WorldWideScience

Sample records for super-heavy cosmic radiation

  1. Identifying Galactic Cosmic Ray Origins With Super-TIGER

    Science.gov (United States)

    deNolfo, Georgia; Binns, W. R.; Israel, M. H.; Christian, E. R.; Mitchell, J. W.; Hams, T.; Link, J. T.; Sasaki, M.; Labrador, A. W.; Mewaldt, R. A.; hide

    2009-01-01

    Super-TIGER (Super Trans-Iron Galactic Element Recorder) is a new long-duration balloon-borne instrument designed to test and clarify an emerging model of cosmic-ray origins and models for atomic processes by which nuclei are selected for acceleration. A sensitive test of the origin of cosmic rays is the measurement of ultra heavy elemental abundances (Z > or equal 30). Super-TIGER is a large-area (5 sq m) instrument designed to measure the elements in the interval 30 TIGER builds on the heritage of the smaller TIGER, which produced the first well-resolved measurements of elemental abundances of the elements Ga-31, Ge-32, and Se-34. We present the Super-TIGER design, schedule, and progress to date, and discuss the relevance of UH measurements to cosmic-ray origins.

  2. Cosmic rays and radiations from the cosmos

    International Nuclear Information System (INIS)

    Parizot, E.

    2005-12-01

    This document gathers a lot of recent information concerning cosmic radiations, it is divided into 4 parts. Part I: energy, mass and angular spectra of cosmic rays. Part II: general phenomenology of cosmic rays, this part deals with the standard model, the maximal energy of protons inside supernova remnants, nucleosynthesis of light elements, and super-bubbles. Part III: radiations from the cosmos, this part deals with high energy gamma rays, non-thermal radiation of super-bubbles, positron transport, and the Compton trail of gamma-ray bursts. Part IV: the Pierre Auger observatory (OPA), this part deals with the detection of gamma ray bursts at OPA, the measurement of anisotropy, and top-down models. (A.C.)

  3. The superTIGER instrument: Measurement of elemental abundances of ultra-heavy galactic cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Binns, W. R.; Bose, R. G.; Braun, D. L.; Dowkontt, P. F.; Israel, M. H.; Moore, P.; Murphy, R. P.; Olevitch, M. A.; Rauch, B. F. [Washington University, St. Louis, MO 63130 (United States); Brandt, T. J.; Daniels, W. M.; Fitzsimmons, S. P.; Hahne, D. J.; Hams, T.; Link, J. T.; Mitchell, J. W.; Sakai, K. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Klemic, J.; Labrador, A. W.; Mewaldt, R. A., E-mail: wrb@wustl.edu [California Institute of Technology, Pasadena, CA 91125 (United States); and others

    2014-06-10

    The SuperTIGER (Super Trans-Iron Galactic Element Recorder) instrument was developed to measure the abundances of galactic cosmic-ray elements from {sub 10}Ne to {sub 40}Zr with individual element resolution and the high statistics needed to test models of cosmic-ray origins. SuperTIGER also makes exploratory measurements of the abundances of elements with 40 < Z ≤ 60 and measures the energy spectra of the more abundant elements for Z ≤ 30 from about 0.8 to 10 GeV/nucleon. This instrument is an enlarged and higher resolution version of the earlier TIGER instrument. It was designed to provide the largest geometric acceptance possible and to reach as high an altitude as possible, flying on a standard long-duration 1.11 million m{sup 3} balloon. SuperTIGER was launched from Williams Field, McMurdo Station, Antarctica, on 2012 December 8, and made about 2.7 revolutions around the South Pole in 55 days of flight, returning data on over 50 × 10{sup 6} cosmic-ray nuclei with Z ≥ 10, including ∼1300 with Z > 29 and ∼60 with Z > 49. Here, we describe the instrument, the methods of charge identification employed, the SuperTIGER balloon flight, and the instrument performance.

  4. Effect of seeds of heavy charged particles of galactic cosmic radiation

    International Nuclear Information System (INIS)

    Maksimova, Y.N.

    1985-01-01

    The experiments were carried out on Lactuca sativa seeds exposed for 20, 66, 123 and 308 days in a biostack also containing physical detectors of heavy charged particles. The yield of aberrant cells and its dependence on the exposure time and the site where particles hit the object were measured. The cytogenetic examination demonstrated a significant difference between the seeds that were or were not hit by heavy charged particles. A significant contribution of galactic cosmic radiation to the radiobiological effect is indicated. The yield of aberrant cells as a function of the localization of heavy charged particles in the seed is established. The most sensitive target is the root meristem

  5. Effect of heavy charged particles of galactic cosmic radiation on seeds

    International Nuclear Information System (INIS)

    Maksimova, E.N.

    1985-01-01

    The experiments were carried out on Lactuca sativa seeds exposed for 20, 66, 123 and 308 days in a biostack also containing physical detectors of heavy charged particles. The puppose of the experiments was to measure the yield of abberrant cells and its dependence on the exposure time and the site where particles hit the object. The cytogenetic examination demonstrated a significant difference between the seeds that were or were not hit by heavy charged particles. This is indicative of a significant contribution of galactic cosmic radiation to the radiobiological effect. The yield of aberrant cells as a function of the localization of heavy charged particles in the seed was established. The most sensitive target was the root meristem

  6. The Super-TIGER Instrument to Probe Galactic Cosmic Ray Origins

    Science.gov (United States)

    Mitchell, John W.; Binns, W. R.; Bose, R, G.; Braun, D. L.; Christian, E. R.; Daniels, W. M; DeNolfo, G. A.; Dowkontt, P. F.; Hahne, D. J.; Hams, T.; hide

    2011-01-01

    Super-TIGER (Super Trans-Iron Galactic Element Recorder) is under construction for the first of two planned Antarctic long-duration balloon flights in December 2012. This new instrument will measure the abundances of ultra-heavy elements (30Zn and heavier), with individual element resolution, to provide sensitive tests of the emerging model of cosmic-ray origins in OB associations and models of the mechanism for selection of nuclei for acceleration. Super-TIGER builds on the techniques of TIGER, which produced the first well-resolved measurements of elemental abundances of the elements 31Ga, 32Ge, and 34Se. Plastic scintillators together with acrylic and silica-aerogel Cherenkov detectors measure particle charge. Scintillating-fiber hodoscopes track particle trajectories. Super-TIGER has an active area of 5.4 sq m, divided into two independent modules. With reduced material thickness to decrease interactions, its effective geometry factor is approx.6.4 times larger than TIGER, allowing it to measure elements up to 42Mo with high statistical precision, and make exploratory measurements up to 56Ba. Super-TIGER will also accurately determine the energy spectra of the more abundant elements from l0Ne to 28Ni between 0.8 and 10 GeV/nucleon to test the hypothesis that microquasars or other sources could superpose spectral features. We will discuss the implications of Super-TIGER measurements for the study of cosmic-ray origins and will present the measurement technique, design, status, and expected performance, including numbers of events and resolution. Details of the hodoscopes, scintillators, and Cherenkov detectors will be given in other presentations at this conference.

  7. Cosmic rays and radiations from the cosmos; Rayons cosmiques et rayonnement du cosmos

    Energy Technology Data Exchange (ETDEWEB)

    Parizot, E

    2005-12-01

    This document gathers a lot of recent information concerning cosmic radiations, it is divided into 4 parts. Part I: energy, mass and angular spectra of cosmic rays. Part II: general phenomenology of cosmic rays, this part deals with the standard model, the maximal energy of protons inside supernova remnants, nucleosynthesis of light elements, and super-bubbles. Part III: radiations from the cosmos, this part deals with high energy gamma rays, non-thermal radiation of super-bubbles, positron transport, and the Compton trail of gamma-ray bursts. Part IV: the Pierre Auger observatory (OPA), this part deals with the detection of gamma ray bursts at OPA, the measurement of anisotropy, and top-down models. (A.C.)

  8. Hazards of cosmic radiation

    International Nuclear Information System (INIS)

    Bonnet-Bidaud, J.M.; Dzitko, H.

    2000-06-01

    The main limitations on long-distance space transport is neither the energy source nor the propulsion system but appears to be the protection of cosmonauts from radiation. Cosmic radiation is made up of protons (87%), alpha particles (12%) and heavy nuclei (1%), all these particles travel through interstellar space and come from the explosion of stars at the end of their life. The earth is protected from cosmic radiation by 3 natural shields: i) the magnetic field generated by the solar wind, ii) the earth magnetic field (magnetosphere), and iii) the earth atmosphere, this elusive layer of air is equivalent to a 10 meter-high volume of water. Magnetosphere and atmosphere reduce the radiation dose by a factor 4000. According to a European directive (1996) air crews must be considered as radiation workers. (A.C.)

  9. Super-TIGER-2: A Very-Large-Area, High-Resolution Trans-Iron Cosmic Ray Investigation

    Science.gov (United States)

    Binns, Walter

    This is the lead proposal of a multi-institution proposal. We propose to continue the highly successful Super-TIGER (Super Trans-Iron Galactic Element Recorder) program and to extend its scientific reach. Super-TIGER is a large-area instrument designed to make precision measurements of the elemental composition of ultra-heavy cosmic rays (UHCR) with atomic number Z greater than or equal to 30. The principal objective of the first phase of the Super- TIGER program was to measure the abundances of nuclei with 30 less than or equal to Z less than or equal to 42 with clear individual element resolution and high statistical precision. A secondary objective was to accurately measure the energy spectra of the more abundant light elements with 12 less than or equal to Z less than or equal to 28. Super-TIGER-1 was flown during the 2012-2013 Austral Summer, returning data on over 50 million cosmic ray (CR) nuclei in 55 days at float. The excellent data from this flight should enable us to achieve the initial goals of the program, and the high performance of the instrument makes it possible to expand our primary objective for further flights to include heavier UHCR. This is a 1-year proposal with two objectives: First to complete analysis of the data from the Super-TIGER-1 flight, and second to begin preparations to extend UHCR measurements with individual element resolution through barium (Z=56) and to greatly increase the number of Z greater than or equal to 30 nuclei measured. The abundance measurements provide sensitive tests and clarification of the OB-association model of galactic cosmic-ray origins, and will test models for atomic processes by which nuclei are selected for acceleration to cosmic ray energies. Additionally, measurements of individual element abundances from Z=40 to 56 will enable us to determine the extent of r-process enhancement since Zr (Z=40), Sn (Z=50) and Ba (Z=56) are predominately s-process and Ru (Z=44), Pd (Z=46), Te (Z=52) and Xe (Z=54)are

  10. Exploring Ultra-Heavy Cosmic Rays with the Trans-Iron Galactic Element Recorder (TIGER)

    Science.gov (United States)

    Link, Jason; Supertiger Collaboration

    2017-01-01

    Elements heavier than iron are primarily synthesized by neutron capture. These elements can be accelerated as cosmic-rays and measuring their abundances at Earth can yield information about galactic cosmic-rays' sources, the acceleration processes and the composition of the universe beyond the boundaries of our solar system. The Trans-Iron Galactic Element Recorder (TIGER) and its larger successor SuperTIGER was designed to measure the abundance of these ultra-heavy cosmic rays between Z=10 and Z=60. These detectors utilize scintillators with a wavelength shifter bar and PMT readout system as well as aerogel and acrylic Cherenkov detectors to identify the charge and energy of a particle and utilize a scintillating fiber hodoscope to provide trajectory information. In this talk I will review the results from this highly successful program, give the status for the next SuperTIGER flight planned for a December 2017 launch from Antarctica, and discuss the future direction of the program.

  11. Scintillation Detector for the Measurement of Ultra-Heavy Cosmic Rays on the Super-TIGER Experiment

    Science.gov (United States)

    Link, Jason

    2011-01-01

    We discuss the design and construction of the scintillation detectors for the Super-TIGER experiment. Super-TIGER is a large-area (5.4sq m) balloon-borne experiment designed to measure the abundances of cosmic-ray nuclei between Z= 10 and Z=56. It is based on the successful TIGER experiment that flew in Antarctica in 2001 and 2003. Super-TIGER has three layers of scintillation detectors, two Cherenkov detectors and a scintillating fiber hodoscope. The scintillation detector employs four wavelength shifter bars surrounding the edges of the scintillator to collect the light from particles traversing the detector. PMTs are optically coupled at both ends of the bars for light collection. We report on laboratory performance of the scintillation counters using muons. In addition we discuss the design challenges and detector response over this broad charge range including the effect of scintilator saturation.

  12. Cosmic radiation

    Energy Technology Data Exchange (ETDEWEB)

    Capdevielle, J N

    1984-01-01

    First, the different instruments and techniques of cosmic particle detection are presented. Then the passage of the cosmic particles through the atmosphere is studied: electrons, photons, muons. The collective behavior of the different categories is also studied, the electromagnetic cascade is distinguished from the hadron cascade. Through the principal physical properties of the radiation and the medium, the ''mean'' aspects of the radiation are then successively dealt with out of the atmosphere, at different altitudes until the sea level, then at great depths. A chapter is devoted to cosmic radiation of more than 10,000 GeV, studied separately. Then solar radiation in universe is studied through their propagation in solar system and their origin. At last, the cosmic radiation effects are studied in environment (cosmic biophysics) and some applications of cosmic radiation are presented.

  13. From heavy nuclei to super-heavy nuclei

    International Nuclear Information System (INIS)

    Theisen, Ch.

    2003-01-01

    The existence of super-heavy nuclei has been predicted nearly fifty years ago. Due to the strong coulomb repulsion, the stabilisation of these nuclei is possible only through shell effects. The reasons for this fragile stability, as well as the theoretical predictions concerning the position of the island of stability are presented in the first part of this lecture. In the second part, experiments and experimental techniques which have been used to synthesize or search for super-heavy elements are described. Spectroscopic studies performed in very heavy elements are presented in the following section. We close this lecture with techniques that are currently being developed in order to reach the superheavy island and to study the structure of very-heavy nuclei. (author)

  14. From heavy nuclei to super-heavy nuclei; Des noyaux lourds aux super-lourds

    Energy Technology Data Exchange (ETDEWEB)

    Theisen, Ch

    2003-01-01

    The existence of super-heavy nuclei has been predicted nearly fifty years ago. Due to the strong coulomb repulsion, the stabilisation of these nuclei is possible only through shell effects. The reasons for this fragile stability, as well as the theoretical predictions concerning the position of the island of stability are presented in the first part of this lecture. In the second part, experiments and experimental techniques which have been used to synthesize or search for super-heavy elements are described. Spectroscopic studies performed in very heavy elements are presented in the following section. We close this lecture with techniques that are currently being developed in order to reach the superheavy island and to study the structure of very-heavy nuclei. (author)

  15. Hazards of cosmic radiation; Radiation cosmique: danger dans l'espace

    Energy Technology Data Exchange (ETDEWEB)

    Bonnet-Bidaud, J M; Dzitko, H

    2000-06-01

    The main limitations on long-distance space transport is neither the energy source nor the propulsion system but appears to be the protection of cosmonauts from radiation. Cosmic radiation is made up of protons (87%), alpha particles (12%) and heavy nuclei (1%), all these particles travel through interstellar space and come from the explosion of stars at the end of their life. The earth is protected from cosmic radiation by 3 natural shields: (i) the magnetic field generated by the solar wind, (ii) the earth magnetic field (magnetosphere), and (iii) the earth atmosphere, this elusive layer of air is equivalent to a 10 meter-high volume of water. Magnetosphere and atmosphere reduce the radiation dose by a factor 4000. According to a European directive (1996) air crews must be considered as radiation workers. (A.C.)

  16. Hazards of cosmic radiation; Radiation cosmique: danger dans l'espace

    Energy Technology Data Exchange (ETDEWEB)

    Bonnet-Bidaud, J.M.; Dzitko, H

    2000-06-01

    The main limitations on long-distance space transport is neither the energy source nor the propulsion system but appears to be the protection of cosmonauts from radiation. Cosmic radiation is made up of protons (87%), alpha particles (12%) and heavy nuclei (1%), all these particles travel through interstellar space and come from the explosion of stars at the end of their life. The earth is protected from cosmic radiation by 3 natural shields: (i) the magnetic field generated by the solar wind, (ii) the earth magnetic field (magnetosphere), and (iii) the earth atmosphere, this elusive layer of air is equivalent to a 10 meter-high volume of water. Magnetosphere and atmosphere reduce the radiation dose by a factor 4000. According to a European directive (1996) air crews must be considered as radiation workers. (A.C.)

  17. Gravi-Burst: Super-GZK Cosmic Rays from Localized Gravity

    International Nuclear Information System (INIS)

    Davoudiasl, Hooman

    2000-01-01

    The flux of cosmic rays beyond the GZK cutoff (∼ 10 20 eV) may be explained through their production by ultra high energy cosmic neutrinos, annihilating on the relic neutrino background, in the vicinity of our galaxy. This process is mediated through the production of a Z boson at resonance, and is generally known as the Z-Burst mechanism. We show that a similar mechanism can also contribute to the super-GZK spectrum at even higher, ultra-GZK energies, where the particles produced at resonance are the Kaluza-Klein gravitons of weak scale mass and coupling from the Randall-Sundrum (RS) hierarchy model of localized gravity model. We call this mechanism Gravi-Burst. We discuss the parameter space of relevance to Gravi-Bursts, and comment on the possibility of its contribution to the present and future super-GZK cosmic ray data and place bounds on the RS model parameters. Under certain assumptions about the energy spectrum of the primary neutrinos we find that cosmic ray data could be potentially as powerful as the LHC in probing the RS model

  18. Radiobiological studies on eggs of the rice weevil (Tribolium confusum) after exposure to heavy primary particles of the cosmic radiation

    International Nuclear Information System (INIS)

    Geyer, B.

    1982-01-01

    The thesis explains the radiation effects observed during the holometabolism of Tribolium confusum after exposure of the eggs to heavy primary particles of cosmic radiation, i.e. to atomic nuclei of relatively high energy with a mass greater than helium atoms. The first section describes the technical layout of the BIOSTACK experiment and the fixation of the Tribolium eggs and the positioning of the nuclear track detectors. This part is followed by the description of methods used to detect the eggs hit by the heavy nuclei, and their isolation and subsequent growth. Terrestrial irradiation of eggs with x-rays served as a control, as well as unirradiated egg cultures. The amount of larvae produced from incubated eggs hit by heavy nuclei was 66%, that of eggs exposed to cosmic background radiation was 69%, and that produced by the control culture kept on the earth was 87%. Investigations of egg samples during various stages of embryogenesis showed differences in the histological findings of the various groups, especially between the two groups of the BIOSTACK experiment. The letality of larvae in the period from emergence up to pupal stage was relatively high (50%) in the group hit by heavy nuclei, especially when compared to the other BIOSTACK experimental group, where this percentage was 10%, and to the terrestrial control group (3%). Also, vitality of larvae of the first group was considerably reduced. In the pupal stage, the letality observed in all three test groups was relatively low with 2-4%. From the animals produced from eggs hit by heavy nuclei, only 25% were still alive after 4 months, from the other space flight group these were 75%, and from the terrestrial control group 93%. Also, the animals from the first group showed a significant increase in bodily anomalies. (orig./MG) [de

  19. Reliability of trajectory identification for cosmic heavy ions and cytogenetic effects of their passage through plant seeds

    International Nuclear Information System (INIS)

    Facius, R.; Reitz, G.; Buecker, H.; Nevzgodina, L.V.; Maximova, E.N.; Kaminskaya, E.V.; Virkov, A.I.; Marenny, A.M.; Akatov, Yu.A.

    1990-01-01

    The potentially specific importance of the study of heavy ions from galactic cosmic rays for the understanding of radiation protection in manned spaceflight continues to stimulate spaceflight experiments in order to investigate the radiobiological properties of these ions. Chromosome aberrations as an expression of a direct assault on the genome are of particular interest in view of carcinogenesis as the primary radiation risk for man in space. An essential technical ingredient of such spaceflight experiments is the visual nuclear track detector which permits identification of those biological test organisms which have been affected by cosmic heavy ions. We describe such a technique and report on an analysis of the qualitative and quantitative reliability of this identification of particle trajectories in layers of biological test organisms. The incidence of chromosome aberrations in cells of lettuce seeds, Lactuca sativa, exposed during the Kosmos 1887 mission, was determined for seeds hit by cosmic heavy ions. In those seeds the incidence of both single and multiple chromosome aberrations was enhanced. (author)

  20. Reliability of trajectory identification for cosmic heavy ions and cytogenetic effects of their passage through plant seeds

    Energy Technology Data Exchange (ETDEWEB)

    Facius, R.; Reitz, G.; Buecker, H. (Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Koeln (Germany, F.R.)); Nevzgodina, L.V.; Maximova, E.N.; Kaminskaya, E.V.; Virkov, A.I.; Marenny, A.M.; Akatov, Yu.A. (Ministry of Public Health, Moscow (USSR). Inst. of Biomedical Problems)

    1990-01-01

    The potentially specific importance of the study of heavy ions from galactic cosmic rays for the understanding of radiation protection in manned spaceflight continues to stimulate spaceflight experiments in order to investigate the radiobiological properties of these ions. Chromosome aberrations as an expression of a direct assault on the genome are of particular interest in view of carcinogenesis as the primary radiation risk for man in space. An essential technical ingredient of such spaceflight experiments is the visual nuclear track detector which permits identification of those biological test organisms which have been affected by cosmic heavy ions. We describe such a technique and report on an analysis of the qualitative and quantitative reliability of this identification of particle trajectories in layers of biological test organisms. The incidence of chromosome aberrations in cells of lettuce seeds, Lactuca sativa, exposed during the Kosmos 1887 mission, was determined for seeds hit by cosmic heavy ions. In those seeds the incidence of both single and multiple chromosome aberrations was enhanced. (author).

  1. A cosmic ray super high energy multijet family event

    International Nuclear Information System (INIS)

    Zou Baotang; Wang Chengrui; Ren Jingru

    1986-01-01

    A cosmic ray super high energy family event with visible energy of about 1500 TeV and five big cores is reported. This event was found in the 1980-1981 exposure of Mt. Kambala (5500 M a.s.l.) emulsion chamber experiment. The family characteristics are analyzed and compared with the other cosmic ray events in the same energy range. The production and fragmentation characteristics of the five jets are studied and compared with the experimntal results of accelerators and C-jets as well as with QCD predictions up to TeV. Some features on hadronic interactions at TeV range are discussed

  2. PROTECTION FROM COSMIC RADIATION IN LONG-TERM MANNED SPACEFLIGHTS

    Directory of Open Access Journals (Sweden)

    Marco Durante

    2012-06-01

    Full Text Available Current space programs are shifting toward planetary exploration, and in particular towards human missions to the moon and Mars. Space radiation, comprised of energetic protons and heavy nuclei, has been shown to produce distinct biological damage compared to radiation on Earth, leading to large uncertainties in the projection of health risks. Even if uncertainties in risk assessment will be reduced in the next few years, there is little doubt that appropriate countermeasures have to be taken to reduce the exposure or the biological damage produced by cosmic radiation. In addition, it is necessary to provide effective countermeasures against solar particle events, which can produce acute effects, even life threatening, for inadequately protected crews. Unfortunately, passive (bulk shielding is currently unable to provide adequate protection, because cosmic rays have very high energy and nuclear fragmentation in the absorbers produce light fragments. Material science could provide new materials with better shielding properties for space radiation. Active (magnetic shielding could be an interesting alternative, pending technical improvements.

  3. Status and prospect of super-heavy nuclei research at IMP

    International Nuclear Information System (INIS)

    Xu Hushan; Sun Zhiyu; Zhan Wenlong; Zhou Xiaohong; Huang Wenxue; Zhang Hongbin; Gan Zaiguo; Li Junqing; Ma Xinwen; Qin Zhi; Xiao Guoqing; Guo Zhongyan; Li Zhihui; Zhang Yuhu; Jin Genming; Huang Tianheng; Hu Zhengguo; Zhang Xueheng; Zheng Chuan; Chinese Academy of Sciences, Beijing

    2006-01-01

    The history and the international status of the super-heavy nuclei synthesis are briefly described. The related research work carried out at the Institute of Modern Physics (IMP) has been reviewed. The prospect of the super-heavy nuclei research at IMP has been introduced. (authors)

  4. Actinide targets for the synthesis of super-heavy elements

    International Nuclear Information System (INIS)

    Roberto, J.B.; Alexander, C.W.; Boll, R.A.; Burns, J.D.; Ezold, J.G.; Felker, L.K.; Hogle, S.L.; Rykaczewski, K.P.

    2015-01-01

    Since 2000, six new super-heavy elements with atomic numbers 113 through 118 have been synthesized in hot fusion reactions of "4"8Ca beams on actinide targets. These target materials, including "2"4"2Pu, "2"4"4Pu, "2"4"3Am, "2"4"5Cm, "2"4"8Cm, "2"4"9Cf, and "2"4"9Bk, are available in very limited quantities and require specialized production and processing facilities resident in only a few research centers worldwide. This report describes the production and chemical processing of heavy actinide materials for super-heavy element research, current availabilities of these materials, and related target fabrication techniques. The impact of actinide materials in super-heavy element discovery is reviewed, and strategies for enhancing the production of rare actinides including "2"4"9Bk, "2"5"1Cf, and "2"5"4Es are described.

  5. May heavy neutrinos solve underground and cosmic-ray puzzles?

    International Nuclear Information System (INIS)

    Belotsky, K. M.; Fargion, D.; Khlopov, M. Yu.; Konoplich, R. V.

    2008-01-01

    Primordial heavy neutrinos of the fourth generation might explain different astrophysical puzzles. The simplest fourth-neutrino scenario is consistent with known fourth-neutrino physics, cosmic ray antimatter, cosmic gamma fluxes, and positive signals in underground detectors for a very narrow neutrino mass window (46–47 GeV). However, accounting for the constraint of underground experiment CDMS prohibits solution of cosmic-ray puzzles in this scenario. We have analyzed extended heavy-neutrino models related to the clumpiness of neutrino density, new interactions in heavy-neutrino annihilation, neutrino asymmetry, and neutrino decay. We found that, in these models, the cosmic-ray imprint may fit the positive underground signals in DAMA/Nal experiment in the entire mass range 46–70 GeV allowed from uncertainties of electroweak parameters, while satisfaction of the CDMS constraint reduces the mass range to around 50 GeV, where all data can come to consent in the framework of the considered hypothesis.

  6. May heavy neutrinos solve underground and cosmic-ray puzzles?

    International Nuclear Information System (INIS)

    Belotsky, K. M.; Fargion, D.; Khlopov, M. Yu.; Konoplich, R. V.

    2008-01-01

    Primordial heavy neutrinos of the fourth generation might explain different astrophysical puzzles. The simplest fourth-neutrino scenario is consistent with known fourth-neutrino physics, cosmic ray antimatter, cosmic gamma fluxes, and positive signals in underground detectors for a very narrow neutrino mass window (46-47 GeV). However, accounting for the constraint of underground experiment CDMS prohibits solution of cosmic-ray puzzles in this scenario. We have analyzed extended heavy-neutrino models related to the clumpiness of neutrino density, new interactions in heavy-neutrino annihilation, neutrino asymmetry, and neutrino decay. We found that, in these models, the cosmic-ray imprint may fit the positive underground signals in DAMA/Nal experiment in the entire mass range 46-70 GeV allowed from uncertainties of electroweak parameters, while satisfaction of the CDMS constraint reduces the mass range to around 50 GeV, where all data can come to consent in the framework of the considered hypothesis

  7. Survival and compound nucleus probability of super heavy element Z = 117

    Energy Technology Data Exchange (ETDEWEB)

    Manjunatha, H.C. [Government College for Women, Department of Physics, Kolar, Karnataka (India); Sridhar, K.N. [Government First grade College, Department of Physics, Kolar, Karnataka (India)

    2017-05-15

    As a part of a systematic study for predicting the most suitable projectile-target combinations for heavy-ion fusion experiments in the synthesis of {sup 289-297}Ts, we have calculated the transmission probability (T{sub l}), compound nucleus formation probabilities (P{sub CN}) and survival probability (P{sub sur}) of possible projectile-target combinations. We have also studied the fusion cross section, survival cross section and fission cross sections for different projectile-target combination of {sup 289-297}Ts. These theoretical parameters are required before the synthesis of the super heavy element. The calculated probabilities and cross sections show that the production of isotopes of the super heavy element with Z = 117 is strongly dependent on the reaction systems. The most probable reactions to synthetize the super heavy nuclei {sup 289-297}Ts are worked out and listed explicitly. We have also studied the variation of P{sub CN} and P{sub sur} with the mass number of projectile and target nuclei. This work is useful in the synthesis of the super heavy element Z = 117. (orig.)

  8. Cosmic radiation exposure to airline flight passenger

    International Nuclear Information System (INIS)

    Momose, Mitsuhiro

    2000-01-01

    At the high altitudes, airline flight passengers can be exposed to some levels of cosmic radiation. The purpose of this study was to quantify this radiation exposure. Cosmic radiation was measured during 5 flights using a personal dosimeter (PDM-102, Aloka). Cosmic radiation equivalent dose rates ranged from 0.7 to 1.43 microsieverts per hour, the average rate was 1.08. For the passenger who travels only occasionally, the cosmic radiation levels are well below occupational limits, and the risks are extremely small. (author)

  9. Cosmic radiation exposure to airline flight passenger

    Energy Technology Data Exchange (ETDEWEB)

    Momose, Mitsuhiro [Shinshu Univ., Matsumoto, Nagano (Japan). School of Medicine

    2000-08-01

    At the high altitudes, airline flight passengers can be exposed to some levels of cosmic radiation. The purpose of this study was to quantify this radiation exposure. Cosmic radiation was measured during 5 flights using a personal dosimeter (PDM-102, Aloka). Cosmic radiation equivalent dose rates ranged from 0.7 to 1.43 microsieverts per hour, the average rate was 1.08. For the passenger who travels only occasionally, the cosmic radiation levels are well below occupational limits, and the risks are extremely small. (author)

  10. Survival and compound nucleus probability of super heavy element Z = 117

    International Nuclear Information System (INIS)

    Manjunatha, H.C.; Sridhar, K.N.

    2017-01-01

    As a part of a systematic study for predicting the most suitable projectile-target combinations for heavy-ion fusion experiments in the synthesis of "2"8"9"-"2"9"7Ts, we have calculated the transmission probability (T_l), compound nucleus formation probabilities (P_C_N) and survival probability (P_s_u_r) of possible projectile-target combinations. We have also studied the fusion cross section, survival cross section and fission cross sections for different projectile-target combination of "2"8"9"-"2"9"7Ts. These theoretical parameters are required before the synthesis of the super heavy element. The calculated probabilities and cross sections show that the production of isotopes of the super heavy element with Z = 117 is strongly dependent on the reaction systems. The most probable reactions to synthetize the super heavy nuclei "2"8"9"-"2"9"7Ts are worked out and listed explicitly. We have also studied the variation of P_C_N and P_s_u_r with the mass number of projectile and target nuclei. This work is useful in the synthesis of the super heavy element Z = 117. (orig.)

  11. Cluster radioactivity of Z=125 super heavy nuclei

    International Nuclear Information System (INIS)

    Manjunatha, H.C.; Seenappa, L.

    2015-01-01

    For atomic numbers larger than 121 cluster decay and spontaneous fission may compete with α decay. Hence there is a need to make reliable calculations for the cluster decay half-lives of superheavy nuclei to predict the possible isotopes super heavy nuclei. So, in the present work, we have studied the decay of clusters such as 8 Be, 10 Be, 12 C, 14 C, 16 C, 18 O, 20 O, 22 Ne, 24 Ne, 25 Ne, 26 Ne, 28 Mg, 30 Mg, 32 Si, 34 Si, 36 Si, 40 S, 48 Ca, 50 Ca and 52 Ti from the super heavy nuclei Z=125

  12. Super-heavy dark matter – Towards predictive scenarios from inflation

    Energy Technology Data Exchange (ETDEWEB)

    Kannike, Kristjan [National Institute of Chemical Physics and Biophysics, Rävala 10, 10143 Tallinn (Estonia); Racioppi, Antonio, E-mail: antonio.racioppi@kbfi.ee [National Institute of Chemical Physics and Biophysics, Rävala 10, 10143 Tallinn (Estonia); Raidal, Martti [National Institute of Chemical Physics and Biophysics, Rävala 10, 10143 Tallinn (Estonia); Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu (Estonia)

    2017-05-15

    A generic prediction of the Coleman–Weinberg inflation is the existence of a heavy particle sector whose interactions with the inflaton, the lightest state in this sector, generate the inflaton potential at loop level. For typical interactions the heavy sector may contain stable states whose relic abundance is generated at the end of inflation by the gravity alone. This general feature, and the absence of any particle physics signal of dark matter so far, motivates us to look for new directions in the dark sector physics, including scenarios in which dark matter is super-heavy. In this article we study the possibility that the dark matter is even heavier than the inflaton, its existence follows from the inflaton dynamics, and its abundance today is naturally determined by the weakness of gravitational interaction. This implies that the super-heavy dark matter scenarios can be tested via the measurements of inflationary parameters and/or the CMB isocurvature perturbations and non-Gaussianities. We explicitly work out details of three Coleman–Weinberg inflation scenarios, study the systematics of super-heavy dark matter production in those cases, and compute which parts of the parameter spaces can be probed by the future CMB measurements.

  13. Super-heavy dark matter – Towards predictive scenarios from inflation

    Directory of Open Access Journals (Sweden)

    Kristjan Kannike

    2017-05-01

    Full Text Available A generic prediction of the Coleman–Weinberg inflation is the existence of a heavy particle sector whose interactions with the inflaton, the lightest state in this sector, generate the inflaton potential at loop level. For typical interactions the heavy sector may contain stable states whose relic abundance is generated at the end of inflation by the gravity alone. This general feature, and the absence of any particle physics signal of dark matter so far, motivates us to look for new directions in the dark sector physics, including scenarios in which dark matter is super-heavy. In this article we study the possibility that the dark matter is even heavier than the inflaton, its existence follows from the inflaton dynamics, and its abundance today is naturally determined by the weakness of gravitational interaction. This implies that the super-heavy dark matter scenarios can be tested via the measurements of inflationary parameters and/or the CMB isocurvature perturbations and non-Gaussianities. We explicitly work out details of three Coleman–Weinberg inflation scenarios, study the systematics of super-heavy dark matter production in those cases, and compute which parts of the parameter spaces can be probed by the future CMB measurements.

  14. Recording of heavy ion tracks in silicates. Application to the determination of the abundance of ultra-heavy elements in old solar cosmic radiation

    International Nuclear Information System (INIS)

    Duraud, J.-P.

    1978-12-01

    The aim of this thesis is to determine the abundance A(Z) and energy spectrum of the elements of atomic number Z present in cosmic radiation, by means of fossil traces recorded in moon and meteorite minerals. The difficulties due amongst other things to natural annealing are examined in detail in part one, of this paper, the outcome being a thorough study of the processes responsible for the formation, chemical attack and annealing of heavy ion tracks. Part two describes an original approach used here and consisting of a combined analysis as a function of annealing for a given track, of the microscopic structure of the latent track and its attack rate. Part three uses the new rules established beforehand to propose a new method of studying the UH ion (Z>30) to VH ion (20 [fr

  15. Th/U/Pu/Cm dating of galactic cosmic rays with the extremely heavy cosmic ray composition observer

    Science.gov (United States)

    Westphal, Andrew J.; Weaver, Benjamin A.; Tarlé, Gregory

    The principal goal of ECCO, the Extremely-heavy Cosmic-ray Composition Observer, is the measurement of the age of heavy galactic cosmic-ray nuclei using the extremely rare actinides (Th, U, Pu, Cm) as clocks. ECCO is one of two cosmic-ray instruments comprising the Heavy Nuclei Explorer (HNX), which was recently selected as one of several missions for Phase A study under NASA's Small class Explorer (SMEX) program. ECCO is based on the flight heritage of Trek, an array of barium-phosphate glass tracketch detectors deployed on the Russian space station Mir from 1991-1995. Using Trek, we measured the abundances of elements with Z > 70 in the galactic cosmic rays (GCRs). Trek consisted of a 1 m 2 array of stacks of individually polished thin BP-1 glass detectors. ECCO will be a much larger instrument, but will achieve both excellent resolution and low cost through use of a novel detector configuration. Here we report the results of recent accelerator tests of the ECCO detectors that verify detector performance. We also show the expected charge and energy resolution of ECCO as a function of energy.

  16. To the problem of superfluous cosmic radiation

    International Nuclear Information System (INIS)

    Savenko, I.A.; Saraeva, M.A.; Shavrin, P.I.

    1979-01-01

    From consideration of a number of basic works on the excessive cosmic radiation given is the most probable composition (electron, proton, and nuclear components) of this radiation in equatorial regions at altitudes corresponding to minimum altitudes of the drift trajectories hsub(min) <= 0, in case of detecting by detector on the artificial satellite of the Earth (ASE) with the mass up to 1t and of the heavier ASE. The disagreement in spectra of solar cosmic rays obtained along the latitude effect on the ASE. ''Molniya-1'' and in the experiments out of the magnetosphere on the ASE ''Explorer-41'' is explained by excessive radiation production of solar cosmic rays. The comparison of readings of the neutron channel with those of the charged particle channels of the apparatus on the ASE ''Molniya-1'' during the proton event on 25.01.1971 does not contradict to the supposition on the similarity of excessive cosmic radiation production of galactic and solar cosmic rays

  17. Particle trajectories in seeds of Lactuca sativa and chromosome aberrations after exposure to cosmic heavy ions on cosmos biosatellites 8 and 9

    Science.gov (United States)

    Facius, R.; Scherer, K.; Reitz, G.; Bücker, H.; Nevzgodina, L. V.; Maximova, E. N.

    1994-10-01

    The potentially specific importance of the heavy ions of the galactic cosmic radiation for radiation protection in manned spaceflight continues to stimulate in situ, i.e., spaceflight experiments to investigate their radiobiological properties. Chromosome aberrations as an expression of a direct assault on the genome are of particular interest in view of cancerogenesis being the primary radiation risk for man in space. In such investigations the establishment of the geometrical correlation between heavy ions' trajectories and the location of radiation sensitive biological substructures is an essential task. The overall qualitative and quantitative precision achieved for the identification of particle trajectories in the order of 2~10 μm as well as the contributing sources of uncertainties are discussed. We describe how this was achieved for seeds of Lactuca sativa as biological test organisms, whose location and orientation had to be derived from contact photographies displaying their outlines and those of the holder plates only. The incidence of chromosome aberrations in cells exposed during the COSMOS 1887 (Biosatellite 8) and the COSMOS 2044 (Biosatellite 9) mission was determined for seeds hit by cosmic heavy ions. In those seeds the incidence of both single and multiple chromosome aberrations was enhanced. The results of the Biosatellite 9 experiment, however, are confounded by spaceflight effects unrelated to the passage of heavy ions.

  18. Cosmic radiation doses at flight level altitudes of airliners

    International Nuclear Information System (INIS)

    Viragh, E.; Petr, I.

    1985-01-01

    Changes are discussed in flux density of cosmic radiation particles with time as are the origin of cosmic radiation, the level of cosmic radiation near the Earth's surface, and the determination of cosmic radiation doses in airliners. Doses and dose rates are given measured on different flight routes. In spite of the fact that the flight duration at an altitude of about 10 km makes for about 80% of the total flight time, the overall radiation burden of the crews at 1000 flight hours a year is roughly double that of the rest of the population. (J.C.)

  19. A novel approach to the island of stability of super-heavy elements search

    Directory of Open Access Journals (Sweden)

    Wieloch A.

    2016-01-01

    Full Text Available It is expected that the cross section for super-heavy nuclei production of Z > 118 is dropping into the region of tens of femto barns. This creates a serious limitation for the complete fusion technique that is used so far. Moreover, the available combinations of the neutron to proton ratio of stable projectiles and targets are quite limited and it can be difficult to reach the island of stability of super heavy elements using complete fusion reactions with stable projectiles. In this context, a new experimental investigation of mechanisms other than complete fusion of heavy nuclei and a novel experimental technique are invented for our search of super- and hyper-nuclei. This contribution is focused on that technique.

  20. Heavy cosmic ions with charge Z = 3q-40 and their biological implications

    International Nuclear Information System (INIS)

    Hasegan, D.; Dudkin, E.V.; Marenny, M.A.

    1979-01-01

    Heavy cosmic ions were studied by plastic detectors flown in cosmic space aboard the artificial Earth satellites COSMOS 690, 782 and 936. Charge spectra in the range of Z = 3q-40 of cosmic nuclei having energy E >= 1 GeV/nucleon are presented. LET spectra of heavy cosmic ions were measured in these experiments, as well as the LET variation inside the stacks of plastic detectors. The variation of the irreversible inactivation cross sections and the Fractional Cell Loss with depth are derived. Three-dimensional energy deposition around the trajectories of the particles, in the studied ranges of charges and energies, is computed using Katz's model. (author)

  1. Atmospheric ions and pollution. Ions of the cosmic radiation

    International Nuclear Information System (INIS)

    Cachon, A.

    1977-01-01

    The principal historical steps before the so-called 'cosmic radiation' was known as an extra-terrestrial radiation are described. The origin, nature and energy of the radiation are discussed together with its evolution all along its path through atmosphere, in view of the interaction that occurs between the radiation and the atmosphere. The mechanism of the ionization induced by cosmic radiation is analyzed, the corresponding energy balance is established and the possible singularities in air ionization induced by cosmic rays are discussed [fr

  2. Dynamics of voids and clusters and fluctuations in the cosmic background radiation

    International Nuclear Information System (INIS)

    Salpeter, E.E.

    1983-01-01

    The author summarizes briefly calculations on spherically symmetric models without dissipation for the dynamical development of large voids and galaxy (super)clusters from small underdensities and overdensities, respectively, at the recombination era. Implications are mentioned and conjectures for more complex geometries are discussed. He infers the density fluctuations which must have been present just after the recombination era to produce some present-day configuration. Fluctuations in the present-day cosmic background radiation are related to this and their inferred amplitude depends very strongly on the present-day value of the cosmological density parameter. The relation to observed upper limits on these fluctuations are discussed. (Auth.)

  3. Nuclear interactions between cosmic radiation and interstellar gas, and nucleosynthesis of lithium, beryllium, and boron

    International Nuclear Information System (INIS)

    Meneguzzi, Maurice.

    1975-01-01

    The effects of nuclear interactions between the nuclei of cosmic radiation and those of interstellar gas were studied. The variation in the chemical composition of cosmic radiation with energy shows that the quantity of matter it passes through decreases between 1 and 100GeV/nucleon from 6 to 1g/cm 2 approximately. The chemical and isotopic composition for C, N and O suggests that the relative abundances of these nuclei at the source are much the same as the universal abundances except for the ratio C/O, higher by about a factor 1.5 in cosmic radiation sources. The enrichment of interstellar gas in light elements Li, Be and B was calculated. The value obtained accounts well for the universal abundances of the four isotopes 6 Li, 9 Be, 10 B, 11 B independently of the model used. It may be assumed that large fluxes of low-energy cosmic rays exist in the remains of supernovae and that 7 Li is produced in these objects and then spread out in the galaxy. These objects could be extended sources of nuclear γ's, which are observable, but the same process proves unable to produce sufficient quantities of the very heavy proton-rich elements of dubious origin. Inelastic collisions or spallation reactions between cosmic and interstellar gas nuclei induce a quantity of nuclear γ ray emission not necessarily undetectable. The position flux of a few MeV from the β + disintegration of unstable spallation products is too low on the other hand to give an estimate of the low-energy cosmic radiation flux in the interstellar medium [fr

  4. Revamped half-lives of super heavy elements (SHE) in trans-actinide region

    International Nuclear Information System (INIS)

    Carmel Vigila Bai, G.M.; Umai Parvathiy, J.

    2015-01-01

    Analyzation of alpha decay properties and identification of Island of Stability has illuminated the theories of nuclear physics. This fundamental scientific research is the current ongoing work in the field of super heavy elements. In order to study the decay properties of super heavy elements a realistic model called as Cubic plus Yukawa plus Exponential (CYE) model is used here. This model uses a cubic potential in the pre-scission region connected by Coulomb plus Yukawa plus Exponential potential in the post scission region

  5. Cosmic gamma-ray background radiation. Current understandings and problems

    International Nuclear Information System (INIS)

    Inoue, Yoshiyuki

    2015-01-01

    The cosmic gamma-ray background radiation is one of the most fundamental observables in the gamma-ray band. Although the origin of the cosmic gamma-ray background radiation has been a mystery for a long time, the Fermi gamma-ray space telescope has recently measured it at 0.1-820 GeV and revealed that the cosmic GeV gamma-ray background is composed of blazars, radio galaxies, and star-forming galaxies. However, Fermi still leaves the following questions. Those are dark matter contribution, origins of the cosmic MeV gamma-ray background, and the connection to the IceCube TeV-PeV neutrino events. In this proceeding, I will review the current understandings of the cosmic gamma-ray background and discuss future prospects of cosmic gamma-ray background radiation studies. (author)

  6. Cosmic Ray Modulation and Radiation Dose of Aircrews During Possible Grand Minimum

    Science.gov (United States)

    Miyake, S.; Kataoka, R.; Sato, T.; Imada, S.; Miyahara, H.; Shiota, D.; Matsumoto, T.; Ueno, H.

    2017-12-01

    The Sun is exhibiting low solar activity levels since the descending phase of the last solar cycle, and it is likely to be continued as well as in the case of the past grand solar minima. The cosmic-ray modulation, which is the variation of the galactic cosmic ray (GCR) spectrum caused by the heliospheric environmental change, is basically anti-correlated with the solar activity. In the recent weak solar cycle, we thus expect that the flux of GCRs is getting higher than that in the previous solar cycles, leading to the increase in the radiation exposure in the space and atmosphere. In order to quantitatively evaluate the possible solar modulation of GCRs and resultant radiation exposure at flight altitude, we have developed the time-dependent and three-dimensional model of the cosmic-ray modulation. Our model can give the flux of GCRs anywhere in the heliosphere by assuming the variation of the solar wind speed, the strength of the heliospheric magnetic field (HMF), and its tilt angle. We solve the gradient-curvature drift motion of GCRs in the HMF, and therefore reproduce the 22-year variation of the cosmic-ray modulation. We also calculate the neutron monitor counting rate and the radiation dose of aircrews at flight altitude, by the air-shower simulation performed by PHITS (Particle and Heavy Ion Transport code System). In our previous study [1], we calculated the radiation dose at a flight altitude during the coming solar cycle by assuming the variation of the solar wind speed and the strength of the HMF expressed by sinusoidal curve, and obtained that an annual radiation dose of aircrews in 5 years around the next solar minimum will be up to 19% higher than that at the last cycle. In this study, we predict the new model of the heliospheric environmental change on the basis of a prediction model for the sunspot number. The quantitative predictions of the cosmic-ray modulation and the radiation dose at a flight altitude during possible Grand Minimum considering

  7. Cosmic radiation exposure and persistent cognitive dysfunction

    Science.gov (United States)

    Parihar, Vipan K.; Allen, Barrett D.; Caressi, Chongshan; Kwok, Stephanie; Chu, Esther; Tran, Katherine K.; Chmielewski, Nicole N.; Giedzinski, Erich; Acharya, Munjal M.; Britten, Richard A.; Baulch, Janet E.; Limoli, Charles L.

    2016-01-01

    The Mars mission will result in an inevitable exposure to cosmic radiation that has been shown to cause cognitive impairments in rodent models, and possibly in astronauts engaged in deep space travel. Of particular concern is the potential for cosmic radiation exposure to compromise critical decision making during normal operations or under emergency conditions in deep space. Rodents exposed to cosmic radiation exhibit persistent hippocampal and cortical based performance decrements using six independent behavioral tasks administered between separate cohorts 12 and 24 weeks after irradiation. Radiation-induced impairments in spatial, episodic and recognition memory were temporally coincident with deficits in executive function and reduced rates of fear extinction and elevated anxiety. Irradiation caused significant reductions in dendritic complexity, spine density and altered spine morphology along medial prefrontal cortical neurons known to mediate neurotransmission interrogated by our behavioral tasks. Cosmic radiation also disrupted synaptic integrity and increased neuroinflammation that persisted more than 6 months after exposure. Behavioral deficits for individual animals correlated significantly with reduced spine density and increased synaptic puncta, providing quantitative measures of risk for developing cognitive impairment. Our data provide additional evidence that deep space travel poses a real and unique threat to the integrity of neural circuits in the brain. PMID:27721383

  8. Cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Wilson, R.W.

    1979-01-01

    The 20-ft horn-reflector antenna at Bell Laboratories is discussed in detail with emphasis on the 7.35 cm radiometer. The circumstances leading to the detection of the cosmic microwave background radiation are explored

  9. The effects of cosmic radiation on implantable medical devices

    International Nuclear Information System (INIS)

    Bradley, P.

    1996-01-01

    Metal oxide semiconductor (MOS) integrated circuits, with the benefits of low power consumption, represent the state of the art technology for implantable medical devices. Three significant sources of radiation are classified as having the ability to damage or alter the behavior of implantable electronics; Secondary neutron cosmic radiation, alpha particle radiation from the device packaging and therapeutic doses(up to 70 Gγ) of high energy radiation used in radiation oncology. The effects of alpha particle radiation from the packaging may be eliminated by the use of polyimide or silicone rubber die coatings. The relatively low incidence of therapeutic radiation incident on an implantable device and the use of die coating leaves cosmic radiation induced secondary neutron single event upset (SEU) as the main pervasive ionising radiation threat to the reliability of implantable devices. A theoretical model which predicts the susceptibility of a RAM cell to secondary neutron cosmic radiation induced SEU is presented. The model correlates well within the statistical uncertainty associated with both the theoretical and field estimate. The predicted Soft Error Rate (SER) is 4.8 x l0 -12 upsets/(bit hr) compared to an observed upset rate of 8.5 x 10 -12 upsets/(bit hr) from 20 upsets collected over a total of 284672 device days. The predicted upset rate may increase by up to 20% when consideration is given to patients flying in aircraft The upset rate is also consistent with the expected geographical variations of the secondary cosmic ray neutron flux, although insufficient upsets precluded a statistically significant test. This is the first clinical data set obtained indicating the effects of cosmic radiation on implantable devices. Importantly, it may be used to predict the susceptibility of future to the implantable device designs to the effects of cosmic radiation

  10. Cosmic radiation and air crew exposure

    International Nuclear Information System (INIS)

    Vukovic, B.; Lisjak, I.; Vekic, B.; Planinic, J.

    2005-01-01

    When the primary particles from space, mainly protons, enter the atmosphere, they interact with the air nuclei and induce cosmic-ray shower. When an aircraft is in the air, the radiation field within includes many types of radiation of large energy range; the field comprises mainly photons, electrons, positrons and neutrons. Cosmic radiation dose for crews of air crafts A 320 and ATR 42 was measured using TLD-100 (LiF: Mg, Ti) detectors and the Mini 6100 semiconductor dosimeter; radon concentration in the atmosphere was measured using the Alpha Guard radon detector. The total annual dose estimated for the A 320 aircraft crew, at altitudes up to 12000 meters, was 5.3 mSv (including natural radon radiation dose of 1.1 mSv).(author)

  11. Dosimetric significance of cosmic radiation in the altitude of SST and in free space

    Energy Technology Data Exchange (ETDEWEB)

    Allkofer, O C [Kiel Univ. (Germany, F.R.). Inst. fuer Reine und Angewandte Kernphysik

    1977-01-01

    The integral cosmic-ray flux, and hence the dose rate, increases with altitude. At the cruising altitude of the subsonic jets, about 10 km, the dose rate is already about a factor 70 higher than at sea level. At the higher altitudes of SST the situation is different because the composition of the galactic component differs from that at the subsonic level, the solar flares are more efficient, and a small number of heavy nuclei are still present. In free space an additional radiation hazard appears when the radiation belts have to be crossed.

  12. SuperCDMS Underground Detector Fabrication Facility

    Energy Technology Data Exchange (ETDEWEB)

    Platt, M.; Mahapatra, R.; Bunker, Raymond A.; Orrell, John L.

    2018-03-01

    The SuperCDMS SNOLAB dark matter experiment processes Ge and Si crystals into fully tested phonon and ionization detectors at surface fabrication and test facilities. If not mitigated, it is anticipated that trace-level production of radioisotopes in the crystals due to exposure to cosmic rays at (or above) sea level will result in the dominant source of background events in future dark matter searches using the current SuperCDMS detector technology. Fabrication and testing of detectors in underground facilities shielded from cosmic radiation is one way to directly reduce production of trace levels of radioisotopes, thereby improving experimental sensitivity for the discovery of dark matter beyond the level of the current experiment. In this report, we investigate the cost and feasibility to establish a complete detector fabrication processing chain in an underground location to mitigate cosmogenic activation of the Ge and Si detector substrates. For a specific and concrete evaluation, we explore options for such a facility located at SNOLAB, an underground laboratory in Sudbury, Canada hosting the current and future experimental phases of SuperCDMS.

  13. Constraining heavy dark matter with cosmic-ray antiprotons

    Science.gov (United States)

    Cuoco, Alessandro; Heisig, Jan; Korsmeier, Michael; Krämer, Michael

    2018-04-01

    Cosmic-ray observations provide a powerful probe of dark matter annihilation in the Galaxy. In this paper we derive constraints on heavy dark matter from the recent precise AMS-02 antiproton data. We consider all possible annihilation channels into pairs of standard model particles. Furthermore, we interpret our results in the context of minimal dark matter, including higgsino, wino and quintuplet dark matter. We compare the cosmic-ray antiproton limits to limits from γ-ray observations of dwarf spheroidal galaxies and to limits from γ-ray and γ-line observations towards the Galactic center. While the latter limits are highly dependent on the dark matter density distribution and only exclude a thermal wino for cuspy profiles, the cosmic-ray limits are more robust, strongly disfavoring the thermal wino dark matter scenario even for a conservative estimate of systematic uncertainties.

  14. Advanced composite materials and processes for the manufacture of SSC (Superconducting Super Collider) and RHIC (Relativistic Heavy Ion Collider) superconducting magnets used at cryogenic temperatures in a high radiation environment

    Energy Technology Data Exchange (ETDEWEB)

    Sondericker, J.H.

    1989-01-01

    Presently, BNL work on superconducting magnets centers mainly on the development of 17 meter length dipoles for the Superconducting Super Collider Project, approved for construction at Waxahatchie, Texas and 9.7 meter dipoles and quadrupoles for the Relativistic Heavy Ion Collider, a BNL project to start construction next year. This paper will discuss the role of composites in the manufacture of magnets, their operational requirements in cryogenic and radiation environments, and the benefits derived from their use. 13 figs.

  15. Advanced composite materials and processes for the manufacture of SSC [Superconducting Super Collider] and RHIC [Relativistic Heavy Ion Collider] superconducting magnets used at cryogenic temperatures in a high radiation environment

    International Nuclear Information System (INIS)

    Sondericker, J.H.

    1989-01-01

    Presently, BNL work on superconducting magnets centers mainly on the development of 17 meter length dipoles for the Superconducting Super Collider Project, approved for construction at Waxahatchie, Texas and 9.7 meter dipoles and quadrupoles for the Relativistic Heavy Ion Collider, a BNL project to start construction next year. This paper will discuss the role of composites in the manufacture of magnets, their operational requirements in cryogenic and radiation environments, and the benefits derived from their use. 13 figs

  16. Transition-radiation detectors for cosmic-ray research

    International Nuclear Information System (INIS)

    Mueller, D.; Chicago Univ., Ill.

    1975-01-01

    Transition-radiation detectors for cosmic-ray work are described which consist of plastic foam of multiple plastic foil radiators, followed by proportional chambers. A summary of the properties of such detectors is given, and the detection and discrimination efficiencies for energetic particles are discussed. Several possible applications of such devices for studies of cosmic-ray particles in the energy region γ=E/mc 2 >10 3 are advertised

  17. What is cosmic radiation?

    International Nuclear Information System (INIS)

    2004-01-01

    The earth was indeed receiving ionizing radiations from the heavens. This cosmic radiation consists of particles travelling near the speed of light. It consists of two components, the first of which is permanent and of galactic origin, while the other is more sporadic, depending on the sun's activities. Natural land-based sources expose each of us to an average total dose of 2.4 mSv per year (source UNSCEAR). In addition, the human activities using ionizing radiation contribute to an average annual exposure of 1.4 mSv, originating primarily with medical activities ( radiodiagnostic and radiation therapy). Members of flights crew are subject to exposure. The total dose of cosmic radiation received is is directly proportional with the duration of exposure, and thus with the duration of the flight. Measurement taken on board aircraft during the 1990's showed that flight personnel (on long haul flights) receive an average dose of approximately the same magnitude as the one due to exposure to natural radioactivity in France. The damage caused by ionizing radiation depends on the quantity of energy released by radiation into the cells of each organ or tissue of the human body(exposure dose). For a given quantity of absorbed energy (dose expressed in Gray), the damage will vary according to the nature of the radiation and the affected organ. These effects are of two types: acute effects and deferred effects. Two measurements are essential for radiation protection: the measurements of the dose of radiation absorbed by the body and the assessment of the risk associated with the absorbed dose. Two units were thus created: the gray and the sievert. (N.C.)

  18. French contribution to the super-heavy nuclei discovery

    International Nuclear Information System (INIS)

    Nifenecker, H.; Asghar, M.

    1999-01-01

    The research on super-heavy nuclei is a science in full operation for which the Berkeley physicist give proof of perseverance. The author wonders about the french absence in this domain. He recalls the strategical decisions concerning the research programs of the period and gives outline of the future with the interest of the ECR (Electronic Cyclotron Resonance) sources. (A.L.B.)

  19. Does electromagnetic radiation accelerate galactic cosmic rays

    Science.gov (United States)

    Eichler, D.

    1977-01-01

    The 'reactor' theories of Tsytovich and collaborators (1973) of cosmic-ray acceleration by electromagnetic radiation are examined in the context of galactic cosmic rays. It is shown that any isotropic synchrotron or Compton reactors with reasonable astrophysical parameters can yield particles with a maximum relativistic factor of only about 10,000. If they are to produce particles with higher relativistic factors, the losses due to inverse Compton scattering of the electromagnetic radiation in them outweigh the acceleration, and this violates the assumptions of the theory. This is a critical restriction in the context of galactic cosmic rays, which have a power-law spectrum extending up to a relativistic factor of 1 million.

  20. STARLIFE - An International Campaign to Study the Role of Galactic Cosmic Radiation in Astrobiological Model Systems

    Science.gov (United States)

    Moeller, Ralf; Raguse, Marina; Leuko, Stefan; Berger, Thomas; Hellweg, Christine Elisabeth; Fujimori, Akira; Okayasu, Ryuichi; Horneck, Gerda

    2017-02-01

    In-depth knowledge regarding the biological effects of the radiation field in space is required for assessing the radiation risks in space. To obtain this knowledge, a set of different astrobiological model systems has been studied within the STARLIFE radiation campaign during six irradiation campaigns (2013-2015). The STARLIFE group is an international consortium with the aim to investigate the responses of different astrobiological model systems to the different types of ionizing radiation (X-rays, γ rays, heavy ions) representing major parts of the galactic cosmic radiation spectrum. Low- and high-energy charged particle radiation experiments have been conducted at the Heavy Ion Medical Accelerator in Chiba (HIMAC) facility at the National Institute of Radiological Sciences (NIRS) in Chiba, Japan. X-rays or γ rays were used as reference radiation at the German Aerospace Center (DLR, Cologne, Germany) or Beta-Gamma-Service GmbH (BGS, Wiehl, Germany) to derive the biological efficiency of different radiation qualities. All samples were exposed under identical conditions to the same dose and qualities of ionizing radiation (i) allowing a direct comparison between the tested specimens and (ii) providing information on the impact of the space radiation environment on currently used astrobiological model organisms.

  1. Alteration of Organic Compounds in Small Bodies and Cosmic Dusts by Cosmic Rays and Solar Radiation

    Science.gov (United States)

    Kobayashi, Kensei; Kaneko, Takeo; Mita, Hajime; Obayashi, Yumiko; Takahashi, Jun-ichi; Sarker, Palash K.; Kawamoto, Yukinori; Okabe, Takuto; Eto, Midori; Kanda, Kazuhiro

    2012-07-01

    A wide variety of complex organic compounds have been detected in extraterrestrial bodies like carbonaceous chondrites and comets, and their roles in the generation of terrestrial life are discussed. It was suggested that organics in small bodies were originally formed in ice mantles of interstellar dusts in dense cloud. Irradiation of frozen mixture of possible interstellar molecules including CO (or CH _{3}OH), NH _{3} and H _{2}O with high-energy particles gave complex amino acid precursors with high molecular weights [1]. Such complex organic molecules were taken in planetesimals or comets in the early solar system. In prior to the generation of the terrestrial life, extraterrestrial organics were delivered to the primitive Earth by such small bodies as meteorites, comets and space dusts. These organics would have been altered by cosmic rays and solar radiation (UV, X-rays) before the delivery to the Earth. We examined possible alteration of amino acids, their precursors and nucleic acid bases in interplanetary space by irradiation with high energy photons and heavy ions. A mixture of CO, NH _{3} and H _{2}O was irradiated with high-energy protons from a van de Graaff accelerator (TIT, Japan). The resulting products (hereafter referred to as CAW) are complex precursors of amino acids. CAW, amino acids (dl-Isovaline, glycine), hydantoins (amino acid precursors) and nucleic acid bases were irradiated with continuous emission (soft X-rays to IR; hereafter referred to as soft X-rays irradiation) from BL-6 of NewSUBARU synchrotron radiation facility (Univ. Hyogo). They were also irradiated with heavy ions (eg., 290 MeV/u C ^{6+}) from HIMAC accelerator (NIRS, Japan). After soft X-rays irradiation, water insoluble materials were formed. After irradiation with soft X-rays or heavy ions, amino acid precursors (CAW and hydantoins) gave higher ratio of amino acids were recovered after hydrolysis than free amino acids. Nucleic acid bases showed higher stability than free

  2. Human population exposure to cosmic radiation

    International Nuclear Information System (INIS)

    Bouville, A.; Lowder, W.M.

    1988-01-01

    Critical evaluations of existing data on cosmic radiation in the atmosphere and in interplanetary space have been carried out in order to estimate the exposure of the world's population to this important component of natural background radiation. Data on population distribution and mean terrain heights on a 1 x 1 degree grid have been folded in to estimate regional and global dose distributions. The per caput annual dose equivalent at ground altitudes is estimated to be 270 μSv from charged particles and 50 μSv from neutrons. More than 100 million people receive more than 1 mSv in a year, and two million in excess of 5 mSv. Aircraft flight crews and frequent flyers receive an additional annual dose equivalent in the order of 1 mSv, though the global per caput annual dose equivalent from airplane flights is only about 1 μSv. Future space travellers on extended missions are likely to receive dose equivalents in the range 0.11 Sv, with the possibility of higher doses at relatively high dose rates from unusually large solar flares. These results indicate a critical need for a better understanding of the biological significance of chronic neutron and heavy charged particle exposure. (author)

  3. Cosmic-Ray Extremely Distributed Observatory: a global cosmic ray detection framework

    Science.gov (United States)

    Sushchov, O.; Homola, P.; Dhital, N.; Bratek, Ł.; Poznański, P.; Wibig, T.; Zamora-Saa, J.; Almeida Cheminant, K.; Alvarez Castillo, D.; Góra, D.; Jagoda, P.; Jałocha, J.; Jarvis, J. F.; Kasztelan, M.; Kopański, K.; Krupiński, M.; Michałek, M.; Nazari, V.; Smelcerz, K.; Smolek, K.; Stasielak, J.; Sułek, M.

    2017-12-01

    The main objective of the Cosmic-Ray Extremely Distributed Observatory (CREDO) is the detection and analysis of extended cosmic ray phenomena, so-called super-preshowers (SPS), using existing as well as new infrastructure (cosmic-ray observatories, educational detectors, single detectors etc.). The search for ensembles of cosmic ray events initiated by SPS is yet an untouched ground, in contrast to the current state-of-the-art analysis, which is focused on the detection of single cosmic ray events. Theoretical explanation of SPS could be given either within classical (e.g., photon-photon interaction) or exotic (e.g., Super Heavy Dark Matter decay or annihilation) scenarios, thus detection of SPS would provide a better understanding of particle physics, high energy astrophysics and cosmology. The ensembles of cosmic rays can be classified based on the spatial and temporal extent of particles constituting the ensemble. Some classes of SPS are predicted to have huge spatial distribution, a unique signature detectable only with a facility of the global size. Since development and commissioning of a completely new facility with such requirements is economically unwarranted and time-consuming, the global analysis goals are achievable when all types of existing detectors are merged into a worldwide network. The idea to use the instruments in operation is based on a novel trigger algorithm: in parallel to looking for neighbour surface detectors receiving the signal simultaneously, one should also look for spatially isolated stations clustered in a small time window. On the other hand, CREDO strategy is also aimed at an active engagement of a large number of participants, who will contribute to the project by using common electronic devices (e.g., smartphones), capable of detecting cosmic rays. It will help not only in expanding the geographical spread of CREDO, but also in managing a large manpower necessary for a more efficient crowd-sourced pattern recognition scheme to

  4. Radiation protection of aviation personnel at exposure by cosmic radiation

    International Nuclear Information System (INIS)

    Vicanova, M.; Pinter, I.; Liskova, A.

    2008-01-01

    For determination of radiation dose of aviation personnel we used the software EPCARD (European Program Package for the Calculation of Aviation Route Doses) developed by National Research Center for Environmental Health - Institute of Radiation Protection (Neuherberg, Germany) and the software CARI 6, developed by the FAA's Civil Aerospace Medical Institute (USA). Both codes are accomplished by the Joint Aviation Authorities. Experimental measurement and estimation of radiation doses of aviation personnel at exposure by cosmic radiation were realised in the period of lowered solar activity. All-year effective dose of pilots, which worked off at least 11 months exceeds the value 1 mSv in 2007. The mean all-year effective dose of member of aviation personnel at exposure by cosmic radiation is 2.5 mSv and maximal all-year effective dose, which we measured in 2007 was 4 mSv. We assumed that in the period of increased solar activity the all-year effective doses may by higher

  5. Dosimetry of environmental radiations (cosmic ray)

    International Nuclear Information System (INIS)

    Yamasaki, Keizo

    1978-01-01

    Cosmic ray is dominant as environmental radiation, though the experimental determination made on cosmic ray doses is few in Japan. The free air ionization intensity at sea level due to cosmic ray has been estimated in the Bay of Wakasa, Japan, at middle geomagnetic latitude (25 deg. N), in October 1977. The ionization chambers used were two air and one argon types. Where the responses to cosmic and terrestrial gamma rays were equal, the ionization intensity due to cosmic ray was obtained by subtracting the ionization intensity due to terrestrial gamma ray from the total ionization intensity. As the terrestrial gamma ray, (1) U-238 series, Th-232 series, and K-40 in seawater, (2) K-40 in the material of a wooden ship, and (3) Rn-222 and its daughter products in the atmosphere were considered. The result of free air ionization due to cosmic ray with the argon chamber was slightly smaller than those with the other two air chambers; however, both were in good agreement within standard errors. (JPN.)

