WorldWideScience

Sample records for super heavy magnetic

  1. Search for super-heavy GUT magnetic monopoles in cosmic rays

    International Nuclear Information System (INIS)

    Shepko, M.J.

    1986-05-01

    A search for superheavy grand unified (GUT) magnetic monopoles has been performed utilizing a large (260m 2 sr) array of scintillation counters, sited underground at a depth of 1200 m.w.e. This apparatus measures both the time of flight and specific ionization of particles passing through it and has a trigger which is sensitive to prompt as well as very slowly developing pulses from the detector. No monopole events have been observed during 280 days of live time operation of this detector. An upper limit on the flux of monopoles of 4.6 x 10 -14 cm -2 sr -1 s -1 is obtained in the velocity range 8.5 x 10 -4 c to 0.012c at a 90% confidence level. 50 refs., 47 figs., 16 tabs

  2. Magnets becoming more super

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-09-15

    With the twenty year struggle to master superconducting magnets for accelerators behind them, magnet specialists are now very confident of their ability to use superconductivity in accelerator design. Superconductor performance has improved considerably in the past few years and we may well see the number of these magnets escalate from the present figure of about a thousand to over fifteen thousand within the next decade. This confidence emerged clearly from a recent Workshop at Brookhaven, organized by the Panel on Superconducting Magnets and Cryogenics set up by the International Committee on Future Accelerators (ICFA)

  3. Advanced composite materials and processes for the manufacture of SSC (Superconducting Super Collider) and RHIC (Relativistic Heavy Ion Collider) superconducting magnets used at cryogenic temperatures in a high radiation environment

    Energy Technology Data Exchange (ETDEWEB)

    Sondericker, J.H.

    1989-01-01

    Presently, BNL work on superconducting magnets centers mainly on the development of 17 meter length dipoles for the Superconducting Super Collider Project, approved for construction at Waxahatchie, Texas and 9.7 meter dipoles and quadrupoles for the Relativistic Heavy Ion Collider, a BNL project to start construction next year. This paper will discuss the role of composites in the manufacture of magnets, their operational requirements in cryogenic and radiation environments, and the benefits derived from their use. 13 figs.

  4. Advanced composite materials and processes for the manufacture of SSC [Superconducting Super Collider] and RHIC [Relativistic Heavy Ion Collider] superconducting magnets used at cryogenic temperatures in a high radiation environment

    International Nuclear Information System (INIS)

    Sondericker, J.H.

    1989-01-01

    Presently, BNL work on superconducting magnets centers mainly on the development of 17 meter length dipoles for the Superconducting Super Collider Project, approved for construction at Waxahatchie, Texas and 9.7 meter dipoles and quadrupoles for the Relativistic Heavy Ion Collider, a BNL project to start construction next year. This paper will discuss the role of composites in the manufacture of magnets, their operational requirements in cryogenic and radiation environments, and the benefits derived from their use. 13 figs

  5. From heavy nuclei to super-heavy nuclei

    International Nuclear Information System (INIS)

    Theisen, Ch.

    2003-01-01

    The existence of super-heavy nuclei has been predicted nearly fifty years ago. Due to the strong coulomb repulsion, the stabilisation of these nuclei is possible only through shell effects. The reasons for this fragile stability, as well as the theoretical predictions concerning the position of the island of stability are presented in the first part of this lecture. In the second part, experiments and experimental techniques which have been used to synthesize or search for super-heavy elements are described. Spectroscopic studies performed in very heavy elements are presented in the following section. We close this lecture with techniques that are currently being developed in order to reach the superheavy island and to study the structure of very-heavy nuclei. (author)

  6. Effect of minimum strength of mirror magnetic field (Bmin) on production of highly charged heavy ions from RIKEN liquid-He-free super conducting electron-cyclotron resonance ion source (RAMSES)

    International Nuclear Information System (INIS)

    Arai, Hideyuki; Imanaka, Masashi; Lee, S.-M.Sang-Moo; Higurashi, Yoshihide; Nakagawa, Takahide; Kidera, Masanori; Kageyama, Tadashi; Kase, Masayuki; Yano, Yasushige; Aihara, Toshimitsu

    2002-01-01

    We measured the beam intensity of highly charged heavy ions (O, Ar and Kr ions) as a function of the minimum strength of mirror magnetic field (B min ) of the RIKEN liquid-He-free super conducting electron-cyclotron resonance ion source. In this experiment, we found that the optimum value of B min exists to maximize the beam intensity of highly charged heavy ions and the value was almost the same (∼0.49 T) for various charge state heavy ions

  7. From heavy nuclei to super-heavy nuclei; Des noyaux lourds aux super-lourds

    Energy Technology Data Exchange (ETDEWEB)

    Theisen, Ch

    2003-01-01

    The existence of super-heavy nuclei has been predicted nearly fifty years ago. Due to the strong coulomb repulsion, the stabilisation of these nuclei is possible only through shell effects. The reasons for this fragile stability, as well as the theoretical predictions concerning the position of the island of stability are presented in the first part of this lecture. In the second part, experiments and experimental techniques which have been used to synthesize or search for super-heavy elements are described. Spectroscopic studies performed in very heavy elements are presented in the following section. We close this lecture with techniques that are currently being developed in order to reach the superheavy island and to study the structure of very-heavy nuclei. (author)

  8. Actinide targets for the synthesis of super-heavy elements

    International Nuclear Information System (INIS)

    Roberto, J.B.; Alexander, C.W.; Boll, R.A.; Burns, J.D.; Ezold, J.G.; Felker, L.K.; Hogle, S.L.; Rykaczewski, K.P.

    2015-01-01

    Since 2000, six new super-heavy elements with atomic numbers 113 through 118 have been synthesized in hot fusion reactions of "4"8Ca beams on actinide targets. These target materials, including "2"4"2Pu, "2"4"4Pu, "2"4"3Am, "2"4"5Cm, "2"4"8Cm, "2"4"9Cf, and "2"4"9Bk, are available in very limited quantities and require specialized production and processing facilities resident in only a few research centers worldwide. This report describes the production and chemical processing of heavy actinide materials for super-heavy element research, current availabilities of these materials, and related target fabrication techniques. The impact of actinide materials in super-heavy element discovery is reviewed, and strategies for enhancing the production of rare actinides including "2"4"9Bk, "2"5"1Cf, and "2"5"4Es are described.

  9. Super magnets for interaction regions

    International Nuclear Information System (INIS)

    Biallas, G.; Fowler, W.; Diebold, R.

    1977-01-01

    The feasibility of using superconducting magnets in the beam interaction regions of particle accelerators is discussed. These higher field magnets can be shorter, leaving more room for detectors, but also must have a large aperture and magnetic shielding. The ''kissing geometry'' was investigated, and design and scaling considerations are given. A rough estimate of the cost of such superconducting magnets is given as an aid to the selection of interaction geometry

  10. Cluster radioactivity of Z=125 super heavy nuclei

    International Nuclear Information System (INIS)

    Manjunatha, H.C.; Seenappa, L.

