WorldWideScience

Sample records for superconducting accelerator facility

  1. Status and Plans for a Superconducting RF Accelerator Test Facility at Fermilab

    International Nuclear Information System (INIS)

    Andrews, R.; Baffes, C.M.; Carlson, K.; Chase, B.; Church, M.D.; Harms, E.R.; Klebaner, A.L.; Leibfritz, J.R.; Martinez, A.; Nagaitsev, S.; Nobrega, L.E.

    2012-01-01

    The Advanced Superconducting Test Accelerator (ASTA) is being constructed at Fermilab. The existing New Muon Lab (NML) building is being converted for this facility. The accelerator will consist of an electron gun, injector, beam acceleration section consisting of 3 TTF-type or ILC-type cryomodules, multiple downstream beam lines for testing diagnostics and conducting various beam tests, and a high power beam dump. When completed, it is envisioned that this facility will initially be capable of generating a 750 MeV electron beam with ILC beam intensity. An expansion of this facility was recently completed that will provide the capability to upgrade the accelerator to a total beam energy of 1.5 GeV. Two new buildings were also constructed adjacent to the ASTA facility to house a new cryogenic plant and multiple superconducting RF (SRF) cryomodule test stands. In addition to testing accelerator components, this facility will be used to test RF power systems, instrumentation, and control systems for future SRF accelerators such as the ILC and Project-X. This paper describes the current status and overall plans for this facility.

  2. Proposal for an Accelerator R&D User Facility at Fermilab's Advanced Superconducting Test Accelerator (ASTA)

    Energy Technology Data Exchange (ETDEWEB)

    Church, M. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Edwards, H. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Harms, E. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Henderson, S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Holmes, S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Lumpkin, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Kephart, R. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Levedev, V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Leibfritz, J. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Nagaitsev, S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Piot, P. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Northern Illinois Univ., DeKalb, IL (United States); Prokop, C. [Northern Illinois Univ., DeKalb, IL (United States); Shiltsev, V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Sun, Y. E. [Argonne National Lab. (ANL), Argonne, IL (United States); Valishev, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2013-10-01

    Fermilab is the nation’s particle physics laboratory, supported by the DOE Office of High Energy Physics (OHEP). Fermilab is a world leader in accelerators, with a demonstrated track-record— spanning four decades—of excellence in accelerator science and technology. We describe the significant opportunity to complete, in a highly leveraged manner, a unique accelerator research facility that supports the broad strategic goals in accelerator science and technology within the OHEP. While the US accelerator-based HEP program is oriented toward the Intensity Frontier, which requires modern superconducting linear accelerators and advanced highintensity storage rings, there are no accelerator test facilities that support the accelerator science of the Intensity Frontier. Further, nearly all proposed future accelerators for Discovery Science will rely on superconducting radiofrequency (SRF) acceleration, yet there are no dedicated test facilities to study SRF capabilities for beam acceleration and manipulation in prototypic conditions. Finally, there are a wide range of experiments and research programs beyond particle physics that require the unique beam parameters that will only be available at Fermilab’s Advanced Superconducting Test Accelerator (ASTA). To address these needs we submit this proposal for an Accelerator R&D User Facility at ASTA. The ASTA program is based on the capability provided by an SRF linac (which provides electron beams from 50 MeV to nearly 1 GeV) and a small storage ring (with the ability to store either electrons or protons) to enable a broad range of beam-based experiments to study fundamental limitations to beam intensity and to develop transformative approaches to particle-beam generation, acceleration and manipulation which cannot be done elsewhere. It will also establish a unique resource for R&D towards Energy Frontier facilities and a test-bed for SRF accelerators and high brightness beam applications in support of the OHEP

  3. Advanced Superconducting Test Accelerator (ASTA)

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Superconducting Test Accelerator (ASTA) facility will be based on upgrades to the existing NML pulsed SRF facility. ASTA is envisioned to contain 3 to 6...

  4. Superconducting linear accelerator system for NSC

    Indian Academy of Sciences (India)

    59, No. 5. — journal of. November 2002 physics pp. 849–858. Superconducting linear accelerator system for NSC ... cryogenics facility, RF electronics development, facilities for fabricating niobium resonators indige- ... Prototype resonator was.

  5. Superconducting accelerator technology

    International Nuclear Information System (INIS)

    Grunder, H.A.; Hartline, B.K.

    1986-01-01

    Modern and future accelerators for high energy and nuclear physics rely increasingly on superconducting components to achieve the required magnetic fields and accelerating fields. This paper presents a practical overview of the phenomenon of superconductivity, and describes the design issues and solutions associated with superconducting magnets and superconducting rf acceleration structures. Further development and application of superconducting components promises increased accelerator performance at reduced electric power cost

  6. Nuclear physics accelerator facilities

    International Nuclear Information System (INIS)

    1988-12-01

    This paper describes many of the nuclear physics heavy-ion accelerator facilities in the US and the research programs being conducted. The accelerators described are: Argonne National Laboratory--ATLAS; Brookhaven National Laboratory--Tandem/AGS Heavy Ion Facility; Brookhaven National Laboratory--Relativistic Heavy Ion Collider (RHIC) (Proposed); Continuous Electron Beam Accelerator Facility; Lawrence Berkeley Laboratory--Bevalac; Lawrence Berkeley Laboratory--88-Inch Cyclotron; Los Alamos National Laboratory--Clinton P. Anderson Meson Physics Facility (LAMPF); Massachusetts Institute of Technology--Bates Linear Accelerator Center; Oak Ridge National Laboratory--Holifield Heavy Ion Research Facility; Oak Ridge National Laboratory--Oak Ridge Electron Linear Accelerator; Stanford Linear Accelerator Center--Nuclear Physics Injector; Texas AandM University--Texas AandM Cyclotron; Triangle Universities Nuclear Laboratory (TUNL); University of Washington--Tandem/Superconducting Booster; and Yale University--Tandem Van de Graaff

  7. The elbe accelerator facility starts operation with the superconducting rf gun

    CERN Document Server

    Xiang, R; Buettig, H; Janssen, D; Justus, M; Lehnert, U; Michel, P; Murcek, P; Schneider, C; Schurig, R; Staufenbiel, F; Teichert, J; Kamps, T; Rudolph, J; Schenk, M; Klemz, G; Will, I

    2010-01-01

    As the first superconducting rf photo-injector (SRF gun) in practice, the FZD 3+1/2 cell SRF gun is successfully connected to the superconducting linac ELBE. This setting will improve the beam quality for ELBE users. It is the first example for an accelerator facility fully based on superconducting RF technology. For high average power FEL and ERL sources, the combination of SRF linac and SRF gun provides a new chance to produce beams of high average current and low emittance with relative low power consumption. The main parameters achieved from the present SRF gun are the final electron energy of 3 MeV, 16 μA average current, and rms transverse normalized emittances of 3 mm mrad at 77 pC bunch charge. A modified 3+1/2 cell niobium cavity has been fabricated and tested, which will increase the rf gradient in the gun and thus better the beam parameters further. In this paper the status of the integration of the SRF gun with the ELBE linac will be presented, and the latest results of the beam experiments will ...

  8. Accelerator development for a radioactive beam facility based on ATLAS

    International Nuclear Information System (INIS)

    Shepard, K. W.

    1998-01-01

    The existing superconducting linac ATLAS is in many respects an ideal secondary beam accelerator for an ISOL (Isotope separator on-line) type radioactive beam facility. Such a facility would require the addition of two major accelerator elements: a low charge state injector for the existing heavy ion linac, and a primary beam accelerator providing 220 MV of acceleration for protons and light ions. Development work for both of these elements, including the option of superconducting cavities for the primary beam accelerator is discussed

  9. Accelerator development for a radioactive beam facility based on ATLAS.

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K. W.

    1998-01-08

    The existing superconducting linac ATLAS is in many respects an ideal secondary beam accelerator for an ISOL (Isotope separator on-line) type radioactive beam facility. Such a facility would require the addition of two major accelerator elements: a low charge state injector for the existing heavy ion linac, and a primary beam accelerator providing 220 MV of acceleration for protons and light ions. Development work for both of these elements, including the option of superconducting cavities for the primary beam accelerator is discussed.

  10. Superconducting magnet package for the TESLA test facility

    International Nuclear Information System (INIS)

    Koski, A.; Bandelmann, R.; Wolff, S.

    1996-01-01

    The magnetic lattice of the TeV electron superconducting linear accelerator (TESLA) will consist of superconducting quadrupoles for beam focusing and superconducting correction dipoles for beam steering, incorporated in the cryostats containing the superconducting cavities. This report describes the design of these magnets, presenting details of the magnetic as well as the mechanical design. The measured characteristics of the TESLA Test Facility (TTF) quadrupoles and dipoles are compared to the results obtained from numerical computations

  11. Analysis of Higher Order Modes in Large Superconducting Radio Frequency Accelerating Structures

    CERN Document Server

    Galek, Tomasz; Brackebusch, Korinna; Van Rienen, Ursula

    2015-01-01

    Superconducting radio frequency cavities used for accelerating charged particle beams are commonly used in accelerator facilities around the world. The design and optimization of modern superconducting RF cavities requires intensive numerical simulations. Vast number of operational parameters must be calculated to ensure appropriate functioning of the accelerating structures. In this study, we primarily focus on estimation and behavior of higher order modes in superconducting RF cavities connected in chains. To calculate large RF models the state-space concatenation scheme, an efficient hybrid method, is employed.

  12. Accelerator technical design report for high-intensity proton accelerator facility project, J-PARC

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-03-01

    This report presents the detail of the technical design of the accelerators for the High-Intensity Proton Accelerator Facility Project, J-PARC. The accelerator complex comprises a 400-MeV room-temperature linac (600-MeV superconducting linac), 3-GeV rapid-cycling synchrotron (RCS), and a 50-GeV synchrotron (MR). The 400-MeV beam is injected to the RCS, being accelerated to 3 GEV. The 1-MW beam thus produced is guided to the Materials Life Science Experimental Facility, with both the pulsed spallation neutron source and muon source. A part of the beam is transported to the MR, which provides the 0.75-MW beam to either the Nuclear and Fundamental Particle Experimental Facility or the Neutrino Production Target. On the other hand, the beam accelerated to 600 MeV by the superconducting linac is used for the Nuclear Waster Transmutation Experiment. In this way, this facility is unique, being multipurpose one, including many new inventions and Research and Development Results. This report is based upon the accomplishments made by the Accelerator Group and others of the Project Team, which is organized on the basis of the Agreement between JAERI and KEK on the Construction and Research and Development of the High-Intensity Proton Accelerator Facility. (author)

  13. A facility to test short superconducting accelerator magnets at Fermilab

    International Nuclear Information System (INIS)

    Lamm, M.J.; Hess, C.; Lewis, D.; Jaffery, T.; Kinney, W.; Ozelis, J.P.; Strait, J.; Butteris, J.; McInturff, A.D.; Coulter, K.J.

    1992-10-01

    During the past four years the Superconducting Magnet R ampersand D facility at Fermilab (Lab 2) has successfully tested superconducting dipole, quadrupole, and correction coil magnets less than 2 meters in length for the SSC project and the Tevatron D0/B0 Low-β Insertion. During this time several improvements have been made to the facility that have greatly enhanced its magnet testing capabilities. Among the upgrades have been a new rotating coil and data acquisition system for measuring magnetic fields, a controlled flow liquid helium transfer line using an electronically actuated cryo valve, and stand-alone systems for measuring AC loss and training low current Tevatron correction coil packages. A description of the Lab 2 facilities is presented

  14. Low-velocity superconducting accelerating structures

    International Nuclear Information System (INIS)

    Delayen, J.R.

    1990-01-01

    The present paper reviews the status of RF superconductivity as applied to low-velocity accelerating properties. Heavy-ion accelerators must accelerate efficiently particles which travel at a velocity much smaller than that of light particles, whose velocity changes along accelerator, and also different particles which have different velocity profiles. Heavy-ion superconducting accelerators operate at frequencies which are lower than high-energy superconducting accelerators. The present paper first discusses the basic features of heavy-ion superconducting structures and linacs. Design choices are then addressed focusing on structure geometry, materials, frequency, phase control, and focusing. The report also gives an outline of the status of superconducting booster projects currently under way at the Argonne National Laboratory, SUNY Stony Brook, Weizmann Institute, University of Washington, Florida State, Saclay, Kansas State, Daresbury, Japanese Atomic Energy Research Institute, Legnaro, Bombay, Sao Paulo, ANU (Canberra), and Munich. Recent developments and future prospects are also described. (N.K.) 68 refs

  15. Indian participation in FAIR accelerator facility

    International Nuclear Information System (INIS)

    Sur, Amitava

    2015-01-01

    India is a founder member of the FAIR-GmbH, the upcoming International Accelerator Facility at Darmstadt, Germany. Indian participation at FAIR is being funded jointly by the Department of Science and Technology (DST) and the Department of Atomic Energy (DAE). Indo- FAIR Coordination Centre at Bose Institute (BI-IFCC) is coordinating the Indian efforts of both in-kind contribution as well as experimental programmes at FAIR. FAIR aims for beams of stable and unstable nuclei as well as antiprotons in a wide range of intensities and energies. A superconducting double-synchrotron SIS100/300 with a circumference of 1,100 meters and with magnetic rigidities of 100 and 300 Tm, respectively, is at the heart of the FAIR accelerator facility. The existing GSI accelerators UNILAC and SIS18 will serve as an injector. Adjacent to the large double- synchrotron is a complex system of storage- cooler rings and experiment stations, including a superconducting nuclear fragment separator (Super-FRS) and an antiproton production target. FAIR will supply rare isotope beams (RIBs) and antiproton beams. In FAIR accelerator facility up to four research programs can be run in a parallel mode. The multidisciplinary research program covers the fields of QCD studies with cooled beams of antiprotons, nucleus nucleus collisions at highest baryon density, nuclear structure and nuclear astrophysics investigations with nuclei far off stability, high density plasma physics, atomic and material science studies, radio-biological and other application-oriented studies will contribute in providing in-kind items both for the accelerator and the experiments. As per current plans Indian in kind contributions include: Power Converters, Superconducting Magnets, Beam Stopper, Vacuum Chamber. A short sample from an Indian Industry has been tested successfully at FAIR. Indian participation in building the accelerator components for FAIR is presented

  16. Accelerator based research facility as an inter university centre

    International Nuclear Information System (INIS)

    Mehta, G.K.

    1995-01-01

    15 UD pelletron has been operating as a user facility from July 1991. It is being utilised by a large number of universities and other institutions for research in basic Nuclear Physics, Materials Science, Atomic Physics, Radiobiology and Radiation Chemistry. There is an on-going programme for augmenting the accelerator facilities by injecting Pelletron beams into superconducting linear accelerator modules. Superconducting niobium resonator is being developed in Argonne National Laboratory as a joint collaborative effort. All other things such as cryostats, rf instrumentation, cryogenic distribution system, computer control etc are being done indigenously. Research facilities, augmentation plans and the research being conducted by the universities in various disciplines are described. (author)

  17. Superconducting magnets technologies for large accelerator

    International Nuclear Information System (INIS)

    Ogitsu, Toru

    2017-01-01

    The first hadron collider with superconducting magnet technologies was built at Fermi National Accelerator Laboratory as TEVATRON. Since then, the superconducting magnet technologies are widely used in large accelerator applications. The paper summarizes the superconducting magnet technologies used for large accelerators. (author)

  18. Superconducting accelerating structures for very low velocity ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Xu, J.; Shepard, K.W.; Ostroumov, P.N.; Fuerst, J.D.; Waldschmidt, G.; /Argonne; Gonin, I.V.; /Fermilab

    2008-01-01

    This paper presents designs for four types of very-low-velocity superconducting accelerating cavity capable of providing several MV of accelerating potential per cavity, and suitable for particle velocities in the range 0.006 < v/c < 0.06. Superconducting TEM-class cavities have been widely applied to CW acceleration of ion beams. SC linacs can be formed as an array of independently-phased cavities, enabling a variable velocity profile to maximize the output energy for each of a number of different ion species. Several laboratories in the US and Europe are planning exotic beam facilities based on SC linacs. The cavity designs presented here are intended for the front-end of such linacs, particularly for the post-acceleration of rare isotopes of low charge state. Several types of SC cavities have been developed recently to cover particle velocities above 0.06c. Superconducting four-gap quarter-wave resonators for velocities 0.008 < {beta} = v/c < 0.05 were developed about two decades ago and have been successfully operated at the ATLAS SC linac at Argonne National Laboratory. Since that time, progress in simulation tools, cavity fabrication and processing have increased SC cavity gradients by a factor of 3-4. This paper applies these tools to optimize the design of a four-gap quarter-wave resonator for exotic beam facilities and other low-velocity applications.

  19. CEBAF: A superconducting radio frequency accelerator for nuclear physics

    International Nuclear Information System (INIS)

    Hartline, B.K.

    1988-01-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) will be a 4-GeV, 200-μA superconducting recirculating linear accelerator to provide CW electron beams to simultaneous nuclear physics experiments in three end stations. Funded by the Department of Energy, CEBAF's purpose is basic research on the nuclear many-body system, its quark substructure, and the strong and electroweak interactions governing this form of matter. At the heart of the accelerator are niobium superconducting accelerating cavities designed at Cornell University and successfully prototyped with industry during the past three years. The cavities consistently exceed CEBAF's performance specifications (gradient ≥ 5 MV/m, Q 0 ≥ 2.4 /times/ 10 9 at 2 K and 5 MV/m). Construction is under way, and operation is scheduled in 1994. 26 refs., 9 figs., 3 tabs

  20. Superconducting accelerator magnet design

    International Nuclear Information System (INIS)

    Wolff, S.

    1994-01-01

    Superconducting dipoles, quadrupoles and correction magnets are necessary to achieve the high magnetic fields required for big accelerators presently in construction or in the design phase. Different designs of superconducting accelerator magnets are described and the designs chosen at the big accelerator laboratories are presented. The most frequently used cosθ coil configuration is discussed in detail. Approaches for calculating the magnetic field quality including coil end fields are presented. Design details of the cables, coils, mechanical structures, yokes, helium vessels and cryostats including thermal radiation shields and support structures used in superconducting magnets are given. Necessary material properties are mentioned. Finally, the main results of magnetic field measurements and quench statistics are presented. (orig.)

  1. Accelerator complex for a radioactive ion beam facility at ATLAS

    International Nuclear Information System (INIS)

    Nolen, J.A.

    1995-01-01

    Since the superconducting heavy ion linac ATLAS is an ideal post-accelerator for radioactive beams, plans are being developed for expansion of the facility with the addition of a driver accelerator, a production target/ion source combination, and a low q/m pre-accelerator for radioactive ions. A working group including staff from the ANL Physics Division and current ATLAS users are preparing a radioactive beam facility proposal. The present paper reviews the specifications of the accelerators required for the facility

  2. Superconducting linear accelerator system for NSC

    Indian Academy of Sciences (India)

    This paper reports the construction of a superconducting linear accelerator as a booster to the 15 UD Pelletron accelerator at Nuclear Science Centre, New Delhi. The LINAC will use superconducting niobium quarter wave resonators as the accelerating element. Construction of the linear accelerator has progressed ...

  3. Superconducting accelerating structures for very low velocity ion beams

    Directory of Open Access Journals (Sweden)

    J. Xu

    2008-03-01

    Full Text Available This paper presents designs for four types of very-low-velocity superconducting (SC accelerating cavity capable of providing several MV of accelerating potential per cavity, and suitable for particle velocities in the range 0.006Superconducting TEM-class cavities have been widely applied to cw acceleration of ion beams. SC linacs can be formed as an array of independently phased cavities, enabling a variable velocity profile to maximize the output energy for each of a number of different ion species. Several laboratories in the U.S. and Europe are planning exotic beam facilities based on SC linacs. The cavity designs presented here are intended for the front end of such linacs, particularly for the postacceleration of rare isotopes of low charge state. Several types of SC cavities have been developed recently to cover particle velocities above 0.06c. Superconducting four-gap quarter-wave resonators for velocities 0.008<β=v/c<0.05 were developed about two decades ago and have been successfully operated at the ATLAS SC linac at Argonne National Laboratory. Since that time, progress in simulation tools, cavity fabrication, and processing have increased SC cavity gradients by a factor of 3–4. This paper applies these tools to optimize the design of a four-gap quarter-wave resonator for exotic beam facilities and other low-velocity applications.

  4. Accelerators and superconductivity: A marriage of convenience

    International Nuclear Information System (INIS)

    Wilson, M.

    1987-01-01

    This lecture deals with the relationship between accelerator technology in high-energy-physics laboratories and the development of superconductors. It concentrates on synchrotron magnets, showing how their special requirements have brought about significant advances in the technology, particularly the development of filamentary superconducting composites. Such developments have made large superconducting accelerators an actuality: the Tevatron in routine operation, the Hadron Electron Ring Accelerator (HERA) under construction, and the Superconducting Super Collider (SSC) and Large Hadron Collider (LHC) at the conceptual design stage. Other applications of superconductivity have also been facilitated - for example medical imaging and small accelerators for industrial and medical use. (orig.)

  5. Accelerator-based research facility of UGC as an inter-university centre

    International Nuclear Information System (INIS)

    Mehta, G.K.

    1994-01-01

    A 15-UD Pelletron has been operating as a users facility from July 1991. It is being utilised by a large number of universities and other institutions for research in basic nuclear physics, materials science, atomic physics, radiobiology and radiation chemistry. There is an on-going programme for augmenting the accelerator facilities by injecting Pelletron beams into superconducting linear accelerator modules. Superconducting niobium resonators are being developed at Argonne National Laboratory as a joint collaborative effort. All other things such as cryostat, rf-instrumentation, cryogene distribution system, computer control etc. are being done indigenously. Research possibilities are described. (author). 6 refs., 4 figs

  6. 14 MV pelletron accelerator and superconducting ECR ion source

    International Nuclear Information System (INIS)

    Gupta, A.K.

    2015-01-01

    The BARC-TIFR 14UD Pelletron Accelerator at Mumbai has completed more than two and a half decade of successful operation. The accelerator is primarily used for basic research in the fields of nuclear, atomic and molecular, condensed matter physics and material science. The application areas include accelerator mass spectrometry, production of track-etch membranes, radioisotopes production, radiation damage studies and secondary neutron production for cross section measurement etc. Over the years, numerous developmental activities have been carried out in-house that have resulted in improving the overall performance and uptime of the accelerator and has also made possible to initiate variety of application oriented programmes. Since the SF 6 pressure vessels have been in operation for about 29 years, a comprehensive refurbishment and retrofitting work is carried out to comply with the safety recommendations. Recently, the beam trials were conducted with 18 GHz superconducting ECR (Electron Cyclotron Resonance) Ion Source system at Van-de-Graaff as per BARC Safety Council permission. Various ion beams with different charge states were extracted and mass analyzed and the beam quality was measured by recording their transverse emittance in situ. Experimental measurements pertaining to projectile X-rays Spectroscopy were carried out using variety of ion beams at variable energies. The superconducting Linac booster provides additional acceleration to the ions from Pelletron injector up to A ∼60 region with E∼5 MeV/A. In order to cover the entire mass range of the elements across the periodic table, an ECR based heavy ion accelerator was initiated under plan project. This heavy ion accelerator essentially comprises of a superconducting ECR ion source, room temperature RFQ (Radio Frequency Quadrupole) followed by superconducting Niobium resonators as accelerating elements. This talk will provide an overview of the developmental activities and the safety features

  7. Superconductivity in high energy particle accelerators

    International Nuclear Information System (INIS)

    Schmueser, P.

    2002-08-01

    The basics of superconductivity are outlined with special emphasis on the features which are relevant for the application in magnets and radio frequency cavities for high energy particle accelerators. The special properties of superconducting accelerator magnets are described in detail: design principles, magnetic field calculations, magnetic forces, quench performance, persistent magnetization currents and eddy currents. The design principles and basic properties of superconducting cavities are explained as well as the observed performance limitations and the countermeasures. The ongoing research efforts towards maximum accelerating fields are addressed and the coupling of radio frequency power to the particle beam is treated. (orig.)

  8. Superconducting Accelerator Magnets

    CERN Document Server

    Mess, K H; Wolff, S

    1996-01-01

    The main topic of the book are the superconducting dipole and quadrupole magnets needed in high-energy accelerators and storage rings for protons, antiprotons or heavy ions. The basic principles of low-temperature superconductivity are outlined with special emphasis on the effects which are relevant for accelerator magnets. Properties and fabrication methods of practical superconductors are described. Analytical methods for field calculation and multipole expansion are presented for coils without and with iron yoke. The effect of yoke saturation and geometric distortions on field quality is studied. Persistent magnetization currents in the superconductor and eddy currents the copper part of the cable are analyzed in detail and their influence on field quality and magnet performance is investigated. Superconductor stability, quench origins and propagation and magnet protection are addressed. Some important concepts of accelerator physics are introduced which are needed to appreciate the demanding requirements ...

  9. Automated installations for reeling up of superconducting magnet windings of the accelerating-storage complex

    International Nuclear Information System (INIS)

    Dolzhenkov, V.I.; Elistratov, V.V.; Kuznetsov, Yu.V.; Petrov, V.B.; Popov, V.V.; Savel'ev, A.V.; Sokolov, B.V.; Sytnik, V.V.; Tarakanov, N.M.; Ustinov, E.A.

    1992-01-01

    An automated facility for reeling up the windings of model and full-scale superconducting magnets of the accelerating-storage complex is described. The control system monitors superconducting cable tension, transport carriage linear velocity and some other parameters. Maximum length of the winded coils is 6 m. Cable tension stability - 5%

  10. Proceedings of CAS - CERN Accelerator School: Course on Superconductivity for Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, R [European Organization for Nuclear Research, Geneva (Switzerland)

    2014-07-01

    These proceedings collate lectures given at the twenty-seventh specialized course organised by the CERN Accelerator School (CAS). The course was held at the Ettore Majorana Foundation and Centre for Scientific Culture (EMFCSC) in Erice, Italy, from 24 April to 4 May 2013. Following recapitulation lectures on basic accelerator physics and superconductivity, the course covered topics related to the design, production and operation of superconducting RF systems and superconducting magnets for accelerators. The participants pursued one of six case studies in order to get ’hands-on’ experience of the issues connected with the design of superconducting systems. A series of topical seminars completed the programme.

  11. CAS CERN Accelerator School superconductivity in particle accelerators

    International Nuclear Information System (INIS)

    Turner, S.

    1989-01-01

    One of the objectives of the CERN Accelerator School is to run courses on specialised topics in the particle accelerator field. The present volume contains the proceedings of one such course, this time organized in conjunction with the Deutsches Elektronen Synchrotron (DESY) on the subject of superconductivity in particle accelerators. This course reflects the very considerable progress made over the last few years in the use of the technology for the magnet and radio-frequency systems of many large and small accelerators already in use or nearing completion, while also taking account of the development work now going on for future machines. The lectures cover the theory of superconductivity, cryogenics and accelerator magnets and cavities, while the seminars include superfluidity, superconductors, special magnets and the prospects for high-temperature superconductors. (orig.)

  12. Experimental studies on the thermal properties of fast pulsed superconducting accelerator magnets

    International Nuclear Information System (INIS)

    Bleile, Alexander

    2016-01-01

    The new Facility for Antiproton and Ion Research FAIR is being constructed at the GSI research center in Darmstadt (Germany). This wordwide unique accelerator facility will provide beams of ions and antiprotons at high intensities and high energies for the fundamental research in nuclear, atomic and plasma physics as well as for applied science. The superconducting synchrotron SIS100 with a magnetic rigidity of 100 T/m, the core component of the FAIR facility will provide primary ion beams of all types from hydrogen up to uranium. One of the key technical systems of a new synchrotron are fast ramped electromagnets for the generation of fast ramped magnetic fields for deflecting and focusing of the ion beams. To reduce the energy consumption and to keep the operating costs of the synchrotron as low as possible superconducting magnet technology is applied in the SIS100. Superconducting magnets have been developed at GSI within the scope of the FAIR project. Although the superconducting magnet technology promises high cost saving, the power consumption of the fast ramped superconducting magnets can't be completely neglected. The pulsed operation generates dynamic losses in the iron yokes as well as in the superconducting coils of the magnets. A forced two-phase helium flow provides effective cooling for supercounducting magnets exposed to a continous relative high heat flow. The subject of this PhD thesis is experimental investigations and analysis of the dynamic power losses in fast ramped superconducting magnets and their dependencies on the operation cycles of the synchrotron. This research was conducted on the the first series SIS100 dipole magnet. Based on the experimentally defined dynamic heat loads and helium mass flow rates in the dipole magnet the heat loads and helium consumption for all other types of superconducting magnet modules of the SIS100 have been estimated. These results are essential for the development of the cooling system for the the

  13. Mechanical Design of Superconducting Accelerator Magnets

    International Nuclear Information System (INIS)

    Toral, F

    2014-01-01

    This paper is about the mechanical design of superconducting accelerator magnets. First, we give a brief review of the basic concepts and terms. In the following sections, we describe the particularities of the mechanical design of different types of superconducting accelerator magnets: solenoids, costheta, superferric, and toroids. Special attention is given to the pre-stress principle, which aims to avoid the appearance of tensile stresses in the superconducting coils. A case study on a compact superconducting cyclotron summarizes the main steps and the guidelines that should be followed for a proper mechanical design. Finally, we present some remarks on the measurement techniques

  14. Mechanical Design of Superconducting Accelerator Magnets

    CERN Document Server

    Toral, Fernando

    2014-07-17

    This paper is about the mechanical design of superconducting accelerator magnets. First, we give a brief review of the basic concepts and terms. In the following sections, we describe the particularities of the mechanical design of different types of superconducting accelerator magnets: solenoids, costheta, superferric, and toroids. Special attention is given to the pre-stress principle, which aims to avoid the appearance of tensile stresses in the superconducting coils. A case study on a compact superconducting cyclotron summarizes the main steps and the guidelines that should be followed for a proper mechanical design. Finally, we present some remarks on the measurement techniques.

  15. Mechanical Design of Superconducting Accelerator Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Toral, F [Madrid, CIEMAT (Spain)

    2014-07-01

    This paper is about the mechanical design of superconducting accelerator magnets. First, we give a brief review of the basic concepts and terms. In the following sections, we describe the particularities of the mechanical design of different types of superconducting accelerator magnets: solenoids, costheta, superferric, and toroids. Special attention is given to the pre-stress principle, which aims to avoid the appearance of tensile stresses in the superconducting coils. A case study on a compact superconducting cyclotron summarizes the main steps and the guidelines that should be followed for a proper mechanical design. Finally, we present some remarks on the measurement techniques.

  16. Superconducting Magnets for Particle Accelerators

    CERN Document Server

    Bottura, Luca; Yamamoto, Akira; Zlobin, Alexander V

    2016-01-01

    In this paper we summarize the evolution and contributions of superconducting magnets to particle accelerators as chronicled over the last 50 years of Particle Accelerator Conferences (PAC, NA-PAC and IPAC). We begin with an historical overview based primarily on PAC Proceedings augmented with references to key milestones in the development of superconducting magnets for particle accelerators. We then provide some illustrative examples of applications that have occurred over the past 50 years, focusing on those that have either been realized in practice or provided technical development for other projects, with discussion of possible future applications.

  17. Design of 9 tesla superconducting solenoid for VECC RIB facility

    International Nuclear Information System (INIS)

    Das, Chiranjib; Ghosh, Siddhartha; Fatma, Tabassum; Dey, Malay Kanti; Bhunia, Uttam; Bandyopadhyay, Arup; Chakrabarti, Alok

    2013-01-01

    An ISOL post-accelerator type of RIB facility is being developed at our centre. The post acceleration scheme of a Radio Frequency Quadrupole (RFQ) followed by five IH LINAC cavities will provide energy of about 1.05 MeV/u. For further accelerating up to 2 MeV/u Superconducting Quarter Wave Resonators (SCQWR) will be used. The radial defocusing of the beam bunch during the acceleration using SCQWRs will be taken care of by a Superconducting Solenoid (SCS) within the same cryostat. In this report the electromagnetic design of an SCS will be discussed. A 9 T SCS having effective length of 340 mm has been designed with the special requirement that the fringing field should fall sharply to a value less than 100 mT at the surfaces of the adjacent superconducting cavities. The designed solenoid comprise of two co-axial split solenoid conductors surrounded by iron shields and a pair of bucking coils. Optimizations have been carried out for the total current sharing of the main coils and the bucking coils as well as for the relative orientation and dimension of each component of the solenoid. (author)

  18. Design of 9 tesla superconducting solenoid for VECC RIB facility

    Energy Technology Data Exchange (ETDEWEB)

    Das, Chiranjib; Ghosh, Siddhartha; Fatma, Tabassum; Dey, Malay Kanti; Bhunia, Uttam; Bandyopadhyay, Arup; Chakrabarti, Alok [Variable Energy Cyclotron Centre, Kolkata (India)

    2013-07-01

    An ISOL post-accelerator type of RIB facility is being developed at our centre. The post acceleration scheme of a Radio Frequency Quadrupole (RFQ) followed by five IH LINAC cavities will provide energy of about 1.05 MeV/u. For further accelerating up to 2 MeV/u Superconducting Quarter Wave Resonators (SCQWR) will be used. The radial defocusing of the beam bunch during the acceleration using SCQWRs will be taken care of by a Superconducting Solenoid (SCS) within the same cryostat. In this report the electromagnetic design of an SCS will be discussed. A 9 T SCS having effective length of 340 mm has been designed with the special requirement that the fringing field should fall sharply to a value less than 100 mT at the surfaces of the adjacent superconducting cavities. The designed solenoid comprise of two co-axial split solenoid conductors surrounded by iron shields and a pair of bucking coils. Optimizations have been carried out for the total current sharing of the main coils and the bucking coils as well as for the relative orientation and dimension of each component of the solenoid. (author)

  19. Superconducting magnets for particle large accelerators

    International Nuclear Information System (INIS)

    Kircher, F.

    1994-01-01

    The different accelerator types (linear, circular) and the advantages of using superconductivity in particle accelerator are first reviewed. Characteristics of some large superconducting accelerators (Tevatron, HERA, RHIC, LHC CERN) are presented. The design features related to accelerator magnets are reviewed: magnet reproducibility, stability, field homogeneity, etc. and the selected design characteristics are discussed: manufacturing method, winding, shielding, cryostat. CEA involvement in this domain mainly addressing quadrupoles, is presented together with the Large Hadron Collider (LHC) project at CERN. Characteristics and design of detector magnets are also described. 5 figs., 2 tabs

  20. Resonant coupling applied to superconducting accelerator structures

    International Nuclear Information System (INIS)

    Potter, James M.; Krawczyk, Frank L.

    2013-01-01

    The concept of resonant coupling and the benefits that accrue from its application is well known in the world of room temperature coupled cavity linacs. Design studies show that it can be applied successfully between sections of conventional elliptical superconducting coupled cavity accelerator structures and internally to structures with spoked cavity resonators. The coupling mechanisms can be designed without creating problems with high field regions or multipactoring. The application of resonant coupling to superconducting accelerators eliminates the need for complex cryogenic mechanical tuners and reduces the time needed to bring a superconducting accelerator into operation.

  1. Niobium Coatings for the HIE-ISOLDE QWR Superconducting Accelerating Cavities

    CERN Document Server

    Jecklin, N; Delaup, B; Ferreira, L; Mondino, I; Sublet, A; Therasse, M; Venturini Desolaro, W

    2013-01-01

    The HIE-ISOLDE (High Intensity and Energy at ISOLDE) project is the upgrade of the existing ISOLDE (Isotope Separator On Line DEvice) facility at CERN, which is dedicated to the production of a large variety of radioactive ion beams for nuclear physics experiments. A new linear accelerator made of 20 ȕ=10.3% and 12 ȕ=6.3% quarter-wave resonators (QWR) superconducting (SC) accelerating cavities at 101 MHz will be built, and in a first phase two cryomodules of 5 high-ȕ cavities each are scheduled to accelerate first beams in 2015. The cavities are made of a copper substrate, with a sputter-coated superconductive niobium (Nb) layer, operated at 4.5 K with an accelerating field of 6 MV/m at 10W Radio-Frequency (RF) losses (Q=4.5· 108). In this paper we will discuss the baseline surface treatment and coating procedure which allows obtaining the required performance, as well as the steps undertaken in order to prepare series production of the required number of cavities guaranteeing their quality and functional...

  2. Superconducting cavities for the APT accelerator

    International Nuclear Information System (INIS)

    Krawczyk, F.L.; Gentzlinger, R.C.; Haynes, B.; Montoya, D.I.; Rusnak, B.; Shapiro, A.H.

    1997-01-01

    The design of an Accelerator Production of Tritium (APT) facility being investigated at Los Alamos includes a linear accelerator using superconducting rf-cavities for the acceleration of a high-current cw proton beam. For electron accelerators with particles moving at the speed of light (β ∼ 1.0), resonators with a rounded shape, consisting of ellipsoidal and cylindrical sections, are well established. They are referred to as elliptical cavities. For the APT-design, this shape has been adapted for much slower proton beams with β ranging from 0.60 to 0.94. This is a new energy range, in which resonators of an elliptical type have never been used before. Simulations with the well-proven electromagnetic modeling tools MAFIA and SUPERFISH were performed. The structures have been optimized for their rf and mechanical properties as well as for beam dynamics requirements. The TRAK-RF simulation code is used to investigate potential multipacting in these structures. All the simulations will be put to a final test in experiments performed on single cell cavities that have started in the structures laboratory

  3. The Continuous Electron Beam Accelerator Facility

    International Nuclear Information System (INIS)

    Grunder, H.A.; Bisognano, J.J.; Diamond, W.I.; Hartline, B.K.; Leemann, C.W.; Mougey, J.; Sundelin, R.M.; York, R.C.

    1987-01-01

    On February 13, 1987, construction started on the Continuous Electron Beam Accelerator Facility - a 4-GeV, 200-μA, continuous beam, electron accelerator facility designed for nuclear physics research. The machine has a racetrack configuration with two antiparallel, 500-MeV, superconducting linac segments connected by beam lines to allow four passes of recirculation. The accelerating structure consists of 1500-MHz, five-cell niobium cavities developed at Cornell University. A liquid helium cryogenic system cools the cavities to an operating temperature of 2 K. Beam extraction after any three of the four passes allows simultaneous delivery of up to three beams of independently variable currents and different, but correlated, energies to the three experimental areas. Beam breakup thresholds exceed the design current by nearly two orders of magnitude. Project completion and the start of physics operations are scheduled for 1993. The total estimated cost is $255 million

  4. Cryogenic test facility instrumentation with fiber optic and fiber optic sensors for testing superconducting accelerator magnets

    Science.gov (United States)

    Chiuchiolo, A.; Bajas, H.; Bajko, M.; Castaldo, B.; Consales, M.; Cusano, A.; Giordano, M.; Giloux, C.; Perez, J. C.; Sansone, L.; Viret, P.

    2017-12-01

    The magnets for the next steps in accelerator physics, such as the High Luminosity upgrade of the LHC (HL- LHC) and the Future Circular Collider (FCC), require the development of new technologies for manufacturing and monitoring. To meet the HL-LHC new requirements, a large upgrade of the CERN SM18 cryogenic test facilities is ongoing with the implementation of new cryostats and cryogenic instrumentation. The paper deals with the advances in the development and the calibration of fiber optic sensors in the range 300 - 4 K using a dedicated closed-cycle refrigerator system composed of a pulse tube and a cryogen-free cryostat. The calibrated fiber optic sensors (FOS) have been installed in three vertical cryostats used for testing superconducting magnets down to 1.9 K or 4.2 K and in the variable temperature test bench (100 - 4.2 K). Some examples of FOS measurements of cryostat temperature evolution are presented as well as measurements of strain performed on a subscale of High Temperature Superconducting magnet during its powering tests.

  5. Superconducting magnets for accelerators

    International Nuclear Information System (INIS)

    Denisov, Yu.N.

    1979-01-01

    Expediency of usage and possibilities arising in application of superconducting devices in magnetic systems of accelerators and experimental nuclear-physical devices are studied. Parameters of specific devices are given. It is emphasized that at the existing level of technological possibilities, construction and usage of superconducting magnetic systems in experimental nuclear physics should be thought of as possible, from the engineering, and expedient, from the economical viewpoints [ru

  6. Superconducting linear accelerator cryostat

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; Elkonin, B.V.; Sokolowski, J.S.

    1984-01-01

    A large vertical cryostat for a superconducting linear accelerator using quarter wave resonators has been developed. The essential technical details, operational experience and performance are described. (author)

  7. Superconductivity and future accelerators

    International Nuclear Information System (INIS)

    Danby, G.T.; Jackson, J.W.

    1963-01-01

    For 50 years particle accelerators employing accelerating cavities and deflecting magnets have been developed at a prodigious rate. New accelerator concepts and hardware ensembles have yielded great improvements in performance and GeV/$. The great idea for collective acceleration resulting from intense auxiliary charged-particle beams or laser light may or may not be just around the corner. In its absence, superconductivity (SC) applied both to rf cavities and to magnets opened up the potential for very large accelerators without excessive energy consumption and with other economies, even with the cw operation desirable for colliding beams. HEP has aggressively pioneered this new technology: the Fermilab single ring 1 TeV accelerator - 2 TeV collider is near the testing stage. Brookhaven National Laboratory's high luminosity pp 2 ring 800 GeV CBA collider is well into construction. Other types of superconducting projects are in the planning stage with much background R and D accomplished. The next generation of hadron colliders under discussion involves perhaps a 20 TeV ring (or rings) with 40 TeV CM energy. This is a very large machine: even if the highest practical field B approx. 10T is used, the radius is 10x that of the Fermilab accelerator. An extreme effort to get maximum GeV/$ may be crucial even for serious consideration of funding

  8. A superconducting focusing solenoid for the neutrino factory linear accelerator

    International Nuclear Information System (INIS)

    Green, Michael A.; Lebedev, V.; Strauss, B.P.

    2001-01-01

    The proposed linear Accelerator that accelerates muons from 190 MeV to 2.45 GeV will use superconducting solenoids for focusing the muon beam. The accelerator will use superconducting RF cavities. These cavities are very sensitive to stay magnetic field from the focusing magnets. Superconducting solenoids can produce large stray fields. This report describes the 201.25 MHz acceleration system for the neutrino factory. This report also describes a focusing solenoid that delivers almost no stray field to a neighboring superconducting RF cavity

  9. Decay and snapback in superconducting accelerator magnets

    OpenAIRE

    Haverkamp, M.

    2003-01-01

    This thesis deals with the explanation and compensation of the effects ‘decay’ and ‘snapback’ in superconducting accelerator magnets, in particular in those used in the new Large Hardron Collider at CERN. During periods of constant magnet excitation, as for example during the injection of particles in the storage ring, the magnetic field in superconducting accelerator magnets shows a decay behavior. As soon as the particles are accelerated, the magnets are ramped, and the magnetic field ‘snap...

  10. The CEBAF [Continuous Electron Beam Accelerator Facility] superconducting accelerator: An overview

    International Nuclear Information System (INIS)

    Leemann, C.W.

    1986-01-01

    The CEBAF accelerator is a CW linac based on rf superconductivity and making use of multiple recirculation. Its major components are a 50 MeV injector, two linac segments of 0.5 GeV energy gain each, and recirculator arcs connecting the two linac segments. Each linac segment consists of 25 cryomodules, separated by warm sections with quadrupoles, steering magnets, and beam diagnostics. Each cryomodule contains 8, 1500 MHz, 5-cell, Cornell type cavities with waveguide couplers for fundamental power and HOM damping, each cavity being powered by its own klystron. Recirculator arcs are vertically stacked, large radius, strong focusing beam lines that minimize synchrotron radiation effects. A high quality (ΔE/E ∼ 10 -4 , ε ∼ 10 -9 m) beam of 200μA, 100% duty factor, with 0.5 GeV ≤ E ≤ 4.0 GeV will be generated

  11. LLNL superconducting magnets test facility

    Energy Technology Data Exchange (ETDEWEB)

    Manahan, R; Martovetsky, N; Moller, J; Zbasnik, J

    1999-09-16

    The FENIX facility at Lawrence Livermore National Laboratory was upgraded and refurbished in 1996-1998 for testing CICC superconducting magnets. The FENIX facility was used for superconducting high current, short sample tests for fusion programs in the late 1980s--early 1990s. The new facility includes a 4-m diameter vacuum vessel, two refrigerators, a 40 kA, 42 V computer controlled power supply, a new switchyard with a dump resistor, a new helium distribution valve box, several sets of power leads, data acquisition system and other auxiliary systems, which provide a lot of flexibility in testing of a wide variety of superconducting magnets in a wide range of parameters. The detailed parameters and capabilities of this test facility and its systems are described in the paper.

  12. Decay and Snapback in Superconducting Accelerator Magnets

    CERN Document Server

    Haverkamp, M

    2003-01-01

    This thesis deals with the explanation and compensation of the effects 'decay' and 'snapback' in superconducting accelerator magnets, in particular in those used in the new Large Hardron Collider at CERN. During periods of constant magnet excitation, as for example during the injection of particles in the storage ring, the magnetic field in superconducting accelerator magnets shows a decay behavior. As soon as the particles are accelerated, the magnets are ramped, and the magnetic field 'snaps back' to the original hysteresis curve. Decay and snapback affect the beam in the machine and have tobe compensated precisely in order to avoid losses of particles. The research presented in this thesis is a step towards a better understanding of 'decay' and 'snapback' in superconducting particle accelerators. The thesis provides tools for the prediction and compensation of both effects in the magnets, and for the analysis of correlations between different magnet parameters.

  13. Prototype superconducting magnet for the FFAG accelerator

    International Nuclear Information System (INIS)

    Obana, T.; Ogitsu, T.; Yamamoto, A.; Yoshimoto, M.; Mori, Y.; Fujii, T.; Iwasa, M.; Orikasa, T.

    2006-01-01

    A study of a superconducting magnet for the Fixed Field Alternating Gradient (FFAG) accelerator has been performed. The FFAG accelerator requires static magnetic field, and it is suitable for superconducting magnet applications, because problems associated with time varying magnetic field such as eddy current loss can be eliminated. The superconducting magnet, which can generate high magnetic field, is possible to realize a higher beam energy with a given accelerator size or the size to be smaller for a given beam energy. The FFAG accelerator magnet is demanded to have a complicated nonlinear magnetic field with high accuracy. As a first prototype superconducting coil, the coil configuration which consists of left-right asymmetric cross-section and large aperture has been designed. The prototype coil has been successfully developed by using a 6-axis Computer Numerical Control (CNC) winding machine. The magnetic field of the prototype coil has been demonstrated in warm measurement. As a consequence, the technical feasibility has been verified with the prototype coil development and the performance test. In addition, the technology components developed in the prototype coil have a possibility to transfer to a fusion magnet

  14. Numerical and experimental investigations of coupled electromagnetic and thermal fields in superconducting accelerator magnets

    International Nuclear Information System (INIS)

    Mierau, Anna

    2013-01-01

    The new international facility for antiproton and ion research FAIR will be built in Darmstadt (Germany). The existing accelerator facility of GSI Helmholtzzentrum for Heavy Ion Research will serve as a pre-accelerator for the new facility. FAIR will provide high-energy antiproton and ion beams with unprecedented intensity and quality for fundamental research of states of matter and the evolution of the universe. The central component of FAIR's accelerator and storage rings complex is a double-ring accelerator consisting of two heavy ion synchrotrons SIS100 and SIS300. The SIS100 is the primary accelerator of FAIR. The desired beam properties of SIS100 require a design of the machine much more challenging than the conventional design of existing proton and ion synchrotrons. The key technical components of each synchrotron are the special electromagnets, which allow guiding the charged particles on their orbits in the synchrotron during the acceleration processes. For a stable operation of the SIS100's the magnets have to produce extremely homogeneous magnetic fields. Furthermore, the SIS100 high-intensity ion beam modes, for example with U 28+ ions, require an ultra-high vacuum in the beam pipe of the synchrotron, which can be generated effectively only at low temperatures below 15 K. Due to the field quality requirements for the magnets, the properties of the dynamic vacuum in the beam pipe but also in order to minimise future operating costs, fast ramped superconducting magnets will be used to guide the beam in SIS100. These magnets have been developed at GSI within the framework of the FAIR project. Developing a balanced design of a superconducting accelerator magnet requires a sound understanding of the interaction between its thermal and electromagnetic fields. Of special importance in this case are the magnetic field properties such as the homogeneity of the static magnetic field in the aperture of the magnet, and the dynamic heat losses of the whole magnet

  15. The continuous electron beam accelerator facility

    International Nuclear Information System (INIS)

    Grunder, H.A.

    1989-01-01

    Tunnel construction and accelerator component development, assembly, and testing are under way at the Continuous Electron Beam Accelerator Facility. CEBAF's 4-GeV, 200-μA superconducting recirculating accelerator will provide cw beam to simultaneous experiments in three end stations for studies of the nuclear many-body system, its quark substructure, and the strong and electroweak interactions governing this form of matter. Prototype accelerating cavities, assembled in cryostats and tested on site, continue to exceed performance specifications. An on-site liquid helium capability supports cryostat development and cavity testing. Major elements of the accelerator instrumentation and control hardware and software are in use in cryogenics, rf, and injector tests. Prototype rf systems have been operated and prototype klystrons have been ordered. The initial, 100-keV, room-temperature region of the 45-MeV injector is operational and meets specifications. CEBAF's end stations have been conceptually designed; experimental equipment conceptual designs will be completed in 1989. 2 refs., 5 figs., 2 tabs

  16. On radiation heating of superconducting magnets of the accelerating-storage complex

    International Nuclear Information System (INIS)

    Maslov, M.A.; Mokhov, N.V.

    1981-01-01

    To analyze regularities of energy release formation in a superconducting winding (SCW) of superconducting magnets (SCM) of the IHEP accelerating-storage facility the energy release values in the SCM when 400-3000 GeV proton beam incidence onto the SCM vacuum chamber are calculated. Two SCM modifications (a dipole one and a quadrupole one) and two modes of irradiation (uniform irradiation along the SCM azimuth and length and a thin beam incidence uniform along the SCM length) are considered. It is shown that for the SCM with the 26 cm aperture at the 1 mrad angle of incidence 25% of the initial proton energy is released [ru

  17. Heavy-ion acceleration with a superconducting linac

    International Nuclear Information System (INIS)

    Bollinger, L.M.

    1988-01-01

    This year, 1988, is the tenth anniversary of the first use of RF superconductivity to accelerate heavy ions. In June 1978, the first two superconducting resonators of the Argonne Tandem-Linac Accelerator System (ATLAS) were used to boost the energy of a 19 F beam from the tandem, and by September 1978 a 5-resonator linac provided an 16 O beam for a nuclear-physics experiment. Since then, the superconducting linac has grown steadily in size and capability until now there are 42 accelerating structures and 4 bunchers. Throughout this period, the system was used routinely for physics research, and by now the total time with beam on target is 35,000 hours. Lessons learned from this long running experience and some key technical developments that made it possible are reviewed in this paper. 19 refs., 3 figs., 2 tabs

  18. DARMSTADT: Superconducting electron accelerator in operation

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    In December, the S-DALINAC superconducting radiofrequency electron accelerator at the Nuclear Physics Institute of Darmstadt's Technische Hochschule was completed. This pioneer continuous-wave (c.w.) machine passed a major milestone several years ago when it accelerated its first low energy electron beam

  19. Superconducting Magnets for Accelerators

    Science.gov (United States)

    Brianti, G.; Tortschanoff, T.

    1993-03-01

    This chapter describes the main features of superconducting magnets for high energy synchrotrons and colliders. It refers to magnets presently used and under development for the most advanced accelerators projects, both recently constructed or in the preparatory phase. These magnets, using the technology mainly based on the NbTi conductor, are described from the aspect of design, materials, construction and performance. The trend toward higher performance can be gauged from the doubling of design field in less than a decade from about 4 T for the Tevatron to 10 T for the LHC. Special properties of the superconducting accelerator magnets, such as their general layout and the need of extensive computational treatment, the limits of performance inherent to the available conductors, the requirements on the structural design are described. The contribution is completed by elaborating on persistent current effects, quench protection and the cryostat design. As examples the main magnets for HERA and SSC, as well as the twin-aperture magnets for LHC, are presented.

  20. Case Studies on Superconducting Magnets for Particle Accelerators

    International Nuclear Information System (INIS)

    Ferracin, P

    2014-01-01

    During the CERN Accelerator School 'Superconductivity for accelerators', the students were divided into 18 groups, and 6 different exercises (case studies), involving the design and analysis of superconducting magnets and RF cavities, were assigned. The problems covered a broad spectrum of topics, from properties of superconducting materials to operation conditions and general dimensions of components. The work carried out by the students turned out to be an extremely useful opportunity to review the material explained during the lectures, to become familiar with the orders of magnitude of the key parameters, and to understand and compare different design options. We provide in this paper a summary of the activities related to the case studies on superconducting magnets and present the main outcomes

  1. Case Studies on Superconducting Magnets for Particle Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Ferracin, P [European Organization for Nuclear Research, Geneva (Switzerland)

    2014-07-01

    During the CERN Accelerator School 'Superconductivity for accelerators', the students were divided into 18 groups, and 6 different exercises (case studies), involving the design and analysis of superconducting magnets and RF cavities, were assigned. The problems covered a broad spectrum of topics, from properties of superconducting materials to operation conditions and general dimensions of components. The work carried out by the students turned out to be an extremely useful opportunity to review the material explained during the lectures, to become familiar with the orders of magnitude of the key parameters, and to understand and compare different design options. We provide in this paper a summary of the activities related to the case studies on superconducting magnets and present the main outcomes.

  2. 1999 Review of superconducting dipole and quadrupole magnets for particle accelerators

    International Nuclear Information System (INIS)

    Devred, A.

    1999-12-01

    The quest for elementary particles has promoted the development of particle accelerators producing beams of increasingly higher energies. In a synchrotron-type accelerator, the particle energy is directly proportional to the product of the machine's radius times the bending magnets' field strength. Present proton experiments at the TeV scale require facilities with circumferences ranging from a few to tens of kilometers and relying on a large number (several hundreds to several thousands) of high field dipole magnets and high field gradient quadrupole magnets. These electro-magnets use high current density, low critical temperature superconducting cables and are cooled down at liquid helium temperature. They are among the most costly and the most challenging components of the machine. After explaining what are the various types of accelerator magnets and why they are needed (section 1), we present a brief history of large superconducting particle accelerators, and we detail ongoing superconducting accelerator magnet R and D programs around the world (Section 2). Then, we review the superconducting materials that are available at industrial scale (chiefly, NbTi and Nb3Sn), and we describe the manufacturing of NbTi wires and cables (section 3). We also present the difficulties of processing and insulating Nb3Sn conductors which, so far, have limited the use of this material in spite of its superior performances. We continue by presenting the complex formalism used to represent two-dimensional fields (section 4), and we discuss the two-dimensional current distributions that are the most appropriate for generating pure dipole and pure quadrupole fields (section 5). We explain how these ideal distributions can be approximated by so-called cosθ and cos 2 θ coil designs and we describe the difficulties of realizing coil ends. Next, we present the mechanical design concepts that have been developed to restrain magnet coils and to ensure proper conductor positioning

  3. 1999 Review of superconducting dipole and quadrupole magnets for particle accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Devred, A. [CEA/Saclay, Dept. d' Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l' Instrumentation Associee (DAPNIA), 91 - Gif-sur-Yvette (France); CERN, Conseil Europeen pour la recherche nucleaire, Laboratoire europeen pour la physique des particules Geneve (Switzerland)

    1999-12-01

    The quest for elementary particles has promoted the development of particle accelerators producing beams of increasingly higher energies. In a synchrotron-type accelerator, the particle energy is directly proportional to the product of the machine's radius times the bending magnets' field strength. Present proton experiments at the TeV scale require facilities with circumferences ranging from a few to tens of kilometers and relying on a large number (several hundreds to several thousands) of high field dipole magnets and high field gradient quadrupole magnets. These electro-magnets use high current density, low critical temperature superconducting cables and are cooled down at liquid helium temperature. They are among the most costly and the most challenging components of the machine. After explaining what are the various types of accelerator magnets and why they are needed (section 1), we present a brief history of large superconducting particle accelerators, and we detail ongoing superconducting accelerator magnet R and D programs around the world (Section 2). Then, we review the superconducting materials that are available at industrial scale (chiefly, NbTi and Nb3Sn), and we describe the manufacturing of NbTi wires and cables (section 3). We also present the difficulties of processing and insulating Nb3Sn conductors which, so far, have limited the use of this material in spite of its superior performances. We continue by presenting the complex formalism used to represent two-dimensional fields (section 4), and we discuss the two-dimensional current distributions that are the most appropriate for generating pure dipole and pure quadrupole fields (section 5). We explain how these ideal distributions can be approximated by so-called cos{theta} and cos{sup 2}{theta} coil designs and we describe the difficulties of realizing coil ends. Next, we present the mechanical design concepts that have been developed to restrain magnet coils and to ensure proper

  4. Superconducting rf cavities for accelerator application

    International Nuclear Information System (INIS)

    Proch, D.

    1988-01-01

    The subject of this paper is a review of superconducting cavities for accelerator application (β = 1). The layout of a typical accelerating unit is described and important parameters are discussed. Recent cavity measurements and storage ring beam tests are reported and the present state of the art is summarized

  5. Performance of the 2 × 4-cell superconducting linac module for the THz-FEL facility

    Science.gov (United States)

    Kui, Zhou; Chenglong, Lao; Dai, Wu; Xing, Luo; Jianxin, Wang; Dexin, Xiao; Lijun, Shan; Tianhui, He; Xuming, Shen; Sifen, Lin; Linde, Yang; Hanbin, Wang; Xingfan, Yang; Ming, Li; Xiangyang, Lu

    2018-07-01

    A high average power THz radiation facility has been developed by the China Academy of Engineering Physics. It is the first CW THz user facility based on superconducting accelerator technology in China. The superconducting linac module, which contains two 4-cell 1.3 GHz TESLA-like superconducting radio frequency cavities, is a major component of this facility. The expected electron energy gain is 6-8 MeV with a field gradient of 8-10 MV/m. The design and fabrication of the linac module is complete. This paper discusses its assembly and results from cyromodule tests and beam commissioning. At 2 K, the cryomodule works smoothly and stably. Both cavities have achieved effective field gradients of 10 MV/m. In beam loading experiments, 8 MeV, 5 mA electron beams with an energy spread less than 0.2% have been produced, which satisfies our requirements.

  6. Thermo-magnetic instabilities in Nb3Sn Superconducting Accelerator Magnets

    International Nuclear Information System (INIS)

    Bordini, Bernardo; Pisa U.

