terminal and a second terminal, the load testing circuit comprising a signal generator providing a test signal of a defined bandwidth to the first terminal of the load...
Bergstra, J.A.; Ponse, A.
2010-01-01
Short-circuit evaluation denotes the semantics of propositional connectives in which the second argument is only evaluated if the first argument does not suffice to determine the value of the expression. In programming, short-circuit evaluation is widely used. A short-circuit logic is a variant of p
Louwsma, Simon Minze; Vertregt, Maarten
2011-01-01
A sampling circuit for sampling a signal is disclosed. The sampling circuit comprises a plurality of sampling channels adapted to sample the signal in time-multiplexed fashion, each sampling channel comprising a respective track-and-hold circuit connected to a respective analogue to digital converte
Louwsma, Simon Minze; Vertregt, Maarten
2010-01-01
A sampling circuit for sampling a signal is disclosed. The sampling circuit comprises a plurality of sampling channels adapted to sample the signal in time-multiplexed fashion, each sampling channel comprising a respective track-and-hold circuit connected to a respective analogue to digital converte
Analogue Square Root Calculator Circuit Designed With Logarithmic Amplifiers
2016-01-01
In many applications, it has been necessary to calculate square roots of some numbers which are correspond to some voltages values. In this study such an analogue calculator has been designed and simulated in computer medium. Circuit consist of one logarithmic and one antilogarithmic amplifier connected in cascade. The component values of circuit chosen so that the output voltage of circuit is equal to square root of input voltage. The performance of designed circuit is investigated by applyi...
Transmission Level High Temperature Superconducting Fault Current Limiter
Energy Technology Data Exchange (ETDEWEB)
Stewart, Gary [SuperPower, Inc., Schenectady, NY (United States)
2016-10-05
The primary objective of this project was to demonstrate the feasibility and reliability of utilizing high temperature superconducting (HTS) materials in a Transmission Level Superconducting Fault Current Limiter (SFCL) application. During the project, the type of high temperature superconducting material used evolved from 1^{st} generation (1G) BSCCO-2212 melt cast bulk high temperature superconductors to 2^{nd} generation (2G) YBCO based high temperature superconducting tape. The SFCL employed SuperPower's “Matrix” technology that offers modular features to enable scale up to transmission voltage levels. The SFCL consists of individual modules that contain elements and parallel inductors that assist in carrying the current during the fault. A number of these modules are arranged in an m x n array to form the current limiting matrix.
Magnetism in structures with ferromagnetic and superconducting layers
Energy Technology Data Exchange (ETDEWEB)
Zhaketov, V. D.; Nikitenko, Yu. V., E-mail: nikiten@nf.jinr.ru [Joint Institute for Nuclear Research (Russian Federation); Radu, F. [Helmholtz-Zentrum Berlin für Materialen un Energie (Germany); Petrenko, A. V. [Joint Institute for Nuclear Research (Russian Federation); Csik, A. [MTA Atomki, Institute for Nuclear Research (Hungary); Borisov, M. M.; Mukhamedzhanov, E. Kh. [Russian Research Centre Kurchatov Institute (Russian Federation); Aksenov, V. L. [Russian Research Centre Kurchatov Institute, Konstantinov St. Petersburg Nuclear Physics Institute (Russian Federation)
2017-01-15
The influence of superconductivity on ferromagnetism in the layered Ta/V/Fe{sub 1–x}V{sub x}/V/Fe{sub 1–x}V{sub x}/Nb/Si structures consisting of ferromagnetic and superconducting layers is studied using polarized neutron reflection and scattering. It is experimentally shown that magnetic structures with linear sizes from 5 nm to 30 μm are formed in these layered structures at low temperatures. The magnetization of the magnetic structures is suppressed by superconductivity at temperatures below the superconducting transition temperatures in the V and Nb layers. The magnetic states of the structures are shown to undergo relaxation over a wide magnetic-field range, which is caused by changes in the states of clusters, domains, and Abrikosov vortices.
Suppression of superconductivity by twin boundaries in FeSe.
Song, Can-Li; Wang, Yi-Lin; Jiang, Ye-Ping; Wang, Lili; He, Ke; Chen, Xi; Hoffman, Jennifer E; Ma, Xu-Cun; Xue, Qi-Kun
2012-09-28
Low-temperature scanning tunneling microscopy and spectroscopy are employed to investigate twin boundaries in stoichiometric FeSe films grown by molecular beam epitaxy. Twin boundaries can be unambiguously identified by imaging the 90° change in the orientation of local electronic dimers from Fe site impurities on either side. Twin boundaries run at approximately 45° to the Fe-Fe bond directions, and noticeably suppress the superconducting gap, in contrast with the recent experimental and theoretical findings in other iron pnictides. Furthermore, vortices appear to accumulate on twin boundaries, consistent with the degraded superconductivity there. The variation in superconductivity is likely caused by the increased Se height in the vicinity of twin boundaries, providing the first local evidence for the importance of this height to the mechanism of superconductivity.
Transmission Level High Temperature Superconducting Fault Current Limiter
Energy Technology Data Exchange (ETDEWEB)
Stewart, Gary [SuperPower, Inc., Schenectady, NY (United States)
2016-10-05
The primary objective of this project was to demonstrate the feasibility and reliability of utilizing high-temperature superconducting (HTS) materials in a Transmission Level Superconducting Fault Current Limiter (SFCL) application. During the project, the type of high-temperature superconducting material used evolved from 1^{st} generation (1G) BSCCO-2212 melt cast bulk high-temperature superconductors to 2^{nd} generation (2G) YBCO-based high-temperature superconducting tape. The SFCL employed SuperPower's “Matrix” technology, that offers modular features to enable scale up to transmission voltage levels. The SFCL consists of individual modules that contain elements and parallel inductors that assist in carrying the current during the fault. A number of these modules are arranged in an m x n array to form the current-limiting matrix.
Chip Multithreaded Consistency Model
Institute of Scientific and Technical Information of China (English)
Zu-Song Li; Dan-Dan Huan; Wei-Wu Hu; Zhi-Min Tang
2008-01-01
Multithreaded technique is the developing trend of high performance processor. Memory consistency model is essential to the correctness, performance and complexity of multithreaded processor. The chip multithreaded consistency model adapting to multithreaded processor is proposed in this paper. The restriction imposed on memory event ordering by chip multithreaded consistency is presented and formalized. With the idea of critical cycle built by Wei-Wu Hu, we prove that the proposed chip multithreaded consistency model satisfies the criterion of correct execution of sequential consistency model. Chip multithreaded consistency model provides a way of achieving high performance compared with sequential consistency model and ensures the compatibility of software that the execution result in multithreaded processor is the same as the execution result in uniprocessor. The implementation strategy of chip multithreaded consistency model in Godson-2 SMT processor is also proposed. Godson-2 SMT processor supports chip multithreaded consistency model correctly by exception scheme based on the sequential memory access queue of each thread.
In situ epitaxial MgB2 thin films for superconducting electronics.
