WorldWideScience

Sample records for super-resolution image reconstruction

  1. Single Image Super Resolution via Sparse Reconstruction

    NARCIS (Netherlands)

    Kruithof, M.C.; Eekeren, A.W.M. van; Dijk, J.; Schutte, K.

    2012-01-01

    High resolution sensors are required for recognition purposes. Low resolution sensors, however, are still widely used. Software can be used to increase the resolution of such sensors. One way of increasing the resolution of the images produced is using multi-frame super resolution algorithms. Limita

  2. Gibbs artifact reduction for POCS super-resolution image reconstruction

    Institute of Scientific and Technical Information of China (English)

    Chuangbai XIAO; Jing YU; Kaina SU

    2008-01-01

    The topic of super-resolution image reconstruc-tion has recently received considerable attention among the research community. Super-resolution image reconstruc-tion methods attempt to create a single high-resolution image from a number of low-resolution images (or a video sequence). The method of projections onto convex sets (POCS) for super-resolution image reconstruction attracts many researchers' attention. In this paper, we propose an improvement to reduce the amount of Gibbs artifacts pre-senting on the edges of the high-resolution image recon-structed by the POCS method. The proposed method weights the blur PSF centered at an edge pixel with an exponential function, and consequently decreases the coef-ficients of the PSF in the direction orthogonal to the edge. Experiment results show that the modification reduces effectively the visibility of Gibbs artifacts on edges and improves obviously the quality of the reconstructed high-resolution image.

  3. GF-4 Images Super Resolution Reconstruction Based on POCS

    Directory of Open Access Journals (Sweden)

    XU Lina

    2017-08-01

    Full Text Available The super resolution reconstruction of GF-4 is made by projection on convex sets (POCS. Papoulis-Gerchberg is used to construct reference frame which can reduce iteration and improve algorithm efficiency.Vandewalle is used to estimate motion parameter which is benefit to block process. Tested and analyzed by real GF-4 series images, it shows that sharpness of super resolution result is positive correlatie to frame amount, and signal to noise ratio (SNR is negative correlate to frame amount. After processing by 5 frames, information entropy (IE changes little; sharpness (average gradient increases from 7.803 to 14.386; SNR reduces a little, from 3.411 to 3.336. The experiment shows that after super resolution reconstruction, sharpness and detail information of results can be greatly improved.

  4. Application of Super-Resolution Image Reconstruction to Digital Holography

    Directory of Open Access Journals (Sweden)

    Zhang Shuqun

    2006-01-01

    Full Text Available We describe a new application of super-resolution image reconstruction to digital holography which is a technique for three-dimensional information recording and reconstruction. Digital holography has suffered from the low resolution of CCD sensors, which significantly limits the size of objects that can be recorded. The existing solution to this problem is to use optics to bandlimit the object to be recorded, which can cause the loss of details. Here super-resolution image reconstruction is proposed to be applied in enhancing the spatial resolution of digital holograms. By introducing a global camera translation before sampling, a high-resolution hologram can be reconstructed from a set of undersampled hologram images. This permits the recording of larger objects and reduces the distance between the object and the hologram. Practical results from real and simulated holograms are presented to demonstrate the feasibility of the proposed technique.

  5. Super-resolution reconstruction of hyperspectral images

    Science.gov (United States)

    Elbakary, Mohamed; Alam, Mohammad S.

    2007-04-01

    Hyperspectral imagery is used for a wide variety of applications, including target detection, tacking, agricultural monitoring and natural resources exploration. The main reason for using hyperspectral imagery is that these images reveal spectral information about the scene that are not available in a single band. Unfortunately, many factors such as sensor noise and atmospheric scattering degrade the spatial quality of these images. Recently, many algorithms are introduced in the literature to improve the resolution of hyperspectral images [7]. In this paper, we propose a new method to produce high resolution bands from low resolution bands that are strongly correlated to the corresponding high resolution panchromatic image. The proposed method is based on using the local correlation instead of using the global correlation to improve the estimated interpolation in order to construct the high resolution image. The utilization of local correlation significantly improved the resolution of high resolution images when compared to the corresponding results obtained using the traditional algorithms. The local correlation is implemented by using predefined small windows across the low resolution image. In addition, numerous experiments are conducted to investigate the effect of the chosen window size in the image quality. Experiments results obtained using real life hyperspectral imagery is presented to verify the effectiveness of the proposed algorithm.

  6. A Fast Super-Resolution Reconstruction from Image Sequence

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Based on the mechanism of imagery, a novel method called the delaminating combining template method, used for the problem of super-resolution reconstruction from image sequence, is described in this paper. The combining template method contains two steps: a delaminating strategy and a combining template algorithm. The delaminating strategy divides the original problem into several sub-problems;each of them is only connected to one degrading factor. The combining template algorithm is suggested to resolve each sub-problem. In addition, to verify the valid of the method, a new index called oriental entropy is presented. The results from the theoretical analysis and experiments illustrate that this method to be promising and efficient.

  7. Single image super-resolution reconstruction method based on LC-KSVD algorithm

    Science.gov (United States)

    Zhang, Yaolan; Liu, Yijun

    2017-05-01

    A good dictionary has direct impact to the result of super-resolution image reconstruction. For solving the problem that dictionary learning only contains representation ability but no class information using K-SVD algorithm, this paper proposes single image super-resolution algorithm based on LC-KSVD (Label consist K-SVD). The algorithm adds classifier parameter constraints into the process of dictionary learning and classifier parameters in the process, making the dictionary possess good representation and discrimination ability. The experimental results show that the algorithm has high reconstruction results and good robustness.

  8. Improved Wallis Dodging Algorithm for Large-Scale Super-Resolution Reconstruction Remote Sensing Images

    OpenAIRE

    Chong Fan; Xushuai Chen; Lei Zhong; Min Zhou; Yun Shi; Yulin Duan

    2017-01-01

    A sub-block algorithm is usually applied in the super-resolution (SR) reconstruction of images because of limitations in computer memory. However, the sub-block SR images can hardly achieve a seamless image mosaicking because of the uneven distribution of brightness and contrast among these sub-blocks. An effectively improved weighted Wallis dodging algorithm is proposed, aiming at the characteristic that SR reconstructed images are gray images with the same size and overlapping region. This ...

  9. Efficient super-resolution image reconstruction applied to surveillance video captured by small unmanned aircraft systems

    Science.gov (United States)

    He, Qiang; Schultz, Richard R.; Chu, Chee-Hung Henry

    2008-04-01

    The concept surrounding super-resolution image reconstruction is to recover a highly-resolved image from a series of low-resolution images via between-frame subpixel image registration. In this paper, we propose a novel and efficient super-resolution algorithm, and then apply it to the reconstruction of real video data captured by a small Unmanned Aircraft System (UAS). Small UAS aircraft generally have a wingspan of less than four meters, so that these vehicles and their payloads can be buffeted by even light winds, resulting in potentially unstable video. This algorithm is based on a coarse-to-fine strategy, in which a coarsely super-resolved image sequence is first built from the original video data by image registration and bi-cubic interpolation between a fixed reference frame and every additional frame. It is well known that the median filter is robust to outliers. If we calculate pixel-wise medians in the coarsely super-resolved image sequence, we can restore a refined super-resolved image. The primary advantage is that this is a noniterative algorithm, unlike traditional approaches based on highly-computational iterative algorithms. Experimental results show that our coarse-to-fine super-resolution algorithm is not only robust, but also very efficient. In comparison with five well-known super-resolution algorithms, namely the robust super-resolution algorithm, bi-cubic interpolation, projection onto convex sets (POCS), the Papoulis-Gerchberg algorithm, and the iterated back projection algorithm, our proposed algorithm gives both strong efficiency and robustness, as well as good visual performance. This is particularly useful for the application of super-resolution to UAS surveillance video, where real-time processing is highly desired.

  10. Super-Resolution Reconstruction of High-Resolution Satellite ZY-3 TLC Images.

    Science.gov (United States)

    Li, Lin; Wang, Wei; Luo, Heng; Ying, Shen

    2017-05-07

    Super-resolution (SR) image reconstruction is a technique used to recover a high-resolution image using the cumulative information provided by several low-resolution images. With the help of SR techniques, satellite remotely sensed images can be combined to achieve a higher-resolution image, which is especially useful for a two- or three-line camera satellite, e.g., the ZY-3 high-resolution Three Line Camera (TLC) satellite. In this paper, we introduce the application of the SR reconstruction method, including motion estimation and the robust super-resolution technique, to ZY-3 TLC images. The results show that SR reconstruction can significantly improve both the resolution and image quality of ZY-3 TLC images.

  11. Multicolor 3D super-resolution imaging by quantum dot stochastic optical reconstruction microscopy.

    Science.gov (United States)

    Xu, Jianquan; Tehrani, Kayvan F; Kner, Peter

    2015-03-24

    We demonstrate multicolor three-dimensional super-resolution imaging with quantum dots (QSTORM). By combining quantum dot asynchronous spectral blueing with stochastic optical reconstruction microscopy and adaptive optics, we achieve three-dimensional imaging with 24 nm lateral and 37 nm axial resolution. By pairing two short-pass filters with two appropriate quantum dots, we are able to image single blueing quantum dots on two channels simultaneously, enabling multicolor imaging with high photon counts.

  12. Super-Resolution Reconstruction of Image Sequence Using Multiple Motion Estimation Fusion

    Institute of Scientific and Technical Information of China (English)

    Cheng Wang; Run-Sheng Wang

    2004-01-01

    Super-resolution reconstruction algorithm produces a high-resolution image from a low-resolution image sequence. The accuracy and the stability of the motion estimation (ME) are essential for the whole restoration. In this paper, a new super-resolution reconstruction algorithm is developed using a robust ME method, which fuses multiple estimated motion vectors within the sequence. The new algorithm has two major improvements compared with the previous research. First, instead of only two frames, the whole sequence is used to obtain a more accurate and stable estimation of the motion vector of each frame; second, the reliability of the ME is quantitatively measured and introduced into the cost function of the reconstruction algorithm. The algorithm is applied to both synthetic and real sequences, and the results are presented in the paper.

  13. Single face image reconstruction for super resolution using support vector regression

    Science.gov (United States)

    Lin, Haijie; Yuan, Qiping; Chen, Zhihong; Yang, Xiaoping

    2016-10-01

    In recent years, we have witnessed the prosperity of the face image super-resolution (SR) reconstruction, especially the learning-based technology. In this paper, a novel super-resolution face reconstruction framework based on support vector regression (SVR) about a single image is presented. Given some input data, SVR can precisely predict output class labels. We regard the SR problem as the estimation of pixel labels in its high resolution version. It's effective to put local binary pattern (LBP) codes and partial pixels into input vectors during training models in our work, and models are learnt from a set of high and low resolution face image. By optimizing vector pairs which are used for learning model, the final reconstructed results were advanced. Especially to deserve to be mentioned, we can get more high frequency information by exploiting the cyclical scan actions in the process of both training and prediction. A large number of experimental data and visual observation have shown that our method outperforms bicubic interpolation and some stateof- the-art super-resolution algorithms.

  14. A novel algorithm of super-resolution image reconstruction based on multi-class dictionaries for natural scene

    Science.gov (United States)

    Wu, Wei; Zhao, Dewei; Zhang, Huan

    2015-12-01

    Super-resolution image reconstruction is an effective method to improve the image quality. It has important research significance in the field of image processing. However, the choice of the dictionary directly affects the efficiency of image reconstruction. A sparse representation theory is introduced into the problem of the nearest neighbor selection. Based on the sparse representation of super-resolution image reconstruction method, a super-resolution image reconstruction algorithm based on multi-class dictionary is analyzed. This method avoids the redundancy problem of only training a hyper complete dictionary, and makes the sub-dictionary more representatives, and then replaces the traditional Euclidean distance computing method to improve the quality of the whole image reconstruction. In addition, the ill-posed problem is introduced into non-local self-similarity regularization. Experimental results show that the algorithm is much better results than state-of-the-art algorithm in terms of both PSNR and visual perception.

  15. Super-Resolution Reconstruction of Remote Sensing Images Using Multifractal Analysis

    Directory of Open Access Journals (Sweden)

    Mao-Gui Hu

    2009-10-01

    Full Text Available Satellite remote sensing (RS is an important contributor to Earth observation, providing various kinds of imagery every day, but low spatial resolution remains a critical bottleneck in a lot of applications, restricting higher spatial resolution analysis (e.g., intraurban. In this study, a multifractal-based super-resolution reconstruction method is proposed to alleviate this problem. The multifractal characteristic is common in Nature. The self-similarity or self-affinity presented in the image is useful to estimate details at larger and smaller scales than the original. We first look for the presence of multifractal characteristics in the images. Then we estimate parameters of the information transfer function and noise of the low resolution image. Finally, a noise-free, spatial resolutionenhanced image is generated by a fractal coding-based denoising and downscaling method. The empirical case shows that the reconstructed super-resolution image performs well indetail enhancement. This method is not only useful for remote sensing in investigating Earth, but also for other images with multifractal characteristics.

  16. POCS Based Super-Resolution Image Reconstruction Using an Adaptive Regularization Parameter

    CERN Document Server

    Panda, S S; Jena, G

    2011-01-01

    Crucial information barely visible to the human eye is often embedded in a series of low-resolution images taken of the same scene. Super-resolution enables the extraction of this information by reconstructing a single image, at a high resolution than is present in any of the individual images. This is particularly useful in forensic imaging, where the extraction of minute details in an image can help to solve a crime. Super-resolution image restoration has been one of the most important research areas in recent years which goals to obtain a high resolution (HR) image from several low resolutions (LR) blurred, noisy, under sampled and displaced images. Relation of the HR image and LR images can be modeled by a linear system using a transformation matrix and additive noise. However, a unique solution may not be available because of the singularity of transformation matrix. To overcome this problem, POCS method has been used. However, their performance is not good because the effect of noise energy has been ign...

  17. An infrared image super-resolution reconstruction method based on compressive sensing

    Science.gov (United States)

    Mao, Yuxing; Wang, Yan; Zhou, Jintao; Jia, Haiwei

    2016-05-01

    Limited by the properties of infrared detector and camera lens, infrared images are often detail missing and indistinct in vision. The spatial resolution needs to be improved to satisfy the requirements of practical application. Based on compressive sensing (CS) theory, this thesis presents a single image super-resolution reconstruction (SRR) method. With synthetically adopting image degradation model, difference operation-based sparse transformation method and orthogonal matching pursuit (OMP) algorithm, the image SRR problem is transformed into a sparse signal reconstruction issue in CS theory. In our work, the sparse transformation matrix is obtained through difference operation to image, and, the measurement matrix is achieved analytically from the imaging principle of infrared camera. Therefore, the time consumption can be decreased compared with the redundant dictionary obtained by sample training such as K-SVD. The experimental results show that our method can achieve favorable performance and good stability with low algorithm complexity.

  18. Super-resolution image reconstruction methods applied to GFE-referenced navigation system

    Science.gov (United States)

    Yan, Lei; Lin, Yi; Tong, Qingxi

    2007-11-01

    The problem about reference grid data's overlarge spacing, which makes deviated estimation of un-surveyed points and poor accuracy of correlation positioning, has been embarrassing Geophysical Fields of the Earth (GFE) referenced navigation research. The super-resolution images reconstruction methods in remote sensing field give some inspiration, and its brief method, Maximum A-Posterior (MAP) based on Bayesian theory, is transplanted on grid data. The proposed algorithm named MAP-G can implement interpolation of reference data field by reflecting whole distribution trend. Comparison with traditional interpolation algorithms and simulation experiments on underwater terrain/gravity-aided navigation platform, indicate that MAP-G algorithm can effectively improve navigation's performance.

  19. Deep Learning- and Transfer Learning-Based Super Resolution Reconstruction from Single Medical Image

    Directory of Open Access Journals (Sweden)

    YiNan Zhang

    2017-01-01

    Full Text Available Medical images play an important role in medical diagnosis and research. In this paper, a transfer learning- and deep learning-based super resolution reconstruction method is introduced. The proposed method contains one bicubic interpolation template layer and two convolutional layers. The bicubic interpolation template layer is prefixed by mathematics deduction, and two convolutional layers learn from training samples. For saving training medical images, a SIFT feature-based transfer learning method is proposed. Not only can medical images be used to train the proposed method, but also other types of images can be added into training dataset selectively. In empirical experiments, results of eight distinctive medical images show improvement of image quality and time reduction. Further, the proposed method also produces slightly sharper edges than other deep learning approaches in less time and it is projected that the hybrid architecture of prefixed template layer and unfixed hidden layers has potentials in other applications.

  20. A Novel Super Resolution Reconstruction of Low Reoslution Images Progressively Using DCT and Zonal Filter Based Denoising

    Directory of Open Access Journals (Sweden)

    Liyakathunisa

    2011-02-01

    Full Text Available Due to the factors like processing power limitations and channel capabilities images are often down sampled and transmitted at low bit rates resulting in a low resolution compressed image. High resolutionimages can be reconstructed from several blurred, noisy and down sampled low resolution images using a computational process know as super resolution reconstruction. Super-resolution is the process ofcombining multiple aliased low-quality images to produce a high resolution, high-quality image. The problem of recovering a high resolution image progressively from a sequence of low resolutioncompressed images is considered. In this paper we propose a novel DCT based progressive image display algorithm by stressing on the encoding and decoding process. At the encoder we consider a set of lowresolution images which are corrupted by additive white Gaussian noise and motion blur. The low resolution images are compressed using 8 by 8 blocks DCT and noise is filtered using our proposed novelzonal filter. Multiframe fusion is performed in order to obtain a single noise free image. At the decoder the image is reconstructed progressively by transmitting the coarser image first followed by the detail image. And finally a super resolution image is reconstructed by applying our proposed novel adaptive interpolation technique. We have performed both objective and subjective analysis of the reconstructed image, and the resultant image has better super resolution factor, and a higher ISNR and PSNR. A comparative study done with Iterative Back Projection (IBP and Projection on to Convex Sets (POCS,Papoulis Grechberg, FFT based Super resolution Reconstruction shows that our method has out performed the previous contributions.

  1. A novel super resolution reconstruction of low reoslution images progressively using dct and zonal filter based denoising

    CERN Document Server

    Liyakathunisa,

    2011-01-01

    Due to the factors like processing power limitations and channel capabilities images are often down sampled and transmitted at low bit rates resulting in a low resolution compressed image. High resolution images can be reconstructed from several blurred, noisy and down sampled low resolution images using a computational process know as super resolution reconstruction. Super-resolution is the process of combining multiple aliased low-quality images to produce a high resolution, high-quality image. The problem of recovering a high resolution image progressively from a sequence of low resolution compressed images is considered. In this paper we propose a novel DCT based progressive image display algorithm by stressing on the encoding and decoding process. At the encoder we consider a set of low resolution images which are corrupted by additive white Gaussian noise and motion blur. The low resolution images are compressed using 8 by 8 blocks DCT and noise is filtered using our proposed novel zonal filter. Multifr...

  2. Color image super-resolution reconstruction based on POCS with edge preserving

    Science.gov (United States)

    Wang, Rui; Liang, Ying; Liang, Yu

    2015-10-01

    A color image super-resolution (SR) reconstruction based on an improved Projection onto Convex Sets (POCS) in YCbCr space is proposed. Compared with other methods, the POCS method is more intuitive and generally simple to implement. However, conventional POCS algorithm is strict to the accuracy of movement estimation and it is not conducive to the resumption of the edge and details of images. Addressed to these two problems, we on one hand improve the LOG operator to detect edges with the directions of +/-0°, +/-45°, +/-90°, +/-135° in order to inhibit the edge degradation. Then, by using the edge information, we proposed a self-adaptive edge-directed interpolation and a modified adaptive direction PSF to construct a reference image as well as to reduce the edge oscillation when revising the reference respectively. On the other hand, instead of block-matching, the Speeded up Robust Feature (SURF) matching algorithm, which can accurately extract the feature points with invariant to affine transform, rotation, scale, illumination changes, are utilized to improve the robustness and real-time in motion estimation. The performance of the proposed approach has been tested on several images and the obtained results demonstrate that it is competitive or rather better in quality and efficiency in comparison with the traditional POCS.

  3. Microsphere Super-resolution Imaging

    CERN Document Server

    Wang, Zengbo

    2015-01-01

    Recently, it was discovered that microsphere can generate super-resolution focusing beyond diffraction limit. This has led to the development of an exciting super-resolution imaging technique -microsphere nanoscopy- that features a record resolution of 50 nm under white lights. Different samples have been directly imaged in high resolution and real time without labelling, including both non-biological (nano devices, structures and materials) and biological (subcellular details, viruses) samples. This chapter reviews the technique, which covers its background, fundamentals, experiments, mechanisms as well as the future outlook.

  4. Correlative atomic force microscopy and localization-based super-resolution microscopy: revealing labelling and image reconstruction artefacts.

    Science.gov (United States)

    Monserrate, Aitor; Casado, Santiago; Flors, Cristina

    2014-03-17

    Hybrid microscopy: A correlative microscopy tool that combines in situ super-resolution fluorescence microscopy based on single-molecule localization and atomic force microscopy is presented. Direct comparison with high- resolution topography allows the authors to improve fluorescence labeling and image analysis in super-resolution imaging.

  5. Open-source image reconstruction of super-resolution structured illumination microscopy data in ImageJ

    Science.gov (United States)

    Müller, Marcel; Mönkemöller, Viola; Hennig, Simon; Hübner, Wolfgang; Huser, Thomas

    2016-03-01

    Super-resolved structured illumination microscopy (SR-SIM) is an important tool for fluorescence microscopy. SR-SIM microscopes perform multiple image acquisitions with varying illumination patterns, and reconstruct them to a super-resolved image. In its most frequent, linear implementation, SR-SIM doubles the spatial resolution. The reconstruction is performed numerically on the acquired wide-field image data, and thus relies on a software implementation of specific SR-SIM image reconstruction algorithms. We present fairSIM, an easy-to-use plugin that provides SR-SIM reconstructions for a wide range of SR-SIM platforms directly within ImageJ. For research groups developing their own implementations of super-resolution structured illumination microscopy, fairSIM takes away the hurdle of generating yet another implementation of the reconstruction algorithm. For users of commercial microscopes, it offers an additional, in-depth analysis option for their data independent of specific operating systems. As a modular, open-source solution, fairSIM can easily be adapted, automated and extended as the field of SR-SIM progresses.

  6. Super-resolution reconstruction and higher-degree function deformation model based matching for Chang’E-1 lunar images

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    This article intends to solve the matching problem of 2C level lunar images by Chang’E-1(CE-1)lunar probe satellite.A line-scanner image matching method is proposed which represents deformation by the quadric function along the camera motion direction and bases on the deformation model for a relief terrain’s imaging on sensors of the satellite borne three-line scanner camera.A precise matching is carried out for the normal view,the frontward view,and the backward view images of the CE-1 by combining the proposed method with the standard correlation method.A super-resolution(SR)reconstruction algorithm based on the wavelet interpolation of non-uniformly sampled data is also adopted to realize SR reconstruction of CE-1 lunar images,which adds the recognizable targets and explores CE-1 lunar images to the full.

  7. Super-resolution reconstruction and higher-degree function deformation model based matching for Chang'E-1 lunar images

    Institute of Scientific and Technical Information of China (English)

    LI LiChun; YU QiFeng; YUAN Yun; SHANG Yang; LU HongWei; SUN XiangYi

    2009-01-01

    This article intends to solve the matching problem of 2C level lunar images by Chang'E-1(CE-1)lunar probe satellite.A line-scanner image matching method is proposed which represents deformation by the quadric function along the camera motion direction and bases on the deformation model for a relief terrain's imaging on sensors of the satellite borne three-line scanner camera.A precise matching is carried out for the normal view,the frontward view,and the backward view images of the CE-1 by combining the proposed method with the standard correlation method.A super-resolution(SR)reconatruction algorithm based on the wavelet interpolation of non-uniformly sampled data is also adopted to realize SR reconstruction of CE-1 lunar images,which adds the recognizable targets and explores CE-1 lunar images to the full.

  8. Super-resolution reconstruction in frequency, image, and wavelet domains to reduce through-plane partial voluming in MRI

    Energy Technology Data Exchange (ETDEWEB)

    Gholipour, Ali, E-mail: ali.gholipour@childrens.harvard.edu; Afacan, Onur; Scherrer, Benoit; Prabhu, Sanjay P.; Warfield, Simon K. [Department of Radiology, Boston Children’s Hospital, Boston, Massachusetts 02115 and Harvard Medical School, Boston, Massachusetts 02115 (United States); Aganj, Iman [Radiology Department, Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts 02129 and Harvard Medical School, Boston, Massachusetts 02115 (United States); Sahin, Mustafa [Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts 02115 and Harvard Medical School, Boston, Massachusetts 02115 (United States)

    2015-12-15

    Purpose: To compare and evaluate the use of super-resolution reconstruction (SRR), in frequency, image, and wavelet domains, to reduce through-plane partial voluming effects in magnetic resonance imaging. Methods: The reconstruction of an isotropic high-resolution image from multiple thick-slice scans has been investigated through techniques in frequency, image, and wavelet domains. Experiments were carried out with thick-slice T2-weighted fast spin echo sequence on the Academic College of Radiology MRI phantom, where the reconstructed images were compared to a reference high-resolution scan using peak signal-to-noise ratio (PSNR), structural similarity image metric (SSIM), mutual information (MI), and the mean absolute error (MAE) of image intensity profiles. The application of super-resolution reconstruction was then examined in retrospective processing of clinical neuroimages of ten pediatric patients with tuberous sclerosis complex (TSC) to reduce through-plane partial voluming for improved 3D delineation and visualization of thin radial bands of white matter abnormalities. Results: Quantitative evaluation results show improvements in all evaluation metrics through super-resolution reconstruction in the frequency, image, and wavelet domains, with the highest values obtained from SRR in the image domain. The metric values for image-domain SRR versus the original axial, coronal, and sagittal images were PSNR = 32.26 vs 32.22, 32.16, 30.65; SSIM = 0.931 vs 0.922, 0.924, 0.918; MI = 0.871 vs 0.842, 0.844, 0.831; and MAE = 5.38 vs 7.34, 7.06, 6.19. All similarity metrics showed high correlations with expert ranking of image resolution with MI showing the highest correlation at 0.943. Qualitative assessment of the neuroimages of ten TSC patients through in-plane and out-of-plane visualization of structures showed the extent of partial voluming effect in a real clinical scenario and its reduction using SRR. Blinded expert evaluation of image resolution in

  9. Reconstruction of laser ultrasonic wavefield images from reduced sparse measurements using compressed sensing aided super-resolution

    Science.gov (United States)

    Park, Byeongjin; Sohn, Hoon

    2017-02-01

    Laser ultrasonic scanning is attractive for damage detection due to its noncontact nature, sensitivity to local damage, and high spatial resolution. However, its practicality is limited because scanning at a high spatial resolution demands a prohibitively long scanning time. Recently, compressed sensing (CS) and super-resolution (SR) are gaining popularity in the image recovery field. CS estimates unmeasured ultrasonic responses from measured responses, and SR recovers high spatial frequency information from low resolution images. Inspired by these techniques, a laser ultrasonic wavefield reconstruction technique is developed to localize and visualize damage with a reduced number of ultrasonic measurements. First, a low spatial resolution ultrasonic wavefield image for a given inspection region is reconstructed from reduced number of ultrasonic measurements using CS. Here, the ultrasonic waves are generated using a pulsed laser, and measured at a fixed sensing point using a laser Doppler vibrometer (LDV). Then, a high spatial resolution ultrasonic wave image is recovered from the reconstructed low spatial resolution image using SR. The number of measurement points required for ultrasonic wavefield imaging is significantly reduced over 90%. The performance of the proposed technique is validated by an experiment performed on a cracked aluminum plate.

  10. Enhanced Singular Value Decomposition based Fusion for Super Resolution Image Reconstruction

    Directory of Open Access Journals (Sweden)

    K. Joseph Abraham Sundar

    2015-11-01

    Full Text Available The singular value decomposition (SVD plays a very important role in the field of image processing for applications such as feature extraction, image compression, etc. The main objective is to enhance the resolution of the image based on Singular Value Decomposition. The original image and the subsequent sub-pixel shifted image, subjected to image registration is transferred to SVD domain. An enhanced method of choosing the singular values from the SVD domain images to reconstruct a high resolution image using fusion techniques is proposesed. This technique is called as enhanced SVD based fusion. Significant improvement in the performance is observed by applying enhanced SVD method preceding the various interpolation methods which are incorporated. The technique has high advantage and computationally fast which is most needed for satellite imaging, high definition television broadcasting, medical imaging diagnosis, military surveillance, remote sensing etc.

  11. Super resolution of images and video

    CERN Document Server

    Katsaggelos, Aggelos K

    2007-01-01

    This book focuses on the super resolution of images and video. The authors' use of the term super resolution (SR) is used to describe the process of obtaining a high resolution (HR) image, or a sequence of HR images, from a set of low resolution (LR) observations. This process has also been referred to in the literature as resolution enhancement (RE). SR has been applied primarily to spatial and temporal RE, but also to hyperspectral image enhancement. This book concentrates on motion based spatial RE, although the authors also describe motion free and hyperspectral image SR problems. Also exa

  12. Assessing resolution in super-resolution imaging.

    Science.gov (United States)

    Demmerle, Justin; Wegel, Eva; Schermelleh, Lothar; Dobbie, Ian M

    2015-10-15

    Resolution is a central concept in all imaging fields, and particularly in optical microscopy, but it can be easily misinterpreted. The mathematical definition of optical resolution was codified by Abbe, and practically defined by the Rayleigh Criterion in the late 19th century. The limit of conventional resolution was also achieved in this period, and it was thought that fundamental constraints of physics prevented further increases in resolution. With the recent development of a range of super-resolution techniques, it is necessary to revisit the concept of optical resolution. Fundamental differences in super-resolution modalities mean that resolution is not a directly transferrable metric between techniques. This article considers the issues in resolution raised by these new technologies, and presents approaches for comparing resolution between different super-resolution methods.

  13. Super-resolution near field imaging device

    DEFF Research Database (Denmark)

    2014-01-01

    Super-resolution imaging device comprising at least a first and a second elongated coupling element, each having a first transverse dimension at a first end and a second transverse dimension at a second end and being adapted for guiding light between their respective first and second ends, each...

  14. Super-resolution Microscopy in Plant Cell Imaging.

    Science.gov (United States)

    Komis, George; Šamajová, Olga; Ovečka, Miroslav; Šamaj, Jozef

    2015-12-01

    Although the development of super-resolution microscopy methods dates back to 1994, relevant applications in plant cell imaging only started to emerge in 2010. Since then, the principal super-resolution methods, including structured-illumination microscopy (SIM), photoactivation localization microscopy (PALM), stochastic optical reconstruction microscopy (STORM), and stimulated emission depletion microscopy (STED), have been implemented in plant cell research. However, progress has been limited due to the challenging properties of plant material. Here we summarize the basic principles of existing super-resolution methods and provide examples of applications in plant science. The limitations imposed by the nature of plant material are reviewed and the potential for future applications in plant cell imaging is highlighted.

  15. Super resolution imaging of HER2 gene amplification

    Science.gov (United States)

    Okada, Masaya; Kubo, Takuya; Masumoto, Kanako; Iwanaga, Shigeki

    2016-02-01

    HER2 positive breast cancer is currently examined by counting HER2 genes using fluorescence in situ hybridization (FISH)-stained breast carcinoma samples. In this research, two-dimensional super resolution fluorescence microscopy based on stochastic optical reconstruction microscopy (STORM), with a spatial resolution of approximately 20 nm in the lateral direction, was used to more precisely distinguish and count HER2 genes in a FISH-stained tissue section. Furthermore, by introducing double-helix point spread function (DH-PSF), an optical phase modulation technique, to super resolution microscopy, three-dimensional images were obtained of HER2 in a breast carcinoma sample approximately 4 μm thick.

  16. Color-Coded Super-Resolution Small-Molecule Imaging.

    Science.gov (United States)

    Beuzer, Paolo; La Clair, James J; Cang, Hu

    2016-06-02

    Although the development of super-resolution microscopy dates back to 1994, its applications have been primarily focused on visualizing cellular structures and targets, including proteins, DNA and sugars. We now report on a system that allows both monitoring of the localization of exogenous small molecules in live cells at low resolution and subsequent super-resolution imaging by using stochastic optical reconstruction microscopy (STORM) on fixed cells. This represents a powerful new tool to understand the dynamics of subcellular trafficking associated with the mode and mechanism of action of exogenous small molecules.

  17. Super-resolution fluorescence imaging of chromosomal DNA.

    Science.gov (United States)

    Zessin, Patrick J M; Finan, Kieran; Heilemann, Mike

    2012-02-01

    Super-resolution microscopy is a powerful tool for understanding cellular function. However one of the most important biomolecules - DNA - remains somewhat inaccessible because it cannot be effectively and appropriately labeled. Here, we demonstrate that robust and detailed super-resolution images of DNA can be produced by combining 5-ethynyl-2'-deoxyuridine (EdU) labeling using the 'click chemistry' approach and direct stochastic optical reconstruction microscopy (dSTORM). This method can resolve fine chromatin structure, and - when used in conjunction with pulse labeling - can reveal the paths taken by individual fibers through the nucleus. This technique should provide a useful tool for the study of nuclear structure and function.

  18. Single image super-resolution based on image patch classification

    Science.gov (United States)

    Xia, Ping; Yan, Hua; Li, Jing; Sun, Jiande

    2017-06-01

    This paper proposed a single image super-resolution algorithm based on image patch classification and sparse representation where gradient information is used to classify image patches into three different classes in order to reflect the difference between the different types of image patches. Compared with other classification algorithms, gradient information based algorithm is simpler and more effective. In this paper, each class is learned to get a corresponding sub-dictionary. High-resolution image patch can be reconstructed by the dictionary and sparse representation coefficients of corresponding class of image patches. The result of the experiments demonstrated that the proposed algorithm has a better effect compared with the other algorithms.

  19. Super-resolution of facial images in forensics scenarios

    DEFF Research Database (Denmark)

    Satiro, Joao; Nasrollahi, Kamal; Correia, Paulo

    2015-01-01

    Forensics facial images are usually provided by surveillance cameras and are therefore of poor quality and resolution. Simple upsampling algorithms can not produce artifact-free higher resolution images from such low-resolution (LR) images. To deal with that, reconstruction-based super-resolution......Forensics facial images are usually provided by surveillance cameras and are therefore of poor quality and resolution. Simple upsampling algorithms can not produce artifact-free higher resolution images from such low-resolution (LR) images. To deal with that, reconstruction-based super...

  20. Spatial covariance reconstructive (SCORE) super-resolution fluorescence microscopy.

    Science.gov (United States)

    Deng, Yi; Sun, Mingzhai; Lin, Pei-Hui; Ma, Jianjie; Shaevitz, Joshua W

    2014-01-01

    Super-resolution fluorescence microscopy has become a powerful tool to resolve structural information that is not accessible to traditional diffraction-limited imaging techniques such as confocal microscopy. Stochastic optical reconstruction microscopy (STORM) and photoactivation localization microscopy (PALM) are promising super-resolution techniques due to their relative ease of implementation and instrumentation on standard microscopes. However, the application of STORM is critically limited by its long sampling time. Several recent works have been focused on improving the STORM imaging speed by making use of the information from emitters with overlapping point spread functions (PSF). In this work, we present a fast and efficient algorithm that takes into account the blinking statistics of independent fluorescence emitters. We achieve sub-diffraction lateral resolution of 100 nm from 5 to 7 seconds of imaging. Our method is insensitive to background and can be applied to different types of fluorescence sources, including but not limited to the organic dyes and quantum dots that we demonstrate in this work.

  1. Spatial covariance reconstructive (SCORE super-resolution fluorescence microscopy.

    Directory of Open Access Journals (Sweden)

    Yi Deng

    Full Text Available Super-resolution fluorescence microscopy has become a powerful tool to resolve structural information that is not accessible to traditional diffraction-limited imaging techniques such as confocal microscopy. Stochastic optical reconstruction microscopy (STORM and photoactivation localization microscopy (PALM are promising super-resolution techniques due to their relative ease of implementation and instrumentation on standard microscopes. However, the application of STORM is critically limited by its long sampling time. Several recent works have been focused on improving the STORM imaging speed by making use of the information from emitters with overlapping point spread functions (PSF. In this work, we present a fast and efficient algorithm that takes into account the blinking statistics of independent fluorescence emitters. We achieve sub-diffraction lateral resolution of 100 nm from 5 to 7 seconds of imaging. Our method is insensitive to background and can be applied to different types of fluorescence sources, including but not limited to the organic dyes and quantum dots that we demonstrate in this work.

  2. Projections onto Convex Sets Super-Resolution Reconstruction Based on Point Spread Function Estimation of Low-Resolution Remote Sensing Images

    Science.gov (United States)

    Fan, Chong; Wu, Chaoyun; Li, Grand; Ma, Jun

    2017-01-01

    To solve the problem on inaccuracy when estimating the point spread function (PSF) of the ideal original image in traditional projection onto convex set (POCS) super-resolution (SR) reconstruction, this paper presents an improved POCS SR algorithm based on PSF estimation of low-resolution (LR) remote sensing images. The proposed algorithm can improve the spatial resolution of the image and benefit agricultural crop visual interpolation. The PSF of the high-resolution (HR) image is unknown in reality. Therefore, analysis of the relationship between the PSF of the HR image and the PSF of the LR image is important to estimate the PSF of the HR image by using multiple LR images. In this study, the linear relationship between the PSFs of the HR and LR images can be proven. In addition, the novel slant knife-edge method is employed, which can improve the accuracy of the PSF estimation of LR images. Finally, the proposed method is applied to reconstruct airborne digital sensor 40 (ADS40) three-line array images and the overlapped areas of two adjacent GF-2 images by embedding the estimated PSF of the HR image to the original POCS SR algorithm. Experimental results show that the proposed method yields higher quality of reconstructed images than that produced by the blind SR method and the bicubic interpolation method. PMID:28208837

  3. Projections onto Convex Sets Super-Resolution Reconstruction Based on Point Spread Function Estimation of Low-Resolution Remote Sensing Images.

    Science.gov (United States)

    Fan, Chong; Wu, Chaoyun; Li, Grand; Ma, Jun

    2017-02-13

    To solve the problem on inaccuracy when estimating the point spread function (PSF) of the ideal original image in traditional projection onto convex set (POCS) super-resolution (SR) reconstruction, this paper presents an improved POCS SR algorithm based on PSF estimation of low-resolution (LR) remote sensing images. The proposed algorithm can improve the spatial resolution of the image and benefit agricultural crop visual interpolation. The PSF of the highresolution (HR) image is unknown in reality. Therefore, analysis of the relationship between the PSF of the HR image and the PSF of the LR image is important to estimate the PSF of the HR image by using multiple LR images. In this study, the linear relationship between the PSFs of the HR and LR images can be proven. In addition, the novel slant knife-edge method is employed, which can improve the accuracy of the PSF estimation of LR images. Finally, the proposed method is applied to reconstruct airborne digital sensor 40 (ADS40) three-line array images and the overlapped areas of two adjacent GF-2 images by embedding the estimated PSF of the HR image to the original POCS SR algorithm. Experimental results show that the proposed method yields higher quality of reconstructed images than that produced by the blind SR method and the bicubic interpolation method.

  4. Multiframe Blind Super Resolution Imaging Based on Blind Deconvolution

    Institute of Scientific and Technical Information of China (English)

    元伟; 张立毅

    2016-01-01

    As an ill-posed problem, multiframe blind super resolution imaging recovers a high resolution image from a group of low resolution images with some degradations when the information of blur kernel is limited. Note that the quality of the recovered image is influenced more by the accuracy of blur estimation than an advanced regularization. We study the traditional model of the multiframe super resolution and modify it for blind deblurring. Based on the analysis, we proposed two algorithms. The first one is based on the total variation blind deconvolution algorithm and formulated as a functional for optimization with the regularization of blur. Based on the alternating minimization and the gradient descent algorithm, the high resolution image and the unknown blur kernel are esti-mated iteratively. By using the median shift and add operator, the second algorithm is more robust to the outlier influence. The MSAA initialization simplifies the interpolation process to reconstruct the blurred high resolution image for blind deblurring and improves the accuracy of blind super resolution imaging. The experimental results demonstrate the superiority and accuracy of our novel algorithms.

  5. 超分辨率图像重建方法综述%Survey of Super-resolution Image Reconstruction Methods

    Institute of Scientific and Technical Information of China (English)

    苏衡; 周杰; 张志浩

    2013-01-01

    Because of its extensive practical and theoretical values,the super-resolution image reconstruction (SRIR or SR) technique has become a hot topic in the areas of computer vision and image processing,attracting many researchers' attentions.This paper categorizes the SR problems according to their input and output conditions into three main categories:reconstruction-based SR,video SR and single image SR.For each category,the development history,common algorithm classes and state-of-the-art research achievements are reviewed comprehensively.We also analyze the characteristics of different algorithms.Afterwards,we discuss the combination of different super-resolution categories and the evaluation of image and video qualities.Thoughts and foresights of this field are given at the end of this paper.%由于广泛的实用价值与理论价值,超分辨率图像重建(Super-resolution image reconstruction,SRIR或SR)技术成为计算机视觉与图像处理领域的一个研究热点,引起了研究者的广泛关注.本文将超分辨率图像重建问题按照不同的输入输出情况进行系统分类,将超分辨率问题分为基于重建的超分辨率、视频超分辨率、单帧图像超分辨率三大类.对于其中每一大类问题,分别全面综述了该问题的发展历史、常用算法的分类及当前的最新研究成果等各种相关问题,并对不同算法的特点进行了比较分析.本文随后讨论了各不同类别超分辨率算法的互相融合和图像视频质量评价的方法,最后给出了对这一领域未来发展的思考与展望.

  6. Three-dimensional super-resolution structured illumination microscopy with maximum a posteriori probability image estimation.

    Science.gov (United States)

    Lukeš, Tomáš; Křížek, Pavel; Švindrych, Zdeněk; Benda, Jakub; Ovesný, Martin; Fliegel, Karel; Klíma, Miloš; Hagen, Guy M

    2014-12-01

    We introduce and demonstrate a new high performance image reconstruction method for super-resolution structured illumination microscopy based on maximum a posteriori probability estimation (MAP-SIM). Imaging performance is demonstrated on a variety of fluorescent samples of different thickness, labeling density and noise levels. The method provides good suppression of out of focus light, improves spatial resolution, and allows reconstruction of both 2D and 3D images of cells even in the case of weak signals. The method can be used to process both optical sectioning and super-resolution structured illumination microscopy data to create high quality super-resolution images.

  7. Super-resolution thermographic imaging using blind structured illumination

    Science.gov (United States)

    Burgholzer, Peter; Berer, Thomas; Gruber, Jürgen; Mayr, Günther

    2017-07-01

    Using an infrared camera for thermographic imaging allows the contactless temperature measurement of many surface pixels simultaneously. From the measured surface data, the structure below the surface, embedded inside a sample or tissue, can be reconstructed and imaged, if heated by an excitation light pulse. The main drawback in active thermographic imaging is the degradation of the spatial resolution with the imaging depth, which results in blurred images for deeper lying structures. We circumvent this degradation by using blind structured illumination combined with a non-linear joint sparsity reconstruction algorithm. We demonstrate imaging of a line pattern and a star-shaped structure through a 3 mm thick steel sheet with a resolution four times better than the width of the thermal point-spread-function. The structured illumination is realized by parallel slits cut in an aluminum foil, where the excitation coming from a flashlight can penetrate. This realization of super-resolution thermographic imaging demonstrates that blind structured illumination allows thermographic imaging without high degradation of the spatial resolution for deeper lying structures. The groundbreaking concept of super-resolution can be transferred from optics to diffusive imaging by defining a thermal point-spread-function, which gives the principle resolution limit for a certain signal-to-noise ratio, similar to the Abbe limit for a certain optical wavelength. In future work, the unknown illumination pattern could be the speckle pattern generated by a short laser pulse inside a light scattering sample or tissue.

  8. 基于DSP系统的超分辨率图像重建技术研究%Super-Resolution Image Reconstruction Technology Based on DSP System

    Institute of Scientific and Technical Information of China (English)

    邓建青; 刘晶红; 刘铁军

    2012-01-01

    Because of the limitations of cost and size of the navigation photo-electricity equipments, it is necessary to get images or videos as clear as possible without changing the structure of navigation photo-electricity equipments. This paper introduces a method based on DSP image processing system to realize super-resolution reconstruction which realizes motion estimation by the united optimized algorithm of Fourier-Mellin and Keren firstly, and achieves super-resolution image reconstruction based on projection onto convex sets,lastly, realizes the method on DSP by optimizes the method based on the feature of DM642 without reducing the accuracy . This method improves the resolving power of the image system without increasing the size of the system structure as well as enhance the identify ability of the system. This paper has proposed to realize super-resolution reconstruction on the embedded image processing platform which the core is DM642, the resolution of camera is 720×576, and the reconstruction time decreases to 20 s from several minutes or even several ten minutes. Experiment results indicate that the detail of reconstruction image is clearer than that of the single frame interpolation image, and the average gradient and the information entropy also get improved.%由于航空光电设备造价与体积等的限制,需要在不改变航空光电设备硬件结构的前提下,获取尽可能清晰的图像或视频.文章提出了基于DSP图像处理系统的超分辨率重建方法,首先利用Fourier-Mellin变换法和Keren算法的联合优化算法进行运动估计;然后利用基于边缘保持的凸集投影简化方法进行超分辨率重建;最终结合DM642的特征,在不降低精度的前提下,对算法进行优化实现.该方法在不增加系统结构体积和成本的前提下,有效地提高了成像系统的分辨力,进而提高系统的目标识别能力.在以DM642为核心嵌入式图像处理平台中实现超分辨率重建实

  9. 3D super-resolution imaging by localization microscopy.

    Science.gov (United States)

    Magenau, Astrid; Gaus, Katharina

    2015-01-01

    Fluorescence microscopy is an important tool in all fields of biology to visualize structures and monitor dynamic processes and distributions. Contrary to conventional microscopy techniques such as confocal microscopy, which are limited by their spatial resolution, super-resolution techniques such as photoactivated localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM) have made it possible to observe and quantify structure and processes on the single molecule level. Here, we describe a method to image and quantify the molecular distribution of membrane-associated proteins in two and three dimensions with nanometer resolution.

  10. Fast super-resolution imaging with ultra-high labeling density achieved by joint tagging super-resolution optical fluctuation imaging.

    Science.gov (United States)

    Zeng, Zhiping; Chen, Xuanze; Wang, Hening; Huang, Ning; Shan, Chunyan; Zhang, Hao; Teng, Junlin; Xi, Peng

    2015-02-10

    Previous stochastic localization-based super-resolution techniques are largely limited by the labeling density and the fidelity to the morphology of specimen. We report on an optical super-resolution imaging scheme implementing joint tagging using multiple fluorescent blinking dyes associated with super-resolution optical fluctuation imaging (JT-SOFI), achieving ultra-high labeling density super-resolution imaging. To demonstrate the feasibility of JT-SOFI, quantum dots with different emission spectra were jointly labeled to the tubulin in COS7 cells, creating ultra-high density labeling. After analyzing and combining the fluorescence intermittency images emanating from spectrally resolved quantum dots, the microtubule networks are capable of being investigated with high fidelity and remarkably enhanced contrast at sub-diffraction resolution. The spectral separation also significantly decreased the frame number required for SOFI, enabling fast super-resolution microscopy through simultaneous data acquisition. As the joint-tagging scheme can decrease the labeling density in each spectral channel, thereby bring it closer to single-molecule state, we can faithfully reconstruct the continuous microtubule structure with high resolution through collection of only 100 frames per channel. The improved continuity of the microtubule structure is quantitatively validated with image skeletonization, thus demonstrating the advantage of JT-SOFI over other localization-based super-resolution methods.

  11. Fast Super-Resolution Imaging with Ultra-High Labeling Density Achieved by Joint Tagging Super-Resolution Optical Fluctuation Imaging

    Science.gov (United States)

    Zeng, Zhiping; Chen, Xuanze; Wang, Hening; Huang, Ning; Shan, Chunyan; Zhang, Hao; Teng, Junlin; Xi, Peng

    2015-01-01

    Previous stochastic localization-based super-resolution techniques are largely limited by the labeling density and the fidelity to the morphology of specimen. We report on an optical super-resolution imaging scheme implementing joint tagging using multiple fluorescent blinking dyes associated with super-resolution optical fluctuation imaging (JT-SOFI), achieving ultra-high labeling density super-resolution imaging. To demonstrate the feasibility of JT-SOFI, quantum dots with different emission spectra were jointly labeled to the tubulin in COS7 cells, creating ultra-high density labeling. After analyzing and combining the fluorescence intermittency images emanating from spectrally resolved quantum dots, the microtubule networks are capable of being investigated with high fidelity and remarkably enhanced contrast at sub-diffraction resolution. The spectral separation also significantly decreased the frame number required for SOFI, enabling fast super-resolution microscopy through simultaneous data acquisition. As the joint-tagging scheme can decrease the labeling density in each spectral channel, thereby bring it closer to single-molecule state, we can faithfully reconstruct the continuous microtubule structure with high resolution through collection of only 100 frames per channel. The improved continuity of the microtubule structure is quantitatively validated with image skeletonization, thus demonstrating the advantage of JT-SOFI over other localization-based super-resolution methods. PMID:25665878

  12. Near-Infrared Super Resolution Imaging with Metallic Nanoshell Particle Chain Array

    CERN Document Server

    Kong, Weijie; Cao, Penfei; Cheng, Lin; Gong, Li; Zhao, Xining; Yang, Lili

    2012-01-01

    We propose a near-infrared super resolution imaging system without a lens or a mirror but with an array of metallic nanoshell particle chain. The imaging array can plasmonically transfer the near-field components of dipole sources in the incoherent and coherent manners and the super resolution images can be reconstructed in the output plane. By tunning the parameters of the metallic nanoshell particle, the plasmon resonance band of the isolate nanoshell particle red-shifts to the near-infrared region. The near-infrared super resolution images are obtained subsequently. We calculate the field intensity distribution at the different planes of imaging process using the finite element method and find that the array has super resolution imaging capability at near-infrared wavelengths. We also show that the image formation highly depends on the coherence of the dipole sources and the image-array distance.

  13. A Super-resolution Reconstruction Algorithm for Surveillance Video

    Directory of Open Access Journals (Sweden)

    Jian Shao

    2017-01-01

    Full Text Available Recent technological developments have resulted in surveillance video becoming a primary method of preserving public security. Many city crimes are observed in surveillance video. The most abundant evidence collected by the police is also acquired through surveillance video sources. Surveillance video footage offers very strong support for solving criminal cases, therefore, creating an effective policy, and applying useful methods to the retrieval of additional evidence is becoming increasingly important. However, surveillance video has had its failings, namely, video footage being captured in low resolution (LR and bad visual quality. In this paper, we discuss the characteristics of surveillance video and describe the manual feature registration – maximum a posteriori – projection onto convex sets to develop a super-resolution reconstruction method, which improves the quality of surveillance video. From this method, we can make optimal use of information contained in the LR video image, but we can also control the image edge clearly as well as the convergence of the algorithm. Finally, we make a suggestion on how to adjust the algorithm adaptability by analyzing the prior information of target image.

  14. Subsurface Super-resolution Imaging of Unstained Polymer Nanostructures

    Science.gov (United States)

    Urban, Ben E.; Dong, Biqin; Nguyen, The-Quyen; Backman, Vadim; Sun, Cheng; Zhang, Hao F.

    2016-06-01

    Optical imaging has offered unique advantages in material researches, such as spectroscopy and lifetime measurements of deeply embedded materials, which cannot be matched using electron or scanning-probe microscopy. Unfortunately, conventional optical imaging cannot provide the spatial resolutions necessary for many nanoscopic studies. Despite recent rapid progress, super-resolution optical imaging has yet to be widely applied to non-biological materials. Herein we describe a method for nanoscopic optical imaging of buried polymer nanostructures without the need for extrinsic staining. We observed intrinsic stochastic fluorescence emission or blinking from unstained polymers and performed spatial-temporal spectral analysis to investigate its origin. We further applied photon localization super-resolution imaging reconstruction to the detected stochastic blinking, and achieved a spatial resolution of at least 100 nm, which corresponds to a six-fold increase over the optical diffraction limit. This work demonstrates the potential for studying the static heterogeneities of intrinsic polymer molecular-specific properties at sub-diffraction-limited optical resolutions.

  15. Super-resolution imaging in glycoscience: New developments and challenges

    Directory of Open Access Journals (Sweden)

    Junling Chen

    2016-05-01

    Full Text Available Carbohydrates on cell surfaces play a crucial role in a wide variety of biological processes, including cell adhesion, recognition and signaling, viral and bacterial infection, inflammation and metastasis. However, owing to the large diversity and complexity of carbohydrate structure and nongenetically synthesis, glycoscience is the least understood field compared with genomics and proteomics. Although the structures and functions of carbohydrates have been investigated by various conventional analysis methods, the distribution and role of carbohydrates in cell membranes remain elusive. This review focuses on the developments and challenges of super-resolution imaging in glycoscience through introduction of imaging principle and the available fluorescent probes for super-resolution imaging, the labeling strategies of carbohydrates, and the recent applications of super-resolution imaging in glycoscience, which will promote the super-resolution imaging technology as a promising tool to provide new insights into the study of glycoscience.

  16. Image Super-Resolution Using Deep Convolutional Networks.

    Science.gov (United States)

    Dong, Chao; Loy, Chen Change; He, Kaiming; Tang, Xiaoou

    2016-02-01

    We propose a deep learning method for single image super-resolution (SR). Our method directly learns an end-to-end mapping between the low/high-resolution images. The mapping is represented as a deep convolutional neural network (CNN) that takes the low-resolution image as the input and outputs the high-resolution one. We further show that traditional sparse-coding-based SR methods can also be viewed as a deep convolutional network. But unlike traditional methods that handle each component separately, our method jointly optimizes all layers. Our deep CNN has a lightweight structure, yet demonstrates state-of-the-art restoration quality, and achieves fast speed for practical on-line usage. We explore different network structures and parameter settings to achieve trade-offs between performance and speed. Moreover, we extend our network to cope with three color channels simultaneously, and show better overall reconstruction quality.

  17. Super-resolution phase reconstruction technique in electron holography with a stage-scanning system

    Science.gov (United States)

    Lei, Dan; Mitsuishi, Kazutaka; Harada, Ken; Shimojo, Masayuki; Ju, Dongying; Takeguchi, Masaki

    2014-02-01

    Super-resolution image reconstruction is a digital signal processing technique that allows creating a high-resolution image from multiple low-resolution images taken at slightly different positions. We introduce the super-resolution image reconstruction technique into electron holography for reconstructing phase images as follows: the studied specimen is shifted step-wise with a high-precision piezo holder, and a series of holograms is recorded. When the step size is not a multiple of the CCD pixel size, processing of the acquired series results in a higher pixel density and spatial resolution as compared to the phase image obtained with conventional holography. The final resolution exceeds the limit of the CCD pixel size divided by the magnification.

  18. Super Resolution Imaging Applied to Scientific Images

    Science.gov (United States)

    2007-05-01

    investigator, (3) development of Papoulis -Gerchberg method to implement the analytic continuation of spectral details, (4) exploration of contourlet and...off with noise present in the observation. In [30] we make use of Papoulis -Gerchberg algorithm of signal extrapolation to perform Image super...we have used a training database consisting of high resolution images. For Papoulis -Gerchberg method number of iterations and the filter used both

  19. A theoretical analysis of the super-resolution capacity of imagers using speckle illuminations

    CERN Document Server

    Idier, Jérôme; Liu, Penghuan; Allain, Marc; Bourguignon, Sébastien; Sentenac, Anne

    2015-01-01

    Speckle based imaging consists in forming a super-resolved reconstruction of an unknown object from low-resolution images obtained under random inhomogeneous illuminations (speckles). However, the origin of this super-resolution is unclear. In this work, we demonstrate that, under physically realistic conditions, the correlation of the data have a super-resolution power corresponding to the squaring of the imager point spread function. This theoretical result is important for many practical imaging systems such as acoustic and electromagnetic tomographies, fluorescence and photoacoustic microscopies or synthetic aperture radar imaging.

  20. Infrared super-resolution imaging method based on retina micro-motion

    Science.gov (United States)

    Sui, Xiubao; Gao, Hang; Sun, Yicheng; Chen, Qian; Gu, Guohua

    2013-09-01

    With the wide application of infrared focal plane arrays (IRFPA), military, aerospace, public security and other applications have higher and higher requirements on the spatial resolution of infrared images. However, traditional super-resolution imaging methods have increasingly unable to meet this requirement in technology. In this paper, we adopt the achievement that the human retina micro-motion is the important reason why the human has the hyperacuity ability. Based on the achievement, we bring forward an infrared super-resolution imaging method based on retina micro-motion. In the method, we use the piezoelectric ceramic equipment to control the infrared detector moving variably within a plane parallel to the focal plane. The motion direction is toward each other into a direction of 90°. In the four directions of the movement, we get four sub-images and generate a high spatial resolution infrared image by image interpolation method. In the process of the shifting movement of the detector, we set the threshold of the detector response and record the response time difference when adjacent pixel responses are up to the threshold. By the method, we get the object's edges, enhance them in the high resolution infrared image and get the super-resolution infrared image. The experimental results show that our proposed super-resolution imaging methods can improve the spatial resolution of the infrared image effectively. The method will offer a new idea for the super-resolution reconstruction of infrared images.

  1. Nanoprobes for super-resolution fluorescence imaging at the nanoscale

    Institute of Scientific and Technical Information of China (English)

    HOU ShangGuo; LIANG Le; DENG SuHui; CHEN JianFang; HUANG Qing; CHENG Ya; FAN ChunHai

    2014-01-01

    Compared with other imaging techniques,fluorescence microscopy has become an essential tool to study cell biology due to its high compatibility with living cells.Owing to the resolution limit set by the diffraction of light,fluorescence microscopy could not resolve the nanostructures in the range of〈200 nm.Recently,many techniques have been emerged to overcome the diffraction barrier,providing nanometer spatial resolution.In the course of development,the progress in fluorescent probes has helped to promote the development of the high-resolution fluorescence nanoscopy.Here,we describe the contributions of the fluorescent probes to far-field super resolution imaging,focusing on concepts of the existing super-resolution nanoscopy based on the photophysics of fluorescent nanoprobes,like photoswitching,bleaching and blinking.Fluorescent probe technology is crucial in the design and implementation of super-resolution imaging methods.

  2. Photostable and photoswitching fluorescent dyes for super-resolution imaging.

    Science.gov (United States)

    Minoshima, Masafumi; Kikuchi, Kazuya

    2017-01-12

    Super-resolution fluorescence microscopy is a recently developed imaging tool for biological researches. Several methods have been developed for detection of fluorescence signals from molecules in a subdiffraction-limited area, breaking the diffraction limit of the conventional optical microscopies and allowing visualization of detailed macromolecular structures in cells. As objectives are exposed to intense laser in the optical systems, fluorophores for super-resolution microscopy must be tolerated even under severe light irradiation conditions. The fluorophores must also be photoactivatable and photoswitchable for single-molecule localization-based super-resolution microscopy, because the number of active fluorophores must be controlled by light irradiation. This has led to growing interest in these properties in the development of fluorophores. In this mini-review, we focus on the development of photostable and photoswitching fluorescent dyes for super-resolution microscopy. We introduce recent efforts, including improvement of fluorophore photostability and control of photoswitching behaviors of fluorophores based on photochemical and photophysical processes. Understanding and manipulation of chemical reactions in excited fluorophores can develop highly photostable and efficiently photoswitchable fluorophores that are suitable for super-resolution imaging applications.

  3. Moon Rover Image Super-Resolution Reconstruction Algorithm%月球车图像超分辨率重建算法

    Institute of Scientific and Technical Information of China (English)

    魏士俨; 申振荣; 张烁; 刘少创

    2013-01-01

    For moon rover navigation and exploration mission during the 2nd stage of Chang' e project, high-resolution images are necessary. So a moon rover image super-resolution reconstruction algorithm via using compressed sensing was presented. The target is to reconstruct an original image from its blurred and down-scaled noisy version. The algorithm assumed a local Sparse-Land model on image patches, serving as regularization. The images from Apollo Project, tests in the 2nd stage of Chang'e project and natural image database were used in extracting patches for building two dictionaries. The K-SVD algorithm was used in training the dictionaries. Then the effective segmentation was implemented on low-resolution image. Through solving optimization problem via orthogonal matching pursuit algorithm, the sparse representation for each low-resolution image patch with respect to A, was obtained, and the representation coefficients were applied to Ah in order to generate the corresponding high-resolution image patch. At the end of experiment the high-resolution image which satisfied the reconstruction constraint was achieved by using least squares algorithm. Numerical experiments about moon rover images from tests in the 2nd stage of Chang'e project demonstrated the effectiveness of the proposed algorithm. Moreover, the proposed algorithm outperforms bicubic interpolation based method and the algorithm via Yang in terms of visual quality and the peak signal to noise ratio.%为了更好地满足嫦娥探月工程二期中月球车导航和探测规划任务对图像数据的要求,提出了一种基于压缩感知的超分辨率图像重建方法,利用经过模糊处理并加入噪声的低分辨率图像重建原始的高分辨率图像,实现了月球车图像的超分辨率重建.算法采用局部Sparse-Land模型,从美国阿波罗计划获取的月面图像、嫦娥二期工程实验中获取的图像以及随机选取的自然图像中提取了大量训练图块,采用K

  4. Super-resolution Restoration of Remote-sensing Images

    Institute of Scientific and Technical Information of China (English)

    LIU Yang-yang; JIN Wei-qi; SU Bing-hua; CHEN Hua; ZHANG Nan

    2006-01-01

    A novel image restoration scheme, which is super-resolution image restoration algorithm Poisson-maximum-afterword-probability based on Markvo constraint (MPMAP) combined with evaluating image detail parameter D, has been proposed. The advantage of super-resolution algorithm MPMAP incorporated with parameter D lies in the fact that super-resolution algorithm MPMAP model is discrete, which is in accordance with remote-sensing imaging model, and the algorithm MPMAP is proved applicable to linear and non-linear imaging models with a unique solution when noise is not severe. According to simulation experiments for practical images, super-resolution algorithm MPMAP can retain image details better than most of traditional restoration methods; at the same time, the proposed parameter D can help to identify real point spread function (PSF) value of degradation process. Processing result of practical remote-sensing images by MPMAP combined with parameter D are given, it illustrates that MPMAP restoration scheme combined PSF estimation has a better restoration result than that of Photoshop processing, based on the same original images. It is proved that the proposed scheme is helpful to offset the lack of resolution of the original remote-sensing images and has its extensive application foreground.

  5. Robust Microbubble Tracking for Super Resolution Imaging in Ultrasound

    DEFF Research Database (Denmark)

    Hansen, kristoffer B; Villagómez-Hoyos, Carlos A; Brasen, Jens Christian

    2016-01-01

    Currently ultrasound resolution is limited by diffraction to approximately half the wavelength of the sound wave employed. In recent years, super resolution imaging techniques have overcome the diffraction limit through the localization and tracking of a sparse set of microbubbles through...... the vasculature. However, this has only been performed on fixated tissue, limiting its clinical application. This paper proposes a technique for making super resolution images on non-fixated tissue by first compensating for tissue movement and then tracking the individual microbubbles. The experiment is performed...

  6. Magnetic Resonance Super-resolution Imaging Measurement with Dictionary-optimized Sparse Learning

    Science.gov (United States)

    Li, Jun-Bao; Liu, Jing; Pan, Jeng-Shyang; Yao, Hongxun

    2017-06-01

    Magnetic Resonance Super-resolution Imaging Measurement (MRIM) is an effective way of measuring materials. MRIM has wide applications in physics, chemistry, biology, geology, medical and material science, especially in medical diagnosis. It is feasible to improve the resolution of MR imaging through increasing radiation intensity, but the high radiation intensity and the longtime of magnetic field harm the human body. Thus, in the practical applications the resolution of hardware imaging reaches the limitation of resolution. Software-based super-resolution technology is effective to improve the resolution of image. This work proposes a framework of dictionary-optimized sparse learning based MR super-resolution method. The framework is to solve the problem of sample selection for dictionary learning of sparse reconstruction. The textural complexity-based image quality representation is proposed to choose the optimal samples for dictionary learning. Comprehensive experiments show that the dictionary-optimized sparse learning improves the performance of sparse representation.

  7. Single image super-resolution with multiscale similarity learning.

    Science.gov (United States)

    Zhang, Kaibing; Gao, Xinbo; Tao, Dacheng; Li, Xuelong

    2013-10-01

    Example learning-based image super-resolution (SR) is recognized as an effective way to produce a high-resolution (HR) image with the help of an external training set. The effectiveness of learning-based SR methods, however, depends highly upon the consistency between the supporting training set and low-resolution (LR) images to be handled. To reduce the adverse effect brought by incompatible high-frequency details in the training set, we propose a single image SR approach by learning multiscale self-similarities from an LR image itself. The proposed SR approach is based upon an observation that small patches in natural images tend to redundantly repeat themselves many times both within the same scale and across different scales. To synthesize the missing details, we establish the HR-LR patch pairs using the initial LR input and its down-sampled version to capture the similarities across different scales and utilize the neighbor embedding algorithm to estimate the relationship between the LR and HR image pairs. To fully exploit the similarities across various scales inside the input LR image, we accumulate the previous resultant images as training examples for the subsequent reconstruction processes and adopt a gradual magnification scheme to upscale the LR input to the desired size step by step. In addition, to preserve sharper edges and suppress aliasing artifacts, we further apply the nonlocal means method to learn the similarity within the same scale and formulate a nonlocal prior regularization term to well pose SR estimation under a reconstruction-based SR framework. Experimental results demonstrate that the proposed method can produce compelling SR recovery both quantitatively and perceptually in comparison with other state-of-the-art baselines.

  8. Super resolution reconstruction of moving objects from low resolution surveillance video

    Institute of Scientific and Technical Information of China (English)

    Wang Suyu; Shen Lansun; David Daganfeng; Li Xiaoguang

    2008-01-01

    Construction of high resolution images from low resolution sequences having rigid or semi-rigid objects with unified motions is often important in surveillance and other applications. In this paper a novel object-based super resolution reconstruction scheme was proposed, in which a six-parameter affine model-based object tracking and registration method was first used to segment and match objects among a sequence of low resolution frames. The motion model was then further extended to the traditional maximum a posterior (MAP) super resolution algorithm. The proposed object tracking and registration method was evaluated by both simulated and real acquired sequences. The results have demonstrated the high accuracy of the proposed object based method and the enhanced reconstruction performance of the extended approach.

  9. Comparison of Super Resolution Reconstruction Acquisition Geometries for Use in Mouse Phenotyping

    Directory of Open Access Journals (Sweden)

    Niranchana Manivannan

    2013-01-01

    Full Text Available 3D isotropic imaging at high spatial resolution (30–100 microns is important for comparing mouse phenotypes. 3D imaging at high spatial resolutions is limited by long acquisition times and is not possible in many in vivo settings. Super resolution reconstruction (SRR is a postprocessing technique that has been proposed to improve spatial resolution in the slice-select direction using multiple 2D multislice acquisitions. Any 2D multislice acquisition can be used for SRR. In this study, the effects of using three different low-resolution acquisition geometries (orthogonal, rotational, and shifted on SRR images were evaluated and compared to a known standard. Iterative back projection was used for the reconstruction of all three acquisition geometries. The results of the study indicate that super resolution reconstructed images based on orthogonally acquired low-resolution images resulted in reconstructed images with higher SNR and CNR in less acquisition time than those based on rotational and shifted acquisition geometries. However, interpolation artifacts were observed in SRR images based on orthogonal acquisition geometry, particularly when the slice thickness was greater than six times the inplane voxel size. Reconstructions based on rotational geometry appeared smoother than those based on orthogonal geometry, but they required two times longer to acquire than the orthogonal LR images.

  10. Group-based single image super-resolution with online dictionary learning

    Science.gov (United States)

    Lu, Xuan; Wang, Dingwen; Shi, Wenxuan; Deng, Dexiang

    2016-12-01

    Recently, sparse representation has been successfully used in single image super-resolution reconstruction. Unlike the traditional single image super-resolution methods such as image interpolation, the super-resolution with sparse representation reconstructs image with one or several constant dictionaries learned from external databases. However, the contents can vary significantly across different patches in a single image, and the fixed dictionaries cannot suit for every patch. This paper presents a novel approach for single image super-resolution based on sparse representation, which uses group as the basic unit, and trains dictionary with external database and the input low-resolution image itself for each group to ensure that the dictionary is suitable for the patches in the group. Simultaneous sparse coding algorithm is used to accelerate the processing and improve the result. Extensive experiments on natural images show that our method achieves better results than some state-of-the-art algorithms in terms of both objective and human visual evaluations.