    2006-01-01

    The advance of High Energy Physics research using circulating accelerators strongly depends on increasing the magnetic bending field which accelerator magnets provide. To achieve high fields, the most powerful present-day accelerator magnets employ NbTi superconducting technology; however, with the start up of Large Hadron Collider (LHC) in 2007, NbTi magnets will have reached the maximum field allowed by the intrinsic properties of this superconductor. A further increase of the field strength necessarily requires a change in superconductor material; the best candidate is Nb 3 Sn. Several laboratories in the US and Europe are currently working on developing Nb 3 Sn accelerator magnets, and although these magnets have great potential, it is suspected that their performance may be fundamentally limited by conductor thermo-magnetic instabilities: an idea first proposed by the Fermilab High Field Magnet group early in 2003. This thesis presents a study of thermo-magnetic instability in high field Nb 3 Sn accelerator magnets. In this chapter the following topics are described: the role of superconducting magnets in High Energy Physics; the main characteristics of superconductors for accelerator magnets; typical measurements of current capability in superconducting strands; the properties of Nb 3 Sn; a description of the manufacturing process of Nb 3 Sn strands; superconducting cables; a typical layout of superconducting accelerator magnets; the current state of the art of Nb 3 Sn accelerator magnets; the High Field Magnet program at Fermilab; and the scope of the thesis

  7. The SARAF Project - Soreq Applied Research Accelerator Facility

    International Nuclear Information System (INIS)

    Nagler, A.; Mardor, I.; Berkovits, D.; Piel, C.

    2004-01-01

    The relevance of particle accelerators to society, in the use of their primary and secondary beams for the analysis of physical, chemical and biological samples and for modification of properties of materials, is well recognized and documented. Nevertheless, apart of the construction of small accelerators for nuclear research in the 1960's and 70's, Israel has so far neglected this important and growing field. Furthermore, there is an urgent need in Israel for a state of the art research facility to attract and introduce students to current advanced physics techniques and technologies and to train the next generation of experimental scientists in various branches and disciplines. Therefore, Soreq NRC recently initiated the establishment of a new accelerator facility, named SARAF Soreq Applied Research Accelerator Facility. SARAF will be a continuous wave (CW), proton and deuteron RF superconducting linear accelerator with variable energy (5 - 40 MeV) and current (0.04 -2 mA). SARAF is designed to enable hands-on maintenance, which means that its beam loss will be below 10 -5 for the entire accelerator. These specifications will place SARAF in line with the next generation of accelerators world wide. Soreq expects that this fact will attract the Israeli and international research communities to use this facility extensively. Soreq NRC intends to use SARAF for basic, medical and biological research, and non-destructive testing (NDT). Another major activity will be the research and development of radio-isotopes production techniques. Given the availability of high current (up to 2 mA) protons and deuterons, a major activity will be research and development of high power density (up to 80 kW on a few cm 2 ) irradiation targets

  8. Industrialization of Superconducting RF Accelerator Technology

    Science.gov (United States)

    Peiniger, Michael; Pekeler, Michael; Vogel, Hanspeter

    2012-01-01

    Superconducting RF (SRF) accelerator technology has basically existed for 50 years. It took about 20 years to conduct basic R&D and prototyping at universities and international institutes before the first superconducting accelerators were built, with industry supplying complete accelerator cavities. In parallel, the design of large scale accelerators using SRF was done worldwide. In order to build those accelerators, industry has been involved for 30 years in building the required cavities and/or accelerator modules in time and budget. To enable industry to supply these high tech components, technology transfer was made from the laboratories in the following three regions: the Americas, Asia and Europe. As will be shown, the manufacture of the SRF cavities is normally accomplished in industry whereas the cavity testing and module assembly are not performed in industry in most cases, yet. The story of industrialization is so far a story of customized projects. Therefore a real SRF accelerator product is not yet available in this market. License agreements and technology transfer between leading SRF laboratories and industry is a powerful tool for enabling industry to manufacture SRF components or turnkey superconducting accelerator modules for other laboratories and users with few or no capabilities in SRF technology. Despite all this, the SRF accelerator market today is still a small market. The manufacture and preparation of the components require a range of specialized knowledge, as well as complex and expensive manufacturing installations like for high precision machining, electron beam welding, chemical surface preparation and class ISO4 clean room assembly. Today, the involved industry in the US and Europe comprises medium-sized companies. In Japan, some big enterprises are involved. So far, roughly 2500 SRF cavities have been built by or ordered from industry worldwide. Another substantial step might come from the International Linear Collider (ILC) project

  9. Manufacturing and Testing of Accelerator Superconducting Magnets

    CERN Document Server

    Rossi, L

    2014-01-01

    Manufacturing of superconducting magnet for accelerators is a quite complex process that is not yet fully industrialized. In this paper, after a short history of the evolution of the magnet design and construction, we review the main characteristics of the accelerator magnets having an impact on the construction technology. We put in evidence how the design and component quality impact on construction and why the final product calls for a total-quality approach. LHC experience is widely discussed and main lessons are spelled out. Then the new Nb$_{3}$Sn technology, under development for the next generation magnet construction, is outlined. Finally, we briefly review the testing procedure of accelerator superconducting magnets, underlining the close connection with the design validation and with the manufacturing process.

  10. Manufacturing and Testing of Accelerator Superconducting Magnets

    International Nuclear Information System (INIS)

    Rossi, L

    2014-01-01

    Manufacturing of superconducting magnet for accelerators is a quite complex process that is not yet fully industrialized. In this paper, after a short history of the evolution of the magnet design and construction, we review the main characteristics of the accelerator magnets having an impact on the construction technology. We put in evidence how the design and component quality impact on construction and why the final product calls for a total-quality approach. LHC experience is widely discussed and main lessons are spelled out. Then the new Nb3Sn technology, under development for the next generation magnet construction, is outlined. Finally, we briefly review the testing procedure of accelerator superconducting magnets, underlining the close connection with the design validation and with the manufacturing process

  11. Manufacturing and Testing of Accelerator Superconducting Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, L [European Organization for Nuclear Research, Geneva (Switzerland)

    2014-07-01

    Manufacturing of superconducting magnet for accelerators is a quite complex process that is not yet fully industrialized. In this paper, after a short history of the evolution of the magnet design and construction, we review the main characteristics of the accelerator magnets having an impact on the construction technology. We put in evidence how the design and component quality impact on construction and why the final product calls for a total-quality approach. LHC experience is widely discussed and main lessons are spelled out. Then the new Nb3Sn technology, under development for the next generation magnet construction, is outlined. Finally, we briefly review the testing procedure of accelerator superconducting magnets, underlining the close connection with the design validation and with the manufacturing process.

  12. Design of a superconducting accelerator for positron annihilation spectroscopy

    International Nuclear Information System (INIS)

    Oshima, Nagayasu; Kuroda, Ryunosuke; Suzuki, Ryoichi; Kinomura, Atsushi; Ohdaira, Toshiyuki; Hayashizaki, Noriyosu; Hattori, Toshiyuki

    2008-01-01

    A design of a superconducting accelerator for a positron beam with energy of ∼1 MeV for positron annihilation spectroscopy is proposed. The total system can be extremely small with an application of superconducting technology. Both a miniaturization and easy maintenance of the accelerator can be achieved by usage of a small liquidless refrigerator for cooling of a superconducting RF cavity. Moreover, operation duty cycle of the superconducting cavity is ∼100%. The required RF power to drive the system is only ∼10 W, therefore a large-size klystron is not necessary. The designed system including a slow positron source is small (∼2 m 3 ) enough to be used in a general laboratory. (author)

  13. Traveling Wave Accelerating Structure for a Superconducting Accelerator

    CERN Document Server

    Kanareykin, Alex; Solyak, Nikolay

    2005-01-01

    We are presenting a superconducting traveling wave accelerating structure (STWA) concept, which may prove to be of crucial importance to the International Linear Collider. Compared to the existing design of a TESLA cavity, the traveling wave structure can provide ~20-40% higher accelerating gradient for the same aperture and the same peak surface magnetic RF field. The recently achieved SC structure gradient of 35 MV/m can be increased up to ~50 MV/m with the new STWA structure design. The STWA structure is supposed to be installed into the superconducting resonance ring and is fed by the two couplers with appropriate phase advance to excite a traveling wave inside the structure. The system requires two independent tuners to be able to adjust the cavity and feedback waveguide frequencies and hence to reduce the unwanted backward wave. In this presentation we discuss the structure design, optimization of the parameters, tuning requirements and plans for further development.

  14. CAS CERN Accelerator School: Superconductivity in particle accelerators. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Turner, S [ed.

    1996-05-01

    These proceedings present the lectures given at the ninth specialized course organized by the CERN Accelerator School (CAS), the topic this time being ``Superconductivity in Particle Accelerators``. This course is basically a repeat of that given at the same location in 1988 whose proceedings were published as CERN 89-04. However, the opportunity was taken to improve the presentation of the various topics and to introduce the latest developments in this rapidly expanding field. First the basic theory of superconductivity is introduced. A review of the materials used for sc magnetics is followed by magnet design requirements, the influence of eddy and persistent currents, and the methods used to provide quench protection. Next follows the basic theory of sc cavities, their materials, high-gradient limitations, the problem of field emission and then their power couplers. After an introduction to cryogenics and cryoplants, the theory of superfluidity is presented followed by a review of the use of superfluid helium. Finally, two seminars detail the impact of superconductors in the design of the LHC and LEP2 accelerators. (orig.).

  15. CAS CERN Accelerator School: Superconductivity in particle accelerators. Proceedings

    International Nuclear Information System (INIS)

    Turner, S.

    1996-05-01

    These proceedings present the lectures given at the ninth specialized course organized by the CERN Accelerator School (CAS), the topic this time being ''Superconductivity in Particle Accelerators''. This course is basically a repeat of that given at the same location in 1988 whose proceedings were published as CERN 89-04. However, the opportunity was taken to improve the presentation of the various topics and to introduce the latest developments in this rapidly expanding field. First the basic theory of superconductivity is introduced. A review of the materials used for sc magnetics is followed by magnet design requirements, the influence of eddy and persistent currents, and the methods used to provide quench protection. Next follows the basic theory of sc cavities, their materials, high-gradient limitations, the problem of field emission and then their power couplers. After an introduction to cryogenics and cryoplants, the theory of superfluidity is presented followed by a review of the use of superfluid helium. Finally, two seminars detail the impact of superconductors in the design of the LHC and LEP2 accelerators. (orig.)

  16. Status report on the Karlsruhe prototype superconducting proton linerar accelerator

    International Nuclear Information System (INIS)

    Citron, A.

    1974-01-01

    A short intoduction about linear accelerators in general and the advantage of using superconducting resonators is given. Subsequently some basic efforts on r.f. superconductivity are recalled and the status of technology of surface preparations is reported. The status of the Karlsruhe accelerator is given. In the low energy region some difficulties caused by mechanical instabilities had to be overcome. Protons have been accelerated in this part. Model studies for the subsequent sections of the accelerator have been started and look promising. (author)

  17. Superconducting magnet technology for particle accelerators and detectors seminar

    CERN Multimedia

    CERN. Geneva

    2006-01-01

    This lecture is an introduction to superconducting magnets for particle accelerators and detectors, the aim being to explain the vocabulary and describe the basic technology of modern superconducting magnets, and to explore the limits of the technology. It will include the following: - Why we need superconducting magnets - Properties of superconductors, critical field, critical temperature - Why accelerators need fine filaments and cables; conductor manufacture - Temperature rise and temperature margin: the quench process, training - Quench protection schemes. Protection in the case of the LHC. - Magnets for detectors - The challenges of state-of-the-art magnets for High Energy Physics

  18. A new measurement tool for characterization of superconducting rf accelerator cavities using high-performance LTS SQUIDs

    Energy Technology Data Exchange (ETDEWEB)

    Vodel, W [Friedrich-Schiller-University Jena, Helmholtzweg 5, 07743 Jena (Germany); Neubert, R [Friedrich-Schiller-University Jena, Helmholtzweg 5, 07743 Jena (Germany); Nietzsche, S [Friedrich-Schiller-University Jena, Helmholtzweg 5, 07743 Jena (Germany); Seidel, P [Friedrich-Schiller-University Jena, Helmholtzweg 5, 07743 Jena (Germany); Knaack, K [DESY Hamburg (Germany); Wittenburg, K [DESY Hamburg (Germany); Peters, A [Heidelberger Ionenstrahl-Therapiezentrum, Heidelberg (Germany)

    2007-11-15

    This paper presents a new system to measure very low currents in an accelerator environment, using a cryogenic current comparator (CCC). In principle a CCC is a conventional current transformer using the high-performance SQUID technology to sense the magnetic fields caused by the beam current. Since the system is sensitive on a pA level, it is an optimum device to detect dark currents of superconducting cavities. The system presented here is designed for the test facilities of the superconducting accelerator modules for the European XFEL at the Deutsches Elektronen-Synchrotron (DESY) in Hamburg. Measurements in a quiet environment showed that an intrinsic noise level of the CCC of 40 pA Hz{sup -1/2} could be achieved.

  19. SSC string test facility for superconducting magnets: Testing capabilities and program for collider magnets

    International Nuclear Information System (INIS)

    Kraushaar, P.; Burgett, W.; Dombeck, T.; McInturff, A.; Robinson, W.; Saladin, V.

    1993-05-01

    The Accelerator Systems String Test (ASST) R ampersand D Testing Facility has been established at the SSC Laboratory to test Collider and High Energy Booster (HEB) superconducting magnet strings. The facility is operational and has had two testing periods utilizing a half cell of collider prototypical magnets with the associated spool pieces and support systems. This paper presents a description of the testing capabilities of the facility with respect to components and supporting subsystems (cryogenic, power, quench protection, controls and instrumentation), the planned testing program for the collider magnets

  20. Cryomodule tests of four Tesla-like cavities in the Superconducting RF Test Facility at KEK

    Directory of Open Access Journals (Sweden)

    Eiji Kako

    2010-04-01

    Full Text Available A 6-m cryomodule including four Tesla-like cavities was developed, and was tested in the Superconducting RF Test Facility phase-I at KEK. The performance as a total superconducting cavity system was checked in the cryomodule tests at 2 K with high rf power. One of the four cavities achieved a stable pulsed operation at 32  MV/m, which is higher than the operating accelerating gradient in the ILC. The maximum accelerating gradient (E_{acc,max⁡} obtained in the vertical cw tests was maintained or slightly improved in the cryomodule tests operating in a pulse mode. Compensation of the Lorentz force detuning at 31  MV/m was successfully demonstrated by a piezo tuner and predetuning.

  1. CEBAF [Continuous Electron Beam Accelerator Facility] design report

    International Nuclear Information System (INIS)

    1986-05-01

    This book describes the conceptual design of, and the planning for, the Continuous Electron Beam Accelerator Facility (CEBAF), which will be a high-intensity, continuous-wave electron linear accelerator (linac) for nuclear physics. Its principal scientific goal is to understand the quark structure, behavior, and clustering of individual nucleons in the nuclear medium, and simultaneously to understand the forces governing this behavior. The linac will consist of 1 GeV of accelerating structure, split into two antiparallel 0.5-GeV segments. The segments will be connected by a beam transport system to circulate the electron beams from one segment to the other for up to four complete passes of acceleration. The maximum beam energy will be 4 GeV at a design current of 200 microamperes. The accelerator complex will also include systems to extract three continuous beams from the linac and to deliver them to three experimental halls equipped with detectors and instrumentation for nuclear physics research. The accelerating structure will be kept superconducting within insulated cryostats filled with liquid helium produced at a central helium refrigerator and distributed to the cryostats via insulated transfer lines. An injector, instrumentation and controls for the accelerator, radio-frequency power systems, and several support facilities will also be provided. A cost estimate based on the Work Breakdown Structure has been completed. Assuming a five-year construction schedule starting early in FY 1987, the total estimated cost is $236 million (actual year dollars), including contingency

  2. Advanced Beamline Design for Fermilab's Advanced Superconducting Test Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Prokop, Christopher [Northern Illinois Univ., DeKalb, IL (United States)

    2014-01-01

    The Advanced Superconducting Test Accelerator (ASTA) at Fermilab is a new electron accelerator currently in the commissioning stage. In addition to testing superconducting accelerating cavities for future accelerators, it is foreseen to support a variety of Advanced Accelerator R&D (AARD) experiments. Producing the required electron bunches with the expected flexibility is challenging. The goal of this dissertation is to explore via numerical simulations new accelerator beamlines that can enable the advanced manipulation of electron bunches. The work especially includes the design of a low-energy bunch compressor and a study of transverse-to-longitudinal phase space exchangers.

  3. ISABELLE: a proposal for construction of a proton--proton storage accelerator facility

    International Nuclear Information System (INIS)

    1976-05-01

    The construction of an Intersecting Storage Accelerator Facility (ISA or ISABELLE) at Brookhaven National Laboratory is proposed. ISABELLE will permit the exploration of proton-proton collisions at center-of-mass energies continuously variable from 60 to 400 GeV and with luminosities of 10 32 to 10 33 cm -2 sec -1 over the entire range. An overview of the physics potential of this machine is given, covering the production of charged and neutral intermediate vector bosons, the hadron production at high transverse momentum, searches for new, massive particles, and the energy dependence of the strong interactions. The facility consists of two interlaced rings of superconducting magnets in a common tunnel about 3 km in circumference. The proton beams will collide at eight intersection regions where particle detectors will be arranged for studying the collision processes. Protons of approximately 30 GeV from the AGS will be accumulated to obtain the design current of 10A prior to acceleration to final energy. The design and performance of existing full-size superconducting dipoles and quadrupoles is described. The conceptual design of the accelerator systems and the conventional structures and buildings is presented. A preliminary cost estimate and construction schedule are given. Possible future options such as proton-antiproton, proton-deuteron and electron-proton collisions are discussed

  4. Experimental studies on the thermal properties of fast pulsed superconducting accelerator magnets; Experimentelle Untersuchungen thermischer Eigenschaften schnell gepulster supraleitender Beschleunigermagnete

    Energy Technology Data Exchange (ETDEWEB)

    Bleile, Alexander

    2016-01-06

    The new Facility for Antiproton and Ion Research FAIR is being constructed at the GSI research center in Darmstadt (Germany). This wordwide unique accelerator facility will provide beams of ions and antiprotons at high intensities and high energies for the fundamental research in nuclear, atomic and plasma physics as well as for applied science. The superconducting synchrotron SIS100 with a magnetic rigidity of 100 T/m, the core component of the FAIR facility will provide primary ion beams of all types from hydrogen up to uranium. One of the key technical systems of a new synchrotron are fast ramped electromagnets for the generation of fast ramped magnetic fields for deflecting and focusing of the ion beams. To reduce the energy consumption and to keep the operating costs of the synchrotron as low as possible superconducting magnet technology is applied in the SIS100. Superconducting magnets have been developed at GSI within the scope of the FAIR project. Although the superconducting magnet technology promises high cost saving, the power consumption of the fast ramped superconducting magnets can't be completely neglected. The pulsed operation generates dynamic losses in the iron yokes as well as in the superconducting coils of the magnets. A forced two-phase helium flow provides effective cooling for supercounducting magnets exposed to a continous relative high heat flow. The subject of this PhD thesis is experimental investigations and analysis of the dynamic power losses in fast ramped superconducting magnets and their dependencies on the operation cycles of the synchrotron. This research was conducted on the the first series SIS100 dipole magnet. Based on the experimentally defined dynamic heat loads and helium mass flow rates in the dipole magnet the heat loads and helium consumption for all other types of superconducting magnet modules of the SIS100 have been estimated. These results are essential for the development of the cooling system for the the

  5. A database for superconducting cavities for the TESLA Test Facility

    International Nuclear Information System (INIS)

    Gall, P.D.; Goessel, A.; Gubarev, V.; Iversen, J.

    2006-01-01

    We look back on 10 years experience using a database for superconducting cavities for the TESLA Test Facility (TTF). The database was developed to collect data of every preparation step and measurement in order to optimize cavity production and preparation techniques to meet the ambitious goal of high accelerating gradients at high quality factors. Data from 110 superconducting 9-cell cavities, 50 single cell cavities, several 2- to 7-cell cavities and about 60 RF couplers were collected in the database. In addition, company measurements on sub-assemblies and parts forming the next 30 9-cell cavities were stored, thus establishing the database as part of a quality management system. This database is dynamically accessible via an extensive graphical web-interface based on ORACLE products, which enables the users to select and analyse the collected data easily from anywhere

  6. Operating experience with superconducting cavities at the TESLA test facility

    International Nuclear Information System (INIS)

    Moeller, Wolf-Dietrich

    2003-01-01

    A description of the TESLA Test Facility, which has been set up at DESY by the TeV Energy Superconducting Accelerator (TESLA) collaboration, will be given as it is now after five years of installation and operation. The experience with the first three modules, each containing 8 superconducting 9-cell cavities, installed and operated in the TTF-linac will be described. The measurements in the vertical and horizontal cryostats as well as in the modules will be compared. Recent results of the operation at the TESLA design current, macropulses of 800 μsec with bunches of 3.2 nC at a rate of 2.25 MHz are given. New measurement results of the higher order modes (HOM) will be presented. The operation and optimisation of the TTF Free Electron Laser (TTF-FEL) will also be covered in this paper. (author)

  7. Development of superconducting acceleration cavity technology for free electron lasers

    International Nuclear Information System (INIS)

    Lee, Jong Min; Lee, Byung Cheol; Kim, Sun Kook; Jeong, Young Uk; Cho, Sung Oh

    2000-10-01

    As a result of the cooperative research between the KAERI and Peking University, the key technologies of superconducting acceleration cavity and photoelectron gun have been developed for the application to high power free electron lasers. A 1.5-GHz, 1-cell superconducting RF cavity has been designed and fabricated by using pure Nb sheets. The unloaded Q values of the fabricated superconducting cavity has been measured to be 2x10 9 at 2.5K, and 8x10 9 at 1.8K. The maximum acceleration gradient achieved was 12 MeV/m at 2.5K, and 20MV/m at 1.8 K. A cryostat for the 1-cell superconducting cavity has been designed. As a source of electron beam, a DC photocathode electron gun has been designed and fabricated, which is composed of a photocathode evaporation chamber and a 100-keV acceleration chamber. The efficiency of the Cs2Te photocathode is 3% nominally at room temperature, 10% at 290 deg C. The superconducting photoelectron gun system developed has been estimated to be a good source of high-brightness electron beam for high-power free electron lasers

  8. Development of superconducting acceleration cavity technology for free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Min; Lee, Byung Cheol; Kim, Sun Kook; Jeong, Young Uk; Cho, Sung Oh

    2000-10-01

    As a result of the cooperative research between the KAERI and Peking University, the key technologies of superconducting acceleration cavity and photoelectron gun have been developed for the application to high power free electron lasers. A 1.5-GHz, 1-cell superconducting RF cavity has been designed and fabricated by using pure Nb sheets. The unloaded Q values of the fabricated superconducting cavity has been measured to be 2x10{sup 9} at 2.5K, and 8x10{sup 9} at 1.8K. The maximum acceleration gradient achieved was 12 MeV/m at 2.5K, and 20MV/m at 1.8 K. A cryostat for the 1-cell superconducting cavity has been designed. As a source of electron beam, a DC photocathode electron gun has been designed and fabricated, which is composed of a photocathode evaporation chamber and a 100-keV acceleration chamber. The efficiency of the Cs2Te photocathode is 3% nominally at room temperature, 10% at 290 deg C. The superconducting photoelectron gun system developed has been estimated to be a good source of high-brightness electron beam for high-power free electron lasers.

  9. Planned High-brightness Channeling Radiation Experiment at Fermilab's Advanced Superconducting Test Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Blomberg, Ben [NICADD, DeKalb; Mihalcea, Daniel [NICADD, DeKalb; Panuganti, Harsha [NICADD, DeKalb; Piot, Philippe [Fermilab; Brau, Charles [Vanderbilt U.; Choi, Bo [Vanderbilt U.; Gabella, William [Vanderbilt U.; Ivanov, Borislav [Vanderbilt U.; Mendenhall, Marcus [Vanderbilt U.; Lynn, Christopher [Swarthmore Coll.; Sen, Tanaji [Fermilab; Wagner, Wolfgang [Forschungszentrum Dresden Rossendorf

    2014-07-01

    In this contribution we describe the technical details and experimental setup of our study aimed at producing high-brightness channeling radiation (CR) at Fermilab’s new user facility the Advanced Superconducting Test Accelerator (ASTA). In the ASTA photoinjector area electrons are accelerated up to 40-MeV and focused to a sub-micron spot on a ~40 micron thick carbon diamond, the electrons channel through the crystal and emit CR up to 80-KeV. Our study utilizes ASTA’s long pulse train capabilities and ability to preserve ultra-low emittance, to produce the desired high average brightness.

  10. CERN-LHC accelerator superconducting magnet. Development and international cooperation

    International Nuclear Information System (INIS)

    Yamamoto, Akira; Nakamoto, Tatsushi; Sasaki, Ken-ichi

    2009-01-01

    CERN-LHC accelerator superconducting magnets and a cooperative work for interaction region quadrupole magnets are introduced. The accelerator commissioning and the incident happened during the commissioning in 2008 is also briefly discussed. (author)

  11. Advanced accelerator research and development

    International Nuclear Information System (INIS)

    Anon.

    1974-01-01

    Research and development on the Positron-Electron Project (PEP), the electron rings, the superconducting accelerator (ESCAR), and the superconductivity program are reported. Efforts relating to the proposed PEP include work on: (1) the injection system; (2) the rf system; (3) the main-ring bend magnets; (4) the magnet power supplies and controls; (5) alignment; (6) radiation and shielding; (7) the vacuum system; and (8) conventional facilities (utilities, etc.). Experimental and theoretical work continued on the development of suitably intense electron rings as vehicles for the collective acceleration of ions. The most difficult problem was found to be the longitudinal (negative mass) instability. Design work was begun for ESCAR (Experimental Superconducting Accelerating Ring), a small proton synchrotron and storage ring using superconducting magnets, which should aid in the design of future large superconducting facilities. Magnet development was largely directed toward the detailed design of the dipole units. A superconducting beam transport line was installed at the Bevatron. (PMA)

  12. Superconducting Radio-Frequency Cavities

    Science.gov (United States)

    Padamsee, Hasan S.

    2014-10-01

    Superconducting cavities have been operating routinely in a variety of accelerators with a range of demanding applications. With the success of completed projects, niobium cavities have become an enabling technology, offering upgrade paths for existing facilities and pushing frontier accelerators for nuclear physics, high-energy physics, materials science, and the life sciences. With continued progress in basic understanding of radio-frequency superconductivity, the performance of cavities has steadily improved to approach theoretical capabilities.

  13. Overview of ten-year operation of the superconducting linear accelerator at the Spallation Neutron Source

    Science.gov (United States)

    Kim, S.-H.; Afanador, R.; Barnhart, D. L.; Crofford, M.; Degraff, B. D.; Doleans, M.; Galambos, J.; Gold, S. W.; Howell, M. P.; Mammosser, J.; McMahan, C. J.; Neustadt, T. S.; Peters, C.; Saunders, J. W.; Strong, W. H.; Vandygriff, D. J.; Vandygriff, D. M.

    2017-04-01

    The Spallation Neutron Source (SNS) has acquired extensive operational experience of a pulsed proton superconducting linear accelerator (SCL) as a user facility. Numerous lessons have been learned in its first 10 years operation to achieve a stable and reliable operation of the SCL. In this paper, an overview of the SNS SCL design, qualification of superconducting radio frequency (SRF) cavities and ancillary subsystems, an overview of the SNS cryogenic system, the SCL operation including SCL output energy history and downtime statistics, performance stability of the SRF cavities, efforts for SRF cavity performance recovery and improvement at the SNS, and maintenance activities for cryomodules are introduced.

  14. Overview of ten-year operation of the superconducting linear accelerator at the Spallation Neutron Source

    International Nuclear Information System (INIS)

    Kim, Sang-Ho; Afanador, Ralph; Barnhart, Debra L.; Crofford, Mark T.; Degraff, Brian D.

    2017-01-01

    The Spallation Neutron Source (SNS) has acquired extensive operational experience of a pulsed proton superconducting linear accelerator (SCL) as a user facility. Numerous lessons have been learned in its first 10 years operation to achieve a stable and reliable operation of the SCL. In this paper, an overview of the SNS SCL design, qualification of superconducting radio frequency (SRF) cavities and ancillary subsystems, an overview of the SNS cryogenic system, the SCL operation including SCL output energy history and downtime statistics, performance stability of the SRF cavities, efforts for SRF cavity performance recovery and improvement at the SNS, and maintenance activities for cryomodules are introduced.

  15. Cryogenic systems for large superconducting accelerators/storage rings

    International Nuclear Information System (INIS)

    Brown, D.P.

    1981-01-01

    Particle accelerators and storage rings which utilize superconducting magnets have presented cryogenic system designers, as well as magnet designers, with many new challenges. When such accelerators were first proposed, little operational experience existed to guide the design. Two superconducting accelerators, complete with cryogenic systems, have been designed and are now under construction. These are the Fermilab Doubler Project and the Brookhaven National Laboratory ISABELLE Project. The cryogenic systems which developed at these two laboratories share many common characteristics, especially as compared to earlier cryogenic systems. Because of this commonality, these characteristics can be reasonably taken as also being representative of future systems. There are other areas in which the two systems are dissimilar. In those areas, it is not possible to state which, if either, will be chosen by future designers. Some of the design parameters for the two systems are given

  16. High Accelerating Field Superconducting Radio Frequency Cavities

    Science.gov (United States)

    Orr, R. S.; Saito, K.; Furuta, F.; Saeki, T.; Inoue, H.; Morozumi, Y.; Higo, T.; Higashi, Y.; Matsumoto, H.; Kazakov, S.; Yamaoka, H.; Ueno, K.; Sato, M.

    2008-06-01

    We have conducted a study of a series of single cell superconducting RF cavities at KEK. These tests were designed to investigate the effect of surface treatment on the maximum accelerating field attainable. All of these cavities are of the ICHIRO shape, based on the Low Loss shape. Our results indicate that accelerating fields as high as the theoretical maximum of 50MV/m are attainable.

  17. Methods of Phase and Power Control in Magnetron Transmitters for Superconducting Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Kazadevich, G. [MUONS Inc., Batavia; Johnson, R. [MUONS Inc., Batavia; Neubauer, M. [MUONS Inc., Batavia; Lebedev, V. [Fermilab; Schappert, W. [Fermilab; Yakovlev, V. [Fermilab

    2017-05-01

    Various methods of phase and power control in magnetron RF sources of superconducting accelerators intended for ADS-class projects were recently developed and studied with conventional 2.45 GHz, 1 kW, CW magnetrons operating in pulsed and CW regimes. Magnetron transmitters excited by a resonant (injection-locking) phasemodulated signal can provide phase and power control with the rates required for precise stabilization of phase and amplitude of the accelerating field in Superconducting RF (SRF) cavities of the intensity-frontier accelerators. An innovative technique that can significantly increase the magnetron transmitter efficiency at the widerange power control required for superconducting accelerators was developed and verified with the 2.45 GHz magnetrons operating in CW and pulsed regimes. High efficiency magnetron transmitters of this type can significantly reduce the capital and operation costs of the ADSclass accelerator projects.

  18. Superconducting RF Development at Nuclear Science Centre

    CERN Document Server

    Roy, Amit

    2005-01-01

    A Superconducting Linac is being installed as a booster for the 15 UD Pelletron accelerator at Nuclear Science Centre (NSC). The accelerating structure for this linac is a Nb QWR cavity, designed and fabricated as a joint collaboration between NSC and ANL, USA. Initial cavities required for the first linac module were fabricated at ANL. For fabrication of cavities required for future modules a Superconducting Resonator Fabrication Facility has been set up at NSC. Three quarter wave resonator (QWR) cavities have been fabricated using the in-house facility. This facility has been used for repairs on the resonators which sprung leaks. Fabrication of fifteen resonators for the second and third linac modules is under progress. Eight resonators along with a superconducting solenoid has been installed in the first linac cryostat and tested for energy gain with a pulsed beam of 90 MeV Si from the Pelletron. Acceleration of the ions to 96 MeV was measured downstream and beam transmission through the linac was measured...

  19. Status of superconducting RF test facility (STF)

    International Nuclear Information System (INIS)

    Hayano, Hitoshi

    2005-01-01

    A superconducting technology was recommended for the main linac design of the International Linear Collider (ILC) by the International Technology Recommendation Panel (ITRP). The basis for this design has been developed and tested at DESY, and R and D is progressing at many laboratories around the world including DESY, Orsay, KEK, FNAL, SLAC, Cornell, and JLAB. In order to promote Asian SC-technology for ILC, construction of a test facility in KEK was discussed and decided. The role and status of the superconducting RF test facility (STF) is reported in this paper. (author)

  20. Superpower proton linear accelerators for neutron generators and electronuclear facilities

    International Nuclear Information System (INIS)

    Lazarev, N.V.; Kozodaev, A.M.

    2000-01-01

    The report is a review of projects on the superpower proton linear accelerators (SPLA) for neutron generators (NG) and electronuclear facilities, proposed in the recent years. The beam average output capacity in these projects reaches 100 MW. The basic parameters of certain operating NGs, as well as some projected NGs will the SPLA drivers are presented. The problems on application of superconducting resonators in the SPLA as well as the issues of the SPLA reliability and costs are discussed [ru

  1. The rare isotope accelerator (RIA) facility project

    International Nuclear Information System (INIS)

    Christoph Leemann

    2000-01-01

    The envisioned Rare-Isotope Accelerator (RIA) facility would add substantially to research opportunities for nuclear physics and astrophysics by combining increased intensities with a greatly expanded variety of high-quality rare-isotope beams. A flexible superconducting driver linac would provide 100 kW, 400 MeV/nucleon beams of any stable isotope from hydrogen to uranium onto production targets. Combinations of projectile fragmentation, target fragmentation, fission, and spallation would produce the needed broad assortment of short-lived secondary beams. This paper describes the project's background, purpose, and status, the envisioned facility, and the key subsystem, the driver linac. RIA's scientific purposes are to advance current theoretical models, reveal new manifestations of nuclear behavior, and probe the limits of nuclear existence [3]. Figures 1 and 2 show, respectively, examples of RIA research opportunities and the yields projected for pursuing them. Figure 3 outlines a conceptual approach for delivering the needed beams

  2. Free-electron laser multiplex driven by a superconducting linear accelerator.

    Science.gov (United States)

    Plath, Tim; Amstutz, Philipp; Bödewadt, Jörn; Brenner, Günter; Ekanayake, Nagitha; Faatz, Bart; Hacker, Kirsten; Honkavaara, Katja; Lazzarino, Leslie Lamberto; Lechner, Christoph; Maltezopoulos, Theophilos; Scholz, Matthias; Schreiber, Siegfried; Vogt, Mathias; Zemella, Johann; Laarmann, Tim

    2016-09-01

    Free-electron lasers (FELs) generate femtosecond XUV and X-ray pulses at peak powers in the gigawatt range. The FEL user facility FLASH at DESY (Hamburg, Germany) is driven by a superconducting linear accelerator with up to 8000 pulses per second. Since 2014, two parallel undulator beamlines, FLASH1 and FLASH2, have been in operation. In addition to the main undulator, the FLASH1 beamline is equipped with an undulator section, sFLASH, dedicated to research and development of fully coherent extreme ultraviolet photon pulses using external seed lasers. In this contribution, the first simultaneous lasing of the three FELs at 13.4 nm, 20 nm and 38.8 nm is presented.

  3. Conceptual design of an L-band recirculating superconducting traveling wave accelerating structure for ILC

    International Nuclear Information System (INIS)

    Avrakhov, P.; Kanareykin, A.; Liu, Z.; Kazakov, S.; KEK, Tsukuba; Solyak, N.; Yakovlev, V.; Gai, W.

    2007-01-01

    With this paper, we propose the conceptual design of a traveling wave accelerating structure for a superconducting accelerator. The overall goal is to study a traveling wave (TW) superconducting (SC) accelerating structure for ILC that allows an increased accelerating gradient and, therefore reduction of the length of the collider. The conceptual studies were performed in order to optimize the acceleration structure design by minimizing the surface fields inside the cavity of the structure, to make the design compatible with existing technology, and to determine the maximum achievable gain in the accelerating gradient. The proposed solution considers RF feedback system redirecting the accelerating wave that passed through the superconducting traveling wave acceleration (STWA) section back to the input of the accelerating structure. The STWA structure has more cells per unit length than a TESLA structure but provides an accelerating gradient higher than a TESLA structure, consequently reducing the cost. In this paper, the STWA cell shape optimization, coupler cell design and feedback waveguide solution are considered. We also discuss the field flatness in the superconducting TW structure, the HOM modes and multipactor performance have been studied as well. The proposed TW structure design gives an overall 46% gain over the SW ILC structure if the 10 m long TW structure is employed

  4. State-of-the-art superconducting accelerator magnets

    CERN Document Server

    Rossi, L

    2002-01-01

    With the LHC the technology of NbTi-based accelerator magnets has been pushed to the limit. By operating in superfluid helium, magnetic fields in excess of 10 T have been reached in various one meter-long model magnets while full scale magnets, 15 meter-long dipoles, have demonstrated possibility of safe operation in the 8.3-9 tesla range, with the necessary, very tight, field accuracy. The paper reviews the key points of the technology that has permitted the construction of the largest existing superconducting installations (Fermilab, Desy and Brookhaven), highlighting the novelties of the design of the LHC dipoles, quadrupoles and other superconducting magnets. All together the LHC project will need more than 5000 km of fine filament superconducting cables capable of 14 kA @ 10 T, 1.9 K. (13 refs).

  5. The Future of Superconducting Technology for Particle Accelerators

    CERN Document Server

    Yamamoto, Akira

    2015-01-01

    Introduction: - Colliders constructed and operated - Future High Energy Colliders under Study - Superconducting Phases and Applications - Possible Choices among SC Materials Superconducting Magnets and the Future - Advances in SC Magnets for Accelerators - Nb$_{3}$Sn for realizing Higher Field - NbTi to Nb$_{3}$Sn for realizing High Field (> 10 T) - HL-LHC as a critical milestone for the Future of Acc. Magnet Technology - Nb$_{3}$Sn Superconducting Magnets (> 11 T)and MgB2 SC Links for HL-LHC - HL-LHC, 11T Dipole Magnet - Nb$_{3}$Sn Quadrupole (MQXF) at IR - Future Circular Collider Study - Conductor development (1998-2008) - Nb$_{3}$Sn conductor program - 16 T Dipole Options and R&D sharing - Design Study and Develoment for SppC in China - High-Field Superconductor and Magnets - HTS Block Coil R&D for 20 T - Canted Cosine Theta (CCT) Coil suitable with Brittle HTS Conductor - A topic at KEK: S-KEKB IRQs just integrated w/ BELLE-II ! Superconducting RF and the Future - Superconducting Phase...

  6. The Future of Superconducting Technology for Particle Accelerators

    CERN Document Server

    Yamamoto, Akira

    2015-01-01

    Introduction: - Colliders constructed and operated - Future High Energy Colliders under Study - Superconducting Phases and Applications - Possible Choices among SC Materials Superconducting Magnets and the Future - Advances in SC Magnets for Accelerators - Nb3Sn for realizing Higher Field - NbTi to Nb3Sn for realizing High Field (> 10 T) - HL-LHC as a critical milestone for the Future of Acc. Magnet Technology - Nb3Sn Superconducting Magnets (> 11 T)and MgB2 SC Links for HL-LHC - HL-LHC, 11T Dipole Magnet - Nb3Sn Quadrupole (MQXF) at IR - Future Circular Collider Study - Conductor development (1998-2008) - Nb3Sn conductor program - 16 T Dipole Options and R&D sharing - Design Study and Develoment for SppC in China - High-Field Superconductor and Magnets - HTS Block Coil R&D for 20 T - Canted Cosine Theta (CCT) Coil suitable with Brittle HTS Conductor - A topic at KEK: S-KEKB IRQs just integrated w/ BELLE-II ! Superconducting RF and the Future - Superconducting Phases and Applications - Poss...

  7. Decay and snapback in superconducting accelerator magnets

    NARCIS (Netherlands)

    Haverkamp, M.

    2003-01-01

    This thesis deals with the explanation and compensation of the effects ‘decay’ and ‘snapback’ in superconducting accelerator magnets, in particular in those used in the new Large Hardron Collider at CERN. During periods of constant magnet excitation, as for example during the injection of particles

  8. Vibrational Stability of SRF Accelerator Test Facility at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    McGee, M.W.; Volk, J.T.; /Fermilab

    2009-05-01

    Recently developed, the Superconducting Radio Frequency (SRF) Accelerator Test Facilities at Fermilab support the International Linear Collider (ILC), High Intensity Neutrino Source (HINS), a new high intensity injector (Project X) and other future machines. These facilities; Meson Detector Building (MDB) and New Muon Lab (NML) have very different foundations, structures, relative elevations with respect to grade level and surrounding soil composition. Also, there are differences in the operating equipment and their proximity to the primary machine. All the future machines have stringent operational stability requirements. The present study examines both near-field and ambient vibration in order to develop an understanding of the potential contribution of near-field sources (e.g. compressors, ultra-high and standard vacuum equipment, klystrons, modulators, utility fans and pumps) and distant noise sources to the overall system displacements. Facility vibration measurement results and methods of possible isolation from noise sources are presented and discussed.

  9. CEBAF: Accelerating cavities look good

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1990-09-15

    The first assembled pairs of superconducting accelerating cavities from German supplier Interatom for the Continuous Electron Beam Accelerator Facility, Newport News, Virginia, have exceeded performance specifications.

  10. CEBAF: Accelerating cavities look good

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The first assembled pairs of superconducting accelerating cavities from German supplier Interatom for the Continuous Electron Beam Accelerator Facility, Newport News, Virginia, have exceeded performance specifications

  11. Latest Development in Superconducting RF Structures for beta=1 Particle Acceleration

    International Nuclear Information System (INIS)

    Peter Kneisel

    2006-01-01

    Superconducting RF technology is since nearly a decade routinely applied to different kinds of accelerating devices: linear accelerators, storage rings, synchrotron light sources and FEL's. With the technology recommendation for the International Linear Collider (ILC) a year ago, new emphasis has been placed on improving the performance of accelerating cavities both in Q-value and in accelerating gradients with the goal to achieve performance levels close to the fundamental limits given by the material parameters of the choice material, niobium. This paper will summarize the challenges to SRF technology and will review the latest developments in superconducting structure design. Additionally, it will give an overview of the newest results and will report on the developments in alternative materials and technologies

  12. Design and test of a superconducting magnet in a linear accelerator for an Accelerator Driven Subcritical System

    International Nuclear Information System (INIS)

    Peng, Quanling; Xu, Fengyu; Wang, Ting; Yang, Xiangchen; Chen, Anbin; Wei, Xiaotao; Gao, Yao; Hou, Zhenhua; Wang, Bing; Chen, Yuan; Chen, Haoshu

    2014-01-01

    A batch superconducting solenoid magnet for the ADS proton linear accelerator has been designed, fabricated, and tested in a vertical dewar in Sept. 2013. A total of ten superconducting magnets will be installed into two separate cryomodules. Each cryomodule contains six superconducting spoke RF cavities for beam acceleration and five solenoid magnets for beam focusing. The multifunction superconducting magnet contains a solenoid for beam focusing and two correctors for orbit correction. The design current for the solenoid magnet is 182 A. A quench performance test shows that the operating current of the solenoid magnet can reach above 300 A after natural quenching on three occasions during current ramping (260 A, 268 A, 308 A). The integrated field strength and leakage field at the nearby superconducting spoke cavities all meet the design requirements. The vertical test checked the reliability of the test dewar and the quench detection system. This paper presents the physical and mechanical design of the batch magnets, the quench detection technique, field measurements, and a discussion of the residual field resulting from persistent current effects

  13. Superconducting materials for particle accelerator magnets

    International Nuclear Information System (INIS)

    Larbalestier, D.C.

    1983-01-01

    Present accelerator designs are clustered around a field of 5 Tesla with several future studies looking at the 8-to-10 Tesla range. There has also been some recent interest in low-field iron-dominated dipoles in which the superconductor will see a field of about 2 Tesla. The demands of this present range of interest can still be met, with the upper limit at about 10 Tesla, by the use of Nb-Ti (or Nb-Ti-Ta) or Nb 3 Sn. Both of these conductors are available in multifilamentary form from industrial sources and are suitable for accelerator magnets. The upper critical field and transition temperature of both types of composite cover the foreseeable range of demand for such magnets. There is no magical new composite on the horizon that is likely to replace Nb-Ti or Nb 3 Sn. One class of materials which has a potentially exciting prospect is that of the ternary molybdenum sulfides. These can have an upper critical field of greater than 50 T, which extends their superconductivity into field ranges unattainable with A15 compounds; the two drawbacks to such materials, however, are the amount of development needed to produce superconductors from them with useful current densities and the fact that it does not appear that they would offer any features not already possessed by Nb-Ti or Nb 3 Sn in the field range presently of interest to accelerator designers. Using this pragmatic approach, this paper addresses these and other superconducting composites in terms of their fabrication, their testing, the measurement aspects of their critical current densities, and other properties which are pertinent to their selection for particle accelerator magnet use

  14. Research on heightening quality of free electron laser using superconducting linear accelerator

    International Nuclear Information System (INIS)

    Minehara, Eisuke

    1996-01-01

    In this paper, the superconducting high frequency linear accelerator technology using low temperature superconductor is introduced, and its application to the heightening of quality of free electron laser is discussed. The high frequency application of superconductivity is a relatively new technology, and the first superconducting high frequency linear accelerator was made at the middle of 1960s. The invention of free electron laser and the development so far are described. In free electron laser, the variation of wavelength, high efficiency and high power output are possible as compared with conventional type lasers. The price and the size are two demerits of free electron laser that remain to the last. In Japan Atomic Energy Research Institute, the adjustment experiment is carried out for the prototype free electron laser. About this prototype, injection system, superconducting accelerator, helium refrigerator, whole solid element high frequency power source, control system, electron beam transport system, undulator system and optical resonator are described. The application of high mean power output free electron laser and its future are discussed. (K.I.)

  15. An overview of BARC-TIFR pelletron linac facility

    International Nuclear Information System (INIS)

    Gupta, A.K.

    2014-01-01

    The 14UD Pelletron Accelerator at Mumbai has recently completed twenty five years of successful operation. The accelerator is primarily used for basic research in the fields of nuclear, atomic, condensed matter and material science. The superconducting Linac booster provides additional acceleration to the ions from Pelletron injector up to A∼60 region with E∼5 MeV/A. Further, an alternate injector system to the Superconducting LINAC booster is planned as an augmentation programme, comprising of a superconducting ECR ion source, room temperature RFQ and superconducting low-beta cavity resonators. This talk will provide an overview of the recent developmental activities carried out at the Pelletron Accelerator Facility, resulting in enhanced overall performance and uptime of the accelerator. The application oriented programs initiated at Pelletron Accelerator and the current status of the alternate injector system at the Pelletron-Linac facility will also be discussed. (author)

  16. An overview of BARC-TIFR Pelletron-Linac Facility

    International Nuclear Information System (INIS)

    Gupta, A. K.

    2015-01-01

    The 14UD Pelletron Accelerator at Mumbai has recently completed twenty five years of successful operation. The accelerator is primarily used for basic research in the fields of nuclear, atomic, condensed matter and material science. The superconducting Linac booster provides additional acceleration to the ions from Pelletron injector up to A~60 region with E~5 MeV/A. Further, an alternate injector system to the Superconducting LINAC booster is planned as an augmentation programme, comprising of a superconducting ECR ion source, room temperature RFQ and superconducting low-beta cavity resonators. This talk will provide an overview of the recent developmental activities carried out at the Pelletron Accelerator Facility, resulting in enhanced overall performance and uptime of the accelerator. The application oriented programs initiated at Pelletron Accelerator and the current status of the alternate injector system at the Pelletron-Linac facility will also be discussed. (author)

  17. Application of radiofrequency superconductivity to accelerators for high-current ion beams

    International Nuclear Information System (INIS)

    Delayen, J.R.; Bohn, C.L.; Kennedy, W.L.; Roche, C.T.; Sagalovsky, L.

    1992-01-01

    A development program is underway to apply rf superconductivity to the design of continuous-wave (cw) linear accelerators for high-current, high-brightness ion beam. During the last few years, considerable progress has been made both experimentally and theoretically toward this application. Recent tests of niobium resonators for ion acceleration have yielded average accelerating gradients as high as 18 MV/m. In an experiment with a radio-frequency quadrupole geometry, niobium was found to sustain cw peak surface electric fields as high as 128 MV/m over large (10 cm) surface areas. Theoretical studies of beam halo, cumulative beam breakup and alternating-phase focusing have also yielded important results. This paper su-summarizes the recent progress and identifies current and future work in the areas of superconducting accelerator technology for high-current ion beams

  18. Feasibility study for an industrial superconducting table-top electron accelerator; Machbarkeitstudie fuer einen industriellen supraleitenden Table Top Elektronenbeschleuniger

    Energy Technology Data Exchange (ETDEWEB)

    Buettig, H.; Enghardt, W.; Gabriel, F.; Janssen, D.; Michel, P.; Pobell, F.; Prade, H.; Schneider, C.; Kudryavtsev, A.; Haberstroh, C.; Sandner, W.; Will, I.

    2004-07-01

    A concept of a table-top accelerator, consisting of a superconducting resonator and subsequent 6 standard TESLA cells working with a frequency of 1.3 GHz, is presented. Then electron gun is based on a photocathode. Especially described are the photocathode part, the laser system, the cryostat module, the RF system, the beam extraction, and the cryogenic facility. Finally the efficiency and the costs are considered, (HSI)

  19. Novel Approach to Linear Accelerator Superconducting Magnet System

    International Nuclear Information System (INIS)

    Kashikhin, Vladimir

    2011-01-01

    Superconducting Linear Accelerators include a superconducting magnet system for particle beam transportation that provides the beam focusing and steering. This system consists of a large number of quadrupole magnets and dipole correctors mounted inside or between cryomodules with SCRF cavities. Each magnet has current leads and powered from its own power supply. The paper proposes a novel approach to magnet powering based on using superconducting persistent current switches. A group of magnets is powered from the same power supply through the common, for the group of cryomodules, electrical bus and pair of current leads. Superconducting switches direct the current to the chosen magnet and close the circuit providing the magnet operation in a persistent current mode. Two persistent current switches were fabricated and tested. In the paper also presented the results of magnetic field simulations, decay time constants analysis, and a way of improving quadrupole magnetic center stability. Such approach substantially reduces the magnet system cost and increases the reliability.

  20. Superconductivity application technologies. Superconducting quadrupole magnet and cooling system for KEK B factory

    International Nuclear Information System (INIS)

    Tsuchiya, Kiyosumi; Yamaguchi, Kiyoshi; Sakurabata, Hiroaki; Seido, Masahiro; Matsumoto, Kozo.

    1997-01-01

    At present in National Laboratory for High Energy Physics (KEK), the construction of B factory is in progress. By colliding 8 GeV electrons and 3.5 GeV positrons, this facility generates large amounts of B mesons and anti-B mesons, and performs the elementary particle experiment of high accuracy. It is the collision type accelerator of asymmetric two-ring type comprising 8 GeV and 3.5 GeV rings. In the field of high energy physics, superconductivity technology has been put to practical use. As the objects of superconductivity technology, there are dipole magnet for bending beam, quadrupole magnet for adjusting beam, large solenoid magnet used for detector and so on. Superconducting magnets which are indispensable for high energy, superconducting wire material suitable to accelerators, and the liquid helium cooling system for maintaining superconducting magnets at 4.4 K are reported. The technologies of metallic conductors and making their coils have advanced rapidly, and also cooling technology has advanced, accordingly, superconductivity technology has reached the stage of practical use perfectly. (K.I.)

  1. Stability of superconducting Rutherford cables for accelerator magnets

    NARCIS (Netherlands)

    Willering, G.P.

    2009-01-01

    The stability of superconducting magnets has a high priority for particle accelerators, since the operational time and operational collision energy depend strongly on it. Local heat dissipation due to beam loss and conductor movement is inevitable, causing local hot spots in the conductor, possibly

  2. Status report of pelletron accelerator and ECR based heavy ion accelerator programme

    International Nuclear Information System (INIS)

    Gupta, A.K.

    2015-01-01

    The BARC-TIFR Pelletron Accelerator is completing twenty seven years of round-the-clock operation, serving diverse users from institutions within and outside DAE. Over the years, various developmental activities and application oriented programs have been initiated at Pelletron Accelerator Facility, resulting into enhanced utilization of the accelerator. We have also been pursuing an ECR based heavy ion accelerator programme under XII th Plan, consisting of an 18 GHz superconducting ECR (Electron Cyclotron Resonance) ion source and a room temperature RFQ (Radio Frequency Quadrupole) followed by low and high beta superconducting niobium resonator cavities. This talk will provide the current status of Pelletron Accelerator and the progress made towards the ECR based heavy ion accelerator program at BARC. (author)

  3. Workshop on the accelerator for particle therapy

    International Nuclear Information System (INIS)

    Inoue, M.; Ujeno, Y.

    1991-02-01

    A two-day workshop on the accelerator for particle therapy was held on August 22-23, 1990, with the aim of mutual understanding of medical accelerators among investigators. The state-of-the-art facilities in Japan and medical proton accelerators in Japan and other countries were introduced. This is a compilation of papers presented at the workshop: (1) particle radiotherapy at the National Institute of Radiological Sciences (NIRS); (2) proton therapy; (3) treatment planning, especially for photon and electron therapies; (4) heavy ion synchrotron project at the NIRS; (5) medical proton accelerator project of Tsukuba University and recent status of Loma Linda University Medical Center Proton Beam Facility; (6) inspection report on the Loma Linda University Medical Center Proton Beam Facility; (7) accelerator project of Kyoto University; (8) actual conditions of the 7 MeV proton linear accelerator; (9) design study of superconducting compact cyclotron prototype model; (10) medical superconducting prototype cyclotron; (11) RCNP cyclotron cascade project; (12) beam extraction from synchrotron; (13) radiation safety design in high energy particle accelerator facilities. (N.K.)

  4. Development of a superconducting CH-accelerator-structure for light and heavy ions; Entwicklung einer supraleitenden CH-Beschleuniger-Struktur fuer leichte und schwere Ionen

    Energy Technology Data Exchange (ETDEWEB)

    Liebermann, Holger

    2007-07-01

    This work deals with the development of the prototype of a superconducting CH accelerator structure. The simulations were calculated with the program CST Microwave Studio. It is based on the finite integration theory, which the Maxwell equations in a two-grid matrix form convicted so they can be solved numerically. In another chapter, a method for determining the coupling strength is discussed. The conditions that previously were created for the optimization of the prototype of the superconducting CH structure are described. It was for the optimization of the field distribution on the beam axis by adjusting the end cell design, optimization of support for the magnetic and electric fields, leading to reduction of the quadrupole component of the CH-structure, the coupling and, finally, the possibility of static tuning during the completion of the structure. On the basis of these investigations the completion of an initial prototype superconducting at the company ACCEL in Bergisch Gladbach was commissioned. Finally simulations for an operation accelerator facility, and a look at possible areas of the superconducting CH-structure are presented. The optimizations performed for the high power injector led to a more stable operation of the plant. Through this work it could be shown that the newly-CH structure is very well suited for use in superconducting accelerators. (orig.)

  5. Cooldown of superconducting magnet strings

    International Nuclear Information System (INIS)

    Yuecel, A.; Carcagno, R.H.

    1995-01-01

    A numerical model for the cooldown of the superconducting magnet strings in the Accelerator System String Test (ASST) Facility at the Superconducting Super Collider (SSC) Laboratory is presented. Numerical results are compared with experimental data from the ASST test runs. Agreement between the numerical predictions and experiments is very good over the entire range from room temperature to liquid helium temperatures. The model can be readily adapted to predict the cooldown and warmup behavior of other superconducting magnets or cold masses

  6. An FPGA-Based Quench Detection and Protection System for Superconducting Accelerator Magnets

    CERN Document Server

    Carcagno, Ruben H; Lamm, Michael J; Makulski, Andrzej; Nehring, Roger; Orris, Darryl; Pishchalnikov, Yu M; Tartaglia, M

    2005-01-01

    A new quench detection and protection system for superconducting accelerator magnets was developed at the Fermilab's Magnet Test Facility (MTF). This system is based on a Field-Programmable Gate Array (FPGA) module, and it is made of mostly commerically available, integrated hardware and software components. It provides most of the functionality of our existing VME-based quench detection and protection system, but in addition the new system is easily scalable to protect multiple magnets powered independently and has a more powerful user interface and analysis tools. First applications of the new system will be for testing corrector coil packages. In this paper we describe the new system and present results of testing LHC Interaction Region Quadrupole (IRQ) correctors.

  7. An FPGA-based quench detection and protection system for superconducting accelerator magnets

    International Nuclear Information System (INIS)

    Carcagno, R.H.; Feher, S.; Lamm, M.; Makulski, A.; Nehring, R.; Orris, D.F.; Pischalnikov, Y.; Tartaglia, M.; Fermilab

    2005-01-01

    A new quench detection and protection system for superconducting accelerator magnets was developed for the Fermilab's Magnet Test Facility (MTF). This system is based on a Field-Programmable Gate Array (FPGA) module, and it is made of mostly commercially available, integrated hardware and software components. It provides all the functions of our existing VME-based quench detection and protection system, but in addition the new system is easily scalable to protect multiple magnets powered independently and a more powerful user interface and analysis tools. The new system has been used successfully for testing LHC Interaction Region Quadrupoles correctors and High Field Magnet HFDM04. In this paper we describe the system and present results

  8. An FPGA-based quench detection and protection system for superconducting accelerator magnets

    Energy Technology Data Exchange (ETDEWEB)

    Carcagno, R.H.; Feher, S.; Lamm, M.; Makulski, A.; Nehring, R.; Orris, D.F.; Pischalnikov, Y.; Tartaglia, M.; /Fermilab

    2005-05-01

    A new quench detection and protection system for superconducting accelerator magnets was developed for the Fermilab's Magnet Test Facility (MTF). This system is based on a Field-Programmable Gate Array (FPGA) module, and it is made of mostly commercially available, integrated hardware and software components. It provides all the functions of our existing VME-based quench detection and protection system, but in addition the new system is easily scalable to protect multiple magnets powered independently and a more powerful user interface and analysis tools. The new system has been used successfully for testing LHC Interaction Region Quadrupoles correctors and High Field Magnet HFDM04. In this paper we describe the system and present results.

  9. Gamma-induced Positron Spectroscopy (GiPS) at a superconducting electron linear accelerator

    International Nuclear Information System (INIS)

    Butterling, Maik; Anwand, Wolfgang; Cowan, Thomas E.; Hartmann, Andreas; Jungmann, Marco; Krause-Rehberg, Reinhard; Krille, Arnold; Wagner, Andreas

    2011-01-01

    A new and unique setup for Positron Annihilation Spectroscopy has been established and optimized at the superconducting linear electron accelerator ELBE at Helmholtz-Zentrum Dresden-Rossendorf (Germany). The intense, pulsed (26 MHz) photon source (bremsstrahlung with energies up to 16 MeV) is used to generate positrons by means of pair production throughout the entire sample volume. Due to the very short gamma bunches (< 5 ps temporal length), the facility for Gamma-induced Positron Spectroscopy (GiPS) is suitable for positron lifetime spectroscopy using the accelerator's radiofrequency as time reference. Positron lifetime and Doppler broadening Spectroscopy are employed by a coincident measurement (Age-Momentum Correlation) of the time-of-arrival and energy of the annihilation photons which in turn significantly reduces the background of scattered photons resulting in spectra with high signal to background ratios. Simulations of the setup using the GEANT4 framework have been performed to yield optimum positron generation rates for various sample materials and improved background conditions.