    2015-01-01

    For atomic numbers larger than 121 cluster decay and spontaneous fission may compete with α decay. Hence there is a need to make reliable calculations for the cluster decay half-lives of superheavy nuclei to predict the possible isotopes super heavy nuclei. So, in the present work, we have studied the decay of clusters such as 8 Be, 10 Be, 12 C, 14 C, 16 C, 18 O, 20 O, 22 Ne, 24 Ne, 25 Ne, 26 Ne, 28 Mg, 30 Mg, 32 Si, 34 Si, 36 Si, 40 S, 48 Ca, 50 Ca and 52 Ti from the super heavy nuclei Z=125

  11. French contribution to the super-heavy nuclei discovery

    International Nuclear Information System (INIS)

    Nifenecker, H.; Asghar, M.

    1999-01-01

    The research on super-heavy nuclei is a science in full operation for which the Berkeley physicist give proof of perseverance. The author wonders about the french absence in this domain. He recalls the strategical decisions concerning the research programs of the period and gives outline of the future with the interest of the ECR (Electronic Cyclotron Resonance) sources. (A.L.B.)

  12. Magnetic field measurements of the superEBIS superconducting magnet

    International Nuclear Information System (INIS)

    Herschcovitch, A.; Kponou, A.; Clipperton, R.; Hensel, W.; Usack, F.

    1994-01-01

    SuperEBIS was designed to have a solenoidal magnetic field of a 5 Tesla strength with a 120 cm long bore. The field was specified to be straight within 1 part in 10000 within the bore, and uniform to within 1 part in 1000 within the central 90 cm. Magnetic field measurements were performed with a computerized magnetic field measuring setup that was borrowed from W. Sampson's group. A preliminary test was made of a scheme to determine if the magnetic and mechanical axes of the solenoid coincided, and, if not, by how much

  13. Heavy quark and magnetic moment

    International Nuclear Information System (INIS)

    Mubarak, Ahmad; Jallu, M.S.

    1979-01-01

    The magnetic moments and transition moments of heavy hadrons including the conventional particles are obtained under the SU(5) truth symmetry scheme. To this end state vectors are defined and the quark additivity principle is taken into account. (author)

  14. Status and prospect of super-heavy nuclei research at IMP

    International Nuclear Information System (INIS)

    Xu Hushan; Sun Zhiyu; Zhan Wenlong; Zhou Xiaohong; Huang Wenxue; Zhang Hongbin; Gan Zaiguo; Li Junqing; Ma Xinwen; Qin Zhi; Xiao Guoqing; Guo Zhongyan; Li Zhihui; Zhang Yuhu; Jin Genming; Huang Tianheng; Hu Zhengguo; Zhang Xueheng; Zheng Chuan; Chinese Academy of Sciences, Beijing

    2006-01-01

    The history and the international status of the super-heavy nuclei synthesis are briefly described. The related research work carried out at the Institute of Modern Physics (IMP) has been reviewed. The prospect of the super-heavy nuclei research at IMP has been introduced. (authors)

  15. Remarks on the fission barriers of super-heavy nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, S. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Goethe-Universitaet Frankfurt, Institut fuer Physik, Frankfurt (Germany); Heinz, S.; Mann, R.; Maurer, J.; Muenzenberg, G.; Barth, W.; Dahl, L.; Kindler, B.; Kojouharov, I.; Lang, R.; Lommel, B.; Runke, J.; Scheidenberger, C.; Tinschert, K. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Antalic, S. [Comenius University, Department of Nuclear Physics and Biophysics, Bratislava (Slovakia); Eberhardt, K.; Thoerle-Pospiech, P.; Trautmann, N. [Johannes Gutenberg-Universitaet Mainz, Mainz (Germany); Grzywacz, R. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); University of Tennessee, Knoxville, TN (United States); Hamilton, J.H. [Vanderbilt University, Department of Physics and Astronomy, Nashville, TN (United States); Henderson, R.A.; Kenneally, J.M.; Moody, K.J.; Shaughnessy, D.A.; Stoyer, M.A. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Miernik, K. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); University of Warsaw, Warsaw (Poland); Miller, D. [University of Tennessee, Knoxville, TN (United States); Morita, K. [RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama (Japan); Nishio, K. [Japan Atomic Energy Agency, Tokai, Ibaraki (Japan); Popeko, A.G.; Yeremin, A.V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Roberto, J.B.; Rykaczewski, K.P. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Uusitalo, J. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland)

    2016-04-15

    Shell-correction energies of super-heavy nuclei are approximated by using Q{sub α} values of measured decay chains. Five decay chains were analyzed, which start at the isotopes {sup 285}Fl, {sup 294}118, {sup 291}Lv, {sup 292}Lv and {sup 293}Lv. The data are compared with predictions of macroscopic-microscopic models. Fission barriers are estimated that can be used to eliminate uncertainties in partial fission half-lives and in calculations of evaporation-residue cross-sections. In that calculations, fission probability of the compound nucleus is a major factor contributing to the total cross-section. The data also provide constraints on the cross-sections of capture and quasi-fission in the entrance channel of the fusion reaction. Arguments are presented that fusion reactions for synthesis of isotopes of elements 118 and 120 may have higher cross-sections than assumed so far. (orig.)

  16. The SuperHILAC heavy ion intensity upgrade

    International Nuclear Information System (INIS)

    Feinberg, B.; Brown, I.G.

    1987-03-01

    A high current MEtal Vapor Vacuum Arc (MEVVA) ion source is to be installed in the third injector (Abel) at the SuperHILAC, representing the first accelerator use of this novel ion source. The MEVVA source has produced over 1 A of uranium in all charge states, with more than 100 electrical mA (emA) of U 5+ . Transport of the space-charge dominated beam through the charge-state analysis dipole will be enhanced by a 100 kV extractor voltage and neutralization by secondary electrons. In addition to the MEVVA source, other improvements already in place include a lower pressure in the Low Energy Beam Transport line (15.8 keV/AMU) to reduce charge exchange for the heavy elements, and the addition of a second 23 MHz buncher upstream of the Wideroe linac and two 70 MHz bunchers between the 23 MHz Wideroe and the 70 MHz Alvarez linacs. The project is expected to result in a fivefold increase in beam delivered to Bevatron experiments, increasing the extracted uranium beam to 5 x 10 7 ions/pulse

  17. A commercial tokamak reactor using super high field superconducting magnets

    International Nuclear Information System (INIS)

    Schwartz, J.; Bromberg, L.; Cohn, D.R.; Williams, J.E.C.

    1988-01-01

    This paper explores the range of possibilities for producing super high fields with advanced superconducting magnets. Obtaining magnetic fields greater than about 18 T at the coil in a large superconducting magnet system will require advances in many areas of magnet technology. These needs are discussed and potential solutions (advanced superconductors, structural materials and design methods) evaluated. A point design for a commercial reactor with magnetic field at the coil of 24 T and fusion power of 1800 MW is presented. Critical issues and parameters for magnet design are identified. 20 refs., 9 figs., 4 tabs

  18. SSC [Superconducting Super Collider] magnet mechanical interconnections

    International Nuclear Information System (INIS)

    Bossert, R.C.; Niemann, R.C.; Carson, J.A.; Ramstein, W.L.; Reynolds, M.P.; Engler, N.H.