  11. On the Adaptability of Neural Network Image Super-Resolution

    OpenAIRE

    Chua, Kah Keong; Tay, Yong Haur

    2012-01-01

    In this paper, we described and developed a framework for Multilayer Perceptron (MLP) to work on low level image processing, where MLP will be used to perform image super-resolution. Meanwhile, MLP are trained with different types of images from various categories, hence analyse the behaviour and performance of the neural network. The tests are carried out using qualitative test, in which Mean Squared Error (MSE), Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM). The r...

  12. SINGLE FRAME SUPER RESOLUTION OF NONCOOPERATIVE IRIS IMAGES

    Directory of Open Access Journals (Sweden)

    Anand Deshpande

    2016-11-01

    Full Text Available Image super-resolution, a process to enhance image resolution, has important applications in biometrics, satellite imaging, high definition television, medical imaging, etc. The long range captured iris identification systems often suffer from low resolution and meager focus of the captured iris images. These degrade the iris recognition performance. This paper proposes enhanced iterated back projection (EIBP method to super resolute the long range captured iris polar images. The performance of proposed method is tested and analyzed on CASIA long range iris database by comparing peak signal to noise ratio (PSNR and structural similarity index (SSIM with state-of-the-art super resolution (SR algorithms. It is further analyzed by increasing the up-sampling factor. Performance analysis shows that the proposed method is superior to state-of-the-art algorithms, the peak signal-to-noise ratio improved about 0.1-1.5 dB. The results demonstrate that the proposed method is well suited to super resolve the iris polar images captured at a long distance

  13. Super-resolution imaging strategies for cell biologists using a spinning disk microscope.

    Science.gov (United States)

    Hosny, Neveen A; Song, Mingying; Connelly, John T; Ameer-Beg, Simon; Knight, Martin M; Wheeler, Ann P

    2013-01-01

    In this study we use a spinning disk confocal microscope (SD) to generate super-resolution images of multiple cellular features from any plane in the cell. We obtain super-resolution images by using stochastic intensity fluctuations of biological probes, combining Photoactivation Light-Microscopy (PALM)/Stochastic Optical Reconstruction Microscopy (STORM) methodologies. We compared different image analysis algorithms for processing super-resolution data to identify the most suitable for analysis of particular cell structures. SOFI was chosen for X and Y and was able to achieve a resolution of ca. 80 nm; however higher resolution was possible >30 nm, dependant on the super-resolution image analysis algorithm used. Our method uses low laser power and fluorescent probes which are available either commercially or through the scientific community, and therefore it is gentle enough for biological imaging. Through comparative studies with structured illumination microscopy (SIM) and widefield epifluorescence imaging we identified that our methodology was advantageous for imaging cellular structures which are not immediately at the cell-substrate interface, which include the nuclear architecture and mitochondria. We have shown that it was possible to obtain two coloured images, which highlights the potential this technique has for high-content screening, imaging of multiple epitopes and live cell imaging.

  14. Super-resolution imaging strategies for cell biologists using a spinning disk microscope.

    Directory of Open Access Journals (Sweden)

    Neveen A Hosny

    Full Text Available In this study we use a spinning disk confocal microscope (SD to generate super-resolution images of multiple cellular features from any plane in the cell. We obtain super-resolution images by using stochastic intensity fluctuations of biological probes, combining Photoactivation Light-Microscopy (PALM/Stochastic Optical Reconstruction Microscopy (STORM methodologies. We compared different image analysis algorithms for processing super-resolution data to identify the most suitable for analysis of particular cell structures. SOFI was chosen for X and Y and was able to achieve a resolution of ca. 80 nm; however higher resolution was possible >30 nm, dependant on the super-resolution image analysis algorithm used. Our method uses low laser power and fluorescent probes which are available either commercially or through the scientific community, and therefore it is gentle enough for biological imaging. Through comparative studies with structured illumination microscopy (SIM and widefield epifluorescence imaging we identified that our methodology was advantageous for imaging cellular structures which are not immediately at the cell-substrate interface, which include the nuclear architecture and mitochondria. We have shown that it was possible to obtain two coloured images, which highlights the potential this technique has for high-content screening, imaging of multiple epitopes and live cell imaging.

  15. Super-Resolution Imaging Strategies for Cell Biologists Using a Spinning Disk Microscope

    Science.gov (United States)

    Hosny, Neveen A.; Song, Mingying; Connelly, John T.; Ameer-Beg, Simon; Knight, Martin M.; Wheeler, Ann P.

    2013-01-01

    In this study we use a spinning disk confocal microscope (SD) to generate super-resolution images of multiple cellular features from any plane in the cell. We obtain super-resolution images by using stochastic intensity fluctuations of biological probes, combining Photoactivation Light-Microscopy (PALM)/Stochastic Optical Reconstruction Microscopy (STORM) methodologies. We compared different image analysis algorithms for processing super-resolution data to identify the most suitable for analysis of particular cell structures. SOFI was chosen for X and Y and was able to achieve a resolution of ca. 80 nm; however higher resolution was possible >30 nm, dependant on the super-resolution image analysis algorithm used. Our method uses low laser power and fluorescent probes which are available either commercially or through the scientific community, and therefore it is gentle enough for biological imaging. Through comparative studies with structured illumination microscopy (SIM) and widefield epifluorescence imaging we identified that our methodology was advantageous for imaging cellular structures which are not immediately at the cell-substrate interface, which include the nuclear architecture and mitochondria. We have shown that it was possible to obtain two coloured images, which highlights the potential this technique has for high-content screening, imaging of multiple epitopes and live cell imaging. PMID:24130668

  16. Comparison between two super-resolution implementations in PET imaging.

    Science.gov (United States)

    Chang, Guoping; Pan, Tinsu; Qiao, Feng; Clark, John W; Mawlawi, Osama R

    2009-04-01

    Super-resolution (SR) techniques are used in PET imaging to generate a high-resolution image by combining multiple low-resolution images that have been acquired from different points of view (POV). In this article, the authors propose a novel implementation of the SR technique whereby the required multiple low-resolution images are generated by shifting the reconstruction pixel grid during the image reconstruction process rather than being acquired from different POVs. The objective of this article is to compare the performances of the two SR implementations using theoretical and experimental studies. A mathematical framework is first provided to support the hypothesis that the two SR implementations have similar performance in current PET/CT scanners that use block detectors. Based on this framework, a simulation study, a point source study, and a NEMA/IEC phantom study were conducted to compare the performance of these two SR implementations with respect to contrast, resolution, noise, and SNR. For reference purposes, a comparison with a native reconstruction (NR) image using a high-resolution pixel grid was also performed. The mathematical framework showed that the two SR implementations are expected to achieve similar contrast and resolution but different noise contents. These results were confirmed by the simulation and experimental studies. The simulation study showed that the two SR implementations have an average contrast difference of 2.3%, while the point source study showed that their average differences in contrast and resolution were 0.5% and 1.2%, respectively. Comparisons between the SR and NR images for the point source study showed that the NR image exhibited averages of 30% and 8% lower contrast and resolution, respectively. The NEMA/IEC phantom study showed that the three images (two SR and NR) exhibited different noise structures. The SNR of the new SR implementation was, on average, 21.5% lower than the original implementation largely due to an

  17. Dictionary learning based noisy image super-resolution via distance penalty weight model.

    Science.gov (United States)

    Han, Yulan; Zhao, Yongping; Wang, Qisong

    2017-01-01

    In this study, we address the problem of noisy image super-resolution. Noisy low resolution (LR) image is always obtained in applications, while most of the existing algorithms assume that the LR image is noise-free. As to this situation, we present an algorithm for noisy image super-resolution which can achieve simultaneously image super-resolution and denoising. And in the training stage of our method, LR example images are noise-free. For different input LR images, even if the noise variance varies, the dictionary pair does not need to be retrained. For the input LR image patch, the corresponding high resolution (HR) image patch is reconstructed through weighted average of similar HR example patches. To reduce computational cost, we use the atoms of learned sparse dictionary as the examples instead of original example patches. We proposed a distance penalty model for calculating the weight, which can complete a second selection on similar atoms at the same time. Moreover, LR example patches removed mean pixel value are also used to learn dictionary rather than just their gradient features. Based on this, we can reconstruct initial estimated HR image and denoised LR image. Combined with iterative back projection, the two reconstructed images are applied to obtain final estimated HR image. We validate our algorithm on natural images and compared with the previously reported algorithms. Experimental results show that our proposed method performs better noise robustness.

  18. Quantitative Characterization of Super-Resolution Infrared Imaging Based on Time-Varying Focal Plane Coding

    Science.gov (United States)

    Wang, X.; Yuan, Y.; Zhang, J.; Chen, Y.; Cheng, Y.

    2014-10-01

    High resolution infrared image has been the goal of an infrared imaging system. In this paper, a super-resolution infrared imaging method using time-varying coded mask is proposed based on focal plane coding and compressed sensing theory. The basic idea of this method is to set a coded mask on the focal plane of the optical system, and the same scene could be sampled many times repeatedly by using time-varying control coding strategy, the super-resolution image is further reconstructed by sparse optimization algorithm. The results of simulation are quantitatively evaluated by introducing the Peak Signal-to-Noise Ratio (PSNR) and Modulation Transfer Function (MTF), which illustrate that the effect of compressed measurement coefficient r and coded mask resolution m on the reconstructed image quality. Research results show that the proposed method will promote infrared imaging quality effectively, which will be helpful for the practical design of new type of high resolution ! infrared imaging systems.

  19. Super-Resolution for Traditional and Omnidirectional Image Sequences

    Directory of Open Access Journals (Sweden)

    Attila Nagy

    2009-03-01

    Full Text Available This article presents a simple method on how to implement a super-resolutionbased video enhancement technique in .NET using the functions of the OpenCV library.First, we outline the goal of this project and after that, a short review of the steps of superresolutiontechnique is given. As a part of the discussion about the implementation itself,the general design aspects are detailed in short. Then, the different optical flow algorithmsare analyzed and the super-resolution calculation of omnidirectional image sequences isdiscussed. After all that, the achieved results can be seen and finally, a short generalconclusion can be read. This paper is a revision of our previous work [1]. In this edition,we focus on the super-resolution of omnidirectional image sequences rather than thetechnological issues that were discussed in our previous article. Further information aboutthe implementation and wrapper development can be found in [1 and 12].

  20. 基于双边滤波的POCS超分辨率图像序列重建算法%POCS super resolution reconstruction method for image sequences based on bilateral filter

    Institute of Scientific and Technical Information of China (English)

    唐智飞; 禹晶; 肖创柏

    2011-01-01

    针对传统凸集投影(POCS)超分辨率图像序列重建算法使用高斯滤波器来估计点扩散函数(PSF)导致边缘模糊的现象,本文采用双边滤波器来估计PSF,双边滤波方法是将高斯函数和图像亮度信息相乘,优化后的权系数再与图像作卷积,使重建后的图像边缘得到很好保持.运动估计是POCS超分辨率图像序列重建算法的关键技术,本文选择结合图像金字塔的光流估计对图像序列进行配准,得到更加精确的估计结果.实验表明,可以使重建图像取得良好的视觉效果.%The traditional projections onto convex sets (POCS) super-resolution image reconstruction method leads to the blur edge by using Gaussian filter, so we present bilateral filter instead of Gaussian filter to estimate the point spread function (PSF). The bilateral filter can be got by Gaussian function multiplied with image brightness information. Finally the optimized weight coefficient makes convolution with the image so that the reconstructed image can keep the good edge. Motion estimation of image sequences is a key technology in the POCS super-resolution image reconstruction method. Optical flow estimation can get more accurate estimation results combining with image pyramid for image registration. The results of experiments show that the reconstructed image can achieve good visual effects.

  1. Super-Resolution Imaging on Microfluidic Super-Resolution Near-Field Structure

    Institute of Scientific and Technical Information of China (English)

    WANG Pei; TANG Lin; ZHANG Dou-Guo; LU Yong-Hua; JIAO Xiao-Jin; XIE Jian-Ping; MING Hai

    2005-01-01

    @@ We present a new concept of the microfluidic super-resolution near-field structure (MSRENS) based on a microfluidic structure and a super-resolution near-field structure. The near-field distance control, "nano-probe"and scanning can be realized simultaneously using the MSRENS, which is similar to a near-field scanning optical microscope. The design and simulation results are presented. Numerical simulation has demonstrated that the MSRENS with spatial resolution beyond the diffraction limit could be applicable in chemistry, biologics, and many other fields.

  2. Small-Animal Imaging Using Clinical Positron Emission Tomography/Computed Tomography and Super-Resolution

    Directory of Open Access Journals (Sweden)

    Frank P. DiFilippo

    2012-05-01

    Full Text Available Considering the high cost of dedicated small-animal positron emission tomography/computed tomography (PET/CT, an acceptable alternative in many situations might be clinical PET/CT. However, spatial resolution and image quality are of concern. The utility of clinical PET/CT for small-animal research and image quality improvements from super-resolution (spatial subsampling were investigated. National Electrical Manufacturers Association (NEMA NU 4 phantom and mouse data were acquired with a clinical PET/CT scanner, as both conventional static and stepped scans. Static scans were reconstructed with and without point spread function (PSF modeling. Stepped images were postprocessed with iterative deconvolution to produce super-resolution images. Image quality was markedly improved using the super-resolution technique, avoiding certain artifacts produced by PSF modeling. The 2 mm rod of the NU 4 phantom was visualized with high contrast, and the major structures of the mouse were well resolved. Although not a perfect substitute for a state-of-the-art small-animal PET/CT scanner, a clinical PET/CT scanner with super-resolution produces acceptable small-animal image quality for many preclinical research studies.

  3. Super-resolution photoacoustic fluctuation imaging with multiple speckle illumination

    CERN Document Server

    Chaigne, Thomas; Allain, Marc; Katz, Ori; Gigan, Sylvain; Sentenac, Anne; Bossy, Emmanuel

    2015-01-01

    In deep tissue photoacoustic imaging, the spatial resolution is inherently limited by acoustic diffraction. Moreover, as the ultrasound attenuation increases with frequency, resolution is often traded-off for penetration depth. Here we report on super-resolution photoacoustic imaging by use of multiple speckle illumination. Specifically, we show that the analysis of second-order fluctuations of the photoacoustic images combined with image deconvolution enables resolving optically absorbing structures beyond the acoustic diffraction limit. A resolution increase of almost a factor 2 is demonstrated experimentally. Our method introduces a new framework that could potentially lead to deep tissue photoacoustic imaging with sub-acoustic resolution.

  4. Far-field super-resolution imaging of resonant multiples

    KAUST Repository

    Guo, Bowen

    2016-05-20

    We demonstrate for the first time that seismic resonant multiples, usually considered as noise, can be used for super-resolution imaging in the far-field region of sources and receivers. Tests with both synthetic data and field data show that resonant multiples can image reflector boundaries with resolutions more than twice the classical resolution limit. Resolution increases with the order of the resonant multiples. This procedure has important applications in earthquake and exploration seismology, radar, sonar, LIDAR (light detection and ranging), and ultrasound imaging, where the multiples can be used to make high-resolution images.

  5. A No-Reference SVD-Based Image Quality Assessment Method for Super-Resolution Reconstruction%基于 SVD 的超分辨率重建图像质量无参考评价方法

    Institute of Scientific and Technical Information of China (English)

    黄慧娟; 禹晶; 孙卫东

    2012-01-01

    重建图像质量评价是衡量超分辨率方法优劣的决定性指标,现有的评价方法大都需要借助同一场景具有更高分辨率的图像作为参考图像,但在实际超分辨率重建图像过程中这一需求难以实现.针对上述问题,考虑到人眼对相对亮度变化更为敏感,且边缘清晰度与图像主观评价质量成正比,利用去均值图像、梯度图像以及灰度图像,提出一种仅依靠图像自身信息的、基于SVD的超分辨率重建图像质量无参考客观评价方法.首先将图像分割为相互重叠的局部图像块,然后在各局部图像块中利用SVD分别得到低分辨率图像间及其与超分辨率重建图像间的子评价结果,最后再将这些子评价结果整合为最终的客观评价指标SSQI.实验结果表明,SSQI指标是一种具有较高准确性和鲁棒性的无参考客观评价指标,与人类主观评价结果保持了很好的一致性.%Image quality index is a critical factor to evaluate the reconstruction quality of super-resolution methods. However, the existing image quality assessment methods usually require a higher resolution image as the reference image, which can not be satisfied in many actual super-resolution reconstruction applications. Taking into account the facts that human eyes are more sensitive to the relative luminance, and the sharpness of image edges is proportional to the subjective image quality, a no-reference SVD-based image quality assessment method utilizing the corresponding mean-removing images, gradient images' and gray images has been proposed in this paper. In this method, the image to be evaluated is divided into several overlapped patches first. Then, based on SVD, sub-image quality indexes between the low resolution images and the reconstructed super-resolution image for each patches are evaluated respectively. Finally, all sub-image indexes are integrated into one total image quality index, called SSQI index. Several

  6. Super Resolution from Hyperview Image Stack by Spatial Multiplexing

    Science.gov (United States)

    Grasnick, Armin

    2016-09-01

    An image stack for a hyperview representation could contain millions of different perspective views with extreme image similarity. The recording of all views from a computational 3d model implicates a lateral displacement of the virtual camera. Because of the huge number of views, the offset in between two adjoining camera positions can be very minor. If such a virtual setup reproduces a real hyperview screen setup, the offset can be below the wavelength of the visible light. But even with such small changes, there is an intrinsic probability for a measurable difference in between two neighbour images. Such image dissimilarity can be proofed successfully also in very basic 3d scenes. By using a quantity of juxtapositional images from the hyperview image stack, the resolution of the rendered images can be considerably improved, which is commonly known as super resolution. The utilisation of super resolution images in hyperview could cut the necessity of full frame computing and will reduce the effective render time.

  7. Image super-resolution using windowed ordinary Kriging interpolation

    Science.gov (United States)

    Zhang, Qianying; Wu, Jitao

    2015-02-01

    This paper presents a novel interpolation approach for single image super-resolution based on ordinary Kriging interpolation, which has been widely used in geostatistics. The proposed method simultaneously considers the intensity distances and geometry of the pixel data. We employ a new intensity distance definition and local windows surrounding each unknown high-resolution pixel to implement the algorithm. The proposed approach is able to produce adaptive weights and edge preservation is achieved. Our experimental results show the efficiency of the proposed approach compared to conventional interpolation methods in terms of the peak signal-to-noise (PNSR) and visual perception.

  8. Fast Super-Resolution Imaging with Ultra-High Labeling Density Achieved by Joint Tagging Super-Resolution Optical Fluctuation Imaging (JT-SOFI)

    CERN Document Server

    Zeng, Zhiping; Wang, Hening; Huang, Ning; Shan, Chunyan; Zhang, Hao; Teng, Junlin; Xi, Peng

    2015-01-01

    Previous stochastic localization-based super-resolution techniques are largely limited by the labeling density and the fidelity to the morphology of specimen. We report on an optical super-resolution imaging scheme implementing joint tagging using multiple fluorescent blinking dyes associated with super-resolution optical fluctuation imaging (JT-SOFI), achieving ultra-high labeling density super-resolution imaging. To demonstrate the feasibility of JT-SOFI, quantum dots with different emission spectra were jointly labeled to the tubulin in COS7 cells, creating ultra-high density labeling. After analyzing and combining the fluorescence intermittency images emanating from spectrally resolved quantum dots, the microtubule networks are capable of being investigated with high fidelity and remarkably enhanced contrast at sub-diffraction resolution. The spectral separation also significantly decreased the frame number required for SOFI, enabling fast super-resolution microscopy through simultaneous data acquisition....

  9. A Total Variation Regularization Based Super-Resolution Reconstruction Algorithm for Digital Video

    Directory of Open Access Journals (Sweden)

    Zhang Liangpei

    2007-01-01

    Full Text Available Super-resolution (SR reconstruction technique is capable of producing a high-resolution image from a sequence of low-resolution images. In this paper, we study an efficient SR algorithm for digital video. To effectively deal with the intractable problems in SR video reconstruction, such as inevitable motion estimation errors, noise, blurring, missing regions, and compression artifacts, the total variation (TV regularization is employed in the reconstruction model. We use the fixed-point iteration method and preconditioning techniques to efficiently solve the associated nonlinear Euler-Lagrange equations of the corresponding variational problem in SR. The proposed algorithm has been tested in several cases of motion and degradation. It is also compared with the Laplacian regularization-based SR algorithm and other TV-based SR algorithms. Experimental results are presented to illustrate the effectiveness of the proposed algorithm.

  10. A novel super-resolution image fusion algorithm based on improved PCNN and wavelet transform

    Science.gov (United States)

    Liu, Na; Gao, Kun; Song, Yajun; Ni, Guoqiang

    2009-10-01

    Super-resolution reconstruction technology is to explore new information between the under-sampling image series obtained from the same scene and to achieve the high-resolution picture through image fusion in sub-pixel level. The traditional super-resolution fusion methods for sub-sampling images need motion estimation and motion interpolation and construct multi-resolution pyramid to obtain high-resolution, yet the function of the human beings' visual features are ignored. In this paper, a novel resolution reconstruction for under-sampling images of static scene based on the human vision model is considered by introducing PCNN (Pulse Coupled Neural Network) model, which simplifies and improves the input model, internal behavior and control parameters selection. The proposed super-resolution image fusion algorithm based on PCNN-wavelet is aimed at the down-sampling image series in a static scene. And on the basis of keeping the original features, we introduce Relief Filter(RF) to the control and judge segment to overcome the effect of random factors(such as noise, etc) effectively to achieve the aim that highlighting interested object though the fusion. Numerical simulations show that the new algorithm has the better performance in retaining more details and keeping high resolution.

  11. A Bayesian Super-Resolution Approach to Demosaicing of Blurred Images

    Directory of Open Access Journals (Sweden)

    Molina Rafael

    2006-01-01

    Full Text Available Most of the available digital color cameras use a single image sensor with a color filter array (CFA in acquiring an image. In order to produce a visible color image, a demosaicing process must be applied, which produces undesirable artifacts. An additional problem appears when the observed color image is also blurred. This paper addresses the problem of deconvolving color images observed with a single coupled charged device (CCD from the super-resolution point of view. Utilizing the Bayesian paradigm, an estimate of the reconstructed image and the model parameters is generated. The proposed method is tested on real images.

  12. Super-Resolution Real Imaging in Microsphere-Assisted Microscopy

    Science.gov (United States)

    Wang, Feifei; Li, Yi; Jia, Boliang; Liu, Lianqing; Li, Wen Jung

    2016-01-01

    Microsphere-assisted microscopy has received a lot of attention recently due to its simplicity and its capability to surpass the diffraction limit. However, to date, sub-diffraction-limit features have only been observed in virtual images formed through the microspheres. We show that it is possible to form real, super-resolution images using high-refractive index microspheres. Also, we report on how changes to a microsphere’s refractive index and size affect image formation and planes. The relationship between the focus position and the additional magnification factor is also investigated using experimental and theoretical methods. We demonstrate that such a real imaging mode, combined with the use of larger microspheres, can enlarge sub-diffraction-limit features up to 10 times that of wide-field microscopy’s magnification with a field-of-view diameter of up to 9 μm. PMID:27768774

  13. 3D multicolor super-resolution imaging offers improved accuracy in neuron tracing.

    Directory of Open Access Journals (Sweden)

    Melike Lakadamyali

    Full Text Available The connectivity among neurons holds the key to understanding brain function. Mapping neural connectivity in brain circuits requires imaging techniques with high spatial resolution to facilitate neuron tracing and high molecular specificity to mark different cellular and molecular populations. Here, we tested a three-dimensional (3D, multicolor super-resolution imaging method, stochastic optical reconstruction microscopy (STORM, for tracing neural connectivity using cultured hippocampal neurons obtained from wild-type neonatal rat embryos as a model system. Using a membrane specific labeling approach that improves labeling density compared to cytoplasmic labeling, we imaged neural processes at 44 nm 2D and 116 nm 3D resolution as determined by considering both the localization precision of the fluorescent probes and the Nyquist criterion based on label density. Comparison with confocal images showed that, with the currently achieved resolution, we could distinguish and trace substantially more neuronal processes in the super-resolution images. The accuracy of tracing was further improved by using multicolor super-resolution imaging. The resolution obtained here was largely limited by the label density and not by the localization precision of the fluorescent probes. Therefore, higher image resolution, and thus higher tracing accuracy, can in principle be achieved by further improving the label density.

  14. Super-resolution reconstruction algorithm based on adaptive convolution kernel size selection

    Science.gov (United States)

    Gao, Hang; Chen, Qian; Sui, Xiubao; Zeng, Junjie; Zhao, Yao

    2016-09-01

    Restricted by the detector technology and optical diffraction limit, the spatial resolution of infrared imaging system is difficult to achieve significant improvement. Super-Resolution (SR) reconstruction algorithm is an effective way to solve this problem. Among them, the SR algorithm based on multichannel blind deconvolution (MBD) estimates the convolution kernel only by low resolution observation images, according to the appropriate regularization constraints introduced by a priori assumption, to realize the high resolution image restoration. The algorithm has been shown effective when each channel is prime. In this paper, we use the significant edges to estimate the convolution kernel and introduce an adaptive convolution kernel size selection mechanism, according to the uncertainty of the convolution kernel size in MBD processing. To reduce the interference of noise, we amend the convolution kernel in an iterative process, and finally restore a clear image. Experimental results show that the algorithm can meet the convergence requirement of the convolution kernel estimation.

  15. 一种用于视频超分辨率重建的块匹配图像配准方法%A Block-matching Image Registration Algorithm for Video Super-resolution Reconstruction

    Institute of Scientific and Technical Information of China (English)

    孙琰玥; 何小海; 宋海英; 陈为龙

    2011-01-01

    图像配准是超分辨率重建中的一个关键问题,直接影响超分辨率重建图像的质量.本文在自适应十字搜索(Adaptive rood pattern search,ARPS)块匹配算法的基础上,根据小波域中各图像之间的相关性,提出一种分层块匹配算法-基于小波变换的改进的自适应十字模式搜索算法(Improved adaptive rood pattern search algorithm based on wavelet transform,W-IARPS),该方法在小波变换域完成匹配宏块的搜索,有效地减少了匹配点的搜索个数,且配准图像的峰值信噪比相比全搜索算法下降不到0.1dB,保持了较高的配准精度.最后采用凸集投影(Projections onto convex sets,POCS)算法对配准后的图像进行超分辨率重建,取得了较好的视觉效果.实验结果表明,该方法具有较高的配准精度和重建效果,算法稳健可靠.%Image registration is one of the key components in super-resolution reconstruction, and it directly affects the quality of the reconstructed image. On the basis of adaptive rood pattern search (ARPS) block-matching algorithm,and according to the correlation between various images in wavelet domain, an hierarchical block-matching algorithm - improved adaptive rood pattern search algorithm based on wavelet transform (W-IARPS) is proposed. Searching matched-macroblocks in wavelet domain can effectively reduce the number of search points, and the ratio of peak signal to noise of registered images decreases less than 0.1 dB compared to the exhaustive-search algorithm. It means that the high registration accuracy is guaranteed. Finally, the projections onto convex sets (POCS) method is used to reconstruct the super-resolution image from the registered images, and it can achieve better visual effects. The simulation results show that the algorithm has a high registration accuracy and reliable reconstruction results.

  16. 车牌识别系统中的超分辨率图像重建技术研究%Research of super-resolution image reconstruction in license plate recognition system

    Institute of Scientific and Technical Information of China (English)

    林明儒

    2015-01-01

    针对车牌识别系统中图像模糊和分辨率低而影响车牌识别效果的问题,提出利用超分辨率重建来提高车牌图像分辨率的解决方法。建立了凸集投影(POCS)算法的数学模型,研究了凸集投影超分辨率重建的实现过程,并用仿真实验进行了验证。实验结果表明:采用凸集投影算法进行图像重建,可以提高车牌图像分辨率,丰富图像细节信息,能够有效提高车牌识别的准确率,并且迭代次数越多,图像重建效果越好。%In the license plate recognition system,blurred image and low resolution affect the effect of license plate recognition.A method which uses the super-resolution image reconstruction to improve the resolution of plate image is proposed.In this paper,mathematical model of projection onto convex sets (POCS)is estab-lished and the process of image reconstruction based on POCS is researched.Simulation experiments are con-ducted to verify the research.Experimental results show that,image reconstruction based on POCS algorithm can improve the resolution of license plate image,rich detail information of the image,enhance the vehicle license plate recognition system performance.Through the experiments,the more iterations are made,the better effects of image reconstruction appear.

  17. Coupled Deep Autoencoder for Single Image Super-Resolution.

    Science.gov (United States)

    Zeng, Kun; Yu, Jun; Wang, Ruxin; Li, Cuihua; Tao, Dacheng

    2017-01-01

    Sparse coding has been widely applied to learning-based single image super-resolution (SR) and has obtained promising performance by jointly learning effective representations for low-resolution (LR) and high-resolution (HR) image patch pairs. However, the resulting HR images often suffer from ringing, jaggy, and blurring artifacts due to the strong yet ad hoc assumptions that the LR image patch representation is equal to, is linear with, lies on a manifold similar to, or has the same support set as the corresponding HR image patch representation. Motivated by the success of deep learning, we develop a data-driven model coupled deep autoencoder (CDA) for single image SR. CDA is based on a new deep architecture and has high representational capability. CDA simultaneously learns the intrinsic representations of LR and HR image patches and a big-data-driven function that precisely maps these LR representations to their corresponding HR representations. Extensive experimentation demonstrates the superior effectiveness and efficiency of CDA for single image SR compared to other state-of-the-art methods on Set5 and Set14 datasets.

  18. A Frequency Domain Approach to Registration of Aliased Images with Application to Super-resolution

    Directory of Open Access Journals (Sweden)

    Vandewalle Patrick

    2006-01-01

    Full Text Available Super-resolution algorithms reconstruct a high-resolution image from a set of low-resolution images of a scene. Precise alignment of the input images is an essential part of such algorithms. If the low-resolution images are undersampled and have aliasing artifacts, the performance of standard registration algorithms decreases. We propose a frequency domain technique to precisely register a set of aliased images, based on their low-frequency, aliasing-free part. A high-resolution image is then reconstructed using cubic interpolation. Our algorithm is compared to other algorithms in simulations and practical experiments using real aliased images. Both show very good visual results and prove the attractivity of our approach in the case of aliased input images. A possible application is to digital cameras where a set of rapidly acquired images can be used to recover a higher-resolution final image.

  19. Performance Evaluation of Super-Resolution Reconstruction Methods on Real-World Data

    Directory of Open Access Journals (Sweden)

    L. J. van Vliet

    2007-01-01

    Full Text Available The performance of a super-resolution (SR reconstruction method on real-world data is not easy to measure, especially as a ground-truth (GT is often not available. In this paper, a quantitative performance measure is used, based on triangle orientation discrimination (TOD. The TOD measure, simulating a real-observer task, is capable of determining the performance of a specific SR reconstruction method under varying conditions of the input data. It is shown that the performance of an SR reconstruction method on real-world data can be predicted accurately by measuring its performance on simulated data. This prediction of the performance on real-world data enables the optimization of the complete chain of a vision system; from camera setup and SR reconstruction up to image detection/recognition/identification. Furthermore, different SR reconstruction methods are compared to show that the TOD method is a useful tool to select a specific SR reconstruction method according to the imaging conditions (camera's fill-factor, optical point-spread-function (PSF, signal-to-noise ratio (SNR.

  20. Super resolution imaging of genetically labelled synapses in Drosophila brain tissue

    Directory of Open Access Journals (Sweden)

    Isabelle Ayumi Spühler

    2016-05-01

    Full Text Available Understanding synaptic connectivity and plasticity within brain circuits and their relationship to learning and behavior is a fundamental quest in neuroscience. Visualizing the fine details of synapses using optical microscopy remains however a major technical challenge. Super resolution microscopy opens the possibility to reveal molecular features of synapses beyond the diffraction limit. With direct stochastic optical reconstruction microscopy, dSTORM, we image synaptic proteins in the brain tissue of the fruit fly, Drosophila melanogaster. Super resolution imaging of brain tissue harbors difficulties due to light scattering and the density of signals. In order to reduce out of focus signal, we take advantage of the genetic tools available in the Drosophila and have fluorescently tagged synaptic proteins expressed in only a small number of neurons. These neurons form synapses within the calyx of the mushroom body, a distinct brain region involved in associative memory formation. Our results show that super resolution microscopy, in combination with genetically labelled synaptic proteins, is a powerful tool to investigate synapses in a quantitative fashion providing an entry point for studies on synaptic plasticity during learning and memory formation

  1. Image Super-Resolution via Adaptive Regularization and Sparse Representation.

    Science.gov (United States)

    Cao, Feilong; Cai, Miaomiao; Tan, Yuanpeng; Zhao, Jianwei

    2016-07-01

    Previous studies have shown that image patches can be well represented as a sparse linear combination of elements from an appropriately selected over-complete dictionary. Recently, single-image super-resolution (SISR) via sparse representation using blurred and downsampled low-resolution images has attracted increasing interest, where the aim is to obtain the coefficients for sparse representation by solving an l0 or l1 norm optimization problem. The l0 optimization is a nonconvex and NP-hard problem, while the l1 optimization usually requires many more measurements and presents new challenges even when the image is the usual size, so we propose a new approach for SISR recovery based on regularization nonconvex optimization. The proposed approach is potentially a powerful method for recovering SISR via sparse representations, and it can yield a sparser solution than the l1 regularization method. We also consider the best choice for lp regularization with all p in (0, 1), where we propose a scheme that adaptively selects the norm value for each image patch. In addition, we provide a method for estimating the best value of the regularization parameter λ adaptively, and we discuss an alternate iteration method for selecting p and λ . We perform experiments, which demonstrates that the proposed regularization nonconvex optimization method can outperform the convex optimization method and generate higher quality images.

  2. Super-resolution photoacoustic imaging of single gold nanoparticles

    Science.gov (United States)

    Lee, Seunghyun; Kwon, Owoong; Jeon, Mansik; Song, Jaejung; Jo, Minguk; Kim, Sungjee; Son, Junwoo; Kim, Yunseok; Kim, Chulhong

    2016-03-01

    Photoacoustic imaging (PAI) is an emerging hybrid imaging modality that can provide a strong optical absorption contrast using the photoacoustic (PA) effect, and breaks through the fundamental imaging depth limit of existing optical microscopy such as optical coherence tomography (OCT), confocal or two-photon microscopy. In PAI, a short-pulsed laser is illuminated to the tissue, and the PA waves are generated by thermoelastic expansion. Despite the high lateral resolution of optical-resolution photoacoustic microscopy (OR-PAM) thanks to the tight optical focus, the lateral resolution of OR-PAM is limited to the optical diffraction limit, which is approximately a half of the excitation wavelength. Here, we demonstrate a new super-resolution photoacoustic microscopy (SR-PAM) system by breaking the optical diffraction limit. The conventional microscopes with nanoscale resolutions such as a scanning electron microscope (SEM) and transmission electron microscope (TEM) are typically used to image the structures of nanomaterials, but these systems should work in a high vacuum environment and cannot provide the optical properties of the materials. Our newly developed SR-PAM system provides the optical properties with a nanoscale resolution in a normal atmosphere. We have photoacoustically imaged single gold nanoparticles with an average size of 80 nm in diameter and shown their PA expansion properties individually. The lateral resolution of this system was approximately 20 nm. Therefore, this tool will provide an unprecedented optical absorption property with an accurate nanoscale resolution and greatly impact on materials science and nanotechnology field.

  3. Detecting breast microcalcifications using super-resolution and wave-equation ultrasound imaging: a numerical phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Lianjie [Los Alamos National Laboratory; Simonetti, Francesco [IMPERIAL COLLEGE LONDON; Huthwaite, Peter [IMPERIAL COLLEGE LONDON; Rosenberg, Robert [UNM; Williamson, Michael [UNM

    2010-01-01

    Ultrasound image resolution and quality need to be significantly improved for breast microcalcification detection. Super-resolution imaging with the factorization method has recently been developed as a promising tool to break through the resolution limit of conventional imaging. In addition, wave-equation reflection imaging has become an effective method to reduce image speckles by properly handling ultrasound scattering/diffraction from breast heterogeneities during image reconstruction. We explore the capabilities of a novel super-resolution ultrasound imaging method and a wave-equation reflection imaging scheme for detecting breast microcalcifications. Super-resolution imaging uses the singular value decomposition and a factorization scheme to achieve an image resolution that is not possible for conventional ultrasound imaging. Wave-equation reflection imaging employs a solution to the acoustic-wave equation in heterogeneous media to backpropagate ultrasound scattering/diffraction waves to scatters and form images of heterogeneities. We construct numerical breast phantoms using in vivo breast images, and use a finite-difference wave-equation scheme to generate ultrasound data scattered from inclusions that mimic microcalcifications. We demonstrate that microcalcifications can be detected at full spatial resolution using the super-resolution ultrasound imaging and wave-equation reflection imaging methods.

  4. Super-resolution Image Created from a Sequence of Images with Application of Character Recognition

    Directory of Open Access Journals (Sweden)

    Leandro Luiz de Almeida

    2013-12-01

    Full Text Available Super-resolution techniques allow combine multiple images of the same scene to obtain an image with increased geometric and radiometric resolution, called super-resolution image. In this image are enhanced features allowing to recover important details and information. The objective of this work is to develop efficient algorithm, robust and automated fusion image frames to obtain a super-resolution image. Image registration is a fundamental step in combining several images that make up the scene. Our research is based on the determination and extraction of characteristics defined by the SIFT and RANSAC algorithms for automatic image registration. We use images containing characters and perform recognition of these characters to validate and show the effectiveness of our proposed method. The distinction of this work is the way to get the matching and merging of images because it occurs dynamically between elements common images that are stored in a dynamic matrix.

  5. Performance Evaluation of Super-Resolution Reconstruction Methods on Real-World Data

    NARCIS (Netherlands)

    Eekeren, A.W.M. van; Schutte, K.; Oudegeest, O.R.; Vliet, L.J. van

    2007-01-01

    The performance of a super-resolution (SR) reconstruction method on real-world data is not easy to measure, especially as a ground-truth (GT) is often not available. In this paper, a quantitative performance measure is used, based on triangle orientation discrimination (TOD). The TOD measure, simula

  6. Accelerating cross-validation with total variation and its application to super-resolution imaging

    CERN Document Server

    Obuchi, Tomoyuki; Akiyama, Kazunori; Kabashima, Yoshiyuki

    2016-01-01

    We develop an approximation formula for the cross-validation error (CVE) of a sparse linear regression penalized by $\\ell_1$-norm and total variation terms, which is based on a perturbative expansion utilizing the largeness of both the data dimensionality and the model. The developed formula allows us to reduce the necessary computational cost of the CVE evaluation significantly. The practicality of the formula is tested through application to simulated black-hole image reconstruction on the event-horizon scale with super resolution. The results demonstrate that our approximation reproduces the CVE values obtained via literally conducted cross-validation with reasonably good precision.

  7. Segmentation of tongue muscles from super-resolution magnetic resonance images.

    Science.gov (United States)

    Ibragimov, Bulat; Prince, Jerry L; Murano, Emi Z; Woo, Jonghye; Stone, Maureen; Likar, Boštjan; Pernuš, Franjo; Vrtovec, Tomaž

    2015-02-01

    Imaging and quantification of tongue anatomy is helpful in surgical planning, post-operative rehabilitation of tongue cancer patients, and studying of how humans adapt and learn new strategies for breathing, swallowing and speaking to compensate for changes in function caused by disease, medical interventions or aging. In vivo acquisition of high-resolution three-dimensional (3D) magnetic resonance (MR) images with clearly visible tongue muscles is currently not feasible because of breathing and involuntary swallowing motions that occur over lengthy imaging times. However, recent advances in image reconstruction now allow the generation of super-resolution 3D MR images from sets of orthogonal images, acquired at a high in-plane resolution and combined using super-resolution techniques. This paper presents, to the best of our knowledge, the first attempt towards automatic tongue muscle segmentation from MR images. We devised a database of ten super-resolution 3D MR images, in which the genioglossus and inferior longitudinalis tongue muscles were manually segmented and annotated with landmarks. We demonstrate the feasibility of segmenting the muscles of interest automatically by applying the landmark-based game-theoretic framework (GTF), where a landmark detector based on Haar-like features and an optimal assignment-based shape representation were integrated. The obtained segmentation results were validated against an independent manual segmentation performed by a second observer, as well as against B-splines and demons atlasing approaches. The segmentation performance resulted in mean Dice coefficients of 85.3%, 81.8%, 78.8% and 75.8% for the second observer, GTF, B-splines atlasing and demons atlasing, respectively. The obtained level of segmentation accuracy indicates that computerized tongue muscle segmentation may be used in surgical planning and treatment outcome analysis of tongue cancer patients, and in studies of normal subjects and subjects with speech and

  8. Segmentation of Tongue Muscles from Super-Resolution Magnetic Resonance Images

    Science.gov (United States)

    Ibragimov, Bulat; Prince, Jerry L.; Murano, Emi Z.; Woo, Jonghye; Stone, Maureen; Likar, Boštjan; Pernuš, Franjo; Vrtovec, Tomaž

    2014-01-01

    Imaging and quantification of tongue anatomy is helpful in surgical planning, post-operative rehabilitation of tongue cancer patients, and studying of how humans adapt and learn new strategies for breathing, swallowing and speaking to compensate for changes in function caused by disease, medical interventions or aging. In vivo acquisition of high-resolution three-dimensional (3D) magnetic resonance (MR) images with clearly visible tongue muscles is currently not feasible because of breathing and involuntary swallowing motions that occur over lengthy imaging times. However, recent advances in image reconstruction now allow the generation of super-resolution 3D MR images from sets of orthogonal images, acquired at a high in-plane resolution and combined using super-resolution techniques. This paper presents, to the best of our knowledge, the first attempt towards automatic tongue muscle segmentation from MR images. We devised a database of ten super-resolution 3D MR images, in which the genioglossus and inferior longitudinalis tongue muscles were manually segmented and annotated with landmarks. We demonstrate the feasibility of segmenting the muscles of interest automatically by applying the landmark-based game-theoretic framework (GTF), where a landmark detector based on Haar-like features and an optimal assignment-based shape representation were integrated. The obtained segmentation results were validated against an independent manual segmentation performed by a second observer, as well as against B-splines and demons atlasing approaches. The segmentation performance resulted in mean Dice coefficients of 85.3%, 81.8%, 78.8% and 75.8% for the second observer, GTF, B-splines atlasing and demons atlasing, respectively. The obtained level of segmentation accuracy indicates that computerized tongue muscle segmentation may be used in surgical planning and treatment outcome analysis of tongue cancer patients, and in studies of normal subjects and subjects with speech and

  9. Overcoming Registration Uncertainty in Image Super-Resolution: Maximize or Marginalize?

    Directory of Open Access Journals (Sweden)

    Andrew Zisserman

    2007-01-01

    Full Text Available In multiple-image super-resolution, a high-resolution image is estimated from a number of lower-resolution images. This usually involves computing the parameters of a generative imaging model (such as geometric and photometric registration, and blur and obtaining a MAP estimate by minimizing a cost function including an appropriate prior. Two alternative approaches are examined. First, both registrations and the super-resolution image are found simultaneously using a joint MAP optimization. Second, we perform Bayesian integration over the unknown image registration parameters, deriving a cost function whose only variables of interest are the pixel values of the super-resolution image. We also introduce a scheme to learn the parameters of the image prior as part of the super-resolution algorithm. We show examples on a number of real sequences including multiple stills, digital video, and DVDs of movies.

  10. Super-resolution image transfer by a vortex-like metamaterial

    CERN Document Server

    Dong, Hui Yuan; Fung, Kin Hung; Cui, Tie Jun

    2013-01-01

    We propose a vortex-like metamaterial device that is capable of transferring image along a spiral route without losing subwavelength information of the image. The super-resolution image can be guided and magnified at the same time with one single design. Our design may provide insights in manipulating super-resolution image in a more flexible manner. Examples are given and illustrated with numerical simulations.

  11. Improved localization accuracy in stochastic super-resolution fluorescence microscopy by K-factor image deshadowing.

    Science.gov (United States)

    Ilovitsh, Tali; Meiri, Amihai; Ebeling, Carl G; Menon, Rajesh; Gerton, Jordan M; Jorgensen, Erik M; Zalevsky, Zeev

    2013-12-16

    Localization of a single fluorescent particle with sub-diffraction-limit accuracy is a key merit in localization microscopy. Existing methods such as photoactivated localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM) achieve localization accuracies of single emitters that can reach an order of magnitude lower than the conventional resolving capabilities of optical microscopy. However, these techniques require a sparse distribution of simultaneously activated fluorophores in the field of view, resulting in larger time needed for the construction of the full image. In this paper we present the use of a nonlinear image decomposition algorithm termed K-factor, which reduces an image into a nonlinear set of contrast-ordered decompositions whose joint product reassembles the original image. The K-factor technique, when implemented on raw data prior to localization, can improve the localization accuracy of standard existing methods, and also enable the localization of overlapping particles, allowing the use of increased fluorophore activation density, and thereby increased data collection speed. Numerical simulations of fluorescence data with random probe positions, and especially at high densities of activated fluorophores, demonstrate an improvement of up to 85% in the localization precision compared to single fitting techniques. Implementing the proposed concept on experimental data of cellular structures yielded a 37% improvement in resolution for the same super-resolution image acquisition time, and a decrease of 42% in the collection time of super-resolution data with the same resolution.

  12. A novel super resolution scheme to acquire and process satellite images

    Science.gov (United States)

    Yin, Dong-yu; Su, Xiao-feng; Lin, Jian-chun; Wang, Gan-quan; Kuang, Ding-bo

    2013-09-01

    Geosynchronous satellite has obvious limitations for the weight and the scale of payloads, and large aperture optical system is not permitted. The optical diffraction limit of small aperture optical system has an adverse impact on the resolution of the acquired images. Therefore, how to get high resolution images using super-resolution technique with the acquired low resolution images becomes a popular problem investigated by researchers. Here, we present a novel scheme to acquire low resolution images and process them to achieve a high resolution image. Firstly, to acquire low resolution images, we adopt a special arrangement pattern of four CCD staggered arrays on the focal plane in the remote sensing satellite framework .These four CCD linear arrays are parallelized with a 0.25√2 pixel shift along the CCD direction and a 1.25 pixel shift along the scanning direction. The rotation angle between the two directions is 45 degree. The tilting sampling mode and the special arrangement pattern allow the sensor to acquire images with a smaller sampling interval which can give the resolution a greater enhancement. Secondly, to reconstruct a high resolution image of pretty good quality with a magnification factor 4, we propose a novel algorithm based on the iterative-interpolation super resolution algorithm (IISR) and the new edge-directed interpolation algorithm (NEDI). The new algorithm makes a critical improvement to NEDI and introduces it into the multi-frame interpolation in IISR. The algorithm can preserve the edges well and requires a relatively small number of low-resolution images to achieve better reconstruction accuracy .In the last part of the paper, we carry out a simulation experiment, and use MSE as the quality measure. The results demonstrate that our new scheme substantially improves the image resolution with both better quantitative quality and visual quality compared with some previous normal methods.

  13. Nanoscopy for nanoscience: how super-resolution microscopy extends imaging for nanotechnology.

    Science.gov (United States)

    Johnson, Sam A

    2015-01-01

    Imaging methods have presented scientists with powerful means of investigation for centuries. The ability to resolve structures using light microscopes is though limited to around 200 nm. Fluorescence-based super-resolution light microscopy techniques of several principles and methods have emerged in recent years and offer great potential to extend the capabilities of microscopy. This resolution improvement is especially promising for nanoscience where the imaging of nanoscale structures is inherently restricted by the resolution limit of standard forms of light microscopy. Resolution can be improved by several distinct approaches including structured illumination microscopy, stimulated emission depletion, and single-molecule positioning methods such as photoactivated localization microscopy and stochastic optical reconstruction microscopy and several derivative variations of each of these. These methods involve substantial differences in the resolutions achievable in the different axes, speed of acquisition, compatibility with different labels, ease of use, hardware complexity, and compatibility with live biological samples. The field of super-resolution imaging and its application to nanotechnology is relatively new and still rapidly developing. An overview of how these methods may be used with nanomaterials is presented with some examples of pioneering uses of these approaches.

  14. Efficient and Effective Total Variation Image Super-Resolution: A Preconditioned Operator Splitting Approach

    Directory of Open Access Journals (Sweden)

    Li-Li Huang

    2011-01-01

    Full Text Available Super-resolution is a fusion process for reconstructing a high-resolution image from a set of low-resolution images. This paper proposes a novel approach to image super-resolution based on total variation (TV regularization. We applied the Douglas-Rachford splitting technique to the constrained TV-based variational SR model which is separated into three subproblems that are easy to solve. Then, we derive an efficient and effective iterative scheme, which includes a fast iterative shrinkage/thresholding algorithm for denoising problem, a very simple noniterative algorithm for fusion part, and linear equation systems for deblurring process. Moreover, to speed up convergence, we provide an accelerated scheme based on precondition design of initial guess and forward-backward splitting technique which yields linear systems of equations with a nice structure. The proposed algorithm shares a remarkable simplicity together with a proven global rate of convergence which is significantly better than currently known lagged diffusivity fixed point iteration algorithm and fast decoupling algorithm by exploiting the alternating minimizing approach. Experimental results are presented to illustrate the effectiveness of the proposed algorithm.

  15. Redundant Discrete Wavelet Transform Based Super-Resolution Using Sub-Pixel Image Registration

    Science.gov (United States)

    2003-03-01

    AFIT/GE/ENG/03-18 REDUNDANT DISCRETE WAVELET TRANSFORM BASED SUPER-RESOLUTION USING SUB-PIXEL IMAGE REGISTRATION THESIS Daniel L. Ward Second...position of the United States Air Force, Department of Defense, or the United States Government. AFIT/GE/ENG/03-18 REDUNDANT DISCRETE WAVELET TRANSFORM BASED...O3-18 REDUNDANT DISCRETE WAVELET TRANSFORM BASED SUPER-RESOLUTION USING SUB-PIXEL IMAGE REGISTRATION THESIS Daniel Lee Ward, B.S.E.E. Second

  16. An Effective Multi-Frame Super Resolution of Image from Blurry and Noisy Images Using PCA

    Directory of Open Access Journals (Sweden)

    Swati A. Patil

    2014-01-01

    Full Text Available Image super-resolution are techniques aiming restoration of a high-resolution image from one or several low-resolution observation images, which offer the advantages overcoming some of the inherent resolution limitations of low-cost imaging sensors (e.g., satellite image, cell phone, camera’s or surveillance camera’s, and allow better utilization of the growing capability and noise free image of HR displays. Conventional image super-resolution approaches normally require multiple LR inputs of the same scene with sub-pixel motions. This paper attempts to undertake the study of the super-resolution restoration problem and improved resolution image is restored from several geometrically warped, blurred, noisy images. The super-resolution restoration problem is modeled and analyzed from the filters such as Median Filter, Adaptive Wiener Filter, Gaussian Filter these different noise densities have been removed between 10% to 65%. The Principal Component analysis (PCA is the technique which is useful for improving the image sharpness after the process of de-blurring

  17. Design and implementation of a Cooke triplet based wave-front coded super-resolution imaging system

    Science.gov (United States)

    Zhao, Hui; Wei, Jingxuan

    2015-09-01

    Wave-front coding is a powerful technique that could be used to extend the DOF (depth of focus) of incoherent imaging system. It is the suitably designed phase mask that makes the system defocus invariant and it is the de-convolution algorithm that generates the clear image with large DOF. Compared with the traditional imaging system, the point spread function (PSF) in wave-front coded imaging system has quite a large support size and this characteristic makes wave-front coding be capable of realizing super-resolution imaging without replacing the current sensor with one of smaller pitch size. An amplification based single image super-resolution reconstruction procedure has been specifically designed for wave-front coded imaging system and its effectiveness has been demonstrated experimentally. A Cooke Triplet based wave-front coded imaging system is established. For a focal length of 50 mm and f-number 4.5, objects within the range [5 m, ∞] could be clearly imaged, which indicates a DOF extension ratio of approximately 20. At the same time, the proposed processing procedure could produce at least 3× resolution improvement, with the quality of the reconstructed super-resolution image approaching the diffraction limit.

  18. Super-Resolution Molecular and Functional imaging of Nanoscale Architectures in Life and Materials Science

    Directory of Open Access Journals (Sweden)

    Satoshi eHabuchi

    2014-06-01

    Full Text Available Super-resolution fluorescence microscopy has been revolutionizing the way in which we investigate the structures, dynamics, and functions of a wide range of nanoscale systems. In this review, I describe the current state of various super-resolution fluorescence microscopy techniques along with the latest developments of fluorophores and labeling for the super-resolution microscopy. I discuss the applications of super-resolution microscopy in the fields of life science and materials science with a special emphasis on quantitative molecular imaging and nanoscale functional imaging. These studies open new opportunities for unraveling the physical, chemical, and optical properties of a wide range of nanoscale architectures together with their nanostructures and will enable the development of new (bio-nanotechnology.

  19. Super-resolution imaging in digital holography by using dynamic grating with a spatial light modulator

    Science.gov (United States)

    Lin, Qiaowen; Wang, Dayong; Wang, Yunxin; Rong, Lu; Chang, Shifeng

    2015-03-01

    A super-resolution imaging method using dynamic grating based on liquid-crystal spatial light modulator (SLM) is developed to improve the resolution of a digital holographic system. The one-dimensional amplitude cosine grating is loaded on the SLM, which is placed between the object and hologram plane in order to collect more high-frequency components towards CCD plane. The point spread function of the system is given to confirm the separation condition of reconstructed images for multiple diffraction orders. The simulation and experiments are carried out for a standard resolution test target as a sample, which confirms that the imaging resolution is improved from 55.7 μm to 31.3 μm compared with traditional lensless Fourier transform digital holography. The unique advantage of the proposed method is that the period of the grating can be programmably adjusted according to the separation condition.

  20. Pairwise Operator Learning for Patch Based Single-image Super-resolution.

    Science.gov (United States)

    Tang, Yi; Shao, Ling

    2016-12-14

    Motivated by the fact that image patches could be inherently represented by matrices, single-image super-resolution is treated as a problem of learning regression operators in a matrix space in this paper. The regression operators that map low-resolution image patches to high-resolution image patches are generally defined by left and right multiplication operators. The pairwise operators are respectively used to extract the raw and column information of low-resolution image patches for recovering high-resolution estimations. The patch based regression algorithm possesses three favorable properties. Firstly, the proposed super-resolution algorithm is efficient during both training and testing, because image patches are treated as matrices. Secondly, the data storage requirement of the optimal pairwise operator is far less than most popular single-image super-resolution algorithms because only two small sized matrices need to be stored. Lastly, the super-resolution performance is competitive with most popular single-image super-resolution algorithms because both raw and column information of image patches is considered. Experimental results show the efficiency and effectiveness of the proposed patch-based single-image superresolution algorithm.

  1. Optimization of super-resolution processing using incomplete image sets in PET imaging.

    Science.gov (United States)

    Chang, Guoping; Pan, Tinsu; Clark, John W; Mawlawi, Osama R

    2008-12-01

    Super-resolution (SR) techniques are used in PET imaging to generate a high-resolution image by combining multiple low-resolution images that have been acquired from different points of view (POVs). The number of low-resolution images used defines the processing time and memory storage necessary to generate the SR image. In this paper, the authors propose two optimized SR implementations (ISR-1 and ISR-2) that require only a subset of the low-resolution images (two sides and diagonal of the image matrix, respectively), thereby reducing the overall processing time and memory storage. In an N x N matrix of low-resolution images, ISR-1 would be generated using images from the two sides of the N x N matrix, while ISR-2 would be generated from images across the diagonal of the image matrix. The objective of this paper is to investigate whether the two proposed SR methods can achieve similar performance in contrast and signal-to-noise ratio (SNR) as the SR image generated from a complete set of low-resolution images (CSR) using simulation and experimental studies. A simulation, a point source, and a NEMA/IEC phantom study were conducted for this investigation. In each study, 4 (2 x 2) or 16 (4 x 4) low-resolution images were reconstructed from the same acquired data set while shifting the reconstruction grid to generate images from different POVs. SR processing was then applied in each study to combine all as well as two different subsets of the low-resolution images to generate the CSR, ISR-1, and ISR-2 images, respectively. For reference purpose, a native reconstruction (NR) image using the same matrix size as the three SR images was also generated. The resultant images (CSR, ISR-1, ISR-2, and NR) were then analyzed using visual inspection, line profiles, SNR plots, and background noise spectra. The simulation study showed that the contrast and the SNR difference between the two ISR images and the CSR image were on average 0.4% and 0.3%, respectively. Line profiles of

  2. Image Super-resolution Reconstruction Based on Smoothly Approximate Over-complete Sparse Representation%光滑逼近超完备稀疏表示的图像超分辨率重构

    Institute of Scientific and Technical Information of China (English)

    路锦正; 张启衡; 徐智勇; 彭真明

    2012-01-01

    To improve resolution capacity of the degraded image, a learning-based super-resolution reconstruction method via sparse representation over over-complete dictionary is introduced. Due to non-sparsest representation of signal with respect to given ill-conditioned dictionary, the suggested smoothed L0 norm sparse-representation technique over blind sparsity with continuous descending function can exhaustively exploit given specific dictionary, achieving effective sparse decomposition of low resolution image patch. Afterwards, the stable and convergent solvers are obtained from optimization of gradient steepest descent. Experimental results demonstrate that, compared to Bicubic interpolation, the Power Signal to Noise Ratio (PSNR) gain of image thrice-zoomed is close to 2 dB, and the improvement of Structural Similarity (SSIM) is almost 0.04. Moreover, the super-resolved images eliminated excessive blurring degradation and annoying edge artifacts. The proposed method can be effectively applied to resolution enhancement of degraded single-image.%为改善单帧降质图像的分辨率水平,提出了一种新的基于稀疏表示的学习法超分辨率图像重构方法.针时信号在既定的欠定超完备字典下的非稀疏性问题,采用光滑的递减函数逼近L0范数以避免对稀疏度先验的依赖,从而实现待重构图像块的有效稀疏表示,同时通过梯度下降的迭代优化获得稳定的收敛解.与双立方插值相比,图像的三倍超分辨实验显示,图像峰值信噪比(PSNR)提高2 dB,框架相似性(SSIM)改善0.04,重构图像剔除了更多的模糊退化及边缘伪迹.该方法适于单帧降质图像的超分辨率增强.

  3. Optical Super-Resolution Imaging of β-Amyloid Aggregation In Vitro and In Vivo: Method and Techniques.

    Science.gov (United States)

    Pinotsi, Dorothea; Kaminski Schierle, Gabriele S; Kaminski, Clemens F

    2016-01-01

    Super-resolution microscopy has emerged as a powerful and non-invasive tool for the study of molecular processes both in vitro and in live cells. In particular, super-resolution microscopy has proven valuable for research studies in protein aggregation. In this chapter we present details of recent advances in this method and the specific techniques, enabling the study of amyloid beta aggregation optically, both in vitro and in cells. First, we show that variants of optical super-resolution microscopy provide a capability to visualize oligomeric and fibrillar structures directly, providing detailed information on species morphology in vitro and even in situ, in the cellular environment. We focus on direct Stochastic Optical Reconstruction Microscopy, dSTORM, which provides morphological detail on spatial scales below 20 nm, and provide detailed protocols for its implementation in the context of amyloid beta research. Secondly, we present a range of optical techniques that offer super-resolution indirectly, which we call multi-parametric microscopy. The latter offers molecular scale information on self-assembly reactions via changes in protein or fluorophore spectral signatures. These techniques are empowered by our recent discovery that disease related amyloid proteins adopt intrinsic energy states upon fibrilisation. We show that fluorescence lifetime imaging provides a particularly sensitive readout to report on the aggregation state, which is robustly quantifiable for experiments performed either in vitro or in vivo.

  4. Super-resolution chemical imaging with dynamic placement of plasmonic hotspots

    Science.gov (United States)

    Olson, Aeli P.; Ertsgaard, Christopher T.; McKoskey, Rachel M.; Rich, Isabel S.; Lindquist, Nathan C.

    2015-08-01

    We demonstrate dynamic placement of plasmonic "hotspots" for super-resolution chemical imaging via Surface Enhanced Raman Spectroscopy (SERS). A silver nanohole array surface was coated with biological samples and illuminated with a laser. Due to the large plasmonic field enhancements, blinking behavior of the SERS hotspots was observed and processed using a Stochastic Optical Reconstruction Microscopy (STORM) algorithm enabling localization to within 10 nm. However, illumination of the sample with a single static laser beam (i.e., a slightly defocused Gaussian beam) only produced SERS hotspots in fixed locations on the surface, leaving noticeable gaps in any final image. But, by using a spatial light modulator (SLM), the illumination profile of the beam could be altered, shifting any hotspots across the nanohole array surface in sub-wavelength steps. Therefore, by properly structuring an illuminating light field with the SLM, we show the possibility of positioning plasmonic hotspots over a metallic nanohole surface on-the-fly. Using this and our SERS-STORM imaging technique, we show potential for high-resolution chemical imaging without the noticeable gaps that were present with static laser illumination. Interestingly, even illuminating the surface with randomly shifting SLM phase profiles was sufficient to completely fill in a wide field of view for super-resolution SERS imaging of a single strand of 100-nm thick collagen protein fibrils. Images were then compared to those obtained with a scanning electron microscope (SEM). Additionally, we explored alternative methods of phase shifting other than holographic illumination through the SLM to create localization of hotspots necessary for SERS-STORM imaging.

  5. Camera simulation engine enables efficient system optimization for super-resolution imaging

    Science.gov (United States)

    Fullerton, Stephanie; Bennett, Keith; Toda, Eiji; Takahashi, Teruo

    2012-02-01

    Quantitative fluorescent imaging requires optimization of the complete optical system, from the sample to the detector. Such considerations are especially true for precision localization microscopy such as PALM and (d)STORM where the precision of the result is limited by the noise in both the optical and detection systems. Here, we present a Camera Simulation Engine (CSE) that allows comparison of imaging results from CCD, CMOS and EM-CCD cameras under various sample conditions and can accurately validate the quality of precision localization algorithms and camera performance. To achieve these results, the CSE incorporates the following parameters: 1) Sample conditions including optical intensity, wavelength, optical signal shot noise, and optical background shot noise; 2) Camera specifications including QE, pixel size, dark current, read noise, EM-CCD excess noise; 3) Camera operating conditions such as exposure, binning and gain. A key feature of the CSE is that, from a single image (either real or simulated "ideal") we generate a stack of statistically realistic images. We have used the CSE to validate experimental data showing that certain current scientific CMOS technology outperforms EM-CCD in most super-resolution scenarios. Our results support using the CSE to efficiently and methodically select cameras for quantitative imaging applications. Furthermore, the CSE can be used to robustly compare and evaluate new algorithms for data analysis and image reconstruction. These uses of the CSE are particularly relevant to super-resolution precision localization microscopy and provide a faster, simpler and more cost effective means of system optimization, especially camera selection.

  6. Quantitative super-resolution imaging of Bruchpilot distinguishes active zone states.

    Science.gov (United States)

    Ehmann, Nadine; van de Linde, Sebastian; Alon, Amit; Ljaschenko, Dmitrij; Keung, Xi Zhen; Holm, Thorge; Rings, Annika; DiAntonio, Aaron; Hallermann, Stefan; Ashery, Uri; Heckmann, Manfred; Sauer, Markus; Kittel, Robert J

    2014-08-18

    The precise molecular architecture of synaptic active zones (AZs) gives rise to different structural and functional AZ states that fundamentally shape chemical neurotransmission. However, elucidating the nanoscopic protein arrangement at AZs is impeded by the diffraction-limited resolution of conventional light microscopy. Here we introduce new approaches to quantify endogenous protein organization at single-molecule resolution in situ with super-resolution imaging by direct stochastic optical reconstruction microscopy (dSTORM). Focusing on the Drosophila neuromuscular junction (NMJ), we find that the AZ cytomatrix (CAZ) is composed of units containing ~137 Bruchpilot (Brp) proteins, three quarters of which are organized into about 15 heptameric clusters. We test for a quantitative relationship between CAZ ultrastructure and neurotransmitter release properties by engaging Drosophila mutants and electrophysiology. Our results indicate that the precise nanoscopic organization of Brp distinguishes different physiological AZ states and link functional diversification to a heretofore unrecognized neuronal gradient of the CAZ ultrastructure.

  7. Super-resolution Phase Tomography

    KAUST Repository

    Depeursinge, Christian

    2013-04-21

    Digital Holographic Microscopy (DHM) yields reconstructed complex wavefields. It allows synthesizing the aperture of a virtual microscope up to 2π, offering super-resolution phase images. Live images of micro-organisms and neurons with resolution less than 100 nm are presented.

  8. Imaging and Intracellular Tracking of Cancer-Derived Exosomes Using Single-Molecule Localization-Based Super-Resolution Microscope.

    Science.gov (United States)

    Chen, Chen; Zong, Shenfei; Wang, Zhuyuan; Lu, Ju; Zhu, Dan; Zhang, Yizhi; Cui, Yiping

    2016-10-05

    Exosomes are small membrane vesicles secreted by cells and enriched with plenty of proteins. Considering their significant roles in different physical activities and potential value for diagnostic drug delivery, researchers have put great efforts in in vitro tracking and content analysis of exosomes. Recently, the emergence of different kinds of super-resolution microscopy provides powerful tools for exosome study. Here, we demonstrate the application of single-molecule localization based super-resolution imaging technique in the imaging and tracking of cancer-derived exosomes. In the experiment, first, cancer-derived exosomes are extracted from the culture media of tumor cells. Then the exosome membrane receptors are labeled with photoswitchable probes, which allow super-resolution imaging of these membrane receptors via photoactivated localization microscopy (PALM) or stochastic optical reconstruction microscopy (STORM). By using human breast cancer cell-derived exosomes, we demonstrated simultaneous dual-color PALM/STORM imaging of two kinds of membrane receptors on the exosome membrane. Moreover, the successful labeling and imaging of exosomes make it possible to observe the interaction between cancer-derived exosomes and normal cells. Meanwhile, we realized the colocalization of cancer-derived exosomes and lysosomes in recipient cells with PALM/STORM imaging. Since exosomes play a vital role in intercellular communications, we anticipate that the presented PALM/STORM-based imaging and tracking of exosomes holds a great potential in the investigation of the mechanism of exosome-mediated cancer metastasis.

  9. Toward Super-Resolution Imaging at Green Wavelengths Employing Stratified Metal-Insulator Metamaterials

    Directory of Open Access Journals (Sweden)

    Masanobu Iwanaga

    2015-05-01

    Full Text Available Metamaterials (MMs are subwavelength-structured materials that have been rapidly developed in this century and have various potentials to realize novel phenomena, such as negative refraction, cloaking and super-resolution. Theoretical proposals for super-resolution image transfer using metallic thin films were experimentally demonstrated at ultraviolet and violet wavelengths from 365 to 405 nm. However, the most preferred wavelengths of optical imaging are green wavelengths around 500 nm, because optical microscopy is most extensively exploited in the area of biotechnology. In order to make the super-resolution techniques using MMs more practical, we propose the design of a stratified metal-insulator MM that has super-resolution image transfer modes at green wavelengths, which we here call hyper modes. The design assumed only Ag and SiO2 as constituent materials and was found employing Bloch-state analysis, which is based on a rigorous transfer-matrix method for the metal-insulator MMs. It is numerically substantiated that the designed stratified metal-insulator metamaterial (SMIM is capable of forming super-resolution images at the green wavelengths, and optical loss reduction is also studied. We discuss the results derived by the Bloch-state analysis and by effective medium models usually used for the metal-insulator MMs and show that the Bloch-state analysis is more suitable to reproduce the experimental data.

  10. Super-resolution imaging in optical scanning holography using structured illumination

    Science.gov (United States)

    Ren, Zhenbo; Lam, Edmund Y.

    2016-10-01

    As a specific digital holographic microscopy system, optical scanning holography (OSH) is an appealing technique that makes use of the advantages of holography in the application of optical microscopy. In OSH system, a three-dimensional object is scanned with a Fresnel zone plate in a raster fashion, and the electrical signals are demodulated into a complex hologram by heterodyne detection. Then the recorded light wavefront information contained in the hologram allows one to digitally reconstruct the specimen for multiple purposes such as optical sectioning, extended focused imaging as well as three-dimensional imaging. According to Abbe criterion, however, akin to those conventional microscopic imaging systems, OSH suffers from limited resolving power due to the finite sizes of the objective lens and the aperture, i.e., low numerical aperture. To bypass the diffraction barrier in light microscopy, various super-resolution imaging techniques have been proposed. Among those methods, structured illumination is an ensemble imaging concept that modulates the spatial frequency by projecting additional well-defined patterns with different orientation and phase shift onto the specimen. Computational algorithms are then applied to remove the effect of the structure and to reconstruct a super-resolved image beyond the diffraction-limit. In this paper, we introduce this technique in OSH system to scale down the spatial resolution beyond the diffraction limit. The performance of the proposed method is validated by simulation and experimental results.