Zeng, Xianghui; Pogrebnyakov, Alexej V; Kotcharov, Armen; Jones, James E; Xi, X X; Lysczek, Eric M; Redwing, Joan M; Xu, Shengyong; Li, Qi; Lettieri, James; Schlom, Darrell G; Tian, Wei; Pan, Xiaoqing; Liu, Zi-Kui
2002-09-01
The newly discovered 39-K superconductor MgB2 holds great promise for superconducting electronics. Like the conventional superconductor Nb, MgB2 is a phonon-mediated superconductor, with a relatively long coherence length. These properties make the prospect of fabricating reproducible uniform Josephson junctions, the fundamental element of superconducting circuits, much more favourable for MgB2 than for high-temperature superconductors. The higher transition temperature and larger energy gap of MgB2 promise higher operating temperatures and potentially higher speeds than Nb-based integrated circuits. However, success in MgB2 Josephson junctions has been limited because of the lack of an adequate thin-film technology. Because a superconducting integrated circuit uses a multilayer of superconducting, insulating and resistive films, an in situ process in which MgB2 is formed directly on the substrate is desirable. Here we show that this can be achieved by hybrid physical-chemical vapour deposition. The epitaxially grown MgB2 films show a high transition temperature and low resistivity, comparable to the best bulk samples, and their surfaces are smooth. This advance removes a major barrier for superconducting electronics using MgB2.
Proximity effect-induced superconducting networks
Tsuchiya, S.; Tanda, S.
2009-02-01
We have studied proximity effect-induced superconductivity of micro wire networks in a magnetic field for investigating topological effects of the superconducting order parameter through Little-Parks oscillation. We prepared a regular honeycomb network, which has Pb-Au bilayer structure, by standard electron beam lithography and measured variation of superconducting transition temperature (Tc) in a magnetic field. We also fabricated a honeycomb network made of Pb monolayer and measured it in the same way. In the experimental results of the monolayer network, 2.06 ± 0.02 Gauss of periodic variation of Tc in a magnetic field was observed at around 7.2 K. The area estimated from this period is 10.04 μm2 and correspond to unit honeycomb enclosed by center of the wire. While, in the results of the bilayer network, 2.66 ± 0.04 Gauss of periodic variation of Tc in a magnetic field was observed at around 4.3 K because of the proximity effect. The area estimated from this period is 7.78 μm2 and correspond to unit honeycomb enclosed by edge of the wire. In the latter case, the superconducting current flows through edge of the wire since the order parameter can be considered to be more developed and inhomogeneous on the wire cross-section at around 4.3 K less than 7.2 K. Consequently, a novel network of paths flowing through the superconducting current, which consists of loops enclosed by edge of the wire, can be realized by controlling the proximity effect.
Savary, F; Bednarek, M J; Dahlerup-Petersen, K; D'Angelo, G; Dib, G; Giloux, C; Grand-Clement, L; Izquierdo Bermudez, S; Moron-Ballester, R; Prin, H; Roger, V; Verweij, A; Willering, G
2014-01-01
The LHC main superconducting circuits are composed of up to 154 series-connected dipole magnets and 51 series-connected quadrupole magnets. These magnets operate at 1.9 K in superfluid helium at a nominal current of 11.85 kA. Cold diodes are connected in parallel to each magnet in order to bypass the current in case of a quench in the magnet while ramping down the current in the entire circuit. Both the diodes and the diode leads should therefore be capable of conducting this exponentially decaying current with time constants of up to 100 s. The diode stacks consist of the diodes and their heat sinks, and are essential elements of the protection system from which extremely high reliability is expected. The electrical resistance of 24 diode leads was measured in the LHC machine during operation. Unexpectedly high resistances of the order of 40 μΩ were measured at a few locations, which triggered a comprehensive review of the diode behaviour and of the associated current leads and bolted contacts. In this pap...
Energy Technology Data Exchange (ETDEWEB)
Altarawneh, Moaz M [Los Alamos National Laboratory; Mielke, Charles H [Los Alamos National Laboratory
2009-01-01
A new radio frequency oscillator circuit based on a proximity detector integrated circuit is described as an alternative for the traditional tunnel diode oscillator used for pulsed magnetic field measurements at low temperatures. The new circuit has been successfully applied to measure the superconducting upper critical field in Ba{sub 0.55}K{sub 0.45}Fe{sub 2}As{sub 2} single crystfl.ls up to 60 T. The new circuit design avoids many of the problems associated with tunnel diode circuits while keeping the advantages of contact less measurements in pulsed magnets.
Reversible Logic Circuit Synthesis
Shende, V V; Markov, I L; Prasad, A K; Hayes, John P.; Markov, Igor L.; Prasad, Aditya K.; Shende, Vivek V.
2002-01-01
Reversible, or information-lossless, circuits have applications in digital signal processing, communication, computer graphics and cryptography. They are also a fundamental requirement for quantum computation. We investigate the synthesis of reversible circuits that employ a minimum number of gates and contain no redundant input-output line-pairs (temporary storage channels). We propose new constructions for reversible circuits composed of NOT, Controlled-NOT, and TOFFOLI gates (the CNT gate library) based on permutation theory. A new algorithm is given to synthesize optimal reversible circuits using an arbitrary gate library. We also describe much faster heuristic algorithms. We also pursue applications of the proposed techniques to the synthesis of quantum circuits.
Fu, Lin; Matsuda, Koichi; Lecrevisse, Thibault; Iwasa, Yukikazu; Coombs, Tim
2016-04-01
This letter presents a flux pumping method and the results gained when it was used to magnetize a range of different YBCO coils. The pumping device consists of an iron magnetic circuit with eight copper coils which apply a traveling magnetic field to the superconductor. The copper poles are arranged vertically with an air gap length of 1 mm and the iron cores are made of laminated electric steel plates to minimize eddy-current losses. We have used this arrangement to investigate the best possible pumping result when parameters such as frequency, amplitude and waveform are varied. We have successfully pumped current into the superconducting coil up to a value of 90% of I c and achieved a resultant magnetic field of 1.5 T.
Multimode circuit quantum electrodynamics with hybrid metamaterial transmission lines.
Egger, D J; Wilhelm, F K
2013-10-18
Quantum transmission lines are central to superconducting and hybrid quantum computing. In this work we show how coupling them to a left-handed transmission line allows circuit QED to reach a new regime: multimode ultrastrong coupling. Out of the many potential applications of this novel device, we discuss the preparation of multipartite entangled states and the simulation of the spin-boson model where a quantum phase transition is reached up to finite size effects.
Dynamical Casimir effect in Circuit QED for Nonuniform Trajectories
Corona-Ugalde, Paulina; Wilson, C M; Mann, Robert B
2015-01-01
We propose a generalization of the superconducting circuit simulation of the dynamical Casimir effect where we consider relativistically moving boundary conditions following different trajectories. We study the feasibility of the setup used in the past to simulate the dynamical Casimir effect to reproduce richer relativistic trajectories differing from purely sinusoidal ones. We show how different relativistic oscillatory trajectories of the boundaries of the same period and similar shape produce a rather different spectrum of particles characteristic of their respective motions.