    1989-03-01

    Installation of superconducting accelerator dipole and quadrupole magnets and spool pieces in the SSC tunnel requires the interconnection of the cryostats. The connections are both of an electrical and mechanical nature. The details of the mechanical connections are presented. The connections include piping, thermal shields and insulation. There are seven piping systems to be connected. These systems must carry cryogenic fluids at various pressures or maintain vacuum and must be consistently leak tight. The interconnection region must be able to expand and contract as magnets change in length while cooling and warming. The heat leak characteristics of the interconnection region must be comparable to that of the body of the magnet. Rapid assembly and disassembly is required. The magnet cryostat development program is discussed. Results of quality control testing are reported. Results of making full scale interconnections under magnet test situations are reviewed. 11 figs., 4 tabs

  19. SSC [Superconducting Super Collider] magnet technology

    International Nuclear Information System (INIS)

    Taylor, C.

    1987-09-01

    To minimize cost of the SSC facility, small-bore high field dipole magnets have been developed;some of the new technology that has been developed at several U.S. national laboratories and in industry is summarized. Superconducting wire with high J/sub c/ and filaments as small as 5μm diameter is not produced iwht mechanical properties suitable for reliable cable production. A variety of collar designs of both aluminum and stainless steel have been used in model magnets. A low-heat leak post-type cryostat support system is used and a system for accurate alignment of coil-collar-yoke in the cryostat has been developed. Model magnets of 1-m, 1.8 m, 4.5 m, and 17 m lengths have been build during the past two years. 23 refs., 5 figs., 2 tabs

  20. A novel approach to the island of stability of super-heavy elements search

    Directory of Open Access Journals (Sweden)

    Wieloch A.

    2016-01-01

    Full Text Available It is expected that the cross section for super-heavy nuclei production of Z > 118 is dropping into the region of tens of femto barns. This creates a serious limitation for the complete fusion technique that is used so far. Moreover, the available combinations of the neutron to proton ratio of stable projectiles and targets are quite limited and it can be difficult to reach the island of stability of super heavy elements using complete fusion reactions with stable projectiles. In this context, a new experimental investigation of mechanisms other than complete fusion of heavy nuclei and a novel experimental technique are invented for our search of super- and hyper-nuclei. This contribution is focused on that technique.

  1. Revamped half-lives of super heavy elements (SHE) in trans-actinide region

    International Nuclear Information System (INIS)

    Carmel Vigila Bai, G.M.; Umai Parvathiy, J.

    2015-01-01

    Analyzation of alpha decay properties and identification of Island of Stability has illuminated the theories of nuclear physics. This fundamental scientific research is the current ongoing work in the field of super heavy elements. In order to study the decay properties of super heavy elements a realistic model called as Cubic plus Yukawa plus Exponential (CYE) model is used here. This model uses a cubic potential in the pre-scission region connected by Coulomb plus Yukawa plus Exponential potential in the post scission region

  2. Survival and compound nucleus probability of super heavy element Z = 117

    Energy Technology Data Exchange (ETDEWEB)

    Manjunatha, H.C. [Government College for Women, Department of Physics, Kolar, Karnataka (India); Sridhar, K.N. [Government First grade College, Department of Physics, Kolar, Karnataka (India)

    2017-05-15

    As a part of a systematic study for predicting the most suitable projectile-target combinations for heavy-ion fusion experiments in the synthesis of {sup 289-297}Ts, we have calculated the transmission probability (T{sub l}), compound nucleus formation probabilities (P{sub CN}) and survival probability (P{sub sur}) of possible projectile-target combinations. We have also studied the fusion cross section, survival cross section and fission cross sections for different projectile-target combination of {sup 289-297}Ts. These theoretical parameters are required before the synthesis of the super heavy element. The calculated probabilities and cross sections show that the production of isotopes of the super heavy element with Z = 117 is strongly dependent on the reaction systems. The most probable reactions to synthetize the super heavy nuclei {sup 289-297}Ts are worked out and listed explicitly. We have also studied the variation of P{sub CN} and P{sub sur} with the mass number of projectile and target nuclei. This work is useful in the synthesis of the super heavy element Z = 117. (orig.)

  3. Survival and compound nucleus probability of super heavy element Z = 117

    International Nuclear Information System (INIS)

    Manjunatha, H.C.; Sridhar, K.N.

    2017-01-01

    As a part of a systematic study for predicting the most suitable projectile-target combinations for heavy-ion fusion experiments in the synthesis of "2"8"9"-"2"9"7Ts, we have calculated the transmission probability (T_l), compound nucleus formation probabilities (P_C_N) and survival probability (P_s_u_r) of possible projectile-target combinations. We have also studied the fusion cross section, survival cross section and fission cross sections for different projectile-target combination of "2"8"9"-"2"9"7Ts. These theoretical parameters are required before the synthesis of the super heavy element. The calculated probabilities and cross sections show that the production of isotopes of the super heavy element with Z = 117 is strongly dependent on the reaction systems. The most probable reactions to synthetize the super heavy nuclei "2"8"9"-"2"9"7Ts are worked out and listed explicitly. We have also studied the variation of P_C_N and P_s_u_r with the mass number of projectile and target nuclei. This work is useful in the synthesis of the super heavy element Z = 117. (orig.)

  4. Magnetic fluctuations and heavy electron superconductivity

    International Nuclear Information System (INIS)

    Norman, M.R.

    1988-01-01

    A magnetic fluctuation self-energy based on neutron scattering data is used to calculate mass renormalizations, and superconducting critical temperatures and order parameters, for various heavy electron metals

  5. Anomalous magnetic moment with heavy virtual leptons

    Energy Technology Data Exchange (ETDEWEB)

    Kurz, Alexander [Karlsruher Institut fuer Technologie (Germany). Inst. fuer Theoretische Teilchenphysik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Liu, Tao; Steinhauser, Matthias [Karlsruher Institut fuer Technologie (Germany). Inst. fuer Theoretische Teilchenphysik; Marquard, Peter [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2013-11-15

    We compute the contributions to the electron and muon anomalous magnetic moment induced by heavy leptons up to four-loop order. Asymptotic expansion is applied to obtain three analytic expansion terms which show rapid convergence.