  6. Cosmic radiation algorithm utilizing flight time tables

    International Nuclear Information System (INIS)

    Katja Kojo, M.Sc.; Mika Helminen, M.Sc.; Anssi Auvinen, M.D.Ph.D.; Katja Kojo, M.Sc.; Anssi Auvinen, M.D.Ph.D.; Gerhard Leuthold, D.Sc.

    2006-01-01

    Cosmic radiation is considerably higher on cruising altitudes used in aviation than at ground level. Exposure to cosmic radiation may increase cancer risk among pilots and cabin crew. The International Commission on Radiation Protection (ICRP) has recommended that air crew should be classified as radiation workers. Quantification of cosmic radiation doses is necessary for assessment of potential health effects of such occupational exposure. For Finnair cabin crew (cabin attendants and stewards), flight history is not available for years prior to 1991 and therefore, other sources of information on number and type of flights have to be used. The lack of systematically recorded information is a problem for dose estimation for many other flight companies personnel as well. Several cosmic radiation dose estimations for cabin crew have been performed using different methods (e.g. 2-5), but they have suffered from various shortcomings. Retrospective exposure estimation is not possible with personal portable dosimeters. Methods that employ survey data for occupational dose assessment are prone to non-differential measurement error i.e. the cabin attendants do not remember correctly the number of past flights. Assessment procedures that utilize surrogate measurement methods i.e. the duration of employment, lack precision. The aim of the present study was to develop an assessment method for individual occupational exposure to cosmic radiation based on flight time tables. Our method provides an assessment method that does not require survey data or systematic recording of flight history, and it is rather quick, inexpensive, and possible to carry out in all other flight companies whose past time tables for the past periods exist. Dose assessment methods that employ survey data are prone to random error i.e. the cabin attendants do not remember correctly the number or types of routes that they have flown during the past. Our method avoids this since survey data are not needed

  7. The intergalactic propagation of ultrahigh energy cosmic ray nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Dan; /Fermilab; Sarkar, Subir; /Oxford U., Theor. Phys.; Taylor, Andrew M.; /Oxford U.

    2006-08-01

    We investigate the propagation of ultra-high energy cosmic ray nuclei (A = 1-56) from cosmologically distant sources through the cosmic radiation backgrounds. Various models for the injected composition and spectrum and of the cosmic infrared background are studied using updated photodisintegration cross-sections. The observational data on the spectrum and the composition of ultra-high energy cosmic rays are jointly consistent with a model where all of the injected primary cosmic rays are iron nuclei (or a mixture of heavy and light nuclei).

  8. Cosmic radiation exposure in supersonic and subsonic flight

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    The main body of this document consists of four major sections: (1) an introduction describing the scope of Committee operations and proving a brief exposition of the concepts of radiation protection; (2) a survey of experimental and theoretical data on cosmic radiations that have been obtained in individual research projects with emphasis on investigations that were performed under the sponsorship of the Committee. The studies evaluate galactic and solar radiation as a function of altitude and magnetic latitude; (3) best current estimates of cosmic radiation levels in the atmosphere; and (4) radiation protection recommendations dealing with maximum permissible doses and operational aspects covering satellite warning systems, on-board instrumentation, and forecasting. Nine annexes submitted by individual authors cover various of these subjects in greater detail

  9. Anisotropy of the cosmic background radiation

    International Nuclear Information System (INIS)

    Silk, J.

    1988-01-01

    The characteristics of the cosmic microwave background radiation (CBR) are reviewed, focusing on intrinsic anisotropies caused by primordial matter fluctuations. The basic elements of the CBR are outlined and the contributions to anisotropy at different angular scales are discussed. Possible fluctuation spectra that can generate the observed large-scale structure of the universe through gravitational instability and nonlinear evolution are examined and compared with observational searches for cosmic microwave anisotropies. 21 refs

  10. Ground-based simulations of cosmic ray heavy ion interactions in spacecraft and planetary habitat shielding materials

    Science.gov (United States)

    Miller, J.; Zeitlin, C.; Heilbronn, L.; Borak, T.; Carter, T.; Frankel, K. A.; Fukumura, A.; Murakami, T.; Rademacher, S. E.; Schimmerling, W.; hide

    1998-01-01

    This paper surveys some recent accelerator-based measurements of the nuclear fragmentation of high energy nuclei in shielding and tissue-equivalent materials. These data are needed to make accurate predictions of the radiation field produced at depth in spacecraft and planetary habitat shielding materials and in the human body by heavy charged particles in the galactic cosmic radiation. Projectile-target combinations include 1 GeV/nucleon 56Fe incident on aluminum and graphite and 600 MeV/nucleon 56Fe and 290 MeV/nucleon 12C on polyethylene. We present examples of the dependence of fragmentation on material type and thickness, of a comparison between data and a fragmentation model, and of multiple fragments produced along the beam axis.

  11. Radiation Exposure of Passengers to Cosmic Radiation

    International Nuclear Information System (INIS)

    Salah El-Din, T.; Gomaa, M.A.; Sallah, N.

    2010-01-01

    The main aim of the present study is to review exposure of Egyptian passengers and occupational workers to cosmic radiation during their work. Computed effective dose of passengers by computer code CARI-6 using during either short route, medium route or long route as well as recommended allowed number of flights per year

  12. Search for Antihelium in the Cosmic Radiation

    DEFF Research Database (Denmark)

    Streitmatter, R.E.; Barbier, L.M.; Christian, E.R.

    1996-01-01

    The balloon-borne Isotope Matter-Antimatter Experiment (IMAX) was flown from Lynn Lake, Manitoba Canada on July 16-17, 1992. Sixteen hours of data were taken. Measurements of multiple dE/dX, rigidity, and time of flight were used to search for antihelium in the cosmic radiation. A report on the r......The balloon-borne Isotope Matter-Antimatter Experiment (IMAX) was flown from Lynn Lake, Manitoba Canada on July 16-17, 1992. Sixteen hours of data were taken. Measurements of multiple dE/dX, rigidity, and time of flight were used to search for antihelium in the cosmic radiation. A report...

  13. Cosmic rays in space

    International Nuclear Information System (INIS)

    Fujitaka, Kazunobu

    2005-01-01

    Cosmos is a mysterious space by which many researchers are fascinated for many years. But, going into space means that we will receive extra exposure due to existence of cosmic rays. Cosmic rays are mainly composed of highly energetic protons. It was born in the last stage of stellar life. Understanding of cosmos will certainly bring right understanding of radiation energy, or energy itself. As no one could see the very early stage of cosmic rays, there is only a speculation. But it is better to speculate something based on certain side evidences, than to give up the whole. Such attitude shall be welcomed in the space researches. Anyway, cosmic rays were born in the last explosion of a star, which is called as Super Nova. After cosmic rays are emitted from the Super Nova, it will reach to the human surroundings. To indicate its intensity, special unit of ''dose rate'' is used. When a man climbs a mountain, cosmic ray intensity surely increases. It doubles as he goes up every 1500m elevation. It was ascertained by our own measurements. Then what happens when the goes up more? At aviation altitude, where airplanes fly, the dose rate will be increased up to 100times the high mountain cases. And what is expected when he goes up further more, up to space orbit altitude? In this case, the dose rate increases up to 10times the airplane cases. Geomagnetism affects the dose rate very much. As primary cosmic ray particles are charged particles, they cannot do well with existence of the magnetic field. In effect, cosmic rays can penetrate into the polar atmosphere along geomagnetic lines of forces which stand almost vertical, but penetration of low energy cosmic rays will be banned when they intend to penetrate crossing the geomagnetic lines of forces in equatorial region. Therefore, exposure due to cosmic rays will become large in polar region, while it remains small in equatorial region. In effect, airplanes which fly over the equator. Only, we have to know that the cosmos

  14. Comparison and application study on cosmic radiation dose calculation received by air crew

    International Nuclear Information System (INIS)

    Zhou Qiang; Xu Cuihua; Ren Tianshan; Li Wenhong; Zhang Jing; Lu Xu

    2009-01-01

    Objective: To facilitate evaluation on Cosmic radiation dose received by flight crew by developing a convenient and effective measuring method. Methods: In comparison with several commonly used evaluating methods, this research employs CARI-6 software issued by FAA (Federal Aviation Administration) to measure Cosmic radiation dose for flight crew members exposed to. Results: Compared with other methods, CARI-6 is capable of providing reliable calculating results on radiation dose and applicable to all flight crew of different airlines. Conclusion: Cosmic radiation received by flight crew is on the list of occupational radiation. For a smooth running of Standards for controlling exposure to cosmic radiation of air crew, CARI software may be a widely applied tool in radiation close estimation of for flight crew. (authors)

  15. Super-radiant Smith–Purcell radiation from periodic line charges

    International Nuclear Information System (INIS)

    Li, D.; Hangyo, M.; Tsunawaki, Y.; Yang, Z.; Wei, Y.; Miyamoto, S; Asakawa, M.R.; Imasaki, K.

    2012-01-01

    Smith–Purcell radiation occurs when an electron passes close to the surface of a metallic grating. The radiation becomes coherent when the length of the electron bunch is smaller than the wavelength of the radiation. A train of periodic bunches can enhance the spectral intensity by changing the angular and spectral distribution of the radiation. This is called super-radiant Smith–Purcell radiation, and has been observed in experiments and particle-in-cell simulations. In this paper, we introduce a new method to study this effect by calculating the reflected waves of an incident evanescent wave from periodic line charges. The reflection coefficients are numerically computed, and the spectral distributions of the super-radiant radiation are demonstrated. These analytical results are in agreement with those obtained through part-in-cell simulations.

  16. Three-dimensional simulation of super-radiant Smith-Purcell radiation

    International Nuclear Information System (INIS)

    Li, D.; Imasaki, K.; Yang, Z.; Park, Gun-Sik

    2006-01-01

    A simulation of coherent and super-radiant Smith-Purcell radiation is performed in the gigahertz regime using a three-dimensional particle-in-cell code. The simulation model supposes a rectangular grating to be driven by a single electron bunch and a train of periodic bunches, respectively. The true Smith-Purcell radiation is distinguished from the evanescent wave, which has an angle independent frequency lower than the minimum allowed Smith-Purcell frequency. We also find that the super-radiant radiations excited by periodic bunches are emitted at higher harmonics of the bunching frequency and at the corresponding Smith-Purcell angles

  17. Cosmic Radiation - An Aircraft Manufacturer's View

    International Nuclear Information System (INIS)

    Hume, C.

    1999-01-01

    The relevance and context of cosmic radiation to an aircraft maker Airbus Industrie are outlined. Some future developments in aircraft and air traffic are described, along with their possible consequences for exposure. (author)

  18. On the radiative and thermodynamic properties of the cosmic radiations using COBE FIRAS instrument data: I. Cosmic microwave background radiation

    Science.gov (United States)

    Fisenko, Anatoliy I.; Lemberg, Vladimir

    2014-07-01

    Using the explicit form of the functions to describe the monopole and dipole spectra of the Cosmic Microwave Background (CMB) radiation, the exact expressions for the temperature dependences of the radiative and thermodynamic functions, such as the total radiation power per unit area, total energy density, number density of photons, Helmholtz free energy density, entropy density, heat capacity at constant volume, and pressure in the finite range of frequencies v 1≤ v≤ v 2 are obtained. Since the dependence of temperature upon the redshift z is known, the obtained expressions can be simply presented in z representation. Utilizing experimental data for the monopole and dipole spectra measured by the COBE FIRAS instrument in the 60-600 GHz frequency interval at the temperature T=2.72548 K, the values of the radiative and thermodynamic functions, as well as the radiation density constant a and the Stefan-Boltzmann constant σ are calculated. In the case of the dipole spectrum, the constants a and σ, and the radiative and thermodynamic properties of the CMB radiation are obtained using the mean amplitude T amp=3.358 mK. It is shown that the Doppler shift leads to a renormalization of the radiation density constant a, the Stefan-Boltzmann constant σ, and the corresponding constants for the thermodynamic functions. The expressions for new astrophysical parameters, such as the entropy density/Boltzmann constant, and number density of CMB photons are obtained. The radiative and thermodynamic properties of the Cosmic Microwave Background radiation for the monopole and dipole spectra at redshift z≈1089 are calculated.

  19. DNDO Report: Predicting Solar Modulation Potentials for Modeling Cosmic Background Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Behne, Patrick Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-08

    The modeling of the detectability of special nuclear material (SNM) at ports and border crossings requires accurate knowledge of the background radiation at those locations. Background radiation originates from two main sources, cosmic and terrestrial. Cosmic background is produced by high-energy galactic cosmic rays (GCR) entering the atmosphere and inducing a cascade of particles that eventually impact the earth’s surface. The solar modulation potential represents one of the primary inputs to modeling cosmic background radiation. Usosokin et al. formally define solar modulation potential as “the mean energy loss [per unit charge] of a cosmic ray particle inside the heliosphere…” Modulation potential, a function of elevation, location, and time, shares an inverse relationship with cosmic background radiation. As a result, radiation detector thresholds require adjustment to account for differing background levels, caused partly by differing solar modulations. Failure to do so can result in higher rates of false positives and failed detection of SNM for low and high levels of solar modulation potential, respectively. This study focuses on solar modulation’s time dependence, and seeks the best method to predict modulation for future dates using Python. To address the task of predicting future solar modulation, we utilize both non-linear least squares sinusoidal curve fitting and cubic spline interpolation. This material will be published in transactions of the ANS winter meeting of November, 2016.

  20. TeV Blazars and Cosmic Infrared Background Radiation

    OpenAIRE

    Aharonian, F. A.

    2001-01-01

    The recent developments in studies of TeV radiation from blazars are highlighted and the implications of these results for derivation of cosmologically important information about the cosmic infrared background radiation are discussed.

  1. European Legalisation on Protection Against Cosmic Radiation

    International Nuclear Information System (INIS)

    Courades, M.

    1999-01-01

    Specific provisions on protection of aircrew against cosmic radiation have been laid down for the first time at EU level as part of the Basic Safety Standards for the Health Protection of the General Public and Workers against the Dangers of Ionizing Radiation (Council Directive 96/29/Euratom of 13 May 1996). These provisions, focusing mainly on health and radiological surveillance, are minimal requirements; therefore the Directive leaves significant discretion to the Member States as regards actions to be taken; Member States have to transpose these provisions into national law before 13 May 2000. Further harmonisation of Community regulations on civil aviation safety will be needed in the field of protection against cosmic radiation. This is to obtain a high level of radiation protection for the aircrew and to maintain fair competition under the common transport policy. Additionally, particular requirement are foreseen for detection and monitoring devices as well as for working instructions (Operations Manual). (author)

  2. Cerenkov radiation from cosmic rays

    International Nuclear Information System (INIS)

    Turver, K.E.

    1988-01-01

    It is almost 40 years since it was suggested that Cerenkov radiations may be produced in the atmosphere by the passage of the cosmic radiation and account for a small part of the night sky brightness. The first detection of this visible Cerenkov radiation followed within a few years and by the 1960s the atmospheric Cerenkov radiation technique was established as a tool in high energy astrophysics. An exciting new field of astronomy, high energy gamma ray astronomy, has developed which relies on the atmospheric Cerenkov light. We here review the mechanism for the production of Cerenkov light in the atmosphere and summarize the contributions to high energy astrophysics made using the technique. (author)

  3. RADIATION PROTECTION FOR HUMAN SPACEFLIGHT

    OpenAIRE

    Hellweg, C.E.; Baumstark-Khan, C.; Berger, T.

    2017-01-01

    Space is a special workplace not only because of microgravity and the dependency on life support systems, but also owing to a constant considerable exposure to a natural radiation source, the cosmic radiation. Galactic cosmic rays (GCR) and solar cosmic radiation (SCR) are the primary sources of the radiation field in space. Whereas the GCR component comprises all particles from protons to heavy ions with energies up to 10¹¹ GeV, the SCR component ejected in Solar Energetic Particle events (S...

  4. Radiative hazard of solar flares in the nearterrestrial cosmic space

    International Nuclear Information System (INIS)

    Kolomenskij, A.V.; Petrov, V.M.; Zil', M.V.; Eremkina, T.M.

    1978-01-01

    Simulation of radiation enviroment due to solar cosmic rays was carried out in the near-terrestrial space. Systematized are the data on cosmic ray flux and spectra detected during 19-th and 20-th cycles of solar activity. 127 flares are considered with proton fluxes of more than 10 proton/cm 2 at energies higher than 30 MeV. Obtained are distribution functions of intervals between flares, flux distribution of flares and characteristic rigidity, and also distribution of magnetic disturbances over Dsub(st)-variation amplitude. The totality of these distributions presents the statistic model of radiation enviroment caused by solar flare protons for the period of maximum solar .activity. This model is intended for estimation of radiation hazard at manned cosmic flights

  5. Galactic cosmic ray-induced radiation dose on terrestrial exoplanets.

    Science.gov (United States)

    Atri, Dimitra; Hariharan, B; Grießmeier, Jean-Mathias

    2013-10-01

    This past decade has seen tremendous advancements in the study of extrasolar planets. Observations are now made with increasing sophistication from both ground- and space-based instruments, and exoplanets are characterized with increasing precision. There is a class of particularly interesting exoplanets that reside in the habitable zone, which is defined as the area around a star where the planet is capable of supporting liquid water on its surface. Planetary systems around M dwarfs are considered to be prime candidates to search for life beyond the Solar System. Such planets are likely to be tidally locked and have close-in habitable zones. Theoretical calculations also suggest that close-in exoplanets are more likely to have weaker planetary magnetic fields, especially in the case of super-Earths. Such exoplanets are subjected to a high flux of galactic cosmic rays (GCRs) due to their weak magnetic moments. GCRs are energetic particles of astrophysical origin that strike the planetary atmosphere and produce secondary particles, including muons, which are highly penetrating. Some of these particles reach the planetary surface and contribute to the radiation dose. Along with the magnetic field, another factor governing the radiation dose is the depth of the planetary atmosphere. The higher the depth of the planetary atmosphere, the lower the flux of secondary particles will be on the surface. If the secondary particles are energetic enough, and their flux is sufficiently high, the radiation from muons can also impact the subsurface regions, such as in the case of Mars. If the radiation dose is too high, the chances of sustaining a long-term biosphere on the planet are very low. We have examined the dependence of the GCR-induced radiation dose on the strength of the planetary magnetic field and its atmospheric depth, and found that the latter is the decisive factor for the protection of a planetary biosphere.

  6. CONCORD: comparison of cosmic radiation detectors in the radiation field at aviation altitudes

    Czech Academy of Sciences Publication Activity Database

    Meier, M.; Trompier, F.; Ambrožová, Iva; Kubančák, Ján; Matthia, D.; Ploc, Ondřej; Santen, N.; Wirtz, M.

    2016-01-01

    Roč. 6, MAY (2016), A24 ISSN 2115-7251 Institutional support: RVO:61389005 Keywords : aviation * radiation exposure of aircrew * comparison of radiation detectors * galactic cosmic radiation * ambient dose equivalent Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.446, year: 2016

  7. Cosmic radiation dose in the aircraft

    International Nuclear Information System (INIS)

    Vukovic, B.; Radolic, V.; Varga, M.; Planinic, J.; Vekic, B.

    2006-01-01

    When primary particles from space, mainly protons, enter the atmosphere, they produce interactions with air nuclei, and cosmic-ray showers are induced. The radiation field at aircraft altitude is complex, with different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard A 320 and ATR 42 aircraft was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter; the neutron dose was measured with the neutron dosimeter consisted of LR-115 track detector and boron foil BN-1 or 10B converter. The estimated occupational effective dose for the aircraft crew (A320) working 500 h per year was 1.64 mSv. Another experiment was performed at the flights Zagreb - Paris - Buenos Aires and reversely, when one measured cosmic radiation dose; for 26.7 h of flight, the MINI 6100 dosimeter gave an average dose rate of 2.3 μSv/h and the TLD dosimeter registered the total dose of 75 μSv or the average dose rate of 2.7 μSv/h; the neutron dosimeter gave the dose rate of 2.4 μSv/h. In the same month, February 2005, a traveling to the Japan (24 hours-flight: Zagreb - Frankfurt - Tokyo and reversely) and the TLD-100 measurement showed the average dose rate of 2.4 μSv/h; the neutron dosimeter gave the dose rate of 2.5 μSv/h. Comparing dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level, we could conclude the neutron component curried about 50% of the total dose, that was near other known data. (author)

  8. Management of cosmic radiation exposure for aircraft crew in Japan

    International Nuclear Information System (INIS)

    Yasuda, H.; Sato, T.; Yonehara, H.; Kosako, T.; Fujitaka, K.; Sasaki, Y.

    2011-01-01

    The International Commission on Radiological Protection has recommended that cosmic radiation exposure of crew in commercial jet aircraft be considered as occupational exposure. In Japan, the Radiation Council of the government has established a guideline that requests domestic airlines to voluntarily keep the effective dose of cosmic radiation for aircraft crew below 5 mSv y -1 . The guideline also gives some advice and policies regarding the method of cosmic radiation dosimetry, the necessity of explanation and education about this issue, a way to view and record dose data, and the necessity of medical examination for crew. The National Inst. of Radiological Sciences helps the airlines to follow the guideline, particularly for the determination of aviation route doses by numerical simulation. The calculation is performed using an original, easy-to-use program package called 'JISCARD EX' coupled with a PHITS-based analytical model and a GEANT4-based particle tracing code. The new radiation weighting factors recommended in 2007 are employed for effective dose determination. The annual individual doses of aircraft crew were estimated using this program. (authors)

  9. Primary cosmic radiation

    International Nuclear Information System (INIS)

    Anderson, H.R.

    1972-01-01

    The term cosmic radiation means the charged particle flux that reaches the earth from outside its magnetosphere with energies above the solar wind energy of a few keV. There are two sources of flux. Sporadically the sun produces such particles, generally within the energy range 1--200 MeV, and these solar cosmic rays arrive at the earth for a period ranging from hours to days. There may be a small, rather constant flux from the sun also, but the bulk of the steady flux originates outside the earth's orbit. Although some have conjectured that part of this latter flux may be accelerated in the outer portions of the solar system where the outward flowing interplanetary medium meets the interstellar medium, it is generally thought that most or all of it arises in unique systems such as supernovae, and is distributed throughout the galaxy. These galactic particles range in energy from a few MeV to at least 10 13 MeV and consist primarily of protons with significant numbers of heavier nuclei, positrons and electrons. They are supposed to fill our galaxy, or at least the disc, more or less uniformly. However, the flux with energies below a few GeV that reaches earth's orbit is modulated by the interplanetary medium so that the number at earth varies inversely with solar activity and is always somewhat below the interstellar flux. A discussion is presented of primary galactic radiation at earth, its modulation by solar activity, and its interaction with the geomagnetic field. (U.S.)

  10. Dosimetry for occupational exposure to cosmic radiation

    International Nuclear Information System (INIS)

    Bartlett, D.T.; McAulay, I.R.; Schrewe, U.J.

    1997-01-01

    Aircraft crew and frequent flyers are exposed to elevated levels of cosmic radiation of galactic and solar origin and secondary radiation produced in the atmosphere, aircraft structure, etc. This has been recognised for some time and estimates of the exposure of aircraft crew have been made previously and included in, for example, UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation) publications. The recent increased interest has been brought about by several factors - the consideration that the relative biological effectiveness of the neutron component was being underestimated; the trend towards higher cruising altitudes for subsonic commercial aircraft and business jet aircraft; and most importantly, the recommendations of the International Commission on Radiological Protection (ICRP) in Publication 60, and the revision of the Euratom Basic Safety Standards Directive (BSS). In 1992, the European Dosimetry Group (EURADOS) established a Working Group to consider the exposure to cosmic radiation of aircraft crew, and the scientific and technical problems associated with radiation protection dosimetry for this occupational group. The Working Group was composed of fifteen scientists (plus a corresponding member) involved in this field of study and with knowledge of radiation measurement at aviation altitudes. This paper is based on the findings of this Working Group. (author)

  11. Genomic instability in mutation induction on normal human fibroblasts irradiated with chronic low-dose radiations in heavy-ion radiation field

    International Nuclear Information System (INIS)

    Suzuki, M.; Tsuruoka, C.; Uchihori, Y.; Yasuda, H.; Fujitaka, K.

    2003-01-01

    Full text: At a time when manned space exploration is more a reality with the planned the International Space Station (ISS) underway, the potential exposure of crews in a spacecraft to chronic low-dose radiations in the field of low-flux galactic cosmic rays (GCR) and the subsequent biological effects have become one of the major concerns of space science. We have studied both in vitro life span and genomic instability in cellular effects in normal human skin fibroblasts irradiated with chronic low-dose radiations in heavy-ion radiation field. Cells were cultured in a CO2 incubator, which was set in the irradiation room for the biological study of heavy ions in the Heavy Ion Medical Accelerator in Chiba (HIMAC) at National Institute of Radiological Sciences (NIRS), and irradiated with scattered radiations produced from heavy ions. Absorbed dose measured using a thermoluminescence dosimeter (TLD) and a Si-semiconductor detector was to be around 1.4 mGy per day when operating the HIMAC machine for biological experiments. The total population doubling number (tPDN) of low-dose irradiated cells was significantly smaller (79-93%) than that of unirradiated cells. The results indicate that the life span of the cell population shortens by irradiating with low-dose scattered radiations in the heavy-ion irradiation field. Genomic instability in cellular responses was examined to measure either cell killing or mutation induction in low-dose accumulated cells after exposing to X-ray challenging doses. The results showed that there was no enhanced effect on cell killing between low-dose accumulated and unirradiated cells after exposing to defined challenging doses of 200kV X rays. On the contrary, the mutation frequency on hprt locus of low-dose accumulated cells was much higher than that of unirradiated cells. The results suggested that genomic instability was induced in mutagenesis by the chronic low-dose irradiations in heavy-ion radiation field

  12. Dose evaluation and protection of cosmic radiation

    International Nuclear Information System (INIS)

    Iwai, Satoshi; Takagi, Toshiharu

    2004-01-01

    This paper explained the effects of cosmic radiation on aircraft crews and astronauts, as well as related regulations. International Commission on Radiological Protection (ICRP) recommends the practice of radiation exposure management for the handling/storage of radon and materials containing natural radioactive substances, as well as for boarding jet aircraft and space flight. Common aircraft crew members are not subject to radiation exposure management in the USA and Japan. In the EU, the limit value is 6 mSv per year, and for the crew group exceeding this value, it is recommended to keep records containing appropriate medical examination results. Pregnant female crewmembers are required to keep an abdominal surface dose within 1 mSv. For astronauts, ICRP is in the stage of thinking about exposure management. In the USA, National Council on Radiation Protection and Measurement has set dose limits for 30 days, 1 year, and lifetime, and recommends lifetime effective dose limits against carcinogenic risk for each gender and age group. This is the setting of the dose limits so that the risk of carcinogenesis, to which space radiation exposure is considered to contribute, will reach 3%. For cosmic radiation environments at spacecraft inside and aircraft altitude, radiation doses can be calculated for astronauts and crew members, using the calculation methods for effective dose and dose equivalent for tissue. (A.O.)

  13. Cosmic microwave background radiation of black hole universe

    Science.gov (United States)

    Zhang, T. X.

    2010-11-01

    Modifying slightly the big bang theory, the author has recently developed a new cosmological model called black hole universe. This new cosmological model is consistent with the Mach principle, Einsteinian general theory of relativity, and observations of the universe. The origin, structure, evolution, and expansion of the black hole universe have been presented in the recent sequence of American Astronomical Society (AAS) meetings and published recently in a scientific journal: Progress in Physics. This paper explains the observed 2.725 K cosmic microwave background radiation of the black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present universe with hundred billion-trillions of solar masses. According to the black hole universe model, the observed cosmic microwave background radiation can be explained as the black body radiation of the black hole universe, which can be considered as an ideal black body. When a hot and dense star-like black hole accretes its ambient materials and merges with other black holes, it expands and cools down. A governing equation that expresses the possible thermal history of the black hole universe is derived from the Planck law of black body radiation and radiation energy conservation. The result obtained by solving the governing equation indicates that the radiation temperature of the present universe can be ˜2.725 K if the universe originated from a hot star-like black hole, and is therefore consistent with the observation of the cosmic microwave background radiation. A smaller or younger black hole universe usually cools down faster. The characteristics of the original star-like or supermassive black hole are not critical to the physical properties of the black hole universe at present, because matter and radiation are mainly from the outside space, i.e., the mother universe.

  14. Measurements of the cosmic background radiation

    International Nuclear Information System (INIS)

    Weiss, R.

    1980-01-01

    Measurements of the attributes of the 2.7-K microwave background radiation (CBR) are reviewed, with emphasis on the analytic phase of CBR studies. Methods for the direct measurement of the CBR spectrum are discussed. Attention is given to receivers, antennas, absolute receiver calibration, atmospheric emission and absorption, the galactic background contribution, the analysis of LF measurements, and recent HF observations of the CBR spectrum. Measurements of the large-angular-scale intensity distribution of the CBR (the most convincing evidence that the radiation is of cosmological origin) are examined, along with limits on the linear polarization of the CBR. A description is given of the NASA-sponsored Cosmic Background Explorer (COBE) satellite mission. The results of the COBE mission will be a set of sky maps showing, in the wave number range from 1 to 10,000 kaysers, the galactic background radiation due to synchrotron emission from galactic cosmic rays, to diffuse thermal emission from H II regions, and to diffuse thermal emission from interstellar and interplanetary dust, as well as a residue consisting of the CBR and whatever other cosmological background might exist

  15. Radiation pressure in super star cluster formation

    Science.gov (United States)

    Tsang, Benny T.-H.; Milosavljević, Miloš

    2018-05-01

    The physics of star formation at its extreme, in the nuclei of the densest and the most massive star clusters in the universe—potential massive black hole nurseries—has for decades eluded scrutiny. Spectroscopy of these systems has been scarce, whereas theoretical arguments suggest that radiation pressure on dust grains somehow inhibits star formation. Here, we harness an accelerated Monte Carlo radiation transport scheme to report a radiation hydrodynamical simulation of super star cluster formation in turbulent clouds. We find that radiation pressure reduces the global star formation efficiency by 30-35%, and the star formation rate by 15-50%, both relative to a radiation-free control run. Overall, radiation pressure does not terminate the gas supply for star formation and the final stellar mass of the most massive cluster is ˜1.3 × 106 M⊙. The limited impact as compared to in idealized theoretical models is attributed to a radiation-matter anti-correlation in the supersonically turbulent, gravitationally collapsing medium. In isolated regions outside massive clusters, where the gas distribution is less disturbed, radiation pressure is more effective in limiting star formation. The resulting stellar density at the cluster core is ≥108 M⊙ pc-3, with stellar velocity dispersion ≳ 70 km s-1. We conclude that the super star cluster nucleus is propitious to the formation of very massive stars via dynamical core collapse and stellar merging. We speculate that the very massive star may avoid the claimed catastrophic mass loss by continuing to accrete dense gas condensing from a gravitationally-confined ionized phase.

  16. Radiation dosimetry for crewmember exposure to cosmic radiation during astronaut training operations

    International Nuclear Information System (INIS)

    Shavers, M.R.; Gersey, B.B.; Wilkins, R.T.; Semones, E.J.; Cucinotta, F.A.

    2003-01-01

    'Atmospheric exposures' of astronauts to cosmic ions and secondary particles during air-flight training are being measured and analytically modeled for inclusion in the astronaut medical records database. For many of the ∼170 astronauts currently in the astronaut corps, their occupational radiation exposure history will be dominated by cosmic ion exposures during air-travel rather than short-duration spaceflight. Relatively low (usually <10 μSv hr -1 ) and uniform organ dose rates result from the penetrating mix of cosmic particles during atmospheric exposures at all altitudes, but at rates that vary greatly due to differences in flight profiles and the geomagnetic conditions at the time of flight. The precision and accuracy to which possible deleterious effects of the exposures can be assessed suffers from limitations that similarly impact assessment of human exposures in low-Earth orbit: uncertainties associated with the environmental measurements and their interpretation, uncertainties associated with the analytical tools that transport the cosmic radiation environment, and uncertain biological responses to low-dose-rate exposures to radiation fields of mixed radiation 'quality'. Lineal energy spectra will be measured using a Tissue Equivalent Proportional Counter designed for training and operational sorties frequently flown in T-38, Space Shuttle Trainer, and high altitude WB-57 aircraft. Linear energy spectra will be measured over multiple flights using CR-39 plastic nuclear track detectors, as well. Flight records are available for nearly 200,000 sorties flown in NASA aircraft by astronauts and flight officers in the Johnson Space Center Aircraft Operations Division over the past 25 years, yet this database only partially documents the complete exposure histories. Age-dependent risk analysis indicates significant impact, particularly to young women who anticipate lengthy on-orbit careers

  17. What can we learn from the fission time of the super-heavy elements?

    OpenAIRE

    Boilley, D.; Marchix, A.; Wilgenbus, D.; Lallouet, Y.; Gimbert, F.; Abe, Y.

    2007-01-01

    International audience; Recent experiments performed at GANIL with a crystal blocking technique have shown direct evidences of long fission times in the Super-Heavy Elements (SHE) region. Aimed to localize the SHE island of stability, can these experiments give access to the fission barrier and then to the shell-correction energy? In this paper, we calculate the fission time of heavy elements by using a new code, KEWPIE2, devoted to the study of the SHE.We also investigate the effect of poten...

  18. The cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Wilson, R.W.

    1980-01-01

    The history is described of the discovery of microwave radiation of the cosmic background using the 20-foot horn antenna at the Bell Laboratories back in 1965. Ruby masers with travelling wave were used, featuring the lowest noise in the world. The measurement proceeded on 7 cm. In measuring microwave radiation from the regions outside the Milky Way continuous noise was discovered whose temperature exceeded the calculated contributions of the individual detection system elements by 3 K. A comparison with the theory showed that relict radiation from the Big Bang period was the source of the noise. The discovery was verified by measurements on the 20.1 cm wavelength and by other authors' measurements on 0.5 mm to 74 cm, and by optical measurements of the interstellar molecule spectrum. (Ha)

  19. Cosmic Radiation Dose Measurements from the RaD-X Flight Campaign

    Science.gov (United States)

    Mertens, Christopher J.; Gronoff, Guillaume P.; Norman, Ryan B.; Hayes, Bryan M.; Lusby, Terry C.; Straume, Tore; Tobiska, W. Kent; Hands, Alex; Ryden, Keith; Benton, Eric; hide

    2016-01-01

    The NASA Radiation Dosimetry Experiment (RaD-X) stratospheric balloon flight mission obtained measurements for improving the understanding of cosmic radiation transport in the atmosphere and human exposure to this ionizing radiation field in the aircraft environment. The value of dosimetric measurements from the balloon platform is that they can be used to characterize cosmic ray primaries, the ultimate source of aviation radiation exposure. In addition, radiation detectors were flown to assess their potential application to long-term, continuous monitoring of the aircraft radiation environment. The RaD-X balloon was successfully launched from Fort Sumner, New Mexico (34.5 degrees North, 104.2 degrees West) on 25 September 2015. Over 18 hours of flight data were obtained from each of the four different science instruments at altitudes above 20 kilometers. The RaD-X balloon flight was supplemented by contemporaneous aircraft measurements. Flight-averaged dosimetric quantities are reported at seven altitudes to provide benchmark measurements for improving aviation radiation models. The altitude range of the flight data extends from commercial aircraft altitudes to above the Pfotzer maximum where the dosimetric quantities are influenced by cosmic ray primaries. The RaD-X balloon flight observed an absence of the Pfotzer maximum in the measurements of dose equivalent rate.

  20. Contribution of cosmic rays to radiation exposure of the population

    International Nuclear Information System (INIS)

    Sztanyik, L.B.; Nikl, I.

    1982-01-01

    To evaluate the exposure of the Hungarian population to cosmic rays, the absorbed dose rate in air of cosmic radiation was directly measured by high pressure ionization chamber at ground level on the surface of different bodies of water and at various altitudes on the board of an aircraft. From the dose rates measured this way, the outdoor dose equivalent rate from the ionizing components of cosmic radiation to people living at sea level would be 300-325 μSv per year. Taking into account the altitude distribution of the population, the average weighted dose equivalent is about 320 μSv per year. At Kekestetoe, the highest peak of the Matra Mountains, (the highest altitude in Hungary), the annual dose equivalent is about 50 per cent higher than on the Great Hungarian Plain. (author)

  1. Risk evaluation of cosmic-ray exposure in long-term manned space mission

    International Nuclear Information System (INIS)

    Fujitaka, Kazunobu; Majima, Hideyuki; Ando, Koichi; Yasuda, Hiroshi; Suzuki, Masao

    1999-03-01

    Long-term manned space missions are planned to be implemented within the first two decades of the 21st century. The International Space Station (ISS) will be ready to run, and a plan to visit Mars is also under way. Humans will live in space for long periods of time and we are planning to do experiments in space to examine various aspects of space science. The main risk in long-term manned space missions is large exposure to space radiation. Human safety must be ensured in space where exposure to cosmic rays is almost 1 mSv a day. As such missions will inevitably result in significant exposure for astronauts, there is increasing need to protect them adequately based on both physical and biological knowledge. A good method to evaluate realistic risk associated with space missions will be in urgent demand. At the National Institute of Radiological Sciences (NIRS), Chiba, Japan, a research institutes of the Science Technology Agency of Japan, high energy cosmic radiation can be simulated only with heavy ion irradiation accelerated by the particle accelerator, Heavy Ion Medical Accelerator (HIMAC). Research to evaluate risk of space radiation, including physical measurement techniques, protective effects, biological effects and risk adjustment, aging, neuronal cell damage and cancer risk are undergoing. We organized a workshop of the latest topics and experimental results of physics and biology related to space radiation supported by Japan Science and Technology Corporation (JST). This workshop was held as a satellite meeting associated with the 32nd Committee on Space Research (COSPAR) Scientific Assembly (Nagoya, July 12-19th, 1998). This volume is an extended proceedings of the workshop. The proceedings contain six main subjects covering the latest information on Risk Evaluation of Cosmic-Ray Exposure in Long-Term Manned Space Mission'. 1. Risk Estimation of Heavy Ion Exposure in Space. 2. Low Dose-Rate Effects and Microbeam-Related Heavy Ions. 3. Chromosome and

  2. Elastic and radiative heavy quark interactions in ultra-relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Uphoff, Jan; Fochler, Oliver; Xu, Zhe; Greiner, Carsten

    2015-01-01

    Elastic and radiative heavy quark interactions with light partons are studied with the partonic transport model named the Boltzmann approach to multiparton scatterings (BAMPSs). After calculating the cross section of radiative processes for finite masses in the improved Gunion–Bertsch approximation and verifying this calculation by comparing to the exact result, we study elastic and radiative heavy quark energy loss in a static medium of quarks and gluons. Furthermore, the full 3 + 1D space–time evolution of gluons, light quarks, and heavy quarks in ultra-relativistic heavy-ion collisions at the BNL Relativistic Heavy-Ion Collider (RHIC) and the CERN Large Hadron Collider (LHC) are calculated with BAMPS including elastic and radiative heavy flavor interactions. Treating light and heavy particles on the same footing in the same framework, we find that the experimentally measured nuclear modification factor of charged hadrons and D mesons at the LHC can be simultaneously described. In addition, we calculate the heavy flavor evolution with an improved screening procedure from hard-thermal-loop calculations and confront the results with experimental data of the nuclear modification factor and the elliptic flow of heavy flavor particles at the RHIC and the LHC. (paper)

  3. Exposure to cosmic radiation: a developing major problem in radiation protection

    International Nuclear Information System (INIS)

    Lowder, W.M.; Hajnal, F.

    1992-01-01

    'Full Text:' Cosmic radiation at ground altitudes is usually a relatively minor contributor to human radiation exposure, producing a global collective dose equivalent that is about 10 percent of the total from all natural sources. However, more than a million people living at high altitudes receive annual dose equivalents in excess of 5 mSv. In recent years, there has been increasing concern about the exposure of aircraft flight crews and passengers, for whom annual dose equivalents of up to several mSv have been estimated. Recent EML results indicate the presence of an important high-energy neutron component at jet aircraft altitudes, perhaps producing dose equivalents of the order of 0.1. mSv/h at high latitudes. Finally, space agencies have been long concerned with the potential exposures of astronauts, especially from the rare massive solar flare events. As more people venture into space, this source of human radiation exposure will become increasingly important. Available date on those aspects of cosmic radiation exposure will be reviewed, along with current and anticipated future research activities that may yield and improve assessment of the problem. The question of how such exposures might be controlled will be addressed, but not answered. (author)

  4. Studying Heavy Ion Collisions Using Methods From Cosmic Microwave Background (CMB Analysis

    Directory of Open Access Journals (Sweden)

    Gaardhøje J. J.

    2014-04-01

    Full Text Available We present and discuss a framework for studying the morphology of high-multiplicity events from relativistic heavy ion collisions using methods commonly employed in the analysis of the photons from the Cosmic Microwave Background (CMB. The analysis is based on the decomposition of the distribution of the number density of (charged particles expressed in polar and azimuthal coordinates into a sum of spherical harmonic functions. We present an application of the method exploting relevant symmetries to the study of azimuthal correlations arizing from collective flow among charged particles produced in relativistic heavy ion collisions. We discuss perspectives for event-by- event analyses, which with increasing collision energy will eventually open entirely new dimensions in the study of ultrarelaticistic heavy ion reactions.

  5. Natural radiation doses for cosmic and terrestrial components in Costa Rica

    International Nuclear Information System (INIS)

    Mora, Patricia; Picado, Esteban; Minato, Susumu

    2007-01-01

    A study of external natural radiation, cosmic and terrestrial components, was carried out with in situ measurements using NaI scintillation counters while driving along the roads in Costa Rica for the period July 2003-July 2005. The geographical distribution of the terrestrial air-absorbed dose rates and the total effective dose rates (including cosmic) are represented on contour maps. Information on the population density of the country permitted the calculation of the per capita doses. The average effective dose for the total cosmic component was 46.88±18.06 nSv h -1 and the average air-absorbed dose for the terrestrial component was 29.52±14.46 nGy h -1 . The average total effective dose rate (cosmic plus terrestrial components) was 0.60±0.18 mSv per year. The effective dose rate per capita was found to be 83.97 nSv h -1 which gives an annual dose of 0.74 mSv. Assuming the world average for the internal radiation component, the natural radiation dose for Costa Rica will be 2.29 mSv annually

  6. The anisotropy of the cosmic background radiation from local dynamic density perturbations

    International Nuclear Information System (INIS)

    Dyer, C.C.; Ip, P.S.S.

    1988-01-01

    Contrary to the usual assumption, it is shown here that the anisotropy of the cosmic background radiation need not be dominated by perturbations at the last scattering surface. The results of computer simulations are shown in which local dynamic density perturbations, in the form of Swiss cheese holes with finite, uniform density central lumps, are the main source of anisotropy of the cosmic background radiation. (author)

  7. Simultaneous measurements of helium and heavy nuclei fluxes in cosmic rays over Fort Churchill

    International Nuclear Information System (INIS)

    Bhatia, V.S.; Paruthi, S.; Kainth, G.S.

    1977-01-01

    We have made simultaneous measurements of fluxes of He an heavy nuclei (Z< or =10) in primary cosmic rays at three levels of solar activity. These nuclei have been studied in three nuclear emulsion stacks exposed over Fort Churchill, Canada, in 1963, 1964, and 1967. We had earlier reported our results on the heavy nuclei at the Hobart conference (Bhatia et al., 1971). Experimental results based on 1514 He nuclei tracks that were measured in these three stacks are presented in this paper. The experimentally obtained He and heavy nuclei differential energy spectra have been compared with the theoretically calculated near-earth spectra

  8. Summary of super high energy events and exotic phenomena in cosmic rays

    International Nuclear Information System (INIS)

    Miyake, S.

    1979-01-01

    In this report, the features of superhigh energy events and exotic phenomena are presented. The examples obtained with emulsion chambers show clear trend of change in the hadron interaction characteristics with energy. The scaling law is violated in the very high energy region above 10 15 eV. In the energy region from 10 to 100 TeV, there is mild violation of scaling. The cosmic ray data on the diffusion of high energy particles in the atmosphere was used to study the mild violation of scaling. It is not easy to discuss the violation in the energy region higher than 10 15 eV, because such event can be obtained very rarely. The only method is the observation of extensive air showers. The relation of average transverse momenta to primary cosmic ray energy was compared with some accelerator data. The cosmic ray data tend to show smaller momentum values. The energy spectrum of cosmic ray muons can be measured by the underground observation, the observation of muon-production burst with emulsion chambers, or the observation of horizontal air showers. Analysis of this spectrum shows that there is an upper limit for the direct production of muons at primary energy of several times of 10 14 eV. Other support for the change of interaction character at 10 14 eV is seen. Possible examples of heavy lepton events were found in the deep underground observation. In deep underground observation, anomalous showers with energy content larger than several hundred GeV were observed. Comment on the long tail nuclear cascade is presented. Some experiments for future are introduced. (Kato, T.)

  9. Occupational cosmic radiation exposure and cancer in airline cabin crew

    International Nuclear Information System (INIS)

    Kojo, K.

    2013-03-01

    Cosmic radiation dose rates are considerably higher at cruising altitudes of airplanes than at ground level. Previous studies have found increased risk of certain cancers among aircraft cabin crew, but the results are not consistent across different studies. Despite individual cosmic radiation exposure assessment is important for evaluating the relation between cosmic radiation exposure and cancer risk, only few previous studies have tried to develop an exposure assessment method. The evidence for adverse health effects in aircrews due to ionizing radiation is inconclusive because quantitative dose estimates have not been used. No information on possible confounders has been collected. For an occupational group with an increased risk of certain cancers it is very important to assess if the risk is related to occupational exposure. The goal of this thesis was to develop two separate retrospective exposure assessment methods for occupational exposure to cosmic radiation. The methods included the assessment based on survey on flight histories and based on company flight timetables. Another goal was to describe the cancer incidence among aircraft cabin crew with a large cohort in four Nordic countries, i.e., Finland, Iceland, Norway, and Sweden. Also the contribution of occupational as well as non-occupational factors to breast and skin cancer risk among the cabin crew was studied with case-control studies. Using the survey method of cosmic radiation exposure assessment, the median annual radiation dose of Finnish airline cabin crew was 0.6 milliSievert (mSv) in the 1960s, 3.3 mSv in the 1970s, and 3.6 mSv in the 1980s. With the flight timetable method, the annual radiation dose increased with time being 0.7 mSv in the 1960 and 2.1 mSv in the 1995. With the survey method, the median career dose was 27.9 mSv and with the timetable method 20.8 mSv. These methods provide improved means for individual cosmic radiation exposure assessment compared to studies where cruder

  10. Occupational cosmic radiation exposure and cancer in airline cabin crew.

    Energy Technology Data Exchange (ETDEWEB)

    Kojo, K.

    2013-03-15

    Cosmic radiation dose rates are considerably higher at cruising altitudes of airplanes than at ground level. Previous studies have found increased risk of certain cancers among aircraft cabin crew, but the results are not consistent across different studies. Despite individual cosmic radiation exposure assessment is important for evaluating the relation between cosmic radiation exposure and cancer risk, only few previous studies have tried to develop an exposure assessment method. The evidence for adverse health effects in aircrews due to ionizing radiation is inconclusive because quantitative dose estimates have not been used. No information on possible confounders has been collected. For an occupational group with an increased risk of certain cancers it is very important to assess if the risk is related to occupational exposure. The goal of this thesis was to develop two separate retrospective exposure assessment methods for occupational exposure to cosmic radiation. The methods included the assessment based on survey on flight histories and based on company flight timetables. Another goal was to describe the cancer incidence among aircraft cabin crew with a large cohort in four Nordic countries, i.e., Finland, Iceland, Norway, and Sweden. Also the contribution of occupational as well as non-occupational factors to breast and skin cancer risk among the cabin crew was studied with case-control studies. Using the survey method of cosmic radiation exposure assessment, the median annual radiation dose of Finnish airline cabin crew was 0.6 milliSievert (mSv) in the 1960s, 3.3 mSv in the 1970s, and 3.6 mSv in the 1980s. With the flight timetable method, the annual radiation dose increased with time being 0.7 mSv in the 1960 and 2.1 mSv in the 1995. With the survey method, the median career dose was 27.9 mSv and with the timetable method 20.8 mSv. These methods provide improved means for individual cosmic radiation exposure assessment compared to studies where cruder

  11. Heavy ion beam test results of the silicon charge detector for the CREAM cosmic ray balloon mission

    International Nuclear Information System (INIS)

    Park, I.H.; Ahn, H.S.; Bok, J.B.; Ganel, O.; Hahn, J.H.; Han, W.; Hyun, H.J.; Kim, H.J.; Kim, M.Y.; Kim, Y.J.; Lee, J.K.; Lee, M.H.; Lutz, L.; Min, K.W.; Malinine, A.; Nam, S.W.; Nam, W.; Park, H.; Park, N.H.; Seo, E.S.; Seon, K.I.; Sone, J.H.; Yang, J.; Zinn, S.Y.

    2004-01-01

    The Cosmic Ray Energetics And Mass (CREAM) experiment is designed to measure cosmic ray elemental spectra to help understand the source and acceleration mechanisms of ultra-high-energy cosmic rays. The payload is planned to launch in December 2004 from McMurdo Station, Antarctica as a balloon mission. A Silicon Charge Detector (SCD) was designed and constructed for the CREAM experiment to provide precision charge measurements of incident cosmic rays with a resolution of 0.2 charge unit or better. The SCD was exposed to heavy ion beams at CERN's H2 beam line in November 2003. The results reported here show the SCD performs as designed

  12. Heavy ion beam test results of the silicon charge detector for the CREAM cosmic ray balloon mission

    CERN Document Server

    Park, I H; Bok, J B; Ganel, O; Hahn, J H; Han, W; Hyun, H J; Kim, H J; Kim, M Y; Kim, Y J; Lee, J K; Lutz, L; Malinine, A; Min, K W; Nam, S W; Nam, W; Park, H; Park, N H; Seo, E S; Seon, K I; Sone, J H; Yang, J; Zinn, S Y

    2004-01-01

    The Cosmic Ray Energetics And Mass (CREAM) experiment is designed to measure cosmic ray elemental spectra to help understand the source and acceleration mechanisms of ultra-high-energy cosmic rays. The payload is planned to launch in December 2004 from McMurdo Station, Antarctica as a balloon mission. A Silicon Charge Detector (SCD) was designed and constructed for the CREAM experiment to provide precision charge measurements of incident cosmic rays with a resolution of 0.2 charge unit or better. The SCD was exposed to heavy ion beams at CERN's H2 beam line in November 2003. The results reported here show the SCD performs as designed.

  13. Collapse of radiating fluid spheres and cosmic censorship

    International Nuclear Information System (INIS)

    Unruh, W.G.

    1985-01-01

    The radiating-fluid-sphere model studied by Lake and Hellaby is reanalyzed to show that flat spacetime is a valid C 1 extension to their model and thus it does not force a violation of strong cosmic censorship

  14. Noncommutative black-body radiation: Implications on cosmic microwave background

    International Nuclear Information System (INIS)

    Fatollahi, A.H.; Hajirahimi, M.

    2006-01-01

    Including loop corrections, black-body radiation in noncommutative space is anisotropic. A direct implication of possible space non-commutativity on the cosmic microwave background map is argued. (authors)

  15. Diffuse Cosmic Infrared Background Radiation

    Science.gov (United States)

    Dwek, Eli

    2002-01-01

    The diffuse cosmic infrared background (CIB) consists of the cumulative radiant energy released in the processes of structure formation that have occurred since the decoupling of matter and radiation following the Big Bang. In this lecture I will review the observational data that provided the first detections and limits on the CIB, and the theoretical studies explaining the origin of this background. Finally, I will also discuss the relevance of this background to the universe as seen in high energy gamma-rays.

  16. Focusing of cosmic radiation near power lines. A theoretical approach

    International Nuclear Information System (INIS)

    Skedsmo, A.; Vistnes, A.I.

    1997-02-01

    The purpose of this work was to determine if, and to what extent, cosmic radiation can be focused by power lines. As an alternative to experimental measurements, a computer program was developed for simulation of particle trajectories. Starting from given initial values, the cosmic particles trajectories through the electromagnetic field surrounding power lines were simulated. Particular efforts have been made to choose initial values which represent the actual physical condition of the cosmic radiation at ground level. The results show an average decrease in the particle flux density in an area below a power line and a corresponding increased flux between 12 m and 45 m on either side of the centre of the power line. The average shift in flux density is, however, extremely small (less than 0.1%) and probably not measurable with existing detector technology. 11 refs., 4 figs., 2 tabs

  17. Cosmic radiation dose in aircraft - a neutron track etch detector

    Energy Technology Data Exchange (ETDEWEB)

    Vukovic, B.; Radolic, V.; Miklavcic, I.; Poje, M.; Varga, M. [Department of Physics, University of Osijek, 31000 Osijek, P.O. Box 125, Gajev trg 6 (Croatia); Planinic, J. [Department of Physics, University of Osijek, 31000 Osijek, P.O. Box 125, Gajev trg 6 (Croatia)], E-mail: planinic@ffos.hr

    2007-12-15

    Cosmic radiation bombards us at high altitude by ionizing particles. The radiation environment is a complex mixture of charged particles of solar and galactic origin, as well as of secondary particles produced in interaction of the galactic cosmic particles with the nuclei of atmosphere of the Earth. The radiation field at aircraft altitude consists of different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard ATR 42 and A 320 aircrafts (flight level of 8 and 11 km, respectively) was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter. The estimated occupational effective dose for the aircraft crew (A 320) working 500 h per year was 1.64 mSv. Other experiments, or dose rate measurements with the neutron dosimeter, consisting of LR-115 track detector and boron foil BN-1 or 10B converter, were performed on five intercontinental flights. Comparison of the dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level showed that the neutron component carried about 50% of the total dose. The dose rate measurements on the flights from the Middle Europe to the South and Middle America, then to Korea and Japan, showed that the flights over or near the equator region carried less dose rate; this was in accordance with the known geomagnetic latitude effect.

  18. Cosmic radiation dose in aircraft - a neutron track etch detector

    International Nuclear Information System (INIS)

    Vukovic, B.; Radolic, V.; Miklavcic, I.; Poje, M.; Varga, M.; Planinic, J.

    2007-01-01

    Cosmic radiation bombards us at high altitude by ionizing particles. The radiation environment is a complex mixture of charged particles of solar and galactic origin, as well as of secondary particles produced in interaction of the galactic cosmic particles with the nuclei of atmosphere of the Earth. The radiation field at aircraft altitude consists of different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard ATR 42 and A 320 aircrafts (flight level of 8 and 11 km, respectively) was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter. The estimated occupational effective dose for the aircraft crew (A 320) working 500 h per year was 1.64 mSv. Other experiments, or dose rate measurements with the neutron dosimeter, consisting of LR-115 track detector and boron foil BN-1 or 10B converter, were performed on five intercontinental flights. Comparison of the dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level showed that the neutron component carried about 50% of the total dose. The dose rate measurements on the flights from the Middle Europe to the South and Middle America, then to Korea and Japan, showed that the flights over or near the equator region carried less dose rate; this was in accordance with the known geomagnetic latitude effect

  19. 1020eV cosmic ray and particle physics with IceCube

    International Nuclear Information System (INIS)

    Alvarez-Muniz, J.; Halzen, F.

    2001-01-01

    We show that a kilometer-scale neutrino observatory, though optimized for detecting neutrinos of TeV to PeV energy, can reveal the science associated with the enigmatic super-EeV radiation in the Universe. Speculations regarding its origin include heavy relics from the early Universe, particle interactions associated with the Greisen cutoff, and topological defects which are remnant cosmic structures associated with phase transitions in grand unified gauge theories. We show that it is a misconception that new instruments optimized to EeV energy can exclusively do this important science. Because kilometer-scale neutrino telescopes such as IceCube can reject the atmospheric neutrino background by identifying the very high energy of the signal events, they have sensitivity over the full solid angle, including the horizon where most of the signal is concentrated. This is critical because upgoing neutrino-induced muons, considered in previous calculations, are absorbed by the Earth. Previous calculations have underestimated the event rates of IceCube for EeV signals by over one order of magnitude

  20. Cosmic Dark Radiation and Neutrinos

    Directory of Open Access Journals (Sweden)

    Maria Archidiacono

    2013-01-01

    Full Text Available New measurements of the cosmic microwave background (CMB by the Planck mission have greatly increased our knowledge about the universe. Dark radiation, a weakly interacting component of radiation, is one of the important ingredients in our cosmological model which is testable by Planck and other observational probes. At the moment, the possible existence of dark radiation is an unsolved question. For instance, the discrepancy between the value of the Hubble constant, H0, inferred from the Planck data and local measurements of H0 can to some extent be alleviated by enlarging the minimal ΛCDM model to include additional relativistic degrees of freedom. From a fundamental physics point of view, dark radiation is no less interesting. Indeed, it could well be one of the most accessible windows to physics beyond the standard model, for example, sterile neutrinos. Here, we review the most recent cosmological results including a complete investigation of the dark radiation sector in order to provide an overview of models that are still compatible with new cosmological observations. Furthermore, we update the cosmological constraints on neutrino physics and dark radiation properties focusing on tensions between data sets and degeneracies among parameters that can degrade our information or mimic the existence of extra species.

  1. Super families

    International Nuclear Information System (INIS)

    Amato, N.; Maldonado, R.H.C.

    1989-01-01

    The study on phenomena in the super high energy region, Σ E j > 1000 TeV revealed events that present a big dark spot in central region with high concentration of energy and particles, called halo. Six super families with halo were analysed by Brazil-Japan Cooperation of Cosmic Rays. For each family the lateral distribution of energy density was constructed and R c Σ E (R c ) was estimated. For studying primary composition, the energy correlation with particles released separately in hadrons and gamma rays was analysed. (M.C.K.)

  2. Do the recent heavy-ion collisions indicate a baryonic dictatorship in the cosmic world?

    Science.gov (United States)

    Bhattacharyya, S.; Chakravorty, S.

    1996-04-01

    The recent AGS experiments at BNL involving the heavy ions have reported some experimental measurements on production cross-sections of antiprotons. The brief communication presented attempts at dealing with the relevance and reflections of these findings on the cosmic measurements of antiproton flux, and their final cosmological implications.

  3. New approach to description of fusion-fission dynamics in super-heavy element formation

    International Nuclear Information System (INIS)

    Zagrebaev, V.I.

    2002-01-01

    A new mechanism of the fusion-fission process for a heavy nuclear system is proposed, which takes place in the (A 1 , A 2 ) space, where A 1 and A 2 are two nuclei, surrounded by a certain number of shared nucleons ΔA. The nuclei A 1 and A 2 gradually lose (or acquire) their individualities with increasing (or decreasing) a number of collectivized nucleons ΔA. The driving potential in the (A 1 , A 2 ) space is derived, which allows the calculation of both the probability of the compound nucleus formation and the mass distribution of fission and quasi-fission fragments in heavy ion fusion reactions. The cross sections of super-heavy element formation in the 'hot' and 'cold' fusion reactions have been calculated up to Z CN =118. (author)

  4. Studies of heavy-ion reactions and transuranic nuclei

    International Nuclear Information System (INIS)

    Schroeder, W.U.

    1993-08-01

    This report contain papers on the following topics: The Cold-Fusion Saga; Decay Patterns of Dysprosium Nuclei Produced in 32 S + 118,124 Sn Fusion Reactions; Unexpected Features of Reactions Between Very Heavy Ions at Intermediate Bombarding Energies; Correlations Between Neutrons and Charged Products from the Dissipative Reaction 197 Au+ 208 Pb at E/A = 29 MeV; Dissipative Dynamics of Projectile-Like Fragment Production in the Reaction 209 Bi+ 136 Xe at E/A = 28.2 MeV; Dynamical Production of Intermediate-Mass Fragments in Peripheral 209 Bi+ 136 Xe Collisions at E lab /A = 28.2 MeV; The Rochester 960-Liter Neutron Multiplicity Meter; A Simple Pulse Processing Concept for a Low-Cost Pulse-Shape-Based Particle Identification; A One-Transistor Preamplifier for PMT Anode Signals; A Five-Channel Multistop TDC/Event Handler for the SuperBall Neutron Multiplicity Meter; Construction of the SuperBall -- a 16,000-Liter Neutron Detector for Calorimetric Studies of Intermediate-Energy Heavy-Ion Reactions; A Computer Code for Light Detection Efficiency Calculations for Photo-multipliers of a Neutron Detector; Evaluation of Gd-Loaded Liquid Scintillators for the SuperBall Neutron Calorimeter; and Measurement of the Interaction of Cosmic-Ray μ - with a Muon Telescope

  5. Virtual reality-based simulation system for nuclear and radiation safety SuperMC/RVIS

    Energy Technology Data Exchange (ETDEWEB)

    He, T.; Hu, L.; Long, P.; Shang, L.; Zhou, S.; Yang, Q.; Zhao, J.; Song, J.; Yu, S.; Cheng, M.; Hao, L., E-mail: liqin.hu@fds.org.cn [Chinese Academy of Sciences, Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Hefei, Anhu (China)

    2015-07-01

    The suggested work scenarios in radiation environment need to be iterative optimized according to the ALARA principle. Based on Virtual Reality (VR) technology and high-precision whole-body computational voxel phantom, a virtual reality-based simulation system for nuclear and radiation safety named SuperMC/RVIS has been developed for organ dose assessment and ALARA evaluation of work scenarios in radiation environment. The system architecture, ALARA evaluation strategy, advanced visualization methods and virtual reality technology used in SuperMC/RVIS are described. A case is presented to show its dose assessment and interactive simulation capabilities. (author)

  6. Virtual reality-based simulation system for nuclear and radiation safety SuperMC/RVIS

    International Nuclear Information System (INIS)

    He, T.; Hu, L.; Long, P.; Shang, L.; Zhou, S.; Yang, Q.; Zhao, J.; Song, J.; Yu, S.; Cheng, M.; Hao, L.

    2015-01-01

    The suggested work scenarios in radiation environment need to be iterative optimized according to the ALARA principle. Based on Virtual Reality (VR) technology and high-precision whole-body computational voxel phantom, a virtual reality-based simulation system for nuclear and radiation safety named SuperMC/RVIS has been developed for organ dose assessment and ALARA evaluation of work scenarios in radiation environment. The system architecture, ALARA evaluation strategy, advanced visualization methods and virtual reality technology used in SuperMC/RVIS are described. A case is presented to show its dose assessment and interactive simulation capabilities. (author)

  7. Air crew exposure to cosmic radiation. New analysis, recommendations EURADOS

    Energy Technology Data Exchange (ETDEWEB)

    Spurny, F; Votockova, I [Academy of the Sciences of Czech Republic, Prague (Czech Republic). Nuclear Physics Institute, Department of Radiation Dosimetry

    1996-12-31

    Cosmic radiation on the board of an aircraft consist of two components: directly ionizing radiation (electron, proton - low LET) and neutrons (high LET). Neither composition nor the energy spectrum of usual on-Earth calibration sources ({sup 60}Co, {sup 252}Cf) do not correspond to the field on a board. Therefore high energy reference fields behind shielding high energy accelerator at CERN and Dubna have been created and intensively studied. Their typical characteristics following from the results of our measurements were obtained. In-flight measurements on the board of commercial aircraft have been realized since 1991 during about 20 flights, Flight routes extended from the 1.3 grad N up to about 65 grad N, flying altitudes varied from 8.2 km to 12.5 km. The exposure level due to galactic cosmic radiation is inversely proportional to the solar activity. Some radiation protection aspects were concluded: (a) The usual limits of annual air crew flight hours correspond at 11.3 km to about 4 mSv per year, with new ICRP conversion factors to about 5 mSv per year; (b) Monthly flight hours limit does not exclude that the exposure of a pregnant women can exceed 1 mSv during this period; (c) The air crew exposure should therefore be checked, controlled a nd administered as conscientiously as for any other group of occupationally exposed persons. A Working group 11 of EURADOS `Exposure of air crew to cosmic radiation` has been formed (1992-1995) to prepare basic analysis and recommendations concerning the topics. (Abstract Truncated)

  8. Do the recent heavy-ion collisions indicate a baryonic dictatorship in the cosmic world?

    International Nuclear Information System (INIS)

    Bhattacharyya, S.; Chakravorty, S.

    1996-01-01

    The recent AGS experiments at BNL involving the heavy ions have reported some e experimental measurements on production cross-sections of anti-protons. The brief communication presented here attempts at dealing with the relevance and reflections of these findings on the cosmic measurements of anti-protons flux, and their final cosmological implications

  9. Do the recent heavy-ion collisions indicate a baryonic dictatorship in the cosmic world?

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, S; Chakravorty, S [Indian Statistical Inst., Calcutta (International Commission on Radiation Units and Measurements). Physics and Applies Mathematics Unit, Physical and Earth Sciences Division

    1996-03-01

    The recent AGS experiments at BNL involving the heavy ions have reported some e experimental measurements on production cross-sections of anti-protons. The brief communication presented here attempts at dealing with the relevance and reflections of these findings on the cosmic measurements of anti-protons flux, and their final cosmological implications.

  10. Search for shot-time growths of flares od cosmic heavy nuclei according to measurement data at ''Prognoz'' satellites

    International Nuclear Information System (INIS)

    Volodichev, N.N.; Savenko, I.A.; Suslov, A.A.