Note: A hand-held high-Tc superconducting quantum interference device operating without shielding.
He, D F
2011-02-01
By improving the compensation circuit, a hand-held high-Tc rf superconducting quantum interference devices (SQUID) system was developed. It could operate well when moving in unshielded environment. To check the operation, it was used to do eddy-current testing by hand moving the SQUID, and the artificial defect under 6 mm aluminum plate could be successfully detected in shielded environment.
A Study on Main Breaker for Quench Protection of HT-7U Toroidal Superconducting Tokamak
Institute of Scientific and Technical Information of China (English)
许留伟; 刘小宁
2002-01-01
This paper proposes a quench protection project of HT-7U toroidal superconducting tokamak through a forced commutation analysis of DC circuit breaker (DCCB) paralleling fuse.Based on the requirement of quench protection, main parameters are selected. Experimental results demonstrate the validity of this proposed project.
A study on Main Breaker for Quench Protection of HT—7U Toroidal Superconducting Tokammak
Institute of Scientific and Technical Information of China (English)
许留伟; 刘小宁
2002-01-01
This paper proposes a quench protection project of HT-7U toroidal superconducting tokamak through a forced commutation analysis of DC circuit breaker(DCCB) paralleling fuse.Based on the requirement of quench protection.Amin parameters are selected.Experimental results demonstrate the validity of this proposed project.
DEFF Research Database (Denmark)
Hansen, Kristoffer Arnsfelt; Podolskii, Vladimir V.
2010-01-01
We initiate a systematic study of constant depth Boolean circuits built using exact threshold gates. We consider both unweighted and weighted exact threshold gates and introduce corresponding circuit classes. We next show that this gives a hierarchy of classes that seamlessly interleave with the ......We initiate a systematic study of constant depth Boolean circuits built using exact threshold gates. We consider both unweighted and weighted exact threshold gates and introduce corresponding circuit classes. We next show that this gives a hierarchy of classes that seamlessly interleave...... with the well-studied corresponding hierarchies defined using ordinary threshold gates. A major open problem in Boolean circuit complexity is to provide an explicit super-polynomial lower bound for depth two threshold circuits. We identify the class of depth two exact threshold circuits as a natural subclass...
Space applications of superconducting microwave electronics at NASA Lewis Research Center
Leonard, R. F.; Bhasin, K. B.; Romanofsky, R. R.; Cubbage, C. D.; Chorey, C. Z.
1993-01-01
Since the discovery of high temperature superconductivity in 1987, NASA Lewis Research Center has been involved in efforts to demonstrate its advantages for applications involving microwave electronics in space, especially space communications. The program included thin film fabrication by means of laser ablation. Specific circuitry which was investigated includes microstrip ring resonators at 32 GHz, phase shifters which utilize a superconducting, optically activated switch, an 8x8 32 GHz superconducting microstrip antenna array, and an HTS-ring-resonator stabilized oscillator at 8 GHz. The latter two components are candidates for use in space experiments which are described in other papers. Experimental data on most of the circuits are presented as well as, in some cases, a comparison of their performance with an identical circuit utilizing gold or copper metallization.
Superconductivity an introduction
Kleiner, Reinhold
2016-01-01
The third edition of this proven text has been developed further in both scope and scale to reflect the potential for superconductivity in power engineering to increase efficiency in electricity transmission or engines. The landmark reference remains a comprehensive introduction to the field, covering every aspect from fundamentals to applications, and presenting the latest developments in organic superconductors, superconducting interfaces, quantum coherence, and applications in medicine and industry. Due to its precise language and numerous explanatory illustrations, it is suitable as an introductory textbook, with the level rising smoothly from chapter to chapter, such that readers can build on their newly acquired knowledge. The authors cover basic properties of superconductors and discuss stability and different material groups with reference to the latest and most promising applications, devoting the last third of the book to applications in power engineering, medicine, and low temperature physics. An e...
Superconducting Accelerator Magnets
Mess, K H; Wolff, S
1996-01-01
The main topic of the book are the superconducting dipole and quadrupole magnets needed in high-energy accelerators and storage rings for protons, antiprotons or heavy ions. The basic principles of low-temperature superconductivity are outlined with special emphasis on the effects which are relevant for accelerator magnets. Properties and fabrication methods of practical superconductors are described. Analytical methods for field calculation and multipole expansion are presented for coils without and with iron yoke. The effect of yoke saturation and geometric distortions on field quality is studied. Persistent magnetization currents in the superconductor and eddy currents the copper part of the cable are analyzed in detail and their influence on field quality and magnet performance is investigated. Superconductor stability, quench origins and propagation and magnet protection are addressed. Some important concepts of accelerator physics are introduced which are needed to appreciate the demanding requirements ...
Statistical mechanics of superconductivity
Kita, Takafumi
2015-01-01
This book provides a theoretical, step-by-step comprehensive explanation of superconductivity for undergraduate and graduate students who have completed elementary courses on thermodynamics and quantum mechanics. To this end, it adopts the unique approach of starting with the statistical mechanics of quantum ideal gases and successively adding and clarifying elements and techniques indispensible for understanding it. They include the spin-statistics theorem, second quantization, density matrices, the Bloch–De Dominicis theorem, the variational principle in statistical mechanics, attractive interaction, and bound states. Ample examples of their usage are also provided in terms of topics from advanced statistical mechanics such as two-particle correlations of quantum ideal gases, derivation of the Hartree–Fock equations, and Landau’s Fermi-liquid theory, among others. With these preliminaries, the fundamental mean-field equations of superconductivity are derived with maximum mathematical clarity based on ...
Energy Technology Data Exchange (ETDEWEB)
Srivastava, V.C.; Wollan, J.J.
1990-07-24
This patent describes a superconducting switch pack at least one switch element. The switch element including a length of superconductive wire having a switching portion and two lead portions, the switching portion being between the lead portions; means for supporting the switching portion in a plane in a common mold; hardened resin means encapsulating the switching portion in the plane in a solid body; wherein the solid body has an exterior surface which is planar and substantially parallel with and spaced apart from the plane in which the switching portion is positioned. The exterior surface being exposed to the exterior of the switch pack and the resin means filling the space between the exterior surface and the plane of the switching portion so as to provide uninterrupted thermal communication between the plane of the switching portion and the exterior of the switch pack; and a heater element in thermal contact with the switching portion.
Time ripe for superconductivity?
Directory of Open Access Journals (Sweden)
George Marsh
2002-04-01
But there is a crucial deadline and failure to meet it could send superconductivity back to the commercial shadows (at least outside the medical and scientific niches where it is a key enabler in analytical instruments, magnetic resonance imaging, and particle accelerators for another 30 years. Later this decade, the vintage infrastructure of dense copper conductors that supports power distribution in developed countries, in particular in the US, will become due for renewal. (Recent power problems in California were largely those of distribution infrastructure. At the same time, boosting capacity to serve the needs of increasingly affluent populations will pose a challenge. Superconductivity could provide the answer — if the technology matures in time and cost targets are met.