  6. Super-heavy dark matter – Towards predictive scenarios from inflation

    Energy Technology Data Exchange (ETDEWEB)

    Kannike, Kristjan [National Institute of Chemical Physics and Biophysics, Rävala 10, 10143 Tallinn (Estonia); Racioppi, Antonio, E-mail: antonio.racioppi@kbfi.ee [National Institute of Chemical Physics and Biophysics, Rävala 10, 10143 Tallinn (Estonia); Raidal, Martti [National Institute of Chemical Physics and Biophysics, Rävala 10, 10143 Tallinn (Estonia); Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu (Estonia)

    2017-05-15

    A generic prediction of the Coleman–Weinberg inflation is the existence of a heavy particle sector whose interactions with the inflaton, the lightest state in this sector, generate the inflaton potential at loop level. For typical interactions the heavy sector may contain stable states whose relic abundance is generated at the end of inflation by the gravity alone. This general feature, and the absence of any particle physics signal of dark matter so far, motivates us to look for new directions in the dark sector physics, including scenarios in which dark matter is super-heavy. In this article we study the possibility that the dark matter is even heavier than the inflaton, its existence follows from the inflaton dynamics, and its abundance today is naturally determined by the weakness of gravitational interaction. This implies that the super-heavy dark matter scenarios can be tested via the measurements of inflationary parameters and/or the CMB isocurvature perturbations and non-Gaussianities. We explicitly work out details of three Coleman–Weinberg inflation scenarios, study the systematics of super-heavy dark matter production in those cases, and compute which parts of the parameter spaces can be probed by the future CMB measurements.

  7. Super-heavy dark matter – Towards predictive scenarios from inflation

    Directory of Open Access Journals (Sweden)

    Kristjan Kannike

    2017-05-01

    Full Text Available A generic prediction of the Coleman–Weinberg inflation is the existence of a heavy particle sector whose interactions with the inflaton, the lightest state in this sector, generate the inflaton potential at loop level. For typical interactions the heavy sector may contain stable states whose relic abundance is generated at the end of inflation by the gravity alone. This general feature, and the absence of any particle physics signal of dark matter so far, motivates us to look for new directions in the dark sector physics, including scenarios in which dark matter is super-heavy. In this article we study the possibility that the dark matter is even heavier than the inflaton, its existence follows from the inflaton dynamics, and its abundance today is naturally determined by the weakness of gravitational interaction. This implies that the super-heavy dark matter scenarios can be tested via the measurements of inflationary parameters and/or the CMB isocurvature perturbations and non-Gaussianities. We explicitly work out details of three Coleman–Weinberg inflation scenarios, study the systematics of super-heavy dark matter production in those cases, and compute which parts of the parameter spaces can be probed by the future CMB measurements.

  8. Superconducting super collider second generation dipole magnet cryostat design

    International Nuclear Information System (INIS)

    Niemann, R.C.; Bossert, R.C.; Carson, J.A.; Engler, N.H.; Gonczy, J.D.; Larson, E.T.; Nicol, T.H.; Ohmori, T.

    1988-12-01

    The Superconducting Super Collider, a planned colliding beam particle physics research facility, requires /approximately/10,000 superconducting devices for the control of high energy particle beams. The /approximately/7,500 collider ring superconducting dipole magnets require cryostats that are functional, cryogenically efficient, mass producible and cost effective. A second generation cryostat design has been developed utilizing the experiences gained during the construction, installation and operation of several full length first generation dipole magnet models. The nature of the cryostat improvements is presented. Considered are the connections between the magnet cold mass and its supports, cryogenic supports, cold mass axial anchor, thermal shields, insulation, vacuum vessel and interconnections. The details of the improvements are enumerated and the abstracted results of available component and system evaluations are presented. 8 refs., 11 figs

  9. Safety aspects of superconducting magnets for Super-FRS

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The Super Fragment Separator (Super FRS) is a two-stage in flight separator to be built next to the site of GSI, Darmstadt, Germany as part of FAIR (Facility for Anti-proton and Ion Research). Its purpose is to create and separate rare isotope beams and to enable the mass measurement also for very short lived nuclei. A superferric design with superconducting coils and standard iron yoke shaping the magnetic field was chosen for the magnets. The cooling will be by a liquid Helium bath. For the main dipoles only the coil is at cold for the multiplets (asemblies of quadrupoles and hgher order correctors) also the iron yoke will be in the bath. From a safety point of view the large He-volumes of more than 1000 l of the multiplets, the high design pressure of 20 bar, as well as the high inductances of the magnets up to 30 H are challenges to be considered in the design and definition of the testing procedures.

  10. Magnetism in heavy-electron metals

    International Nuclear Information System (INIS)

    Ott, H.R.

    1997-01-01

    Originally it was believed that the presence of heavy-mass charge carriers at low temperatures in some special rare-earth or actinide compounds was simply the result of a suppression of magnetic order in these materials. Various experiments reveal, however, that magnetic order may occur from a heavy-electron state or that a heavy-electron state may also develop within a magnetically ordered materix. It turned out that pure compounds without any sign of a cooperative phase transition down to very low temperatures are rare but examples are known where microscopic experimental probes give evidence for strong magnetic correlations involving moments of much reduced magnitude (≤ 0.1μ Β ) in such cases. It apperas that electronic and magnetic inhomogeneities, both in real and reciprocal space occur which are not simply the result of chemical inhomogeneities. Long range magnetic order among strongly reduced magnetic moments seems to be a particular feature of some heavy-electron materials. Other examples show, that disorder may lead to a suppression of cooperative phase transitions and both macroscopic and microscopic physical properties indicate that conservative model calculations are not sufficient to describe the experimental observations. The main difficulty is to find a suitable theoretical approach that considers the various interactions of similar strength on an equal footing. Different examples of these various features are demonstrated and discussed. (au)

  11. Electro-magnetic properties of heavy nuclei

    International Nuclear Information System (INIS)

    Otsuka, Takaharu

    1989-01-01

    Two topics of electro-magnetic properties of heavy nuclei are discussed. The first topic is the M1 excitation from well-deformed heavy nuclei, and the other is the sudden increase of the isotope shift as a function of N in going away from the closed shell. These problems are considered in terms of the particle-number projected (Nilsson-) BCS calculation. (author)

  12. The search for super-heavy ions; La quete des noyaux super-lourds

    Energy Technology Data Exchange (ETDEWEB)

    Grevy, St. [Grand Accelerateur National d' Ions Lourds (GANIL-LPC), IN2P3 - CNRS / Ensicaen et Universite, 14 - Caen (France); Stodel, Ch. [Grand Accelerateur National d' Ions Lourds (GANIL), CEA-CNRS-IN2P3, 14 - Caen (France)

    2003-07-01

    The authors present the search for heavy nuclei, they briefly draw a historical review of the production of heavy isotopes and then describe the means and possibilities the French GANIL (national great accelerator of heavy ions) facility offers. The different steps of the experimental process are described: production, selection, detection and identification. The production cross-sections are so weak that every parameter involved in the production process has to be optimized. It appears that the limit of our technological knowledge has been reached and unless an important technical step forward it seems impossible to go down below the pico-barn (10{sup -12}*10{sup -24} cm{sup 2}) for production cross-sections. The 2 remaining ways to improve the situation are: 1) to increase the intensity of the incident particle beam (today we have < 10{sup 13} pps), this implies that an important development about accelerators and ion sources has to be achieved, 2) the other way is to use radioactive ion beams, the excess of neutrons of the incident ion gives a better production rate and will allow us to reach the neutron-rich part of the stability island. (A.C.)

  13. What can we learn from the fission time of the super-heavy elements?

    OpenAIRE

    Boilley, D.; Marchix, A.; Wilgenbus, D.; Lallouet, Y.; Gimbert, F.; Abe, Y.