  10. Gamma-induced Positron Spectroscopy (GiPS) at a superconducting electron linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Butterling, Maik, E-mail: maik.butterling@googlemail.com [Martin-Luther University, Dept. of Physics, 06099 Halle (Germany); Institute of Radiation Physics, Helmholtz-Zentrum, Dresden-Rossendorf, P.O. Box 510119, 01314 Dresden (Germany); Anwand, Wolfgang; Cowan, Thomas E.; Hartmann, Andreas [Institute of Radiation Physics, Helmholtz-Zentrum, Dresden-Rossendorf, P.O. Box 510119, 01314 Dresden (Germany); Jungmann, Marco; Krause-Rehberg, Reinhard [Martin-Luther University, Dept. of Physics, 06099 Halle (Germany); Krille, Arnold; Wagner, Andreas [Institute of Radiation Physics, Helmholtz-Zentrum, Dresden-Rossendorf, P.O. Box 510119, 01314 Dresden (Germany)

    2011-11-15

    A new and unique setup for Positron Annihilation Spectroscopy has been established and optimized at the superconducting linear electron accelerator ELBE at Helmholtz-Zentrum Dresden-Rossendorf (Germany). The intense, pulsed (26 MHz) photon source (bremsstrahlung with energies up to 16 MeV) is used to generate positrons by means of pair production throughout the entire sample volume. Due to the very short gamma bunches (< 5 ps temporal length), the facility for Gamma-induced Positron Spectroscopy (GiPS) is suitable for positron lifetime spectroscopy using the accelerator's radiofrequency as time reference. Positron lifetime and Doppler broadening Spectroscopy are employed by a coincident measurement (Age-Momentum Correlation) of the time-of-arrival and energy of the annihilation photons which in turn significantly reduces the background of scattered photons resulting in spectra with high signal to background ratios. Simulations of the setup using the GEANT4 framework have been performed to yield optimum positron generation rates for various sample materials and improved background conditions.

  11. Study of superconducting cavities for high power proton accelerators

    International Nuclear Information System (INIS)

    Biarrotte, J.L.

    2000-01-01

    The research program on hybrid reactors has started in France in order to study the technologies allowing the transmutation of radioactive wastes thanks to a spallation neutron source supplied by a linear high intensity proton accelerator. The study of the high energy part of this accelerator (superconducting accelerator for hybrid) has started, and its aim is the design of superconducting radiofrequency cavities which make the two different sections of the accelerator (0.47 and 0.65). This thesis presents the advance of the work carried out on this topic since 1997, in particular the design and optimization of the 5-cell cavities which work at the 704.4 MHz frequency. The experimental part of the study has been carried out in parallel with the industrial fabrication (Cerca) of several prototypes of mono-cell cavities. These cavities have shown very good RF performances during the tests in vertical cryostat; the A 102 A cavity, in particular develops a Q0 of 7.10 10 (indicating very low RF losses) and reaches an accelerator field of 25 MV/m, i.e. more than two times the specified value (about 10 MV/V). Finally, a new risk analysis method for the excitation of the upper modes is proposed. This method shows in particular the uselessness of the implementation of HOM couplers on the cavities for a continuous beam use. (J.S.)

  12. Enhancement of the Accelerating Gradient in Superconducting Microwave Resonators

    Energy Technology Data Exchange (ETDEWEB)

    Checchin, Mattia [Fermilab; Grassellino, Anna [Fermilab; Martinello, Martina [IIT, Chicago; Posen, Sam [Fermilab; Romanenko, Alexander [Fermilab; Zasadzinski, John [IIT, Chicago (main)

    2017-05-01

    The accelerating gradient of superconducting resonators can be enhanced by engineering the thickness of a dirty layer grown at the cavity's rf surface. In this paper the description of the physics behind the accelerating gradient enhancement by meaning of the dirty layer is carried out by solving numerically the the Ginzburg-Landau (GL) equations for the layered system. The calculation shows that the presence of the dirty layer stabilizes the Meissner state up to the lower critical field of the bulk, increasing the maximum accelerating gradient.

  13. Superconducting LINAC booster for the pelletron accelerator at Bombay

    International Nuclear Information System (INIS)

    Pillay, R.G.; Kurup, M.B.; Jain, A.K.; Biswas, D.; Kori, S.A.; Srinivasan, B.

    1989-01-01

    A superconducting heavy ion linear accelerator being constructed as a booster for the 14 UD pelletron installed recently at Bombay. The work involved in this project and the progress made so far are reviewed. (author). 15 refs., 8 figs

  14. Superconducting rf activities at Cornell University

    International Nuclear Information System (INIS)

    Padamsee, H.; Hakimi, M.; Kirchgessner, J.

    1988-01-01

    Development of rf superconductivity for high energy accelerators has been a robust activity at the Cornell Laboratory of Nuclear Studies (LNS) for many years. In order to realize the potential of rf superconductivity, a two-pronged approach has been followed. On the one hand accelerator applications were selected where the existing state-of-the art of superconducting rf is competitive with alternate technologies, then LNS engaged in a program to design, construct and test suitable superconducting cavities, culminating in a full system test in an operating accelerator. On the second front the discovery and invention of ideas, techniques and materials required to make superconducting rf devices approach the ideal in performance has been aggressively pursued. Starting with the development of superconducting cavities for high energy electron synchrotrons, the technology was extended to high energy e + e - storage rings. The LE5 cavity design has now been adopted for use in the Continuous Electron Beam Accelerator Facility (CEBAF). When completed, this project will be one of the largest applications of SRF technology, using 440 LE5 modules[4]. In the last two years, the cavity design and the technology have been transferred to industry and CEBAF. Cornell has tested the early industrial prototypes and cavity pairs. LNS has developed, in collaboration with CEBAF, designs and procedures for cavity pair and cryomodule assembly and testing. Advanced research for future electron accelerators is badly needed if particle physicists hope to expand the energy frontier. Superconducting cavity technology continues to offer attractive opportunities for further advances in achievable voltage at reasonable cost for future accelerators. For Nb, the full potential implies an order of magnitude increase over current capabilities. 20 references, 11 figures

  15. Mechanical Design of a High Energy Beam Absorber for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Baffes, C.; Church, M.; Leibfritz, J.; Oplt, S.; Rakhno, I.; /Fermilab

    2012-05-10

    A high energy beam absorber has been built for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab. In the facility's initial configuration, an electron beam will be accelerated through 3 TTF-type or ILC-type SRF cryomodules to an energy of 750MeV. The electron beam will be directed to one of multiple downstream experimental and diagnostic beam lines and then deposited in one of two beam absorbers. The facility is designed to accommodate up to 6 cryomodules, which would produce a 75kW beam at 1.5GeV; this is the driving design condition for the beam absorbers. The beam absorbers consist of water-cooled graphite, aluminum and copper layers contained in a helium-filled enclosure. This paper describes the mechanical implementation of the beam absorbers, with a focus on thermal design and analysis. The potential for radiation-induced degradation of the graphite is discussed.

  16. Engineering solutions for the electro-polishing of multi-cell superconducting accelerators structures

    International Nuclear Information System (INIS)

    Schulz, E.; Bandelmann, R.; Escherich, K.; Keese, D.; Leenen, M.; Lilje, L.; Matheisen, A.; Morales, H.; Schmueser, P.; Seidel, M.; Steinhau-Kuehl, N.; Tiessen, J.

    2003-01-01

    Due to surface treatment with electro-polishing superconducting niobium resonators can potentially reach accelerating gradients well beyond 35 MV/m at a frequency of 1.3 GHz. The anticipated gradient for the 500GeV version of the TESLA collider is 23.4 MV/m. In view of the extendibility of the collider towards higher energies this technology is therefore of great importance for the TESLA project. In this paper we discuss the engineering aspects of the planned electro-polishing facility at DESY. The facility will allow for the treatment of single cell cavities as well as the standard TESLA 9-cell structure, and also a so called superstructure that consists of 2 x 9 cells. The issues described cover the acid circulation including cooling requirements, the required current densities resulting in the specifications of the electrical circuit, removal of oxyhydrogen gas, rotating feed-through and the overall mechanical layout. Furthermore we report on recent tests of critical components. (author)

  17. Cryogenics for a vertical test stand facility for testing superconducting radio frequency cavities at RRCAT

    International Nuclear Information System (INIS)

    Gupta, Prabhat Kumar; Kumar, Manoj; Kush, P.K.

    2015-01-01

    Vertical Test Stand (VTS) Facility is located in a newly constructed building of Cryo-Engineering and Cryo-Module Development Division (CCDD). This test facility is one of the important facilities to develop SCRF technologies for superconducting accelerators like Indian Spallation Neutron Source. VTS has to be used for regular testing of the Superconducting Radio Frequency (SRF) Niobium cavities at nominal frequency of 1.3 GHz/ 650 MHz at 4 K / 2 K liquid helium (LHe) bath temperatures. Testing of these cavities at 2 K evaluates cavity processing methods, procedures and would also serve as a pre-qualification test for cavity to test it in horizontal cryostat, called horizontal test stand, with other cavity components such as tuner and helium vessel. Cryogenic technologies play a major role in these cavity testing facilities. Achieving and maintaining a stable temperature of 2 K in these test stands on regular and reliable basis is a challenging task and require broad range of cryogenic expertise, large scale system level understanding and many in-house technological and process developments. Furthermore this test stand will handle large amount of liquid helium. Therefore, an appropriately designed infrastructure is required to handle such large amount of helium gas generated during the operation of VTS .This paper describes the different cryogenic design aspects, initial cryogenic operation results and different cryogenic safety aspects. (author)

  18. TIARA electrostatic accelerator facility

    International Nuclear Information System (INIS)

    Tajima, Satoshi; Takada, Isao; Mizuhashi, Kiyoshi; Uno, Sadanori; Ohkoshi, Kiyonori; Nakajima, Yoshinori; Saitoh, Yuichi; Ishii, Yasuyuki; Kamiya, Tomihiro

    1996-07-01

    In order to promote the Advanced Radiation Technology Project, Japan Atomic Energy Research Institute constructed TIARA facility composed of four ion accelerators at Takasaki Radiation Chemistry Research Establishment for the period from 1988 to 1993. A 3MV tandem accelerator and an AVF cycrotron were completed in 1991 as the first phase of the construction, and a 3MV single-ended accelerator and a 400kV ion implanter were completed in 1993 as the second phase. Three electrostatic accelerators, the tandem, the single-ended and the implanter, were installed in the Multiple-beam facility of TIARA and have been operated for various experiments with using single, dual and triple beams without any serious trouble. This report describes the constructive works, machine performances, control systems, safety systems and accessory equipments of the electrostatic accelerators. (author)

  19. Upgrade of the cryogenic infrastructure of SM18, CERN main test facility for superconducting magnets and RF cavities

    Science.gov (United States)

    Perin, A.; Dhalla, F.; Gayet, P.; Serio, L.

    2017-12-01

    SM18 is CERN main facility for testing superconducting accelerator magnets and superconducting RF cavities. Its cryogenic infrastructure will have to be significantly upgraded in the coming years, starting in 2019, to meet the testing requirements for the LHC High Luminosity project and for the R&D program for superconducting magnets and RF equipment until 2023 and beyond. This article presents the assessment of the cryogenic needs based on the foreseen test program and on past testing experience. The current configuration of the cryogenic infrastructure is presented and several possible upgrade scenarios are discussed. The chosen upgrade configuration is then described and the characteristics of the main newly required cryogenic equipment, in particular a new 35 g/s helium liquefier, are presented. The upgrade implementation strategy and plan to meet the required schedule are then described.

  20. Thermal stabilities and optimal operating parameters for the Oak Ridge Spallation Neutron Source superconducting linear accelerator

    International Nuclear Information System (INIS)

    Kim, Sang-Ho; Campisi, Isidoro E.

    2007-01-01

    The baseline Spallation Neutron Source (SNS) accelerator will provide a 1 GeV, 1.4 MW proton beam to a mercury target for the production of neutrons. The main acceleration for the H- beam is provided by 81 superconducting cavities installed in 23 cryomodules operating at 805 MHz. The design of the superconducting linac includes a 2.1 K, 2.5 kW cryogenic plant to maintain the cavities below the helium lambda point for efficient operation at high accelerating gradients. In this paper operating conditions are analyzed rather than the design ones, which still guarantees a high gradient operation without any temperature constraint. From the analysis it appears that the SNS superconducting linac can be operated at temperatures higher than 2.1 K, a fact resulting from both the pulsed nature of the superconducting cavities, the specific configuration of the existing cryogenic plant and the operating frequency. General conditions are also given regarding the operation of pulsed superconducting cavities resonating at different frequencies

  1. History of accelerators at Orme des Merisiers

    International Nuclear Information System (INIS)

    Antoine, C.Z.; Martin, J.

    1997-01-01

    This article draws the saga of particle acceleration in CEA facilities at Orme Des Merisiers. At the end of the sixties an electron linear accelerator with copper accelerating cavities was built. This machine presented a great step forwards: its luminosity was one thousand stronger and it could tell details as small as a third of a proton's size. As early as 1970 it was evident to use superconducting cavities otherwise the quest for more energetic particles would have led to design monsters devourer of energy. In 1990 MACSE an accelerator equipped with superconducting cavities produced the first continuous electron beam. MACSE was an efficient laboratory bench to study and develop superconducting cavities. Huge energy savings,a reduced beam emittance and a far better accelerating gradient are the main advantages of superconductivity. These advantages will fully benefit accelerators only if improvements are made concerning the mastery of thermal transfers, cryogenic power, ultra-vacuum techniques and the coupling of cavities. (A.C.)

  2. Pelletron ion accelerator facilities at Inter University Accelerator Centre

    International Nuclear Information System (INIS)

    Chopra, S.

    2011-01-01

    Inter University Accelerator Centre has two tandem ion accelerators, 15UD Pelletron and 5SDH-2 Pelletron, for use in different areas of research. Recently Accelerator Mass Spectrometry facility has also been added to to the existing experimental facilities of 15UD Pelletron. In these years many modifications and up gradations have been performed to 15UD Pelletron facility. A new MCSNICS ion source has been procured to produce high currents for AMS program. Two foils stripper assemblies ,one each before and after analyzing magnet, have also been added for producing higher charge state beams for LINAC and for experiments requiring higher charge states of accelerated beams. A new 1.7 MV Pelletron facility has also been recently installed at IUAC and it is equipped with RBS and Channelling experimental facility. There are two beam lines installed in the system and five more beam lines can be added to the system. A clean chemistry laboratory with all the modern facilities has also been developed at IUAC for the chemical processing of samples prior to the AMS measurements. The operational description of the Pelletron facilities, chemical processing of samples, methods of measurements and results of AMS measurements are being presented. (author)

  3. Design for simultaneous acceleration of stable and unstable beams in a superconducting heavy-ion linear accelerator for RISP

    Science.gov (United States)

    Kim, Jongwon; Son, Hyock-Jun; Park, Young-Ho

    2017-11-01

    The post-accelerator of isotope separation on-line (ISOL) system for rare isotope science project (RISP) is a superconducting linear accelerator (SC-linac) with a DC equivalent voltage of around 160 MV. An isotope beam extracted from the ISOL is in a charge state of 1+ and its charge state is increased to n+ by charge breeding with an electron beam ion source (EBIS). The charge breeding takes tens of ms and the pulse width of extracted beam from the EBIS is tens of μs, which operates at up to 30 Hz. Consequently a large portion of radio frequency (rf) time of the post SC-linac is unused. The post-linac is equipped also with an electron cyclotron resonance (ECR) ion source for stable ion acceleration. Thanks to the large phase acceptance of SC-linac, it is possible to accelerate simultaneously both stable and radioisotope ions with a similar charge to mass ratio by sharing rf time. This operation scheme is implemented for RISP with the addition of an electric chopper and magnetic kickers. The facility will be capable of providing the users of the ISOL and in-flight fragmentation (IF) systems with different beams simultaneously, which would help nuclear science users in obtaining a beam time as high-precision measurements often need long hours.

  4. Heavy ion accelerators

    International Nuclear Information System (INIS)

    Schmelzer, C.

    1974-01-01

    This review of the present state of work on heavy-ion accelerators pays particular attention to the requirements for nuclear research. It is divided into the following sections: single-particle versus collective acceleration, heavy-ion accelerators, beam quality, and a status report on the UNILAC facility. Among the topics considered are the recycling cyclotron, linacs with superconducting resonators, and acceleration to the GeV/nucleon range. (8 figures, 2 tables) (U.S.)

  5. The Continuous Electron Beam Accelerator Facility: Project status and physics outlook

    International Nuclear Information System (INIS)

    Grunder, H.A.

    1989-01-01

    Nuclear physics research program planning, accelerator tunnel construction, and accelerator component development, assembly, and testing are under way at the Continuous Electron Beam Accelerator Facility, Newport News, Virginia. CEBAF's 4-GeV, 200-μA superconducting recirculating accelerator will provide cw beam to simultaneous experiments in three end stations for studies of the nuclear many-body system, its quark substructure, and the strong and electroweak interactions governing this form of matter. An experimental program is being defined in collaboration with the user community. The experimental halls have been designed, and preliminary experimental equipment conceptual designs have been prepared. Planned for Hall A are two 4-GeV/c high-resolution (δp/p ≤ 10 -4 ) spectrometers (HRS) with moderate acceptance (∼8 msr) for a program of completely exclusive experiments in which the nuclear final state has to be fully specified. A CEBAF large acceptance spectrometer (CLAS) is planned for the program of Hall B, which will include bias-free investigation of hadronic final states in inelastic electron scattering and detection of multiple-particle final states. The CLAS will be a multi-gap device based on a toroidal magnet with six superconducting coils arranged around the beamline to produce an essentially circular magnetic field. Hall C is envisioned as serving a diversity of interests, including form factor measurements, parity violation investigations, form factors of nucleon resonances, and a high-Q 2 baryon resonance program. A moderate-resolution, high-momentum, 6-GeV/c spectrometer (HMS) together with several specialized second arms -- in particular, a symmetric toroidal array spectrometer -- are being planned to carry out Hall C experimentation. 14 figs., 8 tabs

  6. Accelerator development

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Because the use of accelerated heavy ions would provide many opportunities for new and important studies in nuclear physics and nuclear chemistry, as well as other disciplines, both the Chemistry and Physics Divisions are supporting the development of a heavy-ion accelerator. The design of greatest current interest includes a tandem accelerator with a terminal voltage of approximately 25 MV injecting into a linear accelerator with rf superconducting resonators. This combined accelerator facility would be capable of accelerating ions of masses ranging over the entire periodic table to an energy corresponding to approximately 10 MeV/nucleon. This approach, as compared to other concepts, has the advantages of lower construction costs, lower operating power, 100 percent duty factor, and high beam quality (good energy resolution, good timing resolution, small beam size, and small beam divergence). The included sections describe the concept of the proposed heavy-ion accelerator, and the development program aiming at: (1) investigation of the individual questions concerning the superconducting accelerating resonators; (2) construction and testing of prototype accelerator systems; and (3) search for economical solutions to engineering problems. (U.S.)

  7. Microwave superconductivity for particle accelerators - How the high TC superconductors measure up

    International Nuclear Information System (INIS)

    Padamsee, H.; Green, K.; Gruschus, J.

    1988-01-01

    Application of superconducting niobium cavities to accelerators for high energy physics, nuclear physics and free electron laser is growing rapidly. Cornell has a long standing effort in the development of superconducting RF accelerator technology. Nb cavities developed here from the basis for constructing the world's highest energy electron accelerator for nuclear physics. These cavities have set a standard against which the behavior of the new superconductors must be compared. From available results on dc critical fields, and the energy gap, it appears that the new materials could make a significant impact on the capabilities of future accelerators. Crucial to this assessment, however, are direct microwave loss measurements, together with measurements of the energy gap and RF frequency dependence as well as the behavior at high RF fields. Latest results on these properties for bulk sintered ceramics, thin films and single crystals at RF frequencies of 1.5 and 6 Ghz are presented

  8. Development of superconducting crossbar-H-mode cavities for proton and ion accelerators

    Directory of Open Access Journals (Sweden)

    F. Dziuba

    2010-04-01

    Full Text Available The crossbar-H-mode (CH structure is the first superconducting multicell drift tube cavity for the low and medium energy range operated in the H_{21} mode. Because of the large energy gain per cavity, which leads to high real estate gradients, it is an excellent candidate for the efficient acceleration in high power proton and ion accelerators with fixed velocity profile. A prototype cavity has been developed and tested successfully with a gradient of 7  MV/m. A few new superconducting CH cavities with improved geometries for different high power applications are under development at present. One cavity (f=325  MHz, β=0.16, seven cells is currently under construction and studied with respect to a possible upgrade option for the GSI UNILAC. Another cavity (f=217  MHz, β=0.059, 15 cells is designed for a cw operated energy variable heavy ion linac application. Furthermore, the EUROTRANS project (European research program for the transmutation of high level nuclear waste in an accelerator driven system, 600 MeV protons, 352 MHz is one of many possible applications for this kind of superconducting rf cavity. In this context a layout of the 17 MeV EUROTRANS injector containing four superconducting CH cavities was proposed by the Institute for Applied Physics (IAP Frankfurt. The status of the cavity development related to the EUROTRANS injector is presented.

  9. Improved Magnetron Stability and Reduced Noise in Efficient Transmitters for Superconducting Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Kazakevich, G. [MUONS Inc., Batavia; Johnson, R. [MUONS Inc., Batavia; Lebedev, V. [Fermilab; Yakovlev, V. [Fermilab

    2018-04-01

    State of the art high-current superconducting accelerators require efficient RF sources with a fast dynamic phase and power control. This allows for compensation of the phase and amplitude deviations of the accelerating voltage in the Superconducting RF (SRF) cavities caused by microphonics, etc. Efficient magnetron transmitters with fast phase and power control are attractive RF sources for this application. They are more cost effective than traditional RF sources such as klystrons, IOTs and solid-state amplifiers used with large scale accelerator projects. However, unlike traditional RF sources, controlled magnetrons operate as forced oscillators. Study of the impact of the controlling signal on magnetron stability, noise and efficiency is therefore important. This paper discusses experiments with 2.45 GHz, 1 kW tubes and verifies our analytical model which is based on the charge drift approximation.

  10. Technical challenges of superconductivity and cryogenics in pursuing TESLA-TTF

    International Nuclear Information System (INIS)

    Shu, Quan-Sheng

    1996-01-01

    TESLA (TeV Energy Superconducting Linear Accelerator) Collaboration is an international R ampersand D effort towards the development of an e + e - linear collider with 500 GeV center of mass by means of 20 km active superconducting accelerating structures at a frequency of 1.3 GHz. The ultimate challenges faced by the TESLA project are (1) to raise operational accelerating gradients to 25 MV/m from current world level of 5-10 MV/m, and (2) to reduce construction costs (cryomodules, klystrons, etc.) down to $2,000/MV from now about $40,000/MV. The TESLA Collaboration is building a prototype TESLA test facility (TTF) of a 500 MeV superconducting linear accelerator to establish the technical basis. TTF is presently under construction and will be commissioned at DESY in 1997, through the joint efforts of 24 laboratories from 8 countries. Significant progress has been made in reaching the high accelerating gradient of 25 MV/m in superconducting cavities, developing cryomodules and constructing TTF infrastructure, etc. This paper will briefly discuss the challenges being faced and review the progress achieved in the technical area of superconductivity and cryogenics by the TESLA Collaboration

  11. Use of the TACL [Thaumaturgic Automated Control Logic] system at CEBAF [Continuous Electron Beam Accelerator Facility] for control of the Cryogenic Test Facility

    International Nuclear Information System (INIS)

    Navarro, E.; Keesee, M.; Bork, R.; Grubb, C.; Lahti, G.; Sage, J.

    1989-01-01

    A logic-based control software system, called Thaumaturgic Automated Control Logic (TACL), is under development at the Continuous Electron Beam Accelerator Facility in Newport News, VA. The first version of the software was placed in service in November, 1987 for control of cryogenics during the first superconducting RF cavity tests at CEBAF. In August, 1988 the control system was installed at the Cryogenic Test Facility (CTF) at CEBAF. CTF generated liquid helium in September, 1988 and is now in full operation for the current round of cavity tests. TACL is providing a powerful and flexible controls environment for the operation of CTF. 3 refs

  12. Development and testing of a superconducting acceleration resonator using new methods in design and fabrication

    International Nuclear Information System (INIS)

    Steck, M.

    1986-01-01

    A superconducting quarter-wave resonator at 325 MHz was studied for the implementation at the Heidelberg post-accelerator. Using the computer programs SUPERFISH and URMEL the first design derived from analytical approaches was optimized regarding the superconducting operation. The measurements on the model showed good agreement with the calculations. By modification of the standard techniques the fabrication of the resonator body and the preparation of the superconducting surface could be simplified. On the superconducting resonator 1 μm thick superconducting surfaces of pure lead as well as a lead/tin alloy were tested. Thereby with lead a quality of the resonator Q 0 =8.5.10 7 and a maximal electrical acceleration field in the continuous region of epsilonsub(acc)=2.16 MV/m at Q=1.10 7 were reached. The measurements with a surface of lead/tin yielded Q 0 =1.4.10 8 and as maximal acceleration field epsilonsub(acc)=1.93 MV/m at Q=1.10 7 . A further increasing of the maximal electric field by conditioning of the resonator can be expected because of the test results. The excellent mechanical stability not reachable with other resonator types which manifests by a static frequency shift of 4 Hz/(MV/m) 2 and rapid frequency oscillations [de

  13. Development of L-band niobium superconducting RF cavities with high accelerating field

    International Nuclear Information System (INIS)

    Saito, Kenji; Noguchi, Shuichi; Ono, Masaaki; Kako, Eiji; Shishido, Toshio; Matsuoka, Masanori; Suzuki, Takafusa; Higuchi, Tamawo.

    1994-01-01

    Superconducting RF cavity is a candidate for the TeV energy e + /e - linear collider of next generation if the accelerating field is improved to 25-30 MV/m and much cost down is achieved in cavity fabrication. Since 1990, KEK has continued R and D of L-band niobium superconducting cavities focusing on the high field issue. A serious problem like Q-degradation due to vacuum discharge came out on the way, however, it has been overcome and presently all of cavities which were annealed at 1400degC achieved the accelerating field of >25 MV/m with enough Qo value. Recent results on single cell cavities are described in this paper. (author)

  14. ESCAR, tests of superconducting bending magnets at the accelerator site

    International Nuclear Information System (INIS)

    Gilbert, W.S.; Lambertson, G.R.; Meuser, R.B.; Rechen, J.B.

    1979-03-01

    ESCAR (Experimental Superconducting Accelerator Ring) was conceived as a project in accelerator technology development which would provide data and experience to insure that planning for larger superconducting synchrotrons would proceed in a knowledgeable and responsible manner. It was to consist of the fabrication and operation of a relatively small proton synchrotron and storage ring with superconducting magnet elements for all of the main ring. The project was funded and design work began in July 1974. During the next two years it became increasingly apparent that the funding rate was directly limiting the rate of completion of ESCAR and that an intermediate goal, a test of the unconventional aspects of the project, was desirable. To that end, twelve dipole bending magnets, one-half of those required for the total ring, were installed at the site along with the 1500 watt helium refrigerator, cryogenic distribution system, electrical power supplies, vacuum systems, and necessary instrumentation. This truncated system was put through an extended series of tests which were completed in June 1978 at which time the ESCAR Project was terminated. ESCAR, and the dipole magnets have been described previously. The results of the systems tests have also been reported. The tests involving the dipole magnets are described

  15. A large superconducting accelerator project. International linear collider (ILC). Introduction

    International Nuclear Information System (INIS)

    Yamamoto, Akira

    2013-01-01

    The international linear collider (ILC) is proposed as the next-energy-frontier particle accelerator anticipated to be realized through global cooperation. The ILC accelerator is composed of a pair of electron and positron linear accelerators to realize head-on collision with a center-of-mass energy of 500 (250+250) GeV. It is based on superconducting radio-frequency (SCRF) technology, and the R and D and technical design have progressed in the technical design phase since 2007, and the technical design report (TDR) reached completion in 2012. This report reviews the ILC general design and technology. (author)

  16. Radiological Research Accelerator Facility

    International Nuclear Information System (INIS)

    Goldhagen, P.; Marino, S.A.; Randers-Pehrson, G.; Hall, E.J.

    1986-01-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which can be used to generate a variety of well-characterized radiation beams for research in radiobiology and radiological physics. It is part of the Radiological Research Laboratory (RRL), and its operation is supported as a National Facility by the US Department of Energy. RARAF is available to all potential users on an equal basis, with priorities based on the recommendations of a Scientific Advisory Committee. Facilities and services are provided to users, but the research projects themselves must be supported separately. This chapter presents a brief description of current experiments being carried out at RARAF and of the operation of the Facility from January through June, 1986. Operation of the Facility for all of 1985 was described in the 1985 Progress Report for RARAF. The experiments described here were supported by various Grants and Contracts from NIH and DOE and by the Statens Stralskyddsinstitut of Sweden

  17. Digital base-band rf control system for the superconducting Darmstadt electron linear accelerator

    Directory of Open Access Journals (Sweden)

    M. Konrad

    2012-05-01

    Full Text Available The accelerating field in superconducting cavities has to be stabilized in amplitude and phase by a radio-frequency (rf control system. Because of their high loaded quality factor superconducting cavities are very susceptible for microphonics. To meet the increased requirements with respect to accuracy, availability, and diagnostics, the previous analog rf control system of the superconducting Darmstadt electron linear accelerator S-DALINAC has been replaced by a digital rf control system. The new hardware consists of two components: An rf module that converts the signal from the cavity down to the base-band and a field-programmable gate array board including a soft CPU that carries out the signal processing steps of the control algorithm. Different algorithms are used for normal-conducting and superconducting cavities. To improve the availability of the control system, techniques for automatic firmware and software deployment have been implemented. Extensive diagnostic features provide the operator with additional information. The architecture of the rf control system as well as the functionality of its components will be presented along with measurements that characterize the performance of the system, yielding, e.g., an amplitude stabilization down to (ΔA/A_{rms}=7×10^{-5} and a phase stabilization of (Δϕ_{rms}=0.8° for superconducting cavities.

  18. Cryogenic safety of the superconducting ALPI accelerator at INFN-LNL

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The superconducting linac ALPI at INFN-LNL is composed of 20 identical cryostats housing, at a group of four (or two), 74 superconducting QWR type cavities: 58 resonators are made of copper with Nb sputtered on the internal surface and 16 are made of Nb bulk. In each cryostat is installed a 100 liter volume LHe reservoir feeding by gravity the QWR’s. The thermal shield around is cooled by GHe at 6 bar abs at 60-80 K. The linac ALPI is a post-accelerator which can receive heavy ions from either the 16 MV Tandem Van de Graaf or from the superconducting injector PIAVE. The latter is composed by an ECR source, two superconducting RFQ, and two cryostats each containg four superconducting bulk Nb QWR. The ALPI cryostats are cooled by a Helium refrigerator whose refrigerator capacity is 1200 W at 4.5 K and 3900 W additional at 60-80 K. PIAVE cryostats are cooled by a separate TCF50 helium refrigerator. The complex ALPI-PIAVE is installed in a semi-open removable concrete tunnel in the same building where the two h...

  19. Radiation safety training for accelerator facilities

    International Nuclear Information System (INIS)

    Trinoskey, P.A.

    1997-02-01

    In November 1992, a working group was formed within the U.S. Department of Energy's (DOE's) accelerator facilities to develop a generic safety training program to meet the basic requirements for individuals working in accelerator facilities. This training, by necessity, includes sections for inserting facility-specific information. The resulting course materials were issued by DOE as a handbook under its technical standards in 1996. Because experimenters may be at a facility for only a short time and often at odd times during the day, the working group felt that computer-based training would be useful. To that end, Lawrence Livermore National Laboratory (LLNL) and Argonne National Laboratory (ANL) together have developed a computer-based safety training program for accelerator facilities. This interactive course not only enables trainees to receive facility- specific information, but time the training to their schedule and tailor it to their level of expertise

  20. Superconducting cavity development at RRCAT

    International Nuclear Information System (INIS)

    Joshi, S.C.

    2015-01-01

    Raja Ramanna Centre for Advanced Technology (RRCAT), Indore pursuing a program on 'R and D Activities for High Energy Proton Linac based Spallation Neutron Source'. Spallation neutron source (SNS) facility will provide high flux pulse neutrons for research in the areas of condensed matter physics, materials science, chemistry, biology and engineering. This will complement the existing synchrotron light source facility, INDUS-2 at RRCAT and reactor based neutron facilities at BARC. RRCAT is also participating in approved mega project on 'Physics and Advanced Technology for High Intensity Proton Accelerator' to support activities of Indian Institutions - Fermilab Collaboration (IIFC). The SNS facility will have a 1 GeV superconducting proton injector linac and 1 GeV accumulator ring. The linac will comprise of large number of superconducting radio-frequency (SCRF) cavities operating at different RF frequencies housed in suitable cryomodules. Thus, an extensive SCRF cavity infrastructure setup is being established. In addition, a scientific and technical expertise are also being developed for fabrication, processing and testing of the SCRF cavities for series production. The paper presents the status of superconducting cavity development at RRCAT

  1. ASTROMAG: A superconducting particle astrophysics magnet facility for the space station

    Science.gov (United States)

    Green, M. A.; Smoot, G. F.; Golden, R. L.; Israel, M. H.; Kephart, R.; Niemann, R.; Mewalt, R. A.; Ormes, J. F.; Spillantini, P.; Widenbeck, M. E.

    1986-01-01

    This paper describes a superconducting magnet system which is the heart of a particle astrophysics facility to be mounted on a portion of the proposed NASA space station. This facility will complete the studies done by the electromagnetic observatories now under development and construction by NASA. The paper outlines the selection process of the type of magnet to be used to analyze the energy and momentum of charged particles from deep space. The ASTROMAG superconducting magnet must meet all the criteria for a shuttle launch and landing, and it must meet safety standards for use in or near a manned environment such as the space station. The magnet facility must have a particle gathering aperture of at least 1 square meter steradian and the facility should be capable of resolving heavy nuclei with a total energy of 10 Tev or more.

  2. Computing requirements for S.S.C. accelerator design and studies

    International Nuclear Information System (INIS)

    Dragt, A.; Talman, R.; Siemann, R.; Dell, G.F.; Leemann, B.; Leemann, C.; Nauenberg, U.; Peggs, S.; Douglas, D.

    1984-01-01

    We estimate the computational hardware resources that will be required for accelerator physics studies during the design of the Superconducting SuperCollider. It is found that both Class IV and Class VI facilities (1) will be necessary. We describe a user environment for these facilities that is desirable within the context of accelerator studies. An acquisition scenario for these facilities is presented

  3. Conduction cooled high temperature superconducting dipole magnet for accelerator applications

    DEFF Research Database (Denmark)

    Zangenberg, N.; Nielsen, G.; Hauge, N.

    2012-01-01

    A 3T proof-of-principle dipole magnet for accelerator applications, based on 2nd generation high temperature superconducting tape was designed, built, and tested by a consortium under the lead of Danfysik. The magnet was designed to have a straight, circular bore with a good field region of radius...

  4. A new cryogenic test facility for large superconducting devices at CERN

    CERN Document Server

    Perin, A; Serio, L; Stewart, L; Benda, V; Bremer, J; Pirotte, O

    2015-01-01

    To expand CERN testing capability to superconducting devices that cannot be installed in existing test facilities because of their size and/or mass, CERN is building a new cryogenic test facility for large and heavy devices. The first devices to be tested in the facility will be the S-FRS superconducting magnets for the FAIR project that is currently under construction at the GSI Research Center in Darmstadt, Germany. The facility will include a renovated cold box with 1.2 kW at 4.5 K equivalent power with its compression system, two independent 15 kW liquid nitrogen precooling and warm-up units, as well as a dedicated cryogenic distribution system providing cooling power to three independent test benches. The article presents the main input parameters and constraints used to define the cryogenic system and its infrastructure. The chosen layout and configuration of the facility is presented and the characteristics of the main components are described.

  5. The Radiological Research Accelerator Facility

    International Nuclear Information System (INIS)

    Hall, E.J.; Marino, S.A.

    1990-07-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) -- formerly the Radiological Research Laboratory (RRL) -- of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). Fifteen different experiments were run during these 12 months, approximately the same as the previous two years. Brief summaries of each experiment are included. Accelerator usage is summarized and development activities are discussed. 7 refs., 4 tabs

  6. Recent developments in the application of rf superconductivity to high-brightness and high-gradient ion beam accelerators

    International Nuclear Information System (INIS)

    Delayen, J.R.; Bohn, C.L.; Kennedy, W.L.; Nichols, G.L.; Roche, C.T.; Sagalovsky, L.

    1991-01-01

    A development program is underway to apply rf superconductivity to the design of continuous-wave (cw) linear accelerators for high- brightness ion beams. Since the last workshop, considerable progress has been made both experimentally and theoretically toward this application. Recent tests of niobium resonators for ion acceleration have yielded average accelerating gradients as high as 18 MV/m. In an experiment with a radio-frequency quadrupole geometry, niobium was found to sustain cw peak surface electric fields as high as 128 MV/m over large (10 cm 2 ) surface areas. Theoretical studies of beam impingement and cumulative beam breakup have also yielded encouraging results. Consequently, a section of superconducting resonators and focusing elements has been designed for tests with high-current deuteron beams. In addition, considerable data pertaining to the rf properties of high-T c superconductors has been collected at rf-field amplitudes and frequencies of interest in connection with accelerator operation. This paper summarizes the recent progress and identifies current and future work in the areas of accelerator technology and superconducting materials which will build upon it

  7. ASTROMAG: A superconducting particle astrophysics magnet facility for the space station

    International Nuclear Information System (INIS)

    Green, M.A.; Smoot, G.F.; Golden, R.L.

    1986-09-01

    This paper describes a superconducting magnet system which is the heart of a particle astrophysics facility to be mounted on a portion of the proposed NASA space station. This facility will complete the studies done by the electromagnetic observatories now under development and construction by NASA. The paper outlines the selection process of the type of magnet to be used to analyze the energy and momentum of charged particles from deep space. The ASTROMAG superconducting magnet must meet all the criteria for a shuttle launch and landing, and it must meet safety standards for use in or near a manned environment such as the space station. The magnet facility must have a particle gathering aperture of at least 1 square meter steradian and the facility should be capable of resolving heavy nuclei with a total energy of 10 Tev or more. 4 refs., 3 figs

  8. Commissioning of the Superconducting Linac at the Spallation Neutron Source (SNS)

    International Nuclear Information System (INIS)

    Kim, Sang-Ho; Campisi, Isidoro E.

    2007-01-01

    The use of superconducting radiofrequency (SRF) cavities in particle accelerator is becoming more widespread. Among the projects that make use of that technology is the Spallation Neutron Source, where H-ions are accelerated to about 1 GeV, mostly making use of niobium elliptical cavities. SNS will use the accelerated short (about 700 ns) sub-bunches of protons to generate neutrons by spallation, which will in turn allow probing structural and magnetic properties of new and existing materials. The SNS superconducting linac is the largest application of RF superconductivity to come on-line in the last decade. The SRF cavities, operated at 805 MHz, were designed, built and integrated into cryomodules at Jefferson Lab and installed and tested at SNS. SNS is also the first proton-like accelerator which uses SRF cavities in a pulse mode. Many of the details of the cavity performance are peculiar to this mode of operation, which is also being applied to lepton accelerators (TESLA test facility and X-FEL at DESY and the international linear collider project). Thanks to the low frequency of the SNS superconducting cavities, operation at 4.2 K has been possible without beam energy degradation, even though the cavities and cryogenic systems were originally designed for 2.1 K operation. The testing of the superconducting cavities, the operating experience with beam and the performance of the superconducting linac will be presented

  9. Tests of a niobium split-ring superconducting heavy ion accelerating structure

    International Nuclear Information System (INIS)

    Benaroya, R.; Bollinger, L.M.; Jaffey, A.H.; Khoe, T.K.; Olesen, M.C.; Scheibelhut, C.H.; Shepard, K.W.; Wesolowski, W.A.

    1976-01-01

    A niobium split-ring accelerating structure designed for use in the Argonne superconducting heavy-ion energy booster was successfully tested. The superconducting resonator has a resonant frequency of 97 MHz and an optimum particle velocity β = 0.11. Ultimate performance is expected to be limited by peak surface fields, which in this structure are 4.7 E/sub a/ electric and 170 E/sub a/ (Gauss) magnetic, where E/sub a/ is the effective accelerating gradient in MV/m. The rf losses in two demountable superconducting joints severely limited performance in initial tests. Following independent measurements of the rf loss properties of several types of demountable joints, one demountable joint was eliminated and the other modified. Subsequently, the resonator could be operated continuously at E/sub a/ = 3.6 MV/m (corresponding to an energy gain of 1.3 MeV per charge) with 10W rf input power. Maximum field level was limited by electron loading. The mechanical stability of the resonator under operating conditions is excellent: vibration induced eigenfrequency noise is less than 120 Hz peak to peak, and the radiation pressure induced frequency shift is Δf/f = 1.6 x 10 -6 E/sub a/ 2

  10. Tests of a niobium split-ring superconducting heavy ion accelerating structure

    Energy Technology Data Exchange (ETDEWEB)

    Benaroya, R.; Bollinger, L.M.; Jaffey, A.H.; Khoe, T.K.; Olesen, M.C.; Scheibelhut, C.H.; Shepard, K.W.; Wesolowski, W.A.

    1976-01-01

    A niobium split-ring accelerating structure designed for use in the Argonne superconducting heavy-ion energy booster was successfully tested. The superconducting resonator has a resonant frequency of 97 MHz and an optimum particle velocity ..beta.. = 0.11. Ultimate performance is expected to be limited by peak surface fields, which in this structure are 4.7 E/sub a/ electric and 170 E/sub a/ (Gauss) magnetic, where E/sub a/ is the effective accelerating gradient in MV/m. The rf losses in two demountable superconducting joints severely limited performance in initial tests. Following independent measurements of the rf loss properties of several types of demountable joints, one demountable joint was eliminated and the other modified. Subsequently, the resonator could be operated continuously at E/sub a/ = 3.6 MV/m (corresponding to an energy gain of 1.3 MeV per charge) with 10W rf input power. Maximum field level was limited by electron loading. The mechanical stability of the resonator under operating conditions is excellent: vibration induced eigenfrequency noise is less than 120 Hz peak to peak, and the radiation pressure induced frequency shift is ..delta..f/f = 1.6 x 10/sup -6/ E/sub a//sup 2/.

  11. Review of ion accelerators

    International Nuclear Information System (INIS)

    Alonso, J.

    1990-06-01

    The field of ion acceleration to higher energies has grown rapidly in the last years. Many new facilities as well as substantial upgrades of existing facilities have extended the mass and energy range of available beams. Perhaps more significant for the long-term development of the field has been the expansion in the applications of these beams, and the building of facilities dedicated to areas outside of nuclear physics. This review will cover many of these new developments. Emphasis will be placed on accelerators with final energies above 50 MeV/amu. Facilities such as superconducting cyclotrons and storage rings are adequately covered in other review papers, and so will not be covered here

  12. Cold test facility for 1.8 m superconducting model magnets at the SSC

    International Nuclear Information System (INIS)

    LaBarge, A.

    1993-07-01

    A new facility has been constructed to measure the characteristic features of superconducting model magnets and cable at cryogenic temperatures -- a function which supports the design and development process for building full-scale accelerator magnets. There are multiple systems operating in concert to test the model magnets, namely: cryogenic, magnet power, data acquisition and system control. A typical model magnet test includes the following items: (1) warm measurements of magnet coils, strain gauges and voltage taps; (2) hipot testing of insulation integrity; (3) cooling with liquid nitrogen and then liquid helium; (4) measuring quench current and magnetic field; (5) magnet warm-up. While the magnet is being cooled to 4.22 K, the mechanical stress is monitored through strain gauges. Current is then ramped into the magnet until it reaches some maximum value and the magnet transitions from the superconducting state to the normal state. Normal-zone propagation is monitored using voltage taps on the magnet coils during this process, thus indicating where the transition began. The current ramp is usually repeated until a plateau current is reached, where the magnet has mechanically settled

  13. Superconducting Radio-Frequency Cavities for Low-Beta Particle Accelerators

    Science.gov (United States)

    Kelly, Michael

    2012-01-01

    High-power proton and ion linac projects based on superconducting accelerating cavities are driving a worldwide effort to develop and build superconducting cavities for beta < 1. Laboratories and institutions building quarter-wave, halfwave and single- or multi-spoke cavities continue to advance the state of the art for this class of cavities, and the common notion that low-beta SRF cavities fill a need in niche applications and have low performance is clearly no longer valid. This article reviews recent developments and results for SC cavity performance for cavities with beta up to approximately 0.5. The considerable ongoing effort on reduced beta elliptical cell cavities is not discussed. An overview of associated subsystems required to operate low-beta cavities, including rf power couplers and fast and slow tuners, is presented.

  14. Medium energy heavy ion accelerator 14 UD Pelletron- a BARC-TIFR facility: a 5 year progress report 1989-1994

    International Nuclear Information System (INIS)

    Chatterjee, A.; Tandon, P.N.

    1995-01-01

    The medium energy heavy ion accelerator (MEHIA) facility based on 14 UD Pelletron set up under the collaborative project of Bhabha Atomic Research Centre (BARC) and Tata Institute of Fundamental Research (TIFR) at the TIFR campus at Bombay has been serving as a joint BARC-TIFR facility for heavy-ion accelerator based research. As this accelerator has just completed five years of its successful operations, it has been thought to be an appropriate time to bring out a report of the research work carried out with the accelerator facility over these last five years. To put the research work in proper perspective, the present report is formatted to provide a short write-up highlighting the work carried out in each area of activity along with a list of the publications which have resulted from these investigations. Some theoretical work related to the experimental activities with the pelletron accelerator has also been included in the list of publications. The research work in the area of nuclear physics, which forms the main thrust of the research activities with the accelerator, covers areas of high spin states, high energy photons, resonances in heavy ion reactions, heavy ion elastic and transfer reactions, heavy ion fusion-fission reactions and radiochemical studies in heavy ion reactions. The interdisciplinary areas of research include condensed matter physics and accelerator based atomic physics. In addition to the above topics the present report also describes the work related to the pelletron accelerator and associated experimental facilities, gas detector development work, data acquisition systems and spectrometer for heavy recoil ions under development. The present status of the superconducting Linac booster project is also briefly described. (author). refs., tabs

  15. Summary of existing superconducting magnet experience and its relevance to the safety of fusion magnet

    International Nuclear Information System (INIS)

    Hsieh, S.Y.; Allinger, J.; Danby, G.; Keane, J.; Powell, J.; Prodell, A.

    1975-01-01

    A comprehensive summary of experience with over twenty superconducting magnet systems has been collected through visits to and discussions about existing facilities including, for example, the bubble chamber magnets at Brookhaven National Laboratory, Argonne National Laboratory and Fermi National Accelerator Laboratory, and the large superconducting spectrometer at Stanford Linear Accelerator Center. This summary includes data relating to parameters of these magnets, magnet protection methods, and operating experiences. The information received is organized and presented in the context of its relevance to the safe operation of future, very large superconducting magnet systems for fusion power plants

  16. Upgrade of the Cryogenic CERN RF Test Facility

    CERN Document Server

    Pirotte, O; Brunner, O; Inglese, V; Koettig, T; Maesen, P; Vullierme, B

    2014-01-01

    With the large number of superconducting radiofrequency (RF) cryomodules to be tested for the former LEP and the present LHC accelerator a RF test facility was erected early in the 1990’s in the largest cryogenic test facility at CERN located at Point 18. This facility consisted of four vertical test stands for single cavities and originally one and then two horizontal test benches for RF cryomodules operating at 4.5 K in saturated helium. CERN is presently working on the upgrade of its accelerator infrastructure, which requires new superconducting cavities operating below 2 K in saturated superfluid helium. Consequently, the RF test facility has been renewed in order to allow efficient cavity and cryomodule tests in superfluid helium and to improve its thermal performances. The new RF test facility is described and its performances are presented.

  17. Upgrade of the cryogenic CERN RF test facility

    International Nuclear Information System (INIS)

    Pirotte, O.; Benda, V.; Brunner, O.; Inglese, V.; Maesen, P.; Vullierme, B.; Koettig, T.

    2014-01-01

    With the large number of superconducting radiofrequency (RF) cryomodules to be tested for the former LEP and the present LHC accelerator a RF test facility was erected early in the 1990’s in the largest cryogenic test facility at CERN located at Point 18. This facility consisted of four vertical test stands for single cavities and originally one and then two horizontal test benches for RF cryomodules operating at 4.5 K in saturated helium. CERN is presently working on the upgrade of its accelerator infrastructure, which requires new superconducting cavities operating below 2 K in saturated superfluid helium. Consequently, the RF test facility has been renewed in order to allow efficient cavity and cryomodule tests in superfluid helium and to improve its thermal performances. The new RF test facility is described and its performances are presented

  18. Long-term operating experience for the ATLAS superconducting resonators

    International Nuclear Information System (INIS)

    Pardo, R.; Zinkann, G.

    1999-01-01

    Portions of the ATLAS accelerator have been operating now for over 21 years. The facility has accumulated several million resonator-hours of operation at this point and has demonstrated the long-term reliability of RF superconductivity. The overall operating performance of the ATLAS facility has established a level of beam quality, flexibility, and reliability not previously achieved with heavy-ion accelerator facilities. The actual operating experience and maintenance history of ATLAS are presented for ATLAS resonators and associated electronics systems. Solutions to problems that appeared in early operation as well as current problems needing further development are discussed

  19. Berkeley Lab Laser Accelerator (BELLA) facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Berkeley Lab Laser Accelerator (BELLA) facility (formerly LOASIS) develops advanced accelerators and radiation sources. High gradient (1-100 GV/m) laser-plasma...

  20. Status of the Catania tandem as injector of the superconducting cyclotron

    International Nuclear Information System (INIS)

    Ciavola, G.; Cuttone, G.; Raia, G.

    1990-01-01

    The Catania LNS tandem facility is operating since 1984. The status and the main modifications of the accelerator during these years are described and the performance obtained is reported. A superconducting cyclotron will be installed at the LNS facility as tandem booster; the main progress is presented. (orig.)

  1. Radiation safety aspects of the AGOR superconducting cyclotron facility

    NARCIS (Netherlands)

    Beijers, JPM; de Meijer, RJ

    1996-01-01

    This paper describes shielding calculations and skyshine estimates for the new AGOR K=600 superconducting cyclotron facility. Both simple, semi-empirical models and Monte-Carlo simulations were used. The calculations are based on a 200 MeV proton beam incident on a trick aluminum target. Also the

  2. BARC-TIFR Pelletron Linac facility

    International Nuclear Information System (INIS)

    Gore, J.A.; Gupta, A.K.; Saxena, A.

    2017-01-01

    The Pelletron Accelerator, set up as a collaborative project between the Bhabha Atomic Research Centre and the Tata Institute of Fundamental Research, has been serving as the workhorse for the heavy ion accelerator based research in India since its commissioning in December 30, 1988. The facility was augmented with an indigenously developed superconducting Linac booster to enhance the energy of the Pelletron accelerated beams and was fully commissioned on November 28, 2007. The augmented facility is renamed as Pelletron Linac facility (PLF). While the PLF is predominantly utilized by the experimental users from BARC and TIFR, the users include researchers from other research institutions and universities within India and abroad

  3. Adaptive compensation of Lorentz force detuning in superconducting RF cavities

    Energy Technology Data Exchange (ETDEWEB)

    Pischalnikov, Yuriy [Fermilab; Schappert, Warren [Fermilab

    2011-11-01

    The Lorentz force can dynamically detune pulsed Superconducting RF cavities and considerable additional RF power can be required to maintain the accelerating gradient if no effort is made to compensate. Fermilab has developed an adaptive compensation system for cavities in the Horizontal Test Stand, in the SRF Accelerator Test Facility, and for the proposed Project X.

  4. Design of MgB2 superconducting dipole magnet for particle beam transport in accelerators

    International Nuclear Information System (INIS)

    Abrahamsen, A.B.; Givel, J.C.; Andersen, N.H.; Zangenberg, N.; Baurichter, A.

    2006-11-01

    A comprehensive analysis of the innovation potential of superconductivity at Risoe was performed in February 2004 by the main author of this report. Several suggestions for new products and new markets were formulated by the superconductivity group and examined by the innovation staff at Risoe. The existing markets of superconducting technology is within highly specialized scientific areas such as magnetic confinement in fusion energy, sample environment in neutron scattering and large scale accelerators such as the Large Hadron Collider(LHC) at Cern, or in the nuclear magnetic resonance (NMR) community using MR-imaging scanners in medicine and phase identification in organic chemistry. Only the NMR applications can be categorized as a highly profitable and commercial market today. The superconductivity group of Risoe formulated and presented the gearless superconducting wind turbine multipole generator as the most promising new concept, but further initiatives were stopped due to unclear patent possibilities. The experience of the innovation review was used in the STVF framework program 'New superconductors: mechanisms, processes and products' to identify potential new product for the collaborating company Danfysik A/S, which has a strong tradition in building resistive magnets for particle accelerators. A technology transfer project was formulated at the end of 2005 with the purpose to collect the knowledge about the MgB2 superconductor gained in the STVF program and in the European Framework Program 6 project HIPERMAG. It was presented at the Risoe innovation seminar January 2006, and recently a collaboration between Risoe and Danfysik A/S was initialized. The present report aims to outline a potential superconducting product within the STVF program. The use of the MgB 2 superconductors in a dipole magnet for guiding particle beams in a small scale accelerator is examined with the purpose to build lighter and smaller than the present resistive magnets. Here the

  5. Accelerator development programme in India - an outlook

    International Nuclear Information System (INIS)

    Bhandari, R.K.

    2011-01-01

    With the construction of the VEC, Indus-1, Indus-2, superconducting cyclotron, superconducting heavy ion linac boosters etc. and implementation of other accelerator R and D programmes, we are now 'equipped' to take a quantum jump in the accelerator field. We have highly trained and skilled manpower that can take up challenges in this rapidly growing field both for research as well as applications. Serious planning is going on in the country to construct accelerator facilities for versatile Rare Ion Beams (RIB), powerful spallation source, advanced synchrotron source, high power beam for ADS etc. There is strong demand by the medical community for a proton/heavy ion cancer therapy facility and for accelerator-produced radioisotopes for medical diagnostics. Proliferation of accelerators in the industry field is long overdue in our country and welcome realization is coming. In this presentation a glimpse of the intended growth of accelerator field in the country will be given. Interesting challenges are there not only for the accelerator community, which has to grow, but also for the industry. Since the general trend is now to construct high intensity and high beam power accelerators - both for research as well as applications - the associated problems of radiation safety will be highlighted. (author)

  6. BRAHMMA - accelerator driven subcritical facility

    International Nuclear Information System (INIS)

    Roy, Tushar; Shukla, Shefali; Shukla, M.; Ray, N.K.; Kashyap, Y.S.; Patel, T.; Gadkari, S.C.

    2017-01-01

    Accelerator Driven Subcritical systems are being studied worldwide for their potential in burning minor actinides and reducing long term radiotoxicity of spent nuclear fuels. In order to pursue the physics studies of Accelerator Driven Subcritical systems, a thermal subcritical assembly BRAHMMA (BeOReflectedAndHDPeModeratedMultiplying Assembly) has been developed at Purnima Labs, BARC. The facility consists of two major components: Subcritical core and Accelerator (DT/ DD Purnima Neutron Generator)

  7. Accidental beam loss in superconducting accelerators: Simulations, consequences of accidents and protective measures

    International Nuclear Information System (INIS)

    Drozhdin, A.; Mokhov, N.; Parker, B.

    1994-02-01

    The consequences of an accidental beam loss in superconducting accelerators and colliders of the next generation range from the mundane to rather dramatic, i.e., from superconducting magnet quench, to overheating of critical components, to a total destruction of some units via explosion. Specific measures are required to minimize and eliminate such events as much as practical. In this paper we study such accidents taking the Superconducting Supercollider complex as an example. Particle tracking, beam loss and energy deposition calculations were done using the realistic machine simulation with the Monte-Carlo codes MARS 12 and STRUCT. Protective measures for minimizing the damaging effects of prefire and misfire of injection and extraction kicker magnets are proposed here

  8. WORKSHOP: Radiofrequency superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1984-10-15

    The Second Workshop on Radiofrequency Superconductivity was held at CERN from 23-27 July, four years after the first, organized at Karlsruhe. 35 invited talks were presented to the about 80 participants from Australia, Brazil, Europe, Japan and the United States. For the first time, ten Laboratories operating or planning superconducting accelerators for heavy ions participated and shared their experience with the community proposing the use of superconducting accelerating sections for electron accelerators.

  9. WORKSHOP: Radiofrequency superconductivity

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    The Second Workshop on Radiofrequency Superconductivity was held at CERN from 23-27 July, four years after the first, organized at Karlsruhe. 35 invited talks were presented to the about 80 participants from Australia, Brazil, Europe, Japan and the United States. For the first time, ten Laboratories operating or planning superconducting accelerators for heavy ions participated and shared their experience with the community proposing the use of superconducting accelerating sections for electron accelerators

  10. Shielding experiments for accelerator facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nakashima, Hiroshi; Tanaka, Susumu; Sakamoto, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2000-06-01

    A series of shielding experiments was carried out by using AVF cyclotron accelerator of TIARA at JAERI in order to validate shielding design methods for accelerator facilities in intermediate energy region. In this paper neutron transmission experiment through thick shields and radiation streaming experiment through a labyrinth are reported. (author)

  11. Shielding experiments for accelerator facilities

    International Nuclear Information System (INIS)

    Nakashima, Hiroshi; Tanaka, Susumu; Sakamoto, Yukio

    2000-01-01

    A series of shielding experiments was carried out by using AVF cyclotron accelerator of TIARA at JAERI in order to validate shielding design methods for accelerator facilities in intermediate energy region. In this paper neutron transmission experiment through thick shields and radiation streaming experiment through a labyrinth are reported. (author)

  12. Magnetic field measurements of superconducting magnets for the colliding beam accelerator

    International Nuclear Information System (INIS)

    Herrera, J.; Kirk, H.; Prodell, A.; Willen, E.