    1983-01-01

    Surch for short-time growths of fluxes of mainly cosmic heavy nuclei with the energy epsilon > or approximately 500 MeV/nucleon according to measurement data at ''Prognoz-2'' and ''Prognoz-3'' satellites is undertaken. Such growths have been recorded during the flights of the first soviet cosmic rockets, spacecraft-satellites, ''Electron'', ''Molnia-1'' satellites. At the ''Prognoz'' satellite such growth have not been observed. Moreover, the 2.1.1974 growth found at the ''Molnia-1'' satellite by the telescope of scintillation and Cherenkov counters has not been recorded by the analogous device at ''Prognoz-3'' satellite. Therefore, the problem on the nature of short-time growths of the heavy nuclei fluxes remains unsolved

  11. Status of the low-energy super-heavy element facility at RIKEN

    Energy Technology Data Exchange (ETDEWEB)

    Schury, P., E-mail: schury@riken.jp [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Wada, M.; Ito, Y. [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Arai, F. [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Institute of Physics, University of Tsukuba, Tsukuba City, Ibaraki (Japan); Kaji, D. [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Kimura, S. [Institute of Physics, University of Tsukuba, Tsukuba City, Ibaraki (Japan); Morimoto, K.; Haba, H. [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Jeong, S. [Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK), Ibaraki 305-0801 (Japan); Koura, H. [Advanced Science Research Center, Japan Atomic Energy Agency, Ibaraki 319-1195 (Japan); Miyatake, H. [Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK), Ibaraki 305-0801 (Japan); Morita, K.; Reponen, M. [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Ozawa, A. [Institute of Physics, University of Tsukuba, Tsukuba City, Ibaraki (Japan); Sonoda, T.; Takamine, A. [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Wollnik, H. [Dept. Chemistry and BioChemistry, New Mexico State University, Las Cruces, NM (United States)

    2016-06-01

    In order to investigate nuclei produced via fusion–evaporation reactions, especially super-heavy elements (SHE), we have begun construction of a facility for conversion of fusion–evaporation residues (EVR) to low-energy beams. At the base of this facility is a small cryogenic gas cell utilizing a traveling wave RF-carpet, located directly following the gas-filled recoil ion separator GARIS-II, which will thermalize EVRs to convert them into ion beams amenable to ion trapping. We present here the results of initial studies of this small gas cell.

  12. Impact parameter determination for the passage of cosmic heavy ions through mesoscopic biological test organisms

    International Nuclear Information System (INIS)

    Facius, R.; Reitz, G.; Buecker, H.; Nevzgodina, L.V.; Maximova, E.N.

    1992-01-01

    Seeds of the plant Lactuca sativa as a prototype of a mesoscopic, i.e. neither micro- nor truly macroscopic, biological test organism, were exposed during the Biocosmos 9 mission to cosmic heavy ions within stacks of visual track detectors in order to explore the not yet properly understood radiobiological effects of single heavy ions. In such an investigation, the establishment of the geometrical correlation between the ion trajectories and the location of radiation-sensitive biological substructures is an essential task. We describe how this was achieved for biological test organisms, whose location and orientation had to be derived from contact photographs displaying their outlines and those of the holder plates only. The overall qualitative and quantitative precision achieved, as well as the contributing sources of uncertainties are discussed in detail. A precision of ≅ 10μm was accomplished for the coordinates of particle trajectories, which is near the limit set by the mechanical precision and stability of the detector material. The precision of the impact parameter is limited by the uncertainty in the location of the internal structures, which at best is around 50 and at worst around 150 μm, but is still acceptable when compared with the extension of the sensitive structures. (author)

  13. Impact parameter determination for the passage of cosmic heavy ions through mesoscopic biological test organisms

    Energy Technology Data Exchange (ETDEWEB)

    Facius, R.; Reitz, G.; Buecker, H. (Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Koeln (Germany)); Nevzgodina, L.V.; Maximova, E.N. (Institute of Biomedical Problems, Moscow (USSR))

    1992-01-01

    Seeds of the plant Lactuca sativa as a prototype of a mesoscopic, i.e. neither micro- nor truly macroscopic, biological test organism, were exposed during the Biocosmos 9 mission to cosmic heavy ions within stacks of visual track detectors in order to explore the not yet properly understood radiobiological effects of single heavy ions. In such an investigation, the establishment of the geometrical correlation between the ion trajectories and the location of radiation-sensitive biological substructures is an essential task. We describe how this was achieved for biological test organisms, whose location and orientation had to be derived from contact photographs displaying their outlines and those of the holder plates only. The overall qualitative and quantitative precision achieved, as well as the contributing sources of uncertainties are discussed in detail. A precision of {approx equal} 10{mu}m was accomplished for the coordinates of particle trajectories, which is near the limit set by the mechanical precision and stability of the detector material. The precision of the impact parameter is limited by the uncertainty in the location of the internal structures, which at best is around 50 and at worst around 150 {mu}m, but is still acceptable when compared with the extension of the sensitive structures. (author).

  14. Effect of sublethal doses of gamma radiation on DNA super helicity and survival of human fibroblasts

    International Nuclear Information System (INIS)

    Koceva-Chyla, A.

    1992-01-01

    Effect of sublethal doses of gamma radiation on cell survival and DNA super helicity in human fibroblasts was studied. Cell survival was estimated on the basis the basis of clonal growth of irradiated fibroblasts in monolayer culture in vitro. The nucleoid sedimentation technique was used to study ionizing radiation-induced DNA damage in vivo as well as to examine DNA super helicity. Increased concentrations of ethidium bromine (EB) were used to titrate the DNA super coiling response in non-irradiated cells. This response consisted of a relaxation phase (1-5 μg/ml EB) and rewinding phase (5-20 μg/ml EB). Observed biphasic dependence of sedimentation distance of nucleoid on the concentration of EB suggests the dye altered the amount of DNA super coiling in situ. The degree of DNA super coiling and thus the sedimentation rate of nucleoid in absence of EB was very sensitive to strand break induced in DNA by the doses of gamma radiation employed in the cell survival assay. Doses of 2-8 Gy of gamma radiation induced a dose -dependent reduction in the sedimentation of nucleoid. Loss of negative DNA super coiling was initially rapid (about 30% after the dose of 2 Gy) and then proceeded at a slower rate (about 35% and 48% after the doses of 4 Gy and 8 Gy respectively), indicating a significant relaxation of nucleoid structure at the doses of gamma radiation greater than 4 Gy, at which also significant decrease in fibroblasts survival occurred. Significant loss of negative DNA super coiling within the range of doses of gamma radiation resulting in significant decrease of cell survival suggests that destabilizing effect of radiation on DNA tertiary- and quaternary structures (extensive DNA breaks and relaxation of nucleonic super helicity) disturb normal functions and replications of genomic DNA, in consequence leading to a reproductive death of cells. Considering the sensitivity and simplicity of the method, the nucleoid sedimentation technique might be also a useful tool

  15. Inconstant sun: how solar evolution has affected cosmic and ultraviolet radiation exposure over the history of life on Earth.

    Science.gov (United States)

    Karam, P Andrew

    2003-03-01

    Four billion years ago, sea-level UV exposure was more than 400 times as intense as today, the dose from solar cosmic rays was five times present levels, and galactic cosmic rays accounted for only about 10% their current contribution to sea-level radiation doses. Exposure to cosmic radiation accounts for about 10% of natural background radiation exposure today and includes dose from galactic cosmic rays and solar charged particles. There is little exposure to ionizing wavelengths of UV due to absorption by ozone. The sun has evolved significantly over its life; in the past there were higher levels of particulate radiation and lower UV emissions from the sun, and a stronger solar wind reduced radiation dose in the inner solar system from galactic cosmic rays. Finally, since the early atmosphere contained little to no oxygen, surface levels of UV radiation were far higher in the past.

  16. Measurements of K/Π ratio in cosmic radiation

    International Nuclear Information System (INIS)

    Mahon, J.R.P.

    1986-01-01

    Measurements of k/Π ratio in cosmic radiation by its half lives and its fluxes, were carried out. The kaon flux was obtained using the Cherenkov detector, and for pion flux scintillation detectors were used. The final results of K/Π ratio ∼ 0.2 was obtained. (M.C.K.) [pt

  17. Search for the Cosmic Infrared Background Radiation using COBE Data

    Science.gov (United States)

    Hauser, Michael

    2001-01-01

    This project was initiated to allow completion of the primary investigation of the Diffuse Infrared Background Experiment (DIRBE) on NASA's Cosmic Background Explorer (CORE) mission, and to study the implications of those findings. The Principal Investigator (PI) on this grant was also the Principal Investigator on the DIRBE team. The project had two specific goals: Goal 1: Seek improved limits upon, or detections of, the cosmic infrared background radiation using data from the COBE Diffuse Infrared Background Experiment (DIRBE). Goal 2: Explore the implications of the limits and measured values of the cosmic infrared background for energy releases in the Universe since the formation of the first luminous sources. Both of these goals have been successfully accomplished.

  18. Angular anisotropy of the cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Silk, J.

    1982-01-01

    The theory of fluctuations in the cosmic microwave background radiation is reviewed. Anisotropy on large-scale (dipole and quadrupole) and on small scales is discussed. The smoothing effects of secondary ionization (fractional ionization x) are found to be unimportant over an angular scale greater than approx.= 5(OMEGAx)sup(1/3) degrees. (author)

  19. Relativistic nonlinear electrodynamics the QED vacuum and matter in super-strong radiation fields

    CERN Document Server

    Avetissian, Hamlet K

    2016-01-01

    This revised edition of the author’s classic 2006 text offers a comprehensively updated review of the field of relativistic nonlinear electrodynamics. It explores the interaction of strong and super-strong electromagnetic/laser radiation with the electromagnetic quantum vacuum and diverse types of matter – including free charged particles and antiparticles, acceleration beams, plasma and plasmous media.  The appearance of laser sources of relativistic and ultra-relativistic intensities over the last decade has stimulated investigation of a large class of processes under such super-strong radiation fields. Revisions for this second edition reflect these developments and the book includes new chapters on Bremsstrahlung and nonlinear absorption of superintense radiation in plasmas, the nonlinear interaction of relativistic atoms with intense laser radiation, nonlinear interaction of strong laser radiation with Graphene, and relativistic nonlinear phenomena in solid-plasma targets under supershort laser pul...

  20. Investigations of aircrews exposure to cosmic radiation - results, conclusions and suggestions

    CERN Document Server

    Bilski, P; Horwacik, T; Marczewska, B; Ochab, E; Olko, P

    2002-01-01

    In frame of a research project undertaken in collaboration with Polish airlines LOT, analysis of aircrews exposure to cosmic radiation has been performed. The applied methods included measurements of radiation doses with thermoluminescent detectors (MTS-N, MCP-N) and track detectors (CR-39) and also calculations of route doses with the CARI computer code. The obtained results indicate that aircrews of nearly all airplanes, with exception of these flying only on ATR aircraft, exceed regularly or may exceed in some conditions, effective doses of 1 mSv. In case of Boeing-767 aircrews such exceeding occurs always, independently of solar activity. Investigations revealed, that during these periods of the solar cycle, when intensity of cosmic radiation is high, exceeding of 6 mSv level is also possible. These results indicate, that according to Polish and European regulations it is necessary for airlines to provide regular estimations of radiation exposure of aircrews. Basing on the obtained results a system for pe...

  1. Cosmic strings and galaxy formation

    International Nuclear Information System (INIS)

    Bertschinger, E.

    1989-01-01

    Cosmic strings have become increasingly popular candidates as seeds for the formation of structure in the universe. This scenario, remains a serious cosmogonical model despite close scrutiny. In constrast, magnetic monopoles and domain walls - relic topological defects as are cosmic strings - are disastrous for cosmology if they are left over from the early universe. The production of heavy cosmic strings is speculative, as it depends on the details of ultrahigh energy physics. Fortunately, speculation about cosmic strings is not entirely idle because, if they exist and are heavy enough to seed galaxy formation, cosmic strings can be detected astronomically. Failure to detect cosmic strings would impose some constraints on grand unified theories (GUTs); their discovery would have exciting consequences for high energy physics and cosmology. This article reviews the basic physics of nonsuperconducting cosmic strings, highlighting the field theory aspects, and provides a progress report on calculations of structure formation with cosmic strings

  2. Air traffic and cosmic radiation. An epidemiological study among aircraft crews in Germany

    International Nuclear Information System (INIS)

    Blettner, M.; Hammer, G.P.; Langner, I.; Zeeb, H.

    2003-01-01

    Airline pilots and cabin crew are exposed to cosmic ionizing radiation and other occupational factors that may influence their health status. The mortality of some 6,000 pilots and 20,000 cabin crew members was investigated in a cohort study. Overall a pronounced healthy worker effect was seen. The cancer mortality risk is slightly lower than in the general population. Currently there is no indication for an increase in cancer mortality due to cosmic radiation. A further follow-up is planned. (orig.) [de

  3. Cosmic background radiation anisotropy in an open inflation, cold dark matter cosmogony

    Science.gov (United States)

    Kamionkowski, Marc; Ratra, Bharat; Spergel, David N.; Sugiyama, Naoshi

    1994-01-01

    We compute the cosmic background radiation anisotropy, produced by energy-density fluctuations generated during an early epoch of inflation, in an open cosmological model based on the cold dark matter scenario. At Omega(sub 0) is approximately 0.3-0.4, the Cosmic Background Explorer (COBE) normalized open model appears to be consistent with most observations.

  4. ACTINIDE AND ULTRA-HEAVY ABUNDANCES IN THE LOCAL GALACTIC COSMIC RAYS: AN ANALYSIS OF THE RESULTS FROM THE LDEF ULTRA-HEAVY COSMIC-RAY EXPERIMENT

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, J. [Dublin Institute of Technology (DIT), School of Physics, Kevin Street, Dublin 8 (Ireland); Thompson, A.; O' Sullivan, D.; Daly, J.; Drury, L. [School of Cosmic Physics, Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland); Domingo, V.; Wenzel, K.-P. [European Space Research and Technology Centre (ESTEC), Keplerlaan 1, Postbus 299, 2200 AG Noordwijk (Netherlands)

    2012-03-01

    The LDEF Ultra-Heavy Cosmic-Ray Experiment (UHCRE) detected Galactic cosmic rays (GCRs) of charge Z {>=} 70 in Earth orbit with an exposure factor of 170 m{sup 2} sr yr, much larger than any other experiment. The major results include the first statistically significant uniform sample of GCR actinides with 35 events passing quality cuts, evidence for the existence of transuranic nuclei in the GCR with one {sub 96}Cm candidate event, and a low {sub 82}Pb/{sub 78}Pt ratio consistent with other experiments. The probability of the existence of a transuranic component is estimated as 96%, while the most likely {sub 92}U/{sub 90}Th ratio is found to be 0.4 within a wide 70% confidence interval ranging from 0 to 0.96. Overall, the results are consistent with a volatility-based acceleration bias and source material which is mainly ordinary interstellar medium material with some recent contamination by freshly synthesized material. Uncertainty in the key {sub 92}U/{sub 90}Th ratio is dominated by statistical errors resulting from the small sample size and any improved determination will thus require an experiment with a substantially larger exposure factor than the UHCRE.

  5. COMPARISON OF COSMIC RAYS RADIATION DETECTORS ON-BOARD COMMERCIAL JET AIRCRAFT

    Czech Academy of Sciences Publication Activity Database

    Kubančák, Ján; Ambrožová, Iva; Pachnerová Brabcová, Kateřina; Jakoubek, J.; Kyselová, D.; Ploc, Ondřej; Bemš, J.; Štěpán, Václav; Uchihori, Y.

    2015-01-01

    Roč. 164, č. 4 (2015), s. 484-488 ISSN 0144-8420 R&D Projects: GA MŠk(CZ) LG13031 Institutional support: RVO:61389005 Keywords : cosmic radiation * commercial jet aircraft * radiation dose Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.894, year: 2015

  6. 1020 eV cosmic-ray and particle physics with kilometer-scale neutrino telescopes

    International Nuclear Information System (INIS)

    Alvarez-Muniz, J.; Halzen, F.

    2001-01-01

    We show that a kilometer-scale neutrino observatory, though optimized for TeV to PeV energy, is sensitive to the neutrinos associated with super-EeV sources. These include super-heavy relics, neutrinos associated with the Greisen cutoff, and topological defects which are remnant cosmic structures associated with phase transitions in grand unified gauge theories. It is a misconception that new instruments optimized to EeV energy are required to do this important science, although this is not their primary goal. Because kilometer-scale neutrino telescopes can reject atmospheric backgrounds by establishing the very high energy of the signal events, they have sensitivity over the full solid angle, including the horizon where most of the signal is concentrated. This is important because up-going neutrino-induced muons, routinely considered in previous calculations, are absorbed by the Earth

  7. Snowpack snow water equivalent measurement using the attenuation of cosmic gamma radiation

    International Nuclear Information System (INIS)

    Osterhuber, R.; Condreva, K.

    1998-01-01

    Incoming, background cosmic radiation constantly fluxes through the earth's atmosphere. The high energy gamma portion of this radiation penetrates many terrestrial objects, including the winter snowpack. The attenuation of this radiation is exponentially related to the mass of the medium through which it penetrates. For the past three winters, a device measuring cosmic gamma radiation--and its attenuation through snow--has been installed at the Central Sierra Snow Laboratory, near Donner Pass, California. This gamma sensor, measuring energy levels between 5 and 15 MeV, has proved to be an accurate, reliable, non-invasive, non-mechanical instrument with which to measure the total snow water equivalent of a snowpack. This paper analyzes three winters' worth of data and discusses the physics and practical application of the sensor for the collection of snow water equivalent data from a remote location

  8. Long-range correlation in cosmic microwave background radiation.

    Science.gov (United States)

    Movahed, M Sadegh; Ghasemi, F; Rahvar, Sohrab; Tabar, M Reza Rahimi

    2011-08-01

    We investigate the statistical anisotropy and gaussianity of temperature fluctuations of Cosmic Microwave Background (CMB) radiation data from the Wilkinson Microwave Anisotropy Probe survey, using the Multifractal Detrended Fluctuation Analysis, Rescaled Range, and Scaled Windowed Variance methods. Multifractal Detrended Fluctuation Analysis shows that CMB fluctuations has a long-range correlation function with a multifractal behavior. By comparing the shuffled and surrogate series of CMB data, we conclude that the multifractality nature of the temperature fluctuation of CMB radiation is mainly due to the long-range correlations, and the map is consistent with a gaussian distribution.

  9. Radiation polymerization of acrylamide with super-high molecular weight in inverse emulsion

    International Nuclear Information System (INIS)

    Ye Qiang; Ge Xuewu; Xu Xiangling; Zhang Zhicheng

    1998-01-01

    The inverse emulsion polymerization of acrylamide has been studied with γ-ray initiation. Polyacrylamide with super high molecular weight over ten million (11 x 10 6 ), which is very important in application as flocculant, is obtained. In this work, some methods are taken to enhance the molecular weight as follows: (1) In order to prepare soluble polyacrylamide with super high molecular weight, the better conditions are: the emulsifier content is about 2% and the monomer concentration is about 20%∼24% in the composition of monomer emulsion, and the absorbed dose is about 500∼600 Gy. (2) Initiating with high dose rate and polymerizing with low dose rate can not only enhance the molecular weight of product, but also curtail the polymerizing time. (3) Stopping radiation when the conversion gets to about 10% and post-polymerizing outside the radiation source until the conversion gets to 82% can obtain polyacrylamide with super high molecular weight, and shorten the irradiation time as well

  10. SSNTD-supersymmetry theory unifying cosmic and nucleonic matters

    International Nuclear Information System (INIS)

    Swarup, R.

    2011-01-01

    The SSNTD study instead of being an experimental observation recording rigid geometrical constructs as a consequence of interactions of nuclear radiation with matter really needs an innovation to equate their natural need to facilitate innumerable communication and transmission processes between nucleonic and cosmic matters in the want of quest for the search for the beginning of time and perfect symmetry of universe. It may found potential scientific astronomical base to illustrate the long imagined astrological criteria that the atoms of planets and the molecules consisting of heavy chemical elements of living species belonging to anatomic as well as unanatomic worlds all were cooked up out of higher elements in the nuclear furnaces of stars long ago. The development of nuclear track is prominent nature path making process due to natural radioactivity, cosmic rays etc. to feed the desired matter, field, energy as well as their derivative transfers for sustaining equilibrated growth of all entities in the universe. Nuclear tracks as quantum transporting roads constrain some symmetries of classical world and such anomalously broken symmetries play a crucial role in our present day theories of elementary particles and condensed matter physics. The anomalies, induced as the result of adiabatic change (phase operator associated with radiation field) during quantum evolution, are the manifestation of QFT with polar decomposition of annihilation and creation operators with unique choice. The existence of super symmetry could be ensured by a simultaneous existence of very massive superpartners of ordinary quantum particles-quarks, leptons and gluons namely quarkinos, leptinos and gluinos with astonished characters undetected so far. While diagramming the unification of forces with the temperature rise of the universe, one may ensure that at Planck temperature, all forces are unified under the aegis of a supergravity theory. At lower- T, the supersymmetry is broken giving

  11. The SuperHILAC heavy ion intensity upgrade

    International Nuclear Information System (INIS)

    Feinberg, B.; Brown, I.G.

    1987-03-01

    A high current MEtal Vapor Vacuum Arc (MEVVA) ion source is to be installed in the third injector (Abel) at the SuperHILAC, representing the first accelerator use of this novel ion source. The MEVVA source has produced over 1 A of uranium in all charge states, with more than 100 electrical mA (emA) of U 5+ . Transport of the space-charge dominated beam through the charge-state analysis dipole will be enhanced by a 100 kV extractor voltage and neutralization by secondary electrons. In addition to the MEVVA source, other improvements already in place include a lower pressure in the Low Energy Beam Transport line (15.8 keV/AMU) to reduce charge exchange for the heavy elements, and the addition of a second 23 MHz buncher upstream of the Wideroe linac and two 70 MHz bunchers between the 23 MHz Wideroe and the 70 MHz Alvarez linacs. The project is expected to result in a fivefold increase in beam delivered to Bevatron experiments, increasing the extracted uranium beam to 5 x 10 7 ions/pulse

  12. Traces of heavy and superheavy cosmic nuclei in olivins of extraterrestial origin

    International Nuclear Information System (INIS)

    Ignatova, R.; Taneva, T.

    1982-01-01

    The paths of traces of WH nuclei from cosmic rays have been measured in olivines from the meteorites Maryalakhti, Eagle Stein, Liposki khutor with radiation ages 175, 45 and 220 million years respectively. 3 cm 3 olivines of these meteorites have been examined and more than 500 traces of nuclei with Z(>=)90 have been found measured including 3 traces 1.5-1.8 times longer than the traces created by the uranium and thorium nuclei. These traces may be left by nuclei with Z(>=)110. The crystals were chosen from localizations situated at 2-7 cm, 8-9 cm and 10-12 cm from the outside atmospheric surface of the meteorite. The abundancy of the Z(>=)50 nuclei in gigantic cosmic rays, averaged for a period of ( =)110 in galactic cosmic rays. It is 1.4 x 10 -9 from that of the iron group nuclei. (authors)

  13. Cosmic rays: an in-flight hazard?

    International Nuclear Information System (INIS)

    O'Sullivan, Denis

    2000-01-01

    Switzerland. At the super proton synchrotron at CERN, for example, we can simulate the radiation field at an altitude of about 12 km using the interactions of 120 GeV/c or 205 GeV/c protons and pions with a copper target. This facility enables us to calibrate all the instruments together, and greatly enhances the quality of the data, even when the instruments cannot be housed on the same flight. Further instrument-response studies and calibrations are performed with neutron and heavy-ion beams. In addition, computer programs have been extended to provide a better description of the transport of cosmic rays, and a new code based largely on experimental data is being developed. The results obtained so far provide a fairly comprehensive picture of the expected dose rates, at least for much of the northern hemisphere. Overall, the dose-equivalent rates vary from about 1 to 17 microsieverts per hour. The highest value recorded was at an altitude of 22 km during a NASA flight. These rates were recorded during a lull in solar activity, when we expect the intensity of galactic cosmic rays to be highest. The new EU regulations propose that there should be individual estimates for aircrew whose annual doses fall in the 1 millisievert per year category, and that pregnant aircrew should not be exposed to more than 1 millisievert per year. These estimates could be made for various routes using improved computer codes that are based on measured radiation levels and occasional experimental data. Currently, the crews of subsonic commercial aircraft fly at altitude for up to 600 hours or so each year. Supersonic crews fly for about half this time. Our results suggest that a crew member will receive a dose equivalent greater than 6 millisievert per year only in exceptional cases. This work has also allowed us to investigate in detail the physics of cosmic-ray interactions in the atmosphere. (UK)

  14. Elucidation of the fluctuation history of cosmic radiation and global environmental using AMS

    International Nuclear Information System (INIS)

    Horiuchi, Kazuho

    2008-01-01

    Recently, accuracy of AMS has further been raised in trace amounts of sample. Besides application of 14 C to the age estimation, it has been able to restore in detail the past fluctuation of cosmic radiation strength using the other radioactive isotopes ( 10 Be, 36 Cl etc) in environmental samples and to elucidate the correlation of this with the fluctuation of climate and environment. In this report, the attempts to elucidate the fluctuation history of cosmic radiation and global environment with ice cores using AMS are presented. (M.H.)

  15. Heavy-ion radiation chemistry

    International Nuclear Information System (INIS)

    Imamura, Masashi

    1975-01-01

    New aspect of heavy ion radiation chemistry is reviewed. Experiment has been carried out with carbon ions and nitrogen ions accelerated by a 160 cm cyclotron of the Institute of Physical and Chemical Research. The results of experiments are discussed, taking into consideration the effects of core radius depending on heavy ion energy and of the branch tracks of secondary electrons outside the core on chemical reaction and the yield of products. The effect of core size on chemical reaction was not able to be observed, because the incident energy of heavy ions was only several tens of MeV. Regarding high radical density, attention must be given to the production of oxygen in the core. It is possible to produce O 2 in the core in case of high linear energy transfer (LET), while no production of O 2 in case of low LET radiation. This may be one of study problems in future. LET effects on the yield of decomposed products were examined on acetone, methyl-ethyl-ketone and diethyl ketone, using heavy ions (C and N) as well as gamma radiation and helium ions. These three ketones showed that the LET change of two gaseous products, H 2 and CO, was THF type. There are peaks at 50-70 eV/A in the yield of both products. The peaks suggest the occurrence of ''saturation'' in decomposition. Attention was drawn to acetone containing a small amount (2 wt.%) of H 2 O. H 2 O and CO produced from this system differ from those in the pure system. The hydrogen connection formed by such a small amount of H 2 O may mediate the energy transfer. Sodium acetate tri-hydrate produces CH 3 radical selectively by gamma-ray irradiation at 77 K. In this case, the production of CH 2 COO - increases with the increase of LET of radiation. This phenomenon may be an important study problem. (Iwakiri, K.)

  16. Radiation Backgrounds at Cosmic Dawn: X-Rays from Compact Binaries

    Science.gov (United States)

    Madau, Piero; Fragos, Tassos

    2017-05-01

    We compute the expected X-ray diffuse background and radiative feedback on the intergalactic medium (IGM) from X-ray binaries prior to and during the epoch of reionization. The cosmic evolution of compact binaries is followed using a population synthesis technique that treats separately neutron stars and black hole binaries in different spectral states and is calibrated to reproduce the observed X-ray properties of galaxies at z ≲ 4. Together with an updated empirical determination of the cosmic history of star formation, recent modeling of the stellar mass-metallicity relation, and a scheme for absorption by the IGM that accounts for the presence of ionized H II bubbles during the epoch of reionization, our detailed calculations provide refined predictions of the X-ray volume emissivity and filtered radiation background from “normal” galaxies at z ≳ 6. Radiative transfer effects modulate the background spectrum, which shows a characteristic peak between 1 and 2 keV. Because of the energy dependence of photoabsorption, soft X-ray photons are produced by local sources, while more energetic radiation arrives unattenuated from larger cosmological volumes. While the filtering of X-ray radiation through the IGM slightly increases the mean excess energy per photoionization, it also weakens the radiation intensity below 1 keV, lowering the mean photoionization and heating rates. Numerical integration of the rate and energy equations shows that the contribution of X-ray binaries to the ionization of the bulk IGM is negligible, with the electron fraction never exceeding 1%. Direct He I photoionizations are the main source of IGM heating, and the temperature of the largely neutral medium in between H II cavities increases above the temperature of the cosmic microwave background (CMB) only at z ≲ 10, when the volume filling factor of H II bubbles is already ≳0.1. Therefore, in this scenario, it is only at relatively late epochs that neutral intergalactic hydrogen

  17. Radiation Backgrounds at Cosmic Dawn: X-Rays from Compact Binaries

    Energy Technology Data Exchange (ETDEWEB)

    Madau, Piero [Department of Astronomy and Astrophysics, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Fragos, Tassos [Geneva Observatory, University of Geneva, Chemin des Maillettes 51, 1290 Sauverny (Switzerland)

    2017-05-01

    We compute the expected X-ray diffuse background and radiative feedback on the intergalactic medium (IGM) from X-ray binaries prior to and during the epoch of reionization. The cosmic evolution of compact binaries is followed using a population synthesis technique that treats separately neutron stars and black hole binaries in different spectral states and is calibrated to reproduce the observed X-ray properties of galaxies at z ≲ 4. Together with an updated empirical determination of the cosmic history of star formation, recent modeling of the stellar mass–metallicity relation, and a scheme for absorption by the IGM that accounts for the presence of ionized H ii bubbles during the epoch of reionization, our detailed calculations provide refined predictions of the X-ray volume emissivity and filtered radiation background from “normal” galaxies at z ≳ 6. Radiative transfer effects modulate the background spectrum, which shows a characteristic peak between 1 and 2 keV. Because of the energy dependence of photoabsorption, soft X-ray photons are produced by local sources, while more energetic radiation arrives unattenuated from larger cosmological volumes. While the filtering of X-ray radiation through the IGM slightly increases the mean excess energy per photoionization, it also weakens the radiation intensity below 1 keV, lowering the mean photoionization and heating rates. Numerical integration of the rate and energy equations shows that the contribution of X-ray binaries to the ionization of the bulk IGM is negligible, with the electron fraction never exceeding 1%. Direct He i photoionizations are the main source of IGM heating, and the temperature of the largely neutral medium in between H ii cavities increases above the temperature of the cosmic microwave background (CMB) only at z ≲ 10, when the volume filling factor of H ii bubbles is already ≳0.1. Therefore, in this scenario, it is only at relatively late epochs that neutral intergalactic

  18. Antiradiation Vaccine: Technology Development- Radiation Tolerance,Prophylaxis, Prevention And Treatment Of Clinical Presentation After Heavy Ion Irradiation.

    Science.gov (United States)

    Popov, Dmitri; Maliev, Slava; Jones, Jeffrey

    Introduction: Research in the field of biological effects of heavy charged particles is necessary for both heavy-ion therapy (hadrontherapy) and protection from the exposure to galactic cosmic radiation in long-term manned space missions.[Durante M. 2004] In future crew of long-term manned missions could operate in exremely high hadronic radiation areas of space and will not survive without effective radiation protection. An Antiradiation Vaccine (AV) must be an important part of a countermeasures regimen for efficient radiation protection purposes of austronauts-cosmonauts-taukonauts: immune-prophylaxis and immune-therapy of acute radiation toxic syndromes developed after heavy ion irradiation. New technology developed (AV) for the purposes of radiological protection and improvement of radiation tolerance and it is quite important to create protective immune active status which prevent toxic reactions inside a human body irradiated by high energy hadrons.[Maliev V. et al. 2006, Popov D. et al.2008]. High energy hadrons produce a variety of secondary particles which play an important role in the energy deposition process, and characterise their radiation qualities [Sato T. et al. 2003] Antiradiation Vaccine with specific immune-prophylaxis by an anti-radiation vaccine should be an important part of medical management for long term space missions. Methods and experiments: 1. Antiradiation vaccine preparation standard, mixture of toxoid form of Radiation Toxins [SRD-group] which include Cerebrovascular RT Neurotoxin, Cardiovascular RT Neurotoxin, Gastrointestinal RT Neurotoxin, Hematopoietic RT Hematotoxin. Radiation Toxins of Radiation Determinant Group isolated from the central lymph of gamma-irradiated animals with Cerebrovascular, Cardiovascular, Gastro-intestinal, Hematopoietic forms of ARS. Devices for radiation are "Panorama", "Puma". 2. Heavy ion exposure was accomplished at Department of Research Institute of Nuclear Physics, Dubna, Russia. The heavy ions

  19. Interpretation of observed cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Alfven, H.; Mendis, A.

    1977-01-01

    It is stated that the observed cosmic microwave background radiation, which closely fits a 2.7 K black body spectrum, is generally claimed to be the strongest piece of evidence in support of hot big bang cosmologies by its proponents. It is here stated that the observed radiation corresponds to the distribution of dust in galaxies or protogalaxies with a temperature approximately 110 K at the epoch corresponding to Z approximately 40, and not to a plasma of temperature > approximately 3000 K at an earlier epoch (Z > approximately 1000), as indicated by the canonical model of big bang cosmologies. The claim that the latter lends strong support to hot big bang cosmologies is stated to be without foundation. It is concluded that the microwave background radiation must be explained not in terms of a coupling between matter and radiation at the present epoch, but in terms of a coupling in a previous epoch within the framework of an evolutionary cosmology. (U.K.)

  20. Solar Modulation of Atmospheric Cosmic Radiation:. Comparison Between In-Flight and Ground-Level Measurements

    Science.gov (United States)

    Iles, R. H. A.; Taylor, G. C.; Jones, J. B. L.

    January 2000 saw the start of a collaborative study involving the Mullard Space Science Laboratory, Virgin Atlantic Airways, the Civil Aviation Authority and the National Physical Laboratory in a program to investigate the cosmic radiation exposure to aircrew. The study has been undertaken in view of EU Directive 96/291 (May 2000) which requires the assessment of the level of radiation exposure to aircrew. The project's aims include validation of radiation dose models and evaluation of space weather effects on atmospheric cosmic radiation levels, in particular those effects not accounted for by the models. Ground level measurements are often used as a proxy for variations in cosmic radiation dose levels at aircraft altitudes, especially during Forbush Decreases (FDs) and Solar Energetic Particle (SEP) events. Is this estimation realistic and does the ground level data accurately represent what is happening at altitude? We have investigated the effect of a FD during a flight from Hong Kong to London Heathrow on the 15th July 2000 and compared count rate and dose measurements with simultaneous variations measured at ground level. We have also compared the results with model outputs.

  1. Investigation of energy spectrum and nuclear interactions of primary cosmic radiation; Badanie widma energetycznego i oddzialywan jadrowych pierwotnego promieniowania kosmicznego

    Energy Technology Data Exchange (ETDEWEB)

    Wilczynski, H. [Dept. of High Energy Physics, The H. Niewodniczanski Inst. of Nuclear Physics, Cracow (Poland)

    1996-12-31

    In the paper the JACEE experiment data analysis: energy spectra in the energy range 10{sup 12} - 10{sup 15} eV of different nuclides in cosmic radiation and some aspects of nuclear interactions at energy above 10{sup 12} eV/nucleon is presented. The data were compared with results of theory of cosmic radiation acceleration by striking waves arises from supernova stars explosions. In the interactions of cosmic radiation nuclei the short-lived particles production has been observed what agrees with long-distance component of cascades initiated by cosmic radiation interactions. In one case an interaction with asymmetric photons emission were observed 72 refs, 33 figs, 4 tabs

  2. Cosmic thermalization and the microwave background radiation

    International Nuclear Information System (INIS)

    Rana, N.C.

    1981-01-01

    A different origin of the microwave background radiation (MBR) is suggested in view of some of the difficulties associated with the standard interpretation. Extensive stellar-type nucleosynthesis could provide radiation with the requisite energy density of the MBR and its spectral features are guaranteed by adequate thermalization of the above radiation by an ambient intergalactic dust medium. This thermalization must have occurred in quite recent epochs, say around epochs of redshift z = 7. The model emerges with consistent limits on the cosmic abundance of helium, the general luminosity evolution of the extragalactic objects, the baryonic matter density in the Universe (or, equivalently the deceleration parameter) and the degree of isotropy of MBR. The model makes definite predictions on issues like the properties of the intergalactic thermalizers, the degree of isotropy of MBR at submillimetre wavelengths and cluster emission in the far infrared. (author)

  3. Characterization of radiation damage induced by swift heavy ions in graphite

    Energy Technology Data Exchange (ETDEWEB)

    Hubert, Christian

    2016-05-15

    irradiation temperatures above 200 C damage formation is mitigated due to defect annealing. Thus a controlled temperature of accelerator components is desirable in order to increase the lifetime. This thesis contributes to a better understanding of radiation damage in swift heavy ion-exposed graphite with the aim to optimize the design of beam catchers and production targets for secondary ion beams for the Super Fragment Separator (Super-FRS) at FAIR. Moreover, the results of this work provide important input data for simulations to describe the beam response and lifetime of high-dose exposed critical accelerator components.

  4. Super-Planckian far-field radiative heat transfer

    Science.gov (United States)

    Fernández-Hurtado, V.; Fernández-Domínguez, A. I.; Feist, J.; García-Vidal, F. J.; Cuevas, J. C.

    2018-01-01

    We present here a theoretical analysis that demonstrates that the far-field radiative heat transfer between objects with dimensions smaller than the thermal wavelength can overcome the Planckian limit by orders of magnitude. To guide the search for super-Planckian far-field radiative heat transfer, we make use of the theory of fluctuational electrodynamics and derive a relation between the far-field radiative heat transfer and the directional absorption efficiency of the objects involved. Guided by this relation, and making use of state-of-the-art numerical simulations, we show that the far-field radiative heat transfer between highly anisotropic objects can largely overcome the black-body limit when some of their dimensions are smaller than the thermal wavelength. In particular, we illustrate this phenomenon in the case of suspended pads made of polar dielectrics like SiN or SiO2. These structures are widely used to measure the thermal transport through nanowires and low-dimensional systems and can be employed to test our predictions. Our work illustrates the dramatic failure of the classical theory to predict the far-field radiative heat transfer between micro- and nanodevices.

  5. Mode coupling in terahertz metamaterials using sub-radiative and super-radiative resonators

    International Nuclear Information System (INIS)

    Qiao, Shen; Zhang, Yaxin; Zhao, Yuncheng; Xu, Gaiqi; Sun, Han; Yang, Ziqiang; Liang, Shixiong

    2015-01-01

    We theoretically and experimentally explored the electromagnetically induced transparency (EIT) mode-coupling in terahertz (THz) metamaterial resonators, in which a dipole resonator with a super-radiative mode is coupled to an inductance-capacitance resonator with a sub-radiative mode. The interference between these two resonators depends on the relative spacing between them, resulting in a tunable transparency window in the absorption spectrum. Mode coupling was experimentally demonstrated for three spacing dependent EIT metamaterials. Transmittance of the transparency windows could be either enhanced or suppressed, producing different spectral linewidths. These spacing dependent mode-coupling metamaterials provide alternative ways to create THz devices, such as filters, absorbers, modulators, sensors, and slow-light devices

  6. Cosmic ray modulation and radiation dose of aircrews during the solar cycle 24/25

    Science.gov (United States)

    Miyake, Shoko; Kataoka, Ryuho; Sato, Tatsuhiko

    2017-04-01

    Weak solar activity and high cosmic ray flux during the coming solar cycle are qualitatively anticipated by the recent observations that show the decline in the solar activity levels. We predict the cosmic ray modulation and resultant radiation exposure at flight altitude by using the time-dependent and three-dimensional model of the cosmic ray modulation. Our galactic cosmic ray (GCR) model is based on the variations of the solar wind speed, the strength of the heliospheric magnetic field, and the tilt angle of the heliospheric current sheet. We reproduce the 22 year variation of the cosmic ray modulation from 1980 to 2015 taking into account the gradient-curvature drift motion of GCRs. The energy spectra of GCR protons obtained by our model show good agreement with the observations by the Balloon-borne Experiment with a Superconducting magnetic rigidity Spectrometer (BESS) and the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) except for a discrepancy at the solar maximum. Five-year annual radiation dose around the solar minimum at the solar cycle 24/25 will be approximately 19% higher than that in the last cycle. This is caused by the charge sign dependence of the cosmic ray modulation, such as the flattop profiles in a positive polarity.

  7. Heavy-ion radiation induced bystander effect in mice

    Science.gov (United States)

    Liang, Shujian; Sun, Yeqing; Zhang, Meng; Wang, Wei; Cui, Changna

    2012-07-01

    Radiation-induced bystander effect is defined as the induction of damage in neighboring non-hit cells by signals released from directly-irradiated cells. Recently, Low dose of high LET radiation induced bystander effects in vivo have been reported more and more. It has been indicated that radiation induced bystander effect was localized not only in bystander tissues but also in distant organs. Genomic, epigenetic, metabolomics and proteomics play significant roles in regulating heavy-ion radiation stress responses in mice. To identify the molecular mechanism that underlies bystander effects of heavy-ion radiation, the male mice head were exposed to 2000mGy dose of 12C heavy-ion radiation and the distant organ liver was detected on 1h, 6h, 12h and 24h after radiation, respectively. MSAP was used to monitor the level of polymorphic DNA methylation changes. The results show that heavy-ion irradiate mouse head can induce liver DNA methylation changes significantly. The percent of DNA methylation changes are time-dependent and highest at 6h after radiation. We also prove that the hypo-methylation changes on 1h and 6h after irradiation. But the expression level of DNA methyltransferase DNMT3a is not changed. UPLC/Synapt HDMS G2 was employed to detect the proteomics of bystander liver 1h after irradiation. 64 proteins are found significantly different between treatment and control group. GO process show that six of 64 which were unique in irradiation group are associated with apoptosis and DNA damage response. The results suggest that mice head exposed to heavy-ion radiation can induce damage and methylation pattern changed in distant organ liver. Moreover, our findings are important to understand the molecular mechanism of radiation induced bystander effects in vivo.

  8. Radiative processes of two entangled atoms in cosmic string spacetime

    Science.gov (United States)

    Cai, Huabing; Ren, Zhongzhou

    2018-01-01

    We investigate the radiative processes of two static two-level atoms in a maximally entangled state coupled to vacuum electromagnetic field in the cosmic string spacetime. We find that the decay rate from the entangled state to the ground state crucially depends on the atomic separation, the polarization directions of the individual atoms, the atom-string distance and the deficit angle induced by the string. As the atom-string distance increases, the decay rate oscillates around the result in Minkowski spacetime and the amplitude gradually decreases. The oscillation is more severe for larger planar angle deficit. We analyze the decay rate in different circumstances such as near zone and specific polarization cases. Some comparisons between symmetric and antisymmetric states are performed. By contrast with the case in Minkowski spacetime, we can reveal the effects of the cosmic string on the radiative properties of the entangled atoms.

  9. Some cosmic radiation dose measurements aboard flights connecting Zagreb Airport

    International Nuclear Information System (INIS)

    Vukovic, B.; Radolic, V.; Lisjak, I.; Vekic, B.; Poje, M.; Planinic, J.

    2008-01-01

    When primary particles from space, mainly protons, enter the atmosphere, they produce interactions with air nuclei, and cosmic-ray showers are induced. The radiation field at aircraft altitude is complex, with different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard A320 and ATR40 aircraft was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter; the neutron dose was measured with the neutron dosimeter consisted of LR-115 track detector and boron foil BN-1 or 10 B converter. The estimated occupational effective dose for the aircraft crew (A320) working 500 h per year was 1.64 mSv. Another experiment was performed at the flights Zagreb-Paris-Buenos Aires and reversely, when one measured non-neutron cosmic radiation dose; for 26.7 h of flight, the MINI 6100 dosimeter gave an average dose rate of 2.3 μSv/h and the TLD dosimeter registered the dose equivalent of 75 μSv or the average dose rate of 2.7 μSv/h; the neutron dosimeter gave the dose rate of 2.4 μSv/h. In the same month, February 2005, a traveling to Japan (24-h-flight: Zagreb-Frankfurt-Tokyo and reversely) and the TLD-100 measurement showed the average dose rate of 2.4 μSv/h; the neutron dosimeter gave the dose rate of 2.5 μSv/h. Comparing dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level, we could conclude that the neutron component carried about 50% of the total dose, that was near other known data

  10. Some cosmic radiation dose measurements aboard flights connecting Zagreb Airport

    Energy Technology Data Exchange (ETDEWEB)

    Vukovic, B.; Radolic, V. [Department of Physics, University of Osijek, Osijek, P.O. Box 125 (Croatia); Lisjak, I. [Croatia Airlines, Zagreb (Croatia); Vekic, B. [Rudjer Boskovic Institute, Zagreb (Croatia); Poje, M. [Department of Physics, University of Osijek, Osijek, P.O. Box 125 (Croatia); Planinic, J. [Department of Physics, University of Osijek, Osijek, P.O. Box 125 (Croatia)], E-mail: planinic@ffos.hr

    2008-02-15

    When primary particles from space, mainly protons, enter the atmosphere, they produce interactions with air nuclei, and cosmic-ray showers are induced. The radiation field at aircraft altitude is complex, with different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard A320 and ATR40 aircraft was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter; the neutron dose was measured with the neutron dosimeter consisted of LR-115 track detector and boron foil BN-1 or {sup 10}B converter. The estimated occupational effective dose for the aircraft crew (A320) working 500 h per year was 1.64 mSv. Another experiment was performed at the flights Zagreb-Paris-Buenos Aires and reversely, when one measured non-neutron cosmic radiation dose; for 26.7 h of flight, the MINI 6100 dosimeter gave an average dose rate of 2.3 {mu}Sv/h and the TLD dosimeter registered the dose equivalent of 75 {mu}Sv or the average dose rate of 2.7 {mu}Sv/h; the neutron dosimeter gave the dose rate of 2.4 {mu}Sv/h. In the same month, February 2005, a traveling to Japan (24-h-flight: Zagreb-Frankfurt-Tokyo and reversely) and the TLD-100 measurement showed the average dose rate of 2.4 {mu}Sv/h; the neutron dosimeter gave the dose rate of 2.5 {mu}Sv/h. Comparing dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level, we could conclude that the neutron component carried about 50% of the total dose, that was near other known data.

  11. Assessing exposure to cosmic radiation aboard aircraft: the Sievert system

    International Nuclear Information System (INIS)

    Bottollier-Depois, J.F.; Biau, A.; Clairand, I.; Saint-Lo, D.; Valero, M.; Blanchard, P.; Dessarps, P.; Lantos, P.

    2003-01-01

    The study of naturally-occurring radiation and its associated risk is one of the preoccupations of bodies responsible for radiation protection. Cosmic particle flux is significantly higher on board aircraft that at ground level. Furthermore, its intensity depends on solar activity and eruptions. Due to their professional activity, flight crews and frequent flyers may receive an annual dose of some milli-sieverts. This is why the European directive adopted in 1996 requires the aircraft operators to assess the dose and to inform their flight crews about the risk. The effective dose is to be estimated using various experimental and calculation means. In France, the computerized system for flight assessment of exposure to cosmic radiation in air transport (SIEVERT) is delivered to airlines for assisting them in the application of the European directive. This dose assessment tool was developed by the French General Directorate of Civil Aviation (DGAC) and partners: the Institute for Radiation Protection and Nuclear Safety (IRSN), the Paris Observatory and the French Institute for Polar Research - Paul-Emile Victor (IPEV). This professional service is available on an Internet server accessible to companies with a public section. The system provides doses that consider the routes flown by aircraft Various results obtained are presented. (authors)

  12. Review of even element super-heavy nuclei and search for element 120

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, S. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Goethe-Universitaet Frankfurt, Institut fuer Physik, Frankfurt (Germany); Heinz, S.; Mann, R.; Maurer, J.; Barth, W.; Burkhard, H.G.; Dahl, L.; Kindler, B.; Kojouharov, I.; Lang, R.; Lommel, B.; Runke, J.; Scheidenberger, C.; Schoett, H.J.; Tinschert, K. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Muenzenberg, G. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Manipal University, Manipal Centre for Natural Sciences, Manipal, Karnataka (India); Antalic, S.; Saro, S. [Comenius University, Department of Nuclear Physics and Biophysics, Bratislava (Slovakia); Eberhardt, K.; Thoerle-Pospiech, P.; Trautmann, N. [Johannes Gutenberg-Universitaet Mainz, Mainz (Germany); Grzywacz, R. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); University of Tennessee, Knoxville, TN (United States); Hamilton, J.H. [Vanderbuilt University, Department of Physics and Astronomy, Nashville, TN (United States); Henderson, R.A.; Kenneally, J.M.; Moody, K.J.; Shaughnessy, D.A.; Stoyer, M.A. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Miernik, K. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); University of Warsaw, Warsaw (Poland); Miller, D. [University of Tennessee, Knoxville, TN (United States); Morita, K. [RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama (Japan); Nishio, K. [Japan Atomic Energy Agency, Tokai, Ibaraki (Japan); Popeko, A.G.; Yeremin, A.V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Roberto, J.B.; Rykaczewski, K.P. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Uusitalo, J. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland)

    2016-06-15

    The reaction {sup 54}Cr + {sup 248}Cm was investigated at the velocity filter SHIP at GSI, Darmstadt, with the intention to study production and decay properties of isotopes of element 120. Three correlated signals were measured, which occurred within a period of 279ms. The heights of the signals correspond with the expectations for a decay sequence starting with an isotope of element 120. However, a complete decay chain cannot be established, since a signal from the implantation of the evaporation residue cannot be identified unambiguously. Measured properties of the event chain are discussed in detail. The result is compared with theoretical predictions. Previously measured decay properties of even element super-heavy nuclei were compiled in order to find arguments for an assignment from the systematics of experimental data. In the course of this review, a few tentatively assigned data could be corrected. New interpretations are given for results which could not be assigned definitely in previous studies. The discussion revealed that the cross-section for production of element 120 could be high enough so that a successful experiment seems possible with presently available techniques. However, a continuation of the experiment at SHIP for a necessary confirmation of the results obtained in a relatively short irradiation of five weeks is not possible at GSI presently. Therefore, we decided to publish the results of the measurement and of the review as they exist now. In the summary and outlook section we also present concepts for the continuation of research in the field of super-heavy nuclei. (orig.)

  13. Cosmic microwave background radiation anisotropies in brane worlds.

    Science.gov (United States)

    Koyama, Kazuya

    2003-11-28

    We propose a new formulation to calculate the cosmic microwave background (CMB) spectrum in the Randall-Sundrum two-brane model based on recent progress in solving the bulk geometry using a low energy approximation. The evolution of the anisotropic stress imprinted on the brane by the 5D Weyl tensor is calculated. An impact of the dark radiation perturbation on the CMB spectrum is investigated in a simple model assuming an initially scale-invariant adiabatic perturbation. The dark radiation perturbation induces isocurvature perturbations, but the resultant spectrum can be quite different from the prediction of simple mixtures of adiabatic and isocurvature perturbations due to Weyl anisotropic stress.

  14. Cosmic background radiation spectral distortion and radiative decays of relic neutral particles

    International Nuclear Information System (INIS)

    Berezhiani, Z.G.; Doroshkevich, A.G.; Khlopov, M.Yu.; Yurov, V.P.; Vysotskij, M.I.

    1989-01-01

    The recently observed excess of photons on a short wavelength side of the peak of a cosmic background radiation spectrum can be described by radiative decays of relic neutral particles. The lifetime and mass of a decaying particle must satisfy the following conditions: 2x10 9 s 14 s, 0.4 eV -9 -8x10 -8 ) μ b , and the interaction of new particles with the usual matter must be rather strong. The generalization of the standard SU(3)xSU(2)xU(1) model is presented which includes new particles with the desired properties. 18 refs.; 3 figs.; 2 tabs

  15. Remarks on the fission barriers of super-heavy nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, S. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Goethe-Universitaet Frankfurt, Institut fuer Physik, Frankfurt (Germany); Heinz, S.; Mann, R.; Maurer, J.; Muenzenberg, G.; Barth, W.; Dahl, L.; Kindler, B.; Kojouharov, I.; Lang, R.; Lommel, B.; Runke, J.; Scheidenberger, C.; Tinschert, K. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Antalic, S. [Comenius University, Department of Nuclear Physics and Biophysics, Bratislava (Slovakia); Eberhardt, K.; Thoerle-Pospiech, P.; Trautmann, N. [Johannes Gutenberg-Universitaet Mainz, Mainz (Germany); Grzywacz, R. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); University of Tennessee, Knoxville, TN (United States); Hamilton, J.H. [Vanderbilt University, Department of Physics and Astronomy, Nashville, TN (United States); Henderson, R.A.; Kenneally, J.M.; Moody, K.J.; Shaughnessy, D.A.; Stoyer, M.A. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Miernik, K. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); University of Warsaw, Warsaw (Poland); Miller, D. [University of Tennessee, Knoxville, TN (United States); Morita, K. [RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama (Japan); Nishio, K. [Japan Atomic Energy Agency, Tokai, Ibaraki (Japan); Popeko, A.G.; Yeremin, A.V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Roberto, J.B.; Rykaczewski, K.P. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Uusitalo, J. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland)

    2016-04-15

    Shell-correction energies of super-heavy nuclei are approximated by using Q{sub α} values of measured decay chains. Five decay chains were analyzed, which start at the isotopes {sup 285}Fl, {sup 294}118, {sup 291}Lv, {sup 292}Lv and {sup 293}Lv. The data are compared with predictions of macroscopic-microscopic models. Fission barriers are estimated that can be used to eliminate uncertainties in partial fission half-lives and in calculations of evaporation-residue cross-sections. In that calculations, fission probability of the compound nucleus is a major factor contributing to the total cross-section. The data also provide constraints on the cross-sections of capture and quasi-fission in the entrance channel of the fusion reaction. Arguments are presented that fusion reactions for synthesis of isotopes of elements 118 and 120 may have higher cross-sections than assumed so far. (orig.)

  16. Cloud chamber photographs of the cosmic radiation

    CERN Document Server

    Rochester, George Dixon

    1952-01-01

    Cloud Chamber Photographs of the Cosmic Radiation focuses on cloud chamber and photographic emulsion wherein the tracks of individual subatomic particles of high energy are studied. The publication first offers information on the technical features of operation and electrons and cascade showers. Discussions focus on the relationship in time and space of counter-controlled tracks; techniques of internal control of the cloud chamber; cascade processes with artificially-produced electrons and photons; and nuclear interaction associated with an extensive shower. The manuscript then elaborates on

  17. Super-preshowers (DPG-Fruehjahrstagung 2016)

    Energy Technology Data Exchange (ETDEWEB)

    Kaeaepae, Alex [Bergische Universitaet Wuppertal, Gaussstr. 20, 42119 Wuppertal (Germany); Collaboration: Pierre-Auger-Collaboration

    2016-07-01

    Based on the current data from the Pierre Auger Observatory, no evidence of cosmic ray photon primaries has been found. However, photon primaries could induce so-called ''super-preshowers'', which have not been considered sofar, but are a promising candidate for explaining the ''composition puzzle'' at ultra-high energies. In this presentation, possible super-preshower processes are examined, and their effects on important Auger parameters, such as the energy deposit and muon production, are studied via simulations.

  18. Cosmic gamma radiation of ultra high energy of primordial origin

    International Nuclear Information System (INIS)

    Aquino Filho, F.G. de.

    1984-01-01

    The quantum mechanical effects near a collapsing black hole as shown by Stephen W.Hawking in 1974 to produce streaming particles through tunneling effect was explored in the context of cosmic gamma ray production. In this thesis, we show the possible production of gamma rays of high energies (ν approx 10 41 Hz) in the initial stages of the formation of the Universe by the explosion of primordial mini black holes. These mini black hole explosions happening at 10 -43 s to 10 -37 s after the start perhaps may account for the existing universal cosmic background radiation of 2.7 0 K. (Author) [pt

  19. The HZE radiation problem. [highly-charged energetic galactic cosmic rays

    Science.gov (United States)

    Schimmerling, Walter

    1990-01-01

    Radiation-exposure limits have yet to be established for missions envisioned in the framework of the Space Exploration Initiative. The radiation threat outside the earth's magnetosphere encompasses protons from solar particle events and the highly charged energetic particles constituting galactic cosmic rays; radiation biology entails careful consideration of the extremely nonuniform patterns of such particles' energy deposition. The ability to project such biological consequences of exposure to energetic particles as carcinogenicity currently involves great uncertainties from: (1) different regions of space; (2) the effects of spacecraft structures; and (3) the dose-effect relationships of single traversals of energetic particles.

  20. Is cosmic radiation exposure of air crew amenable to control?

    International Nuclear Information System (INIS)

    McEwan, A.C.

    1999-01-01

    ICRP Committee 4 currently has a Working Party on Cosmic Ray Exposure in Aircraft and Space Flight. It has assembled information on doses arising in aircraft and space flight and considered the appropriateness of the Commission's recommendations relating to air crew. A central issue is whether the exposures received should be considered amenable to control. Factors of relevance to the enhanced cosmic radiation exposure of air crew, and frequent fliers such as couriers, are doses to pregnant staff, the issue of controllability of doses, and the implementation of regulatory controls. It is concluded that while air crew in the current range of subsonic jet aircraft are exposed to enhanced levels of cosmic radiation, these exposures are not readily controllable nor likely to exceed about 6 mSv/y. The revised ICRP Recommendations in 1991 (ICRP 60) propose air crew be designated as occupationally exposed. However, none of the usual optimisation of dose actions associated with regulation of practices, such as classification of work areas and rules governing working procedures, can be implemented, and in practice the doses are not amenable to control. The International Basic Safety Standards therefore leave this designation to the judgement of national regulatory authorities. One requirement that stems from designation as occupational exposure is that of restriction of doses to pregnant women. Both from the points of view that it is questionable whether exposure of air crew can reasonably be considered to be amenable to control, and the magnitude of the risks from exposures incurred, there is little reason to invoke additional restrictions to limit exposures of pregnant air crew. Copyright (1999) Australasian Radiation Protection Society Inc

  1. Mapping the exposure of the Brazilian population to natural background radiation - cosmic radiation

    Energy Technology Data Exchange (ETDEWEB)

    Rochedo, Elaine R.R., E-mail: elaine@ird.gov.br [Instituto de Radioprotecao e Dosimetria (lRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Salles, Krause C.S.; Prado, Nadya M.C., E-mail: krausesalles@yahoo.com.br, E-mail: nadya@ime.ib.br [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    The main objective of this work is to statically and graphically describe the exposure of the Brazilian population to natural background radiation. in this stage, doses due to cosmic rays is being assessed based on sea level dose rates, corrected by latitude and altitude, according to the model recommended by UNSCEAR. In this work, the doses were estimated for ali Brazilian municipalities with more than 100.000 inhabitants. The 253 municipalities selected for this study include about 52% of the Brazilian population. Average dose rate was estimated to be about 50 n Sv/h with a variation coefficient of 31%. The estimated doses have shown a strong influence of altitude on dose rates, with a correlation coefficient of 0,998 for ao exponential fit. This result confirms previous studies that show a large effect of the altitude 00 exposure from cosmic radiation. Considering the same occupation and shielding conditions used by UNSCEAR as global averages, average annual dose was estimated to be 0,37 (0,24 - 0,76) mSv/y, very close to UNSCEAR worldwide average of 0,38 (0,3 - 1,0) mSv/y. (author)

  2. Mapping the exposure of the Brazilian population to natural background radiation - cosmic radiation

    International Nuclear Information System (INIS)

    Rochedo, Elaine R.R.; Salles, Krause C.S.; Prado, Nadya M.C.

    2013-01-01

    The main objective of this work is to statically and graphically describe the exposure of the Brazilian population to natural background radiation. in this stage, doses due to cosmic rays is being assessed based on sea level dose rates, corrected by latitude and altitude, according to the model recommended by UNSCEAR. In this work, the doses were estimated for ali Brazilian municipalities with more than 100.000 inhabitants. The 253 municipalities selected for this study include about 52% of the Brazilian population. Average dose rate was estimated to be about 50 n Sv/h with a variation coefficient of 31%. The estimated doses have shown a strong influence of altitude on dose rates, with a correlation coefficient of 0,998 for ao exponential fit. This result confirms previous studies that show a large effect of the altitude 00 exposure from cosmic radiation. Considering the same occupation and shielding conditions used by UNSCEAR as global averages, average annual dose was estimated to be 0,37 (0,24 - 0,76) mSv/y, very close to UNSCEAR worldwide average of 0,38 (0,3 - 1,0) mSv/y. (author)

  3. Department of Cosmic Radiation Physics: Overview

    International Nuclear Information System (INIS)

    Gawin, J.

    1999-01-01

    Full text: The Department of Cosmic Ray Physics in Lodz is involved in basic research in the area of high energy physics and cosmic ray physics related to: - Studies of asymptotic properties of hadronic interactions based on the analysis of cosmic ray propagation in the atmosphere. - Experimental and phenomenological studies of Extensive Air Showers induced by cosmic ray particles. - Search for point sources of high energy cosmic rays. - Studies of cosmic ray propagation in the Galaxy and mechanisms of particle acceleration. - Studies of mass composition of cosmic rays in the energy range 10 15 - 10 17 eV. Theoretical and experimental studies of Extensive Air Shower properties are performed mostly based on the results obtained by the Lodz Extensive Air Shower Array. We analysed nearly 100,000 events of energies above 10 15 eV registered by the Lodz hodoscope. We have developed the method of data analysis which allows us to verify different models of cosmic ray mass composition. In our research in high energy cosmic rays we also used experimental data from other collaborating experiments in Karlsruhe, Baksan and THEMISTOCLE. The Lodz group collaborates with many foreign institutes and laboratories in construction and data interpretation of cosmic ray experiments. Our most important partners are: Forschungszentrum in Karlsruhe (Germany), College de France, Institute for Nuclear Studies of the Russian Academy of Science, University of Perpignan and Uppsala University (Sweden). (author)

  4. Department of Cosmic Radiation Physics - Overview

    International Nuclear Information System (INIS)

    Gawin, J.

    1997-01-01

    Full text: The Department of Cosmic Ray Physics in Lodz is involved in basic research in the area of high energy physics and cosmic ray physics related to: -Studies of the asymptotic properties of hadronic interactions from the analysis of cosmic ray propagation in the atmosphere. -Studies of structure and properties of Extensive Air Showers induced by cosmic ray particles. -Search for point sources of high energy cosmic rays. -Studies of cosmic ray propagation in the Galaxy and mechanisms of particle acceleration. -Studies of the mass composition of cosmic rays in the energy range 10 15 -10 17 eV. Theoretical and experimental studies of nuclear interactions for energies exceeding those obtained by modern particle accelerators are performed employing results obtained by the Lodz Extensive Air Shower Array. The Lodz hodoscope can register electromagnetic components of cosmic ray showers in the atmosphere as well as muons at two energy thresholds. Data collected by the Lodz array are also used to study mass composition of cosmic rays in the energy range 10 15 - 10 17 eV. The Lodz group collaborates with foreign institutes and laboratories on construction and data interpretation of cosmic ray experiments. Our most important partners are: Forschungszentrum Karlsruhe (Germany), College de France, the Institute for Nuclear Studies of the Russian Academy of Sciences, the University of Durham, and the University of Perpignan. (author)

  5. Status of the SuperHILAC

    International Nuclear Information System (INIS)

    Grunder, H.A.; Selph, F.B.

    1976-09-01

    The SuperHILAC is an Alvarez linear accelerator designed to accelerate all ions to a maximum energy of 8.5 MeV/u. It functions as an essential part of two research programs of national importance--first, as a supplier of beams for research at less than 10 MeV/u, secondly as an injector for the Bevalac facility, for nuclear physics and medical research at energies greater than 200 MeV/u. This duplication of effort from a single accelerator is made possible by the utilization of a technique known as timeshare--two different ion beams are accelerated independently through the same linac structure. Recent operation has been in the mass range 12 less than or equal to A less than or equal to 136. Usually, a heavy ion (A greater than 40) is delivered to the SuperHILAC experimental area for nuclear physics experiments while concurrently delivering a lighter ion (A less than or equal to 40) to the Bevatron for further acceleration (max. 2.5 GeV/u) to be used in experiments exploring the physics of very high energy heavy ions, in investigations of radiation biology, and in preclinical tests as a tool for cancer treatment. Recent operating experience is reviewed. Also discussed are recent major improvements which have been made to the accelerator, and a proposed improvement which will increase reliability and beam intensity for the very heavy ions (A greater than or equal to 84) by adding a third injector of improved design

  6. Department of Cosmic Radiation Physics: Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2000-01-01

    Full text: Department of Cosmic Ray Physics in Lodz is involved in basic research in the area of high-energy physics and cosmic ray physics related to: -Studies of asymptotic properties of hadronic interactions based on the analysis of cosmic ray propagation through the atmosphere. -Experimental and phenomenological studies of Extensive Air Showers induced by cosmic ray particles. - Search for high-energy cosmic ray point sources. - Studies of cosmic ray propagation in the Galaxy and particle acceleration mechanisms. -Studies of mass composition of cosmic rays in the energy range 10 15 -10 17 eV. Theoretical and experimental studies of Extensive Air Shower properties are performed mainly on the basis of the results obtained by the Lodz Extensive Air Shower Array. We have analysed nearly 100,000 events of energies above 10 15 eV registered in the Lodz hodoscope. We have developed a method to verify different models of cosmic ray mass composition. The Lodz group collaborates with many foreign institutes and laboratories in construction and data interpretation of cosmic ray experiments. Our most important partners are: Forschungszentrum in Karlsruhe (Germany), College de France, Institute for Nuclear Studies of the Russian Academy of Sciences and Uppsala University (Sweden). (author)

  7. Soft Gluon Radiation off Heavy Quarks beyond Eikonal Approximation

    International Nuclear Information System (INIS)

    Mazumder, Surasree; Bhattacharyya, Trambak; Abir, Raktim

    2016-01-01

    We calculate the soft gluon radiation spectrum off heavy quarks (HQs) interacting with light quarks (LQs) beyond small angle scattering (eikonality) approximation and thus generalize the dead-cone formula of heavy quarks extensively used in the literatures of Quark-Gluon Plasma (QGP) phenomenology to the large scattering angle regime which may be important in the energy loss of energetic heavy quarks in the deconfined Quark-Gluon Plasma medium. In the proper limits, we reproduce all the relevant existing formulae for the gluon radiation distribution off energetic quarks, heavy or light, used in the QGP phenomenology.

  8. Department of Cosmic Radiation Physics: Overview

    International Nuclear Information System (INIS)

    Gawin, J.

    1998-01-01

    (full text) The Department of Cosmic Ray Physics in Lodz is involved in basic research in the area of high energy physics and cosmic ray physics related to: -Studies of asymptotic properties of hadronic interactions based on the analysis of cosmic ray propagation in the atmosphere. -Studies of the structure and properties of Extensive Air Showers induced by cosmic ray particles. - Search for point sources of high energy cosmic rays. - Studies of cosmic ray propagation in the Galaxy and mechanisms of particle acceleration. - Studies of mass composition of cosmic rays in the energy range l0 15 -10 17 eV. Theoretical and experimental studies of nuclear interactions for energies exceeding those obtained by modern particle accelerators are performed based on the results obtained by the Lodz Extensive Air Shower Array. The Lodz hodoscope can register the electromagnetic component of cosmic ray showers developing in the atmosphere as well as muons of two energy thresholds. Data collected by the Lodz array are also used to study the mass composition of cosmic rays in the energy range 10 15 -10 17 eV. The Lodz group collaborates with many foreign institutes and laboratories in construction and data interpretation of cosmic ray experiments. Our most important partners are: Forschungszentrum Karlsruhe (Germany), College de' France, the Institute for Nuclear Studies of the Russian Academy of Science, the University of Perpignan (France) and Uppsala University (Sweden). (author)

  9. Assessment of cosmic radiation doses received by air crew

    International Nuclear Information System (INIS)

    McAulay, I.R.