    2007-01-01

    International audience; Recent experiments performed at GANIL with a crystal blocking technique have shown direct evidences of long fission times in the Super-Heavy Elements (SHE) region. Aimed to localize the SHE island of stability, can these experiments give access to the fission barrier and then to the shell-correction energy? In this paper, we calculate the fission time of heavy elements by using a new code, KEWPIE2, devoted to the study of the SHE.We also investigate the effect of poten...

  14. Magnetic properties of heavy-fermion superconductors

    International Nuclear Information System (INIS)

    Rauchschwalbe, U.

    1986-01-01

    In the present thesis the magnetic properties of heavy-fermion superconductors are investigated. The magnetoresistance and the critical magnetic fields show a variety of anomalous phenomena. The Kondo lattices CeCu 2 Si and CeAl 3 are analysed by magnetoresistance and the field dependence of the resistivitis of UBe 13 , UPt 3 , URu 2 Si 2 and CeRu 3 Si are measured for temperatures < or approx. 1 K. (BHO)

  15. Super high-speed magnetically levitated system approaches practical use

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Shoji; Nakao, Hiroyuki; Takemasa, Hisashi

    1988-10-01

    The JR-MAGLEV, a super high-speed magnetically levitated system, has been under development since the inauguration with the manufacturing of a succession of trial vehicles. In 1987, the trial vehicle recorded a speed of 400 km/hr as a 2-car formation with passengers. As a participant in the Maglev project, Toshiba has been contributing to the development of superconducting magnets, the main element of the system, as well as auxiliary power sources and the cycloconverter to be used in the substations. A prototype vehicle for commercial service, MLU 002, was manufactured in March 1988 and is now under testing with the aim of achieving a target speed of 420km/hr. The main parameters of superconducting magnet are as follows; magnetomotive force of 700 kA and number of coils of 3 poles/2 trains/ 2 cars, and the magnets are light weight which is almost the limits with the weight ratio to rolling stock of 0.25. As measures to protect vaporization loss of helium for coil-cooling, a relicfaction process of the helium vapor by use of Claude cycle refrigerator was adopted. A circulating current cycloconverter with 16 MVA was developed for the travel motion. The cycloconverter enabled to receive power directly from an electric power company, the output current becomes complete sine wave, and the problems on traveling control were solved. 6 references, 8 figures, 3 tables.

  16. Magnetic fluctuations in heavy-fermion metals

    DEFF Research Database (Denmark)

    Mason, T.E.; Petersen, T.; Aeppli, G.

    1995-01-01

    Elastic and inelastic neutron scattering have been used to study the antiferromagnetic ordering and magnetic excitations of the U heavy-fermion superconductors UPd2Al3 and URu2Si2 above and below T-N. While both materials exhibit the coexistence of superconductivity and antiferromagnetic order......, the nature of the antiferromagnetic order and magnetic fluctuations is qualitatively quite different. UPd2Al3 resembles a rare earth magnetic system with coupling of the 4f electrons to the conduction electrons manifested in a broadening of otherwise conventional spin wave excitations. This is in marked...

  17. New approach to description of fusion-fission dynamics in super-heavy element formation

    International Nuclear Information System (INIS)

    Zagrebaev, V.I.

    2002-01-01

    A new mechanism of the fusion-fission process for a heavy nuclear system is proposed, which takes place in the (A 1 , A 2 ) space, where A 1 and A 2 are two nuclei, surrounded by a certain number of shared nucleons ΔA. The nuclei A 1 and A 2 gradually lose (or acquire) their individualities with increasing (or decreasing) a number of collectivized nucleons ΔA. The driving potential in the (A 1 , A 2 ) space is derived, which allows the calculation of both the probability of the compound nucleus formation and the mass distribution of fission and quasi-fission fragments in heavy ion fusion reactions. The cross sections of super-heavy element formation in the 'hot' and 'cold' fusion reactions have been calculated up to Z CN =118. (author)

  18. Magnetic fluctuations in heavy fermion systems

    International Nuclear Information System (INIS)

    Broholm, C.L.

    1989-06-01

    Magnetic order and fluctuations in the heavy Fermion systems UPt 3 , U 2 Zn 17 and URu 2 Si 2 have been studied by neutron scattering. Single crystalline samples and triple-axis neutron-scattering techniques with energy transfers between 0 and 40 meV and energy resolutions between 0.1 meV and 4 meV have been employed. UPt 3 develops an antiferromagnetically ordered moment of (0.02±0.005) μ B below T N = 5 K which doubles the unit cell in the basal plane and coexists with superconductivity below T c = 0.5 K. The magnetic fluctuations are relaxational, and enhanced at the antiferromagnetic zone center in a low-energy regime. The characteristic zone-center relaxation energy is 0.3 meV. The temperature- and field-dependence of the antiferromagnetic order in the superconducting phase suggest a close relation between these two properties in UPt 3 . U 2 Zn 17 has a broad spectrum of magnetic fluctuations, even below T N = 9.7 K, of which the transverse part below 10 meV is strongly enhanced at the antiferromagnetic zone center. The system has an anomalously extended critical region and the antiferromagnetic phase transition seems to be driven by the temperature-dependence of an effective RKKY interaction, as anticipated theoretically. URu 2 Si 2 , a strongly anisotropic heavy Fermion system, has a high-energy regime of antiferromagnetically-correlated overdamped magnetic fluctuations. Below T N = 17.5 K weak antiferromagnetic order, μ = (0.04±0.01)μ B , with finite correlations along the tetragonal c axis, develops along with a low-energy regime of strongly dispersive singlet-singlet excitations. Below T c = 1 K antiferromagnetism coexists with superconductivity. A phenomenological model describing the exchange-enhanced overdamped magnetic fluctuations of heavy Fermion systems is proposed. Our experimental results are compared to the anomalous bulk properties of heavy Fermion systems, and to magnetic fluctuations in other metallic magnets. (orig.)

  19. Status of the low-energy super-heavy element facility at RIKEN

    Energy Technology Data Exchange (ETDEWEB)

    Schury, P., E-mail: schury@riken.jp [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Wada, M.; Ito, Y. [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Arai, F. [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Institute of Physics, University of Tsukuba, Tsukuba City, Ibaraki (Japan); Kaji, D. [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Kimura, S. [Institute of Physics, University of Tsukuba, Tsukuba City, Ibaraki (Japan); Morimoto, K.; Haba, H. [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Jeong, S. [Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK), Ibaraki 305-0801 (Japan); Koura, H. [Advanced Science Research Center, Japan Atomic Energy Agency, Ibaraki 319-1195 (Japan); Miyatake, H. [Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK), Ibaraki 305-0801 (Japan); Morita, K.; Reponen, M. [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Ozawa, A. [Institute of Physics, University of Tsukuba, Tsukuba City, Ibaraki (Japan); Sonoda, T.; Takamine, A. [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Wollnik, H. [Dept. Chemistry and BioChemistry, New Mexico State University, Las Cruces, NM (United States)

    2016-06-01

    In order to investigate nuclei produced via fusion–evaporation reactions, especially super-heavy elements (SHE), we have begun construction of a facility for conversion of fusion–evaporation residues (EVR) to low-energy beams. At the base of this facility is a small cryogenic gas cell utilizing a traveling wave RF-carpet, located directly following the gas-filled recoil ion separator GARIS-II, which will thermalize EVRs to convert them into ion beams amenable to ion trapping. We present here the results of initial studies of this small gas cell.