    1983-01-01

    An important aspect of the development and production of superconducting magnets for the Colliding Beam Accelerator is the measurement of the magnetic field in the aperture of these magnets. The measurements have the three-fold purpose of determining the field quality as compared to the lattice requirements of the CBA, of obtaining the survey data necessary to position the magnets in the CBA tunnel, and lastly, of characterizing the magnetic fields for use in initial and future orbit studies of the CBA proton beams. Since for a superconducting storage accelerator it is necessary to carry out these detailed measurements on many (approx. 1000) magnets and at many current values (approx. 1000), we have chosen, in agreement with previous experience, to develop a system which Fourier analyses the voltages induced in a number of rotating windings and thereby obtains the multipole field components. The important point is that such a measuring system can be fast and precise. It has been used for horizontal measurements of the CBA ring dipoles

  13. Superconducting linac at Inter-University Accelerator Centre: Operational challenges and solutions

    Directory of Open Access Journals (Sweden)

    S. Ghosh

    2009-04-01

    Full Text Available A superconducting linear accelerator based on niobium quarter wave resonators has recently become operational to boost the energy of the heavy ion beams available from the existing 15 UD (unit doubled Pelletron accelerator. The niobium resonators typically performed at an accelerating field of 3–6  MV/m at 6 watts of input power in the test cryostat. When they were tested in the linac cryostat, the accelerating fields were drastically reduced and a number of other problems were also encountered. At present, all the problems have been diagnosed and solved. Many design modifications, e.g., in power coupler, mechanical tuner, helium cooling system, etc. were incorporated to solve the problems. A novel method of vibration damping was also implemented to reduce the effect of microphonics on the resonators. Finally, the accelerated beam through linac was delivered to conduct experiments.

  14. The Radiological Research Accelerator Facility

    International Nuclear Information System (INIS)

    Hall, E.J.; Marino, S.A.

    1991-05-01

    The Radiological Research Accelerator Facility (RARAF) is based on 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) -- formerly the Radiological Research Laboratory (RRL) -- of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis, and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. Brief summaries of research experiments are included. Accelerator usage is summarized and development activities are discussed. 8 refs., 8 tabs

  15. Control system modelling for superconducting accelerator

    International Nuclear Information System (INIS)

    Czarski, T.; Pozniak, K.; Romaniuk, R.

    2006-01-01

    A digital control of superconducting cavities for a linear accelerator is presented. The LLRF - Low Level Radio Frequency system for FLASH project in DESY is introduced. FPGA based controller supported by MATLAB system was developed to investigate the novel firmware implementation. Algebraic model in complex domain is proposed for the system analyzing. Calibration procedure of a signal path is considered for a multi-channel control. Identification of the system parameters is carried out by the least squares method application. Control tables: Feed-Forward and Set- Point are determined for the required cavity performance, according to the recognized process. Feedback loop is tuned by fitting a complex gain of a corrector unit. Adaptive control algorithm is applied for feed-forward and feedback modes. Experimental results are presented for a cavity representative operation. (orig.)

  16. Time variations of fields in superconducting magnets and their effects on accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Herrup, D.A.; Syphers, M.J.; Johnson, D.E.; Johnson, R.P.; Tollestrup, A.V.; Hanft, R.W.; Brown, B.C.; Lamm, M.J.; Kuchnir, M.; McInturff, A.D.

    1988-08-22

    A report on the time dependence of magnetic fields in the superconducting magnets of the Fermilab Tevatron has been published. A field variation of order 1 gauss at the aperture radius is observed. Studies on both full sized Tevatron, dipoles and prototype magnets have been used to elucidate these effects. Explanations based on eddy currents in the coil matrix or on flux creep in the superconducting filaments are explored with these tests. Measurement results and techniques for controlling the effect based on new laboratory tests and the latest accelerator operation are presented. 9 refs., 4 figs.

  17. Time variations of fields in superconducting magnets and their effects on accelerators

    International Nuclear Information System (INIS)

    Herrup, D.A.; Syphers, M.J.; Johnson, D.E.

    1988-01-01

    A report on the time dependence of magnetic fields in the superconducting magnets of the Fermilab Tevatron has been published. A field variation of order 1 gauss at the aperture radius is observed. Studies on both full sized Tevatron, dipoles and prototype magnets have been used to elucidate these effects. Explanations based on eddy currents in the coil matrix or on flux creep in the superconducting filaments are explored with these tests. Measurement results and techniques for controlling the effect based on new laboratory tests and the latest accelerator operation are presented. 9 refs., 4 figs

  18. High temperature superconducting current lead test facility with heat pipe intercepts

    International Nuclear Information System (INIS)

    Blumenfeld, P.E.; Prenger, C.; Roth, E.W.; Stewart, J.A.

    1998-01-01

    A high temperature superconducting (HTS) current lead test facility using heat pipe thermal intercepts is under development at the Superconducting Technology Center at Los Alamos National Laboratory. The facility can be configured for tests at currents up to 1,000 A. Mechanical cryocoolers provide refrigeration to the leads. Electrical isolation is maintained by intercepting thermal energy from the leads through cryogenic heat pipes. HST lead warm end temperature is variable from 65 K to over 90 K by controlling heat pipe evaporator temperature. Cold end temperature is variable up to 30 K. Performance predictions in terms of heat pipe evaporator temperature as a function of lead current are presented for the initial facility configuration, which supports testing up to 200 A. Measurements are to include temperature and voltage gradient in the conventional and HTS lead sections, temperature and heat transfer rate in the heat pipes. as well as optimum and off-optimum performance of the conventional lead sections

  19. Some aspects of linacs as applied to the ISL benchmark facility

    International Nuclear Information System (INIS)

    Shepard, K.W.

    1992-01-01

    This paper considers several aspects of using linacs in a radioactive beam facility in terms of the Isospin Laboratory (ISL) Benchmark Facility (BMF) plan, described in the 1991 white paper for a possible radioactive-beam laboratory. The intention is not to review comprehensively the application of linacs to an ISL facility, but to compare in outline form several linac options for such a facility. Particular emphasis is given to the use of superconducting rf technology for the secondary beam accelerator. In what follows, first a possible normally-conducting light-ion linac for a primary beam accelerator is briefly outlined. Then the performance and cost of two options for a secondary beam accelerator are compared: a recent design for a normal-conducting cw linac, and an ATLAS-type superconducting linac. Finally, some of the problems which may be encountered at the entrance of a secondary beam linac are discussed

  20. Superconducting dipole magnet for the UTSI MHD facility

    International Nuclear Information System (INIS)

    Wang, S.T.; Niemann, R.C.; Turner, L.R.

    1978-01-01

    The Argonne National Laboratory is designing and will build a large superconducting dipole magnet system for use in the Coal Fired Flow MHD Research Facility at the University of Tennessee Space Institute (UTSI). Presented in detail are the conceptual design of the magnet geometry, conductor design, cryostability evaluation, magnetic pressure computation, structural design, cryostat design, the cryogenics system design, and magnet instrumentations and control

  1. RIA Superconducting Drift Tube Linac R and D

    International Nuclear Information System (INIS)

    Popielarski, J.; Bierwagen, J.; Bricker, S.; Compton, C.; DeLauter, J.; Glennon, P.; Grimm, T.; Hartung, W.; Harvell, D.; Hodek, M.; Johnson, M.; Marti, F.; Miller, P.; Moblo, A.; Norton, D.; Popielarski, L.; Wlodarczak, J.; York, R.C.; Zeller, A.

    2009-01-01

    Cavity and cryomodule development work for a superconducting ion linac has been underway for several years at the National Superconducting Cyclotron Laboratory. The original application of the work was the proposed Rare Isotope Accelerator. At present, the work is being continued for use with the Facility for Rare Isotope Beams (FRIB). The baseline linac for FRIB requires 4 types of superconducting cavities to cover the velocity range needed to accelerate an ion beam to (ge) 200 MeV/u: 2 types of quarter-wave resonator (QWR) and 2 types of half-wave resonator (HWR). Superconducting solenoids are used for focusing. Active and passive shielding is required to ensure that the solenoids field does not degrade the cavity performance. First prototypes of both QWR types and one HWR type have been fabricated and tested. A prototype solenoid has been procured and tested. A test cryomodule has been fabricated and tested. The test cryomodule contains one QWR, one HWR, one solenoid, and one super-ferric quadrupole. This report covers the design, fabrication, and testing of this cryomodule

  2. Quench simulations for superconducting elements in the LHC accelerator

    Science.gov (United States)

    Sonnemann, F.; Schmidt, R.

    2000-08-01

    The design of the protection system for the superconducting elements in an accelerator such as the large Hadron collider (LHC), now under construction at CERN, requires a detailed understanding of the thermo-hydraulic and electrodynamic processes during a quench. A numerical program (SPQR - simulation program for quench research) has been developed to evaluate temperature and voltage distributions during a quench as a function of space and time. The quench process is simulated by approximating the heat balance equation with the finite difference method in presence of variable cooling and powering conditions. The simulation predicts quench propagation along a superconducting cable, forced quenching with heaters, impact of eddy currents induced by a magnetic field change, and heat transfer through an insulation layer into helium, an adjacent conductor or other material. The simulation studies allowed a better understanding of experimental quench data and were used for determining the adequate dimensioning and protection of the highly stabilised superconducting cables for connecting magnets (busbars), optimising the quench heater strip layout for the main magnets, and studying quench back by induced eddy currents in the superconductor. After the introduction of the theoretical approach, some applications of the simulation model for the LHC dipole and corrector magnets are presented and the outcome of the studies is compared with experimental data.

  3. The Brookhaven Accelerator Test Facility

    International Nuclear Information System (INIS)

    Batchelor, K.; Ben-Zvi, I.; Fernow, R.C.; Fischer, J.; Fisher, A.S.; Gallardo, J.; Jialin, Xie; Kirk, H.G.; Parsa, Z.; Palmer, R.B.; Rao, T.; Rogers, J.; Sheehan, J.; Tsang, T.Y.F.; Ulc, S.; Van Steenbergen, A.; Woodle, M.; Zhang, R.S.; McDonald, K.T.; Russell, D.P.; Jiang, Z.Y.; Pellegrini, C.; Wang, X.J.

    1990-01-01

    The Accelerator Test Facility (ATF), presently under construction at Brookhaven National laboratory, is described. It consists of a 50-MeV electron beam synchronizable to a high-peak power CO 2 laser. The interaction of electrons with the laser field will be probed, with some emphasis on exploring laser-based acceleration techniques. 5 refs., 2 figs

  4. RF superconductivity at CEBAF

    International Nuclear Information System (INIS)

    1990-01-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) is a 4 GeV continuous beam electron accelerator being constructed to perform nuclear physics research. Construction began in February 1987 and initial operation is scheduled for February 1994. The present report describes its prototyping, problems/solutions, further development, facilities, design status, production and upgrade potential. The accelerator is 1.4 km in circumference, and has a race-track shape. It is of the recirculated linear accelerator type, and employs a total of five passes. Two linacs on opposite sides of the race-track each provide 400 MeV per pass. Beams of various energies are transported by separated arcs at each end of the straight sections to provide the recirculation. There are 4 recirculation arcs at the injector end, and 5 arcs at the other end. The full energy beam is routed by an RF separator to between one and three end stations, as desired, on a bucket-by-bucket basis. The average output beam current is 200 microamperes. Acceleration is provided by 338 superconducting cavities, which are arranged in pairs, each of which is enclosed in a helium vessel and suspended inside a vacuum jacket without ends. (N.K.)

  5. Design of MgB{sub 2} superconducting dipole magnet for particle beam transport in accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Abrahamsen, A.B.; Givel, J.C.; Andersen, N.H. [Risoe National Lab., Materials Research Dept., Roskilde (Denmark); Zangenberg, N.; Baurichter, A. [Danfysik A/S, Jyllinge (Denmark)

    2006-11-15

    A comprehensive analysis of the innovation potential of superconductivity at Risoe was performed in February 2004 by the main author of this report. Several suggestions for new products and new markets were formulated by the superconductivity group and examined by the innovation staff at Risoe. The existing markets of superconducting technology is within highly specialized scientific areas such as magnetic confinement in fusion energy, sample environment in neutron scattering and large scale accelerators such as the Large Hadron Collider(LHC) at Cern, or in the nuclear magnetic resonance (NMR) community using MR-imaging scanners in medicine and phase identification in organic chemistry. Only the NMR applications can be categorized as a highly profitable and commercial market today. The superconductivity group of Risoe formulated and presented the gearless superconducting wind turbine multipole generator as the most promising new concept, but further initiatives were stopped due to unclear patent possibilities. The experience of the innovation review was used in the STVF framework program 'New superconductors: mechanisms, processes and products' to identify potential new product for the collaborating company Danfysik A/S, which has a strong tradition in building resistive magnets for particle accelerators. A technology transfer project was formulated at the end of 2005 with the purpose to collect the knowledge about the MgB2 superconductor gained in the STVF program and in the European Framework Program 6 project HIPERMAG. It was presented at the Risoe innovation seminar January 2006, and recently a collaboration between Risoe and Danfysik A/S was initialized. The present report aims to outline a potential superconducting product within the STVF program. The use of the MgB{sub 2} superconductors in a dipole magnet for guiding particle beams in a small scale accelerator is examined with the purpose to build lighter and smaller than the present resistive

  6. Status of RF superconductivity at Argonne

    International Nuclear Information System (INIS)

    Shepard, K.W.

    1990-01-01

    Development of a superconducting slow-wave structures began at Argonne National Laboratory (ANL) in 1971, and led to the first superconducting heavy-ion linac (ATLAS - the Argonne Tandem-Linac Accelerator System). The Physics Division at ANL has continued to develop superconducting RF technology for accelerating heavy-ions, with the result that the linac has been in an almost continuous process of upgrade and expansion. In 1987, the Engineering Physics Division at ANL began developing of superconducting RF components for the acceleration of high-brightness proton and deuterium beams. The two divisions collaborate in work on several applications of RF superconductivity, and also in work to develop the technology generally. The present report briefly describes major features of the superconducting heavy-ion linac (very-low-velocity superconducting linac, positive ion injector), proton accelerating structures (superconducting resonant cavities for acceleration of high-current proton and deuteron beams, RF properties of oxide superconductors), and future work. Both divisions expect to continue a variety of studies, frequently in collaboration, to advance the basic technology of RF superconductivity. (N.K.)

  7. Global particle accelerator gets the big chill

    CERN Multimedia

    Sherriff, Lucy

    2004-01-01

    Scientists at an international symposium in Beijing have recommended that a new global particle accelerator should be based on "cold" or superconducting technology, bringing the construction of the multi-billion dollar facility one step closer to reality (½ page)

  8. Clearance of materials from accelerator facilities

    Directory of Open Access Journals (Sweden)

    Rokni Sayed H.

    2017-01-01

    Full Text Available A new Technical Standard that supports the clearance of materials and equipment (personal property from U.S. Department of Energy (DOE accelerator facilities has been developed. The Standard focuses on personal property that has the potential to be radiologically impacted by accelerator operations. It addresses material clearance programs and protocols for off-site releases without restriction on use. Common metals with potential volumetric activation are of main interest with technical bases provided in Appendices of the Standard. The clearance protocols in the Standard include three elements: 1 clearance criteria, 2 process knowledge, and 3 measurement methods. This paper presents the technical aspects of the new Standard, discusses operational experience gained in clearance of materials and equipment from several accelerator facilities at SLAC and examples as to how this Standard can be applied to benefit the entirety of the DOE Accelerator Complex.

  9. Higher-order-mode (HOM) power in elliptical superconducting cavities for intense pulsed proton accelerators

    CERN Document Server

    Sang Ho Kim; Dong O Jeon; Sundeli, R

    2002-01-01

    In linacs for intense pulsed proton accelerators, the beam has a multiple time-structure, and each beam time-structure generates resonance. When a higher-order mode (HOM) is near these resonance frequencies, the induced voltage could be large and accordingly the resulting HOM power, too. In order to understand the effects of a complex beam time-structure on the mode excitations and the resulting HOM powers in elliptical superconducting cavities, analytic expressions are developed, with which the beam-induced voltage and corresponding power are explored, taking into account the properties of HOM frequency behavior in elliptical superconducting cavities. The results and understandings from this analysis are presented with the beam parameters of the Spallation Neutron Source (SNS) superconducting linac.

  10. Superconducting linac

    International Nuclear Information System (INIS)

    Bollinger, L.M.; Shepard, K.W.; Wangler, T.P.

    1978-01-01

    This project has two goals: to design, build, and test a small superconducting linac to serve as an energy booster for heavy ions from an FN tandem electrostatic accelerator, and to investigate various aspects of superconducting rf technology. The main design features of the booster are described, a status report on various components (resonators, rf control system, linac control system, cryostats, buncher) is given, and plans for the near future are outlined. Investigations of superconducting-linac technology concern studies on materials and fabrication techniques, resonator diagnostic techniques, rf-phase control, beam dynamics computer programs, asymmetry in accelerating field, and surface-treatment techniques. The overall layout of the to-be-proposed ATLAS, the Argonne Tandem-Linac Accelerator System, is shown; the ATLAS would use superconducting technology to produce beams of 5 to 25 MeV/A. 6 figures

  11. A New Facility for Testing Superconducting Solenoid Magnets with Large Fringe Fields at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Orris, D. [Fermilab; Carcagno, R. [Fermilab; Nogiec, J. [Fermilab; Rabehl, R. [Fermilab; Sylvester, C. [Fermilab; Tartaglia, M. [Fermilab

    2013-09-01

    Testing superconducting solenoid with no iron flux return can be problematic for a magnet test facility due to the large magnetic fringe fields generated. These large external fields can interfere with the operation of equipment while precautions must be taken for personnel supporting the test. The magnetic forces between the solenoid under test and the external infrastructure must also be taken under consideration. A new test facility has been designed and built at Fermilab specifically for testing superconducting magnets with large external fringe fields. This paper discusses the test stand design, capabilities, and details of the instrumentation and controls with data from the first solenoid tested in this facility: the Muon Ionization Cooling Experiment (MICE) coupling coil.

  12. New, coupling loss induced, quench protection system for superconducting accelerator magnets

    NARCIS (Netherlands)

    Ravaioli, Emanuele; Datskov, V.I.; Giloux, C.; Kirby, G.; ten Kate, Herman H.J.; Verweij, A.P.

    2014-01-01

    A new and promising method for the protection of superconducting high-field magnets is developed and tested on the so-called MQXC quadrupole magnet in the CERN magnet test facility. The method relies on a capacitive discharge system inducing during a few periods an oscillation of the transport

  13. The Soreq Applied Research Accelerator Facility (SARAF): Overview, research programs and future plans

    Science.gov (United States)

    Mardor, Israel; Aviv, Ofer; Avrigeanu, Marilena; Berkovits, Dan; Dahan, Adi; Dickel, Timo; Eliyahu, Ilan; Gai, Moshe; Gavish-Segev, Inbal; Halfon, Shlomi; Hass, Michael; Hirsh, Tsviki; Kaiser, Boaz; Kijel, Daniel; Kreisel, Arik; Mishnayot, Yonatan; Mukul, Ish; Ohayon, Ben; Paul, Michael; Perry, Amichay; Rahangdale, Hitesh; Rodnizki, Jacob; Ron, Guy; Sasson-Zukran, Revital; Shor, Asher; Silverman, Ido; Tessler, Moshe; Vaintraub, Sergey; Weissman, Leo

    2018-05-01

    The Soreq Applied Research Accelerator Facility (SARAF) is under construction in the Soreq Nuclear Research Center at Yavne, Israel. When completed at the beginning of the next decade, SARAF will be a user facility for basic and applied nuclear physics, based on a 40 MeV, 5 mA CW proton/deuteron superconducting linear accelerator. Phase I of SARAF (SARAF-I, 4 MeV, 2 mA CW protons, 5 MeV 1 mA CW deuterons) is already in operation, generating scientific results in several fields of interest. The main ongoing program at SARAF-I is the production of 30 keV neutrons and measurement of Maxwellian Averaged Cross Sections (MACS), important for the astrophysical s-process. The world leading Maxwellian epithermal neutron yield at SARAF-I (5 × 10^{10} epithermal neutrons/s), generated by a novel Liquid-Lithium Target (LiLiT), enables improved precision of known MACSs, and new measurements of low-abundance and radioactive isotopes. Research plans for SARAF-II span several disciplines: precision studies of beyond-Standard-Model effects by trapping light exotic radioisotopes, such as 6He, 8Li and 18, 19, 23Ne, in unprecedented amounts (including meaningful studies already at SARAF-I); extended nuclear astrophysics research with higher energy neutrons, including generation and studies of exotic neutron-rich isotopes relevant to the rapid (r-) process; nuclear structure of exotic isotopes; high energy neutron cross sections for basic nuclear physics and material science research, including neutron induced radiation damage; neutron based imaging and therapy; and novel radiopharmaceuticals development and production. In this paper we present a technical overview of SARAF-I and II, including a description of the accelerator and its irradiation targets; a survey of existing research programs at SARAF-I; and the research potential at the completed facility (SARAF-II).

  14. Superconducted tour

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1988-09-15

    Superconductivity - the dramatic drop in electrical resistance in certain materials at very low temperatures - has grown rapidly in importance over the past two or three decades to become a key technology for high energy particle accelerators. It was in this setting that a hundred students and 15 lecturers met in Hamburg in June for a week's course on superconductivity in particle accelerators, organized by the CERN Accelerator School and the nearby DESY Laboratory.

  15. The CSU Accelerator and FEL Facility

    NARCIS (Netherlands)

    Milton, S.V.; Biedron, S.G.; Burleson, T.; Carrico, C.; Edelenbos, J.; Hall, C.; Horovitz, K.; Morin, A.; Rand, L.; Sipahi, N.; Sipahi, T.; van der Slot, P.; Yehudah, H.; Dong, A.; Tanaka, T.; Schaa, V.R.W.

    2013-01-01

    The Colorado State University (CSU) Accelerator Facility will include a 6-MeV L-Band electron linear accelerator (linac) with a free-electron laser (FEL) system capable of producing Terahertz (THz) radiation, a laser laboratory, a microwave test stand, and a magnetic test stand. The photocathode

  16. Applications of a superconducting solenoidal separator in the experimental investigation of nuclear reactions

    International Nuclear Information System (INIS)

    Hinde, D J; Carter, I P; Dasgupta, M; Simpson, E C; Cook, K J; Kalkal, Sunil; Luong, D H; Williams, E

    2017-01-01

    This paper describes applications of a novel superconducting solenoidal separator, with magnetic fields up to 8 Tesla, for studies of nuclear reactions using the Heavy Ion Accelerator Facility at the Australian National University. (paper)

  17. Electrical performance characteristics of the SSC Accelerator System String Test

    International Nuclear Information System (INIS)

    Robinson, W.; Burgett, W.; Dombeck, T.; Gannon, J.; Kraushaar, P.; McInturff, A.; Savord, T.; Tool, G.

    1993-01-01

    The string test facility was constructed to provide a development test bed for the arc regions of the Superconducting Super Collider (SSC). Significant effort has been devoted to the development and testing of superconducting magnets, spools, and accelerator control systems required for the SSC. The string test facility provides the necessary environment required to evaluate the operational performance of these components as they are configured as an accelerator lens in the collider. This discussion will review the results of high current testing of the string conducted to evaluate magnet element uniformity and compatibility, the splice resistance used to connect the magnets, and system response to various quench conditions. Performance results of the spools, energy bypass systems, energy dump, and the power supply system are also discussed

  18. Electrical performance characteristics of the SSC Accelerator System String Test

    International Nuclear Information System (INIS)

    Robinson, W.; Burgett, W.; Dombeck, T.; Gannon, J.; Kraushaar, P.; McInturff, A.; Savord, T.; Tool, G.

    1993-05-01

    The string test facility was constructed to provide a development test bed for the arc regions of the Superconducting Super Collider (SSC). Significant effort has been devoted to the development and testing of superconducting magnets, spools, and accelerator control systems required for the SSC. The string test facility provides the necessary environment required to evaluate the operational performance of these components as they are configured as an accelerator lens in the collider. This discussion will review the results of high current testing of the string conducted to evaluate magnet element uniformity and compatibility, the splice resistance used to connect the magnets, and system response to various quench conditions. Performance results of the spools, energy bypass systems, energy dump, and the power supply system are also discussed

  19. The operational procedure of an electron beam accelerator

    International Nuclear Information System (INIS)

    Lee, Byung Cheol; Choi, Hwa Lim; Yang, Ki Ho; Han, Young Hwan; Kim, Sung Chan

    2008-12-01

    The KAERI(Korea Atomic Energy of Research Institute) high-power electron beam irradiation facility, operating at the energies between 0.3 MeV and 10 MeV, has provided irradiation services to users in industries, universities, and institute in various fields. This manual is for the operation of an electron beam which is established in KAERI, and describes elementary operation procedures of electron beam between 0.3 Mev and 10 MeV. KAERI Electron Accelerator facility(Daejeon, Korea) consists of two irradiators: one is a low-energy electron beam irradiator operated by normal conducting RF accelerator, the other is medium-energy irradiator operated by superconducting RF accelerator. We explain the check points of prior to operation, operation procedure of this facility and the essential parts of electron beam accelerator

  20. The operational procedure of an electron beam accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Cheol; Choi, Hwa Lim; Yang, Ki Ho; Han, Young Hwan; Kim, Sung Chan

    2008-12-15

    The KAERI(Korea Atomic Energy of Research Institute) high-power electron beam irradiation facility, operating at the energies between 0.3 MeV and 10 MeV, has provided irradiation services to users in industries, universities, and institute in various fields. This manual is for the operation of an electron beam which is established in KAERI, and describes elementary operation procedures of electron beam between 0.3 Mev and 10 MeV. KAERI Electron Accelerator facility(Daejeon, Korea) consists of two irradiators: one is a low-energy electron beam irradiator operated by normal conducting RF accelerator, the other is medium-energy irradiator operated by superconducting RF accelerator. We explain the check points of prior to operation, operation procedure of this facility and the essential parts of electron beam accelerator.

  1. Operation of the Brookhaven National Laboratory Accelerator Test Facility

    International Nuclear Information System (INIS)

    Batchelor, K.; Ben-Zvi, I.; Botke, I.; Chou, T.S.; Fernow, R.; Fischer, J.; Fisher, A.; Gallardo, J.; Ingold, G.; Malone, R.; Palmer, R.; Parsa, Z.; Pogorelsky, I.; Rogers, J.; Sheehan, J.; Srinivasan-Rao, T.; Tsang, T.; Ulc, S.; van Steenbergen, A.; Wang, X.J.; Woodle, M.; Yu, L.H.

    1992-01-01

    Early operation of the 50 MeV high brightness electron linac of the Accelerator Test Facility is described along with experimental data. This facility is designed to study new linear acceleration techniques and new radiation sources based on linacs in combination with free electron lasers. The accelerator utilizes a photo-excited, metal cathode, radio frequency electron gun followed by two travelling wave accelerating sections and an Experimental Hall for the study program

  2. The Brookhaven National Laboratory Accelerator Test Facility

    International Nuclear Information System (INIS)

    Batchelor, K.

    1992-01-01

    The Brookhaven National Laboratory Accelerator Test Facility comprises a 50 MeV traveling wave electron linear accelerator utilizing a high gradient, photo-excited, raidofrequency electron gun as an injector and an experimental area for study of new acceleration methods or advanced radiation sources using free electron lasers. Early operation of the linear accelerator system including calculated and measured beam parameters are presented together with the experimental program for accelerator physics and free electron laser studies

  3. Accelerator mass spectrometry and associated facilities at Inter-University Accelerator Centre, New Delhi, India

    International Nuclear Information System (INIS)

    Kumar, Pankaj; Bohra, Archna; Ojha, S.; Gargari, S.; Joshi, R.; Roonwal, G.S.; Chopra, S.; Pattanaik, J.K.; Balakrishnan, S.

    2011-01-01

    Accelerator Mass Spectrometry (AMS) facility at Inter-University Accelerator Centre (IUAC) is developed by upgrading its existing 15UD Pelletron accelerator. Since last two decades Pelletron is mainly used for nuclear physics, materials science, atomic physics, radiation biology and accelerator mass spectrometry is recent development. In addition, a chemistry laboratory in clean room for the chemical processing of samples for AMS studies has also been established. At present the AMS facility is used for 10 Be, 26 Al measurements and soon other long lived radio-isotopes will also be used

  4. Applied superconductivity

    CERN Document Server

    Newhouse, Vernon L

    1975-01-01

    Applied Superconductivity, Volume II, is part of a two-volume series on applied superconductivity. The first volume dealt with electronic applications and radiation detection, and contains a chapter on liquid helium refrigeration. The present volume discusses magnets, electromechanical applications, accelerators, and microwave and rf devices. The book opens with a chapter on high-field superconducting magnets, covering applications and magnet design. Subsequent chapters discuss superconductive machinery such as superconductive bearings and motors; rf superconducting devices; and future prospec

  5. 25 years of Pelletron Linac facility

    International Nuclear Information System (INIS)

    Shrivastava, A.; Palit, R.

    2014-01-01

    The DAE-BRNS International Symposium on Nuclear Physics was held in BARC during 2nd to 6th December 2013. A summary of the highlights of this symposium has recently appeared in Physics News. As a part of the symposium, a special session was held to commemorate 25 years of operation of the Mumbai Pelletron Linac Facility (PLF). PLF, being operated jointly by Bhabha Atomic Research Centre and Tata Institute of Fundamental Research, has been a major centre for heavy-ion accelerator based research in India. The Pelletron accelerator was formally inaugurated on 30th December 1988, and marked an important milestone in nuclear physics research in India. The facility was augmented with the indigenously developed superconducting LINAC booster to enhance the energy of the accelerated beams. The LINAC booster was commissioned in a phased manner and the entire facility was dedicated to the users on the 28th November 2007. The LINAC booster consists of seven liquid helium cryostat modules, each housing four lead coated (2 μm) copper quarter wave resonators (QWR). The cavities are designed to operate at 150 MHz with an optimum acceptance at a velocity corresponding to β=0.1. The performance of the QWRs is found to be excellent with an average energy gain of 0.4 MV/q per cavity corresponding to 80% of the design value. Beam transmission from the entry to the exit of the LINAC was found to be 80% and the beam timing (FWHM) of 600 ps was measured at the target position. Development of the superconducting LINAC is a major milestone in the accelerator technology in our country. Most of the critical components of the LINAC booster, the first superconducting heavy-ion accelerator in India, have been designed, developed and fabricated indigenously

  6. Operation of the Brookhaven national laboratory accelerator test facility

    International Nuclear Information System (INIS)

    Batchelor, K.; Ben-Zvi, I.; Botke, I.; Chou, T.S.; Fernow, R.; Fischer, J.; Fisher, A.; Gallardo, J.; Ingold, G.; Malone, R.; Palmer, R.; Parsa, Z.; Pogorelsky, I.; Rogers, J.; Sheehan, J.; Srinivasan-Rao, T.; Tsang, T.; Ulc, S.; Van Steenbergen, A.; Wang, X.J.; Woodle, M.; Yu, L.H.

    1992-01-01

    Early operation of the 50 MeV high brightness electron linac of the Accelerator Test Facility is described along with experimental data. This facility is designed to study new linear acceleration techniques and new radiation sources based on linacs in combination with free electron lasers. The accelerator utilizes a photo-excited, metal cathode, radio frequency electron gun followed by two travelling wave accelerating sections and an Experimental Hall for the study program. (Author) 5 refs., 4 figs., tab

  7. A facility for accelerator research and education at Fermilab

    International Nuclear Information System (INIS)

    Church, Mike; Nagaitsev, Sergei

    2009-01-01

    Fermilab is currently constructing the 'SRF Test Accelerator at the New Muon Lab' (NML). NML consists of a photo-emitted RF electron gun, followed by a bunch compressor, low energy test beamlines, SCRF accelerating structures, and high energy test beamlines. The initial primary purpose of NML will be to test superconducting RF accelerating modules for the ILC and for Fermilab's 'Project X' - a proposal for a high intensity proton source. The unique capability of NML will be to test these modules under conditions of high intensity electron beams with ILC-like beam parameters. In addition NML incorporates a photoinjector which offers significant tunability and especially the possibility to generate a bright electron beam with brightness comparable to state-of-the-art accelerators. This opens the exciting possibility of also using NML for fundamental beams research and tests of new concepts in beam manipulations and acceleration, instrumentation, and the applications of beams.

  8. The Radiological Research Accelerator Facility

    International Nuclear Information System (INIS)

    Hall, E.J.

    1992-05-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) -- formerly the Radiological Research Laboratory (RRL) -- of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis, and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. Experiments performed from May 1991--April 1992 are described

  9. MEASUREMENT OF THE TRANSVERSE BEAM DYNAMICS IN A TESLA-TYPE SUPERCONDUCTING CAVITY

    Energy Technology Data Exchange (ETDEWEB)

    Halavanau, A. [NICADD, DeKalb; Eddy, N. [Fermilab; Edstrom, D. [Fermilab; Lunin, A. [Fermilab; Piot, P. [NICADD, DeKalb; Ruan, J. [Fermilab; Solyak, N. [Fermilab

    2016-09-26

    Superconducting linacs are capable of producing intense, ultra-stable, high-quality electron beams that have widespread applications in Science and Industry. Many project are based on the 1.3-GHz TESLA-type superconducting cavity. In this paper we provide an update on a recent experiment aimed at measuring the transfer matrix of a TESLA cavity at the Fermilab Accelerator Science and Technology (FAST) facility. The results are discussed and compared with analytical and numerical simulations.

  10. Beauty physics at the ultrahigh energies of the ELOISATRON [Euroasiatic Long Intersecting Superconducting Accelerator Synchrotron

    International Nuclear Information System (INIS)

    Cox, B.

    1988-02-01

    The potential for experimentally studying B physics at the proposed INFN 100 TeV ELOISATRON (Euroasiatic Long Intersecting Superconducting Accelerator Synchrotron) is compared with possibilities at 40 TeV at the Superconducting Super Collider. The effect of the increase in center of mass energy on the production and decay of B mesons has been investigated, particularly with respect to the accummulation of large samples of B hadron decays necessary for the detection of CP violating effects. 13 refs., 7 figs., 1 tab

  11. Applied metrology in the production of superconducting model magnets for particle accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Ferradas Troitino, Jose [CERN; Bestmann, Patrick [CERN; Bourcey, Nicolas [CERN; Carlon Zurita, Alejandro [CERN; Cavanna, Eugenio [ASG Supercond., Genova; Ferracin, Paolo [CERN; Ferradas Troitino, Salvador [CERN; Holik, Eddie Frank [Fermilab; Izquierdo Bermudez, Susana [CERN; Lackner, Friedrich [CERN; Löffler, Christian [CERN; Maury, Gregory [CERN; Perez, Juan Carlos [CERN; Savary, Frederic [CERN; Semeraro, Michela [CERN; Vallone, Giorgio [CERN

    2017-12-22

    The production of superconducting magnets for particle accelerators involves high precision assemblies and tight tolerances, in order to achieve the requirements for their appropriate performance. It is therefore essential to have a strict control and traceability over the geometry of each component of the system, and also to be able to compensate possible inherent deviations coming from the production process.

  12. Superconducting six-axis accelerometer

    Science.gov (United States)

    Paik, H. J.

    1990-01-01

    A new superconducting accelerometer, capable of measuring both linear and angular accelerations, is under development at the University of Maryland. A single superconducting proof mass is magnetically levitated against gravity or any other proof force. Its relative positions and orientations with respect to the platform are monitored by six superconducting inductance bridges sharing a single amplifier, called the Superconducting Quantum Interference Device (SQUID). The six degrees of freedom, the three linear acceleration components and the three angular acceleration components, of the platform are measured simultaneously. In order to improve the linearity and the dynamic range of the instrument, the demodulated outputs of the SQUID are fed back to appropriate levitation coils so that the proof mass remains at the null position for all six inductance bridges. The expected intrinsic noise of the instrument is 4 x 10(exp -12)m s(exp -2) Hz(exp -1/2) for linear acceleration and 3 x 10(exp -11) rad s(exp -2) Hz(exp -1/2) for angular acceleration in 1-g environment. In 0-g, the linear acceleration sensitivity of the superconducting accelerometer could be improved by two orders of magnitude. The design and the operating principle of a laboratory prototype of the new instrument is discussed.

  13. Heavy-ion superconducting linacs

    International Nuclear Information System (INIS)

    Delayen, J.R.

    1989-01-01

    This paper reviews the status of the superconducting heavy-ion accelerators. Most of them are linacs used as boosters for tandem electrostatic accelerators, although the technology is being extended to very low velocity to eliminate the need for an injector. The characteristics and features of the various superconducting heavy-ion accelerators are discussed. 45 refs

  14. Heavy-ion superconducting linacs

    Energy Technology Data Exchange (ETDEWEB)

    Delayen, J.R.

    1989-01-01

    This paper reviews the status of the superconducting heavy-ion accelerators. Most of them are linacs used as boosters for tandem electrostatic accelerators, although the technology is being extended to very low velocity to eliminate the need for an injector. The characteristics and features of the various superconducting heavy-ion accelerators are discussed. 45 refs.

  15. Heavy ion accelerator and associated development activities at IUAC

    International Nuclear Information System (INIS)

    Kanjilal, D.

    2011-01-01

    A vertical 15UD Pelletron electrostatic tandem accelerator having highest terminal voltage tested up to 16 MV has been in regular operation at Inter-University Accelerator Center (IUAC) for more than two decades. It has been providing consistently various ion beams in the energy range from a few tens of MeV to 270 MeV for scheduled experiments. A superconducting linear accelerator (LINAC) booster module having eight niobium quarter wave resonators has been designed, fabricated and installed successfully. It is fully operational for scheduled experiments. The LINAC module has been tested and used to accelerate energetic heavy ion beams from 15 UD Pelletron. A new type of high temperature superconducting electron cyclotron resonance ion source (HTS-ECRIS) has been designed, fabricated and installed successfully. It has been in regular operation as future source of highly charged ions having higher beam current for the alternate high current injector (HCI) system for the superconducting LINAC. A radio frequency quadrupole (RFQ) accelerator is being developed to accelerate highly charged particles (A/Q ∼ 6) from HTS-ECRIS to energy of 180 keV/u. The beam will then be accelerated further by drift tube linacs (DTL) to the required velocity for injection of the ion beams in to the existing superconducting LINAC booster. A low energy ion beam facility (LEIBF) having permanent magnet ECRIS on high voltage platform and a 1.7 MV Pelletron are being used for regular experiments. Details of various developmental activities related to the heavy ion accelerator and associated systems at Inter-University Accelerator Centre (IUAC) are presented. (author)

  16. Heavy ion accelerator and associated development activities at IUAC

    International Nuclear Information System (INIS)

    Kanjilal, D.

    2011-01-01

    A vertical 15UD Pelletron electrostatic tandem accelerator having highest terminal voltage tested up to 16 MV has been in regular operation at Inter-University Accelerator Center (IUAC) for more than two decades. It has been providing consistently various ion beams in the energy range from a few tens of MeV to 270MeV for scheduled experiments. A superconducting linear accelerator (LINAC) booster module having eight niobium quarter wave resonators has been designed, fabricated and installed successfully. It is fully operational for scheduled experiments. The LINAC module has been tested and used to accelerate energetic heavy ion beams from 15 UD Pelletron. A new type of high temperature superconducting electron cyclotron resonance ion source (HTS-ECRlS) has been designed, fabricated and installed successfully. lt has been in regular operation as future source of highly charged ions having higher beam current for the alternate high current injector (HCI) system for the superconducting LINAC. A radio frequency quadrupole (RFQ) accelerator is being developed to accelerate highly charged particles (A/Q ∼ 6) from HTS-ECRIS to energy of 180 keV/u. The beam will then be accelerated further by drift tube linacs (DTL) to the required velocity for injection of the ion beams in to the existing superconducting LINAC booster. A low energy ion beam facility (LEIBF) having permanent magnet ECRIS on high voltage platform and a 1.7 MV Pelletron are being used for regular experiments. Details of various developmental activities related to the heavy ion accelerator and associated systems at Inter-University Accelerator Centre (IUAC) are presented. (author)

  17. Superconductivity

    CERN Document Server

    Thomas, D B

    1974-01-01

    A short general review is presented of the progress made in applied superconductivity as a result of work performed in connection with the high-energy physics program in Europe. The phenomenon of superconductivity and properties of superconductors of Types I and II are outlined. The main body of the paper deals with the development of niobium-titanium superconducting magnets and of radio-frequency superconducting cavities and accelerating structures. Examples of applications in and for high-energy physics experiments are given, including the large superconducting magnet for the Big European Bubble Chamber, prototype synchrotron magnets for the Super Proton Synchrotron, superconducting d.c. beam line magnets, and superconducting RF cavities for use in various laboratories. (0 refs).

  18. Complex envelope control of pulsed accelerating fields in superconducting cavities

    CERN Document Server

    Czarski, T

    2010-01-01

    A digital control system for superconducting cavities of a linear accelerator is presented in this work. FPGA (Field Programmable Gate Arrays) based controller, managed by MATLAB, was developed to investigate a novel firmware implementation. The LLRF - Low Level Radio Frequency system for FLASH project in DESY is introduced. Essential modeling of a cavity resonator with signal and power analysis is considered as a key approach to the control methods. An electrical model is represented by the non-stationary state space equation for the complex envelope of the cavity voltage driven by the current generator and the beam loading. The electromechanical model of the superconducting cavity resonator including the Lorentz force detuning has been developed for a simulation purpose. The digital signal processing is proposed for the field vector detection. The field vector sum control is considered for multiple cavities driven by one klystron. An algebraic, complex domain model is proposed for the system analysis. The c...

  19. Required performance to the concrete structure of the accelerator facilities

    International Nuclear Information System (INIS)

    Irie, Masaaki; Yoshioka, Masakazu; Miyahara, Masanobu

    2006-01-01

    As for the accelerator facility, there is many a thing which is constructed as underground concrete structure from viewpoint such as cover of radiation and stability of the structure. Required performance to the concrete structure of the accelerator facility is the same as the general social infrastructure, but it has been possessed the feature where target performance differs largely. As for the body sentence, expressing the difference of the performance which is required from the concrete structure of the social infrastructure and the accelerator facility, construction management of the concrete structure which it plans from order of the accelerator engineering works facility, reaches to the design, supervision and operation it is something which expresses the method of thinking. In addition, in the future of material structural analysis of the concrete which uses the neutron accelerator concerning view it showed. (author)

  20. Accelerator Technology Division progress report, FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    Schriber, S.O.; Hardekopf, R.A.; Heighway, E.A.

    1993-07-01

    This report briefly discusses the following topics: The Ground Test Accelerator Program; Defense Free-Electron Lasers; AXY Programs; A Next Generation High-Power Neutron-Scattering Facility; JAERI OMEGA Project and Intense Neutron Sources for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Supercollider; The High-Power Microwave (HPM) Program; Neutral Particle Beam (NPB) Power Systems Highlights; Industrial Partnering; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Accelerator Theory and Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

  1. Accelerator Technology Division progress report, FY 1992

    International Nuclear Information System (INIS)

    Schriber, S.O.; Hardekopf, R.A.; Heighway, E.A.

    1993-07-01

    This report briefly discusses the following topics: The Ground Test Accelerator Program; Defense Free-Electron Lasers; AXY Programs; A Next Generation High-Power Neutron-Scattering Facility; JAERI OMEGA Project and Intense Neutron Sources for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Supercollider; The High-Power Microwave (HPM) Program; Neutral Particle Beam (NPB) Power Systems Highlights; Industrial Partnering; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Accelerator Theory and Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations

  2. Accelerators and associated infrastructure at IUAC

    International Nuclear Information System (INIS)

    Roy, Amit

    2009-01-01

    Full text: The 15UD Pelletron accelerator forms the heart of the core facilities of IUAC and has been in regular operation round the clock, 7 days a week except during maintenance periods with a remarkable uptime of more than 90% since July 1991. The accelerator augmentation programme intends to provide superconducting linear accelerator modules to boost the energy of ions in the range of 500-600 MeV. On-line beam acceleration with superbuncher, first linac module and rebuncher was successfully conducted and first nuclear physics experiment was performed using this beam. The fabrication of the second and third linac modules with sixteen resonators is going on in full swing and construction is expected to be completed within this year. The first element of the high current injector is a High Tc superconducting magnet ECR source, which would be followed by a room temperature radio frequency quadrupole accelerator and drift tube linac cavities. Prototypes of the RFQ working at 48.5 MHz, and that of the DTL working at 97 MHz have been fabricated and undergoing tests. (author)

  3. A new AMS facility at Inter University Accelerator Centre, New Delhi

    Science.gov (United States)

    Kumar, Pankaj; Chopra, S.; Pattanaik, J. K.; Ojha, S.; Gargari, S.; Joshi, R.; Kanjilal, D.

    2015-10-01

    Inter University Accelerator Centre (IUAC), a national facility of government of India, is having a 15UD Pelletron accelerator for multidisciplinary ion beam based research programs. Recently, a new accelerator mass spectrometry (AMS) facility has been developed after incorporating many changes in the existing 15UD Pelletron accelerator. A clean chemistry laboratory for 10Be and 26Al with all the modern facilities has also been developed for the chemical processing of samples. 10Be measurements on sediment samples, inter laboratory comparison results and 26Al measurements on standard samples are presented in this paper. In addition to the 10Be and 26Al AMS facilities, a new 14C AMS facility based on a dedicated 500 kV tandem ion accelerator with two cesium sputter ion sources, is also being setup at IUAC.

  4. Continuous wave superconducting radio frequency electron linac for nuclear physics research

    International Nuclear Information System (INIS)

    Reece, Charles E.

    2016-01-01

    CEBAF, the Continuous Electron Beam Accelerator Facility, has been actively serving the nuclear physics research community as a unique forefront international resource since 1995. This cw electron linear accelerator (linac) at the U.S. Department of Energy’s Thomas Jefferson National Accelerator Facility (Jefferson Lab) has continued to evolve as a precision tool for discerning the structure and dynamics within nuclei. Superconducting rf (SRF) technology has been the essential foundation for CEBAF, first as a 4 GeV machine, then 6 GeV, and currently capable of 12 GeV. Lastly, we review the development, implementation, and performance of SRF systems for CEBAF from its early beginnings to the commissioning of the 12 GeV era.

  5. The Radiological Research Accelerator Facility

    International Nuclear Information System (INIS)

    Hall, E.J.; Marino, S.A.

    1993-05-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) - formerly the Radiological Research Laboratory of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. This report provides a listing and brief description of experiments performed at RARAF during the May 1, 1992 through April 30, 1993

  6. Radiation protection of the operation of accelerator facilities. On high energy proton and electron accelerators

    International Nuclear Information System (INIS)

    Kondo, Kenjiro

    1997-01-01

    Problems in the radiation protection raised by accelerated particles with energy higher than several hundreds MeV in strong accelerator facilities were discussed in comparison with those with lower energy in middle- and small-scale facilities. The characteristics in the protection in such strong accelerator facilities are derived from the qualitative changes in the interaction between the high energy particles and materials and from quantitative one due to the beam strength. In the former which is dependent on the emitting mechanism of the radiation, neutron with broad energy spectrum and muon are important in the protection, and in the latter, levels of radiation and radioactivity which are proportional to the beam strength are important. The author described details of the interaction between high energy particles and materials: leading to the conclusion that in the electron accelerator facilities, shielding against high energy-blemsstrahlung radiation and -neutron is important and in the proton acceleration, shielding against neutron is important. The characteristics of the radiation field in the strong accelerator facilities: among neutron, ionized particles and electromagnetic wave, neutron is most important in shielding since it has small cross sections relative to other two. Considerations for neutron are necessary in the management of exposure. Multiplicity of radionuclides produced: which is a result of nuclear spallation reaction due to high energy particles, especially to proton. Radioactivation of the accelerator equipment is a serious problem. Other problems: the interlock systems, radiation protection for experimenters and maintenance of the equipment by remote systems. (K.H.). 11 refs

  7. A study of a superconducting heavy ion cyclotron as a post accelerator for the CRNL MP Tandem

    International Nuclear Information System (INIS)

    Fraser, J.S.; Tunnicliffe, P.R.

    1975-08-01

    A novel design for a heavy ion cyclotron is described utilizing superconducting coils. Acting as a post accelerator for the CRNL MP Tandem accelerator, the proposed cyclotron is capable of producing an output energy of 10 MeV/u and intensities up to approximately 10 10 particles/s for uranium. (E.C.B.)

  8. Tuning of External Q And Phase for The Cavities of A Superconducting Linear Accelerator

    CERN Document Server

    Katalev, V V

    2004-01-01

    The RF power required for a certain gradient of a superconducting cavity depends on the beam current and coupling between the cavity and waveguide. The coupling with the cavity may be changed by variation of Qext. Different devices can be used to adjust Qext or phase. In this paper three stub and E-H tuners are compared and their usability for the RF power distribution system for the superconducting accelerator of the European Xray laser and the TESLA linear collider is considered. The tuners were analyzed by using the scattering matrix. Advantages and limitations of the devices are presented.

  9. Designing of the Low Energy Beam Lines with Achromatic Condition in the RAON Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hyunchang; Jang, Ji-Ho; Jeon, Dong-O [Institute for Basic Science, Daejeon (Korea, Republic of)

    2017-01-15

    The RAON accelerator has been built to create and accelerate stable heavy-ion beams and rare isotope beams. The stable heavy-ion beams are generated by the superconducting electron cyclotron resonance ion source and accelerated by the low energy superconducting linac SCL1. The beams accelerated by the SCL1 are re-accelerated by the high energy superconducting linac SCL2 for the generation of rare isotope beams by using the in-flight fragmentation system or are put to use in the low energy experimental halls, which include the neutron science facility and the Korea Broad acceptance Recoil spectrometer and Apparatus after having passed through the low energy beam lines which have long deflecting sections. At the end of each beam line in the low energy experimental halls, the beams should meet the targets of the two facilities with the specific requirements satisfied. Namely, if the beam is to be sent safely and accurately to the targets and simultaneously, satisfy the requirements, an achromatic lattice design needs to be applied in each beam line. In this paper, we will present the lattice design of the low energy beam lines and describe the results of the beam dynamics simulations. In addition, the correction of the beam orbit, which is distorted by machine imperfections, will be discussed.

  10. Nuclear physics accelerator facilities of the world

    International Nuclear Information System (INIS)

    1991-12-01

    this report is intended to provide a convenient summary of the world's major nuclear physics accelerator facility with emphasis on those facilities supported by the US Department of Energy (DOE). Previous editions of this report have contained only DOE facilities. However, as the extent of global collaborations in nuclear physics grows, gathering summary information on the world's nuclear physics accelerator facilities in one place is useful. Therefore, the present report adds facilities operated by the National Science Foundation (NSF) as well as the leading foreign facilities, with emphasis on foreign facilities that have significant outside user programs. The principal motivation for building and operating these facilities is, of course, basic research in nuclear physics. The scientific objectives for this research were recently reviewed by the DOE/NSF Nuclear Science Advisory Committee, who developed a long range plan, Nuclei, Nucleons, and Quarks -- Nuclear Science in the 1990's. Their report begins as follows: The central thrust of nuclear science is the study of strongly interacting matter and of the forces that govern its structure and dynamics; this agenda ranges from large- scale collective nuclear behavior through the motions of individual nucleons and mesons, atomic nuclei, to the underlying distribution of quarks and gluons. It extends to conditions at the extremes of temperature and density which are of significance to astrophysics and cosmology and are conducive to the creation of new forms of strongly interacting matter; and another important focus is on the study of the electroweak force, which plays an important role in nuclear stability, and on precision tests of fundamental interactions. The present report provides brief descriptions of the accelerator facilities available for carrying out this agenda and their research programs

  11. Superconducting muon channel at J-PARC

    International Nuclear Information System (INIS)

    Shimomura, K.; Koda, A.; Strasser, P.; Kawamura, N.; Fujimori, H.; Makimura, S.; Higemoto, W.; Nakahara, K.; Ishida, K.; Nishiyama, K.; Nagamine, K.; Miyake, Y.

    2009-01-01

    The Muon Science Laboratory at the Materials and Life Science Facility is now under construction in Japan Proton Accelerator Research Complex (J-PARC), where four types of muon channels are planned to be installed. A conventional superconducting muon channel will be installed at the first stage, which can extract surface (positive) muons and decay positive/negative muons up to 120 MeV/c, and the expected muon yield is a few 10 6 /s at 60 MeV/c (for both positive and negative). This channel will be used for various kinds of experiments like muon catalyzed fusion, μSR and nondestructive elements analysis. The present status of the superconducting muon channel is briefly reported.

  12. Report on Workshop on Future Directions for Accelerator R&D at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, V.; Church, M.; Spentzouris, P.; Chou, W.; /Fermilab

    2009-09-01

    Accelerator R&D has played a crucial role in enabling scientific discovery in the past century and will continue to play this role in the years to come. In the U.S., the Office of High Energy Physics of DOE's Office of Science is developing a plan for national accelerator R&D stewardship. Fermilab undertakes accelerator research, design, and development focused on superconducting radio-frequency (RF), superconducting magnet, beam cooling, and high intensity proton technologies. In addition, the Lab pursues comprehensive integrated theoretical concepts and simulations of complete future facilities on both the energy and intensity frontiers. At present, Fermilab (1) supplies integrated design concept and technology development for a multi-MW proton source (Project X) to support world-leading programs in long baseline neutrino and rare processes experiments; (2) plays a leading role in the development of ionization cooling technologies required for muon storage ring facilities at the energy (multi-TeV Muon Collider) and intensity (Neutrino Factory) frontiers, and supplies integrated design concepts for these facilities; and (3) carries out a program of advanced accelerator R&D (AARD) in the field of high quality beam sources, and novel beam manipulation techniques.

  13. Application of International Linear Collider superconducting cavities for acceleration of protons

    Directory of Open Access Journals (Sweden)

    P. N. Ostroumov

    2007-12-01

    Full Text Available Beam acceleration in the International Linear Collider (ILC will be provided by 9-cell 1300 MHz superconducting (SC cavities. The cavities are designed for effective acceleration of charged particles moving with the speed of light and are operated on π-mode to provide a maximum accelerating gradient. A significant research and development effort has been devoted to develop ILC SC technology and its rf system which resulted in excellent performance of ILC cavities. Therefore, the proposed 8-GeV proton driver in Fermilab is based on ILC cavities above ∼1.2  GeV. The efficiency of proton beam acceleration by ILC cavities drops fast for lower velocities and it was proposed to develop squeezed ILC-type (S-ILC cavities operating at 1300 MHz and designed for β_{G}=0.81, geometrical beta, to accelerate protons or H^{-} from ∼420  MeV to 1.2 GeV. This paper discusses the possibility of avoiding the development of new β_{G}=0.81 cavities by operating ILC cavities on 8/9π-mode of standing wave oscillations.

  14. Overview of the KoRIA Facility for Rare Isotope Beams

    International Nuclear Information System (INIS)

    Hong, S.W.; Bak, S.I.; Chai, J.S.; Ahn, J.K.; Blumenfeld, Y.; Cheon, B.-G.; Choi, C.I.; Cheoun, M.-K.; Cho, D.; Cho, Y.S.; Choi, B.H.; Choi, E.M.; And others

    2013-01-01

    The Korea Rare Isotope Accelerator, currently referred to as KoRIA, is briefly presented. The KoRIA facility is aimed to enable cutting-edge sciences in a wide range of fields. It consists of a 70 kW isotope separator on-line (ISOL) facility driven by a 70 MeV, 1 mA proton cyclotron and a 400 kW in-flight fragmentation (IFF) facility. The ISOL facility uses a superconducting (SC) linac for post-acceleration of rare isotopes up to about 18 MeV/u, while the SC linac of IFF facility is capable of accelerating uranium beams up to 200 MeV/u, 8 pμA and proton beams up to 600 MeV, 660 μA. Overall features of the KoRIA facility are presented with a focus on the accelerator design. (author)

  15. European infrastructures for R&D and test of superconducting radio-frequency cavities and cryo-modules

    CERN Document Server

    Weingarten, W

    2011-01-01

    The volume is copyright CERN and can be distributed under CC-BY license. The need for a European facility to build and test superconducting RF accelerating structures and cryo‐modules (SRF test facility) was extensively discussed during the preparation of EuCARD [1,2]. It comprised a distributed network of equipment across Europe to be assessed and, if needed, completed by hardware. It also addressed the quest for a deeper basic understanding, a better control and optimisation of the manufacture of superconducting RF structures with the aim of a substantial improvement of the accelerating gradient, a reduction of its spread and a cost minimisation. However, consequent to EU budget restrictions, the proposal was not maintained. Instead, a more detailed analysis was requested by a sub‐task inside the EuCARD Network [3] AccNet ‐ RFTech [4]. The main objective of this “SRF sub‐task” consists of intensifying a collaborative effort between European accelerator labs. The aim focused on planning and later...

  16. A new AMS facility at Inter University Accelerator Centre, New Delhi

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pankaj, E-mail: pkb@iuac.res.in [Inter-University Accelerator Center (IUAC), New Delhi (India); Chopra, S. [Inter-University Accelerator Center (IUAC), New Delhi (India); Pattanaik, J.K. [Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, WB (India); Ojha, S.; Gargari, S.; Joshi, R.; Kanjilal, D. [Inter-University Accelerator Center (IUAC), New Delhi (India)

    2015-10-15

    Inter University Accelerator Centre (IUAC), a national facility of government of India, is having a 15UD Pelletron accelerator for multidisciplinary ion beam based research programs. Recently, a new accelerator mass spectrometry (AMS) facility has been developed after incorporating many changes in the existing 15UD Pelletron accelerator. A clean chemistry laboratory for {sup 10}Be and {sup 26}Al with all the modern facilities has also been developed for the chemical processing of samples. {sup 10}Be measurements on sediment samples, inter laboratory comparison results and {sup 26}Al measurements on standard samples are presented in this paper. In addition to the {sup 10}Be and {sup 26}Al AMS facilities, a new {sup 14}C AMS facility based on a dedicated 500 kV tandem ion accelerator with two cesium sputter ion sources, is also being setup at IUAC.

  17. Rf superconducting devices

    International Nuclear Information System (INIS)

    Hartwig, W.H.; Passow, C.

    1975-01-01

    Topics discussed include (1) the theory of superconductors in high-frequency fields (London surface impedance, anomalous normal surface resistance, pippard nonlocal theory, quantum mechanical model, superconductor parameters, quantum mechanical calculation techniques for the surface, impedance, and experimental verification of surface impedance theories); (2) residual resistance (separation of losses, magnetic field effects, surface resistance of imperfect and impure conductors, residual loss due to acoustic coupling, losses from nonideal surfaces, high magnetic field losses, field emission, and nonlinear effects); (3) design and performance of superconducting devices (design considerations, materials and fabrication techniques, measurement of performance, and frequency stability); (4) devices for particle acceleration and deflection (advantages and problems of using superconductors, accelerators for fast particles, accelerators for particles with slow velocities, beam optical devices separators, and applications and projects under way); (5) applications of low-power superconducting resonators (superconducting filters and tuners, oscillators and detectors, mixers and amplifiers, antennas and output tanks, superconducting resonators for materials research, and radiation detection with loaded superconducting resonators); and (6) transmission and delay lines

  18. Mechanical behavior of the mirror fusion test Facility superconducting magnet coils

    International Nuclear Information System (INIS)

    Horvath, J.A.

    1980-01-01

    The mechanical response to winding and electromagnetic loads of the Mirror Fusion Test Facility (MFTF) superconducting coil pack is presented. The 375-ton (3300 N) MFTF Yin-Yang magnet, presently the world's largest superconducting magnet, is scheduled for acceptance cold-testing in May of 1981. The assembly is made up of two identical coils which together contain over 15 miles (24 km) of superconductor wound in 58 consecutive layers of 24 turns each. Topics associated with mechanical behavior include physical properties of the coil pack and its components, winding pre-load effects, finite element analysis, magnetic load redistribution, and the design impact of predicted conductor motion

  19. Detection of Second Sound in He-II for Thermal Quench Mapping of Superconducting Radio Frequency Accelerating Cavities

    OpenAIRE

    Stegmaier, Tobias; Grohmann, Steffen; Kind, Matthias; Furci, Hernán; Koettig, Torsten; Peters, Benedikt

    2018-01-01

    The development of future particle accelerators requires intensive testing of superconducting radio frequency cavities with different sizes and geometries. Non-contact thermometry quench localisation techniques proved to be beneficial for the localisation of surface defects that can originate a quench (sudden loss of superconducting state). These techniques are based on the detection of second sound in helium II. Transition Edge Sensors (TES) are highly sensitive thin film thermometers with f...