    1998-01-01

    Cosmic radiation in the atmosphere is such a complex mixture of radiation type that it is difficult to get a single instrument which is suitable for such measurements. Passive devices such as film badges and track etch detectors have also been used, but again present difficulties of interpretation and requirements of multiple devices to accommodate the different types of radiation encountered. In summary, air crew are the occupational group most highly exposed to radiation. The radiation doses experienced by them are sufficiently high as to require assessment on a regular basis and possible control by appropriate rostering. There appears little possibility of the dose limit for workers being exceeded, except possibly in the case of pregnant female crew. This category of air crew should be the subject of special controls aimed at ensuring that the dose limits for the foetus should not be exceeded

  10. 3D quantification of brain microvessels exposed to heavy particle radiation

    International Nuclear Information System (INIS)

    Hintermueller, C; Stampanoni, M; Coats, J S; Obenaus, A; Nelson, G; Krucker, T

    2009-01-01

    Space radiation with high energy particles and cosmic rays presents a significant hazard to spaceflight crews. Recent reviews of the health risk to astronauts from ionizing radiation concluded to establish a level of risk which may indicate the possible performance decrements and decreased latency of late dysfunction syndromes (LDS) of the brain. A hierarchical imaging approach developed at ETH Zuerich and PSI, which relies on synchrotron based X-ray Tomographic Microscopy (SRXTM), was used to visualize and analyze 3D vascular structures down to the capillary level in their precise anatomical context. Various morphological parameters, such as overall vessel volume, vessel thickness and spacing, are extracted to characterize the vascular structure within a region of interest. For a first quantification of the effect of high energy particles on the vasculature we scanned a set of 6 animals, all of same age. The animals were irradiated with 1 Gy, 2 Gy and 4 Gy of 600MeV 56 Fe heavy particles simulating the space radiation environment. We found that with increasing dose the diameter of vessels and the overall vessel volume are decreased whereas the vessel spacing is increased. As these parameters reflect blood flow in three-dimensional space they can be used as indicators for the degree of vascular efficiency which can have an impact on the function and development of lung tissue or tumors.

  11. Perspectives of Super-Heavy Nuclei research with the upcoming separator-spectrometer setup S3 at GANIL/SPIRAL2 - The VAMOS Gas-Filled separator and AGATA

    Science.gov (United States)

    Theisen, Christophe

    2017-11-01

    Several facilities or apparatus for the synthesis and spectroscopy of the Super-Heavy Nuclei (SHN) are presently under construction in the world, which reflect the large interest for this region of extreme mass and charge, but also for the need of even more advanced research infrastructures. Among this new generation, the GANIL/SPIRAL2 facility in Caen, France, will soon deliver very high intense ion beams of several tens of particle μA. The Super Separator Spectrometer S3 has been designed to exploit these new beams for the study of SHN after separation. It will provide the needed beam rejection, mass selection and full arsenal of state-of-the art detection setups. Still at GANIL, the AGATA new generation gamma-ray tracking array is being operated. The VAMOS high acceptance spectrometer is being upgraded as a gas-filled separator. Its coupling with AGATA will lower the spectroscopic limits for the prompt gamma-ray studies of heavy and super-heavy nuclei. In this proceeding, these new devices will be presented along with a selected physics case.

  12. Evaluation of Differences in Response of DOD Portable Instruments and Solid-State Detectors used by MEXT for Measurement of External Radiations with Attention to the Cosmic Radiation Component

    Science.gov (United States)

    2014-03-01

    Defense Threat Reduction Agency 8725 John J. Kingman Road, MS-6201 Fort Belvoir, VA 22060-6201...Attention to the Cosmic Radiation Component DISTRIBUTION A. Approved for public release: distribution is unlimited March 2014...Portable Instruments and Solid-State Detectors used by MEXT for Measurement of External Radiations with Attention to the Cosmic Radiation Component 5a

  13. Shielding from cosmic radiation for interplanetary missions Active and passive methods

    CERN Document Server

    Spillantini, P; Durante, M; Müller-Mellin, R; Reitz, G; Rossi, L; Shurshakov, V; Sorbi, M

    2007-01-01

    Shielding is arguably the main countermeasure for the exposure to cosmic radiation during interplanetary exploratory missions. However, shielding of cosmic rays, both of galactic or solar origin, is problematic, because of the high energy of the charged particles involved and the nuclear fragmentation occurring in shielding materials. Although computer codes can predict the shield performance in space, there is a lack of biological and physical measurements to benchmark the codes. An attractive alternative to passive, bulk material shielding is the use of electromagnetic fields to deflect the charged particles from the spacecraft target. Active shielding concepts based on electrostatic fields, plasma, or magnetic fields have been proposed in the past years, and should be revised based on recent technological improvements. To address these issues, the European Space Agency (ESA) established a Topical Team (TT) in 2002 including European experts in the field of space radiation shielding and superconducting magn...

  14. Computation of cosmic radiation spectra and application to aircrew dosimetry

    International Nuclear Information System (INIS)

    Yoo, Song Jae

    2002-02-01

    Using the Monte Carlo radiation transport code FLUKA- 99, secondary cosmic radiation energy spectra and intensities of neutrons, protons, photons, electrons, and muons were calculated for different geographical latitude and longitude at the commercial jet's altitudes ranging from 27000 ft to 41000 ft. The Badhwar's proton model was used to construct the primary cosmic radiation spectrum and effect of the vertical cutoff rigidity was considered after spectra similar to those given in literature were resulted. By applying the effective dose conversion factors, a calculation tool for aircrew doses was developed. According to the resulting dose rate distribution, effective dose rate over North pole region is around three times of that over equator region due to the geomagnetical shielding effect. Illustrative assessments of aircrew doses were made for four distinctive routes of Korean airliners : Seoul - New York (USA), London (UK), Sydney (Australia) and Mumbai(India). The effective doses to aircrew incurred from a round trip were 0.047, 0.055, 0.018, and 0.018μSv, respectively. If aircrew work 500 hour s a year at the cruise altitude of a international airline, the individual dose would reach 2 mSv which is about the same size as the average annual dose of workers at a nuclear power plant

  15. Air crew exposure to cosmic radiation. New analysis, recommendations EURADOS

    International Nuclear Information System (INIS)

    Spurny, F.; Votockova, I.

    1995-01-01

    Cosmic radiation on the board of an aircraft consist of two components: directly ionizing radiation (electron, proton - low LET) and neutrons (high LET). Neither composition nor the energy spectrum of usual on-Earth calibration sources ( 60 Co, 252 Cf) do not correspond to the field on a board. Therefore high energy reference fields behind shielding high energy accelerator at CERN and Dubna have been created and intensively studied. Their typical characteristics following from the results of our measurements were obtained. In-flight measurements on the board of commercial aircraft have been realized since 1991 during about 20 flights, Flight routes extended from the 1.3 grad N up to about 65 grad N, flying altitudes varied from 8.2 km to 12.5 km. The exposure level due to galactic cosmic radiation is inversely proportional to the solar activity. Some radiation protection aspects were concluded: (a) The usual limits of annual air crew flight hours correspond at 11.3 km to about 4 mSv per year, with new ICRP conversion factors to about 5 mSv per year; (b) Monthly flight hours limit does not exclude that the exposure of a pregnant women can exceed 1 mSv during this period; (c) The air crew exposure should therefore be checked, controlled a nd administered as conscientiously as for any other group of occupationally exposed persons. A Working group 11 of EURADOS 'Exposure of air crew to cosmic radiation' has been formed (1992-1995) to prepare basic analysis and recommendations concerning the topics. The basic recommendations are the following: (a) air crew flying routinely at altitudes over 8 km are deemed to be category B workers, it is therefore important to estimate, record, control and, where necessary, to limit the doses; (b) the preferred procedure in order to estimate doses to air crew or frequent flyers is to determine route doses and fold these data with data on staff rostering; (c) where doses may exceed the limit for category B workers (6 mSv per year), on

  16. To the exposure of air crew members to cosmic radiation

    International Nuclear Information System (INIS)

    Spurny, F.; Kovar, I.; Bottollier-Depois, J.F.; Plawinski, L.

    1998-01-01

    According to an ICRP recommendation, the exposure of jet aircraft crew to radiation should be considered as occupational exposure when the annual equivalent doses are liable to exceed 1 mSv. Many new data on this type of exposure collected since 1991 are presented and analyzed. The dose equivalent rates established are fitted as a function of flight altitude. An analysis of data from cosmic ray monitors has shown that the presence of cosmic rays in the Earth's atmosphere is rather stable since early 1992. An estimation was therefore made of the possible influence of the solar cycle phase by means of a transport code. The results obtained are compared with experimental data

  17. Evaluation of exposure to cosmic radiation of flight crews of Lithuanian Airlines

    International Nuclear Information System (INIS)

    Morkunas, G.; Pilkyte, L.; Ereminas, D.

    2003-01-01

    In Lithuania the average annual effective dose due to cosmic radiation at the sea level is 0.38 mSv. The dose rate caused by cosmic radiation increases with altitude due to the decrease in attenuation of cosmic radiation by atmosphere. Dose rates altitudes of commercial flights are tens times higher than those at the sea level. For this reason people who frequently fly receive higher doses which might even be subject to legal regulations. The European Council Directive (96/29 EURATOM) on basic radiation safety standards requires that doses of air crews members be assessed and appropriate measures taken, depending on the assessment results. The aim of this study was to evaluate potential doses, which can be received by members of air crews of Lithuania Airlines. The assessment was done by performing measurements and calculations. Measurements were performed in flying aircraft by thermoluminescent detectors, Geiger Muller counters and neutron rem counter. Such an approach lead to evaluation of doses due to directly ionizing particles and neutrons. Calculations were done with the help of the code CARI-6M. Such parameters as flight route, solar activity, duration and altitudes of flight were taken into account. Doses received during different flights and in different air crafts were assessed. The results of measurements and calculations were compared and differences discussed. The results were also compared with the data obtained in other similar studies. It was found that the highest doses are received in flights to Paris, London, Amsterdam, and Frankfurt by aircraft B737. A number of flights causing annual doses higher than 1 mSv was estimated. Despite the fact that only European flights are operated by Lithuanian Airlines the dose of 1 mSv may be exceeded under some circumstances. If it happens some radiation protection measures shall be taken. These measures are also discussed. (author)

  18. Propagation of Polarized Cosmic Microwave Background Radiation in an Anisotropic Magnetized Plasma

    International Nuclear Information System (INIS)

    Moskaliuk, S. S.

    2010-01-01

    The polarization plane of the cosmic microwave background radiation (CMBR) can be rotated either in a space-time with metric of anisotropic type and in a magnetized plasma or in the presence of a quintessential background with pseudoscalar coupling to electromagnetism. A unified treatment of these three phenomena is presented for cold anisotropic plasma at the pre-recombination epoch. It is argued that the generalized expressions derived in the present study may be relevant for direct searches of a possible rotation of the cosmic microwave background polarization.

  19. Assessing exposure to cosmic radiation aboard aircraft: the SIEVERT system

    International Nuclear Information System (INIS)

    Bottolier-Depois, J.F.; Clairand, I.; Blanchard, P.; Dessarps, P.; Lantos, P.

    2005-01-01

    Full text: The study of naturally-occurring radiation and its associated risk is one of the preoccupations of bodies responsible for radiation protection. Cosmic particle flux is significantly higher on board aircraft that at ground level. Furthermore, its intensity depends on solar activity and eruptions. Due to their professional activity, flight crews and frequent flyers may receive an annual dose of some milliSieverts. This is why the European directive adopted in 1996 requires the aircraft operators to assess the dose and to inform their flight crews about the risk. The effective dose is to be estimated using various experimental and calculation means. In France, the computerized system for flight assessment of exposure to cosmic radiation in air transport (SIEVERT) is delivered to airlines for assisting them in the application of the European directive. This dose assessment tool was developed by the French General Directorate of Civil Aviation (DGAC) and partners: the Institute for Radiation Protection and Nuclear Safety (IRSN), the Paris Observatory and the French Institute for Polar Research - PaulEmile Victor (IPEV). This professional service is available since more than two years on an Internet server accessible to companies with a public section. The system provides doses that consider the routes flown by aircraft. Various results obtained are presented: experimental validation, in particular for the ground level event model (large solar eruption), and statistics on routes and personal doses. (author)

  20. Radiation transport of cosmic ray nuclei in lunar material and radiation doses

    International Nuclear Information System (INIS)

    Silberberg, R.; Tsao, C.H.; Adams, J.H. Jr.; Letaw, J.R.

    1985-01-01

    The radiation environment on the lunar surface is inhospitable. The permanent settlers may work ten hours per 24-hour interval for the two-week-long lunar day on the lunar surface, or 20 percent of the total time. At moderate depths below the lunar surface (less than 200 g/sq cm) the flux of secondary neutrons exceeds considerably that in the upper atmosphere of the earth, due to cosmic-ray interactions with lunar material. The annual dose equivalent due to neutrons is about 20 or 25 rem within the upper meter of the lunar surface. The dose equivalent due to gamma rays generated by nuclear interactions near the lunar surface is only on the order of 1 percent of that due to neutrons. However, gamma-ray line emission from excited nuclei and nuclear spallation products generated by cosmic rays near the lunar surface is of considerable interest: these lines permit the partial determination of lunar composition by gamma spectroscopy. 12 references

  1. Heavy ion irradiation of crystalline water ice. Cosmic ray amorphisation cross-section and sputtering yield

    Science.gov (United States)

    Dartois, E.; Augé, B.; Boduch, P.; Brunetto, R.; Chabot, M.; Domaracka, A.; Ding, J. J.; Kamalou, O.; Lv, X. Y.; Rothard, H.; da Silveira, E. F.; Thomas, J. C.

    2015-04-01

    Context. Under cosmic irradiation, the interstellar water ice mantles evolve towards a compact amorphous state. Crystalline ice amorphisation was previously monitored mainly in the keV to hundreds of keV ion energies. Aims: We experimentally investigate heavy ion irradiation amorphisation of crystalline ice, at high energies closer to true cosmic rays, and explore the water-ice sputtering yield. Methods: We irradiated thin crystalline ice films with MeV to GeV swift ion beams, produced at the GANIL accelerator. The ice infrared spectral evolution as a function of fluence is monitored with in-situ infrared spectroscopy (induced amorphisation of the initial crystalline state into a compact amorphous phase). Results: The crystalline ice amorphisation cross-section is measured in the high electronic stopping-power range for different temperatures. At large fluence, the ice sputtering is measured on the infrared spectra, and the fitted sputtering-yield dependence, combined with previous measurements, is quadratic over three decades of electronic stopping power. Conclusions: The final state of cosmic ray irradiation for porous amorphous and crystalline ice, as monitored by infrared spectroscopy, is the same, but with a large difference in cross-section, hence in time scale in an astrophysical context. The cosmic ray water-ice sputtering rates compete with the UV photodesorption yields reported in the literature. The prevalence of direct cosmic ray sputtering over cosmic-ray induced photons photodesorption may be particularly true for ices strongly bonded to the ice mantles surfaces, such as hydrogen-bonded ice structures or more generally the so-called polar ices. Experiments performed at the Grand Accélérateur National d'Ions Lourds (GANIL) Caen, France. Part of this work has been financed by the French INSU-CNRS programme "Physique et Chimie du Milieu Interstellaire" (PCMI) and the ANR IGLIAS.

  2. Heavy ion irradiation of astrophysical ice analogs

    International Nuclear Information System (INIS)

    Duarte, Eduardo Seperuelo; Domaracka, Alicja; Boduch, Philippe; Rothard, Hermann; Balanzat, Emmanuel; Dartois, Emmanuel; Pilling, Sergio; Farenzena, Lucio; Frota da Silveira, Enio

    2009-01-01

    Icy grain mantles consist of small molecules containing hydrogen, carbon, oxygen and nitrogen atoms (e.g. H 2 O, GO, CO 2 , NH 3 ). Such ices, present in different astrophysical environments (giant planets satellites, comets, dense clouds, and protoplanetary disks), are subjected to irradiation of different energetic particles: UV radiation, ion bombardment (solar and stellar wind as well as galactic cosmic rays), and secondary electrons due to cosmic ray ionization of H 2 . The interaction of these particles with astrophysical ice analogs has been the object of research over the last decades. However, there is a lack of information on the effects induced by the heavy ion component of cosmic rays in the electronic energy loss regime. The aim of the present work is to simulate of the astrophysical environment where ice mantles are exposed to the heavy ion cosmic ray irradiation. Sample ice films at 13 K were irradiated by nickel ions with energies in the 1-10 MeV/u range and analyzed by means of FTIR spectrometry. Nickel ions were used because their energy deposition is similar to that deposited by iron ions, which are particularly abundant cosmic rays amongst the heaviest ones. In this work the effects caused by nickel ions on condensed gases are studied (destruction and production of molecules as well as associated cross sections, sputtering yields) and compared with respective values for light ions and UV photons. (authors)

  3. What is cosmic radiation?; Qu'est ce-que le rayonnement cosmique?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The earth was indeed receiving ionizing radiations from the heavens. This cosmic radiation consists of particles travelling near the speed of light. It consists of two components, the first of which is permanent and of galactic origin, while the other is more sporadic, depending on the sun's activities. Natural land-based sources expose each of us to an average total dose of 2.4 mSv per year (source UNSCEAR). In addition, the human activities using ionizing radiation contribute to an average annual exposure of 1.4 mSv, originating primarily with medical activities ( radiodiagnostic and radiation therapy). Members of flights crew are subject to exposure. The total dose of cosmic radiation received is is directly proportional with the duration of exposure, and thus with the duration of the flight. Measurement taken on board aircraft during the 1990's showed that flight personnel (on long haul flights) receive an average dose of approximately the same magnitude as the one due to exposure to natural radioactivity in France. The damage caused by ionizing radiation depends on the quantity of energy released by radiation into the cells of each organ or tissue of the human body(exposure dose). For a given quantity of absorbed energy (dose expressed in Gray), the damage will vary according to the nature of the radiation and the affected organ. These effects are of two types: acute effects and deferred effects. Two measurements are essential for radiation protection: the measurements of the dose of radiation absorbed by the body and the assessment of the risk associated with the absorbed dose. Two units were thus created: the gray and the sievert. (N.C.)

  4. Distortions in the Rayleigh-Jeans region of the cosmic background radiation spectrum

    International Nuclear Information System (INIS)

    De Zotti, G.

    1982-01-01

    The theory of the origin and evolution of distortions in the Rayleigh-Jeans region of the cosmic background radiation spectrum is reviewed. Some proposed experiments, designed to substantially improve our knowledge of that portion of the spectrum, are briefly described. (author)

  5. Contribution gives the cosmic radiation to the doses for exhibition to the natural radiation in the Cuban population

    International Nuclear Information System (INIS)

    Tomas Zerquera, J.; Peres Sanchez, D.; Prendes Alonso, M

    1998-01-01

    With the objective to specify the preponderant contribution the cosmic component the radiation in the dose that the Cuban population receives you carries out a program she gives mensurations she gives this component in the whole country

  6. Highlights from e-EPS: Cosmic Day / FEL for SuperB / Assessment Assessed

    CERN Multimedia

    Ian Randall, Bénédicte Huchet and EPS

    2012-01-01

    e-EPS News is a monthly addition to the CERN Bulletin line-up, showcasing articles from e-EPS – the European Physical Society newsletter – as part of a collaboration between the two publications.   International Cosmic Day The first International Cosmic Day will be held on 26 September this year. During this event, students and teachers worldwide will come together in research institutions, universities and classrooms to learn about cosmic particle research. The event will celebrate the centenary of Victor Franz Hess’ discovery of cosmic rays – particles which originate in outer space and spread through the whole universe, often at extremely high energies. On the day, students will tackle such questions as: what are cosmic particles? … where do they come from? … and how can they be measured? Participants will be encouraged to undertake their own cosmic particle experiments: analysing and evaluating the...

  7. Measurement of the cosmic background radiation temperature at 6.3 cm

    International Nuclear Information System (INIS)

    Mandolesi, N.; Calzolari, P.; Cortiglioni, S.; Morigi, G.

    1984-01-01

    We present results of a measurement of the cosmic background radiation temperature at a wavelength of 6.3 cm. We obtained the value T/sub CBR/ = 2.71 +- 0.20 K. This is in good agreement with, and has a smaller error than, any previous measurement at equal or longer wavelengths

  8. Epigenetic Analysis of Heavy-ion Radiation Induced Bystander Effects in Mice

    Science.gov (United States)

    Zhang, Meng; Sun, Yeqing; Cui, Changna; Xue, Bei

    Abstract: Radiation-induced bystander effect was defined as the induction of damage in neighboring non-hit cells by signals released from directly-irradiated cells. Recently, low dose of high LET radiation induced bystander effects in vivo have been reported more and more. It has been indicated that radiation induced bystander effect was localized not only in bystander tissues but also in distant organs. Genomic, epigenetic and proteomics plays significant roles in regulating heavy-ion radiation stress responses in mice. To identify the molecular mechanism that underlies bystander effects of heavy-ion radiation, the male Balb/c and C57BL mice were exposed head-only to 40, 200, 2000mGy dose of (12) C heavy-ion radiation, while the rest of the animal body was shielded. Directly radiation organ ear and the distant organ liver were detected on 1h, 6h, 12h and 24h after radiation, respectively. Methylation-sensitive amplification polymorphism (MSAP) was used to monitor the level of polymorphic genomic DNA methylation changed with dose and time effects. The results show that heavy-ion irradiated mouse head could induce genomic DNA methylation changes significantly in both the directly radiation organ ear and the distant organ liver. The percent of DNA methylation changes were time-dependent and tissue-specific. Demethylation polymorphism rate was highest separately at 1 h in 200 mGy and 6 h in 2000 mGy after irradiation. The global DNA methylation changes tended to occur in the CG sites. The results illustrated that genomic methylation changes of heavy ion radiation-induced bystander effect in liver could be obvious 1 h after radiation and achieved the maximum at 6 h, while the changes could recover gradually at 12 h. The results suggest that mice head exposed to heavy-ion radiation can induce damage and methylation pattern changed in both directly radiation organ ear and distant organ liver. Moreover, our findings are important to understand the molecular mechanism of

  9. Studies of heavy-ion reactions and transuranic nuclei. Progress report, September 1, 1992--August 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, W.U.

    1993-08-01

    This report contain papers on the following topics: The Cold-Fusion Saga; Decay Patterns of Dysprosium Nuclei Produced in {sup 32}S + {sup 118,124}Sn Fusion Reactions; Unexpected Features of Reactions Between Very Heavy Ions at Intermediate Bombarding Energies; Correlations Between Neutrons and Charged Products from the Dissipative Reaction {sup 197}Au+{sup 208}Pb at E/A = 29 MeV; Dissipative Dynamics of Projectile-Like Fragment Production in the Reaction {sup 209}Bi+{sup 136}Xe at E/A = 28.2 MeV; Dynamical Production of Intermediate-Mass Fragments in Peripheral {sup 209}Bi+{sup 136}Xe Collisions at E{sub lab}/A = 28.2 MeV; The Rochester 960-Liter Neutron Multiplicity Meter; A Simple Pulse Processing Concept for a Low-Cost Pulse-Shape-Based Particle Identification; A One-Transistor Preamplifier for PMT Anode Signals; A Five-Channel Multistop TDC/Event Handler for the SuperBall Neutron Multiplicity Meter; Construction of the SuperBall -- a 16,000-Liter Neutron Detector for Calorimetric Studies of Intermediate-Energy Heavy-Ion Reactions; A Computer Code for Light Detection Efficiency Calculations for Photo-multipliers of a Neutron Detector; Evaluation of Gd-Loaded Liquid Scintillators for the SuperBall Neutron Calorimeter; and Measurement of the Interaction of Cosmic-Ray {mu}{sup {minus}} with a Muon Telescope.

  10. Measuring space radiation shielding effectiveness

    OpenAIRE

    Bahadori Amir; Semones Edward; Ewert Michael; Broyan James; Walker Steven

    2017-01-01

    Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles ...

  11. Proteomics analysis of ram sperm by heavy ion radiation

    International Nuclear Information System (INIS)

    He Yuxuan; Li Hongyan; Zhang Hong

    2013-01-01

    The objective of this study was to investigate the proteome changes induced by heavy ion radiation using irradiated ram sperm by a two-dimensional electrophoresis (2-DE) analysis. The 2D gels were stained with Coomassie Brilliant Blue. Differentially expressed proteins were detected by PDQuest 8.0 software and subjected to ion trap mass spectrometer equipped with a surveyor HPLC system, and differential protein spots were identified. Results showed there are five differential protein spots in irradiated sperm gels, four up-regulated protein spots and one spot missed. The differentially expressed protein spots were identified to be two up-regulated proteins including enolase, and enolase 1. It was concluded there was proteome changes induced by heavy ion radiation in ram sperm, which may be useful to clarify the physiology state of ram sperm in heavy ion radiation and provide a theoretical basis for radiation ram breeding. (authors)

  12. Hot super-dense compact object with particular EoS

    Science.gov (United States)

    Tito, E. P.; Pavlov, V. I.

    2018-03-01

    We show the possibility of existence of a self-gravitating spherically-symmetric equilibrium configuration for a neutral matter with neutron-like density, small mass M ≪ M_{⊙}, and small radius R ≪ R_{⊙}. We incorporate the effects of both the special and general theories of relativity. Such object may be formed in a cosmic cataclysm, perhaps an exotic one. Since the base equations of hydrostatic equilibrium are completed by the equation of state (EoS) for the matter of the object, we offer a novel, interpolating experimental data from high-energy physics, EoS which permits the existence of such compact system of finite radius. This EoS model possesses a critical state characterized by density ρc and temperature Tc. For such an object, we derive a radial distribution for the super-dense matter in "liquid" phase using Tolman-Oppenheimer-Volkoff equations for hydrostatic equilibrium. We demonstrate that a stable configuration is indeed possible (only) for temperatures smaller than the critical one. We derive the mass-radius relation (adjusted for relativistic corrections) for such small (M ≪ M_{⊙}) super-dense compact objects. The results are within the constraints established by both heavy-ion collision experiments and theoretical studies of neutron-rich matter.

  13. Calibration of solid state nuclear track detectors at high energy ion beams for cosmic radiation measurements: HAMLET results

    International Nuclear Information System (INIS)

    Szabó, J.; Pálfalvi, J.K.

    2012-01-01

    The MATROSHKA experiments and the related HAMLET project funded by the European Commission aimed to study the dose burden of the crew working on the International Space Station (ISS). During these experiments a human phantom equipped with several thousands of radiation detectors was exposed to cosmic rays inside and outside the ISS. Besides the measurements realized in Earth orbit, the HAMLET project included also a ground-based program of calibration and intercomparison of the different detectors applied by the participating groups using high-energy ion beams. The Space Dosimetry Group of the Centre for Energy Research (formerly Atomic Energy Research Institute) participated in these experiments with passive solid state nuclear track detectors (SSNTDs). The paper presents the results of the calibration experiments performed in the years 2008–2011 at the Heavy Ion Medical Accelerator (HIMAC) of the National Institute of Radiological Sciences (NIRS), Chiba, Japan. The data obtained serve as update and improvement for the previous calibration curves which are necessary for the evaluation of the SSNTDs exposed in unknown space radiation fields.

  14. Calibration of solid state nuclear track detectors at high energy ion beams for cosmic radiation measurements: HAMLET results

    Energy Technology Data Exchange (ETDEWEB)

    Szabo, J., E-mail: julianna.szabo@energia.mta.hu [Hungarian Academy of Sciences, Centre for Energy Research, Konkoly Thege Miklos ut 29-33, 1525 Budapest 114, P.O. Box 49 (Hungary); Palfalvi, J.K. [Hungarian Academy of Sciences, Centre for Energy Research, Konkoly Thege Miklos ut 29-33, 1525 Budapest 114, P.O. Box 49 (Hungary)

    2012-12-01

    The MATROSHKA experiments and the related HAMLET project funded by the European Commission aimed to study the dose burden of the crew working on the International Space Station (ISS). During these experiments a human phantom equipped with several thousands of radiation detectors was exposed to cosmic rays inside and outside the ISS. Besides the measurements realized in Earth orbit, the HAMLET project included also a ground-based program of calibration and intercomparison of the different detectors applied by the participating groups using high-energy ion beams. The Space Dosimetry Group of the Centre for Energy Research (formerly Atomic Energy Research Institute) participated in these experiments with passive solid state nuclear track detectors (SSNTDs). The paper presents the results of the calibration experiments performed in the years 2008-2011 at the Heavy Ion Medical Accelerator (HIMAC) of the National Institute of Radiological Sciences (NIRS), Chiba, Japan. The data obtained serve as update and improvement for the previous calibration curves which are necessary for the evaluation of the SSNTDs exposed in unknown space radiation fields.

  15. High energy radiation from black holes gamma rays, cosmic rays, and neutrinos

    CERN Document Server

    Dermer, Charles D

    2009-01-01

    Bright gamma-ray flares observed from sources far beyond our Milky Way Galaxy are best explained if enormous amounts of energy are liberated by black holes. The highest- energy particles in nature--the ultra-high-energy cosmic rays--cannot be confined by the Milky Way's magnetic field, and must originate from sources outside our Galaxy. Understanding these energetic radiations requires an extensive theoretical framework involving the radiation physics and strong-field gravity of black holes. In High Energy Radiation from Black Holes, Charles Dermer and Govind Menon present a systemat

  16. Natural environmental radioactivity with particular regard to radon gas and cosmic radiation

    International Nuclear Information System (INIS)

    Lowder, W.M.

    1993-01-01

    A paper given at the previous workshop described the growth of our knowledge of the nature and sources of human exposure to naturally-occurring radiation and radionuclides, and summarized assessments of the individual components of this exposure. Here, some recent developments relevant to the earlier conclusions are described, and a closer look is taken at the increasingly important human exposure contribution of cosmic radiation, especially at aircraft altitudes. (author). 21 refs, 1 tab

  17. Radiation shielding for the Super Collider West Utility region

    International Nuclear Information System (INIS)

    Meinke, R.; Mokhov, N.; Orth, D.; Parker, B.; Plant, D.

    1994-02-01

    Shielding considerations in the 20 x 20-TeV Superconducting Super Collider are strongly correlated with detailed machine specifics in the various accelerator sections. The West Utility, the most complex area of the Collider, concentrates all the major accelerator subsystems in a single area. The beam loss rate and associated radiation levels in this region are anticipated to be quite high, and massive radiation shielding is therefore required to protect personnel, Collider components, and the environment. The challenging task of simultaneously optimizing accelerator design and radiation shielding, both of which are strongly influenced by subsystem design details, requires the integration of several complex simulation codes. To this end we have performed exhaustive hadronic shower simulations with the MARS12 program; detailed accelerator lattice and optics optimization via the SYNCH, MAD, and MAGIC codes; and extensive 3-D configuration modeling of the accelerator tunnel and subsystems geometries. Our technique and the non-trivial results from such a combined approach are presented here. An integrated procedure is found invaluable in developing cost-effective radiation shielding solutions

  18. Heavy ion facility for radiation therapy

    International Nuclear Information System (INIS)

    Leemann, C.; Alonso, J.; Clark, D.; Grunder, H.; Hoyer, E.; Lou, K.; Staples, J.; Voelker, F.

    1977-03-01

    The accelerator requirements of particle radiation therapy are reviewed and a preliminary design of a heavy ion synchrotron for hospital installation is presented. Beam delivery systems and multi-treatment room arrangements are outlined

  19. Cosmic Microwave Background Timeline

    Science.gov (United States)

    Cosmic Microwave Background Timeline 1934 : Richard Tolman shows that blackbody radiation in an will have a blackbody cosmic microwave background with temperature about 5 K 1955: Tigran Shmaonov anisotropy in the cosmic microwave background, this strongly supports the big bang model with gravitational

  20. Use of heavy ions to model radiation damage of metals

    International Nuclear Information System (INIS)

    Shirokov, S.V.; Vyshemirskij, M.P.

    2011-01-01

    The methods for modeling radiation damage of metals using heavy ions are reviewed and the results obtained are analyzed. It is shown that irradiation of metals with heavy ion can simulate neutron exposure with the equivalent dose with adequate accuracy and permits a detailed analysis of radiation damage of metals

  1. Comparison of cosmic rays radiation detectors on-board commercial jet aircraft.

    Science.gov (United States)

    Kubančák, Ján; Ambrožová, Iva; Brabcová, Kateřina Pachnerová; Jakůbek, Jan; Kyselová, Dagmar; Ploc, Ondřej; Bemš, Július; Štěpán, Václav; Uchihori, Yukio

    2015-06-01

    Aircrew members and passengers are exposed to increased rates of cosmic radiation on-board commercial jet aircraft. The annual effective doses of crew members often exceed limits for public, thus it is recommended to monitor them. In general, the doses are estimated via various computer codes and in some countries also verified by measurements. This paper describes a comparison of three cosmic rays detectors, namely of the (a) HAWK Tissue Equivalent Proportional Counter; (b) Liulin semiconductor energy deposit spectrometer and (c) TIMEPIX silicon semiconductor pixel detector, exposed to radiation fields on-board commercial Czech Airlines company jet aircraft. Measurements were performed during passenger flights from Prague to Madrid, Oslo, Tbilisi, Yekaterinburg and Almaty, and back in July and August 2011. For all flights, energy deposit spectra and absorbed doses are presented. Measured absorbed dose and dose equivalent are compared with the EPCARD code calculations. Finally, the advantages and disadvantages of all detectors are discussed. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Reduction in life span on normal human fibroblasts exposed to low-dose radiation in heavy-ion radiation field

    International Nuclear Information System (INIS)

    Suzuki, Masao; Yamaguchi, Chizuru; Yasuda, Hiroshi; Uchihori, Yukio; Fujitaka, Kazunobu

    2003-01-01

    We studied the effect of in vitro life span in normal human fibroblasts exposed to chronically low-dose radiation in heavy-ion radiation field. Cells were cultured in a CO 2 incubator, which was set in the irradiation room for biological study of heavy ions in the Heavy Ion Medical Accelerator in Chiba (HIMAC) at National Institute of Radiological Sciences (NIRS), and exposed to scattered radiations produced with heavy-ion beams throughout the life span of the cell population. Absorbed dose, which was measured using a thermoluminescence dosimeter(TLD) and a Si-semiconductor detector, was to be 1.4 mGy per day when operating the HIMAC machine for biological experiments. The total population doubling number of the exposed cells reduced to 79-93% of non-exposed control cells in the three independent experiments. There is evidence that the exposure of chronically low-dose radiation in heavy-ion radiation field promotes the life-span reduction in cellular level. (author)

  3. Radiation in the Einstein universe and the cosmic background

    International Nuclear Information System (INIS)

    Segal, I.E.

    1983-01-01

    It is shown that the cosmic background radiation is not at all uniquely or scientifically relatively economically indicative of a ''big bang.'' Specifically, essentially any temporally homogeneous theory in the Einstein universe is consistent with the existence of a cosmic background radiation (CBR) conforming to the Planck law; in particular, the chronometric cosmology is such. It is noted that the Einstein universe appears particularly natural as a habitat for photons by virtue of the absence of infrared divergences and of the absolute convergence of the trace for associated Gibbs-state density matrices. These features are connected with the closed character of space in the Einstein universe, and facilitate the use of the latter in modeling local phenomena, in place of Minkowski space with periodic boundary conditions or the like, with minimal loss of covariance or effect on the wave functions. In particular, the Einstein universe may be used in the analysis of the perturbation of a Planck-law spectrum due to a local nonvanishing isotropic angular momentum of the CBR, of whatever origin. The estimated distortion of the spectrum due to such a kinematically admissible effect is in very good agreement with that observed by Woody and Richards, which is opposite in direction to those earlier predicted by big-bang theories. The theoretical analysis involves a preliminary treatment of equilibria of linear quantum fields with supplementary quasilinear constraints

  4. Planetary Habitability over Cosmic-Time Based on Cosmic-Ray Levels

    Science.gov (United States)

    Mason, Paul A.; Biermann, Peter L.

    2016-01-01

    Extreme cosmic-ray (CR) fluxes have a negative effect on life when flux densities are high enough to cause excessive biological, especially DNA, damage. The CR history of a planet plays an important role in its potential surface habitation. Both global and local CR conditions determine the ability of life to survive for astrobiologically relevant time periods. We highlight two CR life-limiting factors: 1) General galactic activity, starburst and AGN, was up by about a factor of 30 at redshift 1 - 2, per comoving frame, averaged over all galaxies. And 2) AGN activity is highly intermittent, so extreme brief but powerful bursts (Her A for example) can be detrimental at great distances. This means that during such brief bursts of AGN activity the extragalactic CRs might even overpower the local galactic CRs. But as shown by the starburst galaxy M82, the local CRs in a starburst can also be quite high. Moreover, in our cosmic neighborhood we have several super-massive black holes. These are in M31, M32, M81, NGC5128 (Cen A), and in our own Galaxy, all within about 4 Mpc today. Within about 20 Mpc today there are many more super-massive black holes. Cen A is of course the most famous one now, since it may be a major source of the ultra-high-energy CRs (UHECRs). Folding in what redshift means in terms of cosmic time, this implies that there may have been little chance for life to survive much earlier than Earth's starting epoch. We speculate, on whether the very slow start oflife on Earth is connected to the decay of disturbing CR activity.

  5. CRaTER: The Cosmic Ray Telescope for the Effects of Radiation Experiment on the Lunar Reconnaissance Orbiter Mission

    OpenAIRE

    Spence, H. E.; Case, A. W.; Golightly, M. J.; Heine, T.; Larsen, B. A.; Blake, J. B.; Caranza, P.; Crain, W. R.; George, J.; Lalic, M.; Lin, A.; Looper, M. D.; Mazur, J. E.; Salvaggio, D.; Kasper, J. C.

    2009-01-01

    The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on the Lunar Reconnaissance Orbiter (LRO) characterizes the radiation environment to be experienced by humans during future lunar missions. CRaTER measures the effects of ionizing energy loss in matter due to penetrating solar energetic protons (SEP) and galactic cosmic rays (GCR), specifically in silicon solid-state detectors and after interactions with tissue-equivalent plastic (TEP), a synthetic analog of human tissue. The CRaT...

  6. Effects on ontogenesis of Carausius morosus hit by cosmic heavy ions

    International Nuclear Information System (INIS)

    Reitz, G.; Buecker, H.; Ruether, W.

    1990-01-01

    Among the biological problems that arise in long duration spaceflights, the effects of weightlessness and ionizing radiation appear to be the two main risk factors. Eggs of the stick insect Carausius morosus were exposed to spaceflight conditions during the 12.56 day Biosatellite mission Cosmos 1887. Five different ages were used, representing different sensitivities to radiation and different capacities for regeneration. During spaceflight the eggs continued their development. Already, in the Spacelab D1 mission in 1985, it has been shown that microgravity leads to a reduced hatching rate of eggs exposed during the early steps of development. When the eggs were hit by a heavy ion, a further but not significant reduction of the hatching rate was observed. Hatching was normal for eggs which were exposed on a 1 g reference centrifuge in space. Heavy ion hits caused body anomalies. The combined action of heavy ions and microgravity resulted in an unexpectedly high rate of anomalies. In the experiment on Cosmos 1887 these results were confirmed. Studies on the embryonic development before hatching showed no major difference between flight and ground control specimen, neither in speed of development nor in morphological anomalies. Hatching therefore seems to be the critical point in insect ontogenesis. (author)

  7. Cosmic Radiation and Aircrew Exposure: Implementation of European Requirements in Civil Aviation, Dublin, 1-3 July 1998

    Science.gov (United States)

    Talbot, Lee

    1999-03-01

    -year period. Professor O'Sullivan said that the NRPB used TLDs for low and high LET radiations and PADC for neutrons. The investigation of dosemeter response was carried out using Monte Carlo codes. The active instruments used for measurements were the tissue equivalent proportional counter (TEPC) and a Bonnersphere spectrometer using eight spheres. The instrumentation used was calibrated in the CERN-CEC reference field. In summary, it was found that the shape of the neutron spectrum does not change with altitudes and that the maximum dose rate was found to be under the seats of the aircraft. Dr Lindbourg of the Swedish Radiation Protection Institute gave a short talk on the importance of using the TEPC for cosmic ray measurements, as it is the only means of reading directly absorbed dose to tissue and the radiation quality (in terms of lineal energy). Dr Schewe from PTB, Germany, gave the next talk on reference fields and calibration procedures. The speaker highlighted the difficulties in measuring radiation fields onboard aircraft, as the calibration fields used are often vastly different to the radiation field the instrumentation is being exposed to. The speaker said that this could lead to errors in the measurements in excess of 50%. One way around this is to use realistic reference fields, which produce similar particle compositions and particle fluences as those present in the cosmic radiation at aircraft altitudes. For this work the reference field facility in one of the secondary beams lines of the CERN Super Proton Synchrotron was used. In summary it was shown that the TEPC could be used as a reference instrument for evaluating ambient dose equivalent in aircraft. The next speaker was Dr Tommasino of the ANPA, Rome, who talked about in-flight measurement of radiation fields and doses. He stated that the problem of radiation dose assessment has been developed within the multinational research programmes of the Commission of the European Communities. The speaker talked

  8. CALIBRATION OF MODIFIED LIULIN DETECTOR FOR COSMIC RADIATION MEASUREMENTS ON-BOARD AIRCRAFT

    Czech Academy of Sciences Publication Activity Database

    Kyselová, Dagmar; Ambrožová, Iva; Krist, Pavel; Kubančák, Ján; Uchihori, Y.; Kitamura, H.; Ploc, Ondřej

    2015-01-01

    Roč. 164, č. 4 (2015), s. 489-492 ISSN 0144-8420 R&D Projects: GA MŠk(CZ) LG13031 Institutional support: RVO:61389005 Keywords : Liulin detector * on-board aircraft * cosmic radiation measurement Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.894, year: 2015

  9. Real-Time Aircraft Cosmic Ray Radiation Exposure Predictions from the NAIRAS Model

    Science.gov (United States)

    Mertens, C. J.; Tobiska, W.; Kress, B. T.; Xu, X.

    2012-12-01

    The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a prototype operational model for predicting commercial aircraft radiation exposure from galactic and solar cosmic rays. NAIRAS predictions are currently streaming live from the project's public website, and the exposure rate nowcast is also available on the SpaceWx smartphone app for iPhone, IPad, and Android. Cosmic rays are the primary source of human exposure to high linear energy transfer radiation at aircraft altitudes, which increases the risk of cancer and other adverse health effects. Thus, the NAIRAS model addresses an important national need with broad societal, public health and economic benefits. There is also interest in extending NAIRAS to the LEO environment to address radiation hazard issues for the emerging commercial spaceflight industry. The processes responsible for the variability in the solar wind, interplanetary magnetic field, solar energetic particle spectrum, and the dynamical response of the magnetosphere to these space environment inputs, strongly influence the composition and energy distribution of the atmospheric ionizing radiation field. Real-time observations are required at a variety of locations within the geospace environment. The NAIRAS model is driven by real-time input data from ground-, atmospheric-, and space-based platforms. During the development of the NAIRAS model, new science questions and observational data gaps were identified that must be addressed in order to obtain a more reliable and robust operational model of atmospheric radiation exposure. The focus of this talk is to present the current capabilities of the NAIRAS model, discuss future developments in aviation radiation modeling and instrumentation, and propose strategies and methodologies of bridging known gaps in current modeling and observational capabilities.

  10. Thick Galactic Cosmic Radiation Shielding Using Atmospheric Data

    Science.gov (United States)

    Youngquist, Robert C.; Nurge, Mark A.; Starr, Stanley O.; Koontz, Steven L.

    2013-01-01

    NASA is concerned with protecting astronauts from the effects of galactic cosmic radiation and has expended substantial effort in the development of computer models to predict the shielding obtained from various materials. However, these models were only developed for shields up to about 120 g!cm2 in thickness and have predicted that shields of this thickness are insufficient to provide adequate protection for extended deep space flights. Consequently, effort is underway to extend the range of these models to thicker shields and experimental data is required to help confirm the resulting code. In this paper empirically obtained effective dose measurements from aircraft flights in the atmosphere are used to obtain the radiation shielding function of the earth's atmosphere, a very thick shield. Obtaining this result required solving an inverse problem and the method for solving it is presented. The results are shown to be in agreement with current code in the ranges where they overlap. These results are then checked and used to predict the radiation dosage under thick shields such as planetary regolith and the atmosphere of Venus.

  11. Track-etched detectors for the dosimetry of the radiation of cosmic origin

    International Nuclear Information System (INIS)

    Spurny, F.; Turek, K.

    2004-01-01

    Cosmic rays contribute to the exposure on the Earth's surface as well as in its surroundings. At the surface and/or at aviation altitudes, there are mostly secondary particles created through the cosmic rays interaction in the atmosphere, which contribute to this type of exposure. Onboard a spacecraft, the exposure comes mostly from primary cosmic rays. Track-etched detectors (TED) are able to characterise both these types of exposure. The contribution of neutrons, of cosmic origin, on the Earth's surface was studied at altitudes from few hundreds to 3000 m using TED in a moderator sphere. The results obtained are compared with other data on this type of natural radiation background. The results of studies performed onboard aircraft and/or spacecraft are presented afterwards. We used TED-based neutron dosemeter, as well as a spectrometer of linear energy transfer based on a chemically etched TED. The results of studies performed onboard aircraft, as well as spacecraft, are presented and discussed, including an attempt to estimate a neutron component onboard the spacecraft. It was found that they correlate with the results of other independent investigations. (authors)

  12. The biological effectiveness of heavy ion radiations in the environment

    International Nuclear Information System (INIS)

    Craven, P.A.

    1996-03-01

    Although heavy ions are rarely encountered in the majority of terrestrial environments, the exposure of humans to this fascinating class of ionizing radiation is becoming more frequent. Long-duration spaceflight, new radiotherapeutic procedures and enhanced levels of radon, and other naturally-occurring alpha particle emitters, have all increased concern and stimulated interest recently within the radiological protection and radiobiological communities. Significant data concerning the long-term effects of low levels of heavy ions on mammalian systems are correspondingly scarce, leading to increased emphasis on modelling all aspects of the radiation-organism interaction. Contemporary radiation protection procedures reflect the need for a more fundamental understanding of the mechanisms responsible for the biological actions of such radiations. Major deficiencies exist in the current recommendations for assessment of relative effectiveness, the enhanced severity of the biological consequences instigated by heavy ions, over conventional sparsely ionizing radiations. In an attempt to remedy some of the inadequate concepts and assumptions presently employed and, simultaneously, to gain insight into the fundamental mechanisms behind the notion of radiation quality, a series of algorithms have been developed and executed as computer code, to evaluate the biological effectiveness of heavy ion radiation ''tracks'' according to a number of criteria. These include consideration of the spatial characteristics of physical energy deposition in idealised cellular structures (finite particle range, radial extension of tracks via δ-ray emission) and the likelihood of induction and mis-repair of severe molecular lesions (double-strand breaks, multiply-damaged sites). (author)

  13. New limits to the small scale fluctuations in the cosmic background radiation

    International Nuclear Information System (INIS)

    Kellermann, K.I.; Fomalont, E.B.; Wall, J.V.

    1983-01-01

    The VLA has been used at 4.9 GHz to observe a small region of sky in order to extend the radio source count to low flux density (Fomalont et al., these proceedings) and to look for small scale fluctuations in the 2.7 K cosmic microwave background radiation. (Auth.)

  14. Cosmic radiation exposure of aircraft crew: compilation of measured and calculated data

    Czech Academy of Sciences Publication Activity Database

    Lindborg, L.; Bartlett, D.; Beck, P.; McAulay, I.; Schnuer, K.; Schraube, H.; Spurný, František

    2004-01-01

    Roč. 110, 1-4 (2004), s. 417-422 ISSN 0144-8420 Grant - others:EC project(XE) FIGM-CT2000-00068 Institutional research plan: CEZ:AV0Z1048901 Keywords : cosmic radiation exposure * aircraft crew * measurement Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.617, year: 2003

  15. Heavy irradiation effects in radiation-resistant optical fibers

    Energy Technology Data Exchange (ETDEWEB)

    Shikama, Tatsuo [Tohoku Univ., Oarai, Ibaraki (Japan). Oarai Branch, Inst. for Materials Research

    1998-07-01

    Development of a system for optical measurements in a nuclear reactor has been progressing to investigate dynamic changes in a material caused by heavy irradiation. In such system, transfer of optical signals to out-pile measuring systems is being attempted by the use of optical fibers. In this report, the characteristics of optical fibers in the heavy irradiation field were summarized. It has been known that amorphous silica might produce radiolysis and structural defects by the exposure to ionizing radiation. The effects of heavy irradiation on molten silica were extremely complicated. A large intensity of visible light absorption occurred from an early time during start-up of the reactor. The absorption range was limited below 700 nm for the radiation associating fast neutron and the absorption was mostly attributed to non-bridging oxygen hole center. The depletion of optical transferring capacity under the radiation might be related to the internal stress. Therefore, it seems desirable to use optical fibers in the conditions without leading too much stress. (M.N.)

  16. Radiative Transfer Simulations of Cosmic Reionization With Pop II and III Stars

    Science.gov (United States)

    Trac, Hy; Cen, Renyue

    2008-03-01

    We have simulated 3 large volume, high resolution realizations of cosmic reionization using a hybrid code that combines a N-body algorithm for dark matter, prescriptions for baryons and star formation, and a radiative transfer algorithm for ionizing photons. Our largest simulation, with 24 billion particles in a 100 Mpc/h box, simultaneously provides (1) the mass resolution needed to resolve dark matter halos down to a virial temperatures of 104 K and (2) the volume needed to fairly sample highly biased sources and large HII regions. We model the stellar initial mass function (IMF) by following the spatially dependent gas metallicity evolution, and distinguish between the first generation (Population III) stars and the second generation (Population II) stars. The Population III stars, with a top-heavy IMF, produce an order of magnitude more ionizing photons at high redshifts z>~10, resulting in a more extended reionization. In our simulations, complete overlap of HII regions occurs at z~6.5 and the computed mass and volume weighted residual HI fractions at 5measurements from SDSS. The values for the Thomson optical depth are consistent within 1-σ of the current best-fit value from the WMAP Year 3 data release.

  17. Studying the high energy cosmic radiation: contributions to its detection and to the exploration of its origin

    International Nuclear Information System (INIS)

    Lamanna, Giovanni

    2009-01-01

    The Astro-particle Physics is a discipline where scientists from both the astrophysics and the particle physics communities meets to investigate the Universe aiming to answer to fundamental questions in the field of physics, cosmology and astrophysics. The high energy astrophysics domain, which explores the extremes sources where the larger collective transfer of energy take place, studies the most energetic cosmic radiation as privileged messengers of the history of the Universe. My research path, summarized in this work, is made of personal contributions in the development of new detection technologies, in the data analysis, perspectives and phenomenological studies about the scientific purposes of large experiments: e.g. AMS, ANTARES, HESS, CTA, POLAR. My contributions are the results of research activities in coherence with two main scientific goals in the context of the astro-particle physics domain: - The implication of the high energy cosmic radiation measurement for the investigation on the nature and distribution of the dark matter; - The investigation of the origin of the galactic cosmic radiation for the understanding of the most energetic processes in the Universe. (author)

  18. Measurements and simulations of the radiation exposure to aircraft crew workplaces due to cosmic radiation in the atmosphere

    International Nuclear Information System (INIS)

    Beck, P.; Latocha, M.; Dorman, L.; Pelliccioni, M.; Rollet, S.

    2007-01-01

    As required by the European Directive 96/29/Euratom, radiation exposure due to natural ionizing radiation has to be taken into account at workplaces if the effective dose could become more than 1 mSv per year. An example of workers concerned by this directive is aircraft crew due to cosmic radiation exposure in the atmosphere. Extensive measurement campaigns on board aircraft have been carried out to assess ambient dose equivalent. A consortium of European dosimetry institutes within EURADOS WG5 summarized experimental data and results of calculations, together with detailed descriptions of the methods for measurements and calculations. The radiation protection quantity of interest is the effective dose, E (ISO). The comparison of results by measurements and calculations is done in terms of the operational quantity ambient dose equivalent, H*(10). This paper gives an overview of the EURADOS Aircraft Crew In-Flight Database and it presents a new empirical model describing fitting functions for this data. Furthermore, it describes numerical simulations performed with the Monte Carlo code FLUKA-2005 using an updated version of the cosmic radiation primary spectra. The ratio between ambient dose equivalent and effective dose at commercial flight altitudes, calculated with FLUKA-2005, is discussed. Finally, it presents the aviation dosimetry model AVIDOS based on FLUKA-2005 simulations for routine dose assessment. The code has been developed by Austrian Research Centers (ARC) for the public usage (http://avidos.healthphysics.at. (authors)

  19. COMPARISON OF COSMIC-RAY ENVIRONMENTS ON EARTH, MOON, MARS AND IN SPACECARFT USING PHITS.

    Science.gov (United States)

    Sato, Tatsuhiko; Nagamatsu, Aiko; Ueno, Haruka; Kataoka, Ryuho; Miyake, Shoko; Takeda, Kazuo; Niita, Koji

    2017-09-29

    Estimation of cosmic-ray doses is of great importance not only in aircrew and astronaut dosimetry but also in evaluation of background radiation exposure to public. We therefore calculated the cosmic-ray doses on Earth, Moon and Mars as well as inside spacecraft, using Particle and Heavy Ion Transport code System PHITS. The same cosmic-ray models and dose conversion coefficients were employed in the calculation to properly compare between the simulation results for different environments. It is quantitatively confirmed that the thickness of physical shielding including the atmosphere and soil of the planets is the most important parameter to determine the cosmic-ray doses and their dominant contributors. The comparison also suggests that higher solar activity significantly reduces the astronaut doses particularly for the interplanetary missions. The information obtained from this study is useful in the designs of the future space missions as well as accelerator-based experiments dedicated to cosmic-ray research. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Biological effects of single HZE-particles of the cosmic radiation: Free Flyer Biostack

    International Nuclear Information System (INIS)

    1989-01-01

    The Free Flyer Biostack is designed as a passive, longer term experiment for investigations into the dosimetry of cosmic HZE particles (high-charge energetic particles), the effects of single HZE particles on isolated biological samples, and the synergistic effects of conditions in space, as e.g. zero gravity and presence of a permanent, weakly ionizing component of the cosmic radiation. For the experiments summarized in this project report, the AgCl detector type developed in Frankfurt has been used, consisting of monocrystalline AgCl films, about 130-150 μm thick, and doped with 5000 ppm of Cd. (DG) With 9 figs [de

  1. SOLAR OPACITY CALCULATIONS USING THE SUPER-TRANSITION-ARRAY METHOD

    International Nuclear Information System (INIS)

    Krief, M.; Feigel, A.; Gazit, D.

    2016-01-01

    A new opacity model has been developed based on the Super-Transition-Array (STA) method for the calculation of monochromatic opacities of plasmas in local thermodynamic equilibrium. The atomic code, named STAR (STA-Revised), is described and used to calculate spectral opacities for a solar model implementing the recent AGSS09 composition. Calculations are carried out throughout the solar radiative zone. The relative contributions of different chemical elements and atomic processes to the total Rosseland mean opacity are analyzed in detail. Monochromatic opacities and charge-state distributions are compared with the widely used Opacity Project (OP) code, for several elements near the radiation–convection interface. STAR Rosseland opacities for the solar mixture show a very good agreement with OP and the OPAL opacity code throughout the radiation zone. Finally, an explicit STA calculation was performed of the full AGSS09 photospheric mixture, including all heavy metals. It was shown that, due to their extremely low abundance, and despite being very good photon absorbers, the heavy elements do not affect the Rosseland opacity

  2. SOLAR OPACITY CALCULATIONS USING THE SUPER-TRANSITION-ARRAY METHOD

    Energy Technology Data Exchange (ETDEWEB)

    Krief, M.; Feigel, A.; Gazit, D., E-mail: menahem.krief@mail.huji.ac.il [The Racah Institute of Physics, The Hebrew University, 91904 Jerusalem (Israel)

    2016-04-10

    A new opacity model has been developed based on the Super-Transition-Array (STA) method for the calculation of monochromatic opacities of plasmas in local thermodynamic equilibrium. The atomic code, named STAR (STA-Revised), is described and used to calculate spectral opacities for a solar model implementing the recent AGSS09 composition. Calculations are carried out throughout the solar radiative zone. The relative contributions of different chemical elements and atomic processes to the total Rosseland mean opacity are analyzed in detail. Monochromatic opacities and charge-state distributions are compared with the widely used Opacity Project (OP) code, for several elements near the radiation–convection interface. STAR Rosseland opacities for the solar mixture show a very good agreement with OP and the OPAL opacity code throughout the radiation zone. Finally, an explicit STA calculation was performed of the full AGSS09 photospheric mixture, including all heavy metals. It was shown that, due to their extremely low abundance, and despite being very good photon absorbers, the heavy elements do not affect the Rosseland opacity.

  3. Why heavy and light quarks radiate energy with similar rates

    International Nuclear Information System (INIS)

    Kopeliovich, B. Z.; Potashnikova, I. K.; Schmidt, Ivan

    2010-01-01

    The dead-cone effect has been predicted to reduce the magnitude of energy loss and jet quenching for heavy flavors produced with large p T in heavy-ion collisions. On the contrary, data from the Relativistic Heavy Ion Collider demonstrate a strong suppression of high-p T electrons from charm and bottom decays. We show that vacuum radiation of a highly virtual quark produced at high p T with a stripped-off color field develops a much wider dead cone, which screens the one related to the quark mass. Lacking the field, gluons cannot be radiated within this cone until the color field is regenerated and the quark virtuality cools down to the scale of the order of the quark mass. However, this takes longer than is essential for the observed jet quenching, leading to similar nuclear effects for the light and charm quark jets. Open beauty is expected to radiate much less within the p T range studied so far in heavy-ion collisions.

  4. Radiation survey of aircraft and heavy machinery scrap

    International Nuclear Information System (INIS)

    Idriss, Hajo; Salih, Isam; Gumaa, Elsadig; Yassin, Abbas; Yousif, E.H.; Abdel Hamid, Saad Eldeen M.; Sam, A.K.

    2012-01-01

    This study was conducted primarily to survey aircraft and heavy machinery at 30 locations within Khartoum State using handheld radiation survey meters to detect and identify any radiation sources that might be present and to estimate radiation dose levels. The survey has resulted in detection of 16 sealed sources of 90 Sr and one of 226 Ra in aircraft scrap. Of course, 90 Sr sources are used in military aircraft as temperature sensors while 226 Ra is used for indicating fuel levels. These sources were found intact without spreading radioactivity contamination; however, none was detected in heavy machine scrap. The levels of radiation dose measured at 0.1 m from the source fall within the range of 25.1–40.2 μSv/h with an average value of 33.52±4.06 μSv/h. These orphan sources have been separated from the scrap, tested for possible leakage, conditioned and stored in waste management facility. The result of this study has revealed without doubt that the scrap constitute a serious source of public exposure and highlights the importance of legislation making radiation monitoring of scrap in the country mandatory before it is sold to metal industry for reprocessing. - Highlights: ► Sealed radioactive sources ( 90 Sr and 226 Ra) were detected in aircraft scrap. ► No source was detected in heavy machine scrap. ► Radiation dose measured at 0.1 m from the source can be used to estimate exposure to public. ► Monitoring of scrap was found to be useful for protection (from orphan sources).

  5. Faster Heavy Ion Transport for HZETRN

    Science.gov (United States)

    Slaba, Tony C.

    2013-01-01

    The deterministic particle transport code HZETRN was developed to enable fast and accurate space radiation transport through materials. As more complex transport solutions are implemented for neutrons, light ions (Z heavy ion (Z > 2) transport algorithm in HZETRN is reviewed, and a simple modification is shown to provide an approximate 5x decrease in execution time for galactic cosmic ray transport. Convergence tests and other comparisons are carried out to verify that numerical accuracy is maintained in the new algorithm.

  6. Galactic cosmic ray simulation at the NASA Space Radiation Laboratory

    Science.gov (United States)

    Norbury, John W.; Schimmerling, Walter; Slaba, Tony C.; Azzam, Edouard I.; Badavi, Francis F.; Baiocco, Giorgio; Benton, Eric; Bindi, Veronica; Blakely, Eleanor A.; Blattnig, Steve R.; Boothman, David A.; Borak, Thomas B.; Britten, Richard A.; Curtis, Stan; Dingfelder, Michael; Durante, Marco; Dynan, William S.; Eisch, Amelia J.; Elgart, S. Robin; Goodhead, Dudley T.; Guida, Peter M.; Heilbronn, Lawrence H.; Hellweg, Christine E.; Huff, Janice L.; Kronenberg, Amy; La Tessa, Chiara; Lowenstein, Derek I.; Miller, Jack; Morita, Takashi; Narici, Livio; Nelson, Gregory A.; Norman, Ryan B.; Ottolenghi, Andrea; Patel, Zarana S.; Reitz, Guenther; Rusek, Adam; Schreurs, Ann-Sofie; Scott-Carnell, Lisa A.; Semones, Edward; Shay, Jerry W.; Shurshakov, Vyacheslav A.; Sihver, Lembit; Simonsen, Lisa C.; Story, Michael D.; Turker, Mitchell S.; Uchihori, Yukio; Williams, Jacqueline; Zeitlin, Cary J.

    2017-01-01

    Most accelerator-based space radiation experiments have been performed with single ion beams at fixed energies. However, the space radiation environment consists of a wide variety of ion species with a continuous range of energies. Due to recent developments in beam switching technology implemented at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL), it is now possible to rapidly switch ion species and energies, allowing for the possibility to more realistically simulate the actual radiation environment found in space. The present paper discusses a variety of issues related to implementation of galactic cosmic ray (GCR) simulation at NSRL, especially for experiments in radiobiology. Advantages and disadvantages of different approaches to developing a GCR simulator are presented. In addition, issues common to both GCR simulation and single beam experiments are compared to issues unique to GCR simulation studies. A set of conclusions is presented as well as a discussion of the technical implementation of GCR simulation. PMID:26948012

  7. Cosmic rays, clouds, and climate

    DEFF Research Database (Denmark)

    Marsh, N.; Svensmark, Henrik

    2000-01-01

    cloud radiative properties. Thus, a moderate influence on atmospheric aerosol distributions from cosmic ray ionisation would have a strong influence on the Earth's radiation budget. Historical evidence over the past 1000 years indicates that changes in climate have occurred in accord with variability......A correlation between a global average of low cloud cover and the flux of cosmic rays incident in the atmosphere has been observed during the last solar cycle. The ionising potential of Earth bound cosmic rays are modulated by the state of the heliosphere, while clouds play an important role...... in the Earth's radiation budget through trapping outgoing radiation and reflecting incoming radiation. If a physical link between these two features can be established, it would provide a mechanism linking solar activity and Earth's climate. Recent satellite observations have further revealed a correlation...

  8. Analytical Model for Estimating Terrestrial Cosmic Ray Fluxes Nearly Anytime and Anywhere in the World: Extension of PARMA/EXPACS.

    Directory of Open Access Journals (Sweden)

    Tatsuhiko Sato

    Full Text Available By extending our previously established model, here we present a new model called "PHITS-based Analytical Radiation Model in the Atmosphere (PARMA version 3.0," which can instantaneously estimate terrestrial cosmic ray fluxes of neutrons, protons, ions with charge up to 28 (Ni, muons, electrons, positrons, and photons nearly anytime and anywhere in the Earth's atmosphere. The model comprises numerous analytical functions with parameters whose numerical values were fitted to reproduce the results of the extensive air shower (EAS simulation performed by Particle and Heavy Ion Transport code System (PHITS. The accuracy of the EAS simulation was well verified using various experimental data, while that of PARMA3.0 was confirmed by the high R2 values of the fit. The models to be used for estimating radiation doses due to cosmic ray exposure, cosmic ray induced ionization rates, and count rates of neutron monitors were validated by investigating their capability to reproduce those quantities measured under various conditions. PARMA3.0 is available freely and is easy to use, as implemented in an open-access software program EXcel-based Program for Calculating Atmospheric Cosmic ray Spectrum (EXPACS. Because of these features, the new version of PARMA/EXPACS can be an important tool in various research fields such as geosciences, cosmic ray physics, and radiation research.

  9. Intermittency in super-high energy cosmic ray events

    International Nuclear Information System (INIS)

    Gladysz-Dziadus, E.

    1988-12-01

    The factorial moments method described by Bialas and Peschanski was used for investigations of fluctuations in pseudorapidity distributions of nine cosmic-ray events at energy of about 1000 TeV. Both electromagnetic and hadronic components of these events reveal very strong intermittent behaviour. 8 refs., 7 figs., 2 tabs. (author)

  10. Biotropic Effect of Radiation Conditions on Orbital Cosmic Stations

    Science.gov (United States)

    Tsetlin, Vladimir; Ushakov, Igor; Gurieva, Tamar; Moisa, Svetlana; Zotin, Alexei; Lobanov, Alexei

    On the orbit of pilot orbital stations the crews undergo to low doses of chronic irradiation of cosmic radiation. The studying of radiobiological effects in different living systems were carried out in the ship’s side (OC “MIR” and ICS) and model surface experiments (power dose 200 mGy/day, density of neutron flow 30 particles/sm2 sec). It was shown that ionized radiation effects on embryonal development of Japanese quail embryo, inducing morphological disturbances in 12% of embryos. Many years ontogenesis (more 15 years of life in OC “MIR”) of microbial association evoked replacement of dominant types of micromycetes and bacterium and increasing of colony-formed units (CFU) in four orders. In laboratory low doses of γ-radiation induced the increasing of flight strain biomass of Aspergillus niger that corresponds to a radiation hormezis and also the increasing of radio-sensitivity. Moreover, under γ-neutron radiation were marked some deviations in morphology of supporting cell and numerous head falls of Aspergillus niger. The irradiation of Protozoa by low doses led to that spontaneous motion activity of spirostoms (Spirostomum ambiguum Ehbg.) accommodated in water processing by mixed γ-neutron radiation decreased twice that testified the fact that the definite factor of γ-neutron radiation effect is the changing of water medium state. In dry seeds of the highest plants wetting in water of preliminary low doses α-and γ-irradiation cells gradually decreased. In hypomagnetic camera the opposite tendency was observed. It is established the phenomena of stimulating effect of low doses of continuous γ-radiation (source of radiation Co60, period of radiation 10 days, average daily power dose 1,5-2,0 mGy, summary dose 15 mGy) on mezenchim stem cells of mice bone brain - a radiation hormezis which revealed in the intensifying of proliferative activity and increasing of number of colony-formed units-F in bone brain in 1,5-4,5 times. Regenerative capacity of

  11. Generalized Chaplygin gas and cosmic microwave background radiation constraints

    International Nuclear Information System (INIS)

    Bento, M.C.; Bertolami, O.; Sen, A.A.