  20. Spectroscopy of very heavy nuclei with a view to study super-heavy nuclei

    International Nuclear Information System (INIS)

    Khalfallah, F.

    2007-08-01

    Within the recent years, the spectroscopic study of single particle orbitals of very heavy elements (VHE) has become possible with the development of increasingly efficient experimental setups. This allows us, through nuclear deformation, to access with these deformed nuclei to orbitals situated around the Fermi level in the spherical superheavy elements (SHE) and learn more about the nuclear structure of these nuclei. The aim of this work is the spectroscopic studies of heavy and very heavy elements. Because of the experimental difficulties associated with the fusion reactions in the VHE region, a detailed optimization studies is essential. Simulation of energy loss and angular straggling of these nuclei due to the interaction in the target and to neutron's evaporation was carried out and allowed us to optimize the angular acceptance of the separators according to the target thickness. An extensive survey and exploration in the VHE region was also conducted on the basis of cross section's systematics in the literature and simulations carried out using the statistical code Hivap. In this framework, the possible extension of the range of validity of a set of Hivap parameters was investigated. This work has enabled us to prepare a list of experiments of interest for the production of very heavy nuclei. In this thesis, our work was concentrated on the spectroscopy of the nuclei No 256 et Rf 256 for which two experimental proposals were accepted. The octupole deformations predicted in the actinides region is studied in another part of this thesis, a part witch is dedicated to the gamma spectroscopy of Pa 223 . The data from a new experiment carried out using the Jurogam-Ritu-Great setup are analysed and compared to previous results. They confirm the octupole deformed shape in this nucleus. (author)

  1. Model SSC [Superconducting Super Collider] dipole magnet cryostat assembly at Fermilab

    International Nuclear Information System (INIS)

    Niemann, R.C.

    1989-03-01

    The Superconducting Super Collider (SSC) magnet development program includes the design, fabrication and testing of full length model dipole magnets. A result of the program has been the development of a magnet cryostat design. The cryostat subsystems consist of cold mass connection-slide, suspension, thermal shields, insulation, vacuum vessel and interconnections. Design details are presented along with model magnet production experience. 6 refs., 13 figs

  2. Binary fragmentation based studies for the near super-heavy compound nucleus {sup 256}Rf

    Energy Technology Data Exchange (ETDEWEB)

    Thakur, Meenu; Behera, B.R.; Mahajan, Ruchi; Kaur, Gurpreet; Sharma, Priya; Kapoor, Kushal; Rani, Kavita [Panjab University, Department of Physics, Chandigarh (India); Saneesh, N.; Dubey, R.; Yadav, A.; Sugathan, P.; Jhingan, A.; Chatterjee, A.; Chatterjee, M.B. [Inter University Accelerator Centre, New Delhi (India); Kumar, Neeraj; Mandal, S. [University of Delhi, Department of Physics and Astrophysics, Delhi (India); Kumar, S. [Andhra University, Department of Nuclear Physics, Visakhapatnam (India); Saxena, A.; Kailas, S. [Bhabha Atomic Research Centre, Nuclear Physics Division, Mumbai (India); Pal, Santanu [CS, Kolkata (India); Nasirov, Avazbek [JINR, Bogoliubov Laboratory of Theoretical Physics, Dubna (Russian Federation); National University, Department of Physics, Tashkent (Uzbekistan); Kayumov, Bakhodir [National University, Department of Physics, Tashkent (Uzbekistan)

    2017-06-15

    Binary fragmentation of the near super-heavy compound nucleus {sup 256}Rf has been studied through the reaction {sup 48}Ti + {sup 208}Pb at a bombarding energy well above the Coulomb barrier. For a better understanding of its reaction dynamics, the mass distribution, mass-energy distribution and mass-angle distribution of the fission fragments produced from {sup 256}Rf have been investigated thoroughly. The masses and kinetic energies of the fission fragments were reconstructed event-by-event from their measured velocities and emission angles. From the mass-energy analysis, a sizeable contribution from the asymmetric fission was observed on the edges of symmetric mass distribution. Evidence of asymmetric fission was also clued from the observed correlation between the masses and emission angles of the fission fragments. Contribution of the quasi-fission products has also been estimated by performing the theoretical dinuclear system calculations. (orig.)

  3. Review of even element super-heavy nuclei and search for element 120

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, S. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Goethe-Universitaet Frankfurt, Institut fuer Physik, Frankfurt (Germany); Heinz, S.; Mann, R.; Maurer, J.; Barth, W.; Burkhard, H.G.; Dahl, L.; Kindler, B.; Kojouharov, I.; Lang, R.; Lommel, B.; Runke, J.; Scheidenberger, C.; Schoett, H.J.; Tinschert, K. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Muenzenberg, G. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Manipal University, Manipal Centre for Natural Sciences, Manipal, Karnataka (India); Antalic, S.; Saro, S. [Comenius University, Department of Nuclear Physics and Biophysics, Bratislava (Slovakia); Eberhardt, K.; Thoerle-Pospiech, P.; Trautmann, N. [Johannes Gutenberg-Universitaet Mainz, Mainz (Germany); Grzywacz, R. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); University of Tennessee, Knoxville, TN (United States); Hamilton, J.H. [Vanderbuilt University, Department of Physics and Astronomy, Nashville, TN (United States); Henderson, R.A.; Kenneally, J.M.; Moody, K.J.; Shaughnessy, D.A.; Stoyer, M.A. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Miernik, K. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); University of Warsaw, Warsaw (Poland); Miller, D. [University of Tennessee, Knoxville, TN (United States); Morita, K. [RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama (Japan); Nishio, K. [Japan Atomic Energy Agency, Tokai, Ibaraki (Japan); Popeko, A.G.; Yeremin, A.V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Roberto, J.B.; Rykaczewski, K.P. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Uusitalo, J. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland)

    2016-06-15

    The reaction {sup 54}Cr + {sup 248}Cm was investigated at the velocity filter SHIP at GSI, Darmstadt, with the intention to study production and decay properties of isotopes of element 120. Three correlated signals were measured, which occurred within a period of 279ms. The heights of the signals correspond with the expectations for a decay sequence starting with an isotope of element 120. However, a complete decay chain cannot be established, since a signal from the implantation of the evaporation residue cannot be identified unambiguously. Measured properties of the event chain are discussed in detail. The result is compared with theoretical predictions. Previously measured decay properties of even element super-heavy nuclei were compiled in order to find arguments for an assignment from the systematics of experimental data. In the course of this review, a few tentatively assigned data could be corrected. New interpretations are given for results which could not be assigned definitely in previous studies. The discussion revealed that the cross-section for production of element 120 could be high enough so that a successful experiment seems possible with presently available techniques. However, a continuation of the experiment at SHIP for a necessary confirmation of the results obtained in a relatively short irradiation of five weeks is not possible at GSI presently. Therefore, we decided to publish the results of the measurement and of the review as they exist now. In the summary and outlook section we also present concepts for the continuation of research in the field of super-heavy nuclei. (orig.)