  20. Los Alamos High-Brightness Accelerator FEL (HIBAF) facility

    Energy Technology Data Exchange (ETDEWEB)

    Cornelius, W.D.; Bender, S.; Meier, K.; Thode, L.E.; Watson, J.M.

    1989-01-01

    The 10-/mu/m Los Alamos free-electron laser (FEL) facility is being upgraded. The conventional electron gun and bunchers have been replaced with a much more compact 6-MeV photoinjector accelerator. By adding existing parts from previous experiments, the primary beam energy will be doubled to 40 MeV. With the existing 1-m wiggler (/lambda//sub w/ = 2.7 cm) and resonator, the facility can produce photons with wavelengths from 3 to 100 /mu/m when lasing on the fundamental mode and produce photons in the visible spectrum with short-period wigglers or harmonic operation. After installation of a 150/degree/ bend, a second wiggler will be added as an amplifier. The installation of laser transport tubes between the accelerator vault and an upstairs laboratory will provide experimenters with a radiation-free environment for experiments. Although the initial experimental program of the upgraded facility will be to test the single accelerator-master oscillator/power amplifier configuration, some portion of the operational time of the facility can be dedicated to user experiments. 13 refs., 5 figs., 6 tabs.

  1. Continuous wave superconducting radio frequency electron linac for nuclear physics research

    Directory of Open Access Journals (Sweden)

    Charles E. Reece

    2016-12-01

    Full Text Available CEBAF, the Continuous Electron Beam Accelerator Facility, has been actively serving the nuclear physics research community as a unique forefront international resource since 1995. This cw electron linear accelerator (linac at the U.S. Department of Energy’s Thomas Jefferson National Accelerator Facility (Jefferson Lab has continued to evolve as a precision tool for discerning the structure and dynamics within nuclei. Superconducting rf (SRF technology has been the essential foundation for CEBAF, first as a 4 GeV machine, then 6 GeV, and currently capable of 12 GeV. We review the development, implementation, and performance of SRF systems for CEBAF from its early beginnings to the commissioning of the 12 GeV era.

  2. Demountable damped cavity for HOM-damping in ILC superconducting accelerating cavities

    Energy Technology Data Exchange (ETDEWEB)

    Konomi, T., E-mail: konomi@ims.ac.jp [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Yasuda, F. [University of Tokyo, Bunkyo-ku, Tokyo 113-8654 (Japan); Furuta, F. [Laboratory for Elementary-Particle Physics, Cornell University, Ithaca, NY 14853 (United States); Saito, K. [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2014-01-11

    We have designed a new higher-order-mode (HOM) damper called a demountable damped cavity (DDC) as part of the R and D efforts for the superconducting cavity of the International Linear Collider (ILC). The DDC has two design concepts. The first is an axially symmetrical layout to obtain high damping efficiency. The DDC has a coaxial structure along the beam axis to realize strong coupling with HOMs. HOMs are damped by an RF absorber at the end of the coaxial waveguide and the accelerating mode is reflected by a choke filter mounted at the entrance of the coaxial waveguide. The second design concept is a demountable structure to facilitate cleaning, in order to suppress the Q-slope problem in a high field. A single-cell cavity with the DDC was fabricated to test four performance parameters. The first was frequency matching between the accelerating cavity and the choke filter. Since the bandwidth of the resonance frequency in a superconducting cavity is very narrow, there is a possibility that the accelerating field will leak to the RF absorber because of thermal shrinkage. The design bandwidth of the choke filter is 25 kHz. It was demonstrated that frequency matching adjusted at room temperature could be successfully maintained at 2 K. The second parameter was the performance of the demountable structure. At the joint, the magnetic field is 1/6 of the maximum field in the accelerating cavity. Ultimately, the accelerating field reached 19 MV/m and Q{sub 0} was 1.5×10{sup 10} with a knife-edge shape. The third parameter was field emission and multipacting. Although the choke structure has numerous parallel surfaces that are susceptible to the multipacting problem, it was found that neither field emission nor multipacting presented problems in both an experiment and simulation. The final parameter was the Q values of the HOM. The RF absorber adopted in the system is a Ni–Zn ferrite type. The RF absorber shape was designed based on the measurement data of permittivity

  3. Demountable damped cavity for HOM-damping in ILC superconducting accelerating cavities

    International Nuclear Information System (INIS)

    Konomi, T.; Yasuda, F.; Furuta, F.; Saito, K.

    2014-01-01

    We have designed a new higher-order-mode (HOM) damper called a demountable damped cavity (DDC) as part of the R and D efforts for the superconducting cavity of the International Linear Collider (ILC). The DDC has two design concepts. The first is an axially symmetrical layout to obtain high damping efficiency. The DDC has a coaxial structure along the beam axis to realize strong coupling with HOMs. HOMs are damped by an RF absorber at the end of the coaxial waveguide and the accelerating mode is reflected by a choke filter mounted at the entrance of the coaxial waveguide. The second design concept is a demountable structure to facilitate cleaning, in order to suppress the Q-slope problem in a high field. A single-cell cavity with the DDC was fabricated to test four performance parameters. The first was frequency matching between the accelerating cavity and the choke filter. Since the bandwidth of the resonance frequency in a superconducting cavity is very narrow, there is a possibility that the accelerating field will leak to the RF absorber because of thermal shrinkage. The design bandwidth of the choke filter is 25 kHz. It was demonstrated that frequency matching adjusted at room temperature could be successfully maintained at 2 K. The second parameter was the performance of the demountable structure. At the joint, the magnetic field is 1/6 of the maximum field in the accelerating cavity. Ultimately, the accelerating field reached 19 MV/m and Q 0 was 1.5×10 10 with a knife-edge shape. The third parameter was field emission and multipacting. Although the choke structure has numerous parallel surfaces that are susceptible to the multipacting problem, it was found that neither field emission nor multipacting presented problems in both an experiment and simulation. The final parameter was the Q values of the HOM. The RF absorber adopted in the system is a Ni–Zn ferrite type. The RF absorber shape was designed based on the measurement data of permittivity and

  4. Construction program for a large superconducting MHD magnet system at the coal-fired flow facility

    International Nuclear Information System (INIS)

    Wang, S.T.; Genens, L.; Gonczy, J.; Ludwig, H.; Lieberg, M.; Kraft, E.; Gacek, D.; Huang, Y.C.; Chen, C.J.

    1980-01-01

    The Argonne National Laboratory has designed and is constructing a 6 T large aperture superconducting MHD magnet for use in the Coal-Fired Flow Facility (CFFF) at the University of Tennessee Space Institute (UTSI) at Tullahoma, Tennessee. The magnet system consists of the superconducting magnet, a magnet power supply, an integrated instrumentation for operation, control and protection, and a complete cryogenic facility including a CTI Model 2800 helium refrigerator/liquefier with two compressors, helium gas handling system and a 7500 liter liquid helium dewar. The complete system will be tested at Argonne, IL in 1981. The magnet design is reviewed, and the coil fabrication programs are described in detail

  5. Study of higher order modes in superconducting accelerating structures for linac applications

    Energy Technology Data Exchange (ETDEWEB)

    Schuh, Marcel

    2011-06-22

    Higher Order Modes (HOMs) can severely limit the operation of superconducting cavities in a linear accelerator with high beam current, high duty factor and complex pulse structure. Therefore, the full HOM spectrum has to be analysed in detail to identify potentially dangerous modes already during the design phase and to define their damping requirements. For this purpose a dedicated beam dynamics simulation code, Simulation of higher order Mode Dynamics (SMD), focusing on beam-HOM interaction, has been developed in the frame of this project. SMD allows to analyse the beam behaviour under the presence of HOMs, taking into account many important effects, such as for example the HOM frequency spread, beam input jitter, different chopping patterns, as well as klystron and alignment errors. SMD is used to investigate in detail into the effects of HOMs in the Superconducting Proton Linac (SPL) at CERN and in particular their potential to drive beam instabilities in the longitudinal and transverse direction. Based on these results, HOM damping requirements for the HOM coupler design are then defined. In addition, the linear accelerators of the European Spallation Source (ESS) and the Spallation Neutron Source (SNS) are analysed with respect to HOM impact and the results are compared with the SPL simulations. (orig.)

  6. The EXCYT RIB facility at LNS

    Energy Technology Data Exchange (ETDEWEB)

    Ciavola, G. [Inst. Nazionale di Fisica Nucleare, Catania (Italy). Lab. Nazionale del Sud; Alba, R. [Inst. Nazionale di Fisica Nucleare, Catania (Italy). Lab. Nazionale del Sud; Calabretta, L. [Inst. Nazionale di Fisica Nucleare, Catania (Italy). Lab. Nazionale del Sud; Cuttone, G. [Inst. Nazionale di Fisica Nucleare, Catania (Italy). Lab. Nazionale del Sud; Di Bartolo, G. [Inst. Nazionale di Fisica Nucleare, Catania (Italy). Lab. Nazionale del Sud; Gammino, S. [Inst. Nazionale di Fisica Nucleare, Catania (Italy). Lab. Nazionale del Sud; Migneco, E. [Inst. Nazionale di Fisica Nucleare, Catania (Italy). Lab. Nazionale del Sud; Raia, G. [Inst. Nazionale di Fisica Nucleare, Catania (Italy). Lab. Nazionale del Sud; Rifuggiato, D. [Inst. Nazionale di Fisica Nucleare, Catania (Italy). Lab. Nazionale del Sud; Rovelli, A. [Inst. Nazionale di Fisica Nucleare, Catania (Italy). Lab. Nazionale del Sud; Sura, J. [Inst. Nazionale di Fisica Nucleare, Catania (Italy). Lab. Nazionale del Sud; Vinciguerra, D. [Inst. Nazionale di Fisica Nucleare, Catania (Italy). Lab. Nazionale del Sud; Wollnik, H. [Inst. Nazionale di Fisica Nucleare, Catania (Italy). Lab. Nazionale del Sud

    1996-11-11

    EXCYT, a project for a low energy ISOL facility at LNS, has been funded. It is based on two already existing particle accelerators. A K=800 superconducting cyclotron will deliver the primary beam of ions A{<=}48; E=50-80 MeV/amu. After its interaction in a thick target, the negatively ionized radioactive products (A<80) will be post-accelerated to 0.2-8 MeV/amu by a 15 MV SMP tandem. A description of the facility, including the fully redesigned ion optics, an overview of the design problems and the expected secondary beam intensities are presented. (orig.).

  7. The EXCYT RIB facility at LNS

    International Nuclear Information System (INIS)

    Ciavola, G.; Alba, R.; Calabretta, L.; Cuttone, G.; Di Bartolo, G.; Gammino, S.; Migneco, E.; Raia, G.; Rifuggiato, D.; Rovelli, A.; Sura, J.; Vinciguerra, D.; Wollnik, H.

    1996-01-01

    EXCYT, a project for a low energy ISOL facility at LNS, has been funded. It is based on two already existing particle accelerators. A K=800 superconducting cyclotron will deliver the primary beam of ions A≤48; E=50-80 MeV/amu. After its interaction in a thick target, the negatively ionized radioactive products (A<80) will be post-accelerated to 0.2-8 MeV/amu by a 15 MV SMP tandem. A description of the facility, including the fully redesigned ion optics, an overview of the design problems and the expected secondary beam intensities are presented. (orig.)

  8. Contributions to the 1999 particle accelerator conference

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, M. [Laboratoire de l' Accelerateur Lineaire, 91 - Orsay (France); Fartoukh, S.; Jablonka, M.; Joly, J.M.; Lalot, M.; Magne, C.; Napoly, O. [CEA/Saclay, 91 - Gif sur Yvette (France); Baboi, N.; Schreiber, S.; Simrock, S.; Weise, H. [DESY, Hamburg (Germany)

    2000-06-01

    This document puts together the 10 contributions of the laboratory to the 1999 particle accelerator conference. The titles of the papers are: 1) Evidence for a strongly coupled dipole mode with insufficient damping in the first accelerating module of the TESLA test facility (TTF); 2) An alternative scheme for stiffening superconducting RF cavities by plasma spraying; 3) A laser triggered electron source for pulsed radiolysis; 4) A cure for the energy spread increasing related bunch lengthening in electron storage rings; 5) Single bunch longitudinal instabilities in proton storage rings; 6) Analytical investigation on the halo formation in space charge dominated beams; 7) Analytical investigation on the dynamic apertures of circular accelerators; 8) The intrinsic upper limit to the beam energy of an electron-positron circular collider; 9) Coaxial disc windows for a high power superconducting cavity input coupler; and 10) RF pulsed tests on 3 GHz niobium cavities.

  9. Contributions to the 1999 particle accelerator conference

    International Nuclear Information System (INIS)

    Bernard, M.; Fartoukh, S.; Jablonka, M.; Joly, J.M.; Lalot, M.; Magne, C.; Napoly, O.; Baboi, N.; Schreiber, S.; Simrock, S.; Weise, H.

    2000-06-01

    This document puts together the 10 contributions of the laboratory to the 1999 particle accelerator conference. The titles of the papers are: 1) Evidence for a strongly coupled dipole mode with insufficient damping in the first accelerating module of the TESLA test facility (TTF); 2) An alternative scheme for stiffening superconducting RF cavities by plasma spraying; 3) A laser triggered electron source for pulsed radiolysis; 4) A cure for the energy spread increasing related bunch lengthening in electron storage rings; 5) Single bunch longitudinal instabilities in proton storage rings; 6) Analytical investigation on the halo formation in space charge dominated beams; 7) Analytical investigation on the dynamic apertures of circular accelerators; 8) The intrinsic upper limit to the beam energy of an electron-positron circular collider; 9) Coaxial disc windows for a high power superconducting cavity input coupler; and 10) RF pulsed tests on 3 GHz niobium cavities

  10. Development of a short sample test facility for evaluating superconducting wires

    International Nuclear Information System (INIS)

    Singh, M.R.; Kulkarni, D.G.; Sahni, V.C.; Ravikumar, G.; Patel, K.L.

    2002-01-01

    In this paper we describe a short sample test facility we have set up at Bhabha Atomic Research Centre (BARC). This facility has been used to measure critical currents of NbTi/Cu composite superconducting wires by recording V versus I data at 4.2 K. It offers sample current as large as 1500 A and a transverse magnetic field up to 7.4 T. A power law, V ∼I n( H) is fitted to the resistive transition region to estimate the exponent n, which is a measure of the uniformity of superconducting filaments in composite wires. It is observed that inadequate thermal stabilization of sample wire results in thermal runaway, which limits the V-I data to∼ 2μ V . This in turn affects the reliability of estimated filament uniformity. To mitigate this problem, we have used a sample holder made of OFHC-Cu which enhances thermal stabilization of the sample. With this sample holder, the results of measurements carried out on wires developed by the Atomic Fuel Division, BARC show a high filament uniformity (n ∼ 58). (author)

  11. A 12 coil superconducting bumpy torus magnet facility for plasma research

    Science.gov (United States)

    Roth, J. R.; Holmes, A. D.; Keller, T. A.; Krawczonek, W. M.

    1972-01-01

    A summary is presented of the performance of the two-coil superconducting pilot rig which preceded the NASA Lewis bumpy torus. This pilot rig was operated for 550 experimental runs over a period of 7 years. The NASA Lewis bumpy torus facility consists of 12 superconducting coils, each with a 19 cm in diameter and capable of producing magnetic field strengths of 3.0 teslas on their axes. The magnets are equally spaced around a major circumference 1.52 m in diameter, and are mounted with the major axis of the torus vertical in a single vacuum tank 2.59 m in diameter. The design value of maximum magnetic field on the magnetic axis (3.0 teslas) was reached and exceeded. A maximum magnetic field of 3.23 teslas was held for a period of 60 minutes, and the coils did not go to normal. When the coils were charged to a maximum magnetic field of 3.35 teslas, the coil system was driven normal without damage to the facility.

  12. The BNL Accelerator Test Facility and experimental program

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; State Univ. of New York, Stony Brook, NY

    1992-01-01

    The Accelerator Test Facility (ATF) at BNL is a users' facility for experiments in Accelerator and Beam Physics. The ATF provides high brightness electron beams and high-power laser pulses synchronized to the electron beam, suitable for studies of new methods of high-gradient acceleration and state-of-the-art Free-Electron Lasers. The electrons are produced by a laser photocathode rf gun and accelerated to 50 MeV by two traveling wave accelerator sections. The lasers include a 10 mJ, 10 ps ND:YAG laser and a 500 mJ, 10 to 100 ps C0 2 laser. A number of users from National Laboratories, universities and industry take part in experiments at the ATF. The experimental program includes various laser acceleration schemes, Free-Electron Laser experiments and a program on the development of high-brightness electron beams. The ATF's experimental program commenced in early 1991 at an energy of about 4 MeV. The full program, with 50 MeV and the high-power laser will begin operation this year

  13. The BNL Accelerator Test Facility and experimental program

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; State Univ. of New York, Stony Brook, NY

    1991-01-01

    The Accelerator Test Facility (ATF) at BNL is a users' facility for experiments in Accelerator and Beam Physics. The ATF provides high brightness electron beams and high power laser pulses synchronized to the electron beam, suitable for studies of new methods of high gradient acceleration and state of the art free electron lasers. The electrons are produced by a laser photocathode rf gun and accelerated to 50 to 100 MeV by two traveling wave accelerator sections. The lasers include a 10 mJ, 10 ps Nd:YAG laser and a 100 mJ, 10 ps CO 2 laser. A number of users from National Laboratories, universities and industry take part in experiments at the ATF. The experimental program includes various acceleration schemes, Free-Electron Laser experiments and a program on the development of high brightness electron beams. The AFT's experimental program commenced in early 1991 at an energy of about 4 MeV. The full program, with 50 MeV and the High power laser will begin operation this year. 28 refs., 4 figs

  14. Superconductivity

    International Nuclear Information System (INIS)

    Palmieri, V.

    1990-01-01

    This paper reports on superconductivity the absence of electrical resistance has always fascinated the mind of researchers with a promise of applications unachievable by conventional technologies. Since its discovery superconductivity has been posing many questions and challenges to solid state physics, quantum mechanics, chemistry and material science. Simulations arrived to superconductivity from particle physics, astrophysic, electronics, electrical engineering and so on. In seventy-five years the original promises of superconductivity were going to become reality: a microscopical theory gave to superconductivity the cloth of the science and the level of technological advances was getting higher and higher. High field superconducting magnets became commercially available, superconducting electronic devices were invented, high field accelerating gradients were obtained in superconductive cavities and superconducting particle detectors were under study. Other improvements came in a quiet progression when a tornado brought a revolution in the field: new materials had been discovered and superconductivity, from being a phenomenon relegated to the liquid Helium temperatures, became achievable over the liquid Nitrogen temperature. All the physics and the technological implications under superconductivity have to be considered ab initio

  15. The Radiological Research Accelerator Facility:

    International Nuclear Information System (INIS)

    Hall, E.J.; Goldhagen, P.

    1988-07-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generated a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Radiological Research Laboratory (RRL) of Columbia University, and its operation is supported as a National Facility by the U.S. Department of Energy. As such, RARAF is available to all potential users on an equal basis, and scientists outside the RRL are encouraged to submit proposals for experiments at RARAF. Facilities and services are provided to users, but the research projects themselves must be supported separately. RARAF was located at BNL from 1967 until 1980, when it was dismantled and moved to the Nevis Laboratories of Columbia University, where it was then reassembled and put back into operation. Data obtained from experiment using RARAF have been of pragmatic value to radiation protection and to neutron therapy. At a more fundamental level, the research at RARAF has provided insight into the biological action of radiation and especially its relation to energy distribution in the cell. High-LET radiations are an agent of special importance because they can cause measurable cellular effects by single particles, eliminating some of the complexities of multievent action and more clearly disclosing basic features. This applies particularly to radiation carcinogenesis. Facilities are available at RARAF for exposing objects to different radiations having a wide range of linear energy transfers (LETs)

  16. H-superconducting cyclotron for PET isotope production

    International Nuclear Information System (INIS)

    Smirnov, V.L.; Vorozhtsov, S.B.; Vincent, J.

    2014-01-01

    The scientific design of a 14-MeV H - compact superconducting cyclotron for producing of the 18 F and 13 N isotopes has been developed. Main requirements to the facility as a medical accelerator are met in the design. In particular, the main requirement for the cyclotron was the smallest possible size due to the superconducting magnet. The calculations show that the proposed cyclotron allows extracted beam intensity over 500 μA. To increase system reliability and production rates, an external H - ion source is applied. The choice of the cyclotron concept, design of the structure elements, calculation of the electromagnetic fields and beam dynamics from the ion source to the extraction system were performed.

  17. Kansas State University accelerator laboratory upgrade

    International Nuclear Information System (INIS)

    Richard, P.

    1989-01-01

    The J.R. Macdonald Laboratory is undergoing a major upgrade of its facilities and capabilities. The laboratory is dedicated to the study of ion-atom collisions using highly charged ions from accelerators and/or ion sources. The mainstay of the laboratory over the last two decades has been a 6 MV tandem accelerator. It has been used to produce one- to a few-MeV/u highly charged ions for studying high energy atomic collisions, and to produce recoil ions from ocllisions with projectile ions for studying low energy atomic collisions. In order to enhance the capabilities of studying atomic collisions in these two energy regimes, we are constructing a superconducting LINAC booster to the tandem, and a stand-alone CRYEBIS source. The project, which is funded by the US Department of Energy, began in May 1985 with a May 1989 completion schedule. The upgrade includes a building addition, funded by the State of Kansas, to house the new facilities. The LINAC consists of a time-superbunching module, followed by three large cryostat modules each containing four superconducting resonators, and followed by an energy-rebunching module. The resonators are the split-ring superconducting Nb type designed and constructed at Argonne National Laboratory, and are presently being tested at KSU. The CRYEBIS source, which consists of a 1 m long 5 T superconducting solenoid with a high degree of straightness, is in the final stages of assembly. We have in operation a new computer network for data acquisition and analysis. A progress report on the status of the upgrade is presented. (orig.)

  18. Development of a distributed control system for the JAERI tandem accelerator facility

    International Nuclear Information System (INIS)

    Hanashima, Susumu

    2005-01-01

    In the JAERI tandem accelerator facility, we are building accelerator complex aiming generation and acceleration of radio nuclear beam. Several accelerators, ion sources and a charge breeder are installed in the facility. We are developing a distributed control system enabling smooth operation of the facility. We report basic concepts of the control system in this article. We also describe about a control hardware using plastic optical fiber, which is developed for the control system. (author)

  19. Research on accelerator-driven transmutation and studies of experimental facilities

    Energy Technology Data Exchange (ETDEWEB)

    Takizuka, Takakazu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    JAERI is carrying out R and Ds on accelerator-driven transmutation systems under the national OMEGA Program that aims at development of the technology to improve efficiency and safety in the final disposal of radioactive waste. Research facilities for accelerator-driven transmutation experiments are proposed to construct within the framework of the planned JAERI Neutron Science Project. This paper describes the features of the proposed accelerator-driven transmutation systems and their technical issues to be solved. A research facility plan under examination is presented. The plan is divided in two phases. In the second phase, technical feasibility of accelerator-driven systems will be demonstrated with a 30-60 MW experimental integrated system and with a 7 MW high-power target facility. (author)

  20. Final Report - Development of a Multi-Spoke Superconducting Cavity for Nuclear Physics, Light Sources, and Driven Systems Applications (ODU Contribution)

    Energy Technology Data Exchange (ETDEWEB)

    Delayen, Jean [Old Dominion Univ., Norfolk, VA (United States)

    2014-11-14

    This report summarizes the work done by Old Dominion University, in collaboration with the Thomas Jefferson National Accelerator Facility toward the development of high-velocity superconducting spoke cavities.

  1. Thin Film Approaches to the SRF Cavity Problem: Fabrication and Characterization of Superconducting Thin Films

    Science.gov (United States)

    Beringer, Douglas B.

    Superconducting Radio Frequency (SRF) cavities are responsible for the acceleration of charged particles to relativistic velocities in most modern linear accelerators, such as those employed at high-energy research facilities like Thomas Jefferson National Laboratory's CEBAF and the LHC at CERN. Recognizing SRF as primarily a surface phenomenon enables the possibility of applying thin films to the interior surface of SRF cavities, opening a formidable tool chest of opportunities by combining and designing materials that offer greater benefit. Thus, while improvements in radio frequency cavity design and refinements in cavity processing techniques have improved accelerator performance and efficiency - 1.5 GHz bulk niobium SRF cavities have achieved accelerating gradients in excess of 35 MV/m - there exist fundamental material bounds in bulk superconductors limiting the maximally sustained accelerating field gradient (approximately 45 MV/m for Niobium) where inevitable thermodynamic breakdown occurs. With state of the art niobium based cavity design fast approaching these theoretical limits, novel material innovations must be sought in order to realize next generation SRF cavities. One proposed method to improve SRF performance is to utilize thin film superconducting-insulating-superconducting (SIS) multilayer structures to effectively magnetically screen a bulk superconducting layer such that it can operate at higher field gradients before suffering critically detrimental SRF losses. This dissertation focuses on the production and characterization of thin film superconductors for such SIS layers for radio-frequency applications.

  2. European accelerator facilities for single event effects testing

    Energy Technology Data Exchange (ETDEWEB)

    Adams, L; Nickson, R; Harboe-Sorensen, R [ESA-ESTEC, Noordwijk (Netherlands); Hajdas, W; Berger, G

    1997-03-01

    Single event effects are an important hazard to spacecraft and payloads. The advances in component technology, with shrinking dimensions and increasing complexity will give even more importance to single event effects in the future. The ground test facilities are complex and expensive and the complexities of installing a facility are compounded by the requirement that maximum control is to be exercised by users largely unfamiliar with accelerator technology. The PIF and the HIF are the result of experience gained in the field of single event effects testing and represent a unique collaboration between space technology and accelerator experts. Both facilities form an essential part of the European infrastructure supporting space projects. (J.P.N.)

  3. Reducing field emission in the superconducting rf cavities for the next generation of particle accelerators

    International Nuclear Information System (INIS)

    Shu, Q.S.; Hartung, W.; Leibovich, A.; Kirchgessner, J.; Moffat, D.; Padamsee, H.; Rubin, D.; Sears, J.

    1991-01-01

    This paper reports on field emission, which is an obstacle to reaching the higher fields called for in future applications of superconducting radio frequency cavities to particle accelerators. The authors used heat treatment up to 1500 degrees C in an ultra-high vacuum furnace, along with processing of cavities and temperature mapping, to suppress field emission and analyze emitter properties. In 27 tests of 1-cell 1500 MHz fired accelerating cavities, on the average the accelerating field E acc increased to 24 MV/m (H pk = 1250 Oe) from 13 MV/m with chemical treatment alone; the highest E acc reached was 30.5 MV/m

  4. A fiber-optic strain measurement and quench localization system for use in superconducting accelerator dipole magnets

    NARCIS (Netherlands)

    van Oort, J.M.; Scanlan, Ronald M.; ten Kate, Herman H.J.

    1995-01-01

    A novel fiber-optic measurement system for superconducting accelerator magnets is described. The principal component is an extrinsic Fabry-Perot interferometer to determine localized strain and stress in coil windings. The system can be used either as a sensitive relative strain measurement system

  5. Multilayer coating for higher accelerating fields in superconducting radio-frequency cavities: a review of theoretical aspects

    OpenAIRE

    Kubo, Takayuki

    2016-01-01

    Theory of the superconductor-insulator-superconductor (S-I-S) multilayer structure in superconducting accelerating cavity application is reviewed. The theoretical field limit, optimum layer thicknesses and material combination, and surface resistance are discussed. Those for the S-S bilayer structure are also reviewed.

  6. Thin Film Approaches to the SRF Cavity Problem Fabrication and Characterization of Superconducting Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Beringer, Douglas [College of William and Mary, Williamsburg, VA (United States)

    2017-08-01

    Superconducting Radio Frequency (SRF) cavities are responsible for the acceleration of charged particles to relativistic velocities in most modern linear accelerators, such as those employed at high-energy research facilities like Thomas Jefferson National Laboratory’s CEBAF and the LHC at CERN. Recognizing SRF as primarily a surface phenomenon enables the possibility of applying thin films to the interior surface of SRF cavities, opening a formidable tool chest of opportunities by combining and designing materials that offer greater performance benefit. Thus, while improvements in radio frequency cavity design and refinements in cavity processing techniques have improved accelerator performance and efficiency – 1.5 GHz bulk niobium SRF cavities have achieved accelerating gradients in excess of 35 MV/m – there exist fundamental material bounds in bulk superconductors limiting the maximally sustained accelerating field gradient (≈ 45 MV/m for Nb) where inevitable thermodynamic breakdown occurs. With state of the art Nb based cavity design fast approaching these theoretical limits, novel material innovations must be sought in order to realize next generation SRF cavities. One proposed method to improve SRF performance is to utilize thin film superconducting-insulating-superconducting (SIS) multilayer structures to effectively magnetically screen a bulk superconducting layer such that it can operate at higher field gradients before suffering critically detrimental SRF losses. This dissertation focuses on the production and characterization of thin film superconductors for such SIS layers for radio frequency applications. Correlated studies on structure, surface morphology and superconducting properties of epitaxial Nb and MgB2 thin films are presented.

  7. An advanced fusion neutron source facility

    International Nuclear Information System (INIS)

    Smith, D.L.

    1992-01-01

    Accelerator-based 14-MeV-neutron sources based on modifications of the original Fusion Materials Irradiation Facility are currently under consideration for investigating the effects of high-fluence high-energy neutron irradiation on fusion-reactor materials. One such concept for a D-Li neutron source is based on recent advances in accelerator technology associated with the Continuous Wave Deuterium Demonstrator accelerator under construction at Argonne National Laboratory, associated superconducting technology, and advances in liquid-metal technology. In this paper a summary of conceptual design aspects based on improvements in technologies is presented

  8. New heavy-ion accelerator facility at Oak Ridge

    International Nuclear Information System (INIS)

    Stelson, P.H.

    1974-01-01

    Funds were obtained to establish a new national heavy-ion facility to be located at Oak Ridge. The principal component of this facility is a 25-MW tandem designed specifically for good heavy-ion acceleration, which will provide high quality beams of medium weight ions for nuclear research by itself. The tandem beams will also be injected into ORIC for additional energy gain, so that usable beams for nuclear physics research can be extended to about A = 160. A notable feature of the tandem is that it will be of the ''folded'' type, in which both the negative and positive accelerating tubes are contained in the same column. The accelerator system, the experimental lay-out, and the time schedule for the project are discussed

  9. Comparison of the costs of superconducting accelerator dipoles using NbTi, Nb3Sn and NbTiTa

    International Nuclear Information System (INIS)

    Hassenzahl, W.

    1981-03-01

    The present study, which is based on the assumption that future, high-energy accelerators will use superconductors, is a comparison of the costs of 5 to 12 Tesla NbTi, Nb 3 S/sub n/, and NbTiTa accelerator magnets operating at 4.2 K or 1.8 K. The object of this evaluation is not to determine the actual cost of future accelerators, rather, its purpose is to provide some rationale for research on the next generation of superconducting accelerator magnets. Thus, though the actual costs of accelerator magnets may be different from those given here, the comparisons are valid

  10. Superconducting accelerator magnet technology in the 21st century: A new paradigm on the horizon?

    Science.gov (United States)

    Gourlay, S. A.

    2018-06-01

    Superconducting magnets for accelerators were first suggested in the mid-60's and have since become one of the major components of modern particle colliders. Technological progress has been slow but steady for the last half-century, based primarily on Nb-Ti superconductor. That technology has reached its peak with the Large Hadron Collider (LHC). Despite the superior electromagnetic properties of Nb3Sn and adoption by early magnet pioneers, it is just now coming into use in accelerators though it has not yet reliably achieved fields close to the theoretical limit. The discovery of the High Temperature Superconductors (HTS) in the late '80's created tremendous excitement, but these materials, with tantalizing performance at high fields and temperatures, have not yet been successfully developed into accelerator magnet configurations. Thanks to relatively recent developments in both Bi-2212 and REBCO, and a more focused international effort on magnet development, the situation has changed dramatically. Early optimism has been replaced with a reality that could create a new paradigm in superconducting magnet technology. Using selected examples of magnet technology from the previous century to define the context, this paper will describe the possible innovations using HTS materials as the basis for a new paradigm.

  11. Superconducting accelerating structure for particle velocities from 0.12 to 0.23 c

    International Nuclear Information System (INIS)

    Shepard, K.W.; Zinkann, G.P.

    1983-01-01

    A split-ring resonator has been designed for an optimum particle velocity #betta# = v/c = 0.16 and a frequency of 145.5 MHz. The ratio of peak-surface electric field to effective accelerating field in the resonator has been reduced 20% from the value obtained in previously developed split-ring resonators. The improved design results from the use of elliptically-sectioned loading arms and drift tubes, which have been enlarged to reduce peak-surface fields and also shaped to eliminate beam-steering effects in the resonator. All fabrication problems presented by the more-complex geometry have been solved, and a prototype superconducting niobium resonator has been completed. An accelerating field of 3.3 MV/m at 4 watts rf input has been so far achieved, corresponding to an effective accelerating potential of 1.17 MV per resonator

  12. Colorado State University (CSU) accelerator and FEL facility

    NARCIS (Netherlands)

    Milton, S.; Biedron, S.; Harris, J.; Martinez, J.; D'Audney, A.; Edelen, J.; Einstein, J.; Hall, C.; Horovitz, K.; Morin, A.; Sipahi, N.; Sipahi, T.; Williams, J.; Carrico, C.; Van Der Slot, P. J M

    2014-01-01

    The Colorado State University (CSU) Accelerator Facility will include a 6-MeV L-Band (1.3 GHz) electron linear accelerator (linac) with a free-electron laser (FEL) system capable of producing Terahertz (THz) radiation, a laser laboratory, a microwave test laboratory, and a magnetic test laboratory.

  13. JSME construction standard for superconducting magnets of fusion facilities. Toward the construction of ITER

    International Nuclear Information System (INIS)

    Nakasone, Yuji; Takahashi, Yukio; Sato, Kazuyoshi; Nishimura, Arata; Suzuki, Tetsuya; Irie, Hirosada; Nakahira, Masataka

    2009-01-01

    The present paper describes the general view of the construction standard, which the Japan Society of Mechanical Engineers (JSME) has recently set up and published, for superconducting magnet structures to be used in nuclear fusion facilities. The present target of the standard is tokamak-type fusion energy facilities, especially the International Thermonuclear Experimental Reactor called ITER for short. The standard contains rules for structural materials including cryogenic materials, structural design considering magnetic forces, manufacture including welding and installation, nondestructive testing, pressure proof tests and leak tests of toroidal field magnet structures. The standard covers requirements for structural integrity, deformation control, and leak tightness of all the components of the superconducting magnets and their supports except for superconducting strands and electrical insulators. The standard does not cover deterioration, which may occur in service as a result of corrosion, radiation effects, or instability of material. The standard consists of seven articles and twelve mandatory and non-mandatory appendices to the articles; i.e., (1) Scope, roles and responsibilities, (2) Materials, (3) Structural design, (4) Fabrication and installation, (5) Non-destructive examination, (6) Pressure and leak testing, and (7) Terms used in general requirements. (author)

  14. Detection of Second Sound in He-II for Thermal Quench Mapping of Superconducting Radio Frequency Accelerating Cavities

    CERN Document Server

    Stegmaier, Tobias; Kind, Matthias; Furci, Hernán; Koettig, Torsten; Peters, Benedikt

    The development of future particle accelerators requires intensive testing of superconducting radio frequency cavities with different sizes and geometries. Non-contact thermometry quench localisation techniques proved to be beneficial for the localisation of surface defects that can originate a quench (sudden loss of superconducting state). These techniques are based on the detection of second sound in helium II. Transition Edge Sensors (TES) are highly sensitive thin film thermometers with fast time response. In the present work, their capability as a thermal quench mapping device for superconducting radio frequency cavities is proven experimentally by detecting second sound waves emitted by SMD heaters in a He-II bath at saturated vapour pressure. A characterisation of the sensors at steady bath temperatures was conducted to calculate the thermal sensitivity. An intense metallurgical study of gold-tin TES with different compositions revealed important relations between the superconducting behaviour and the ...

  15. Characterization of Superconducting Cavities for HIE-ISOLDE

    CERN Document Server

    Martinello, Martina

    2013-01-01

    In this report the radiofrequency measurements done for the superconducting cavities developed at CERN for the HIE-ISOLDE project are analyzed. The purpose of this project is improve the energy of the REX-ISOLDE facility by means of a superconducting LINAC. In this way it will be possible to reach higher accelerating gradients, and so higher particle energies (up to 10MeV/u). At this purpose the Niobium thin film technology was preferred to the Niobium bulk technology because of the technical advantages like the higher thermal conductivity of Copper and the higher stiffness of the cavities which are less sentitive to mechanical vibrations. The Niobium coating is being optimized on test prototypes which are qualified by RF measurements at cold.

  16. Accelerator-driven subcritical facility:Conceptual design development

    Science.gov (United States)

    Gohar, Yousry; Bolshinsky, Igor; Naberezhnev, Dmitry; Duo, Jose; Belch, Henry; Bailey, James

    2006-06-01

    A conceptual design development of an accelerator-driven subcritical facility has been carried out in the preparation of a joint activity with Kharkov Institute of Physics and Technology of Ukraine. The main functions of the facility are the medical isotope production and the support of the Ukraine nuclear industry. An electron accelerator is considered to drive the subcritical assembly. The neutron source intensity and spectrum have been studied. The energy deposition, spatial neutron generation, neutron utilization fraction, and target dimensions have been quantified to define the main target performance parameters, and to select the target material and beam parameters. Different target conceptual designs have been developed based the engineering requirements including heat transfer, thermal hydraulics, structure, and material issues. The subcritical assembly is designed to obtain the highest possible neutron flux level with a Keff of 0.98. Different fuel materials, uranium enrichments, and reflector materials are considered in the design process. The possibility of using low enrichment uranium without penalizing the facility performance is carefully evaluated. The mechanical design of the facility has been developed to maximize its utility and minimize the time for replacing the target and the fuel assemblies. Safety, reliability, and environmental considerations are included in the facility conceptual design. The facility is configured to accommodate future design improvements, upgrades, and new missions. In addition, it has large design margins to accommodate different operating conditions and parameters. In this paper, the conceptual design and the design analyses of the facility will be presented.

  17. Design and Fabrication Study on the TESLA500 Superconducting Magnet Package

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Tabares, L.; Toral, F.; Calero, J.; Abramian, P.; Iturbe, R.; Etxeandia, J.; Lucia, C.; Landete, R.; Gomez, J.

    2001-07-01

    An international collaboration at DESY is currently studying the possibilities of a new type of particle accelerator: the superconducting linear collider (1). Developed under the project name TESLA, which stands for TeV Energy Superconducting Linear Accelerator, the facility would be placed in a 33 km long tunnel and would work at the energy range of 0.5 to 0.8 TeV. TESLA opens up new horizons not only as a particle accelerator because it can be also used to generate laser-type X-ray beams: the accelerated electrons would be guided through a refined system of magnetic fields to form a Free Electron Laser (FEL). This study is about one of the components of the accelerator: the magnet package. A technical design of this device and a cost estimate of the series production have been performed. The present report should be understood as a Spanish contribution to the TESLA project. The study has been lead by CIEMAT (Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas) [2], and several Spanish companies have also been involved: ANTEC, JEMA and INGOVI. Special thanks are given to the Oficina de Ciencia y Tecnologia, which has granted this work. (Author) 16 refs.

  18. Design and Fabrication Study on the TESLA500 Superconducting Magnet Package

    International Nuclear Information System (INIS)

    Garcia-Tabares, L.; Toral, F.; Calero, J.; Abramian, P.; Iturbe, R.; Etxeandia, J.; Lucia, C.; Landete, R.; Gomez, J.

    2001-01-01

    An international collaboration at DESY is currently studying the possibilities of a new type of particle accelerator: the superconducting linear collider (1). Developed under the project name TESLA, which stands for TeV Energy Superconducting Linear Accelerator, the facility would be placed in a 33 km long tunnel and would work at the energy range of 0.5 to 0.8 TeV. TESLA opens up new horizons not only as a particle accelerator because it can be also used to generate laser-type X-ray beams: the accelerated electrons would be guided through a refined system of magnetic fields to form a Free Electron Laser (FEL). This study is about one of the components of the accelerator: the magnet package. A technical design of this device and a cost estimate of the series production have been performed. The present report should be understood as a Spanish contribution to the TESLA project. The study has been lead by CIEMAT (Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas) [2], and several Spanish companies have also been involved: ANTEC, JEMA and INGOVI. Special thanks are given to the Oficina de Ciencia y Tecnologia, which has granted this work. (Author) 16 refs

  19. Multilayer coating for higher accelerating fields in superconducting radio-frequency cavities: a review of theoretical aspects

    Science.gov (United States)

    Kubo, Takayuki

    2017-02-01

    The theory of the superconductor-insulator-superconductor (SIS) multilayer structure for application in superconducting accelerating cavities is reviewed. The theoretical field limit, optimum layer thicknesses and material combination, and surface resistance are discussed for the SIS structure and are also reviewed for the superconductor-superconductor bilayer structure.

  20. Design of the MYRRHA 17-600 MeV Superconducting Linac

    CERN Document Server

    Biarrotte, J-L; Bouly, F; Carneiro, J-P; Vandeplassche, D

    2013-01-01

    The goal of the MYRRHA project is to demonstrate the technical feasibility of transmutation in a 100MWth Accelerator Driven System (ADS) by building a new flexible irradiation complex in Mol (Belgium). The MYRRHA facility requires a 600 MeV accelerator delivering a maximum proton flux of 4 mA in continuous operation, with an additional requirement for exceptional reliability. This paper will briefly describe the beam dynamics design of the main superconducting linac section which covers the 17 to 600 MeV energy range and requires enhanced fault-tolerance capabilities.

  1. Status of Thomas Jefferson National Accelerator Facility (Jefferson Lab)

    International Nuclear Information System (INIS)

    H.A. Grunder

    1997-01-01

    When first beam was delivered on target in July 1994, the Continuous Electron Beam Accelerator Facility (CEBAF), in Newport News, Virginia realized the return on years of planning and work to create a laboratory devoted to exploration of matter that interacts through the strong force, which holds the quarks inside the proton and binds protons and neutrons into the nucleus. Dedicated this year as the Thomas Jefferson National Accelerator Facility (Jefferson Lab), the completion of construction and beginning of its experimental program has culminated a process that began more than a decade ago with the convening of the Bromley Panel to look at research possibilities for such an electron accelerator

  2. The accelerator facility of the Heidelberg Ion-Beam Therapy Centre (HIT)

    Science.gov (United States)

    Peters, Andreas

    The following sections are included: * Introduction * Beam parameters * General layout of the HIT facility * The accelerator chain in detail * Operational aspects of a particle therapy facility * 24/7 accelerator operation at 335 days per year * Safety and regulatory aspects * Status and perspectives * References

  3. SRF Accelerator Technology Transfer Experience from the Achievement of the SNS Cryomodule Production Run

    CERN Document Server

    Hogan, John; Daly, Edward; Drury, Michael A; Fischer, John; Hiatt, Tommy; Kneisel, Peter; Mammosser, John; Preble, Joseph P; Whitlatch, Timothy; Wilson, Katherine; Wiseman, Mark

    2005-01-01

    This paper will discuss the technology transfer aspect of superconducting RF expertise, as it pertains to cryomodule production, beginning with the original design requirements through testing and concluding with product delivery to the end user. The success of future industrialization, of accelerator systems, is dependent upon a focused effort on accelerator technology transfer. Over the past twenty years the Thomas Jefferson National Accelerator Facility (Jefferson Lab) has worked with industry to successfully design, manufacture, test and commission more superconducting RF cryomodules than any other entity in the United States. The most recent accomplishment of Jefferson Lab has been the successful production of twenty-four cryomodules designed for the Spallation Neutron Source (SNS). Jefferson Lab was chosen, by the United States Department of Energy, to provide the superconducting portion of the SNS linac due to its reputation as a primary resource for SRF expertise. The successful partnering with, and d...

  4. A beamline systems model for Accelerator-Driven Transmutation Technology (ADTT) facilities

    Energy Technology Data Exchange (ETDEWEB)

    Todd, A.M.M.; Paulson, C.C.; Peacock, M.A. [Grumman Research and Development Center, Princeton, NJ (United States)] [and others

    1995-10-01

    A beamline systems code, that is being developed for Accelerator-Driven Transmutation Technology (ADTT) facility trade studies, is described. The overall program is a joint Grumman, G.H. Gillespie Associates (GHGA) and Los Alamos National Laboratory effort. The GHGA Accelerator Systems Model (ASM) has been adopted as the framework on which this effort is based. Relevant accelerator and beam transport models from earlier Grumman systems codes are being adapted to this framework. Preliminary physics and engineering models for each ADTT beamline component have been constructed. Examples noted include a Bridge Coupled Drift Tube Linac (BCDTL) and the accelerator thermal system. A decision has been made to confine the ASM framework principally to beamline modeling, while detailed target/blanket, balance-of-plant and facility costing analysis will be performed externally. An interfacing external balance-of-plant and facility costing model, which will permit the performance of iterative facility trade studies, is under separate development. An ABC (Accelerator Based Conversion) example is used to highlight the present models and capabilities.

  5. A beamline systems model for Accelerator-Driven Transmutation Technology (ADTT) facilities

    International Nuclear Information System (INIS)

    Todd, Alan M. M.; Paulson, C. C.; Peacock, M. A.; Reusch, M. F.

    1995-01-01

    A beamline systems code, that is being developed for Accelerator-Driven Transmutation Technology (ADTT) facility trade studies, is described. The overall program is a joint Grumman, G. H. Gillespie Associates (GHGA) and Los Alamos National Laboratory effort. The GHGA Accelerator Systems Model (ASM) has been adopted as the framework on which this effort is based. Relevant accelerator and beam transport models from earlier Grumman systems codes are being adapted to this framework. Preliminary physics and engineering models for each ADTT beamline component have been constructed. Examples noted include a Bridge Coupled Drift Tube Linac (BCDTL) and the accelerator thermal system. A decision has been made to confine the ASM framework principally to beamline modeling, while detailed target/blanket, balance-of-plant and facility costing analysis will be performed externally. An interfacing external balance-of-plant and facility costing model, which will permit the performance of iterative facility trade studies, is under separate development. An ABC (Accelerator Based Conversion) example is used to highlight the present models and capabilities

  6. Overview of new, upgraded, or proposed high energy physics facilities in the United States and Canada

    International Nuclear Information System (INIS)

    Gabriel, T.A.

    1994-01-01

    This article reviews six new, proposed, or upgraded accelerator facilities in the United States and Canada. All of the accelerators that are presented here in one form or fashion challenge the validity of the Standard Model of high energy physics which ''currently explains'' all experimentally know phenomena. These facilities include the Continuous Electron Beam Accelerator Facility (CEBAF) at Newport News, Virginia, the Kaon Factory at TRIUMF in Vancouver, British Columbia, Canada, the Asymmetric B Factory at the Stanford Linear Accelerator Center (SLAC) in Palo Alto, California, the Relativistic Heavy Ion Collider (RHIC) facility at Brookhaven National Laboratory in Upton, New York, the injector upgrade project at the Fermi National Accelerator Laboratory (FNAL) in Batavia, Illinois, and the Superconducting Super Collider Laboratory (SSCL) in Waxachachie, Texas

  7. Superconducting magnets for a muon collider

    International Nuclear Information System (INIS)

    Green, M.A.

    1996-01-01

    The existence of a muon collider will be dependent on the use of superconducting magnets. Superconducting magnets for the μ - μ + collider will be found in the following locations: the π - π + capture system, the muon phase rotation system, the muon cooling system, the recirculating acceleration system, the collider ring, and the collider detector system. This report describes superconducting magnets for each of these sections except the detector. In addition to superconducting magnets, superconducting RF cavities will be found in the recirculating accelerator sections and the collider ring. The use of superconducting magnets is dictated by the need for high magnetic fields in order to reduce the length of various machine components. The performance of all of the superconducting magnets will be affected the energy deposited from muon decay products. (orig.)

  8. RADIOFREQUENCY SUPERCONDUCTIVITY: Workshop

    International Nuclear Information System (INIS)

    Lengeler, Herbert

    1989-01-01

    Superconducting radiofrequency is already playing an important role in the beam acceleration system for the TRISTAN electron-positron collider at the Japanese KEK Laboratory and new such systems are being prepared for other major machines. Thus the fourth Workshop on Radiofrequency Superconductivity, organized by KEK under the chairmanship of local specialist Yuzo Kojima and held just before the International Conference on High Energy Accelerators, had much progress to review and even more to look forward to

  9. Orsay cyclotron design with superconducting coils and the associated accelerating unit

    International Nuclear Information System (INIS)

    1983-06-01

    This report ends the theoretical and technical studies of the project of new accelerating unit proposed by IPN at Orsay. The isochronous cyclotron with superconducting coils is coupled to two different injections: an axial one with polarized or not ion sources for light ions or multicharged ion sources for heavy ions; a radial injection from the reviewed tandem MP13Met. The following points are underlined: 1) the specificity of the machine 2) the theoretical and technical feasibility of a compact high frequency accelerating system suited to this type of machine 3) the development of an extraction device of the beam 4) the feasibility of an axial injection along the optical axis coupled to a unique central region of the cyclotron 5) the criterions to define, the choices to make to get a radial injection of the beam coming from the tandem in the cyclotron [fr

  10. ESCAR superconducting magnet system

    International Nuclear Information System (INIS)

    Gilbert, W.S.; Meuser, R.B.; Pope, W.L.; Green, M.A.

    1975-01-01

    Twenty-four superconducting dipoles, each about 1 meter long, provide the guide field for the Experimental Superconducting Accelerator Ring proton accelerator--storage ring. Injection of 50 MeV protons corresponds to a 3 kG central dipole field, and a peak proton energy of 4.2 GeV corresponds to a 46 kG central field. Thirty-two quadrupoles provide focusing. The 56 superconducting magnets are contained in 40 cryostats that are cryogenically connected in a novel series ''weir'' arrangement. A single 1500 W refrigeration plant is required. Design and testing of the magnet and cryostat system are described. (U.S.)

  11. Beam Position Monitoring in the CSU Accelerator Facility

    Science.gov (United States)

    Einstein, Joshua; Vankeuren, Max; Watras, Stephen

    2014-03-01

    A Beam Position Monitoring (BPM) system is an integral part of an accelerator beamline, and modern accelerators can take advantage of newer technologies and designs when creating a BPM system. The Colorado State University (CSU) Accelerator Facility will include four stripline detectors mounted around the beamline, a low-noise analog front-end, and digitization and interface circuitry. The design will support a sampling rate greater than 10 Hz and sub-100 μm accuracy.

  12. Radiological Research Accelerator Facility. Progress report, April 1-November 30, 1986

    International Nuclear Information System (INIS)

    1986-07-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology and radiological physics. The experiments run at RARAF are described, and center on neutron dosimetry, mutagenesis, and neutron-induced oncogenic transformations as well as survival of exposed cells. Accelerator utilization, operation, and development of facilities are reviewed

  13. Laser Processing on the Surface of Niobium Superconducting Radio-Frequency Accelerator Cavities

    Science.gov (United States)

    Singaravelu, Senthilraja; Klopf, Michael; Krafft, Geoffrey; Kelley, Michael

    2011-03-01

    Superconducting Radio frequency (SRF) niobium cavities are at the heart of an increasing number of particle accelerators.~ Their performance is dominated by a several nm thick layer at the interior surface. ~Maximizing its smoothness is found to be critical and aggressive chemical treatments are employed to this end.~ We describe laser-induced surface melting as an alternative ``greener'' approach.~ Modeling guided selection of parameters for irradiation with a Q-switched Nd:YAG laser.~ The resulting topography was examined by SEM, AFM and Stylus Profilometry.

  14. New, Coupling Loss Induced, Quench Protection System for Superconducting Accelerator Magnets

    CERN Document Server

    Ravaioli, E; Giloux, C; Kirby, G; ten Kate, H H J; Verweij, A P

    2014-01-01

    Email Print Request Permissions Save to Project A new and promising method for the protection of superconducting high-field magnets is developed and tested on the so-called MQXC quadrupole magnet at the CERN magnet test facility. The method relies on a capacitive discharge system inducing, during a few periods, an oscillation of the transport current in the superconducting cable of the coil. The corresponding fast change of the local magnetic field introduces a high coupling-current loss, which, in turn, causes a fast quench of a large fraction of the coil due to enhanced temperature. Results of measured discharges at various levels of transport current are presented and compared to discharges by quenching the coils using conventional quench heaters and an energy extraction system. The hot-spot temperature in the quenching coil is deduced from the coil voltage and current. The results are compared to simulations carried out using a lumped-element dynamic electro-thermal model of the so-called MQX...

  15. Development of high intensity proton accelerator

    International Nuclear Information System (INIS)

    Mizumoto, M.; Kusano, J.; Hasegawa, K.; Ouchi, N.; Oguri, H.; Kinsho, M.; Touchi, Y.; Honda, Y.; Mukugi, K.; Ino, H.; Noda, F.; Akaoka, N.; Kaneko, H.; Chishiro, E.; Fechner, B.

    1997-01-01

    The high-intensity proton linear accelerator with an energy of 1.5 GeV and an average current of 5.33mA has been proposed for the Neutron Science Project (NSP) at JAERI. the NSP is aiming at exploring nuclear technologies for nuclear waste transmutation based on a proton induced spallation neutrons. The proposed accelerators facilities will be also used in the various basic research fields such as condensed matter physics in combination with a high intensity proton storage ring. The R and D work has been carried out for the components of the front-end of the proton accelerator. For the high energy portion above 100 MeV, superconducting (SC) accelerator linac has been designed and developed as a major option. (Author) 7 refs

  16. Proton-proton colliding beam facility ISABELLE

    International Nuclear Information System (INIS)

    Hahn, H.

    1980-01-01

    This paper attempts to present the status of the ISABELLE construction project, which has the objective of building a 400 + 400 GeV proton colliding beam facility. The major technical features of the superconducting accelerators with their projected performance are described. Progress made so far, difficulties encountered, and the program until completion in 1986 is briefly reviewed

  17. Investigations of the surface resistance of superconducting materials

    International Nuclear Information System (INIS)

    Junginger, Tobias

    2012-01-01

    In particle accelerators superconducting RF cavities are widely used to achieve high accelerating gradients and low losses. Power consumption is proportional to the surface resistance R S which depends on a number of external parameters, including frequency, temperature, magnetic and electric field. Presently, there is no widely accepted model describing the increase of R S with applied field. In the frame of this project the 400 MHz Quadrupole Resonator has been extended to 800 and 1200 MHz to study surface resistance and intrinsic critical RF magnetic field of superconducting samples over a wide parameter range, establishing it as a world-wide unique test facility for superconducting materials. Different samples were studied and it was shown that R S is mainly caused by the RF electric field in the case of strongly oxidized surfaces. This can be explained by interface tunnel exchange of electrons between the superconductor and localized states in adjacent oxides. For well prepared surfaces, however, the majority of the dissipation is caused by the magnetic field and R S factorizes into field and temperature dependent parts. These different loss mechanisms were correlated to surface topography of the samples and distribution of oxides by using ultrasonic force microscopy and X-ray photon spectroscopy.

  18. Opportunities for parity violating electron scattering experiments at the planned MESA facility

    Science.gov (United States)

    Aulenbacher, Kurt

    2011-11-01

    We suggest to start an accelerator physics project called the Mainz Energy recovering Superconducting Accelerator (MESA) as an extension to our experimental facilities. MESA may allow to introduce an innovative internal target regime based on the ERL principle. A second mode of operation will be to use an external polarized electron beam for parity violating experiments.

  19. Design and construction of the main linac module for the superconducting energy recovery linac project at Cornell

    Energy Technology Data Exchange (ETDEWEB)

    Eichhorn, R.; Bullock, B.; He, Y.; Hoffstaetter, G.; Liepe, M.; O' Connell, T.; Quigley, P.; Sabol, D.; Sears, J.; Smith, E.; Veshcherevich, V. [Cornell Laboratory for Accelerator-based Science and Education (CLASSE), Cornell University, 161 Synchrotron Drive, Ithaca, NY 14853 (United States)

    2014-01-29

    Cornell University has been designing and building superconducting accelerators for various applications for more than 50 years. Currently, an energy-recovery linac (ERL) based synchrotron-light facility is proposed making use of the existing CESR facility. As part of the phase 1 R and D program funded by the NSF, critical challenges in the design were addressed, one of them being a full linac cryo-module. It houses 6 superconducting cavities- operated at 1.8 K in continuous wave (CW) mode - with individual HOM absorbers and one magnet/ BPM section. Pushing the limits, a high quality factor of the cavities (2⋅10{sup 10}) and high beam currents (100 mA accelerated plus 100 mA decelerated) are targeted. We will present the design of the main linac cryo-module (MLC) being finalized recently, its cryogenic features and report on the status of the fabrication which started in late 2012.

  20. 6 MV Folded Tandem Ion Accelerator facility at BARC

    International Nuclear Information System (INIS)

    Gupta, S.K.

    2010-01-01

    The 6 MV Folded Tandem Ion Accelerator (FOTIA) facility is operational round the clock and accelerated beams of both light and heavy ions are being used extensively by various divisions of BARC, Universities, lIT Bombay and other R and D labs across the country. The FOTIA is an upgraded version of the old 5.5 MV single stage Van-de-Graaff accelerator (1962-1992). Since its commissioning in the year 2000, the poor beam transmission through the 180 deg folding magnet was a matter of concern. A systematic study for beam transmission through the accelerator was carried out and progressive modifications in folding magnet chamber, foil stripper holder and improvement in average vacuum level through the accelerator have resulted in large improvement of beam transmission leading to up to 2.0 micro-amp analyzed proton beams on target. Now the utilization of the beams from the accelerator has increased many folds for basic and applied research in the fields of atomic and nuclear physics, material science and radiation biology etc. Few new beam lines after the indigenously developed 5-port switching magnet are added and the experimental setup for PIXE, PIGE, External PIXE, 4 neutron detector, Proton Induced Positron Annihilation Spectroscopy (PIPAS) setup and the general purpose scattering chamber etc have been commissioned in the beam hall. The same team has developed a Low Energy Accelerator Facility (LEAF) which delivers negative ions of light and heavy ions for application in implantation, irradiation damage studies in semiconductor devices and testing of new beam line components being developed for Low Energy High Intensity Proton Accelerator (LEHIPA) programme at BARC. The LEAF has been developed as stand alone facility and can deliver beam quickly with minimum intervention of the operator. Few more features are being planned to deliver uniform scanned beams on large targets. (author)

  1. Magnetic Measurement System for the NSLS Superconducting Undulator Vertical Test Facility

    CERN Document Server

    Harder, David; Skaritka, John

    2005-01-01

    One of the challenges of small-gap superconducting undulators is measurement of magnetic fields within the cold bore to characterize the device performance and to determine magnetic field errors for correction or shimming, as is done for room-temperature undulators. Both detailed field maps and integrated field measurements are required. This paper describes a 6-element, cryogenic Hall probe field mapper for the NSLS Superconducting Undulator Vertical Test Facility (VTF). The probe is designed to work in an aperture only 3 mm high. A pulsed-wire insert is also being developed, for visualization of the trajectory, for locating steering errors and for determining integrated multi-pole errors. The pulsed-wire insert will be interchangeable with the Hall probe mapper. The VTF and the magnetic measurement systems can accommodate undulators up to 0.4 m in length.