    2003-01-01

    We study the dependence of the location of the cosmic microwave background radiation peaks on the parameters of the generalized Chaplygin gas model, whose equation of state is given by p=-A/ρ α , where A is a positive constant and 0<α≤1. We find, in particular, that observational data arising from Archeops, BOOMERANG, supernova and high-redshift observations allow constraining significantly the parameter space of the model. Our analysis indicates that the emerging model is clearly distinguishable from the α=1 Chaplygin case and the ΛCDM model

  12. George Smoot, Blackbody, and Anisotropy of the Cosmic Microwave Background

    Science.gov (United States)

    the Cosmic Microwave Background Radiation Resources with Additional Information * Videos 'George Smoot anisotropy of the cosmic microwave background radiation." '1 Smoot previously won the Ernest Orlando . Smoot, blackbody, and anisotropy of the Cosmic Microwave Background (CMB) radiation is available in full

  13. Superposition of Planckian spectra and the distortions of the cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Alexanian, M.

    1982-01-01

    A fit of the spectrum of the cosmic microwave background radiation (CMB) by means of a positive linear superposition of Planckian spectra implies an upper bound to the photon spectrum. The observed spectrum of the CMB gives a weighting function with a normalization greater than unity

  14. Anomalous isotopic composition of cosmic rays

    International Nuclear Information System (INIS)

    Woosley, S.E.; Weaver, T.A.

    1980-01-01

    Recent measurements of nonsolar isotopic patterns for the elements neon and (perhaps) magnesium in cosmic rays are interpreted within current models of stellar nucleosynthesis. One possible explanation is that the stars currently responsible for cosmic-ray synthesis in the Galaxy are typically super-metal-rich by a factor of two to three. Other possibilities include the selective acceleration of certain zones or masses of supernovas or the enhancement of 22 Ne in the interstellar medium by mass loss from red giant stars and planetary nebulas. Measurements of critical isotopic ratios are suggested to aid in distinguishing among the various possibilities. Some of these explanations place significant constraints on the fraction of cosmic ray nuclei that must be fresh supernova debris and the masses of the supernovas involved. 1 figure, 3 tables

  15. Development of radiation tolerant semiconductor detectors for the Super-LHC

    CERN Document Server

    Moll, M; Al-Ajili, A A; Alfieri, G; Allport, P P; Artuso, M; Assouak, S; Avset, B S; Barabash, L; Barcz, A; Bates, R; Biagi, S F; Bilei, G M; Bisello, D; Blue, A; Blumenau, A; Boisvert, V; Bölla, G; Bondarenko, G B; Borchi, E; Borrello, L; Bortoletto, D; Boscardin, M; Bosisio, L; Bowcock, T J V; Brodbeck, T J; Broz, J; Bruzzi, M; Brzozowski, A; Buda, M; Buhmann, P; Buttar, C; Campabadal, F; Campbell, D; Candelori, A; Casse, G; Cavallini, A; Charron, S; Chilingarov, A; Chren, D; Cindro, V; Collins, P; Coluccia, R; Contarato, D; Coutinho, J; Creanza, D; Cunningham, W; Betta, G F D; Dawson, I; de Boer, Wim; De Palma, M; Demina, R; Dervan, P; Dittongo, S; Dolezal, Z; Dolgolenko, A; Eberlein, T; Eremin, V; Fall, C; Fasolo, F; Fizzotti, F; Fleta, C; Focardi, E; Forton, E; Fretwurst, E; García, C; García-Navarro, J E; Gaubas, E; Genest, M H; Gill, K A; Giolo, K; Glaser, M; Gössling, C; Golovine, V; Sevilla, S G; Gorelov, I; Goss, J; Bates, A G; Grégoire, G; Gregori, P; Grigoriev, E; Grillo, A A; Groza, A; Guskov, J; Haddad, L; Härkönen, J; Hauler, F; Hoeferkamp, M; Honniger, F; Horazdovsky, T; Horisberger, Roland Paul; Horn, M; Houdayer, A; Hourahine, B; Hughes, G; Ilyashenko, Yu S; Irmscher, K; Ivanov, A; Jarasiunas, K; Johansen, K M H; Jones, B K; Jones, R; Joram, C; Jungermann, L; Kalinina, E; Kaminski, P; Karpenko, A; Karpov, A; Kazlauskiene, V; Kazukauskas, V; Khivrich, V; Khomenkov, V; Kierstead, J A; Klaiber Lodewigs, J; Klingenberg, R; Kodys, P; Kohout, Z; Korjenevski, S; Koski, M; Kozlowski, R; Kozodaev, M; Kramberger, G; Krasel, O; Kuznetsov, A; Kwan, S; Lagomarsino, S; Lassila-Perini, K M; Lastovetsky, V F; Latino, G; Lazanu, S; Lazanu, I; Lebedev, A; Lebel, C; Leinonen, K; Leroy, C; Li Z; Lindström, G; Linhart, V; Litovchenko, A P; Litovchenko, P G; Lo Giudice, A; Lozano, M; Luczynski, Z; Luukka, P; Macchiolo, A; Makarenko, L F; Mandic, I; Manfredotti, C; Manna, N; Garcia, S Mi; Marunko, S; Mathieson, K; Melone, J; Menichelli, D; Messineo, A; Metcalfe, J; Miglio, S; Mikuz, M; Miyamoto, J; Monakhov, E; Moscatelli, F; Naoumov, D; Nossarzhevska, E; Nysten, J; Olivero, P; OShea, V; Palviainen, T; Paolini, C; Parkes, C; Passeri, D; Pein, U; Pellegrini, G; Perera, L; Petasecca, M; Piemonte, C; Pignatel, G U; Pinho, N; Pintilie, I; Pintilie, L; Polivtsev, L; Polozov, P; Popa, A; Popule, J; Pospísil, S; Pozza, A; Radicci, V; Rafí, J M; Rando, R; Röder, R; Rohe, T; Ronchin, S; Rott, C; Roy, A; Ruzin, A; Sadrozinski, H F W; Sakalauskas, S; Scaringella, M; Schiavulli, L; Schnetzer, S; Schumm, B; Sciortino, S; Scorzoni, A; Segneri, G; Seidel, S; Seiden, A; Sellberg, G; Sellin, P J; Sentenac, D; Shipsey, I; Sícho, P; Sloan, T; Solar, M; Son, S; Sopko, B; Sopko, V; Spencer, N; Stahl, J; Stolze, D; Stone, R; Storasta, J; Strokan, N; Sudzius, M; Surma, B; Suvorov, A; Svensson, B G; Tipton, P; Tomasek, M; Tsvetkov, A; Tuominen, E; Tuovinen, E; Tuuva, T; Tylchin, M; Uebersee, H; Uher, J; Ullán, M; Vaitkus, J V; Velthuis, J; Verbitskaya, E; Vrba, V; Wagner, G; Wilhelm, I; Worm, S; Wright, V; Wunstorf, R; Yiuri, Y; Zabierowski, P; Zaluzhny, A; Zavrtanik, M; Zen, M; Zhukov, V; Zorzi, N

    2005-01-01

    The envisaged upgrade of the Large Hadron Collider (LHC) at CERN towards the Super-LHC (SLHC) with a 10 times increased luminosity of 10challenges for the tracking detectors of the SLHC experiments. Unprecedented high radiation levels and track densities and a reduced bunch crossing time in the order of 10ns as well as the need for cost effective detectors have called for an intensive R&D program. The CERN RD50 collaboration "Development of Radiation Hard Semiconductor Devices for Very High Luminosity Colliders" is working on the development of semiconductor sensors matching the requirements of the SLHC. Sensors based on defect engineered silicon like Czochralski, epitaxial and oxygen enriched silicon have been developed. With 3D, Semi-3D and thin detectors new detector concepts have been evaluated and a study on the use of standard and oxygen enriched p-type silicon detectors revealed a promising approach for radiation tolerant cost effective devices. These and other most recent advancements of the RD50 ...

  16. Cosmic radiation during air travel: trends in exposure of aircrews and airline passengers

    NARCIS (Netherlands)

    Blaauboer RO; LSO

    2004-01-01

    An unfavourable effect of flying is the enhanced exposure of both passengers and aircrew to cosmic radiation at high altitudes. On the basis of a detailed survey on passengers arriving at or departing from Amsterdam Schiphol Airport in the 1988-1997 period, estimates of individual effective dose for

  17. On the influence of atmospheric super-saturation layer on China's heavy haze-fog events

    Science.gov (United States)

    Wang, Jizhi; Yang, Yuanqin; Zhang, Xiaoye; Liu, Hua; Che, Huizheng; Shen, Xiaojing; Wang, Yaqiang

    2017-12-01

    With the background of global change, the air quality in Earth's atmosphere has significantly decreased. The North China Plain (NCP), Yangtze River Delta (YRD), Pearl River Delta (PRD) and Si-Chuan Basin (SCB) are the major areas suffering the decreasing air quality and frequent pollution events in recent years. Studying the effect of meteorological conditions on the concentration of pollution aerosols in these pollution sensitive regions is a hot focus now. This paper analyses the characteristics of atmospheric super-saturation and the corresponding H_PMLs (height of supersaturated pollution mixing layer), investigating their contribution to the frequently-seen heavy haze-fog weather. The results suggest that: (1) in the above-mentioned pollution sensitive regions in China, super-saturated layers repeatedly appear in the low altitude and the peak value of supersaturation S can reach 6-10%, which makes pollution particles into the wet adiabatic uplift process in the stable-static atmosphere. After low-level atmosphere reaches the super-saturation state below the H_PMLs, meteorological condition contributes to humidification and condensation of pollution particles. (2) Caculation of condensation function Fc, one of PLAM sensetive parameter, indicates that super-saturation state helps promote condensation, beneficial to the formation of Condensational Kink (CK) in the pollution sensitive areas. This favors the formation of new aerosol particles and intensities the cumulative growth of aerosol concentration. (3) By calculating the convective inhibition energy on average │CIN│ > 1.0 × 104 J kg-1, we found the value is about 100 times higher than the stable critical value. The uplifting diffusion of the particles is inhibited by the ambient airflow. So, this is the important reason for the aggravation and persistence of aerosol pollutants in local areas. (4) H_PMLs is negatively correlated to the pollution meteorological condition index PLAM which can describe the

  18. Factorization for radiative heavy quarkonium decays into scalar Glueball

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Ruilin [INPAC, Shanghai Key Laboratory for Particle Physics and Cosmology,Department of Physics and Astronomy, Shanghai Jiao Tong University,Dongchuan RD 800, Shanghai 200240 (China); State Key Laboratory of Theoretical Physics,Institute of Theoretical Physics, Chinese Academy of Sciences,Zhongguancun E. St. 55, Beijing 100190 (China); CAS Center for Excellence in Particle Physics,Institute of High Energy Physics, Chinese Academy of Sciences,Yuquan RD 19B, Beijing 100049 (China)

    2015-09-24

    We establish the factorization formula for scalar Glueball production through radiative decays of vector states of heavy quarkonia, e.g. J/ψ, ψ(2S) and Υ(nS), where the Glueball mass is much less than the parent heavy quarkonium mass. The factorization is demonstrated explicitly at one-loop level through the next-to-leading order (NLO) corrections to the hard kernel, the non-relativistic QCD (NRQCD) long-distance matrix elements (LDMEs) of the heavy quarkonium, and the light-cone distribution amplitude (LCDA) of scalar Glueball. The factorization provides a comprehensive theoretical approach to investigate Glueball production in the radiative decays of vector states of heavy quarkonia and determine the physic nature of Glueball. We discuss the scale evolution equation of LCDA for scalar Glueball. In the end, we extract the value of the decay constant of Scalar Glueball from Lattice QCD calculation and analyze the mixing effect among f{sub 0}(1370), f{sub 0}(1500) and f{sub 0}(1710).

  19. Exploring the Large Scale Anisotropy in the Cosmic Microwave Background Radiation at 170 GHz

    Science.gov (United States)

    Ganga, Kenneth Matthew

    1994-01-01

    In this thesis, data from the Far Infra-Red Survey (FIRS), a balloon-borne experiment designed to measure the large scale anisotropy in the cosmic microwave background radiation, are analyzed. The FIRS operates in four frequency bands at 170, 280, 480, and 670 GHz, using an approximately Gaussian beam with a 3.8 deg full-width-at-half-maximum. A cross-correlation with the COBE/DMR first-year maps yields significant results, confirming the DMR detection of anisotropy in the cosmic microwave background radiation. Analysis of the FIRS data alone sets bounds on the amplitude of anisotropy under the assumption that the fluctuations are described by a Harrison-Peebles-Zel'dovich spectrum and further analysis sets limits on the index of the primordial density fluctuations for an Einstein-DeSitter universe. Galactic dust emission is discussed and limits are set on the magnitude of possible systematic errors in the measurement.

  20. Presentations to the SuperHILAC Program Advisory Committee

    International Nuclear Information System (INIS)

    McDonald, R.J.

    1987-09-01

    This paper contains viewgraphs on the SuperHILAC. The topics of these viewgraphs are: light charged particle emission as a probe of heavy-ion reactions; correlated charged-changing interactions and x-ray emission in ion-atom collisions; progress report on Sassy II and new nuclear chemistry experiments at the SuperHILAC; precision x-ray spectroscopy of heavy ions; 180 0 -correlated equal energy photons from 5.9 MeV/N U + Th collisions; research statement of excited states of monatomic and molecular systems; search for entrance-channel effects in the production of superdeformed nuclei; present and future research with OASIS; relaxation mechanisms in damped heavy-ion reactions; excitation energy division and nucleon transfer; test of QED and relativistic effects for strongly-bound electrons; heavy-ion Coulomb excitation and transfer reactions as probes of nuclear structure; and preliminary design of the Dilepton spectrometer

  1. On the anisotropies of cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Molnar, Z.

    1996-01-01

    The work gives a brief overview of the topic of cosmic microwave background radiation anisotropies. Then is deals with the so-called Rees-Sciama affect; i.e. with the anisotropies arising between the last scattering surface and us due to transparent huge irregularities. Using the formulas of Special Theory of Relativity it is proven that in the neighbourhood of expanding spherical body the Meszaros calculation (Meszaros 1994) are correct; the inaccuracy is maximally of order 10 -12 . Then the profile of the blue shift of expansion caused by an expanding sphere is calculated for the case, when the radius of this sphere is much smaller that the relevant Hubble radius. Hence the profiles of the shifts of light periods through a void and through a supercluster are given in the most general cases. These cases contain all the three Friedmannian models and both the synchronous and asynchronous clusters. Then the obtained profiles are explicitly decomposed into the sum of the multipole terms, and it is shown that the observed difference between the measured direction of the maximum of dipole anisotropy of cosmic microwave background radiation and the result of Lauer and Postman (1994) is not explainable by the Rees-Sciama effect. This means that no alternative exists to the two possibilities for the explanation of the data of Lauer and Postman; either the either the huge system of Abell clusters is streaming, or the Friedmannian model is queried. The third possibility is, of course, that the data of observations of Lauer and Postman are incorrect. However, any of these three possibilities seem to be strange enough; hence, the problems coming from data of Lauer and Postman further holds. This is the key result of paper. As a further technical result it is also shown that in principle there is no upper limit of Rees-Sciama effect. (author)

  2. Electromagnetic radiation during electrolysis of heavy water

    International Nuclear Information System (INIS)

    Koval'chuk, E.P.; Yanchuk, O.M.; Reshetnyak, O.V.

    1994-01-01

    The radiation in the visible and ultraviolet spectral regions during electrolysis of heavy water on nickel and palladium cathodes was determined for the first time. A sharp jump of the intensity photon flow was observed at a current density of higher than 125 mA/cm 2 . A hypothesis about the relation of the electrochemiluminescence phenomenon during electrolysis of heavy water with the formation of fresh surfaces in consequence of the hydrogenous corrosion of the cathode material is formulated. ((orig.))

  3. Mechanistic studies of neoplastic cell transformation by ionizing radiation

    International Nuclear Information System (INIS)

    Yang, T.C.; Craise, L.M.; Tobias, C.A.

    1982-01-01

    As part of the Biology and Medicine heavy-ion radiation program, we are systematically investigating the potential carcinogenic and mutagenic effects of high- and low-linear energy transfer (LET) radiation at the cellular level. From these studies, we anticipate additional insight into the molecular and cellular mechanisms of radiation carcinogenesis. Such results should provide quantitative information useful for assessing the undesirable biological effects of cosmic rays in space. Some of our recent experimental results are presented here

  4. Interstellar cyanogen and the temperature of the cosmic microwave background radiation

    Science.gov (United States)

    Roth, Katherine C.; Meyer, David M.; Hawkins, Isabel

    1993-01-01

    We present the results of a recently completed effort to determine the amount of CN rotational excitation in five diffuse interstellar clouds for the purpose of accurately measuring the temperature of the cosmic microwave background radiation (CMBR). In addition, we report a new detection of emission from the strongest hyperfine component of the 2.64 mm CN rotational transition (N = 1-0) in the direction toward HD 21483. We have used this result in combination with existing emission measurements toward our other stars to correct for local excitation effects within diffuse clouds which raise the measured CN rotational temperature above that of the CMBR. After making this correction, we find a weighted mean value of T(CMBR) = 2.729 (+0.023, -0.031) K. This temperature is in excellent agreement with the new COBE measurement of 2.726 +/- 0.010 K (Mather et al., 1993). Our result, which samples the CMBR far from the near-Earth environment, attests to the accuracy of the COBE measurement and reaffirms the cosmic nature of this background radiation. From the observed agreement between our CMBR temperature and the COBE result, we conclude that corrections for local CN excitation based on millimeter emission measurements provide an accurate adjustment to the measured rotational excitation.

  5. Impact of rocket propulsion technology on the radiation risk in missions to Mars

    Energy Technology Data Exchange (ETDEWEB)

    Durante, M. [GSI Helmholtzzentrum fur Schwerionenforschung, Biophysics Department, Darmstadt (Germany); Technical University of Darmstadt, Department of Condensed Matter Physics, Darmstadt (Germany); Bruno, C. [Dipartimento di Meccanica e Aeronautica, Universita -La Sapienza-, Roma (Italy)

    2010-10-15

    Exposure to cosmic radiation is today acknowledged as a major obstacle to human missions to Mars. In fact, in addition to the poor knowledge on the late effects of heavy ions in the cosmic rays, simple countermeasures are apparently not available. Shielding is indeed very problematic in space, because of mass problems and the high-energy of the cosmic rays, and radio-protective drugs or dietary supplements are not effective. However, the simplest countermeasure for reducing radiation risk is to shorten the duration time, particularly the transit time to Mars, where the dose rate is higher than on the planet surface. Here we show that using nuclear electric propulsion (NEP) rockets, the transit time could be substantially reduced to a point where radiation risk could be considered acceptable even with the current uncertainty on late effects. (authors)

  6. Towards a heavy-ion transport capability in the MARS15 Code

    International Nuclear Information System (INIS)

    Mokhov, N.V.; Gudima, K.K.; Mashnik, S.G.; Rakhno, I.L.; Striganov, S.

    2004-01-01

    In order to meet the challenges of new accelerator and space projects and further improve modelling of radiation effects in microscopic objects, heavy-ion interaction and transport physics have been recently incorporated into the MARS15 Monte Carlo code. A brief description of new modules is given in comparison with experimental data. The MARS Monte Carlo code is widely used in numerous accelerator, detector, shielding and cosmic ray applications. The needs of the Relativistic Heavy-Ion Collider, Large Hadron Collider, Rare Isotope Accelerator and NASA projects have recently induced adding heavy-ion interaction and transport physics to the MARS15 code. The key modules of the new implementation are described below along with their comparisons to experimental data.

  7. Enhanced polarization of the cosmic microwave background radiation from thermal gravitational waves.

    Science.gov (United States)

    Bhattacharya, Kaushik; Mohanty, Subhendra; Nautiyal, Akhilesh

    2006-12-22

    If inflation was preceded by a radiation era, then at the time of inflation there will exist a decoupled thermal distribution of gravitons. Gravitational waves generated during inflation will be amplified by the process of stimulated emission into the existing thermal distribution of gravitons. Consequently, the usual zero temperature scale invariant tensor spectrum is modified by a temperature dependent factor. This thermal correction factor amplifies the B-mode polarization of the cosmic microwave background radiation by an order of magnitude at large angles, which may now be in the range of observability of the Wilkinson Microwave Anisotropy Probe.

  8. Cosmic radiation exposure of future hypersonic flight missions

    International Nuclear Information System (INIS)

    Koops, L.

    2017-01-01

    Cosmic radiation exposure in air traffic grows with flight altitude, geographical latitude and flight time. For future high-speed intercontinental point-to-point travel, the trade-off between reduced flight time and enhanced dose rate at higher flight altitudes is investigated. Various representative (partly) hypersonic cruise missions are considered and in dependence on solar activity the integral route dose is calculated for envisaged flight profiles and trajectories. Our results are compared to those for corresponding air connections served by present day subsonic airliners. During solar maximum, we find a significant reduction in route dose for all considered high-speed missions compared to the subsonic reference. However, during solar minimum, comparable or somewhat larger doses result on transpolar trajectories with (partly) hypersonic cruise at Mach 5. Both solar activity and routing are hence found to determine, whether passengers can profit from shorter flight times in terms of radiation exposure, despite of altitude-induced higher dose rates. Yet, air crews with fixed number of block hours are always subject to larger annual doses, which in the considered cases take values up to five times the reference. We comment on the implications of our results for route planning and aviation decision-making in the absence of radiation shielding solutions. (author)

  9. Optimised polarimeter configurations for measuring the Stokes parameters of the Cosmic Microwave Background Radiation

    OpenAIRE

    Couchot, F.; Delabrouille, J.; Kaplan, J.; Revenu, B.

    1998-01-01

    We present configurations of polarimeters which measure the three linear Stokes parameters of the Cosmic Microwave Background Radiation with a nearly diagonal error matrix, independent of the global orientation of the polarimeters in the focal plane. These configurations also provide the smallest possible error box volume.

  10. Characteristics for heavy ions and micro-dosimetry in radiation detectors

    International Nuclear Information System (INIS)

    Doke, Tadayoshi

    1978-01-01

    The characteristics of radiation detectors for heavy ions generally present more complex aspects as compared with those for electron beam and γ-ray. There is the ''Katz theory'' applying the target theory in radiobiology phenomenologically to radiation detectors. Here, first, the Katz theory for radiation detectors is explained, then its applications to nuclear plates, solid state track detectors, scintillation detectors and thermoluminescence dosimeters are described, respectively. The theory is used for the calibration of the nuclear charge of heavy ions in nuclear plates and recently is used to simulate the flight tracks of heavy ions or magnetic monopoles. In solid state track detectors, the threshold value of the energy given along the tracks of heavy ions is inherent to a detector, and the Katz theory is applicable as the measure of the threshold. The theory seems to be superior to the other methods. However, it has disadvantages that the calculation is not simple and is difficult for wide objects. In scintillation detectors, the scintillation efficiency is not a single function of dE/dx, but depends on the kinds of heavy ions, which Katz succeeded to describe quantitatively with his theory. Such result has also been produced that the dependence of thermoluminescence dosimeters such as LiF on LET by Katz theory agreed fairly well with experiments. (Wakatsuki, Y.)

  11. Cosmic Accelerators: An Introduction

    International Nuclear Information System (INIS)

    Kanbach, Gottfried

    2005-01-01

    High energy, relativistic, particles are an essential component of the Universe and play a major role in astrophysics. In a few years we will reach the centennial of the discovery of cosmic rays; all through this century the properties, origin, and effects of this radiation have intrigued researchers in astrophysics and elementary particles alike. We briefly review the history, current status, and future perspectives of cosmic ray research. Emphasis will be placed on the multitude of cosmic accelerators, direct observations of these objects, and the effects of cosmic rays in the Galaxy and beyond

  12. Summary of ionizing radiation analysis on the Long Duration Exposure Facility

    Science.gov (United States)

    Parnell, T. A.

    1992-01-01

    The ionizing radiation measurements flown on the Long Duration Exposure Facility (LDEF) were contained in 15 experiments which utilized passive detectors to pursue objectives in astrophysics and to measure the radiation environment and dosimetric quantities. The spacecraft structure became sufficiently radioactive to permit additional important studies. The induced activity allows extensive radiation mapping in the structure, and independent comparison with experiment dosimetric techniques, and significant studies of secondary effects. The long exposure time, attitude stability, and number and types of measurements produced a unique and critical set of data for low Earth orbit that will not be duplicated for more than a decade. The data allow an unprecedented test, and improvement if required, of models of the radiation environment and the radiation transport methods that are used to calculate the internal radiation and its effects in spacecraft. Results of measurements in the experiments, as well as from radioactivity in the structure, have clearly shown effects from the directional properties of the radiation environment, and progress was made in the dosimetric mapping of LDEF. These measurements have already influenced some Space Station Freedom design requirements. Preliminary results from experiments, reported at this symposium and in earlier papers, show that the 5.8 years exposure considerably enhanced the scientific return of the radiation measurements. The early results give confidence that the experiments will make significant advances in the knowledge of ultra heavy cosmic rays, anomalous cosmic rays, and heavy ions trapped in the radiation belts. Unexpected phenomena were observed, which require explanation. These include stopping iron group ions between the energy ranges anticipated for anomalous and galactic cosmic rays in the LDEF orbit. A surprising concentration of the Be-7 nuclide was discovered on the 'front' surface of LDEF, apparently

  13. Radiation environment measurements with the cosmic ray experiments on-board the KITSAT-1 and PoSAT-1 micro-satellites

    International Nuclear Information System (INIS)

    Underwood, C.I.; Brock, D.J.; Williams, P.S.; Kim, S.; Dilao, R.; Santos, P.R.; Brito, M.C.; Dyer, C.S.; Sims, A.J.

    1994-01-01

    The success of the Cosmic Radiation Environment and Dosimetry (CREDO) experiment carried on-board the UoSAT-3 micro-satellite (launched in 1990) has lead to the development of a new instrument called the Cosmic-Ray Experiment (CRE) which has flown on-board the KITSAT-1 and PoSAT-1 micro-satellites, launched in 1992 and 1993 respectively. The results from both CRE instruments show excellent agreement with those of CREDO for the galactic cosmic-ray environment. However, there are some differences in the CRE and CREDO response to the trapped proton environment of the South Atlantic Anomaly which can be explained by the differences in the detector response time. The fit between the flight results and predictions from the standard models is generally good, but some differences are noted. The CRE and CREDO instruments should provide continuous coverage of the near-Earth radiation environment across a complete solar cycle. This is important in view of the dynamic nature of the radiation environment - as amply demonstrated by the results from the CRRES spacecraft

  14. Theory of geomagnetic effects of cosmic rays: its past and presence

    Energy Technology Data Exchange (ETDEWEB)

    Gall, R [Universidad Nacional Autonoma de Mexico, Mexico City. Inst. de Geofisica

    1981-03-01

    The interest expressed by Lemaitre and Vallarta in the nature of universal corpuscular radiation, remnant of the exploded primogenitive atom, culminated in 1932, in the development of their theory of the geomagnetic effects of cosmic rays, a tool since its publication, basic to cosmic radiation research and to the advancement of cosmic ray astronomy. Between 1940 and 1960 challenging experimental data from proliferating cosmic radiation stations and of direct detection techniques provided geomagnetic field models for greater theoretical precision. The discoveries since the advent of the space age of the Earth's cavity and geomagnetic tail, and of the nonrelativistic solar cosmic rays have resulted in a new branch of the theory dealing with magnetosphere effects in the propagation of low energy cosmic radiations. The theory's importance and application to cosmic bodies other than the Earth is discussed.

  15. Atmospheric and biospheric effects of cosmic

    International Nuclear Information System (INIS)

    Cardenas, Rolando

    2007-01-01

    We briefly review and classify the action that different sources of cosmic radiations might have had on Earth climate and biosphere in the geological past and at present times. We present the action of both sparse explosive phenomena, like gamma-ray bursts and supernovae, and permanent ones like cosmic rays and ultraviolet radiation backgrounds. Very energetic cosmic radiation coming from explosions can deplete the ozone lawyer due to initial ionization reactions, while soft backgrounds might trigger low altitude cloud formation through certain microphysical amplification processes. We examine a hypothesis concerning the potential role of cosmic rays on present Global Climatic Change. We also present the potential of UV astronomy to probe some of above scenarios, and speak on the possibilities for the Cuban participation in the international mega-project World Space Observatory, a UV telescope to be launched in the period 2007-2009. (Author)

  16. Radiative decay of light and heavy mesons

    International Nuclear Information System (INIS)

    Barik, N.; Dash, P.C.

    1994-01-01

    The M1 transition among the vector (V) and pseudoscalar (P) mesons in the light and heavy flavor sectors has been investigated in a potential model of independent quarks. Going beyond the static approximation, to add some momentum dependence due to the recoil effect in a more realistic calculation, we find an improvement in the results for the radiative decay of light flavored mesons. However, our prediction on the decay rates for the mesons (D * and B * ) in the heavy flavor sector remains unaffected and compares well with those of other model calculations

  17. Hydrology and Cosmic radiation

    DEFF Research Database (Denmark)

    Andreasen, Mie

    and calibration. Yet, soil moisture measurements are traditionally provided on either point or kilometer scale from electromagnetic based sensors and satellite retrievals, respectively. Above the ground surface, the cosmic-ray neutron intensity (eV range) is inversely correlated to all hydrogen present...

  18. A Cherenkov imager for the charge measurement of the elements of nuclear cosmic radiation

    International Nuclear Information System (INIS)

    Sallaz-Damaz, Y.

    2008-10-01

    A Cherenkov imager, CHERCAM (Cherenkov Camera) has been designed and built for the CREAM (Cosmic Ray Energetics and Mass) balloon-borne experiment. The instrument will perform charge measurements of nuclear cosmic-ray over a range extending from proton to iron in the energy domain from 10 10 to 10 15 eV. This work has focused on the development of CHERCAM by creating a simulation of the detector and on the aerogel plan characterization for the radiator. But it has also expanded on the technical aspects of the construction of the detector and its various tests, as well as the development of calibration software and data analysis. (author)

  19. ΛGR Centennial: Cosmic Web in Dark Energy Background

    Science.gov (United States)

    Chernin, A. D.

    The basic building blocks of the Cosmic Web are groups and clusters of galaxies, super-clusters (pancakes) and filaments embedded in the universal dark energy background. The background produces antigravity, and the antigravity effect is strong in groups, clusters and superclusters. Antigravity is very weak in filaments where matter (dark matter and baryons) produces gravity dominating in the filament internal dynamics. Gravity-antigravity interplay on the large scales is a grandiose phenomenon predicted by ΛGR theory and seen in modern observations of the Cosmic Web.

  20. Radiation survey of aircraft and heavy machinery scrap.

    Science.gov (United States)

    Idriss, Hajo; Salih, Isam; Gumaa, Elsadig; Yassin, Abbas; Yousif, E H; Abdel Hamid, Saad Eldeen M; Sam, A K

    2012-12-01

    This study was conducted primarily to survey aircraft and heavy machinery at 30 locations within Khartoum State using handheld radiation survey meters to detect and identify any radiation sources that might be present and to estimate radiation dose levels. The survey has resulted in detection of 16 sealed sources of (90)Sr and one of (226)Ra in aircraft scrap. Of course, (90)Sr sources are used in military aircraft as temperature sensors while (226)Ra is used for indicating fuel levels. These sources were found intact without spreading radioactivity contamination; however, none was detected in heavy machine scrap. The levels of radiation dose measured at 0.1m from the source fall within the range of 25.1-40.2 μSv/h with an average value of 33.52 ± 4.06 μSv/h. These orphan sources have been separated from the scrap, tested for possible leakage, conditioned and stored in waste management facility. The result of this study has revealed without doubt that the scrap constitute a serious source of public exposure and highlights the importance of legislation making radiation monitoring of scrap in the country mandatory before it is sold to metal industry for reprocessing. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Experiments on studying solar cosmic radiation nuclear composition and energy spectra on the Prognoz-9 sattelite

    International Nuclear Information System (INIS)

    Belyakov, S.A.; Gordeev, Yu.P.; Denisov, Yu.I.; Kolesov, G.Ya; Podorol'skij, A.N.; Nikitin, B.A.

    1986-01-01

    Performances of the SKI-1 device installed on board the artificial satellite of the Earth ''Prognoz-9'' and intended for measurements of a nuclear component of solar cosmic radiation are considered. The device permits to determine intensites of proton fluxes in the 10-30, 30-60, 60-90 and 90-120 MeV energy ranges and nuclei with charges z=1-30 and the following energies: 5-20 MeV for 1 H and 4 He nuclei, 10-26 MeV for C nuclei, 12-42 MeV for O nuclei, 23-80 MeV for Fe nuclei. The SKI-1 comprises two similar telescopes. The telescope includes 4 silicon semiconducting detectors. Energy spectra of solar cosmic radiation and data characterizing time dependence of their intensity are given

  2. Potential for heavy particle radiation therapy

    International Nuclear Information System (INIS)

    Raju, M.R.; Phillips, T.L.

    1977-03-01

    Radiation therapy remains one of the major forms of cancer treatment. When x rays are used in radiotherapy, there are large variations in radiation sensitivity among tumors because of the possible differences in the presence of hypoxic but viable tumor cells, differences in reoxygenation during treatment, differences in distribution of the tumor cells in their cell cycle, and differences in repair of sublethal damage. When high-LET particles are used, depending upon the LET distribution, these differences are reduced considerably. Because of these differences between x rays and high-LET particle effects, the high-LET particles may be more effective on tumor cells for a given effect on normal cells. Heavy particles have potential application in improving radiotherapy because of improved dose localization and possible advantages of high-LET particles due to their radiobiological characteristics. Protons, because of their defined range, Bragg peak, and small effects of scattering, have good dose localization characteristics. The use of protons in radiotherapy minimizes the morbidity of radiotherapy treatment and is very effective in treating deep tumors located near vital structures. Fast neutrons have no physical advantages over 60 Co gamma rays but, because of their high-LET component, could be very effective in treating tumors that are resistant to conventional radiations. Negative pions and heavy ions combine some of the advantages of protons and fast neutrons

  3. Spectrum of the cosmic background radiation: early and recent measurements from the White Mountain Research Station

    International Nuclear Information System (INIS)

    Smoot, G.F.

    1985-09-01

    The White Mountain Research Station has provided a support facility at a high, dry, radio-quiet site for measurements that have established the blackbody character of the cosmic microwave background radiation. This finding has confirmed the interpretation of the radiation as a relic of the primeval fireball and helped to establish the hot Big Bang theory as the standard cosmological model

  4. Development of particle and heavy ion transport code system

    International Nuclear Information System (INIS)

    Niita, Koji

    2004-01-01

    Particle and heavy ion transport code system (PHITS) is 3 dimension general purpose Monte Carlo simulation codes for description of transport and reaction of particle and heavy ion in materials. It is developed on the basis of NMTC/JAM for design and safety of J-PARC. What is PHITS, it's physical process, physical models and development process of PHITC code are described. For examples of application, evaluation of neutron optics, cancer treatment by heavy particle ray and cosmic radiation are stated. JAM and JQMD model are used as the physical model. Neutron motion in six polar magnetic field and gravitational field, PHITC simulation of trace of C 12 beam and secondary neutron track of small model of cancer treatment device in HIMAC and neutron flux in Space Shuttle are explained. (S.Y.)

  5. Long-lived staus from cosmic rays

    International Nuclear Information System (INIS)

    Ahlers, M.; Illana, J.I.; Masip, M.

    2007-05-01

    The collision of a high energy cosmic ray with a nucleon in the upper atmosphere could produce long-lived heavy particles. Such particles would be very penetrating, since the energy loss in matter scales as the inverse mass, and could reach a neutrino telescope like IceCube from large zenith angles. Here we study this possibility and focus on the long-lived stau of SUSY models with a gravitino LSP. The signal would be a pair of muon-like parallel tracks separated by 50 meters along the detector. We evaluate the background of muon pairs and show that any events from zenith angles above 80. could be explained by the production of these heavy particles by cosmic rays. (orig.)

  6. Long-lived staus from cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Ahlers, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Illana, J.I.; Masip, M. [Granada Univ. (Spain). CAFPE y Dept. de Fisica Teorica y del Cosmos; Meloni, D. [Univ. degli Studi di Roma La Spienza (Italy). Dipt. di Fisica; INFN, Roma (Italy)

    2007-05-15

    The collision of a high energy cosmic ray with a nucleon in the upper atmosphere could produce long-lived heavy particles. Such particles would be very penetrating, since the energy loss in matter scales as the inverse mass, and could reach a neutrino telescope like IceCube from large zenith angles. Here we study this possibility and focus on the long-lived stau of SUSY models with a gravitino LSP. The signal would be a pair of muon-like parallel tracks separated by 50 meters along the detector. We evaluate the background of muon pairs and show that any events from zenith angles above 80. could be explained by the production of these heavy particles by cosmic rays. (orig.)

  7. Looking for Cosmic Neutrino Background

    Directory of Open Access Journals (Sweden)

    Chiaki eYanagisawa

    2014-06-01

    Full Text Available Since the discovery of neutrino oscillation in atmospheric neutrinos by the Super-Kamiokande experiment in 1998, study of neutrinos has been one of exciting fields in high-energy physics. All the mixing angles were measured. Quests for 1 measurements of the remaining parameters, the lightest neutrino mass, the CP violating phase(s, and the sign of mass splitting between the mass eigenstates m3 and m1, and 2 better measurements to determine whether the mixing angle theta23 is less than pi/4, are in progress in a well-controlled manner. Determining the nature of neutrinos, whether they are Dirac or Majorana particles is also in progress with continuous improvement. On the other hand, although the ideas of detecting cosmic neutrino background have been discussed since 1960s, there has not been a serious concerted effort to achieve this goal. One of the reasons is that it is extremely difficult to detect such low energy neutrinos from the Big Bang. While there has been tremendous accumulation of information on Cosmic Microwave Background since its discovery in 1965, there is no direct evidence for Cosmic Neutrino Background. The importance of detecting Cosmic Neutrino Background is that, although detailed studies of Big Bang Nucleosynthesis and Cosmic Microwave Background give information of the early Universe at ~a few minutes old and ~300 k years old, respectively, observation of Cosmic Neutrino Background allows us to study the early Universe at $sim$ 1 sec old. This article reviews progress made in the past 50 years on detection methods of Cosmic Neutrino Background.

  8. Analytic solutions in the dyon black hole with a cosmic string: Scalar fields, Hawking radiation and energy flux

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, H.S., E-mail: horacio.santana.vieira@hotmail.com [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, CEP 58051-970, João Pessoa, PB (Brazil); Centro de Ciências, Tecnologia e Saúde, Universidade Estadual da Paraíba, CEP 58233-000, Araruna, PB (Brazil); Bezerra, V.B., E-mail: valdir@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, CEP 58051-970, João Pessoa, PB (Brazil); Silva, G.V., E-mail: gislainevs@hotmail.com [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, CEP 58051-970, João Pessoa, PB (Brazil)

    2015-11-15

    Charged massive scalar fields are considered in the gravitational and electromagnetic field produced by a dyonic black hole with a cosmic string along its axis of symmetry. Exact solutions of both angular and radial parts of the covariant Klein–Gordon equation in this background are obtained, and are given in terms of the confluent Heun functions. The role of the presence of the cosmic string in these solutions is showed up. From the radial solution, we obtain the exact wave solutions near the exterior horizon of the black hole, and discuss the Hawking radiation spectrum and the energy flux. -- Highlights: •A cosmic string is introduced along the axis of symmetry of the dyonic black hole. •The covariant Klein–Gordon equation for a charged massive scalar field in this background is analyzed. •Both angular and radial parts are transformed to a confluent Heun equation. •The resulting Hawking radiation spectrum and the energy flux are obtained.

  9. On the radiation dosimetry in space

    International Nuclear Information System (INIS)

    Doke, Tadayoshi

    2005-01-01

    The radiation dosimetry in space is considerably different from that on the earth surface, because, on the earth surface, the quality factor for radiation is roughly given for its energy but, in space, it is defined as a continuous function of LET. Thus, the contribution to the dose equivalent from heavy charged particles included in galactic cosmic rays is more than 50%, because of their high LET values. To evaluate such dose equivalent within an uncertainty of 30%, we must determine the true LET distribution. This paper describes the essence of such a new radiation dosimetry in space. (author)

  10. Bursts of gravitational radiation from superconducting cosmic strings and the neutrino mass spectrum

    International Nuclear Information System (INIS)

    Mosquera Cuesta, Herman J.

    2001-02-01

    Berezinsky, Hnatyk and Vilenkin showed that superconducting cosmic strings could be central engines for cosmological gamma-ray bursts and for producing the neutrino component of ultra-high energy cosmic rays. A consequence of this mechanism would be that a detectable cusp-triggered gravitational wave burst should be release simultaneously with the γ-ray surge. If contemporary measurements of both γ and ν radiation could be made for any particular source, then the cosmological time-delay between them might be useful for putting unprecedently tight bounds on the neutrino mass spectrum. Such measurements could consistently verify or rule out the model since strictly correlated behaviour is expected for the duration of the event and for the time variability of the spectra. (author)

  11. Lunar soil as shielding against space radiation

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J. [Lawrence Berkeley National Laboratory, MS 83R0101, 1 Cyclotron Road, Berkeley, CA 94720 (United States)], E-mail: miller@lbl.gov; Taylor, L. [Planetary Geosciences Institute, Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN 37996 (United States); Zeitlin, C. [Southwest Research Institute, Boulder, CO 80302 (United States); Heilbronn, L. [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Guetersloh, S. [Department of Nuclear Engineering, Texas A and M University, College Station, TX 77843 (United States); DiGiuseppe, M. [Northrop Grumman Corporation, Bethpage, NY 11714 (United States); Iwata, Y.; Murakami, T. [National Institute of Radiological Sciences, Chiba 263-8555 (Japan)

    2009-02-15

    We have measured the radiation transport and dose reduction properties of lunar soil with respect to selected heavy ion beams with charges and energies comparable to some components of the galactic cosmic radiation (GCR), using soil samples returned by the Apollo missions and several types of synthetic soil glasses and lunar soil simulants. The suitability for shielding studies of synthetic soil and soil simulants as surrogates for lunar soil was established, and the energy deposition as a function of depth for a particular heavy ion beam passing through a new type of lunar highland simulant was measured. A fragmentation and energy loss model was used to extend the results over a range of heavy ion charges and energies, including protons at solar particle event (SPE) energies. The measurements and model calculations indicate that a modest amount of lunar soil affords substantial protection against primary GCR nuclei and SPE, with only modest residual dose from surviving charged fragments of the heavy beams.

  12. Scaling properties of cosmic (super)string networks

    International Nuclear Information System (INIS)

    Martins, C J A P

    2014-01-01

    I use a combination of state-of-the-art numerical simulations and analytic modelling to discuss the scaling properties of cosmic defect networks, including superstrings. Particular attention is given to the role of extra degrees of freedom in the evolution of these networks. Compared to the 'plain vanilla' case of Goto-Nambu strings, three such extensions play important but distinct roles in the network dynamics: the presence of charges/currents on the string worldsheet, the existence of junctions, and the possibility of a hierarchy of string tensions. I also comment on insights gained from studying simpler defect networks, including Goto-Nambu strings themselves, domain walls and semilocal strings

  13. Second dip as a signature of ultrahigh energy proton interactions with cosmic microwave background radiation.

    Science.gov (United States)

    Berezinsky, V; Gazizov, A; Kachelrieb, M

    2006-12-08

    We discuss as a new signature for the interaction of extragalactic ultrahigh energy protons with cosmic microwave background radiation a spectral feature located at E= 6.3 x 10(19) eV in the form of a narrow and shallow dip. It is produced by the interference of e+e(-)-pair and pion production. We show that this dip and, in particular, its position are almost model-independent. Its observation by future ultrahigh energy cosmic ray detectors may give the conclusive confirmation that an observed steepening of the spectrum is caused by the Greisen-Zatsepin-Kuzmin effect.

  14. Sensitiveness to cosmic radiation: on some aspects of data collection and their representation

    International Nuclear Information System (INIS)

    Leray, J.L.; Musseau, O.; Marti, A.; Coic, Y.

    1987-07-01

    During simulation of cosmic radiation effects, the energy deposition by length unit is altered because of energy lowering along the range. This mechanism is illustrated by exhaustive data got from the microprocessor type 2901. Wrong conclusions may be deduced concerning behavior in space field. New representations of cross sections are presented; they lead to safer predictions on behavior in space environment [fr

  15. Cosmic Radiation Exposure of Future Hypersonic Flight Missions.

    Science.gov (United States)

    Koops, L

    2017-06-15

    Cosmic radiation exposure in air traffic grows with flight altitude, geographical latitude and flight time. For future high-speed intercontinental point-to-point travel, the trade-off between reduced flight time and enhanced dose rate at higher flight altitudes is investigated. Various representative (partly) hypersonic cruise missions are considered and in dependence on solar activity the integral route dose is calculated for envisaged flight profiles and trajectories. Our results are compared to those for corresponding air connections served by present day subsonic airliners. During solar maximum, we find a significant reduction in route dose for all considered high-speed missions compared to the subsonic reference. However, during solar minimum, comparable or somewhat larger doses result on transpolar trajectories with (partly) hypersonic cruise at Mach 5. Both solar activity and routing are hence found to determine, whether passengers can profit from shorter flight times in terms of radiation exposure, despite of altitude-induced higher dose rates. Yet, aircrews with fixed number of block hours are always subject to larger annual doses, which in the considered cases take values up to five times the reference. We comment on the implications of our results for route planning and aviation decision-making in the absence of radiation shielding solutions. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Man and SuperNature. Lecture 12, September 27, 1946

    Science.gov (United States)

    Montessori, Maria

    2015-01-01

    "Man and SuperNature" is a lyrical chapter in the 1946 London course following the emergence of Cosmic Education in Kodaikanal, India. Montessori contrasts the adaptation required of animals for their survival to conscious human adaptation. Animals exist and adapt to nature, but man can alter nature and change the environment.…

  17. Thermal/structural analysis of radiators for heavy-duty trucks

    International Nuclear Information System (INIS)

    Mao Shaolin; Cheng, Changrui; Li Xianchang; Michaelides, Efstathios E.

    2010-01-01

    A thermal/structural coupling approach is applied to analyze thermal performance and predict the thermal stress of a radiator for heavy-duty transportation cooling systems. Bench test and field test data show that non-uniform temperature gradient and dynamic pressure loads may induce large thermal stress on the radiator. A finite element analysis (FEA) tool is used to predict the strains and displacement of radiator based on the solid wall temperature, wall-based fluid film heat transfer coefficient and pressure drop. These are obtained from a computational fluid dynamics (CFD) simulation. A 3D simulation of turbulent flow and coupled heat transfer between the working fluids poses a major difficulty because the range of length scales involved in heavy-duty radiators varies from few millimeters of the fin pitch and/or tube cross-section to several meters for the overall size of the radiator. It is very computational expensive, if not impossible, to directly simulate the turbulent heat transfer between fins and the thermal boundary layer in each tube. In order to overcome the computational difficulties, a dual porous zone (DPZ) method is applied, in which fins in the air side and turbulators in the water side are treated as porous region. The parameters involved in the DPZ method are tuned based on experimental data in prior. A distinguished advantage of the porous medium method is its effectiveness of modeling wide-range characteristic scale problems. A parametric study of the impact of flow rate on the heat transfer coefficient is presented. The FEA results predict the maximum value of stress/strain and target locations for possible structural failure and the results obtained are consistent with experimental observations. The results demonstrate that the coupling thermal/structural analysis is a powerful tool applied to heavy-duty cooling product design to improve the radiator thermal performance, durability and reliability under rigid working environment.

  18. Recovery of the SuperTIGER Instrument and Preparations for the Flight of SuperTIGER-2

    Science.gov (United States)

    Walsh, N. E.; Supertiger Collaboration

    2016-03-01

    On December 8, 2012, the SuperTIGER (Trans-Iron Galactic Element Recorder) instrument began its long-duration balloon flight from Williams Field, Antarctica. Flying for a record-breaking 55 days at a mean altitude of 125,000 feet, the instrument successfully measured the relative elemental abundances of Galactic cosmic ray nuclei having charge (Z) greater than Z=10, showing very well resolved individual element peaks up to Z=40. The instrument measures particle charge and energy through the combined use of two Cherenkov detectors and three scintillation detectors, and determines particle trajectory with a scintillating fiber hodoscope. After cutdown and two years on the ice, SuperTIGER was successfully recovered in January, 2015. Its detectors and hodoscopes are being tested and refurbished, and are expected to be used again for a second flight, SuperTIGER-2. The second flight is aimed at improving SuperTIGER's already excellent charge resolution as well as at accumulating more data to be combined with that of SuperTIGER for improved statistics. In November 2015, a test of the scintillator saturation effect was performed at CERN using a beam of interacted Pb nuclei to help create more accurate charge reconstruction models that will help resolve elements in the range Z=41 to Z=60. This research was supported by NASA under Grants NNX09AC17G, NNX14AB25G, the Peggy and Steve Fossett Foundation and the McDonnell Center for the Space Sciences at Washington University.

  19. Control of occupational exposure to cosmic radiation outside the atmosphere

    International Nuclear Information System (INIS)

    Katoh, Kazuaki; Kaneko, Masahito

    2000-01-01

    Japan is participating in the project of constructing ISS, International Space Station, and taking part of constructing JEM, Japan Experimental Module. It is expected that people working in this module upon completion should be controlled their exposure to cosmic radiation according to Japanese laws. Hence, the issue has been studied by a committee in NASDA, National Space Development Agency of Japan. In 1999, its interim report was released and public comments had been invited. In this presentation, following the introduction of the gist of the interim report as well as comments by the authors, countermeasures are proposed. (author)

  20. Early reionization by decaying particles and cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Kasuya, S.; Kawasaki, M.

    2004-01-01

    We study the reionization scenario in which ionizing UV photons emitted from decaying particle, in addition to usual contributions from stars and quasars, ionize the universe. It is found that the scenario is consistent with both the first year data of the Wilkinson Microwave Anisotropy Probe and the fact that the universe is not fully ionized until z∼6 as observed by Sloan Digital Sky Survey. Likelihood analysis revealed that rather broad parameter space can be chosen. This scenario will be discriminated by future observations, especially by the EE polarization power spectrum of cosmic microwave background radiation

  1. Gravitational Collapse of Radiating Dyon Solution and Cosmic Censorship Hypothesis

    International Nuclear Information System (INIS)

    Patil, K. D.; Zade, S. S.; Mohod, A. N.

    2008-01-01

    We investigate the possibility of cosmic censorship violation in the gravitational collapse of radiating dyon solution. It is shown that the final outcome of the collapse depends sensitively on the electric and magnetic charge parameters. The graphs of the outer apparent horizon, inner Cauchy horizon for different values of parameters are drawn. It is found that the electric and magnetic components push the apparent horizon towards the retarded time-coordinate axis, which in turn reduces the radius of the apparent horizon in Vaidya spacetime. Also, we extend the earlier work of Chamorro and Virbhadra [Pramana, J. Phys. 45 (1995) 181

  2. IMP-8 observations of the spectra, composition, and variability of solar heavy ions at high energies relevant to manned space missions

    International Nuclear Information System (INIS)

    Tylka, Allan J.; Dietrich, William F.

    1999-01-01

    In more than 25 years of almost continuous observations, the University of Chicago's Cosmic Ray Telescope (CRT) on IMP-8 has amassed a unique database on high-energy solar heavy ions of potential relevance to manned spaceflight. In the very largest particle events, IMP-8/CRT has even observed solar Fe ions above the Galactic cosmic ray background up to ∼800 MeV/nucleon, an energy sufficiently high to penetrate nearly 25 g/cm 2 of shielding. IMP-8/CRT observations show that high-energy heavy-ion spectra are often surprisingly hard power laws, without the exponential roll-offs suggested by stochastic acceleration fits to lower energy measurements alone. Also, in many solar particle events the Fe/O ratio grows with increasing energy, contrary to the notion that ions with higher mass-to-charge ratios should be less abundant at higher energies. Previous studies of radiation hazards for manned spaceflight have often assumed heavy-ion composition and steeply-falling energy spectra inconsistent with these observations. Conclusions based on such studies should therefore be re-assessed. The significant event-to-event variability observed in the high-energy solar heavy ions also has important implications for strategies in building probabilistic models of solar particle radiation hazards

  3. Production of positron annihilation radiation by cosmic-rays near sea level

    CERN Document Server

    Puzovic, J M

    2002-01-01

    Production of positron annihilation radiation by cosmic-rays in Al, Fe, Sn and Pb is measured by means of a triggered HPGe detector. The equipment is located in Belgrade, at an absolute height of 125 m a.s.l. The production rate per unit mass is found to be proportional to the square of the atomic number of the material divided by its mass number, with the proportionality constant equal to 8.1(3)x10 sup - sup 6 s sup - sup 1 g sup - sup 1.

  4. Laser radiation effect on radiation-induced defects in heavy ion tracks in dielectrics

    International Nuclear Information System (INIS)

    Egorov, A.N.; Zhiryakov, B.M.; Kushin, V.V.; Lyapidevskij, V.K.; Khokhlov, N.B.

    1988-01-01

    Possibility of laser radiation resonance effect on radiation-induced defects in heavy ion tracks in dielectric materials is investigated. Absorption spectra in infrared, visible and ultraviolet ranges for cellulose nitrate samples irradiated by 6 MeV/nucleon 58 Ni ions and reactor gamma radiation are measured. Absorption spectra for irradiated and reference samples are presented. Two absorption bands λ 1 =0.33 μm (E 1 =3.9 eV) and λ 2 =0.72 μm (E 2 =1.7 eV) are detected. Etching rate decrease in a track under laser radiation effect is noticed. 3 refs.; 1 fig

  5. Effect of minimum strength of mirror magnetic field (Bmin) on production of highly charged heavy ions from RIKEN liquid-He-free super conducting electron-cyclotron resonance ion source (RAMSES)

    International Nuclear Information System (INIS)

    Arai, Hideyuki; Imanaka, Masashi; Lee, S.-M.Sang-Moo; Higurashi, Yoshihide; Nakagawa, Takahide; Kidera, Masanori; Kageyama, Tadashi; Kase, Masayuki; Yano, Yasushige; Aihara, Toshimitsu

    2002-01-01

    We measured the beam intensity of highly charged heavy ions (O, Ar and Kr ions) as a function of the minimum strength of mirror magnetic field (B min ) of the RIKEN liquid-He-free super conducting electron-cyclotron resonance ion source. In this experiment, we found that the optimum value of B min exists to maximize the beam intensity of highly charged heavy ions and the value was almost the same (∼0.49 T) for various charge state heavy ions

  6. Fission delay and GDR γ-ray from very heavy system

    International Nuclear Information System (INIS)

    Shen, W.Q.; Wang, J.S.; Ye, W.; Cai, Y.H.; Ma, Y.G.; Feng, J.; Fang, D.Q.; Cai, X.Z.

    1999-01-01

    The study of the fission delay in reaction of 84 Kr+ 27 Al at 10.6 Mev/u and the systematics of fission delay are described. Authors also discussed the possibility to study the GDR γ rays emitted from the super-heavy compound system on the basis of the strong increasing of the GDR γ rays duo to the fission delay. The calculation results of the GDR γ rays from the super-heavy compound system via microscopic semi-classical Vlasov equation and the experimental data analysis for searching the super-heavy compound system via GDR γ were given

  7. A beam radiation monitor based on CVD diamonds for SuperB

    Science.gov (United States)

    Cardarelli, R.; Di Ciaccio, A.

    2013-08-01

    Chemical Vapor Deposition (CVD) diamond particle detectors are in use in the CERN experiments at LHC and at particle accelerator laboratories in Europe, USA and Japan mainly as beam monitors. Nowadays it is considered a proven technology with a very fast signal read-out and a very high radiation tolerance suitable for measurements in high radiation environment zones i.e. near the accelerators beam pipes. The specific properties of CVD diamonds make them a prime candidate for measuring single particles as well as high-intensity particle cascades, for timing measurements on the sub-nanosecond scale and for beam protection systems in hostile environments. A single-crystalline CVD (scCVD) diamond sensor, read out with a new generation of fast and high transition frequency SiGe bipolar transistor amplifiers, has been tested for an application as radiation monitor to safeguard the silicon vertex tracker in the SuperB detector from excessive radiation damage, cumulative dose and instantaneous dose rates. Test results with 5.5 MeV alpha particles from a 241Am radioactive source and from electrons from a 90Sr radioactive source are presented in this paper.

  8. Measurement of cosmic-ray muons with the Distributed Electronic Cosmic-ray Observatory, a network of smartphones

    International Nuclear Information System (INIS)

    Vandenbroucke, J.; Bravo, S.; Karn, P.; Meehan, M.; Plewa, M.; Schultz, D.; Tosi, D.; BenZvi, S.; Jensen, K.; Peacock, J.; Ruggles, T.; Santander, M.; Simons, A.L.

    2016-01-01

    Solid-state camera image sensors can be used to detect ionizing radiation in addition to optical photons. We describe the Distributed Electronic Cosmic-ray Observatory (DECO), an app and associated public database that enables a network of consumer devices to detect cosmic rays and other ionizing radiation. In addition to terrestrial background radiation, cosmic-ray muon candidate events are detected as long, straight tracks passing through multiple pixels. The distribution of track lengths can be related to the thickness of the active (depleted) region of the camera image sensor through the known angular distribution of muons at sea level. We use a sample of candidate muon events detected by DECO to measure the thickness of the depletion region of the camera image sensor in a particular consumer smartphone model, the HTC Wildfire S. The track length distribution is fit better by a cosmic-ray muon angular distribution than an isotropic distribution, demonstrating that DECO can detect and identify cosmic-ray muons despite a background of other particle detections. Using the cosmic-ray distribution, we measure the depletion thickness to be 26.3 ± 1.4 μm. With additional data, the same method can be applied to additional models of image sensor. Once measured, the thickness can be used to convert track length to incident polar angle on a per-event basis. Combined with a determination of the incident azimuthal angle directly from the track orientation in the sensor plane, this enables direction reconstruction of individual cosmic-ray events using a single consumer device. The results simultaneously validate the use of cell phone camera image sensors as cosmic-ray muon detectors and provide a measurement of a parameter of camera image sensor performance which is not otherwise publicly available

  9. PROBABILISTIC FINITE ELEMENT ANALYSIS OF A HEAVY DUTY RADIATOR UNDER INTERNAL PRESSURE LOADING

    Directory of Open Access Journals (Sweden)

    ROBIN ROY P.

    2017-09-01

    Full Text Available Engine cooling is vital in keeping the engine at most efficient temperature for the different vehicle speed and operating road conditions. Radiator is one of the key components in the heavy duty engine cooling system. Heavy duty radiator is subjected to various kinds of loading such as pressure, thermal, vibration, internal erosion, external corrosion, creep. Pressure cycle durability is one of the most important characteristic in the design of heavy duty radiator. Current design methodologies involve design of heavy duty radiator using the nominal finite element approach which does not take into account of the variations occurring in the geometry, material and boundary condition, leading to over conservative and uneconomical designs of radiator system. A new approach is presented in the paper to integrate traditional linear finite element method and probabilistic approach to design a heavy duty radiator by including the uncertainty in the computational model. As a first step, nominal run is performed with input design variables and desired responses are extracted. A probabilistic finite elementanalysis is performed to identify the robust designs and validated for reliability. Probabilistic finite element includes the uncertainty of the material thickness, dimensional and geometrical variation. Gaussian distribution is employed to define the random variation and uncertainty. Monte Carlo method is used to generate the random design points.Output response distributions of the random design points are post-processed using different statistical and probability technique to find the robust design. The above approach of systematic virtual modelling and analysis of the data helps to find efficient and reliable robust design.

  10. Radiation exposure in manned spaceflight

    Energy Technology Data Exchange (ETDEWEB)

    Buecker, H. (Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V., Koeln (Germany)); Horneck, G. (Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V., Koeln (Germany)); Facius, R. (Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V., Koeln (Germany)); Reitz, G. (Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V., Koeln (Germany))

    1993-08-01

    Space missions exposure humans to a radiation environment of a particulate composition and intensity not encountered within our biosphere. The natural radiation environment encountered in Earth orbit is a complex mixture of charged particles of galactic and solar origin and of those trapped by the geomagnetic field. In addition, secondaries are produced by interaction of cosmic ray primaries with the spacecraft shielding material. Among this large variety of radiation components in space, it is likely that the heavy ions are the significant species as far as radiobiological effects are concerned. In addition, a synergistic interaction of microgravity and radiation on living systems has been reported in some instances. Based on an admissible risk of 3% mortality due to cancers induced during a working career, radiation protection guidelines have been developed for this radiation environment. (orig.)

  11. Distortions in the cosmic background radiation and big-bang 4He nucleosynthesis

    International Nuclear Information System (INIS)

    Mathews, G.J.; Alhassid, Y.; Fuller, G.M.

    1981-01-01

    The observed distortion of the cosmic background radiation is analyzed in the framework of information theory to derive a simple form of the photon occupation probability. Taking this distribution function as indicative of the Lagrange parameters which might characterize the era of nucleosynthesis during the big bang, and assuming equilibrium among the constituents present, we find that the primordial 4 He abundance may be reduced by as much as 15% from the standard big-bang prediction

  12. Fluctuations in the cosmic microwave background

    International Nuclear Information System (INIS)

    Banday, A.J.; Wolfendale, A.W.

    1990-01-01

    In view of the importance to contemporary cosmology, and to our understanding of the Universe, of the precise nature of the Cosmic Microwave Background (CMB) spectrum, we consider the effects on this spectrum of contamination by other radiation fields of both galactic and extragalactic origin. Particular attention is given to the significance of measurements of the fluctuations in the 'background' radiation detected at 10.46 GHz and we conclude that these fluctuations are of the same magnitude as those expected from galactic cosmic-ray effects. A more detailed study of the cosmic-ray induced fluctuations and measurements at higher frequencies will be needed before genuine CMB fluctuations can be claimed. (author)

  13. Cosmic antimatter

    International Nuclear Information System (INIS)

    Tarle, G.; Swordy, S.

    1998-01-01

    In 1928 Paul Dirac forecasted the existence of antimatter and 4 years later Carl Anderson detected the first antiparticle: the positron in a cloud chamber while studying cosmic radiation. Antiprotons were more difficult to find but in 1955 physicists from Lawrence Berkeley Laboratory got some in a particle accelerator. In 1995 a team from the CERN synthesized atoms of anti-hydrogen by binding positrons to antiprotons in a particle accelerator. Astrophysicists have built more and more complex detectors to study cosmic rays. The detector HEAT (high energy antimatter telescope) has been designed to study positrons above the atmosphere. This detector has been launched for the first time in 1994 and has measured cosmic radiation for 32 hours at an altitude of 37000 meters. The results were challenging: whereas the number of low energy positrons detected agrees with the theory, the number of high energy positrons is too important. It suggests the existence of unknown sources of positrons somewhere in the universe. The massive particles that interact weakly (WIMP) could be such sources. This article draws the history of the quest for antimatter and its implications in cosmology, the detector HEAT is described. (A.C.)

  14. 14. European cosmic ray symposium. Symposium program and abstracts

    International Nuclear Information System (INIS)

    1994-08-01

    The abstracts of the 14. European Cosmic Ray Symposium are presented. The papers cover a large variety of topics in cosmic ray physics, both from the theoretical and the experimental point of view. Sun physics, and the effects on the inner heliosphere, the composition, and the properties of the primary and secondary cosmic radiation, galactic acceleration and the results of accelerator physics relevant to cosmic radiation physics, and the description and the results of large detector systems are presented. 63 items are indexed for INIS database. (K.A.)

  15. Radiation investigations during space flight

    International Nuclear Information System (INIS)

    Akatov, A.Yu.; Nevzgodina, L.V.; Sakovich, V.A.; Fekher, I.; Deme, Sh.; Khashchegan, D.

    1986-01-01

    Results of radiation investigations during ''Salyut-6'' orbital station flight are presented. The program of studying the environmental radioactivity at the station included ''Integral'' and ''Pille'' experiments. In the course of the ''Integral'' experiment absorbed dose distributions of cosmic radiation and heavy charged particle fluence for long time intervals were studied. Method, allowing one to study dose distributions and determine individual doses for any time interval rapidity and directly on board the station was tested in the course of ''Pille'' experiment for the first time. Attention is paid to measuring equipment. Effect of heavy charged particles on the cellular structure of air-dry Lactuca sativa lettuce seeds was studied in the course of radiobiological experiments conducted at ''Salyut-6'' station. It is shown, that with the increase of flight duration the frequency of cells with chromosomal aberrations increases

  16. Constraining the cosmic radiation density due to lepton number

    International Nuclear Information System (INIS)

    Mangano, Gianpiero; Miele, Gennaro; Pastor, Sergio; Pisanti, Ofelia; Sarikas, Srdjan

    2013-01-01

    The cosmic energy density in the form of radiation before and during Big Bang Nucleosynthesis is typically parameterized in terms of the effective number of neutrinos N eff , and it is a key parameters in cosmological models slightly more general than the successful minimal ΛCDM scenario. This quantity, in case of no extra degrees of freedom, depends upon the chemical potential and the temperature characterizing the three active neutrino distributions, as well as by their possible non-thermal features. We summarize here the results of a recent analysis to determine the BBN bound on N eff from primordial neutrino–antineutrino asymmetries, with a careful treatment of the dynamics of neutrino oscillations, and considering quite a wide range for the total lepton number in the neutrino sector, η ν =η ν e +η ν μ +η ν τ and the initial electron neutrino asymmetry η ν e in . Comparing these results with the forthcoming measurement of N eff by the Planck satellite will give insight on the nature of the radiation content of the universe

  17. DNA damage and repair in oncogenic transformation by heavy ion radiation

    Science.gov (United States)

    Yang, T. C.; Mei, M.; George, K. A.; Craise, L. M.