Relativistic Model for two-band Superconductivity
Ohsaku, Tadafumi
2003-01-01
To understand the superconductivity in MgB2, several two-band models of superconductivity were proposed. In this paper, by using the relativistic fermion model, we clearize the effect of the lower band in the superconductivity.
Fractional flux quanta in superconducting solenoids
Sá de Melo, C. A. R.
1996-03-01
The quantization of flux quanta in superconductors is revisited and analyzed in a new topology. The topology is that of a superconducting wire that winds N times around a fixed axis and has its end connected back to its beginning, thus producing an N-loop short circuited solenoid. In this case, fractional flux quanta can be measured through the center of the solenoid, provided that its cross-section radius is small enough. The Little-Parks experiment for an identical topology is discussed. The period of oscillation of the transition temperature of the wire is found to vary as 1/N in units of flux Φ relative to the flux quantum Φ0.
Experimental Quantum Randomness Processing Using Superconducting Qubits
Yuan, Xiao; Liu, Ke; Xu, Yuan; Wang, Weiting; Ma, Yuwei; Zhang, Fang; Yan, Zhaopeng; Vijay, R.; Sun, Luyan; Ma, Xiongfeng
2016-07-01
Coherently manipulating multipartite quantum correlations leads to remarkable advantages in quantum information processing. A fundamental question is whether such quantum advantages persist only by exploiting multipartite correlations, such as entanglement. Recently, Dale, Jennings, and Rudolph negated the question by showing that a randomness processing, quantum Bernoulli factory, using quantum coherence, is strictly more powerful than the one with classical mechanics. In this Letter, focusing on the same scenario, we propose a theoretical protocol that is classically impossible but can be implemented solely using quantum coherence without entanglement. We demonstrate the protocol by exploiting the high-fidelity quantum state preparation and measurement with a superconducting qubit in the circuit quantum electrodynamics architecture and a nearly quantum-limited parametric amplifier. Our experiment shows the advantage of using quantum coherence of a single qubit for information processing even when multipartite correlation is not present.
Experimental Quantum Randomness Processing Using Superconducting Qubits.
Yuan, Xiao; Liu, Ke; Xu, Yuan; Wang, Weiting; Ma, Yuwei; Zhang, Fang; Yan, Zhaopeng; Vijay, R; Sun, Luyan; Ma, Xiongfeng
2016-07-01
Coherently manipulating multipartite quantum correlations leads to remarkable advantages in quantum information processing. A fundamental question is whether such quantum advantages persist only by exploiting multipartite correlations, such as entanglement. Recently, Dale, Jennings, and Rudolph negated the question by showing that a randomness processing, quantum Bernoulli factory, using quantum coherence, is strictly more powerful than the one with classical mechanics. In this Letter, focusing on the same scenario, we propose a theoretical protocol that is classically impossible but can be implemented solely using quantum coherence without entanglement. We demonstrate the protocol by exploiting the high-fidelity quantum state preparation and measurement with a superconducting qubit in the circuit quantum electrodynamics architecture and a nearly quantum-limited parametric amplifier. Our experiment shows the advantage of using quantum coherence of a single qubit for information processing even when multipartite correlation is not present.
Characterization of superconducting transmission line resonators
Energy Technology Data Exchange (ETDEWEB)
Goetz, Jan; Summer, Philipp; Meier, Sebastian; Haeberlein, Max; Wulschner, Karl Friedrich; Eder, Peter; Fischer, Michael; Schwarz, Manuel; Deppe, Frank; Fedorov, Kirill; Huebl, Hans; Menzel, Edwin [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Krawczyk, Marta; Marx, Achim [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Baust, Alexander; Xie, Edwar; Zhong, Ling; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany)
2015-07-01
Superconducting transmission line resonators are widely used in circuit quantum electrodynamics experiments as quantum bus or storage devices. For these applications, long coherence times, which can be linked to the internal quality factor of the resonators, are crucial. Here, we show a systematic study of the internal quality factor of niobium thin film resonators. We analyze different cleaning methods and substrate parameters for coplanar waveguide as well as microstrip geometries. In addition, we investigate the impact of a niobium-aluminum interface which is necessary for galvanically coupled flux qubits made from aluminum. This interface can be avoided by fabricating the complete resonator-qubit structure using Al/AlO{sub x}/Al technology during fabrication.
Cryogenic system for a superconducting spectrometer
Porter, J.
1983-03-01
The Heavy Ion Spectrometer System (HISS) relies upon superconducting coils of cryostable, pool boiling design to provide a maximum particle bending field of 3 tesla. The cryogenic facility including helium refrigeration, gas management, liquid nitrogen system, and the overall control strategy are described. The system normally operates with a 4 K heat load of 150 watts; the LN2 circuits absorb an additional 4000 watts. The 80K intercept control is by an LSI 11 computer. Total available refrigeration at 4K is 400 watts using reciprocating expanders at the 20K and 4K level. The minicomputer has the capability of optimizing overall utility input cost by varying operating points. A hybrid of pneumatic, analog, and digital control is successful in providing full time unattended operation. The 7m diameter magnet/cryostat assembly is rotatable through 180 degrees to provide a variety of spectrometer orientations.
Topological confinement and superconductivity
Energy Technology Data Exchange (ETDEWEB)
Al-hassanieh, Dhaled A [Los Alamos National Laboratory; Batista, Cristian D [Los Alamos National Laboratory
2008-01-01
We derive a Kondo Lattice model with a correlated conduction band from a two-band Hubbard Hamiltonian. This mapping allows us to describe the emergence of a robust pairing mechanism in a model that only contains repulsive interactions. The mechanism is due to topological confinement and results from the interplay between antiferromagnetism and delocalization. By using Density-Matrix-Renormalization-Group (DMRG) we demonstrate that this mechanism leads to dominant superconducting correlations in aID-system.
Unconventional superconductivity near inhomogeneities
Energy Technology Data Exchange (ETDEWEB)
Poenicke, A.F.
2008-01-25
After the presentation of a quasi-classical theory the specific heat of Sr{sub 2}RuO{sub 4} is considered. Then tunneling spectroscopy on cuprate superconductors is discussed. Thereafter the subharmonic gap structure in d-wave superconductors is considered. Finally the application of the S-matrix in superconductivity is discussed with spin mixing, CrO{sub 2} as example, and an interface model. (HSI)
Helical superconducting black holes.
Donos, Aristomenis; Gauntlett, Jerome P
2012-05-25
We construct novel static, asymptotically five-dimensional anti-de Sitter black hole solutions with Bianchi type-VII(0) symmetry that are holographically dual to superconducting phases in four spacetime dimensions with a helical p-wave order. We calculate the precise temperature dependence of the pitch of the helical order. At zero temperature the black holes have a vanishing entropy and approach domain wall solutions that reveal homogenous, nonisotropic dual ground states with an emergent scaling symmetry.