  11. Away from resolution, assessing the information content of super-resolution images

    CERN Document Server

    Pengo, Thomas; Manley, Suliana

    2015-01-01

    Super-resolution microscopy has revolutionized optical fluorescence imaging by improving 3D resolution by 1-2 orders of magnitude. While different methods can successfully increase the resolution, all methods share significant differences with standard imaging methods, making the usual measures of resolution inapplicable. In particular image quality and information content are spatially heterogeneous with variabilities that can be comparable to their mean values, limiting the use of the average resolution as a predictor for local information. A common use of super-resolution data is to test or establish structural models, and in these cases it would be valuable to assess the capacity of the data to validate a model. We focus here on single-molecule localization methods and present a new way of assessing the quality and reliability of super-resolution data.

  12. Improving spatial resolution of confocal Raman microscopy by super-resolution image restoration.

    Science.gov (United States)

    Cui, Han; Zhao, Weiqian; Wang, Yun; Fan, Ying; Qiu, Lirong; Zhu, Ke

    2016-05-16

    A new super-resolution image restoration confocal Raman microscopy method (SRIR-RAMAN) is proposed for improving the spatial resolution of confocal Raman microscopy. This method can recover the lost high spatial frequency of the confocal Raman microscopy by using Poisson-MAP super-resolution imaging restoration, thereby improving the spatial resolution of confocal Raman microscopy and realizing its super-resolution imaging. Simulation analyses and experimental results indicate that the spatial resolution of SRIR-RAMAN can be improved by 65% to achieve 200 nm with the same confocal Raman microscopy system. This method can provide a new tool for high spatial resolution micro-probe structure detection in physical chemistry, materials science, biomedical science and other areas.

  13. Multi-pulse pumping for far-field super-resolution imaging

    Science.gov (United States)

    Requena, Sebastian; Raut, Sangram; Doan, Hung; Kimball, Joe; Fudala, Rafal; Borejdo, Julian; Gryczynski, Ignacy; Strzhemechny, Yuri; Gryczynski, Zygmunt

    2016-02-01

    Recently, far-field optical imaging with a resolution significantly beyond diffraction limit has attracted tremendous attention allowing for high resolution imaging in living objects. Various methods have been proposed that are divided in to two basic approaches; deterministic super-resolution like STED or RESOLFT and stochastic super-resolution like PALM or STORM. We propose to achieve super-resolution in far-field fluorescence imaging by the use of controllable (on-demand) bursts of pulses that can change the fluorescence signal of long-lived component over one order of magnitude. We demonstrate that two beads, one labeled with a long-lived dye and another with a short-lived dye, separated by a distance lower than 100 nm can be easily resolved in a single experiment. The proposed method can be used to separate two biological structures in a cell by targeting them with two antibodies labeled with long-lived and short-lived fluorophores.

  14. All-passive pixel super-resolution of time-stretch imaging

    Science.gov (United States)

    Chan, Antony C. S.; Ng, Ho-Cheung; Bogaraju, Sharat C. V.; So, Hayden K. H.; Lam, Edmund Y.; Tsia, Kevin K.

    2017-03-01

    Based on image encoding in a serial-temporal format, optical time-stretch imaging entails a stringent requirement of state-of-the-art fast data acquisition unit in order to preserve high image resolution at an ultrahigh frame rate — hampering the widespread utilities of such technology. Here, we propose a pixel super-resolution (pixel-SR) technique tailored for time-stretch imaging that preserves pixel resolution at a relaxed sampling rate. It harnesses the subpixel shifts between image frames inherently introduced by asynchronous digital sampling of the continuous time-stretch imaging process. Precise pixel registration is thus accomplished without any active opto-mechanical subpixel-shift control or other additional hardware. Here, we present the experimental pixel-SR image reconstruction pipeline that restores high-resolution time-stretch images of microparticles and biological cells (phytoplankton) at a relaxed sampling rate (≈2-5 GSa/s)—more than four times lower than the originally required readout rate (20 GSa/s) — is thus effective for high-throughput label-free, morphology-based cellular classification down to single-cell precision. Upon integration with the high-throughput image processing technology, this pixel-SR time-stretch imaging technique represents a cost-effective and practical solution for large scale cell-based phenotypic screening in biomedical diagnosis and machine vision for quality control in manufacturing.

  15. Spatiotonal adaptivity in super-resolution of under-sampled image sequences

    NARCIS (Netherlands)

    Pham, T.Q.

    2006-01-01

    This thesis concerns the use of spatial and tonal adaptivity in improving the resolution of aliased image sequences under scene or camera motion. Each of the five content chapters focuses on a different subtopic of super-resolution: image registration (chapter 2), image fusion (chapter 3 and 4), sup

  16. Spatiotonal adaptivity in super-resolution of under-sampled image sequences

    NARCIS (Netherlands)

    Pham, T.Q.

    2006-01-01

    This thesis concerns the use of spatial and tonal adaptivity in improving the resolution of aliased image sequences under scene or camera motion. Each of the five content chapters focuses on a different subtopic of super-resolution: image registration (chapter 2), image fusion (chapter 3 and 4),

  17. Axial Super-resolution Evanescent Wave Tomography

    CERN Document Server

    Pendharker, Sarang; Newman, Ward; Ogg, Stephen; Nazemifard, Neda; Jacob, Zubin

    2016-01-01

    Optical tomographic reconstruction of a 3D nanoscale specimen is hindered by the axial diffraction limit, which is 2-3 times worse than the focal plane resolution. We propose and experimentally demonstrate an axial super-resolution evanescent wave tomography (AxSET) method that enables the use of regular evanescent wave microscopes like Total Internal Reflection Fluorescence Microscope (TIRF) beyond surface imaging, and achieve tomographic reconstruction with axial super-resolution. Our proposed method based on Fourier reconstruction achieves axial super-resolution by extracting information from multiple sets of three-dimensional fluorescence images when the sample is illuminated by an evanescent wave. We propose a procedure to extract super-resolution features from the incremental penetration of an evanescent wave and support our theory by 1D (along the optical axis) and 3D simulations. We validate our claims by experimentally demonstrating tomographic reconstruction of microtubules in HeLa cells with an axi...

  18. Multi-dimensional super-resolution imaging enables surface hydrophobicity mapping

    Science.gov (United States)

    Bongiovanni, Marie N.; Godet, Julien; Horrocks, Mathew H.; Tosatto, Laura; Carr, Alexander R.; Wirthensohn, David C.; Ranasinghe, Rohan T.; Lee, Ji-Eun; Ponjavic, Aleks; Fritz, Joelle V.; Dobson, Christopher M.; Klenerman, David; Lee, Steven F.

    2016-12-01

    Super-resolution microscopy allows biological systems to be studied at the nanoscale, but has been restricted to providing only positional information. Here, we show that it is possible to perform multi-dimensional super-resolution imaging to determine both the position and the environmental properties of single-molecule fluorescent emitters. The method presented here exploits the solvatochromic and fluorogenic properties of nile red to extract both the emission spectrum and the position of each dye molecule simultaneously enabling mapping of the hydrophobicity of biological structures. We validated this by studying synthetic lipid vesicles of known composition. We then applied both to super-resolve the hydrophobicity of amyloid aggregates implicated in neurodegenerative diseases, and the hydrophobic changes in mammalian cell membranes. Our technique is easily implemented by inserting a transmission diffraction grating into the optical path of a localization-based super-resolution microscope, enabling all the information to be extracted simultaneously from a single image plane.

  19. All-passive pixel super-resolution of time-stretch imaging

    CERN Document Server

    Chan, Antony C S; Bogaraju, Sharat C V; So, Hayden K H; Lam, Edmund Y; Tsia, Kevin K

    2016-01-01

    Based on image encoding in a serial-temporal format, optical time-stretch imaging entails a stringent requirement of state-of-the- art fast data acquisition unit in order to preserve high image resolution at an ultrahigh frame rate --- hampering the widespread utilities of such technology. Here, we propose a pixel super-resolution (pixel-SR) technique tailored for time-stretch imaging that preserves pixel resolution at a relaxed sampling rate. It harnesses the subpixel shifts between image frames inherently introduced by asynchronous digital sampling of the continuous time-stretch imaging process. Precise pixel registration is thus accomplished without any active opto-mechanical subpixel-shift control or other additional hardware. Here, we present the experimental pixel-SR image reconstruction pipeline that restores high-resolution time-stretch images of microparticles and biological cells (phytoplankton) at a relaxed sampling rate (approx. 2--5 GSa/s) --- more than four times lower than the originally requir...

  20. The formation of quantum images and their transformation and super-resolution reading

    Science.gov (United States)

    Balakin, D. A.; Belinsky, A. V.

    2016-05-01

    Images formed by light with suppressed photon fluctuations are interesting objects for studies with the aim of increasing their limiting information capacity and quality. This light in the sub-Poisson state can be prepared in a resonator filled with a medium with Kerr nonlinearity, in which self-phase modulation takes place. Spatially and temporally multimode light beams are studied and the production of spatial frequency spectra of suppressed photon fluctuations is described. The efficient operation regimes of the system are found. A particular schematic solution is described, which allows one to realize the potential possibilities laid in the formation of the squeezed states of light to a maximum degree during self-phase modulation in a resonator for the maximal suppression of amplitude quantum noises upon two-dimensional imaging. The efficiency of using light with suppressed quantum fluctuations for computer image processing is studied. An algorithm is described for interpreting measurements for increasing the resolution with respect to the geometrical resolution. A mathematical model that characterizes the measurement scheme is constructed and the problem of the image reconstruction is solved. The algorithm for the interpretation of images is verified. Conditions are found for the efficient application of sub-Poisson light for super-resolution imaging. It is found that the image should have a low contrast and be maximally transparent.

  1. Super-Resolution Optical Fluctuation Bio-Imaging with Dual-Color Carbon Nanodots.

    Science.gov (United States)

    Chizhik, Anna M; Stein, Simon; Dekaliuk, Mariia O; Battle, Christopher; Li, Weixing; Huss, Anja; Platen, Mitja; Schaap, Iwan A T; Gregor, Ingo; Demchenko, Alexander P; Schmidt, Christoph F; Enderlein, Jörg; Chizhik, Alexey I

    2016-01-13

    Success in super-resolution imaging relies on a proper choice of fluorescent probes. Here, we suggest novel easily produced and biocompatible nanoparticles-carbon nanodots-for super-resolution optical fluctuation bioimaging (SOFI). The particles revealed an intrinsic dual-color fluorescence, which corresponds to two subpopulations of particles of different electric charges. The neutral nanoparticles localize to cellular nuclei suggesting their potential use as an inexpensive, easily produced nucleus-specific label. The single particle study revealed that the carbon nanodots possess a unique hybrid combination of fluorescence properties exhibiting characteristics of both dye molecules and semiconductor nanocrystals. The results suggest that charge trapping and redistribution on the surface of the particles triggers their transitions between emissive and dark states. These findings open up new possibilities for the utilization of carbon nanodots in the various super-resolution microscopy methods based on stochastic optical switching.

  2. High Resolution Pulse Compression Imaging Using Super Resolution FM-Chirp Correlation Method (SCM)

    Science.gov (United States)

    Fujiwara, M.; Okubo, K.; Tagawa, N.

    This study addresses the issue of the super-resolution pulse compression technique (PCT) for ultrasound imaging. Time resolution of multiple ultrasonic echoes using the FM-Chirp PCT is limited by the bandwidth of the sweep-frequency. That is, the resolution depends on the sharpness of auto-correlation function. We propose the Super resolution FM-Chirp correlation Method (SCM) and evaluate its performance. This method is based on the multiple signal classification (MUSIC) algorithm. Our simulations were made for the model assuming multiple signals reflected from some scatterers. We confirmed that SCM detects time delay of complicated reflected signals successfully with high resolution.

  3. Super-resolution Polarimetric Imaging of Black Holes using the Event Horizon Telescope

    Science.gov (United States)

    Pleau, Mollie; Akiyama, Kazunori; Fish, Vincent L.

    2017-01-01

    Black holes are thought to reside in the centers of many galaxies; however, due to their diminutive size, we have yet to directly detect and image a black hole. The Event Horizon Telescope (EHT), a global array for 1.3mm very long baseline interferometry (VLBI), has been designed to observe and image the supermassive black hole in the center of the Milky Way (Sagittarius A*), as well as the one in the center of the nearby giant elliptical galaxy M87. The nominal resolution of the EHT is around 30 μas, comparable to the size of the black hole’s event horizon. For this reason, we require super-resolution to accurately reconstruct images in total intensity and linear polarization. High fidelity polarimetric imaging can be used to test general relativity and to characterize the magnetic field structure surrounding black holes, which is important for understanding its role in mediating the innermost accretion and outflow region. We employ new sparse imaging techniques based on compressed sensing for linear polarimetry. Using synthetic data of M87 observations with the EHT, we find that our new techniques improve upon the standard CLEAN by a factor of ten regardless of resolution, as measured by the differences in mean squared error (MSE). We conclude that compressed sensing proves to be an effective method for linear polarimetric imaging.

  4. Single Image Super-Resolution Using Global Regression Based on Multiple Local Linear Mappings.

    Science.gov (United States)

    Choi, Jae-Seok; Kim, Munchurl

    2017-03-01

    Super-resolution (SR) has become more vital, because of its capability to generate high-quality ultra-high definition (UHD) high-resolution (HR) images from low-resolution (LR) input images. Conventional SR methods entail high computational complexity, which makes them difficult to be implemented for up-scaling of full-high-definition input images into UHD-resolution images. Nevertheless, our previous super-interpolation (SI) method showed a good compromise between Peak-Signal-to-Noise Ratio (PSNR) performances and computational complexity. However, since SI only utilizes simple linear mappings, it may fail to precisely reconstruct HR patches with complex texture. In this paper, we present a novel SR method, which inherits the large-to-small patch conversion scheme from SI but uses global regression based on local linear mappings (GLM). Thus, our new SR method is called GLM-SI. In GLM-SI, each LR input patch is divided into 25 overlapped subpatches. Next, based on the local properties of these subpatches, 25 different local linear mappings are applied to the current LR input patch to generate 25 HR patch candidates, which are then regressed into one final HR patch using a global regressor. The local linear mappings are learned cluster-wise in our off-line training phase. The main contribution of this paper is as follows: Previously, linear-mapping-based conventional SR methods, including SI only used one simple yet coarse linear mapping to each patch to reconstruct its HR version. On the contrary, for each LR input patch, our GLM-SI is the first to apply a combination of multiple local linear mappings, where each local linear mapping is found according to local properties of the current LR patch. Therefore, it can better approximate nonlinear LR-to-HR mappings for HR patches with complex texture. Experiment results show that the proposed GLM-SI method outperforms most of the state-of-the-art methods, and shows comparable PSNR performance with much lower

  5. A Bayesian Super-Resolution Approach to Demosaicing of Blurred Images

    OpenAIRE

    Molina Rafael; Katsaggelos Aggelos K; Vega Miguel

    2006-01-01

    Most of the available digital color cameras use a single image sensor with a color filter array (CFA) in acquiring an image. In order to produce a visible color image, a demosaicing process must be applied, which produces undesirable artifacts. An additional problem appears when the observed color image is also blurred. This paper addresses the problem of deconvolving color images observed with a single coupled charged device (CCD) from the super-resolution point of view. Utilizing the Bayes...

  6. All-passive pixel super-resolution of time-stretch imaging

    OpenAIRE

    Chan, Antony C. S.; Ng, Ho-Cheung; Bogaraju, Sharat C. V.; Hayden K. H. So; Lam, Edmund Y.; Tsia, Kevin K.

    2016-01-01

    Based on image encoding in a serial-temporal format, optical time-stretch imaging entails a stringent requirement of state-of-the- art fast data acquisition unit in order to preserve high image resolution at an ultrahigh frame rate --- hampering the widespread utilities of such technology. Here, we propose a pixel super-resolution (pixel-SR) technique tailored for time-stretch imaging that preserves pixel resolution at a relaxed sampling rate. It harnesses the subpixel shifts between image fr...

  7. Projection based image restoration, super-resolution and error correction codes

    Science.gov (United States)

    Bauer, Karl Gregory

    Super-resolution is the ability of a restoration algorithm to restore meaningful spatial frequency content beyond the diffraction limit of the imaging system. The Gerchberg-Papoulis (GP) algorithm is one of the most celebrated algorithms for super-resolution. The GP algorithm is conceptually simple and demonstrates the importance of using a priori information in the formation of the object estimate. In the first part of this dissertation the continuous GP algorithm is discussed in detail and shown to be a projection on convex sets algorithm. The discrete GP algorithm is shown to converge in the exactly-, over- and under-determined cases. A direct formula for the computation of the estimate at the kth iteration and at convergence is given. This analysis of the discrete GP algorithm sets the stage to connect super-resolution to error-correction codes. Reed-Solomon codes are used for error-correction in magnetic recording devices, compact disk players and by NASA for space communications. Reed-Solomon codes have a very simple description when analyzed with the Fourier transform. This signal processing approach to error- correction codes allows the error-correction problem to be compared with the super-resolution problem. The GP algorithm for super-resolution is shown to be equivalent to the correction of errors with a Reed-Solomon code over an erasure channel. The Restoration from Magnitude (RFM) problem seeks to recover a signal from the magnitude of the spectrum. This problem has applications to imaging through a turbulent atmosphere. The turbulent atmosphere causes localized changes in the index of refraction and introduces different phase delays in the data collected. Synthetic aperture radar (SAR) and hyperspectral imaging systems are capable of simultaneously recording multiple images of different polarizations or wavelengths. Each of these images will experience the same turbulent atmosphere and have a common phase distortion. A projection based restoration

  8. Computationally efficient image restoration and super-resolution algorithns for real-time implementation

    Science.gov (United States)

    Sundareshan, Malur K.

    2002-07-01

    Computational complexity is a major impediment to the real- time implementation of image restoration and super- resolution algorithms. Although powerful restoration algorithms have been developed within the last few years utilizing sophisticated mathematical machinery (based on statistical optimization and convex set theory), these algorithms are typically iterative in nature and require enough number of iterations to be executed to achieve desired resolution gains in order to meaningfully perform detection and recognition tasks in practice. Additionally, recent technological breakthroughs have facilitated novel sensor designs (focal plane arrays, for instance) that make it possible to capture mega-pixel imagery data at video frame rates. A major challenge in the processing of these large format images is to complete the execution of the image processing steps within the frame capture times and to keep up with the output rate of the sensor so that all data captured by the sensor can be efficiently utilized. Consequently, development of novel methods that facilitate real-time implementation of image restoration and super- resolution algorithms is of significant practical interest and will be the primary focus of this paper. The key to designing computationally efficient processing schemes lies in strategically introducing appropriate pre-processing and post-processing steps together with the super-resolution iterations in order to tailor optimized overall processing sequences for imagery data of specific formats. Three distinct methods for tailoring a pre-processing filter and integrating it with the super-resolution processing steps will be outlined in this paper. These methods consist of a Region-of-Interest (ROI) extraction scheme, a background- detail separation procedure, and a scene-derived information extraction step for implementing a set-theoretic restoration of the image that is less demanding in computation compared to the super-resolution iterations. A

  9. A joint compressed-sensing and super-resolution approach for very high-resolution diffusion imaging.

    Science.gov (United States)

    Ning, Lipeng; Setsompop, Kawin; Michailovich, Oleg; Makris, Nikos; Shenton, Martha E; Westin, Carl-Fredrik; Rathi, Yogesh

    2016-01-15

    Diffusion MRI (dMRI) can provide invaluable information about the structure of different tissue types in the brain. Standard dMRI acquisitions facilitate a proper analysis (e.g. tracing) of medium-to-large white matter bundles. However, smaller fiber bundles connecting very small cortical or sub-cortical regions cannot be traced accurately in images with large voxel sizes. Yet, the ability to trace such fiber bundles is critical for several applications such as deep brain stimulation and neurosurgery. In this work, we propose a novel acquisition and reconstruction scheme for obtaining high spatial resolution dMRI images using multiple low resolution (LR) images, which is effective in reducing acquisition time while improving the signal-to-noise ratio (SNR). The proposed method called compressed-sensing super resolution reconstruction (CS-SRR), uses multiple overlapping thick-slice dMRI volumes that are under-sampled in q-space to reconstruct diffusion signal with complex orientations. The proposed method combines the twin concepts of compressed sensing and super-resolution to model the diffusion signal (at a given b-value) in a basis of spherical ridgelets with total-variation (TV) regularization to account for signal correlation in neighboring voxels. A computationally efficient algorithm based on the alternating direction method of multipliers (ADMM) is introduced for solving the CS-SRR problem. The performance of the proposed method is quantitatively evaluated on several in-vivo human data sets including a true SRR scenario. Our experimental results demonstrate that the proposed method can be used for reconstructing sub-millimeter super resolution dMRI data with very good data fidelity in clinically feasible acquisition time.

  10. From local pixel structure to global image super-resolution: a new face hallucination framework.

    Science.gov (United States)

    Hu, Yu; Lam, Kin-Man; Qiu, Guoping; Shen, Tingzhi

    2011-02-01

    We have developed a new face hallucination framework termed from local pixel structure to global image super-resolution (LPS-GIS). Based on the assumption that two similar face images should have similar local pixel structures, the new framework first uses the input low-resolution (LR) face image to search a face database for similar example high-resolution (HR) faces in order to learn the local pixel structures for the target HR face. It then uses the input LR face and the learned pixel structures as priors to estimate the target HR face. We present a three-step implementation procedure for the framework. Step 1 searches the database for K example faces that are the most similar to the input, and then warps the K example images to the input using optical flow. Step 2 uses the warped HR version of the K example faces to learn the local pixel structures for the target HR face. An effective method for learning local pixel structures from an individual face, and an adaptive procedure for fusing the local pixel structures of different example faces to reduce the influence of warping errors, have been developed. Step 3 estimates the target HR face by solving a constrained optimization problem by means of an iterative procedure. Experimental results show that our new method can provide good performances for face hallucination, both in terms of reconstruction error and visual quality; and that it is competitive with existing state-of-the-art methods.

  11. Single NMR image super-resolution based on extreme learning machine.

    Science.gov (United States)

    Wang, Zhiqiong; Xin, Junchang; Wang, Zhongyang; Tian, Shuo; Qiu, Xuejun

    2016-10-01

    The performance limitation of MRI equipment and higher resolution demand of NMR images from radiologists have formed a strong contrast. Therefore, it is important to study the super resolution algorithm suitable for NMR images, using low costs software to replace the expensive equipment-updating. Firstly, a series of NMR images are obtained from original NMR images with original noise to the lowest resolution images with the highest noise. Then, based on extreme learning machine, the mapping relation model is constructed from lower resolution NMR images with higher noise to higher resolution NMR images with lower noise in each pair of adjacent images in the obtained image sequence. Finally, the optimal mapping model is established by the ensemble way to reconstruct the higher resolution NMR images with lower noise on the basis of original resolution NMR images with original noise. Experiments are carried out by 990111 NMR brain images in datasets NITRC, REMBRANDT, RIDER NEURO MRI, TCGA-GBM and TCGA-LGG. The performance of proposed method is compared with three approaches through 7 indexes, and the experimental results show that our proposed method has a significant improvement. Since our method considers the influence of the noise, it has 20% higher in Peak-Signal-to-Noise-Ratio comparison. As our method is sensitive to details, and has a better characteristic retention, it has higher image quality upgrade of 15% in the additional evaluation. Finally, since extreme learning machine has a celerity learning speed, our method is 46.1% faster. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  12. Sparse coded image super-resolution using K-SVD trained dictionary based on regularized orthogonal matching pursuit.

    Science.gov (United States)

    Sajjad, Muhammad; Mehmood, Irfan; Baik, Sung Wook

    2015-01-01

    Image super-resolution (SR) plays a vital role in medical imaging that allows a more efficient and effective diagnosis process. Usually, diagnosing is difficult and inaccurate from low-resolution (LR) and noisy images. Resolution enhancement through conventional interpolation methods strongly affects the precision of consequent processing steps, such as segmentation and registration. Therefore, we propose an efficient sparse coded image SR reconstruction technique using a trained dictionary. We apply a simple and efficient regularized version of orthogonal matching pursuit (ROMP) to seek the coefficients of sparse representation. ROMP has the transparency and greediness of OMP and the robustness of the L1-minization that enhance the dictionary learning process to capture feature descriptors such as oriented edges and contours from complex images like brain MRIs. The sparse coding part of the K-SVD dictionary training procedure is modified by substituting OMP with ROMP. The dictionary update stage allows simultaneously updating an arbitrary number of atoms and vectors of sparse coefficients. In SR reconstruction, ROMP is used to determine the vector of sparse coefficients for the underlying patch. The recovered representations are then applied to the trained dictionary, and finally, an optimization leads to high-resolution output of high-quality. Experimental results demonstrate that the super-resolution reconstruction quality of the proposed scheme is comparatively better than other state-of-the-art schemes.

  13. Correlation functions quantify super-resolution images and estimate apparent clustering due to over-counting.

    Directory of Open Access Journals (Sweden)

    Sarah L Veatch

    Full Text Available We present an analytical method using correlation functions to quantify clustering in super-resolution fluorescence localization images and electron microscopy images of static surfaces in two dimensions. We use this method to quantify how over-counting of labeled molecules contributes to apparent self-clustering and to calculate the effective lateral resolution of an image. This treatment applies to distributions of proteins and lipids in cell membranes, where there is significant interest in using electron microscopy and super-resolution fluorescence localization techniques to probe membrane heterogeneity. When images are quantified using pair auto-correlation functions, the magnitude of apparent clustering arising from over-counting varies inversely with the surface density of labeled molecules and does not depend on the number of times an average molecule is counted. In contrast, we demonstrate that over-counting does not give rise to apparent co-clustering in double label experiments when pair cross-correlation functions are measured. We apply our analytical method to quantify the distribution of the IgE receptor (FcεRI on the plasma membranes of chemically fixed RBL-2H3 mast cells from images acquired using stochastic optical reconstruction microscopy (STORM/dSTORM and scanning electron microscopy (SEM. We find that apparent clustering of FcεRI-bound IgE is dominated by over-counting labels on individual complexes when IgE is directly conjugated to organic fluorophores. We verify this observation by measuring pair cross-correlation functions between two distinguishably labeled pools of IgE-FcεRI on the cell surface using both imaging methods. After correcting for over-counting, we observe weak but significant self-clustering of IgE-FcεRI in fluorescence localization measurements, and no residual self-clustering as detected with SEM. We also apply this method to quantify IgE-FcεRI redistribution after deliberate clustering by

  14. Super-resolution convolutional neural network for the improvement of the image quality of magnified images in chest radiographs

    Science.gov (United States)

    Umehara, Kensuke; Ota, Junko; Ishimaru, Naoki; Ohno, Shunsuke; Okamoto, Kentaro; Suzuki, Takanori; Shirai, Naoki; Ishida, Takayuki

    2017-02-01

    Single image super-resolution (SR) method can generate a high-resolution (HR) image from a low-resolution (LR) image by enhancing image resolution. In medical imaging, HR images are expected to have a potential to provide a more accurate diagnosis with the practical application of HR displays. In recent years, the super-resolution convolutional neural network (SRCNN), which is one of the state-of-the-art deep learning based SR methods, has proposed in computer vision. In this study, we applied and evaluated the SRCNN scheme to improve the image quality of magnified images in chest radiographs. For evaluation, a total of 247 chest X-rays were sampled from the JSRT database. The 247 chest X-rays were divided into 93 training cases with non-nodules and 152 test cases with lung nodules. The SRCNN was trained using the training dataset. With the trained SRCNN, the HR image was reconstructed from the LR one. We compared the image quality of the SRCNN and conventional image interpolation methods, nearest neighbor, bilinear and bicubic interpolations. For quantitative evaluation, we measured two image quality metrics, peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). In the SRCNN scheme, PSNR and SSIM were significantly higher than those of three interpolation methods (pmethods without any obvious artifacts. These preliminary results indicate that the SRCNN scheme significantly outperforms conventional interpolation algorithms for enhancing image resolution and that the use of the SRCNN can yield substantial improvement of the image quality of magnified images in chest radiographs.

  15. Complementarity of PALM and SOFI for super-resolution live cell imaging of focal adhesions

    CERN Document Server

    Deschout, Hendrik; Sharipov, Azat; Szlag, Daniel; Feletti, Lely; Vandenberg, Wim; Dedecker, Peter; Hofkens, Johan; Leutenegger, Marcel; Lasser, Theo; Radenovic, Aleksandra

    2016-01-01

    Live cell imaging of focal adhesions requires a sufficiently high temporal resolution, which remains a challenging task for super-resolution microscopy. We have addressed this important issue by combining photo-activated localization microscopy (PALM) with super-resolution optical fluctuation imaging (SOFI). Using simulations and fixed cell focal adhesion images, we investigated the complementarity between PALM and SOFI in terms of spatial and temporal resolution. This PALM-SOFI framework was used to image focal adhesions in living cells, while obtaining a temporal resolution below 10 s. We visualized the dynamics of focal adhesions, and revealed local mean velocities around 190 nm per minute. The complementarity of PALM and SOFI was assessed in detail with a methodology that integrates a quantitative resolution and signal-to-noise metric. This PALM and SOFI concept provides an enlarged quantitative imaging framework, allowing unprecedented functional exploration of focal adhesions through the estimation of m...

  16. Complementarity of PALM and SOFI for super-resolution live-cell imaging of focal adhesions

    Science.gov (United States)

    Deschout, Hendrik; Lukes, Tomas; Sharipov, Azat; Szlag, Daniel; Feletti, Lely; Vandenberg, Wim; Dedecker, Peter; Hofkens, Johan; Leutenegger, Marcel; Lasser, Theo; Radenovic, Aleksandra

    2016-12-01

    Live-cell imaging of focal adhesions requires a sufficiently high temporal resolution, which remains a challenge for super-resolution microscopy. Here we address this important issue by combining photoactivated localization microscopy (PALM) with super-resolution optical fluctuation imaging (SOFI). Using simulations and fixed-cell focal adhesion images, we investigate the complementarity between PALM and SOFI in terms of spatial and temporal resolution. This PALM-SOFI framework is used to image focal adhesions in living cells, while obtaining a temporal resolution below 10 s. We visualize the dynamics of focal adhesions, and reveal local mean velocities around 190 nm min-1. The complementarity of PALM and SOFI is assessed in detail with a methodology that integrates a resolution and signal-to-noise metric. This PALM and SOFI concept provides an enlarged quantitative imaging framework, allowing unprecedented functional exploration of focal adhesions through the estimation of molecular parameters such as fluorophore densities and photoactivation or photoswitching kinetics.

  17. Design and preparation of film for microsphere based optical super-resolution imaging

    Science.gov (United States)

    Pang, Hui; Du, Chunlei; Qiu, Qi; Yin, Shaoyun; Zhang, Man; Deng, Qiling

    2014-08-01

    In this paper, a novel thin film was proposed for optical super-resolution imaging, which contains a layer of closely-arranged barium titanate glass microsphere with diameter about 30-100μm embedded in a transparent polydimethylsiloxane soft mold. Then the imaging mechanism was analyzed by the finite-difference time-domain (FDTD) simulation and spectrum analysis method. Finally, the thin film was prepared and used to image the sample with sub-wavelength feature to confirm the capability of super-resolution imaging. The experimental result shows that an irresolvable Blu-ray DVD disk with feature size of 300nm can be resolved by placing a thin-film on its surface and then look through it with a conventional microscope. The thin film presented here is flexible, lightweight, easy to carry and can be used in the nanophotonics, nanoplasmonics, and biomedical imaging areas.

  18. Structural analysis of herpes simplex virus by optical super-resolution imaging.

    Science.gov (United States)

    Laine, Romain F; Albecka, Anna; van de Linde, Sebastian; Rees, Eric J; Crump, Colin M; Kaminski, Clemens F

    2015-01-22

    Herpes simplex virus type-1 (HSV-1) is one of the most widespread pathogens among humans. Although the structure of HSV-1 has been extensively investigated, the precise organization of tegument and envelope proteins remains elusive. Here we use super-resolution imaging by direct stochastic optical reconstruction microscopy (dSTORM) in combination with a model-based analysis of single-molecule localization data, to determine the position of protein layers within virus particles. We resolve different protein layers within individual HSV-1 particles using multi-colour dSTORM imaging and discriminate envelope-anchored glycoproteins from tegument proteins, both in purified virions and in virions present in infected cells. Precise characterization of HSV-1 structure was achieved by particle averaging of purified viruses and model-based analysis of the radial distribution of the tegument proteins VP16, VP1/2 and pUL37, and envelope protein gD. From this data, we propose a model of the protein organization inside the tegument.

  19. Structural analysis of herpes simplex virus by optical super-resolution imaging

    Science.gov (United States)

    Laine, Romain F.; Albecka, Anna; van de Linde, Sebastian; Rees, Eric J.; Crump, Colin M.; Kaminski, Clemens F.

    2015-01-01

    Herpes simplex virus type-1 (HSV-1) is one of the most widespread pathogens among humans. Although the structure of HSV-1 has been extensively investigated, the precise organization of tegument and envelope proteins remains elusive. Here we use super-resolution imaging by direct stochastic optical reconstruction microscopy (dSTORM) in combination with a model-based analysis of single-molecule localization data, to determine the position of protein layers within virus particles. We resolve different protein layers within individual HSV-1 particles using multi-colour dSTORM imaging and discriminate envelope-anchored glycoproteins from tegument proteins, both in purified virions and in virions present in infected cells. Precise characterization of HSV-1 structure was achieved by particle averaging of purified viruses and model-based analysis of the radial distribution of the tegument proteins VP16, VP1/2 and pUL37, and envelope protein gD. From this data, we propose a model of the protein organization inside the tegument.

  20. SOFI Simulation Tool: A Software Package for Simulating and Testing Super-Resolution Optical Fluctuation Imaging.

    Science.gov (United States)

    Girsault, Arik; Lukes, Tomas; Sharipov, Azat; Geissbuehler, Stefan; Leutenegger, Marcel; Vandenberg, Wim; Dedecker, Peter; Hofkens, Johan; Lasser, Theo

    2016-01-01

    Super-resolution optical fluctuation imaging (SOFI) allows one to perform sub-diffraction fluorescence microscopy of living cells. By analyzing the acquired image sequence with an advanced correlation method, i.e. a high-order cross-cumulant analysis, super-resolution in all three spatial dimensions can be achieved. Here we introduce a software tool for a simple qualitative comparison of SOFI images under simulated conditions considering parameters of the microscope setup and essential properties of the biological sample. This tool incorporates SOFI and STORM algorithms, displays and describes the SOFI image processing steps in a tutorial-like fashion. Fast testing of various parameters simplifies the parameter optimization prior to experimental work. The performance of the simulation tool is demonstrated by comparing simulated results with experimentally acquired data.

  1. Radial Basis Function Neural Network Based Super-Resolution Restoration for an Underspled Image

    Institute of Scientific and Technical Information of China (English)

    苏秉华; 金伟其; 牛丽红

    2004-01-01

    To achieve restoration of high frequency information for an underspled and degraded low-resolution image, a nonlinear and real-time processing method-the radial basis function (RBF) neural network based super-resolution method of restoration is proposed. The RBF network configuration and processing method is suitable for a high resolution restoration from an underspled low-resolution image. The soft-competition learning scheme based on the k-means algorithm is used, and can achieve higher mapping approximation accuracy without increase in the network size. Experiments showed that the proposed algorithm can achieve a super-resolution restored image from an underspled and degraded low-resolution image, and requires a shorter training time when compared with the multiplayer perception (MLP) network.

  2. Super-resolution imaging based on virtual Airy spot

    Science.gov (United States)

    Liu, Zhengjun; Guo, Cheng; Cui, Junning; Wu, Qun

    2015-02-01

    Based on the theoretical model of Airy spot, a method is proposed for improving the imaging speed from confocal microscopy. The virtual Airy spot is designed for obtaining the pattern on CCD at detecting plane. Here the size of the spot is determined by the parameters of imaging system and intensity data from point detector, which can receive data quicker than CCD. The treatment can improve the speed of imaging comparing with CCD at receiving end. The virtual structured detection is also utilized for generating high-resolution image. Some numerical simulation results are provided for demonstrating the validity of the proposed method.

  3. One-dimensional Fibonacci grating for far-field super-resolution imaging.

    Science.gov (United States)

    Wu, Kedi; Wang, Guo Ping

    2013-06-15

    One-dimensional Fibonacci gratings are used to transform evanescent waves into propagating waves for far-field super-resolution imaging. By detecting far-field intensity distributions of light through objects in front of the Fibonacci grating in free space, we can observe the objects with nearly λ/9 spatial resolution. Analytical results are verified by numerical simulations. We also discuss the effect of sampling error on imaging resolution of the system.

  4. SMILE Microscopy : fast and single-plane based super-resolution volume imaging

    CERN Document Server

    Mondal, Partha Pratim

    2016-01-01

    Fast 3D super-resolution imaging is essential for decoding rapidly occurring biological processes. Encoding single molecules to their respective planes enable simultaneous multi-plane super-resolution volume imaging. This saves the data-acquisition time and as a consequence reduce radiation-dose that lead to photobleaching and other undesirable photochemical reactions. Detection and subsequent identification of the locus of individual molecule (both on the focal plane and off-focal planes) holds the key. Experimentally, this is achieved by accurate calibration of system PSF size and its natural spread in off-focal planes using sub-diffraction fluorescent beads. Subsequently the identification and sorting of single molecules that belong to different axial planes is carried out (by setting multiple cut-offs to respective PSFs). Simultaneous Multiplane Imaging based Localization Encoded (SMILE) microscopy technique eliminates the need for multiple z-plane scanning and thereby provides a truly simultaneous multip...

  5. Spectroscopic super-resolution fluorescence cell imaging using ultra-small Ge quantum dots

    CERN Document Server

    Song, Mingying; Ersoy, Osman; Zhou, Yun; Yang, Yongxin; Zhang, Yuanpeng; Little, William R; Wheeler, Ann P; Sapelkin, Andrei V

    2015-01-01

    In single molecule localisation super-resolution microscopy the need for repeated image capture limits the imaging speed, while the size of fluorescence probes limits the possible theoretical localisation resolution. Here, we demonstrated a spectral imaging based super-resolution approach by separating the overlapping diffraction spots into several detectors during a single scanning period and taking advantage of the size-dependent emission wavelength in nanoparticles. This approach has been tested using off-the-shelf quantum dots (Qdot) and in-house novel ultra-small (~3 nm) Ge QDs. Furthermore, we developed a method-specific Gaussian fitting and maximum likelihood estimation based on a Matlab algorithm for fast QDs localisation. We demonstrate that this methodology results in ~ 40 nm localisation resolution using commercial QDs and ~12 nm localisation resolution using Ge QDs. Using a standard scanning confocal microscope we achieved data acquisition rate of 1.6 seconds/frame. However, we show that this appr...

  6. Three-dimensional super-resolution imaging for fluorescence emission difference microscopy

    Directory of Open Access Journals (Sweden)

    Shangting You

    2015-08-01

    Full Text Available We propose a method theoretically to break the diffraction limit and to improve the resolution in all three dimensions for fluorescence emission difference microscopy. We produce two kinds of hollow focal spot by phase modulation. By incoherent superposition, these two kinds of focal spot yield a 3D hollow focal spot. The optimal proportion of these two kinds of spot is given in the paper. By employing 3D hollow focal spot, super-resolution image can be yielded by means of fluorescence emission difference microscopy, with resolution enhanced both laterally and axially. According to computation result, size of point spread function of three-dimensional super-resolution imaging is reduced by about 40% in all three spatial directions with respect to confocal imaging.

  7. Super-resolution imaging of plasma membrane proteins with click chemistry

    Directory of Open Access Journals (Sweden)

    Pablo Mateos-Gil

    2016-09-01

    Full Text Available Besides its function as a passive cell wall, the plasma membrane (PM serves as a platform for different physiological processes such as signal transduction and cell adhesion, determining the ability of cells to communicate with the exterior and form tissues. Therefore, the spatial distribution of PM components, and the molecular mechanisms underlying it, have important implications in various biological fields including cell development, neurobiology, and immunology. The existence of confined compartments in the plasma membrane that vary on many length scales from protein multimers to micrometer-size domains with different protein and lipid composition is today beyond all questions. As much as the physiology of cells is controlled by the spatial organization of PM components, the study of distribution, size and composition remains challenging. Visualization of the molecular distribution of PM components has been impeded mainly due to two problems: the specific labeling of lipids and proteins without perturbing their native distribution and the diffraction-limit of fluorescence microscopy restricting the resolution to about half the wavelength of light. Here, we present a bioorthogonal chemical reporter strategy based on click chemistry and metabolic labeling for efficient and specific visualization of PM proteins and glycans with organic fluorophores in combination with super-resolution fluorescence imaging by direct stochastic optical reconstruction microscopy (dSTORM with single-molecule sensitivity.

  8. Super-Resolution Imaging of Plasma Membrane Proteins with Click Chemistry

    Science.gov (United States)

    Mateos-Gil, Pablo; Letschert, Sebastian; Doose, Sören; Sauer, Markus

    2016-01-01

    Besides its function as a passive cell wall, the plasma membrane (PM) serves as a platform for different physiological processes such as signal transduction and cell adhesion, determining the ability of cells to communicate with the exterior, and form tissues. Therefore, the spatial distribution of PM components, and the molecular mechanisms underlying it, have important implications in various biological fields including cell development, neurobiology, and immunology. The existence of confined compartments in the plasma membrane that vary on many length scales from protein multimers to micrometer-size domains with different protein and lipid composition is today beyond all questions. As much as the physiology of cells is controlled by the spatial organization of PM components, the study of distribution, size, and composition remains challenging. Visualization of the molecular distribution of PM components has been impeded mainly due to two problems: the specific labeling of lipids and proteins without perturbing their native distribution and the diffraction-limit of fluorescence microscopy restricting the resolution to about half the wavelength of light. Here, we present a bioorthogonal chemical reporter strategy based on click chemistry and metabolic labeling for efficient and specific visualization of PM proteins and glycans with organic fluorophores in combination with super-resolution fluorescence imaging by direct stochastic optical reconstruction microscopy (dSTORM) with single-molecule sensitivity. PMID:27668214

  9. Super-resolution photoacoustic imaging through a scattering wall

    Science.gov (United States)

    Conkey, Donald B.; Caravaca-Aguirre, Antonio M.; Dove, Jake D.; Ju, Hengyi; Murray, Todd W.; Piestun, Rafael

    2015-08-01

    The use of wavefront shaping to compensate for scattering has brought a renewed interest as a potential solution to imaging through scattering walls. A key to the practicality of any imaging through scattering technique is the capability to focus light without direct access behind the scattering wall. Here we address this problem using photoacoustic feedback for wavefront optimization. By combining the spatially non-uniform sensitivity of the ultrasound transducer to the generated photoacoustic waves with an evolutionary competition among optical modes, the speckle field develops a single, high intensity focus significantly smaller than the acoustic focus used for feedback. Notably, this method is not limited by the size of the absorber to form a sub-acoustic optical focus. We demonstrate imaging behind a scattering medium using two different imaging modalities with up to ten times improvement in signal-to-noise ratio and five to six times sub-acoustic resolution.

  10. Super-resolution in brain Diffusion Weighted Imaging (DWI)

    OpenAIRE

    Tarquino González, Jonathan Steve

    2014-01-01

    Abstract. Diffusion Weighted (DW) imaging has proven to be useful at analysing brain architecture as well as at establishing brain tract organization and neuronal connectivity. However, an actual clinical use of DW images is currently limited by a series of acquisition artifacts, among them the partial volume effect (PVE) that may completely alter the spatial resolution and therefore the visualization of microanatomical details. In this work, a new superresolution method will be presented, ta...

  11. Infrared chemical imaging: Spatial resolution evaluation and super-resolution concept

    Energy Technology Data Exchange (ETDEWEB)

    Offroy, Marc [Laboratoire de Spectrochimie Infrarouge et Raman, LASIR, CNRS UMR 8516, Bat. C5, Universite des Sciences et Technologies de Lille, 59655 Villeneuve d' Ascq Cedex (France); Roggo, Yves [F. Hoffmann-La Roche A.G., Basel (Switzerland); Milanfar, Peyman [Multi-Dimensional Signal Processing Laboratory, Electrical Engineering Department, Baskin School of Engineering, University of California, 1156 High Street, Mailcode SOE2, Santa Cruz, CA 95064 (United States); Duponchel, Ludovic, E-mail: ludovic.duponchel@univ-lille1.fr [Laboratoire de Spectrochimie Infrarouge et Raman, LASIR, CNRS UMR 8516, Bat. C5, Universite des Sciences et Technologies de Lille, 59655 Villeneuve d' Ascq Cedex (France)

    2010-08-03

    Chemical imaging systems help to solve many challenges in various scientific fields. Able to deliver rapid spatial and chemical information, modern infrared spectrometers using Focal Plane Array detectors (FPA) are of great interest. Considering conventional infrared spectrometers with a single element detector, we can consider that the diffraction-limited spatial resolution is more or less equal to the wavelength of the light (i.e. 2.5-25 {mu}m). Unfortunately, the spatial resolution of FPA spectroscopic setup is even lower due to the detector pixel size. This becomes a real constraint when micron-sized samples are analysed. New chemometrics methods are thus of great interest to overcome such resolution drawback, while keeping our far-field infrared imaging spectrometers. The aim of the present work is to evaluate the super-resolution concept in order to increase the spatial resolution of infrared imaging spectrometers using FPA detectors. The main idea of super-resolution is the fusion of several low-resolution images of the same sample to obtain a higher-resolution image. Applying the super-resolution concept on a relatively low number of FPA acquisitions, it was possible to observe a 30% decrease in spatial resolution.

  12. Spatiotemporal Super-Resolution Reconstruction Based on Robust Optical Flow and Zernike Moment for Video Sequences

    Directory of Open Access Journals (Sweden)

    Meiyu Liang

    2013-01-01

    Full Text Available In order to improve the spatiotemporal resolution of the video sequences, a novel spatiotemporal super-resolution reconstruction model (STSR based on robust optical flow and Zernike moment is proposed in this paper, which integrates the spatial resolution reconstruction and temporal resolution reconstruction into a unified framework. The model does not rely on accurate estimation of subpixel motion and is robust to noise and rotation. Moreover, it can effectively overcome the problems of hole and block artifacts. First we propose an efficient robust optical flow motion estimation model based on motion details preserving, then we introduce the biweighted fusion strategy to implement the spatiotemporal motion compensation. Next, combining the self-adaptive region correlation judgment strategy, we construct a fast fuzzy registration scheme based on Zernike moment for better STSR with higher efficiency, and then the final video sequences with high spatiotemporal resolution can be obtained by fusion of the complementary and redundant information with nonlocal self-similarity between the adjacent video frames. Experimental results demonstrate that the proposed method outperforms the existing methods in terms of both subjective visual and objective quantitative evaluations.

  13. From single-molecule spectroscopy to super-resolution imaging of the neuron: a review

    Science.gov (United States)

    Laine, Romain F.; Kaminski Schierle, Gabriele S.; van de Linde, Sebastian; Kaminski, Clemens F.

    2016-06-01

    For more than 20 years, single-molecule spectroscopy has been providing invaluable insights into nature at the molecular level. The field has received a powerful boost with the development of the technique into super-resolution imaging methods, ca. 10 years ago, which overcome the limitations imposed by optical diffraction. Today, single molecule super-resolution imaging is routinely used in the study of macromolecular function and structure in the cell. Concomitantly, computational methods have been developed that provide information on numbers and positions of molecules at the nanometer-scale. In this overview, we outline the technical developments that have led to the emergence of localization microscopy techniques from single-molecule spectroscopy. We then provide a comprehensive review on the application of the technique in the field of neuroscience research.

  14. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI).

    Science.gov (United States)

    Dertinger, T; Colyer, R; Iyer, G; Weiss, S; Enderlein, J

    2009-12-29

    Super-resolution optical microscopy is a rapidly evolving area of fluorescence microscopy with a tremendous potential for impacting many fields of science. Several super-resolution methods have been developed over the last decade, all capable of overcoming the fundamental diffraction limit of light. We present here an approach for obtaining subdiffraction limit optical resolution in all three dimensions. This method relies on higher-order statistical analysis of temporal fluctuations (caused by fluorescence blinking/intermittency) recorded in a sequence of images (movie). We demonstrate a 5-fold improvement in spatial resolution by using a conventional wide-field microscope. This resolution enhancement is achieved in iterative discrete steps, which in turn allows the evaluation of images at different resolution levels. Even at the lowest level of resolution enhancement, our method features significant background reduction and thus contrast enhancement and is demonstrated on quantum dot-labeled microtubules of fibroblast cells.

  15. Identification and super-resolution imaging of ligand-activated receptor dimers in live cells

    CERN Document Server

    Winckler, Pascale; Giannone, Gregory; De Giorgi, Francesca; Ichas, François; Sibarita, Jean-Baptiste; Lounis, Brahim; Cognet, Laurent

    2013-01-01

    Molecular interactions are key to many chemical and biological processes like protein function. In many signaling processes they occur in sub-cellular areas displaying nanoscale organizations and involving molecular assemblies. The nanometric dimensions and the dynamic nature of the interactions make their investigations complex in live cells. While super-resolution fluorescence microscopies offer live-cell molecular imaging with sub-wavelength resolutions, they lack specificity for distinguishing interacting molecule populations. Here we combine super-resolution microscopy and single-molecule F\\"orster Resonance Energy Transfer (FRET) to identify dimers of receptors induced by ligand binding and provide super-resolved images of their membrane distribution in live cells. By developing a two-color universal-Point-Accumulation-In-the-Nanoscale-Topography (uPAINT) method, dimers of epidermal growth factor receptors (EGFR) activated by EGF are studied at ultra-high densities, revealing preferential cell-edge sub-...

  16. Super-resolution photoacoustic imaging through a scattering wall

    CERN Document Server

    Conkey, Donald B; Dove, Jacob D; Ju, Hengyi; Murray, Todd W; Piestun, Rafael

    2013-01-01

    Imaging through opaque, highly scattering walls is a long sought after capability with potential applications in a variety of fields. The use of wavefront shaping to compensate for scattering has brought a renewed interest as a potential solution to this problem. A key to the practicality of any imaging technique is the capability to focus light without direct access behind the scattering wall. Here, we address this problem using photoacoustic feedback for wavefront optimization. By combining the spatially non-uniform sensitivity of the ultrasound transducer to the generated photoacoustic waves with an evolutionary competition among optical modes, the speckle field develops a single, high intensity focus significantly smaller than the acoustic focus used for feedback. Notably, this method is not limited by the size of the absorber to form a sub-acoustic optical focus. We demonstrate imaging behind a scattering medium with up to ten times improvement in signal-to-noise ratio (SNR) and five to six times sub-aco...

  17. Large-area super-resolution optical imaging by using core-shell microfibers

    Science.gov (United States)

    Liu, Cheng-Yang; Lo, Wei-Chieh

    2017-09-01

    We first numerically and experimentally report large-area super-resolution optical imaging achieved by using core-shell microfibers. The particular spatial electromagnetic waves for different core-shell microfibers are studied by using finite-difference time-domain and ray tracing calculations. The focusing properties of photonic nanojets are evaluated in terms of intensity profile and full width at half-maximum along propagation and transversal directions. In experiment, the general optical fiber is chemically etched down to 6 μm diameter and coated with different metallic thin films by using glancing angle deposition. The direct imaging of photonic nanojets for different core-shell microfibers is performed with a scanning optical microscope system. We show that the intensity distribution of a photonic nanojet is highly related to the metallic shell due to the surface plasmon polaritons. Furthermore, large-area super-resolution optical imaging is performed by using different core-shell microfibers placed over the nano-scale grating with 150 nm line width. The core-shell microfiber-assisted imaging is achieved with super-resolution and hundreds of times the field-of-view in contrast to microspheres. The possible applications of these core-shell optical microfibers include real-time large-area micro-fluidics and nano-structure inspections.

  18. Super-resolution imaging of plasmodesmata using three-dimensional structured illumination microscopy

    OpenAIRE

    Fitzgibbon, Jessica; Bell,Karen; King, Emma; Oparka, Karl

    2010-01-01

    We used three-dimensional structured illumination microscopy (3D-SIM) to obtain subdiffraction ("super-resolution") images of plasmodesmata (PD) expressing a green fluorescent protein-tagged viral movement protein (MP) in tobacco (Nicotiana tabacum). In leaf parenchyma cells, we were able to resolve individual components of PD (neck and central cavities) at twice the resolution of a confocal microscope. Within the phloem, MP-green fluorescent protein filaments extended outward from the specia...

  19. Image super resolution using deep convolutional network based on topology aggregation structure

    Science.gov (United States)

    Yang, Fan; Xu, Wei; Tian, Yapeng

    2017-08-01

    In this paper, we propose a new architecture of the deep convolutional network for single-image super-resolution (SR). Our convolutional network is inspired by GoogLeNet and Res Ne Xt, improved on VDSR which is a representative state-of-the-art method for deep learning-based SR approach. In the field of image super-resolution, we pioneer using the topology aggregation method to improve the network structure. Our network is constructed by repeating the same blocks and each block has the same uniform topology aggregation structure. This design results in reducing the amount of network parameters, so as to increase the depth of the network, thereby enhancing the image super-resolution performance. The design of the network is to take into account both computing performance and practicality. In addition to the performance, the size of model is also important. Experiments show that if the depth of our network is 20 layers, as same as VDSR, our model size is smaller than VDSR 1/3 and the performance is as good as VDSR. Moreover, if we set our model size is as same as VDSR's model size, the depth of our network can be increased to 32 layers, and the performance is better than VDSR.

  20. Wide-field multispectral super-resolution imaging using spin-dependent fluorescence in nanodiamonds.

    Science.gov (United States)

    Chen, Edward H; Gaathon, Ophir; Trusheim, Matthew E; Englund, Dirk

    2013-05-08

    Recent advances in fluorescence microscopy have enabled spatial resolution below the diffraction limit by localizing multiple temporally or spectrally distinguishable fluorophores. Here, we introduce a super-resolution technique that deterministically controls the brightness of uniquely addressable, photostable emitters. We modulate the fluorescence brightness of negatively charged nitrogen-vacancy (NV(-)) centers in nanodiamonds through magnetic resonance techniques. Using a CCD camera, this "deterministic emitter switch microscopy" (DESM) technique enables super-resolution imaging with localization down to 12 nm across a 35 × 35 μm(2) area. DESM is particularly well suited for biological applications such as multispectral particle tracking since fluorescent nanodiamonds are not only cytocompatible but also nonbleaching and bright. We observe fluorescence count rates exceeding 1.5 × 10(6) photons per second from single NV(-) centers at saturation. When combined with emerging NV(-)-based techniques for sensing magnetic and electric fields, DESM opens the door to rapid, super-resolution imaging for tracking and sensing applications in the life and physical sciences.

  1. Photophysics of Fluorescent Probes for Single-Molecule Biophysics and Super-Resolution Imaging

    Science.gov (United States)

    Ha, Taekjip; Tinnefeld, Philip

    2012-05-01

    Single-molecule fluorescence spectroscopy and super-resolution microscopy are important elements of the ongoing technical revolution to reveal biochemical and cellular processes in unprecedented clarity and precision. Demands placed on the photophysical properties of the fluorophores are stringent and drive the choice of appropriate probes. Such fluorophores are not simple light bulbs of a certain color and brightness but instead have their own “personalities” regarding spectroscopic parameters, redox properties, size, water solubility, photostability, and several other factors. Here, we review the photophysics of fluorescent probes, both organic fluorophores and fluorescent proteins, used in applications such as particle tracking, single-molecule FRET, stoichiometry determination, and super-resolution imaging. Of particular interest is the thiol-induced blinking of Cy5, a curse for single-molecule biophysical studies that was later overcome using Trolox through a reducing/oxidizing system but a boon for super-resolution imaging owing to the controllable photoswitching. Understanding photophysics is critical in the design and interpretation of single-molecule experiments.

  2. Super-resolution imaging of aquaporin-4 orthogonal arrays of particles in cell membranes.

    Science.gov (United States)

    Rossi, Andrea; Moritz, Tobias J; Ratelade, Julien; Verkman, A S

    2012-09-15

    Aquaporin-4 (AQP4) is a water channel expressed in astrocytes, skeletal muscle and epithelial cells that forms supramolecular aggregates in plasma membranes called orthogonal arrays of particles (OAPs). AQP4 is expressed as a short isoform (M23) that forms large OAPs, and a long isoform (M1) that does not form OAPs by itself but can mingle with M23 to form relatively small OAPs. AQP4 OAPs were imaged with ~20 nm spatial precision by photoactivation localization microscopy (PALM) in cells expressing chimeras of M1- or M23-AQP4 with photoactivatable fluorescent proteins. Native AQP4 was imaged by direct stochastic optical reconstruction microscopy (dSTORM) using a primary anti-AQP4 antibody and fluorescent secondary antibodies. We found that OAP area increased from 1878±747 to 3647±958 nm(2) with decreasing M1:M23 ratio from 1:1 to 1:3, and became elongated. Two-color dSTORM indicated that M1 and M23 co-assemble in OAPs with a M1-enriched periphery surrounding a M23-enriched core. Native AQP4 in astrocytes formed OAPs with an area of 2142±829 nm(2), which increased to 5137±1119 nm(2) with 2-bromopalmitate. PALM of AQP4 OAPs in live cells showed slow diffusion (average ~10(-12) cm(2)/s) and reorganization. OAP area was not altered by anti-AQP4 IgG autoantibodies (NMO-IgG) that cause the neurological disease neuromyelitis optica. Super-resolution imaging allowed elucidation of novel nanoscale structural and dynamic features of OAPs.

  3. MTF Measurement of EBCCD Imaging System by Using Super Resolution Technique

    Institute of Scientific and Technical Information of China (English)

    左昉; 高岳; 高稚允; 苏美开; 周立伟

    2003-01-01

    Existing methods of measurement MTF for discrete imaging system are analysed. A slit target is frequently used to measure the MTF for an imaging system. Usually there are four methods to measure the MTF for a discrete imaging system by using a slit. These methods have something imperfect respectively. But for the discrete imaging systems of under sampling it is difficult to reproduce this type of target properly since frequencies above Nyquist are folded into those below Nyquist, resulting in aliasing effect. To tackle the aliasing problem, a super resolution technique is introduced into our measurement, which gives MTF values both above and below Nyquist more accurately.

  4. Axial super-resolution evanescent wave tomography.

    Science.gov (United States)

    Pendharker, Sarang; Shende, Swapnali; Newman, Ward; Ogg, Stephen; Nazemifard, Neda; Jacob, Zubin

    2016-12-01

    Optical tomographic reconstruction of a three-dimensional (3D) nanoscale specimen is hindered by the axial diffraction limit, which is 2-3 times worse than the focal plane resolution. We propose and experimentally demonstrate an axial super-resolution evanescent wave tomography method that enables the use of regular evanescent wave microscopes like the total internal reflection fluorescence microscope beyond surface imaging and achieve a tomographic reconstruction with axial super-resolution. Our proposed method based on Fourier reconstruction achieves axial super-resolution by extracting information from multiple sets of 3D fluorescence images when the sample is illuminated by an evanescent wave. We propose a procedure to extract super-resolution features from the incremental penetration of an evanescent wave and support our theory by one-dimensional (along the optical axis) and 3D simulations. We validate our claims by experimentally demonstrating tomographic reconstruction of microtubules in HeLa cells with an axial resolution of ∼130  nm. Our method does not require any additional optical components or sample preparation. The proposed method can be combined with focal plane super-resolution techniques like stochastic optical reconstruction microscopy and can also be adapted for THz and microwave near-field tomography.

  5. Temporal Super Resolution Enhancement of Echocardiographic Images Based on Sparse Representation.

    Science.gov (United States)

    Gifani, Parisa; Behnam, Hamid; Haddadi, Farzan; Sani, Zahra Alizadeh; Shojaeifard, Maryam

    2016-01-01

    A challenging issue for echocardiographic image interpretation is the accurate analysis of small transient motions of myocardium and valves during real-time visualization. A higher frame rate video may reduce this difficulty, and temporal super resolution (TSR) is useful for illustrating the fast-moving structures. In this paper, we introduce a novel framework that optimizes TSR enhancement of echocardiographic images by utilizing temporal information and sparse representation. The goal of this method is to increase the frame rate of echocardiographic videos, and therefore enable more accurate analyses of moving structures. For the proposed method, we first derived temporal information by extracting intensity variation time curves (IVTCs) assessed for each pixel. We then designed both low-resolution and high-resolution overcomplete dictionaries based on prior knowledge of the temporal signals and a set of prespecified known functions. The IVTCs can then be described as linear combinations of a few prototype atoms in the low-resolution dictionary. We used the Bayesian compressive sensing (BCS) sparse recovery algorithm to find the sparse coefficients of the signals. We extracted the sparse coefficients and the corresponding active atoms in the low-resolution dictionary to construct new sparse coefficients corresponding to the high-resolution dictionary. Using the estimated atoms and the high-resolution dictionary, a new IVTC with more samples was constructed. Finally, by placing the new IVTC signals in the original IVTC positions, we were able to reconstruct the original echocardiography video with more frames. The proposed method does not require training of low-resolution and high-resolution dictionaries, nor does it require motion estimation; it does not blur fast-moving objects, and does not have blocking artifacts.

  6. Super-resolution image restoration algorithms based on orthogonal discrete wavelet transform

    Science.gov (United States)

    Liu, Yang-yang; Jin, Wei-qi

    2005-02-01

    Several new super-resolution image restoration algorithms based on orthogonal discrete wavelet transform are proposed, by using orthogonal discrete wavelet transform and generalized cross validation ,and combining with Luck-Richardson super-resolution image restoration algorithm (LR) and Luck-Richardson algorithm based on Poisson-Markov model (MPML). Orthogonal discrete wavelet transform analyzed in both space and frequency domain has the capability of indicating local features of a signal, and concentrating the signal power to a few coefficients in wavelet transform domain. After an original image is "Symlets" orthogonal discrete wavelet transformed, an asymptotically optimal threshold is determined by minimizing generalized cross validation, and high frequency subbands in each decomposition level are denoised with soft threshold processes to converge respectively to those with maximum signal-noise-ratio, when the method is incorporated with existed super-resolution image algorithms, details of original image, especially of those with low signal-noise-ratio, could be well recovered. Single operation wavelet LR algorithm(SWLR),single operation wavelet MPML algorithm(SW-MPML) and MPML algorithm based on single operation and wavelet transform (MPML- SW) are some operative algorithms proposed based on the method. According to the processing results to simulating and practical images , because of the only one operation, under the guarantee of rapid and effective restoration processing, in comparison with LR and MPML, all the proposed algorithms could retain image details better, and be more suitable to low signal-noise-ratio images, They could also reduce operation time for up to hundreds times of iteratives, as well as, avoid the iterative operation of self-adaptive parameters in MPML, improve operating speed and precision. They are practical and instantaneous to some extent in the field of low signal-noise-ratio image restoration.

  7. Super-Resolution Imaging by Arrays of High-Index Spheres Embedded in Transparent Matrices

    CERN Document Server

    Allen, Kenneth W; Li, Yangcheng; Limberopoulos, Nicholaos I; Walker, Dennis E; Urbas, Augustine M; Astratov, Vasily N

    2014-01-01

    We fabricated thin-films made from polydimethylsiloxane (PDMS) with embedded high-index (n~1.9-2.2) microspheres for super-resolution imaging applications. To control the position of microspheres, such films can be translated along the surface of the nanoplasmonic structure to be imaged. Microsphere-assisted imaging, through these matrices, provided lateral resolution of ~{\\lambda}/7 in nanoplasmonic dimer arrays with an illuminating wavelength {\\lambda}=405 nm. Such thin films can be used as contact optical components to boost the resolution capability of conventional microscopes.

  8. Two-dimensional Fibonacci grating for far-field super-resolution imaging

    Science.gov (United States)

    Wu, Kedi; Wang, Guo Ping

    2016-12-01

    A two-dimensional (2D) Fibonacci grating is used to transform evanescent waves into propagating waves for far-field super-resolution imaging. By detecting far-field intensity distributions of light field through objects in front of the 2D Fibonacci grating in free space at once, we can retrieve the image of objects with beyond λ/7 spatial resolution. We also find that the coherent illumination case can give a better resolution than incoherent illumination case by such 2D grating-assisted imaging system. The analytical results are verified by numerical simulation.

  9. A fast learning-based super-resolution method for copper strip defect image

    Science.gov (United States)

    Zhang, Zhuo; Fan, Xinnan; Zhang, Xuewu

    2017-07-01

    In this paper, a fast pre-classified-based super-resolution model has been proposed to overcome the problems of degraded imaging in weak-target real-time detection system, specialized to copper defect detection. To accurately characterize the defected image, textural features based on the statistical function of gray-gradient are presented. Furthermore, to improve the effectiveness and practicality of the online detection, a concept of pre-classified learning is introduced and an edge smoothness rule is designed. Some experiments are carried out on defect images in different environments and the experimental results show the efficiency and effectiveness of the algorithm.

  10. Axial super-resolution evanescent wave tomography

    Science.gov (United States)

    Pendharker, Sarang; Shende, Swapnali; Newman, Ward; Ogg, Stephen; Nazemifard, Neda; Jacob, Zubin

    2016-12-01

    Optical tomographic reconstruction of a 3D nanoscale specimen is hindered by the axial diffraction limit, which is 2-3 times worse than the focal plane resolution. We propose and experimentally demonstrate an axial super-resolution evanescent wave tomography (AxSET) method that enables the use of regular evanescent wave microscopes like Total Internal Reflection Fluorescence Microscope (TIRF) beyond surface imaging, and achieve tomographic reconstruction with axial super-resolution. Our proposed method based on Fourier reconstruction achieves axial super-resolution by extracting information from multiple sets of three-dimensional fluorescence images when the sample is illuminated by an evanescent wave. We propose a procedure to extract super-resolution features from the incremental penetration of an evanescent wave and support our theory by 1D (along the optical axis) and 3D simulations. We validate our claims by experimentally demonstrating tomographic reconstruction of microtubules in HeLa cells with an axial resolution of $\\sim$130 nm. Our method does not require any additional optical components or sample preparation. The proposed method can be combined with focal plane super-resolution techniques like STORM and can also be adapted for THz and microwave near-field tomography.

  11. SLAP: Small Labeling Pair for Single-Molecule Super-Resolution Imaging.

    Science.gov (United States)

    Wieneke, Ralph; Raulf, Anika; Kollmannsperger, Alina; Heilemann, Mike; Tampé, Robert

    2015-08-24

    Protein labeling with synthetic fluorescent probes is a key technology in chemical biology and biomedical research. A sensitive and efficient modular labeling approach (SLAP) was developed on the basis of a synthetic small-molecule recognition unit (Ni-trisNTA) and the genetically encoded minimal protein His6-10 -tag. High-density protein tracing by SLAP was demonstrated. This technique allows super-resolution fluorescence imaging and fulfills the necessary sampling criteria for single-molecule localization-based imaging techniques. It avoids masking by large probes, for example, antibodies, and supplies sensitive, precise, and robust size analysis of protein clusters (nanodomains).

  12. Single-Image Super Resolution for Multispectral Remote Sensing Data Using Convolutional Neural Networks

    Science.gov (United States)

    Liebel, L.; Körner, M.

    2016-06-01

    In optical remote sensing, spatial resolution of images is crucial for numerous applications. Space-borne systems are most likely to be affected by a lack of spatial resolution, due to their natural disadvantage of a large distance between the sensor and the sensed object. Thus, methods for single-image super resolution are desirable to exceed the limits of the sensor. Apart from assisting visual inspection of datasets, post-processing operations—e.g., segmentation or feature extraction—can benefit from detailed and distinguishable structures. In this paper, we show that recently introduced state-of-the-art approaches for single-image super resolution of conventional photographs, making use of deep learning techniques, such as convolutional neural networks (CNN), can successfully be applied to remote sensing data. With a huge amount of training data available, end-to-end learning is reasonably easy to apply and can achieve results unattainable using conventional handcrafted algorithms. We trained our CNN on a specifically designed, domain-specific dataset, in order to take into account the special characteristics of multispectral remote sensing data. This dataset consists of publicly available SENTINEL-2 images featuring 13 spectral bands, a ground resolution of up to 10m, and a high radiometric resolution and thus satisfying our requirements in terms of quality and quantity. In experiments, we obtained results superior compared to competing approaches trained on generic image sets, which failed to reasonably scale satellite images with a high radiometric resolution, as well as conventional interpolation methods.

  13. Super-resolution

    DEFF Research Database (Denmark)

    Nasrollahi, Kamal; Moeslund, Thomas B.