    1996-01-01

    Energetic heavy ions are present in galactic cosmic rays and solar particle events. One of the most important late effects in risk assessment is carcinogenesis. We have studied the carcinogenic effects of heavy ions at the cellular and molecular levels and have obtained quantitative data on dose-response curves and on the repair of oncogenic lesions for heavy particles with various charges and energies. Studies with repair inhibitors and restriction endonucleases indicated that for oncogenic transformation DNA is the primary target. Results from heavy ion experiments showed that the cross section increased with LET and reached a maximum value of about 0.02 micrometer2 at about 500 keV/micrometer. This limited size of cross section suggests that only a fraction of cellular genomic DNA is important in radiogenic transformation. Free radical scavengers, such as DMSO, do not give any effect on induction of oncogenic transformation by 600 MeV/u iron particles, suggesting most oncogenic damage induced by high-LET heavy ions is through direct action. Repair studies with stationary phase cells showed that the amount of reparable oncogenic lesions decreased with an increase of LET and that heavy ions with LET greater than 200 keV/micrometer produced only irreparable oncogenic damage. An enhancement effect for oncogenic transformation was observed in cells irradiated by low-dose-rate argon ions (400 MeV/u; 120 keV/micrometer). Chromosomal aberrations, such as translocation and deletion, but not sister chromatid exchange, are essential for heavy-ion-induced oncogenic transformation. The basic mechanism(s) of misrepair of DNA damage, which form oncogenic lesions, is unknown.

  18. Radiation effects on semiconductor devices in high energy heavy ion accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Belousov, Anton

    2014-10-20

    Radiation effects on semiconductor devices in GSI Helmholtz Center for Heavy Ion Research are becoming more and more significant with the increase of beam intensity due to upgrades. Moreover a new accelerator is being constructed on the basis of GSI within the project of facility for antiproton and ion research (FAIR). Beam intensities will be increased by factor of 100 and energies by factor of 10. Radiation fields in the vicinity of beam lines will increase more than 2 orders of magnitude and so will the effects on semiconductor devices. It is necessary to carry out a study of radiation effects on semiconductor devices considering specific properties of radiation typical for high energy heavy ion accelerators. Radiation effects on electronics in accelerator environment may be divided into two categories: short-term temporary effects and long-term permanent degradation. Both may become critical for proper operation of some electronic devices. This study is focused on radiation damage to CCD cameras in radiation environment of heavy ion accelerator. Series of experiments with irradiation of devices under test (DUTs) by secondary particles produced during ion beam losses were done for this study. Monte Carlo calculations were performed to simulate the experiment conditions and conditions expected in future accelerator. Corresponding comparisons and conclusions were done. Another device typical for accelerator facilities - industrial Ethernet switch was tested in similar conditions during this study. Series of direct irradiations of CCD and MOS transistors with heavy ion beams were done as well. Typical energies of the primary ion beams were 0.5-1 GeV/u. Ion species: from Na to U. Intensities of the beam up to 10{sup 9} ions/spill with spill length of 200-300 ns. Criteria of reliability and lifetime of DUTs in specific radiation conditions were formulated, basing on experimental results of the study. Predictions of electronic device reliability and lifetime were

  19. Heavy density concrete for nuclear radiation shielding and power stations: [Part]3

    International Nuclear Information System (INIS)

    Singha Roy, P.K.

    1987-01-01

    This article is the third part of the paper entitled 'Heavy density concrete for nuclear radiation shielding and power stations'. Specific considerations relevant to natural but manufactured heavy aggregates like haematite used in India are briefly discussed. They include water-cement ratio, strength versus water-cement ratio, mix design strength and aggregate grading. Some typical mix proportions in haematite concretes used in India are given. Equipment for heavy density concrete is mentioned. Quality control methods and tests for heavy density concrete are described under the heading: type and chemical composition of the rock, specific gravity and surface absorption of the aggregates, grading of aggregates, cement, batching, mixing, compressive strength, and density. Construction aspects such as form work, placement, vibration, finishing, and temperature control are discussed. Finally it is pointed out that for optimising the design and economy of heavy density concrete, it is necessary to carry out country-wide survey of suitable materials, to study their properties, suitability and effectiveness in shielding radiation. (M.G.B.)

  20. Cosmic radiation monitoring equipment for the Ministry of Posts and Telecommunications; Yuseisho muke uchu denpa kanshi shisetsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The equipment analyzes radio waves transmitted by a geostationary satellite toward the earth and collates the received waves to the registered satellite data for the exposure of illegality or unlawfulness, if any. A feature of the equipment is that it operates only one antenna to catch waves belonging in three different frequency bands, that is, L, Ku, and Ka. Another feature is that it follows a procedure which is automatically executed by computers, the procedure including the analysis of the spectrum of the continuously arriving waves for the isolation of the carrier wave for the determination of the position where the satellite rests and for the extraction of wave data. Cosmic radiation monitoring is manually performed in Germany, Britain, etc., and the equipment introduced here is the first computer-aided automatic cosmic radiation monitoring system in the world. (translated by NEDO)

  1. Cosmic rays on earth

    International Nuclear Information System (INIS)

    Allkofer, O.C.; Grieder, P.K.F.

    1984-01-01

    A data collection is presented that covers cosmic rays on earth. Included are all relevant data on flux and intensity measurements, energy spectra, and related data of all primary and secondary components of the cosmic radiation at all levels in the atmosphere, at sea level and underground. In those cases where no useful experimental data have been available, theoretical predictions were substituted. (GSCH)

  2. Evaluation of super intense geomagnetic storms and related structures of the interplanetary medium through the observation of cosmic rays of high energy surface; Analise de tempestades geomagneticas super intensas e de estruturas do meio interplanetario relacionadas, atraves da observacao de raios cosmicos de superficie de alta energia

    Energy Technology Data Exchange (ETDEWEB)

    Savian, Jairo Francisco; Schuch, Nelson J., E-mail: savian@lacesm.ufsm.br, E-mail: njschuch@lacesm.ufsm.br [Centro Regional Sul de Pesquisas Espaciais - CRSPE/INPE-MCT, Santa Maria, RS (Brazil); Silva, Marlos Rockenbach da; Lago, Alisson dal; Gonzalez, Walter Demetrio, E-mail: marlos@dge.inpe.br, E-mail: dallago@dge.inpe.br, E-mail: gonzalez@dge.inpe.br [Instituto Nacional de Pesquisas Espaciais - INPE-MCT, Sao Jose dos Campos, SP (Brazil); Munakata, Kazuoki [Physics Department, Shinshu University, Matsumoto (Japan)

    2005-04-15

    It is believed that the physical mechanism responsible for the transference of energy from the solar wind to the Earth magnetosphere is the reconnection between the interplanetary magnetic field and the terrestrial magnetic field (Tsurutani and Gonzalez, 1997). The necessary criterion for a intense geomagnetic storms to occur, Dst < -100nT, is the existence of a dawn-dusk interplanetary electric field larger than 5 mV/m, for a period larger than 3 hours. Cosmic rays have been studied as a natural phenomenon that can tell much about both Earth's environment in space and distant astrophysical processes (Jokipii, 2000). A solar disturbance propagating away from the Sun affects the pre-existing population of galactic cosmic rays in a number of ways. The most famous one is known as the 'Forbush decrease', which is a suppression of ground cosmic-ray counts observed during geomagnetic disturbances. The objective of this work is to study the response of the Southern Space Observatory ground Muon Telescope observations, installed in Sao Martinho da Serra, RS, Brazil, to 3 super intense geomagnetic storms, combining observation provided by L1 satellites and ground detectors. (author)

  3. Robustness of cosmic neutrino background detection in the cosmic microwave background

    Energy Technology Data Exchange (ETDEWEB)

    Audren, Benjamin [Institut de Théorie des Phénomènes Physiques, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne (Switzerland); Bellini, Emilio; Cuesta, Antonio J.; Verde, Licia [Institut de Ciències del Cosmos, Universitat de Barcelona, IEEC-UB, Martí i Franquès 1, E08028 Barcelona (Spain); Gontcho, Satya Gontcho A; Pérez-Ràfols, Ignasi [Dept. d' Astronomia i Meteorologia, Institut de Ciències del Cosmos, Universitat de Barcelona, IEEC-UB, Martí i Franquès 1, E08028 Barcelona (Spain); Lesgourgues, Julien [CERN, Theory Division, CH-1211 Geneva 23 (Switzerland); Niro, Viviana [Departamento de Física Teórica, Universidad Autónoma de Madrid and Instituto de Física Teórica UAM/CSIC, Calle Nicolás Cabrera 13-15, Cantoblanco, E-28049 Madrid (Spain); Pellejero-Ibanez, Marcos; Tramonte, Denis [Instituto de Astrofísica de Canarias (IAC), C/Vía Láctea s/n, E-38200, La Laguna, Tenerife (Spain); Poulin, Vivian [LAPTh, Université de Savoie, CNRS, B.P.110, Annecy-le-Vieux F-74941 (France); Tram, Thomas, E-mail: emilio.bellini@icc.ub.edu [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth PO1 3FX (United Kingdom)

    2015-03-01

    The existence of a cosmic neutrino background can be probed indirectly by CMB experiments, not only by measuring the background density of radiation in the universe, but also by searching for the typical signatures of the fluctuations of free-streaming species in the temperature and polarisation power spectrum. Previous studies have already proposed a rather generic parametrisation of these fluctuations, that could help to discriminate between the signature of ordinary free-streaming neutrinos, or of more exotic dark radiation models. Current data are compatible with standard values of these parameters, which seems to bring further evidence for the existence of a cosmic neutrino background. In this work, we investigate the robustness of this conclusion under various assumptions. We generalise the definition of an effective sound speed and viscosity speed to the case of massive neutrinos or other dark radiation components experiencing a non-relativistic transition. We show that current bounds on these effective parameters do not vary significantly when considering an arbitrary value of the particle mass, or extended cosmological models with a free effective neutrino number, dynamical dark energy or a running of the primordial spectrum tilt. We conclude that it is possible to make a robust statement about the detection of the cosmic neutrino background by CMB experiments.

  4. Constraints on cosmic strings due to black holes formed from collapsed cosmic string loops

    International Nuclear Information System (INIS)

    Caldwell, R.R.; Gates, E.

    1993-05-01

    The cosmological features of primordial black holes formed from collapsed cosmic string loops are studied. Observational restrictions on a population of primordial black holes are used to restrict f, the fraction of cosmic string loops which collapse to form black holes, and μ, the cosmic string mass-per-unit-length. Using a realistic model of cosmic strings, we find the strongest restriction on the parameters f and μ is due to the energy density in 100MeV photons radiated by the black holes. We also find that inert black hole remnants cannot serve as the dark matter. If earlier, crude estimates of f are reliable, our results severely restrict μ, and therefore limit the viability of the cosmic string large-scale structure scenario

  5. Expression profiles of mRNA after exposure yeast and rice to heavy-ion radiation

    International Nuclear Information System (INIS)

    Iwahashi, Hitoshi; Mizukami, Satomi; Nojima, Kumie

    2005-01-01

    We have studied expression profiles of mRNA after exposure yeast cells to heavy-ion radiation. Yeast cells was exposed by heavy-ion radiation with the levels of 6, 12, 25, 50, and 100 Gy. We could confirm the reproducibility of physiological state of yeast cells under the experimental conditions by DNA microarray. We could also confirm the reproducibility of viability of yeast cells after exposure to heavy-ion radiation. We thus applied yeast cells exposed with 25 Gy was applied to DNA microarray analysis. The strongly induced genes were HUG1 RAR4 RNR2 for DNA repairing genes and GLC3 GSY1 for energy metabolism genes. (author)

  6. Analytical Model for Estimating the Zenith Angle Dependence of Terrestrial Cosmic Ray Fluxes.

    Directory of Open Access Journals (Sweden)

    Tatsuhiko Sato

    Full Text Available A new model called "PHITS-based Analytical Radiation Model in the Atmosphere (PARMA version 4.0" was developed to facilitate instantaneous estimation of not only omnidirectional but also angular differential energy spectra of cosmic ray fluxes anywhere in Earth's atmosphere at nearly any given time. It consists of its previous version, PARMA3.0, for calculating the omnidirectional fluxes and several mathematical functions proposed in this study for expressing their zenith-angle dependences. The numerical values of the parameters used in these functions were fitted to reproduce the results of the extensive air shower simulation performed by Particle and Heavy Ion Transport code System (PHITS. The angular distributions of ground-level muons at large zenith angles were specially determined by introducing an optional function developed on the basis of experimental data. The accuracy of PARMA4.0 was closely verified using multiple sets of experimental data obtained under various global conditions. This extension enlarges the model's applicability to more areas of research, including design of cosmic-ray detectors, muon radiography, soil moisture monitoring, and cosmic-ray shielding calculation. PARMA4.0 is available freely and is easy to use, as implemented in the open-access EXcel-based Program for Calculating Atmospheric Cosmic-ray Spectrum (EXPACS.

  7. Extraordinary radiation super-sensitivity accompanying with sorafenib combination therapy: what lies beneath?

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ja Young; Lee, Ju Hye; Yoon, Han Bin; Lee, Ho Jeong; Jeon, Ho Sang; Nam, Ji Ho [Dept. of Radiation Oncology, Pusan National University Yangsan Hospital, Yangsan (Korea, Republic of)

    2017-06-15

    Primary liver tumor, especially hepatocellular carcinoma (HCC), is a common cause of cancer death worldwide. The incidence is generally higher in Asian countries than in western countries. Carcinogenesis of HCC is often associated with hepatitis viral infections. Current standard treatment of HCC is surgical resection or transplantation in patients with early stage disease. However, the patient with advanced stage disease, surgical resection is often limited. Sorafenib or other treatment modalities are not so effective as well. We report a case of unusual radiation super-sensitivity in advanced stage HCC, and review the literature.

  8. Aircrew Exposure To Cosmic Radiation Evaluated By Means Of Several Methods; Results Obtained In 2006

    International Nuclear Information System (INIS)

    Ploc, Ondrej; Spurny, Frantisek; Jadrnickova, Iva; Turek, Karel

    2008-01-01

    Routine evaluation of aircraft crew exposure to cosmic radiation in the Czech Republic is performed by means of calculation method. Measurements onboard aircraft work as a control tool of the routine method, as well as a possibility of comparison of results measured by means of several methods. The following methods were used in 2006: (1) mobile dosimetry unit (MDU) type Liulin--a spectrometer of energy deposited in Si-detector; (2) two types of LET spectrometers based on the chemically etched track detectors (TED); (3) two types of thermoluminescent detectors; and (4) two calculation methods. MDU represents currently one of the most reliable equipments for evaluation of the aircraft crew exposure to cosmic radiation. It is an active device which measures total energy depositions (E dep ) in the semiconductor unit, and, after appropriate calibration, is able to give a separate estimation for non-neutron and neutron-like components of H*(10). This contribution consists mostly of results acquired by means of this equipment; measurements with passive detectors and calculations are mentioned because of comparison. Reasonably good agreement of all data sets could be stated

  9. Competition between fusion and quasi-fission in heavy ion induced reactions

    International Nuclear Information System (INIS)

    Back, B.B.

    1986-09-01

    Quantitative analyses of angular distributions and angle-mass correlations have been applied to the U + Ca reaction to obtain upper limit estimates for the cross sections for complete fusion near or below the interaction barrier. Extrapolating to the systems Ca + Cm and Ca + Es using the well established scaling properties of the extra push model, an estimate of the cross sections relevant to the efforts of synthesizing super-heavy elements in the region Z = 116 and N = 184 via heavy-ion fusion reactions are obtained. A simple evaporation calculation using properties of the super heavy elements shows that the failure to observe super-heavy elements with the Ca + Cm reaction is consistent with estimates of the complete fusion process. 33 refs., 9 figs., 1 tab

  10. Binary fragmentation based studies for the near super-heavy compound nucleus {sup 256}Rf

    Energy Technology Data Exchange (ETDEWEB)

    Thakur, Meenu; Behera, B.R.; Mahajan, Ruchi; Kaur, Gurpreet; Sharma, Priya; Kapoor, Kushal; Rani, Kavita [Panjab University, Department of Physics, Chandigarh (India); Saneesh, N.; Dubey, R.; Yadav, A.; Sugathan, P.; Jhingan, A.; Chatterjee, A.; Chatterjee, M.B. [Inter University Accelerator Centre, New Delhi (India); Kumar, Neeraj; Mandal, S. [University of Delhi, Department of Physics and Astrophysics, Delhi (India); Kumar, S. [Andhra University, Department of Nuclear Physics, Visakhapatnam (India); Saxena, A.; Kailas, S. [Bhabha Atomic Research Centre, Nuclear Physics Division, Mumbai (India); Pal, Santanu [CS, Kolkata (India); Nasirov, Avazbek [JINR, Bogoliubov Laboratory of Theoretical Physics, Dubna (Russian Federation); National University, Department of Physics, Tashkent (Uzbekistan); Kayumov, Bakhodir [National University, Department of Physics, Tashkent (Uzbekistan)

    2017-06-15

    Binary fragmentation of the near super-heavy compound nucleus {sup 256}Rf has been studied through the reaction {sup 48}Ti + {sup 208}Pb at a bombarding energy well above the Coulomb barrier. For a better understanding of its reaction dynamics, the mass distribution, mass-energy distribution and mass-angle distribution of the fission fragments produced from {sup 256}Rf have been investigated thoroughly. The masses and kinetic energies of the fission fragments were reconstructed event-by-event from their measured velocities and emission angles. From the mass-energy analysis, a sizeable contribution from the asymmetric fission was observed on the edges of symmetric mass distribution. Evidence of asymmetric fission was also clued from the observed correlation between the masses and emission angles of the fission fragments. Contribution of the quasi-fission products has also been estimated by performing the theoretical dinuclear system calculations. (orig.)

  11. Radiative transfer calculations of the diffuse ionized gas in disc galaxies with cosmic ray feedback

    Science.gov (United States)

    Vandenbroucke, Bert; Wood, Kenneth; Girichidis, Philipp; Hill, Alex S.; Peters, Thomas

    2018-05-01

    The large vertical scale heights of the diffuse ionized gas (DIG) in disc galaxies are challenging to model, as hydrodynamical models including only thermal feedback seem to be unable to support gas at these heights. In this paper, we use a three-dimensional Monte Carlo radiation transfer code to post-process disc simulations of the Simulating the Life-Cycle of Molecular Clouds project that include feedback by cosmic rays. We show that the more extended discs in simulations including cosmic ray feedback naturally lead to larger scale heights for the DIG which are more in line with observed scale heights. We also show that including a fiducial cosmic ray heating term in our model can help to increase the temperature as a function of disc scale height, but fails to reproduce observed DIG nitrogen and sulphur forbidden line intensities. We show that, to reproduce these line emissions, we require a heating mechanism that affects gas over a larger density range than is achieved by cosmic ray heating, which can be achieved by fine tuning the total luminosity of ionizing sources to get an appropriate ionizing spectrum as a function of scale height. This result sheds a new light on the relation between forbidden line emissions and temperature profiles for realistic DIG gas distributions.

  12. Cosmic microwave background distortions at high frequencies

    International Nuclear Information System (INIS)

    Peter, W.; Peratt, A.L.

    1988-01-01

    The authors analyze the deviation of the cosmic background radiation spectrum from the 2.76+-0.02 0 Κ blackbody curve. If the cosmic background radiation is due to absorption and re-emission of synchrotron radiation from galactic-width current filaments, higher-order synchrotron modes are less thermalized than lower-order modes, causing a distortion of the blackbody curve at higher frequencies. New observations of the microwave background spectrum at short wavelengths should provide an indication of the number of synchrotron modes thermalized in this process. The deviation of the spectrum from that of a perfect blackbody can thus be correlated with astronomical observations such as filament temperatures and electron energies. The results are discussed and compared with the theoretical predictions of other models which assume the presence of intergalactic superconducting cosmic strings

  13. Effects of heavy-ion radiation on the brain vascular system

    International Nuclear Information System (INIS)

    Yang, T.C.; Craise, L.M.; Tobias, C.A.

    1985-01-01

    In the laboratory, the authors have been studying the effects of heavy-ion radiation on the vascular system, using neonatal rats as a model system. They investigated the response of the brain vascular system to ionizing radiation and found that distinct petechial hemorrhages developed in the cerebral cortex within a few hours after irradiation, reached a maximum after about 13 to 24 hours, and then decreased exponentially with time. No brain hemorrhage was found in neonatal rats 12 days after irradiation. Heavy ions induce more hemorrhages than x rays for a given dose, and the RBE for 670-MeV/u neon particles ranges from about 2.0 for low doses to about 1.4 for high doses

  14. Transient absorption spectroscopy in biology using the Super-ACO storage ring FEL and the synchrotron radiation combination

    CERN Document Server

    Renault, E; De Ninno, G; Garzella, D; Hirsch, M; Nahon, L; Nutarelli, D

    2001-01-01

    The Super-ACO storage ring FEL, covering the UV range down to 300 nm with a high average power (300 mW at 350 nm) together with a high stability and long lifetime, is a unique tool for the performance of users applications. We present here the first pump-probe two color experiments on biological species using a storage ring FEL coupled to the synchrotron radiation. The intense UV pulse of the Super-ACO FEL is used to prepare a high initial concentration of chromophores in their first singlet electronic excited state. The nearby bending magnet synchrotron radiation provides, on the other hand a pulsed, white light continuum (UV-IR), naturally synchronized with the FEL pulses and used to probe the photochemical subsequent events and the associated transient species. We have demonstrated the feasibility with a dye molecule (POPOP) observing a two-color effect, signature of excited state absorption and a temporal signature with Acridine. Applications on various chromophores of biological interest are carried out,...

  15. A study of the terrestrial and cosmic gamma-rays in Jordan

    International Nuclear Information System (INIS)

    Mansi, M. A.

    1996-01-01

    Natural terrestrial gamma and cosmic radiations dose rates in Jordan were measured during a period of three years in thirty four stations distributed over all Jordanian territories using the thermoluminescence dosimeter(TLD) Coso 4 :Tm. The average absorbed dose rates in air from terrestrial gamma and cosmic radiations were found to vary from(57 ±3;9) n Gy/hr in Assafi to (350 ± 14; 42) n Gy/hr in Manjam Alhisa. The mean dose rate due to terrestrial gamma radiations was found to be equal to (55 ± 2; 13) nGy/hr, and that due to cosmic radiations was calculated to be(35 ± 1;4) n Gy/hr. The annual effective dose equivalent from terrestrial and cosmic gamma radiations was found to be equal to(0.65±0.02; 0.12)mSv/year. It was found that the absorbed dose rate due to cosmic radiations in Jordan can be fitted by the formula, D c osmic=27+5.2 h+1.86 h 2 where h is the altitude reference to the Dead Sea measured in km. 19 refs., 17 figs., 6 tabs.(Author)

  16. Far Infrared Spectrometry of the Cosmic Background Radiation

    Science.gov (United States)

    Mather, J. C.

    1974-01-01

    I describe two experiments to measure the cosmic background radiation near 1 mm wavelength. The first was a ground-based search for spectral lines, made with a Fabry-Perot interferometer and an InSb detector. The second is a measurement of the spectrum from 3 to 18 cm{sup -1}, made with a balloon-borne Fourier transform spectrometer. It is a polarizing Michelson interferometer, cooled in liquid helium, and operated with a germanium bolometer. I give the theory of operation, construction details, and experimental results. The first experiment was successfully completed but the second suffered equipment malfunction on its first flight. I describe the theory of Fourier transformations and give a new understanding of convolutional phase correction computations. I discuss for infrared bolometer calibration procedures, and tabulate test results on nine detectors. I describe methods of improving bolometer sensitivity with immersion optics and with conductive film blackening.

  17. Occupational cosmic radiation exposure in Portuguese airline pilots: study of a possible correlation with oxidative biological markers.

    Science.gov (United States)

    Silva, Rodrigo; Folgosa, Filipe; Soares, Paulo; Pereira, Alice S; Garcia, Raquel; Gestal-Otero, Juan Jesus; Tavares, Pedro; Gomes da Silva, Marco D R

    2013-05-01

    Several studies have sought to understand the health effects of occupational exposure to cosmic radiation. However, only few biologic markers or associations with disease outcomes have so far been identified. In the present study, 22 long- and 26 medium-haul male Portuguese airline pilots and 36 factory workers who did not fly regularly were investigated. The two groups were comparable in age and diet, were non-smokers, never treated with ionizing radiation and other factors. Cosmic radiation exposure in pilots was quantified based on direct monitoring of 51 flights within Europe, and from Europe to North and South America, and to Africa. Indirect dose estimates in pilots were performed based on the SIEVERT (Système informatisé d'évaluation par vol de l'exposition au rayonnement cosmique dans les transports aériens) software for 6,039 medium- and 1,366 long-haul flights. Medium-haul pilots had a higher cosmic radiation dose rate than long-haul pilots, that is, 3.3 ± 0.2 μSv/h and 2.7 ± 0.3 μSv/h, respectively. Biological tests for oxidative stress on blood and urine, as appropriate, at two time periods separated by 1 year, included measurements of antioxidant capacity, total protein, ferritin, hemoglobin, creatinine and 8-hydroxy-2-deoxyguanosine (8OHdG). Principal components analysis was used to discriminate between the exposed and unexposed groups based on all the biological tests. According to this analysis, creatinine and 8OHdG levels were different for the pilots and the unexposed group, but no distinctions could be made among the medium- and the long-haul pilots. While hemoglobin levels seem to be comparable between the studied groups, they were directly correlated with ferritin values, which were lower for the airline pilots.

  18. Autonomous low-noise system for broadband measurements of the cosmic microwave background radiation

    Science.gov (United States)

    Dekoulis, George

    2009-05-01

    This paper describes the digital side implementation of a new suborbital experiment for the measurement of broadband radiation emissions of the Cosmic Microwave Background (CMB) anisotropy. The system has been used in campaign mode for initial mapping of the galactic radiation power received at a single frequency. The recorded galactic sky map images are subsequently being used to forecast the emitted radiation at neighboring frequencies. A planned second campaign will verify the prediction algorithms efficiency in an autonomous manner. The system has reached an advanced stage in terms of hardware and software combined operation and intelligence, where other Space Physics measurements are performed autonomously depending on the burst event under investigation. The system has been built in a modular manner to expedite hardware and software upgrades. Such an upgrade has recently occurred mainly to expand the frequency range of space observations.

  19. Radiation by a heavy quark in N=4 SYM at strong coupling

    CERN Document Server

    Hatta, Y; Mueller, A H; Triantafyllopoulos, D N

    2011-01-01

    Using the AdS/CFT correspondence in the supergravity approximation, we compute the energy density radiated by a heavy quark undergoing some arbitrary motion in the vacuum of the strongly coupled N=4 supersymmetric Yang-Mills theory. We find that this energy is fully generated via backreaction from the near-boundary endpoint of the dual string attached to the heavy quark. Because of that, the energy distribution shows the same space-time localization as the classical radiation that would be produced by the heavy quark at weak coupling. We believe that this and some other unnatural features of our result (like its anisotropy and the presence of regions with negative energy density) are artifacts of the supergravity approximation, which will be corrected after including string fluctuations. For the case where the quark trajectory is bounded, we also compute the radiated power, by integrating the energy density over the surface of a sphere at infinity. For sufficiently large times, we find agreement with a previo...

  20. Estimation of Downwelling Surface Longwave Radiation under Heavy Dust Aerosol Sky

    Directory of Open Access Journals (Sweden)

    Chunlei Wang

    2017-02-01

    Full Text Available The variation of aerosols, especially dust aerosol, in time and space plays an important role in climate forcing studies. Aerosols can effectively reduce land surface longwave emission and re-emit energy at a colder temperature, which makes it difficult to estimate downwelling surface longwave radiation (DSLR with satellite data. Using the latest atmospheric radiative transfer code (MODTRAN 5.0, we have simulated the outgoing longwave radiation (OLR and DSLR under different land surface types and atmospheric profile conditions. The results show that dust aerosol has an obvious “warming” effect to longwave radiation compared with other aerosols; that aerosol longwave radiative forcing (ALRF increased with the increasing of aerosol optical depth (AOD; and that the atmospheric water vapor content (WVC is critical to the understanding of ALRF. A method is proposed to improve the accuracy of DSLR estimation from satellite data for the skies under heavy dust aerosols. The AOD and atmospheric WVC under cloud-free conditions with a relatively simple satellite-based radiation model yielding the high accurate DSLR under heavy dust aerosol are used explicitly as model input to reduce the effects of dust aerosol on the estimation of DSLR. Validations of the proposed model with satellites data and field measurements show that it can estimate the DSLR accurately under heavy dust aerosol skies. The root mean square errors (RMSEs are 20.4 W/m2 and 24.2 W/m2 for Terra and Aqua satellites, respectively, at the Yingke site, and the biases are 2.7 W/m2 and 9.6 W/m2, respectively. For the Arvaikheer site, the RMSEs are 23.2 W/m2 and 19.8 W/m2 for Terra and Aqua, respectively, and the biases are 7.8 W/m2 and 10.5 W/m2, respectively. The proposed method is especially applicable to acquire relatively high accurate DSLR under heavy dust aerosol using MODIS data with available WVC and AOD data.

  1. Interaction of ultrahigh energy cosmic rays with microwave background radiation

    International Nuclear Information System (INIS)

    Aharonyan, F.A.; Kanevskij, B.L.; Vardanyan, V.V.

    1989-01-01

    The formation of the bump and black-body cutoff in the cosmic-ray (CR) spectrum arising from the π-meson photoproduction reaction in collisions of CR protons with the microwave background radiation (MBR) photons is studied. A kinetic equation which describes CR proton propagation in MBR with account of a catastrophic of the π-meson photoproduction process is derived. The equilibrium CR proton spectrum obtained from the solution of the stationary kinetic equation is in general agreement with spectrum obtained under assumption of continuous energy loss approximation. However spectra from local sources especially for the times of propagation t>10 9 years differ noticeably from those obtained in the continuous loss approximation. 24 refs.; 5 figs

  2. The Cosmic Microwave Background Radiation-A Unique Window on the Early Universe

    Science.gov (United States)

    Hinshaw, Gary

    2010-01-01

    The cosmic microwave background radiation is the remnant heat from the Big Bang. It provides us with a unique probe of conditions in the early universe, long before any organized structures had yet formed. The anisotropy in the radiation's brightness yields important clues about primordial structure and additionally provides a wealth of information about the physics of the early universe. Within the framework of inflationary dark matter models, observations of the anisotropy on sub-degree angular scales reveals the signatures of acoustic oscillations of the photon-baryon fluid at a redshift of 11 00. Data from the first seven years of operation of the Wilkinson Microwave Anisotropy Probe (WMAP) satellite provide detailed full-sky maps of the cosmic microwave background temperature and polarization anisotropy. Together, the data provide a wealth of cosmological information, including the age of the universe, the epoch when the first stars formed, and the overall composition of baryonic matter, dark matter, and dark energy. The results also provide constraints on the period of inflationary expansion in the very first moments of time. WMAP, part of NASA's Explorers program, was launched on June 30, 2001. The WMAP satellite was produced in a partnership between the Goddard Space Flight Center and Princeton University. The WMAP team also includes researchers at the Johns Hopkins University; the Canadian Institute of Theoretical Astrophysics; University of Texas; Oxford University; University of Chicago; Brown University; University of British Columbia; and University of California, Los Angeles.

  3. New investigations on the origin of cosmic rays. 1. Hess experiment

    International Nuclear Information System (INIS)

    Degrange, B.

    2005-01-01

    Hess is an international experiment on astrophysics settled in altitude in Namibia and whose aim is the study of cosmic radiation sources through the indirect detection of gamma rays whose energy ranges between 100 GeV and a few TeV. Hess is composed of 4 big telescopes located at the 4 summits of a square whose sides are 120 m long. This pattern of telescopes allows the stereoscopic reconstruction of the particles showers issued from the interaction of a cosmic particle with the atmosphere and enables scientists to tell electromagnetic showers from hadronic showers which are broader and more asymmetrical. These 4 telescopes detect the Cherenkov light. Hess has been operating since december 2003. Hess has detected for the first time a binary system in our galaxy. The center of our galaxy has been examined by Hess. The spectrum measured fits a power law well and the contribution of possible neutralinos cannot be prevailing in the very low-sloped spectrum unless neutralinos have a mass greater than 7.5 TeV which is very unlikely. Hess has enabled us to show the shell pattern in the gamma mapping of the remnants of the super-nova RXJ-1713-3946. (A.C.)

  4. Somatic mutation in larvae of the silkworm, Bombyx mori, induced by heavy ion irradiation to diapause eggs

    Energy Technology Data Exchange (ETDEWEB)

    Kotani, Eiji; Furusawa, Toshiharu [Kyoto Inst. of Tech. (Japan). Faculty of Textile Science; Nagaoka, Shunji [Fujita Health Univ., Toyoake, Aichi (Japan). School of Health Sciences] [and others

    2002-12-01

    In order to investigate whether eggs of the black-striped strain (P{sup S}) of the silkworm, Bombyx mori, represent an appropriate model for estimating the biological effect of cosmic radiation, radiosensitivity of the eggs against X-rays and heavy ion particles was examined as ground-based experiments. The exposure of diapause eggs to X-rays or heavy ion particles resulted in somatic mutations appearing as a white spot on the black integument during larval stage. Irradiation of non-diapause eggs with X-rays demonstrated a significant difference in frequency of the mutation between fractionated and single administration doses, but no difference was observed in diapause eggs. Incidence of the mutation as induced by carbon ion beams for 15-day old eggs was higher for eggs that had been kept at 15 deg C than those kept at 25 deg C. Neon beam irradiation of diapause eggs displayed dose- and linear energy transfer (LET)-dependent effects, causing a maximal rate of the mutation at 150 keV/{mu}m. These results confirm that B. mori eggs represent valid models for estimating the biological effects of cosmic radiation. (author)

  5. Robustness of cosmic neutrino background detection in the cosmic microwave background

    CERN Document Server

    Audren, Benjamin; Cuesta, Antonio J; Gontcho, Satya Gontcho A; Lesgourgues, Julien; Niro, Viviana; Pellejero-Ibanez, Marcos; Pérez-Ràfols, Ignasi; Poulin, Vivian; Tram, Thomas; Tramonte, Denis; Verde, Licia

    2015-01-01

    The existence of a cosmic neutrino background can be probed indirectly by CMB experiments, not only by measuring the background density of radiation in the universe, but also by searching for the typical signatures of the fluctuations of free-streaming species in the temperature and polarisation power spectrum. Previous studies have already proposed a rather generic parametrisation of these fluctuations, that could help to discriminate between the signature of ordinary free-streaming neutrinos, or of more exotic dark radiation models. Current data are compatible with standard values of these parameters, which seems to bring further evidence for the existence of a cosmic neutrino background. In this work, we investigate the robustness of this conclusion under various assumptions. We generalise the definition of an effective sound speed and viscosity speed to the case of massive neutrinos or other dark radiation components experiencing a non-relativistic transition. We show that current bounds on these effectiv...

  6. Isotropization of the cosmic background radiation due to galactic gravitational screening

    International Nuclear Information System (INIS)

    Tomita, Kenji.

    1988-04-01

    The primordial objects with the masses of galaxies or their clusters formed at early stages such as z > 10 can play a powerful role of gravitational lenses and their random multiple scattering brings an effective screening for the cosmic background radiation. In a cold-dark-matter dominant model with the white-noise spectrum of initial density perturbations, it is shown that, if the primordial objects with the masses 10 12 h -1 (solar mass) are in the nonlinear stage at the epochs 1 + z = 10 ∼ 20, the objects with 6 x 10 14 h -1 (solar mass) are in the nonlinear stage at 1 + z = 6.3 ∼ 14, and accordingly the small-scale anisotropy of the radiation may be smoothed-out within 13 ∼ 28 minutes by this gravitational screening, where the Hubble constant H o = 100 h km s -1 Mpc -1 . (author)

  7. Radiation Testing Electronics with Heavy Ions-The Best Way to Hit a Target Moving Ever Exponentially Faster

    Science.gov (United States)

    Ladbury, Ray

    2018-01-01

    In 1972, when engineers at Hughes Aircraft Corporation discovered that errors in their satellite avionics were being caused by cosmic rays (so-called single-event effects, or SEE), Moore's Law was only 7 years old. Now, more than 45 years on, the scaling that drove Moore's Law for its first 35 years has reached its limits. However, electronics technology continues to evolve exponentially and SEE remain a formidable issue for use of electronics in space. SEE occur when a single ionizing particle passes through a sensitive volume in an active semiconductor device and generates sufficient charge to cause anomalous behavior or failure in the device. Because SEE can occur at any time during the mission, the emphasis of SEE risk management methodologies is ensuring that all SEE modes in a device under test are detected by the test. Because a particle's probability of causing an SEE generally increases as the particle becomes more ionizing, heavy-ion beams have been and remain the preferred tools for elucidating SEE vulnerabilities. In this talk we briefly discuss space radiation environments and SEE mechanisms, describe SEE test methodologies and discuss current and future challenges for use of heavy-ion beams for SEE testing in an era when the continued validity of Moore's law depends on innovation rather than CMOS scaling.

  8. Snow measurement by cosmic radiation; Mesure de la neige par rayonnement cosmique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-02-01

    The knowledge of the water content equivalence of the snow cover is an important element for the improvement of the water resource management. It allows in particular to evaluate and foresee the filling up supplies of big seasonal reservoirs. Electricite de France (EdF), in collaboration with the national center of scientific research (CNRS) and Meteo France, has developed a new generation of sensors, the cosmic radiation snow gauge, allowing the automatic monitoring of the status of snow stocks by the measurement of the water value of the snow cover. (J.S.)

  9. Ralph A. Alpher, Robert C. Herman, and the Cosmic Microwave Background Radiation

    Science.gov (United States)

    Alpher, Victor S.

    2012-09-01

    Much of the literature on the history of the prediction and discovery of the Cosmic Microwave Background Radiation (CMBR) is incorrect in some respects. I focus on the early history of the CMBR, from its prediction in 1948 to its measurement in 1964, basing my discussion on the published literature, the private papers of Ralph A. Alpher, and interviews with several of the major figures involved in the prediction and measurement of the CMBR. I show that the early prediction of the CMBR continues to be widely misunderstood.

  10. Heavy quark radiation in NLO+PS POWHEG generators

    Energy Technology Data Exchange (ETDEWEB)

    Buonocore, Luca; Tramontano, Francesco [Universita di Napoli ' ' Federico II' ' , Napoli (Italy); INFN, Sezione di Napoli, Napoli (Italy); Nason, Paolo [CERN, Theoretical Physics Department, Geneve (Switzerland); INFN, Sezione di Milano-Bicocca, Milano (Italy)

    2018-02-15

    In this paper we deal with radiation from heavy quarks in the context of next-to-leading order calculations matched to parton shower generators. A new algorithm for radiation from massive quarks is presented that has considerable advantages over the one previously employed. We implement the algorithm in the framework of the POWHEG-BOX, and compare it with the previous one in the case of the hvq generator for bottom production in hadronic collisions, and in the case of the bb4l generator for top production and decay. (orig.)

  11. Radiation Synthesis and Characterization of Natural and Natural-Synthetic Hybrid Super Absorbent Polymers for Agricultural Applications. Chapter 19

    Energy Technology Data Exchange (ETDEWEB)

    Şen, M.; Hayrabolulu, H.; Güven, O. [Hacettepe University Department of Chemistry, Beytepe, Ankara (Turkey)

    2014-07-15

    The experimental studies carried out in Hacettepe University, Laboratories of Radiation and Polymers Science (LRPS) in the past ten years, which focused mainly on the synthesis of synthetic and natural-synthetic super absorbent polymers in various irradiation conditions, are summarized in the first part of the presentation. Studies conducted on the following areas: (1) the controlled release of fertilizers and herbicides and the effect of the natural polymer type, (2) the neutralization degree of poly(acrylic acid), (3) the temperature and pressure on the swelling kinetics, and (4) the maximum water absorption capacity of the potential soil conditional hydrogels, were explained. The results were then compared with those obtained from commercial super absorbent polymers prepared through conventional techniques. In the third part of the presentation, basic and advanced techniques in the characterization of the network structure of super water absorbents were presented. (author)

  12. Radiation safety design of super KEKB factory

    International Nuclear Information System (INIS)

    Sanami, Toshiya

    2015-01-01

    The SuperKEKB factory, which was scheduled to start operation early 2015, is an electron-positron collider designed to produce an 80x10"3"4-1/cm"2/s luminosity, which is 40 times greater than the KEKB factory. Built to investigate CP violation and 'new physics' beyond the Standard Model, the facility consists of a 7-GeV electron/3.5-GeV positron linac, a 1.1- GeV positron damping ring, beam transport, and a 7-GeV electron/4-GeV positron collider. To meet this level of luminosity, the collider will be operated with a small beam size and a large crossing angle at the interaction point. According to particle tracking simulations, beam losses under these conditions will be 35 times more than those previously operated. To help optimise shielding configurations, leakage radiation and induced activity are estimated through empirical equations and detailed Monte-Carlo simulations using MARS15 code for the interaction region, beam halo collimators, emergency pathways, ducts, forward direction tunnels, and positron production target. Examples of shielding strategies are presented to reduce both leakage dose and airborne activity for several locations in the facility. (authors)

  13. Structural analysis with high brilliance synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, Hideo [Japan Atomic Energy Research Inst., Kamigori, Hyogo (Japan). Kansai Research Establishment

    1997-11-01

    The research subjects in diffraction and scattering of materials with high brilliance synchrotron radiation such as SPring-8 (Super Photon ring 8 GeV) are summarized. The SPring-8 project is going well and 10 public beamlines will be opened for all users in October, 1997. Three JAERI beamlines are also under construction for researches of heavy element science, physical and structural properties under extreme conditions such as high temperature and high pressure. (author)

  14. Cosmic ray investigations

    International Nuclear Information System (INIS)

    Zatsepin, Georgii T; Roganova, Tat'yana M

    2009-01-01

    The history of cosmic ray research at the Lebedev Institute beginning with the first work and continuing up to now is reviewed. The milestones and main avenues of research are outlined. Pioneering studies on the nuclear cascade process in extensive air showers, investigations of the Vavilov-Cherenkov radiation, and some work on the origin of cosmic rays are discussed. Recent data on ultrahigh-energy particle detection at the Pierre Auger Observatory and the High Resolution Fly's Eye (HiRes) experiments are presented. (conferences and symposia)

  15. Cosmic-ray exposure records and origins of meteorites

    International Nuclear Information System (INIS)

    Reedy, R.C.

    1985-01-01

    The cosmic-ray records of meteorites are used to infer much about their origins and recent histories. The methods used to interpret meteorites cosmic-ray records, especially identifying simple or complex exposure histories, often are inadequate. Spallogenic radionuclides, stable nuclides, and measurements of products that have location-sensitive production rates, such as the tracks of heavy cosmic-ray nuclei or neutron-capture nuclides, are very useful in accurately determining a meteorite's history. Samples from different, known locations of a meteorite help in studying the cosmic-ray record. Such extensive sets of meteorite measuremetns, plus theoretical modeling of complex histories, improves the ability to predict the production of cosmogenic nuclides in meteorites, to distinguish simple and complex exposure histories, and to better determine exposure ages

  16. A measurement of the low frequency spectrum of the cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Levin, S.M.

    1987-04-01

    As part of a larger effort to measure the spectrum of the Cosmic Background Radiation (CBR) at low frequencies, the intensity of the CBR has been measured at a frequency of 1.410 GHz. The measurement was made by comparing the power received from the sky with the power received from a specially designed cooled calibration target with known properties. Sources of radiation other than the CBR were then identified and subtracted to calculate the antenna temperature of the CBR at 1.410 GHz. The instrument used to measure the CBR was a total-power microwave radiometer with a 25 MHz bandwidth centered at 1.410 GHz. The radiometer had a noise temperature of 80 K, and sufficient data were taken that radiometer noise did not contribute significantly to the total measurement error. The sources of error were predominantly systematic in nature, and the largest error was due to uncertainty in the reflection characteristics of the cold-load calibrator. Identification and subtraction of signals from the Galaxy (0.7 K) and the Earth's atmosphere (0.8 K) were also significant parts of the data reduction and error analysis. The brightness temperature of the Cosmic Background Radiation at 1.410 GHz is 222. +- 0.55 Kelvin. The spectrum of the CBR, as determined by this measurement and other published results, is consistent with a blackbody spectrum of temperature 2.741 +- 0.016. Constraints on the amount by which the CBR spectrum deviates from Planck spectrum are used to place limits on energy releases early in the history of the universe. 55 refs., 25 figs., 8 tabs

  17. Theoretical investigations of the anisotropy of the cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Wilson, M.L.

    1981-01-01

    In this work, the anisotropy of the cosmic microwave background radiation is calculated within the context of the standard Big Bang cosmological model. The results of the calculations for different initial conditions are compared to the observational data available in order to try to learn more about conditions in the early universe. It is found that a model which has isothermal fluctuations superimposed on the standard model can explain all of the observations so far. In fact, a range of models with different initial densities can explain the observations. There is not enough information at present to choose among these models, but more data should be available in the near future

  18. Elemental composition of cosmic ray

    International Nuclear Information System (INIS)

    Yanagida, Shohei

    1987-01-01

    The report first summarizes some data that have been obtained so far from observation of isotopes and elements in cosmic rays in the low energy region. Then, objectives of studies planned to be carried out with Astromag are outlined and the number of incident particles expected to be measured by baloon observation is estimated. Heavy elements with atomic numbers of greater than 30 are considered to be formed through neutron absorption reactions by the s- or r-process. Observations show that products of the r-process is abundant in cosmic ray sources. The escape length depends on energy. In relation to this, it has been reported that the ratios Ar-Fe and Ca-Fe increase above 200 GeV-n while such a tendency is not observed for K, Sc, Ti or V. Thus, no satisfactory models are available at present which can fully explain the changes in the escape length. The ratio 3 He- 4 He in the range of 5 - 10 GeV-n is inconsistent with the general theory that interprets the escape length of heavy elements. Some models, including the supermetallicity model and Wolf Rayet theory, have been proposed to explain unusual ratios of isotopes in cosmic rays, but more measurements are required to verify them. It is expected that Astromag can serve to make observations that can clarify these points. (Nogami, K.)

  19. The absence of distortion in the cosmic microwave background spectrum and superconducting cosmic strings

    International Nuclear Information System (INIS)

    Sanchez, N.; Signore, M.

    1990-01-01

    From the results of recent measurements we place new constraints on superconducting cosmic strings (SCS) and on their cosmological evolution, independently of numerical simulation results. The absence of distortion in the cosmic microwave background radiation (MBR) spectrum recently reported from the preliminary data of the COBE (Cosmic background explorer) satellite, together with the available MBR angular temperature ΔT/T measurements and the latest fast pulsar timings, allow us to obtain (i) the electromagnetic-to-gravitational radiation ratio released by SCS loops, f -2 , (ii) the chemical potential due to SCS, μ 0SCS -3 , (iii) constraints on the loop evolution parameters which we confront to those given by numerical simulations, and (iv) limits on the string parameter Gμ: those obtained from COBE's data (Gμ -6 ) converge to those given by the latest PSR 1937+21 timing. Both limits on Gμ are reduced by an order of magnitude when taking into account numerical simulation results. (orig.)

  20. Gamma-ray astronomy and cosmic-ray origin theory

    International Nuclear Information System (INIS)

    Ginzburg, V.L.

    1973-01-01

    A theory of the origin of cosmic radiation is discussed in light of the advances made in gamma-ray astronomy. Arguments against metagalactic models for the origin of cosmic rays are emphasized. (U.S.)

  1. Energetic Processing of Interstellar Silicate Grains by Cosmic Rays

    Energy Technology Data Exchange (ETDEWEB)

    Bringa, E M; Kucheyev, S O; Loeffler, M J; Baragiola, R A; Tielens, A G Q M; Dai, Z R; Graham, G; Bajt, S; Bradley, J; Dukes, C A; Felter, T E; Torres, D F; van Breugel, W

    2007-03-28

    While a significant fraction of silicate dust in stellar winds has a crystalline structure, in the interstellar medium nearly all of it is amorphous. One possible explanation for this observation is the amorphization of crystalline silicates by relatively 'low' energy, heavy ion cosmic rays. Here we present the results of multiple laboratory experiments showing that single-crystal synthetic forsterite (Mg{sub 2}SiO{sub 4}) amorphizes when irradiated by 10 MeV Xe{sup ++} ions at large enough fluences. Using modeling, we extrapolate these results to show that 0.1-5.0 GeV heavy ion cosmic rays can rapidly ({approx}70 Million yrs) amorphize crystalline silicate grains ejected by stars into the interstellar medium.

  2. Transient absorption spectroscopy in biology using the Super-ACO storage ring FEL and the synchrotron radiation combination

    International Nuclear Information System (INIS)

    Renault, Eric; Nahon, Laurent; Garzella, David; Nutarelli, Daniele; De Ninno, Giovanni; Hirsch, Matthias; Couprie, Marie Emmanuelle

    2001-01-01

    The Super-ACO storage ring FEL, covering the UV range down to 300 nm with a high average power (300 mW at 350 nm) together with a high stability and long lifetime, is a unique tool for the performance of users applications. We present here the first pump-probe two color experiments on biological species using a storage ring FEL coupled to the synchrotron radiation. The intense UV pulse of the Super-ACO FEL is used to prepare a high initial concentration of chromophores in their first singlet electronic excited state. The nearby bending magnet synchrotron radiation provides, on the other hand a pulsed, white light continuum (UV-IR), naturally synchronized with the FEL pulses and used to probe the photochemical subsequent events and the associated transient species. We have demonstrated the feasibility with a dye molecule (POPOP) observing a two-color effect, signature of excited state absorption and a temporal signature with Acridine. Applications on various chromophores of biological interest are carried out, such as the time-resolved absorption study of the first excited state of Acridine

  3. Cosmic microwave background, where next?

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    Ground-based, balloon-borne and space-based experiments will observe the Cosmic Microwave Background in greater details to address open questions about the origin and the evolution of the Universe. In particular, detailed observations the polarization pattern of the Cosmic Microwave Background radiation have the potential to directly probe physics at the GUT scale and illuminate aspects of the physics of the very early Universe.

  4. Cosmic ray radio emission as air shower detection

    International Nuclear Information System (INIS)

    Curutiu, Alexandru; Rusu, Mircea; Isar, Gina; Zgura, Sorin

    2004-01-01

    The possibility of radio-detection of ultra-high energy cosmic rays (within the 10 to 100 MHz range) are discussed. Currently, air showers are detected by various methods, mainly based on particle detectors (KASCADE, Auger) or optical detection (Cerenkov radiation). Recently,to detect radio emission from cosmic ray air showers a method using electromagnetic radiation in low frequency domain (LOFAR) was proposed. We are investigating this possibility, using simulation codes created to investigate electromagnetic radiation of intricate antennae structure, for example fractal antennas. Some of the preliminary results will be communicated in this session. (authors)

  5. Cosmic-ray-induced radiation environment and dose to man for low-orbit space applications

    International Nuclear Information System (INIS)

    Sandmeier, H.A.; Hansen, G.E.; Battat, M.E.; O'Brien, K.

    1981-09-01

    Neutrons and photons resulting from the interaction of galactic cosmic rays with the material of an orbiting satellite or an orbiting space station at an altitude of some few hundreds of kilometers, and below the level of the radiation belts, have been calculated as a function of geomagnetic latitude and solar activity level. The photon and neutron leakage currents from the top of the atmosphere have been computed. The radiation dose-equivalent rate to an unshielded astronaut has also been calculated. The maximum dose-equivalent rate, near the magnetic poles, was 2 mrem/h. In deep space this would amount to 18 rem/y, indicating that for a prolonged stay in space, shielding would be needed

  6. 1912 – 2012: a century of studying cosmic rays

    CERN Multimedia

    Anaïs Schaeffer

    2012-01-01

    One year ago, the Alpha Magnetic Spectrometer was docked to the International Space Station. This state-of-the-art tool for studying cosmic rays has revolutionised methods of detecting cosmic radiation, which was discovered barely a century ago.   Victor Francis Hess (in the basket), back from his balloon flight in August 1912. Source: American Physical Society. Exactly one hundred years ago, the Austrian-American physicist Victor Francis Hess discovered cosmic rays. The researcher observed the phenomenon while on board a balloon; he found that at an altitude of 1,000 to 5,000 metres, the wires of his Wulf electrometer (a tool used to measure radiation) showed an increase in electrical charge. Hess had just proven the existence of ionising radiation coming from outside the Earth’s atmosphere. Twenty years or so later, the invention of the Geiger-Müller counter enabled physicists to study the properties of the rays more precisely. One century later, cosmic rays and the ques...

  7. Proliferation of sharp kinks on cosmic (super)string loops with junctions

    International Nuclear Information System (INIS)

    Binetruy, P.; Bohe, A.; Hertog, T.; Steer, D. A.

    2010-01-01

    Motivated by their effect on the gravitational wave signal emitted by cosmic strings, we study the dynamics of kinks on strings of different tensions meeting at junctions. The propagation of a kink through a Y junction leads to the formation of three 'daughter' kinks. Assuming a uniform distribution of the incoming wave vectors at the junction, we find there is a significant region of configuration space in which the sharpness of at least one of the daughter kinks is enhanced relative to the sharpness of the initial kink. For closed loops with junctions we show this leads to an exponential growth in time of very sharp kinks. Using numerical simulations of realistic, evolving cosmic string loops with junctions to calculate the distribution of kink amplitudes as a function of time, we show that loops of this kind typically develop several orders of magnitude of very sharp kinks before the two junctions collide. This collision, or other effects such as gravitational backreaction, may end the proliferation.

  8. Cosmic ray exposure in aircraft and space flight

    International Nuclear Information System (INIS)

    Kosako, Toshiso; Sugiura, Nobuyuki; Iimoto, Takeshi

    2000-01-01

    The exposure from cosmic ray radiation to the workers and public is a new aspect of exposure that was cased by the development of science and technology. ICRP Publication 60 says: 'to provide some practical guidance, the Commission recommends that there should be a requirement to include exposure to natural sources as part of occupational exposure only in the following cases: radon..., some natural radionuclides..., operation of jet air craft, space flight'. For this situation what kind of radiation protection concept is applicable? And what kind of radiation guideline and procedure are possible to propose? Here, we would like to review the past activities on this issue and to summarize the concepts in ICRP concerning to these exposure. Then the recommended radiation protection system will be proposed as one trial to this solution. In the paper the characters of cosmic ray were firstly reviewed. Cosmic rays are consisted by solar one and galactic one. Both of them have high energy and this will cause the difficulty of dosimetry because of lacking of physical and biological data. Next discussion point is a classification of exposure. For this, several classifications were done: jet airplane flight, supersonic airplane flight and space flight. Other classification is aircrew (occupational exposure), passengers (public exposure), frequent flyers (gray zone), space astronauts (special mission), and pregnant women. Considering the real level of radiation the practical radiation control is proposed including the cosmic radiation exposure prediction method by computer codes. The discussion of space astronauts is a little different for the highness of radiation doses. The dose levels will be obtained through the discussion of lifetime risk balancing their mission importance. (author)

  9. SuperB: A High-Luminosity Asymmetric e+e- Super Flavor Factory

    Energy Technology Data Exchange (ETDEWEB)

    Bona, M.; /et al.

    2007-05-18

    We discuss herein the exciting physics program that can be accomplished with a very large sample of heavy quark and heavy lepton decays produced in the very clean environment of an e{sup +}e{sup -} collider; a program complementary to that of an experiment such as LHCb at a hadronic machine. It then presents the conceptual design of a new type of e{sup +}e{sup -} collider that produces a nearly two-order-of-magnitude increase in luminosity over the current generation of asymmetric B Factories. The key idea is the use of low emittance beams produced in an accelerator lattice derived from the ILC Damping Ring Design, together with a new collision region, again with roots in the ILC final focus design, but with important new concepts developed in this design effort. Remarkably, SuperB produces this very large improvement in luminosity with circulating currents and wallplug power similar to those of the current B Factories. There is clear synergy with ILC R&D; design efforts have already influenced one another, and many aspects of the ILC Damping Rings and Final Focus would be operationally tested at SuperB. Finally, the design of an appropriate detector, based on an upgrade of BABAR as an example, is discussed in some detail. A preliminary cost estimate is presented, as is an example construction timeline.

  10. Southern Hemisphere Measurement of the Anisotropy in the CosmicMicrowave Background Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Smoot, George F.; Lubin, Phil M.

    1979-06-01

    A recent measurement of the anisotropy in the Cosmic Background Radiation from the southern hemisphere (Lima, Peru) is essentially in agreement with previous measurements from the northern hemisphere. The net anisotropy can be described as a first order spherical harmonic (Doppler) anisotropy of amplitude 3.1 {+-} 0.4 m{sup o}K with a quadrupole anisotropy of less than 1 m{sup o}K. In addition, measurements of the linear polarization yield an upper limit of 1 m{sup o}K, or one part in 3000, at 95% C.L. for the amplitudes of any spherical harmonic through third order.

  11. The Cosmic Microwave Background Anisotropy

    Science.gov (United States)

    Bennett, C. L.

    1994-12-01

    The properties of the cosmic microwave background radiation provide unique constraints on the history and evolution of the universe. The first detection of anisotropy of the microwave radiation was reported by the COBE Team in 1992, based on the first year of flight data. The latest analyses of the first two years of COBE data are reviewed in this talk, including the amplitude of the microwave anisotropy as a function of angular scale and the statistical nature of the fluctuations. The two-year results are generally consistent with the earlier first year results, but the additional data allow for a better determination of the key cosmological parameters. In this talk the COBE results are compared with other observational anisotropy results and directions for future cosmic microwave anisotropy observations will be discussed. The National Aeronautics and Space Administration/Goddard Space Flight Center (NASA/GSFC) is responsible for the design, development, and operation of the Cosmic Background Explorer (COBE). Scientific guidance is provided by the COBE Science Working Group.

  12. Reionization during the dark ages from a cosmic axion background

    Energy Technology Data Exchange (ETDEWEB)

    Evoli, Carmelo [Gran Sasso Science Institute, Viale Francesco Crispi 7, 67100 L' Aquila (Italy); Leo, Matteo [Institute for Particle Physics Phenomenology, Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Mirizzi, Alessandro [Dipartimento Interateneo di Fisica ' ' Michelangelo Merlin' ' , Via Amendola 173, 70126 Bari (Italy); Montanino, Daniele, E-mail: carmelo.evoli@gssi.infn.it, E-mail: matteo.leo@durham.ac.uk, E-mail: alessandro.mirizzi@ba.infn.it, E-mail: daniele.montanino@le.infn.it [Dipartimento di Matematica e Fisica ' ' Ennio De Giorgi' ' , Via Arnesano, 73100 Lecce (Italy)

    2016-05-01

    Recently it has been pointed out that a cosmic background of relativistic axion-like particles (ALPs) would be produced by the primordial decays of heavy fields in the post-inflation epoch, contributing to the extra-radiation content in the Universe today. Primordial magnetic fields would trigger conversions of these ALPs into sub-MeV photons during the dark ages. This photon flux would produce an early reionization of the Universe, leaving a significant imprint on the total optical depth to recombination τ. Using the current measurement of τ and the limit on the extra-radiation content Δ N {sub eff} by the Planck experiment we put a strong bound on the ALP-photon conversions. Namely we obtain upper limits on the product of the photon-ALP coupling constant g {sub a} {sub γ} times the magnetic field strength B down to g {sub a} {sub γ} B ∼> 6 × 10{sup −18} GeV{sup −1} nG for ultralight ALPs.

  13. Ultrarelativistic heavy ions

    International Nuclear Information System (INIS)

    Pugh, H.G.

    1980-12-01

    Studies with ultrarelativistic heavy ions combine aspects of cosmic ray physics, particle physics, nuclear physics, astrophysics and cosmogenesis. The leading theoretical concerns are the behavior of matter at very high-energy density and flux, the general behavior of space time in collisions, relativistic nuclear theory, and quantum chromodynamics. The field has developed over a period of more than thirty years, since the first observation of heavy nuclei in cosmic rays and the major developments of understanding of high-energy collisions made by Fermi and Landau in the early fifties. In the late sixties the discovery of the parton content of nucleons was rapidly followed by a great extension of high-energy collision phenomenology at the CERN ISR and subsequent confirmation of the QCD theory. In parallel the study of p-nucleus and nucleus-nucleus collisions at very high energies, especially at the CERN PS, Fermilab and the Bevalac, and in cosmic rays demonstrated that studies involving the nucleus opened up a new dimension in studies of the hadronic interaction. It is now at a high level of interest on an international scale, with major new accelerators being proposed to dedicate to this kind of study

  14. Interpreting the cosmic ray composition

    Energy Technology Data Exchange (ETDEWEB)

    O' C Drury, L.; Ellisson, D.C; Meyer, J.-P

    2000-01-31

    The detailed pattern of elemental abundances in the Galactic Cosmic Rays is well determined at energies of a few GeV per nucleon. After correction for propagation effects the inferred source composition shows significant deviations from the standard pattern of Galactic elemental abundances. These deviations, surprisingly overabundances of the heavy elements relative to Hydrogen, are clearly a significant clue to the origin of the cosmic rays, but one which has proven very difficult to interpret. We have recently shown that the 'standard' model for the origin of the bulk of the Galactic cosmic rays, namely acceleration by the diffusive shock acceleration process at the strong shocks associated with supernova remnants, can quantitatively explain all features of the source composition if the acceleration occurs from a dusty interstellar medium. This success must be regarded as one of the stronger pieces of evidence in favour of the standard model.

  15. Interpreting the cosmic ray composition

    International Nuclear Information System (INIS)

    O'C Drury, L.; Ellisson, D.C; Meyer, J.-P.

    2000-01-01

    The detailed pattern of elemental abundances in the Galactic Cosmic Rays is well determined at energies of a few GeV per nucleon. After correction for propagation effects the inferred source composition shows significant deviations from the standard pattern of Galactic elemental abundances. These deviations, surprisingly overabundances of the heavy elements relative to Hydrogen, are clearly a significant clue to the origin of the cosmic rays, but one which has proven very difficult to interpret. We have recently shown that the 'standard' model for the origin of the bulk of the Galactic cosmic rays, namely acceleration by the diffusive shock acceleration process at the strong shocks associated with supernova remnants, can quantitatively explain all features of the source composition if the acceleration occurs from a dusty interstellar medium. This success must be regarded as one of the stronger pieces of evidence in favour of the standard model

  16. Cosmic radiation induced chromosomal aberrations in human lymphocytes

    International Nuclear Information System (INIS)

    De Angelis, G.; Facius, R.; Reitz, G.

    2003-01-01

    Since decades, elevated frequencies of dicentric chromosomes (DIC) in human lymphocytes have successfully been used as a biological dosimeter in cases of acute, often accidental exposures to ionizing radiation. As long as duration and time lags after exposure are small compared to the lifetime of DIC, their frequencies can also be used to assess doses from protracted, chronic irradiation. E.g., within the substantial range of uncertainties, the frequencies of DIC observed in cosmonauts are compatible with the frequencies expected from doses of low and high LET radiation to which they were exposed in low earth orbit (LEO). On the other hand, frequencies of DIC detected in lymphocytes of civilian aviation crewmembers rarely correlate with the doses accumulated all along their professional career. For such long duration exposures with relatively low induction rates, the concomitant decay of DIC frequencies due to the removal during exposure of lymphocytes carrying DIC has to be taken into account. We present temporal profiles of frequencies of DIC during the exposure calculated with a model of exponential decay of DIC for some scenarios of chronic exposure to cosmic radiation. E.g., even after a 'heavily' shielded Mars mission, the expected frequencies of DIC in lymphocytes of astronauts will be 10 to 40 times higher than the terrestrial control levels. For air flight personnel we calculated the time profiles of frequencies of DIC in lymphocytes of a 'typical' pilot, a male cabin attendant and a female cabin attendant whose professional radiation exposures were recalculated for the actual flight routes flown during their entire flight career as recorded in detailed duty logs. These results demonstrate that experimental (epidemiological) studies concerning DIC in air or space flight personnel must explicitly take into consideration the temporal exposure profiles in the prospective study population and that the point in time at which blood samples are to be drawn must

  17. Radiation Measured for Chinese Satellite SJ-10 Space Mission

    Science.gov (United States)

    Zhou, Dazhuang; Sun, Yeqing; Zhang, Binquan; Zhang, Shenyi; Sun, Yueqiang; Liang, Jinbao; Zhu, Guangwu; Jing, Tao; Yuan, Bin; Zhang, Huanxin; Zhang, Meng; Wang, Wei; Zhao, Lei

    2018-02-01

    Space biological effects are mainly a result of space radiation particles with high linear energy transfer (LET); therefore, accurate measurement of high LET space radiation is vital. The radiation in low Earth orbits is composed mainly of high-energy galactic cosmic rays (GCRs), solar energetic particles, particles of radiation belts, the South Atlantic Anomaly, and the albedo neutrons and protons scattered from the Earth's atmosphere. CR-39 plastic nuclear track detectors sensitive to high LET are the best passive detectors to measure space radiation. The LET method that employs CR-39 can measure all the radiation LET spectra and quantities. CR-39 detectors can also record the incident directions and coordinates of GCR heavy ions that pass through both CR-39 and biosamples, and the impact parameter, the distance between the particle's incident point and the seed's spore, can then be determined. The radiation characteristics and impact parameter of GCR heavy ions are especially beneficial for in-depth research regarding space radiation biological effects. The payload returnable satellite SJ-10 provided an excellent opportunity to investigate space radiation biological effects with CR-39 detectors. The space bio-effects experiment was successfully conducted on board the SJ-10 satellite. This paper introduces space radiation in low Earth orbits and the LET method in radiation-related research and presents the results of nuclear tracks and biosamples hitting distributions of GCR heavy ions, the radiation LET spectra, and the quantities measured for the SJ-10 space mission. The SJ-10 bio-experiment indicated that radiation may produce significant bio-effects.

  18. Analysis and application of heavy isotopes in the environment

    Science.gov (United States)

    Steier, Peter; Dellinger, Franz; Forstner, Oliver; Golser, Robin; Knie, Klaus; Kutschera, Walter; Priller, Alfred; Quinto, Francesca; Srncik, Michaela; Terrasi, Filippo; Vockenhuber, Christof; Wallner, Anton; Wallner, Gabriele; Wild, Eva Maria

    2010-04-01

    A growing number of AMS laboratories are pursuing applications of actinides. We discuss the basic requirements of the AMS technique of heavy (i.e., above ˜150 amu) isotopes, present the setup at the Vienna Environmental Research Accelerator (VERA) which is especially well suited for the isotope 236U, and give a comparison with other AMS facilities. Special emphasis will be put on elaborating the effective detection limits for environmental samples with respect to other mass spectrometric methods. At VERA, we have carried out measurements for radiation protection and environmental monitoring ( 236U, 239,240,241,242,244Pu), astrophysics ( 182Hf, 236U, 244Pu, 247Cm), nuclear physics, and a search for long-lived super-heavy elements ( Z > 100). We are pursuing the environmental distribution of 236U, as a basis for geological applications of natural 236U.