Silicon superconducting quantum interference device
Energy Technology Data Exchange (ETDEWEB)
Duvauchelle, J. E.; Francheteau, A.; Marcenat, C.; Lefloch, F., E-mail: francois.lefloch@cea.fr [Université Grenoble Alpes, CEA - INAC - SPSMS, F-38000 Grenoble (France); Chiodi, F.; Débarre, D. [Université Paris-sud, CNRS - IEF, F-91405 Orsay - France (France); Hasselbach, K. [Université Grenoble Alpes, CNRS - Inst. Néel, F-38000 Grenoble (France); Kirtley, J. R. [Center for probing at nanoscale, Stanford University, Palo Alto, California 94305-4045 (United States)
2015-08-17
We have studied a Superconducting Quantum Interference Device (SQUID) made from a single layer thin film of superconducting silicon. The superconducting layer is obtained by heavily doping a silicon wafer with boron atoms using the gas immersion laser doping technique. The SQUID is composed of two nano-bridges (Dayem bridges) in a loop and shows magnetic flux modulation at low temperature and low magnetic field. The overall behavior shows very good agreement with numerical simulations based on the Ginzburg-Landau equations.
Superconducting Qubit Optical Transducer (SQOT)
2015-08-05
SECURITY CLASSIFICATION OF: The SQOT (Superconducting Qubit Optical Transducer ) project proposes to build a novel electro-optic system which can...Apr-2015 Approved for Public Release; Distribution Unlimited Final Report: "Superconducting Qubit Optical Transducer " (SQOT) The views, opinions and...journals: Number of Papers published in non peer-reviewed journals: Final Report: "Superconducting Qubit Optical Transducer " (SQOT) Report Title The
Polariton states in circuit QED for electromagnetically induced transparency
Gu, Xiu; Huai, Sai-Nan; Nori, Franco; Liu, Yu-xi
2016-06-01
Electromagnetically induced transparency (EIT) has been extensively studied in various systems. However, it is not easy to observe in superconducting quantum circuits (SQCs) because the Rabi frequency of the strong-controlling field corresponding to EIT is limited by the decay rates of the SQCs. Here, we show that EIT can be achieved by engineering decay rates in a superconducting circuit QED system through a classical driving field on the qubit. Without such a driving field, the dressed states of the system, describing a superconducting qubit coupled to a cavity field, are approximately product states of the cavity and qubit states in the large-detuning regime. However, the driving field can strongly mix these dressed states. These doubly dressed states, here called polariton states, are formed by the driving field and dressed states, and are a mixture of light and matter. The weights of the qubit and cavity field in the polariton states can now be tuned by the driving field, and thus the decay rates of the polariton states can be changed. We choose the three lowest-energy polariton states with a Λ -type transition in such a driven circuit QED system, and demonstrate how EIT and Autler-Townes splitting can be realized in this compound system. We believe that this study will be helpful for EIT experiments using SQCs.
Superconductivity on a quasiperiodic lattice: Extended-to-localized crossover of Cooper pairs
Sakai, Shiro; Takemori, Nayuta; Koga, Akihisa; Arita, Ryotaro
2017-01-01
We study a possible superconductivity in quasiperiodic systems by portraying the issue within the attractive Hubbard model on a Penrose lattice. Applying a real-space dynamical mean-field theory to the model consisting of 4181 sites, we find a superconducting phase at low temperatures. Reflecting the nonperiodicity of the Penrose lattice, the superconducting state exhibits an inhomogeneity. According to the type of the inhomogeneity, the superconducting phase is categorized into three different regions which cross over each other. Among them, the weak-coupling region exhibits spatially extended Cooper pairs, which are nevertheless distinct from the conventional pairing of two electrons with opposite momenta.
Hybrid Superconducting Neutron Detectors
Merlo, V; Cirillo, M; Lucci, M; Ottaviani, I; Scherillo, A; Celentano, G; Pietropaolo, A
2014-01-01
A new neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction 10B+n $\\rightarrow$ $\\alpha$+ 7Li , with $\\alpha$ and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current Ic, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the supercond...
Navy superconductivity efforts
Gubser, D. U.
1990-04-01
Both the new high temperature superconductors (HTS) and the low temperature superconductors (LTS) are important components of Navy's total plan to integrate superconductivity into field operational systems. Fundamental research is an important component of the total Navy program and focuses on the HTS materials. Power applications (ship propulsion, etc.) use LTS materials while space applications (MMW electronics, etc.) use HTS materials. The Space Experiment being conducted at NRL will involve space flight testing of HTS devices built by industry and will demonstrate the ability to engineer and space qualify these devices for systems use. Another important component of the Navy's effort is the development of Superconducting Quantum Interference Device (SQUID) magnetometers. This program will use LTS materials initially, but plans to implement HTS materials as soon as possible. Hybrid HTS/LTS systems are probable in many applications. A review of the status of the Navy's HTS materials research is given as well as an update on the Navy's development efforts in superconductivity, with particular emphasis on the related SDIO sponsored program on HTS applications.
US Navy superconductivity program
Gubser, Donald U.
1991-01-01
Both the new high temperature superconductors (HTS) and the low temperature superconductors (LTS) are important components of the Navy's total plan to integrate superconductivity into field operational systems. Fundamental research is an important component of the total Navy program and focuses on the HTS materials. Power applications (ship propulsion) use LTS materials while space applications (millimeter wave electronics) use HTS materials. The Space Experiment to be conducted at NRL will involve space flight testing of HTS devices built by industry and will demonstrate the ability to engineer and space qualify these devices for systems use. Another important component of the Navy's effort is the development of Superconducting Quantum Interference Device (SQUID) magnetometers. This program will use LTS materials initially, but plans to implement HTS materials as soon as possible. Hybrid HTS/LTS systems are probable in many applications. A review of the status of the Navy's HTS materials research is given as well as an update on the Navy's development efforts in superconductivity.
Navy superconductivity efforts
Gubser, D. U.
1990-01-01
Both the new high temperature superconductors (HTS) and the low temperature superconductors (LTS) are important components of Navy's total plan to integrate superconductivity into field operational systems. Fundamental research is an important component of the total Navy program and focuses on the HTS materials. Power applications (ship propulsion, etc.) use LTS materials while space applications (MMW electronics, etc.) use HTS materials. The Space Experiment being conducted at NRL will involve space flight testing of HTS devices built by industry and will demonstrate the ability to engineer and space qualify these devices for systems use. Another important component of the Navy's effort is the development of Superconducting Quantum Interference Device (SQUID) magnetometers. This program will use LTS materials initially, but plans to implement HTS materials as soon as possible. Hybrid HTS/LTS systems are probable in many applications. A review of the status of the Navy's HTS materials research is given as well as an update on the Navy's development efforts in superconductivity, with particular emphasis on the related SDIO sponsored program on HTS applications.
Superconductivity in CVD diamond films.
Takano, Yoshihiko
2009-06-24
A beautiful jewel of diamond is insulator. However, boron doping can induce semiconductive, metallic and superconducting properties in diamond. When the boron concentration is tuned over 3 × 10(20) cm(-3), diamonds enter the metallic region and show superconductivity at low temperatures. The metal-insulator transition and superconductivity are analyzed using ARPES, XAS, NMR, IXS, transport and magnetic measurements and so on. This review elucidates the physical properties and mechanism of diamond superconductor as a special superconductivity that occurs in semiconductors.