  2. Recent Progress in Power Refrigeration below 2 K for Superconducting Accelerators

    CERN Document Server

    Claudet, Serge

    2005-01-01

    As a result of technico-economical optimization and quest for increased performance, 2 K cryogenics is now present in large accelerator projects using superconducting magnets or acceleration cavities. Consequently, large cryogenic systems producing refrigeration capacity below 2 K in the kW range and with high efficiency over a large dynamic range are needed. After CEBAF and SNS, this is the case for the Large Hadron Collider (LHC) project at CERN for which eight 2.4 kW @ 1.8 K refrigeration units are needed to cool each a 3.3 km long sector of high-field magnets. Combining cold hydrodynamic compressors in series with warm volumetric compressors, complete pre-series units as well as sets of series cold compressors have been intensively tested and validated from two different industrial suppliers. After recalling the possible 2 K refrigeration cycles and their comparative merits, this paper describes the specific features of the LHC system and presents the achieved performance with emphasis on the progress in...

  3. SINBAD—The accelerator R&D facility under construction at DESY

    Energy Technology Data Exchange (ETDEWEB)

    Dorda, U., E-mail: ulrich.dorda@desy.de [DESY, Hamburg & Zeuthen (Germany); Assmann, R.; Brinkmann, R.; Flöttmann, K.; Hartl, I.; Hüning, M.; Kärtner, F.; Fallahi, A.; Marchetti, B.; Nie, Y.; Osterhoff, J.; Schlarb, H.; Zhu, J. [DESY, Hamburg & Zeuthen (Germany); Maier, A.R. [University Hamburg (Germany)

    2016-09-01

    The SINBAD facility (Short INnovative Bunches and Accelerators at DESY) is a long-term dedicated accelerator research and development facility currently under construction at DESY. It will be located in the premises of the old DORIS accelerator complex and host multiple independent experiments cost-effectively accessing the same central infrastructure like a central high power laser. With the removal of the old DORIS accelerator being completed, the refurbishment of the technical infrastructure is currently starting up. The presently ongoing conversion of the area into the SINBAD facility and the currently foreseen layout is described. The first experiment will use a compact S-band linac for the production of ultra-short bunches at hundred MeV. Once established, one of the main usages will be to externally inject electrons into a laser-driven plasma wakefield accelerator to boost the energy to GeV-level while maintaining a usable beam quality, ultimately aiming to drive an FEL. The second experiment already under planning is the setup of an attosecond radiation source with advanced technology. Further usage of the available space and infrastructure is revised and national and international collaborations are being established.

  4. Superconducting Magnet Performance in LCLS-II Cryomodules

    Energy Technology Data Exchange (ETDEWEB)

    Kashikhin, V. [Fermilab; Cheban, S. [Fermilab; DiMarco, J. [Fermilab; Harms, E. [Fermilab; Makarov, A. [Fermilab; Strauss, T. [Fermilab; Tartaglia, M. [Fermilab

    2018-04-01

    New LCLS-II Linear Superconducting Accelerator Cry-omodules are under construction at Fermilab. Installed in-side each SCRF Cryomodule is a superconducting magnet package to focus and steer an electron beam. The magnet package is an iron dominated configuration with conduc-tively cooled racetrack-type quadrupole and dipole coils. For easier installation the magnet can be split in the vertical plane. Initially the magnet was tested in a liquid helium bath, and high precision magnetic field measurements were performed. The first (prototype) Cryomodule with the magnet inside was built and successfully tested at Fermilab test facility. In this paper the magnet package is discussed, the Cryomodule magnet test results and current leads con-duction cooling performance are presented. So far magnets in nine Cryomodules were successfully tested at Fermilab.

  5. Design concept of radiation control system for the high intensity proton accelerator facility

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Yukihiro; Ikeno, Koichi; Akiyama, Shigenori; Harada, Yasunori [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-11-01

    Description is given for the characteristic radiation environment for the High Intensity Proton Accelerator Facility and the design concept of the radiation control system of it. The facility is a large scale accelerator complex consisting of high energy proton accelerators carrying the highest beam intensity in the world and the related experimental facilities and therefore provides various issues relevant to the radiation environment. The present report describes the specifications for the radiation control system for the facility, determined in consideration of these characteristics. (author)

  6. The Design of HVAC System in the Conventional Facility of Proton Accelerator Research Center

    International Nuclear Information System (INIS)

    Jeon, G. P.; Kim, J. Y.; Choi, B. H.

    2007-01-01

    The HVAC systems for conventional facility of Proton Accelerator Research Center consist of 3 systems : accelerator building HVAC system, beam application building HVAC system and miscellaneous HVAC system. We designed accelerator building HVAC system and beam application research area HVAC system in the conventional facilities of Proton Accelerator research center. Accelerator building HVAC system is divided into accelerator tunnel area, klystron area, klystron gallery area, accelerator assembly area. Also, Beam application research area HVAC system is divided into those of beam experimental hall, accelerator control area, beam application research area and Ion beam application building. In this paper, We described system design requirements and explained system configuration for each systems. We presented operation scenario of HVAC system in the Conventional Facility of Proton Accelerator Research Center

  7. Physics design of an accelerator for an accelerator-driven subcritical system

    Directory of Open Access Journals (Sweden)

    Zhihui Li

    2013-08-01

    Full Text Available An accelerator-driven subcritical system (ADS program was launched in China in 2011, which aims to design and build an ADS demonstration facility with the capability of more than 1000 MW thermal power in multiple phases lasting about 20 years. The driver linac is defined to be 1.5 GeV in energy, 10 mA in current and in cw operation mode. To meet the extremely high reliability and availability, the linac is designed with much installed margin and fault tolerance, including hot-spare injectors and local compensation method for key element failures. The accelerator complex consists of two parallel 10-MeV injectors, a joint medium-energy beam transport line, a main linac, and a high-energy beam transport line. The superconducting acceleration structures are employed except for the radio frequency quadrupole accelerators (RFQs which are at room temperature. The general design considerations and the beam dynamics design of the driver linac complex are presented here.

  8. Status of RNB facilities in North America

    CERN Document Server

    Nolen, J A

    1998-01-01

    This paper presents the status of accelerator facilities in North America that are involved in research using radioactive nuclear beams (RNB), including existing and operating facilities, ones currently under construction or undergoing major upgrades, and ones being planned or proposed for the future. Existing RNB facilities are located at TRIUMF (TISOL) in Vancouver, B.C., the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory, the Argonne Tandem Linear Accelerator System (ATLAS) at Argonne National Laboratory, the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University, the Nuclear Structure Laboratory at the University of Notre Dame, the 88" Cyclotron at Lawrence Berkeley National Laboratory, and the Cyclotron Institute at Texas A&M University. Currently, there are two major RNB facility upgrades in progress in North America, one at TRIUMF, the ISAC project, and one at NSCL, the Intensity Upgrade project. For the future, the U.S. Nuclear Science A...

  9. An outline of the proton accelerator for the neutron science project

    Energy Technology Data Exchange (ETDEWEB)

    Mizumoto, Motoharu; Kusano, Joichi; Hasegawa, Kazuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    1997-11-01

    A research project has been proposed in JAERI aiming at exploring new basic researches and nuclear energy engineering based on a high intensity proton linac with a 1.5 GeV and 8 MW beam. The research complex will be composed of facilities such as the Neutron Scattering Facility for condensed matter physics and the Nuclear Energy Related Facility for engineering test of nuclear waste transmutation. The R and D has been carried out for the components of the low energy part of the accelerator; ion source, RFQ, DTL and RF source. For the high energy portion above 100 MeV, the development on a superconducting accelerating cavity as a major option has been performed. The paper will present the summary on a development plan to build the accelerator and the results of conceptual design study and the R and D work. (author)

  10. Performance of the Argonne Wakefield Accelerator facility and initial experimental results

    International Nuclear Information System (INIS)

    Gai, W.; Conde, M.; Cox, G.; Konecny, R.; Power, J.; Schoessow, P.; Simpson, J.; Barov, N.

    1996-01-01

    The Argonne Wakefield Accelerator (AWA) facility has begun its experimental program. This unique facility is designed to address advanced acceleration research which requires very short, intense electron bunches. The facility incorporates two photo-cathode based electron sources. One produces up to 100 nC, multi-kiloamp 'drive' bunches which are used to excite wakefields in dielectric loaded structures and in plasma. The second source produces much lower intensity 'witness' pulses which are used to probe the fields produced by the drive. The drive and witness pulses can be precisely timed as well as laterally positioned with respect to each other. We discuss commissioning, initial experiments, and outline plans for a proposed 1 GeV demonstration accelerator. (author)

  11. Conceptual design of the RF accelerating cavities for a superconducting cyclotron

    International Nuclear Information System (INIS)

    Maggiore, M.; Calabretta, L.; Di Giacomo, M.; Rifuggiato, D.; Battaglia, D.; Piazza, L.

    2006-01-01

    A superconducting cyclotron accelerating ions up to 250 A MeV, for medical applications and radioactive ions production is being studied at Laboratori Nazionali del Sud in Catania. The radio frequency (RF) system, working in the fourth harmonic, is based on four normal conducting radio frequency cavities operating at 93 MHz. This paper describes an unusual multi-stem cavity design, performed with 3D electromagnetic codes. Our aim is to obtain a cavity, completely housed inside the cyclotron, with a voltage distribution ranging from 65 kV in the injection region to a peak value of 120 kV in the extraction region, and having a low power consumption

  12. SINP MSU accelerator facility and applied research

    International Nuclear Information System (INIS)

    Chechenin, N.G.; Ishkhanov, B.S.; Kulikauskas, V.S.; Novikov, L.S.; Pokhil, G.P.; Romanovskii, E.A.; Shvedunov, V.I.; Spasskii, A.V.

    2004-01-01

    Full text: SINP accelerator facility includes 120 cm cyclotron, electrostatic generator with the upper voltage 3.0 MeV, electrostatic generator with the upper voltage 2.5 MeV, Cocroft -Walton generator with the upper voltage 500 keV, 150 keV accelerator for solid microparticles. A new generation of electron beam accelerators has been developed during the last decade. The SINP accelerator facility will be shortly described in the report. A wide range of basic research in nuclear and atomic physics, physics of ion-beam interactions with condensed matter is currently carried out. SINP activity in the applied research is concentrated in the following areas of materials science: - Materials diagnostics with the Rutherford backscattering techniques (RBS) and channeling of ions (RBS/C). A large number of surface ad-layers and multilayer systems for advanced micro- and nano-electronic technology have been investigated. A selected series of examples will be illustrated. - Concentration depth profiles of hydrogen by the elastic recoils detection techniques (ERD). Primarily, the hydrogen depth profiles in perspective materials for thermonuclear reactors have been investigated. - Lattice site locations of hydrogen by a combination of ERD and channeling techniques. This is a new technique which was successfully applied for investigation of hydrogen and hydrogen-defect complexes in silicon for the smart-cut technology. - Light element diagnostics by RBS and nuclear backscattering techniques (NBS). The technique is illustrated by applications for nitrogen concentration profiling in steels. Nitrogen take-up and release, nitrides precipitate formation will be illustrated. - New medium energy ion scattering (MEIS) facility and applications. Ultra-high vacuum and superior energy resolution electrostatic toroidal analyzer is designed to be applied for characterization of composition and structure of several upper atomic layers of materials

  13. Present status of TIARA electrostatic accelerator facility

    Energy Technology Data Exchange (ETDEWEB)

    Tajima, Satoshi; Takada, Isao; Mizuhashi, Kiyoshi; Saito, Yuichi; Uno, Sadanori; Okoshi, Kiyonori; Ishii, Yasuyuki; Nakajima, Yoshinori; Sakai, Takuro [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1996-12-01

    The electrostatic accelerator, 3 MV tandem accelerator, 3 MV single end accelerator and 400 kV ion implantation equipment, which were installed in Takasaki Ion Irradiation Research Facility (TIARA) of Japan Atomic Energy Research Institute, have been used for the research on the advanced utilization of radiation mainly in material science by ion beam. The utilization is open to other researchers, and in fiscal year 1995, about 40% was the utilization by outsiders. The number of the experimental subjects adopted in fiscal year 1995 was 47, and the fields of research were space and environment materials, nuclear fusion reactor materials, new functional materials, biotechnology and base technology. The operation time in fiscal year 1995 was 1201, 1705 and 1505 hours for the tandem accelerator, single end accelerator and ion implantation equipment, respectively. The methods of experiment are reported. The troubles occurred in the tandem accelerator and single end accelerator are reported. As the diversification of beam utilization in the tandem accelerator, the utilizations of high energy molecular ions, low energy negative ions, multivalent ions by post stripper and low intensity ions by mesh attenuator have been attempted. These utilizations are described. (K.I.)

  14. SEE induced in SRAM operating in a superconducting electron linear accelerator environment

    Science.gov (United States)

    Makowski, D.; Mukherjee, Bhaskar; Grecki, M.; Simrock, Stefan

    2005-02-01

    Strong fields of bremsstrahlung photons and photoneutrons are produced during the operation of high-energy electron linacs. Therefore, a mixed gamma and neutron radiation field dominates the accelerators environment. The gamma radiation induced Total Ionizing Dose (TID) effect manifests the long-term deterioration of the electronic devices operating in accelerator environment. On the other hand, the neutron radiation is responsible for Single Event Effects (SEE) and may cause a temporal loss of functionality of electronic systems. This phenomenon is known as Single Event Upset (SEU). The neutron dose (KERMA) was used to scale the neutron induced SEU in the SRAM chips. Hence, in order to estimate the neutron KERMA conversion factor for Silicon (Si), dedicated calibration experiments using an Americium-Beryllium (241Am/Be) neutron standard source was carried out. Single Event Upset (SEU) influences the short-term operation of SRAM compared to the gamma induced TID effect. We are at present investigating the feasibility of an SRAM based real-time beam-loss monitor for high-energy accelerators utilizing the SEU caused by fast neutrons. This paper highlights the effects of gamma and neutron radiations on Static Random Access Memory (SRAM), placed at selected locations near the Superconducting Linear Accelerator driving the Vacuum UV Free Electron Laser (VUVFEL) of DESY.

  15. The BNL Accelerator Test Facility control system

    International Nuclear Information System (INIS)

    Malone, R.; Bottke, I.; Fernow, R.; Ben-Zvi, I.

    1993-01-01

    Described is the VAX/CAMAC-based control system for Brookhaven National Laboratory's Accelerator Test Facility, a laser/linac research complex. Details of hardware and software configurations are presented along with experiences of using Vsystem, a commercial control system package

  16. Conceptual design of industrial free electron laser using superconducting accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Saldin, E.L.; Schneidmiller, E.A.; Ulyanov, Yu.N. [Automatic Systems Corporation, Samara (Russian Federation)] [and others

    1995-12-31

    Paper presents conceptual design of free electron laser (FEL) complex for industrial applications. The FEL complex consists of three. FEL oscillators with the optical output spanning the infrared (IR) and ultraviolet (UV) wave-lengths ({lambda} = 0.3...20 {mu}m) and with the average output power 10 - 20 kW. The driving beam for the FELs is produced by a superconducting accelerator. The electron beam is transported to the FELs via three beam lines (125 MeV and 2 x 250 MeV). Peculiar feature of the proposed complex is a high efficiency of the. FEL oscillators, up to 20 %. This becomes possible due to the use of quasi-continuous electron beam and the use of the time-dependent undulator tapering.

  17. Three-stub quarter wave superconducting resonator design

    Directory of Open Access Journals (Sweden)

    N. R. Lobanov

    2006-11-01

    Full Text Available This paper describes a concept for superconducting resonators for the acceleration of ions in the velocity range β=v/c=0.015–0.04. Such a resonator operates in λ/4 mode with three loading elements and so can be thought of as a triple quarter wave resonator (3-QWR providing 4 accelerating gaps. The use of a column to support the three stubs provides a benefit beyond those of the two-stub design (2-QWR. In the 3-QWR, the rf mirror currents in the walls surrounding the stubs need only travel through 45° instead of the 90° in the 2-QWR thus further reducing the current in the demountable joints. As in the 2-QWR, the shape of the column allows control of the frequency splitting between the accelerating and other modes. The copper structure is designed to be coated by a thin superconducting film of niobium or lead for operation at 4.3 K. The particular device reported here operates at 150 MHz with an optimum β of 0.04. Its outer cylinder is the same size and shape as for the 2-QWR structure reported previously, in order to minimize construction and cryostat costs. A simple transmission line model is presented and the results of microwave studio and other numerical analyses are discussed. The 3-QWR resonators are appropriate for the upgrade of the low-velocity sections of the ANU Heavy Ion Accelerator Facility and other heavy ion accelerator boosters.

  18. Large Superconducting Magnet Systems

    CERN Document Server

    Védrine, P.

    2014-07-17

    The increase of energy in accelerators over the past decades has led to the design of superconducting magnets for both accelerators and the associated detectors. The use of Nb−Ti superconducting materials allows an increase in the dipole field by up to 10 T compared with the maximum field of 2 T in a conventional magnet. The field bending of the particles in the detectors and generated by the magnets can also be increased. New materials, such as Nb$_{3}$Sn and high temperature superconductor (HTS) conductors, can open the way to higher fields, in the range 13–20 T. The latest generations of fusion machines producing hot plasma also use large superconducting magnet systems.

  19. Large Superconducting Magnet Systems

    Energy Technology Data Exchange (ETDEWEB)

    Védrine, P [Saclay (France)

    2014-07-01

    The increase of energy in accelerators over the past decades has led to the design of superconducting magnets for both accelerators and the associated detectors. The use of Nb−Ti superconducting materials allows an increase in the dipole field by up to 10 T compared with the maximum field of 2 T in a conventional magnet. The field bending of the particles in the detectors and generated by the magnets can also be increased. New materials, such as Nb3Sn and high temperature superconductor (HTS) conductors, can open the way to higher fields, in the range 13–20 T. The latest generations of fusion machines producing hot plasma also use large superconducting magnet systems.

  20. Construction Management for Conventional Facilities of Proton Accelerator

    International Nuclear Information System (INIS)

    Kim, Jun Yeon; Cho, Jang Hyung; Cho, Sung Won

    2013-01-01

    Proton Engineering Frontier Project, puts its aim to building 100MeV 20mA linear proton accelerator which is national facility for NT, BT, IT, and future technologies, expected to boost up the national industry competitiveness. This R and D, Construction Management is in charge of the supportive works such as site selection, architecture and engineering of conventional facilities, and overall construction management. The major goals of this work are as follows: At first, architecture and engineering of conventional facilities. Second, construction management, supervision and inspection on construction of conventional facilities. Lastly, cooperation with the project host organization, Gyeongju city, for adjusting technically interrelated work during construction. In this research, We completed the basic, detail, and field changed design of conventional facilities. Acquisition of necessary construction and atomic license, radiation safety analysis, site improvement, access road construction were successfully done as well. Also, we participated in the project host related work as follows: Project host organization and site selection, construction technical work for project host organization and procedure management, etc. Consequently, we so fulfilled all of the own goals which were set up in the beginning of this construction project that we could made contribution for installing and running PEFP's developed 100MeV 20mA linear accelerator

  1. Proposal for construction of a proton--proton storage accelerator facility (Isabelle)

    International Nuclear Information System (INIS)

    1975-06-01

    A proposal is made for the construction of proton storage rings at the Brookhaven Alternating Gradient Synchrotron (AGS) using superconducting magnets for which much of the technology has already been developed. This proton-proton colliding beam facility, ''ISABELLE,'' will provide large increases in both the center-of-mass energy and the luminosity, key machine parameters for high energy physics. The physics potential and the general description of the facility are discussed in detail, and the physical plant layout, a cost estimate and schedule, and future options are given.(U.S.)

  2. First operations of the LNS heavy ions facility

    International Nuclear Information System (INIS)

    Calabretta, L.; Ciavola, G.; Cuttone, G.; Gammino, S.; Gmaj, P.; Migneco, E.; Raia, G.; Rifuggiato, D.; Rovelli, A.; Sura, J.; Scuderi, V.; Acerbi, E.; Alessandria, F.; Bellomo, G.; Bosotti, A.; Martinis, C. de; Giove, D.; Michelato, P.; Pagani, C.; Rossi, L.

    1996-01-01

    A heavy ion facility is now available at laboratorio nazionale del Sud (LNS) of Catania. It can deliver beams with an energy up to 100 MeV/amu. The facility is based on a 15 MV HVEC tandem and a K=800 superconducting cyclotron as booster. During the last year, the facility came into operation. A 58 Ni beam delivered by the tandem has been radially injected in the SC and then has been accelerated and extracted at 30 MeV/amu. In this paper the status of the facility together with the experience gained during the commissioning will be extensively reported. (orig.)

  3. Development of Infrastructure Facilities for Superconducting RF Cavity Fabrication, Processing and 2 K Characterization at RRCAT

    Science.gov (United States)

    Joshi, S. C.; Raghavendra, S.; Jain, V. K.; Puntambekar, A.; Khare, P.; Dwivedi, J.; Mundra, G.; Kush, P. K.; Shrivastava, P.; Lad, M.; Gupta, P. D.

    2017-02-01

    An extensive infrastructure facility is being established at Raja Ramanna Centre for Advanced Technology (RRCAT) for a proposed 1 GeV, high intensity superconducting proton linac for Indian Spallation Neutron Source. The proton linac will comprise of a large number of superconducting Radio Frequency (SCRF) cavities ranging from low beta spoke resonators to medium and high beta multi-cell elliptical cavities at different RF frequencies. Infrastructure facilities for SCRF cavity fabrication, processing and performance characterization at 2 K are setup to take-up manufacturing of large number of cavities required for future projects of Department of Atomic Energy (DAE). RRCAT is also participating in a DAE’s approved mega project on “Physics and Advanced technology for High intensity Proton Accelerators” under Indian Institutions-Fermilab Collaboration (IIFC). In the R&D phase of IIFC program, a number of high beta, fully dressed multi-cell elliptical SCRF cavities will be developed in collaboration with Fermilab. A dedicated facility for SCRF cavity fabrication, tuning and processing is set up. SCRF cavities developed will be characterized at 2K using a vertical test stand facility, which is already commissioned. A Horizontal Test Stand facility has also been designed and under development for testing a dressed multi-cell SCRF cavity at 2K. The paper presents the infrastructure facilities setup at RRCAT for SCRF cavity fabrication, processing and testing at 2K.

  4. Development of a 20 MeV Dielectric-Loaded Accelerator Test Facility

    International Nuclear Information System (INIS)

    Gold, Steven H.; Fliflet, Arne W.; Kinkead, Allen K.; Gai Wei; Power, John G.; Konecny, Richard; Jing Chunguang; Tantawi, Sami G.; Nantista, Christopher D.; Hu, Y.; Chen, H.; Tang, C.; Lin, Y.; Bruce, Ralph W.; Bruce, Robert L.; Lewis, David III

    2004-01-01

    This paper describes a joint project by the Naval Research Laboratory (NRL) and Argonne National Laboratory (ANL), in collaboration with the StanFord Linear Accelerator Center (SLAC), to develop a dielectric-loaded accelerator (DLA) test facility powered by a high-power 11.424-GHz magnicon amplifier. The magnicon can presently produce 25 MW of output power in a 250-ns pulse at 10 Hz, and efforts are in progress to increase this to 50 MW. The facility will include a 5 MeV electron injector being developed by the Accelerator Laboratory of Tsinghua University in Beijing, China. The DLA test structures are being developed by ANL, and some have undergone testing at NRL at gradients up to ∼8 MV/m. SLAC is developing a means to combine the two magnicon output arms, and to drive an injector and accelerator with separate control of the power ratio and relative phase. RWBruce Associates, Inc., working with NRL, is developing a means to join short ceramic sections into a continuous accelerator tube by ceramic brazing using an intense millimeter-wave beam. The installation and testing of the first dielectric-loaded test accelerator, including injector, DLA structure, and spectrometer, should take place within the next year. The facility will be used for testing DLA structures using a variety of materials and configurations, and also for testing other X-band accelerator concepts. The initial goal is to produce a compact 20 MeV dielectric-loaded test accelerator

  5. Commissioning for the European XFEL facility

    Science.gov (United States)

    Nölle, D.

    2017-06-01

    The European XFEL is a 4th generation light source based on the Self Amplified Spontaneous Emission (SASE) FreeElectron-Laser concept. It is currently being commissioned in North- Germany. The core installation is a 17.5 GeV superconducting accelerator driving 3 SASE lines with photon energies from 1 to beyond 20 keV range with a maximum of 27.000 pulses per second. The international facility is organized as a limited liability company with shareholders from the contributing countries. DESY has taken over the leadership of the accelerator construction consortium, and will be in charge of the operation of the accelerator complex. The facility was set up with contributions from the 11 shareholder countries, either being hardware systems and/or staff or cash contributions. The construction is almost complete, and the commissioning phase has started by the end of 2015. This contribution will report the status of the accelerator complex with emphasis on the commissioning of the accelerator and an outlook to the commissioning of the SASE 1 FEL line.

  6. Applications of High Intensity Proton Accelerators

    Science.gov (United States)

    Raja, Rajendran; Mishra, Shekhar

    2010-06-01

    Superconducting radiofrequency linac development at Fermilab / S. D. Holmes -- Rare muon decay experiments / Y. Kuno -- Rare kaon decays / D. Bryman -- Muon collider / R. B. Palmer -- Neutrino factories / S. Geer -- ADS and its potential / J.-P. Revol -- ADS history in the USA / R. L. Sheffield and E. J. Pitcher -- Accelerator driven transmutation of waste: high power accelerator for the European ADS demonstrator / J. L. Biarrotte and T. Junquera -- Myrrha, technology development for the realisation of ADS in EU: current status & prospects for realisation / R. Fernandez ... [et al.] -- High intensity proton beam production with cyclotrons / J. Grillenberger and M. Seidel -- FFAG for high intensity proton accelerator / Y. Mori -- Kaon yields for 2 to 8 GeV proton beams / K. K. Gudima, N. V. Mokhov and S. I. Striganov -- Pion yield studies for proton driver beams of 2-8 GeV kinetic energy for stopped muon and low-energy muon decay experiments / S. I. Striganov -- J-Parc accelerator status and future plans / H. Kobayashi -- Simulation and verification of DPA in materials / N. V. Mokhov, I. L. Rakhno and S. I. Striganov -- Performance and operational experience of the CNGS facility / E. Gschwendtner -- Particle physics enabled with super-conducting RF technology - summary of working group 1 / D. Jaffe and R. Tschirhart -- Proton beam requirements for a neutrino factory and muon collider / M. S. Zisman -- Proton bunching options / R. B. Palmer -- CW SRF H linac as a proton driver for muon colliders and neutrino factories / M. Popovic, C. M. Ankenbrandt and R. P. Johnson -- Rapid cycling synchrotron option for Project X / W. Chou -- Linac-based proton driver for a neutrino factory / R. Garoby ... [et al.] -- Pion production for neutrino factories and muon colliders / N. V. Mokhov ... [et al.] -- Proton bunch compression strategies / V. Lebedev -- Accelerator test facility for muon collider and neutrino factory R&D / V. Shiltsev -- The superconducting RF linac for muon

  7. Study of field-limiting defects in superconducting RF cavities for electron-accelerators

    International Nuclear Information System (INIS)

    Aderhold, Sebastian

    2015-02-01

    Superconducting radio-frequency resonators made from niobium are an integral part of many accelerator projects. Their main advantage are the low ohmic losses resulting in the possibility for a long pulse structure and high duty cycles up to continous wave (cw) operation. The European X-Ray Free-Electron Laser (XFEL) and the International Linear Collider (ILC) are based on this technology. In some cases the resonators reach accelerating electric fields close to the theoretical limit of bulk niobium. Yet most resonators are limited at lower fields and mass production for large scale accelerator projects suffers from the spread in the achievable gradient per resonator. The main limitations are field emission and the breakdown of superconductivity (quench). While field emission is mostly attributed to the overall surface cleanliness of the resonator, quench is usually associated with local defects. Optical inspection of the inner surface of the resonators with unprecedented resolution, accuracy and a special illumination has been established at DESY and used to study such local surface defects. More than 30 resonators have been inspected. Distinctive features from these inspections have been catalogued and assessed for their potential risk for the performance of the resonator. Several confirmed quenching defects could be extracted for further analysis and could be traced back to likely origins in the production process. A new, automated set-up for optical inspection of large series of resonators, named OBACHT, has been developed and successfully commissioned. Its design includes the minimal need for operator interference, reproducibility, robustness and versatility, in order to fit the requirements for application both in a laboratory and in a production environment. To facilitate the comparison of the results obtained during the global R and D effort on resonators for the ILC, the ILC global yield database has been established. The yield and selection rules for the

  8. An overview of accelerator activities at VECC

    International Nuclear Information System (INIS)

    Sinha, Bikash

    2005-01-01

    A superconducting cyclotron with K bend =520 is under construction at this centre. Heavy-ion beams of 80 MeV/nucleon energy for light ions will be available from this cyclotron. Fabrication and development of most of the major systems have advanced significantly. The superconducting cyclotron will become a national facility for various universities and institutes. It will also be open to the international experimental physics community. The room temperature cyclotron at Kolkata is now delivering heavy ion beams. Recently the beams have been utilised by several institutions using clover detectors which is a joint collaborative effort of different institutions. In very near future the cyclotron will be used as primary source for Radioactive Ion Beam (RIB) Facility. Recently alpha and proton beams have been developed using the external ECR ion source. The RIB facility is under construction phase and several components have been installed already. The status of this facility will be described. Preliminary studies regarding the Accelerator Driven System (ADS) using cyclotron as an option to achieve high current proton beam has been undertaken at the centre and the project has been financed. (author)

  9. Status of rf superconductivity at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Markovich, P.M.; Shepard, K.W.; Zinkann, G.P.

    1987-01-01

    This paper reports the status of hardware development for the linac portion of the Argonne tandem-linac accelerator system (ATLAS). The ATLAS superconducting linac consists of an independent-phased array of 45 superconducting niobium resonators of the split-ring type. The linac has been operating in its present form since 1985, on a 24-hours per day, 5 days per week schedule. An upgrade of the ATLAS system is currently under construction the positive-ion injector (PII). The PII system will consist of an ECR positive-ion source mounted on a high-voltage platform injecting a very-low-velocity superconducting linac. The completed system will provide for the acceleration of beams of mass up to uranium, and will replace the tandem electrostatic accelerator as the injector for ATLAS. The status of resonator development for the superconducting linac is reported in this paper. Accelerating gradients in the existing ATLAS linac are currently limited by excessive heating and rf loss in the fast-tuning system associated with each superconducting resonator. Development of an upgraded fast-tuning system is also reported here. 7 refs., 5 figs

  10. Error analysis for intrinsic quality factor measurement in superconducting radio frequency resonators.

    Science.gov (United States)

    Melnychuk, O; Grassellino, A; Romanenko, A

    2014-12-01

    In this paper, we discuss error analysis for intrinsic quality factor (Q0) and accelerating gradient (Eacc) measurements in superconducting radio frequency (SRF) resonators. The analysis is applicable for cavity performance tests that are routinely performed at SRF facilities worldwide. We review the sources of uncertainties along with the assumptions on their correlations and present uncertainty calculations with a more complete procedure for treatment of correlations than in previous publications [T. Powers, in Proceedings of the 12th Workshop on RF Superconductivity, SuP02 (Elsevier, 2005), pp. 24-27]. Applying this approach to cavity data collected at Vertical Test Stand facility at Fermilab, we estimated total uncertainty for both Q0 and Eacc to be at the level of approximately 4% for input coupler coupling parameter β1 in the [0.5, 2.5] range. Above 2.5 (below 0.5) Q0 uncertainty increases (decreases) with β1 whereas Eacc uncertainty, in contrast with results in Powers [in Proceedings of the 12th Workshop on RF Superconductivity, SuP02 (Elsevier, 2005), pp. 24-27], is independent of β1. Overall, our estimated Q0 uncertainty is approximately half as large as that in Powers [in Proceedings of the 12th Workshop on RF Superconductivity, SuP02 (Elsevier, 2005), pp. 24-27].

  11. Status report on the heavy ion accelerator facility at TIFR

    International Nuclear Information System (INIS)

    Srinivasan, B.

    2006-01-01

    The 14 UD Pelletron Accelerator has been delivering heavy ion beams for experimental programs in Nuclear Physics and other fields. During the year beam was delivered for 72% of the time remaining after completion of certain infrastructural activities. Various developmental activities were also taken up in the laboratories associated with the Pelletron. The Superconducting Linac being constructed as a booster for the heavy ion beams from the Pelletron is in an advanced state of completion. Five of the seven cryostat modules have been assembled and tested with beam from the Pelletron. The last two remaining modules are being assembled. A new experimental beam hall has been constructed for utilization of the accelerated beam from the Linac and beam transport to one of the target areas has been carried out. (author)

  12. Free electron lasers on superconducting linac

    International Nuclear Information System (INIS)

    Lapierrre, Y.

    1986-01-01

    Analysing the results of several Free Electron Laser experiments, we show that the best accelerator should be a superconducting linear accelerator: it can provide a c.w. high quality beam (energy spread and emittance). The technology of RF superconductivity provide the opportunity to build such an accelerator. In this paper, we present the foreseen results one can expect from a FEL based on such a machine: - Average power > 1 Kw, - Total efficiency > 2.5%, - Tunability between 0.6 and 5 μm [fr

  13. Neutron and meson sources on the base of high-current cyclotron facilities (prospects of development)

    International Nuclear Information System (INIS)

    Dmitrievskij, V.P.

    1985-01-01

    A brief review is given and possible ways of development of neutron and meson generators on the basis of accelerating facilities are shown. The following conclusions are made: to combine two types of generators (neutron, meson) in one accelerated beam the deuteron beam for the energy 800-1000 MeV/nucleon should be accepted as the optimal one; accelerated beam energy distribution between mesocatalytic and emission branches of neutron generation is determined by the choice of mesocatalytic reactor target parameters; efficiency is the determining parameter of the accelerating facility (complex) when it is u sed for neutron or meson generators; a combination of linear and superconducting cyclic accelerators is the most perspective co mplex as to the efficiency

  14. Ion Beam Facilities at the National Centre for Accelerator based Research using a 3 MV Pelletron Accelerator

    Science.gov (United States)

    Trivedi, T.; Patel, Shiv P.; Chandra, P.; Bajpai, P. K.

    A 3.0 MV (Pelletron 9 SDH 4, NEC, USA) low energy ion accelerator has been recently installed as the National Centre for Accelerator based Research (NCAR) at the Department of Pure & Applied Physics, Guru Ghasidas Vishwavidyalaya, Bilaspur, India. The facility is aimed to carried out interdisciplinary researches using ion beams with high current TORVIS (for H, He ions) and SNICS (for heavy ions) ion sources. The facility includes two dedicated beam lines, one for ion beam analysis (IBA) and other for ion implantation/ irradiation corresponding to switching magnet at +20 and -10 degree, respectively. Ions with 60 kV energy are injected into the accelerator tank where after stripping positively charged ions are accelerated up to 29 MeV for Au. The installed ion beam analysis techniques include RBS, PIXE, ERDA and channelling.

  15. High power coupler issues in normal conducting and superconducting accelerator applications

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, H. [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan)

    2001-02-01

    The ceramic material (Al{sub 2}O{sub 3}) commonly used for the klystron output coupler in normal conducting, and for an input coupler to superconducting cavities is one of the most troublesome parts in accelerator applications. But the performance can be improved very much by starting with high purity (>99.9%) alumina powder of controlled grain-size (0.1-0.5-{mu}m), and reducing the magnesium (Mg) sintering-binder to lower the dielectric loss to the order of 10{sup -4} at S-band frequencies. It has been confirmed that the new ceramic can stand a peak S-band frequency rf power of up to 300 MW and 2.5 {mu}sec pulse width. (author)

  16. Diagram of a LEP superconducting cavity

    CERN Multimedia

    1991-01-01

    This diagram gives a schematic representation of the superconducting radio-frequency cavities at LEP. Liquid helium is used to cool the cavity to 4.5 degrees above absolute zero so that very high electric fields can be produced, increasing the operating energy of the accelerator. Superconducting cavities were used only in the LEP-2 phase of the accelerator, from 1996 to 2000.

  17. Future directions of accelerator-based NP and HEP facilities

    Energy Technology Data Exchange (ETDEWEB)

    Roser, T.

    2011-07-24

    Progress in particle and nuclear physics has been closely connected to the progress in accelerator technologies - a connection that is highly beneficial to both fields. This paper presents a review of the present and future facilities and accelerator technologies that will push the frontiers of high-energy particle interactions and high intensity secondary particle beams.

  18. Status of superconducting RF cavity development

    International Nuclear Information System (INIS)

    Shepard, K.W.

    1989-01-01

    For several reasons, a brief historical review seems appropriate at this time. The twenty-fifth anniversary of the first acceleration of beam with a superconducting cavity will occur shortly [1,2,3]. Also, the scope of accelerator applications of superconducting radio-frequency (SRF) devices has, within the last few months, begun to increase rapidly [4] - to the point that it seems likely that early expectations for this technology will largely be fulfilled. Since the object is to accelerate beam, a simple one parameter measure of the technology is the total of how much beam has been accelerated. Figure 1 shows the total accumulated voltage in tests and/or operation of superconducting accelerating cavities with beam, up to the time indicated, as reported in the open literature [4-35]. This parameter has been divided into two terms: first, the subtotal for electron accelerating velocity-of-light structures, and second the subtotal for low-velocity, ion accelerating structures. To restate: each of these terms represents as a function of time an integrated, accumulative total voltage produced by SRF hardware and demonstrated with beam. 56 refs., 4 figs

  19. Accelerator facilities and development of physics in Kazakhstan (1992-2002)

    International Nuclear Information System (INIS)

    Shkol'nik, V.S.; Arzumanov, A.A.; Borisenko, A.N.; Gorlachev, I.D.; Kadyrzhanov, K.K.; Kuterbekov, K.A.; Lysukhin, S.N.; Tuleushev, A.Zh.

    2003-01-01

    The monograph is devoted to the use both the isochronous cyclotron U-150M and the accelerator of the heavy ions UKP-2-1, which are the base facilitates of the Institute of Nuclear Physics of the National Nuclear Center of the Republic of Kazakhstan (INP NNC RK) for scientific researches in the field of nuclear physics of low and middle energies, radiation solid state physics and applied nuclear physics. The history of creation of facilities, some archival documents are given The use of the accelerators of INP NNC RK for the last ten years (1992-2002) is described in detail. The parameters of facilities, photos of the main functional units of the accelerators as well as nuclear and physical methods realized on these basic facilities have been presented. The appendixes present copies of some important historical documents as well as the following materials: a list of on accelerator themes, a list of dissertation works, a list of publications of the Nuclear Physics Department within the period of 1972-2002 and the Solid State Department within the period of 1995-2002 carried out using the accelerators of INP NNC RK. The book is intended for scientists studying actual problems of nuclear physics of low and middle energies, radiation solid state physics as well as students specializing in this field (author)

  20. Beam Dynamics Design Studies of a Superconducting Radioactive Ion Beam Post-accelerator

    CERN Document Server

    Fraser, MA; Pasini, M

    2011-01-01

    The HIE-ISOLDE project at CERN proposes a superconducting upgrade to increase the energy range and quality of the radioactive ion beams produced at ISOLDE, which are currently post- accelerated by the normal conducting REX linac. The specification and design choices for the HIE-ISOLDE linac are outlined along with a comprehensive beam dynamics study undertaken to understand and mitigate the sources of beam emittance dilution. The dominant cause of transverse emittance growth was attributed to the coupling between the transverse and longitudinal motions through the phase dependence of the rf defocusing force in the accelerating cavities. A parametric resonance induced by the coupling was observed and its excitation surveyed as a function of trans- verse phase advance using numerical simulations and analytic models to understand and avoid the regions of transverse beam instability. Other sources of emittance growth were studied and where necessary ameliorated, including the beam steering force in the quarter-wa...

  1. Design features of a seven-cell high-gradient superconducting cavity

    International Nuclear Information System (INIS)

    Liska, D.J.; Ledford, J.; Black, S.; Spalek, G.; DiMarco, J.N.

    1992-01-01

    A cavity development program is in place at Los Alamos National Laboratory to evaluate structures that could be used to accelerate pions. The work is being guided by the conceptual design of PILAC, a high-gradient superconducting linac for raising the energy of rapidly decaying intense pion beams generated by Los Alamos Meson Physics Facility (LAMPF) to 1 GeV. The specification requires a cavity gradient of 12.5 MV/m at 805 MHz. The design of a seven-cell prototype cavity to achieve these high gradients has been completed by the Accelerator Technology division. The cavity is presently under procurement for high power testing a 2.0 K in 1993

  2. The CEBAF accelerator and its physics program

    International Nuclear Information System (INIS)

    Cardman, L.S.

    1993-01-01

    The continuous electron beam accelerator facility (CEBAF) consists of a pair of 400 MeV superconducting linacs together with a 5-pass recirculation system and beam switchyard that will permit it to provide three, simultaneous 4 GeV, cw electron beams with a total current of up to 200 μA. The conventional construction for the accelerator and the three experimental end stations is essentially complete. The first linac has been installed in the accelerator tunnel and beam has been accelerated through it; all tests to date have met or exceeded the design specifications. The major components of the experimental equipment for the end stations are under construction. Operation of CEBAF for nuclear physics is scheduled to begin in mid-1994. The facility will support a broad range of nuclear physics research, including topics such as how quarks and gluons are held together in protons and neutrons, the origins of the nuclear force, modifications of nucleons in the nuclear medium, and nuclear structure when nucleons are very close together. The status of the accelerator and its experimental equipment will be presented together with a sampling of experiments planned for the early phases of operation

  3. Brookhaven National Laboratory's Accelerator Test Facility: research highlights and plans

    Science.gov (United States)

    Pogorelsky, I. V.; Ben-Zvi, I.

    2014-08-01

    The Accelerator Test Facility (ATF) at Brookhaven National Laboratory has served as a user facility for accelerator science for over a quarter of a century. In fulfilling this mission, the ATF offers the unique combination of a high-brightness 80 MeV electron beam that is synchronized to a 1 TW picosecond CO2 laser. We unveil herein our plan to considerably expand the ATF's floor space with an upgrade of the electron beam's energy to 300 MeV and the CO2 laser's peak power to 100 TW. This upgrade will propel the ATF even further to the forefront of research on advanced accelerators and radiation sources, supporting the most innovative ideas in this field. We discuss emerging opportunities for scientific breakthroughs, including the following: plasma wakefield acceleration studies in research directions already active at the ATF; laser wakefield acceleration (LWFA), where the longer laser wavelengths are expected to engender a proportional increase in the beam's charge while our linac will assure, for the first time, the opportunity to undertake detailed studies of seeding and staging of the LWFA; proton acceleration to the 100-200 MeV level, which is essential for medical applications; and others.

  4. Study of an accelerating superconducting module and its feedback loop systems for the MYRRHA project

    International Nuclear Information System (INIS)

    Bouly, F.

    2011-11-01

    The MYRRHA ( Multi-purpose hybrid Research Reactor for High-tech Applications ) project aims at constructing an accelerator driven system (ADS) demonstrator (50 a 100 MWth) to explore the feasibility of nuclear waste transmutation. Such a subcritical reactor requires an extremely reliable accelerator which delivers a CW high power protons beam (600 MeV, 4 mA). The reference solution for this machine is a superconducting linear accelerator. This thesis presents the work - undertaken at IPN Orsay in October 2008 - on the study of a prototypical superconducting module and the feedback control systems of its cavity for the high energy part of the MYRRHA linac. First, the optimization and the design of 5-cell elliptical cavities (β=0,65), operating at 704.4 MHz, are presented. Then, the experimental work focuses on a reliability oriented study of the 'cryo-module' which hold a prototypical 5-cell cavity (β=0,47). In this study, the dynamic behavior of the fast tuning system of the cavity was measured and qualified. The 'field flatness' issue in 'low beta' multi-cell cavity was also brought to light. Finally, a fault-tolerance analysis of the linac was carried out. Toward this goal, a model of the cavity, its RF feedback loop system and its tuning system feedback loop was developed. This study enabled to determine the RF power needs, the tuning system requirements and as well as to demonstrate the feasibility of fast fault-recovery scenarios to minimize the number of beam interruptions in the MYRRHA linac. (author)

  5. Superconductivity and its application

    International Nuclear Information System (INIS)

    Spadoni, M.

    1988-01-01

    This paper, after a short introduction to superconductivity and to multifilamentary superconducting composites is aiming to review the state of the art and the future perspective of some of the applications of the superconducting materials. The main interest is focussed to large scale applications like, for istance, magnets for accelerators or fusion reactors, superconducting system for NMR thomography, etc. A short paragraph is dedicated to applications for high sensitivity instrumentation. The paper is then concluded by some considerations about the potentialities of the newly discovered high critical temperature materials

  6. 50 Years of the Radiological Research Accelerator Facility (RARAF)

    OpenAIRE

    Marino, Stephen A.

    2017-01-01

    The Radiological Research Accelerator Facility (RARAF) is in its 50th year of operation. It was commissioned on April 1, 1967 as a collaboration between the Radiological Research Laboratory (RRL) of Columbia University, and members of the Medical Research Center of Brookhaven National Laboratory (BNL). It was initially funded as a user facility for radiobiology and radiological physics, concentrating on monoenergetic neutrons. Facilities for irradiation with MeV light charged particles were d...

  7. Analysis of Voltage Signals from Superconducting Accelerator Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Lizarazo, J.; Caspi, S.; Ferracin, P.; Joseph, J.; Lietzke, A. F.; Sabbi, G. L.; Wang, X.

    2009-10-30

    We present two techniques used in the analysis of voltage tap data collected during recent tests of superconducting magnets developed by the Superconducting Magnet Program at Lawrence Berkeley National Laboratory. The first technique was used on a quadrupole to provide information about quench origins that could not be obtained using the time-of-flight method. The second technique illustrates the use of data from transient flux imbalances occurring during magnet ramping to diagnose changes in the current-temperature margin of a superconducting cable. In both cases, the results of this analysis contributed to make improvements on subsequent magnets.

  8. A 1MeV, 1A negative ion accelerator test facility

    International Nuclear Information System (INIS)

    Hanada, M.; Dairaku, M.; Inoue, T.; Miyamoto, K.; Ohara, Y.; Okumura, Y.; Watanabe, K.; Yokoyama, K.

    1995-01-01

    For the Proof-of-Principle test of negative ion acceleration up to 1 MeV, the beam energy required for ITER, a negative ion test facility named MeV Test Facility (MTF) and an ion source/accelerator have been designed and constructed. They are designed to produce a 1 MeV H- beam at a low source pressure of 0.13Pa. The MTF has a power supply system, which constituts of a 1MV, 1A, 60 s Cockcroft-Walton type dc high energy generator and power supplies for negative ion generation and extraction (ion source power supplies). The negative ion source/accelerator is composed of a cesiated volume source and a 5-stage, multi-aperture, electrostatic accelerator. The MTF and the ion source/accelerator have been completed, and the accelertion test up to 1 MeV of the H- ions has started. (orig.)

  9. Accelerator & Fusion Research Division: 1993 Summary of activities

    Energy Technology Data Exchange (ETDEWEB)

    Chew, J.

    1994-04-01

    The Accelerator and Fusion Research Division (AFRD) is not only one of the largest scientific divisions at LBL, but also the one of the most diverse. Major efforts include: (1) investigations in both inertial and magnetic fusion energy; (2) operation of the Advanced Light Source, a state-of-the-art synchrotron radiation facility; (3) exploratory investigations of novel radiation sources and colliders; (4) research and development in superconducting magnets for accelerators and other scientific and industrial applications; and (5) ion beam technology development for nuclear physics and for industrial and biomedical applications. Each of these topics is discussed in detail in this book.

  10. A post-accelerator for the US rare isotope accelerator facility

    CERN Document Server

    Ostroumov, P N; Kolomiets, A A; Nolen, J A; Portillo, M; Shepard, K W; Vinogradov, N E

    2003-01-01

    The proposed rare isotope accelerator (RIA) facility includes a post-accelerator for rare isotopes (RIB linac) which must produce high-quality beams of radioactive ions over the full mass range, including uranium, at energies above the Coulomb barrier, and have high transmission and efficiency. The latter requires the RIB linac to accept at injection ions in the 1+ charge state. A concept for such a post accelerator suitable for ions up to mass 132 has been previously described . This paper presents a modified concept which extends the mass range to uranium. A high resolution separator for purifying beams at the isobaric level precedes the RIB linac. The mass filtering process will provide high purity beams while preserving transmission. For most cases a resolution of about m/DELTA m=20 000 is adequate at mass A=100 to obtain a separation between isobars of mass excess difference of 5 MeV. The design for a device capable of purifying beams at the isobaric level includes calculations up to fifth order. The RIB...

  11. Design of RF structures for a superconducting proton linac

    International Nuclear Information System (INIS)

    Pande, Rajni; Roy, Shweta; Rao, S.V.L.S.; Krishnagopal, S.; Singh, P.

    2013-01-01

    One of the main components of the Accelerator Driven System (ADS) programme in India is a 1 GeV, high intensity CW proton accelerator that will be superconducting after the radio-frequency quadrupole (RFQ), i.e. after 3 MeV. The superconducting linac will consist of various superconducting structures like Half Wave Resonators, Spoke Resonators and elliptical cavities, operating at RF frequencies of 162.5 MHz, 325 MHz and 650 MHz. The paper will discuss the optimization of the electromagnetic design of the various superconducting structures. (author)

  12. Study of electron beam energy conversion at gyrocon-linear accelerator facility

    International Nuclear Information System (INIS)

    Karliner, M.M.; Makarov, I.G.; Ostreiko, G.N.

    2004-01-01

    A gyrocon together with the high-voltage 1.5 MeV accelerator ELIT-3A represents a power generator at 430 MHz serving for linear electron accelerator pulse driving. The facility description and results of calorimetric measurements of ELIT-3A electron beam power and accelerated beam at the end of accelerator are presented in the paper. The achieved energy conversion efficiency is about 55%

  13. Parametric study of emerging high power accelerator applications using Accelerator Systems Model (ASM)

    International Nuclear Information System (INIS)

    Berwald, D.H.; Mendelsohn, S.S.; Myers, T.J.; Paulson, C.C.; Peacock, M.A.; Piaszczyk, CM.; Rathke, J.W.; Piechowiak, E.M.

    1996-01-01

    Emerging applications for high power rf linacs include fusion materials testing, generation of intense spallation neutrons for neutron physics and materials studies, production of nuclear materials and destruction of nuclear waste. Each requires the selection of an optimal configuration and operating parameters for its accelerator, rf power system and other supporting subsystems. Because of the high cost associated with these facilities, economic considerations become paramount, dictating a full evaluation of the electrical and rf performance, system reliability/availability, and capital, operating, and life cycle costs. The Accelerator Systems Model (ASM), expanded and modified by Northrop Grumman during 1993-96, provides a unique capability for detailed layout and evaluation of a wide variety of normal and superconducting accelerator and rf power configurations. This paper will discuss the current capabilities of ASM, including the available models and data base, and types of trade studies that can be performed for the above applications. (author)

  14. Superconducting levitated systems: first results with the experimental facility at Erlangen

    International Nuclear Information System (INIS)

    Albrecht, C.; Elsel, W.; Franksen, H.; Parsch, C.P.; Wilhelm, K.

    1974-01-01

    The electrodynamic levitation system is being investigated in Western Germany by a development group consisting of AEG, BBC and Siemens together with Linde and other companies. A test carrier of 12t has made the first operational runs at 55km/h in the rolling mode. This paper reviews the technical features of the main non-cryogenic components such as track, power supply, current collector, linear induction motor, vehicle body and control centre, and then describes the superconducting magnet system together with a stationary cryogenic supply facility. (author)

  15. First operations of the LNS heavy ions facility

    Energy Technology Data Exchange (ETDEWEB)

    Calabretta, L. [INFN-LNS, Catania (Italy); Ciavola, G. [INFN-LNS, Catania (Italy); Cuttone, G. [INFN-LNS, Catania (Italy); Gammino, S. [INFN-LNS, Catania (Italy); Gmaj, P. [INFN-LNS, Catania (Italy); Migneco, E. [INFN-LNS, Catania (Italy); Raia, G. [INFN-LNS, Catania (Italy); Rifuggiato, D. [INFN-LNS, Catania (Italy); Rovelli, A. [INFN-LNS, Catania (Italy); Sura, J. [INFN-LNS, Catania (Italy); Scuderi, V. [INFN-LNS, Catania (Italy); Acerbi, E. [INFN-sezione di Milano (Italy)]|[Univ. degli studi di Milano, Lab. LASA (Italy); Alessandria, F. [INFN-sezione di Milano (Italy)]|[Univ. degli studi di Milano, Lab. LASA (Italy); Bellomo, G. [INFN-sezione di Milano (Italy)]|[Univ. degli studi di Milano, Lab. LASA (Italy); Bosotti, A. [INFN-sezione di Milano (Italy)]|[Univ. degli studi di Milano, Lab. LASA (Italy); Martinis, C. de [INFN-sezione di Milano (Italy)]|[Univ. degli studi di Milano, Lab. LASA (Italy); Giove, D. [INFN-sezione di Milano (Italy)]|[Univ. degli studi di Milano, Lab. LASA (Italy); Michelato, P. [INFN-sezione di Milano (Italy)]|[Univ. degli studi di Milano, Lab. LASA (Italy); Pagani, C. [INFN-sezione di Milano (Italy)]|[Univ. degli studi di Milano, Lab. LASA (Italy); Rossi, L. [INFN-sezione di Milano (Italy)]|[Univ. degli studi di Milano, Lab. LASA (Italy)

    1996-11-11

    A heavy ion facility is now available at laboratorio nazionale del Sud (LNS) of Catania. It can deliver beams with an energy up to 100 MeV/amu. The facility is based on a 15 MV HVEC tandem and a K=800 superconducting cyclotron as booster. During the last year, the facility came into operation. A {sup 58}Ni beam delivered by the tandem has been radially injected in the SC and then has been accelerated and extracted at 30 MeV/amu. In this paper the status of the facility together with the experience gained during the commissioning will be extensively reported. (orig.).

  16. Change in operating parameters of the Continuous Electron Beam Accelerator Facility and Free Electron Laser, Thomas Jefferson National Accelerator Facility, Newport News, Virginia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    In this environmental assessment (EA), the US Department of Energy (DOE) reports the results of an analysis of the potential environmental impacts from a proposed change in operating parameters of the Continuous Electron Beam Accelerator Facility (CEBAF), and operation of the Free Electron Laser (FEL) facility beyond the initial demonstration period. With this proposal, DOE intends to increase CEBAF operating range from its current operating maximum beam energy of 4.0 GeV [giga-(billion) electron volts] to 8.0 GeV at a beam power of no greater than 1,000 kW [1 megawatt (MW)], its maximum attainable level, based on current technology and knowledge, without significant, costly equipment modifications. DOE has prepared an EA for this action to determine the potential for adverse impacts from operation of CEBAF and the FEL at the proposed levels. Changing the operating parameters of CEBAF would require no new major construction and minor modifications to the accelerator, its support systems, the FEL, and onsite utility systems. Modifications and performance improvements would be made to (1) the accelerator housed in the underground tunnels, (2) its support systems located in the above ground service buildings, and (3) the water and equipment cooling systems both in the tunnel and at the ground surface. All work would be performed on previously disturbed land and in, on, or adjacent to existing buildings, structures, and equipment. With the proposed action, the recently constructed FEL facility at the Jefferson Lab would operate in concert with CEBAF beyond its demonstration period and up to its maximum effective electron beam power level of 210 kW. In this EA, DOE evaluates the impacts of the no-action alternative and the proposed action alternative. Alternatives considered, but dismissed from further evaluation, were the use of another accelerator facility and the use of another technology.

  17. Change in operating parameters of the Continuous Electron Beam Accelerator Facility and Free Electron Laser, Thomas Jefferson National Accelerator Facility, Newport News, Virginia

    International Nuclear Information System (INIS)

    1997-10-01

    In this environmental assessment (EA), the US Department of Energy (DOE) reports the results of an analysis of the potential environmental impacts from a proposed change in operating parameters of the Continuous Electron Beam Accelerator Facility (CEBAF), and operation of the Free Electron Laser (FEL) facility beyond the initial demonstration period. With this proposal, DOE intends to increase CEBAF operating range from its current operating maximum beam energy of 4.0 GeV [giga-(billion) electron volts] to 8.0 GeV at a beam power of no greater than 1,000 kW [1 megawatt (MW)], its maximum attainable level, based on current technology and knowledge, without significant, costly equipment modifications. DOE has prepared an EA for this action to determine the potential for adverse impacts from operation of CEBAF and the FEL at the proposed levels. Changing the operating parameters of CEBAF would require no new major construction and minor modifications to the accelerator, its support systems, the FEL, and onsite utility systems. Modifications and performance improvements would be made to (1) the accelerator housed in the underground tunnels, (2) its support systems located in the above ground service buildings, and (3) the water and equipment cooling systems both in the tunnel and at the ground surface. All work would be performed on previously disturbed land and in, on, or adjacent to existing buildings, structures, and equipment. With the proposed action, the recently constructed FEL facility at the Jefferson Lab would operate in concert with CEBAF beyond its demonstration period and up to its maximum effective electron beam power level of 210 kW. In this EA, DOE evaluates the impacts of the no-action alternative and the proposed action alternative. Alternatives considered, but dismissed from further evaluation, were the use of another accelerator facility and the use of another technology

  18. SUPERCONDUCTING RADIO-FREQUENCY MODULES TEST FACILITY OPERATING EXPERIENCE

    International Nuclear Information System (INIS)

    Soyars, W.; Bossert, R.; Darve, C.; Degraff, B.; Klebaner, A.; Martinez, A.; Pei, L.; Theilacker, J.