  19. Analysis and application of heavy isotopes in the environment

    International Nuclear Information System (INIS)

    Steier, Peter; Dellinger, Franz; Forstner, Oliver; Golser, Robin; Knie, Klaus; Kutschera, Walter; Priller, Alfred; Quinto, Francesca; Srncik, Michaela; Terrasi, Filippo; Vockenhuber, Christof; Wallner, Anton; Wallner, Gabriele; Wild, Eva Maria

    2010-01-01

    A growing number of AMS laboratories are pursuing applications of actinides. We discuss the basic requirements of the AMS technique of heavy (i.e., above ∼150 amu) isotopes, present the setup at the Vienna Environmental Research Accelerator (VERA) which is especially well suited for the isotope 236 U, and give a comparison with other AMS facilities. Special emphasis will be put on elaborating the effective detection limits for environmental samples with respect to other mass spectrometric methods. At VERA, we have carried out measurements for radiation protection and environmental monitoring ( 236 U, 239,240,241,242,244 Pu), astrophysics ( 182 Hf, 236 U, 244 Pu, 247 Cm), nuclear physics, and a search for long-lived super-heavy elements (Z > 100). We are pursuing the environmental distribution of 236 U, as a basis for geological applications of natural 236 U.

  20. Key scientific problems from Cosmic Ray History

    Science.gov (United States)

    Lev, Dorman

    2016-07-01

    Recently was published the monograph "Cosmic Ray History" by Lev Dorman and Irina Dorman (Nova Publishers, New York). What learn us and what key scientific problems formulated the Cosmic Ray History? 1. As many great discoveries, the phenomenon of cosmic rays was discovered accidentally, during investigations that sought to answer another question: what are sources of air ionization? This problem became interesting for science about 230 years ago in the end of the 18th century, when physics met with a problem of leakage of electrical charge from very good isolated bodies. 2. At the beginning of the 20th century, in connection with the discovery of natural radioactivity, it became apparent that this problem is mainly solved: it was widely accepted that the main source of the air ionization were α, b, and γ - radiations from radioactive substances in the ground (γ-radiation was considered as the most important cause because α- and b-radiations are rapidly absorbed in the air). 3. The general accepted wrong opinion on the ground radioactivity as main source of air ionization, stopped German meteorologist Franz Linke to made correct conclusion on the basis of correct measurements. In fact, he made 12 balloon flights in 1900-1903 during his PhD studies at Berlin University, carrying an electroscope to a height of 5500 m. The PhD Thesis was not published, but in Thesis he concludes: "Were one to compare the presented values with those on ground, one must say that at 1000 m altitude the ionization is smaller than on the ground, between 1 and 3 km the same amount, and above it is larger with values increasing up to a factor of 4 (at 5500 m). The uncertainties in the observations only allow the conclusion that the reason for the ionization has to be found first in the Earth." Nobody later quoted Franz Linke and although he had made the right measurements, he had reached the wrong conclusions, and the discovery of CR became only later on about 10 years. 4. Victor Hess, a

  1. Cosmic radiation monitoring at low-Earth orbit by means of thermoluminescence and plastic nuclear track detectors

    Czech Academy of Sciences Publication Activity Database

    Ambrožová, Iva; Pachnerová Brabcová, Kateřina; Kubančák, Ján; Šlegl, Jakub; Tolochek, R. V.; Ivanova, O. A.; Shurshakov, V. A.

    2017-01-01

    Roč. 106, č. 12 (2017), s. 262-266 ISSN 1350-4487 R&D Projects: GA ČR GJ15-16622Y Institutional support: RVO:61389005 Keywords : BION-M1 * cosmic radiation * low earth orbit * passive detector * thermoluminescent detector * plastic nuclear track detector Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nuclear physics Impact factor: 1.442, year: 2016

  2. Impact of ultrasonication time on elution of super heavy oil and its biomarkers from aging soils using a Triton X-100 micellar solution

    International Nuclear Information System (INIS)

    Ji Guodong; Zhou Guohui

    2010-01-01

    An ultrasound-enhanced elution system with Triton X-100 solution was used to remediate aging soils contaminated with super heavy oil. We used GC/MS, SEM, and X-ray diffraction (XRD) to analyze the effect of ultrasonic time (0-1800 s) on the elution of super heavy oil and its three characteristic biomarkers (C 26-34 17α 25-norhopanes, C 26-28 triaromatic steroid [TAS], and C 27-29 methyl triaromatic steroid [MTAS]). The oil and biomarkers remaining in the treated soils followed similar second-order functions with increasing ultrasonication times. Biomarker elution was closely related to carbon numbers in the marker. For C 26-34 17α 25-norhopanes, the smaller molecules were more readily eluted during 0-360 s ultrasound. This trend was reversed upon application of ultrasound during 1080-1800 s, with improved elution of larger molecules and elution followed a similar second-order function. For C 26-28 TAS, smaller molecules were more readily eluted but the elution of larger molecules followed a similar second-order function. For C 27-29 MTAS, elution of larger molecules was close to that of C 26-34 17α 25-norhopanes. Results of SEM and XRD indicated that the mineral and chemical compositions of soils eluted at ultrasonication times of 1080-1800 s closely resembled clean soils.

  3. Heavy weak bosons, cosmic antimatter and DUMAND. 2: Looking for cosmic antimatter with DUMAND

    Science.gov (United States)

    Stecker, F. W.; Brown, R. W.

    1980-01-01

    Discussion of various means for using high energy neutrino astronomy to directly test for the existence of cosmic antimatter on a significant cosmological scale is presented. Studies of the ultrahigh energy diffuse neutrino background using acoustic detector and high mass Glashow resonances are reported. Point source studies are also discussed.

  4. Cosmic ray electrons and protons, and their antiparticles

    International Nuclear Information System (INIS)

    Boezio, Mirko

    2014-01-01

    Cosmic rays are a sample of solar, galactic, and extragalactic matter. Their origin, acceleration mechanisms, and subsequent propagation toward Earth have intrigued scientists since their discovery. These issues can be studied via analysis of the energy spectra and composition of cosmic rays. Protons are the most abundant component of the cosmic radiation, and many experiments have been dedicated to the accurate measurement of their spectra. Complementary information is provided by electrons, which comprise about 1% of the cosmic radiation. Because of their low mass, electrons experience severe energy losses through synchrotron emission in the galactic magnetic field and inverse Compton scattering of radiation fields. Electrons therefore provide information on the local galactic environment that is not accessible from the study of the cosmic ray nuclei. Antiparticles, namely antiprotons and positrons, are produced in the interaction between cosmic ray nuclei and the interstellar matter. They are therefore intimately linked to the propagation mechanisms of the parent nuclei. Novel sources of primary cosmic ray antiparticles of either astrophysical (e.g., positrons from pulsars) or exotic origin (e.g., annihilation of dark matter particles) may exist. The nature of dark matter is one of the most prominent open questions in science today. An observation of positrons from pulsars would open a new observation window on these sources. Several experiments equipped with state-of-the art detector systems have recently presented results on the energy spectra of electrons, protons, and their antiparticles with a significant improvement in statistics and better control of systematics The status of the field will be reviewed, with a focus on these recent scientific results. (author)

  5. Role of Turbulent Damping in Cosmic Ray Galactic Winds

    Science.gov (United States)

    Holguin, Francisco; Ruszkowski, Mateusz; Lazarian, Alex; Yang, H. Y. Karen

    2018-06-01

    Large-scale galactic winds driven by stellar feedback are one phenomenon that influences the dynamical and chemical evolution of a galaxy, pushing and redistributing material throughout the interstellar medium (ISM) and galactic halo. A detailed understanding of the exact physical mechanisms responsible for these winds is lacking. Non-thermal feedback from galactic cosmic rays (CR), high-energy charged particles accelerated in supernovae and young stars, can impact the efficiency in accelerating the wind. In the self-confinement model, CR stream along magnetic field lines at the Alfven speed due to scattering off self-excited Aflv{é}n waves. However, magneto-hydrodynamic (MHD) turbulence stirred up by stellar feedback dissipates these confining waves, allowing CR to be super Aflvenic. Previous simulations relying on a simplified model of transport have shown that super-Alfv{é}nic streaming of CRs can launch a stronger wind. We perform three-dimensional MHD simulations of a section of a galactic disk, including CR streaming dependent on the local environment, using a realistic model of turbulent dissipation of Alfven waves presented in Lazarian (2016). In this implementation, the CR streaming speed can be super Alfv{é}nic depending on local conditions. We compare results for Alfv{é}nic and locally determined streaming, and find that gas/CR distributions and instantaneous mass loading factor of the wind are different depending on the level of turbulence.Lazarian, A. “Damping of Alfven waves by turbulence and its consequences: from cosmic-ray streaming to launching winds.” ApJ. Vol. 833, Num. 2. (2016).

  6. Cosmic-ray exposure records and origins of meteorites

    International Nuclear Information System (INIS)

    Reedy, R.C.

    1985-01-01

    The cosmic-ray records of meteorites can be used to infer much about their origins and recent histories. Some meteorites had simple cosmic-ray exposure histories, while others had complex exposure histories with their cosmogenic products made both before and after a collision in space. The methods used to interpret meteorites' cosmic-ray records, especially identifying simple or complex exposure histories, often are inadequate. Besides spallogenic radionuclides and stable nuclides, measurements of products that have location-sensitive production rates, such as the tracks of heavy cosmic-ray nuclei or neutron-capture nuclides, are very useful in accurately determining a meteorite's history. Samples from different, known locations of a meteorite help in studying the cosmic-ray record. Such extensive sets of meteorite measurements, plus theoretical modeling of complex histories, will improve our ability to predict the production of cosmogenic nuclides in meteorites, to distinguish simple and complex exposure histories, and to better determine exposure ages

  7. Cosmic rays and terrestrial life: A brief review

    Science.gov (United States)

    Atri, Dimitra; Melott, Adrian L.

    2014-01-01

    “The investigation into the possible effects of cosmic rays on living organisms will also offer great interest.” - Victor F. Hess, Nobel Lecture, December 12, 1936 High-energy radiation bursts are commonplace in our Universe. From nearby solar flares to distant gamma ray bursts, a variety of physical processes accelerate charged particles to a wide range of energies, which subsequently reach the Earth. Such particles contribute to a number of physical processes occurring in the Earth system. A large fraction of the energy of charged particles gets deposited in the atmosphere, ionizing it, causing changes in its chemistry and affecting the global electric circuit. Remaining secondary particles contribute to the background dose of cosmic rays on the surface and parts of the subsurface region. Life has evolved over the past ∼3 billion years in presence of this background radiation, which itself has varied considerably during the period [1-3]. As demonstrated by the Miller-Urey experiment, lightning plays a very important role in the formation of complex organic molecules, which are the building blocks of more complex structures forming life. There is growing evidence of increase in the lightning rate with increasing flux of charged particles. Is there a connection between enhanced rate of cosmic rays and the origin of life? Cosmic ray secondaries are also known to damage DNA and cause mutations, leading to cancer and other diseases. It is now possible to compute radiation doses from secondary particles, in particular muons and neutrons. Have the variations in cosmic ray flux affected the evolution of life on earth? We describe the mechanisms of cosmic rays affecting terrestrial life and review the potential implications of the variation of high-energy astrophysical radiation on the history of life on earth.

  8. High dose radiation damage in nuclear energy structural materials investigated by heavy ion irradiation simulation

    International Nuclear Information System (INIS)

    Zheng Yongnan; Xu Yongjun; Yuan Daqing

    2014-01-01

    Structural materials in ITER, ADS and fast reactor suffer high dose irradiations of neutrons and/or protons, that leads to severe displacement damage up to lOO dpa per year. Investigation of radiation damage induced by such a high dose irradiation has attracted great attention along with the development of nuclear energy facilities of new generation. However, it is deeply hampered for the lacking of high dose neutron and proton sources. Irradiation simulation of heavy ions produced by accelerators opens up an effective way for laboratory investigation of high dose irradiation induced radiation damage encountered in the ITER, ADS, etc. Radiation damage is caused mainly by atomic displacement in materials. The displacement rate of heavy ions is about lO 3 ∼10 7 orders higher than those of neutrons and protons. High displacement rate of heavy ions significantly reduces the irradiation time. The heavy ion irradiation simulation technique (HIIS) technique has been developed at China Institute of Atomic Energy and a series of the HIIS experiments have been performed to investigate radiation damage in stainless steels, tungsten and tantalum at irradiation temperatures from room temperature to 800 ℃ and in the irradiation dose region up to 100 dpa. The experimental results show that he radiation swelling peak for the modified stainless steel appears in the temperature region around 580 ℃ and the radiation damage is more sensitive to the temperature, the size of the radiation induced vacancy cluster or void increase with the increasing of the irradiation dose, and among the three materials the home-made modified stainless steel has the best radiation resistant property. (authors)

  9. CHARGE SPECTRUM OF HEAVY AND SUPERHEAVY COMPONENTS OF GALACTIC COSMIC RAYS: RESULTS OF THE OLIMPIYA EXPERIMENT

    Energy Technology Data Exchange (ETDEWEB)

    Alexeev, Victor; Kalinina, Galina; Pavlova, Tatyana, E-mail: aval37@mail.ru, E-mail: gakalin@mail.ru, E-mail: pavlova4tat@mail.ru [Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, 19 Kosygin Str., Moscow 119991 (Russian Federation); and others

    2016-10-01

    The aim of the OLIMPIYA experiment is to search for and identify traces of heavy and superheavy nuclei of galactic cosmic rays (GCR) in olivine crystals from stony–iron meteorites serving as nuclear track detectors. The method is based on layer-by-layer grinding and etching of particle tracks in these crystals. Unlike the techniques of other authors, this annealing-free method uses two parameters: the etching rate along the track ( V {sub etch}) and the total track length ( L ), to identify charge Z of a projectile. A series of irradiations with different swift heavy ions at the accelerator facilities of GSI (Darmstadt) and IMP (Lanzhou) were performed in order to determine and calibrate the dependence of projectile charge on V {sub etch} and L . To date, one of the most essential results of the experiment is the obtained charge spectrum of GCR nuclei within the range of Z > 40, based on about 11.6 thousand processed tracks. As the result of data processing, 384 nuclei with charges Z ≥ 75 have been identified, including 10 nuclei identified as actinides (90 < Z < 103). Three tracks were identified to be produced by nuclei with charges 113 < Z < 129. Such nuclei may be part of the Island of Stability of transfermium elements.

  10. Radiation defects in lithium fluoride induced by heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Trautmann, C.; Schwartz, K.; Steckenreiter, T. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Costantini, J.M. [CEA Centre d`Etudes de Bruyeres-le-Chatel, 91 (France). DPTA/SPMC; Toulemonde, M. [Centre Interdisciplinaire de Recherches avec les Ions Lourds (CIRIL), 14 - Caen (France)

    1998-07-01

    Single crystals of lithium fluoride were irradiated with various species of heavy ions in the energy regime between 1 and 30 MeV/u. The induced radiation damage was studied with techniques such as optical absorption spectroscopy, small-angle x-ray scattering, chemical etching and profilometry, complemented by annealing experiments. Clear evidence is given for a complex track structure and defect morphology. Single defects such as F-centers are produced in a large halo of several tens of nanometers around the ion trajectory. The defect creation in this zone is similar to that under conventional radiation. For heavy ions above a critical energy loss of 10 keV/nm, new effects occur within a very small core region of 2-4 nm in diameter. The damage in this zone is responsible for chemical etching and for a characteristic anisotropic x-ray scattering. It is assumed that in this core, complex defect aggregates (e.g., cluster of color centers, molecular anions and vacancies) are created. Their formation is only slightly influenced by the irradiation temperature and takes place even at 15 K where diffusion processes of primary defects are frozen. Furthermore, irradiation with heavy ions leads to pronounced swelling effects which can be related to an intermediate zone of around 10 nm around the ion path. (orig.) 40 refs.

  11. 2nd-order optical model of the isotopic dependence of heavy ion absorption cross sections for radiation transport studies

    Science.gov (United States)

    Cucinotta, Francis A.; Yan, Congchong; Saganti, Premkumar B.

    2018-01-01

    Heavy ion absorption cross sections play an important role in radiation transport codes used in risk assessment and for shielding studies of galactic cosmic ray (GCR) exposures. Due to the GCR primary nuclei composition and nuclear fragmentation leading to secondary nuclei heavy ions of charge number, Z with 3 ≤ Z ≥ 28 and mass numbers, A with 6 ≤ A ≥ 60 representing about 190 isotopes occur in GCR transport calculations. In this report we describe methods for developing a data-base of isotopic dependent heavy ion absorption cross sections for interactions. Calculations of a 2nd-order optical model solution to coupled-channel solutions to the Eikonal form of the nucleus-nucleus scattering amplitude are compared to 1st-order optical model solutions. The 2nd-order model takes into account two-body correlations in the projectile and target ground-states, which are ignored in the 1st-order optical model. Parameter free predictions are described using one-body and two-body ground state form factors for the isotopes considered and the free nucleon-nucleon scattering amplitude. Root mean square (RMS) matter radii for protons and neutrons are taken from electron and muon scattering data and nuclear structure models. We report on extensive comparisons to experimental data for energy-dependent absorption cross sections for over 100 isotopes of elements from Li to Fe interacting with carbon and aluminum targets. Agreement between model and experiments are generally within 10% for the 1st-order optical model and improved to less than 5% in the 2nd-order optical model in the majority of comparisons. Overall the 2nd-order optical model leads to a reduction in absorption compared to the 1st-order optical model for heavy ion interactions, which influences estimates of nuclear matter radii.

  12. Measurements of cosmic-ray doses in commercial airline cabins

    International Nuclear Information System (INIS)

    Okano, M.; Fujitaka, K.; Izumo, K.

    1996-01-01

    Cosmic radiation doses which aircrew and air passengers receive in airplanes have been calling attention in many countries especially in the last decade. In this relation, various types of information had been reported on cosmic radiation intensity. In Japan, the cosmic radiation intensity had been measured in commercial airline cabins as well as chartered flights. While the intensity depends on altitude, geomagnetic latitude (or cutoff rigidity), and temporal variation of the solar activity, their doses are often speculated based on paper records on airflights combined with the intensity-altitude relationship. In this study, however, efforts were made to estimate more realistic integrated doses in airline cabins based on actual on-board measurements which had been conducted several dozens of times in each year (e.g., 45 times in 1994 and 27 times in 1995). (author)

  13. Probing the Cosmic X-Ray and MeV Gamma-Ray Background Radiation through the Anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Yoshiyuki [Stanford Univ., CA (United States). Kavli Inst. for Particle Astrophysics and Cosmology; SLAC National Accelerator Lab., Menlo Park, CA (United States); Murase, Kohta [Inst. for Advanced Study, Princeton, NJ (United States). School of Natural Sciences; Madejski, Grzegorz M. [Stanford Univ., CA (United States). Kavli Inst. for Particle Astrophysics and Cosmology; SLAC National Accelerator Lab., Menlo Park, CA (United States); Uchiyama, Yasunobu [Stanford Univ., CA (United States). Kavli Inst. for Particle Astrophysics and Cosmology; SLAC National Accelerator Lab., Menlo Park, CA (United States); Rikkyo Univ., Tokyo (Japan). Dept. of Physics

    2013-09-24

    While the cosmic soft X-ray background is very likely to originate from individual Seyfert galaxies, the origin of the cosmic hard X-ray and MeV gamma-ray background is not fully understood. It is expected that Seyferts including Compton thick population may explain the cosmic hard X-ray background. At MeV energy range, Seyferts having non-thermal electrons in coronae above accretion disks or MeV blazars may explain the background radiation. We propose that future measurements of the angular power spectra of anisotropy of the cosmic X-ray and MeV gamma-ray backgrounds will be key to deciphering these backgrounds and the evolution of active galactic nuclei (AGNs). As AGNs trace the cosmic large-scale structure, spatial clustering of AGNs exists. We show that e-ROSITA will clearly detect the correlation signal of unresolved Seyferts at 0.5-2 keV and 2-10 keV bands and will be able to measure the bias parameter of AGNs at both bands. Once the future hard X-ray all sky satellites achieve the sensitivity better than 10-12 erg/cm2/s-1 at 10-30 keV or 30-50 keV - although this is beyond the sensitivities of current hard X-ray all sky monitors - angular power spectra will allow us to independently investigate the fraction of Compton-thick AGNs in all Seyferts. We also find that the expected angular power spectra of Seyferts and blazars in the MeV range are different by about an order of magnitude, where the Poisson term, so-called shot noise, is dominant. Current and future MeV instruments will clearly disentangle the origin of the MeV gamma-ray background through the angular power spectrum.

  14. Probing the cosmic x-ray and MeV gamma ray background radiation through the anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Yoshiyuki [Stanford Univ., CA (United States); Murase, Kohta [Inst. for Advanced Study, Princeton, NJ (United States); Madejski, Grzegorz M. [Stanford Univ., CA (United States); Uchiyama, Yasunobu [Stanford Univ., CA (United States); Rikkyo Univ., Tokyo (Japan)

    2013-09-24

    While the cosmic soft X-ray background is very likely to originate from individual Seyfert galaxies, the origin of the cosmic hard X-ray and MeV gamma-ray background is not fully understood. It is expected that Seyferts including Compton thick population may explain the cosmic hard X-ray background. At MeV energy range, Seyferts having non-thermal electrons in coronae above accretion disks or MeV blazars may explain the background radiation. We propose that future measurements of the angular power spectra of anisotropy of the cosmic X-ray and MeV gamma-ray backgrounds will be key to deciphering these backgrounds and the evolution of active galactic nuclei (AGNs). As AGNs trace the cosmic large-scale structure, spatial clustering of AGNs exists. We show that e-ROSITA will clearly detect the correlation signal of unresolved Seyferts at 0.5-2 keV and 2-10 keV bands and will be able to measure the bias parameter of AGNs at both bands. Once future hard X-ray all sky satellites achieve a sensitivity better than 10–12 erg cm–2 s–1 at 10-30 keV or 30-50 keV—although this is beyond the sensitivities of current hard X-ray all sky monitors—angular power spectra will allow us to independently investigate the fraction of Compton-thick AGNs in all Seyferts. We also find that the expected angular power spectra of Seyferts and blazars in the MeV range are different by about an order of magnitude, where the Poisson term, so-called shot noise, is dominant. Current and future MeV instruments will clearly disentangle the origin of the MeV gamma-ray background through the angular power spectrum.

  15. Isotherms clustering in cosmic microwave background

    International Nuclear Information System (INIS)

    Bershadskii, A.

    2006-01-01

    Isotherms clustering in cosmic microwave background (CMB) has been studied using the 3-year WMAP data on cosmic microwave background radiation. It is shown that the isotherms clustering could be produced by the baryon-photon fluid turbulence in the last scattering surface. The Taylor-microscale Reynolds number of the turbulence is estimated directly from the CMB data as Re λ ∼10 2

  16. Exposure of Plastic Track Detectors to Relativistic Pb Beam for the Purpose of Providing Calibration for the DUBLIN-ESTEC Ultra Heavy Cosmic Ray Experiment Which was Exposed for Sixty-Nine Months in Earth Orbit

    CERN Multimedia

    2002-01-01

    % WA100 \\\\ \\\\ Solid state nuclear track detectors which formed part of the Dublin-ESTEC ultra heavy~cosmic~ray experiment aboard LDEF (Long Duration Exposure Facility) and which was deployed in Earth orbit for sixty-nine months, will be exposed to relativistic Pb ions. The experiment was the largest of its kind ever undertaken in space and has successfully accumulated more than fifteen times the world sample of cosmic ray nuclei in the region above Z~=~70. The data include the first significant sample of cosmic ray actinide elements and is of major astrophysical importance. The total number of ultra heavy nuclei (Z~$>$~70) in the Dublin-ESTEC sample is $\\sim$~2800. \\\\ \\\\The exposure will be very simple. A stack of detectors (20.5~cm~x~26~cm x~3~cm in size) will be irradiated with a low density beam of Pb ions (a few hundred per cm$^2$ would be ideal, but a wide range of densities and areas could be tolerated). The response of the detectors to these ions of known charge and velocity will be measured and the da...

  17. High-energy cosmic rays

    CERN Document Server

    Cronin, James Watson

    1996-01-01

    Recently two cosmic rays with energy in excess of 2 1020 eV have been recorded. These are some 108 times more energetic than the protons produced by accelerators on earth. There is no credible understanding of the mechanism of acceleration by known a Because of the short mean free path in the cosmic background radiation they must come from nearby distances on a cosmological scale (< 50 Mpc). Their magnetic rigidity suggests that they should point to their source. Lectures will cover the present available data on the highest energy cosmic rays, their detection, possible acceleration mechanisms, their propagation in the galaxy and in extra galactic space and design of new detectors where simulations of air show ers play an important role.

  18. Heavy ion therapy: Bevalac epoch

    International Nuclear Information System (INIS)

    Castro, J.R.

    1993-10-01

    An overview of heavy ion therapy at the Bevelac complex (SuperHILac linear accelerator + Bevatron) is given. Treatment planning, clinical results with helium ions on the skull base and uveal melanoma, clinical results with high-LET charged particles, neon radiotherapy of prostate cancer, heavy charged particle irradiation for unfavorable soft tissue sarcoma, preliminary results in heavy charged particle irradiation of bone sarcoma, and irradiation of bile duct carcinoma with charged particles and-or photons are all covered

  19. The search for super-heavy ions; La quete des noyaux super-lourds

    Energy Technology Data Exchange (ETDEWEB)

    Grevy, St. [Grand Accelerateur National d' Ions Lourds (GANIL-LPC), IN2P3 - CNRS / Ensicaen et Universite, 14 - Caen (France); Stodel, Ch. [Grand Accelerateur National d' Ions Lourds (GANIL), CEA-CNRS-IN2P3, 14 - Caen (France)

    2003-07-01

    The authors present the search for heavy nuclei, they briefly draw a historical review of the production of heavy isotopes and then describe the means and possibilities the French GANIL (national great accelerator of heavy ions) facility offers. The different steps of the experimental process are described: production, selection, detection and identification. The production cross-sections are so weak that every parameter involved in the production process has to be optimized. It appears that the limit of our technological knowledge has been reached and unless an important technical step forward it seems impossible to go down below the pico-barn (10{sup -12}*10{sup -24} cm{sup 2}) for production cross-sections. The 2 remaining ways to improve the situation are: 1) to increase the intensity of the incident particle beam (today we have < 10{sup 13} pps), this implies that an important development about accelerators and ion sources has to be achieved, 2) the other way is to use radioactive ion beams, the excess of neutrons of the incident ion gives a better production rate and will allow us to reach the neutron-rich part of the stability island. (A.C.)

  20. Ultra-relativistic heavy ions and cosmic rays

    International Nuclear Information System (INIS)

    McLerran, L.

    1983-05-01

    The collisions of ultra-relativistic heavy ions, E/sub /N/ greater than or equal to 1 TeV/nucleon are most interesting, since, at these energies, matter is produced at sufficiently high energy density that a quark-gluon plasma has a good chance to form. Very heavy ions are also most interesting since the matter forms in a larger volume than for light ions, and the matter is at a somewhat higher energy density. At very high energies with very heavy ions there is great flexibility in the experimental signals which might be studied, as well as the nature of the matter which is produced. The fragmentation region and central region provide different environments where a plasma might form. The former is baryon rich while the central region is high temperature with low baryon number density and is not accessible except at very high energies

  1. Constraining neutrino physics with big bang nucleosynthesis and cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Hansen, S.H.; Melchiorri, A.; Mangano, G.; Miele, G.; Pisanti, O.

    2002-01-01

    We perform a likelihood analysis of the recent results on the anisotropy of cosmic microwave background radiation from the BOOMERanG and DASI experiments to show that they single out an effective number of neutrinos in good agreement with standard big bang nucleosynthesis. We also consider degenerate big bang nucleosynthesis to provide new bounds on effective relativistic degrees of freedom N ν and, in particular, on the neutrino chemical potential ξ α . When including supernova type Ia data we find, at 2σ, N ν ≤7 and -0.01≤ξ e ≤0.22, vertical bar ξ μ,τ vertical bar ≤2.6

  2. Heavy ion radiation biology research facility and ongoing activities at the Inter-University Accelerator Centre, New Delhi

    International Nuclear Information System (INIS)

    Sarma, Asitikantha

    2014-01-01

    Heavy Ion Radiation Biology is an interdisciplinary science involving use of charged particle accelerator in the study of molecular biology. It is the study of the interaction of a beam of swift heavy ions with a biological system. In contrast to the sparsely ionizing photon or electron radiation, the high velocity charged heavy ions leave a track of densely populated ionization sites resulting in clustered DNA damage. The growing interest in this field encompasses the studies in gene expression, mechanisms of cell death, DNA damage and repair, signal transduction etc. induced because of this unique assault on the genetic material. IUAC radiation biology programme is focused on the in-vitro studies of different effects of heavy ion irradiation on eukaryotic cells. The facility provides a laboratory for pre and post irradiation treatment of samples. The irradiation system called ASPIRE (Automatic Sample Positioning for Irradiation in Radiation Biology Experiments) is installed at the dedicated Radiation Biology Beam line. It produces a nearly uniform flux distribution over a irradiation field of 40 mm diameter. The particle doses can be preselected and repeated within inherent statistical accuracy. The particle energy can also be measured. The facility is at present utilized by the University researchers of India. A few results obtained by the investigators would be presented. The outcome of the research in heavy ion radiation biology would be of immense use in augmenting the efficacy of Hadron therapy of cancer. The results would also contribute to the field of space radiation protection. It would also help in understanding the phenomena subsequent to complex DNA damage. (author)

  3. Cosmic radiation and airline pilots. Exposure patterns of Norwegian SAS-pilots 1960 to 1994

    International Nuclear Information System (INIS)

    Tveten, U.

    1997-02-01

    The work which is presented in this report is part of a Norwegian epidemiological project, carried out in cooperation between Institutt for Energiteknikk (IFE), the Norwegian Cancer Registry (NCR) and the Norwegian Radiation Protection Authority (NRPA). The project has been partially financed by the Norwegian Research Council. Originating from the Norwegian project, a number of similar projects have been started or are in the planning stage in a number of European countries. The present report lays the ground for estimation of individual exposure histories to cosmic radiation of pilots employed by the Scandinavian Airline System (SAS). The results presented in this report (radiation doserates for the different types of aircraft in the different years) will, in a later stage of the project, be utilized to estimate the individual radiation exposure histories. The major sources of information used as basis for this work is the collection of old SAS time tables found in the SAS Museum at Fornebu Airport in Oslo, and information provided by members of the Pilots Associations

  4. Cosmic radiation and airline pilots. Exposure patterns of Norwegian SAS-pilots 1960 to 1994

    Energy Technology Data Exchange (ETDEWEB)

    Tveten, U.

    1997-02-01

    The work which is presented in this report is part of a Norwegian epidemiological project, carried out in cooperation between Institutt for Energiteknikk (IFE), the Norwegian Cancer Registry (NCR) and the Norwegian Radiation Protection Authority (NRPA). The project has been partially financed by the Norwegian Research Council. Originating from the Norwegian project, a number of similar projects have been started or are in the planning stage in a number of European countries. The present report lays the ground for estimation of individual exposure histories to cosmic radiation of pilots employed by the Scandinavian Airline System (SAS). The results presented in this report (radiation doserates for the different types of aircraft in the different years) will, in a later stage of the project, be utilized to estimate the individual radiation exposure histories. The major sources of information used as basis for this work is the collection of old SAS time tables found in the SAS Museum at Fornebu Airport in Oslo, and information provided by members of the Pilots Associations.

  5. Charge collection characteristics of a super-thin diamond membrane detector measured with high-energy heavy ions

    International Nuclear Information System (INIS)

    Iwamoto, N.; Makino, T.; Onoda, S.; Ohshima, T.; Kamiya, T.; Kada, W.; Skukan, N.; Grilj, V.; Jaksic, M.; Pomorski, M.

    2014-01-01

    A transmission particle detector based on a super-thin diamond membrane film which can also be used simultaneously as a vacuum window for ion beam extraction has been developed. Charge collection characteristics of a μ-thick diamond membrane detector for high-energy heavy ions including 75 MeV Ne, 150 MeV Ar, 322 MeV Kr, and 454 MeV Xe have been investigated for the first time. Charge collection signals under single particle flux from the thin part are stable and are well distinguishable from background signals. This behavior suggests that the diamond membrane detector could be used for counting single ions. On the other hand, charge collection efficiency is found to decrease with increasing of charge generated in the diamond membrane detector. This suggests that the pulse height defect, which has been previously reported for Si and SiC detectors, also occurs in the diamond membrane detector. (authors)

  6. Mutation effect of streptomyces kitasatoensis after exposure to heavy ions radiation

    International Nuclear Information System (INIS)

    Liu Jing; Chen Jihong; Wang Shuyang; Li Wenjian

    2011-01-01

    To define the optimum dose of heavy ion beams for selecting high productive strains, we should study mortality and mutation effects of Streptomyces kitasatoensis irradiated by heavy ion beams in different doses. In this research, spores of Streptomyces kitasatoensis were irradiated by heavy ion beams with different doses. And survival rate, mortality rate, positive mutation and negative mutation were analyzed statistically. The results showed that high mortality rate appeared from 5 Gy and then the mortality rate curve became gently. Compared the positive and negative mutations in different doses, highest positive mutation was obtained in 40 Gy, while the negative mutation was lower in this dose, and the survival rate was 0.92%. So we defined that optimum dose of heavy ions radiation for Streptomyces kitasatoensis selection was 40 Gy in this experiment. (authors)

  7. Exploration of (super-)heavy elements using the Skyrme-Hartree-Fock model

    International Nuclear Information System (INIS)

    Erler, Jochen

    2011-01-01

    Motivated by the steadily increasing number of known nuclei and nuclear properties, theories of nuclear structure are presently a field of intense research. This work concentrates on the self-consistent description of nuclei in terms of the Skyrme-Hartree-Fock (SHF) approach. The extrapolation of nuclear shell structure to the region of super-heavy elements (SHE) using the SHF model, the dependence on different parameterization and the influence of collective correlation will be studied. The general scope of this work are large scale calculation for a global survey of properties of SHE like binding energies, separation energies and decay characteristics and lifetimes. These calculations were done in a collaboration with the theory group of the GSI in Darmstadt and have the aim to develop a database of lifetimes and reaction rates for α, β-decay and spontaneous fission in a very wide range with proton numbers 86 ≤ Z ≤ 120 and neutron numbers up to N ∼ 260 relevant for the astrophysical r-process. The results of this study for example predictions of a possible islands of very stable nuclei and information of favored decay mode for each nuclei are also applicable in the recent experimental synthesis of exotic SHE. For these calculation a framework to calculate β-decay half-lives within the SHF model has been developed and the existing axial SHF code has been extended to compute β-transition matrix elements and so to provide an estimation of half-lives. (orig.)

  8. Exploration of (super-)heavy elements using the Skyrme-Hartree-Fock model

    Energy Technology Data Exchange (ETDEWEB)

    Erler, Jochen

    2011-01-31

    Motivated by the steadily increasing number of known nuclei and nuclear properties, theories of nuclear structure are presently a field of intense research. This work concentrates on the self-consistent description of nuclei in terms of the Skyrme-Hartree-Fock (SHF) approach. The extrapolation of nuclear shell structure to the region of super-heavy elements (SHE) using the SHF model, the dependence on different parameterization and the influence of collective correlation will be studied. The general scope of this work are large scale calculation for a global survey of properties of SHE like binding energies, separation energies and decay characteristics and lifetimes. These calculations were done in a collaboration with the theory group of the GSI in Darmstadt and have the aim to develop a database of lifetimes and reaction rates for {alpha}, {beta}-decay and spontaneous fission in a very wide range with proton numbers 86 {<=} Z {<=} 120 and neutron numbers up to N {approx} 260 relevant for the astrophysical r-process. The results of this study for example predictions of a possible islands of very stable nuclei and information of favored decay mode for each nuclei are also applicable in the recent experimental synthesis of exotic SHE. For these calculation a framework to calculate {beta}-decay half-lives within the SHF model has been developed and the existing axial SHF code has been extended to compute {beta}-transition matrix elements and so to provide an estimation of half-lives. (orig.)

  9. Cosmic radiation dosimetry onboard aircrafts at the brazilian airspace

    International Nuclear Information System (INIS)

    Federico, Claudio Antonio

    2011-01-01

    The objective of this work is the establishment of a dosimetric system for the aircrew in the domestic territory. A technique to perform measurements of ambient dose equivalent in aircrafts was developed. An active detector was evaluated for onboard aircraft use, testing its adequacy to this specific type of measurement as well as its susceptibility to the magnetic and electromagnetic interferences. The equipment was calibrated in standard radiation beams and in a special field of the European Laboratory CERN, that reproduces with great proximity the real spectrum in aircraft flight altitudes; it was also tested in several flights, in an Brazilian Air Force's aircraft. The results were evaluated and compared with those obtained from several computational programs for cosmic radiation estimates, with respect to its adequacy for use in the South American region. The program CARI-6 was selected to evaluate the estimated averaged effective doses for the aircrew who operate in this region. A statistical distribution of aircrew effective doses in South America and Caribe was made, and the results show that a great part of this aircrew members are subjected to annual effective doses that exceed the dose limits for the members of the public. Additionally, a preliminary passive dosemeter, based in thermoluminescent detectors, was proposed; international collaborations with United Kingdom and Italy were established for joint measurements of the ambient equivalent doses in aircrafts. (author)

  10. Aircrew Exposure from Cosmic Radiation on Commercial Airline Routes

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, B.J.; McCall, M.J.; Green, A.R.; Bennett, L.G.I.; Pierre, M.; Schrewe, U.J.; O' Brien, K.; Felsberger, E

    2001-07-01

    As a result of the recent recommendations of the ICRP 60, and in anticipation of possible regulation on occupational exposure of Canadian-based aircrew, an extensive study was carried out by the Royal Military College of Canada over a one-year period to measure the cosmic radiation at commercial jet altitudes. A tissue-equivalent proportional counter was used to measure the ambient total dose equivalent rate on 62 flight routes, resulting in over 20,000 data points at one-minute intervals at various altitudes and geomagnetic latitudes (i.e. which span the full cut-off rigidity of the Earth's magnetic field). These data were then compared to similar experimental work at the Physikalisch Technische Bundesanstalt, using a different suite of equipment, to measure separately the low and high linear energy transfer components of the mixed radiation field, and to predictions with the LUIN transport code. All experimental and theoretical results were in excellent agreement. From these data, a semi-empirical model was developed to allow for the interpolation of the dose rate for any global position, altitude and date (i.e. heliocentric potential). Through integration of the dose rate function over a great circle flight path, a computer code was developed to provide an estimate of the total dose equivalent on any route worldwide at any period in the solar cycle. (author)

  11. An estimate of cosmic dose component around Kudankulam site

    International Nuclear Information System (INIS)

    Vijayakumar, B.; Thomas, G.; Rajan, P.S.; Selvi, B.S.; Balamurugan, M.; Ravi, P.M.; Tripathi, R.M.

    2015-01-01

    Natural ionizing radiation pervades the whole environment and enters human lives in a wide variety of ways. It arises from natural processes such as the decay of terrestrially deposited radionuclides in the earth, and artificial processes like the use of X-rays in medicine. Thus, radiation can be classified as natural and artificial depending on its origin. Natural sources include cosmic rays, terrestrial gamma radiation, radon and its decay products in air and various radio nuclides found naturally in food and drink. Cosmic rays reach the earth from outer space. Artificial sources include medical X-rays, therapeutic use of radioisotopes, fallout from past weapon tests, discharges from nuclear industry, industrial gamma rays and use of radioisotopes in consumer products. This paper attempts to estimate the natural cosmic dose component around Kudankulam Nuclear Power Plant site in the south eastern coast of India. (author)

  12. Cosmic radiation and airline pilots: Exposure pattern as a function of aircraft type

    International Nuclear Information System (INIS)

    Tveten, U.; Haldorsen, T.; Reitan, J.

    2000-01-01

    The project presented here has been carried out as part of an epidemiological project on Norwegian aircraft personnel, entitled 'Exposure to low level ionising radiation and incidence of cancer in airline pilots and crew'. The purpose of the main project is to determine if there may be a relationship between exposure to cosmic radiation at aircraft cruising altitudes and the incidence of cancer. The methodology used as basis for estimating the radiation exposures is presented. The information used as basis for the dose estimations comes from a variety of sources: the files at the Personnel Licensing Section and the Aviation Medical Section of Norwegian Aviation Administration, the route tables of Scandinavian Airlines System (SAS), large amounts of expert information contributed by members of the Pilot's Associations in Norway and a couple of non-Norwegian pilots and from other members of the staff of SAS and other airlines. The estimation for each pilot was based on individual information of annual block hours and an estimated dose rate for each type of aircraft. The latter was estimated as a weighted average of CARI-estimated doses on a selection of routes flown by the airplanes in the different time periods. The project includes all pilots that have been licensed in Norway since 1946. These pilots have been flying a large variety of different types of aircraft and routes. The cosmic radiation intensity is a function of altitude in the atmosphere and, less markedly, of geographical latitude and of the intensity of the radiation from the sun (quantified as the heliocentric potential). Different types of aircraft fly at different altitudes and are used for different purposes (passenger traffic, cargo, air photography, preparation of maps etc) and used on different routes. The end results of the project described in this article are radiation exposures per block hour for each type of aircraft, and for each individual year (the differences between years reflect the

  13. Detecting Super-Thin Clouds With Polarized Light

    Science.gov (United States)

    Sun, Wenbo; Videen, Gorden; Mishchenko, Michael I.

    2014-01-01

    We report a novel method for detecting cloud particles in the atmosphere. Solar radiation backscattered from clouds is studied with both satellite data and a radiative transfer model. A distinct feature is found in the angle of linear polarization of solar radiation that is backscattered from clouds. The dominant backscattered electric field from the clear-sky Earth-atmosphere system is nearly parallel to the Earth surface. However, when clouds are present, this electric field can rotate significantly away from the parallel direction. Model results demonstrate that this polarization feature can be used to detect super-thin cirrus clouds having an optical depth of only 0.06 and super-thin liquid water clouds having an optical depth of only 0.01. Such clouds are too thin to be sensed using any current passive satellite instruments.

  14. Simulating Cosmic Reionisation

    NARCIS (Netherlands)

    Pawlik, Andreas Heinz

    2009-01-01

    The first stars formed a few hundred million years after the Big Bang, when the Universe was only a small fraction of its present age. Their radiation transformed the previously cold and neutral hydrogen that filled intergalactic space into the hot and ionised cosmic plasma that is observed today.

  15. Lightning initiation mechanism based on the development of relativistic runaway electron avalanches triggered by background cosmic radiation: Numerical simulation

    International Nuclear Information System (INIS)

    Babich, L. P.; Bochkov, E. I.; Kutsyk, I. M.

    2011-01-01

    The mechanism of lightning initiation due to electric field enhancement by the polarization of a conducting channel produced by relativistic runaway electron avalanches triggered by background cosmic radiation has been simulated numerically. It is shown that the fields at which the start of a lightning leader is possible even in the absence of precipitations are locally realized for realistic thundercloud configurations and charges. The computational results agree with the in-situ observations of penetrating radiation enhancement in thunderclouds.

  16. Lightning initiation mechanism based on the development of relativistic runaway electron avalanches triggered by background cosmic radiation: Numerical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Babich, L. P., E-mail: babich@elph.vniief.ru; Bochkov, E. I.; Kutsyk, I. M. [All-Russian Research Institute of Experimental Physics, Russian Federal Nuclear Center (Russian Federation)

    2011-05-15

    The mechanism of lightning initiation due to electric field enhancement by the polarization of a conducting channel produced by relativistic runaway electron avalanches triggered by background cosmic radiation has been simulated numerically. It is shown that the fields at which the start of a lightning leader is possible even in the absence of precipitations are locally realized for realistic thundercloud configurations and charges. The computational results agree with the in-situ observations of penetrating radiation enhancement in thunderclouds.

  17. A Robust Algorithm to Determine the Topology of Space from the Cosmic Microwave Background Radiation

    OpenAIRE

    Weeks, Jeffrey R.

    2001-01-01

    Satellite measurements of the cosmic microwave back-ground radiation will soon provide an opportunity to test whether the universe is multiply connected. This paper presents a new algorithm for deducing the topology of the universe from the microwave background data. Unlike an older algorithm, the new algorithm gives the curvature of space and the radius of the last scattering surface as outputs, rather than requiring them as inputs. The new algorithm is also more tolerant of erro...

  18. Empirical model for the Earth's cosmic ray shadow at 400 KM: prohibited cosmic ray access

    International Nuclear Information System (INIS)

    Humble, J.E.; Smart, D.F.; Shea, M.A.

    1985-01-01

    The possibility of constructing a unit sphere of access that describes the cosmic radiation allowed to an Earth-orbiting spacecraft is discussed. It is found that it is possible to model the occluded portion of the cosmic ray sphere of access as a circular projection with a diameter bounded by the satellite-Earth horizon. Maintaining tangency at the eastern edge of the spacecraft-Earth horizon, this optically occluded area is projected downward by an angle beta which is a function of the magnetic field inclination and cosmic ray arrival direction. This projected plane, corresponding to the forbidden area of cosmic ray access, is bounded by the spacecraft-Earth horizon in easterly directions, and is rotated around the vertical axis by an angle alpha from the eastern direction, where the angle alpha is a function of the offset dipole latitude of the spacecraft

  19. Radiation protection for human spaceflight

    International Nuclear Information System (INIS)

    Hajek, M.

    2009-01-01

    Cosmic radiation exposure is one of the most significant risks associated with human space exploration. Except for the principles of justification and optimization (ALARA), the concepts of terrestrial radiation protection are of limited applicability to human spaceflight, as until now only few experimentally verified data on the biological effectiveness of heavy ions and the dose distribution within the human body exist. Instead of applying the annual dose limits for workers on ground also to astronauts, whose careers are of comparatively short duration, the overall lifetime risk is used as a measure. For long-term missions outside Earth's magnetic field, the acceptable level of risk has not yet been defined, since there is not enough information available to estimate the risk of effects to the central nervous system and of potential non-cancer radiation health hazards. (orig.)

  20. Dynamical limitations to heavy ion fusion

    International Nuclear Information System (INIS)

    Back, B.B.

    1983-01-01

    Dynamical limitations to heavy ion fusion reaction are considered. The experimental signatures and the importance of a quasi-fission process are examined. The anaular distributions of fission fragments for the 32 S+ 208 Pb and 16 O+ 238 U systems are presented. It is shown that the observations of quasi-fission for even rather ''light'' heavy ions poeess severe limitations on the fusion process. This result may consequently be responsible for the lack of success of the search for super heavy elements in heavy ion fusion reactions

  1. A correction to the width of heavy Higgs bosons: An addendum to radiative decay of heavy Higgs bosons

    International Nuclear Information System (INIS)

    Dicus, D.A.; Willenbrock, S.D.; Imbo, T.D.; Keung, W.Y.; Rizzo, T.G.

    1986-04-01

    We determine the width for radiative decay of heavy Higgs bosons H → W + W - γ for hard photons as a function of the Higgs boson mass and the photon-energy cutoff, and correct the result of a previous calculation

  2. Radiation-induced transmission spectral variations of Ce3+-doped heavy germanate glasses

    International Nuclear Information System (INIS)

    Yang Yunxia; Baccaro, S.; Cecilia, A.; Rao Jinhua; Zhang Junbiao; Xia Fang; Chen Guorong

    2005-01-01

    Radiation-induced transmission spectral variations of Ce 3+ -doped heavy germanate glasses used as scintillating materials are presented. Glass matrix contains mainly GeO 2 , BaO and Gd 2 O 3 with a density higher than 5 g/cm 3 . Glasses are melted in the different atmosphere. The transmission spectra of glasses before and after radiation treatments are measured and compared. Unlike exhibiting the monotonous deterioration effect on the glass matrix, radiation plays the radiation protection role, even making enhanced transmission of Ce 3+ -doped glasses, depending upon glass melting atmosphere and radiation dose. Radiation-induced reducing and oxidizing mechanism is proposed to explain phenomena

  3. Cloud chamber researches in nuclear physics and cosmic radiation

    International Nuclear Information System (INIS)

    Blackett, P.

    1984-01-01

    An extract from Blackett's Nobel Prize speech of 1948, this recounts the work done by the author on particle tracks in a Wilson cloud chamber in 1932 at the Cavendish Laboratory, Cambridge. In particular he studied the energetic particles in cosmic rays using a cloud chamber and camera. The improvements to the equipment are recounted and photographs of cosmic ray showers taken with it are shown. (UK)

  4. Complete super-sample lensing covariance in the response approach

    Science.gov (United States)

    Barreira, Alexandre; Krause, Elisabeth; Schmidt, Fabian

    2018-06-01

    We derive the complete super-sample covariance (SSC) of the matter and weak lensing convergence power spectra using the power spectrum response formalism to accurately describe the coupling of super- to sub-survey modes. The SSC term is completely characterized by the survey window function, the nonlinear matter power spectrum and the full first-order nonlinear power spectrum response function, which describes the response to super-survey density and tidal field perturbations. Generalized separate universe simulations can efficiently measure these responses in the nonlinear regime of structure formation, which is necessary for lensing applications. We derive the lensing SSC formulae for two cases: one under the Limber and flat-sky approximations, and a more general one that goes beyond the Limber approximation in the super-survey mode and is valid for curved sky applications. Quantitatively, we find that for sky fractions fsky ≈ 0.3 and a single source redshift at zS=1, the use of the flat-sky and Limber approximation underestimates the total SSC contribution by ≈ 10%. The contribution from super-survey tidal fields to the lensing SSC, which has not been included in cosmological analyses so far, is shown to represent about 5% of the total lensing covariance on multipoles l1,l2 gtrsim 300. The SSC is the dominant off-diagonal contribution to the total lensing covariance, making it appropriate to include these tidal terms and beyond flat-sky/Limber corrections in cosmic shear analyses.

  5. Infra-red photon release from cosmic dust entering into the earth's atmosphere

    International Nuclear Information System (INIS)

    Kobayashi, Koichi

    1975-01-01

    Cosmic dust brings considerably high intensity of energy flux to the upper atmosphere of the earth. Most of this energy can be converted to infra-red radiation. It can be concluded that the infra-red background radiation in the sky of its wavelength of less than about 10μ may considerably originate in the cosmic dust which has entered the earth's atmosphere, or that the upper limit to the flux of cosmic dust is about 10 5 tons/earth year. (author)

  6. Charge-equilibrium and radiation of low-energy cosmic rays passing through interstellar medium

    Science.gov (United States)

    Rule, D. W.; Omidvar, K.

    1977-01-01

    The charge equilibrium and radiation of an oxygen and an iron beam in the MeV per nucleon energy range, representing a typical beam of low-energy cosmic rays passing through the interstellar medium, is considered. Electron loss of the beam has been taken into account by means of the First Born approximation allowing for the target atom to remain unexcited, or to be excited to all possible states. Electron capture cross sections have been calculated by means of the scaled Oppenheimer-Brinkman-Kramers approximation, taking into account all atomic shells of the target atoms. Radiation of the beam due to electron capture into the excited states of the ion, collisional excitation and collisional inner-shell ionization of the ions has been considered. Effective X-ray production cross sections and multiplicities for the most energetic X-ray lines emitted by the Fe and O beams have been calculated.

  7. Determination of cosmic ray produced radionuclides by means of background radiation counting system, 3

    International Nuclear Information System (INIS)

    1976-01-01

    This is the third report of the progress report series on studies of cosmic ray produced radionuclides by means of low background radiation counting system. In Part I some characteristics of a low beta-gamma coincidence spectrometer are described -- counter system, electronics, background spectra, counting efficiencies -- and studies on radioactive impurities in materials for scientific research are also described. In Part II, suitable solvents for a large scale liquid scintillation counter were examined and best combinations of solvents, solutes and naphthalene are shown. In Part III, miscellaneous topics are reported. (auth.)

  8. Calibration measurements and systematic studies on the detection of cosmic particles in the IceTop tank

    International Nuclear Information System (INIS)

    Martens, Christian

    2012-05-01

    IceCube is an 1 km 3 large observatory at the south pole. It consists of the surface detector IceTop and the underground detector In-Ice. By the detection of Cherenkov Radiation iceCube tries to determine the sources of cosmic radiation and cosmic neutrinos. IceTop possesses a large number of IceTop tanks (ITT), which are filled with ice. In these tanks the Cherenkov radiation of the cosmic radiation can be detected with so-called digital optical modules. By this it is possible to determine the chemical composition of the cosmic radiation. Simultaneously this surface detector serves also as veto for the In-Ice detector. In this bachelor thesis the charge spectra in the ITT at DESY were studied under regardment of the electromagnetic, hadronic, and muonic component. Additionally in cooperation with 6 1 m 2 large scintillator planes by different coincidence conditions a direction selection of the cosmic radiation could be performed. By this the positions of the muon peaks could be considered for different conditions.

  9. On super-exponential inflation in a higher-dimensional theory of gravity with higher-derivative terms

    International Nuclear Information System (INIS)

    Pollock, M.D.

    1988-01-01

    We consider super-exponential inflation in the early universe, for which H 2 /H = q >> 1, with particular reference to the higher-dimensional theory of Shafi and Wetterich, which is discussed in further detail. The Hubble parameter H is given by H 2 ≅ (8π/3m P 2 )V(Φ), where the ''inflation'' field Φ is related to the radius of the internal space, and obeys the equation of motion 3HΦ ≅ -dW/dΦ. The spectrum of density perturbations is given by δρ/ρ = (M/M 0 ) -s , where s -1 ≅ 3(q + 1); and X = (-dV/dΦ)/(dW/dΦ). The parameters q and X are both positive constants, hence the need for two distinct potentials, which can be met in a higher-dimensional theory with higher-derivative terms R 2 = α 1 R 2 + α 2 R AB R AB + α 3 R ABCD R ABCD . Some fine-tuning of the parameters α i and/or of the cosmological constant Λ is always necessary in order to have super-exponential inflation. It is possible to obtain a spectrum of density perturbations with s > or approx. 1/20, which helps to give agreement with observations of the cosmic microwave background radiation at very large scales ∝ 1000 Mpc. When R 2 is proportional to the Euler number density, making the four-dimensional theory free of ghosts, then super-exponential inflation is impossible, but a phase of inflation with H < 0 can still occur. (orig.)

  10. Measurements of Plutonium isotopes and the search for super-heavy elements via AMS

    International Nuclear Information System (INIS)

    Wallner, A.; Steier, P.; Golser, R.; Knie, K.; Kutschera, W.; Priller, A.; Hrnecek, E.; Jakopic, R.; Korschinek, G.

    2006-01-01

    Full text: Accelerator Mass Spectrometry (AMS) - being independent on the half-life of a radionuclide - provides a technique to determine isotope ratios with the highest sensitivity and allows the measurement of radionuclides over a wide dynamic range of concentration levels. A combination of AMS, Alpha Spectrometry and Liquid Scintillation Counting was used for the determination of the complete information on isotope ratios of Plutonium isotopes in different environmental reference samples (e.g. from the atolls of Mururoa and Fangataufa) and samples contaminated from nuclear reprocessing. Results for the isotopic ratios of the samples will be shown and the capabilities and detection limits achievable for determination of Pu will be discussed. The long-lived 244 Pu (t 1/2 = 80 Ma) and 247 Cm (t 1/2 = 15.6 Ma) have a very interesting application in astrophysics by detecting possible supernova-produced 244 Pu and 247 Cm in terrestrial archives. The expected extremely small concentrations of 244 Pu makes AMS the favorite method. The actual search for such long-lived extraterrestrial radionuclides and possible implications will be presented. The same method has also been explored for a pinprick-search of long-lived super-heavy elements in the mass region above Z=100. (author)

  11. Graviton production in the scaling of a long-cosmic-string network

    International Nuclear Information System (INIS)

    Kleidis, Kostas; Kuiroukidis, Apostolos; Papadopoulos, Demetrios B.; Verdaguer, Enric

    2011-01-01

    In a previous paper [K. Kleidis, D. B. Papadopoulos, E. Verdaguer, and L. Vlahos, Phys. Rev. D 78, 024027 (2008).] we considered the possibility that (within the early-radiation epoch) there has been (also) a short period of a significant presence of cosmic strings. During this radiation-plus-strings stage the Universe matter-energy content can be modeled by a two-component fluid, consisting of radiation (dominant) and a cosmic-string fluid (subdominant). It was found that, during this stage, the cosmological gravitational waves--that had been produced in an earlier (inflationary) epoch--with comoving wave numbers below a critical value (which depends on the physics of the cosmic-string network) were filtered, leading to a distorsion in the expected (scale-invariant) cosmological gravitational wave power spectrum. In any case, the cosmological evolution gradually results in the scaling of any long-cosmic-string network and, hence, after a short time interval, the Universe enters into the late-radiation era. However, along the transition from an early-radiation epoch to the late-radiation era through the radiation-plus-strings stage, the time dependence of the cosmological scale factor is modified, something that leads to a discontinuous change of the corresponding scalar curvature, which, in turn, triggers the quantum-mechanical creation of gravitons. In this paper we discuss several aspects of such a process, and, in particular, the observational consequences on the expected gravitational-wave power spectrum.

  12. High-energy cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Gaisser, Thomas K. [Bartol Research Institute, University of Delaware, Newark, DE 19716 (United States)]. E-mail: gaisser@bartol.udel.edu; Stanev, Todor [Bartol Research Institute, University of Delaware, Newark, DE 19716 (United States)

    2006-10-17

    After a brief review of galactic cosmic rays in the GeV to TeV energy range, we describe some current problems of interest for particles of very high energy. Particularly interesting are two features of the spectrum, the knee above 10{sup 15} eV and the ankle above 10{sup 18} eV. An important question is whether the highest-energy particles are of extra-galactic origin and, if so, at what energy the transition occurs. A theme common to all energy ranges is use of nuclear abundances as a tool for understanding the origin of the cosmic radiation.

  13. PRIMORDIAL GRAVITATIONAL WAVES AND RESCATTERED ELECTROMAGNETIC RADIATION IN THE COSMIC MICROWAVE BACKGROUND

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Hoon [Basic Science Research Institute, Ewha Womans University, Seoul 03760 (Korea, Republic of); Trippe, Sascha, E-mail: ki13130@gmail.com, E-mail: trippe@astro.snu.ac.kr [Department of Physics and Astronomy, Seoul National University, Seoul 08826 (Korea, Republic of)

    2016-10-20

    Understanding the interaction of primordial gravitational waves (GWs) with the Cosmic Microwave Background (CMB) plasma is important for observational cosmology. In this article, we provide an analysis of an apparently as-yet-overlooked effect. We consider a single free electric charge and suppose that it can be agitated by primordial GWs propagating through the CMB plasma, resulting in periodic, regular motion along particular directions. Light reflected by the charge will be partially polarized, and this will imprint a characteristic pattern on the CMB. We study this effect by considering a simple model in which anisotropic incident electromagnetic (EM) radiation is rescattered by a charge sitting in spacetime perturbed by GWs, and becomes polarized. As the charge is driven to move along particular directions, we calculate its dipole moment to determine the leading-order rescattered EM radiation. The Stokes parameters of the rescattered radiation exhibit a net linear polarization. We investigate how this polarization effect can be schematically represented out of the Stokes parameters. We work out the representations of gradient modes (E-modes) and curl modes (B-modes) to produce polarization maps. Although the polarization effect results from GWs, we find that its representations, the E- and B-modes, do not practically reflect the GW properties such as strain amplitude, frequency, and polarization states.

  14. Super differential forms on super Riemann surfaces

    International Nuclear Information System (INIS)

    Konisi, Gaku; Takahasi, Wataru; Saito, Takesi.

    1994-01-01

    Line integral on the super Riemann surface is discussed. A 'super differential operator' which possesses both properties of differential and of differential operator is proposed. With this 'super differential operator' a new theory of differential form on the super Riemann surface is constructed. We call 'the new differentials on the super Riemann surface' 'the super differentials'. As the applications of our theory, the existency theorems of singular 'super differentials' such as 'super abelian differentials of the 3rd kind' and of a super projective connection are examined. (author)

  15. Fast calculator for X-ray emission due to Radiative Recombination and Radiative Electron Capture in relativistic heavy-ion atom collisions

    Science.gov (United States)

    Herdrich, M. O.; Weber, G.; Gumberidze, A.; Wu, Z. W.; Stöhlker, Th.

    2017-10-01

    In experiments with highly charged, fast heavy ions the Radiative Recombination (RR) and Radiative Electron Capture (REC) processes have significant cross sections in an energy range of up to a few GeV / u . They are some of the most important charge changing processes in collisions of heavy ions with atoms and electrons, leading to the emission of a photon along with the formation of the ground and excited atomic states. Hence, for the understanding and planning of experiments, in particular for X-ray spectroscopy studies, at accelerator ring facilities, such as FAIR, it is crucial to have a good knowledge of these cross sections and the associated radiation characteristics. In the frame of this work a fast calculator, named RECAL, for the RR and REC process is presented and its capabilities are demonstrated with the analysis of a recently conducted experiment at the Experimental Storage Ring (ESR) at the GSI Helmholtz Center for Heavy Ion Research in Darmstadt, Germany. A method is presented to determine unknown X-ray emission cross sections via normalization of the recorded spectra to REC cross sections calculated by RECAL.

  16. Super-insulation

    International Nuclear Information System (INIS)

    Gerold, J.

    1985-01-01

    The invention concerns super-insulation, which also acts as spacing between two pressurized surfaces, where the crossing bars in at least two layers are provided, with interposed foil. The super-insulation is designed so that it can take compression forces and limits thermal radiation and thermal conduction sufficiently, where the total density of heat flow is usually limited to a few watts per m 2 . The solution to the problem is characterized by the fact that the bars per layer are parallel and from layer to layer they are at an angle to each other and the crossover positions of the bars of different layers are at fixed places and so form contact columns. The basic idea is that bars crossing over each other to support compression forces are used so that contact columns are formed, which are compressed to a certain extent by the load. (orig./PW) [de

  17. Measurement of the intensity of the cosmic background radiation at 3.0 cm

    International Nuclear Information System (INIS)

    Friedman, S.D.

    1984-01-01

    The intensity of the cosmic background radiation (CBR) has been measured at a wavelength of 3.0 cm as part of a program to measure th Rayleigh-Jeans spectrum of the CBR at five wavelengths between 0.33 cm and 12 cm. The instrument used is a dual-antenna Dicke-switched radiometer with a double-sideband noise temperature of 490 K and a sensitivity of 46 mK/Hz/sup 1/2/. The entire radiometer is mounted on bearings. The atmospheric emission was measured by rotating the radiometer, and thus directing one antenna to zenith angles of +- 30 0 and +- 40 0 . 61 references, 24 figures, 18 tables

  18. Cosmic radiation and airline pilots: Exposure pattern as a function of aircraft type

    Energy Technology Data Exchange (ETDEWEB)

    Tveten, U.; Haldorsen, T.; Reitan, J

    2000-07-01

    The project presented here has been carried out as part of an epidemiological project on Norwegian aircraft personnel, entitled 'Exposure to low level ionising radiation and incidence of cancer in airline pilots and crew'. The purpose of the main project is to determine if there may be a relationship between exposure to cosmic radiation at aircraft cruising altitudes and the incidence of cancer. The methodology used as basis for estimating the radiation exposures is presented. The information used as basis for the dose estimations comes from a variety of sources: the files at the Personnel Licensing Section and the Aviation Medical Section of Norwegian Aviation Administration, the route tables of Scandinavian Airlines System (SAS), large amounts of expert information contributed by members of the Pilot's Associations in Norway and a couple of non-Norwegian pilots and from other members of the staff of SAS and other airlines. The estimation for each pilot was based on individual information of annual block hours and an estimated doserate for each type of aircraft. The latter was estimated as a weighted average of CARI-estimated doses on a selection of routes flown by the airplanes in the different time periods. The project includes all pilots that have been licensed in Norway since 1946. These pilots have been flying a large variety of different types of aircraft and routes. The cosmic radiation intensity is a function of altitude in the atmosphere and, less markedly, of geographical latitude and of the intensity of the radiation from the sun (quantified as the heliocentric potential). Different types of aircraft fly at different altitudes and are used for different purposes (passenger traffic, cargo, air photography, preparation of maps etc) and used on different routes. The end results of the project described in this article are radiation exposures per block hour for each type of aircraft, and for each individual year (the differences between years

  19. Investigation of the relative abundance of heavy versus light nuclei in primary cosmic rays using underground muon bundles

    International Nuclear Information System (INIS)

    Sundaralingam, N.

    1993-01-01

    We study multiple muon events (muon bundles) recorded underground at a depth of 2090 mwe. To penetrate to this depth, the muons must have energies above 0.8 TeV at the Earth's surface; the primary cosmic ray nuclei which give rise to the observed muon bundles have energies at incidence upon the upper atmosphere of 10 to 10 5 TeV. The events are detected using the Soudan 2 experiment's fine grained tracking calorimeter which is surrounded by a 14 m x10 m x 31 m proportional tube array (the ''active shield''). Muon bundles which have at least one muon traversing the calorimeter, are reconstructed using tracks in the calorimeter together with hit patterns in the proportional tube shield. All ionization pulses are required to be coincident within 3 microseconds. A goal of this study is to investigate the relative nuclear abundances in the primary cosmic radiation around the ''knee'' region (10 3 - 10 4 TeV) of the incident energy spectrum. Four models for the nuclear composition of cosmic rays are considered: The Linsley model, the Constant Mass Composition model (CMC), the Maryland model and the Proton-poor model. A Monte Carlo which incorporates one model at a time is used to simulate events which are then reconstructed using the same computer algorithms that are used for the data. Identical cuts and selections are applied to the data and to the simulated events

  20. Large scale CMB anomalies from thawing cosmic strings

    Energy Technology Data Exchange (ETDEWEB)

    Ringeval, Christophe [Centre for Cosmology, Particle Physics and Phenomenology, Institute of Mathematics and Physics, Louvain University, 2 Chemin du Cyclotron, 1348 Louvain-la-Neuve (Belgium); Yamauchi, Daisuke; Yokoyama, Jun' ichi [Research Center for the Early Universe (RESCEU), Graduate School of Science, The University of Tokyo, Tokyo 113-0033 (Japan); Bouchet, François R., E-mail: christophe.ringeval@uclouvain.be, E-mail: yamauchi@resceu.s.u-tokyo.ac.jp, E-mail: yokoyama@resceu.s.u-tokyo.ac.jp, E-mail: bouchet@iap.fr [Institut d' Astrophysique de Paris, UMR 7095-CNRS, Université Pierre et Marie Curie, 98bis boulevard Arago, 75014 Paris (France)

    2016-02-01

    Cosmic strings formed during inflation are expected to be either diluted over super-Hubble distances, i.e., invisible today, or to have crossed our past light cone very recently. We discuss the latter situation in which a few strings imprint their signature in the Cosmic Microwave Background (CMB) Anisotropies after recombination. Being almost frozen in the Hubble flow, these strings are quasi static and evade almost all of the previously derived constraints on their tension while being able to source large scale anisotropies in the CMB sky. Using a local variance estimator on thousand of numerically simulated Nambu-Goto all sky maps, we compute the expected signal and show that it can mimic a dipole modulation at large angular scales while being negligible at small angles. Interestingly, such a scenario generically produces one cold spot from the thawing of a cosmic string loop. Mixed with anisotropies of inflationary origin, we find that a few strings of tension GU = O(1) × 10{sup −6} match the amplitude of the dipole modulation reported in the Planck satellite measurements and could be at the origin of other large scale anomalies.