    2014-01-01

    and aerial imaging to medical image processing, to facial image analysis, text image analysis, sign and number plates reading, and biometrics recognition, to name a few. This has resulted in many research papers, each developing a new super-resolution algorithm for a specific purpose. The current......Super-resolution, the process of obtaining one or more high-resolution images from one or more low-resolution observations, has been a very attractive research topic over the last two decades. It has found practical applications in many real world problems in different fields, from satellite...... the contributions of different authors to the basic concepts of each group. Furthermore, common issues in super-resolution algorithms, such as imaging models and registration algorithms, optimization of the cost functions employed, dealing with color information, improvement factors, assessment of super...

  14. Super-resolution image analysis as a means of monitoring bracken (Pteridium aquilinum) distributions

    Science.gov (United States)

    Holland, Jennie; Aplin, Paul

    2013-01-01

    The bracken (Pteridium aquilinum) fern is environmentally significant due to its great abundance and swift colonisation, and its perception as a problem plant in degrading agricultural or ecologically sensitive land. Various attempts have been made to map bracken using remote sensing, but these have proved relatively unsuccessful, often apparently constrained by the lack of spatial detail associated with medium spatial resolution satellite sensors such as the Landsat series. In this study, bracken was characterised using a combination of 30 m Landsat sensor imagery and 4 m IKONOS imagery. Different classification techniques were compared, including hard maximum likelihood classification and a super-resolution approach comprising soft classification and sub-pixel contouring. These techniques were applied to a range of image dates, including summer, winter and multitemporal images. Image analysis was supported by extensive field data collection, comprising both a land cover survey and stakeholder interviews. For the hard classified Landsat sensor imagery, the summer image proved least able to characterise bracken, due largely to the spectral similarity between (green) growing bracken and grasses and other vegetation. The winter images were more successful for identifying bracken due to the strong contrast between dead (brown/red) bracken and other vegetation. However, the multitemporal Landsat image was considerably more accurate than any of the single date images. The hard classified IKONOS image was more accurate overall than the Landsat sensor images for classifying land cover. Surprisingly, though, it was not comprehensively more accurate for mapping the bracken class. Notably, the producers accuracy of bracken was lower for the IKONOS image than the Landsat sensor images. This suggests image spatial resolution, although influential on the success of bracken characterisation, is not necessarily the sole or main determinant of classification accuracy. Also

  15. Single-Molecule Spectroscopy, Imaging, and Photocontrol: Foundations for Super-Resolution Microscopy (Nobel Lecture).

    Science.gov (United States)

    Moerner, W E William E

    2015-07-06

    The initial steps toward optical detection and spectroscopy of single molecules in condensed matter arose out of the study of inhomogeneously broadened optical absorption profiles of molecular impurities in solids at low temperatures. Spectral signatures relating to the fluctuations of the number of molecules in resonance led to the attainment of the single-molecule limit in 1989 using frequency-modulation laser spectroscopy. In the early 90s, many fascinating physical effects were observed for individual molecules, and the imaging of single molecules as well as observations of spectral diffusion, optical switching and the ability to select different single molecules in the same focal volume simply by tuning the pumping laser frequency provided important forerunners of the later super-resolution microscopy with single molecules. In the room temperature regime, imaging of single copies of the green fluorescent protein also uncovered surprises, especially the blinking and photoinduced recovery of emitters, which stimulated further development of photoswitchable fluorescent protein labels. Because each single fluorophore acts a light source roughly 1 nm in size, microscopic observation and localization of individual fluorophores is a key ingredient to imaging beyond the optical diffraction limit. Combining this with active control of the number of emitting molecules in the pumped volume led to the super-resolution imaging of Eric Betzig and others, a new frontier for optical microscopy beyond the diffraction limit. The background leading up to these observations is described and current developments are summarized.

  16. Nobel Lecture: Single-molecule spectroscopy, imaging, and photocontrol: Foundations for super-resolution microscopy*

    Science.gov (United States)

    Moerner, W. E. William E.

    2015-10-01

    The initial steps toward optical detection and spectroscopy of single molecules in condensed matter arose out of the study of inhomogeneously broadened optical absorption profiles of molecular impurities in solids at low temperatures. Spectral signatures relating to the fluctuations of the number of molecules in resonance led to the attainment of the single-molecule limit in 1989 using frequency-modulation laser spectroscopy. In the early 1990s, many fascinating physical effects were observed for individual molecules, and the imaging of single molecules as well as observations of spectral diffusion, optical switching and the ability to select different single molecules in the same focal volume simply by tuning the pumping laser frequency provided important forerunners of the later super-resolution microscopy with single molecules. In the room-temperature regime, imaging of single copies of the green fluorescent protein also uncovered surprises, especially the blinking and photoinduced recovery of emitters, which stimulated further development of photoswitchable fluorescent protein labels. Because each single fluorophore acts as a light source roughly 1 nm in size, microscopic observation and localization of individual fluorophores is a key ingredient to imaging beyond the optical diffraction limit. Combining this with active control of the number of emitting molecules in the pumped volume led to the super-resolution imaging of Eric Betzig and others, a new frontier for optical microscopy beyond the diffraction limit. The background leading up to these observations is described and selected current developments are summarized.

  17. Super-resolution deep imaging with hollow Bessel beam STED microscopy

    CERN Document Server

    Yu, Wentao; Dong, Dashan; Yang, Xusan; Xiao, Yunfeng; Gong, Qihuang; Xi, Peng; Shi, Kebin

    2015-01-01

    Stimulated emission depletion (STED) microscopy has become a powerful imaging and localized excitation method beating the diffraction barrier for improved lateral spatial resolution in cellular imaging, lithography, etc. Due to specimen-induced aberrations and scattering distortion, it has been a great challenge for STED to maintain consistent lateral resolution deeply inside the specimens. Here we report on a deep imaging STED microscopy by using Gaussian beam for excitation and hollow Bessel beam for depletion (GB-STED). The proposed scheme shows the improved imaging depth up to ~155{\\mu}m in solid agarose sample, ~115{\\mu}m in PDMS and ~100{\\mu}m in phantom of gray matter in brain tissue with consistent super resolution, while the standard STED microscopy shown a significantly reduced lateral resolution at the same imaging depth. The results indicate the excellent imaging penetration capability of GB-STED, making it a promising tool for deep 3D imaging optical nanoscopy and laser fabrication.

  18. Correlation functions quantify super-resolution images and estimate apparent clustering due to over-counting

    CERN Document Server

    Veatch, Sarah; Shelby, Sarah; Chiang, Ethan; Holowka, David; Baird, Barbara

    2011-01-01

    We present an analytical method to quantify clustering in super-resolution localization images of static surfaces in two dimensions. The method also describes how over-counting of labeled molecules contributes to apparent self-clustering and how the effective lateral resolution of an image can be determined. This treatment applies to clustering of proteins and lipids in membranes, where there is significant interest in using super-resolution localization techniques to probe membrane heterogeneity. When images are quantified using pair correlation functions, the magnitude of apparent clustering due to over-counting will vary inversely with the surface density of labeled molecules and does not depend on the number of times an average molecule is counted. Over-counting does not yield apparent co-clustering in double label experiments when pair cross-correlation functions are measured. We apply our analytical method to quantify the distribution of the IgE receptor (Fc{\\epsilon}RI) on the plasma membranes of chemi...

  19. Example-based super-resolution for single-image analysis from the Chang'e-1 Mission

    Science.gov (United States)

    Wu, Fan-Lu; Wang, Xiang-Jun

    2016-11-01

    Due to the low spatial resolution of images taken from the Chang'e-1 (CE-1) orbiter, the details of the lunar surface are blurred and lost. Considering the limited spatial resolution of image data obtained by a CCD camera on CE-1, an example-based super-resolution (SR) algorithm is employed to obtain high-resolution (HR) images. SR reconstruction is important for the application of image data to increase the resolution of images. In this article, a novel example-based algorithm is proposed to implement SR reconstruction by single-image analysis, and the computational cost is reduced compared to other example-based SR methods. The results show that this method can enhance the resolution of images using SR and recover detailed information about the lunar surface. Thus it can be used for surveying HR terrain and geological features. Moreover, the algorithm is significant for the HR processing of remotely sensed images obtained by other imaging systems.

  20. Super-resolution image restoration algorithm based on orthogonal discrete wavelet transform

    Institute of Scientific and Technical Information of China (English)

    Yangyang Liu(刘扬阳); Weiqi Jin(金伟其); Binghua Su(苏秉华)

    2004-01-01

    By using orthogonal discrete wavelet transform(ODWT)and generalized cross validation(GCV),and combining with Luck-Richardson algorithm based on Poisson-Markovmodel (MPML),several new superresolution image restoration algorithms are proposed.According to simulation experiments for practical images,all the proposed algor ithms could retain image details better than MPML,and be more suitable to low signal-to-noise ratio(SNR)images.The single operation wavelet MPML(SW-MPML)algorithm and MPML algorithm based on single operation wavelet transform(MPML-SW)avoid the iterative operation of self-adaptive parameter in MPML particularly,and improve operating speed and precision.They are instantaneous to super-resolution image restoration process and have extensive application foreground.

  1. Super-resolution stimulated emission depletion imaging of slit diaphragm proteins in optically cleared kidney tissue.

    Science.gov (United States)

    Unnersjö-Jess, David; Scott, Lena; Blom, Hans; Brismar, Hjalmar

    2016-01-01

    The glomerular filtration barrier, consisting of podocyte foot processes with bridging slit diaphragm, glomerular basement membrane, and endothelium, is a key component for renal function. Previously, the subtlest elements of the filtration barrier have only been visualized using electron microscopy. However, electron microscopy is mostly restricted to ultrathin two-dimensional samples, and the possibility to simultaneously visualize multiple different proteins is limited. Therefore, we sought to implement a super-resolution immunofluorescence microscopy protocol for the study of the filtration barrier in the kidney. Recently, several optical clearing methods have been developed making it possible to image through large volumes of tissue and even whole organs using light microscopy. Here we found that hydrogel-based optical clearing is a beneficial tool to study intact renal tissue at the nanometer scale. When imaging samples using super-resolution STED microscopy, the staining quality was critical in order to assess correct nanoscale information. The signal-to-noise ratio and immunosignal homogeneity were both improved in optically cleared tissue. Thus, STED of slit diaphragms in fluorescently labeled, optically cleared, intact kidney samples is a new tool for studying the glomerular filtration barrier in health and disease.

  2. A Review of Image Fusion Algorithms Based on the Super-Resolution Paradigm

    Directory of Open Access Journals (Sweden)

    Andrea Garzelli

    2016-09-01

    Full Text Available A critical analysis of remote sensing image fusion methods based on the super-resolution (SR paradigm is presented in this paper. Very recent algorithms have been selected among the pioneering studies adopting a new methodology and the most promising solutions. After introducing the concept of super-resolution and modeling the approach as a constrained optimization problem, different SR solutions for spatio-temporal fusion and pan-sharpening are reviewed and critically discussed. Concerning pan-sharpening, the well-known, simple, yet effective, proportional additive wavelet in the luminance component (AWLP is adopted as a benchmark to assess the performance of the new SR-based pan-sharpening methods. The widespread quality indexes computed at degraded resolution, with the original multispectral image used as the reference, i.e., SAM (Spectral Angle Mapper and ERGAS (Erreur Relative Globale Adimensionnelle de Synthèse, are finally presented. Considering these results, sparse representation and Bayesian approaches seem far from being mature to be adopted in operational pan-sharpening scenarios.

  3. Exploring the formation of focal adhesions on patterned surfaces using super-resolution imaging.

    Science.gov (United States)

    Chien, Fan-Ching; Kuo, Chiung Wen; Yang, Zong-Han; Chueh, Di-Yen; Chen, Peilin

    2011-10-17

    The formation of focal adhesions on various sizes of fibronectin patterns, ranging from 200 μm to 250 nm, was systematically investigated by total internal reflection fluorescence microscopy and super-resolution imaging. It was found that cells adhered to and spread on these micro/nanopatterns, forming focal adhesions. On a micrometer scale the shape of the focal adhesions was elongated. However, on the nanometer scale, the shape of focal adhesions became dotlike. To further explore the distribution of focal adhesion proteins formed on surfaces, a localization-based super-resolution imaging technique was employed in order to determine the position and density of vinculin proteins. A characteristic distance of 50 nm was found between vinculin molecules in the focal adhesions, which did not depend on the size of the fibronectin nanopatterns. This distance was found to be crucial for the formation of focal adhesions. In addition, the density of vinculin at the focal adhesions formed on the nanopatterns increased as the pattern size decreased. The density of the protein was found to be 425 ± 247, 584 ± 302, and 703 ± 305 proteins μm(-2) on the 600, 400, and 250 nm fibronectin patterns respectively. Whereas 226 ± 77 proteins μm(-2) was measured for the matured focal adhesions on homogeneous fibronectin coated substrates. The increase in vinculin density implies that an increase in mechanical load was applied to the focal adhesions formed on the smaller nanopatterns.

  4. Super-Resolution Imaging by using a Metallic Rod Array in the Near Infrared Region

    Institute of Scientific and Technical Information of China (English)

    YAO Jie; YE Yong-Hong

    2012-01-01

    An array of metallic rods can transport details below the diffraction limit of an object from the front face to the back face. This super-resolution imaging system has been studied in the microwave, mid-infrared and optical range. We investigate its performance in the near infrared (1550 nm) region. Numerical simulations show that the near-field components of dipole sources are transferred by the excitation and propagation of the surface plasmon mode of the rods. The appropriate length of rods is determined by the excited surface plasmon mode. The spatial resolution is greatly affected by the loss of metal.%An array of metallic rods can transport details below the diffraction limit of an object from the front face to the back face.This super-resolution imaging system has been studied in the microwave,mid-infrared and optical range.We investigate its performance in the near infrared (1550nm) region.Numerical simulations show that the near-field components of dipole sources are transferred by the excitation and propagation of the surface plasmon mode of the rods.The appropriate length of rods is determined by the excited surface plasmon mode.The spatial resolution is greatly affected by the loss of metal.

  5. Robust Single Image Super-resolution Reconstruction Model and Algorithm Based on Over-complete Dictionary%基于过完备字典的鲁棒性单幅图像超分辨率重建模型及算法

    Institute of Scientific and Technical Information of China (English)

    徐国明; 薛模根; 崔怀超

    2012-01-01

    针对单幅含噪图像的超分辨率重建问题,基于图像在过完备字典下的稀疏表示建立了超分辨率重建模型.该模型中低分辨率字典采用K-SVD算法直接训练,高分辨率字典则由高分辨率图像块与低分辨率字典下的同构的表示系数进行逼近求得;近似的高分辨率图像块通过高分辨率字典乘以表示系数得到,为使重建结果对噪声具有鲁棒性,利用基于稀疏表示的噪声图像恢复的方法由重叠的近似高分辨率图像块求得最终结果.实验结果表明,文中模型无论是主观视觉还是客观评价指标均取碍了较好的效果,并验证了模型及算法的有效性.%Aiming at the problem of super-resolution reconstruction for single noised image, in terms of sparse representation of over-complete dictionary, a super-resolution model is proposed. The K-SVP algorithm is used directly for learning the dictionary for low-resolution images. The dictionary for high-resolution images is got by optimizing the approximating error of the isomorphic sparse representation coefficients, which are got by learning the dictionary for low-resolution images, The representation coefficients are multiplied by the high-resolution dictionary to get the approximative high-resolution image patches. To make the reconstructed image robust to noise, the denoising method via sparse representation is used to get the final image from the overlapped approximative high-resolution image patches. The experimental results show that the proposed model obtains better outcome both in subjective visual effect and objective evaluation criteria, and demonstrates the effective of the model and algorithm.

  6. Virtual-'light-sheet' single-molecule localisation microscopy enables quantitative optical sectioning for super-resolution imaging.

    Science.gov (United States)

    Palayret, Matthieu; Armes, Helen; Basu, Srinjan; Watson, Adam T; Herbert, Alex; Lando, David; Etheridge, Thomas J; Endesfelder, Ulrike; Heilemann, Mike; Laue, Ernest; Carr, Antony M; Klenerman, David; Lee, Steven F

    2015-01-01

    Single-molecule super-resolution microscopy allows imaging of fluorescently-tagged proteins in live cells with a precision well below that of the diffraction limit. Here, we demonstrate 3D sectioning with single-molecule super-resolution microscopy by making use of the fitting information that is usually discarded to reject fluorophores that emit from above or below a virtual-'light-sheet', a thin volume centred on the focal plane of the microscope. We describe an easy-to-use routine (implemented as an open-source ImageJ plug-in) to quickly analyse a calibration sample to define and use such a virtual light-sheet. In addition, the plug-in is easily usable on almost any existing 2D super-resolution instrumentation. This optical sectioning of super-resolution images is achieved by applying well-characterised width and amplitude thresholds to diffraction-limited spots that can be used to tune the thickness of the virtual light-sheet. This allows qualitative and quantitative imaging improvements: by rejecting out-of-focus fluorophores, the super-resolution image gains contrast and local features may be revealed; by retaining only fluorophores close to the focal plane, virtual-'light-sheet' single-molecule localisation microscopy improves the probability that all emitting fluorophores will be detected, fitted and quantitatively evaluated.

  7. Virtual-'light-sheet' single-molecule localisation microscopy enables quantitative optical sectioning for super-resolution imaging.

    Directory of Open Access Journals (Sweden)

    Matthieu Palayret

    Full Text Available Single-molecule super-resolution microscopy allows imaging of fluorescently-tagged proteins in live cells with a precision well below that of the diffraction limit. Here, we demonstrate 3D sectioning with single-molecule super-resolution microscopy by making use of the fitting information that is usually discarded to reject fluorophores that emit from above or below a virtual-'light-sheet', a thin volume centred on the focal plane of the microscope. We describe an easy-to-use routine (implemented as an open-source ImageJ plug-in to quickly analyse a calibration sample to define and use such a virtual light-sheet. In addition, the plug-in is easily usable on almost any existing 2D super-resolution instrumentation. This optical sectioning of super-resolution images is achieved by applying well-characterised width and amplitude thresholds to diffraction-limited spots that can be used to tune the thickness of the virtual light-sheet. This allows qualitative and quantitative imaging improvements: by rejecting out-of-focus fluorophores, the super-resolution image gains contrast and local features may be revealed; by retaining only fluorophores close to the focal plane, virtual-'light-sheet' single-molecule localisation microscopy improves the probability that all emitting fluorophores will be detected, fitted and quantitatively evaluated.

  8. Two-photon instant structured illumination microscopy improves the depth penetration of super-resolution imaging in thick scattering samples.

    Science.gov (United States)

    Winter, Peter W; York, Andrew G; Nogare, Damian Dalle; Ingaramo, Maria; Christensen, Ryan; Chitnis, Ajay; Patterson, George H; Shroff, Hari

    2014-09-20

    Fluorescence imaging methods that achieve spatial resolution beyond the diffraction limit (super-resolution) are of great interest in biology. We describe a super-resolution method that combines two-photon excitation with structured illumination microscopy (SIM), enabling three-dimensional interrogation of live organisms with ~150 nm lateral and ~400 nm axial resolution, at frame rates of ~1 Hz. By performing optical rather than digital processing operations to improve resolution, our microscope permits super-resolution imaging with no additional cost in acquisition time or phototoxicity relative to the point-scanning two-photon microscope upon which it is based. Our method provides better depth penetration and inherent optical sectioning than all previously reported super-resolution SIM implementations, enabling super-resolution imaging at depths exceeding 100 μm from the coverslip surface. The capability of our system for interrogating thick live specimens at high resolution is demonstrated by imaging whole nematode embryos and larvae, and tissues and organs inside zebrafish embryos.

  9. Gradient Permittivity Meta-Structure model for Wide-field Super-resolution imaging with a sub-45 nm resolution.

    Science.gov (United States)

    Cao, Shun; Wang, Taisheng; Xu, Wenbin; Liu, Hua; Zhang, Hongxin; Hu, Bingliang; Yu, Weixing

    2016-03-21

    A gradient permittivity meta-structure (GPMS) model and its application in super-resolution imaging were proposed and discussed in this work. The proposed GPMS consists of alternate metallic and dielectric films with a gradient permittivity which can support surface plasmons (SPs) standing wave interference patterns with a super resolution. By employing the rigorous numerical FDTD simulation method, the GPMS was carefully simulated to find that the period of the SPs interference pattern is only 84 nm for a 532 nm incident light. Furthermore, the potential application of the GPMS for wide-field super-resolution imaging was also discussed and the simulation results show that an imaging resolution of sub-45 nm can be achieved based on the plasmonic structure illumination microscopic method, which means a 5.3-fold improvement on resolution has been achieved in comparison with conventional epifluorescence microscopy. Moreover, besides the super-resolution imaging application, the proposed GPMS model can also be applied for nanolithography and other areas where super resolution patterns are needed.

  10. Fast live-cell conventional fluorophore nanoscopy with ImageJ through super-resolution radial fluctuations.

    Science.gov (United States)

    Gustafsson, Nils; Culley, Siân; Ashdown, George; Owen, Dylan M; Pereira, Pedro Matos; Henriques, Ricardo

    2016-08-12

    Despite significant progress, high-speed live-cell super-resolution studies remain limited to specialized optical setups, generally requiring intense phototoxic illumination. Here, we describe a new analytical approach, super-resolution radial fluctuations (SRRF), provided as a fast graphics processing unit-enabled ImageJ plugin. In the most challenging data sets for super-resolution, such as those obtained in low-illumination live-cell imaging with GFP, we show that SRRF is generally capable of achieving resolutions better than 150 nm. Meanwhile, for data sets similar to those obtained in PALM or STORM imaging, SRRF achieves resolutions approaching those of standard single-molecule localization analysis. The broad applicability of SRRF and its performance at low signal-to-noise ratios allows super-resolution using modern widefield, confocal or TIRF microscopes with illumination orders of magnitude lower than methods such as PALM, STORM or STED. We demonstrate this by super-resolution live-cell imaging over timescales ranging from minutes to hours.

  11. A contact-imaging based microfluidic cytometer with machine-learning for single-frame super-resolution processing.

    Science.gov (United States)

    Huang, Xiwei; Guo, Jinhong; Wang, Xiaolong; Yan, Mei; Kang, Yuejun; Yu, Hao

    2014-01-01

    Lensless microfluidic imaging with super-resolution processing has become a promising solution to miniaturize the conventional flow cytometer for point-of-care applications. The previous multi-frame super-resolution processing system can improve resolution but has limited cell flow rate and hence low throughput when capturing multiple subpixel-shifted cell images. This paper introduces a single-frame super-resolution processing with on-line machine-learning for contact images of cells. A corresponding contact-imaging based microfluidic cytometer prototype is demonstrated for cell recognition and counting. Compared with commercial flow cytometer, less than 8% error is observed for absolute number of microbeads; and 0.10 coefficient of variation is observed for cell-ratio of mixed RBC and HepG2 cells in solution.

  12. Super-resolution

    DEFF Research Database (Denmark)

    Nasrollahi, Kamal; Moeslund, Thomas B.

    2014-01-01

    Super-resolution, the process of obtaining one or more high-resolution images from one or more low-resolution observations, has been a very attractive research topic over the last two decades. It has found practical applications in many real world problems in different fields, from satellite...... the contributions of different authors to the basic concepts of each group. Furthermore, common issues in super-resolution algorithms, such as imaging models and registration algorithms, optimization of the cost functions employed, dealing with color information, improvement factors, assessment of super...

  13. Super-Resolution Molecular and Functional Imaging of Nanoscale Architectures in Life and Materials Science

    KAUST Repository

    Habuchi, Satoshi

    2014-06-12

    Super-resolution (SR) fluorescence microscopy has been revolutionizing the way in which we investigate the structures, dynamics, and functions of a wide range of nanoscale systems. In this review, I describe the current state of various SR fluorescence microscopy techniques along with the latest developments of fluorophores and labeling for the SR microscopy. I discuss the applications of SR microscopy in the fields of life science and materials science with a special emphasis on quantitative molecular imaging and nanoscale functional imaging. These studies open new opportunities for unraveling the physical, chemical, and optical properties of a wide range of nanoscale architectures together with their nanostructures and will enable the development of new (bio-)nanotechnology.

  14. New approach for super-resolution imaging of NV-nanodiamonds

    Science.gov (United States)

    Arai, Keigo; Le Sage, David; Bar-Gill, Nir; Belthangady, Chinmay; Glenn, David; Linh Pham, My; Zhang, Huiliang; Walsworth, Ronald

    2012-06-01

    We describe a new approach for super-resolution imaging of nanodiamonds (NDs) containing NV centers. The random orientation of NDs in a static magnetic field allow each ND to be distinguished by the NV ESR Zeeman shift and spin-state-dependent fluorescence rate. We exploit this behavior as a photo-switch such that adjacent NDs emit fluorescence sequentially in time. Post-analysis of a series of images at each ESR resonance frequency can localize individual NDs with sub-wavelength resolution. This technique has the advantage of being compatible with CCD-based wide-field microscopy, and involves significantly less laser intensity and experimental complexity than STED-based approaches.

  15. Sub-pixel processing for super-resolution scanning imaging system with fiber bundle coupling

    Institute of Scientific and Technical Information of China (English)

    Bowen An; Bingbin Xue; Shengda Pan; Guilin Chen

    2011-01-01

    A multilayer fiber bundle is used to couple the image in a remote sensing imaging system. The object image passes through all layers of the fiber bundle in micro-scanning mode. The malposition of adjacent layers arranged in a hexagonal pattern is at sub-pixel scale. Therefore, sub-pixel processing can be applied to improve the spatial resolution. The images coupled by the adjacent layer fibers are separated, and subsequently, the intermediate image is obtained by histogram matching based on one of the separated image called base image. Finally, the intermediate and base images are processed in the frequency domain. The malposition of the adjacent layer fiber is converted to the phase difference in Fourier transform. Considering the limited sensitivity of the experimental instruments and human sight, the image is set as a band-limited signal and the interpolation function of image fusion is found. The results indicate that a super-resolution image with ultra-high spatial resolution is obtained.%@@ A multilayer fiber bundle is used to couple the image in a remote sensing imaging system.The object image passes through all layers of the fiber bundle in micro-scanning mode.The malposition of adjacent layers arranged in a hexagonal pattern is at sub-pixel scale.

  16. Super-Resolution and De-convolution for Single/Multi Gray Scale Images Using SIFT Algorithm

    OpenAIRE

    Ritu Soni; Siddharth Singh Chouhan

    2014-01-01

    This paper represent a Blind algorithm that restore the blurred images for single image and multi-image blur de-convolution and multi-image super-resolution on low-resolution images deteriorated by additive white Gaussian noise ,the aliasing and linear space-invariant. Image De-blurring is a field of Image Processing in which recovering an original and sharp image from a corrupted image. Proposed method is based on alternating minimization algorithm with respect to unidentifie...

  17. Hyperspectral Image Super-Resolution via Non-Negative Structured Sparse Representation.

    Science.gov (United States)

    Dong, Weisheng; Fu, Fazuo; Shi, Guangming; Cao, Xun; Wu, Jinjian; Li, Guangyu; Li, Guangyu

    2016-05-01

    Hyperspectral imaging has many applications from agriculture and astronomy to surveillance and mineralogy. However, it is often challenging to obtain high-resolution (HR) hyperspectral images using existing hyperspectral imaging techniques due to various hardware limitations. In this paper, we propose a new hyperspectral image super-resolution method from a low-resolution (LR) image and a HR reference image of the same scene. The estimation of the HR hyperspectral image is formulated as a joint estimation of the hyperspectral dictionary and the sparse codes based on the prior knowledge of the spatial-spectral sparsity of the hyperspectral image. The hyperspectral dictionary representing prototype reflectance spectra vectors of the scene is first learned from the input LR image. Specifically, an efficient non-negative dictionary learning algorithm using the block-coordinate descent optimization technique is proposed. Then, the sparse codes of the desired HR hyperspectral image with respect to learned hyperspectral basis are estimated from the pair of LR and HR reference images. To improve the accuracy of non-negative sparse coding, a clustering-based structured sparse coding method is proposed to exploit the spatial correlation among the learned sparse codes. The experimental results on both public datasets and real LR hypspectral images suggest that the proposed method substantially outperforms several existing HR hyperspectral image recovery techniques in the literature in terms of both objective quality metrics and computational efficiency.

  18. Correlating structure and fluorescence dynamics of quantum dot clusters using super-resolution imaging

    Science.gov (United States)

    Ryan, Duncan P.; Goodwin, Peter M.; Sheehan, Chris J.; Whitcomb, Kevin J.; Gelfand, Martin P.; Van Orden, Alan

    2016-02-01

    Clusters of quantum dots exhibit fluorescent behavior that differs from that of individual particles. Bulk measurements involving a large number of particles obscure these dynamics. Synthesizing clusters with 5-10 particles enables the study of collective behavior where single-molecule fluorescence techniques can be applied. Super-resolution microscopy of these clusters correlated with SEM imaging reveals the influence of geometry and structure on emission dynamics. Signatures of energy transfer can be seen in the form of enhanced blinking. Motion of the emission center of the cluster is tracked, made possible by the independent blinking events of the individual particles. Discrete steps in the localization are observed as random switching between various on/off configurations moves the location of the emission center.

  19. Long-distance super-resolution imaging assisted by enhanced spatial Fourier transform.

    Science.gov (United States)

    Tang, Heng-He; Liu, Pu-Kun

    2015-09-07

    A new gradient-index (GRIN) lens that can realize enhanced spatial Fourier transform (FT) over optically long distances is demonstrated. By using an anisotropic GRIN metamaterial with hyperbolic dispersion, evanescent wave in free space can be transformed into propagating wave in the metamaterial and then focused outside due to negative-refraction. Both the results based on the ray tracing and the finite element simulation show that the spatial frequency bandwidth of the spatial FT can be extended to 2.7k(0) (k(0) is the wave vector in free space). Furthermore, assisted by the enhanced spatial FT, a new long-distance (in the optical far-field region) super-resolution imaging scheme is also proposed and the super resolved capability of λ/5 (λ is the wavelength in free space) is verified. The work may provide technical support for designing new-type high-speed microscopes with long working distances.

  20. A Novel Method to Get Super-Resolution Images from Low-Resolution Compressed Video

    Institute of Scientific and Technical Information of China (English)

    ZHOU Liang; ZHU Xiu-chang

    2005-01-01

    In order to resolve the problems of discontented restoration effect and confined applying scope which exist in the current compressed video restoration algorithms, a novel method to get super-resolution images from low-resolution compressed video is proposed in this paper. At first, a uniform model is presented and the restoration problem in the Bayesian framework is formulated under the MAP criterion, then the focus is put on the hybrid motion-compensation and transform coding schemes, at last the methods of getting the parameters are provided. The results of the simulation clearly demonstrate that our method not only has the properties of finer vision effect and wider applying scope, but also performs better than those of current classical algorithms in the aspects of Peak Signal Noise Ratio (PSNR) under the basis of the same condition.

  1. Comparison between beamforming and super resolution imaging algorithms for non-destructive evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Chengguang [College of Mechatronic Engineering and Automation, National University of Defense Technology, Changsha 410073, PR China and Department of Mechanical Engineering, University of Bristol, Queen' s Building, University Walk, Bristol BS8 1TR (United Kingdom); Drinkwater, Bruce W. [Department of Mechanical Engineering, University of Bristol, Queen' s Building, University Walk, Bristol BS8 1TR (United Kingdom)

    2014-02-18

    In this paper the performance of total focusing method is compared with the widely used time-reversal MUSIC super resolution technique. The algorithms are tested with simulated and experimental ultrasonic array data, each containing different noise levels. The simulated time domain signals allow the effects of array geometry, frequency, scatterer location, scatterer size, scatterer separation and random noise to be carefully controlled. The performance of the imaging algorithms is evaluated in terms of resolution and sensitivity to random noise. It is shown that for the low noise situation, time-reversal MUSIC provides enhanced lateral resolution when compared to the total focusing method. However, for higher noise levels, the total focusing method shows robustness, whilst the performance of time-reversal MUSIC is significantly degraded.

  2. Ptychographic reconstruction algorithm for frequency resolved optical gating: super-resolution and supreme robustness

    CERN Document Server

    Sidorenko, Pavel; Avnat, Zohar; Cohen, Oren

    2016-01-01

    Frequency-resolved optical gating (FROG) is probably the most popular technique for complete characterization of ultrashort laser pulses. In FROG, a reconstruction algorithm retrieves the pulse from a measured spectrogram, yet current FROG reconstruction algorithms require and exhibit several restricting features that weaken FROG performances. For example, the delay step must correspond to the spectral bandwidth measured with large enough SNR a condition that limits the temporal resolution of the reconstructed pulse, obscures measurements of weak broadband pulses, and makes measurement of broadband mid-IR pulses hard and slow because the spectrograms become huge. We develop a new approach for FROG reconstruction, based on ptychography (a scanning coherent diffraction imaging technique), that removes many of the algorithmic restrictions. The ptychographic reconstruction algorithm is significantly faster and more robust to noise than current FROG algorithms, which are based on generalized projections (GP). We d...

  3. Live-cell super-resolution imaging of intrinsically fast moving flagellates

    Science.gov (United States)

    Glogger, M.; Stichler, S.; Subota, I.; Bertlein, S.; Spindler, M.-C.; Teßmar, J.; Groll, J.; Engstler, M.; Fenz, S. F.

    2017-02-01

    Recent developments in super-resolution microscopy make it possible to resolve structures in biological cells at a spatial resolution of a few nm and observe dynamical processes with a temporal resolution of ms to μs. However, the optimal structural resolution requires repeated illumination cycles and is thus limited to chemically fixed cells. For live cell applications substantial improvement over classical Abbe-limited imaging can already be obtained in adherent or slow moving cells. Nonetheless, a large group of cells are fast moving and thus could not yet be addressed with live cell super-resolution microscopy. These include flagellate pathogens like African trypanosomes, the causative agents of sleeping sickness in humans and nagana in livestock. Here, we present an embedding method based on a in situ forming cytocompatible UV-crosslinked hydrogel. The fast cross-linking hydrogel immobilizes trypanosomes efficiently to allow microscopy on the nanoscale. We characterized both the trypanosomes and the hydrogel with respect to their autofluorescence properties and found them suitable for single-molecule fluorescence microscopy (SMFM). As a proof of principle, SMFM was applied to super-resolve a structure inside the living trypanosome. We present an image of a flagellar axoneme component recorded by using the intrinsic blinking behavior of eYFP. , which features invited work from the best early-career researchers working within the scope of J Phys D. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Susanne Fenz was selected by the Editorial Board of J Phys D as an Emerging Talent/Leader.

  4. Single-wavelength-controlled in situ dynamic super-resolution fluorescence imaging for block copolymer nanostructures via blue-light-switchable FRAP.

    Science.gov (United States)

    Gong, Wen-Liang; Yan, Jie; Zhao, Ling-Xi; Li, Chong; Huang, Zhen-Li; Tang, Ben Zhong; Zhu, Ming-Qiang

    2016-11-02

    Photoswitchable fluorophores are promising in single-molecule optical devices and super-resolution fluorescence imaging, especially in single-molecule photo-activated localization microscopy (PALM) or stochastic optical reconstruction microscopy (STORM). However, the scarcity of current photoswitchable fluorophores stimulates researchers to develop complicated optical systems and processing software, in accordance with the limited photoswitchable fluorescent proteins and organic fluorophores. Previous efforts to develop synthetic photoswitchable fluorophores have exhibited their promising potential in super-resolution fluorescence imaging. Here, we have designed and synthesized a fluorescence molecular switch with reversible green emission, a napthalimide-hexaarylbiimidazole conjugate (NI-N-HABI), which exhibits strong fluorescence in the emissive state, with fast thermal fading of the photochromism and spontaneous fluorescence recovery after photobleaching (FRAP) induced by blue-light. The photoswitchable fluorophore enables the red-edge wavelength of the optical response to red-shift from the initial near-UV region at less than 400 nm, to 500 nm. The relatively fast fading speed of NI-N-HABI and its sensitivity to longer blue-light irradiation (400-500 nm) have allowed simplification of the optical microscopic system from a two-wavelength laser source to a single-wavelength laser. We applied NI-N-HABI in single-wavelength-controlled in situ dynamic super-resolution fluorescence imaging for the self-assembly and solvent annealing of amphiphilic block polymers, with 50 nm of optical resolution. Single-wavelength-controlled dynamic super-resolution fluorescence imaging facilitates nanoscale optical visualization for the dynamic physical and chemical fluctuation processes of stimuli-responsive nanostructures.

  5. Multisensor Super Resolution Using Directionally-Adaptive Regularization for UAV Images.

    Science.gov (United States)

    Kang, Wonseok; Yu, Soohwan; Ko, Seungyong; Paik, Joonki

    2015-05-22

    In various unmanned aerial vehicle (UAV) imaging applications, the multisensor super-resolution (SR) technique has become a chronic problem and attracted increasing attention. Multisensor SR algorithms utilize multispectral low-resolution (LR) images to make a higher resolution (HR) image to improve the performance of the UAV imaging system. The primary objective of the paper is to develop a multisensor SR method based on the existing multispectral imaging framework instead of using additional sensors. In order to restore image details without noise amplification or unnatural post-processing artifacts, this paper presents an improved regularized SR algorithm by combining the directionally-adaptive constraints and multiscale non-local means (NLM) filter. As a result, the proposed method can overcome the physical limitation of multispectral sensors by estimating the color HR image from a set of multispectral LR images using intensity-hue-saturation (IHS) image fusion. Experimental results show that the proposed method provides better SR results than existing state-of-the-art SR methods in the sense of objective measures.

  6. Deep Edge Guided Recurrent Residual Learning for Image Super-Resolution.

    Science.gov (United States)

    Yang, Wenhan; Feng, Jiashi; Yang, Jianchao; Zhao, Fang; Liu, Jiaying; Guo, Zongming; Yan, Shuicheng

    2017-09-08

    In this work, we consider the image super-resolution (SR) problem. The main challenge of image SR is to recover high-frequency details of a low-resolution (LR) image that are important for human perception. To address this essentially illposed problem, we introduce a Deep Edge Guided REcurrent rEsidual (DEGREE) network to progressively recover the highfrequency details. Different from most of existing methods that aim at predicting high-resolution (HR) images directly, DEGREE investigates an alternative route to recover the difference between a pair of LR and HR images by recurrent residual learning. DEGREE further augments the SR process with edge-preserving capability, namely the LR image and its edge map can jointly infer the sharp edge details of the HR image during the recurrent recovery process. To speed up its training convergence rate, by-pass connections across multiple layers of DEGREE are constructed. In addition, we offer an understanding on DEGREE from the view-point of sub-band frequency decomposition on image signal and experimentally demonstrate how DEGREE can recover different frequency bands separately. Extensive experiments on three benchmark datasets clearly demonstrate the superiority of DEGREE over well-established baselines and DEGREE also provides new state-of-the-arts on these datasets. We also present addition experiments for JPEG artifacts reduction to demonstrate the good generality and flexibility of our proposed DEGREE network to handle other image processing tasks.

  7. Enhanced simulator software for image validation and interpretation for multimodal localization super-resolution fluorescence microscopy

    Science.gov (United States)

    Erdélyi, Miklós; Sinkó, József; Gajdos, Tamás.; Novák, Tibor

    2017-02-01

    Optical super-resolution techniques such as single molecule localization have become one of the most dynamically developed areas in optical microscopy. These techniques routinely provide images of fixed cells or tissues with sub-diffraction spatial resolution, and can even be applied for live cell imaging under appropriate circumstances. Localization techniques are based on the precise fitting of the point spread functions (PSF) to the measured images of stochastically excited, identical fluorescent molecules. These techniques require controlling the rate between the on, off and the bleached states, keeping the number of active fluorescent molecules at an optimum value, so their diffraction limited images can be detected separately both spatially and temporally. Because of the numerous (and sometimes unknown) parameters, the imaging system can only be handled stochastically. For example, the rotation of the dye molecules obscures the polarization dependent PSF shape, and only an averaged distribution - typically estimated by a Gaussian function - is observed. TestSTORM software was developed to generate image stacks for traditional localization microscopes, where localization meant the precise determination of the spatial position of the molecules. However, additional optical properties (polarization, spectra, etc.) of the emitted photons can be used for further monitoring the chemical and physical properties (viscosity, pH, etc.) of the local environment. The image stack generating program was upgraded by several new features, such as: multicolour, polarization dependent PSF, built-in 3D visualization, structured background. These features make the program an ideal tool for optimizing the imaging and sample preparation conditions.

  8. Live-cell multiplane three-dimensional super-resolution optical fluctuation imaging.

    Science.gov (United States)

    Geissbuehler, Stefan; Sharipov, Azat; Godinat, Aurélien; Bocchio, Noelia L; Sandoz, Patrick A; Huss, Anja; Jensen, Nickels A; Jakobs, Stefan; Enderlein, Jörg; Gisou van der Goot, F; Dubikovskaya, Elena A; Lasser, Theo; Leutenegger, Marcel

    2014-12-18

    Super-resolution optical fluctuation imaging (SOFI) provides an elegant way of overcoming the diffraction limit in all three spatial dimensions by computing higher-order cumulants of image sequences of blinking fluorophores acquired with a classical widefield microscope. Previously, three-dimensional (3D) SOFI has been demonstrated by sequential imaging of multiple depth positions. Here we introduce a multiplexed imaging scheme for the simultaneous acquisition of multiple focal planes. Using 3D cross-cumulants, we show that the depth sampling can be increased. The simultaneous acquisition of multiple focal planes significantly reduces the acquisition time and thus the photobleaching. We demonstrate multiplane 3D SOFI by imaging fluorescently labelled cells over an imaged volume of up to 65 × 65 × 3.5 μm(3) without depth scanning. In particular, we image the 3D network of mitochondria in fixed C2C12 cells immunostained with Alexa 647 fluorophores and the 3D vimentin structure in living Hela cells expressing the fluorescent protein Dreiklang.

  9. Super-resolution of hyperspectral images using sparse representation and Gabor prior

    Science.gov (United States)

    Patel, Rakesh C.; Joshi, Manjunath V.

    2016-04-01

    Super-resolution (SR) as a postprocessing technique is quite useful in enhancing the spatial resolution of hyperspectral (HS) images without affecting its spectral resolution. We present an approach to increase the spatial resolution of HS images by making use of sparse representation and Gabor prior. The low-resolution HS observations consisting of large number of bands are represented as a linear combination of a small number of basis images using principal component analysis (PCA), and the significant components are used in our work. We first obtain initial estimates of SR on this reduced dimension by using compressive sensing-based method. Since SR is an ill-posed problem, the final solution is obtained by using a regularization framework. The novelty of our approach lies in: (1) estimation of optimal point spread function in the form of decimation matrix, and (2) using a new prior called "Gabor prior" to super-resolve the significant PCA components. Experiments are conducted on two different HS datasets namely, 31-band natural HS image set collected under controlled laboratory environment and a set of 224-band real HS images collected by airborne visible/infrared imaging spectrometer remote sensing sensor. Visual inspections and quantitative comparison confirm that our method enhances spatial information without introducing significant spectral distortion. Our conclusions include: (1) incorporate the sensor characteristics in the form of estimated decimation matrix for SR, and (2) preserve various frequencies in super-resolved image by making use of Gabor prior.

  10. Hybrid Constraints of Pure and Mixed Pixels for Soft-Then-Hard Super-Resolution Mapping with Multiple Shifted Images

    NARCIS (Netherlands)

    Chen, Yuehong; Ge, Yong; Heuvelink, G.B.M.; Hu, Jianlong; Jiang, Yu

    2015-01-01

    Multiple shifted images (MSIs) have been widely applied to many super-resolution mapping (SRM) approaches to improve the accuracy of fine-scale land-cover maps. Most SRM methods with MSIs involve two processes: subpixel sharpening and class allocation. Complementary information from the MSIs has

  11. Hybrid Constraints of Pure and Mixed Pixels for Soft-Then-Hard Super-Resolution Mapping with Multiple Shifted Images

    NARCIS (Netherlands)

    Chen, Yuehong; Ge, Yong; Heuvelink, G.B.M.; Hu, Jianlong; Jiang, Yu

    2015-01-01

    Multiple shifted images (MSIs) have been widely applied to many super-resolution mapping (SRM) approaches to improve the accuracy of fine-scale land-cover maps. Most SRM methods with MSIs involve two processes: subpixel sharpening and class allocation. Complementary information from the MSIs has

  12. An Example-Based Super-Resolution Algorithm for Selfie Images.

    Science.gov (United States)

    William, Jino Hans; Venkateswaran, N; Narayanan, Srinath; Ramachandran, Sandeep

    2016-01-01

    A selfie is typically a self-portrait captured using the front camera of a smartphone. Most state-of-the-art smartphones are equipped with a high-resolution (HR) rear camera and a low-resolution (LR) front camera. As selfies are captured by front camera with limited pixel resolution, the fine details in it are explicitly missed. This paper aims to improve the resolution of selfies by exploiting the fine details in HR images captured by rear camera using an example-based super-resolution (SR) algorithm. HR images captured by rear camera carry significant fine details and are used as an exemplar to train an optimal matrix-value regression (MVR) operator. The MVR operator serves as an image-pair priori which learns the correspondence between the LR-HR patch-pairs and is effectively used to super-resolve LR selfie images. The proposed MVR algorithm avoids vectorization of image patch-pairs and preserves image-level information during both learning and recovering process. The proposed algorithm is evaluated for its efficiency and effectiveness both qualitatively and quantitatively with other state-of-the-art SR algorithms. The results validate that the proposed algorithm is efficient as it requires less than 3 seconds to super-resolve LR selfie and is effective as it preserves sharp details without introducing any counterfeit fine details.

  13. Joint Prior Learning for Visual Sensor Network Noisy Image Super-Resolution.

    Science.gov (United States)

    Yue, Bo; Wang, Shuang; Liang, Xuefeng; Jiao, Licheng; Xu, Caijin

    2016-02-26

    The visual sensor network (VSN), a new type of wireless sensor network composed of low-cost wireless camera nodes, is being applied for numerous complex visual analyses in wild environments, such as visual surveillance, object recognition, etc. However, the captured images/videos are often low resolution with noise. Such visual data cannot be directly delivered to the advanced visual analysis. In this paper, we propose a joint-prior image super-resolution (JPISR) method using expectation maximization (EM) algorithm to improve VSN image quality. Unlike conventional methods that only focus on upscaling images, JPISR alternatively solves upscaling mapping and denoising in the E-step and M-step. To meet the requirement of the M-step, we introduce a novel non-local group-sparsity image filtering method to learn the explicit prior and induce the geometric duality between images to learn the implicit prior. The EM algorithm inherently combines the explicit prior and implicit prior by joint learning. Moreover, JPISR does not rely on large external datasets for training, which is much more practical in a VSN. Extensive experiments show that JPISR outperforms five state-of-the-art methods in terms of both PSNR, SSIM and visual perception.

  14. An Example-Based Super-Resolution Algorithm for Selfie Images

    Directory of Open Access Journals (Sweden)

    Jino Hans William

    2016-01-01

    Full Text Available A selfie is typically a self-portrait captured using the front camera of a smartphone. Most state-of-the-art smartphones are equipped with a high-resolution (HR rear camera and a low-resolution (LR front camera. As selfies are captured by front camera with limited pixel resolution, the fine details in it are explicitly missed. This paper aims to improve the resolution of selfies by exploiting the fine details in HR images captured by rear camera using an example-based super-resolution (SR algorithm. HR images captured by rear camera carry significant fine details and are used as an exemplar to train an optimal matrix-value regression (MVR operator. The MVR operator serves as an image-pair priori which learns the correspondence between the LR-HR patch-pairs and is effectively used to super-resolve LR selfie images. The proposed MVR algorithm avoids vectorization of image patch-pairs and preserves image-level information during both learning and recovering process. The proposed algorithm is evaluated for its efficiency and effectiveness both qualitatively and quantitatively with other state-of-the-art SR algorithms. The results validate that the proposed algorithm is efficient as it requires less than 3 seconds to super-resolve LR selfie and is effective as it preserves sharp details without introducing any counterfeit fine details.

  15. Clean localization super-resolution microscopy for 3D biological imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Partha P., E-mail: partha@iap.iisc.ernet.in [Nanobioimaging Laboratory, Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012 (India); Curthoys, Nikki M.; Hess, Samuel T. [Department of Physics and Astronomy, University of Maine, Orono, Maine 04469 (United States)

    2016-01-15

    We propose clean localization microscopy (a variant of fPALM) using a molecule filtering technique. Localization imaging involves acquiring a large number of images containing single molecule signatures followed by one-to-one mapping to render a super-resolution image. In principle, this process can be repeated for other z-planes to construct a 3D image. But, single molecules observed from off-focal planes result in false representation of their presence in the focal plane, resulting in incorrect quantification and analysis. We overcome this with a single molecule filtering technique that imposes constraints on the diffraction limited spot size of single molecules in the image plane. Calibration with sub-diffraction size beads puts a natural cutoff on the actual diffraction-limited size of single molecules in the focal plane. This helps in distinguishing beads present in the focal plane from those in the off-focal planes thereby providing an estimate of the single molecules in the focal plane. We study the distribution of actin (labeled with a photoactivatable CAGE 552 dye) in NIH 3T3 mouse fibroblast cells.

  16. 结合多特征的单幅图像超分辨率重建算法%Single image super-resolution reconstruction based on multi-feature fusion

    Institute of Scientific and Technical Information of China (English)

    黄剑华; 王丹丹; 金野

    2016-01-01

    为提高直接捕获的图像质量,针对梯度特征只能提取水平、垂直方向信息及非下采样轮廓波变换( NSCT)提取细节信息不足的缺陷,提出一种结合Gabor变换及NSCT的超分辨率重建算法。该算法充分利用Gabor变换和NSCT的互补性,针对输入图像块的特点,采用Gabor变换来提取纹理特征,NSCT来提取轮廓特征,然后分别利用稀疏模型进行重建,最后合并成一幅高分辨率图像。由于输入图像或多或少存在模糊,在重建过程中,加入了去模糊的正则项,以消除输入模糊的影响。实验结果表明,结合两种特征的超分辨率效果与单一特征相比,能够恢复更多的细节信息,去模糊正则项也有一定的作用。本文方法与Kim提出的核岭回归及Yang提出的稀疏表示算法( SCSR)相比,主观上视觉效果更加清晰,客观上PSNR值平均提高了近2dB,说明了该算法能够有效地提高图像的质量。%The gradients extract the information only along the horizontal and vertical directions and the non⁃subsampled contourlet transform ( NSCT) is poor relatively to capture the detailed information. To overcome the drawback, a novel super⁃resolution approach combined Gabor with NSCT is proposed to improve the quality of image captured directly. The algorithm makes full use of the complementary of the Gabor transform and NSCT, to extract the texture feature using the Gabor transform and to extract the contour feature using the NSCT according to the characteristics of input image pieces. After that the sparse coding reconstruction is performed, and finally merge the pieces into a initial high⁃resolution image. Since the input image is blurred more or less, the approach revises the initial high⁃resolution image through the deblurred regularization to eliminate the influence of blurred input. Experiment results show that combining the Gabor and NSCT can recover more details and

  17. Super Resolution Image Enhancement for a Flash Lidar: Back Projection Method

    Science.gov (United States)

    Bulyshev, Alexander; Hines, Glenn; Vanek, Michael; Amzajerdian, Farzin; Reisse, Robert; Pierrottet, Diego

    2010-01-01

    In this paper a new image processing technique for flash LIDAR data is presented as a potential tool to enable safe and precise spacecraft landings in future robotic or crewed lunar and planetary missions. Flash LIDARs can generate, in real-time, range data that can be interpreted as a 3-dimensional (3-D) image and transformed into a corresponding digital elevation map (DEM). The NASA Autonomous Landing and Hazard Avoidance (ALHAT) project is capitalizing on this new technology by developing, testing and analyzing flash LIDARs to detect hazardous terrain features such as craters, rocks, and slopes during the descent phase of spacecraft landings. Using a flash LIDAR for this application looks very promising, however through theoretical and simulation analysis the ALHAT team has determined that a single frame, or mosaic, of flash LIDAR data may not be sufficient to build a landing site DEM with acceptable spatial resolution, precision, size, or for a mosaic, in time, to meet current system requirements. One way to overcome this potential limitation is by enhancing the flash LIDAR output images. We propose a new super-resolution algorithm applicable to flash LIDAR range data that will create a DEM with sufficient accuracy, precision and size to meet current ALHAT requirements. The performance of our super-resolution algorithm is analyzed by processing data generated during a series of simulation runs by a high fidelity model of a flash LIDAR imaging a high resolution synthetic lunar elevation map. The flash LIDAR model is attached to a simulated spacecraft by a gimbal that points the LIDAR to a target landing site. For each simulation run, a sequence of flash LIDAR frames is recorded and processed as the spacecraft descends toward the landing site. Each run has a different trajectory profile with varying LIDAR look angles of the terrain. We process the output LIDAR frames using our SR algorithm and the results show that the achieved level of accuracy and precision of

  18. Potentials and Limits of Super-Resolution Algorithms and Signal Reconstruction from Sparse Data

    CERN Document Server

    Shabat, Gil

    2012-01-01

    A common distortion in videos is image instability in the form of chaotic (global and local displacements). Those instabilities can be used to enhance image resolution by using subpixel elastic registration. In this work, we investigate the performance of such methods over the ability to improve the resolution by accumulating several frames. The second part of this work deals with reconstruction of discrete signals from a subset of samples under different basis functions such as DFT, Haar, Walsh, Daubechies wavelets and CT (Radon) projections.

  19. Correction of a Depth-Dependent Lateral Distortion in 3D Super-Resolution Imaging.

    Directory of Open Access Journals (Sweden)

    Lina Carlini

    Full Text Available Three-dimensional (3D localization-based super-resolution microscopy (SR requires correction of aberrations to accurately represent 3D structure. Here we show how a depth-dependent lateral shift in the apparent position of a fluorescent point source, which we term `wobble`, results in warped 3D SR images and provide a software tool to correct this distortion. This system-specific, lateral shift is typically > 80 nm across an axial range of ~ 1 μm. A theoretical analysis based on phase retrieval data from our microscope suggests that the wobble is caused by non-rotationally symmetric phase and amplitude aberrations in the microscope's pupil function. We then apply our correction to the bacterial cytoskeletal protein FtsZ in live bacteria and demonstrate that the corrected data more accurately represent the true shape of this vertically-oriented ring-like structure. We also include this correction method in a registration procedure for dual-color, 3D SR data and show that it improves target registration error (TRE at the axial limits over an imaging depth of 1 μm, yielding TRE values of < 20 nm. This work highlights the importance of correcting aberrations in 3D SR to achieve high fidelity between the measurements and the sample.

  20. Super-resolution imaging of plasmodesmata using three-dimensional structured illumination microscopy.

    Science.gov (United States)

    Fitzgibbon, Jessica; Bell, Karen; King, Emma; Oparka, Karl

    2010-08-01

    We used three-dimensional structured illumination microscopy (3D-SIM) to obtain subdiffraction ("super-resolution") images of plasmodesmata (PD) expressing a green fluorescent protein-tagged viral movement protein (MP) in tobacco (Nicotiana tabacum). In leaf parenchyma cells, we were able to resolve individual components of PD (neck and central cavities) at twice the resolution of a confocal microscope. Within the phloem, MP-green fluorescent protein filaments extended outward from the specialized pore-PD that connect sieve elements (SEs) with their companion cells (CCs) along the tubular sieve element reticulum (SER). The SER was shown to interconnect individual pore-PD at the SE-CC interface. 3D-SIM resolved fine (less than 100 nm) endoplasmic reticulum threads running into individual pore-PD as well as strands that crossed sieve plate pores, structurally linking SEs within a file. Our data reveal that MP entering the SE from the CC may remain associated with the SER. Fluorescence recovery after photobleaching experiments revealed that this MP pool is relatively immobile compared with the membrane probe 3,3'-dihexyloxacarbocyanine iodide, suggesting that MP may become sequestered by the SER once it has entered the SE. The advent of 3D-SIM offers considerable potential in the subdiffraction imaging of plant cells, bridging an important gap between confocal and electron microscopy.

  1. Analyzing blinking effects in super resolution localization microscopy with single-photon SPAD imagers

    Science.gov (United States)

    Antolovic, Ivan Michel; Burri, Samuel; Bruschini, Claudio; Hoebe, Ron; Charbon, Edoardo

    2016-02-01

    For many scientific applications, electron multiplying charge coupled devices (EMCCDs) have been the sensor of choice because of their high quantum efficiency and built-in electron amplification. Lately, many researchers introduced scientific complementary metal-oxide semiconductor (sCMOS) imagers in their instrumentation, so as to take advantage of faster readout and the absence of excess noise. Alternatively, single-photon avalanche diode (SPAD) imagers can provide even faster frame rates and zero readout noise. SwissSPAD is a 1-bit 512×128 SPAD imager, one of the largest of its kind, featuring a frame duration of 6.4 μs. Additionally, a gating mechanism enables photosensitive windows as short as 5 ns with a skew better than 150 ps across the entire array. The SwissSPAD photon detection efficiency (PDE) uniformity is very high, thanks on one side to a photon-to-digital conversion and on the other to a reduced fraction of "hot pixels" or "screamers", which would pollute the image with noise. A low native fill factor was recovered to a large extent using a microlens array, leading to a maximum PDE increase of 12×. This enabled us to detect single fluorophores, as required by ground state depletion followed by individual molecule return imaging microscopy (GSDIM). We show the first super resolution results obtained with a SPAD imager, with an estimated localization uncertainty of 30 nm and resolution of 100 nm. The high time resolution of 6.4 μs can be utilized to explore the dye's photophysics or for dye optimization. We also present the methodology for the blinking analysis on experimental data.

  2. The role of molecular dipole orientation in single-molecule fluorescence microscopy and implications for super-resolution imaging.

    Science.gov (United States)

    Backlund, Mikael P; Lew, Matthew D; Backer, Adam S; Sahl, Steffen J; Moerner, W E

    2014-03-17

    Numerous methods for determining the orientation of single-molecule transition dipole moments from microscopic images of the molecular fluorescence have been developed in recent years. At the same time, techniques that rely on nanometer-level accuracy in the determination of molecular position, such as single-molecule super-resolution imaging, have proven immensely successful in their ability to access unprecedented levels of detail and resolution previously hidden by the optical diffraction limit. However, the level of accuracy in the determination of position is threatened by insufficient treatment of molecular orientation. Here we review a number of methods for measuring molecular orientation using fluorescence microscopy, focusing on approaches that are most compatible with position estimation and single-molecule super-resolution imaging. We highlight recent methods based on quadrated pupil imaging and on double-helix point spread function microscopy and apply them to the study of fluorophore mobility on immunolabeled microtubules.

  3. Far-field super-resolution imaging with a planar hyperbolic metamaterial lens beyond the Fabry-Perot resonance condition

    CERN Document Server

    Lv, Cheng; Jiang, Xunya; Cao, Juncheng

    2014-01-01

    We demonstrate achieving the far-field super-resolution imaging can be realized by using a planar hyperbolic metamaterial lens (PHML), beyond the Fabry-Perot resonance condition. Although the thickness of the PHML is much larger than wavelength, the PHML not only can transmit radiative waves and evanescent waves with high transmission, but also can collect all the waves in the image region with the amplitudes of them being the same order of magnitude. We present a design for a PHML to realize the far-field super-resolution imaging, with the distance between the sources and the images 10 times larger than wavelength. We show the superresolution of our PHML is robust against losses, and the PHML can be fabricated by periodic stacking of metal and dielectric layers.

  4. Cell-specific STORM super-resolution imaging reveals nanoscale organization of cannabinoid signaling.

    Science.gov (United States)

    Dudok, Barna; Barna, László; Ledri, Marco; Szabó, Szilárd I; Szabadits, Eszter; Pintér, Balázs; Woodhams, Stephen G; Henstridge, Christopher M; Balla, Gyula Y; Nyilas, Rita; Varga, Csaba; Lee, Sang-Hun; Matolcsi, Máté; Cervenak, Judit; Kacskovics, Imre; Watanabe, Masahiko; Sagheddu, Claudia; Melis, Miriam; Pistis, Marco; Soltesz, Ivan; Katona, István

    2015-01-01

    A major challenge in neuroscience is to determine the nanoscale position and quantity of signaling molecules in a cell type- and subcellular compartment-specific manner. We developed a new approach to this problem by combining cell-specific physiological and anatomical characterization with super-resolution imaging and studied the molecular and structural parameters shaping the physiological properties of synaptic endocannabinoid signaling in the mouse hippocampus. We found that axon terminals of perisomatically projecting GABAergic interneurons possessed increased CB1 receptor number, active-zone complexity and receptor/effector ratio compared with dendritically projecting interneurons, consistent with higher efficiency of cannabinoid signaling at somatic versus dendritic synapses. Furthermore, chronic Δ(9)-tetrahydrocannabinol administration, which reduces cannabinoid efficacy on GABA release, evoked marked CB1 downregulation in a dose-dependent manner. Full receptor recovery required several weeks after the cessation of Δ(9)-tetrahydrocannabinol treatment. These findings indicate that cell type-specific nanoscale analysis of endogenous protein distribution is possible in brain circuits and identify previously unknown molecular properties controlling endocannabinoid signaling and cannabis-induced cognitive dysfunction.

  5. 边缘增强型非局部模型超分辨率重建算法%Edge-enhanced nonlocal model super-resolution reconstruction

    Institute of Scientific and Technical Information of China (English)

    蒋建国; 董艳春; 齐美彬; 侯天峰

    2011-01-01

    In order to overcome the weak robustness,the weak reservation of edges, and the high sensitivity to noise in some super-resolution methods, we propose a nonlocal-means super-resolution reconstruction with enhanced edges based on the MAP frame. This method adopts the nonlocal-means model, and computes the modulus of the model together with the edges of the image. The proposed method mends effectively super-resolution reconstruction based on the bilateral total variance ( BTV) model and based on the Markov random field ( MRF) model. Our method is more robust and it is more able to reserve edges and to remove noise. Experimental results show that the proposed method is robust, and can reserves the edges well under low signal to noise ratio, getting a better reconstruction result.%针对一些超分辨率重建算法鲁棒性差、边缘保持能力有限、降噪效果不理想等不足,提出一种基于最大后验概率估计的边缘增强型非局部模型超分辨率重建算法.算法引入了非局部模型,并将图像的边缘信息加入模型系数的计算中,是对基于BTV( bilateral total variance)模型超分辨率重建和基于MRF( Markov random field)模型超分辨率重建的有效改进,提高了算法的鲁棒性、边缘保持能力和降噪能力.实验结果表明,该算法性能稳定,在信噪比较低情况下也能保持图像的边缘信息,取得比较好的重建效果.

  6. Super-Resolution Imaging of a Dielectric Microsphere Is Governed by the Waist of Its Photonic Nanojet.

    Science.gov (United States)

    Yang, Hui; Trouillon, Raphaël; Huszka, Gergely; Gijs, Martin A M

    2016-08-10

    Dielectric microspheres with appropriate refractive index can image objects with super-resolution, that is, with a precision well beyond the classical diffraction limit. A microsphere is also known to generate upon illumination a photonic nanojet, which is a scattered beam of light with a high-intensity main lobe and very narrow waist. Here, we report a systematic study of the imaging of water-immersed nanostructures by barium titanate glass microspheres of different size. A numerical study of the light propagation through a microsphere points out the light focusing capability of microspheres of different size and the waist of their photonic nanojet. The former correlates to the magnification factor of the virtual images obtained from linear test nanostructures, the biggest magnification being obtained with microspheres of ∼6-7 μm in size. Analyzing the light intensity distribution of microscopy images allows determining analytically the point spread function of the optical system and thereby quantifies its resolution. We find that the super-resolution imaging of a microsphere is dependent on the waist of its photonic nanojet, the best resolution being obtained with a 6 μm Ø microsphere, which generates the nanojet with the minimum waist. This comparison allows elucidating the super-resolution imaging mechanism.

  7. Super-Resolution Imaging at Mid-Infrared Waveband in Graphene-nanocavity formed on meta-surface

    Science.gov (United States)

    Yang, Jingzhong; Wang, Taisheng; Chen, Zuolong; Hu, Bingliang; Yu, Weixing

    2016-11-01

    Plasmonic structured illumination microscopy (PSIM) is one of the promising wide filed optical imaging methods, which takes advantage of the surface plasmons to break the optical diffraction limit and thus to achieve a super-resolution optical image. To further improve the imaging resolution of PSIM, we propose in this work a so called graphene nanocavity on meta-surface structure (GNMS) to excite graphene surface plasmons with a deep sub-wavelength at mid-infrared waveband. It is found that surface plasmonic interference pattern with a period of around 52 nm can be achieved in graphene nanocavity formed on structured meta-surface for a 7 μm wavelength incident light. Moreover, the periodic plasmonic interference pattern can be tuned by simply changing the nanostructures fabricated on meta-surface for different application purposes. At last, the proposed GNMS structure is applied for super-resolution imaging in PSIM and it is found that an imaging resolution of 26 nm can be achieved, which is nearly 100 folds higher than that can be achieved by conventional epi-fluorescence microscopy. In comparison with visible waveband, mid-infrared is more gently and safe to biological cells and thus this work opens the new possibility for optical super-resolution imaging at mid-infrared waveband for biological research field.

  8. Robust super-resolution by fusion of interpolated frames for color and grayscale images

    Directory of Open Access Journals (Sweden)

    Barry eKarch

    2015-04-01

    Full Text Available Multi-frame super-resolution (SR processing seeks to overcome undersampling issues that can lead to undesirable aliasing artifacts. The key to effective multi-frame SR is accurate subpixel inter-frame registration. This accurate registration is challenging when the motion does not obey a simple global translational model and may include local motion. SR processing is further complicated when the camera uses a division-of-focal-plane (DoFP sensor, such as the Bayer color filter array. Various aspects of these SR challenges have been previously investigated. Fast SR algorithms tend to have difficulty accommodating complex motion and DoFP sensors. Furthermore, methods that can tolerate these complexities tend to be iterative in nature and may not be amenable to real-time processing. In this paper, we present a new fast approach for performing SR in the presence of these challenging imaging conditions. We refer to the new approach as Fusion of Interpolated Frames (FIF SR. The FIF SR method decouples the demosaicing, interpolation, and restoration steps to simplify the algorithm. Frames are first individually demosaiced and interpolated to the desired resolution. Next, FIF uses a novel weighted sum of the interpolated frames to fuse them into an improved resolution estimate. Finally, restoration is applied to deconvolve the modeled system PSF. The proposed FIF approach has a lower computational complexity than most iterative methods, making it a candidate for real-time implementation. We provide a detailed description of the FIF SR method and show experimental results using synthetic and real datasets in both constrained and complex imaging scenarios. The experiments include airborne grayscale imagery and Bayer color array images with affine background motion plus local motion.

  9. The internal architecture of dendritic spines revealed by super-resolution imaging: What did we learn so far?

    Energy Technology Data Exchange (ETDEWEB)

    MacGillavry, Harold D., E-mail: h.d.macgillavry@uu.nl; Hoogenraad, Casper C., E-mail: c.hoogenraad@uu.nl

    2015-07-15

    The molecular architecture of dendritic spines defines the efficiency of signal transmission across excitatory synapses. It is therefore critical to understand the mechanisms that control the dynamic localization of the molecular constituents within spines. However, because of the small scale at which most processes within spines take place, conventional light microscopy techniques are not adequate to provide the necessary level of resolution. Recently, super-resolution imaging techniques have overcome the classical barrier imposed by the diffraction of light, and can now resolve the localization and dynamic behavior of proteins within small compartments with nanometer precision, revolutionizing the study of dendritic spine architecture. Here, we highlight exciting new findings from recent super-resolution studies on neuronal spines, and discuss how these studies revealed important new insights into how protein complexes are assembled and how their dynamic behavior shapes the efficiency of synaptic transmission.

  10. Transceiver Design for CMUT-Based Super-Resolution Ultrasound Imaging.

    Science.gov (United States)

    Behnamfar, Parisa; Molavi, Reza; Mirabbasi, Shahriar

    2016-04-01

    A recently introduced structure for the capacitive micromachined ultrasonic transducers (CMUTs) has focused on the applications of the asymmetric mode of vibration and has shown promising results in construction of super-resolution ultrasound images. This paper presents the first implementation and experimental results of a transceiver circuit to interface such CMUT structures. The multiple input/multiple output receiver in this work supports both fundamental and asymmetric modes of operation and includes transimpedance amplifiers and low-power variable-gain stages. These circuit blocks are designed considering the trade-offs between gain, input impedance, noise, linearity and power consumption. The high-voltage transmitter can generate pulse voltages up to 60 V while occupying a considerably small area. The overall circuit is designed and laid out in a 0.35 μm CMOS process and a four-channel transceiver occupies 0.86 × 0.38 mm(2). The prototype chip is characterized in both electrical and mechanical domains. Measurement results show that each receiver channel has a nominal gain of 110 dBΩ with a 3 dB bandwidth of 9 MHz while consuming 1.02 mW from a 3.3 V supply. The receiver is also highly linear, with 1 dB compression point of minimum 1.05 V which is considerably higher than the previously reported designs. The transmitter consumes 98.1 mW from a 30 V supply while generating 1.38 MHz, 30 V pulses. The CMOS-CMUT system is tested in the transmit mode and shows full functionality in air medium.