    2008-01-01

    Fermilab is heavily engaged and making strong technical contributions to the superconducting radio-frequency research and development program (SRF R and D). Four major SRF test areas are being constructed to enable vertical and horizontal cavity testing, as well as cryomodule testing. The existing Fermilab cryogenic infrastructure has been modified to service the SRF R and D needs. The project's first stage has been successfully completed, which allows for distribution of cryogens for a single-cavity cryomodule using the existing Cryogenic Test Facility (CTF) that houses three Tevatron satellite refrigerators. The cooling capacity available for cryomodule testing at Meson Detector Building (MDB) results from the liquefaction capacity of the CTF cryogenic system. The cryogenic system for a single 9-cell cryomodule is currently operational. The paper describes the status, challenges and operational experience of the initial phase of the project

  19. Hardware availability calculations and results of the IFMIF accelerator facility

    International Nuclear Information System (INIS)

    Bargalló, Enric; Arroyo, Jose Manuel; Abal, Javier; Beauvais, Pierre-Yves; Gobin, Raphael; Orsini, Fabienne; Weber, Moisés; Podadera, Ivan; Grespan, Francesco; Fagotti, Enrico; De Blas, Alfredo; Dies, Javier; Tapia, Carlos; Mollá, Joaquín; Ibarra, Ángel

    2014-01-01

    Highlights: • IFMIF accelerator facility hardware availability analyses methodology is described. • Results of the individual hardware availability analyses are shown for the reference design. • Accelerator design improvements are proposed for each system. • Availability results are evaluated and compared with the requirements. - Abstract: Hardware availability calculations have been done individually for each system of the deuteron accelerators of the International Fusion Materials Irradiation Facility (IFMIF). The principal goal of these analyses is to estimate the availability of the systems, compare it with the challenging IFMIF requirements and find new paths to improve availability performances. Major unavailability contributors are highlighted and possible design changes are proposed in order to achieve the hardware availability requirements established for each system. In this paper, such possible improvements are implemented in fault tree models and the availability results are evaluated. The parallel activity on the design and construction of the linear IFMIF prototype accelerator (LIPAc) provides detailed design information for the RAMI (reliability, availability, maintainability and inspectability) analyses and allows finding out the improvements that the final accelerator could have. Because of the R and D behavior of the LIPAc, RAMI improvements could be the major differences between the prototype and the IFMIF accelerator design

  20. Hardware availability calculations and results of the IFMIF accelerator facility

    Energy Technology Data Exchange (ETDEWEB)

    Bargalló, Enric, E-mail: enric.bargallo-font@upc.edu [Fusion Energy Engineering Laboratory (FEEL), Technical University of Catalonia (UPC), Barcelona (Spain); Arroyo, Jose Manuel [Laboratorio Nacional de Fusión por Confinamiento Magnético – CIEMAT, Madrid (Spain); Abal, Javier [Fusion Energy Engineering Laboratory (FEEL), Technical University of Catalonia (UPC), Barcelona (Spain); Beauvais, Pierre-Yves; Gobin, Raphael; Orsini, Fabienne [Commissariat à l’Energie Atomique, Saclay (France); Weber, Moisés; Podadera, Ivan [Laboratorio Nacional de Fusión por Confinamiento Magnético – CIEMAT, Madrid (Spain); Grespan, Francesco; Fagotti, Enrico [Istituto Nazionale di Fisica Nucleare, Legnaro (Italy); De Blas, Alfredo; Dies, Javier; Tapia, Carlos [Fusion Energy Engineering Laboratory (FEEL), Technical University of Catalonia (UPC), Barcelona (Spain); Mollá, Joaquín; Ibarra, Ángel [Laboratorio Nacional de Fusión por Confinamiento Magnético – CIEMAT, Madrid (Spain)

    2014-10-15

    Highlights: • IFMIF accelerator facility hardware availability analyses methodology is described. • Results of the individual hardware availability analyses are shown for the reference design. • Accelerator design improvements are proposed for each system. • Availability results are evaluated and compared with the requirements. - Abstract: Hardware availability calculations have been done individually for each system of the deuteron accelerators of the International Fusion Materials Irradiation Facility (IFMIF). The principal goal of these analyses is to estimate the availability of the systems, compare it with the challenging IFMIF requirements and find new paths to improve availability performances. Major unavailability contributors are highlighted and possible design changes are proposed in order to achieve the hardware availability requirements established for each system. In this paper, such possible improvements are implemented in fault tree models and the availability results are evaluated. The parallel activity on the design and construction of the linear IFMIF prototype accelerator (LIPAc) provides detailed design information for the RAMI (reliability, availability, maintainability and inspectability) analyses and allows finding out the improvements that the final accelerator could have. Because of the R and D behavior of the LIPAc, RAMI improvements could be the major differences between the prototype and the IFMIF accelerator design.

  1. Availability simulation software adaptation to the IFMIF accelerator facility RAMI analyses

    Energy Technology Data Exchange (ETDEWEB)

    Bargalló, Enric, E-mail: enric.bargallo-font@upc.edu [Fusion Energy Engineering Laboratory (FEEL), Technical University of Catalonia (UPC) Barcelona-Tech, Barcelona (Spain); Sureda, Pere Joan [Fusion Energy Engineering Laboratory (FEEL), Technical University of Catalonia (UPC) Barcelona-Tech, Barcelona (Spain); Arroyo, Jose Manuel [Laboratorio Nacional de Fusión por Confinamiento Magnético – CIEMAT, Madrid (Spain); Abal, Javier; De Blas, Alfredo; Dies, Javier; Tapia, Carlos [Fusion Energy Engineering Laboratory (FEEL), Technical University of Catalonia (UPC) Barcelona-Tech, Barcelona (Spain); Mollá, Joaquín; Ibarra, Ángel [Laboratorio Nacional de Fusión por Confinamiento Magnético – CIEMAT, Madrid (Spain)

    2014-10-15

    Highlights: • The reason why IFMIF RAMI analyses needs a simulation is explained. • Changes, modifications and software validations done to AvailSim are described. • First IFMIF RAMI results obtained with AvailSim 2.0 are shown. • Implications of AvailSim 2.0 in IFMIF RAMI analyses are evaluated. - Abstract: Several problems were found when using generic reliability tools to perform RAMI (Reliability Availability Maintainability Inspectability) studies for the IFMIF (International Fusion Materials Irradiation Facility) accelerator. A dedicated simulation tool was necessary to model properly the complexity of the accelerator facility. AvailSim, the availability simulation software used for the International Linear Collider (ILC) became an excellent option to fulfill RAMI analyses needs. Nevertheless, this software needed to be adapted and modified to simulate the IFMIF accelerator facility in a useful way for the RAMI analyses in the current design phase. Furthermore, some improvements and new features have been added to the software. This software has become a great tool to simulate the peculiarities of the IFMIF accelerator facility allowing obtaining a realistic availability simulation. Degraded operation simulation and maintenance strategies are the main relevant features. In this paper, the necessity of this software, main modifications to improve it and its adaptation to IFMIF RAMI analysis are described. Moreover, first results obtained with AvailSim 2.0 and a comparison with previous results is shown.

  2. Availability simulation software adaptation to the IFMIF accelerator facility RAMI analyses

    International Nuclear Information System (INIS)

    Bargalló, Enric; Sureda, Pere Joan; Arroyo, Jose Manuel; Abal, Javier; De Blas, Alfredo; Dies, Javier; Tapia, Carlos; Mollá, Joaquín; Ibarra, Ángel

    2014-01-01

    Highlights: • The reason why IFMIF RAMI analyses needs a simulation is explained. • Changes, modifications and software validations done to AvailSim are described. • First IFMIF RAMI results obtained with AvailSim 2.0 are shown. • Implications of AvailSim 2.0 in IFMIF RAMI analyses are evaluated. - Abstract: Several problems were found when using generic reliability tools to perform RAMI (Reliability Availability Maintainability Inspectability) studies for the IFMIF (International Fusion Materials Irradiation Facility) accelerator. A dedicated simulation tool was necessary to model properly the complexity of the accelerator facility. AvailSim, the availability simulation software used for the International Linear Collider (ILC) became an excellent option to fulfill RAMI analyses needs. Nevertheless, this software needed to be adapted and modified to simulate the IFMIF accelerator facility in a useful way for the RAMI analyses in the current design phase. Furthermore, some improvements and new features have been added to the software. This software has become a great tool to simulate the peculiarities of the IFMIF accelerator facility allowing obtaining a realistic availability simulation. Degraded operation simulation and maintenance strategies are the main relevant features. In this paper, the necessity of this software, main modifications to improve it and its adaptation to IFMIF RAMI analysis are described. Moreover, first results obtained with AvailSim 2.0 and a comparison with previous results is shown

  3. ''DIANA'' - A New, Deep-Underground Accelerator Facility for Astrophysics Experiments

    International Nuclear Information System (INIS)

    Leitner, M.; Leitner, D.; Lemut, A.; Vetter, P.; Wiescher, M.

    2009-01-01

    The DIANA project (Dakota Ion Accelerators for Nuclear Astrophysics) is a collaboration between the University of Notre Dame, University of North Carolina, Western Michigan University, and Lawrence Berkeley National Laboratory to build a nuclear astrophysics accelerator facility 1.4 km below ground. DIANA is part of the US proposal DUSEL (Deep Underground Science and Engineering Laboratory) to establish a cross-disciplinary underground laboratory in the former gold mine of Homestake in South Dakota, USA. DIANA would consist of two high-current accelerators, a 30 to 400 kV variable, high-voltage platform, and a second, dynamitron accelerator with a voltage range of 350 kV to 3 MV. As a unique feature, both accelerators are planned to be equipped with either high-current microwave ion sources or multi-charged ECR ion sources producing ions from protons to oxygen. Electrostatic quadrupole transport elements will be incorporated in the dynamitron high voltage column. Compared to current astrophysics facilities, DIANA could increase the available beam densities on target by magnitudes: up to 100 mA on the low energy accelerator and several mA on the high energy accelerator. An integral part of the DIANA project is the development of a high-density super-sonic gas-jet target which can handle these anticipated beam powers. The paper will explain the main components of the DIANA accelerators and their beam transport lines and will discuss related technical challenges

  4. Contamination issues in superconducting cavity technology

    International Nuclear Information System (INIS)

    Kneisel, Peter

    1997-01-01

    The application of radio-frequency superconductivity technology in particle accelerator projects has become increasingly evident in recent years. Several large scale projects around the world are either completed or close to completion, such as CEBAF, HERA, TRISTAN and LEP. And superconducting cavity technology is seriously being considered for future applications in linear colliders (TESLA), high current proton accelerators (APT, spallation neutron sources), muon colliders and free electron lasers for industrial application. The reason for this multitude of activities are matured technology based on a better understanding of the phenomena encountered in superconducting cavities and the influence of improved material properties and contamination and quality control measures

  5. Magnetization, critical current, and injection field harmonics in superconducting accelerator magnets

    International Nuclear Information System (INIS)

    Ghosh, A.K.; Sampson, W.B.; Wanderer, P.

    1985-01-01

    The very large energy ratio of machines such as the SSC dictates rather low injection field (for 6T, 20 TeV it is approximately 0.3T). Since the harmonic content at such low fields is largely determined by magnetization currents in the superconductor, the random errors depend on the uniformity of the superconducting wire. In principle the magnitude of the residual fields can be reduced indefinitely by using finer filaments, but in practice there is a lower limit of a few microns. We have compared the injection field harmonics for a number of accelerator dipoles with magnetization measurements made on samples of the conductor used to wind the coils. In addition both the magnetization and harmonics have been compared with short sample critical current measurements made at 5T. The results indicated that an accurate estimate of the variation in injection field harmonics can only be obtained from direct measurements of the magnetization of the cable. It appears feasible to use such measurements to ''shuffle'' magnets for a large accelerator by predicting the low field properties of a magnet before actually winding the coils. 10 refs., 4 figs., 2 tabs

  6. Status Of The EXCYT Facility at INFN-LNS

    International Nuclear Information System (INIS)

    Cuttone, G.; Alba, R.; Calabretta, L.; Celona, L.; Chines, F.; Cosentino, L.; Finocchiaro, P.; Grmek, A.; Gammino, S.; Menna, M.; Messina, G.E.; Raia, G.; Passarello, S.; Re, M.; Rifuggiato, D.; Rovelli, A.; Russo, S.; Schillaci, G.; Scuderi, V.; Zappala, E.

    2004-01-01

    The EXCYT facility (EXotics with CYclotron and Tandem) at the INFN-LNS is based on a K-800 Superconducting Cyclotron injecting stable heavy-ion beams (up to 80 MeV/amu, 1 eμA) into a target-ion source assembly to produce the required nuclear species, and on a 15 MV Tandem for post-accelerating the radioactive beams. Since December 1999 the Superconducting Cyclotron operates in a stand-alone mode by means of the new axial injection beam line. The primary beam line has been already mounted and tested. The part of mass separator on the two high-voltage platforms together with low intensity diagnostics is already installed while the ancillary items along with the part of mass separator at ground potential will be installed during the next stop of accelerator operations. The target-ion source unit has been successfully tested on-line at GANIL. The goal of such efforts will be represented by the test of the mass separator with stable beams planned at LNS by the end of the year. The commissioning of the EXCYT facility is foreseen in 2004 together with the start of nuclear experiments program

  7. A medical facility proposal to use the SSC linac

    International Nuclear Information System (INIS)

    Funk, L.W.

    1994-01-01

    A consortium organized by the Texas National Research Laboratory Commission under a Department of Energy grant proposes to build and operate a Regional Medical Technology Center to function as a combined medical radioisotope production complex and proton cancer therapy facility using the Linear Accelerator (Linac) assets of the Superconducting Super Collider (SSC). The radioisotope production complex will serve as a domestic source of radioisotopes critically needed by the U.S. pharmaceutical industry and nuclear medicine facilities throughout North America. Presently, more than 70 percent of radioisotopes used in U.S. nuclear medicine procedures are produced outside the country. The Center's state-of-the-art proton cancer therapy facility will serve the Central United States, providing advanced capabilities and augmenting facilities in California and Massachusetts. Long-term, it is anticipated that the RMTC also will stimulate nuclear medicine research, advance medical diagnostic technologies, and generate new industrial applications for linear accelerator technology

  8. Final Commissioning of the Superconducting Heavy Ion Linear Accelerator at IUAC, Delhi

    Science.gov (United States)

    Datta, Tripti Sekhar; Choudhury, Anup; Chacko, Jacob; Kar, Soumen; Antony, Joby; Babu, Suresh; Kumar, Manoj; Mathuria, D. S.; Sahu, Santosh; Kanjilal, Dinakar

    The superconducting linac as a booster of the 15UD Pelletron accelerator was partly commissioned with one linac module housing eight quarter wave bulk niobium cavities along with the superbuncher and rebuncher cryomodules. Subsequently two more linac cryomodules were added to have in total 24 cavities for acceleration. In addition, a new Linde helium refrigerator of capacity 750 W @ 4.2 K was installed in parallel to the earlier CCI refrigerator. The new refrigerator was integrated with the earlier cryogenics network system through a specially designed liquid helium distribution line without any valve box. The cooling philosophy with this new system is modified to have a faster cool down rate in the critical zone (150 - 70 K) to avoid Q disease. The helium gas pressure fluctuation in the cavities is reduced significantly to have stable RF locking. The full linac is being operated and beams with higher energy are being delivered to the users. The present paper will highlight the performance of the new cryogenic system with respect to cool down rate, and helium pressure fluctuation.

  9. Accelerator ampersand Fusion Research Division: 1993 Summary of activities

    International Nuclear Information System (INIS)

    Chew, J.

    1994-04-01

    The Accelerator and Fusion Research Division (AFRD) is not only one of the largest scientific divisions at LBL, but also the one of the most diverse. Major efforts include: (1) investigations in both inertial and magnetic fusion energy; (2) operation of the Advanced Light Source, a state-of-the-art synchrotron radiation facility; (3) exploratory investigations of novel radiation sources and colliders; (4) research and development in superconducting magnets for accelerators and other scientific and industrial applications; and (5) ion beam technology development for nuclear physics and for industrial and biomedical applications. Each of these topics is discussed in detail in this book

  10. Cryogenics of the new superconducting accelerator Nuclotron. The first year under operation

    International Nuclear Information System (INIS)

    Baldin, A.M.; Agapov, N.N.; Belushkin, V.A.; D'yachkov, E.I.; Khodzhibagiyan, G.G.; Kovalenko, A.D.; Kuznetsov, G.L.; Matyushevskij, E.A.; Smirnov, A.A.; Sukhanova, A.K.

    1995-01-01

    The 6 GeV superconducting synchrotron was commissioned in March 1993 at the Laboratory of High Energies of the Joint Institute for Nuclear Research in Dubna. Four runs of the total duration about 1000 hours were provided from March 1993 to March 1994. The cooling of the accelerator magnetic system of 250 meters long was performed by two helium refrigerators with a capacity of 1.6 kw at 4.5 K each. The magnets were refrigerated by a two-phase helium flow. All 160 magnets are connected in parallel to the supply and return helium headers. The description and operational characteristics of the Nuclotron cryogenic system are presented. 7 refs., 5 figs., 1 tab

  11. Radiation Safety of Accelerator Facility with Regard to Regulation

    International Nuclear Information System (INIS)

    Dedi Sunaryadi; Gloria Doloresa

    2003-01-01

    The radiation safety of accelerator facility and the status of the facilities according to licensee in Indonesia as well as lesson learned from the accidents are described. The atomic energy Act No. 10 of 1997 enacted by the Government of Indonesia which is implemented in Radiation Safety Government Regulation No. 63 and 64 as well as practice-specific model regulation for licensing request are discussed. (author)

  12. Numerical simulation of superconducting accelerator magnets

    CERN Document Server

    Kurz, Stefan

    2002-01-01

    Modeling and simulation are key elements in assuring the fast and successful design of superconducting magnets. After a general introduction the paper focuses on electromagnetic field computations, which are an indipensable tool in the design process. A technique which is especially well suited for the accurate computation of magnetic fields in superconducting magnets is presented. This method couples Boundary Elements (BEM) which discretize the surface of the iron yoke and Finite Elements (FEM) for the modeling of the non linear interior of the yoke. The formulation is based on a total magnetic scalar potential throughout the whole problem domain. The results for a short dipole model are presented and compared to previous results, which have been obtained from a similar BEM-FEM coupled vector potential formulation. 10 Refs. --- 25 --- AN

  13. Argonne lectures on particles accelerator magnets

    International Nuclear Information System (INIS)

    Devred, A.

    1999-09-01

    The quest for elementary particles has promoted the development of particle accelerators producing beams of increasingly higher energies. In a synchrotron, the particle energy is directly proportional to the product of the machine's radius times the bending magnets' field strength. Present proton experiments at the TeV scale require facilities with circumferences ranging from a few to tens of kilometers and relying on a large number (several hundred to several thousand) high field dipole magnets and high field gradient quadrupole magnets. These electro-magnets use high-current-density, low-critical-temperature superconducting cables and are cooled down at liquid helium temperature. They are among the most costly and the most challenging components of the machine. After explaining what are the various types of accelerator magnets and why they are needed (lecture 1), we briefly recall the origins of superconductivity and we review the parameters of existing superconducting particle accelerators (lecture 2). Then, we review the superconducting materials that are available at industrial scale (chiefly, NbTi and Nb 3 Sn) and we explain in details the manufacturing of NbTi wires and cables (lecture 3). We also present the difficulties of processing and insulating Nb 3 Sn conductors, which so far have limited the use of this material in spite of its superior performances. We continue by discussing the two dimensional current distributions which are the most appropriate for generating pure dipole and quadrupole fields and we explain how these ideal distributions can be approximated by so called cosθ and cos 2θ coil designs (lecture 4). We also present a few alternative designs which are being investigated and we describe the difficulties of realizing coil ends. Next, we present the mechanical design concepts that are used in existing accelerator magnets (lecture 5) and we describe how the magnets are assembled (lecture 6). Some of the toughest requirements on the

  14. Argonne lectures on particles accelerator magnets

    Energy Technology Data Exchange (ETDEWEB)

    Devred, A

    1999-09-01

    The quest for elementary particles has promoted the development of particle accelerators producing beams of increasingly higher energies. In a synchrotron, the particle energy is directly proportional to the product of the machine's radius times the bending magnets' field strength. Present proton experiments at the TeV scale require facilities with circumferences ranging from a few to tens of kilometers and relying on a large number (several hundred to several thousand) high field dipole magnets and high field gradient quadrupole magnets. These electro-magnets use high-current-density, low-critical-temperature superconducting cables and are cooled down at liquid helium temperature. They are among the most costly and the most challenging components of the machine. After explaining what are the various types of accelerator magnets and why they are needed (lecture 1), we briefly recall the origins of superconductivity and we review the parameters of existing superconducting particle accelerators (lecture 2). Then, we review the superconducting materials that are available at industrial scale (chiefly, NbTi and Nb{sub 3}Sn) and we explain in details the manufacturing of NbTi wires and cables (lecture 3). We also present the difficulties of processing and insulating Nb{sub 3}Sn conductors, which so far have limited the use of this material in spite of its superior performances. We continue by discussing the two dimensional current distributions which are the most appropriate for generating pure dipole and quadrupole fields and we explain how these ideal distributions can be approximated by so called cos{theta} and cos 2{theta} coil designs (lecture 4). We also present a few alternative designs which are being investigated and we describe the difficulties of realizing coil ends. Next, we present the mechanical design concepts that are used in existing accelerator magnets (lecture 5) and we describe how the magnets are assembled (lecture 6). Some of the toughest

  15. Technical training: RF superconductivity and accelerator cavity applications

    CERN Multimedia

    Technical Training

    2016-01-01

    We are happy to announce a new training course organised by the TE-VSC group in the field of the physics and applications of superconductors. The course provides an overview and update of the theory of radiofrequency and superconductors:   RF Superconductivity and Accelerator Cavity Applications https://cern.ch/course/?164VAC19 One timetable only:  Tuesday, 8 March 2016: from 2 p.m. to 4 p.m. Wednesday, 9 March 2016: from 9.30 a.m to 11.30 a.m. Thursday, 10 March 2016: from 9.30 a.m to 11.30 a.m. Monday, 14 March 2016: from 9.30 a.m to 11.30 a.m. Tuesday, 15 March 2016: from 9.30 a.m to 11.30 a.m. Wednesday, 16 March 2016: from 9.30 a.m to 11.30 a.m. Thursday, 17 March 2016: from 9.30 a.m to 11.30 a.m. Target audience: Experts in radiofrequency or solid state physics (PhD level). Pre-requisites: Basic knowledge of quantum physics and superc...

  16. An improved phase-control system for superconducting low-velocity accelerating structures

    International Nuclear Information System (INIS)

    Bogaty, J.M.; Clifft, B.E.; Shepard, K.W.; Zinkann, G.P.

    1989-01-01

    Microphonic fluctuations in the rf eigenfrequency of superconducting (SC) slow-wave structures must be compensated by a fast-tuning system in order to control the rf phase. The tuning system must handle a reactive power proportional to the product of the tuning range and the rf energy content of the resonant cavity. The accelerating field level of many of the SC cavities forming the ATLAS linac has been limited by the rf power capacity of the presently used PIN-diode based fast-tuner. A new system has been developed, utilizing PIN diodes operating immersed in liquid nitrogen, with the diodes controlled by a high-voltage VMOS FET driver. The system has operated at reactive power levels above 20 KVA, a factor of four increase over an earlier design. 7 refs., 2 figs

  17. An improved phase-control system for superconducting low-velocity accelerating structures

    Energy Technology Data Exchange (ETDEWEB)

    Bogaty, J.M.; Clifft, B.E.; Shepard, K.W.; Zinkann, G.P.

    1989-01-01

    Microphonic fluctuations in the rf eigenfrequency of superconducting (SC) slow-wave structures must be compensated by a fast-tuning system in order to control the rf phase. The tuning system must handle a reactive power proportional to the product of the tuning range and the rf energy content of the resonant cavity. The accelerating field level of many of the SC cavities forming the ATLAS linac has been limited by the rf power capacity of the presently used PIN-diode based fast-tuner. A new system has been developed, utilizing PIN diodes operating immersed in liquid nitrogen, with the diodes controlled by a high-voltage VMOS FET driver. The system has operated at reactive power levels above 20 KVA, a factor of four increase over an earlier design. 7 refs., 2 figs.

  18. Design and simulation of 3½-cell superconducting gun cavity and beam dynamics studies of the SASE-FEL System at the Institute of Accelerator Technologies at Ankara University

    International Nuclear Information System (INIS)

    Yildiz, H. Duran; Cakir, R.; Porsuk, D.

    2015-01-01

    Design and simulation of a superconducting gun cavity with 3½ cells have been studied in order to give the first push to the electron beam for the linear accelerating system at The Institute of Accelerator Technologies at Ankara University. Electrons are accelerated through the gun cavity with the help of the Radiofrequency power suppliers from cryogenic systems. Accelerating gradient should be as high as possible to accelerate electron beam inside the cavity. In this study, electron beam reaches to 9.17 MeV energy at the end of the gun cavity with the accelerating gradient; E c =19.21 MV/m. 1.3 GHz gun cavity consists of three TESLA-like shaped cells while the special designed gun-cell includes a cathode plug. Optimized important beam parameters inside the gun cavity, average beam current 3 mA, transverse emittance 2.5 mm mrad, repetition rate 30 MHz and other parameters are obtained for the SASE-FEL System. The Superfish/Poisson program is used to design each cell of the superconducting cavity. Superconducting gun cavity and Radiofrequency properties are studied by utilizing 2D Superfish/Poisson, 3D Computer Simulation Technology Microwave Studio, and 3D Computer Simulation Technology Particle Studio. Superfish/Poisson is also used to optimize the geometry of the cavity cells to get the highest accelerating gradient. The behavior of the particles along the beamline is included in this study. ASTRA Code is used to track the particles

  19. Design and simulation of 3½-cell superconducting gun cavity and beam dynamics studies of the SASE-FEL System at the Institute of Accelerator Technologies at Ankara University

    Energy Technology Data Exchange (ETDEWEB)

    Yildiz, H. Duran, E-mail: hdyildiz@ankara.edu.tr [Institute of Accelerator Technologies, Ankara University, Ankara (Turkey); Cakir, R. [Nanotechnology Engineering Department, Recep Tayyip Erdogan University, Rize (Turkey); Porsuk, D. [Physics Department, Dumlupinar University, Kutahya (Turkey)

    2015-06-11

    Design and simulation of a superconducting gun cavity with 3½ cells have been studied in order to give the first push to the electron beam for the linear accelerating system at The Institute of Accelerator Technologies at Ankara University. Electrons are accelerated through the gun cavity with the help of the Radiofrequency power suppliers from cryogenic systems. Accelerating gradient should be as high as possible to accelerate electron beam inside the cavity. In this study, electron beam reaches to 9.17 MeV energy at the end of the gun cavity with the accelerating gradient; E{sub c}=19.21 MV/m. 1.3 GHz gun cavity consists of three TESLA-like shaped cells while the special designed gun-cell includes a cathode plug. Optimized important beam parameters inside the gun cavity, average beam current 3 mA, transverse emittance 2.5 mm mrad, repetition rate 30 MHz and other parameters are obtained for the SASE-FEL System. The Superfish/Poisson program is used to design each cell of the superconducting cavity. Superconducting gun cavity and Radiofrequency properties are studied by utilizing 2D Superfish/Poisson, 3D Computer Simulation Technology Microwave Studio, and 3D Computer Simulation Technology Particle Studio. Superfish/Poisson is also used to optimize the geometry of the cavity cells to get the highest accelerating gradient. The behavior of the particles along the beamline is included in this study. ASTRA Code is used to track the particles.

  20. Work place monitoring in accelerator facilities using thermoluminescent dosimeters

    International Nuclear Information System (INIS)

    Ribeiro, M.S.; Sanches, M.P.; Osima, A.M.; Rodriguez, D.L.; Carvalho, R.N.; Somessari, R.N.

    1998-01-01

    The increase in the use of large amounts of energy and large particles accelerators in development or in industrial processes for the reticulation, polymerization and sterilization of cables and wires allowed to discover and monitor work places in facilities having particle accelerators at the Institute of Energy and Nuclear Inquiries Comissao National de Energy Nuclear. Measures previously taken by technicians in routine monitoring, show that radiation doses found in the beams tube and at the door of the accelerator area is high enough to require routine programs to monitor work places at the installation. That is why, fifteen thermoluminescent dosimeters (TLD) where placed in different points of the facility where doses must be measured along a three month period and at the same time readings must be taken from control dosimeters kept within a shielded container. The monitor had a small double layer with three pellets of TLD CaSO4 Dy inside of a route carrier adopted in routine workers dosimetry usually. Outcomes show that the radiological protection program must be implemented to ameliorate and guarantee safety procedures

  1. Hot target assembly at 14 UD Pelletron Accelerator Facility, BARC- TIFR, Mumbai

    International Nuclear Information System (INIS)

    Sharma, S.C.; Ramjilal; Ninawe, N.G.; Bhagwat, P.V.; Ahmeabadhai, P.; Kain, V.

    2005-01-01

    BARC-TIFR 14 UD Pelletron Accelerator Facility at Mumbai is operational since 1989 with progressively increased efficiency. The accelerator has been serving as major facility for heavy ion based research in India. There is an increased demand for high current proton beam, especially on heated targets for reactor physics based experiments. A proton beam setup is commissioned in the tower area of the existing facility itself, which provide proton beam of energy 2 MeV to 26 MeV with maximum 3 μA current. This setup is being used to produce radioisotopes and tracer packets. Proton beam of few MeV in μA current range is also needed to study radiation effects on metals at higher temperature, for use in reactors. For this purpose a hot target assembly has been designed and is being currently used at the Pelletron Accelerator

  2. Electrostatic design and beam transport for a folded tandem electrostatic quadrupole accelerator facility for accelerator-based boron neutron capture therapy

    International Nuclear Information System (INIS)

    Thatar Vento, V.; Bergueiro, J.; Cartelli, D.; Valda, A.A.; Kreiner, A.J.

    2011-01-01

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT), we discuss here the electrostatic design of the machine, including the accelerator tubes with electrostatic quadrupoles and the simulations for the transport and acceleration of a high intensity beam.

  3. [European particle accelerator conference, Rome, Italy, and visit to the LEP storage ring and LEP detectors L3 and ALEPH at CERN, Geneva, Switzerland, June 5-16, 1988]: Foreign trip report

    International Nuclear Information System (INIS)

    Blumberg, L.N.

    1988-01-01

    A selection of papers presented at the EPAC Conference relating to accelerator technology, facilities proposed, planned or under construction, and operating machines are discussed. Also noted are discussions at CERN with personnel from the LEP superconducting RF, the LEP L3 and ALEPH detectors, and the LHC superconducting magnet groups

  4. Department of Accelerator Physics and Technology: Overview

    International Nuclear Information System (INIS)

    Plawski, E.

    2003-01-01

    Full text: The main activities of the Accelerator Physics and Technology Department were focused on following subjects: - contribution to development and building of New Therapeutical Electron Accelerator delivering the photon beams of 6 and 15 MeV, - study of the photon and electron spectra of narrow photon beams with the use of the BEAM/EGSnrc codes, - design and construction of special RF structures for use in CLIC Test Facility in CERN, - design and construction of 1:1 copper, room temperature models of accelerating superconducting 1.3 GHz structures for TESLA Project in DESY. In spite of drastic reduction of scientific and technical staff (from 16 to 10 persons) the planned works were successfully completed, but requested some extraordinary efforts. In realisation of 6/15 MeV Accelerator Project, the Department was responsible all along the project for calculations of all most important parts (electron gun, accelerating structure, beam focusing, achromatic deviation) and also for construction and physical modelling of some strategic subassemblies. The results of scientific and technical achievements of our Department in this work are documented in the Annex to Final Report on realisation of KBN Scientific Project No PBZ 009-13 and earlier Annual Reports 2000 and 2001. The results of Monte Carlo calculations of narrow photon beams and experimental verification using Varian Clinac 2003CD, Simens Mevatron and CGR MeV Saturn accelerators ended up with PhD thesis prepared by MSc Anna Wysocka. Her thesis: Collimation and Dosimetry of X-ray Beams for Stereotactic Radiotherapy with Linear Accelerators was sponsored by KBN scientific Project Nr T11E 04121. In collaboration with LNF INFN Frascati the electron beam deflectors were designed for CERN CLIC Test Facility CTF3. These special type travelling wave RF structures were built by our Department and are actually operated in CTF3 experiment. As the result of collaboration with TESLA-FEL Project in DESY, the set of RF

  5. Superconductivity in power engineering

    International Nuclear Information System (INIS)

    1989-01-01

    This proceedings volume presents 24 conference papers and 15 posters dealing with the following aspects: 1) Principles and elementary aspects of high-temperature superconductivity (3 plenary lectures); 2) Preparation, properties and materials requirements of metallic or oxide superconductors (critical current behaviour, soldered joints, structural studies); 3) Magnet technology (large magnets for thermonuclear fusion devices; magnets for particle accelerators and medical devices); 4) Magnetic levitation and superconductivity; 5) Cryogenics; 6) Energy storage systems using superconducting coils (SMES); 7) Superconducting power transmission cables, switches, transformers, and generator systems for power plant; 8) Supporting activities, industrial aspects, patents. There are thirty-eight records in the ENERGY database relating to individual conference papers. (MM) [de

  6. TeV/m nano-accelerator: Investigation on feasibility of CNT-channeling acceleration at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Y. M. [Northern Illinois Univ., DeKalb, IL (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Lumpkin, A. H. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Thurman-Keup, R. M. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2015-03-23

    The development of high gradient acceleration and tight phase-space control of high power beams is a key element for future lepton and hadron colliders since the increasing demands for higher energy and luminosity significantly raise costs of modern HEP facilities. Atomic channels in crystals are known to consist of 10–100 V/Å potential barriers capable of guiding and collimating a high energy beam providing continuously focused acceleration with exceptionally high gradients (TeV/m). However, channels in natural crystals are only angstrom-size and physically vulnerable to high energy interactions, which has prevented crystals from being applied to high power accelerators. Carbon-based nano-crystals such as carbon-nanotubes (CNTs) and graphenes have a large degree of dimensional flexibility and thermo-mechanical strength, which could be suitable for channeling acceleration of MW beams. Nano-channels of the synthetic crystals can accept a few orders of magnitude larger phase-space volume of channeled particles with much higher thermal tolerance than natural crystals. This study presents the current status of CNT-channeling acceleration research at the Advanced Superconducting Test Accelerator (ASTA) in Fermilab.

  7. A fiber optic strain measurement and quench localization for use in superconducting accelerator dipole magnets

    International Nuclear Information System (INIS)

    van Oort, J.M.; Scanlan, R.M.; ten Kate, H.H.J.

    1994-01-01

    A novel fiber-optic measurement system for superconducting accelerator magnets is described. The principal component is an extrinsic Fabry-Perot Interferometer to determine localized strain and stress in coil windings. The system can be used either as a sensitive relative strain measurement system or as an absolute strain detector. Combined, one can monitor the mechanical behaviour of the magnet system over time during construction, long time storage and operation. The sensing mechanism is described, together with various tests in laboratory environments. The test results of a multichannel test matrix to be incorporated first in the dummy coils and then in the final version of a 13T Nb 3 Sn accelerator dipole magnet are presented. Finally, the possible use of this system as a quench localization system is proposed

  8. Superconductivity in technology

    International Nuclear Information System (INIS)

    Komarek, P.

    1976-01-01

    Physics, especially high energy physics and solid state physics was the first area in which superconducting magnets were used but in the long run, the most extensive application of superconductivity will probably be in energy technology. Superconducting power transmission cables, magnets for energy conversion in superconducting electrical machines, MHD-generators and fusion reactors and magnets for energy storage are being investigated. Magnets for fusion reactors will have particularly large physical dimensions, which means that much development effort is still needed, for there is no economic alternative. Superconducting surfaces in radio frequency cavities can give Q-values up to a factor of 10 6 higher than those of conventional resonators. Particle accelerators are the important application. And for telecommunication, simple coaxial superconducting radio frequency cables seem promising. The tunnel effect in superconducting junctions is now being developed commercially for sensitive magnetometers and may soon possibly feature in the memory cells of computer devices. Hence superconductivity can play an important role in the technological world, solving physical and technological problems and showing economic advantages as compared with possible conventional techniques, bearing also in mind the importance of reliability and safety. (author)

  9. The ANTARES accelerator: a facility for environmental monitoring and materials characterisation

    International Nuclear Information System (INIS)

    Tuniz, C.

    1997-01-01

    An analytical facility for Accelerator Mass Spectrometry (AMS) and Ion Beam Analysis (IBA) has been under development since 1989 on the 8-MV tandem accelerator ANTARES at the Lucas Heights Science and Technology Centre. Three beamlines are presently dedicated to the AMS analysis of long-lived radionuclides and one is used for the study of multilayered semiconductor structures by heavy ion recoil spectrometry. Having accomplished the task of transforming the old nuclear physics accelerator from Rutgers University into a world-class analytical facility, ANSTO scientists are now promoting research projects based on the capability of the ANTARES instruments. New instruments are being constructed on the ANTARES accelerator for future programs in environmental monitoring, safeguards, nuclear waste disposal and applications in advanced materials. A new AMS beamline has been designed that is expected to be capable of measuring rare heavy radionuclides, such as 236 U, 229 , 230T h and 244 Pu, in natural samples with ultra-high sensitivity. A novel, heavy ion microprobe will allow IBA of surfaces with a spatial resolution of 10 μm for high-energy ions (20-100 MeV) from chlorine to iodine. These instruments are complementary to other advanced analytical tools developed by ANSTO, such as the synchrotron radiation beamline at the Australian National Beamline Facility

  10. Economic and education impact of building the Continuous Electron Beam Accelerator Facility

    International Nuclear Information System (INIS)

    Hartline, B.

    1996-01-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) was built in Newport News, Virginia, between 1987 and 1995 and is a new basic research laboratory christened the Thomas Jefferson National Accelerator Facility (Jefferson Lab). Jefferson Lab's science and technology mission has major economic and educational benefits: basic research discoveries, improvement and application of key technologies associated with the accelerator and the experiments, extensive subcontracting with industry, and diverse employment and educational opportunities. The $600 million invested by federal, state, local and international partners to build Jefferson Lab has had substantial economic and educational benefits locally, as well as significant benefits distributed among industries and universities throughout the United States

  11. Achievement of 35 MV/m in the superconducting nine-cell cavities for TESLA

    International Nuclear Information System (INIS)

    Lilje, L.; Kostin, D.; Matheisen, A.; Moeller, W.D.; Proch, D.; Reschke, D.; Simrock, S.; Twarowski, K.; Kako, E.; Saito, K.; Schmueser, P.; Suzuki, T.

    2004-01-01

    The tera electronvolt superconducting linear accelerator TESLA is the only linear electron-positron collider project based on superconductor technology for particle acceleration. In the first stage with 500 GeV center-of-mass energy an accelerating field of 23.4 MV/m is needed in the superconducting niobium cavities which are operated at a temperature of 2 K and a quality factor Q 0 of 10 10 . This performance has been reliably achieved in the cavities of the TESLA test facility (TTF) accelerator. The upgrade of TESLA to 800 GeV requires accelerating gradients of 35 MV/m. Using an improved cavity treatment by electrolytic polishing it has been possible to raise the gradient to 35 - 43 MV/m in single cell resonators. Here we report on the successful transfer of the electropolishing technique to multi-cell cavities. Presently four nine-cell cavities have achieved 35 MV/m at Q 0 ≥ 5 x 10 9 , and a fifth cavity could be excited to 39 MV/m. In two high-power tests it could be verified that EP-cavities preserve their excellent performance after welding into the helium cryostat and assembly of the high-power coupler. One cavity has been operated for 1100 hours at the TESLA-800 gradient of 35 MV/m and 57 hours at 36 MV/m without loss in performance. (orig.)

  12. Development of niobium spoke cavities for a superconducting light-ion linac

    International Nuclear Information System (INIS)

    Shepard, K.W.; Kedzie, M.; Delayen, J.R.; Piller, C.

    1998-01-01

    This paper reports the development of 350 MHz niobium superconducting cavities for the velocity range 0.2 < v/c < 0.6. Such cavities could be used to form a linac of exceptional flexibility, capable of efficiently accelerating beams of either protons, deuterons, or any of a wide range of ions, at intensities sufficient for a production beam for a radioactive facility. Results of numerical modeling for several resonator geometries are presented. The design and construction status of prototype niobium cavities is discussed

  13. Development of niobium spoke cavities for a superconducting light-ion linac

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K W; Kedzie, M; Delayen, J R; Piller, C

    1998-08-01

    This paper reports the development of 350 MHz niobium superconducting cavities for the velocity range 0.2 < v/c < 0.6. Such cavities could be used to form a linac of exceptional flexibility, capable of efficiently accelerating beams of either protons, deuterons, or any of a wide range of ions, at intensities sufficient for a production beam for a radioactive facility. Results of numerical modeling for several resonator geometries are presented. The design and construction status of prototype niobium cavities is discussed.

  14. Status of the SNS superconducting linac and future plan

    International Nuclear Information System (INIS)

    Kim, Sang-Ho

    2008-01-01

    The use of superconducting radiofrequency (SRF) cavities in particle accelerator is becoming more widespread. Among the projects that make use of that technology is the Spallation Neutron Source, where H- ions are accelerated to about 1 GeV, mostly making use of niobium elliptical cavities. SNS generates neutrons by the spallation reaction with the accelerated short (about 700 ns) sub-bunches of protons, which will in turn allow probing structural and magnetic properties of new and existing materials. The SNS superconducting linac is the largest application of RF superconductivity to come on-line in the last decade and has been operating with beam for almost two years. As the first operational pulsed superconducting linac, many of the aspects of its performance were unknown and unpredictable. A lot of experiences and data have been gathered on the pulsed behavior of cavities and cryomodules at various repetition rates and at various temperatures during the commissioning of its components and beam operations. This experience is of great value in determining future optimizations of SNS as well in guiding in the design and operation of future pulsed superconducting linacs. The testing of the superconducting cavities, the operating experience with beam, the performance of the superconducting linac and the future plans will be presented.

  15. Superconductivity and electron microscopy

    International Nuclear Information System (INIS)

    Hawkes, P.W.; Valdre, U.

    1977-01-01

    In this review article, two aspects of the role of superconductivity in electron microscopy are examined: (i) the development of superconducting devices (mainly lenses) and their incorporation in electron microscopes; (ii) the development of electron microscope techniques for studying fundamental and technological problems associated with superconductivity. The first part opens with a brief account of the relevant properties of conventional lenses, after which the various types of superconducting lenses are described and their properties compared. The relative merits and inconveniences of superconducting and conventional lenses are examined, particular attention being paid to the spherical and chromatic aberration coefficients at accelerating voltages above a megavolt. This part closes with a survey of the various microscope designs that have been built or proposed, incorporating superconducting components. In the second part, some methods that have been or might be used in the study of superconductivity in the electron microscope are described. A brief account of the types of application for which they are suitable is given. (author)

  16. Superconducting devices at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Dahl, P.F.

    1978-04-01

    The various ongoing programs in applied superconductivity supported by BNL are summarized, including the development of high field ac and dc superconducting magnets for accelerators and other applications, of microwave deflecting cavities for high energy particle beam separators, and of cables for underground power transmission, and materials research on methods of fabricating new superconductors and on metallurgical properties affecting the performance of superconducting devices

  17. Superconducting magnets in high energy physics

    International Nuclear Information System (INIS)

    Prodell, A.G.

    1978-01-01

    The applications of superconducting magnets in high energy physics in the last ten years have made feasible developments which are vital to high energy research. These developments include high magnetic field, large volume detectors, such as bubble chambers, required for effective resolution of high energy particle trajectories, particle beam transport magnets, and superconducting focusing and bending magnets for the very high energy accelerators and storage rings needed to pursue the study of interactions between elementary particles. The acceptance of superconductivity as a proven technology in high energy physics was reinforced by the recognition that the existing large accelerators using copper-iron magnets had reached practical limits in terms of magnetic field intensity, cost, space, and energy usage, and that large-volume, high-field, copper-iron magnets were not economically feasible. Some of the superconducting magnets and associated systems being used in and being developed for high energy physics are described

  18. The Path to High Q-Factors in Superconducting Accelerating Cavities: Flux Expulsion and Surface Resistance Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Martinello, Martina [Illinois Inst. of Technology, Chicago, IL (United States)

    2016-12-01

    Accelerating cavities are devices resonating in the radio-frequency (RF) range used to accelerate charged particles in accelerators. Superconducting accelerating cavities are made out of niobium and operate at the liquid helium temperature. Even if superconducting, these resonating structures have some RF driven surface resistance that causes power dissipation. In order to decrease as much as possible the power losses, the cavity quality factor must be increased by decreasing the surface resistance. In this dissertation, the RF surface resistance is analyzed for a large variety of cavities made with different state-of-the-art surface treatments, with the goal of finding the surface treatment capable to return the highest Q-factor values in a cryomodule-like environment. This study analyzes not only the superconducting properties described by the BCS surface resistance, which is the contribution that takes into account dissipation due to quasi-particle excitations, but also the increasing of the surface resistance due to trapped flux. When cavities are cooled down below their critical temperature inside a cryomodule, there is always some remnant magnetic field that may be trapped increasing the global RF surface resistance. This thesis also analyzes how the fraction of external magnetic field, which is actually trapped in the cavity during the cooldown, can be minimized. This study is performed on an elliptical single-cell horizontally cooled cavity, resembling the geometry of cavities cooled in accelerator cryomodules. The horizontal cooldown study reveals that, as in case of the vertical cooldown, when the cooling is performed fast, large thermal gradients are created along the cavity helping magnetic flux expulsion. However, for this geometry the complete magnetic flux expulsion from the cavity equator is more difficult to achieve. This becomes even more challenging in presence of orthogonal magnetic field, that is easily trapped on top of the cavity equator

  19. The path to high Q-factors in superconducting accelerating cavities: Flux expulsion and surface resistance optimization

    Science.gov (United States)

    Martinello, Martina

    Accelerating cavities are devices resonating in the radio-frequency (RF) range used to accelerate charged particles in accelerators. Superconducting accelerating cavities are made out of niobium and operate at the liquid helium temperature. Even if superconducting, these resonating structures have some RF driven surface resistance that causes power dissipation. In order to decrease as much as possible the power losses, the cavity quality factor must be increased by decreasing the surface resistance. In this dissertation, the RF surface resistance is analyzed for a large variety of cavities made with different state-of-the-art surface treatments, with the goal of finding the surface treatment capable to return the highest Q-factor values in a cryomodule-like environment. This study analyzes not only the superconducting properties described by the BCS surface resistance, which is the contribution that takes into account dissipation due to quasi-particle excitations, but also the increasing of the surface resistance due to trapped flux. When cavities are cooled down below their critical temperature inside a cryomodule, there is always some remnant magnetic field that may be trapped increasing the global RF surface resistance. This thesis also analyzes how the fraction of external magnetic field, which is actually trapped in the cavity during the cooldown, can be minimized. This study is performed on an elliptical single-cell horizontally cooled cavity, resembling the geometry of cavities cooled in accelerator cryomodules. The horizontal cooldown study reveals that, as in case of the vertical cooldown, when the cooling is performed fast, large thermal gradients are created along the cavity helping magnetic flux expulsion. However, for this geometry the complete magnetic flux expulsion from the cavity equator is more difficult to achieve. This becomes even more challenging in presence of orthogonal magnetic field, that is easily trapped on top of the cavity equator

  20. Radioactive ion beam facilities at INFN LNS

    International Nuclear Information System (INIS)

    Rifuggiato, D; Calabretta, L; Celona, L; Chines, F; Cosentino, L; Cuttone, G; Finocchiaro, P; Pappalardo, A; Re, M; Rovelli, A

    2011-01-01

    Radioactive ion beams are produced at INFN- Laboratori Nazionali del Sud (LNS) by means of the two operating accelerators, the Tandem and the Superconducting Cyclotron (CS), originally designed to accelerate stable beams. Both the ISOL (Isotope Separation On Line) and the IFF (In-Flight Fragmentation) methods are exploited to produce RIBs in two different ways at different energies: in the first case, the Cyclotron is the primary accelerator and the Tandem accelerates the secondary beams, while in the second case radioactive fragments are produced by the Cyclotron beam in a thin target with energies comparable to the primary beam energy. The ISOL facility is named EXCYT (Exotics at the Cyclotron and Tandem) and was commissioned in 2006, when the first radioactive beam ( 8 Li) has been produced. The IFF installation is named FRIBs (in Flight Radioactive Ion Beams), and it has started to produce radioactive beams in 2001, placing a thin target in the extraction beam line of the Cyclotron. The development of both facilities to produce and accelerate radioactive ion beams at LNS, is briefly described, with some details on the future prospects that are presently under consideration or realization.

  1. A medical facility proposal to use the SSC linac

    International Nuclear Information System (INIS)

    Funk, L.W.

    1995-01-01

    A consortium organized by the Texas National Research Laboratory Commission (TNRLC) under a Department of Energy (DOE) grant proposes to build and operate a Regional Medical Technology Center (RMTC) to function as a combined medical radioisotope production complex and proton cancer therapy facility using the linear accelerator (linac) assets of the cancelled Superconducting Super Collider (SSC). The radioisotope production complex will serve as a domestic source of radioisotopes critically needed by the U.S. pharmaceutical industry and nuclear medicine facilities throughout North America. Presently, more than 70 percent of radioisotopes used in U.S. nuclear medicine procedures are produced outside the country. The Center's state-of-the-art proton cancer therapy facility will serve the Central United States, providing advanced capabilities and augmenting facilities in California and Massachusetts. Long-term, it is anticipated that the RMTC also will stimulate nuclear medicine research, advance medical diagnostic technologies, and generate new industrial applications of linear accelerator technology. (orig.)

  2. A medical facility proposal to use the SSC linac

    Science.gov (United States)

    Warren Funk, L.

    1995-05-01

    A consortium organized by the Texas National Research Laboratory Commission (TNRLC) under a Department of Energy (DOE) grant proposes to build and operate a Regional Medical Technology Center (RMTC) to function as a combined medical radioisotope production complex and proton cancer therapy facility using the linear accelerator (linac) assets of the cancelled Superconducting Super Collider (SSC). The radioisotope production complex will serve as a domestic source of radioisotopes critically needed by the U.S. pharmaceutical industry and nuclear medicine facilities throughout North America. Presently, more than 70 percent of radioisotopes used in U.S. nuclear medicine procedures are produced outside the country. The Center's state-of-the-art proton cancer therapy facility will serve the Central United States, providing advanced capabilities and augmenting facilities in California and Massachusetts. Long-term, it is anticipated that the RMTC also will stimulate nuclear medicine research, advance medical diagnostic technologies, and generate new industrial applications of linear accelerator technology.

  3. Compact X-ray source at STF (Super Conducting Accelerator Test Facility)

    International Nuclear Information System (INIS)

    Urakawa, J

    2012-01-01

    KEK-STF is a super conducting linear accelerator test facility for developing accelerator technologies for the ILC (International Linear Collider). We are supported in developing advanced accelerator technologies using STF by Japanese Ministry (MEXT) for Compact high brightness X-ray source development. Since we are required to demonstrate the generation of high brightness X-ray based on inverse Compton scattering using super conducting linear accelerator and laser storage cavity technologies by October of next year (2012), the design has been fixed and the installation of accelerator components is under way. The necessary technology developments and the planned experiment are explained.

  4. Surface characterization of Nb samples electropolished with real superconducting rf accelerator cavities

    Directory of Open Access Journals (Sweden)

    Xin Zhao

    2010-12-01

    Full Text Available We report the results of surface characterizations of niobium (Nb samples electropolished together with a single cell superconducting radio-frequency accelerator cavity. These witness samples were located in three regions of the cavity, namely at the equator, the iris, and the beam pipe. Auger electron spectroscopy was utilized to probe the chemical composition of the topmost four atomic layers. Scanning electron microscopy with energy dispersive x ray for elemental analysis was used to observe the surface topography and chemical composition at the micrometer scale. A few atomic layers of sulfur (S were found covering the samples nonuniformly. Niobium oxide granules with a sharp geometry were observed on every sample. Some Nb-O granules appeared to also contain sulfur.

  5. Designing focusing solenoids for superconducting RF accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Davis, G.; Kashikhin, V.V.; Page, T.; Terechkine, I.; Tompkins, J.; Wokas, T.; /Fermilab

    2006-08-01

    The design of a focusing solenoid for use in a superconducting RF linac requires resolving a range of problems with conflicting requirements. Providing the required focusing strength contradicts the goal of minimizing the stray field on the surfaces of adjacent superconducting RF cavities. The requirement of a compact solenoid, able to fit into a gap between cavities, contradicts the need of mechanical support necessary to restrain electromagnetic forces that can result in coil motion and subsequent quenching. In this report we will attempt to address these and other issues arising during the development of focusing solenoids. Some relevant test data will also be presented.

  6. Accelerator conceptual design of the international fusion materials irradiation facility

    International Nuclear Information System (INIS)

    Sugimoto, M.; Kinsho, M.; Teplyakov, V.; Berwald, D.; Bruhwiler, D.; Peakock, M.; Rathke, J.; Deitinghoff, H.; Klein, H.; Pozimski, Y.; Volk, K.; Miyahara, A.; Olivier, M.; Piechowiak, E.; Tanabe, Y.

    1998-01-01

    The accelerator system of the international fusion materials irradiation facility (IFMIF) provides the 250-mA, 40-MeV continuous-wave deuteron beam at one of the two lithium target stations. It consists of two identical linear accelerator modules, each of which independently delivers a 125-mA beam to the common footprint of 20 cm x 5 cm at the target surface. The accelerator module consists of an ion injector, a 175 MHz RFQ and eight DTL tanks, and rf power supply system. The requirements for the accelerator system and the design concept are described. The interface issues and operational considerations to attain the proposed availability are also discussed. (orig.)

  7. Construction Management for Conventional Facilities of Proton Accelerator

    International Nuclear Information System (INIS)

    Kim, Jun Yeon; Cho, Jin Sam; Lee, Jae Sang

    2008-05-01

    Proton Engineering Frontier Project, puts its aim to building 100MeV 20mA linear proton accelerator which is national facility for NT, BT, IT, and future technologies, expected to boost up the national industry competitiveness. This R and D, Construction Management is in charge of the supportive works as site selection, architecture and engineering of conventional facilities, and overall construction management. The major goals of this work are as follows: At first, architecture and engineering of conventional facilities. Second, construction management, audit and inspection on construction of conventional facilities. Lastly, cooperation with the project host organization for adjusting technical issues of overall construction. In this research, We reviewed the basic design and made a detail design of conventional facilities. Preparation for construction license, site improvement and access road construction is fulfilled. Also, we made the technical support for project host as follows : selection of project host organization and host site selection, construction technical work for project host organization and procedure management

  8. A Scaling Law for the Snapback in Superconducting Accelerator Magnets

    CERN Document Server

    Bottura, L; Bauer, P; Haverkamp, M; Pieloni, T; Sanfilippo, S; Velev, G

    2005-01-01

    The decay of the sextupole component in the bending dipoles during injection and the subsequent snapback at the start of beam acceleration are issues of common concern for all superconducting colliders built or in construction. Recent studies performed on LHC and Tevatron dipole magnets revealed many similarities in the snapback characteristics. Some are expected, e.g. the effect of operational history. One particular similarity, however, is striking and is the subject of this paper. It appears that there is a simple linear relation between the amount of sextupole drift during the decay and the magnet current (or field) change during the ramp required to resolve the snapback. It is surprising that the linear correlation between snapback amplitude and snapback field holds very well for all magnets of the same family (e.g. Tevatron or LHC dipoles). In this paper we present the data collected to date and discuss a simple theory that explains the scaling found.

  9. Minimization of power consumption during charging of superconducting accelerating cavities

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, Anirban Krishna, E-mail: anirban.bhattacharyya@physics.uu.se; Ziemann, Volker; Ruber, Roger; Goryashko, Vitaliy

    2015-11-21

    The radio frequency cavities, used to accelerate charged particle beams, need to be charged to their nominal voltage after which the beam can be injected into them. The standard procedure for such cavity filling is to use a step charging profile. However, during initial stages of such a filling process a substantial amount of the total energy is wasted in reflection for superconducting cavities because of their extremely narrow bandwidth. The paper presents a novel strategy to charge cavities, which reduces total energy reflection. We use variational calculus to obtain analytical expression for the optimal charging profile. Energies, reflected and required, and generator peak power are also compared between the charging schemes and practical aspects (saturation, efficiency and gain characteristics) of power sources (tetrodes, IOTs and solid state power amplifiers) are also considered and analysed. The paper presents a methodology to successfully identify the optimal charging scheme for different power sources to minimize total energy requirement.

  10. Minimization of power consumption during charging of superconducting accelerating cavities

    International Nuclear Information System (INIS)

    Bhattacharyya, Anirban Krishna; Ziemann, Volker; Ruber, Roger; Goryashko, Vitaliy

    2015-01-01

    The radio frequency cavities, used to accelerate charged particle beams, need to be charged to their nominal voltage after which the beam can be injected into them. The standard procedure for such cavity filling is to use a step charging profile. However, during initial stages of such a filling process a substantial amount of the total energy is wasted in reflection for superconducting cavities because of their extremely narrow bandwidth. The paper presents a novel strategy to charge cavities, which reduces total energy reflection. We use variational calculus to obtain analytical expression for the optimal charging profile. Energies, reflected and required, and generator peak power are also compared between the charging schemes and practical aspects (saturation, efficiency and gain characteristics) of power sources (tetrodes, IOTs and solid state power amplifiers) are also considered and analysed. The paper presents a methodology to successfully identify the optimal charging scheme for different power sources to minimize total energy requirement.

  11. Biased HiPIMS technology for superconducting rf accelerating cavities coating

    CERN Document Server

    G. Rosaz, G.; Sonato, D.; Calatroni, S.; Ehiasarian, A.; Junginger, T.; Taborelli, M.

    2016-01-01

    In the last few years the interest of the thin film science and technology community on High Impulse Power Magnetron Sputtering (HIPIMS) coatings has steadily increased. HIPIMS literature shows that better thin film morphology, denser and smoother films can be achieved when compared with standard dc Magnetron Sputtering (dcMS) coating technology. Furthermore the capability of HIPIMS to produce a high quantity of ionized species can allow conformal coatings also for complex geometries. CERN already studied the possibility to use such a coating method for SRF accelerating cavities. Results are promising but not better from a RF point of view than dcMS coatings. Thanks to these results the next step is to go towards a biased HiPIMS approach. However the geometry of the cavities leads to complex changes in the coating setup in order to apply a bias voltage. Coating system tweaking and first superconducting properties of biased samples are presented.

  12. Monitoring of multiphase flows for superconducting accelerators and others applications

    Science.gov (United States)

    Filippov, Yu. P.; Kakorin, I. D.; Kovrizhnykh, A. M.; Miklayev, V. M.

    2017-07-01

    This paper is a review on implementation of measuring systems for two-phase helium, hydrogen, liquefied natural gas (LNG), and oil-formation/salty water flows. Two types of such systems are presented. The first type is based on two-phase flow-meters combining void fraction radio-frequency (RF) sensors and narrowing devices. They can be applied for superconducting accelerators cooled with two-phase helium, refueling hydrogen system for space ships and some applications in oil production industry. The second one is based on combination of a gamma-densitometer and a narrowing device. These systems can be used to monitor large two-phase LNG and oil-formation water flows. An electronics system based on a modular industrial computer is described as well. The metrological characteristics for different flow-meters are presented and the obtained results are discussed. It is also shown that the experience gained allows separationless flow-meter for three-phase oil-gas-formation water flows to be produced.