  1. Mass dependence of spectral and angular distributions of Cherenkov radiation from relativistic isotopes in solid radiators and its possible application as mass selector

    Science.gov (United States)

    Bogdanov, O. V.; Rozhkova, E. I.; Pivovarov, Yu. L.; Kuzminchuk-Feuerstein, N.

    2018-02-01

    The first proof of principle experiment with a prototype of a Time-of-Flight (TOF) - Cherenkov detector of relativistic heavy ions (RHI) exploiting a liquid Iodine Naphthalene radiator has been performed at Cave C at GSI (Darmstadt, Germany). A conceptual design for a liquid Cherenkov detector was proposed as a prototype for the future TOF measurements at the Super-FRS by detection of total number of Cherenkov photons. The ionization energy loss of RHI in a liquid radiator decreases only slightly this number, while in a solid radiator changes sufficiently not the total number of ChR photons, but ChR angular and spectral distributions. By means of computer simulations, we showed that these distributions are very sensitive to the isotope mass, due to different stopping powers of isotopes with initial equal relativistic factors. The results of simulations for light (Li, Be) and heavy (Xe) isotopes at 500-1000 MeV/u are presented indicating the possibility to use the isotopic effect in ChR of RHI as the mass selector.

  2. Preparation and characterization of super absorbent polymer from sugarcane bagasse

    International Nuclear Information System (INIS)

    Wiwien Andriyanti; Suyanti; Ngasifudin

    2012-01-01

    Sugarcane bagasse is a source of biomass which large enough numbers and has not been fully exploited. At this time has developed a super absorbent polymer material of sugarcane bagasse that can absorb water up to several times of its own weight and keep this water. Super absorbent polymers can be used as a soil conditioner that can be used as an absorber and storage of ground water, the giver of nutrients for plants, and can improve soil properties. The purpose of this study is to make and characterization of super absorbent polymer (PCS) from sugarcane bagasse. Preparation of super absorbent polymers (PCS) has been done by grafting method using ionizing radiation from Electron Beam Engineering (MBE) 350 mA keV/10. Irradiation process carried out with a dose variation of 20, 35, and 50 kGy. Increasing doses of radiation will increase the percentage fraction of transplantation (grafting) and the fraction of water absorption ability (swelling ratio). (author)

  3. New fermionic dark matters, extended Standard Model and cosmic rays

    Science.gov (United States)

    Hwang, Jae-Kwang

    2017-08-01

    Three generations of leptons and quarks correspond to the lepton charges (LCs) in this work. Then, the leptons have the electric charges (ECs) and LCs. The quarks have the ECs, LCs and color charges (CCs). Three heavy leptons and three heavy quarks are introduced to make the missing third flavor of EC. Then the three new particles which have the ECs are proposed as the bastons (dark matters) with the rest masses of 26.121 eV/c2, 42.7 GeV/c2 and 1.9 × 1015 eV/c2. These new particles are applied to explain the origins of the astrophysical observations like the ultra-high energy cosmic rays and supernova 1987A anti-neutrino data. It is concluded that the 3.5 keV X-ray peak observed from the cosmic X-ray background spectra is originated not from the pair annihilations of the dark matters but from the X-ray emission of the Q1 baryon atoms which are similar in the atomic structure to the hydrogen atom. The presence of the 3.5 keV cosmic X-ray supports the presence of the Q1 quark with the EC of -4/3. New particles can be indirectly seen from the astrophysical observations like the cosmic ray and cosmic gamma ray. In this work, the systematic quantized charges of EC, LC and CC for the elementary particles are used to consistently explain the decay and reaction schemes of the elementary particles. Also, the strong, weak and dark matter forces are consistently explained.

  4. Delayed recombination and cosmic parameters

    International Nuclear Information System (INIS)

    Galli, Silvia; Melchiorri, Alessandro; Bean, Rachel; Silk, Joseph

    2008-01-01

    Current cosmological constraints from cosmic microwave background anisotropies are typically derived assuming a standard recombination scheme, however additional resonance and ionizing radiation sources can delay recombination, altering the cosmic ionization history and the cosmological inferences drawn from the cosmic microwave background data. We show that for recent observations of the cosmic microwave background anisotropy, from the Wilkinson microwave anisotropy probe satellite mission (WMAP) 5-year survey and from the arcminute cosmology bolometer array receiver experiment, additional resonance radiation is nearly degenerate with variations in the spectral index, n s , and has a marked effect on uncertainties in constraints on the Hubble constant, age of the universe, curvature and the upper bound on the neutrino mass. When a modified recombination scheme is considered, the redshift of recombination is constrained to z * =1078±11, with uncertainties in the measurement weaker by 1 order of magnitude than those obtained under the assumption of standard recombination while constraints on the shift parameter are shifted by 1σ to R=1.734±0.028. From the WMAP5 data we obtain the following constraints on the resonance and ionization sources parameters: ε α i <0.058 at 95% c.l.. Although delayed recombination limits the precision of parameter estimation from the WMAP satellite, we demonstrate that this should not be the case for future, smaller angular scales measurements, such as those by the Planck satellite mission.

  5. Nuclear Physics Meets the Sources of the Ultra-High Energy Cosmic Rays.

    Science.gov (United States)

    Boncioli, Denise; Fedynitch, Anatoli; Winter, Walter

    2017-07-07

    The determination of the injection composition of cosmic ray nuclei within astrophysical sources requires sufficiently accurate descriptions of the source physics and the propagation - apart from controlling astrophysical uncertainties. We therefore study the implications of nuclear data and models for cosmic ray astrophysics, which involves the photo-disintegration of nuclei up to iron in astrophysical environments. We demonstrate that the impact of nuclear model uncertainties is potentially larger in environments with non-thermal radiation fields than in the cosmic microwave background. We also study the impact of nuclear models on the nuclear cascade in a gamma-ray burst radiation field, simulated at a level of complexity comparable to the most precise cosmic ray propagation code. We conclude with an isotope chart describing which information is in principle necessary to describe nuclear interactions in cosmic ray sources and propagation.

  6. The Cosmic Background Explorer

    Science.gov (United States)

    Gulkis, Samuel; Lubin, Philip M.; Meyer, Stephan S.; Silverberg, Robert F.

    1990-01-01

    The Cosmic Background Explorer (CBE), NASA's cosmological satellite which will observe a radiative relic of the big bang, is discussed. The major questions connected to the big bang theory which may be clarified using the CBE are reviewed. The satellite instruments and experiments are described, including the Differential Microwave Radiometer, which measures the difference between microwave radiation emitted from two points on the sky, the Far-Infrared Absolute Spectrophotometer, which compares the spectrum of radiation from the sky at wavelengths from 100 microns to one cm with that from an internal blackbody, and the Diffuse Infrared Background Experiment, which searches for the radiation from the earliest generation of stars.

  7. Atmospheric radiation modeling of galactic cosmic rays using LRO/CRaTER and the EMMREM model with comparisons to balloon and airline based measurements

    Science.gov (United States)

    Joyce, C. J.; Schwadron, N. A.; Townsend, L. W.; deWet, W. C.; Wilson, J. K.; Spence, H. E.; Tobiska, W. K.; Shelton-Mur, K.; Yarborough, A.; Harvey, J.; Herbst, A.; Koske-Phillips, A.; Molina, F.; Omondi, S.; Reid, C.; Reid, D.; Shultz, J.; Stephenson, B.; McDevitt, M.; Phillips, T.

    2016-09-01

    We provide an analysis of the galactic cosmic ray radiation environment of Earth's atmosphere using measurements from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) aboard the Lunar Reconnaissance Orbiter (LRO) together with the Badhwar-O'Neil model and dose lookup tables generated by the Earth-Moon-Mars Radiation Environment Module (EMMREM). This study demonstrates an updated atmospheric radiation model that uses new dose tables to improve the accuracy of the modeled dose rates. Additionally, a method for computing geomagnetic cutoffs is incorporated into the model in order to account for location-dependent effects of the magnetosphere. Newly available measurements of atmospheric dose rates from instruments aboard commercial aircraft and high-altitude balloons enable us to evaluate the accuracy of the model in computing atmospheric dose rates. When compared to the available observations, the model seems to be reasonably accurate in modeling atmospheric radiation levels, overestimating airline dose rates by an average of 20%, which falls within the uncertainty limit recommended by the International Commission on Radiation Units and Measurements (ICRU). Additionally, measurements made aboard high-altitude balloons during simultaneous launches from New Hampshire and California provide an additional comparison to the model. We also find that the newly incorporated geomagnetic cutoff method enables the model to represent radiation variability as a function of location with sufficient accuracy.

  8. Heavy Ion Testing at the Galactic Cosmic Ray Energy Peak

    Science.gov (United States)

    Pellish, Jonathan A.; Xapsos, M. A.; LaBel, K. A.; Marshall, P. W.; Heidel, D. F.; Rodbell, K. P.; Hakey, M. C.; Dodd, P. E.; Shaneyfelt, M. R.; Schwank, J. R.; hide

    2009-01-01

    A 1 GeV/u Fe-56 Ion beam allows for true 90 deg. tilt irradiations of various microelectronic components and reveals relevant upset trends for an abundant element at the galactic cosmic ray (GCR) flux-energy peak.

  9. Lorentz invariance violation and chemical composition of ultra high energy cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Saveliev, Andrey; Sigl, Guenter [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik; Maccione, Luca [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group

    2010-12-15

    Motivated by experimental indications of a significant presence of heavy nuclei in the cosmic ray flux at ultra high energies (>or similar 10{sup 19} eV), we consider the effects of Planck scale suppressed Lorentz Invariance Violation (LIV) on the propagation of cosmic ray nuclei. In particular we focus on LIV effects on the photodisintegration of nuclei onto the background radiation fields. After a general discussion of the behavior of the relevant quantities, we apply our formalism to a simplified model where the LIV parameters of the various nuclei are assumed to kinematically result from a single LIV parameter for the constituent nucleons, {eta}, and we derive constraints on {eta}. Assuming a nucleus of a particular species to be actually present at 10{sup 20} eV the following constraints can be placed: -3 x 10{sup -2}

  10. The Formation of Super-Earths by Tidally Forced Turbulence

    Science.gov (United States)

    Yu, Cong

    2017-12-01

    The Kepler observations indicate that many exoplanets are super-Earths, which brings about a puzzle for the core-accretion scenario. Since observed super-Earths are in the range of critical mass, they accrete gas efficiently and become gas giants. Theoretically, super-Earths are predicted to be rare in the core-accretion framework. To resolve this contradiction, we propose that the tidally forced turbulent diffusion may affect the heat transport inside the planet. Thermal feedback induced by turbulent diffusion is investigated. We find that the tidally forced turbulence generates pseudo-adiabatic regions within radiative zones, which pushes the radiative-convective boundaries inward. This decreases the cooling luminosity and enhances the Kelvin-Helmholtz (KH) timescale. For a given lifetime of protoplanetary disks (PPDs), there exists a critical threshold for the turbulent diffusivity, ν critical. If ν turb > ν critical, the KH timescale is longer than the disk lifetime and the planet becomes a super-Earth, rather than a gas giant. We find that even a small value of turbulent diffusion has influential effects on the evolution of super-Earths. The ν critical increases with the core mass. We further ascertain that, within the minimum-mass extrasolar nebula, ν critical increases with the semimajor axis. This may explain the feature that super-Earths are common in inner PPD regions, while gas giants are common in outer PPD regions. The predicted envelope mass fraction is not fully consistent with observations. We discuss physical processes, such as late core assembly and mass-loss mechanisms, that may be operating during super-Earth formation.

  11. How can we protect astronauts from cosmic rays?

    International Nuclear Information System (INIS)

    Parker, E.

    2006-01-01

    Interplanetary astronauts would absorb more radiation in a single year than radiation workers are supposed to receive in a lifetime and as a consequence large number of them would develop radiation-related illnesses like cancer, cataract or would suffer from brain damage. In recognition to radiation threats, Nasa set up the space radiation shielding program in 2003. The first idea was to protect the astronauts by surrounding them with matter, by analogy of the earth's atmosphere but the problem of such a shield is its weight: the required mass would be at least 400 tons. The second proposal was to deflect the cosmic rays magnetically but the deflection of particles that have energies up to 2 GeV requires a magnetic field 600.000 times as strong as earth's equatorial field. Strong magnetic field may itself be dangerous. A more recent idea has been to give the spacecraft a positive charge which would repel any incoming positively charged nucleus. The drawback is that the ship will attract and accelerate negatively charged particles over distances as long as a few tens of thousands of kilometers. The result would be that the natural cosmic-ray flux would be replaced with a much more intense artificial one. At the present time the different solutions for protecting the astronauts from cosmic rays give little encouragement. (A.C.)

  12. Dosemetry for exposures to cosmic radiation in civilian aircraft - Part 1: Conceptual basis for measurements

    International Nuclear Information System (INIS)

    2006-01-01

    Aircraft crew are exposed to elevated levels of cosmic radiation of galactic and solar origin and secondary radiation produced in the atmosphere, the aircraft structure and its contents. Following recommendations of the International Commission on Radiological Protection in Publication 60, the European Union (EU) introduced a revised Basic Safety Standards Directive, which included exposure to natural sources of ionizing radiation, including cosmic radiation, as occupational exposure. The Directive requires account to be taken of the exposure of aircraft crew liable to receive more than 1 mSv per year. It then identifies the following four protection measures: (i) to assess the exposure of the crew concerned; (ii) to take into account the assessed exposure, when organizing working schedules with a view to reducing the doses of highly exposed crew; (iii) to inform the workers concerned of the health risks their work involves; and (iv) to apply the same special protection during pregnancy to female crew in respect of the 'child to be born' as to other female workers. The EU Council Directive has already been incorporated into laws and regulations of EU Member States and is being included in the aviation safety standards and procedures of the Joint Aviation Authorities and the European Air Safety Agency. For regulatory and legislative purposes, the radiation protection quantities of interest are equivalent dose (to the foetus) and effective dose. The cosmic radiation exposure of the body is essentially uniform and the maternal abdomen provides no effective shielding to the foetus. As a result, the magnitude of equivalent dose to the foetus can be put equal to that of the effective dose received by the mother. Doses on board aircraft are generally predictable, and events comparable to unplanned exposure in other radiological workplaces cannot normally occur (with the rare exceptions of extremely intense and energetic solar particle events). Personal dosemeters for

  13. Measurements of the isotopic composition of galactic cosmic rays

    International Nuclear Information System (INIS)

    Herrstroem, N.Y.

    1985-01-01

    The galactic cosmic-ray boron and carbon isotopic composition has been measured. The boron measurement is the first ever made in nuclear emulsion. The carbon measurement has substantially improved the statistical assuracy in the determination of the 13 C abundance as compared to an earlier measurement using the same technique. Mass-spectra of cosmic-ray carbon and oxygen in different zenith angle intervals have been compared with calculated spectra. The method makes it possible to study experimentally the atmospheric influence on the primary cosmic-ray isotopic composition. Photometric measurements on fragments from oxygen-induced interactions in nuclear emulsion have been made. Accurate charge assignments have been made on all heavy fragments which has made it possible to study the interaction exclusively event-by-event. Measurements on the isotopic composition of primary cosmic-ray neom have been made. The data are from the Danish-French instrument on the HEAO-3 satellite. The rigidity dependent filtering of the cosmic rays by the Earth's magnetic field has been used. The energy dependence of the 22 Ne/ 20 Ne-ratio and its astrophysical implications are discussed. (Author)

  14. Non-primordial origin of the cosmic background radiation and pregalactic density fluctuations

    International Nuclear Information System (INIS)

    Froehlich, H.E.; Mueller, V.; Oleak, H.

    1984-01-01

    Assumptions of a tepid Universe and a smaller primordial contribution to the 3 K background are made to show that Pop III stars may be responsible for the 3 K background and cosmic ray entropy. The 3 K background would be caused by thermalized stellar radiation produced by metallized intergalactic dust formed in first generation stars. A range of mass scales and amplification factors of density perturbations in the early Universe is examined below the Jeans mass for gravitational instabilities. The density perturbations that could have been present at small enough mass scales could have survived and generated sonic modes that propagated through the plasma era and, when combined with additional gravitationally unstable entropy disturbances after recombination, triggered the formation of Pop III stars. 13 references

  15. Taking SiC Power Devices to the Final Frontier: Addressing Challenges of the Space Radiation Environment

    Science.gov (United States)

    Lauenstein, Jean-Marie; Casey, Megan

    2017-01-01

    Silicon carbide power device technology has the potential to enable a new generation of aerospace power systems that demand high efficiency, rapid switching, and reduced mass and volume in order to expand space-based capabilities. For this potential to be realized, SiC devices must be capable of withstanding the harsh space radiation environment. Commercial SiC components exhibit high tolerance to total ionizing dose but to date, have not performed well under exposure to heavy ion radiation representative of the on-orbit galactic cosmic rays. Insertion of SiC power device technology into space applications to achieve breakthrough performance gains will require intentional development of components hardened to the effects of these highly-energetic heavy ions. This work presents heavy-ion test data obtained by the authors over the past several years for discrete SiC power MOSFETs, JFETs, and diodes in order to increase the body of knowledge and understanding that will facilitate hardening of this technology to space radiation effects. Specifically, heavy-ion irradiation data taken under different bias, temperature, and ion beam conditions is presented for devices from different manufacturers, and the emerging patterns discussed.

  16. Carbon Heavy-ion Radiation Induced Biological effects on Oryza sativa L.

    Science.gov (United States)

    Zhang, Meng; Sun, Yeqing; Li, Xishan; Gong, Ning; Meng, Qingmei; Liu, Jiawei; Wang, Ting

    2016-07-01

    Large number of researches on rice after spaceflights indicated that rice was a favorable model organism to study biological effects induced by space radiation. The stimulative effect could often be found on rice seedlings after irradiation by low-dose energetic heavy-ion radiation. Spaceflight also could induce stimulative effect on kinds of seeds. To further understand the mechanism of low-dose radiation biological effects and the dose range, the germinated rice seeds which were irradiated by different doses of carbon heavy-ion (0, 0.02, 0.1, 0.2, 1, 2, 5, 10, 15 and 20Gy, LET=27.3keV/µm) were used as materials to study. By investigating the variation of rice phenotype under different doses, we found that 2Gy radiation dose was a dividing point of the phenotypic variation. Transmission electron microscopy was used to observe the variation of mitochondria, chloroplast, endoplasmic reticulum, ribosome and nucleus in mesophyll cell of rice apical meristem at 24 hours after radiation with different doses. The cells were not apparently physiologically damaged when the dose of radiation was less than 2Gy. The number of chloroplast did not change significantly, but the number of mitochondria was significantly increased, and gathered around in the chloroplast and endoplasmic reticulum; the obvious lesion of chloroplast and mitochondria were found at the mesophyll cells when radiation dose was higher than 2Gy. The mitochondria were swelling and appearing blurred crest. The chloroplast and mitochondrial mutation rate increased significantly (pmitochondrial was an important organelle involved in the antioxidative systems, its dysfunction could result in the increase of reactive oxygen species and lipid peroxidation. We found that the growth stimulation induced by low-dose radiation mainly occurred at three-leaf stage along with the increasing activity of antioxidase system and damages of lipid peroxidation. We also found that the relative expression of genes sdhb and aox1a

  17. Irradiated ISM : Discriminating between cosmic rays and X-rays

    NARCIS (Netherlands)

    Meijerink, R.; Spaans, M.; Israel, F. P.

    2006-01-01

    The interstellar medium ( ISM) at the centers of active galaxies is exposed to a combination of cosmic-ray, far-ultraviolet (FUV), and X-ray radiation. We apply photodissociation region (PDR) models to this ISM with both "normal" and highly elevated (5 x 10(-15) s(-1)) cosmic- ray (CR) rates and

  18. The cosmic microwave background radiation and the dog in the night

    Science.gov (United States)

    Partridge, R. B.

    The spectrum and angular distribution of the cosmic microwave background radiation (CMBR) are characterized, summarizing the results of recent observations. The emphasis is on null experiments which have established upper limits on anisotropies and spectral distortion. The benefits and pitfalls of null experiments are recalled; the generally observed isotropy of the CMBR and the possible ways anisotropy could be introduced are discussed; and data from searches for anisotropy on arcmin, degree, and arcsec scales are presented in tables and graphs and analyzed in detail. The observed CMBR spectrum is shown to be generally consistent with a black body at temperature 2.75 + or - 0.04 K at wavelengths from 0.1 to 12 cm, although some recent data (Kogut et al., 1988) seem to confirm the presence of distortion due to the Suniaev-Zel'dovich effect at wavelength 3.0 cm.

  19. On the possibilities of large-scale radio and fiber optics detectors in cosmic rays

    Science.gov (United States)

    Gusev, G. A.; Markov, M. A.; Zheleznykh, I. M.

    1985-01-01

    Different variants of radio and fiber optics detectors for registration of super high energy cascades in the atmosphere and in dense media are discussed. Particularly the possibilities for investigation of quasi horizontal cosmic ray showers (CRS) and simulated muons from these CRS with the help of radio detectors and fiber optics detectors located on the ice surface are considered.

  20. Removal of Some Heavy Metals from Wastewater using Radiation- Adsorption Method

    International Nuclear Information System (INIS)

    Dessouki, A.M.; Hegazy, E.A.; El-Kelesh, N.A.

    2000-01-01

    Wastewater containing toxic materials poses a serious environmental problem. Many of the pollutants are not readily biodegradable and complete removal in many cases is a relatively expensive process. On the other hand, incomplete removal is a serious health hazard. In the present study, a try was made to explain the degradation kinetics due to gamma-irradiation and adsorption of some heavy metals: Uranium, Molybdenum, Zirconium, and Vanadium. Factors affecting the process such as concentration, irradiation dose and ph of the solution was studied. Gamma-radiation doses up to 50 kGy did not result in the degradation of the heavy metals. However, as expected gamma radiation resulted in a change in the valency of these heavy metal ions to other oxidation states which may have resulted in less toxicity. Adsorption and ion-exchange purification of the heavy metals onto GAC,Merck Ion Exchangers I, and IV and polymeric membranes showed that GAC has the highest adsorption capacity for all pollutants compared with the ion-exchangers and polymeric membranes which may be due to its very high surface area and high porous nature which causes internal and external distribution within the carbon particle more than it dose in the case of polymeric membranes and ion-exchangers. GAC was followed by the cation exchanger with different percent adsorption according to the type of pollutant and the least removal percent was shown by the polymeric membranes. Also, a study of the affinity of the pollutants towards the different adsorbents was carried out

  1. Use of spectra from foil-excited heavy-ion beams to interpret radiation from plasmas

    International Nuclear Information System (INIS)

    Johnson, B.M.

    1978-01-01

    Spectra from foil-excited heavy ion beams can be used to investigate the relative abundance and charge state composition of heavy metal contaminants which cause severe radiative energy losses in tokamak-produced plasmas. The degree of ionization of these metals in the tokamak plasma is not well known because of uncertainties in ionization and recombination rates and particle confinement times. Only a few stages of ionization are typically prominent in foil-excited spectra, however, and both the most probable charge state and distribution width are well known. Highly ionized heavy ions (e.g., Ti, Mo, W and Au) which span the range of charge states found in present tokamaks were produced by passing beams from the Brookhaven MP tandem Van de Graaff accelerator facility through 20 μg/cm 2 carbon stripping foils. EUV radiation was recorded with a grazing incidence spectrometer. Comparisons of the beam-foil spectra with radiation from plasmas, and recent direct determinations of atomic oscillator strengths for principal resonance lines of such highly ionized species as Li-like iron (Fe 23+ ), Na-like bromine (Br 24+ ), and Cu-like iodine (I 24+ ) are discussed

  2. Heavy ion linear accelerator for radiation damage studies of materials

    Energy Technology Data Exchange (ETDEWEB)

    Kutsaev, Sergey V.; Mustapha, Brahim; Ostroumov, Peter N.; Nolen, Jerry; Barcikowski, Albert; Pellin, Michael; Yacout, Abdellatif

    2017-03-01

    A new eXtreme MATerial (XMAT) research facility is being proposed at Argonne National Laboratory to enable rapid in situ mesoscale bulk analysis of ion radiation damage in advanced materials and nuclear fuels. This facility combines a new heavy-ion accelerator with the existing high-energy X-ray analysis capability of the Argonne Advanced Photon Source. The heavy-ion accelerator and target complex will enable experimenters to emulate the environment of a nuclear reactor making possible the study of fission fragment damage in materials. Material scientists will be able to use the measured material parameters to validate computer simulation codes and extrapolate the response of the material in a nuclear reactor environment. Utilizing a new heavy-ion accelerator will provide the appropriate energies and intensities to study these effects with beam intensities which allow experiments to run over hours or days instead of years. The XMAT facility will use a CW heavy-ion accelerator capable of providing beams of any stable isotope with adjustable energy up to 1.2 MeV/u for U-238(50+) and 1.7 MeV for protons. This energy is crucial to the design since it well mimics fission fragments that provide the major portion of the damage in nuclear fuels. The energy also allows damage to be created far from the surface of the material allowing bulk radiation damage effects to be investigated. The XMAT ion linac includes an electron cyclotron resonance ion source, a normal-conducting radio-frequency quadrupole and four normal-conducting multi-gap quarter-wave resonators operating at 60.625 MHz. This paper presents the 3D multi-physics design and analysis of the accelerating structures and beam dynamics studies of the linac.

  3. Heavy ion linear accelerator for radiation damage studies of materials.

    Science.gov (United States)

    Kutsaev, Sergey V; Mustapha, Brahim; Ostroumov, Peter N; Nolen, Jerry; Barcikowski, Albert; Pellin, Michael; Yacout, Abdellatif

    2017-03-01

    A new eXtreme MATerial (XMAT) research facility is being proposed at Argonne National Laboratory to enable rapid in situ mesoscale bulk analysis of ion radiation damage in advanced materials and nuclear fuels. This facility combines a new heavy-ion accelerator with the existing high-energy X-ray analysis capability of the Argonne Advanced Photon Source. The heavy-ion accelerator and target complex will enable experimenters to emulate the environment of a nuclear reactor making possible the study of fission fragment damage in materials. Material scientists will be able to use the measured material parameters to validate computer simulation codes and extrapolate the response of the material in a nuclear reactor environment. Utilizing a new heavy-ion accelerator will provide the appropriate energies and intensities to study these effects with beam intensities which allow experiments to run over hours or days instead of years. The XMAT facility will use a CW heavy-ion accelerator capable of providing beams of any stable isotope with adjustable energy up to 1.2 MeV/u for 238 U 50+ and 1.7 MeV for protons. This energy is crucial to the design since it well mimics fission fragments that provide the major portion of the damage in nuclear fuels. The energy also allows damage to be created far from the surface of the material allowing bulk radiation damage effects to be investigated. The XMAT ion linac includes an electron cyclotron resonance ion source, a normal-conducting radio-frequency quadrupole and four normal-conducting multi-gap quarter-wave resonators operating at 60.625 MHz. This paper presents the 3D multi-physics design and analysis of the accelerating structures and beam dynamics studies of the linac.

  4. Studies on radiation symmetrization in heavy-ion driven hohlraum targets

    International Nuclear Information System (INIS)

    Temporal, M.; Atzeni, S.

    1993-01-01

    Radiation symmetrization within spherical, ellipsoidal and cylindral hohlraum targets for heavy ion inertial confinement fusion (ICF) is studied by means of a 3-D numerical, static model, in which realistic assumptions are made concerning the geometry of the system and, particularly, of the radiation converters. Among the systems so far studied, only spherical hohlraums with six converters achieve the illumination symmetry of the fusion capsule considered necessary for ICF applications. A parametric study of cylindrical hohlraums enlightens the effect of several parameter changes, and suggests directions for further studies, aiming at the design of two-converter targets

  5. Ionising Radiation and Cabin Crew Concerns

    International Nuclear Information System (INIS)

    Balouet, J.C.

    1999-01-01

    The trend in flying at higher altitudes and latitudes results in increased exposure to cosmic radiation. The biological incidence of highest energy particles and heavy ions is not well documented. Crew members flying transpolar routes are already exposed to levels of about 6 mSv.y -1 , and are expected to exceed this level in a number of cases. Epidemiological studies are important in risk assessment. Organisation of monitoring campaigns, aircrew information, solar flares and related high levels of exposures, pregnancy related issues, medical control, recognition of occupational exposure during illness, including cancer cases, and social protection, are also major concerns. (author)

  6. Preliminary test Results for a 25K Sorption Cryocooler Designed for the UCSB Long Duration Balloon Cosmic Microwave Background Radiation Experiment

    Science.gov (United States)

    Wade, L. A.; Levy, A. R.

    1996-01-01

    A continuous operation, vibration-free, long-life 25K sorption cryocooler has been built and is now in final integration and performance testing. This cooler wil be flown on the University of California at Santa Barbara (UCSB) Long Duration Balloon (LDB) Cosmic Microwave Background Radiation Experiment.

  7. Adaptation of radiation shielding code to space environment

    International Nuclear Information System (INIS)

    Okuno, Koichi; Hara, Akihisa

    1992-01-01

    Recently, the trend to the development of space has heightened. To the development of space, many problems are related, and as one of them, there is the protection from cosmic ray. The cosmic ray is the radiation having ultrahigh energy, and there was not the radiation shielding design code that copes with cosmic ray so far. Therefore, the high energy radiation shielding design code for accelerators was improved so as to cope with the peculiarity that cosmic ray possesses. Moreover, the calculation of the radiation dose equivalent rate in the moon base to which the countermeasures against cosmic ray were taken was simulated by using the improved code. As the important countermeasures for the safety protection from radiation, the covering with regolith is carried out, and the effect of regolith was confirmed by using the improved code. Galactic cosmic ray, solar flare particles, radiation belt, the adaptation of the radiation shielding code HERMES to space environment, the improvement of the three-dimensional hadron cascade code HETCKFA-2 and the electromagnetic cascade code EGS 4-KFA, and the cosmic ray simulation are reported. (K.I.)

  8. Measurements of the Cosmic Radiation Doses at Board of Aircraft of Polish Airlines LOT. Part 1

    International Nuclear Information System (INIS)

    Bilski, P.; Budzanowski, M.; Horwacik, T.; Marczewska, B.; Olko, P.

    2000-12-01

    Radiation doses received by a group of 30 pilots of the Polish Airlines LOT were investigated between July and October 2000. The measurement of the low-LET component of the cosmic radiation, lasting in average 2 months, was performed with 7 LiF:Mg,Ti and 7 L iF:Mg,Cu,P thermoluminescent detectors. The neutron component was measured with the thermoluminescent albedo cassettes. Additionally for all flights, records of altitude profiles were kept and effective doses were then calculated with the CARI-6 computer code. In total, about 560 flights were included in the calculations. The highest obtained dose was about 0.8 mSv in 2 months. Results of calculations are mostly consistent with the results of measurements. (author)

  9. Investigation of Contributions of Cosmic Radiation to Background Dose with Altitude at Ahmadu Bello University, Zaria, Nigeria

    International Nuclear Information System (INIS)

    Uwaechia, F.C.; Zakari, Y.I.; Ibeanu, I.G.E.

    2014-01-01

    This study investigated the contributions of cosmic radiation to background dose at Ahmadu Bello University, Zaria, Nigeria using two portable survey meters (Rados -120 and FH 40F2 ). The work was conducted in two phases (dry and rainy seasons).The recorded gamma dose rates were observed to proportionally increase with increase in altitude, that is from ground floor (altitude 3.52 m above sea level) to the eight floor (altitude 30.08 m above sea level). In a similar manner, there were observed variations in the seasonal results-the dry season data were consistently higher than the rainy season data. The mean measured indoor and outdoor gamma dose rates for the two seasons (rainy and dry seasons) were 210.0nSv/h and 279.4nSv/h, and 231.3nSv/h and 368.8nSv/h at the ground floor and the eight floor, respectively. The rainy season result repeated itself on a particular very heavy rainy day with a mean measured gamma dose rate of 204.4nSv/h and 267.4nSv/h at the ground floor and eight floor, respectively. The annual indoor and outdoor mean effective dose for a 1000hour working period was calculated as 0.32 μSv and 0.35 μSv at the ground floor and 0.68 μSv and 0.76 μSv the 8 th floor, respectively (for inside and outside the building).

  10. Hydrodynamics of embedded planets' first atmospheres - III. The role of radiation transport for super-Earth planets

    Science.gov (United States)

    Cimerman, Nicolas P.; Kuiper, Rolf; Ormel, Chris W.

    2017-11-01

    The population of close-in super-Earths, with gas mass fractions of up to 10 per cent represents a challenge for planet formation theory: how did they avoid runaway gas accretion and collapsing to hot Jupiters despite their core masses being in the critical range of Mc ≃ 10 M⊕? Previous three-dimensional (3D) hydrodynamical simulations indicate that atmospheres of low-mass planets cannot be considered isolated from the protoplanetary disc, contrary to what is assumed in 1D-evolutionary calculations. This finding is referred to as the recycling hypothesis. In this paper, we investigate the recycling hypothesis for super-Earth planets, accounting for realistic 3D radiation hydrodynamics. Also, we conduct a direct comparison in terms of the evolution of the entropy between 1D and 3D geometries. We clearly see that 3D atmospheres maintain higher entropy: although gas in the atmosphere loses entropy through radiative cooling, the advection of high-entropy gas from the disc into the Bondi/Hill sphere slows down Kelvin-Helmholtz contraction, potentially arresting envelope growth at a sub-critical gas mass fraction. Recycling, therefore, operates vigorously, in line with results by previous studies. However, we also identify an `inner core' - in size ≈25 per cent of the Bondi radius - where streamlines are more circular and entropies are much lower than in the outer atmosphere. Future studies at higher resolutions are needed to assess whether this region can become hydrodynamically isolated on long time-scales.

  11. Low and high dose rate heavy ion radiation-induced intestinal and colonic tumorigenesis in APC1638N/+ mice

    Science.gov (United States)

    Suman, Shubhankar; Kumar, Santosh; Moon, Bo-Hyun; Fornace, Albert J.; Datta, Kamal

    2017-05-01

    Ionizing radiation (IR) is a recognized risk factor for colorectal cancer (CRC) and astronauts undertaking long duration space missions are expected to receive IR doses in excess of permissible limits with implications for colorectal carcinogenesis. Exposure to IR in outer space occurs at low doses and dose rates, and energetic heavy ions due to their high linear energy transfer (high-LET) characteristics remain a major concern for CRC risk in astronauts. Previously, we have demonstrated that intestinal tumorigenesis in a mouse model (APC1638N/+) of human colorectal cancer was significantly higher after exposure to high dose rate energetic heavy ions relative to low-LET γ radiation. The purpose of the current study was to compare intestinal tumorigenesis in APC1638N/+ mice after exposure to energetic heavy ions at high (50 cGy/min) and relatively low (0.33 cGy/min) dose rate. Male and female mice (6-8 weeks old) were exposed to either 10 or 50 cGy of 28Si (energy: 300 MeV/n; LET: 70 keV/μm) or 56Fe (energy: 1000 MeV/n; LET: 148 keV/μm) ions at NASA Space Radiation Laboratory in Brookhaven National Laboratory. Mice (n = 20 mice/group) were euthanized and intestinal and colon tumor frequency and size were counted 150 days after radiation exposure. Intestinal tumorigenesis in male mice exposed to 56Fe was similar for high and low dose rate exposures. Although male mice showed a decreasing trend at low dose rate relative to high dose rate exposures, the differences in tumor frequency between the two types of exposures were not statistically significant after 28Si radiation. In female mice, intestinal tumor frequency was similar for both radiation type and dose rates tested. In both male and female mice intestinal tumor size was not different after high and low dose rate radiation exposures. Colon tumor frequency in male and female mice after high and low dose rate energetic heavy ions was also not significantly different. In conclusion, intestinal and colonic tumor

  12. Preparation And Characterization Of Modified Sago Waste Super absorbent For Pome Treatment

    International Nuclear Information System (INIS)

    Norzita Yacob; Nurul Hidayah Ahmad Zahari; Maznah Mahmud; Norhashidah Talip; Kamaruddin Hashim; Zahid Abdullah; Norafifah Ahmad Fabillah; Mohamad Nalrazmi Mohamad Shukri; Nurul Aizam Idayu Mat Sani

    2014-01-01

    Palm Oil Mill Effluent (POME) was treated using adsorption technique as a good alternative sustainable management practice of this waste. The adsorbent used is a modified sago waste by grafting technique. Graft polymerization and crosslinking using radiation processing technology are the attractive techniques for modification of chemical and physical properties of polymers. One example of this technique is to produce super adsorbent from agriculture waste, as described in this paper. Super adsorbent polymer from sago waste was prepared using gamma irradiation throughout of this study. The fibre from sago waste mixed with monomer, water soluble polymer and alkaline solution prior to radiation process. Infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) were carried out to confirm the chemical structure and morphology of the super adsorbent. The result obtained showed that this super adsorbent can be used to treat POME. (author)

  13. Gamma radiation associated to stellar formation in the galaxy (cosmic ray astronomy)

    International Nuclear Information System (INIS)

    Casse, Michel.

    1980-05-01

    The gamma ray sky revealed by the COS-B satellite is very peculiar: a few 'gamma ray stars' lying along the galactic plane emerge from a bright milky way. A possible interpretation of this sky is to invoke the existence of regions in which stars, cosmic rays and interstellar matter are very concentrated. A genetic link is established between clouds, stars and cosmic rays: the partial fragmentation of a cloud give birth to stars, the most massive stars accelerate cosmic rays through their supersonic stellar winds, cosmic ray interact in turn with the cloud material to copiously produce high energy gamma rays: a gamma ray source is born

  14. Search for Erzion nuclear catalysis chains from cosmic ray Erzions stopping in organic scintillator

    International Nuclear Information System (INIS)

    Bazhutov, Yu.N.; Pletnikov, E.V.

    2006-01-01

    In the framework of Erzion model, charged cosmic ray Erzions stopping in organic substance begin to create Erzion nuclear catalysis chains with frequency of ∼ 100 MHz during ∼ 10-100 ms. Using an organic substance (plastic) scintillator we can observe long and flat (10-100 ms) pulses of large amplitude (∼100 MeV). No elementary particle can imitate such pulses. It is expected that such pulses in a plastic scintillator with mass of 100 kg will appear at the sea level every week. Such pulses can be observed every day with the Spectrometric Scintillation Super-Telescope (SSTIS) built at IZMIRAN for cosmic rays monitoring. (authors)

  15. Progress in high-energy cosmic ray physics

    Science.gov (United States)

    Mollerach, S.; Roulet, E.

    2018-01-01

    We review some of the recent progress in our knowledge about high-energy cosmic rays, with an emphasis on the interpretation of the different observational results. We discuss the effects that are relevant to shape the cosmic ray spectrum and the explanations proposed to account for its features and for the observed changes in composition. The physics of air-showers is summarized and we also present the results obtained on the proton-air cross section and on the muon content of the showers. We discuss the cosmic ray propagation through magnetic fields, the effects of diffusion and of magnetic lensing, the cosmic ray interactions with background radiation fields and the production of secondary neutrinos and photons. We also consider the cosmic ray anisotropies, both at large and small angular scales, presenting the results obtained from the TeV up to the highest energies and discuss the models proposed to explain their origin.

  16. Radiation chemistry of heavy-particle tracks. I. General considerations

    International Nuclear Information System (INIS)

    Magee, J.L.; Chatterjee, A.

    1980-01-01

    The radiation chemistry of heavy-particle tracks in dilute aqueous solution is considered in a unified manner. Emphasis is on the physical and chemical phenomena which are involved rather than on the construction of models to be used in actual calculations although the latter problem is discussed. A differential segment of a heavy-particle track is composed of two parts which we call core and penumbra; elementary considerations show that all properties of such a differential track can be uniquely specified in terms of a two-parameter system, and we choose energy per nucleon (E) and atomic numbers (Z) as independent parameters. The nature of heavy-particle-track processes varies with the magnitude of the energy deposit (LET), and we discuss three categories of track problems, for low-, intermediate-, and high-LET cases, respectively. Scavenger reactions normally terminate radical recombination in a track, and for heavy-particle tracks we find a criterion involving the scavenger concentration for a convenient separation of core and penumbra into essentially noninteracting parts which can be treated independently. Problems of the core expansion in the three regions are considered, and it is found that a versatile model can be constructed on concepts previously introduced by Ganguly and Magee. A model for the penumbra, based on the authors' electron-track theory, is presented and discussed

  17. PAMELA mission: heralding a new era in cosmic ray physics

    Directory of Open Access Journals (Sweden)

    Ricciarini S. B.

    2014-04-01

    Full Text Available After seven years of data taking in space, the experiment PAMELA is showing very interesting features in cosmic rays, namely in the fluxes of protons, helium, electrons, that might change our basic vision of the mechanisms of production, acceleration and propagation of cosmic rays in the galaxy. In addition, PAMELA measurements of cosmic antiproton and positron fluxes are setting strong constraints to the nature of Dark Matter. The continuous particle detection is allowing a constant monitoring of the solar activity and detailed study of the solar modulation for a long period, giving important improvements to the comprehension of the heliosphere mechanisms. PAMELA is also measuring the radiation environment around the Earth, and has recently discovered an antiproton radiation belt.

  18. Supercluster simulations: impact of baryons on the matter power spectrum and weak lensing forecasts for Super-CLASS

    Science.gov (United States)

    Peters, Aaron; Brown, Michael L.; Kay, Scott T.; Barnes, David J.

    2018-03-01

    We use a combination of full hydrodynamic and dark matter only simulations to investigate the effect that supercluster environments and baryonic physics have on the matter power spectrum, by re-simulating a sample of supercluster sub-volumes. On large scales we find that the matter power spectrum measured from our supercluster sample has at least twice as much power as that measured from our random sample. Our investigation of the effect of baryonic physics on the matter power spectrum is found to be in agreement with previous studies and is weaker than the selection effect over the majority of scales. In addition, we investigate the effect of targeting a cosmologically non-representative, supercluster region of the sky on the weak lensing shear power spectrum. We do this by generating shear and convergence maps using a line-of-sight integration technique, which intercepts our random and supercluster sub-volumes. We find the convergence power spectrum measured from our supercluster sample has a larger amplitude than that measured from the random sample at all scales. We frame our results within the context of the Super-CLuster Assisted Shear Survey (Super-CLASS), which aims to measure the cosmic shear signal in the radio band by targeting a region of the sky that contains five Abell clusters. Assuming the Super-CLASS survey will have a source density of 1.5 galaxies arcmin-2, we forecast a detection significance of 2.7^{+1.5}_{-1.2}, which indicates that in the absence of systematics the Super-CLASS project could make a cosmic shear detection with radio data alone.

  19. Physiological and biochemical and resistance changes and issr polymorphic analysis exposed to 12C6+ heavy ion radiation on calla lily

    International Nuclear Information System (INIS)

    Chen Zhen; Xu Bingliang; Tian Gu; Pu Chongjian; Xu Qiong

    2013-01-01

    Physiological and biochemical changes and ISSR Polymorphic of calla lily caused by exposure to 12 C 6+ heavy-ion radiation were studied. The results showed that bulb germination rate and plant height had significant negative correlation with radiation dose, while MDA content had high significant positive correlation with radiation dose. With increasing radiation dose, the activities of CAT, POD and resistance showed a trend of decrease after an initial increasing. Optimum doses of irradiation were 10 ∼ 20 Gy. ISSR molecular marker of the control and variant plants induced by the 12 C 6+ heavy-ion radiation suggested that 121 bands were amplified with 22 ISSR primers among two calla lily varieties, 55 bands were polymorphic and the polymorphism rate reached to 45%, the 12 C 6+ heavy-ion radiation could cause mutation of genome DNA in calla lily. It is suggested that effect of irradiation on calla lily plant was damage and suppression. Optimum doses of irradiation of 12 C 6+ Heavy ion might be applied for breeding method on Calla lily. (authors)

  20. Heritable non-lethal damage to cultured human cells irradiated with heavy ions

    International Nuclear Information System (INIS)

    Walker, J.T.; Walker, O.A.

    2002-01-01

    During interplanetary flights the nuclei of all of a crew member's cells could be traversed by at least one high-LET (linear energy transfer) cosmic-ray particle. In mammalian cells irradiated in vitro about 1 in 10,000 of the surviving cells traversed by heavy particles is transformed to malignancy or mutated. What, if anything, happens to the remaining >99% of surviving cells? A retrospective analysis of archived data and samples from heavy-ion irradiation experiments with cultured human cells in vitro indicated that heavy ions caused a dose- and LET-dependent reduction in growth rates of progeny of irradiated cells, based on colony-size distributions. The maximum action cross section for this effect is between 100 and 300 μm 2 , at least as large as the cell nuclear area and up to 3 times the cross section for cell killing. Thus, heritable slow growth is the most prevalent effect of high-LET radiations on cultured animal cells, which may have implications for crew health during deep space travel. (author)

  1. Radionuclides and radiation doses in heavy mineral sands and other mining operations in Mozambique

    International Nuclear Information System (INIS)

    Carvalho, F. P.; Matine, O. F.; Taimo, S.; Oliveira, J. M.; Silva, L.; Malta, M.

    2014-01-01

    Sites at the littoral of Mozambique with heavy mineral sands exploited for ilmenite, rutile and zircon and inland mineral deposits exploited for tantalite, uranium and bauxite were surveyed for ambient radiation doses, and samples were collected for the determination of radionuclide concentrations. In heavy mineral sands, 238 U and 232 Th concentrations were 70±2 and 308±9 Bq kg -1 dry weight (dw), respectively, whereas after separation of minerals, the concentrations in the ilmenite fraction were 2240±64 and 6125±485 Bq kg -1 (dw), respectively. Tantalite displayed the highest concentrations with 44 738±2474 Bq kg -1 of 238 U. Radiation exposure of workers in mining facilities is likely to occur at levels above the dose limit for members of the public (1 mSv y -1 ) and therefore radiation doses should be assessed as occupational exposures. Local populations living in these regions in general are not exposed to segregated minerals with high radionuclide concentrations. However, there is intensive traditional mining and a large number of artisan miners and their families may be exposed to radiation doses exceeding the dose limit. A radiation protection programme is therefore needed to ensure radiation protection of the public and workers of developing mining projects. (authors)

  2. Radionuclides and radiation doses in heavy mineral sands and other mining operations in Mozambique.

    Science.gov (United States)

    Carvalho, Fernando P; Matine, Obete F; Taímo, Suzete; Oliveira, João M; Silva, Lídia; Malta, Margarida

    2014-01-01

    Sites at the littoral of Mozambique with heavy mineral sands exploited for ilmenite, rutile and zircon and inland mineral deposits exploited for tantalite, uranium and bauxite were surveyed for ambient radiation doses, and samples were collected for the determination of radionuclide concentrations. In heavy mineral sands, (238)U and (232)Th concentrations were 70±2 and 308±9 Bq kg(-1) dry weight (dw), respectively, whereas after separation of minerals, the concentrations in the ilmenite fraction were 2240±64 and 6125±485 Bq kg(-1) (dw), respectively. Tantalite displayed the highest concentrations with 44 738±2474 Bq kg(-1) of (238)U. Radiation exposure of workers in mining facilities is likely to occur at levels above the dose limit for members of the public (1 mSv y(-1)) and therefore radiation doses should be assessed as occupational exposures. Local populations living in these regions in general are not exposed to segregated minerals with high radionuclide concentrations. However, there is intensive artisanal mining and a large number of artisanal miners and their families may be exposed to radiation doses exceeding the dose limit. A radiation protection programme is therefore needed to ensure radiation protection of the public and workers of developing mining projects.

  3. Cosmic Rays in Thunderstorms

    Science.gov (United States)

    Buitink, Stijn; Scholten, Olaf; van den Berg, Ad; Ebert, Ute

    2013-04-01

    Cosmic Rays in Thunderstorms Cosmic rays are protons and heavier nuclei that constantly bombard the Earth's atmosphere with energies spanning a vast range from 109 to 1021 eV. At typical altitudes up to 10-20 km they initiate large particle cascades, called extensive air showers, that contain millions to billions of secondary particles depending on their initial energy. These particles include electrons, positrons, hadrons and muons, and are concentrated in a compact particle front that propagates at relativistic speed. In addition, the shower leaves behind a trail of lower energy electrons from ionization of air molecules. Under thunderstorm conditions these electrons contribute to the electrical and ionization processes in the cloud. When the local electric field is strong enough the secondary electrons can create relativistic electron run-away avalanches [1] or even non-relativistic avalanches. Cosmic rays could even trigger lightning inception. Conversely, strong electric fields also influence the development of the air shower [2]. Extensive air showers emit a short (tens of nanoseconds) radio pulse due to deflection of the shower particles in the Earth's magnetic field [3]. Antenna arrays, such as AERA, LOFAR and LOPES detect these pulses in a frequency window of roughly 10-100 MHz. These systems are also sensitive to the radiation from discharges associated to thunderstorms, and provide a means to study the interaction of cosmic ray air showers and the electrical processes in thunderstorms [4]. In this presentation we discuss the involved radiation mechanisms and present analyses of thunderstorm data from air shower arrays [1] A. Gurevich et al., Phys. Lett. A 165, 463 (1992) [2] S. Buitink et al., Astropart. Phys. 33, 1 (2010) [3] H. Falcke et al., Nature 435, 313 (2005) [4] S. Buitink et al., Astron. & Astrophys. 467, 385 (2007)

  4. KX radiation of quasi-molecules in heavy ion interaction

    International Nuclear Information System (INIS)

    Kaun, K.G.

    1976-01-01

    The object of investigation is the KX radiation of quasimolecules produced at collision of heavy ions with atoms. In collision, electron may change their states adiabatically and form, at sufficiently small distances R between nuclei, quasimolecular states, which transform, in the limiting case of R → 0, to the states of a quasiatom with an atomic number of Z = Z 1 + Z 2 , where Z 1 and Z 2 are the atomic numbers of the heavy ion and atom. The discussion is restricted to collision experiments of Z = Z 1 + Z 2 > 50. The obtained and published data on the systems Ni+Ni, Nb+Nb, Zr+Nb, La+La, La+Xe, Pb+Pb, and Bi+Bi are analyzed. At a sufficiently high ion energy, one observes an asymmetry of a quasimolecular spectrum, the asymmetry having maximum in the range of the characteristic KX energy of a quasiatom. Data on the absolute yield Y(Ksub(α)) of individual high-energy components of X-rays excited on collision of heavy ions are presented. A considerable drop in yield Y(Ksub(α)) with increasing Z is noted

  5. The Energetic Trans-Iron Cosmic-ray Experiment (ENTICE)

    Science.gov (United States)

    Binns, W. R.; Adams. J. H.; Barghouty, A. F.; Christian, E. R.; Cummings, A. C.; Hams, T.; Israel, M. H.; Labrador, A. W.; Leske, R. A.; Link, J. T.; hide

    2009-01-01

    The ENTICE experiment is one of two instruments that comprise the "Orbiting Astrophysical Spectrometer in Space (OASIS)", which is presently undergoing a NASA "Astrophysics Strategic Mission Concept Study". ENTICE is designed to make high precision measurements of the abundances of individual elements from neon through the actinides and, in addition, will search for possible superheavy nuclei in the galactic cosmic rays. The ENTICE instrument utilizes silicon detectors, aerogel and acrylic Cherenkov counters, and a scintillating optical fiber hodoscope to measure the charge and energy of these ultra-heavy nuclei for energies greater than 0.5 GeV/nucleon. It is a large instrument consisting of four modules with a total effective geometrical factor of approx.20 sq m sr. Measurements made in space for a period of three years with ENTICE will enable us to determine if cosmic rays include a component of recently synthesized transuranic elements (Pu-94 and Cm-96), to measure the age of that component, and to test the model of the OB association origin of galactic cosmic rays. Additionally, these observations will enable us to study how diffusive shock acceleration of cosmic rays operates differently on interstellar grains and gas. Keywords: cosmic rays Galaxy:abundances

  6. Topics on Cosmic Rays. v.1

    International Nuclear Information System (INIS)

    Bellandi Filho, J.; Pemmaraju, A.

    1984-01-01

    Some theoretical and experimental results concerning with cosmic radiation works or with related ones, mainly of the Brazil-Japan Collaboration, are presented in honor of the 60th aniversary of C.M.G. Lattes. (L.C.) [pt

  7. Search for super-heavy GUT magnetic monopoles in cosmic rays

    International Nuclear Information System (INIS)

    Shepko, M.J.

    1986-05-01

    A search for superheavy grand unified (GUT) magnetic monopoles has been performed utilizing a large (260m 2 sr) array of scintillation counters, sited underground at a depth of 1200 m.w.e. This apparatus measures both the time of flight and specific ionization of particles passing through it and has a trigger which is sensitive to prompt as well as very slowly developing pulses from the detector. No monopole events have been observed during 280 days of live time operation of this detector. An upper limit on the flux of monopoles of 4.6 x 10 -14 cm -2 sr -1 s -1 is obtained in the velocity range 8.5 x 10 -4 c to 0.012c at a 90% confidence level. 50 refs., 47 figs., 16 tabs

  8. Measuring space radiation shielding effectiveness

    Directory of Open Access Journals (Sweden)

    Bahadori Amir

    2017-01-01

    Full Text Available Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles is described. Using accelerated alpha particles at the National Aeronautics and Space Administration Space Radiation Laboratory at Brookhaven National Laboratory, the method is applied to sample tiles from the Heat Melt Compactor, which were created by melting material from a simulated astronaut waste stream, consisting of materials such as trash and unconsumed food. The shielding effectiveness calculated from measurements of the Heat Melt Compactor sample tiles is about 10% less than the shielding effectiveness of polyethylene. Shielding material produced from the astronaut waste stream in the form of Heat Melt Compactor tiles is therefore found to be an attractive solution for protection against space radiation.

  9. Measuring space radiation shielding effectiveness

    Science.gov (United States)

    Bahadori, Amir; Semones, Edward; Ewert, Michael; Broyan, James; Walker, Steven

    2017-09-01

    Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles is described. Using accelerated alpha particles at the National Aeronautics and Space Administration Space Radiation Laboratory at Brookhaven National Laboratory, the method is applied to sample tiles from the Heat Melt Compactor, which were created by melting material from a simulated astronaut waste stream, consisting of materials such as trash and unconsumed food. The shielding effectiveness calculated from measurements of the Heat Melt Compactor sample tiles is about 10% less than the shielding effectiveness of polyethylene. Shielding material produced from the astronaut waste stream in the form of Heat Melt Compactor tiles is therefore found to be an attractive solution for protection against space radiation.

  10. Cosmic Humanity: Utopia, Realities, Prospects

    Directory of Open Access Journals (Sweden)

    Sergey Krichevsky

    2017-07-01

    Full Text Available The philosophical foundations of the theory and practice of the creation of cosmic humanity as a process of the evolution of human civilization, the emergence into space, with the prospect of resettlement outside the Earth are considered. There is a connection between myths, fantasies, ideas, concepts and projects aimed at the exploration of outer space, the creation of cosmic humanity. A new and voluminous definition of cosmic humanity in the evolutionary paradigm is given. Cosmic humanity is (essence and 4 stages of evolution: 1. Humanity living on Earth, sensing, knowing, understanding its cosmic origin, relationship with the cosmos and cosmic destiny. 2. Humanity living on Earth, leading aerospace activity for the purposes of exploration and use of aerospace space (Heaven, Space for survival and development. 3. Humanity living on Earth and outside the Earth — in the solar system, preserving the Earth and mastering the Cosmos for survival and development. 4. Humanity, settled and living in the Cosmos. Now humanity is in the process of transition from the second to the third stage. In the process of this evolution, a complex transformation of man and society takes place. The problem-semantic field of cosmic humanity is described and its general model is presented. The meta-goal-setting is the justification of cosmic humanity with the application of the anthropic principle and its “active” super (post anthropic supplement: “Cosmic humanity has an evolutionary purpose to actively manage evolution: change man, humanity and the universe.” The evolution of the “cosmic dream”, goals and technologies of space activities is formalized in the form of a conceptual model. Challenges and negative trends are considered in connection with the crisis of space activity, criticism and attempts to limit the flights of people into space. The prototype of cosmic humanity, its basis and acting model is the cosmonauts’ community. The main

  11. Study of the contribution of the different components of atmospheric cosmic radiation in dose received by the aircraft crew

    International Nuclear Information System (INIS)

    Pereira, Marlon A.; Prado, Adriane C.M.; Federico, Claudio A.; Goncalez, Odair L.

    2014-01-01

    The crews and aircraft passengers are exposed to atmospheric cosmic radiation. The flow of this radiation is modulated by the solar cycle and space weather, varying with the geomagnetic latitude and altitude. This paper presents a study of the contributions of radiation in total ambient dose equivalent of the crews depending on flight altitude up to 20 km, during maximum and minimum solar and in equatorial and polar regions. The results of calculations of the particle flows generated by the EXPACS and QARM codes are used. The particles evaluated that contributing significantly in the ambient dose equivalent are neutrons, protons, electrons, positrons, alphas, photons, muons and charged pions. This review allows us to characterize the origin of the dose received by crews and also support a project of a dosimetric system suitable for this ionizing radiation field in aircraft and on the ground

  12. Cosmic perspectives in space physics

    CERN Document Server

    Biswas, Sukumar

    2000-01-01

    In the early years of the twentieth century, Victor Hess of Germany flew instruments in balloons and so discovered in 1912 that an extra-~errestial radiation of unknown origin is incident on the earth with an almost constant intensity at all times. These penetrating non­ solar radiations which were called Cosmic Rays by Millikan, USA, opened the new frontier of space physics and many leading scientists were attracted to it. At the end of World War II a number of space vehicles, e.g. stratospheric balloons, rockets and satellites were developed. In 1950 and onwards, these vehicles enabled spectacular advances in space physics and space astrophysics. New horizons were opened in the explorations of cosmic rays, the earth's magnetosphere, the Sun and the heliosphere, the moon and the planets. Using space-borne instruments, exciting discoveries were made of stars, and galaxies in the infra-red, ultra violet, x-ray and gamma-ray wavelengths. In this text book these fascinating new findings are presented in depth a...

  13. Constraints on nonconformal couplings from the properties of the cosmic microwave background radiation.

    Science.gov (United States)

    van de Bruck, Carsten; Morrice, Jack; Vu, Susan

    2013-10-18

    Certain modified gravity theories predict the existence of an additional, nonconformally coupled scalar field. A disformal coupling of the field to the cosmic microwave background (CMB) is shown to affect the evolution of the energy density in the radiation fluid and produces a modification of the distribution function of the CMB, which vanishes if photons and baryons couple in the same way to the scalar. We find the constraints on the couplings to matter and photons coming from the measurement of the CMB temperature evolution and from current upper limits on the μ distortion of the CMB spectrum. We also point out that the measured equation of state of photons differs from w(γ)=1/3 in the presence of disformal couplings.

  14. The cosmic microwave background radiation power spectrum as a random bit generator for symmetric- and asymmetric-key cryptography.

    Science.gov (United States)

    Lee, Jeffrey S; Cleaver, Gerald B

    2017-10-01

    In this note, the Cosmic Microwave Background (CMB) Radiation is shown to be capable of functioning as a Random Bit Generator, and constitutes an effectively infinite supply of truly random one-time pad values of arbitrary length. It is further argued that the CMB power spectrum potentially conforms to the FIPS 140-2 standard. Additionally, its applicability to the generation of a (n × n) random key matrix for a Vernam cipher is established.

  15. Cosmic microwave background at its twentieth anniversary

    International Nuclear Information System (INIS)

    Partridge, R.B.

    1986-01-01

    The role of cosmic microwave background radiation in cosmology is examined. The thermal spectrum, the large entropy in the universe, the large-scale isotropy of the radiation, and the small-scale isotropy or homogeneity of the radiation are analyzed in order to describe the properties of the universe. It is observed that the microwave background spectrum is thermal over a wide range, there is a significant detectable dipole anisotropy in the radiation, but no quadrupole anisotropy, and there is a high deree of radiation isotropy on angular scales between 1-5 degrees. 62 references

  16. Gamma radiation-polymerized methacrylates used as heavy metals adsorbents

    International Nuclear Information System (INIS)

    Barrera D, C.; Roa M, G.; Balderas H, P.; Bilyeu, B.; Urena N, F.

    2009-01-01

    Heavy metal removal from aqueous solution is a priority research area since the actual methods are costly and a major drawback is the large amounts of sludge generated when applying traditional techniques. Adsorption is a physiochemical wastewater treatment process, which is gaining prominence as a means of producing high quality effluents, which are low in metal ion concentrations. The development of inexpensive adsorbents for the treatment of wastewater is an important area in environmental sciences. In this work we describe some of the physical and chemical phenomena that take place in the polymerization of methacrylates when gamma radiation is used. We explain how polymeric material characterization equipment are used for obtaining information regarding the material properties. Then we explain how the new polymeric material obtained can be use for the wastewater treatment. Finally, a comparison in the heavy metal removal from aqueous solution with other sorbent materials is presented. (Author)

  17. Cosmic Ray Energetics and Mass

    CERN Multimedia

    Baylon cardiel, J L; Wallace, K C; Anderson, T B; Copley, M

    The cosmic-ray energetics and mass (CREAM) investigation is designed to measure cosmic-ray composition to the supernova energy scale of 10$^{15}$ eV in a series of ultra long duration balloon (ULDB) flights. The first flight is planned to be launched from Antarctica in December 2004. The goal is to observe cosmic-ray spectral features and/or abundance changes that might signify a limit to supernova acceleration. The particle ($\\{Z}$) measurements will be made with a timing-based charge detector and a pixelated silicon charge detector to minimize the effect of backscatter from the calorimeter. The particle energy measurements will be made with a transition radiation detector (TRD) for $\\{Z}$ > 3 and a sampling tungsten/scintillator calorimeter for $\\{Z}$ $\\geq$1 particles, allowing inflight cross calibration of the two detectors. The status of the payload construction and flight preparation are reported in this paper.

  18. Extragalactic Ultra-High Energy Cosmic-Rays - Part One - Contribution from Hot Spots in Fr-II Radio Galaxies

    Science.gov (United States)

    Rachen, J. P.; Biermann, P. L.

    1993-05-01

    The hot spots of Fanaroff-Riley class II radio galaxies, considered as working surfaces of highly collimated plasma jets, are proposed to be the dominant sources of the cosmic rays at energies above 1 EeV^a^. We apply the model of first order Fermi acceleration at strong, nonrelativistic shock waves to the hot spot region. The strength of the model has been demonstrated by Biermann & Strittmatter (1987) and by Meisenheimer et al. (1989), who explain their radio-to optical spectra and infer the physical conditions of the radiating plasma. Using synchrotron radiating electrons as a trace, we can calculate the spectrum and the maximum energy of protons accelerated under the same conditions. For simplicity, we disregard heavy nuclei, but their probable role is discussed. The normalization of proton flux injected in extragalactic space is performed by using estimates from Rawlings & Saunders (1991) for the total energy stored in relativistic particles inside the jets and radio galaxy evolution models given by Peacock (1985). We calculate the spectral modifications due to interactions of the protons with the microwave background photons in an evolving universe, following Berezinsky & Grigor'eva (1988). Constraints on the extragalactic magnetic field can be imposed, since it must permit an almost homogeneous filling of the universe with energetic protons. The observed ultra-high energy cosmic ray spectrum is reproduced in slope and flux, limited at high energies by the Greisen-cutoff at about 80 EeV. The requirements on the content of relativistic protons in jets and the constraints to the extragalactic magnetic field are consistent with common estimates. The data beyond the Greisen cutoff for protons may be explained by including heavy nuclei in our model, since they can propagate over cosmological distances up to more than 100 EeV.

  19. The cosmic background radiation circa ν2K

    International Nuclear Information System (INIS)

    Bond, J. Richard; Pogosyan, Dmitry; Prunet, Simon

    2000-01-01

    We describe the implications of cosmic microwave background (CMB) observations and galaxy and cluster surveys of large scale structure (LSS) for theories of cosmic structure formation, especially emphasizing the recent Boomerang and Maxima CMB balloon experiments. The inflation-based cosmic structure formation paradigm we have been operating with for two decades has never been in better shape. Here we primarily focus on a simplified inflation parameter set, {ω b , ω cdm , Ω tot , Ω Λ , n s , τ C , σ 8 }. Combining all of the current CMB+LSS data points to the remarkable conclusion that the local Hubble patch we can access has little mean curvature (Ω tot = 1.08 ± 0.06) and the initial fluctuations were nearly scale invariant (n s 1.03 ± 0.08), both predictions of (non-baroque) inflation theory. The baryon density is found to be slightly larger than that preferred by independent Big Bang Nucleosynthesis estimates (ω b -Ω b h 2 0.030 ± 0.005 cf. 0.019 ± 0.002). The CDM density is in the expected range (ω cdm 0.17±0.02). Even stranger is the CMB+LSS evidence that the density of the universe is dominated by unclustered energy akin to the cosmological constant (Ω Λ = 0.66 ± 0.06), at the same level as that inferred from high redshift supernova observations. We also sketch the CMB+LSS implications for massive neutrinos

  20. Effects of cosmic ray decreases on cloud microphysics

    DEFF Research Database (Denmark)

    Svensmark, J.; Enghoff, M. B.; Svensmark, H.

    2012-01-01

    Using cloud data from MODIS we investigate the response of cloud microphysics to sudden decreases in galactic cosmic radiation – Forbush decreases – and find responses in effective emissivity, cloud fraction, liquid water content, and optical thickness above the 2–3 sigma level 6–9 days after...... the minimum in atmospheric ionization and less significant responses for effective radius and cloud condensation nuclei (... of the signal of 3.1 sigma. We also see a correlation between total solar irradiance and strong Forbush decreases but a clear mechanism connecting this to cloud properties is lacking. There is no signal in the UV radiation. The responses of the parameters correlate linearly with the reduction in the cosmic ray...