  11. A fast image super-resolution algorithm using an adaptive Wiener filter.

    Science.gov (United States)

    Hardie, Russell

    2007-12-01

    A computationally simple super-resolution algorithm using a type of adaptive Wiener filter is proposed. The algorithm produces an improved resolution image from a sequence of low-resolution (LR) video frames with overlapping field of view. The algorithm uses subpixel registration to position each LR pixel value on a common spatial grid that is referenced to the average position of the input frames. The positions of the LR pixels are not quantized to a finite grid as with some previous techniques. The output high-resolution (HR) pixels are obtained using a weighted sum of LR pixels in a local moving window. Using a statistical model, the weights for each HR pixel are designed to minimize the mean squared error and they depend on the relative positions of the surrounding LR pixels. Thus, these weights adapt spatially and temporally to changing distributions of LR pixels due to varying motion. Both a global and spatially varying statistical model are considered here. Since the weights adapt with distribution of LR pixels, it is quite robust and will not become unstable when an unfavorable distribution of LR pixels is observed. For translational motion, the algorithm has a low computational complexity and may be readily suitable for real-time and/or near real-time processing applications. With other motion models, the computational complexity goes up significantly. However, regardless of the motion model, the algorithm lends itself to parallel implementation. The efficacy of the proposed algorithm is demonstrated here in a number of experimental results using simulated and real video sequences. A computational analysis is also presented.

  12. Penrose Pixels for Super-Resolution.

    Science.gov (United States)

    Ben-Ezra, M; Lin, Zhouchen; Wilburn, Bennett; Zhang, Wei

    2011-07-01

    We present a novel approach to reconstruction-based super-resolution that uses aperiodic pixel tilings, such as a Penrose tiling or a biological retina, for improved performance. To this aim, we develop a new variant of the well-known error back projection super-resolution algorithm that makes use of the exact detector model in its back projection operator for better accuracy. Pixels in our model can vary in shape and size, and there may be gaps between adjacent pixels. The algorithm applies equally well to periodic or aperiodic pixel tilings. We present analysis and extensive tests using synthetic and real images to show that our approach using aperiodic layouts substantially outperforms existing reconstruction-based algorithms for regular pixel arrays. We close with a discussion of the feasibility of manufacturing CMOS or CCD chips with pixels arranged in Penrose tilings.

  13. Comparison of Confocal and Super-Resolution Reflectance Imaging of Metal Oxide Nanoparticles

    Science.gov (United States)

    Guggenheim, Emily J.; Khan, Abdullah; Pike, Jeremy; Chang, Lynne; Lynch, Iseult; Rappoport, Joshua Z.

    2016-01-01

    The potential for human exposure to manufactured nanoparticles (NPs) has increased in recent years, in part through the incorporation of engineered particles into a wide range of commercial goods and medical applications. NP are ideal candidates for use as therapeutic and diagnostic tools within biomedicine, however concern exists regarding their efficacy and safety. Thus, developing techniques for the investigation of NP uptake into cells is critically important. Current intracellular NP investigations rely on the use of either Transmission Electron Microscopy (TEM), which provides ultrahigh resolution, but involves cumbersome sample preparation rendering the technique incompatible with live cell imaging, or fluorescent labelling, which suffers from photobleaching, poor bioconjugation and, often, alteration of NP surface properties. Reflected light imaging provides an alternative non-destructive label free technique well suited, but not limited to, the visualisation of NP uptake within model systems, such as cells. Confocal reflectance microscopy provides optical sectioning and live imaging capabilities, with little sample preparation. However confocal microscopy is diffraction limited, thus the X-Y resolution is restricted to ~250 nm, substantially larger than the light microscopy overcome this fundamental limitation, providing increased X-Y resolution. The use of Reflectance SIM (R-SIM) for NP imaging has previously only been demonstrated on custom built microscopes, restricting the widespread use and limiting NP investigations. This paper demonstrates the use of a commercial SIM microscope for the acquisition of super-resolution reflectance data with X-Y resolution of 115 nm, a greater than two-fold increase compared to that attainable with RCM. This increase in resolution is advantageous for visualising small closely spaced structures, such as NP clusters, previously unresolvable by RCM. This is advantageous when investigating the subcellular trafficking of NP

  14. Breast Microcalcification Detection Using Super-Resolution Ultrasound Image Reconstruction

    Science.gov (United States)

    2010-09-01

    Gotzsche, P. C. and Olsen, O., “Is screening for breast cancer with mammography justifiable?,” The Lancet 355, 129–134 (2000). [6] Olsen, O. and Gotzsche...P. C., “Cochrane review on screening for breast cancer with mammography,” The Lancet 358, 1340–1342 (2001). [7] Skaane, P. and Skjennald, A., “Screen

  15. Super-resolution fluorescence imaging of nanoimprinted polymer patterns by selective fluorophore adsorption combined with redox switching

    KAUST Repository

    Yabiku, Y.

    2013-10-22

    We applied a super-resolution fluorescence imaging based on selective adsorption and redox switching of the fluorescent dye molecules for studying polymer nanostructures. We demonstrate that nano-scale structures of polymer thin films can be visualized with the image resolution better than 80 nm. The method was applied to image 100 nm-wide polymer nanopatterns fabricated by thermal nanoimprinting. The results point to the applicability of the method for evaluating residual polymer thin films and dewetting defect of the polymer resist patterns which are important for the quality control of the fine nanoimprinted patterns. 2013 Author(s).

  16. Combined self-learning based single-image super-resolution and dual-tree complex wavelet transform denoising for medical images

    Science.gov (United States)

    Yang, Guang; Ye, Xujiong; Slabaugh, Greg; Keegan, Jennifer; Mohiaddin, Raad; Firmin, David

    2016-03-01

    In this paper, we propose a novel self-learning based single-image super-resolution (SR) method, which is coupled with dual-tree complex wavelet transform (DTCWT) based denoising to better recover high-resolution (HR) medical images. Unlike previous methods, this self-learning based SR approach enables us to reconstruct HR medical images from a single low-resolution (LR) image without extra training on HR image datasets in advance. The relationships between the given image and its scaled down versions are modeled using support vector regression with sparse coding and dictionary learning, without explicitly assuming reoccurrence or self-similarity across image scales. In addition, we perform DTCWT based denoising to initialize the HR images at each scale instead of simple bicubic interpolation. We evaluate our method on a variety of medical images. Both quantitative and qualitative results show that the proposed approach outperforms bicubic interpolation and state-of-the-art single-image SR methods while effectively removing noise.

  17. STED microscopy--super-resolution bio-imaging utilizing a stimulated emission depletion.

    Science.gov (United States)

    Otomo, Kohei; Hibi, Terumasa; Kozawa, Yuichi; Nemoto, Tomomi

    2015-08-01

    One of the most popular super-resolution microscopies that breaks the diffraction barrier is stimulated emission depletion (STED) microscopy. As the optical set-up of STED microscopy is based on a laser scanning microscopy (LSM) system, it potentially has several merits of LSM like confocal or two-photon excitation LSM. In this article, we first describe the principles of STED microscopy and then describe the features of our newly developed two-photon excitation STED microscopy. On the basis of our recent results and those of other researchers, we conclude by discussing future research and new technologies in this field.

  18. Hybrid-Thresholding based Image Super-Resolution Technique by the use of Triplet Half-Band Wavelets

    Science.gov (United States)

    Chopade, Pravin B.; Rahulkar, Amol D.; Patil, Pradeep M.

    2016-12-01

    This paper presents a modified image super-resolution scheme based on the wavelet coefficients hybrid-thresholding by the use of triplet half-band wavelets (THW) derived from the generalized half-band polynomial. At first, discrete wavelet transform (DWT) is obtained from triplet half-band kernels and it applied on the low-resolution image to obtain the high frequency sub-bands. These high frequency sub-bands and the original low-resolution image are interpolated to enhance the resolution. Second, stationary wavelet transform is obtained by using THW, which is employed to minimize the loss due to the use of DWT. In addition, hybrid thresholding scheme on wavelet coefficients scheme is proposed on these estimated high-frequency sub-bands in order to reduce the spatial domain noise. These sub-bands are combined together by inverse discrete wavelet transform obtained from THW to generate a high-resolution image. The proposed approach is validated by comparing the quality metrics with existing filter banks and well-known super-resolution scheme.

  19. Visualizing and Calculating Tip-Substrate Distance in Nanoscale Scanning Electrochemical Microscopy Using 3-Dimensional Super-Resolution Optical Imaging.

    Science.gov (United States)

    Sundaresan, Vignesh; Marchuk, Kyle; Yu, Yun; Titus, Eric J; Wilson, Andrew J; Armstrong, Chadd M; Zhang, Bo; Willets, Katherine A

    2017-01-03

    We report a strategy for the optical determination of tip-substrate distance in nanoscale scanning electrochemical microscopy (SECM) using three-dimensional super-resolution fluorescence imaging. A phase mask is placed in the emission path of our dual SECM/optical microscope, generating a double helix point spread function at the image plane, which allows us to measure the height of emitting objects relative to the focus of the microscope. By exciting both a fluorogenic reaction at the nanoscale electrode tip as well as fluorescent nanoparticles at the substrate, we are able to calculate the tip-substrate distance as the tip approaches the surface with precision better than 25 nm. Attachment of a fluorescent particle to the insulating sheath of the SECM tip extends this technique to nonfluorogenic electrochemical reactions. Correlated electrochemical and optical determination of tip-substrate distance yielded excellent agreement between the two techniques. Not only does super-resolution imaging offer a secondary feedback mechanism for measuring the tip-sample gap during SECM experiments, it also enables facile tip alignment and a strategy for accounting for electrode tilt relative to the substrate.

  20. Radar Super-Resolution Imaging Based on Compressive Sensing%压缩感知雷达超分辨率成像

    Institute of Scientific and Technical Information of China (English)

    邓振淼; 叶淋美; 傅茂忠; 张贻雄

    2014-01-01

    研究压缩感知理论在逆合成孔径雷达(inverse synthetic aperture radar, ISAR)成像中的应用。雷达发射方位稀疏的探测脉冲,对满足Nyquist采样定理的雷达去斜回波数据进行稀疏采样,再利用压缩感知重构算法分别重构距离向和方位向的完整的目标特性回波信号。为了得到高分辨的雷达ISAR像,对重构的数据在距离向和方位向分别进行超分辨率处理。实际雷达数据和仿真数据表明ISAR像的分辨率有较大提高,所给出的综合方法可以降低数据量,节省雷达的时间资源,具有良好的应用价值。%Application of compressed sensing (CS) in inverse synthetic aperture radar is investigated in this paper. The radar transmits sparse probing pulses and dechirped radar echo samples that satisfy the Nyquist sampling theorem are resampled sparsely. Reconstruction is performed to these sparse samples both in range and cross-range directions to recover the whole radar echo signals containing the target characteristics. To obtain high resolution ISAR images, super-resolution processing on both range and cross-range directions is conducted on the reconstructed data. Results of processing on real radar data and simulated data show that the resolution of ISAR image can be enhanced signiifcantly. The proposed algorithm can reduce data size and time consumption, and is valuable for super-resolution radar image applications.

  1. Quaternary and secondary structural imaging of a human hair by a VSFG-detected IR super-resolution microscope

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Makoto, E-mail: makotos@res.titech.ac.jp [Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503 (Japan); Kikuchi, Katsuya [Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503 (Japan); Fujii, Masaaki, E-mail: mfujii@res.titech.ac.jp [Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503 (Japan)

    2013-06-20

    Highlights: ► IR super-resolution image of cross section of a human black hair were measured. ► For the amide III band, human hair gave strong VSFG signals at the cortex area. ► Distribution of α-helix based quaternary structure of keratin proteins was observed. ► The VSFG signal disappeared completely when the amide I band was monitored. ► The α-helix of keratin proteins is well aligned along the axial direction in hair. - Abstract: IR super-resolution images of cross sections of a human black hair were measured by using a home-made vibrational sum-frequency generation (VSFG) detected IR microscope in the 6–9 μm region with a sub-micrometer spatial resolution. For the amide III band, the sample gave clear strong signals at the cortex area. This enabled us to measure the distribution of intermediate filaments, which have an α-helix based quaternary structure of keratin proteins in the hair. On the other hand, the VSFG signal disappeared completely when the amide I band was monitored by the same polarization of incident light. From the polarization dependence of VSFG, it is concluded that the α-helix of keratin proteins are well aligned along the axial direction in human hair.

  2. Using super-resolution technique to elucidate the effects of imaging resolution on transport properties resulting from pore-scale modelling simulations

    Science.gov (United States)

    Karsanina, Marina; Gerke, Kirill; Khirevich, Siarhei; Sizonenko, Timofey; Korost, Dmitry

    2017-04-01

    Permeability is one of the fundamental properties of porous media and is required for large-scale Darcian fluid flow and mass transport models. Whilst permeability can be directly measured at a range of scales, there are increasing opportunities to evaluate permeability from pore-scale simulations. It is well known that single phase flow properties of digital rocks will depend on the resolution of the 3D pore image. Such studies are usually performed by coarsening X-ray microtomography scans. Recently we have proposed a novel approach to fuse multi-scale porous media images using stochastic reconstruction techniques based on directional correlation functions. Here we apply this slightly modified approach to create 3D pore images of different spatial resolution, i.e. stochastic super-resolution method. Contrary to coarsening techniques, this approach preserves porosity values and allows to incorporate fine scale data coming from such imaging techniques as SEM or FIB-SEM. We compute absolute permeability of the same porous media species under different resolutions using lattice-Boltzmann and finite difference methods to model Stokes flow in order to elucidate the effects of image resolution on resulting permeability values and compare stochastic super-resolution technique against conventional coarsening image processing technique. References: 1) Karsanina, M.V., Gerke, K.M., Skvortsova, E.B. and Mallants, D. (2015) Universal spatial correlation functions for describing and reconstructing soil microstructure. PLoS ONE 10(5), e0126515. 2) Gerke, K. M., & Karsanina, M. V. (2015). Improving stochastic reconstructions by weighting correlation functions in an objective function. EPL (Europhysics Letters),111(5), 56002. 3) Gerke, K. M., Karsanina, M. V., Vasilyev, R. V., & Mallants, D. (2014). Improving pattern reconstruction using directional correlation functions. EPL (Europhysics Letters), 106(6), 66002. 4) Gerke, K.M., Karsanina, M. V, Mallants, D., 2015. Universal

  3. The 2015 super-resolution microscopy roadmap

    Science.gov (United States)

    Hell, Stefan W.; Sahl, Steffen J.; Bates, Mark; Zhuang, Xiaowei; Heintzmann, Rainer; Booth, Martin J.; Bewersdorf, Joerg; Shtengel, Gleb; Hess, Harald; Tinnefeld, Philip; Honigmann, Alf; Jakobs, Stefan; Testa, Ilaria; Cognet, Laurent; Lounis, Brahim; Ewers, Helge; Davis, Simon J.; Eggeling, Christian; Klenerman, David; Willig, Katrin I.; Vicidomini, Giuseppe; Castello, Marco; Diaspro, Alberto; Cordes, Thorben

    2015-11-01

    Far-field optical microscopy using focused light is an important tool in a number of scientific disciplines including chemical, (bio)physical and biomedical research, particularly with respect to the study of living cells and organisms. Unfortunately, the applicability of the optical microscope is limited, since the diffraction of light imposes limitations on the spatial resolution of the image. Consequently the details of, for example, cellular protein distributions, can be visualized only to a certain extent. Fortunately, recent years have witnessed the development of ‘super-resolution’ far-field optical microscopy (nanoscopy) techniques such as stimulated emission depletion (STED), ground state depletion (GSD), reversible saturated optical (fluorescence) transitions (RESOLFT), photoactivation localization microscopy (PALM), stochastic optical reconstruction microscopy (STORM), structured illumination microscopy (SIM) or saturated structured illumination microscopy (SSIM), all in one way or another addressing the problem of the limited spatial resolution of far-field optical microscopy. While SIM achieves a two-fold improvement in spatial resolution compared to conventional optical microscopy, STED, RESOLFT, PALM/STORM, or SSIM have all gone beyond, pushing the limits of optical image resolution to the nanometer scale. Consequently, all super-resolution techniques open new avenues of biomedical research. Because the field is so young, the potential capabilities of different super-resolution microscopy approaches have yet to be fully explored, and uncertainties remain when considering the best choice of methodology. Thus, even for experts, the road to the future is sometimes shrouded in mist. The super-resolution optical microscopy roadmap of Journal of Physics D: Applied Physics addresses this need for clarity. It provides guidance to the outstanding questions through a collection of short review articles from experts in the field, giving a thorough

  4. Gradient Permittivity Meta-Structure model for Wide-field Super-resolution imaging with a sub-45 nm resolution

    Science.gov (United States)

    Cao, Shun; Wang, Taisheng; Xu, Wenbin; Liu, Hua; Zhang, Hongxin; Hu, Bingliang; Yu, Weixing

    2016-03-01

    A gradient permittivity meta-structure (GPMS) model and its application in super-resolution imaging were proposed and discussed in this work. The proposed GPMS consists of alternate metallic and dielectric films with a gradient permittivity which can support surface plasmons (SPs) standing wave interference patterns with a super resolution. By employing the rigorous numerical FDTD simulation method, the GPMS was carefully simulated to find that the period of the SPs interference pattern is only 84 nm for a 532 nm incident light. Furthermore, the potential application of the GPMS for wide-field super-resolution imaging was also discussed and the simulation results show that an imaging resolution of sub‑45 nm can be achieved based on the plasmonic structure illumination microscopic method, which means a 5.3-fold improvement on resolution has been achieved in comparison with conventional epifluorescence microscopy. Moreover, besides the super-resolution imaging application, the proposed GPMS model can also be applied for nanolithography and other areas where super resolution patterns are needed.

  5. Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media

    Science.gov (United States)

    Edrei, Eitan; Scarcelli, Giuliano

    2016-09-01

    High-resolution imaging through turbid media is a fundamental challenge of optical sciences that has attracted a lot of attention in recent years for its wide range of potential applications. Here, we demonstrate that the resolution of imaging systems looking behind a highly scattering medium can be improved below the diffraction-limit. To achieve this, we demonstrate a novel microscopy technique enabled by the optical memory effect that uses a deconvolution image processing and thus it does not require iterative focusing, scanning or phase retrieval procedures. We show that this newly established ability of direct imaging through turbid media provides fundamental and practical advantages such as three-dimensional refocusing and unambiguous object reconstruction.

  6. Super-Resolution Imaging and Quantitative Analysis of Membrane Protein/Lipid Raft Clustering Mediated by Cell-Surface Self-Assembly of Hybrid Nanoconjugates.

    Science.gov (United States)

    Hartley, Jonathan M; Chu, Te-Wei; Peterson, Eric M; Zhang, Rui; Yang, Jiyuan; Harris, Joel; Kopeček, Jindřich

    2015-08-17

    Super-resolution imaging was used to quantify organizational changes in the plasma membrane after treatment with hybrid nanoconjugates. The nanoconjugates crosslinked CD20 on the surface of malignant B cells, thereby inducing apoptosis. Super-resolution images were analyzed by using pair-correlation analysis to determine cluster size and to count the average number of molecules in the clusters. The role of lipid rafts was investigated by pre-treating cells with a cholesterol chelator and actin destabilizer to prevent lipid raft formation. Lipid raft cluster size correlated with apoptosis induction after treatment with the nanoconjugates. Lipid raft clusters had radii of ∼ 200 nm in cells treated with the hybrid nanoconjugates. Super-resolution images provided precise molecule location coordinates that could be used to determine density of bound conjugates, cluster size, and number of molecules per cluster.

  7. Multi-pulse time delay integration method for flexible 3D super-resolution range-gated imaging.

    Science.gov (United States)

    Xinwei, Wang; Youfu, Li; Yan, Zhou

    2015-03-23

    Constructing flexible regular-shaped range-intensity profiles by the convolution of illuminator laser pulse and sensor gate pulse is crucial for 3D super-resolution range-gated imaging. However, ns-scale rectangular-shaped laser pulse with tunable pulse width is difficult to be obtained, especially for pulsed solid-stated lasers. In this paper we propose a multi-pulse time delay integration (MPTDI) method to reshape range-intensity profiles (RIP) free from the above limitation of pulsed lasers. An equivalent laser pulse temporal shaping model is established to evaluate and optimize the MPTDI method. By using MPTDI, the RIP shape and depth of viewing can both be flexibly changed as desired. Here typical triangular and trapezoidal RIPs are established for 3D imaging under triangular and trapezoidal range-intensity correlation algorithms. In addition, a prototype experiment is demonstrated to prove the feasibility of MPTDI.

  8. SUPER-RESOLUTION AND DE-CONVOLUTION FOR SINGLE/MULTI GRAY SCALE IMAGES USING SIFT ALGORITHM

    Directory of Open Access Journals (Sweden)

    Ritu Soni

    2015-10-01

    Full Text Available This paper represent a Blind algorithm that restore the blurred images for single image and multi-image blur de-convolution and multi-image super-resolution on low-resolution images deteriorated by additive white Gaussian noise ,the aliasing and linear space-invariant. Image De-blurring is a field of Image Processing in which recovering an original and sharp image from a corrupted image. Proposed method is based on alternating minimization algorithm with respect to unidentified blurs and high-resolution image and the Huber-markov random field(HMRF model for its ability to preserve discontinuities of a image and used for the regularization that exploits the piecewise smooth nature of the HR image. SIFT algorithm is used for feature extraction in a image and produce matching features based on Euclidean distance of their feature vectors that help in calculation of PSF. For blur estimation, edge-emphasizing smoothing operation is used to improve the quality of blur by enhancing the strong soft edges. In filter domain the blur estimation process can be done rather than the pixel domain for better performance that means which uses the gradient of HR and LR images for better performance.

  9. A new probe for super-resolution imaging of membranes elucidates trafficking pathways.

    Science.gov (United States)

    Revelo, Natalia H; Kamin, Dirk; Truckenbrodt, Sven; Wong, Aaron B; Reuter-Jessen, Kirsten; Reisinger, Ellen; Moser, Tobias; Rizzoli, Silvio O

    2014-05-26

    The molecular composition of the organelles involved in membrane recycling is difficult to establish as a result of the absence of suitable labeling tools. We introduce in this paper a novel probe, named membrane-binding fluorophore-cysteine-lysine-palmitoyl group (mCLING), which labels the plasma membrane and is taken up during endocytosis. It remains attached to membranes after fixation and permeabilization and can therefore be used in combination with immunostaining and super-resolution microscopy. We applied mCLING to mammalian-cultured cells, yeast, bacteria, primary cultured neurons, Drosophila melanogaster larval neuromuscular junctions, and mammalian tissue. mCLING enabled us to study the molecular composition of different trafficking organelles. We used it to address several questions related to synaptic vesicle recycling in the auditory inner hair cells from the organ of Corti and to investigate molecular differences between synaptic vesicles that recycle actively or spontaneously in cultured neurons. We conclude that mCLING enables the investigation of trafficking membranes in a broad range of preparations.

  10. Self-organization of the Escherichia coli chemotaxis network imaged with super-resolution light microscopy.

    Directory of Open Access Journals (Sweden)

    Derek Greenfield

    2009-06-01

    Full Text Available The Escherichia coli chemotaxis network is a model system for biological signal processing. In E. coli, transmembrane receptors responsible for signal transduction assemble into large clusters containing several thousand proteins. These sensory clusters have been observed at cell poles and future division sites. Despite extensive study, it remains unclear how chemotaxis clusters form, what controls cluster size and density, and how the cellular location of clusters is robustly maintained in growing and dividing cells. Here, we use photoactivated localization microscopy (PALM to map the cellular locations of three proteins central to bacterial chemotaxis (the Tar receptor, CheY, and CheW with a precision of 15 nm. We find that cluster sizes are approximately exponentially distributed, with no characteristic cluster size. One-third of Tar receptors are part of smaller lateral clusters and not of the large polar clusters. Analysis of the relative cellular locations of 1.1 million individual proteins (from 326 cells suggests that clusters form via stochastic self-assembly. The super-resolution PALM maps of E. coli receptors support the notion that stochastic self-assembly can create and maintain approximately periodic structures in biological membranes, without direct cytoskeletal involvement or active transport.

  11. 一种改进Papoulis-Gerchberg的多幅超分辨重构方法%An improved Papoulis-Gerchberg algorithm for multiframe super-resolution reconstruction

    Institute of Scientific and Technical Information of China (English)

    穆绍硕; 张叶; 贾平

    2015-01-01

    In order to enlarge a low resolution image clearly, an improved Papoulis-Gerchberg super-resolution method was proposed to solve the space complexity and the edge blurring phenomenon of reconstruction results. More specifically, the proposed algorithm uses edge detection operator, and canny detection is also joined in every Papoulis-Gerchberg iterative process, while reconstruction error is projected to next iterative process, such that the space complexity can be reduced and the lost high-frequency edge information can be recovered effectively. MATLAB experimental results show that the PSNR and the gray standard deviation improve 0.5 dB and 2.5, respectively, with comparison to the conventional Papoulis-Gerchberg method. Furthermore, the proposed algorithm can reconstruct multi-frame Low-Resolution images of same scene more accurately and the visual quality of the reconstruction image is clearer that the conventional one, and the proposed algorithm can also eliminate edge shadow and obtain a clear high-resolution image.%为进一步提高拍摄图像的分辨率,提出一种改进的Papoulis-Gerchberg超分辨算法.新算法提出边缘检测方法,可以改善传统方法空间复杂度和重构图像边缘模糊的问题.新算法在原有的算法基础上融于边缘检测,针对多幅同一场景输入图像,在每次Papoulis-Gerchberg迭代过程加入坎尼检测,同时将每步的重构误差投影到下一步重构过程,降低了算法空间复杂度,能有效恢复丢失的边缘高频信息.MATLAB实验结果表明,与现有的经典超分辨重构方法相比,本算法反映图像质量的峰值信噪比和灰度标准差更高,信噪比和灰度标准差比改进前算法分别提高0.5 dB和2.5.从视觉感官上对比,重构图像整体效果也更加清楚,去除了原始重构方法图像边缘叠影现象,有效提高了原始输入图像的分辨率.

  12. Super-resolution imaging of ciliary microdomains in isolated olfactory sensory neurons using a custom STED microscope

    Science.gov (United States)

    Meyer, Stephanie A.; Ozbay, Baris; Restrepo, Diego; Gibson, Emily A.

    2014-03-01

    We performed super-resolution imaging of isolated olfactory sensory neurons (OSNs) using a custom-built Stimulated Emission Depletion (STED) microscope. The design for the STED microscope is based on the system developed in the laboratory of Dr. Stefan Hell1. Our system is capable of imaging with sub-diffraction limited resolution simultaneously in two color channels (at Atto 590/Atto 647N wavelengths). A single, pulsed laser source (ALP; Fianium, Inc.) generates all four laser beams, two excitation and two STED. The two STED beams are coupled into one polarization maintaining (PM) fiber and the two excitation beams into another. They are then collimated and both STED beams pass through a vortex phase plate (RPC Photonics) to allow shaping into a donut at the focus of the objective lens. The beams are then combined and sent into an inverted research microscope (IX-71; Olympus Inc.) allowing widefield epifluorescence, brightfield and DIC imaging on the same field of view as STED imaging. A fast piezo stage scans the sample during STED and confocal imaging. The fluorescent signals from the two color channels are detected with two avalanche photodiodes (APD) after appropriate spectral filtering. The resolution of the system was characterized by imaging 40 nm fluorescent beads as ~60 nm (Atto 590) and ~50 nm (Atto 647N). We performed STED imaging on immunolabeled isolated OSNs tagged at the CNGA2 and ANO2 proteins. The STED microscope allows us to resolve ciliary CNGA2 microdomains of ~54 nm that were blurred in confocal.

  13. Super-resolution imaging of ESCRT-proteins at HIV-1 assembly sites.

    Directory of Open Access Journals (Sweden)

    Jens Prescher

    2015-02-01

    Full Text Available The cellular endosomal sorting complex required for transport (ESCRT machinery is involved in membrane budding processes, such as multivesicular biogenesis and cytokinesis. In HIV-infected cells, HIV-1 hijacks the ESCRT machinery to drive HIV release. Early in the HIV-1 assembly process, the ESCRT-I protein Tsg101 and the ESCRT-related protein ALIX are recruited to the assembly site. Further downstream, components such as the ESCRT-III proteins CHMP4 and CHMP2 form transient membrane associated lattices, which are involved in virus-host membrane fission. Although various geometries of ESCRT-III assemblies could be observed, the actual membrane constriction and fission mechanism is not fully understood. Fission might be driven from inside the HIV-1 budding neck by narrowing the membranes from the outside by larger lattices surrounding the neck, or from within the bud. Here, we use super-resolution fluorescence microscopy to elucidate the size and structure of the ESCRT components Tsg101, ALIX, CHMP4B and CHMP2A during HIV-1 budding below the diffraction limit. To avoid the deleterious effects of using fusion proteins attached to ESCRT components, we performed measurements on the endogenous protein or, in the case of CHMP4B, constructs modified with the small HA tag. Due to the transient nature of the ESCRT interactions, the fraction of HIV-1 assembly sites with colocalizing ESCRT complexes was low (1.5%-3.4%. All colocalizing ESCRT clusters exhibited closed, circular structures with an average size (full-width at half-maximum between 45 and 60 nm or a diameter (determined using a Ripley's L-function analysis of roughly 60 to 100 nm. The size distributions for colocalizing clusters were narrower than for non-colocalizing clusters, and significantly smaller than the HIV-1 bud. Hence, our results support a membrane scission process driven by ESCRT protein assemblies inside a confined structure, such as the bud neck, rather than by large lattices

  14. First Science Results From SOFIA/FORCAST: Super-Resolution Imaging of the S140 Cluster at 37\\micron

    CERN Document Server

    Harvey, Paul M; Herter, Terry L; Gull, George; Schoenwald, Justin; Keller, Luke D; De Buizer, James M; Vacca, William; Reach, William; Becklin, E E

    2012-01-01

    We present 37\\micron\\ imaging of the S140 complex of infrared sources centered on IRS1 made with the FORCAST camera on SOFIA. These observations are the longest wavelength imaging to resolve clearly the three main sources seen at shorter wavelengths, IRS 1, 2 and 3, and are nearly at the diffraction limit of the 2.5-m telescope. We also obtained a small number of images at 11 and 31\\micron\\ that are useful for flux measurement. Our images cover the area of several strong sub-mm sources seen in the area -- SMM 1, 2, and 3 -- that are not coincident with any mid-infrared sources and are not visible in our longer wavelength imaging either. Our new observations confirm previous estimates of the relative dust optical depth and source luminosity for the components in this likely cluster of early B stars. We also investigate the use of super-resolution to go beyond the basic diffraction limit in imaging on SOFIA and find that the van Cittert algorithm, together with the "multi-resolution" technique, provides excelle...

  15. Super-resolution for scanning light stimulation systems

    Science.gov (United States)

    Bitzer, L. A.; Neumann, K.; Benson, N.; Schmechel, R.

    2016-09-01

    Super-resolution (SR) is a technique used in digital image processing to overcome the resolution limitation of imaging systems. In this process, a single high resolution image is reconstructed from multiple low resolution images. SR is commonly used for CCD and CMOS (Complementary Metal-Oxide-Semiconductor) sensor images, as well as for medical applications, e.g., magnetic resonance imaging. Here, we demonstrate that super-resolution can be applied with scanning light stimulation (LS) systems, which are common to obtain space-resolved electro-optical parameters of a sample. For our purposes, the Projection Onto Convex Sets (POCS) was chosen and modified to suit the needs of LS systems. To demonstrate the SR adaption, an Optical Beam Induced Current (OBIC) LS system was used. The POCS algorithm was optimized by means of OBIC short circuit current measurements on a multicrystalline solar cell, resulting in a mean square error reduction of up to 61% and improved image quality.

  16. Fluorescent Nanodiamond: A Versatile Tool for Long-Term Cell Tracking, Super-Resolution Imaging, and Nanoscale Temperature Sensing.

    Science.gov (United States)

    Hsiao, Wesley Wei-Wen; Hui, Yuen Yung; Tsai, Pei-Chang; Chang, Huan-Cheng

    2016-03-15

    Fluorescent nanodiamond (FND) has recently played a central role in fueling new discoveries in interdisciplinary fields spanning biology, chemistry, physics, and materials sciences. The nanoparticle is unique in that it contains a high density ensemble of negatively charged nitrogen-vacancy (NV(-)) centers as built-in fluorophores. The center possesses a number of outstanding optical and magnetic properties. First, NV(-) has an absorption maximum at ∼550 nm, and when exposed to green-orange light, it emits bright fluorescence at ∼700 nm with a lifetime of longer than 10 ns. These spectroscopic properties are little affected by surface modification but are distinctly different from those of cell autofluorescence and thus enable background-free imaging of FNDs in tissue sections. Such characteristics together with its excellent biocompatibility render FND ideal for long-term cell tracking applications, particularly in stem cell research. Next, as an artificial atom in the solid state, the NV(-) center is perfectly photostable, without photobleaching and blinking. Therefore, the NV-containing FND is suitable as a contrast agent for super-resolution imaging by stimulated emission depletion (STED). An improvement of the spatial resolution by 20-fold is readily achievable by using a high-power STED laser to deplete the NV(-) fluorescence. Such improvement is crucial in revealing the detailed structures of biological complexes and assemblies, including cellular organelles and subcellular compartments. Further enhancement of the resolution for live cell imaging is possible by manipulating the charge states of the NV centers. As the "brightest" member of the nanocarbon family, FND holds great promise and potential for bioimaging with unprecedented resolution and precision. Lastly, the NV(-) center in diamond is an atom-like quantum system with a total electron spin of 1. The ground states of the spins show a crystal field splitting of 2.87 GHz, separating the ms = 0 and

  17. Fusion and Visualization of HiRISE Super-Resolution, Shape-from-Shading DTM with MER Stereo 3D Reconstructions

    Science.gov (United States)

    Gupta, S.; Paar, G.; Muller, J. P.; Tao, Y.; Tyler, L.; Traxler, C.; Hesina, G.; Huber, B.; Nauschnegg, B.

    2014-12-01

    The FP7-SPACE project PRoViDE has assembled a major portion of the imaging data gathered so far from rover vehicles, landers and probes on extra-terrestrial planetary surfaces into a unique database, bringing them into a common planetary geospatial context and providing access to a complete set of 3D vision products. One major aim of PRoViDE is the fusion between orbiter and rover image products. To close the gap between HiRISE imaging resolution (down to 25cm for the OrthoRectified image (ORI), down to 1m for the DTM) and surface vision products, images from multiple HiRISE acquisitions are combined into a super resolution data set (Tao & Muller, 2014), increasing to 5cm resolution the Ortho images. Furthermore, shape-from-shading is applied to one of the ORIs at its original resolution for refinement of the HiRISE DTM, leading to DTM ground resolutions of up to 25 cm. After texture-based co-registration with these refined orbiter 3D products, MER PanCam and NavCam 3D image products can be smoothly pasted into a multi-resolution 3D data representation. Typical results from the MER mission are presented by a dedicated real-time rendering tool which is fed by a hierarchical 3D data structure that is able to cope with all involved scales from global planetary scale down to close-up reconstructions in the mm range. This allows us to explore and analyze the geological characteristics of rock outcrops, for example the detailed geometry and internal features of sedimentary rock layers, to aid paleoenvironmental interpretation. This integrated approach enables more efficient development of geological models of martian rock outcrops. The rendering tool also provides measurement tools to obtain geospatial data of surface points and distances between them. We report on novel scientific use cases and the added value potential of the resultant high-quality data set and presentation means to support further geologic investigations. The research leading to these results has

  18. Wavelength scanning achieves pixel super-resolution in holographic on-chip microscopy

    Science.gov (United States)

    Luo, Wei; Göröcs, Zoltan; Zhang, Yibo; Feizi, Alborz; Greenbaum, Alon; Ozcan, Aydogan

    2016-03-01

    Lensfree holographic on-chip imaging is a potent solution for high-resolution and field-portable bright-field imaging over a wide field-of-view. Previous lensfree imaging approaches utilize a pixel super-resolution technique, which relies on sub-pixel lateral displacements between the lensfree diffraction patterns and the image sensor's pixel-array, to achieve sub-micron resolution under unit magnification using state-of-the-art CMOS imager chips, commonly used in e.g., mobile-phones. Here we report, for the first time, a wavelength scanning based pixel super-resolution technique in lensfree holographic imaging. We developed an iterative super-resolution algorithm, which generates high-resolution reconstructions of the specimen from low-resolution (i.e., under-sampled) diffraction patterns recorded at multiple wavelengths within a narrow spectral range (e.g., 10-30 nm). Compared with lateral shift-based pixel super-resolution, this wavelength scanning approach does not require any physical shifts in the imaging setup, and the resolution improvement is uniform in all directions across the sensor-array. Our wavelength scanning super-resolution approach can also be integrated with multi-height and/or multi-angle on-chip imaging techniques to obtain even higher resolution reconstructions. For example, using wavelength scanning together with multi-angle illumination, we achieved a halfpitch resolution of 250 nm, corresponding to a numerical aperture of 1. In addition to pixel super-resolution, the small scanning steps in wavelength also enable us to robustly unwrap phase, revealing the specimen's optical path length in our reconstructed images. We believe that this new wavelength scanning based pixel super-resolution approach can provide competitive microscopy solutions for high-resolution and field-portable imaging needs, potentially impacting tele-pathology applications in resource-limited-settings.

  19. Fast, label-free super-resolution live-cell imaging using rotating coherent scattering (ROCS) microscopy

    Science.gov (United States)

    Jünger, Felix; Olshausen, Philipp V.; Rohrbach, Alexander

    2016-07-01

    Living cells are highly dynamic systems with cellular structures being often below the optical resolution limit. Super-resolution microscopes, usually based on fluorescence cell labelling, are usually too slow to resolve small, dynamic structures. We present a label-free microscopy technique, which can generate thousands of super-resolved, high contrast images at a frame rate of 100 Hertz and without any post-processing. The technique is based on oblique sample illumination with coherent light, an approach believed to be not applicable in life sciences because of too many interference artefacts. However, by circulating an incident laser beam by 360° during one image acquisition, relevant image information is amplified. By combining total internal reflection illumination with dark-field detection, structures as small as 150 nm become separable through local destructive interferences. The technique images local changes in refractive index through scattered laser light and is applied to living mouse macrophages and helical bacteria revealing unexpected dynamic processes.

  20. Image super resolution based on couple dictionary learning%基于对偶字典学习的图像超分辨技术研究

    Institute of Scientific and Technical Information of China (English)

    曾俊国

    2013-01-01

    A novel coupled dictionary training method for single image super resolution based on patch-wise sparse recovery is proposed,where the learned couple dictionaries relate the low and high-resolution image patch spaces via sparse representation.The learning process enforces that the sparse representation of a low-resolution image patch in terms of the low-resolution dictionary can well reconstruct its underlying high-resolution image patch with the dictionary in the high-resolution image patch space.The learning problem is modeled as a bilevel optimization problem,where the optimization includes an l1 norm minimization problem in its constraints.Implicit differentiation is employed to calculate the desired gradient for stochastic gradient descent.Coupled dictionary learning method can outperform the existing joint dictionary training method both quantitatively and qualitatively.Extensive experimental comparisons with state-of-the-art super-resolution algorithms validate the effectiveness of our proposed approach.%提出一种基于对偶字典学习的图像超分辨方法,通过稀疏重建的方法得到重建的图像,对偶字典通过稀疏表示将低分辨图像和高分辨图像联系起来.在稀疏表示过程中,低分辨图像在低分辨字典上的稀疏表示能够很好地提高对应的高分辨图像在高分辨字典上的稀疏表示效果.将字典的学习建模为包含l1范数优化问题的双层最优化问题,采用隐微分法计算随机梯度下降的期望梯度.仿真实验结果表明,该方法能够达到和联合字典学习方法相同的速度和质量,同时,在实际应用中可以通过神经网络模型学习方法提高算法的速度.与现有的算法比较,表明了该算法的有效性.

  1. Super-resolution complex amplitude reconstruction of nanostructured binary data using an interference microscope with pattern matching.

    Science.gov (United States)

    Ishikawa, Shinji; Hayasaki, Yoshio

    2013-07-29

    We propose a new method of optically reconstructing binary data formed by nanostructures with an elemental size several tens of nanometers smaller than the diffraction limit, implemented with an interference microscope and a complex-amplitude image pattern matching method. We examine the size dependency of the data reconstruction capacity using a light propagation simulation based on the finite-difference time-domain (FDTD) method and the Fourier spatial frequency filtering method. We demonstrated that the readable size of the binary nanostructure depends on the magnitude of noise.

  2. Three-dimensional super-resolution imaging of the midplane protein FtsZ in live Caulobacter crescentus cells using astigmatism.

    Science.gov (United States)

    Biteen, Julie S; Goley, Erin D; Shapiro, Lucy; Moerner, W E

    2012-03-01

    Single-molecule super-resolution imaging provides a non-invasive method for nanometer-scale imaging and is ideally suited to investigations of quasi-static structures within live cells. Here, we extend the ability to image subcellular features within bacteria cells to three dimensions based on the introduction of a cylindrical lens in the imaging pathway. We investigate the midplane protein FtsZ in Caulobacter crescentus with super-resolution imaging based on fluorescent-protein photoswitching and the natural polymerization/depolymerization dynamics of FtsZ associated with the Z-ring. We quantify these dynamics and determine the FtsZ depolymerization time to be divisional stage.

  3. Super-resolution and super-localization microscopy: A novel tool for imaging chemical and biological processes

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Bin [Iowa State Univ., Ames, IA (United States)

    2015-01-01

    Optical microscopy imaging of single molecules and single particles is an essential method for studying fundamental biological and chemical processes at the molecular and nanometer scale. The best spatial resolution (~ λ/2) achievable in traditional optical microscopy is governed by the diffraction of light. However, single molecule-based super-localization and super-resolution microscopy imaging techniques have emerged in the past decade. Individual molecules can be localized with nanometer scale accuracy and precision for studying of biological and chemical processes.This work uncovered the heterogeneous properties of the pore structures. In this dissertation, the coupling of molecular transport and catalytic reaction at the single molecule and single particle level in multilayer mesoporous nanocatalysts was elucidated. Most previous studies dealt with these two important phenomena separately. A fluorogenic oxidation reaction of non-fluorescent amplex red to highly fluorescent resorufin was tested. The diffusion behavior of single resorufin molecules in aligned nanopores was studied using total internal reflection fluorescence microscopy (TIRFM).

  4. Image Deblurring and Super-resolution by Adaptive Sparse Domain Selection and Adaptive Regularization

    CERN Document Server

    Dong, Weisheng; Shi, Guangming; Wu, Xiaolin

    2010-01-01

    As a powerful statistical image modeling technique, sparse representation has been successfully used in various image restoration applications. The success of sparse representation owes to the development of l1-norm optimization techniques, and the fact that natural images are intrinsically sparse in some domain. The image restoration quality largely depends on whether the employed sparse domain can represent well the underlying image. Considering that the contents can vary significantly across different images or different patches in a single image, we propose to learn various sets of bases from a pre-collected dataset of example image patches, and then for a given patch to be processed, one set of bases are adaptively selected to characterize the local sparse domain. We further introduce two adaptive regularization terms into the sparse representation framework. First, a set of autoregressive (AR) models are learned from the dataset of example image patches. The best fitted AR models to a given patch are ad...

  5. High resolution OCT image generation using super resolution via sparse representation

    Science.gov (United States)

    Asif, Muhammad; Akram, Muhammad Usman; Hassan, Taimur; Shaukat, Arslan; Waqar, Razi

    2017-02-01

    In this paper we propose a technique for obtaining a high resolution (HR) image from a single low resolution (LR) image -using joint learning dictionary - on the basis of image statistic research. It suggests that with an appropriate choice of an over-complete dictionary, image patches can be well represented as a sparse linear combination. Medical imaging for clinical analysis and medical intervention is being used for creating visual representations of the interior of a body, as well as visual representation of the function of some organs or tissues (physiology). A number of medical imaging techniques are in use like MRI, CT scan, X-rays and Optical Coherence Tomography (OCT). OCT is one of the new technologies in medical imaging and one of its uses is in ophthalmology where it is being used for analysis of the choroidal thickness in the eyes in healthy and disease states such as age-related macular degeneration, central serous chorioretinopathy, diabetic retinopathy and inherited retinal dystrophies. We have proposed a technique for enhancing the OCT images which can be used for clearly identifying and analyzing the particular diseases. Our method uses dictionary learning technique for generating a high resolution image from a single input LR image. We train two joint dictionaries, one with OCT images and the second with multiple different natural images, and compare the results with previous SR technique. Proposed method for both dictionaries produces HR images which are comparatively superior in quality with the other proposed method of SR. Proposed technique is very effective for noisy OCT images and produces up-sampled and enhanced OCT images.

  6. Quantitative Assessment of a Novel Super-Resolution Restoration Technique Using HiRISE with Navcam Images: how much Resolution Enhancement is Possible from Repeat-Pass Observations

    Science.gov (United States)

    Tao, Y.; Muller, J.-P.

    2016-06-01

    Higher spatial resolution imaging data is always desirable to the international community of planetary scientists interested in improving understanding of surface formation processes. We have previously developed a novel Super-resolution restoration (SRR) technique (Tao & Muller, 2016) using Gotcha sub-pixel matching, orthorectification, and segmented 4th order PDE-TV, called GPT SRR, which is able to restore 5 cm-12.5 cm near rover scale images (equivalent to Navcam projected FoV at a range of ≥ 5 m) from multiple 25 cm resolution NASA MRO HiRISE images. The SRR technique has been successfully applied to the rover traverses for the MER and MSL missions within the EU FP-7 PRoViDE project. These SRR results have revealed new surface information including the imaging of individual rocks (diameter ≥ 25 cm) by comparison of the original HiRISE image and rover Navcam orthorectified image mosaics. In this work, we seek evidence from processing a very large number of stereo reconstruction results from all Navcam stereo images within PRoViDE, registration and comparison with the corresponding SRR image, in order to derive a quantitative assessment on key features including rocks (diameter < 150 cm) and rover track wheel spacing. We summarise statistics from SRR-Navcam measurements and demonstrate that our unique SRR datasets will greatly support the geological and morphological analysis and monitoring of Martian surface and can also be applied to landing site selection, in order to avoid unsuitable terrain, for any future lander/rover as well as help to define future rover paths.

  7. Single Image Super-Resolution with Dilated Convolution based Multi-Scale Information Learning Inception Module

    OpenAIRE

    Shi, Wuzhen; Jiang, Feng; Zhao, Debin

    2017-01-01

    Traditional works have shown that patches in a natural image tend to redundantly recur many times inside the image, both within the same scale, as well as across different scales. Make full use of these multi-scale information can improve the image restoration performance. However, the current proposed deep learning based restoration methods do not take the multi-scale information into account. In this paper, we propose a dilated convolution based inception module to learn multi-scale informa...

  8. Rational design of ultrastable and reversibly photoswitchable fluorescent proteins for super-resolution imaging of the bacterial periplasm

    Science.gov (United States)

    El Khatib, Mariam; Martins, Alexandre; Bourgeois, Dominique; Colletier, Jacques-Philippe; Adam, Virgile

    2016-01-01

    Phototransformable fluorescent proteins are central to several nanoscopy approaches. As yet however, there is no available variant allowing super-resolution imaging in cell compartments that maintain oxidative conditions. Here, we report the rational design of two reversibly switchable fluorescent proteins able to fold and photoswitch in the bacterial periplasm, rsFolder and rsFolder2. rsFolder was designed by hybridisation of Superfolder-GFP with rsEGFP2, and inherited the fast folding properties of the former together with the rapid switching of the latter, but at the cost of a reduced switching contrast. Structural characterisation of the switching mechanisms of rsFolder and rsEGFP2 revealed different scenarios for chromophore cis-trans isomerisation and allowed designing rsFolder2, a variant of rsFolder that exhibits improved switching contrast and is amenable to RESOLFT nanoscopy. The rsFolders can be efficiently expressed in the E. coli periplasm, opening the door to the nanoscale investigation of proteins localised in hitherto non-observable cellular compartments. PMID:26732634

  9. Dark-field hyperlens: Super-resolution imaging of weakly scattering objects

    CERN Document Server

    Repän, Taavi; Zhukovsky, Sergei V

    2015-01-01

    We propose and numerically demonstrate a technique for subwavelength imaging based on a metal-dielectric multilayer hyperlens designed in such a way that only the large-wavevector waves are transmitted while all propagating waves from the image area are blocked by the hyperlens. As a result, the image plane only contains scattered light from subwavelength features of the objects and is free from background illumination. Similar in spirit to conventional dark-field microscopy, the proposed dark-field hyperlens is promising for optical imaging of weakly scattering subwavelength objects, such as optical nanoscopy of label-free biological objects.

  10. Peering into Cells One Molecule at a Time: Single-molecule and plasmon-enhanced fluorescence super-resolution imaging

    Science.gov (United States)

    Biteen, Julie

    2013-03-01

    Single-molecule fluorescence brings the resolution of optical microscopy down to the nanometer scale, allowing us to unlock the mysteries of how biomolecules work together to achieve the complexity that is a cell. This high-resolution, non-destructive method for examining subcellular events has opened up an exciting new frontier: the study of macromolecular localization and dynamics in living cells. We have developed methods for single-molecule investigations of live bacterial cells, and have used these techniques to investigate thee important prokaryotic systems: membrane-bound transcription activation in Vibrio cholerae, carbohydrate catabolism in Bacteroides thetaiotaomicron, and DNA mismatch repair in Bacillus subtilis. Each system presents unique challenges, and we will discuss the important methods developed for each system. Furthermore, we use the plasmon modes of bio-compatible metal nanoparticles to enhance the emissivity of single-molecule fluorophores. The resolution of single-molecule imaging in cells is generally limited to 20-40 nm, far worse than the 1.5-nm localization accuracies which have been attained in vitro. We use plasmonics to improve the brightness and stability of single-molecule probes, and in particular fluorescent proteins, which are widely used for bio-imaging. We find that gold-coupled fluorophores demonstrate brighter, longer-lived emission, yielding an overall enhancement in total photons detected. Ultimately, this results in increased localization accuracy for single-molecule imaging. Furthermore, since fluorescence intensity is proportional to local electromagnetic field intensity, these changes in decay intensity and rate serve as a nm-scale read-out of the field intensity. Our work indicates that plasmonic substrates are uniquely advantageous for super-resolution imaging, and that plasmon-enhanced imaging is a promising technique for improving live cell single-molecule microscopy.

  11. 基于稀疏表示的自适应图像超分辨率重建算法%Image super-resolution with adaptive regularization sparse representation

    Institute of Scientific and Technical Information of China (English)

    张垚; 徐斌; 周尚波; 郑坚

    2013-01-01

    Conduct research on the existence and uniqueness of sparse resolution in super-resolution image reconstruction and the relationship of edge feature and smoothing noise of super-resolution image. In order to solve these problems, this paper proposed the mean of adaptive regularization. Combining with joint over-complete dictionary, it realized dynamically adjust the regularization parameter. Through super-resolution image reconstruction experiment, it demonstrates that this algorithm is working efficiently and balances edge features and smoothing noise well, which has high PSNR compared with the traditional algorithm.%针对图像高分辨率重建过程中稀疏解的存在性和唯一性问题以及超分辨率图像的边缘特征和平滑噪声的关系进行了研究,提出了局部正则化参数自适应选取的方法.结合联合构造字典的算法,在重建过程中动态调整正则化参数.通过对图像的超分辨率实验证明,改进的算法具有较高的可行性,能有效平衡超分辨率图像的边缘特征和平滑噪声两者的关系,与传统的超分辨率重建算法相比,有更高的峰值信噪比.

  12. Origin and compensation of imaging artefacts in localization-based super-resolution microscopy.

    Science.gov (United States)

    Erdélyi, M; Sinkó, J; Kákonyi, R; Kelemen, A; Rees, E; Varga, D; Szabó, G

    2015-10-15

    Interpretation of high resolution images provided by localization-based microscopy techniques is a challenge due to imaging artefacts that can be categorized by their origin. They can be introduced by the optical system, by the studied sample or by the applied algorithms. Some artefacts can be eliminated via precise calibration procedures, others can be reduced only below a certain value. Images studied both theoretically and experimentally are qualified either by pattern specific metrics or by a more general metric based on fluorescence correlation spectroscopy.

  13. Super-resolution Imaging by Evanescent Wave Coupling to Surface States on Effective Gain Media

    CERN Document Server

    Mehrotra, Prateek; Blaikie, Richard J

    2012-01-01

    Higher resolution demands for semiconductor lithography may be fulfilled by higher numerical aperture (NA) systems. However, NAs more than the photoresist refractive index (~1.7) cause surface confinement of the image. In this letter we describe how evanescent wave coupling to effective gain medium surface states beneath the imaging layer can counter this problem. At {\\lambda}=193 nm a layer of sapphire on SiO2 counters image decay by an effective-gain-medium resonance phenomena allowing evanescent interferometric lithography to create high aspect ratio structures at NAs of 1.85 (26-nm) and beyond.

  14. Dark-field hyperlens: Super-resolution imaging of weakly scattering objects

    DEFF Research Database (Denmark)

    Repän, Taavi; Lavrinenko, Andrei; Zhukovsky, Sergei

    2015-01-01

    : We propose a device for subwavelength optical imaging based on a metal-dielectric multilayer hyperlens designed in such a way that only large-wavevector (evanescent) waves are transmitted while all propagating (small-wavevector) waves from the object area are blocked by the hyperlens. We...... numerically demonstrate that as the result of such filtering, the image plane only contains scattered light from subwavelength features of the objects and is completely free from background illumination. Similar in spirit to conventional dark-field microscopy, the proposed dark-field hyperlens is shown...... to enhance the subwavelength image contrast by more than two orders of magnitude. These findings are essential for optical imaging of weakly scattering subwavelength objects, such as real-time dynamic nanoscopy of label-free biological objects....

  15. Immobilization Techniques of Bacteria for Live Super-resolution Imaging Using Structured Illumination Microscopy.

    Science.gov (United States)

    Bottomley, Amy L; Turnbull, Lynne; Whitchurch, Cynthia B; Harry, Elizabeth J

    2017-01-01

    Advancements in optical microscopy technology have allowed huge progression in the ability to understand protein structure and dynamics in live bacterial cells using fluorescence microscopy. Paramount to high-quality microscopy is good sample preparation to avoid bacterial cell movement that can result in motion blur during image acquisition. Here, we describe two techniques of sample preparation that reduce unwanted cell movement and are suitable for application to a number of bacterial species and imaging methods.

  16. Diverse Protocols for Correlative Super-Resolution Fluorescence Imaging and Electron Microscopy of Cells and Tissue

    Science.gov (United States)

    2016-05-25

    Typically, a “north” and “east” direction marking is sufficient to locate cells of interest (Box 2). ?TROUBLESHOOTING ii) Seed tissue culture...lysine solution for 20 minutes. ii) Adherent cultured cells should be seeded onto the coverslip allowing room for growth to reach a final confluency... shadowing of the coating will aid in more complete coating of cellular structures and minimize charging effects during SEM imaging. ix) Image by SEM

  17. Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging

    Science.gov (United States)

    Errico, Claudia; Pierre, Juliette; Pezet, Sophie; Desailly, Yann; Lenkei, Zsolt; Couture, Olivier; Tanter, Mickael

    2015-11-01

    Non-invasive imaging deep into organs at microscopic scales remains an open quest in biomedical imaging. Although optical microscopy is still limited to surface imaging owing to optical wave diffusion and fast decorrelation in tissue, revolutionary approaches such as fluorescence photo-activated localization microscopy led to a striking increase in resolution by more than an order of magnitude in the last decade. In contrast with optics, ultrasonic waves propagate deep into organs without losing their coherence and are much less affected by in vivo decorrelation processes. However, their resolution is impeded by the fundamental limits of diffraction, which impose a long-standing trade-off between resolution and penetration. This limits clinical and preclinical ultrasound imaging to a sub-millimetre scale. Here we demonstrate in vivo that ultrasound imaging at ultrafast frame rates (more than 500 frames per second) provides an analogue to optical localization microscopy by capturing the transient signal decorrelation of contrast agents—inert gas microbubbles. Ultrafast ultrasound localization microscopy allowed both non-invasive sub-wavelength structural imaging and haemodynamic quantification of rodent cerebral microvessels (less than ten micrometres in diameter) more than ten millimetres below the tissue surface, leading to transcranial whole-brain imaging within short acquisition times (tens of seconds). After intravenous injection, single echoes from individual microbubbles were detected through ultrafast imaging. Their localization, not limited by diffraction, was accumulated over 75,000 images, yielding 1,000,000 events per coronal plane and statistically independent pixels of ten micrometres in size. Precise temporal tracking of microbubble positions allowed us to extract accurately in-plane velocities of the blood flow with a large dynamic range (from one millimetre per second to several centimetres per second). These results pave the way for deep non

  18. Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging.

    Science.gov (United States)

    Errico, Claudia; Pierre, Juliette; Pezet, Sophie; Desailly, Yann; Lenkei, Zsolt; Couture, Olivier; Tanter, Mickael

    2015-11-26

    Non-invasive imaging deep into organs at microscopic scales remains an open quest in biomedical imaging. Although optical microscopy is still limited to surface imaging owing to optical wave diffusion and fast decorrelation in tissue, revolutionary approaches such as fluorescence photo-activated localization microscopy led to a striking increase in resolution by more than an order of magnitude in the last decade. In contrast with optics, ultrasonic waves propagate deep into organs without losing their coherence and are much less affected by in vivo decorrelation processes. However, their resolution is impeded by the fundamental limits of diffraction, which impose a long-standing trade-off between resolution and penetration. This limits clinical and preclinical ultrasound imaging to a sub-millimetre scale. Here we demonstrate in vivo that ultrasound imaging at ultrafast frame rates (more than 500 frames per second) provides an analogue to optical localization microscopy by capturing the transient signal decorrelation of contrast agents--inert gas microbubbles. Ultrafast ultrasound localization microscopy allowed both non-invasive sub-wavelength structural imaging and haemodynamic quantification of rodent cerebral microvessels (less than ten micrometres in diameter) more than ten millimetres below the tissue surface, leading to transcranial whole-brain imaging within short acquisition times (tens of seconds). After intravenous injection, single echoes from individual microbubbles were detected through ultrafast imaging. Their localization, not limited by diffraction, was accumulated over 75,000 images, yielding 1,000,000 events per coronal plane and statistically independent pixels of ten micrometres in size. Precise temporal tracking of microbubble positions allowed us to extract accurately in-plane velocities of the blood flow with a large dynamic range (from one millimetre per second to several centimetres per second). These results pave the way for deep non

  19. Super-resolution imaging of multiple cells by optimized flat-field epi-illumination

    Science.gov (United States)

    Douglass, Kyle M.; Sieben, Christian; Archetti, Anna; Lambert, Ambroise; Manley, Suliana

    2016-11-01

    Biological processes are inherently multi-scale, and supramolecular complexes at the nanoscale determine changes at the cellular scale and beyond. Single-molecule localization microscopy (SMLM) techniques have been established as important tools for studying cellular features with resolutions of the order of around 10 nm. However, in their current form these modalities are limited by a highly constrained field of view (FOV) and field-dependent image resolution. Here, we develop a low-cost microlens array (MLA)-based epi-illumination system—flat illumination for field-independent imaging (FIFI)—that can efficiently and homogeneously perform simultaneous imaging of multiple cells with nanoscale resolution. The optical principle of FIFI, which is an extension of the Köhler integrator, is further elucidated and modelled with a new, free simulation package. We demonstrate FIFI's capabilities by imaging multiple COS-7 and bacteria cells in 100 × 100 μm2 SMLM images—more than quadrupling the size of a typical FOV and producing near-gigapixel-sized images of uniformly high quality.

  20. DESIGN OF DYADIC-INTEGER-COEFFICIENTS BASED BI-ORTHOGONAL WAVELET FILTERS FOR IMAGE SUPER-RESOLUTION USING SUB-PIXEL IMAGE REGISTRATION

    Directory of Open Access Journals (Sweden)

    P.B. Chopade

    2014-05-01

    Full Text Available This paper presents image super-resolution scheme based on sub-pixel image registration by the design of a specific class of dyadic-integer-coefficient based wavelet filters derived from the construction of a half-band polynomial. First, the integer-coefficient based half-band polynomial is designed by the splitting approach. Next, this designed half-band polynomial is factorized and assigned specific number of vanishing moments and roots to obtain the dyadic-integer coefficients low-pass analysis and synthesis filters. The possibility of these dyadic-integer coefficients based wavelet filters is explored in the field of image super-resolution using sub-pixel image registration. The two-resolution frames are registered at a specific shift from one another to restore the resolution lost by CCD array of camera. The discrete wavelet transform (DWT obtained from the designed coefficients is applied on these two low-resolution images to obtain the high resolution image. The developed approach is validated by comparing the quality metrics with existing filter banks.

  1. Super-resolution imaging of light–matter interactions near single semiconductor nanowires

    Science.gov (United States)

    Johlin, Eric; Solari, Jacopo; Mann, Sander A.; Wang, Jia; Shimizu, Thomas S.; Garnett, Erik C.

    2016-01-01

    Nanophotonics is becoming invaluable for an expanding range of applications, from controlling the spontaneous emission rate and the directionality of quantum emitters, to reducing material requirements of solar cells by an order of magnitude. These effects are highly dependent on the near field of the nanostructure, which constitutes the evanescent fields from propagating and resonant localized modes. Although the interactions between quantum emitters and nanophotonic structures are increasingly well understood theoretically, directly imaging these interactions experimentally remains challenging. Here we demonstrate a photoactivated localization microscopy-based technique to image emitter-nanostructure interactions. For a 75 nm diameter silicon nanowire, we directly observe a confluence of emission rate enhancement, directivity modification and guided mode excitation, with strong interaction at scales up to 13 times the nanowire diameter. Furthermore, through analytical modelling we distinguish the relative contribution of these effects, as well as their dependence on emitter orientation. PMID:27996010

  2. Super-resolution imaging of light-matter interactions near single semiconductor nanowires

    Science.gov (United States)

    Johlin, Eric; Solari, Jacopo; Mann, Sander A.; Wang, Jia; Shimizu, Thomas S.; Garnett, Erik C.

    2016-12-01

    Nanophotonics is becoming invaluable for an expanding range of applications, from controlling the spontaneous emission rate and the directionality of quantum emitters, to reducing material requirements of solar cells by an order of magnitude. These effects are highly dependent on the near field of the nanostructure, which constitutes the evanescent fields from propagating and resonant localized modes. Although the interactions between quantum emitters and nanophotonic structures are increasingly well understood theoretically, directly imaging these interactions experimentally remains challenging. Here we demonstrate a photoactivated localization microscopy-based technique to image emitter-nanostructure interactions. For a 75 nm diameter silicon nanowire, we directly observe a confluence of emission rate enhancement, directivity modification and guided mode excitation, with strong interaction at scales up to 13 times the nanowire diameter. Furthermore, through analytical modelling we distinguish the relative contribution of these effects, as well as their dependence on emitter orientation.

  3. Cell-specific STORM super-resolution imaging reveals nanoscale organization of cannabinoid signaling

    OpenAIRE

    2014-01-01

    A major challenge in neuroscience is to determine the nanoscale position and quantity of signaling molecules in a cell-type-, and subcellular compartment-specific manner. We therefore developed a novel approach combining cell-specific physiological and anatomical characterization with superresolution imaging, and studied the molecular and structural parameters shaping the physiological properties of synaptic endocannabinoid signaling in the mouse hippocampus. We found that axon terminals of p...

  4. Correlated confocal and super-resolution imaging by VividSTORM.

    Science.gov (United States)

    Barna, László; Dudok, Barna; Miczán, Vivien; Horváth, András; László, Zsófia I; Katona, István

    2016-01-01

    Single-molecule localization microscopy (SMLM) is rapidly gaining popularity in the life sciences as an efficient approach to visualize molecular distribution with nanoscale precision. However, it has been challenging to obtain and analyze such data within a cellular context in tissue preparations. Here we describe a 5-d tissue processing and immunostaining procedure that is optimized for SMLM, and we provide example applications to fixed mouse brain, heart and kidney tissues. We then describe how to perform correlated confocal and 3D-superresolution imaging on these sections, which allows the visualization of nanoscale protein localization within labeled subcellular compartments of identified target cells in a few minutes. Finally, we describe the use of VividSTORM (http://katonalab.hu/index.php/vividstorm), an open-source software for correlated confocal and SMLM image analysis, which facilitates the measurement of molecular abundance, clustering, internalization, surface density and intermolecular distances in a cell-specific and subcellular compartment-restricted manner. The protocol requires only basic skills in tissue staining and microscopy.

  5. A microfluidic platform for correlative live-cell and super-resolution microscopy.

    Directory of Open Access Journals (Sweden)

    Johnny Tam

    Full Text Available Recently, super-resolution microscopy methods such as stochastic optical reconstruction microscopy (STORM have enabled visualization of subcellular structures below the optical resolution limit. Due to the poor temporal resolution, however, these methods have mostly been used to image fixed cells or dynamic processes that evolve on slow time-scales. In particular, fast dynamic processes and their relationship to the underlying ultrastructure or nanoscale protein organization cannot be discerned. To overcome this limitation, we have recently developed a correlative and sequential imaging method that combines live-cell and super-resolution microscopy. This approach adds dynamic background to ultrastructural images providing a new dimension to the interpretation of super-resolution data. However, currently, it suffers from the need to carry out tedious steps of sample preparation manually. To alleviate this problem, we implemented a simple and versatile microfluidic platform that streamlines the sample preparation steps in between live-cell and super-resolution imaging. The platform is based on a microfluidic chip with parallel, miniaturized imaging chambers and an automated fluid-injection device, which delivers a precise amount of a specified reagent to the selected imaging chamber at a specific time within the experiment. We demonstrate that this system can be used for live-cell imaging, automated fixation, and immunostaining of adherent mammalian cells in situ followed by STORM imaging. We further demonstrate an application by correlating mitochondrial dynamics, morphology, and nanoscale mitochondrial protein distribution in live and super-resolution images.

  6. A microfluidic platform for correlative live-cell and super-resolution microscopy.

    Science.gov (United States)

    Tam, Johnny; Cordier, Guillaume Alan; Bálint, Štefan; Sandoval Álvarez, Ángel; Borbely, Joseph Steven; Lakadamyali, Melike

    2014-01-01

    Recently, super-resolution microscopy methods such as stochastic optical reconstruction microscopy (STORM) have enabled visualization of subcellular structures below the optical resolution limit. Due to the poor temporal resolution, however, these methods have mostly been used to image fixed cells or dynamic processes that evolve on slow time-scales. In particular, fast dynamic processes and their relationship to the underlying ultrastructure or nanoscale protein organization cannot be discerned. To overcome this limitation, we have recently developed a correlative and sequential imaging method that combines live-cell and super-resolution microscopy. This approach adds dynamic background to ultrastructural images providing a new dimension to the interpretation of super-resolution data. However, currently, it suffers from the need to carry out tedious steps of sample preparation manually. To alleviate this problem, we implemented a simple and versatile microfluidic platform that streamlines the sample preparation steps in between live-cell and super-resolution imaging. The platform is based on a microfluidic chip with parallel, miniaturized imaging chambers and an automated fluid-injection device, which delivers a precise amount of a specified reagent to the selected imaging chamber at a specific time within the experiment. We demonstrate that this system can be used for live-cell imaging, automated fixation, and immunostaining of adherent mammalian cells in situ followed by STORM imaging. We further demonstrate an application by correlating mitochondrial dynamics, morphology, and nanoscale mitochondrial protein distribution in live and super-resolution images.

  7. Super-resolution imaging by resonant tunneling in anisotropic acoustic metamaterials.

    Science.gov (United States)

    Liu, Aiping; Zhou, Xiaoming; Huang, Guoliang; Hu, Gengkai

    2012-10-01

    The resonant tunneling effects that could result in complete transmission of evanescent waves are examined in acoustic metamaterials of anisotropic effective mass. The tunneling conditions are first derived for the metamaterials composed of classical mass-in-mass structures. It is found that the tunneling transmission occurs when the total length of metamaterials is an integral number of half-wavelengths of the periodic Bloch wave. Due to the local resonance of building units of metamaterials, the Bloch waves are spatially modulated within the periodic structures, leading to the resonant tunneling occurring in the low-frequency region. The metamaterial slab lens with anisotropic effective mass is designed by which the physics of resonant tunneling and the features for evanescent field manipulations are examined. The designed lens interacts with evanescent waves in the way of the propagating wavenumber weakly dependent on the spatial frequency of evanescent waves. Full-wave simulations validate the imaging performance of the proposed lens with the spatial resolution beyond the diffraction limit.