Unconventional superconductivity in honeycomb lattice
Directory of Open Access Journals (Sweden)
P Sahebsara
2013-03-01
Full Text Available The possibility of symmetrical s-wave superconductivity in the honeycomb lattice is studied within a strongly correlated regime, using the Hubbard model. The superconducting order parameter is defined by introducing the Green function, which is obtained by calculating the density of the electrons . In this study showed that the superconducting order parameter appears in doping interval between 0 and 0.5, and x=0.25 is the optimum doping for the s-wave superconductivity in honeycomb lattice.
Superconductivity in graphite intercalation compounds
Energy Technology Data Exchange (ETDEWEB)
Smith, Robert P. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Weller, Thomas E.; Howard, Christopher A. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Dean, Mark P.M. [Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY 11973 (United States); Rahnejat, Kaveh C. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Saxena, Siddharth S. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Ellerby, Mark, E-mail: mark.ellerby@ucl.ac.uk [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom)
2015-07-15
Highlights: • Historical background of graphite intercalates. • Superconductivity in graphite intercalates and its place in the field of superconductivity. • Recent developments. • Relevant modeling of superconductivity in graphite intercalates. • Interpretations that pertain and questions that remain. - Abstract: The field of superconductivity in the class of materials known as graphite intercalation compounds has a history dating back to the 1960s (Dresselhaus and Dresselhaus, 1981; Enoki et al., 2003). This paper recontextualizes the field in light of the discovery of superconductivity in CaC{sub 6} and YbC{sub 6} in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how these relate to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity, and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.
Korea's developmental program for superconductivity
Hong, Gye-Won; Won, Dong-Yeon; Kuk, Il-Hyun; Park, Jong-Chul
1995-01-01
Superconductivity research in Korea was firstly carried out in the late 70's by a research group in Seoul National University (SNU), who fabricated a small scale superconducting magnetic energy storage system under the financial support from Korea Electric Power Company (KEPCO). But a few researchers were involved in superconductivity research until the oxide high Tc superconductor was discovered by Bednorz and Mueller. After the discovery of YBaCuO superconductor operating above the boiling point of liquid nitrogen (77 K)(exp 2), Korean Ministry of Science and Technology (MOST) sponsored a special fund for the high Tc superconductivity research to universities and national research institutes by recognizing its importance. Scientists engaged in this project organized 'High Temperature Superconductivity Research Association (HITSRA)' for effective conducting of research. Its major functions are to coordinate research activities on high Tc superconductivity and organize the workshop for active exchange of information. During last seven years the major superconductivity research has been carried out through the coordination of HITSRA. The major parts of the Korea's superconductivity research program were related to high temperature superconductor and only a few groups were carrying out research on conventional superconductor technology, and Korea Atomic Energy Research Institute (KAERI) and Korea Electrotechnology Research Institute (KERI) have led this research. In this talk, the current status and future plans of superconductivity research in Korea will be reviewed based on the results presented in interim meeting of HITSRA, April 1-2, 1994. Taejeon, as well as the research activity of KAERI.
Study of some superconducting and magnetic materials on high T sub c oxide superconductors
Wu, M. K.
1987-01-01
On the basis of existing data it appears that the high-temperature superconductivity above 77 K reported here, occurs only in compound systems consisting of a phase other than the K2NiF4 phase. A narrow superconducting transition was obtained with T sub c0 = 98 K and T sub c1 = 94 K in Y-Ba-Cu-O (YBCO). Preliminary results indicate that YBCO is rather different from the layered LaBCO, LaSCO, and LaCCO. While electron-photon interaction cannot be absent from this compound system, nonconventional enhanced superconducting interactions due to interfaces, Resonating Valence Bond (RVB) states, or even a superconducting state beyond the BCS framework, may be required to account for the high T sub c in YBCO. It is believed that study of the possible subtle correlation between magnetism and superconductivity will definitely provide important insight into the superconducting mechanism in YBCO and other oxides.
Terahertz Saturable Absorption in Superconducting Metamaterials
Keiser, George R; Zhao, Xiaoguang; Zhang, Xin; Averitt, Richard D
2016-01-01
We present a superconducting metamaterial saturable absorber at terahertz frequencies. The absorber consists of an array of split ring resonators (SRRs) etched from a 100nm YBaCu3O7 (YBCO) film. A polyimide spacer layer and gold ground plane are deposited above the SRRs, creating a reflecting perfect absorber. Increasing either the temperature or incident electric field (E) decreases the superconducting condensate density and corresponding kinetic inductance of the SRRs. This alters the impedance matching in the metamaterial, reducing the peak absorption. At low electric fields, the absorption was optimized near 80% at T=10K and decreased to 20% at T=70K. For E=40kV/cm and T=10K, the peak absorption was 70% decreasing to 40% at 200kV/cm, corresponding to a modulation of 43%.
New 50 Hz Superconducting Power Supply for a 2 kA DC Magnet
Chevtchenko, O.A.; ten Kate, Herman H.J.; Krooshoop, Hendrikus J.G.
1994-01-01
A new superconducting power supply able to operate directly from the mains voltage at a frequency of 50-60 Hz is under development in our institutes. It will be applied to power a separator magnet for iron ore recycling. The supply consists of a full wave superconducting converter, a `cold'
Superconducting, magnetic, and charge correlations in the doped two-chain Hubbard model
Asai, Y
1995-01-01
Superconducting, magnetic, and charge correlation functions and dynamic spin correlation functions of the doped two-chain Hubbard model is studied with the projector Quantum Monte carlo method and Lanczos recursion method. Of the three correlation functions, the interchain singlet superconducting correlation function is the most long range. Our data is not consistent with the Luther-Emery picture.
Experimental system design for the integration of trapped-ion and superconducting qubit systems
De Motte, D.; Grounds, A. R.; Rehák, M.; Rodriguez Blanco, A.; Lekitsch, B.; Giri, G. S.; Neilinger, P.; Oelsner, G.; Il'ichev, E.; Grajcar, M.; Hensinger, W. K.
2016-12-01
We present a design for the experimental integration of ion trapping and superconducting qubit systems as a step towards the realization of a quantum hybrid system. The scheme addresses two key difficulties in realizing such a system: a combined microfabricated ion trap and superconducting qubit architecture, and the experimental infrastructure to facilitate both technologies. Developing upon work by Kielpinski et al. (Phys Rev Lett 108(13):130504, 2012. doi: 10.1103/PhysRevLett.108.130504), we describe the design, simulation and fabrication process for a microfabricated ion trap capable of coupling an ion to a superconducting microwave LC circuit with a coupling strength in the tens of kHz. We also describe existing difficulties in combining the experimental infrastructure of an ion trapping set-up into a dilution refrigerator with superconducting qubits and present solutions that can be immediately implemented using current technology.