  4. On the influence of atmospheric super-saturation layer on China's heavy haze-fog events

    Science.gov (United States)

    Wang, Jizhi; Yang, Yuanqin; Zhang, Xiaoye; Liu, Hua; Che, Huizheng; Shen, Xiaojing; Wang, Yaqiang

    2017-12-01

    With the background of global change, the air quality in Earth's atmosphere has significantly decreased. The North China Plain (NCP), Yangtze River Delta (YRD), Pearl River Delta (PRD) and Si-Chuan Basin (SCB) are the major areas suffering the decreasing air quality and frequent pollution events in recent years. Studying the effect of meteorological conditions on the concentration of pollution aerosols in these pollution sensitive regions is a hot focus now. This paper analyses the characteristics of atmospheric super-saturation and the corresponding H_PMLs (height of supersaturated pollution mixing layer), investigating their contribution to the frequently-seen heavy haze-fog weather. The results suggest that: (1) in the above-mentioned pollution sensitive regions in China, super-saturated layers repeatedly appear in the low altitude and the peak value of supersaturation S can reach 6-10%, which makes pollution particles into the wet adiabatic uplift process in the stable-static atmosphere. After low-level atmosphere reaches the super-saturation state below the H_PMLs, meteorological condition contributes to humidification and condensation of pollution particles. (2) Caculation of condensation function Fc, one of PLAM sensetive parameter, indicates that super-saturation state helps promote condensation, beneficial to the formation of Condensational Kink (CK) in the pollution sensitive areas. This favors the formation of new aerosol particles and intensities the cumulative growth of aerosol concentration. (3) By calculating the convective inhibition energy on average │CIN│ > 1.0 × 104 J kg-1, we found the value is about 100 times higher than the stable critical value. The uplifting diffusion of the particles is inhibited by the ambient airflow. So, this is the important reason for the aggravation and persistence of aerosol pollutants in local areas. (4) H_PMLs is negatively correlated to the pollution meteorological condition index PLAM which can describe the

  5. Recovering heavy rare earth metals from magnet scrap

    Science.gov (United States)

    Ott, Ryan T.; McCallum, Ralph W.; Jones, Lawrence L.

    2017-08-08

    A method of treating rare earth metal-bearing permanent magnet scrap, waste or other material in a manner to recover the heavy rare earth metal content separately from the light rare earth metal content. The heavy rare earth metal content can be recovered either as a heavy rare earth metal-enriched iron based alloy or as a heavy rare earth metal based alloy.

  6. Stable solitary waves in super dense plasmas at external magnetic fields

    Science.gov (United States)

    Ghaani, Azam; Javidan, Kurosh; Sarbishaei, Mohsen

    2015-07-01

    Propagation of localized waves in a Fermi-Dirac distributed super dense matter at the presence of strong external magnetic fields is studied using the reductive perturbation method. We have shown that stable solitons can be created in such non-relativistic fluids in the presence of an external magnetic field. Such solitary waves are governed by the Zakharov-Kuznetsov (ZK) equation. Properties of solitonic solutions are studied in media with different values of background mass density and strength of magnetic field.

  7. Design and analysis of the SSC [Superconducting Super Collider] dipole magnet suspension system

    International Nuclear Information System (INIS)

    Nicol, T.H.; Niemann, R.C.; Gonczy, J.D.

    1989-03-01

    The design of the suspension system for Superconducting Super Collider (SSC) dipole magnets has been driven by rigorous thermal and structural requirements. The current system, designed to meet those requirements, represents a significant departure from previous superconducting magnet suspension system designs. This paper will present a summary of the design and analysis of the vertical and lateral suspension as well as the axial anchor system employed in SSC dipole magnets. 5 refs., 9 figs., 4 tabs

  8. Second generation superconducting super collider dipole magnet cryostat design

    International Nuclear Information System (INIS)

    Niemann, R.C.; Bossert, R.C.; Carson, J.A.; Engler, N.H.; Gonczy, J.D.; Larson, E.T.; Nicol, T.H.; Ohmori, T.

    1988-12-01

    The SSC Magnet Development Program is developing accelerator dipole magnets in successive iterations. The initial iteration is complete with six full length model magnets and a thermal model having been built and tested. This initial experience along with the evolving SSC Magnet System Requirements have resulted in the second generation magnet cryostat design. It is this configuration that will be employed for the near term ongoing magnetic, thermal, string and accelerated life testing and will be the design considered for Phase I; i.e., Technology Orientation, of the SSC Magnet Industrialization Program. 5 refs., 7 figs., 1 tab

  9. Super-high magnetic fields in spatially inhomogeneous plasma

    International Nuclear Information System (INIS)

    Nastoyashchiy, Anatoly F.

    2012-01-01

    The new phenomenon of a spontaneous magnetic field in spatially inhomogeneous plasma is found. The criteria for instability are determined, and both the linear and nonlinear stages of the magnetic field growth are considered; it is shown that the magnetic field can reach a considerable magnitude, namely, its pressure can be comparable with the plasma pressure. Especially large magnetic fields can arise in hot plasma with a high electron density, for example, in laser-heated plasma. In steady-state plasma, the magnetic field can be self-sustaining. The considered magnetic fields may play an important role in thermal insulation of the plasma. (author)

  10. Magnetic Resonance Super-resolution Imaging Measurement with Dictionary-optimized Sparse Learning

    Directory of Open Access Journals (Sweden)

    Li Jun-Bao

    2017-06-01

    Full Text Available Magnetic Resonance Super-resolution Imaging Measurement (MRIM is an effective way of measuring materials. MRIM has wide applications in physics, chemistry, biology, geology, medical and material science, especially in medical diagnosis. It is feasible to improve the resolution of MR imaging through increasing radiation intensity, but the high radiation intensity and the longtime of magnetic field harm the human body. Thus, in the practical applications the resolution of hardware imaging reaches the limitation of resolution. Software-based super-resolution technology is effective to improve the resolution of image. This work proposes a framework of dictionary-optimized sparse learning based MR super-resolution method. The framework is to solve the problem of sample selection for dictionary learning of sparse reconstruction. The textural complexity-based image quality representation is proposed to choose the optimal samples for dictionary learning. Comprehensive experiments show that the dictionary-optimized sparse learning improves the performance of sparse representation.

  11. Super-twisting sliding mode control of torque and flux in permanent magnet synchronous machine drives

    DEFF Research Database (Denmark)

    Lascu, Christian; Boldea, Ion; Blaabjerg, Frede

    2013-01-01

    This paper investigates a permanent magnet synchronous motor drive controlled by a second-order variable structure control technique, known as the super-twisting sliding modes (STSM) control. The STSM controller is designed as a direct torque and flux controller and it works in the stator flux...