  8. Super-resolution spectroscopic microscopy via photon localization

    Science.gov (United States)

    Dong, Biqin; Almassalha, Luay; Urban, Ben E.; Nguyen, The-Quyen; Khuon, Satya; Chew, Teng-Leong; Backman, Vadim; Sun, Cheng; Zhang, Hao F.

    2016-07-01

    Traditional photon localization microscopy analyses only the spatial distributions of photons emitted by individual molecules to reconstruct super-resolution optical images. Unfortunately, however, the highly valuable spectroscopic information from these photons have been overlooked. Here we report a spectroscopic photon localization microscopy that is capable of capturing the inherent spectroscopic signatures of photons from individual stochastic radiation events. Spectroscopic photon localization microscopy achieved higher spatial resolution than traditional photon localization microscopy through spectral discrimination to identify the photons emitted from individual molecules. As a result, we resolved two fluorescent molecules, which were 15 nm apart, with the corresponding spatial resolution of 10 nm--a four-fold improvement over photon localization microscopy. Using spectroscopic photon localization microscopy, we further demonstrated simultaneous multi-colour super-resolution imaging of microtubules and mitochondria in COS-7 cells and showed that background autofluorescence can be identified through its distinct emission spectra.

  9. Light-sheet Bayesian microscopy enables deep-cell super-resolution imaging of heterochromatin in live human embryonic stem cells

    Science.gov (United States)

    Hu, Ying S; Zhu, Quan; Elkins, Keri; Tse, Kevin; Li, Yu; Fitzpatrick, James A J; Verma, Inder M; Cang, Hu

    2016-01-01

    Background Heterochromatin in the nucleus of human embryonic cells plays an important role in the epigenetic regulation of gene expression. The architecture of heterochromatin and its dynamic organization remain elusive because of the lack of fast and high-resolution deep-cell imaging tools. We enable this task by advancing instrumental and algorithmic implementation of the localization-based super-resolution technique. Results We present light-sheet Bayesian super-resolution microscopy (LSBM). We adapt light-sheet illumination for super-resolution imaging by using a novel prism-coupled condenser design to illuminate a thin slice of the nucleus with high signal-to-noise ratio. Coupled with a Bayesian algorithm that resolves overlapping fluorophores from high-density areas, we show, for the first time, nanoscopic features of the heterochromatin structure in both fixed and live human embryonic stem cells. The enhanced temporal resolution allows capturing the dynamic change of heterochromatin with a lateral resolution of 50–60 nm on a time scale of 2.3 s. Conclusion Light-sheet Bayesian microscopy opens up broad new possibilities of probing nanometer-scale nuclear structures and real-time sub-cellular processes and other previously difficult-to-access intracellular regions of living cells at the single-molecule, and single cell level.

  10. Correcting chromatic offset in multicolor super-resolution localization microscopy.

    Science.gov (United States)

    Erdelyi, Miklos; Rees, Eric; Metcalf, Daniel; Schierle, Gabriele S Kaminski; Dudas, Laszlo; Sinko, Jozsef; Knight, Alex E; Kaminski, Clemens F

    2013-05-06

    Localization based super-resolution microscopy techniques require precise drift correction methods because the achieved spatial resolution is close to both the mechanical and optical performance limits of modern light microscopes. Multi-color imaging methods require corrections in addition to those dealing with drift due to the static, but spatially-dependent, chromatic offset between images. We present computer simulations to quantify this effect, which is primarily caused by the high-NA objectives used in super-resolution microscopy. Although the chromatic offset in well corrected systems is only a fraction of an optical wavelength in magnitude (super-resolution methods is impossible without appropriate image correction. The simulated data are in excellent agreement with experiments using fluorescent beads excited and localized at multiple wavelengths. Finally we present a rigorous and practical calibration protocol to correct for chromatic optical offset, and demonstrate its efficacy for the imaging of transferrin receptor protein colocalization in HeLa cells using two-color direct stochastic optical reconstruction microscopy (dSTORM).

  11. Accessing the third dimension in localization-based super-resolution microscopy.

    Science.gov (United States)

    Hajj, Bassam; El Beheiry, Mohamed; Izeddin, Ignacio; Darzacq, Xavier; Dahan, Maxime

    2014-08-21

    Only a few years after its inception, localization-based super-resolution microscopy has become widely employed in biological studies. Yet, it is primarily used in two-dimensional imaging and accessing the organization of cellular structures at the nanoscale in three dimensions (3D) still poses important challenges. Here, we review optical and computational techniques that enable the 3D localization of individual emitters and the reconstruction of 3D super-resolution images. These techniques are grouped into three main categories: PSF engineering, multiple plane imaging and interferometric approaches. We provide an overview of their technical implementation as well as commentary on their applicability. Finally, we discuss future trends in 3D localization-based super-resolution microscopy.

  12. Super-resolution optical microscopy: multiple choices.

    Science.gov (United States)

    Huang, Bo

    2010-02-01

    The recent invention of super-resolution optical microscopy enables the visualization of fine features in biological samples with unprecedented clarity. It creates numerous opportunities in biology because vast amount of previously obscured subcellular processes now can be directly observed. Rapid development in this field in the past two years offers many imaging modalities that address different needs but they also complicates the choice of the 'perfect' method for answering a specific question. Here I will briefly describe the principles of super-resolution optical microscopy techniques and then focus on comparing their characteristics in various aspects of practical applications.

  13. Super-Resolution for Synthetic Zooming

    Directory of Open Access Journals (Sweden)

    Li Xin

    2006-01-01

    Full Text Available Optical zooming is an important feature of imaging systems. In this paper, we investigate a low-cost signal processing alternative to optical zooming—synthetic zooming by super-resolution (SR techniques. Synthetic zooming is achieved by registering a sequence of low-resolution (LR images acquired at varying focal lengths and reconstructing the SR image at a larger focal length or increased spatial resolution. Under the assumptions of constant scene depth and zooming speed, we argue that the motion trajectories of all physical points are related to each other by a unique vanishing point and present a robust technique for estimating its D coordinate. Such a line-geometry-based registration is the foundation of SR for synthetic zooming. We address the issue of data inconsistency arising from the varying focal length of optical lens during the zooming process. To overcome the difficulty of data inconsistency, we propose a two-stage Delaunay-triangulation-based interpolation for fusing the LR image data. We also present a PDE-based nonlinear deblurring to accommodate the blindness and variation of sensor point spread functions. Simulation results with real-world images have verified the effectiveness of the proposed SR techniques for synthetic zooming.

  14. Quantitative super-resolution microscopy

    NARCIS (Netherlands)

    Harkes, Rolf

    2016-01-01

    Super-Resolution Microscopy is an optical fluorescence technique. In this thesis we focus on single molecule super-resolution, where the position of single molecules is determined. Typically these molecules can be localized with a 10 to 30nm precision. This technique is applied in four different s

  15. Super-Resolution Scanning Laser Microscopy Based on Virtually Structured Detection.

    Science.gov (United States)

    Zhi, Yanan; Wang, Benquan; Yao, Xincheng

    2015-01-01

    Light microscopy plays a key role in biological studies and medical diagnosis. The spatial resolution of conventional optical microscopes is limited to approximately half the wavelength of the illumination light as a result of the diffraction limit. Several approaches-including confocal microscopy, stimulated emission depletion microscopy, stochastic optical reconstruction microscopy, photoactivated localization microscopy, and structured illumination microscopy-have been established to achieve super-resolution imaging. However, none of these methods is suitable for the super-resolution ophthalmoscopy of retinal structures because of laser safety issues and inevitable eye movements. We recently experimentally validated virtually structured detection (VSD) as an alternative strategy to extend the diffraction limit. Without the complexity of structured illumination, VSD provides an easy, low-cost, and phase artifact-free strategy to achieve super-resolution in scanning laser microscopy. In this article we summarize the basic principles of the VSD method, review our demonstrated single-point and line-scan super-resolution systems, and discuss both technical challenges and the potential of VSD-based instrumentation for super-resolution ophthalmoscopy of the retina.

  16. Multimodal super-resolution optical microscopy using a transition metal-based probe provides unprecedented capabilities for imaging both nucle-ar chromatin and mitochondria.

    Science.gov (United States)

    Sreedharan, Sreejesh; Gill, Martin; Garcia, Esther; Saeed, Hiwa K; Robinson, Darren; Byrne, Aisling; Cadby, Ashley James; Keyes, Tia E; Smythe, Carl G W; Pellett, Patrina; Bernardino de la Serna, Jorge; Thomas, Jim Antony

    2017-10-04

    Detailed studies on the live cell uptake properties of a dinuclear membrane permeable permeable RuII cell probe show that, at low concentrations, the complex localizes and images mitochondria. At concentrations above ~20 μM the complex images nuclear DNA. Since the complex is extremely photostable, has a large Stokes shift, and displays intrinsic subcellular targeting, its compatibility with super-resolution techniques was investigated. It was found to be very well suited to image mitochondria and nuclear chromatin in two col-our, 2C-SIM; and STED and 3D-STED both in fixed and live cell. In particular, due to its vastly improved photostability compared to conventional SR probes, it can provide images of nuclear DNA at unprecedented resolution.

  17. Tip-enhanced near-field optical microscope with side-on and ATR-mode sample excitation for super-resolution Raman imaging of surfaces

    Science.gov (United States)

    Heilman, A. L.; Gordon, M. J.

    2016-06-01

    A tip-enhanced near-field optical microscope with side-on and attenuated total reflectance (ATR) excitation and collection is described and used to demonstrate sub-diffraction-limited (super-resolution) optical and chemical characterization of surfaces. ATR illumination is combined with an Au optical antenna tip to show that (i) the tip can quantitatively transduce the optical near-field (evanescent waves) above the surface by scattering photons into the far-field, (ii) the ATR geometry enables excitation and characterization of surface plasmon polaritons (SPPs), whose associated optical fields are shown to enhance Raman scattering from a thin layer of copper phthalocyanine (CuPc), and (iii) SPPs can be used to plasmonically excite the tip for super-resolution chemical imaging of patterned CuPc via tip-enhanced Raman spectroscopy (TERS). ATR-illumination TERS is also quantitatively compared with the more conventional side-on illumination scheme. In both cases, spatial resolution was better than 40 nm and tip on/tip off Raman enhancement factors were >6500. Furthermore, ATR illumination was shown to provide similar Raman signal levels at lower "effective" pump powers due to additional optical energy delivered by SPPs to the active region in the tip-surface gap.

  18. Regularized Super-resolution Reconstruction Based on Bilateral Total Variation Model with Adaptive Constraints%自适应约束下的双边全变差正则化超分辨率重建

    Institute of Scientific and Technical Information of China (English)

    周芹; 马志强; 单勇; 党建国

    2015-01-01

    在经典的双边全变差( BTV)超分辨率重建中,加权系数和正则化参数的恒定性导致重建结果边缘保持能力受限。为此,提出了一种自适应约束的BTV正则化先验模型。算法首先定义了图像的局部邻域残差均值以区分当前像素属于平坦区域还是边缘区域;然后针对加权系数的不变性导致边缘削弱的问题,利用边缘方向和垂直边缘方向扩散性的不同,设计自适应权重矩阵;最后根据代价函数的极值问题推导出迭代公式,从而进行图像的超分辨率重建,重建过程中采用自适应的方法确定正则化参数,以便求得代价函数的全局最优解,提高了算法的鲁棒性。实验结果表明:与双三次线性插值法和经典BTV算法相比,该算法取得了更好的视觉效果和更高的峰值信噪比,更多地保留了图像的边缘细节信息。%In the classical super-resolution reconstruction algorithm based on the Bilateral Total Variation ( BTV) model,the ability of edge preserving is restricted due to the constancy of the weighted coefficient and the regularization parameter. To solve the problem, an adaptive regularization BTV model is proposed. Firstly,the algorithm defines the local neighborhood residual mean of the image to distinguish wheather the pixel belongs to flat area or edge area. Then, the adaptive weighting matrix is designed in case that the con-stant weighted coefficient leads to the weaken ability of edge preserving,which takes advantage of the dif-ferent diffusivity between the direction of the edge and the vertical of edge direction;Finally,iterative for-mula is deduced about the extremum problem of the cost function,so that the super-resolution reconstruc-tion can be achieved. In the process the adaptive regularization parameter is adopted in order to get the global optimal value of the cost function. The algorithm improves its robustness. The experimental results show that the

  19. Field-portable pixel super-resolution colour microscope.

    Science.gov (United States)

    Greenbaum, Alon; Akbari, Najva; Feizi, Alborz; Luo, Wei; Ozcan, Aydogan

    2013-01-01

    Based on partially-coherent digital in-line holography, we report a field-portable microscope that can render lensfree colour images over a wide field-of-view of e.g., >20 mm(2). This computational holographic microscope weighs less than 145 grams with dimensions smaller than 17×6×5 cm, making it especially suitable for field settings and point-of-care use. In this lensfree imaging design, we merged a colorization algorithm with a source shifting based multi-height pixel super-resolution technique to mitigate 'rainbow' like colour artefacts that are typical in holographic imaging. This image processing scheme is based on transforming the colour components of an RGB image into YUV colour space, which separates colour information from brightness component of an image. The resolution of our super-resolution colour microscope was characterized using a USAF test chart to confirm sub-micron spatial resolution, even for reconstructions that employ multi-height phase recovery to handle dense and connected objects. To further demonstrate the performance of this colour microscope Papanicolaou (Pap) smears were also successfully imaged. This field-portable and wide-field computational colour microscope could be useful for tele-medicine applications in resource poor settings.

  20. Field-portable pixel super-resolution colour microscope.

    Directory of Open Access Journals (Sweden)

    Alon Greenbaum

    Full Text Available Based on partially-coherent digital in-line holography, we report a field-portable microscope that can render lensfree colour images over a wide field-of-view of e.g., >20 mm(2. This computational holographic microscope weighs less than 145 grams with dimensions smaller than 17×6×5 cm, making it especially suitable for field settings and point-of-care use. In this lensfree imaging design, we merged a colorization algorithm with a source shifting based multi-height pixel super-resolution technique to mitigate 'rainbow' like colour artefacts that are typical in holographic imaging. This image processing scheme is based on transforming the colour components of an RGB image into YUV colour space, which separates colour information from brightness component of an image. The resolution of our super-resolution colour microscope was characterized using a USAF test chart to confirm sub-micron spatial resolution, even for reconstructions that employ multi-height phase recovery to handle dense and connected objects. To further demonstrate the performance of this colour microscope Papanicolaou (Pap smears were also successfully imaged. This field-portable and wide-field computational colour microscope could be useful for tele-medicine applications in resource poor settings.

  1. Super-resolution imaging with Pontamine Fast Scarlet 4BS enables direct visualization of cellulose orientation and cell connection architecture in onion epidermis cells

    DEFF Research Database (Denmark)

    Liesche, Johannes; Ziomkiewicz, Iwona; Schulz, Alexander

    2013-01-01

    of cellulose fibril orientation and growth. The fluorescent dye Pontamine Fast Scarlet 4BS (PFS) was shown to stain cellulose with high specificity and could be used to visualize cellulose bundles in cell walls of Arabidopsis root epidermal cells with confocal microscopy. The resolution limit of confocal...... as alternatives 3D-structured illumination microscopy (3D-SIM) and confocal microscopy, combined with image deconvolution. Both methods offer lower resolution than STORM, but enable 3D imaging. While 3D-SIM produced strong artifacts, deconvolution gave good results. The resolution was improved over conventional...... confocal microscopy and the approach could be used to demonstrate differences in fibril orientation in different layers of the cell wall as well as particular cellulose fortifications around plasmodesmata. Conclusions Super-resolution light microscopy of PFS-stained cellulose fibrils is possible...

  2. Propagation phasor approach for holographic image reconstruction

    Science.gov (United States)

    Luo, Wei; Zhang, Yibo; Göröcs, Zoltán; Feizi, Alborz; Ozcan, Aydogan

    2016-03-01

    To achieve high-resolution and wide field-of-view, digital holographic imaging techniques need to tackle two major challenges: phase recovery and spatial undersampling. Previously, these challenges were separately addressed using phase retrieval and pixel super-resolution algorithms, which utilize the diversity of different imaging parameters. Although existing holographic imaging methods can achieve large space-bandwidth-products by performing pixel super-resolution and phase retrieval sequentially, they require large amounts of data, which might be a limitation in high-speed or cost-effective imaging applications. Here we report a propagation phasor approach, which for the first time combines phase retrieval and pixel super-resolution into a unified mathematical framework and enables the synthesis of new holographic image reconstruction methods with significantly improved data efficiency. In this approach, twin image and spatial aliasing signals, along with other digital artifacts, are interpreted as noise terms that are modulated by phasors that analytically depend on the lateral displacement between hologram and sensor planes, sample-to-sensor distance, wavelength, and the illumination angle. Compared to previous holographic reconstruction techniques, this new framework results in five- to seven-fold reduced number of raw measurements, while still achieving a competitive resolution and space-bandwidth-product. We also demonstrated the success of this approach by imaging biological specimens including Papanicolaou and blood smears.

  3. Super-resolution microscopy: a comparative treatment.

    Science.gov (United States)

    Kasuboski, James M; Sigal, Yury J; Joens, Matthew S; Lillemeier, Bjorn F; Fitzpatrick, James A J

    2012-10-01

    One of the fundamental limitations of optical microscopy is that of diffraction, or in essence, how small a beam of light can be focused by using an optical lens system. This constraint, or barrier if you will, was theoretically described by Ernst Abbe in 1873 and is roughly equal to half the wavelength of light used to probe the system. Many structures, particularly those within cells, are much smaller than this limit and thus are difficult to visualize. Over the last two decades, a new field of super-resolution imaging has been created and been developed into a broad range of techniques that allow routine imaging beyond the far-field diffraction limit of light. In this unit we outline the basic principles of the various super-resolution imaging modalities, paying particular attention to the technical considerations for biological imaging. Furthermore, we discuss their various applications in the imaging of both fixed and live biological samples.

  4. Robust super-resolution without regularization

    Energy Technology Data Exchange (ETDEWEB)

    Pham, T Q [Canon Information Systems Research Australia, 1 Thomas Holt drive, North Ryde, NSW 2113 (Australia); Vliet, L J v [Quantitative Imaging Group, Department of Imaging Science and Technology, Faculty of Applied Sciences, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands); Schutte, K [Electro-Optics Group, TNO Defence, Security and Safety, PO Box 96864, 2509 JG The Hague (Netherlands)

    2008-07-15

    Super-resolution restoration is the problem of restoring a high-resolution scene from multiple degraded low-resolution images under motion. Due to imaging blur and noise, this problem is ill-posed. Additional constraints such as smoothness of the solution (i.e. regularization) is often required to obtain a stable solution. While regularizing the cost function is a standard practice in image restoration, we propose a restoration algorithm that does not require this extra regularization term. The robustness of the algorithm is achieved by a robust error norm that does not response to intensity outliers. With the outliers suppressed, our solution behaves similarly to a maximum-likelihood solution under the presence of Gaussian noise. The effectiveness of our algorithm is demonstrated with super-resolution restoration of real infrared image sequences under severe aliasing and intensity outliers.

  5. Blind super-resolution reconstruction method based on maximum a posterior estimation%基于最大后验估计的影像盲超分辨率重建方法

    Institute of Scientific and Technical Information of China (English)

    张洪艳; 沈焕锋; 张良培; 李平湘; 袁强强

    2011-01-01

    In this paper, a new joint Maximum A Posterior (MAP) formulation was proposed to integrate image registration into blind image Super-Resolution (SR) reconstruction to reduce image registration errors. The formulation was built upon the MAP framework, which judiciously combined image registration, blur identification and SR. A cyclic coordinate descent optimization procedure was developed to solve the MAP formulation, in which the registration parameters, blurring function and High Resolution (HR) image were estimated in an alternative manner given to the two others, respectively. The experimental results indicate that the proposed algorithm has considerable effectiveness in terms of both quantitative measurement and visual evaluation.%为了减小配准误差对盲超分辨率重建的影响,提出了一种影像配准和盲超分辨率重建联合处理的模型与方法.将配准参数、模糊函数和高分辨率影像建立在统一的最大后验估计模型框架内,并利用循环坐标下降最优化策略对模型进行求解,从而实现了配准参数、模糊函数和高分辨率影像的联合求解.实验结果证明:与传统盲超分辨率重建算法相比,该算法能够有效减少重建影像中的伪痕,在视觉评估上和定量评价上均能得到更好的结果.

  6. Three dimensional super-resolution in metamaterial slab lenses

    CERN Document Server

    Mesa, F; Freire, M; Baena, J D

    2005-01-01

    This letter presents a theoretical and experimental study on the viability of obtaining three dimensional super-resolution (i.e. resolution overcoming the diffraction limit for all directions in space) by means of metamaterial slab lenses. Although the source field cannot be actually reproduced at the back side of the lens with super-resolution in all space directions, the matching capabilities of metamaterial slabs does make it possible the detection of images with three-dimensional super-resolution. This imaging takes place because of the coupling between the evanescent space harmonic components of the field generated at both the source and the detector.

  7. Super-resolution microscopy of single atoms in optical lattices

    Science.gov (United States)

    Alberti, Andrea; Robens, Carsten; Alt, Wolfgang; Brakhane, Stefan; Karski, Michał; Reimann, René; Widera, Artur; Meschede, Dieter

    2016-05-01

    We report on image processing techniques and experimental procedures to determine the lattice-site positions of single atoms in an optical lattice with high reliability, even for limited acquisition time or optical resolution. Determining the positions of atoms beyond the diffraction limit relies on parametric deconvolution in close analogy to methods employed in super-resolution microscopy. We develop a deconvolution method that makes effective use of the prior knowledge of the optical transfer function, noise properties, and discreteness of the optical lattice. We show that accurate knowledge of the image formation process enables a dramatic improvement on the localization reliability. This allows us to demonstrate super-resolution of the atoms’ position in closely packed ensembles where the separation between particles cannot be directly optically resolved. Furthermore, we demonstrate experimental methods to precisely reconstruct the point spread function with sub-pixel resolution from fluorescence images of single atoms, and we give a mathematical foundation thereof. We also discuss discretized image sampling in pixel detectors and provide a quantitative model of noise sources in electron multiplying CCD cameras. The techniques developed here are not only beneficial to neutral atom experiments, but could also be employed to improve the localization precision of trapped ions for ultra precise force sensing.

  8. Super-resolution imaging of C-type lectin spatial rearrangement within the dendritic cell plasma membrane at fungal microbe contact sites

    Directory of Open Access Journals (Sweden)

    Michelle S Itano

    2014-08-01

    Full Text Available Dendritic cells express DC-SIGN and CD206, C-type lectins (CTLs that bind a variety of pathogens and may facilitate pathogen uptake for subsequent antigen presentation. Both proteins form punctate membrane nanodomains (~80 nm on naïve cells. We analyzed the spatiotemporal distribution of CTLs following host-fungal particle contact using confocal microscopy and three distinct methods of cluster identification and measurement of receptor clusters in super-resolution datasets: DBSCAN, Pair Correlation and a custom implementation of the Getis spatial statistic. Quantitative analysis of confocal and super-resolution images demonstrated that CTL nanodomains become concentrated in the contact site relative to non-contact membrane after the first hour of exposure and established that this recruitment is sustained out to four hours. DC-SIGN nanodomains in fungal contact sites exhibit a 70% area increase and a 38% decrease in interdomain separation. Contact site CD206 nanodomains possess 90% greater area and 42% lower interdomain separation relative to non-contact regions. Contact site CTL clusters appear as disk-shaped domains of approximately 150-175 nm in diameter. The increase in length scale of CTL nanostructure in contact sites suggests that the smaller nanodomains on resting membranes may merge during fungal nanodomain structure, or that they become packed closely enough to achieve sub-resolution inter-domain edge separations of < 30 nm. This study provides evidence of local receptor spatial rearrangements on the nanoscale that occur in the plasma membrane upon pathogen binding and may direct important signaling interactions required to recognize and respond to the presence of a relatively large pathogen.

  9. FIRST SCIENCE RESULTS FROM SOFIA/FORCAST: SUPER-RESOLUTION IMAGING OF THE S140 CLUSTER AT 37 {mu}m

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, Paul M. [Astronomy Department, University of Texas at Austin, 1 University Station C1400, Austin, TX 78712-0259 (United States); Adams, Joseph D.; Herter, Terry L.; Gull, George; Schoenwald, Justin, E-mail: pmh@astro.as.utexas.edu, E-mail: jdadams@astro.cornell.edu, E-mail: tlh10@cornell.edu, E-mail: geg3@cornell.edu, E-mail: jps10@cornell.edu [Center for Radiophysics and Space Research, Space Science Building, Cornell University, Ithaca, NY 14853 (United States); and others

    2012-04-20

    We present 37 {mu}m imaging of the S140 complex of infrared sources centered on IRS1 made with the FORCAST camera on SOFIA. These observations are the longest wavelength imaging to resolve clearly the three main sources seen at shorter wavelengths, IRS 1, 2, and 3, and are nearly at the diffraction limit of the 2.5 m telescope. We also obtained a small number of images at 11 and 31 {mu}m that are useful for flux measurement. Our images cover the area of several strong submillimeter sources seen in the area-SMM 1, 2, and 3-that are not coincident with any mid-infrared sources and are not visible in our longer wavelength imaging either. Our new observations confirm previous estimates of the relative dust optical depth and source luminosity for the components in this likely cluster of early B stars. We also investigate the use of super-resolution to go beyond the basic diffraction limit in imaging on SOFIA and find that the van Cittert algorithm, together with the 'multi-resolution' technique, provides excellent results.

  10. Sectioning and super-resolution using unknown random patterns

    Science.gov (United States)

    Hoffman, Zachary R.; DiMarzio, Charles A.

    2016-03-01

    Random structured illumination patterns are used to demonstrate effective sectioning as well as super-resolution images in conjunction with an incoherent light source. By projecting patterns of varied spatial frequencies and using blind deconvolution of an unknown point spread function, super-resolution is achieved. Random patterns produce more consistent sectioning and super-resolution given an unknown optical transfer function. Further, using a randomly distributed pattern provides a low cost solution to obtaining information similar to that produced in confocal microscopy and other methods of structured illumination, without the requirement of precise projection patterns, coherent light sources, or fluorescence.

  11. Super-resolution optical telescopes with local light diffraction shrinkage

    OpenAIRE

    Changtao Wang; Dongliang Tang; Yanqin Wang; Zeyu Zhao; Jiong Wang; Mingbo Pu; Yudong Zhang; Wei Yan; Ping Gao; Xiangang Luo

    2015-01-01

    Suffering from giant size of objective lenses and infeasible manipulations of distant targets, telescopes could not seek helps from present super-resolution imaging, such as scanning near-field optical microscopy, perfect lens and stimulated emission depletion microscopy. In this paper, local light diffraction shrinkage associated with optical super-oscillatory phenomenon is proposed for real-time and optically restoring super-resolution imaging information in a telescope system. It is found ...

  12. Optical super-resolution microscopy in neurobiology.

    Science.gov (United States)

    Sigrist, Stephan J; Sabatini, Bernardo L

    2012-02-01

    Understanding the highly plastic nature of neurons requires the dynamic visualization of their molecular and cellular organization in a native context. However, due to the limited resolution of standard light microscopy, many of the structural specializations of neurons cannot be resolved. A recent revolution in light microscopy has given rise to several super-resolution light microscopy methods yielding 2-10-fold higher resolution than conventional microscopy. We here describe the principles behind these techniques as well as their application to the analysis of the molecular architecture of the synapse. Furthermore, we discuss the potential for continued development of super-resolution microscopy as necessary for live imaging of neuronal structure and function in the brain.

  13. Depth Map Super-Resolution Based on the Local Structural Features of Color Image%基于彩色图像局部结构特征的深度图超分辨率算法

    Institute of Scientific and Technical Information of China (English)

    杨宇翔; 汪增福

    2013-01-01

      运用飞行时间相机来获取场景深度图像非常方便,但由于硬件的限制,得到的深度图像分辨率非常低,无法满足实际的需要。文中结合同场景的高分辨率彩色图像来制定优化框架,将深度图超分辨率问题转化为最优化问题来求解。具体来说,将彩色图像和深度图像在局部小窗口内具有的近似线性关系通过拉普拉斯矩阵的方式融合到目标函数的正则约束项中,运用彩色图像的局部结构参数模型,将该参数模型融入到正则约束项中对深度图的局部边缘结构提供更进一步的约束,再通过最速下降法有效地求解该优化问题。实验表明文中算法较其它算法无论在视觉效果还是客观评价指标下都可得到更好的结果。%  It is convenient for time of flight camera to get the scene depth image, the resolution of depth image is very low due to limitations of the hardware, which can not meet the actual needs. In this paper, a method is proposed for solving depth map super-resolution problem. With a low resolution depth image as input, a high resolution depth map is recovered by using a registered and potentially high resolution camera image of the same scene. The depth map super-resolution problem is solved by developing an optimization framework. Specifically, the reconstruction constraint is applied to get the data term, and based on the fact that discontinuities in range and coloring tend to co-align, laplacian matrix and local structural features of high resolution camera images are used to construct the regularization term. The experimental results demonstrate that the proposed approach gets high resolution range image in terms of both its spatial resolution and depth precision.

  14. Super-resolution Analysis of TCR-Dependent Signaling: Single-Molecule Localization Microscopy.

    Science.gov (United States)

    Barr, Valarie A; Yi, Jason; Samelson, Lawrence E

    2017-01-01

    Single-molecule localization microscopy (SMLM) comprises methods that produce super-resolution images from molecular locations of single molecules. These techniques mathematically determine the center of a diffraction-limited spot produced by a fluorescent molecule, which represents the most likely location of the molecule. Only a small cohort of well-separated molecules is visualized in a single image, and then many images are obtained from a single sample. The localizations from all the images are combined to produce a super-resolution picture of the sample. Here we describe the application of two methods, photoactivation localization microscopy (PALM) and direct stochastic optical reconstruction microscopy (dSTORM), to the study of signaling microclusters in T cells.

  15. Super-resolution microscopy of single atoms in optical lattices

    CERN Document Server

    Alberti, Andrea; Alt, Wolfgang; Brakhane, Stefan; Karski, Michał; Reimann, René; Widera, Artur; Meschede, Dieter

    2015-01-01

    We report on image processing techniques and experimental procedures to determine the lattice-site positions of single atoms in an optical lattice with high reliability, even for limited acquisition time or optical resolution. Determining the positions of atoms beyond the diffraction limit relies on parametric deconvolution in close analogy to methods employed in super-resolution microscopy. We develop a deconvolution method that makes effective use of the prior knowledge of the optical transfer function, noise properties, and discreteness of the optical lattice. We show that accurate knowledge of the image formation process enables a dramatic improvement on the localization reliability. This is especially relevant for closely packed ensembles of atoms where the separation between particles cannot be directly optically resolved. Furthermore, we demonstrate experimental methods to precisely reconstruct the point spread function with sub-pixel resolution from fluorescence images of single atoms, and we give a m...

  16. Super-resolution imaging of fluorescently labeled, endogenous RNA Polymerase II in living cells with CRISPR/Cas9-mediated gene editing.

    Science.gov (United States)

    Cho, Won-Ki; Jayanth, Namrata; Mullen, Susan; Tan, Tzer Han; Jung, Yoon J; Cissé, Ibrahim I

    2016-10-26

    Live cell imaging of mammalian RNA polymerase II (Pol II) has previously relied on random insertions of exogenous, mutant Pol II coupled with the degradation of endogenous Pol II using a toxin, α-amanitin. Therefore, it has been unclear whether over-expression of labeled Pol II under an exogenous promoter may have played a role in reported Pol II dynamics in vivo. Here we label the endogenous Pol II in mouse embryonic fibroblast (MEF) cells using the CRISPR/Cas9 gene editing system. Using single-molecule based super-resolution imaging in the living cells, we captured endogenous Pol II clusters. Consistent with previous studies, we observed that Pol II clusters were short-lived (cluster lifetime ~8 s) in living cells. Moreover, dynamic responses to serum-stimulation, and drug-mediated transcription inhibition were all in agreement with previous observations in the exogenous Pol II MEF cell line. Our findings suggest that previous exogenously tagged Pol II faithfully recapitulated the endogenous polymerase clustering dynamics in living cells, and our approach may in principle be used to directly label transcription factors for live cell imaging.

  17. Super-resolution imaging of fluorescently labeled, endogenous RNA Polymerase II in living cells with CRISPR/Cas9-mediated gene editing

    Science.gov (United States)

    Cho, Won-Ki; Jayanth, Namrata; Mullen, Susan; Tan, Tzer Han; Jung, Yoon J.; Cissé, Ibrahim I.

    2016-01-01

    Live cell imaging of mammalian RNA polymerase II (Pol II) has previously relied on random insertions of exogenous, mutant Pol II coupled with the degradation of endogenous Pol II using a toxin, α-amanitin. Therefore, it has been unclear whether over-expression of labeled Pol II under an exogenous promoter may have played a role in reported Pol II dynamics in vivo. Here we label the endogenous Pol II in mouse embryonic fibroblast (MEF) cells using the CRISPR/Cas9 gene editing system. Using single-molecule based super-resolution imaging in the living cells, we captured endogenous Pol II clusters. Consistent with previous studies, we observed that Pol II clusters were short-lived (cluster lifetime ~8 s) in living cells. Moreover, dynamic responses to serum-stimulation, and drug-mediated transcription inhibition were all in agreement with previous observations in the exogenous Pol II MEF cell line. Our findings suggest that previous exogenously tagged Pol II faithfully recapitulated the endogenous polymerase clustering dynamics in living cells, and our approach may in principle be used to directly label transcription factors for live cell imaging. PMID:27782203

  18. Super-resolution inpainting

    Institute of Scientific and Technical Information of China (English)

    SHIH Timothy K; CHANG Rong-chi

    2005-01-01

    Image or video resources are often received in poor condition, mostly with noise or defects making the resources hard to read. We propose an effective algorithm based on digital image inpainting. The mechanism can be used in restoring images or video frames with very high noise or defect ratio (e.g., 90%). The algorithm is based on the concept of image subdivision and estimation of color variations. Noises inside blocks of different sizes are inpainted with different levels of surrounding information.The results showed that an almost unrecognizable image can be recovered with visually good result. The algorithm can be further extended for processing motion picture with high percentage of noise.

  19. A spatial-temporal Hopfield neural network approach for super-resolution land cover mapping with multi-temporal different resolution remotely sensed images

    Science.gov (United States)

    Li, Xiaodong; Ling, Feng; Du, Yun; Feng, Qi; Zhang, Yihang

    2014-07-01

    The mixed pixel problem affects the extraction of land cover information from remotely sensed images. Super-resolution mapping (SRM) can produce land cover maps with a finer spatial resolution than the remotely sensed images, and reduce the mixed pixel problem to some extent. Traditional SRMs solely adopt a single coarse-resolution image as input. Uncertainty always exists in resultant fine-resolution land cover maps, due to the lack of information about detailed land cover spatial patterns. The development of remote sensing technology has enabled the storage of a great amount of fine spatial resolution remotely sensed images. These data can provide fine-resolution land cover spatial information and are promising in reducing the SRM uncertainty. This paper presents a spatial-temporal Hopfield neural network (STHNN) based SRM, by employing both a current coarse-resolution image and a previous fine-resolution land cover map as input. STHNN considers the spatial information, as well as the temporal information of sub-pixel pairs by distinguishing the unchanged, decreased and increased land cover fractions in each coarse-resolution pixel, and uses different rules in labeling these sub-pixels. The proposed STHNN method was tested using synthetic images with different class fraction errors and real Landsat images, by comparing with pixel-based classification method and several popular SRM methods including pixel-swapping algorithm, Hopfield neural network based method and sub-pixel land cover change mapping method. Results show that STHNN outperforms pixel-based classification method, pixel-swapping algorithm and Hopfield neural network based model in most cases. The weight parameters of different STHNN spatial constraints, temporal constraints and fraction constraint have important functions in the STHNN performance. The heterogeneity degree of the previous map and the fraction images errors affect the STHNN accuracy, and can be served as guidances of selecting the

  20. 3D super-resolution microscopy of bacterial division machinery

    Science.gov (United States)

    Vedyaykin, A. D.; Sabantsev, A. V.; Vishnyakov, I. E.; Morozova, N. E.; Polinovskaya, V. S.; Khodorkovskii, M. A.

    2016-08-01

    Super-resolution microscopy is a promising tool for the field of microbiology, as bacteria sizes are comparable to the resolution limit of light microscopy. Bacterial division machinery and FtsZ protein in particular attract much attention of scientists who use different super-resolution microscopy techniques, but most of the available data on FtsZ structures was obtained using two-dimensional (2D) super-resolution microscopy. Using 3D single-molecule localization microscopy (SMLM, namely dSTORM) to visualize FtsZ, we demonstrate that this approach allows more accurate interpretation of super-resolution images and provides new opportunities for the study of complex structures like bacterial divisome.

  1. Holography based super resolution

    Science.gov (United States)

    Hussain, Anwar; Mudassar, Asloob A.

    2012-05-01

    This paper describes the simulation of a simple technique of superresolution based on holographic imaging in spectral domain. The input beam assembly containing 25 optical fibers with different orientations and positions is placed to illuminate the object in the 4f optical system. The position and orientation of each fiber is calculated with respect to the central fiber in the array. The positions and orientations of the fibers are related to the shift of object spectrum at aperture plane. During the imaging process each fiber is operated once in the whole procedure to illuminate the input object transparency which gives shift to the object spectrum in the spectral domain. This shift of the spectrum is equal to the integral multiple of the pass band aperture width. During the operation of single fiber (ON-state) all other fibers are in OFF-state at that time. The hologram recorded by each fiber at the CCD plane is stored in computer memory. At the end of illumination process total 25 holograms are recorded by the whole fiber array and by applying some post processing and specific algorithm single super resolved image is obtained. The superresolved image is five times better than the band-limited image. The work is demonstrated using computer simulation only.

  2. Live-cell and super-resolution imaging reveal that the distribution of wall-associated protein A is correlated with the cell chain integrity of Streptococcus mutans.

    Science.gov (United States)

    Li, Y; Liu, Z; Zhang, Y; Su, Q P; Xue, B; Shao, S; Zhu, Y; Xu, X; Wei, S; Sun, Y

    2015-10-01

    Streptococcus mutans is a primary pathogen responsible for dental caries. It has an outstanding ability to form biofilm, which is vital for virulence. Previous studies have shown that knockout of Wall-associated protein A (WapA) affects cell chain and biofilm formation of S. mutans. As a surface protein, the distribution of WapA remains unknown, but it is important to understand the mechanism underlying the function of WapA. This study applied the fluorescence protein mCherry as a reporter gene to characterize the dynamic distribution of WapA in S. mutans via time-lapse and super-resolution fluorescence imaging. The results revealed interesting subcellular distribution patterns of WapA in single, dividing and long chains of S. mutans cells. It appears at the middle of the cell and moves to the poles as the cell grows and divides. In a cell chain, after each round of cell division, such dynamic relocation results in WapA distribution at the previous cell division sites, resulting in a pattern where WapA is located at the boundary of two adjacent cell pairs. This WapA distribution pattern corresponds to the breaking segmentation of wapA deletion cell chains. The dynamic relocation of WapA through the cell cycle increases our understanding of the mechanism of WapA in maintaining cell chain integrity and biofilm formation.

  3. Enzyme-Directed Assembly of Nanoparticles in Tumors Monitored by In Vivo Whole Animal and Ex Vivo Super-Resolution Fluorescence Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Chien, Miao-Ping; Carlini, Andrea S.; Hu, Dehong; Barback, Christopher V.; Rush, Anthony M.; Hall, David J.; Orr, Galya; Gianneschi, Nathan C.

    2013-12-18

    Matrix metalloproteinase enzymes, overexpressed in HT-1080 human fibrocarcinoma tumors, were used to guide the accumulation and retention of an enzyme-responsive nanoparticle in a xenograft mouse model. The nanoparticles were prepared as micelles from amphiphilic block copolymers bearing a simple hydrophobic block, and a hydrophilic peptide brush. The polymers were end-labeled with Alexa Fluor 647 dyes leading to the formation of labeled micelles upon dialysis of the polymers from DMSO to aqueous buffer. This dye-labeling strategy allowed the presence of the retained material to be visualized via whole animal imaging in vivo, and in ex vivo organ analysis following intratumoral injection into HT-1080 xenograft tumors. We propose that the material is retained by virtue of an enzyme-induced accumulation process whereby particles change morphology from 20 nm spherical micelles to micron-scale aggregates, kinetically trapping them within the tumor. This hypothesis is tested here via an unprecedented super resolution fluorescence analysis of ex vivo tissue slices confirming a particle size increase occurs concomitantly with extended retention of responsive particles compared to unresponsive controls.

  4. Research on Imaging Technology for Reflective Compressive Coded Aperture Super-resolution%反射式压缩编码孔径超分辨率成像技术研究

    Institute of Scientific and Technical Information of China (English)

    毕祥丽

    2016-01-01

    Compressive sensing theory is led to super-resolution imaging technology for the general sparsity of most images, and an optical imaging system with all phase reflective compressive coded aperture is proposed based on 4f optical system. Reflective space optical modulator is used to perform optical system imaging experiments and the system is simulated through MATLAB program, the images with high resolution is obtained through decoding and reconstructing the collected single frame image with low resolution. Experimental results show that the best re⁃construction effect can be obtained at the condition of ensuring CCD camera matching to spatial optical modulator pixel size completely.%将压缩感知理论引入超分辨率成像,得益于绝大多数图像普遍具有稀疏性,提出了一套基于4f系统的全相位反射式压缩编码孔径光学成像系统,采用反射式空间光调制器进行光学系统成像实验,通过MATLAB程序对该系统进行仿真,对采集到的单幅低分辨率图像进行解码重建得到高分辨率的。实验结果表明,只有在保证CCD相机与空间光调制器像元尺寸完全匹配的情况下才能得到最佳的重建效果。

  5. Correct self-assembling of spatial frequencies in super-resolution synthetic aperture digital holography.

    Science.gov (United States)

    Paturzo, Melania; Ferraro, Pietro

    2009-12-01

    Synthetic aperture enlargement is obtained, in lensless digital holography, by introducing a diffraction grating between the object and the CCD camera with the aim of getting super-resolution. We demonstrate here that the spatial frequencies are naturally self-assembled in the reconstructed image plane when the NA is increased synthetically at its maximum extent of three times. By this approach it possible to avoid the use of the grating transmission formula in the numerical reconstruction process, thus reducing significantly the noise in the final super-resolved image. Demonstrations are reported in 1D and 2D with an optical target and a biological sample, respectively.

  6. Ginsenoside PPD’s Antitumor Effect via Down-Regulation of mTOR Revealed by Super-Resolution Imaging

    Directory of Open Access Journals (Sweden)

    Bo Teng

    2017-03-01

    Full Text Available Derived from Panax ginseng, the natural product 20(S-Protopanaxadiol (PPD has been reported for its cytotoxicity against several cancer cell lines. The molecular mechanism is, however, not well understood. Here we show that PPD significantly inhibits proliferation, induces apoptosis and causes G2/M cell cycle arrest in human laryngeal carcinoma cells (Hep-2 cells. PPD also decreases the levels of proteins related to cell proliferation. Moreover, PPD-induced apoptosis is characterized by a dose-dependent down-regulation of Bcl-2 expression and up-regulation of Bax, and is accompanied by the activation of Caspase-3 as well. Further molecular mechanism is revealed by direct stochastic optical reconstruction microscopy (dSTORM—a novel high-precision localization microscopy which enables effective resolution down to the order of 10 nm. It shows the expression and spatial arrangement of mTOR and its downstream effectors, demonstrating that this ginsenoside exerts its excellent anticancer effects via down-regulation of mTOR signaling pathway in Hep-2 cells. Taken together, our findings elucidate that the antitumor effect of PPD is associated with its regulation of mTOR expression and distribution, which encourages further studies of PPD as a promising therapeutic agent against laryngeal carcinoma.

  7. Super-resolution imaging of Escherichia coli nucleoids reveals highly structured and asymmetric segregation during fast growth.

    Science.gov (United States)

    Spahn, Christoph; Endesfelder, Ulrike; Heilemann, Mike

    2014-03-01

    Bacterial replication and chromosome segregation are highly organized both in space and in time. However, spatial analysis is hampered by the resolution limit of conventional fluorescence microscopy. In this study, we incubate rapidly-growing Escherichia coli with 5-ethynyl-2'-deoxyuridine (EdU), label the resulting EdU-DNA with photoswitchable fluorophores, and image incorporated molecules with an average experimental precision of 13 nm. During the segregation process, nucleoids develop highly-defined and cell-cycle dependent hetero-structures, which contain discrete DNA fibers with diameters far below the diffraction limit. Strikingly, these structures appear temporally shifted between sister chromosomes, an asymmetry which accumulates for ongoing replication rounds. Moreover, nucleoid positioning and expansion along the bacterial length axis fit into an elongation-mediated segregation model in fast growing E. coli cultures. This is supported by close proximity of the nucleoids to the bacterial plasma membrane, the nature of the observed hetero-structures and recently found interactions of membrane-associated proteins with DNA.

  8. OBJECT-BASED SUPER RESOLUTION FOR INTELLIGENT VISUAL SURVEILLANCE VIDEO

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Construction of high resolution images from low resolution sequences is often important in surveillance applications. In this letter, an affine based multi-scale block-matching image registration algorithm is first proposed. The images to be registered are divided into overlapped blocks of different size according to its motions. The Least Square (LS) image registration algorithm is extended to match the blocks. Then an object based Super Resolution (SR) scheme is designed, the Maximum A Priori (MAP) super resolution algorithm is extended to enhance the resolution of the interest objects. Experimental results show that the proposed multi-scale registration method provides more accurate registration between frames. Further more, the object based super resolution scheme shows an enhanced performance compared with the traditional MAP method.

  9. Convolutional Neural Network Based dem Super Resolution

    Science.gov (United States)

    Chen, Zixuan; Wang, Xuewen; Xu, Zekai; Hou, Wenguang

    2016-06-01

    DEM super resolution is proposed in our previous publication to improve the resolution for a DEM on basis of some learning examples. Meanwhile, the nonlocal algorithm is introduced to deal with it and lots of experiments show that the strategy is feasible. In our publication, the learning examples are defined as the partial original DEM and their related high measurements due to this way can avoid the incompatibility between the data to be processed and the learning examples. To further extent the applications of this new strategy, the learning examples should be diverse and easy to obtain. Yet, it may cause the problem of incompatibility and unrobustness. To overcome it, we intend to investigate a convolutional neural network based method. The input of the convolutional neural network is a low resolution DEM and the output is expected to be its high resolution one. A three layers model will be adopted. The first layer is used to detect some features from the input, the second integrates the detected features to some compressed ones and the final step transforms the compressed features as a new DEM. According to this designed structure, some learning DEMs will be taken to train it. Specifically, the designed network will be optimized by minimizing the error of the output and its expected high resolution DEM. In practical applications, a testing DEM will be input to the convolutional neural network and a super resolution will be obtained. Many experiments show that the CNN based method can obtain better reconstructions than many classic interpolation methods.

  10. Super-Resolution Microscopy and Tracking of DNA-Binding Proteins in Bacterial Cells

    Science.gov (United States)

    Uphoff, Stephan

    2016-01-01

    Summary The ability to detect individual fluorescent molecules inside living cells has enabled a range of powerful microscopy techniques that resolve biological processes on the molecular scale. These methods have also transformed the study of bacterial cell biology, which was previously obstructed by the limited spatial resolution of conventional microscopy. In the case of DNA-binding proteins, super-resolution microscopy can visualize the detailed spatial organization of DNA replication, transcription, and repair processes by reconstructing a map of single-molecule localizations. Furthermore, DNA binding activities can be observed directly by tracking protein movement in real time. This allows identifying subpopulations of DNA-bound and diffusing proteins, and can be used to measure DNA-binding times in vivo. This chapter provides a detailed protocol for super-resolution microscopy and tracking of DNA-binding proteins in Escherichia coli cells. The protocol covers the construction of cell strains and describes data acquisition and analysis procedures, such as super-resolution image reconstruction, mapping single-molecule tracks, computing diffusion coefficients to identify molecular subpopulations with different mobility, and analysis of DNA-binding kinetics. While the focus is on the study of bacterial chromosome biology, these approaches are generally applicable to other molecular processes and cell types. PMID:27283312

  11. 基于稀疏表示的快速图像超分辨率算法%Fast Image Super-resolution Algorithm Based on Sparse Representation

    Institute of Scientific and Technical Information of China (English)

    曹翔; 陈秀宏; 潘荣华

    2015-01-01

    针对传统基于超完备字典的图像超分辨率重建算法训练样本庞大、训练时间长、稀疏度固定,且迭代时间长的问题,提出一种快速的图像超分辨率重建算法。该算法在字典训练阶段引入快速核密度估计算法对训练样本规模进行估计,得到数量合理的训练样本,在稀疏表示阶段使用改进的广义正交匹配追踪算法,克服稀疏表示算法中固定稀疏度的缺陷。实验结果表明,相比传统字典训练算法,该算法能提高超分辨率重构的精度,且平均迭代时间较少。%The traditional Super Resolution ( SR ) algorithm via over-complete sparse representation has several problems,such as too large training patches, long training and iteration time, and fixed sparse degree. In view of these disadvantages,a fast SR algorithm is proposed. The core of this algorithm is to estimate the scale of the training patches by introducing Fast Kernel Density Estimation( FastKDE) to get the reasonable number of training patches in the stage of dictionary learning,and to overcome the shortcomings of greed series of sparse representation algorithms with fixed sparse degree and shortens the iteration time by using improved Generalized Orthogonal Matching Pursuit( GOMP) algorithm in the stage of sparse representation. Experimental results show that compared with the traditional dictionary training algorithm,this algorithm can improve the accuracy of SR reconstruction,and the average iteration time is less.

  12. 基于向量夹角的单幅图像超分辨率算法%Vector Angle-based Super-resolution Algorithm of Single Width Image

    Institute of Scientific and Technical Information of China (English)

    王峰

    2014-01-01

    在分析一些常见的图像超分辨方法的基础上,根据张量在图像处理中的应用和插值处理的特点,提出了一种基于张量的单幅图像超分辨处理方法,以提高图像的分辨率。通过对标准图像库的图像进行实验表明,该方法能较好地保持原图像中丰富的高频信息,提高图像分辨率,而且图像主观上具有很好的视觉效果,客观上具有较高的信噪比,是超分辨率图像处理中一种行之有效的方法。%On the basis of analyzing some common methods of image super-resolution ,and according to the Tensor in the application of image processing and the features of interpolation processing ,we put forward a kind of Tensor-based super-resolution processing method of Single width image ,so as to improve the resolution ratio of the image .The experimenting of the image of the standard image library indicates that this method can better maintain the rich high-frequency informa-tion of the original image and improve the resolution ratio of the image .Besides ,subjectively ,the image has relatively bet-ter visual effects ,and objectively ,it has relatively higher Signal-to-noise ratio .Therefore ,it is also an effective method to process image of super-resolution .

  13. Nonlinear super-resolution nano-optics and applications

    CERN Document Server

    Wei, Jingsong

    2015-01-01

    This book covers many advances in the subjects of nano-optics and nano photonics. The author describes the principle and technical schematics of common methods for breaking through the optical diffraction limit and focuses on realizing optical super-resolution with nonlinear effects of thin film materials. The applications of nonlinear optical super-resolution effects in nano-data storage, nanolithography, and nano-imaging are also presented. This book is useful to graduate students majoring in optics and nano science and also serves as a reference book for academic researchers, engineers, technical professionals in the fields of super-resolution optics and laser techniques, nano-optics and nano photonics, nano-data storage, nano imaging, micro/nanofabrication and nanolithography and nonlinear optics.

  14. Where Do We Stand with Super-Resolution Optical Microscopy?

    Science.gov (United States)

    Nienhaus, Karin; Nienhaus, G Ulrich

    2016-01-29

    Super-resolution fluorescence microscopy has become an invaluable, powerful approach to study biomolecular dynamics and interactions via selective labeling and observation of specific molecules in living cells, tissues and even entire organisms. In this perspective, we present a brief overview of the main techniques and their application to cellular biophysics. We place special emphasis on super-resolution imaging via single-molecule localization microscopy and stimulated emission depletion/reversible saturable optical fluorescence transitions microscopy, and we also briefly address fluorescence fluctuation approaches, notably raster image correlation spectroscopy, as tools to record fast diffusion and transport.

  15. Extreme super-resolution using the spherical geodesic waveguide

    Science.gov (United States)

    Miñano, Juan Carlos; González, Juan Carlos; Benítez, Pablo; Grabovičkić, Dejan

    2012-06-01

    Leonhardt demonstrated (2009) that the 2D Maxwell Fish Eye lens (MFE) can focus perfectly 2D Helmholtz waves of arbitrary frequency, i.e., it can transport perfectly an outward (monopole) 2D Helmholtz wave field, generated by a point source, towards a "perfect point drain" located at the corresponding image point. Moreover, a prototype with λ/5 super-resolution (SR) property for one microwave frequency has been manufactured and tested (Ma et al, 2010). Although this prototype has been loaded with an impedance different from the "perfect point drain", it has shown super-resolution property. However, neither software simulations nor experimental measurements for a broad band of frequencies have yet been reported. Here we present steady state simulations for two cases, using perfect drain as suggested by Leonhardt and without perfect drain as in the prototype. All the simulations have been done using a device equivalent to the MFE, called the Spherical Geodesic Waveguide (SGW). The results show the super-resolution up to λ/3000, for the system loaded with the perfect drain, and up to λ /500 for a not perfect load. In both cases super-resolution only happens for discrete number of frequencies. Out of these frequencies, the SGW does not show super-resolution in the analysis carried out.

  16. Generation of super-resolution stills from video

    CSIR Research Space (South Africa)

    Duvenhage, B

    2014-11-01

    Full Text Available The real-time super-resolution technique discussed in this paper increases the effective pixel density of an image sensor by combining consecutive image frames from a video. In surveillance, the higher pixel density lowers the Nyquist rate...

  17. Ultrahigh-throughput single-molecule spectroscopy and spectrally resolved super-resolution microscopy.

    Science.gov (United States)

    Zhang, Zhengyang; Kenny, Samuel J; Hauser, Margaret; Li, Wan; Xu, Ke

    2015-10-01

    By developing a wide-field scheme for spectral measurement and implementing photoswitching, we synchronously obtained the fluorescence spectra and positions of ∼10(6) single molecules in labeled cells in minutes, which consequently enabled spectrally resolved, 'true-color' super-resolution microscopy. The method, called spectrally resolved stochastic optical reconstruction microscopy (SR-STORM), achieved cross-talk-free three-dimensional (3D) imaging for four dyes 10 nm apart in emission spectrum. Excellent resolution was obtained for every channel, and 3D localizations of all molecules were automatically aligned within one imaging path.

  18. 基于核回归的正则化超分辨率重建算法%Super-resolution reconstruction based on adaptive kernel regression

    Institute of Scientific and Technical Information of China (English)

    周鑫; 胡访宇; 朱高

    2012-01-01

    在正则化超分辨率重建框架下,基于M-估计理论和核回归思想,提出一种稳健的超分辨图像重建算法.该算法融合了M-估计理论的稳健处理机制和自适应核回归算法的选择性加权特性,提高了算法的稳健特性和边缘保持特性.通过选取Tukey范数和自适应核回归正则项,有效避免了L2范数和L1范数只能针对特定噪声模型的不足.经实验证明,该算法无论是视觉效果还是峰值信噪比(PSNR)都有显著地提高.%In regularized reconstruction framework, a new approach of image reconstruction is proposed , which based on the robustness of M-estimation and steering kernel regression. Because Tukey estimator and adaptive kernel regression are used in this algorithm,it can overcome the drawback of L2 form and L1 form,and behaves better in robustness and edge-preserving. The experimental results demonstrate not only the effectiveness of proposed algorithm,but also in the visual effect and the Peak Signal to Noise Ratio(PSNR) value.

  19. Video super-resolution using simultaneous motion and intensity calculations

    DEFF Research Database (Denmark)

    Keller, Sune Høgild; Lauze, Francois Bernard; Nielsen, Mads

    2011-01-01

    for the joint estimation of a super-resolution sequence and its flow field. Via the calculus of variations, this leads to a coupled system of partial differential equations for image sequence and motion estimation. We solve a simplified form of this system and as a by-product we indeed provide a motion field...... for super-resolved sequences. Computing super-resolved flows has to our knowledge not been done before. Most advanced super-resolution (SR) methods found in literature cannot be applied to general video with arbitrary scene content and/or arbitrary optical flows, as it is possible with our simultaneous VSR...

  20. 低质量监控图像鲁棒性人脸超分辨率算法%Robust Super-resolution Algorithm for Low-quality Surveillance Face Images

    Institute of Scientific and Technical Information of China (English)

    兰诚栋; 胡瑞敏; 卢涛; 韩镇

    2011-01-01

    由于人对图像结构信息的理解对于像素值的噪声干扰具有极强的鲁棒功能,为了增强传统算法针对低质量监控图像的鲁棒性,提出一种基于人工形状语义模型的人脸超分辨率算法.该算法将形状描述成一系列面部特征点的组合,通过人工获取人脸图像形状语义信息,利用形状样本库构建超分辨率代价函数的正则约束项;将图像与形状的系数相关性用于统一重建误差项与形状正则项的变量,并将最速下降法用于优化求解.仿真和实际图像实验结 果都表明,在主客观质量上,文中算法的性能都优于传统算法.%Human understanding with image semantic information, especially structural information, is robust to the degraded pixel values. In order to enhance the robustness of traditional methods to low-quality surveillance images, we propose a face super-resolution approach using shape semantic model. This method describes the facial shape as a series of fiducial points on facial image. And shape semantic information of input image is obtained manually. Then a shape semantic regularization is added to the original objective function. According to the correlation of coefficients of image and shape, the variables of reconstruction fidelity term and shape regularization item are unified. And the steepest descent method is used to obtain the unified coefficient. Experimental results of simulation and real images indicate that the proposed method outperforms the traditional schemes significantly both in subjective and objective qualities.

  1. PALM and STORM: unlocking live-cell super-resolution

    CSIR Research Space (South Africa)

    Henriques, R

    2011-05-01

    Full Text Available Live-cell fluorescence light microscopy has emerged as an important tool in the study of cellular biology. The development of fluorescent markers in parallel with super-resolution imaging systems has pushed light microscopy into the realm...

  2. Make them Blink : Probes for Super-Resolution Microscopy

    NARCIS (Netherlands)

    Vogelsang, Jan; Steinhauer, Christian; Forthmann, Carsten; Stein, Ingo H.; Person-Skegro, Britta; Cordes, Thorben; Tinnefeld, Philip

    2010-01-01

    In recent years, a number of approaches have emerged that enable far-field fluorescence imaging beyond the diffraction limit of light, namely super-resolution microscopy. These techniques are beginning to profoundly alter our abilities to look at biological structures and dynamics and are bound to s

  3. Performance Evaluations for Super-Resolution Mosaicing on UAS Surveillance Videos

    Directory of Open Access Journals (Sweden)

    Aldo Camargo

    2013-05-01

    Full Text Available Abstract Unmanned Aircraft Systems (UAS have been widely applied for reconnaissance and surveillance by exploiting information collected from the digital imaging payload. The super-resolution (SR mosaicing of low-resolution (LR UAS surveillance video frames has become a critical requirement for UAS video processing and is important for further effective image understanding. In this paper we develop a novel super-resolution framework, which does not require the construction of sparse matrices. The proposed method implements image operations in the spatial domain and applies an iterated back-projection to construct super-resolution mosaics from the overlapping UAS surveillance video frames. The Steepest Descent method, the Conjugate Gradient method and the Levenberg-Marquardt algorithm are used to numerically solve the nonlinear optimization problem for estimating a super-resolution mosaic. A quantitative performance comparison in terms of computation time and visual quality of the super-resolution mosaics through the three numerical techniques is presented.

  4. Out-of-focus background subtraction for fast structured illumination super-resolution microscopy of optically thick samples.

    Science.gov (United States)

    Vermeulen, P; Zhan, H; Orieux, F; Olivo-Marin, J-C; Lenkei, Z; Loriette, V; Fragola, A

    2015-09-01

    We propose a structured illumination microscopy method to combine super resolution and optical sectioning in three-dimensional (3D) samples that allows the use of two-dimensional (2D) data processing. Indeed, obtaining super-resolution images of thick samples is a difficult task if low spatial frequencies are present in the in-focus section of the sample, as these frequencies have to be distinguished from the out-of-focus background. A rigorous treatment would require a 3D reconstruction of the whole sample using a 3D point spread function and a 3D stack of structured illumination data. The number of raw images required, 15 per optical section in this case, limits the rate at which high-resolution images can be obtained. We show that by a succession of two different treatments of structured illumination data we can estimate the contrast of the illumination pattern and remove the out-of-focus content from the raw images. After this cleaning step, we can obtain super-resolution images of optical sections in thick samples using a two-beam harmonic illumination pattern and a limited number of raw images. This two-step processing makes it possible to obtain super resolved optical sections in thick samples as fast as if the sample was two-dimensional.

  5. Fourier ring correlation as a resolution criterion for super-resolution microscopy.

    Science.gov (United States)

    Banterle, Niccolò; Bui, Khanh Huy; Lemke, Edward A; Beck, Martin

    2013-09-01

    Optical nanoscopy techniques using localization based image reconstruction, also termed super-resolution microscopy (SRM), have become a standard tool to bypass the diffraction limit in fluorescence light microscopy. The localization precision measured for the detected fluorophores is commonly used to describe the maximal attainable resolution. However, this measure takes not all experimental factors, which impact onto the finally achieved resolution, into account. Several other methods to measure the resolution of super-resolved images were previously suggested, typically relying on intrinsic standards, such as molecular rulers, or on a priori knowledge about the specimen, e.g. its spatial frequency content. Here we show that Fourier ring correlation provides an easy-to-use, laboratory consistent standard for measuring the resolution of SRM images. We provide a freely available software tool that combines resolution measurement with image reconstruction.

  6. Condensin- and Replication-Mediated Bacterial Chromosome Folding and Origin Condensation Revealed by Hi-C and Super-resolution Imaging.

    Science.gov (United States)

    Marbouty, Martial; Le Gall, Antoine; Cattoni, Diego I; Cournac, Axel; Koh, Alan; Fiche, Jean-Bernard; Mozziconacci, Julien; Murray, Heath; Koszul, Romain; Nollmann, Marcelo

    2015-08-20

    Chromosomes of a broad range of species, from bacteria to mammals, are structured by large topological domains whose precise functional roles and regulatory mechanisms remain elusive. Here, we combine super-resolution microscopies and chromosome-capture technologies to unravel the higher-order organization of the Bacillus subtilis chromosome and its dynamic rearrangements during the cell cycle. We decipher the fine 3D architecture of the origin domain, revealing folding motifs regulated by condensin-like complexes. This organization, along with global folding throughout the genome, is present before replication, disrupted by active DNA replication, and re-established thereafter. Single-cell analysis revealed a strict correspondence between sub-cellular localization of origin domains and their condensation state. Our results suggest that the precise 3D folding pattern of the origin domain plays a role in the regulation of replication initiation, chromosome organization, and DNA segregation.

  7. Aptamer Stainings for Super-resolution Microscopy.

    Science.gov (United States)

    de Castro, Maria Angela Gomes; Rammner, Burkhard; Opazo, Felipe

    2016-01-01

    Fluorescence microscopy is an invaluable tool to visualize molecules in their biological context with ease and flexibility. However, studies using conventional light microscopy have been limited to the resolution that light diffraction allows (i.e., ~200 nm). This limitation has been recently circumvented by several types of advanced fluorescence microscopy techniques, which have achieved resolutions of up to ~10 nm. The resulting enhanced imaging precision has helped to find important cellular details that were not visible using diffraction-limited instruments. However, it has also revealed that conventional stainings using large affinity tags, such as antibodies, are not accurate enough for these imaging techniques. Since aptamers are substantially smaller than antibodies, they could provide a real advantage in super-resolution imaging. Here we compare the live staining of transferrin receptors (TfnR) obtained with different fluorescently labeled affinity probes: aptamers, specific monoclonal antibodies, or the natural receptor ligand transferrin. We observed negligible differences between these staining strategies when imaging is performed with conventional light microscopy (i.e., laser scanning confocal microscopy). However, a clear superiority of the aptamer tag over antibodies became apparent in super-resolved images obtained with stimulated emission depletion (STED) microscopy.

  8. Hyperspectral imagery super-resolution by compressive sensing inspired dictionary learning and spatial-spectral regularization.

    Science.gov (United States)

    Huang, Wei; Xiao, Liang; Liu, Hongyi; Wei, Zhihui

    2015-01-19

    Due to the instrumental and imaging optics limitations, it is difficult to acquire high spatial resolution hyperspectral imagery (HSI). Super-resolution (SR) imagery aims at inferring high quality images of a given scene from degraded versions of the same scene. This paper proposes a novel hyperspectral imagery super-resolution (HSI-SR) method via dictionary learning and spatial-spectral regularization. The main contributions of this paper are twofold. First, inspired by the compressive sensing (CS) framework, for learning the high resolution dictionary, we encourage stronger sparsity on image patches and promote smaller coherence between the learned dictionary and sensing matrix. Thus, a sparsity and incoherence restricted dictionary learning method is proposed to achieve higher efficiency sparse representation. Second, a variational regularization model combing a spatial sparsity regularization term and a new local spectral similarity preserving term is proposed to integrate the spectral and spatial-contextual information of the HSI. Experimental results show that the proposed method can effectively recover spatial information and better preserve spectral information. The high spatial resolution HSI reconstructed by the proposed method outperforms reconstructed results by other well-known methods in terms of both objective measurements and visual evaluation.

  9. Correlative super-resolution fluorescence microscopy combined with optical coherence microscopy

    Science.gov (United States)

    Kim, Sungho; Kim, Gyeong Tae; Jang, Soohyun; Shim, Sang-Hee; Bae, Sung Chul

    2015-03-01

    Recent development of super-resolution fluorescence imaging technique such as stochastic optical reconstruction microscopy (STORM) and photoactived localization microscope (PALM) has brought us beyond the diffraction limits. It allows numerous opportunities in biology because vast amount of formerly obscured molecular structures, due to lack of spatial resolution, now can be directly observed. A drawback of fluorescence imaging, however, is that it lacks complete structural information. For this reason, we have developed a super-resolution multimodal imaging system based on STORM and full-field optical coherence microscopy (FF-OCM). FF-OCM is a type of interferometry systems based on a broadband light source and a bulk Michelson interferometer, which provides label-free and non-invasive visualization of biological samples. The integration between the two systems is simple because both systems use a wide-field illumination scheme and a conventional microscope. This combined imaging system gives us both functional information at a molecular level (~20nm) and structural information at the sub-cellular level (~1μm). For thick samples such as tissue slices, while FF-OCM is readily capable of imaging the 3D architecture, STORM suffer from aberrations and high background fluorescence that substantially degrade the resolution. In order to correct the aberrations in thick tissues, we employed an adaptive optics system in the detection path of the STORM microscope. We used our multimodal system to obtain images on brain tissue samples with structural and functional information.

  10. Mirror-enhanced super-resolution microscopy

    OpenAIRE

    2016-01-01

    Axial excitation confinement beyond the diffraction limit is crucial to the development of next-generation, super-resolution microscopy. STimulated Emission Depletion (STED) nanoscopy offers lateral super-resolution using a donut-beam depletion, but its axial resolution is still over 500 nm. Total internal reflection fluorescence microscopy is widely used for single-molecule localization, but its ability to detect molecules is limited to within the evanescent field of ~ 100 nm from the cell a...

  11. Super-Resolution Using Hidden Markov Model and Bayesian Detection Estimation Framework

    Directory of Open Access Journals (Sweden)

    Humblot Fabrice

    2006-01-01

    Full Text Available This paper presents a new method for super-resolution (SR reconstruction of a high-resolution (HR image from several low-resolution (LR images. The HR image is assumed to be composed of homogeneous regions. Thus, the a priori distribution of the pixels is modeled by a finite mixture model (FMM and a Potts Markov model (PMM for the labels. The whole a priori model is then a hierarchical Markov model. The LR images are assumed to be obtained from the HR image by lowpass filtering, arbitrarily translation, decimation, and finally corruption by a random noise. The problem is then put in a Bayesian detection and estimation framework, and appropriate algorithms are developed based on Markov chain Monte Carlo (MCMC Gibbs sampling. At the end, we have not only an estimate of the HR image but also an estimate of the classification labels which leads to a segmentation result.

  12. Super-resolution by pupil plane phase filtering

    Indian Academy of Sciences (India)

    L N Hazra; N Reza

    2010-11-01

    Resolution capability of any optical imaging system is limited by residual aberrations as well as diffraction effects. Overcoming this fundamental limit is called super-resolution. Several new paradigms for super-resolution in optical systems use ‘a posteriori’ digital image processing. In these ventures the three-dimensional point spread function (PSF) of the lens plays a key role in image acquisition. A straightforward tailoring of the PSF can be performed by appropriate pupil plane filtering. With a brief review of the state-of-art in this research area, this paper dwells upon the inverse problem of global optimization of the pupil function by phase filtering in accordance with the desired PSF.