High- T_c superconducting thin film/GaAs MESFET hybrid microwave oscillator
Institute of Scientific and Technical Information of China (English)
金飚兵; 康琳; 伍瑞新; 张健羽; 程其恒; 吴培亨; 经东; 焦刚; 邵凯; 蒋明明; 张家宗; 孙敏松; 王蕴仪; 周岳亮; 吕惠宾; 许世发; 何萌; 王小平; 杨秉川; 卢剑; 张其邵
1997-01-01
A high- Tc superconducting (HTSC) thin film/GaAs MESFET hybrid microwave oscillator operated at 10 6 GHz has been designed, fabricated and characterized. Microstrip line structures were used throughout the circuit with superconducting thin film YBaiCuiO7 8(YBCO) as the conductor material. The YBCO thin films were deposited on 15 mm×10 mm×0. 5 mm LaAlO3 substrates. The oscillator was common-source, series feedback type using a GaAs-MESFET (NE72084) as the active device and a superconducting microstrip resonator as the frequency stabilizing element. By improving the unloaded quality factor Q0 of the superconducting microstrip resonator and adjusting the coupling coefficient between the resonator and the gate of the MESFET, the phase noise of the oscillator was decreased At 77 K, the phase noise of the oscillator at 10 kHz offset from carrier was - 87 dBc/Hz.
Modeling of unusual nonlinear behaviors in superconducting microstrip transmission lines
Energy Technology Data Exchange (ETDEWEB)
Javadzadeh, S. Mohammad Hassan, E-mail: smh_javadzadeh@ee.sharif.edu [School of Electrical Engineering, Sharif University of Technology, P.O. Box 11365-9363, Tehran (Iran, Islamic Republic of); Farzaneh, Forouhar; Fardmanesh, Mehdi [School of Electrical Engineering, Sharif University of Technology, P.O. Box 11365-9363, Tehran (Iran, Islamic Republic of)
2013-03-15
Highlights: ► Avoiding of considering just quadratic or modulus nonlinearity. ► Proposing a nonlinear model to predict unusual nonlinear behaviors at low temperatures. ► Description of temperature dependency of nonlinear behaviors in superconducting lines. ► Analytical formulation for each parameter in our proposed model. ► Obtaining very good results which shows this model can predict unusual nonlinear behavior. -- Abstract: There are unusual nonlinear behaviors in superconducting materials, especially at low temperatures. This paper describes the procedure to reliably predict this nonlinearity in superconducting microstrip transmission lines (SMTLs). An accurate nonlinear distributed circuit model, based on simultaneously considering of both quadratic and modulus nonlinearity dependences, is proposed. All parameters of the equivalent circuit can be calculated analytically using proposed closed-form expressions. A numerical method based on Harmonic Balance approach is used to predict nonlinear phenomena like intermodulation distortions and third harmonic generations. Nonlinear analyses of the SMTLs at the different temperatures and the input powers have been presented. This proposed model can describe the unusual behaviors of the nonlinearity at low temperatures, which are frequently observed in the SMTLs.
Automatic Test Pattern Generation for Digital Circuits
Directory of Open Access Journals (Sweden)
S. Hemalatha
2014-04-01
Full Text Available Digital circuits complexity and density are increasing and at the same time it should have more quality and reliability. It leads with high test costs and makes the validation more complex. The main aim is to develop a complete behavioral fault simulation and automatic test pattern generation (ATPG system for digital circuits modeled in verilog and VHDL. An integrated Automatic Test Generation (ATG and Automatic Test Executing/Equipment (ATE system for complex boards is developed here. An approach to use memristors (resistors with memory in programmable analog circuits. The Main idea consists in a circuit design in which low voltages are applied to memristors during their operation as analog circuit elements and high voltages are used to program the memristor’s states. This way, as it was demonstrated in recent experiments, the state of memristors does not essentially change during analog mode operation. As an example of our approach, we have built several programmable analog circuits demonstrating memristor -based programming of threshold, gain and frequency. In these circuits the role of memristor is played by a memristor emulator developed by us. A multiplexer is developed to generate a class of minimum transition sequences. The entire hardware is realized as digital logical circuits and the test results are simulated in Model sim software. The results of this research show that behavioral fault simulation will remain as a highly attractive alternative for the future generation of VLSI and system-on-chips (SoC.
Consistent model driven architecture
Niepostyn, Stanisław J.
2015-09-01
The goal of the MDA is to produce software systems from abstract models in a way where human interaction is restricted to a minimum. These abstract models are based on the UML language. However, the semantics of UML models is defined in a natural language. Subsequently the verification of consistency of these diagrams is needed in order to identify errors in requirements at the early stage of the development process. The verification of consistency is difficult due to a semi-formal nature of UML diagrams. We propose automatic verification of consistency of the series of UML diagrams originating from abstract models implemented with our consistency rules. This Consistent Model Driven Architecture approach enables us to generate automatically complete workflow applications from consistent and complete models developed from abstract models (e.g. Business Context Diagram). Therefore, our method can be used to check practicability (feasibility) of software architecture models.
Optimization of superconducting tiling pattern for superconducting bearings
Energy Technology Data Exchange (ETDEWEB)
Hull, John R. (Hinsdale, IL)
1996-01-01
An apparatus and method for reducing magnetic field inhomogeneities which produce rotational loss mechanisms in high temperature superconducting magnetic bearings. Magnetic field inhomogeneities are reduced by dividing high temperature superconducting structures into smaller structures, and arranging the smaller structures into tiers which stagger the magnetic field maximum locations of the smaller structures.
High field rf superconductivity: to pulse or not to pulse
Energy Technology Data Exchange (ETDEWEB)
Campisi, I.E.
1984-10-01
Experimental data on the behavior of superconductors under the application of rf fields of amplitude comparable to their critical fields are sporadic and not always consistent. In many cases the field level at which breakdown in superconducting rf cavities should be expected has not been clearly established. Tests conducted with very short (approx. 1 ..mu..s) rf pulses indicate that in this mode of operation fields close to the critical values can be consistently reached in superconducting cavities without breakdown. The advantages and disadvantages of the pulsed method are discussed compared to those of the more standard continuous wave (cw) systems. 60 references.
A guide to printed circuit board design
Hamilton, Charles
1984-01-01
A Guide to Printed Circuit Board Design discusses the basic design principles of printed circuit board (PCB). The book consists of nine chapters; each chapter provides both text discussion and illustration relevant to the topic being discussed. Chapter 1 talks about understanding the circuit diagram, and Chapter 2 covers how to compile component information file. Chapter 3 deals with the design layout, while Chapter 4 talks about preparing the master artworks. The book also covers generating computer aided design (CAD) master patterns, and then discusses how to prepare the production drawing a
Maximum Temperature Detection System for Integrated Circuits
Frankiewicz, Maciej; Kos, Andrzej
2015-03-01
The paper describes structure and measurement results of the system detecting present maximum temperature on the surface of an integrated circuit. The system consists of the set of proportional to absolute temperature sensors, temperature processing path and a digital part designed in VHDL. Analogue parts of the circuit where designed with full-custom technique. The system is a part of temperature-controlled oscillator circuit - a power management system based on dynamic frequency scaling method. The oscillator cooperates with microprocessor dedicated for thermal experiments. The whole system is implemented in UMC CMOS 0.18 μm (1.8 V) technology.