  13. Superconductivity basics and applications to magnets

    CERN Document Server

    Sharma, R G

    2015-01-01

    This book presents the basics and applications of superconducting magnets. It explains the phenomenon of superconductivity, theories of superconductivity, type II superconductors and high-temperature cuprate superconductors. The main focus of the book is on the application to superconducting magnets to accelerators and fusion reactors and other applications of superconducting magnets. The thermal and electromagnetic stability criteria of the conductors and the present status of the fabrication techniques for future magnet applications are addressed. The book is based on the long experience of the author in studying superconducting materials, building magnets and numerous lectures delivered to scholars. A researcher and graduate student will enjoy reading the book to learn various aspects of magnet applications of superconductivity. The book provides the knowledge in the field of applied superconductivity in a comprehensive way.

  14. Superconductivity and its devices

    International Nuclear Information System (INIS)

    Forbes, D.S.

    1981-01-01

    Among the more important developments that are discussed are cryotrons, superconducting motors and generators, and high-field magnets. Cryotrons will create faster and more economical computer systems. Superconducting motors and generators will cost much less to build than conventional electric generators and cut fuel consumption. Moreover, high-field magnets are being used to confine plasma in connection with nuclear fusion. Superconductors have a vital role to play in all of these developments. Most importantly, though, are the magnetic properties of superconductivity. Superconducting magnets are an integral part of nuclear fusion. In addition, high-field magnets are necessary in the use of accelerators, which are needed to study the interactions between elementary particles

  15. Superconducting cyclotrons

    International Nuclear Information System (INIS)

    Blosser, H.G.; Johnson, D.A.; Burleigh, R.J.

    1976-01-01

    Superconducting cyclotrons are particularly appropriate for acceleration of heavy ions. A review is given of design features of a superconducting cyclotron with energy 440 (Q 2 /A) MeV. A strong magnetic field (4.6 tesla average) leads to small physical size (extraction radius 65 cm) and low construction costs. Operating costs are also low. The design is based on established technology (from present cyclotrons and from large bubble chambers). Two laboratories (in Chalk River, Canada and in East Lansing, Michigan) are proceeding with construction of full-scale prototype components for such cyclotrons

  16. Superconducting cavities for beauty factories

    International Nuclear Information System (INIS)

    Lengeler, H.

    1992-01-01

    The possibilities and merits of superconducting accelerating cavities for Beauty-factories are considered. There exist already large sc systems of size and frequency comparable to the ones needed for Beauty-factories. Their status and operation experience is discussed. A comparison of normal conducting and superconducting systems is done for two typical Beauty-factory rings

  17. Establishment of nuclear data system - Feasibility study for neutron-beam= facility at pohang accelerator laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Nam Kung, Won; Koh, In Soo; Cho, Moo Hyun; Kim, Kui Nyun; Kwang, Hung Sik; Park, Sung Joo [Pohang Accelerator Laboratory, Pohang (Korea, Republic of)

    1996-12-01

    Nuclear data which have been produced by a few developed countries in the= past are essential elements to many disciplines, especially to nuclear engineering. As we promote our nuclear industry further to the level of advanced countries, we also have to establish the Nuclear Data System to produce and evaluate nuclear data independently. We have studied the possibility to build a neutron-beam facility utilizing accelerator facilities, technologies and man powers at pohang Accelerator Laboratory. We found specific parameters for the PAL 100-MeV electron linac based on the existing klystron, modulator, accelerating tubes and other facilities in the PAL; the beam energy is 60-100 MeV, the beam current for the short pulse (10 ns) is 2 A and for the long pulse is 500 mA and the pulse repetition rate is 60 Hz. We propose a neutron-beam facility using PAL 100-MeV electron linac where we can use a Ta-target for the neutron generation and three different time-of-flight beam lines (10 m, 20 m, and 100 m). One may find that the proposed neutron-beam facility is comparable with other operating neutron facilities in the world. We conclude that the proposed neutron-beam facility utilizing the existing accelerator facility in the PAL would be an excellent facility for neutron data production in combination with the ` Hanaro` facility in KAERI. 8 refs., 11 tabs., 12 figs. (author)

  18. Electrostatic design and beam transport for a folded tandem electrostatic quadrupole accelerator facility for accelerator-based boron neutron capture therapy.

    Science.gov (United States)

    Vento, V Thatar; Bergueiro, J; Cartelli, D; Valda, A A; Kreiner, A J

    2011-12-01

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT), we discuss here the electrostatic design of the machine, including the accelerator tubes with electrostatic quadrupoles and the simulations for the transport and acceleration of a high intensity beam. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Last LEP superconducting module travels to surface

    CERN Multimedia

    Patrice Loïez

    2001-01-01

    The last superconducting module is raised from the Large Electron-Positron (LEP) collider tunnel, through the main shaft, to the surface. Superconducting modules were only used in the LEP-2 phase of the accelerator, from 1996 to 2000.

  20. Emittance study of a 28 GHz electron cyclotron resonance ion source for the Rare Isotope Science Project superconducting linear accelerator.

    Science.gov (United States)

    Park, Bum-Sik; Hong, In-Seok; Jang, Ji-Ho; Jin, Hyunchang; Choi, Sukjin; Kim, Yonghwan

    2016-02-01

    A 28 GHz electron cyclotron resonance (ECR) ion source is being developed for use as an injector for the superconducting linear accelerator of the Rare Isotope Science Project. Beam extraction from the ECR ion source has been simulated using the KOBRA3-INP software. The simulation software can calculate charged particle trajectories in three dimensional complex magnetic field structures, which in this case are formed by the arrangement of five superconducting magnets. In this study, the beam emittance is simulated to understand the effects of plasma potential, mass-to-charge ratio, and spatial distribution. The results of these simulations and their comparison to experimental results are presented in this paper.

  1. Intermediate quality control tests in the development of a superconducting RF cryomodule for CW operation

    Science.gov (United States)

    Pattalwar, Shrikant; Jones, Thomas; Strachan, John; Bate, Robert; Davies, Phil; McIntosh, Peter

    2012-06-01

    Through an international cryomodule collaboration, ASTeC at Daresbury Laboratory has taken the primary responsibility in leading the development of an optimised Superconducting RF (SRF) cryomodule, operating in CW mode for energy recovery facilities and other high duty cycle accelerators. For high beam current operation, Higher Order Mode (HOM) absorbers are critical components of the SRF Cryomodule, ensuring excessive heating of the accelerating structures and beam instabilities are effectively managed. This paper describes some of the cold tests conducted on the HOM absorbers and other critical components during the construction phase, to ensure that the quality and reliable cryomodule performance is maintained.

  2. Development of niobium spoke cavities for a superconducting light-ion Linac

    International Nuclear Information System (INIS)

    Shepard, K. W.

    1998-01-01

    This paper reports the development of 350 MHz niobium superconducting cavities for the velocity range 0.2< v/c <0.6. Such cavities could be used to form a linac of exceptional flexibility, capable of efficiently accelerating beams of either protons, deuterons, or any of a wide range of light ions, at intensities sufficient for a production beam for a radioactive beam facility. Results of numerical modeling for several resonator geometries are presented. The design and construction status of prototype niobium cavities is discussed

  3. Development of niobium spoke cavities for a superconducting light-ion Linac.

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K. W.

    1998-11-18

    This paper reports the development of 350 MHz niobium superconducting cavities for the velocity range 0.2< v/c <0.6. Such cavities could be used to form a linac of exceptional flexibility, capable of efficiently accelerating beams of either protons, deuterons, or any of a wide range of light ions, at intensities sufficient for a production beam for a radioactive beam facility. Results of numerical modeling for several resonator geometries are presented. The design and construction status of prototype niobium cavities is discussed.

  4. Preparing last LEP superconducting module for removal

    CERN Multimedia

    Patrice Loïez

    2000-01-01

    The last superconducting module travels along the LEP tunnel towards one of the shafts where it will be lifted to the surface. Superconducting modules were only used in the LEP-2 phase of the accelerator, from 1996 to 2000.

  5. Intra-bunch-train transverse dynamics in the superconducting accelerators FLASH and European XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Hellert, Thorsten

    2017-11-15

    FLASH and the European XFEL are linear accelerator driven SASE-FELs, operating in a pulsed mode with long bunch-trains. Multi-bunch FEL operation requires longitudinal and transverse stability within the bunch-train. The purpose of this work is to investigate the intra-bunch-train transverse dynamics at FLASH and XFEL. Key relationships of superconducting RF cavity operation, their misalignments and the resulting impact on the intra-bunch-train trajectory variation are described. In this thesis a numerical model is developed and simulations for different accelerating sections at FLASH and XFEL are performed. With the current operational setup significant intra-bunch-train trajectory variation must be considered, hence approaches for their reduction are discussed. The theoretical studies are compared to experimental results at FLASH. The observed trajectory variation during multi-bunch user runs is analyzed and related to causal intra-bunch-train variations of the RF and the following impact on the multi-bunch SASSE performance. Furthermore, HOM-based cavity misalignment measurements are performed and the deduction of misalignments from multi-bunch data is considered.

  6. Intra-bunch-train transverse dynamics in the superconducting accelerators FLASH and European XFEL

    International Nuclear Information System (INIS)

    Hellert, Thorsten

    2017-11-01

    FLASH and the European XFEL are linear accelerator driven SASE-FELs, operating in a pulsed mode with long bunch-trains. Multi-bunch FEL operation requires longitudinal and transverse stability within the bunch-train. The purpose of this work is to investigate the intra-bunch-train transverse dynamics at FLASH and XFEL. Key relationships of superconducting RF cavity operation, their misalignments and the resulting impact on the intra-bunch-train trajectory variation are described. In this thesis a numerical model is developed and simulations for different accelerating sections at FLASH and XFEL are performed. With the current operational setup significant intra-bunch-train trajectory variation must be considered, hence approaches for their reduction are discussed. The theoretical studies are compared to experimental results at FLASH. The observed trajectory variation during multi-bunch user runs is analyzed and related to causal intra-bunch-train variations of the RF and the following impact on the multi-bunch SASSE performance. Furthermore, HOM-based cavity misalignment measurements are performed and the deduction of misalignments from multi-bunch data is considered.

  7. Effective flow-accelerated corrosion programs in nuclear facilities

    International Nuclear Information System (INIS)

    Esselman, Thomas C.; McBrine, William J.

    2004-01-01

    Piping Flow-Accelerated Corrosion Programs in nuclear power generation facilities are classically comprised of the selection of inspection locations with the assistance of a predictive methodology such as the Electric Power Research Institute computer codes CHECMATE or CHECWORKS, performing inspections, conducting structural evaluations on the inspected components, and implementing the appropriate sample expansion and corrective actions. Performing such a sequence of steps can be effective in identifying thinned components and implementing appropriate short term and long term actions necessary to resolve flow-accelerated corrosion related problems. A maximally effective flow-accelerated corrosion (FAC) program requires an understanding of many programmatic details. These include the procedural control of the program, effective use of historical information, managing the activities performed during a limited duration outage, allocating resources based on risk allocation, having an acute awareness of how the plant is operated, investigating components removed from the plant, and several others. This paper will describe such details and methods that will lead to a flow-accelerated corrosion program that effectively minimizes the risk of failure due to flow-accelerated corrosion and provide full and complete documentation of the program. (author)

  8. Defocusing beam line design for an irradiation facility at the TAEA SANAEM Proton Accelerator Facility

    Science.gov (United States)

    Gencer, A.; Demirköz, B.; Efthymiopoulos, I.; Yiğitoğlu, M.

    2016-07-01

    Electronic components must be tested to ensure reliable performance in high radiation environments such as Hi-Limu LHC and space. We propose a defocusing beam line to perform proton irradiation tests in Turkey. The Turkish Atomic Energy Authority SANAEM Proton Accelerator Facility was inaugurated in May 2012 for radioisotope production. The facility has also an R&D room for research purposes. The accelerator produces protons with 30 MeV kinetic energy and the beam current is variable between 10 μA and 1.2 mA. The beam kinetic energy is suitable for irradiation tests, however the beam current is high and therefore the flux must be lowered. We plan to build a defocusing beam line (DBL) in order to enlarge the beam size, reduce the flux to match the required specifications for the irradiation tests. Current design includes the beam transport and the final focusing magnets to blow up the beam. Scattering foils and a collimator is placed for the reduction of the beam flux. The DBL is designed to provide fluxes between 107 p /cm2 / s and 109 p /cm2 / s for performing irradiation tests in an area of 15.4 cm × 21.5 cm. The facility will be the first irradiation facility of its kind in Turkey.

  9. Accelerator conceptual design of the international fusion materials irradiation facility

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, M.; Kinsho, M. [Japan Atomic Energy Res. Inst., Tokai, Ibaraki (Japan). Intense Neutron Source Lab.; Jameson, R.A.; Blind, B. [Los Alamos National Lab., NM (United States); Teplyakov, V. [Institute for High Energy Physics, Moscow (Russian Federation); Berwald, D.; Bruhwiler, D.; Peakock, M.; Rathke, J. [Northrop Grumman Corp., Bethpage, NY (United States); Deitinghoff, H.; Klein, H.; Pozimski, Y.; Volk, K. [Johann Wolfgang Goethe Univ., Frankfurt (Germany). Inst. fur Angewandte Phys.; Ferdinand, R.; Lagniel, J.-M. [CEA Saclay LNS, Gif-sur-Yvette (France); Miyahara, A. [Teikyo Univ., Tokyo (Japan); Olivier, M. [CEA DSM, Saclay, Gif-sur-Yvette (France); Piechowiak, E. [Northrop Grumman Corp., Baltimore, MD (United States); Tanabe, Y. [Toshiba Corp., Tsurumi-ku, Yokohama (Japan)

    1998-10-01

    The accelerator system of the international fusion materials irradiation facility (IFMIF) provides the 250-mA, 40-MeV continuous-wave deuteron beam at one of the two lithium target stations. It consists of two identical linear accelerator modules, each of which independently delivers a 125-mA beam to the common footprint of 20 cm x 5 cm at the target surface. The accelerator module consists of an ion injector, a 175 MHz RFQ and eight DTL tanks, and rf power supply system. The requirements for the accelerator system and the design concept are described. The interface issues and operational considerations to attain the proposed availability are also discussed. (orig.) 8 refs.

  10. Project of the JAERI superconducting AVF cyclotron for applications in biotechnology and materials science

    International Nuclear Information System (INIS)

    Miyawaki, Nobumasa; Kurashima, Satoshi; Okumura, Susumu; Chiba, Atsuya; Agematsu, Takashi; Kamiya, Tomihiro; Kaneko, Hirohisa; Nara, Takayuki; Saito, Yuichi; Ishii, Yasuyuki; Sakai, Takuro; Mizuhashi, Kiyoshi; Fukuda, Mitsuhiro; Yokota, Watalu; Arakawa, Kazuo

    2005-01-01

    A project for expanding TIARA (Takasaki Ion accelerators for Advanced Radiation Application) facilities of JAERI has been proposed to broaden application region of biotechnology and materials science. As a result of the investigation of TIARA facility user's request, energy increase up to more than 100 MeV/n for heavy ions and up to 300 MeV for proton are strongly required. The magnet of a superconducting AVF cyclotron with a K number of 900 has been designed to cope with acceleration of both 150 MeV/n heavy ions and 300 MeV protons. The lower limit of energies has been investigated to overlap the energy region covered by the JAERI AVF cyclotron, required to increase beam time for present users. We have designed a beam transport system to satisfy various requirements of the applications. (author)

  11. Accelerator physics issues at the SSC

    International Nuclear Information System (INIS)

    Dugan, G.F.

    1993-05-01

    Realization of the design energy and luminosity goals of the Superconducting Super Collider (SSC) will require proper resolutions of a number of challenging problems in accelerator physics. The status of several salient issues in the design of the SSC will be reviewed and updated in this paper. The emphasis will be on the superconducting accelerators

  12. Measurement of 36Cl induced in shielding concrete of various accelerator facilities

    International Nuclear Information System (INIS)

    Bessho, K.; Matsumura, H.; Matsuhiro, T.

    2003-01-01

    The concentrations of 36 Cl induced in shielding concrete of the various accelerators has been measured by accelerator mass spectrometry. For three kinds of accelerator facilities, SF cyclotron (Center for Nuclear Study, the University of Tokyo), 300 MeV electron LINAC (Laboratory of Nuclear Science, Tohoku University), and 12 GeV proton synchrotron (High Energy Accelerator Research Organization), the depth profiles of 36 Cl/ 35 Cl ratios in concrete samples near the beam lines were analyzed. The depth profiles of 36 Cl/ 35 Cl are consistent with those of the radioactive concentrations of 152 Eu and 60 Co, which are formed by thermal neutron capture reactions. These results imply that 36 Cl formed in shielding concrete of these accelerators is mainly produced by thermal neutron capture of 35 Cl. The maximum 36 Cl/ 35 Cl ratio of 3x10 -8 (300 MeV electron LINAC, depth of 8 cm) corresponds to the specific radioactivity of 2x10 -3 Bq/g, which is not serious for radioactive waste management in reconstruction or decommissioning of accelerator facilities, compared with specific radioactivity of 3 H, 152 Eu and 60 Co. (author)

  13. Metal forming technology for the fabrication of seamless Superconducting radiofrequency cavities for particle accelerators

    Directory of Open Access Journals (Sweden)

    Palmieri Vincenzo

    2015-01-01

    Full Text Available The world of Particle accelerators is rather unique, since in a few high-energy Physics great laboratories, such at CERN for example, there have been built the largest technological installations ever conceived by humankind. The Radiofrequency resonant cavities are the pulsing heart of an accelerator. In case of superconducting accelerators, bulk niobium cavities, able to perform accelerating gradients up to 40 MeV/m, are just a jewel of modern technology. The standard fabrication technology foresees the cutting of circular blanks, their deep-drawing into half-cells, and its further joining by electron beam welding under ultra high vacuum environment that takes several hours. However, proposals such as the International Linear Collider, to which more than 900 scientists from all over the world participate, foresee the installation of 20.000 cavities. In numbers, it means the electron beam weld one by one under Ultra High Vacuum of 360,000 hemi-cells. At a cost of 500 €/Kg of high purity Niobium, this will mean a couple of hundreds of millions of Euros only for the bare material. In this panorama it is evident that a cost reducing approach must be considered. In alternative the author has proposed a seamless and low cost fabrication method based on spinning of fully resonators. Preliminary RF tests at low temperatures have proved that high accelerating gradients are achievable and that they are not worse than those obtainable with the standard technology. Nevertheless up to when the next accelerator will be decided to be built there is still room for improvement.

  14. Cryogenic test facility at VECC, Kolkata

    International Nuclear Information System (INIS)

    Sarkar, Amit; Bhunia, Uttam; Pradhan, J.; Sur, A.; Bhandari, R.K.; Ranganathan, R.

    2003-01-01

    In view of proposed K-500 superconducting cyclotron project, cryogenic test facility has been set up at the centre. The facility can broadly be categorized into two- a small scale test facility and a large scale test facility. This facility has been utilized for the calibration of liquid helium level probe, cryogenic temperature probe, and I-B plot for a 7 T superconducting magnet. Spiral-shaped superconducting short sample with specific dimension and specially designed stainless steel sample holder has already been developed for the electrical characterisation. The 1/5 th model superconducting coil along with its quench detection circuit and dump resistor has also been developed

  15. Proposal for an irradiation facility at the TAEK SANAEM Proton Accelerator Facility

    Science.gov (United States)

    Demirköz, B.; Gencer, A.; Kiziloren, D.; Apsimon, R.

    2013-12-01

    Turkish Atomic Energy Authority's (TAEK's) Proton Accelerator Facility in Ankara, Turkey, has been inaugurated in May 2012 and is under the process of being certified for commercial radio-isotope production. Three of the four arms of the 30 MeV cyclotron are being used for radio-isotope production, while the fourth is foreseen for research and development of novel ideas and methods. The cyclotron can vary the beam current between 12 μA and 1.2 mA, sufficient for irradiation tests for semiconductor materials, detectors and devices. We propose to build an irradiation facility in the R&D room of this complex, open for use to the international detector development community.

  16. Superconducting ring magnets of the PIOTRON Pi-meson therapy facility at SIN

    Energy Technology Data Exchange (ETDEWEB)

    Maix, R K; Meyer, G; Roman, T; Horvath, I; Vecsey, G; Zellweger, J

    1982-01-01

    Negative Pi-mesons seem to be very promising for cancer therapy, because of their well defined penetration depth and their enhanced energy deposition in the absorption region. A prototype Pi-meson therapy facility, called PIOTRON, has been constructed at SIN, where also pion beams of sufficient intensity are available. The central part of this system are two ring magnets, consisting each of 60 superconducting flat coils, with the aid of which 60 pion beams can be guided around a heavy iron shield and focused on the patient. In this paper the fabrication and the initial operation of these magnets is discussed.

  17. Accelerator programme at CAT

    International Nuclear Information System (INIS)

    Ramamurthi, S.S.

    1991-01-01

    The Accelerator Programme at the Centre for Advanced Technology (CAT), Indore, has very broad based concept under which all types of accelerators are to be taken up for design and fabrication. This centre will be housing a wide variety of accelerators to serve as a common facility for the universities, national laboratories in addition to laboratories under the Department of Atomic Energy. In the first phase of the programme, a series of electron accelerators are designed and fabricated. They are synchrotron radiation sources of 450 MeV (INDUS-I) and of 2 GeV (INDUS-II), microtron upto energy of 20 MeV, linear accelerator upto 20 MeV, and DC Accelerator for industrial irradiation upto 750 KeV and 20 KW. A proton accelerator of 300 MeV with 20 MeV linac injector is also designed. CAT is also developing a strong base for support technologies like ultra high vacuum, radio frequency and microwaves, DC pulsed and superconducting magnets, power supplies and controls etc. These technologies are very useful for other industrial applications also. To develop user groups to utilise INDUS-II synchrotron radiation source, a batch production of rotating Anode X-ray generators with power supplies has been initiated. So also, the sputter ion pumps, electron guns, turbo molecular pumps are brought into batch production. (author)

  18. High-gradient near-quench-limit operation of superconducting Tesla-type cavities in scope of the International Linear Collider

    Directory of Open Access Journals (Sweden)

    Mathieu Omet

    2014-07-01

    Full Text Available We report the successful demonstration of an ILC-like high-gradient near-quench-limit operation at the Superconducting RF Test Facility at the High Energy Accelerator Research Organization (KEK in Japan. Preparation procedures necessary for the accelerator operation were conducted, such as rf phase calibration, beam-based gradient calibration, and automated beam compensation. Test runs were performed successfully for nominal operation, high-loaded Q (Q_{L} operation, and automated P_{k}Q_{L} operation. The results are described in terms of the achieved precision and stabilities of gradients and phases.

  19. HEATHER - HElium Ion Accelerator for RadioTHERapy

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Jordan [Huddersfield U.; Edgecock, Thomas [Huddersfield U.; Green, Stuart [Birmingham U.; Johnstone, Carol [Fermilab

    2017-05-01

    A non-scaling fixed field alternating gradient (nsFFAG) accelerator is being designed for helium ion therapy. This facility will consist of 2 superconducting rings, treating with helium ions (He²⁺ ) and image with hydrogen ions (H + 2 ). Currently only carbon ions are used to treat cancer, yet there is an increasing interest in the use of lighter ions for therapy. Lighter ions have reduced dose tail beyond the tumour compared to carbon, caused by low Z secondary particles produced via inelastic nuclear reactions. An FFAG approach for helium therapy has never been previously considered. Having demonstrated isochronous acceleration from 0.5 MeV to 900 MeV, we now demonstrate the survival of a realistic beam across both stages.

  20. Engineered and Administrative Safety Systems for the Control of Prompt Radiation Hazards at Accelerator Facilities

    International Nuclear Information System (INIS)

    Liu, James C.; SLAC; Vylet, Vashek; Walker, Lawrence S.

    2007-01-01

    The ANSI N43.1 Standard, currently in revision (ANSI 2007), sets forth the requirements for accelerator facilities to provide adequate protection for the workers, the public and the environment from the hazards of ionizing radiation produced during and from accelerator operations. The Standard also recommends good practices that, when followed, provide a level of radiation protection consistent with those established for the accelerator communities. The N43.1 Standard is suitable for all accelerator facilities (using electron, positron, proton, or ion particle beams) capable of producing radiation, subject to federal or state regulations. The requirements (see word 'shall') and recommended practices (see word 'should') are prescribed in a graded approach that are commensurate with the complexity and hazard levels of the accelerator facility. Chapters 4, 5 and 6 of the N43.1 Standard address specially the Radiation Safety System (RSS), both engineered and administrative systems, to mitigate and control the prompt radiation hazards from accelerator operations. The RSS includes the Access Control System (ACS) and Radiation Control System (RCS). The main requirements and recommendations of the N43.1 Standard regarding the management, technical and operational aspects of the RSS are described and condensed in this report. Clearly some aspects of the RSS policies and practices at different facilities may differ in order to meet the practical needs for field implementation. A previous report (Liu et al. 2001a), which reviews and summarizes the RSS at five North American high-energy accelerator facilities, as well as the RSS references for the 5 labs (Drozdoff 2001; Gallegos 1996; Ipe and Liu 1992; Liu 1999; Liu 2001b; Rokni 1996; TJNAF 1994; Yotam et al. 1991), can be consulted for the actual RSS implementation at various laboratories. A comprehensive report describing the RSS at the Stanford Linear Accelerator Center (SLAC 2006) can also serve as a reference

  1. TESLA superconducting RF cavity development

    International Nuclear Information System (INIS)

    Koepke, K.

    1995-01-01

    The TESLA collaboration has made steady progress since its first official meeting at Cornell in 1990. The infrastructure necessary to assemble and test superconducting rf cavities has been installed at the TESLA Test Facility (TTF) at DESY. 5-cell, 1.3 GHz cavities have been fabricated and have reached accelerating fields of 25 MV/m. Full sized 9-cell copper cavities of TESLA geometry have been measured to verify the higher order modes present and to evaluate HOM coupling designs. The design of the TESLA 9-cell cavity has been finalized and industry has started delivery. Two prototype 9-cell niobium cavities in their first tests have reached accelerating fields of 10 MV/m and 15 MV/m in a vertical dewar after high peak power (HPP) conditioning. The first 12 m TESLA cryomodule that will house 8 9-cell cavities is scheduled to be delivered in Spring 1995. A design report for the TTF is in progress. The TTF test linac is scheduled to be commissioned in 1996/1997. (orig.)

  2. Progress in the study and construction of the TESLA test facility injector

    Energy Technology Data Exchange (ETDEWEB)

    Chehab, R.; Bernard, M.; Bourdon, J.C.; Garvey, T. [Paris-11 Univ., 91 - Orsay (France). Lab. de l`Accelerateur Lineaire; Aune, B.; Desmons, M.; Fusellier, J.; Gougnaud, F. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. d`Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l`Instrumentation Associee; Buhler, S.; Junquera, T. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire] [and others

    1995-12-31

    A 500 MeV, 1.3 GHz superconducting linear accelerator is being studied and built to serve as a test facility for the TESLA linear collider project. The phase 1 injector consists of a 250 keV electron gun, buncher and a superconducting capture cavity at the main linac frequency. The main characteristics (intensity, position, emittance, bunch length, energy spread) are to be measured using different techniques. A particular effort will be made on the use of optical transition radiation (OTR) for the determination of the transverse beam emittance as well as the bunch length. (K.A.). 7 refs.

  3. Progress in the study and construction of the TESLA test facility injector

    International Nuclear Information System (INIS)

    Chehab, R.; Bernard, M.; Bourdon, J.C.; Garvey, T.; Aune, B.; Desmons, M.; Fusellier, J.; Gougnaud, F.; Buhler, S.; Junquera, T.

    1995-01-01

    A 500 MeV, 1.3 GHz superconducting linear accelerator is being studied and built to serve as a test facility for the TESLA linear collider project. The phase 1 injector consists of a 250 keV electron gun, buncher and a superconducting capture cavity at the main linac frequency. The main characteristics (intensity, position, emittance, bunch length, energy spread) are to be measured using different techniques. A particular effort will be made on the use of optical transition radiation (OTR) for the determination of the transverse beam emittance as well as the bunch length. (K.A.)

  4. Beam tests and operation of superconducting cavities

    International Nuclear Information System (INIS)

    Akai, Kazunori

    1990-01-01

    Beam tests and operation of superconducting cavities conducted since the third workshop on RF superconductivity (Argonne, Sep. 1987) are reported in this paper. The paper is concerned particularly with electron machines. Storage and acceleration of the beam are discussed, focusing on the CERN test in SPS, the DESY test in PETRA, the superconducting injector at Darmstadt, and the KEK beam tests in T-AR. Then, long-term performance of the cavity in the ring is discussed focusing on Eacc (max) and O-value, environmental conditions, and operational experience in T-MR. RF controllability is addressed, centering on the Robinson stability, cavity tuning loop, quench detection and interlocks, recovery procedure, field calibration, and phase adjustment. Higher order modes are also discussed. Superconducting cavities have been operated successfully in accelerators. It has been confirmed that the superconducting cavities can be used stably for experimental use. For more than 5000 hours the cavities have indicated no essential degradation of the cavity performance. The study of long-term performance should be continued in longer range of period. (N.K.)

  5. Accelerator shield design of KIPT neutron source facility

    International Nuclear Information System (INIS)

    Zhong, Z.; Gohar, Y.

    2013-01-01

    Argonne National Laboratory (ANL) of the United States and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the design development of a neutron source facility at KIPT utilizing an electron-accelerator-driven subcritical assembly. Electron beam power is 100 kW, using 100 MeV electrons. The facility is designed to perform basic and applied nuclear research, produce medical isotopes, and train young nuclear specialists. The biological shield of the accelerator building is designed to reduce the biological dose to less than 0.5-mrem/hr during operation. The main source of the biological dose is the photons and the neutrons generated by interactions of leaked electrons from the electron gun and accelerator sections with the surrounding concrete and accelerator materials. The Monte Carlo code MCNPX serves as the calculation tool for the shield design, due to its capability to transport electrons, photons, and neutrons coupled problems. The direct photon dose can be tallied by MCNPX calculation, starting with the leaked electrons. However, it is difficult to accurately tally the neutron dose directly from the leaked electrons. The neutron yield per electron from the interactions with the surrounding components is less than 0.01 neutron per electron. This causes difficulties for Monte Carlo analyses and consumes tremendous computation time for tallying with acceptable statistics the neutron dose outside the shield boundary. To avoid these difficulties, the SOURCE and TALLYX user subroutines of MCNPX were developed for the study. The generated neutrons are banked, together with all related parameters, for a subsequent MCNPX calculation to obtain the neutron and secondary photon doses. The weight windows variance reduction technique is utilized for both neutron and photon dose calculations. Two shielding materials, i.e., heavy concrete and ordinary concrete, were considered for the shield design. The main goal is to maintain the total

  6. Tuners, microphonics, and control systems in superconducting accelerating structures

    International Nuclear Information System (INIS)

    Doolittle, L.R.

    1990-01-01

    Manufacturing tolerances, thermal stresses, acoustic noise, and cooling fluid pressure fluctuations all conspire to make the field in the cavity not precisely what the accelerator physicist has in mind. Tuners and control systems are the tools used to fight back: they regulate the field in the cavity to the desired magnitude and phase. Amplitude and phase stabilities are usually of greater concern in superconducting cavities than in copper cavities. The key to achieving a stable gradient and phase is feedback. A probe must be placed in the cavity itself to sense the present cavity status. Electronic control is then given the responsibility to correct for any measured disturbance. The electronic modulation of forward power has been implemented in a number of ways. Perhaps the easiest implementation to understand has two separate control loops, one for amplitude and one for phase (phase-amplitude loops). Other major electronic control devices include complex phasor modulator (CPM-amplitude loops), vector loop, and variable reactance. 'Slow' tuners are used when the tuning range of the 'fast' tuner plus electronic tuning is not enough to compensate for unpredictability or drift in the static frequency setting. (N.K.)

  7. Design, Fabrication, Installation and Commissioning of the Helium Refrigeration system Supporting Superconducting Radio Frequency Testing at Facility for Rare Isotope Beams at Michigan State University

    Science.gov (United States)

    Casagrande, F.; Fila, A.; Nguyen, C.; Tatsumoto, H.

    2017-12-01

    The Facility for Rare Isotope Beams (FRIB) will be a scientific user facility for the Office of Nuclear Physics in the U.S. Department of Energy Office of Science (DOE-SC). The FRIB linear accelerator (LINAC) will be comprised of cryomodules each with multiple Superconducting Radio Frequency (SRF) cavities operating at 2 K. A helium refrigeration system was designed, fabricated, installed and commissioned in the SRF high bay building to test and certify these cavities and cryomodules before installation in the FRIB LINAC tunnel. The helium refrigeration system includes a helium refrigerator which has nominal capacity of 900 W at 4 K, 5000 L liquid helium storage Dewar, helium gas storage, two room temperature vacuum pumps capable of 2.5 g/s each for 2 K testing, purifier, purifier recovery compressor, and the distribution system for liquid nitrogen and helium. The helium refrigeration system is now operational supporting three below grade cavity testing Dewars and one cryomodule testing bunker meeting the required throughput of 1 cavity per day.

  8. Development of a high intensity proton accelerator

    International Nuclear Information System (INIS)

    Mizumoto, Motoharu; Kusano, Joichi; Hasegawa, Kazuo; Ito, Nobuo; Oguri, Hidetomo; Touchi, Yutaka; Mukugi, Ken; Ino, Hiroshi

    1997-01-01

    The high-intensity proton linear accelerator with a beam power of 15 MW has been proposed for various engineering tests for the nuclear waste transmutation system as one of the research plans in the Neutron Science Research Program (NSRP) in JAERI. High intensity proton beam and secondary particle beams such as neutron, pion, muon and unstable radio isotope (RI) beam generated from the proton spallation reaction will be utilized at these facilities in each research field. The R and D work has been carried out for the components of the front-end part of the proton accelerator; ion source, RFQ, DTL and RF source. In the beam test, the current of 70 mA with a duty factor of 7% has been accelerated from the RFQ at the energy of 2 MeV. A hot test model of the DTL for the high power and high duty operation was fabricated and tested. For the high energy portion above 100 MeV, superconducting accelerating cavity is studied as a main option. The superconducting linac is expected to have several favourable characteristics for high intensity accelerator such as short accelerator length, large bore radius resulting in low beam losses and cost effectiveness for construction and operation. A test stand with equipment of cryogenics system, vacuum system, RF system and cavity processing and cleaning is prepared to test the physics issues and fabrication process. The proposed plan for accelerator design and construction will compose of two consecutive stages. The first stage will be completed in about 7 years with the beam power of 1.5 MW. As the second stage gradual upgrading of the beam power will be made up to 15 MW. 7 refs., 3 figs., 4 tabs

  9. Manufacture of keystoned flat superconducting cables for use in SSC [Superconducting Super Collider] dipoles

    International Nuclear Information System (INIS)

    Royet, J.; Scanlan, R.M.

    1986-09-01

    The superconducting magnets used in the construction of particle accelerators are mostly built from flat, multistrand cables with rectangular or keystoned cross sections. In this paper we will emphasize the differences between the techniques for cabling conventional wires for cabling superconducting wires. Concepts for the tooling will be introduced. The effects of cabling parameters on critical current degradation are being evaluated in collaboration with NBS-Boulder

  10. Improvement in performance and operational experience of 14 UD Pelletron accelerator facility, BARC-TIFR

    International Nuclear Information System (INIS)

    Bhagwat, P.V.

    2002-01-01

    14 UD Pelletron accelerator facility at Mumbai has been operational since 1989. The project MEHIA (Medium Energy Heavy Ion Accelerator) started in 1982 and was formally inaugurated on 30th December 1988. Since then the accelerator has been working round the clock. Improvement in accelerator performance and operational experience are described. (author)

  11. SCMAG series of programs for calculating superconducting dipole and quadrupole magnets

    International Nuclear Information System (INIS)

    Green, M.A.

    1974-01-01

    A general description is given of four computer programs for calculating the characteristics of superconducting magnets used in the bending and focusing of high-energy particle beams. The programs are being used in the design of magnets for the LBL ESCAR (Experimental Superconducting Accelerator Ring) accelerator. (U.S.)

  12. Hurricane Isabel gives accelerators a severe test

    International Nuclear Information System (INIS)

    Swapan Chattopadhyay

    2004-01-01

    Hurricane Isabel was at category five--the most violent on the Saffir-Simpson scale of hurricane strength--when it began threatening the central Atlantic seaboard of the US. Over the course of several days, precautions against the extreme weather conditions were taken across the Jefferson Lab site in south-east Virginia. On 18 September 2003, when Isabel struck North Carolina's Outer Banks and moved northward, directly across the region around the laboratory, the storm was still quite destructive, albeit considerably reduced in strength. The flood surge and trees felled by wind substantially damaged or even devastated buildings and homes, including many belonging to Jefferson Lab staff members. For the laboratory itself, Isabel delivered an unplanned and severe challenge in another form: a power outage that lasted nearly three-and-a-half days, and which severely tested the robustness of Jefferson Lab's two superconducting machines, the Continuous Electron Beam Accelerator Facility (CEBAF) and the superconducting radiofrequency ''driver'' accelerator of the laboratory's free-electron laser. Robustness matters greatly for science at a time when microwave superconducting linear accelerators (linacs) are not only being considered, but in some cases already being built for projects such as neutron sources, rare-isotope accelerators, innovative light sources and TeV-scale electron-positron linear colliders. Hurricane Isabel interrupted a several-week-long maintenance shutdown of CEBAF, which serves nuclear and particle physics and represents the world's pioneering large-scale implementation of superconducting radiofrequency (SRF) technology. The racetrack-shaped machine is actually a pair of 500-600 MeV SRF linacs interconnected by recirculation arc beamlines. CEBAF delivers simultaneous beams at up to 6 GeV to three experimental halls. An imminent upgrade will double the energy to 12 GeV and add an extra hall for ''quark confinement'' studies. On a smaller scale

  13. SRF technology at accel for worldwide accelerator projects

    International Nuclear Information System (INIS)

    Bauer, S.; Griep, B.; Peiniger, M.; Pekeler, M.; Piel, C.; Stein, P. vom; Vogel, H.

    2003-01-01

    Within the last two years activities at ACCEL for international accelerator projects using superconducting cavities have steadily increased. We report on our production work for CERN (HOM couplers for LHC cavities), DESY (TESLA cavities and couplers), Forschungszentrum Juelich (turn key low beta SRF module), SRRC, CLS and Cornell (turn key 500 MHz SRF modules. The production a superconducting Landau accelerator module for BESSY has started recently. In addition studies are under way for a superconducting 40 MeV proton/deuteron linac and for superconducting low beta multi gap structures. (author)

  14. Vent rate of superconducting magnets during quench in the Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    Slack, D.S.

    1979-01-01

    When a superconducting magnet goes normal, resistive heating in the conductor evaporates surrounding LHe, which must be vented. The nature and speed at which the magnet goes normal and He is vented are not subject to rigorous analysis. This paper presents vent data from an existing magnet. An approximate mathematical model is derived and fitted to the data to permit scaling of vent requirements to larger size magnets. The worst case models of the vent employed in Mirror Fusion Test Facility (MFTF) cryogenic system design are also presented

  15. Heavy-ion injector based on an electron cyclotron ion source for the superconducting linear accelerator of the Rare Isotope Science Project.

    Science.gov (United States)

    Hong, In-Seok; Kim, Yong-Hwan; Choi, Bong-Hyuk; Choi, Suk-Jin; Park, Bum-Sik; Jin, Hyun-Chang; Kim, Hye-Jin; Heo, Jeong-Il; Kim, Deok-Min; Jang, Ji-Ho

    2016-02-01

    The injector for the main driver linear accelerator of the Rare Isotope Science Project in Korea, has been developed to allow heavy ions up to uranium to be delivered to the inflight fragmentation system. The critical components of the injector are the superconducting electron cyclotron resonance (ECR) ion sources, the radio frequency quadrupole (RFQ), and matching systems for low and medium energy beams. We have built superconducting magnets for the ECR ion source, and a prototype with one segment of the RFQ structure, with the aim of developing a design that can satisfy our specifications, demonstrate stable operation, and prove results to compare the design simulation.

  16. Operating experiences on the co-generation system (CGS) as an uninterruptible power source (UPS) for the super-sized accelerator facility, RIBF of RIKEN

    International Nuclear Information System (INIS)

    Fujinawa, Tadashi; Yano, Yasushige

    2011-01-01

    The RI Beam Factory (RIBF) of RIKEN Nishina Center for Accelerator-Based Science, which succeeded in extracting first beam on December 28th 2006 as scheduled, is currently conducting nuclear physics experiments. The RIBF has six accelerators, one of which is the world's biggest and most powerful superconducting ring cyclotron (SRC). The accelerators require not only a huge amount of electricity but also a reliable power supply for the He-cryogenic system, vacuum system and superconducting magnet systems. For this purpose, the co-generation system (CGS) was introduced. A gas turbine generates 6.5 MW of power from liquid natural gas (LNG) and supplies it to the systems mentioned above as an uninterruptible power source (UPS). By utilizing gas heat exhaust from the gas turbine, the CGS will also supply cooled water to the cooling system of the RIBF accelerators as well as to the air-conditioning system for the bending. The CGS plant was completed on the 1st floor of the RIBF accelerator building and it began operating in April 2003. This paper covers the merits and demerits. (author)

  17. Advanced Accelerators for Medical Applications

    Science.gov (United States)

    Uesaka, Mitsuru; Koyama, Kazuyoshi

    We review advanced accelerators for medical applications with respect to the following key technologies: (i) higher RF electron linear accelerator (hereafter “linac”); (ii) optimization of alignment for the proton linac, cyclotron and synchrotron; (iii) superconducting magnet; (iv) laser technology. Advanced accelerators for medical applications are categorized into two groups. The first group consists of compact medical linacs with high RF, cyclotrons and synchrotrons downsized by optimization of alignment and superconducting magnets. The second group comprises laser-based acceleration systems aimed of medical applications in the future. Laser plasma electron/ion accelerating systems for cancer therapy and laser dielectric accelerating systems for radiation biology are mentioned. Since the second group has important potential for a compact system, the current status of the established energy and intensity and of the required stability are given.

  18. NIST Accelerator Facilities And Programs In Support Of Industrial Radiation Research

    International Nuclear Information System (INIS)

    Bateman, F.B.; Desrosiers, M.F.; Hudson, L.T.; Coursey, B.M.; Bergstrom, P.M. Jr.; Seltzer, S.M.

    2003-01-01

    NIST's Ionizing Radiation Division maintains and operates three electron accelerators used in a number of applications including waste treatment and sterilization, radiation hardness testing, detector calibrations and materials modification studies. These facilities serve a large number of governmental, academic and industrial users as well as an active intramural research program. They include a 500 kV cascaded-rectifier accelerator, a 2.5 MV electron Van de Graaff accelerator and a 7 to 32 MeV electron linac, supplying beams ranging in energy from a few keV up to 32 MeV. In response to the recent anthrax incident, NIST along with the US Postal Service and the Armed Forces Radiobiology Research Institute (AFRRI) are working to develop protocols and testing procedures for the USPS mail sanitization program. NIST facilities and personnel are being employed in a series of quality-assurance measurements for both electron- and photon-beam sanitization. These include computational modeling, dose verification and VOC (volatile organic compounds) testing using megavoltage electron and photon sources

  19. Beam Dynamics Studies and the Design, Fabrication and Testing of Superconducting Radiofrequency Cavity for High Intensity Proton Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Saini, Arun [Univ. of Delhi, New Delhi (India)

    2012-03-01

    The application horizon of particle accelerators has been widening significantly in recent decades. Where large accelerators have traditionally been the tools of the trade for high-energy nuclear and particle physics, applications in the last decade have grown to include large-scale accelerators like synchrotron light sources and spallation neutron sources. Applications like generation of rare isotopes, transmutation of nuclear reactor waste, sub-critical nuclear power, generation of neutrino beams etc. are next area of investigation for accelerator scientific community all over the world. Such applications require high beam power in the range of few mega-watts (MW). One such high intensity proton beam facility is proposed at Fermilab, Batavia, US, named as Project-X. Project-X facility is based on H- linear accelerator (linac), which will operate in continuous wave (CW) mode and accelerate H- ion beam with average current of 1 mA from kinetic energy of 2.5 MeV to 3 GeV to deliver 3MW beam power. One of the most challenging tasks of the Project-X facility is to have a robust design of the CW linac which can provide high quality beam to several experiments simultaneously. Hence a careful design of linac is important to achieve this objective.

  20. Overview of high intensity proton accelerator facility, J-PARC

    International Nuclear Information System (INIS)

    Ikeda, Y.

    2010-01-01

    The J-PARC project of high intensity proton accelerator research complex, conducted jointly by JAERI and KEK, has been completed with demonstration of all beam productions in 2009 as the facility construction phase, and the operation started to offer the secondary beams of neutron, muon, kaon, and neutrino, to the advanced scientific experimental research aiming at making breakthroughs in materials and life science, nuclear and elementary physics, etc. This text describes the overview of the J-PARC present status with emphasis of a performance toward to 1MW power as user facilities. (author)

  1. Shielding Aspects of Accelerators, Targets and Irradiation Facilities - SATIF-11 Workshop Proceedings Report

    International Nuclear Information System (INIS)

    2013-01-01

    Particle accelerators have evolved over the last decades from simple devices to powerful machines. In recent years, new technological and research applications have helped to define requirements while the number of accelerator facilities in operation, being commissioned, designed or planned has grown significantly. Their parameters, which include the beam energy, currents and intensities, and target composition, can vary widely, giving rise to new radiation shielding issues and challenges. Particle accelerators must be operated in safe ways to protect operators, the public and the environment. As the design and use of these facilities evolve, so must the analytical methods used in the safety analyses. These workshop proceedings review the state of the art in radiation shielding of accelerator facilities and irradiation targets. They also evaluate progress in the development of modelling methods used to assess the effectiveness of such shielding as part of safety analyses. The transport of radiation through shielding materials is a major consideration in the safety design studies of nuclear power plants, and the modelling techniques used may be applied to many other types of scientific and technological facilities. Accelerator and irradiation facilities represent a key capability in R and D, medical and industrial infrastructures, and they can be used in a wide range of scientific, medical and industrial applications. High-energy ion accelerators, for example, are now used not only in fundamental research, such as the search for new super-heavy nuclei, but also for therapy as part of cancer treatment. While the energy of the incident particles on the shielding of these facilities may be much higher than those found in nuclear power plants, much of the physics associated with the behaviour of the secondary particles produced is similar, as are the computer modelling techniques used to quantify key safety design parameters, such as radiation dose and activation levels

  2. Development of Low Level RF Control Systems for Superconducting Heavy Ion Linear Accelerators, Electron Synchrotrons and Storage Rings

    CERN Document Server

    Aminov, Bachtior; Kolesov, Sergej; Pekeler, Michael; Piel, Christian; Piel, Helmut

    2005-01-01

    Since 2001 ACCEL Instruments is supplying low level RF control systems together with turn key cavity systems. The early LLRF systems used the well established technology based on discrete analogue amplitude and phase detectors and modulators. Today analogue LLRF systems can make use of advanced vector demodulators and modulators combined with a fast computer controlled analogue feed back loop. Feed forward control is implemented to operate the RF cavity in an open loop mode or to compensate for predictable perturbations. The paper will introduce the general design philosophy and show how it can be adapted to different tasks as controlling a synchrotron booster nc RF system at 500 MHz, or superconducting storage ring RF cavities, as well as a linear accelerator at 176 MHz formed by a chain of individually driven and controlled superconducting λ/2 cavities.

  3. Status of superconducting magnet development (SSC, RHIC, LHC)

    International Nuclear Information System (INIS)

    Wanderer, P.

    1993-01-01

    This paper summarizes recent superconducting accelerator magnet construction and test activities at the Superconducting Super Collider Laboratory (SSC), the Large Hardon Collider at CERN (LHC), and the Relativistic Heavy Ion Collider at Brookhaven (RHIC). Future plans are also presented

  4. Status of superconducting magnet development (SSC, RHIC, LHC)

    International Nuclear Information System (INIS)

    Wanderer, P.

    1993-01-01

    This paper summarize recent superconducting accelerator magnet construction and test activities at the Superconducting Super Collider Laboratory (SSC), the Large Hadron Collider at CERN (LHC), and the Relativistic Heavy Ion Collider at Brookhaven (RHIC). Future plan are also presented

  5. The Brookhaven Accelerator Test Facility

    International Nuclear Information System (INIS)

    Batchelor, K.; Chou, T.S.; Fernow, R.C.

    1988-01-01

    The Brookhaven Accelerator Test Facility (ATF) will consist of a 50--100 MeV/c electron linac and a 100 GW CO 2 laser system. A high brightness RF-gun operating at 2856 MHz is to be used as the injector into the linac. The RF-gun contains a Nd:Yag-laser-driven photocathode capable of producing a stream of six ps electron pulses separated by 12.5 ns. The maximum charge in a micropulse will be one nano-Coulomb. The CO 2 laser pulse length will be a few picoseconds and will be synchronized with the electron pulse. The first experimental beam is expected in Fall 89. The design electron beam parameters are given and possible initial experiments are discussed. 9 refs., 1 fig., 3 tabs

  6. Measurement of internal forces in superconducting accelerator magnets with strain gauge transducers

    International Nuclear Information System (INIS)

    Goodzeit, C.L.; Anerella, M.D.; Ganetis, G.L.

    1988-01-01

    An improved method has been developed for the measurement of internal forces in superconducting accelerator magnets, in particular the compressive stresses in coils and the end restraint forces on the coils. The transducers have been designed to provide improved sensitivity to purely mechanical strain by using bending mode deflections for sensing the applied loads. Strain gauge resistance measurements are made with a new system that eliminates sources of errors due to spurious resistance changes in interconnecting wiring and solder joints. The design of the transducers and their measurement system is presented along with a discussion of the method of compensation for thermal and magnetic effects, methods of calibration with typical calibration data, and measured effect in actual magnets of the thermal stress changes from cooldown and the Lorentz forces during magnet excitation. 13 figs., 1 tab

  7. Characteristics and performance of a superconducting bumpy-torus magnet facility for plasma research

    Science.gov (United States)

    Roth, J. R.; Holmes, A. D.; Keller, T. A.; Krawczonek, W. M.

    1973-01-01

    The NASA Lewis bumpy-torus facility consists of 12 superconducting coils, each 19 cm i.d. and capable of 3.0 T on its axis. The coils are equally spaced around a toroidal array with a major diameter of 1.52 m; they are mounted with the major axis of the torus vertical in a single vacuum tank 2.6 m in diameter. Tests of the facility mapped out its magnetic, cryogenic, vacuum, mechanical, and electrical performance. The design value of the maximum magnetic field on the magnetic axis, 3.0 T, was reached and exceeded. A maximum magnetic field of 3.23 T was held for a period of 60 minutes. When the coils were charged to a maximum magnetic field of 3.35 T, the coil system went normal without apparent damage or degradation of performance.

  8. APT accelerator technology

    International Nuclear Information System (INIS)

    Schneider, J. David

    1996-01-01

    The proposed accelerator production of tritium (APT) project requires an accelerator that provides a cw proton beam of 100 m A at 1300 MeV. Since the majority of the technical risk of a high-current cw (continuous-wave, 100% DF) accelerator resides in the low-energy section, Los Alamos is building a 20 MeV duplicate of the accelerator front end to confirm design codes, beam performance, and demonstrate operational reliability. We report on design details of this low-energy demonstration accelerator (LEDA) and discuss the integrated design of the full accelerator for the APT plant. LEDA's proton injector is under test and has produced more than 130 mA at 75 keV. Fabrication is proceeding on a 6.7- MeV, 8-meter-long RFQ, and detailed design is underway on coupled-cavity drift-tube linac (CCDTL) structures. In addition, detailed design and technology experiments are underway on medium-beta superconducting cavities to assess the feasibility of replacing the conventional (room-temperature copper) high-energy linac with a linac made of niobium superconducting RF cavities. (author)

  9. Proceedings of the DAE-BRNS workshop on superconductivity and its application in electrical systems: abstracts

    International Nuclear Information System (INIS)

    2015-01-01

    This workshop aims to provide an opportunity for young scientists and researchers to interact with eminent scientists and specialists working in frontier areas of science and technology of superconductivity, superconducting cable developments, superconducting magnets, superconducting radio frequency cavity for particle accelerators, power applications and detectors using superconductor. Superconductivity plays an important role in modern scientific applications starting from modern accelerators to medical diagnostics. It has great potential in future electrical systems to minimize losses and increase efficiency in the system. Papers relevant to INIS are indexed separately

  10. The Radiological Research Accelerator Facility. Progress report, December 1, 1993--November 30, 1994

    International Nuclear Information System (INIS)

    Hall, E.J.; Marino, S.A.

    1994-04-01

    This document begins with a general description of the facility to include historical and up-to-date aspects of design and operation. A user's guide and a review of research using the facility follows. Next the accelerator utilization and operation and the development of the facilities is given. Personnel currently working at the facility are listed. Lastly, recent publications and literature cited are presented

  11. Fundamental of cryogenics (for superconducting RF technology)

    CERN Document Server

    Pierini, Paolo

    2013-01-01

    This review briefly illustrates a few fundamental concepts of cryogenic engineering, the technological practice that allows reaching and maintaining the low-temperature operating conditions of the superconducting devices needed in particle accelerators. To limit the scope of the task, and not to duplicate coverage of cryogenic engineering concepts particularly relevant to superconducting magnets that can be found in previous CAS editions, the overview presented in this course focuses on superconducting radio-frequency cavities.

  12. Powering and Machine Protection of the Superconducting LHC Accelerator

    OpenAIRE

    Zerlauth, M; Schmidt, R

    2004-01-01

    A very large number of magnets, both superconducting and conventional copper conductor magnets, are installed in the LHC (Large Hadron Collider) for the guidance of the two proton beams around the circumference. In total, the LHC counts 1614 different electrical circuits with 1712 power converters for DC powering of the superconducting and normal conducting magnets. Besides the electrical circuits connecting main magnets for bending and focusing of the two counter-rotating beams, the demandin...

  13. Cryogenic testing of the TPC superconducting solenoid

    International Nuclear Information System (INIS)

    Green, M.A.; Smits, R.G.; Taylor, J.D.

    1983-06-01

    This report describes the results of a series of tests on the TPC superconducting magnet cryogenic system which occurred during the winter and spring of 1983. The tests occurred at interaction region 2 of the PEP colliding beam facility at the Stanford Linear Accelerator Center (SLAC). The TPC Magnet Cryogenic System which was tested includes the following major components: a remote helium compressor with a full flow liquid nitrogen purification station, 400 meters of high pressure supply and low pressure return lines; and locally a CTi Model 2800 refrigerator with two Sulzer gas bearing turbines, the TPC magnet control dewar, 70 meters of transfer lines, and the TPC thin superconducting solenoid magnet. In addition, there is a conditioner (liquid nitrogen heat exchangers and gas heaters) system for cooldown and warmup of the magnet. This report describes the local cryogenic system and describes the various steps in the cooldown and operation of the TPC magnet. The tests were successful in that they showed that the TPC magnet could be cooled down in 24 hours and the magnet could be operated on the refrigerator or a helium pump with adequate cooling margin. The tests identified problems with the cryogenic system and the 2800 refrigerator. Procedures for successful operation and quenching of the superconducting magnet were developed. 19 references

  14. Characterization of the radiation environment at the UNLV accelerator facility during operation of the Varian M6 linac

    International Nuclear Information System (INIS)

    Hodges, M.; Barzilov, A.; Chen, Y.; Lowe, D.

    2016-01-01

    The bremsstrahlung photon flux from the UNLV particle accelerator (Varian M6 model) was determined using MCNP5 code for 3 MeV and 6 MeV incident electrons. Human biological equivalent dose rates due to accelerator operation were evaluated using the photon flux with the flux-to-dose conversion factors. Dose rates were computed for the accelerator facility for M6 linac use under different operating conditions. The results showed that the use of collimators and linac internal shielding significantly reduced the dose rates throughout the facility. It was shown that the walls of the facility, in addition to the earthen berm enveloping the building, provide equivalent shielding to reduce dose rates outside to below the 2 mrem/h limit. - Highlights: • A 3/6 MeV electron accelerator equipped with a high energy x-ray target was studied. • Monte Carlo modeling of photon flux was carried out for three accelerator configurations. • Human biological equivalent doses were evaluated within the accelerator facility building.

  15. LEP superconducting cavity

    CERN Multimedia

    1995-01-01

    Engineers work in a clean room on one of the superconducting cavities for the upgrade to the LEP accelerator, known as LEP-2. The use of superconductors allow higher electric fields to be produced so that higher beam energies can be reached.

  16. AC/RF Superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, G [Jefferson Lab (United States)

    2014-07-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  17. AC/RF Superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, Gianluigi [JLAB

    2015-02-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  18. Status of the Chalk River superconducting heavy-ion cyclotron

    International Nuclear Information System (INIS)

    Ormrod, J.H.; Bigham, C.B.; Heighway, E.A.; Hoffmann, C.R.; Hulbert, J.A.; Schneider, H.R.

    1982-01-01

    The Chalk River four-sector K=520 superconducting cyclotron is designed to accelerate all ions from lithium (to 50 MeV/u) to uranium (to 10 MeV/u) using a 13 MV tandem Van de Graaff as injector. After an extended shutdown the magnet has been reassembled and field measurements resumed. During the shutdown a ground fault between the superconducting coil and its container was removed, the flutter poles were shimmed and the remaining trim rod holes were bored in them, the 104 trim rods with their holders were installed and the cryostat inner wall was modified to accept the radiofrequency accelerating structure. Experiments on the radiofrequency accelerating system, cryopumps, electrostatic deflector and superconducting windings for the magnetic channel are done in separate test chambers. Recent results and the status of all subsystems are given

  19. Conceptual design report: superconducting booster

    International Nuclear Information System (INIS)

    1983-01-01

    The Superconducting Booster project includes the construction of a new high-voltage injector and buncher for the existing tandem, a magnetic transport system, an rf linac with superconducting resonators, and a rebuncher-debuncher. The booster will fit in existing space so that a new building is not required. The layout of the accelerator is given in Fig. I-1. The University of Washington is contributing approximately $1 M to this project

  20. Powering and Machine Protection of the Superconducting LHC Accelerator

    CERN Document Server

    Zerlauth, M

    2004-01-01

    A very large number of magnets, both superconducting and conventional copper conductor magnets, are installed in the LHC (Large Hadron Collider) for the guidance of the two proton beams around the circumference. In total, the LHC counts 1614 different electrical circuits with 1712 power converters for DC powering of the superconducting and normal conducting magnets. Besides the electrical circuits connecting main magnets for bending and focusing of the two counter-rotating beams, the demanding requirements on the quality of the magnetic fields require a large number of circuits for corrector magnets distributed around the circumference. In total, more than 10000 magnets will need to be connected to the power converters via a large inventory of electrical components such as normal conducting cables and tubes, energy extraction systems, current feedthroughs and superconducting busbars. Depending on the complexity and importance of these electrical circuits and their components, various systems will interact for...