  13. Super-resolution optical telescopes with local light diffraction shrinkage

    Science.gov (United States)

    Wang, Changtao; Tang, Dongliang; Wang, Yanqin; Zhao, Zeyu; Wang, Jiong; Pu, Mingbo; Zhang, Yudong; Yan, Wei; Gao, Ping; Luo, Xiangang

    2015-12-01

    Suffering from giant size of objective lenses and infeasible manipulations of distant targets, telescopes could not seek helps from present super-resolution imaging, such as scanning near-field optical microscopy, perfect lens and stimulated emission depletion microscopy. In this paper, local light diffraction shrinkage associated with optical super-oscillatory phenomenon is proposed for real-time and optically restoring super-resolution imaging information in a telescope system. It is found that fine target features concealed in diffraction-limited optical images of a telescope could be observed in a small local field of view, benefiting from a relayed metasurface-based super-oscillatory imaging optics in which some local Fourier components beyond the cut-off frequency of telescope could be restored. As experimental examples, a minimal resolution to 0.55 of Rayleigh criterion is obtained, and imaging complex targets and large targets by superimposing multiple local fields of views are demonstrated as well. This investigation provides an access for real-time, incoherent and super-resolution telescopes without the manipulation of distant targets. More importantly, it gives counterintuitive evidence to the common knowledge that relayed optics could not deliver more imaging details than objective systems.

  14. Next-generation endomyocardial biopsy: the potential of confocal and super-resolution microscopy.

    Science.gov (United States)

    Crossman, David J; Ruygrok, Peter N; Hou, Yu Feng; Soeller, Christian

    2015-03-01

    Confocal laser scanning microscopy and super-resolution microscopy provide high-contrast and high-resolution fluorescent imaging, which has great potential to increase the diagnostic yield of endomyocardial biopsy (EMB). EMB is currently the gold standard for identification of cardiac allograft rejection, myocarditis, and infiltrative and storage diseases. However, standard analysis is dominated by low-contrast bright-field light and electron microscopy (EM); this lack of contrast makes quantification of pathological features difficult. For example, assessment of cardiac allograft rejection relies on subjective grading of H&E histology, which may lead to diagnostic variability between pathologists. This issue could be solved by utilising the high contrast provided by fluorescence methods such as confocal to quantitatively assess the degree of lymphocytic infiltrate. For infiltrative diseases such as amyloidosis, the nanometre resolution provided by EM can be diagnostic in identifying disease-causing fibrils. The recent advent of super-resolution imaging, particularly direct stochastic optical reconstruction microscopy (dSTORM), provides high-contrast imaging at resolution approaching that of EM. Moreover, dSTORM utilises conventional fluorescence dyes allowing for the same structures to be routinely imaged at the cellular scale and then at the nanoscale. The key benefit of these technologies is that the high contrast facilitates quantitative digital analysis and thereby provides a means to robustly assess critical pathological features. Ultimately, this technology has the ability to provide greater accuracy and precision to EMB assessment, which could result in better outcomes for patients.

  15. The Principles of Super-Resolution Fluorescence Microscopy (Review)

    OpenAIRE

    N.V. Klementieva; E.V. Zagaynova; К.А. Lukyanov; A.S. Mishin

    2016-01-01

    Diffraction limit of optical microscopy impedes imaging of biological objects much smaller than the wavelength of light. Conventional fluorescence microscopy does not enable to study fine structure and processes in a living cell at the macromolecular level. Super-resolution fluorescence microscopy techniques that overcome the diffraction barrier have opened up new opportunities for biological and biomedical research. These methods combine the resolution power comparable to electron microscopy...

  16. Experimental Study of Super-Resolution Using a Compressive Sensing Architecture

    Science.gov (United States)

    2015-03-01

    Experimental study of super-resolution using a compressive sensing architecture J. Christopher Flakea,c, Gary Eulissa, John B. Greerb, Stephanie...laboratory imaging system was constructed following an architecture that has become familiar from the theory of compressive sensing . The system uses...choices in system design will become increasingly more important. We present a compressive sensing image system designed for super-resolution: the

  17. Hyperspectral Imagery Super-Resolution by Adaptive POCS and Blur Metric

    Science.gov (United States)

    Hu, Shaoxing; Zhang, Shuyu; Zhang, Aiwu; Chai, Shatuo

    2017-01-01

    The spatial resolution of a hyperspectral image is often coarse as the limitations on the imaging hardware. A novel super-resolution reconstruction algorithm for hyperspectral imagery (HSI) via adaptive projection onto convex sets and image blur metric (APOCS-BM) is proposed in this paper to solve these problems. Firstly, a no-reference image blur metric assessment method based on Gabor wavelet transform is utilized to obtain the blur metric of the low-resolution (LR) image. Then, the bound used in the APOCS is automatically calculated via LR image blur metric. Finally, the high-resolution (HR) image is reconstructed by the APOCS method. With the contribution of APOCS and image blur metric, the fixed bound problem in POCS is solved, and the image blur information is utilized during the reconstruction of HR image, which effectively enhances the spatial-spectral information and improves the reconstruction accuracy. The experimental results for the PaviaU, PaviaC and Jinyin Tan datasets indicate that the proposed method not only enhances the spatial resolution, but also preserves HSI spectral information well. PMID:28054947

  18. Super-resolution and nonlinear absorption with metallodielectric stacks

    Science.gov (United States)

    Katte, Nkorni

    We investigate sub-wavelength imaging, i.e. super-resolution, in metal-dielectric film systems, which are simply referred to as metallodielectrics. Our simulations incorporate experimentally derived material dielectric dispersion properties across the visible region. For demonstration purposes we designed metallodielectric stacks for super-resolution containing GaP and TiO2, dielectric films, and either Ag or Au as the metallic materials. Using the known optical properties of the constituent materials found designs that could be good candidates for super-resolution. We did not have the resources to fabricate these samples; however, based on our computer simulations we are confident that the designed samples would produce super-resolution approaching one-twentieth of a wavelength in air. We examined for the first time the broad bandwidth of the super-resolution phenomenon in metallodielectrics. We validate the results using the finite element method (FEM) and the transfer matrix method (TMM). We also show that the measurement of super-resolution is highly dependent on the distance of the probe from the exit surface; high resolution at the exit plane can quickly decay with a few tens of nanometers when high resolution is sought. Secondly we numerically studied the nonlinear optical transmission of an optical beam through heterogeneous metallodielectric stacks under the action of nonlinear absorption. One film layer is a metal and the other layer is a dielectric; the heterogeneous material is called a metallodielectric stack (MDS). In these studies we also used applied FEM with two-dimensional transverse effects and TMM simulation techniques. Our samples consisted of Ag/ZnS, Ag/SiO 2 and Cu/ZnS. We numerically simulate using two transverse dimensions in our FEM codes, Z-scan experiments for two different MDS designs and draw general observations from these cases. We experimentally examined the nonlinear absorption effect in samples of Ag/SiO2 when irradiated by a

  19. Multiple signal classification algorithm for super-resolution fluorescence microscopy

    Science.gov (United States)

    Agarwal, Krishna; Macháň, Radek

    2016-12-01

    Single-molecule localization techniques are restricted by long acquisition and computational times, or the need of special fluorophores or biologically toxic photochemical environments. Here we propose a statistical super-resolution technique of wide-field fluorescence microscopy we call the multiple signal classification algorithm which has several advantages. It provides resolution down to at least 50 nm, requires fewer frames and lower excitation power and works even at high fluorophore concentrations. Further, it works with any fluorophore that exhibits blinking on the timescale of the recording. The multiple signal classification algorithm shows comparable or better performance in comparison with single-molecule localization techniques and four contemporary statistical super-resolution methods for experiments of in vitro actin filaments and other independently acquired experimental data sets. We also demonstrate super-resolution at timescales of 245 ms (using 49 frames acquired at 200 frames per second) in samples of live-cell microtubules and live-cell actin filaments imaged without imaging buffers.

  20. Fluorescence in situ hybridization applications for super-resolution 3D structured illumination microscopy.

    Science.gov (United States)

    Markaki, Yolanda; Smeets, Daniel; Cremer, Marion; Schermelleh, Lothar

    2013-01-01

    Fluorescence in situ hybridization on three-dimensionally preserved cells (3D-FISH) is an efficient tool to analyze the subcellular localization and spatial arrangement of targeted DNA sequences and RNA transcripts at the single cell level. 3D reconstructions from serial optical sections obtained by confocal laser scanning microscopy (CLSM) have long been considered the gold standard for 3D-FISH analyses. Recent super-resolution techniques circumvent the diffraction-limit of optical resolution and have defined a new state-of-the-art in bioimaging. Three-dimensional structured illumination microscopy (3D-SIM) represents one of these technologies. Notably, 3D-SIM renders an eightfold improved volumetric resolution over conventional imaging, and allows the simultaneous visualization of differently labeled target structures. These features make this approach highly attractive for the analysis of spatial relations and substructures of nuclear targets that escape detection by conventional light microscopy. Here, we focus on the application of 3D-SIM for the visualization of subnuclear 3D-FISH preparations. In comparison with conventional fluorescence microscopy, the quality of 3D-SIM data is dependent to a much greater extent on the optimal sample preparation, labeling and acquisition conditions. We describe typical problems encountered with super-resolution imaging of in situ hybridizations in mammalian tissue culture cells and provide optimized DNA-/(RNA)-FISH protocols including combinations with immunofluorescence staining (Immuno-FISH) and DNA replication labeling using click chemistry.

  1. 一种基于匹配学习的人脸图像超分辨率算法%A super-resolution algorithm of face image based on pre-classification and match

    Institute of Scientific and Technical Information of China (English)

    窦翔; 陶青川

    2015-01-01

    针对现有基于样本学习的人脸超分辨率算法对人脸图像采用全局搜索,存在非局部误匹配且复原图像视觉效果不佳等问题,提出了一种新的基于匹配学习的人脸图像超分辨率算法。首先根据输入图像预分类得到一个样本子类库,并构建相应的特征图像。在匹配过程中,针对不同人脸图像,采用2种新的搜索策略,考虑了图像块之间的相似性和一致性,使复原图像看起来更加连贯自然。实验结果表明,与其他方法相比,本文算法生成的高分辨率人脸图像获得了更好的视觉效果和更高的平均峰值信噪比,具有很好的实用价值。%The exsiting example-based super-resolution algorithms of face image adopt global search, which causes the problems of non-local mismatch and poor visual effect of image restoration. A new matching and learning-based face image super-resolution restoration algorithm is proposed. A pre-classification process of input image is applied to get a sub-sample library from the image library, and the corresponding feature images are created. In the matching process, two new search strategies for different face images are used, which consider the similarity and consistency between image patches and make the recovered image look more coherent and natural. Experimental results show that the proposed algorithm synthesizes high-resolution faces with better visual effect and obtains higher values of the average of Peak Signal-to-Noise Ratios(PSNR) when compared with other methods.

  2. Correlative super-resolution fluorescence and electron microscopy of the nuclear pore complex with molecular resolution.

    Science.gov (United States)

    Löschberger, Anna; Franke, Christian; Krohne, Georg; van de Linde, Sebastian; Sauer, Markus

    2014-10-15

    Here, we combine super-resolution fluorescence localization microscopy with scanning electron microscopy to map the position of proteins of nuclear pore complexes in isolated Xenopus laevis oocyte nuclear envelopes with molecular resolution in both imaging modes. We use the periodic molecular structure of the nuclear pore complex to superimpose direct stochastic optical reconstruction microscopy images with a precision of <20 nm on electron micrographs. The correlative images demonstrate quantitative molecular labeling and localization of nuclear pore complex proteins by standard immunocytochemistry with primary and secondary antibodies and reveal that the nuclear pore complex is composed of eight gp210 (also known as NUP210) protein homodimers. In addition, we find subpopulations of nuclear pore complexes with ninefold symmetry, which are found occasionally among the more typical eightfold symmetrical structures.

  3. Super-resolution optical microscopy by using dielectric microwires

    Science.gov (United States)

    Darafsheh, Arash; Wu, Gaoxiang; Yang, Shu; Finlay, Jarod C.

    2016-03-01

    We demonstrate that super-resolution imaging of specimens containing sub-diffraction-limited features is feasible by using dielectric microwires fabricated through capillary force lithography followed by photopatterning. As supplementary micron scale cylindrical lenses, we fabricated uniform-sized microwires with and 5 and 10 μm diameters and refractive index ~1.3-1.6. The microwires are placed in contact with the specimen to collect the information of the sub-wavelength features of the specimen and transmit them to the far-field with magnification enabling imaging with two-fold resolution improvement. Potential applications of our imaging technique include biological imaging, microfluidics, and nanophotonics applications.

  4. Solid-immersion fluorescence microscopy with increased emission and super resolution

    Energy Technology Data Exchange (ETDEWEB)

    Liau, Z. L.; Porter, J. M. [Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02420 (United States); Liau, A. A.; Chen, J. J. [Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Salmon, W. C. [Whitehead Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Sheu, S. S. [Department of Medicine, Jefferson Medical College, Philadelphia, Pennsylvania 19107 (United States)

    2015-01-07

    We investigate solid-immersion fluorescence microscopy suitable for super-resolution nanotechnology and biological imaging, and have observed limit of resolution as small as 15 nm with microspheres, mitochondria, and chromatin fibers. We have further observed that fluorescence efficiency increases with excitation power density, implicating appreciable stimulated emission and increased resolution. We discuss potential advantages of the solid-immersion microscopy, including combined use with previously established super-resolution techniques for reaching deeper beyond the conventional diffraction limit.

  5. Multiple Signal Classification Algorithm (MUSICAL) for super-resolution fluorescence microscopy

    CERN Document Server

    Agarwal, Krishna

    2016-01-01

    Super-resolution microscopy is providing unprecedented insights into biology by resolving details much below the diffraction limit. State-of-the-art Single Molecule Localization Microscopy (SMLM) techniques for super-resolution are restricted by long acquisition and computational times, or the need of special fluorophores or chemical environments. Here, we propose a novel statistical super-resolution technique of wide-field fluorescence microscopy called MUltiple SIgnal Classification ALgorithm (MUSICAL) which has several advantages over SMLM techniques. MUSICAL provides resolution down to at least 50 nm, has low requirements on number of frames and excitation power and works even at high fluorophore concentrations. Further, it works with any fluorophore that exhibits blinking on the time scale of the recording. We compare imaging results of MUSICAL with SMLM and four contemporary statistical super-resolution methods for experiments of in-vitro actin filaments and datasets provided by independent research gro...

  6. Spectral demixing avoids registration errors and reduces noise in multicolor localization-based super-resolution microscopy

    Science.gov (United States)

    Lampe, André; Tadeus, Georgi; Schmoranzer, Jan

    2015-09-01

    Multicolor single molecule localization-based super-resolution microscopy (SMLM) approaches are challenged by channel crosstalk and errors in multi-channel registration. We recently introduced a spectral demixing-based variant of direct stochastic optical reconstruction microscopy (SD-dSTORM) to perform multicolor SMLM with minimal color crosstalk. Here, we demonstrate that the spectral demixing procedure is inherently free of errors in multicolor registration and therefore does not require multicolor channel alignment. Furthermore, spectral demixing significantly reduces single molecule noise and is applicable to astigmatism-based 3D multicolor imaging achieving 25 nm lateral and 66 nm axial resolution on cellular nanostructures.

  7. Synthetic biology's tall order: Reconstruction of 3D, super resolution images of single molecules in real-time

    CSIR Research Space (South Africa)

    Henriques, R

    2010-08-31

    Full Text Available by anthrax lethal toxin plays a key role in induction of human endothelial cell cytotoxicity Monica Rolando,1,2,3 Caroline Stefani,1,2,3 Gilles Flatau,1,2,3 Patrick Auberger,1,3,4 Amel Mettouchi,4,5 Musa Mhlanga,6 Ulf Rapp,7† Antoine Galmiche7...‡ and Emmanuel Lemichez1,2,3,8* 1INSERM, U895, Centre Méditerranéen de Médecine Moléculaire, C3M, Nice, 06204 Cedex 3, France. 2Toxines Microbiennes dans la relation hôte pathogènes, Nice, France. 3Université de Nice-Sophia-Antipolis, UFR Médecine, IFR50...

  8. Stochastic optical reconstruction microscopy (STORM) in comparison with stimulated emission depletion (STED) and other imaging methods.

    Science.gov (United States)

    Tam, Johnny; Merino, David

    2015-11-01

    Stochastic optical reconstruction microscopy (STORM) and stimulated emission depletion (STED) microscopy are two super-resolution optical microscopy approaches that have rapidly gained popularity in recent years. Both modalities offer super-resolution imaging capabilities with the potential for imaging in multiple colors, three-dimensions, and the possibility to image in live cells. In this review, we focus on the specific advantages and disadvantages of each technique in the context of each other. STORM has been reported to achieve higher spatial resolution when compared to STED, but a lengthy acquisition may be required. STED utilizes relatively higher laser intensities, but is able to generate a super-resolution image immediately after acquisition without the need for any additional data processing. Ultimately, the choice between STORM and STED will depend not only on the specific application, but also on the users' ability to understand and optimize the various parameters ranging from sample preparation to image acquisition, which determine the quality of the final image. Stochastic optical reconstruction microscopy (STORM) and stimulated emission depletion (STED) are two super-resolution microscopy approaches that have rapidly gained popularity in recent years. STORM is based on the precise localization of a large number of individual molecules that together form a super-resolved image (bottom), whereas STED is based on the scanning of two super-imposed light sources which together allow for a super-resolved spot on the sample to be imaged (top). We discuss the specific advantages and disadvantages of each technique and explain the various parameters that affect image quality, which should be taken into consideration when planning experiments.

  9. Development of a super-resolution optical microscope for directional dark matter search experiment

    Energy Technology Data Exchange (ETDEWEB)

    Alexandrov, A., E-mail: andrey.alexandrov@na.infn.it [INFN - Napoli, I-80125 Napoli (Italy); LPI - Lebedev Physical Institute of the Russian Academy of Sciences, RUS-119991 Moscow (Russian Federation); Asada, T. [Nagoya University, J-464-8602 Nagoya (Japan); Consiglio, L.; D' Ambrosio, N. [INFN - Laboratori Nazionali del Gran Sasso, I-67010 Assergi (AQ) (Italy); De Lellis, G. [INFN - Napoli, I-80125 Napoli (Italy); University of Naples, I-80125 Napoli (Italy); Di Crescenzo, A. [INFN - Napoli, I-80125 Napoli (Italy); Di Marco, N. [INFN - Laboratori Nazionali del Gran Sasso, I-67010 Assergi (AQ) (Italy); Furuya, S.; Hakamata, K.; Ishikawa, M.; Katsuragawa, T.; Kuwabara, K.; Machii, S.; Naka, T. [Nagoya University, J-464-8602 Nagoya (Japan); Pupilli, F. [INFN - Laboratori Nazionali di Frascati, I-00044 Frascati (RM) (Italy); Sirignano, C. [University of Padova and INFN, Padova (PD), 35131 Italy (Italy); Tawara, Y. [Nagoya University, J-464-8602 Nagoya (Japan); Tioukov, V. [INFN - Napoli, I-80125 Napoli (Italy); Umemoto, A.; Yoshimoto, M. [Nagoya University, J-464-8602 Nagoya (Japan)

    2016-07-11

    Nuclear emulsion is a perfect choice for a detector for directional DM search because of its high density and excellent position accuracy. The minimal detectable track length of a recoil nucleus in emulsion is required to be at least 100 nm, making the resolution of conventional optical microscopes insufficient to resolve them. Here we report about the R&D on a super-resolution optical microscope to be used in future directional DM search experiments with nuclear emulsion as a detector media. The microscope will be fully automatic, will use novel image acquisition and analysis techniques, will achieve the spatial resolution of the order of few tens of nm and will be capable of reconstructing recoil tracks with the length of at least 100 nm with high angular resolution.

  10. APES-based procedure for super-resolution SAR imagery with GPU parallel computing

    Science.gov (United States)

    Jia, Weiwei; Xu, Xiaojian; Xu, Guangyao

    2015-10-01

    The amplitude and phase estimation (APES) algorithm is widely used in modern spectral analysis. Compared with conventional Fourier transform (FFT), APES results in lower sidelobes and narrower spectral peaks. However, in synthetic aperture radar (SAR) imaging with large scene, without parallel computation, it is difficult to apply APES directly to super-resolution radar image processing due to its great amount of calculation. In this paper, a procedure is proposed to achieve target extraction and parallel computing of APES for super-resolution SAR imaging. Numerical experimental are carried out on Tesla K40C with 745 MHz GPU clock rate and 2880 CUDA cores. Results of SAR image with GPU parallel computing show that the parallel APES is remarkably more efficient than that of CPU-based with the same super-resolution.

  11. Super-resolution imaging of ciliary microdomains in isolated olfactory sensory neurons using a custom two-color stimulated emission depletion microscope

    Science.gov (United States)

    Meyer, Stephanie A.; Ozbay, Baris N.; Potcoava, Mariana; Salcedo, Ernesto; Restrepo, Diego; Gibson, Emily A.

    2016-06-01

    We performed stimulated emission depletion (STED) imaging of isolated olfactory sensory neurons (OSNs) using a custom-built microscope. The STED microscope uses a single pulsed laser to excite two separate fluorophores, Atto 590 and Atto 647N. A gated timing circuit combined with temporal interleaving of the different color excitation/STED laser pulses filters the two channel detection and greatly minimizes crosstalk. We quantified the instrument resolution to be ˜81 and ˜44 nm, for the Atto 590 and Atto 647N channels. The spatial separation between the two channels was measured to be under 10 nm, well below the resolution limit. The custom-STED microscope is incorporated onto a commercial research microscope allowing brightfield, differential interference contrast, and epifluorescence imaging on the same field of view. We performed immunolabeling of OSNs in mice to image localization of ciliary membrane proteins involved in olfactory transduction. We imaged Ca2+-permeable cyclic nucleotide gated (CNG) channel (Atto 594) and adenylyl cyclase type III (ACIII) (Atto 647N) in distinct cilia. STED imaging resolved well-separated subdiffraction limited clusters for each protein. We quantified the size of each cluster to have a mean value of 88±48 nm and 124±43 nm, for CNG and ACIII, respectively. STED imaging showed separated clusters that were not resolvable in confocal images.

  12. Real-time analysis and visualization for single-molecule based super-resolution microscopy.

    Directory of Open Access Journals (Sweden)

    Adel Kechkar

    Full Text Available Accurate multidimensional localization of isolated fluorescent emitters is a time consuming process in single-molecule based super-resolution microscopy. We demonstrate a functional method for real-time reconstruction with automatic feedback control, without compromising the localization accuracy. Compatible with high frame rates of EM-CCD cameras, it relies on a wavelet segmentation algorithm, together with a mix of CPU/GPU implementation. A combination with Gaussian fitting allows direct access to 3D localization. Automatic feedback control ensures optimal molecule density throughout the acquisition process. With this method, we significantly improve the efficiency and feasibility of localization-based super-resolution microscopy.

  13. Real-time analysis and visualization for single-molecule based super-resolution microscopy.

    Science.gov (United States)

    Kechkar, Adel; Nair, Deepak; Heilemann, Mike; Choquet, Daniel; Sibarita, Jean-Baptiste

    2013-01-01

    Accurate multidimensional localization of isolated fluorescent emitters is a time consuming process in single-molecule based super-resolution microscopy. We demonstrate a functional method for real-time reconstruction with automatic feedback control, without compromising the localization accuracy. Compatible with high frame rates of EM-CCD cameras, it relies on a wavelet segmentation algorithm, together with a mix of CPU/GPU implementation. A combination with Gaussian fitting allows direct access to 3D localization. Automatic feedback control ensures optimal molecule density throughout the acquisition process. With this method, we significantly improve the efficiency and feasibility of localization-based super-resolution microscopy.

  14. Super-resolution algorithm based on sparse representation and wavelet preprocessing for remote sensing imagery

    Science.gov (United States)

    Ren, Ruizhi; Gu, Lingjia; Fu, Haoyang; Sun, Chenglin

    2017-04-01

    An effective super-resolution (SR) algorithm is proposed for actual spectral remote sensing images based on sparse representation and wavelet preprocessing. The proposed SR algorithm mainly consists of dictionary training and image reconstruction. Wavelet preprocessing is used to establish four subbands, i.e., low frequency, horizontal, vertical, and diagonal high frequency, for an input image. As compared to the traditional approaches involving the direct training of image patches, the proposed approach focuses on the training of features derived from these four subbands. The proposed algorithm is verified using different spectral remote sensing images, e.g., moderate-resolution imaging spectroradiometer (MODIS) images with different bands, and the latest Chinese Jilin-1 satellite images with high spatial resolution. According to the visual experimental results obtained from the MODIS remote sensing data, the SR images using the proposed SR algorithm are superior to those using a conventional bicubic interpolation algorithm or traditional SR algorithms without preprocessing. Fusion algorithms, e.g., standard intensity-hue-saturation, principal component analysis, wavelet transform, and the proposed SR algorithms are utilized to merge the multispectral and panchromatic images acquired by the Jilin-1 satellite. The effectiveness of the proposed SR algorithm is assessed by parameters such as peak signal-to-noise ratio, structural similarity index, correlation coefficient, root-mean-square error, relative dimensionless global error in synthesis, relative average spectral error, spectral angle mapper, and the quality index Q4, and its performance is better than that of the standard image fusion algorithms.

  15. Super-resolution imaging with Pontamine Fast Scarlet 4BS enables direct visualization of cellulose orientation and cell connection architecture in onion epidermis cells

    DEFF Research Database (Denmark)

    Liesche, Johannes; Ziomkiewicz, Iwona; Schulz, Alexander

    2013-01-01

    approaches have been developed; in this paper we explore the potential of such approaches for the direct visualization of cellulose. Results To ensure optimal imaging we determined the spectral properties of PFS-stained tissue. PFS was found not to affect cell viability in the onion bulb scale epidermis. We...

  16. Chemical imaging of molecular changes in a hydrated single cell by dynamic secondary ion mass spectrometry and super-resolution microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Xin; Szymanski, Craig J.; Wang, Zhaoying; Zhou, Yufan; Ma, Xiang; Yu, Jiachao; Evans, James E.; Orr, Galya; Liu, Songqin; Zhu, Zihua; Yu, Xiao-Ying

    2016-05-15

    Chemical imaging of single cells is important in capturing biological dynamics. Single cell correlative imaging is realized between structured illumination microscopy (SIM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) using System for Analysis at the Liquid Vacuum Interface (SALVI), a multimodal microreactor. SIM characterized cells and guided subsequent ToF-SIMS analysis. Dynamic ToF-SIMS provided time- and space-resolved cell molecular mapping. Lipid fragments were identified in the hydrated cell membrane. Principal component analysis was used to elucidate chemical component differences among mouse lung cells that uptake zinc oxide nanoparticles. Our results provided submicron chemical spatial mapping for investigations of cell dynamics at the molecular level.

  17. PNL super-resolution algorithm for PMMW imaging in real-time%无源毫米波实时成像PNL超分辨算法

    Institute of Scientific and Technical Information of China (English)

    姜正茂; 杨建宇; 李良超; 郑鑫

    2012-01-01

    投影Landweber (projected Landweber,PL)算法具有良好的频谱外推能力,能够应用于低信噪比降晰图像,是一种适合无源毫米波成像的超分辨算法.但其缺点是收敛速度缓慢,运算量不稳定,难以满足实时性要求.针对实时性问题,提出一种投影Newton-Landweber (projected Newton-Landweber,PNL)超分辨算法,首先使用Newton求逆法得到粗恢复图像,然后运用PL算法对图像做精细恢复.实验结果表明,该算法显著提高了收敛速度,图像恢复质量接近PL算法的性能.%The projected Landweber (PL) algorithm is competent for passive millimeter wave (PMMW) imaging for its spectrum extrapolation performance and low signal to noise ratio images processing ability, however, the slow speed of convergence and the computation instability limit its applications in real-time. A projected Newton-Landweber (PNL) algorithm is proposed to achieve real-time ability on the basis of the PL algorithm. Firstly, a fast Newton inversion algorithm is introduced to get coarse image recovery. Then the PL algorithm is used to get refined image recovery. Experimental results demonstrate that the performance of the PNL algorithm approaches that of the PL algorithm, moreover the computation is stable and far less than the PL algorithm.

  18. Super resolution microscopy of lipid bilayer phases and single molecule kinetic studies on merocyanine 540 bound lipid vesicles

    Science.gov (United States)

    Kuo, Chin-Kuei

    Recently, observing biological process and structural details in live cell became feasible after the introduction of super-resolution microscopy. Super-resolution microscopy by single molecule localization is the method that has commonly been used for such purpose. There are mainly three approaches to it: stochastic optical reconstruction microscopy (STORM), photoactivated localization microscopy (PALM), and point accumulation in nanoscale topology (PAINT). STORM and PALM rely on external laser control and use of photoactivable fluorescent protein or photoswitchable dyes and are technically challenging. The PAINT method relies on the control of thermal reaction rates to enable the switching between bright and dark states. Therefore, many conventional fluorescent probes can be applied in PAINT method and the images denote different information composed of interactions between the probe and its immediate environment by variations of probe parameters. The existence of lipid rafts has been under debates for decades due to the lack of a tool to directly visualize them in live cells. In the thesis, we combine PAINT with a phase sensitive dye, Merocyanine 540, to enable nanoscale observation of phase separation on supported lipid bilayers of mixed liquid/gel phases. The imaging results are presented in the chapter 3. Given that this is the first example of visualization of nanoscale phase separation of lipid bilayers using an optical microscope, we further looked into the kinetics of MC540 monomer dimer equilibrium in lipid bilayers using single molecule intensity time trajectory analysis and polarization dependent imaging. Our finding confirms that perpendicular monomeric MC540 (to the membrance surface) is the emitting speices in our system and it stays fluorescent for roughly 3 ms before it switches off to dark states. This part of analysis is presented in the chapter 4. All the materials, procedures to carry out experiments and data analysis, methods involved in our

  19. Statistical Performance Analysis of a Fast Super-Resolution Technique Using Noisy Translations.

    Science.gov (United States)

    Chainais, Pierre; Leray, Aymeric

    2016-04-01

    The registration process is a key step for super-resolution (SR) reconstruction. More and more devices permit to overcome this bottleneck using a controlled positioning system, e.g., sensor shifting using a piezoelectric stage. This makes possible to acquire multiple images of the same scene at different controlled positions. Then, a fast SR algorithm can be used for efficient SR reconstruction. In this case, the optimal use of r(2) images for a resolution enhancement factor r is generally not enough to obtain satisfying results due to the random inaccuracy of the positioning system. Thus, we propose to take several images around each reference position. We study the error produced by the SR algorithm due to spatial uncertainty as a function of the number of images per position. We obtain a lower bound on the number of images that is necessary to ensure a given error upper bound with probability higher than some desired confidence level. Such results give precious hints to the design of SR systems.

  20. Super-Resolution in Plenoptic Cameras Using FPGAs

    Directory of Open Access Journals (Sweden)

    Joel Pérez

    2014-05-01

    Full Text Available Plenoptic cameras are a new type of sensor that extend the possibilities of current commercial cameras allowing 3D refocusing or the capture of 3D depths. One of the limitations of plenoptic cameras is their limited spatial resolution. In this paper we describe a fast, specialized hardware implementation of a super-resolution algorithm for plenoptic cameras. The algorithm has been designed for field programmable graphic array (FPGA devices using VHDL (very high speed integrated circuit (VHSIC hardware description language. With this technology, we obtain an acceleration of several orders of magnitude using its extremely high-performance signal processing capability through parallelism and pipeline architecture. The system has been developed using generics of the VHDL language. This allows a very versatile and parameterizable system. The system user can easily modify parameters such as data width, number of microlenses of the plenoptic camera, their size and shape, and the super-resolution factor. The speed of the algorithm in FPGA has been successfully compared with the execution using a conventional computer for several image sizes and different 3D refocusing planes.

  1. Super-resolution in plenoptic cameras using FPGAs.

    Science.gov (United States)

    Pérez, Joel; Magdaleno, Eduardo; Pérez, Fernando; Rodríguez, Manuel; Hernández, David; Corrales, Jaime

    2014-05-16

    Plenoptic cameras are a new type of sensor that extend the possibilities of current commercial cameras allowing 3D refocusing or the capture of 3D depths. One of the limitations of plenoptic cameras is their limited spatial resolution. In this paper we describe a fast, specialized hardware implementation of a super-resolution algorithm for plenoptic cameras. The algorithm has been designed for field programmable graphic array (FPGA) devices using VHDL (very high speed integrated circuit (VHSIC) hardware description language). With this technology, we obtain an acceleration of several orders of magnitude using its extremely high-performance signal processing capability through parallelism and pipeline architecture. The system has been developed using generics of the VHDL language. This allows a very versatile and parameterizable system. The system user can easily modify parameters such as data width, number of microlenses of the plenoptic camera, their size and shape, and the super-resolution factor. The speed of the algorithm in FPGA has been successfully compared with the execution using a conventional computer for several image sizes and different 3D refocusing planes.

  2. Unique Microstructural Changes in the Brain Associated with Urological Chronic Pelvic Pain Syndrome (UCPPS) Revealed by Diffusion Tensor MRI, Super-Resolution Track Density Imaging, and Statistical Parameter Mapping: A MAPP Network Neuroimaging Study.

    Science.gov (United States)

    Woodworth, Davis; Mayer, Emeran; Leu, Kevin; Ashe-McNalley, Cody; Naliboff, Bruce D; Labus, Jennifer S; Tillisch, Kirsten; Kutch, Jason J; Farmer, Melissa A; Apkarian, A Vania; Johnson, Kevin A; Mackey, Sean C; Ness, Timothy J; Landis, J Richard; Deutsch, Georg; Harris, Richard E; Clauw, Daniel J; Mullins, Chris; Ellingson, Benjamin M

    2015-01-01

    Studies have suggested chronic pain syndromes are associated with neural reorganization in specific regions associated with perception, processing, and integration of pain. Urological chronic pelvic pain syndrome (UCPPS) represents a collection of pain syndromes characterized by pelvic pain, namely Chronic Prostatitis/Chronic Pelvic Pain Syndrome (CP/CPPS) and Interstitial Cystitis/Painful Bladder Syndrome (IC/PBS), that are both poorly understood in their pathophysiology, and treated ineffectively. We hypothesized patients with UCPPS may have microstructural differences in the brain compared with healthy control subjects (HCs), as well as patients with irritable bowel syndrome (IBS), a common gastrointestinal pain disorder. In the current study we performed population-based voxel-wise DTI and super-resolution track density imaging (TDI) in a large, two-center sample of phenotyped patients from the multicenter cohort with UCPPS (N = 45), IBS (N = 39), and HCs (N = 56) as part of the MAPP Research Network. Compared with HCs, UCPPS patients had lower fractional anisotropy (FA), lower generalized anisotropy (GA), lower track density, and higher mean diffusivity (MD) in brain regions commonly associated with perception and integration of pain information. Results also showed significant differences in specific anatomical regions in UCPPS patients when compared with IBS patients, consistent with microstructural alterations specific to UCPPS. While IBS patients showed clear sex related differences in FA, MD, GA, and track density consistent with previous reports, few such differences were observed in UCPPS patients. Heat maps illustrating the correlation between specific regions of interest and various pain and urinary symptom scores showed clustering of significant associations along the cortico-basal ganglia-thalamic-cortical loop associated with pain integration, modulation, and perception. Together, results suggest patients with UCPPS have extensive microstructural

  3. A super-resolution approach for uncertainty estimation of PIV measurements

    NARCIS (Netherlands)

    Sciacchitano, A.; Wieneke , B.; Scarano, F.

    2012-01-01

    A super-resolution approach is proposed for the a posteriori uncertainty estimation of PIV measurements. The measured velocity field is employed to determine the displacement of individual particle images. A disparity set is built from the residual distance between paired particle images of

  4. Movable thin films with embedded high-index microspheres for super-resolution microscopy

    CERN Document Server

    Allen, Kenneth W; Li, Yangcheng; Limberopoulos, Nicholaos I; Walker, Dennis E; Urbas, Augustine M; Liberman, Vladimir; Astratov, Vasily N

    2015-01-01

    Microsphere-assisted imaging emerged as a surprisingly simple way of achieving optical super-resolution imaging. In this work, we use movable PDMS thin films with embedded high-index barium titanate glass microspheres a sample scanning capability was developed, thus removing the main limitation of this technology based on its small field-of-view.

  5. Pseudo super-resolution for improved calcification characterization for cone beam breast CT (CBBCT)

    Science.gov (United States)

    Liu, Jiangkun; Ning, Ruola; Cai, Weixing

    2010-04-01

    Cone Beam Breast CT imaging (CBBCT) is a promising tool for diagnosis of breast tumors and calcifications. However, as the sizes of calcifications in early stages are very small, it is not easy to distinguish them from background tissues because of the relatively high noise level. Therefore, it is necessary to enhance the visualization of calcifications for accurate detection. In this work, the Papoulis-Gerchberg (PG) method was introduced and modified to improve calcification characterization. PG method is an iterative algorithm of signal extrapolation and has been demonstrated to be very effective in image restoration like super-resolution (SR) and inpainting. The projection images were zoomed by bicubic interpolation method, then the modified PG method were applied to improve the image quality. The reconstruction from processed projection images showed that this approach can effectively improve the image quality by improving the Modulation Transfer Function (MTF) with a limited increase in noise level. As a result, the detectability of calcifications was improved in CBBCT images.

  6. Near-field focusing of dielectric microspheres: Super-resolution and field-invariant parameter scaling

    CERN Document Server

    Wang, Zengbo

    2013-01-01

    Optical near-fields of small dielectric particles are of particular importance and interests for nanoscale optical engineering such as field localization, fabrication, characterization, sensing and imaging. This paper represents a systematic investigation on the focusing characteristics (focal length, field enhancement, spot size) for a given refractive-index microsphere (n=1.6) with a varying size parameter pisuper-resolution foci were analysised in details. Particularly strong super-resolution foci with spot size falling at least 50% below the diffraction limit were identified and possible new applications were suggested. To understand how the super-resolution conditions could be scaled to other refractive-index particles or background medium, principles of field-invariant parameters scaling (size, wavelength, and refractive index) were revealed and demonstrated with example cases. It offers the new freedom to choose particles and background medium to gai...

  7. Seeing the forest tree by tree: super-resolution light microscopy meets the neurosciences.

    Science.gov (United States)

    Maglione, Marta; Sigrist, Stephan J

    2013-07-01

    Light microscopy can be applied in vivo and can sample large tissue volumes, features crucial for the study of single neurons and neural circuits. However, light microscopy per se is diffraction-limited in resolution, and the substructure of core signaling compartments of neuronal circuits--axons, presynaptic active zones, postsynaptic densities and dendritic spines-can be only insufficiently characterized by standard light microscopy. Recently, several forms of super-resolution light microscopy breaking the diffraction-imposed resolution limit have started to allow highly resolved, dynamic imaging in the cell-biologically highly relevant 10-100 nanometer range ('mesoscale'). New, sometimes surprising answers concerning how protein mobility and protein architectures shape neuronal communication have already emerged. Here we start by briefly introducing super-resolution microscopy techniques, before we describe their use in the analysis of neuronal compartments. We conclude with long-term prospects for super-resolution light microscopy in the molecular and cellular neurosciences.

  8. Follow-up review: recent progress in the development of super-resolution optical microscopy.

    Science.gov (United States)

    Fujita, Katsumasa

    2016-08-01

    The advent of super-resolution microscopy brought a huge impact to various research fields ranging from the fundamental science to medical and industrial applications. The technological development is still ongoing with involving different scientific disciplines and often changing the standard of optical imaging. In this review, I would like to introduce the recent research progress in super-resolution microscopy as a follow-up for the featured issue in Microscopy (Vol. 64, No. 4, 2015) with discussions especially on the current trends and new directions in the technological development.

  9. Super-resolution optical microscopy based on scannable cantilever-combined microsphere.

    Science.gov (United States)

    Wang, Shuying; Zhang, Dongxian; Zhang, Haijun; Han, Xu; Xu, Rui

    2015-12-01

    We report an ingenious method of super-resolution optical microscopy utilizing scannable cantilever-combined microsphere. By scanning the microsphere over the sample surface in a cantilever-combined microsphere-sample contact state, super-resolution images can be acquired at arbitrary sample regions through near-field information collection by the microsphere. In addition, such a state can effectively reduce the possibility of breaking the cantilever and damaging the microsphere or sample surface. This work has developed a new method and technique of sub-diffraction-limit optical microscopy, and can be practically applied in various fields of micro/nanoscopy.

  10. A NOVEL SUPER-RESOLUTION BEAMFORMING ALGORITHM

    Institute of Scientific and Technical Information of China (English)

    Guo Li; Guo Yan; Li Ning

    2007-01-01

    A novel simply-structured hybrid smart antenna system suitable to be used in ad-hoc network terminals is proposed in this letter.The super-resolution beamforming algorithm is also presented based on the system using DOA estimation results.The algorithm can switch the beamforming to the direction of the expected signal and get the best transmitting performance after the pre-beamforming of the Butler matrix.The shifting value formulas are presented to obtain the best SNR when there is no interfering signal and to acquire the highest Signal to Interference Ratio(SIR)as there is one interfering signal.When there are more than one interfering signals,the pre-beamforming feature of the Butler matrix Can also suppress the interfering signals.Simulation results verified the algorithm.

  11. A Super-Resolution Laser Altimetry Concept

    Science.gov (United States)

    Lu, Xiaomei; Hu, Yongxiang; Trepte, Charles; Liu, Zhaoyan

    2014-01-01

    A super-resolution laser altimetry technique has been proposed to provide improved lidar altimetry from Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) lidar data, and it is applicable to other similar atmospheric profiling lidar with low-pass filters. To achieve high altimetry resolution, the new technique relies on an empirical relationship between the peak signal ratio and the distance between land surface and the peak signal range bin center, which is directly derived from the CALIPSO lidar measurements and does not require the CALIPSO's transient response. The CALIPSO surface elevation results in Northern America retrieved by the new technique agree with the National Elevation Database high resolution elevation maps, and the comparisons suggest that the precision of the technique is much better than 1.4 m. The preliminary data product of land surface elevation retrieved by the new technique from CALIPSO lidar measurements is available to the altimetry community for evaluation.

  12. Temporal super resolution using variational methods

    DEFF Research Database (Denmark)

    Keller, Sune Høgild; Lauze, Francois Bernard; Nielsen, Mads

    2010-01-01

    and intensities are calculated simultaneously in a multiresolution setting. A frame doubling version of our algorithm is implemented and in testing it, we focus on making the motion of high contrast edges to seem smooth and thus reestablish the illusion of motion pictures.......Temporal super resolution (TSR) is the ability to convert video from one frame rate to another and is as such a key functionality in modern video processing systems. A higher frame rate than what is recorded is desired for high frame rate displays, for super slow-motion, and for video/film format...... conversion (where also lower frame rates than recorded is sometimes required). We discuss and detail the requirements imposed by the human visual system (HVS) on TSR algorithms, of which the need for (apparent) fluid motion, also known as the phi-effect, is the principal one. This problem is typically...

  13. High resolution image reconstruction from projection of low resolution images differing in subpixel shifts

    Science.gov (United States)

    Mareboyana, Manohar; Le Moigne, Jacqueline; Bennett, Jerome

    2016-05-01

    In this paper, we demonstrate simple algorithms that project low resolution (LR) images differing in subpixel shifts on a high resolution (HR) also called super resolution (SR) grid. The algorithms are very effective in accuracy as well as time efficiency. A number of spatial interpolation techniques using nearest neighbor, inverse-distance weighted averages, Radial Basis Functions (RBF) etc. are used in projection. For best accuracy of reconstructing SR image by a factor of two requires four LR images differing in four independent subpixel shifts. The algorithm has two steps: i) registration of low resolution images and (ii) shifting the low resolution images to align with reference image and projecting them on high resolution grid based on the shifts of each low resolution image using different interpolation techniques. Experiments are conducted by simulating low resolution images by subpixel shifts and subsampling of original high resolution image and the reconstructing the high resolution images from the simulated low resolution images. The results of accuracy of reconstruction are compared by using mean squared error measure between original high resolution image and reconstructed image. The algorithm was tested on remote sensing images and found to outperform previously proposed techniques such as Iterative Back Projection algorithm (IBP), Maximum Likelihood (ML) algorithms. The algorithms are robust and are not overly sensitive to the registration inaccuracies.

  14. High Resolution Image Reconstruction from Projection of Low Resolution Images DIffering in Subpixel Shifts

    Science.gov (United States)

    Mareboyana, Manohar; Le Moigne-Stewart, Jacqueline; Bennett, Jerome

    2016-01-01

    In this paper, we demonstrate a simple algorithm that projects low resolution (LR) images differing in subpixel shifts on a high resolution (HR) also called super resolution (SR) grid. The algorithm is very effective in accuracy as well as time efficiency. A number of spatial interpolation techniques using nearest neighbor, inverse-distance weighted averages, Radial Basis Functions (RBF) etc. used in projection yield comparable results. For best accuracy of reconstructing SR image by a factor of two requires four LR images differing in four independent subpixel shifts. The algorithm has two steps: i) registration of low resolution images and (ii) shifting the low resolution images to align with reference image and projecting them on high resolution grid based on the shifts of each low resolution image using different interpolation techniques. Experiments are conducted by simulating low resolution images by subpixel shifts and subsampling of original high resolution image and the reconstructing the high resolution images from the simulated low resolution images. The results of accuracy of reconstruction are compared by using mean squared error measure between original high resolution image and reconstructed image. The algorithm was tested on remote sensing images and found to outperform previously proposed techniques such as Iterative Back Projection algorithm (IBP), Maximum Likelihood (ML), and Maximum a posterior (MAP) algorithms. The algorithm is robust and is not overly sensitive to the registration inaccuracies.

  15. Integrating super resolution mapping and SEBS modeling for evapotranspiration mapping at the field scale

    NARCIS (Netherlands)

    Mahour, M.; Stein, A.; Sharifi, M.A.; Tolpekin, V.A.

    2015-01-01

    This study addresses the use of super resolution mapping (SRM) for precision agriculture. SRM was applied to a high resolution GeoEye image of a vineyard in Iran with the aim to determine the actual evapotranspiration (AET) and potential evapotranspiration (PET). The Surface Energy Balance System

  16. A stochastically fully connected conditional random field framework for super resolution OCT

    Science.gov (United States)

    Boroomand, A.; Tan, B.; Wong, A.; Bizheva, K.

    2017-02-01

    A number of factors can degrade the resolution and contrast of OCT images, such as: (1) changes of the OCT pointspread function (PSF) resulting from wavelength dependent scattering and absorption of light along the imaging depth (2) speckle noise, as well as (3) motion artifacts. We propose a new Super Resolution OCT (SR OCT) imaging framework that takes advantage of a Stochastically Fully Connected Conditional Random Field (SF-CRF) model to generate a Super Resolved OCT (SR OCT) image of higher quality from a set of Low-Resolution OCT (LR OCT) images. The proposed SF-CRF SR OCT imaging is able to simultaneously compensate for all of the factors mentioned above, that degrade the OCT image quality, using a unified computational framework. The proposed SF-CRF SR OCT imaging framework was tested on a set of simulated LR human retinal OCT images generated from a high resolution, high contrast retinal image, and on a set of in-vivo, high resolution, high contrast rat retinal OCT images. The reconstructed SR OCT images show considerably higher spatial resolution, less speckle noise and higher contrast compared to other tested methods. Visual assessment of the results demonstrated the usefulness of the proposed approach in better preservation of fine details and structures of the imaged sample, retaining biological tissue boundaries while reducing speckle noise using a unified computational framework. Quantitative evaluation using both Contrast to Noise Ratio (CNR) and Edge Preservation (EP) parameter also showed superior performance of the proposed SF-CRF SR OCT approach compared to other image processing approaches.

  17. Viewing-distance aware super-resolution for high-definition display.

    Science.gov (United States)

    Shen, Chih-Tsung; Liu, Hung-Hsun; Yang, Ming-Hsuan; Hung, Yi-Ping; Pei, Soo-Chang

    2015-01-01

    In this paper, we propose a novel algorithm for high-definition displays to enlarge low-resolution images while maintaining perceptual constancy (i.e., the same field-of-view, perceptual blur radius, and the retinal image size in viewer's eyes). We model the relationship between a viewer and a display by considering two main aspects of visual perception, i.e., scaling factor and perceptual blur radius. As long as we enlarge an image while adjust its image blur levels on the display, we can maintain viewer's perceptual constancy. We show that the scaling factor should be set in proportion to the viewing distance and the blur levels on the display should be adjusted according to the focal length of a viewer. Toward this, we first refer to edge directions to interpolate a low-resolution image with the increasing of viewing distance and the scaling factor. After images are interpolated, we utilize a local contrast to estimate the spatially varying image blur levels of the interpolated image. We then further adjust the image blur levels using a parametric deblurring method, which combines L1 as well as L2 reconstruction errors, and Tikhonov with total variation regularization terms. By taking these factors into account, high-resolution images adaptive to viewing distance on a display can be generated. Experimental results on both natural image metric and user subjective studies across image scales demonstrate that the proposed super-resolution algorithm for high-definition displays performs favorably against the state-of-the-art methods.

  18. Novel optical super-resolution pattern with upright edges diffracted by a tiny thin aperture.

    Science.gov (United States)

    Wu, Jiu Hui; Zhou, Kejiang

    2015-08-24

    In the past decade numerous efforts have been concentrated to achieve optical imaging resolution beyond the diffraction limit. In this letter a thin microcavity theory of near-field optics is proposed by using the power flow theorem firstly. According to this theory, the near-field optical diffraction from a tiny aperture whose diameter is less than one-tenth incident wavelength embedded in a thin conducting film is investigated by considering this tiny aperture as a thin nanocavity. It is very surprising that there exists a kind of novel super-resolution diffraction patterns showing resolution better than λ/80 (λ is the incident wavelength), which is revealed for the first time to our knowledge in this letter. The mechanism that has allowed the imaging with this kind of super-resolution patterns is due to the interaction between the incident wave and the thin nanocavity with a complex wavenumber. More precisely, these super-resolution patterns with discontinuous upright peaks are formed by one or three items of the integration series about the cylindrical waves according to our simulation results. This novel optical super-resolution with upright edges by using the thin microcavity theory presented in the study could have potential applications in the future semiconductor lithography process, nano-size laser-drilling technology, microscopy, optical storage, optical switch, and optical information processing.

  19. Three-dimensional nanometre localization of nanoparticles to enhance super-resolution microscopy.

    Science.gov (United States)

    Bon, Pierre; Bourg, Nicolas; Lécart, Sandrine; Monneret, Serge; Fort, Emmanuel; Wenger, Jérôme; Lévêque-Fort, Sandrine

    2015-07-27

    Meeting the nanometre resolution promised by super-resolution microscopy techniques (pointillist: PALM, STORM, scanning: STED) requires stabilizing the sample drifts in real time during the whole acquisition process. Metal nanoparticles are excellent probes to track the lateral drifts as they provide crisp and photostable information. However, achieving nanometre axial super-localization is still a major challenge, as diffraction imposes large depths-of-fields. Here we demonstrate fast full three-dimensional nanometre super-localization of gold nanoparticles through simultaneous intensity and phase imaging with a wavefront-sensing camera based on quadriwave lateral shearing interferometry. We show how to combine the intensity and phase information to provide the key to the third axial dimension. Presently, we demonstrate even in the occurrence of large three-dimensional fluctuations of several microns, unprecedented sub-nanometre localization accuracies down to 0.7 nm in lateral and 2.7 nm in axial directions at 50 frames per second. We demonstrate that nanoscale stabilization greatly enhances the image quality and resolution in direct stochastic optical reconstruction microscopy imaging.

  20. Membrane distribution of the glycine receptor α3 studied by optical super-resolution microscopy.

    Science.gov (United States)

    Notelaers, Kristof; Rocha, Susana; Paesen, Rik; Swinnen, Nina; Vangindertael, Jeroen; Meier, Jochen C; Rigo, Jean-Michel; Ameloot, Marcel; Hofkens, Johan

    2014-07-01

    In this study, the effect of glycine receptor (GlyR) α3 alternative RNA splicing on the distribution of receptors in the membrane of human embryonic kidney 293 cells is investigated using optical super-resolution microscopy. Direct stochastic optical reconstruction microscopy is used to image both α3K and α3L splice variants individually and together using single- and dual-color imaging. Pair correlation analysis is used to extract quantitative measures from the resulting images. Autocorrelation analysis of the individually expressed variants reveals clustering of both variants, yet with differing properties. The cluster size is increased for α3L compared to α3K (mean radius 92 ± 4 and 56 ± 3 nm, respectively), yet an even bigger difference is found in the cluster density (9,870 ± 1,433 and 1,747 ± 200 μm(-2), respectively). Furthermore, cross-correlation analysis revealed that upon co-expression, clusters colocalize on the same spatial scales as for individually expressed receptors (mean co-cluster radius 94 ± 6 nm). These results demonstrate that RNA splicing determines GlyR α3 membrane distribution, which has consequences for neuronal GlyR physiology and function.

  1. Real-Time analysis and visualization for single-molecule based super-resolution microscopy

    OpenAIRE

    Kechkar, Adel; Nair, Deepak; Heilemann, Mike; Choquet, Daniel; Sibarita, Jean-Baptiste

    2013-01-01

    Accurate multidimensional localization of isolated fluorescent emitters is a time consuming process in single-molecule based super-resolution microscopy. We demonstrate a functional method for real-time reconstruction with automatic feedback control, without compromising the localization accuracy. Compatible with high frame rates of EM-CCD cameras, it relies on a wavelet segmentation algorithm, together with a mix of CPU/GPU implementation. A combination with Gaussian fitting allows direct ac...

  2. Real-Time Analysis and Visualization for Single-Molecule Based Super-Resolution Microscopy

    OpenAIRE

    Kechkar, Adel; Nair, Deepak; Heilemann, Mike; Choquet, Daniel; Sibarita, Jean-Baptiste

    2013-01-01

    Accurate multidimensional localization of isolated fluorescent emitters is a time consuming process in single-molecule based super-resolution microscopy. We demonstrate a functional method for real-time reconstruction with automatic feedback control, without compromising the localization accuracy. Compatible with high frame rates of EM-CCD cameras, it relies on a wavelet segmentation algorithm, together with a mix of CPU/GPU implementation. A combination with Gaussian fitting allows direct ac...

  3. Noise-Compensating Algebraic Reconstruction for a Rotational Modulation Gamma-Ray Imager

    CERN Document Server

    Budden, B; Cherry, M L

    2010-01-01

    Imaging in the hard X-ray/gamma ray spectrum requires techniques which involve the spatial or temporal modulation of incident photons. A deconvolution of the observed data is then implemented to reconstruct an image of the object scene. In practice, noise in the data contributes to poor quality in the reconstructed image. The use of statistical deconvolution techniques is a common practice in astronomical and medical physics applications to compensate for this noise. In the case of the Rotational Modulator (RM), however, an algebraic technique is required to achieve "super-resolution". We present the RM and the advantages it offers over more traditional approaches, and describe an image reconstruction technique based on an algebraic solution with compensation for noise.

  4. Augmented Likelihood Image Reconstruction.

    Science.gov (United States)

    Stille, Maik; Kleine, Matthias; Hägele, Julian; Barkhausen, Jörg; Buzug, Thorsten M

    2016-01-01

    The presence of high-density objects remains an open problem in medical CT imaging. Data of projections passing through objects of high density, such as metal implants, are dominated by noise and are highly affected by beam hardening and scatter. Reconstructed images become less diagnostically conclusive because of pronounced artifacts that manifest as dark and bright streaks. A new reconstruction algorithm is proposed with the aim to reduce these artifacts by incorporating information about shape and known attenuation coefficients of a metal implant. Image reconstruction is considered as a variational optimization problem. The afore-mentioned prior knowledge is introduced in terms of equality constraints. An augmented Lagrangian approach is adapted in order to minimize the associated log-likelihood function for transmission CT. During iterations, temporally appearing artifacts are reduced with a bilateral filter and new projection values are calculated, which are used later on for the reconstruction. A detailed evaluation in cooperation with radiologists is performed on software and hardware phantoms, as well as on clinically relevant patient data of subjects with various metal implants. Results show that the proposed reconstruction algorithm is able to outperform contemporary metal artifact reduction methods such as normalized metal artifact reduction.

  5. Least-squares based iterative multipath super-resolution technique

    CERN Document Server

    Nam, Wooseok

    2011-01-01

    In this paper, we study the problem of multipath channel estimation for direct sequence spread spectrum signals. To resolve multipath components arriving within a short interval, we propose a new algorithm called the least-squares based iterative multipath super-resolution (LIMS). Compared to conventional super-resolution techniques, such as the multiple signal classification (MUSIC) and the estimation of signal parameters via rotation invariance techniques (ESPRIT), our algorithm has several appealing features. In particular, even in critical situations where the conventional super-resolution techniques are not very powerful due to limited data or the correlation between path coefficients, the LIMS algorithm can produce successful results. In addition, due to its iterative nature, the LIMS algorithm is suitable for recursive multipath tracking, whereas the conventional super-resolution techniques may not be. Through numerical simulations, we show that the LIMS algorithm can resolve the first arrival path amo...

  6. Robust super-resolution by minimizing a Gaussian-weighted L{sub 2} error norm

    Energy Technology Data Exchange (ETDEWEB)

    Pham, T Q [Canon Information Systems Research Australia, 1 Thomas Holt drive, North Ryde, NSW 2113 (Australia); Vliet, L J v [Quantitative Imaging Group, Department of Imaging Science and Technology, Faculty of Applied Sciences, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands); Schutte, K [Electro-Optics Group, TNO Defence, Security and Safety, P. O. Box 96864, 2509 JG The Hague (Netherlands)

    2008-07-15

    Super-resolution restoration is the problem of restoring a high-resolution scene from multiple degraded low-resolution images under motion. Due to imaging blur and noise, this problem is ill-posed. Additional constraints such as smoothness of the solution via regularization is often required to obtain a stable solution. While adding a regularization term to the cost function is a standard practice in image restoration, we propose a restoration algorithm that does not require this extra regularization term. The robustness of the algorithm is achieved by a Gaussian-weighted L{sub 2}-norm in the data misfit term that does not response to intensity outliers. With the outliers suppressed, our solution behaves similarly to a maximum-likelihood solution in the presence of Gaussian noise. The effectiveness of our algorithm is demonstrated with super-resolution restoration of real infrared image sequences under severe aliasing and intensity outliers.

  7. Super-resolution for imagery from integrated microgrid polarimeters.

    Science.gov (United States)

    Hardie, Russell C; LeMaster, Daniel A; Ratliff, Bradley M

    2011-07-04

    Imagery from microgrid polarimeters is obtained by using a mosaic of pixel-wise micropolarizers on a focal plane array (FPA). Each distinct polarization image is obtained by subsampling the full FPA image. Thus, the effective pixel pitch for each polarization channel is increased and the sampling frequency is decreased. As a result, aliasing artifacts from such undersampling can corrupt the true polarization content of the scene. Here we present the first multi-channel multi-frame super-resolution (SR) algorithms designed specifically for the problem of image restoration in microgrid polarization imagers. These SR algorithms can be used to address aliasing and other degradations, without sacrificing field of view or compromising optical resolution with an anti-aliasing filter. The new SR methods are designed to exploit correlation between the polarimetric channels. One of the new SR algorithms uses a form of regularized least squares and has an iterative solution. The other is based on the faster adaptive Wiener filter SR method. We demonstrate that the new multi-channel SR algorithms are capable of providing significant enhancement of polarimetric imagery and that they outperform their independent channel counterparts.

  8. A Novel Method for Brain MRI Super-resolution by Wavelet-based POCS and Adaptive Edge Zoom

    Directory of Open Access Journals (Sweden)

    N. Hema Rajini,

    2010-10-01

    Full Text Available This paper aims to make the super-resolution of a high-resolution image from a sequence of low-resolution frames containing non-stationary objects. The challenges of making super-resolution image, like unavoidable smoothing effects, introduction of artifacts, computational efficiency in time and computational efficiency in memory requirements, are considered and a novel method is proposed to solve these problems. The proposed method handles the super-resolution process by using wavelet based projection-onto-convex-set with adaptive edge zoom algorithm. Adaptive edge zoom algorithm address the problem of producing enlarged picture from the given digital image. Wavelet based projection-onto-convex-set method is usedto enhance spatial resolution of MRI brain images from a temporal sequence. This method produces more clarity with high peak signal-to-noise ratio.

  9. SIMcheck: a Toolbox for Successful Super-resolution Structured Illumination Microscopy

    OpenAIRE

    Graeme Ball; Justin Demmerle; Rainer Kaufmann; Ilan Davis; Dobbie, Ian M.; Lothar Schermelleh

    2015-01-01

    Three-dimensional structured illumination microscopy (3D-SIM) is a versatile and accessible method for super-resolution fluorescence imaging, but generating high-quality data is challenging, particularly for non-specialist users. We present SIMcheck, a suite of ImageJ plugins enabling users to identify and avoid common problems with 3D-SIM data, and assess resolution and data quality through objective control parameters. Additionally, SIMcheck provides advanced calibration tools and utilities...

  10. Supporting lander and rover operation: a novel super-resolution restoration technique

    Science.gov (United States)

    Tao, Yu; Muller, Jan-Peter

    2015-04-01

    Higher resolution imaging data is always desirable to critical rover engineering operations, such as landing site selection, path planning, and optical localisation. For current Mars missions, 25cm HiRISE images have been widely used by the MER & MSL engineering team for rover path planning and location registration/adjustment. However, 25cm is not high enough resolution to be able to view individual rocks (≤2m in size) or visualise the types of sedimentary features that rover onboard cameras might observe. Nevertheless, due to various physical constraints (e.g. telescope size and mass) from the imaging instruments themselves, one needs to be able to tradeoff spatial resolution and bandwidth. This means that future imaging systems are likely to be limited to resolve features larger than 25cm. We have developed a novel super-resolution algorithm/pipeline to be able to restore higher resolution image from the non-redundant sub-pixel information contained in multiple lower resolution raw images [Tao & Muller 2015]. We will demonstrate with experiments performed using 5-10 overlapped 25cm HiRISE images for MER-A, MER-B & MSL to resolve 5-10cm super resolution images that can be directly compared to rover imagery at a range of 5 metres from the rover cameras but in our case can be used to visualise features many kilometres away from the actual rover traverse. We will demonstrate how these super-resolution images together with image understanding software can be used to quantify rock size-frequency distributions as well as measure sedimentary rock layers for several critical sites for comparison with rover orthorectified image mosaic to demonstrate optimality of using our super-resolution resolved image to better support future lander and rover operation in future. We present the potential of super-resolution for virtual exploration to the ˜400 HiRISE areas which have been viewed 5 or more times and the potential application of this technique to all of the ESA Exo

  11. Filling the gap: adding super-resolution to array tomography for correlated ultrastructural and molecular identification of electrical synapses at the C. elegans connectome.

    Science.gov (United States)

    Markert, Sebastian Matthias; Britz, Sebastian; Proppert, Sven; Lang, Marietta; Witvliet, Daniel; Mulcahy, Ben; Sauer, Markus; Zhen, Mei; Bessereau, Jean-Louis; Stigloher, Christian

    2016-10-01

    Correlating molecular labeling at the ultrastructural level with high confidence remains challenging. Array tomography (AT) allows for a combination of fluorescence and electron microscopy (EM) to visualize subcellular protein localization on serial EM sections. Here, we describe an application for AT that combines near-native tissue preservation via high-pressure freezing and freeze substitution with super-resolution light microscopy and high-resolution scanning electron microscopy (SEM) analysis on the same section. We established protocols that combine SEM with structured illumination microscopy (SIM) and direct stochastic optical reconstruction microscopy (dSTORM). We devised a method for easy, precise, and unbiased correlation of EM images and super-resolution imaging data using endogenous cellular landmarks and freely available image processing software. We demonstrate that these methods allow us to identify and label gap junctions in Caenorhabditis elegans with precision and confidence, and imaging of even smaller structures is feasible. With the emergence of connectomics, these methods will allow us to fill in the gap-acquiring the correlated ultrastructural and molecular identity of electrical synapses.

  12. In vivo super-resolution RESOLFT microscopy of Drosophila melanogaster

    Science.gov (United States)

    Schnorrenberg, Sebastian; Grotjohann, Tim; Vorbrüggen, Gerd; Herzig, Alf; Hell, Stefan W; Jakobs, Stefan

    2016-01-01

    Despite remarkable developments in diffraction unlimited super-resolution microscopy, in vivo nanoscopy of tissues and model organisms is still not satisfactorily established and rarely realized. RESOLFT nanoscopy is particularly suited for live cell imaging because it requires relatively low light levels to overcome the diffraction barrier. Previously, we introduced the reversibly switchable fluorescent protein rsEGFP2, which facilitated fast RESOLFT nanoscopy (Grotjohann et al., 2012). In that study, as in most other nanoscopy studies, only cultivated single cells were analyzed. Here, we report on the use of rsEGFP2 for live-cell RESOLFT nanoscopy of sub-cellular structures of intact Drosophila melanogaster larvae and of resected tissues. We generated flies expressing fusion proteins of alpha-tubulin and rsEGFP2 highlighting the microtubule cytoskeleton in all cells. By focusing through the intact larval cuticle, we achieved lateral resolution of <60 nm. RESOLFT nanoscopy enabled time-lapse recordings comprising 40 images and facilitated recordings 40 µm deep within fly tissues. DOI: http://dx.doi.org/10.7554/eLife.15567.001 PMID:27355614

  13. Super-resolution mbPAINT for optical localization of single-stranded DNA.

    Science.gov (United States)

    Chen, Jixin; Bremauntz, Alberto; Kisley, Lydia; Shuang, Bo; Landes, Christy F

    2013-10-09

    We demonstrate the application of superlocalization microscopy to identify sequence-specific portions of single-stranded DNA (ssDNA) with sequence resolution of 50 nucleotides, corresponding to a spatial resolution of 30 nm. Super-resolution imaging was achieved using a variation of a single-molecule localization method, termed as "motion blur" point accumulation for imaging in nanoscale topography (mbPAINT). The target ssDNA molecules were immobilized on the substrate. Short, dye-labeled, and complementary ssDNA molecules stochastically bound to the target ssDNA, with repeated binding events allowing super-resolution. Sequence specificity was demonstrated via the use of a control, noncomplementary probe. The results support the possibility of employing relatively inexpensive short ssDNAs to identify gene sequence specificity with improved resolution in comparison to the existing methods.

  14. Fundamental limits of super-resolution microscopy by dielectric microspheres and microfibers

    Science.gov (United States)

    Astratov, V. N.; Maslov, A. V.; Allen, K. W.; Farahi, N.; Li, Y.; Brettin, A.; Limberopoulos, N. I.; Walker, D. E.; Urbas, A. M.; Liberman, V.; Rothschild, M.

    2016-03-01

    In recent years, optical super-resolution by microspheres and microfibers emerged as a new paradigm in nanoscale label-free and fluorescence imaging. However, the mechanisms of such imaging are still not completely understood and the resolution values are debated. In this work, the fundamental limits of super-resolution imaging by high-index barium-titanate microspheres and silica microfibers are studied using nanoplasmonic arrays made from Au and Al. A rigorous resolution analysis is developed based on the object's convolution with the point-spread function that has width well below the conventional (~λ/2) diffraction limit, where λ is the illumination wavelength. A resolution of ~λ/6-λ/7 is demonstrated for imaging nanoplasmonic arrays by microspheres. Similar resolution was demonstrated for microfibers in the direction perpendicular to the fiber axis with hundreds of times larger field-of-view in comparison to microspheres. Using numerical solution of Maxwell's equations, it is shown that extraordinary close point objects can be resolved in the far field, if they oscillate out of phase. Possible super-resolution using resonant excitation of whispering gallery modes is also studied.

  15. Towards the Use of Super-Resolution in Biomedical Systems-on-Chip

    Directory of Open Access Journals (Sweden)

    Gustavo M. Callico

    2013-08-01

    Full Text Available Super-resolution is a smart process capable of generating images with a higher resolution than the resolution of the sensor used to acquire the images. Due to this reason, it has acquired a significant relevance within the medical community during the last years, especially for those specialties closely related with the medical imaging field. However, the super-resolution algorithms used in this field are normally extremely complex and thus, they tend to be slow and difficult to be implemented in hardware. This paper proposes a new super-resolution algorithm for video sequences that, while maintaining excellent levels in the objective and subjective visual quality of the processed images, presents a reduced computational cost due to its non-iterative nature and the use of fast motion estimation techniques. Additionally, the algorithm has been successfully implemented in a low-cost hardware platform, which guarantees the viability of the proposed solution for real-time biomedical systems-on-chip.