A superconducting transformer system for high current cable testing.
Godeke, A; Dietderich, D R; Joseph, J M; Lizarazo, J; Prestemon, S O; Miller, G; Weijers, H W
2010-03-01
This article describes the development of a direct-current (dc) superconducting transformer system for the high current test of superconducting cables. The transformer consists of a core-free 10,464 turn primary solenoid which is enclosed by a 6.5 turn secondary. The transformer is designed to deliver a 50 kA dc secondary current at a dc primary current of about 50 A. The secondary current is measured inductively using two toroidal-wound Rogowski coils. The Rogowski coil signal is digitally integrated, resulting in a voltage signal that is proportional to the secondary current. This voltage signal is used to control the secondary current using a feedback loop which automatically compensates for resistive losses in the splices to the superconducting cable samples that are connected to the secondary. The system has been commissioned up to 28 kA secondary current. The reproducibility in the secondary current measurement is better than 0.05% for the relevant current range up to 25 kA. The drift in the secondary current, which results from drift in the digital integrator, is estimated to be below 0.5 A/min. The system's performance is further demonstrated through a voltage-current measurement on a superconducting cable sample at 11 T background magnetic field. The superconducting transformer system enables fast, high resolution, economic, and safe tests of the critical current of superconducting cable samples.
Analysis of Mechanical Stresses/Strains in Superconducting Wire
Barry, Matthew; Chen, Jingping; Zhai, Yuhu
2016-10-01
The optimization of superconducting magnet performance and development of high-field superconducting magnets will greatly impact the next generation of fusion devices. A successful magnet development, however, relies deeply on the understanding of superconducting materials. Among the numerous factors that impact a superconductor's performance, mechanical stress is the most important because of the extreme operation temperature and large electromagnetic forces. In this study, mechanical theory is used to calculate the stresses/strains in typical superconducting strands, which consist of a stabilizer, a barrier, a matrix and superconducting filaments. Both thermal loads and mechanical loads are included in the analysis to simulate operation conditions. Because this model simulates the typical architecture of major superconducting materials, such as Nb3Sn, MgB2, Bi-2212 etc., it provides a good overall picture for us to understand the behavior of these superconductors in terms of thermal and mechanical loads. This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internship (SULI) program.
No consistent bimetric gravity?
Deser, S; Waldron, A
2013-01-01
We discuss the prospects for a consistent, nonlinear, partially massless (PM), gauge symmetry of bimetric gravity (BMG). Just as for single metric massive gravity, ultimate consistency of both BMG and the putative PM BMG theory relies crucially on this gauge symmetry. We argue, however, that it does not exist.
Regenerative feedback resonant circuit
Jones, A. Mark; Kelly, James F.; McCloy, John S.; McMakin, Douglas L.
2014-09-02
A regenerative feedback resonant circuit for measuring a transient response in a loop is disclosed. The circuit includes an amplifier for generating a signal in the loop. The circuit further includes a resonator having a resonant cavity and a material located within the cavity. The signal sent into the resonator produces a resonant frequency. A variation of the resonant frequency due to perturbations in electromagnetic properties of the material is measured.
Dobkin, Bob
2012-01-01
Analog circuit and system design today is more essential than ever before. With the growth of digital systems, wireless communications, complex industrial and automotive systems, designers are being challenged to develop sophisticated analog solutions. This comprehensive source book of circuit design solutions aids engineers with elegant and practical design techniques that focus on common analog challenges. The book's in-depth application examples provide insight into circuit design and application solutions that you can apply in today's demanding designs. <
Parallelizing quantum circuit synthesis
Di Matteo, Olivia; Mosca, Michele
2016-01-01
Quantum circuit synthesis is the process in which an arbitrary unitary operation is decomposed into a sequence of gates from a universal set, typically one which a quantum computer can implement both efficiently and fault-tolerantly. As physical implementations of quantum computers improve, the need is growing for tools which can effectively synthesize components of the circuits and algorithms they will run. Existing algorithms for exact, multi-qubit circuit synthesis scale exponentially in t...
Hickman, Ian
2013-01-01
Analog Circuits Cookbook presents articles about advanced circuit techniques, components and concepts, useful IC for analog signal processing in the audio range, direct digital synthesis, and ingenious video op-amp. The book also includes articles about amplitude measurements on RF signals, linear optical imager, power supplies and devices, and RF circuits and techniques. Professionals and students of electrical engineering will find the book informative and useful.
Okazaki, K; Ito, Y; Ota, Y; Kotani, Y; Shimojima, T; Kiss, T; Watanabe, S; Chen, C-T; Niitaka, S; Hanaguri, T; Takagi, H; Chainani, A; Shin, S
2014-02-28
Conventional superconductivity follows Bardeen-Cooper-Schrieffer(BCS) theory of electrons-pairing in momentum-space, while superfluidity is the Bose-Einstein condensation(BEC) of atoms paired in real-space. These properties of solid metals and ultra-cold gases, respectively, are connected by the BCS-BEC crossover. Here we investigate the band dispersions in FeTe(0.6)Se(0.4)(Tc = 14.5 K ~ 1.2 meV) in an accessible range below and above the Fermi level(EF) using ultra-high resolution laser angle-resolved photoemission spectroscopy. We uncover an electron band lying just 0.7 meV (~8 K) above EF at the Γ-point, which shows a sharp superconducting coherence peak with gap formation below Tc. The estimated superconducting gap Δ and Fermi energy [Symbol: see text]F indicate composite superconductivity in an iron-based superconductor, consisting of strong-coupling BEC in the electron band and weak-coupling BCS-like superconductivity in the hole band. The study identifies the possible route to BCS-BEC superconductivity.
Institute of Scientific and Technical Information of China (English)
Zhang Xu; Wu Zhi-Zhen; Zhou Tie-Ge; He Ming; Zhao Xin-Jie; Yan Shao-Lin; Fang Lan
2011-01-01
The critical current density Jc is one of the most important parameters of high temperature superconducting films in superconducting applications, such as superconducting filter and superconducting Josephson devices. This paper presents a new model to describe inhomogeneous current distribution throughout the thickness of superconducting films applying magnetic field by solving the differential equation derived from Maxwell equation and the second London equation. Using this model, it accurately calculates the inductive third-harmonic voltage when the film applying magnetic field with the inductive measurement for Jc. The theoretic curve is consistent with the experimental results about measuring superconducting film, especially when the third-harmonic voltage just exceeds zero. The Jc value of superconducting films determined by the inductive method is also compared with results measured by four-probe transport method. The agreements between inductive method and transport method are very good.
Electronic devices and circuits
Pridham, Gordon John
1968-01-01
Electronic Devices and Circuits, Volume 1 deals with the design and applications of electronic devices and circuits such as passive components, diodes, triodes and transistors, rectification and power supplies, amplifying circuits, electronic instruments, and oscillators. These topics are supported with introductory network theory and physics. This volume is comprised of nine chapters and begins by explaining the operation of resistive, inductive, and capacitive elements in direct and alternating current circuits. The theory for some of the expressions quoted in later chapters is presented. Th