  16. Super-resolution infrared time measurement method based on target dynamic characteristics

    Science.gov (United States)

    Li, Bin; Hu, Qiuping; Tang, Zili; Zhang, Sanxi; Zhang, Hua; Yue, Peng; Liu, Biao

    2016-10-01

    High precision time control in the use of weapons and equipment is an important part of product design and development. In order to satisfy the data acquisition requirement of high accuracy and reliability in the rapid flight process, the super-resolution time measurement method based on target dynamic characteristics was put forward and proved by the cabin opening time measurement experiment. First, the changes of explosion pressure wave and image in the cabin opening process were analyzed in detail. The change regulation of explosion flame shape was analyzed by the characteristics of typical pressure wave, and then the high frequency images of the explosion process were shot by high speed camera. The change regulation of the infrared image was obtained through the comparison of visible and infrared image mechanism. Then, combined with the target motion features, and the observed station parameters, the observation model of movement process was built. On the basis of the above research, the infrared characteristic and the movement characteristic were transformed, and the super resolution model was established. For test method, combined with the actual class time measuring process in experimental design, to obtain the special radar for measuring high precision open class time as the true value of the precision appraisal. Experimental results show that the infrared feature and motion feature can realize open class time super resolution measurement, can effectively improve the accuracy and reliability of the data, to achieve specific action of high accuracy measurement that plays an important role by making use of the target dynamic characteristics.

  17. B-Spline potential function for maximum a-posteriori image reconstruction in fluorescence microscopy

    Directory of Open Access Journals (Sweden)

    Shilpa Dilipkumar

    2015-03-01

    Full Text Available An iterative image reconstruction technique employing B-Spline potential function in a Bayesian framework is proposed for fluorescence microscopy images. B-splines are piecewise polynomials with smooth transition, compact support and are the shortest polynomial splines. Incorporation of the B-spline potential function in the maximum-a-posteriori reconstruction technique resulted in improved contrast, enhanced resolution and substantial background reduction. The proposed technique is validated on simulated data as well as on the images acquired from fluorescence microscopes (widefield, confocal laser scanning fluorescence and super-resolution 4Pi microscopy. A comparative study of the proposed technique with the state-of-art maximum likelihood (ML and maximum-a-posteriori (MAP with quadratic potential function shows its superiority over the others. B-Spline MAP technique can find applications in several imaging modalities of fluorescence microscopy like selective plane illumination microscopy, localization microscopy and STED.

  18. Wavelet Transform of Super-Resolutions Based on Radar and Infrared Sensor Fusion

    Science.gov (United States)

    1998-05-01

    0I Q’UAL1 INwPO¶= I VI STATEMB r AApproved for public release; Distribution Unlimited NAVY CASE 77545 WAVELET TRANSFORM OF SUPER-RESOLUTIONS BASED ON...INVENTION It is, therefore, an object of the present invention to provide a structure and method for applying the forward and reverse Wavelet Transform (WT...invention, the noisy super- 10 resolution of infrared imaging is combined with the Wavelet transform for radar corner back-scattering size information

  19. Structure Assisted Compressed Sensing Reconstruction of Undersampled AFM Images

    DEFF Research Database (Denmark)

    Oxvig, Christian Schou; Arildsen, Thomas; Larsen, Torben

    2017-01-01

    The use of compressed sensing in atomic force microscopy (AFM) can potentially speed-up image acquisition, lower probe-specimen interaction, or enable super resolution imaging. The idea in compressed sensing for AFM is to spatially undersample the specimen, i.e. only acquire a small fraction...

  20. Super-resolution for a point source using positive refraction

    Science.gov (United States)

    Miñano, Juan C.; Benítez, Pablo; González, Juan C.; Grabovičkić, Dejan; Ahmadpanahi, Hamed

    Leonhardt demonstrated (2009) that the 2D Maxwell Fish Eye lens (MFE) can focus perfectly 2D Helmholtz waves of arbitrary frequency, i.e., it can transport perfectly an outward (monopole) 2D Helmholtz wave field, generated by a point source, towards a receptor called "perfect drain" (PD) located at the corresponding MFE image point. The PD has the property of absorbing the complete radiation without radiation or scattering and it has been claimed as necessary to obtain super-resolution (SR) in the MFE. However, a prototype using a "drain" different from the PD has shown λ/5 resolution for microwave frequencies (Ma et al, 2010). Recently, the SR properties of a device equivalent to the MFE, called the Spherical Geodesic Waveguide (SGW) (Miñano et al, 2012) have been analyzed. The reported results show resolution up to λ /3000, for the SGW loaded with the perfect drain, and up to λ /500 for the SGW without perfect drain. The perfect drain was realized as a coaxial probe loaded with properly calculated impedance. The SGW provides SR only in a narrow band of frequencies close to the resonance Schumann frequencies. Here we analyze the SGW loaded with a small "perfect drain region" (González et al, 2011). This drain is designed as a region made of a material with complex permittivity. The comparative results show that there is no significant difference in the SR properties for both perfect drain designs.

  1. Time multiplexing super resolution using a 2D Barker-based array

    Science.gov (United States)

    Ilovitsh, Asaf; Ilovitsh, Tali; Preter, Eyal; Levanon, Nadav; Zalevsky, Zeev

    2016-03-01

    We propose the use of a two dimensional Barker-based array in order to improve the performance of the standard time multiplexing super resolution system. The Barker-based array is a 2D generalization of the standard 1D Barker code. It enables achieving a two dimensional super resolution image using only one dimensional scan, by exploiting its unique auto correlation property. A sequence of low resolution images are captured at different lateral positions of the array, and are decoded properly using the same array. In addition, we present the use of a mismatched array for the decoding process. The cross correlation between the Barker-based array and the mismatched array has a perfect peak to sidelobes ratio, making it ideal for the super resolution process. Also, we propose the projection of this array onto the object using a phase-only spatial light modulator. Projecting the array eliminates the need for printing it, mechanically shifting it, and having a direct contact with the object, which is not feasible in many imaging applications. The proposed method is presented analytically, demonstrated via numerical simulation, and validated by laboratory experiments.

  2. Optical far-field super-resolution microscopy using nitrogen vacancy center ensemble in bulk diamond

    Science.gov (United States)

    Li, Shen; Chen, Xiang-dong; Zhao, Bo-Wen; Dong, Yang; Zou, Chong-Wen; Guo, Guang-Can; Sun, Fang-Wen

    2016-09-01

    We demonstrate optical far-field super-resolution microscopy using an array of nitrogen vacancy centers in bulk diamond as near-field optical probes. The local optical field, which transmits through the nanostructures on the diamond surface, is measured by detecting the charge state conversion of the nitrogen vacancy center. Locating the nitrogen vacancy center with a spatial resolution of 6.1 nm is realized with charge state depletion nanoscopy. The nanostructures on the surface of a diamond are then imaged with a resolution below the optical diffraction limit. The results offer an approach to build a general-purpose optical super-resolution microscopy technique and a convenient platform for high spatial resolution quantum sensing with nitrogen vacancy centers.

  3. Optical far-field super-resolution microscopy using nitrogen vacancy center ensemble in bulk diamond

    CERN Document Server

    Li, Shen; Zhao, Bo-Wen; Dong, Yang; Zou, Chong-Wen; Guo, Guang-Can; Sun, Fang-Wen

    2016-01-01

    We demonstrate an optical far-field super-resolution microscopy using array of nitrogen vacancy centers in bulk diamond as near-field optical probes. The local optical field, which transmits through the nanostructures on the diamond surface, is measured by detecting the charge state conversion of nitrogen vacancy center. And the locating of nitrogen vacancy center with spatial resolution of 6.1 nm is realized with the charge state depletion nanoscopy. The nanostructures on the surface of diamond are then imaged with resolution below optical diffraction limit. The results offer an approach to built a general-purpose optical super-resolution microscopy and a convenient platform for high spatial resolution quantum sensing with nitrogen vacancy center.

  4. Certain uncertainty: using pointwise error estimates in super-resolution microscopy

    CERN Document Server

    Lindén, Martin; Amselem, Elias; Elf, Johan

    2016-01-01

    Point-wise localization of individual fluorophores is a critical step in super-resolution microscopy and single particle tracking. Although the methods are limited by the accuracy in localizing individual flourophores, this point-wise accuracy has so far only been estimated by theoretical best case approximations, disregarding for example motional blur, out of focus broadening of the point spread function and time varying changes in the fluorescence background. Here, we show that pointwise localization uncertainty can be accurately estimated directly from imaging data using a Laplace approximation constrained by simple mircoscope properties. We further demonstrate that the estimated localization uncertainty can be used to improve downstream quantitative analysis, such as estimation of diffusion constants and detection of changes in molecular motion patterns. Most importantly, the accuracy of actual point localizations in live cell super-resolution microscopy can be improved beyond the information theoretic lo...

  5. Bayesian Deconvolution for Angular Super-Resolution in Forward-Looking Scanning Radar

    Directory of Open Access Journals (Sweden)

    Yuebo Zha

    2015-03-01

    Full Text Available Scanning radar is of notable importance for ground surveillance, terrain mapping and disaster rescue. However, the angular resolution of a scanning radar image is poor compared to the achievable range resolution. This paper presents a deconvolution algorithm for angular super-resolution in scanning radar based on Bayesian theory, which states that the angular super-resolution can be realized by solving the corresponding deconvolution problem with the maximum a posteriori (MAP criterion. The algorithm considers that the noise is composed of two mutually independent parts, i.e., a Gaussian signal-independent component and a Poisson signal-dependent component. In addition, the Laplace distribution is used to represent the prior information about the targets under the assumption that the radar image of interest can be represented by the dominant scatters in the scene. Experimental results demonstrate that the proposed deconvolution algorithm has higher precision for angular super-resolution compared with the conventional algorithms, such as the Tikhonov regularization algorithm, the Wiener filter and the Richardson–Lucy algorithm.

  6. Super-Resolution Mapping of Neuronal Circuitry With an Index-Optimized Clearing Agent

    Directory of Open Access Journals (Sweden)

    Meng-Tsen Ke

    2016-03-01

    Full Text Available Super-resolution imaging deep inside tissues has been challenging, as it is extremely sensitive to light scattering and spherical aberrations. Here, we report an optimized optical clearing agent for high-resolution fluorescence imaging (SeeDB2. SeeDB2 matches the refractive indices of fixed tissues to that of immersion oil (1.518, thus minimizing both light scattering and spherical aberrations. During the clearing process, fine morphology and fluorescent proteins were highly preserved. SeeDB2 enabled super-resolution microscopy of various tissue samples up to a depth of >100 μm, an order of magnitude deeper than previously possible under standard mounting conditions. Using this approach, we demonstrate accumulation of inhibitory synapses on spine heads in NMDA-receptor-deficient neurons. In the fly medulla, we found unexpected heterogeneity in axon bouton orientations among Mi1 neurons, a part of the motion detection circuitry. Thus, volumetric super-resolution microscopy of cleared tissues is a powerful strategy in connectomic studies at synaptic levels.

  7. Bayesian deconvolution for angular super-resolution in forward-looking scanning radar.

    Science.gov (United States)

    Zha, Yuebo; Huang, Yulin; Sun, Zhichao; Wang, Yue; Yang, Jianyu

    2015-03-23

    Scanning radar is of notable importance for ground surveillance, terrain mapping and disaster rescue. However, the angular resolution of a scanning radar image is poor compared to the achievable range resolution. This paper presents a deconvolution algorithm for angular super-resolution in scanning radar based on Bayesian theory, which states that the angular super-resolution can be realized by solving the corresponding deconvolution problem with the maximum a posteriori (MAP) criterion. The algorithm considers that the noise is composed of two mutually independent parts, i.e., a Gaussian signal-independent component and a Poisson signal-dependent component. In addition, the Laplace distribution is used to represent the prior information about the targets under the assumption that the radar image of interest can be represented by the dominant scatters in the scene. Experimental results demonstrate that the proposed deconvolution algorithm has higher precision for angular super-resolution compared with the conventional algorithms, such as the Tikhonov regularization algorithm, the Wiener filter and the Richardson-Lucy algorithm.

  8. Pixel super resolution using wavelength scanning

    Science.gov (United States)

    2016-04-08

    implementation, the iterations did not use either GPU ( graphics processing unit) or parallel computing , which could significantly improve our overall...2 Tsai RY, Huang TS. Multiframe Image Restoration and Registration. Adv Comput Vis Image Process 1984; 1: 317–339. 3 Hardie RC, Barnard KJ, Bognar JG...lensfree computational imaging , on-chip imaging , holographic imaging REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR

  9. Benchmarking Compressed Sensing, Super-Resolution, and Filter Diagonalization

    CERN Document Server

    Markovich, Thomas; Sanders, Jacob N; Aspuru-Guzik, Alan

    2015-01-01

    Signal processing techniques have been developed that use different strategies to bypass the Nyquist sampling theorem in order to recover more information than a traditional discrete Fourier transform. Here we examine three such methods: filter diagonalization, compressed sensing, and super-resolution. We apply them to a broad range of signal forms commonly found in science and engineering in order to discover when and how each method can be used most profitably. We find that filter diagonalization provides the best results for Lorentzian signals, while compressed sensing and super-resolution perform better for arbitrary signals.

  10. STED super-resolution microscopy reveals an array of MINOS clusters along human mitochondria.

    Science.gov (United States)

    Jans, Daniel C; Wurm, Christian A; Riedel, Dietmar; Wenzel, Dirk; Stagge, Franziska; Deckers, Markus; Rehling, Peter; Jakobs, Stefan

    2013-05-28

    The mitochondrial inner membrane organizing system (MINOS) is a conserved large hetero-oligomeric protein complex in the mitochondrial inner membrane, crucial for the maintenance of cristae morphology. MINOS has been suggested to represent the core of an extended protein network that controls mitochondrial function and structure, and has been linked to several human diseases. The spatial arrangement of MINOS within mitochondria is ill-defined, however. Using super-resolution stimulated emission depletion (STED) microscopy and immunogold electron microscopy, we determined the distribution of three known human MINOS subunits (mitofilin, MINOS1, and CHCHD3) in mammalian cells. Super-resolution microscopy revealed that all three subunits form similar clusters within mitochondria, and that MINOS is more abundant in mitochondria around the nucleus than in peripheral mitochondria. At the submitochondrial level, mitofilin, a core MINOS subunit, is preferentially localized at cristae junctions. In primary human fibroblasts, mitofilin labeling uncovered a regularly spaced pattern of clusters arranged in parallel to the cell growth surfaces. We suggest that this array of MINOS complexes might explain the observed phenomenon of largely horizontally arranged cristae junctions that connect the inner boundary membrane to lamellar cristae. The super-resolution images demonstrate an unexpectedly high level of regularity in the nanoscale distribution of the MINOS complex in human mitochondria, supporting an integrating role of MINOS in the structural organization of the organelle.

  11. Super-resolution microscopy by movable thin-films with embedded microspheres: Resolution analysis

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Kenneth W.; Farahi, Navid; Astratov, Vasily N. [Department of Physics and Optical Science, Center for Optoelectronics and Optical Communications, University of North Carolina at Charlotte, Charlotte, NC, 28223-0001 (United States); Air Force Research Laboratory, Sensors Directorate, Wright-Patterson AFB, OH (United States); Li, Yangcheng [Department of Physics and Optical Science, Center for Optoelectronics and Optical Communications, University of North Carolina at Charlotte, Charlotte, NC, 28223-0001 (United States); Limberopoulos, Nicholaos I.; Walker, Dennis E. Jr. [Air Force Research Laboratory, Sensors Directorate, Wright-Patterson AFB, OH (United States); Urbas, Augustine M. [Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright Patterson AFB, OH (United States); Liberman, Vladimir [Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02420 (United States)

    2015-08-15

    Microsphere-assisted imaging has emerged as an extraordinary simple technique of obtaining optical super-resolution. This work addresses two central problems in developing this technology: (i) methodology of the resolution measurements and (ii) limited field-of-view provided by each sphere. It is suggested that a standard method of resolution analysis in far-field microscopy based on convolution with the point-spread function can be extended into the super-resolution area. This allows developing a unified approach to resolution measurements, which can be used for comparing results obtained by different techniques. To develop the surface scanning functionality, the high-index (n ∝ 2) barium titanate glass microspheres were embedded in polydimethylsiloxane (PDMS) thin-films. It is shown that such films adhere to the surface of nanoplasmonic structures so that the tips of embedded spheres experience the objects' optical near-fields. Based on rigorous criteria, the resolution ∝λ/6-λ/7 (where λ is the illumination wavelength) is demonstrated for arrays of Au dimers and bowties. Such films can be translated along the surface of investigated samples after liquid lubrication. It is shown that just after lubrication the resolution is diffraction limited, however the super-resolution gradually recovers as the lubricant evaporates. (copyright 2015 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. STED super-resolution microscopy of clinical paraffin-embedded human rectal cancer tissue.

    Science.gov (United States)

    Ilgen, Peter; Stoldt, Stefan; Conradi, Lena-Christin; Wurm, Christian Andreas; Rüschoff, Josef; Ghadimi, B Michael; Liersch, Torsten; Jakobs, Stefan

    2014-01-01

    Formalin fixed and paraffin-embedded human tissue resected during cancer surgery is indispensable for diagnostic and therapeutic purposes and represents a vast and largely unexploited resource for research. Optical microscopy of such specimen is curtailed by the diffraction-limited resolution of conventional optical microscopy. To overcome this limitation, we used STED super-resolution microscopy enabling optical resolution well below the diffraction barrier. We visualized nanoscale protein distributions in sections of well-annotated paraffin-embedded human rectal cancer tissue stored in a clinical repository. Using antisera against several mitochondrial proteins, STED microscopy revealed distinct sub-mitochondrial protein distributions, suggesting a high level of structural preservation. Analysis of human tissues stored for up to 17 years demonstrated that these samples were still amenable for super-resolution microscopy. STED microscopy of sections of HER2 positive rectal adenocarcinoma revealed details in the surface and intracellular HER2 distribution that were blurred in the corresponding conventional images, demonstrating the potential of super-resolution microscopy to explore the thus far largely untapped nanoscale regime in tissues stored in biorepositories.

  13. Super-resolution for a point source better than λ/500 using positive refraction

    Science.gov (United States)

    Miñano, Juan C.; Marqués, Ricardo; González, Juan C.; Benítez, Pablo; Delgado, Vicente; Grabovickic, Dejan; Freire, Manuel

    2011-12-01

    Leonhardt (2009 New J. Phys. 11 093040) demonstrated that the two-dimensional (2D) Maxwell fish eye (MFE) lens can focus perfectly 2D Helmholtz waves of arbitrary frequency; that is, it can transport perfectly an outward (monopole) 2D Helmholtz wave field, generated by a point source, towards a ‘perfect point drain’ located at the corresponding image point. Moreover, a prototype with λ/5 super-resolution property for one microwave frequency has been manufactured and tested (Ma et al 2010 arXiv:1007.2530v1; Ma et al 2010 New J. Phys. 13 033016). However, neither software simulations nor experimental measurements for a broad band of frequencies have yet been reported. Here, we present steady-state simulations with a non-perfect drain for a device equivalent to the MFE, called the spherical geodesic waveguide (SGW), which predicts up to λ/500 super-resolution close to discrete frequencies. Out of these frequencies, the SGW does not show super-resolution in the analysis carried out.

  14. Interrogating Surface Functional Group Heterogeneity of Activated Thermoplastics Using Super-Resolution Fluorescence Microscopy.

    Science.gov (United States)

    ONeil, Colleen E; Jackson, Joshua M; Shim, Sang-Hee; Soper, Steven A

    2016-04-01

    We present a novel approach for characterizing surfaces utilizing super-resolution fluorescence microscopy with subdiffraction limit spatial resolution. Thermoplastic surfaces were activated by UV/O3 or O2 plasma treatment under various conditions to generate pendant surface-confined carboxylic acids (-COOH). These surface functional groups were then labeled with a photoswitchable dye and interrogated using single-molecule, localization-based, super-resolution fluorescence microscopy to elucidate the surface heterogeneity of these functional groups across the activated surface. Data indicated nonuniform distributions of these functional groups for both COC and PMMA thermoplastics with the degree of heterogeneity being dose dependent. In addition, COC demonstrated relative higher surface density of functional groups compared to PMMA for both UV/O3 and O2 plasma treatment. The spatial distribution of -COOH groups secured from super-resolution imaging were used to simulate nonuniform patterns of electroosmotic flow in thermoplastic nanochannels. Simulations were compared to single-particle tracking of fluorescent nanoparticles within thermoplastic nanoslits to demonstrate the effects of surface functional group heterogeneity on the electrokinetic transport process.

  15. STED super-resolution microscopy of clinical paraffin-embedded human rectal cancer tissue.

    Directory of Open Access Journals (Sweden)

    Peter Ilgen

    Full Text Available Formalin fixed and paraffin-embedded human tissue resected during cancer surgery is indispensable for diagnostic and therapeutic purposes and represents a vast and largely unexploited resource for research. Optical microscopy of such specimen is curtailed by the diffraction-limited resolution of conventional optical microscopy. To overcome this limitation, we used STED super-resolution microscopy enabling optical resolution well below the diffraction barrier. We visualized nanoscale protein distributions in sections of well-annotated paraffin-embedded human rectal cancer tissue stored in a clinical repository. Using antisera against several mitochondrial proteins, STED microscopy revealed distinct sub-mitochondrial protein distributions, suggesting a high level of structural preservation. Analysis of human tissues stored for up to 17 years demonstrated that these samples were still amenable for super-resolution microscopy. STED microscopy of sections of HER2 positive rectal adenocarcinoma revealed details in the surface and intracellular HER2 distribution that were blurred in the corresponding conventional images, demonstrating the potential of super-resolution microscopy to explore the thus far largely untapped nanoscale regime in tissues stored in biorepositories.

  16. Probing nano-organization of astroglia with multi-color super-resolution microscopy.

    Science.gov (United States)

    Heller, Janosch P; Michaluk, Piotr; Sugao, Kohtaroh; Rusakov, Dmitri A

    2017-02-02

    Astroglia are essential for brain development, homeostasis, and metabolic support. They also contribute actively to the formation and regulation of synaptic circuits, by successfully handling, integrating, and propagating physiological signals of neural networks. The latter occurs mainly by engaging a versatile mechanism of internal Ca(2+) fluctuations and regenerative waves prompting targeted release of signaling molecules into the extracellular space. Astroglia also show substantial structural plasticity associated with age- and use-dependent changes in neural circuitry. However, the underlying cellular mechanisms are poorly understood, mainly because of the extraordinary complex morphology of astroglial compartments on the nanoscopic scale. This complexity largely prevents direct experimental access to astroglial processes, most of which are beyond the diffraction limit of optical microscopy. Here we employed super-resolution microscopy (direct stochastic optical reconstruction microscopy; dSTORM), to visualize astroglial organization on the nanoscale, in culture and in thin brain slices, as an initial step to understand the structural basis of astrocytic nano-physiology. We were able to follow nanoscopic morphology of GFAP-enriched astrocytes, which adapt a flattened shape in culture and a sponge-like structure in situ, with GFAP fibers of varied diameters. We also visualized nanoscopic astrocytic processes using the ubiquitous cytosolic astrocyte marker proteins S100β and glutamine synthetase. Finally, we overexpressed and imaged membrane-targeted pHluorin and lymphocyte-specific protein tyrosine kinase (N-terminal domain) -green fluorescent protein (lck-GFP), to better understand the molecular cascades underlying some common astroglia-targeted fluorescence imaging techniques. The results provide novel, albeit initial, insights into the cellular organization of astroglia on the nanoscale, paving the way for function-specific studies. © 2016 Wiley Periodicals

  17. 远场超分辨随机光重建显微镜(STORM)研究进展%Progress in far-field super-resolution stochastic optical reconstruction microscopy(STORM)

    Institute of Scientific and Technical Information of China (English)

    王成; 马俊领; 魏勋斌

    2011-01-01

    Understanding intracellular molecule-scale characteristic of dynamics and structures is urgently demanded to solve issues in today's life science. In order to solve this problem, a far field optical imaging obtained nanometer or sub-nanometer scale 3D resolution will be demanded. The far-field fluorescence microscopy, which broken diffraction barrier, Stochastic Optical Restructure Microscopy (STORM) is introduced. The STORM can be achieved resolution of 20 nm laterally and 50 nm axially. In theory, the STORM can be achieved single molecule location precision. Imaging foundational principle, progress of 3D and multi-color imaging, recently faced challenge as well as the direction of development about the STORM is talked in detailed.%了解细胞内分子尺度的动态和结构的特征是生命科学迫切需要解决的问题,要求远场光学成像要求纳米或亚纳米量级的空间分辨率.介绍了一种实现打破衍射极限的远场荧光显微成像技术--随机光重建显微术(STORM),其分辨率可以达到横向分辨率20 nm,轴向分辨率50 nm,理论上这种方法的空间分辨率可以达到单分子定位的精度.具体介绍了其成像的基本原理,在三维、多色成像方面的进展,和目前面临的问题及今后的发展方向.

  18. Exercises in PET Image Reconstruction

    Science.gov (United States)

    Nix, Oliver

    These exercises are complementary to the theoretical lectures about positron emission tomography (PET) image reconstruction. They aim at providing some hands on experience in PET image reconstruction and focus on demonstrating the different data preprocessing steps and reconstruction algorithms needed to obtain high quality PET images. Normalisation, geometric-, attenuation- and scatter correction are introduced. To explain the necessity of those some basics about PET scanner hardware, data acquisition and organisation are reviewed. During the course the students use a software application based on the STIR (software for tomographic image reconstruction) library 1,2 which allows them to dynamically select or deselect corrections and reconstruction methods as well as to modify their most important parameters. Following the guided tutorial, the students get an impression on the effect the individual data precorrections have on image quality and what happens if they are forgotten. Several data sets in sinogram format are provided, such as line source data, Jaszczak phantom data sets with high and low statistics and NEMA whole body phantom data. The two most frequently used reconstruction algorithms in PET image reconstruction, filtered back projection (FBP) and the iterative OSEM (ordered subset expectation maximation) approach are used to reconstruct images. The exercise should help the students gaining an understanding what the reasons for inferior image quality and artefacts are and how to improve quality by a clever choice of reconstruction parameters.

  19. Super-Resolution Genome Mapping in Silicon Nanochannels.

    Science.gov (United States)

    Jeffet, Jonathan; Kobo, Asaf; Su, Tianxiang; Grunwald, Assaf; Green, Ori; Nilsson, Adam N; Eisenberg, Eli; Ambjörnsson, Tobias; Westerlund, Fredrik; Weinhold, Elmar; Shabat, Doron; Purohit, Prashant K; Ebenstein, Yuval

    2016-11-22

    Optical genome mapping in nanochannels is a powerful genetic analysis method, complementary to deoxyribonucleic acid (DNA) sequencing. The method is based on detecting a pattern of fluorescent labels attached along individual DNA molecules. When such molecules are extended in nanochannels, the labels create a fluorescent genetic barcode that is used for mapping the DNA molecule to its genomic locus and identifying large-scale variation from the genome reference. Mapping resolution is currently limited by two main factors: the optical diffraction limit and the thermal fluctuations of DNA molecules suspended in the nanochannels. Here, we utilize single-molecule tracking and super-resolution localization in order to improve the mapping accuracy and resolving power of this genome mapping technique and achieve a 15-fold increase in resolving power compared to currently practiced methods. We took advantage of a naturally occurring genetic repeat array and labeled each repeat with custom-designed Trolox conjugated fluorophores for enhanced photostability. This model system allowed us to acquire extremely long image sequences of the equally spaced fluorescent markers along DNA molecules, enabling detailed characterization of nanoconfined DNA dynamics and quantitative comparison to the Odijk theory for confined polymer chains. We present a simple method to overcome the thermal fluctuations in the nanochannels and exploit single-step photobleaching to resolve subdiffraction spaced fluorescent markers along fluctuating DNA molecules with ∼100 bp resolution. In addition, we show how time-averaging over just ∼50 frames of 40 ms enhances mapping accuracy, improves mapping P-value scores by 3 orders of magnitude compared to nonaveraged alignment, and provides a significant advantage for analyzing structural variations between DNA molecules with similar sequence composition.

  20. High Resolution Bathymetry Estimation Improvement with Single ImageSuper Resolution Algorithm Super Resolution Forests

    Science.gov (United States)

    2017-01-26

    process of the SRF algorithm, we were able to further increase the mean PSNR score of the high resolution estimated data from previously used bicubic...This meant that implementing the edited variance before the bicubic estimates were created caused the mean PSNR to increase the most, and all...interpolation (by about 1 dB). Figure 7: PSNR comparison (with mean scores) between Bicubic Interpolation and SRF Figure 7 shows the comparison between

  1. 4D super-resolution microscopy with conventional fluorophores and single wavelength excitation in optically thick cells and tissues.

    Directory of Open Access Journals (Sweden)

    David Baddeley

    Full Text Available BACKGROUND: Optical super-resolution imaging of fluorescently stained biological samples is rapidly becoming an important tool to investigate protein distribution at the molecular scale. It is therefore important to develop practical super-resolution methods that allow capturing the full three-dimensional nature of biological systems and also can visualize multiple protein species in the same sample. METHODOLOGY/PRINCIPAL FINDINGS: We show that the use of a combination of conventional near-infrared dyes, such as Alexa 647, Alexa 680 and Alexa 750, all excited with a 671 nm diode laser, enables 3D multi-colour super-resolution imaging of complex biological samples. Optically thick samples, including human tissue sections, cardiac rat myocytes and densely grown neuronal cultures were imaged with lateral resolutions of ∼15 nm (std. dev. while reducing marker cross-talk to <1%. Using astigmatism an axial resolution of ∼65 nm (std. dev. was routinely achieved. The number of marker species that can be distinguished depends on the mean photon number of single molecule events. With the typical photon yields from Alexa 680 of ∼2000 up to 5 markers may in principle be resolved with <2% crosstalk. CONCLUSIONS/SIGNIFICANCE: Our approach is based entirely on the use of conventional, commercially available markers and requires only a single laser. It provides a very straightforward way to investigate biological samples at the nanometre scale and should help establish practical 4D super-resolution microscopy as a routine research tool in many laboratories.

  2. 稀疏字典编码的超分辨率重建%Super-Resolution Based on Sparse Dictionary Coding

    Institute of Scientific and Technical Information of China (English)

    李民; 程建; 乐翔; 罗环敏

    2012-01-01

    Learning-Based super-resolution methods usually select several objects with similar features from some examples according to the low-resolution image, then estimate super-resolution result using optimization algorithm. But the result is usually limited by the quality of matching objects and only geometric construction of the images is selected as matching feature, so matching accuracy is relatively low. This paper presents a sparse dictionary model for image super-resolution, which unifies the feature patches of high-resolution (HR) and low-resolution (LR) images for sparse coding. To break through the aforementioned limitations, this method builds a sparse association between HR and LR images, and realized simultaneous matching and optimization methods. The study uses a MCA method to improve the accuracy for feature extraction and carry out super-resolution reconstruction and denoise simultaneously. Sparse K-SVD algorithm is adopted as optimization method to reduce the computation time of sparse coding. Some experiments with real images show that this method outperforms other learning-based super-resolution algorithms.%基于学习的超分辨率方法通常根据低分辨率图像从样本库中选取若干特征相似的匹配对象,再使用优化算法进行超分辨率估计,但其结果受匹配对象的质量限制,并且匹配特征一般只选择图像的几何结构信息,匹配准确性较低.提出了稀疏字典编码的超分辨率模型,将高、低分辨率图像特征块统一进行稀疏编码,建立高、低分辨率图像的稀疏关联,同步实现匹配搜索和优化估计,突破了上述方法的限制.应用形态分量分析法提取图像的特征数据,提高了特征匹配的准确性,并同步实现超分辨率重建和降噪功能.优化方法采用稀疏K-SVD算法以提高稀疏字典编码的计算速度.采用自然图像进行实验与其他基于学习的超分辨率算法相比,重建所得到的图像质量更优.

  3. Super-Resolution Based on Sparse Dictionary Coding%稀疏字典编码的超分辨率重建∗

    Institute of Scientific and Technical Information of China (English)

    李民; 程建; 乐翔; 罗环敏

    2013-01-01

    Learning-Based super-resolution methods usually select several objects with similar features from some examples according to the low-resolution image, then estimate super-resolution result using optimization algorithm. But the result is usually limited by the quality of matching objects and only geometric construction of the images is selected as matching feature, so matching accuracy is relatively low. This paper presents a sparse dictionary model for image super-resolution, which unifies the feature patches of high-resolution (HR) and low-resolution (LR) images for sparse coding. To break through the aforementioned limitations, this method builds a sparse association between HR and LR images, and realized simultaneous matching and optimization methods. The study uses a MCA method to improve the accuracy for feature extraction and carry out super-resolution reconstruction and denoise simultaneously. Sparse K-SVD algorithm is adopted as optimization method to reduce the computation time of sparse coding. Some experiments with real images show that this method outperforms other learning-based super-resolution algorithms.%  基于学习的超分辨率方法通常根据低分辨率图像从样本库中选取若干特征相似的匹配对象,再使用优化算法进行超分辨率估计,但其结果受匹配对象的质量限制,并且匹配特征一般只选择图像的几何结构信息,匹配准确性较低。提出了稀疏字典编码的超分辨率模型,将高、低分辨率图像特征块统一进行稀疏编码,建立高、低分辨率图像的稀疏关联,同步实现匹配搜索和优化估计,突破了上述方法的限制。应用形态分量分析法提取图像的特征数据,提高了特征匹配的准确性,并同步实现超分辨率重建和降噪功能。优化方法采用稀疏K-SVD算法以提高稀疏字典编码的计算速度。采用自然图像进行实验,与其他基于学习的超分辨率算法相比,重建所得到的图像质量更优。

  4. Image Interpolation Through Surface Reconstruction

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ling; LI Xue-mei

    2013-01-01

    Reconstructing an HR (high-resolution) image which preserves the image intrinsic structures from its LR ( low-resolution) counterpart is highly challenging. This paper proposes a new surface reconstruction algorithm applied to image interpolation. The interpolation surface for the whole image is generated by putting all the quadratic polynomial patches together. In order to eliminate the jaggies of the edge, a new weight function containing edge information is incorporated into the patch reconstruction procedure as a constraint. Extensive experimental results demonstrate that our method produces better results across a wide range of scenes in terms of both quantitative evaluation and subjective visual quality.

  5. In vivo acoustic super-resolution and super-resolved velocity mapping using microbubbles.

    Science.gov (United States)

    Christensen-Jeffries, Kirsten; Browning, Richard J; Tang, Meng-Xing; Dunsby, Christopher; Eckersley, Robert J

    2015-02-01

    The structure of microvasculature cannot be resolved using standard clinical ultrasound (US) imaging frequencies due to the fundamental diffraction limit of US waves. In this work, we use a standard clinical US system to perform in vivo sub-diffraction imaging on a CD1, female mouse aged eight weeks by localizing isolated US signals from microbubbles flowing within the ear microvasculature, and compare our results to optical microscopy. Furthermore, we develop a new technique to map blood velocity at super-resolution by tracking individual bubbles through the vasculature. Resolution is improved from a measured lateral and axial resolution of 112 μm and 94 μ m respectively in original US data, to super-resolved images of microvasculature where vessel features as fine as 19 μm are clearly visualized. Velocity maps clearly distinguish opposing flow direction and separated speed distributions in adjacent vessels, thereby enabling further differentiation between vessels otherwise not spatially separated in the image. This technique overcomes the diffraction limit to provide a noninvasive means of imaging the microvasculature at super-resolution, to depths of many centimeters. In the future, this method could noninvasively image pathological or therapeutic changes in the microvasculature at centimeter depths in vivo.

  6. Investigation of super-resolution processing algorithm by target light-intensity search in digital holography

    Science.gov (United States)

    Neo, Atsushi; Kakue, Takashi; Shimobaba, Tomoyoshi; Masuda, Nobuyuki; Ito, Tomoyoshi

    2017-04-01

    Digital holography is expected to be useful in the analysis of moving three-dimensional (3D) image measurement. In this technique, a two-dimensional interference fringe recorded using a 3D image is captured with an image sensor, and the 3D image is reproduced on a computer. To obtain the reproduced 3D images with high spatial resolution, a high-performance image sensor is required, which increases the system cost. We propose an algorithm for super-resolution processing in digital holography that does not require a high-performance image sensor. The proposed algorithm wherein 3D images are considered as the aggregation of object points improves spatial resolution by performing a light-intensity search of the reproduced image and the object points.

  7. Aberrations and adaptive optics in super-resolution microscopy.

    Science.gov (United States)

    Booth, Martin; Andrade, Débora; Burke, Daniel; Patton, Brian; Zurauskas, Mantas

    2015-08-01

    As one of the most powerful tools in the biological investigation of cellular structures and dynamic processes, fluorescence microscopy has undergone extraordinary developments in the past decades. The advent of super-resolution techniques has enabled fluorescence microscopy - or rather nanoscopy - to achieve nanoscale resolution in living specimens and unravelled the interior of cells with unprecedented detail. The methods employed in this expanding field of microscopy, however, are especially prone to the detrimental effects of optical aberrations. In this review, we discuss how super-resolution microscopy techniques based upon single-molecule switching, stimulated emission depletion and structured illumination each suffer from aberrations in different ways that are dependent upon intrinsic technical aspects. We discuss the use of adaptive optics as an effective means to overcome this problem.

  8. Super-resolution microscopy of the synaptic active zone

    Directory of Open Access Journals (Sweden)

    Nadine eEhmann

    2015-01-01

    Full Text Available Brain function relies on accurate information transfer at chemical synapses. At the presynaptic active zone (AZ a variety of specialised proteins are assembled to complex architectures, which set the basis for speed, precision and plasticity of synaptic transmission.Calcium (Ca2+ channels are pivotal for the initiation of excitation-secretion coupling and, correspondingly, capture a central position at the AZ. Combining quantitative functional studies with modelling approaches has provided predictions of channel properties, numbers and even positions on the nanometre scale. However, elucidating the nanoscopic organisation of the surrounding protein network requires direct ultrastructural access. Without this information, knowledge of molecular synaptic structure-function relationships remains incomplete. Recently, super-resolution microscopy techniques have begun to enter the neurosciences. These approaches combine high spatial resolution with the molecular specificity of fluorescence microscopy. Here, we discuss how super-resolution microscopy can be used to obtain information on the organisation of AZ proteins.

  9. Super resolution WiFi indoor localization and tracking

    OpenAIRE

    Salman, N.; Alsindi, N; Mihaylova, L.; Kemp, AH

    2014-01-01

    In this paper, we present a complete framework for accurate indoor positioning and tracking using the 802.11a WiFi network. Channel frequency response is first estimated via the least squares (LS) method using an orthogonal frequency division multiplexing (OFDM) pilot symbol. For accurate time of arrival (ToA) distance estimates in multipath environments, super resolution technique i.e. Multiple Signal Classification (MUSIC) is used which capitalizes on the autocorrelation matrix of the estim...

  10. Super-Resolution Recording by an Organic Photochromic Mask Layer

    Institute of Scientific and Technical Information of China (English)

    SHI Ming; ZHAO Sheng-Min; YI Jia-Xiang; ZHAO Fu-Qun; NIU Li-Hong; LI Zhong-Yu; ZHANG Fu-Shi

    2007-01-01

    By using the super-resolution near-field structure(super-RENS)method,the super-resolution recording marks are obtained practically by an organic photochromic diarylethene mask layer,under much lower recording laser Dower of 0.45mW.The size of recording marks is decreased by 60% (from 1.6μm to 0.7μm) for a diarylethene (photo-mode)recording layer by the optical detection method(limited by optical diffraction),or decreased by 97%(from 1600nm to 50nm)for a heptaoxyl copper phthalocyanine(thermo-optical)recording layer,the latter is much smaller than the limitation of optical diffraction.In order to obtain a desirable result,a proper extent or Dhotochemistry reaction in the mask layer is needed.Thus,the super-resolution recording marks can be obtained by adjusting the concentration of diarylethene in the mask layer,the recording laser power,and the moving speed of the sample disc.

  11. Aptamers provide superior stainings of cellular receptors studied under super-resolution microscopy

    Science.gov (United States)

    Höbartner, Claudia

    2017-01-01

    Continuous improvements in imaging techniques are challenging biologists to search for more accurate methods to label cellular elements. This is particularly relevant for diffraction-unlimited fluorescence imaging, where the perceived resolution is affected by the size of the affinity probes. This is evident when antibodies, which are 10–15 nm in size, are used. Previously it has been suggested that RNA aptamers (~3 nm) can be used to detect cellular proteins under super-resolution imaging. However, a direct comparison between several aptamers and antibodies is needed, to clearly show the advantages and/or disadvantages of the different probes. Here we have conducted such a comparative study, by testing several aptamers and antibodies using stimulated emission depletion microscopy (STED). We have targeted three membrane receptors, EGFR, ErbB2 and Epha2, which are relevant to human health, and recycle between plasma membrane and intracellular organelles. Our results suggest that the aptamers can reveal more epitopes than most antibodies, thus providing a denser labeling of the stained structures. Moreover, this improves the overall quality of the information that can be extracted from the images. We conclude that aptamers could become useful fluorescent labeling tools for light microscopy and super-resolution imaging, and that their development for novel targets is imperative. PMID:28235049

  12. Compressed sensing for super-resolution spatial and temporal laser detection and ranging

    Science.gov (United States)

    Laurenzis, Martin; Schertzer, Stephane; Christnacher, Frank

    2016-10-01

    In the past decades, laser aided electro-optical sensing has reached high maturity and several commercial systems are available at the market for various but specific applications. These systems can be used for detection i.e. imaging as well as ranging. They cover laser scanning devices like LiDAR and staring full frame imaging systems like laser gated viewing or LADAR. The sensing capabilities of these systems is limited by physical parameter (like FPA array size, temporal band width, scanning rate, sampling rate) and is adapted to specific applications. Change of system parameter like an increase of spatial resolution implies the setup of a new sensing device with high development cost or the purchase and installation of a complete new sensor unit. Computational imaging approaches can help to setup sensor devices with flexible or adaptable sensing capabilities. Especially, compressed sensing is an emerging computational method which is a promising candidate to realize super-resolution sensing with the possibility to adapt its performance to various sensing tasks. It is possible to increase sensing capabilities with compressed sensing to gain either higher spatial and/or temporal resolution. Then, the sensing capabilities depend no longer only on the physical performance of the device but also on the computational effort and can be adapted to the application. In this paper, we demonstrate and discuss laser aided imaging using CS for super-resolution tempo-spatial imaging and ranging.

  13. Polarization sensitive localization based super-resolution microscopy with a birefringent wedge

    Science.gov (United States)

    Sinkó, József; Gajdos, Tamás; Czvik, Elvira; Szabó, Gábor; Erdélyi, Miklós

    2017-03-01

    A practical method has been presented for polarization sensitive localization based super-resolution microscopy using a birefringent dual wedge. The measurement of the polarization degree at the single molecule level can reveal the chemical and physical properties of the local environment of the fluorescent dye molecule and can hence provide information about the sub-diffraction sized structure of biological samples. Polarization sensitive STORM imaging of the F-Actins proved correlation between the orientation of fluorescent dipoles and the axis of the fibril.

  14. Correlative stochastic optical reconstruction microscopy and electron microscopy.

    Directory of Open Access Journals (Sweden)

    Doory Kim

    Full Text Available Correlative fluorescence light microscopy and electron microscopy allows the imaging of spatial distributions of specific biomolecules in the context of cellular ultrastructure. Recent development of super-resolution fluorescence microscopy allows the location of molecules to be determined with nanometer-scale spatial resolution. However, correlative super-resolution fluorescence microscopy and electron microscopy (EM still remains challenging because the optimal specimen preparation and imaging conditions for super-resolution fluorescence microscopy and EM are often not compatible. Here, we have developed several experiment protocols for correlative stochastic optical reconstruction microscopy (STORM and EM methods, both for un-embedded samples by applying EM-specific sample preparations after STORM imaging and for embedded and sectioned samples by optimizing the fluorescence under EM fixation, staining and embedding conditions. We demonstrated these methods using a variety of cellular targets.

  15. VirusMapper: open-source nanoscale mapping of viral architecture through super-resolution microscopy

    Science.gov (United States)

    Gray, Robert D. M.; Beerli, Corina; Pereira, Pedro Matos; Scherer, Kathrin Maria; Samolej, Jerzy; Bleck, Christopher Karl Ernst; Mercer, Jason; Henriques, Ricardo

    2016-01-01

    The nanoscale molecular assembly of mammalian viruses during their infectious life cycle remains poorly understood. Their small dimensions, generally bellow the 300nm diffraction limit of light microscopes, has limited most imaging studies to electron microscopy. The recent development of super-resolution (SR) light microscopy now allows the visualisation of viral structures at resolutions of tens of nanometers. In addition, these techniques provide the added benefit of molecular specific labelling and the capacity to investigate viral structural dynamics using live-cell microscopy. However, there is a lack of robust analytical tools that allow for precise mapping of viral structure within the setting of infection. Here we present an open-source analytical framework that combines super-resolution imaging and naïve single-particle analysis to generate unbiased molecular models. This tool, VirusMapper, is a high-throughput, user-friendly, ImageJ-based software package allowing for automatic statistical mapping of conserved multi-molecular structures, such as viral substructures or intact viruses. We demonstrate the usability of VirusMapper by applying it to SIM and STED images of vaccinia virus in isolation and when engaged with host cells. VirusMapper allows for the generation of accurate, high-content, molecular specific virion models and detection of nanoscale changes in viral architecture. PMID:27374400

  16. A novel method for surface exploration: Super-resolution restoration of Mars repeat-pass orbital imagery

    Science.gov (United States)

    Tao, Y.; Muller, J.-P.

    2016-02-01

    Higher resolution imaging data of planetary surfaces is considered desirable by the international community of planetary scientists interested in improving understanding of surface formation processes. However, given various physical constraints from the imaging instruments through to limited bandwidth of transmission one needs to trade-off spatial resolution against bandwidth. Even given optical communications, future imaging systems are unlikely to be able to resolve features smaller than 25 cm on most planetary bodies, such as Mars. In this paper, we propose a novel super-resolution restoration technique, called Gotcha-PDE-TV (GPT), taking advantage of the non-redundant sub-pixel information contained in multiple raw orbital images in order to restore higher resolution imagery. We demonstrate optimality of this technique in planetary image super-resolution restoration with example processing of 8 repeat-pass 25 cm HiRISE images covering the MER-A Spirit rover traverse in Gusev crater to resolve a 5 cm resolution of the area. We assess the "true" resolution of the 5 cm super-resolution restored images using contemporaneous rover Navcam imagery on the surface and an inter-comparison of landmarks in the two sets of imagery.

  17. Does super-resolution fluorescence microscopy obsolete previous microscopic approaches to protein co-localization?

    Science.gov (United States)

    MacDonald, Laura; Baldini, Giulia; Storrie, Brian

    2015-01-01

    Conventional microscopy techniques, namely, the confocal microscope or deconvolution processes, are resolution limited to approximately 200-250 nm by the diffraction properties of light as developed by Ernst Abbe in 1873. This diffraction limit is appreciably above the size of most multi-protein complexes, which are typically 20-50 nm in diameter. In the mid-2000s, biophysicists moved beyond the diffraction barrier by structuring the illumination pattern and then applying mathematical principles and algorithms to allow a resolution of approximately 100 nm, sufficient to address protein subcellular co-localization questions. This "breaking" of the diffraction barrier, affording resolution beyond 200 nm, is termed super-resolution microscopy. More recent approaches include single-molecule localization (such as photoactivated localization microscopy (PALM)/stochastic optical reconstruction microscopy (STORM)) and point spread function engineering (such as stimulated emission depletion (STED) microscopy). In this review, we explain basic principles behind currently commercialized super-resolution setups and address advantages and considerations in applying these techniques to protein co-localization in biological systems.

  18. Actin restructuring during Salmonella typhimurium infection investigated by confocal and super-resolution microscopy.

    Science.gov (United States)

    Han, Jason J; Kunde, Yuliya A; Hong-Geller, Elizabeth; Werner, James H

    2014-01-01

    We have used super-resolution optical microscopy and confocal microscopy to visualize the cytoskeletal restructuring of HeLa cells that accompanies and enables Salmonella typhimurium internalization. Herein, we report the use of confocal microscopy to verify and explore infection conditions that would be compatible with super-resolution optical microscopy, using Alexa-488 labeled phalloidin to stain the actin cytoskeletal network. While it is well known that actin restructuring and cytoskeletal rearrangements often accompany and assist in bacterial infection, most studies have employed conventional diffraction-limited fluorescence microscopy to explore these changes. Here we show that the superior spatial resolution provided by single-molecule localization methods (such as direct stochastic optical reconstruction microscopy) enables more precise visualization of the nanoscale changes in the actin cytoskeleton that accompany bacterial infection. In particular, we found that a thin (100-nm) ring of actin often surrounds an invading bacteria 10 to 20 min postinfection, with this ring being transitory in nature. We estimate that a few hundred monofilaments of actin surround the S. typhimurium in this heretofore unreported bacterial internalization intermediate.

  19. Actin restructuring during Salmonella typhimurium infection investigated by confocal and super-resolution microscopy

    Science.gov (United States)

    Han, Jason J.; Kunde, Yuliya A.; Hong-Geller, Elizabeth; Werner, James H.

    2014-01-01

    We have used super-resolution optical microscopy and confocal microscopy to visualize the cytoskeletal restructuring of HeLa cells that accompanies and enables Salmonella typhimurium internalization. Herein, we report the use of confocal microscopy to verify and explore infection conditions that would be compatible with super-resolution optical microscopy, using Alexa-488 labeled phalloidin to stain the actin cytoskeletal network. While it is well known that actin restructuring and cytoskeletal rearrangements often accompany and assist in bacterial infection, most studies have employed conventional diffraction-limited fluorescence microscopy to explore these changes. Here we show that the superior spatial resolution provided by single-molecule localization methods (such as direct stochastic optical reconstruction microscopy) enables more precise visualization of the nanoscale changes in the actin cytoskeleton that accompany bacterial infection. In particular, we found that a thin (100-nm) ring of actin often surrounds an invading bacteria 10 to 20 min postinfection, with this ring being transitory in nature. We estimate that a few hundred monofilaments of actin surround the S. typhimurium in this heretofore unreported bacterial internalization intermediate.

  20. STED super-resolution microscopy in Drosophila tissue and in mammalian cells

    Science.gov (United States)

    Lau, Lana; Lee, Yin Loon; Matis, Maja; Axelrod, Jeff; Stearns, Tim; Moerner, W. E.

    2011-03-01

    Far-field super-resolution microscopy is a rapidly emerging method that is opening up opportunities for biological imaging beyond the optical diffraction limit. We have implemented a Stimulated Emission Depletion (STED) microscope to image single dye, cell, and tissue samples with 50-80 nm resolution. First, we compare the STED performance imaging single molecules of several common dyes and report a novel STED dye. Then we apply STED to image planar cell polarity protein complexes in intact fixed Drosophila tissue for the first time. Finally, we present a preliminary study of the centrosomal protein Cep164 in mammalian cells. Our images suggest that Cep164 is arranged in a nine-fold symmetric pattern around the centriole, consistent with findings suggested by cryoelectron tomography. Our work demonstrates that STED microscopy can be used for superresolution imaging in intact tissue and provides ultrastructural information in biological samples as an alternative to immuno-electron microscopy.

  1. Calibration on the Spot of EMCCD Cameras for Super Resolution Microscopy

    DEFF Research Database (Denmark)

    Mortensen, Kim; Flyvbjerg, Henrik

    2013-01-01

    In single-molecule biophysics and super-resolution microscopy, fluorescent probes are routinely localized with nanometer precision in images taken, e.g., with an EMCCD camera. In such images, an isolated probe images as a diffraction-limited spot of light which was formed by a finite number...... of photons. The probe’s coordinates are estimated from the recorded camera intensities in the spot, and the error on this estimate, the localization error, is given by a mathematical formula that depends on the number of photons in the spot. Translation of measured intensities to photon numbers requires...... a calibration of the camera for the specific setting with which it is used. Here we show how this can be done post festum from just a recorded image. We demonstrate this (i) theoretically, mathematically, (ii) by analyzing images recorded with an EMCCD camera, and (iii) by analyzing simulated EMCCD images...

  2. Label-Free Nanoscopy with Contact Microlenses: Super-Resolution Mechanisms and Limitations

    CERN Document Server

    Astratov, Vasily N; Brettin, Aaron; Allen, Kenneth W; Maslov, Alexey V; Limberopoulos, Nicholaos I; Walker, Dennis E; Urbas, Augustine M

    2016-01-01

    Despite all the success with developing super-resolution imaging techniques, the Abbe limit poses a severe fundamental restriction on the resolution of far-field imaging systems based on diffraction of light. Imaging with contact microlenses, such as microspheres or microfibers, can increase the resolution by a factor of two beyond the Abbe limit. The theoretical mechanisms of these methods are debated in the literature. In this work, we focus on the recently expressed idea that optical coupling between closely spaced nanoscale objects can lead to the formation of the modes that drastically impact the imaging properties. These coupling effects emerge in nanoplasmonic or nanocavity clusters, photonic molecules, or various arrays under resonant excitation conditions. The coherent nature of imaging processes is key to understanding their physical mechanisms. We used a cluster of point dipoles, as a simple model system, to study and compare the consequences of coherent and incoherent imaging. Using finite differe...

  3. 3-D In Vitro Acoustic Super-Resolution and Super-Resolved Velocity Mapping Using Microbubbles.

    Science.gov (United States)

    Christensen-Jeffries, Kirsten; Brown, Jemma; Aljabar, Paul; Tang, Mengxing; Dunsby, Christopher; Eckersley, Robert J

    2017-07-31

    Standard clinical ultrasound (US) imaging frequencies are unable to resolve microvascular structures due to the fundamental diffraction limit of US waves. Recent demonstrations of 2D super-resolution both in vitro and in vivo have demonstrated that fine vascular structures can be visualized using acoustic single bubble localization. Visualization of more complex and disordered 3D vasculature, such as that of a tumor, requires an acquisition strategy which can additionally localize bubbles in the elevational plane with high precision in order to generate super-resolution in all three dimensions. Furthermore, a particular challenge lies in the need to provide this level of visualization with minimal acquisition time. In this work, we develop a fast, coherent US imaging tool for microbubble localization in 3D using a pair of US transducers positioned at 90°. This allowed detection of point scatterer signals in 3 dimensions with average precisions equal to 1.9 µm in axial and elevational planes, and 11 µm in the lateral plane, compared to the diffraction limited point spread function full widths at half maximum of 488 µm, 1188 µm and 953 µm of the original imaging system with a single transducer. Visualization and velocity mapping of 3D in vitro structures was demonstrated far beyond the diffraction limit. The capability to measure the complete flow pattern of blood vessels associated with disease at depth would ultimately enable analysis of in vivo microvascular morphology, blood flow dynamics and occlusions resulting from disease states.

  4. Single objective light-sheet microscopy for high-speed whole-cell 3D super-resolution.

    Science.gov (United States)

    Meddens, Marjolein B M; Liu, Sheng; Finnegan, Patrick S; Edwards, Thayne L; James, Conrad D; Lidke, Keith A

    2016-06-01

    We have developed a method for performing light-sheet microscopy with a single high numerical aperture lens by integrating reflective side walls into a microfluidic chip. These 45° side walls generate light-sheet illumination by reflecting a vertical light-sheet into the focal plane of the objective. Light-sheet illumination of cells loaded in the channels increases image quality in diffraction limited imaging via reduction of out-of-focus background light. Single molecule super-resolution is also improved by the decreased background resulting in better localization precision and decreased photo-bleaching, leading to more accepted localizations overall and higher quality images. Moreover, 2D and 3D single molecule super-resolution data can be acquired faster by taking advantage of the increased illumination intensities as compared to wide field, in the focused light-sheet.

  5. Volume measurement by using super-resolution MRI: application to prostate volumetry

    CERN Document Server

    Oubel, Estanislao; Iannessi, Antoine

    2015-01-01

    Accuracy and precision of measurements are important for patient follow up in oncology but, unfortunately, partial volume effects introduce an undesired variability between observers. Super resolution techniques (SR) combine multiple acquisitions of an object into a single image richer in details. Herein, the use of SR for reducing variability is investigated in the specific context of prostate measurements. Prostate is typically imaged by T2-weighted MRI in three perpendicular low resolution images, each of them presenting partial volume effects in the direction of the slice selection gradient. SR techniques allow to combine these images into an image presenting the same level of details in all directions. This is expected to increase the accuracy and reproducibility of volume measurements, which in turn improves other derived measurements like PSA density.

  6. Tomographic image reconstruction using training images

    DEFF Research Database (Denmark)

    Soltani, Sara; Andersen, Martin Skovgaard; Hansen, Per Christian

    2017-01-01

    the framework of sparse learning as a regularized non-negative matrix factorization. Incorporating the dictionary as a prior in a convex reconstruction problem, we then find an approximate solution with a sparse representation in the dictionary. The dictionary is applied to non-overlapping patches of the image......We describe and examine an algorithm for tomographic image reconstruction where prior knowledge about the solution is available in the form of training images. We first construct a non-negative dictionary based on prototype elements from the training images; this problem is formulated within...

  7. Super-Resolution Microscopy of Cerebrospinal Fluid Biomarkers as a Tool for Alzheimer's Disease Diagnostics.

    Science.gov (United States)

    Zhang, William I; Antonios, Gregory; Rabano, Alberto; Bayer, Thomas A; Schneider, Anja; Rizzoli, Silvio O

    2015-01-01

    Alzheimer's disease (AD) is neuropathologically characterized by aggregates of amyloid-β peptides (Aβ) and tau proteins. The consensus in the AD field is that Aβ and tau should serve as diagnostic biomarkers for AD. However, their aggregates have been difficult to investigate by conventional fluorescence microscopy, since their size is below the diffraction limit (∼200 nm). To solve this, we turned to a super-resolution imaging technique, stimulated emission depletion (STED) microscopy, which has a high enough precision to allow the discrimination of low- and high-molecular weight aggregates prepared in vitro. We used STED to analyze the structural organization of Aβ and tau in cerebrospinal fluid (CSF) from 36 AD patients, 11 patients with mild cognitive impairment (MCI), and 21 controls. We measured the numbers of aggregates in the CSF samples, and the aggregate sizes and intensities. These parameters enabled us to distinguish AD patients from controls with a specificity of ∼87% and a sensitivity of ∼79% . In addition, the aggregate parameters determined with STED microscopy correlated with the severity of cognitive impairment in AD patients. Finally, these parameters may be useful as predictive tools for MCI cases. The STED parameters of two MCI patients who developed AD during the course of the study, as well as of MCI patients whose Aβ ELISA values fall within the accepted range for AD, placed them close to the AD averages. We suggest that super-resolution imaging is a promising tool for AD diagnostics.

  8. Limits of single-molecule super-resolution microscopy in thin polymer films

    Science.gov (United States)

    Wang, Muzhou; Davanco, Marcelo; Marr, James M.; Liddle, J. Alexander; Gilman, Jeffrey W.

    Structural characterization by super-resolution microscopy has become increasingly widespread, particularly in the biological community. The technique is powerful because it can produce real-space images with resolutions of tens of nanometers, while sample preparation is relatively non-invasive. Previous studies have applied these techniques to important scientific problems in the life sciences, but relatively little work has explored the attainable limit of resolution using samples of known structure. In this work, we apply photo-activated localization microscopy (PALM) to polymer films that have been nanopatterned using electron-beam lithography. Trace amounts of a rhodamine spiroamide dye are dispersed into nanostructured poly(methyl methacrylate), and UV-induced switching of the fluorophores enables nanoscale localization of single molecules to generate a final composite super-resolution image. Features as small as 50 nm are clearly resolvable. To determine the ultimate resolution limit, we investigate sources of error in the system, particularly from systematic mislocalizations due to the effect of fluorophore orientation on the single-molecule point-spread function.

  9. Super resolution microscopy is poised to reveal new insights into the formation and maturation of dendritic spines [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Cristina M. Robinson

    2016-06-01

    Full Text Available Dendritic spines and synapses are critical for neuronal communication, and they are perturbed in many neurological disorders; however, the study of these structures in living cells has been hindered by their small size. Super resolution microscopy, unlike conventional light microscopy, is diffraction unlimited and thus is well suited for imaging small structures, such as dendritic spines and synapses. Super resolution microscopy has already revealed important new information about spine and synapse morphology, actin remodeling, and nanodomain composition in both healthy cells and diseased states. In this review, we highlight the advancements in probes that make super resolution more amenable to live-cell imaging of spines and synapses. We also discuss recent data obtained by super resolution microscopy that has advanced our knowledge of dendritic spine and synapse structure, organization, and dynamics in both healthy and diseased contexts. Finally, we propose a series of critical questions for understanding spine and synapse formation and maturation that super resolution microscopy is poised to answer.

  10. Super-resolution Localization and Defocused Fluorescence Microscopy on Resonantly Coupled Single-Molecule, Single-Nanorod Hybrids.

    Science.gov (United States)

    Su, Liang; Yuan, Haifeng; Lu, Gang; Rocha, Susana; Orrit, Michel; Hofkens, Johan; Uji-i, Hiroshi

    2016-02-23

    Optical antennas made of metallic nanostructures dramatically enhance single-molecule fluorescence to boost the detection sensitivity. Moreover, emission properties detected at the optical far field are dictated by the antenna. Here we study the emission from molecule-antenna hybrids by means of super-resolution localization and defocused imaging. Whereas gold nanorods make single-crystal violet molecules in the tip's vicinity visible in fluorescence, super-resolution localization on the enhanced molecular fluorescence reveals geometrical centers of the nanorod antenna instead. Furthermore, emission angular distributions of dyes linked to the nanorod surface resemble that of nanorods in defocused imaging. The experimental observations are consistent with numerical calculations using the finite-difference time-domain method.

  11. A generalized framework unifying image registration and respiratory motion models and incorporating image reconstruction, for partial image data or full images.

    Science.gov (United States)

    McClelland, Jamie R; Modat, Marc; Arridge, Simon; Grimes, Helen; D'Souza, Derek; Thomas, David; O'Connell, Dylan; Low, Daniel; Kaza, Evangelia; Collins, David; Leach, Martin; Hawkes, David

    2017-02-14

    Surrogate-driven respiratory motion models relate the motion of the internal anatomy to easily acquired respiratory surrogate signals, such as the motion of the skin surface. They are usually built by first using image registration to determine the motion from a number of dynamic images, and then fitting a correspondence model relating the motion to the surrogate signals. In this paper we present a generalized framework that unifies the image registration and correspondence model fitting into a single optimization. This allows the use of 'partial' imaging data, such as individual slices, projections, or k-space data, where it would not be possible to determine the motion from an individual frame of data. Motion compensated image reconstruction can also be incorporated using an iterative approach, so that both the motion and a motion-free image can be estimated from the partial image data. The framework has been applied to real 4DCT, Cine CT, multi-slice CT, and multi-slice MR data, as well as simulated datasets from a computer phantom. This includes the use of a super-resolution reconstruction method for the multi-slice MR data. Good results were obtained for all datasets, including quantitative results for the 4DCT and phantom datasets where the ground truth motion was known or could be estimated.

  12. A generalized framework unifying image registration and respiratory motion models and incorporating image reconstruction, for partial image data or full images

    Science.gov (United States)

    McClelland, Jamie R.; Modat, Marc; Arridge, Simon; Grimes, Helen; D'Souza, Derek; Thomas, David; O' Connell, Dylan; Low, Daniel A.; Kaza, Evangelia; Collins, David J.; Leach, Martin O.; Hawkes, David J.

    2017-06-01

    Surrogate-driven respiratory motion models relate the motion of the internal anatomy to easily acquired respiratory surrogate signals, such as the motion of the skin surface. They are usually built by first using image registration to determine the motion from a number of dynamic images, and then fitting a correspondence model relating the motion to the surrogate signals. In this paper we present a generalized framework that unifies the image registration and correspondence model fitting into a single optimization. This allows the use of ‘partial’ imaging data, such as individual slices, projections, or k-space data, where it would not be possible to determine the motion from an individual frame of data. Motion compensated image reconstruction can also be incorporated using an iterative approach, so that both the motion and a motion-free image can be estimated from the partial image data. The framework has been applied to real 4DCT, Cine CT, multi-slice CT, and multi-slice MR data, as well as simulated datasets from a computer phantom. This includes the use of a super-resolution reconstruction method for the multi-slice MR data. Good results were obtained for all datasets, including quantitative results for the 4DCT and phantom datasets where the ground truth motion was known or could be estimated.

  13. Quantum correlation enhanced super-resolution localization microscopy enabled by a fibre bundle camera.

    Science.gov (United States)

    Israel, Yonatan; Tenne, Ron; Oron, Dan; Silberberg, Yaron

    2017-03-13

    Despite advances in low-light-level detection, single-photon methods such as photon correlation have rarely been used in the context of imaging. The few demonstrations, for example of subdiffraction-limited imaging utilizing quantum statistics of photons, have remained in the realm of proof-of-principle demonstrations. This is primarily due to a combination of low values of fill factors, quantum efficiencies, frame rates and signal-to-noise characteristic of most available single-photon sensitive imaging detectors. Here we describe an imaging device based on a fibre bundle coupled to single-photon avalanche detectors that combines a large fill factor, a high quantum efficiency, a low noise and scalable architecture. Our device enables localization-based super-resolution microscopy in a non-sparse non-stationary scene, utilizing information on the number of active emitters, as gathered from non-classical photon statistics.

  14. Quantum correlation enhanced super-resolution localization microscopy enabled by a fibre bundle camera

    Science.gov (United States)

    Israel, Yonatan; Tenne, Ron; Oron, Dan; Silberberg, Yaron

    2017-03-01

    Despite advances in low-light-level detection, single-photon methods such as photon correlation have rarely been used in the context of imaging. The few demonstrations, for example of subdiffraction-limited imaging utilizing quantum statistics of photons, have remained in the realm of proof-of-principle demonstrations. This is primarily due to a combination of low values of fill factors, quantum efficiencies, frame rates and signal-to-noise characteristic of most available single-photon sensitive imaging detectors. Here we describe an imaging device based on a fibre bundle coupled to single-photon avalanche detectors that combines a large fill factor, a high quantum efficiency, a low noise and scalable architecture. Our device enables localization-based super-resolution microscopy in a non-sparse non-stationary scene, utilizing information on the number of active emitters, as gathered from non-classical photon statistics.

  15. DMD-based LED-illumination super-resolution and optical sectioning microscopy.

    Science.gov (United States)

    Dan, Dan; Lei, Ming; Yao, Baoli; Wang, Wen; Winterhalder, Martin; Zumbusch, Andreas; Qi, Yujiao; Xia, Liang; Yan, Shaohui; Yang, Yanlong; Gao, Peng; Ye, Tong; Zhao, Wei

    2013-01-01

    Super-resolution three-dimensional (3D) optical microscopy has incomparable advantages over other high-resolution microscopic technologies, such as electron microscopy and atomic force microscopy, in the study of biological molecules, pathways and events in live cells and tissues. We present a novel approach of structured illumination microscopy (SIM) by using a digital micromirror device (DMD) for fringe projection and a low-coherence LED light for illumination. The lateral resolution of 90 nm and the optical sectioning depth of 120 μm were achieved. The maximum acquisition speed for 3D imaging in the optical sectioning mode was 1.6×10(7) pixels/second, which was mainly limited by the sensitivity and speed of the CCD camera. In contrast to other SIM techniques, the DMD-based LED-illumination SIM is cost-effective, ease of multi-wavelength switchable and speckle-noise-free. The 2D super-resolution and 3D optical sectioning modalities can be easily switched and applied to either fluorescent or non-fluorescent specimens.

  16. Generalized recovery algorithm for 3D super-resolution microscopy using rotating point spread functions

    Science.gov (United States)

    Shuang, Bo; Wang, Wenxiao; Shen, Hao; Tauzin, Lawrence J.; Flatebo, Charlotte; Chen, Jianbo; Moringo, Nicholas A.; Bishop, Logan D. C.; Kelly, Kevin F.; Landes, Christy F.

    2016-08-01

    Super-resolution microscopy with phase masks is a promising technique for 3D imaging and tracking. Due to the complexity of the resultant point spread functions, generalized recovery algorithms are still missing. We introduce a 3D super-resolution recovery algorithm that works for a variety of phase masks generating 3D point spread functions. A fast deconvolution process generates initial guesses, which are further refined by least squares fitting. Overfitting is suppressed using a machine learning determined threshold. Preliminary results on experimental data show that our algorithm can be used to super-localize 3D adsorption events within a porous polymer film and is useful for evaluating potential phase masks. Finally, we demonstrate that parallel computation on graphics processing units can reduce the processing time required for 3D recovery. Simulations reveal that, through desktop parallelization, the ultimate limit of real-time processing is possible. Our program is the first open source recovery program for generalized 3D recovery using rotating point spread functions.