  12. Exploration of (super-)heavy elements using the Skyrme-Hartree-Fock model

    International Nuclear Information System (INIS)

    Erler, Jochen

    2011-01-01

    Motivated by the steadily increasing number of known nuclei and nuclear properties, theories of nuclear structure are presently a field of intense research. This work concentrates on the self-consistent description of nuclei in terms of the Skyrme-Hartree-Fock (SHF) approach. The extrapolation of nuclear shell structure to the region of super-heavy elements (SHE) using the SHF model, the dependence on different parameterization and the influence of collective correlation will be studied. The general scope of this work are large scale calculation for a global survey of properties of SHE like binding energies, separation energies and decay characteristics and lifetimes. These calculations were done in a collaboration with the theory group of the GSI in Darmstadt and have the aim to develop a database of lifetimes and reaction rates for α, β-decay and spontaneous fission in a very wide range with proton numbers 86 ≤ Z ≤ 120 and neutron numbers up to N ∼ 260 relevant for the astrophysical r-process. The results of this study for example predictions of a possible islands of very stable nuclei and information of favored decay mode for each nuclei are also applicable in the recent experimental synthesis of exotic SHE. For these calculation a framework to calculate β-decay half-lives within the SHF model has been developed and the existing axial SHF code has been extended to compute β-transition matrix elements and so to provide an estimation of half-lives. (orig.)

  13. Exploration of (super-)heavy elements using the Skyrme-Hartree-Fock model

    Energy Technology Data Exchange (ETDEWEB)

    Erler, Jochen

    2011-01-31

    Motivated by the steadily increasing number of known nuclei and nuclear properties, theories of nuclear structure are presently a field of intense research. This work concentrates on the self-consistent description of nuclei in terms of the Skyrme-Hartree-Fock (SHF) approach. The extrapolation of nuclear shell structure to the region of super-heavy elements (SHE) using the SHF model, the dependence on different parameterization and the influence of collective correlation will be studied. The general scope of this work are large scale calculation for a global survey of properties of SHE like binding energies, separation energies and decay characteristics and lifetimes. These calculations were done in a collaboration with the theory group of the GSI in Darmstadt and have the aim to develop a database of lifetimes and reaction rates for {alpha}, {beta}-decay and spontaneous fission in a very wide range with proton numbers 86 {<=} Z {<=} 120 and neutron numbers up to N {approx} 260 relevant for the astrophysical r-process. The results of this study for example predictions of a possible islands of very stable nuclei and information of favored decay mode for each nuclei are also applicable in the recent experimental synthesis of exotic SHE. For these calculation a framework to calculate {beta}-decay half-lives within the SHF model has been developed and the existing axial SHF code has been extended to compute {beta}-transition matrix elements and so to provide an estimation of half-lives. (orig.)

  14. Measurements of Plutonium isotopes and the search for super-heavy elements via AMS

    International Nuclear Information System (INIS)

    Wallner, A.; Steier, P.; Golser, R.; Knie, K.; Kutschera, W.; Priller, A.; Hrnecek, E.; Jakopic, R.; Korschinek, G.

    2006-01-01

    Full text: Accelerator Mass Spectrometry (AMS) - being independent on the half-life of a radionuclide - provides a technique to determine isotope ratios with the highest sensitivity and allows the measurement of radionuclides over a wide dynamic range of concentration levels. A combination of AMS, Alpha Spectrometry and Liquid Scintillation Counting was used for the determination of the complete information on isotope ratios of Plutonium isotopes in different environmental reference samples (e.g. from the atolls of Mururoa and Fangataufa) and samples contaminated from nuclear reprocessing. Results for the isotopic ratios of the samples will be shown and the capabilities and detection limits achievable for determination of Pu will be discussed. The long-lived 244 Pu (t 1/2 = 80 Ma) and 247 Cm (t 1/2 = 15.6 Ma) have a very interesting application in astrophysics by detecting possible supernova-produced 244 Pu and 247 Cm in terrestrial archives. The expected extremely small concentrations of 244 Pu makes AMS the favorite method. The actual search for such long-lived extraterrestrial radionuclides and possible implications will be presented. The same method has also been explored for a pinprick-search of long-lived super-heavy elements in the mass region above Z=100. (author)

  15. Minimisation of higher order harmonics for large aperture super-ferric quadrupole magnet

    International Nuclear Information System (INIS)

    Dutta, Atanu; Sharma, P.R.; Dey, M.K.; Bhunia, U.; Nandy, C.; Roy, S.; Pal, G.; Mallik, C.

    2011-01-01

    We have analysed the magnetic field of finite length (effective length of 1200 mm), large bore (pole radius of 350 mm) superconducting quadrupole magnets for use in Low Energy Branch of Super FRS with the program TOSCA. In particularly we have tried to minimize the 12-pole and 20-pole components, which would contribute to geometric aberrations. At the same time we have tried to keep the gradient field uniformity at reference radius 300 mm within ±8.0E-04. (author)

  16. Structural performance of the first SSC [Superconducting Super Collider] Design B dipole magnet

    International Nuclear Information System (INIS)

    Nicol, T.H.

    1989-09-01

    The first Design B Superconducting Super Collider (SSC) dipole magnet has been successfully tested. This magnet was heavily instrumented with temperature and strain gage sensors in order to evaluate its adherence to design constraints and design calculations. The instrumentation and associated data acquisition system allowed monitoring of the magnet during cooldown, warmup, and quench testing. This paper will focus on the results obtained from structural measurements on the suspension system during normal and rapid cooldowns and during quench studies at full magnet current. 4 refs., 9 figs

  17. Status of superconducting magnets for the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Schermer, R.I.

    1993-09-01

    The arc sections of the High Energy Booster and the two Collider Rings will need more than 10,000, very large, superconducting dipole and quadrupole magnets. Development work on these magnets was carried out at US/DOE laboratories in a program that began in the mid 1980's. In 1991-1992, the technology was transferred to industry and twenty, full-length, Collider dipoles were successfully fabricated and tested. This program, along with HERA and Tevatron experience, has provided industry a data base to use in formulating detailed designs for the prototypes of the accelerator magnets, with an eye to reducing cost and enhancing producibility. Several model magnets from this latest phase of the industrial program have already been tested. The excessive ramp-rate sensitivity of the magnets is understood and solutions are under investigation

  18. Status of superconducting magnets for the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Schermer, R.I.

    1994-01-01

    The arc sections of the High Energy Booster and the two Collider Rings will need more than 10,000, very large, superconducting dipole and quadrupole magnets. Development work on these magnets was carried out at US/DOE laboratories in a program that began in the mid 1980's. In 1991--92, the technology was transferred to industry and twenty, full-length, Collider dipoles were successfully fabricated and tested. This program, along with HERA and Tevatron experience, has provided industry a data base to use in formulating detailed designs for the prototypes of the accelerator magnets, with an eye to reducing cost and enhancing producibility. Several model magnets from this latest phase of the industrial program have already been tested. The excessive ramp-rate sensitivity of the magnets is understood and solutions are under investigation

  19. Similarities between normal- and super-currents in topological insulator magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Soodchomshom, Bumned; Chantngarm, Peerasak

    2010-01-01

    This work compares the normal-current in a NM/Fi/NM junction with the super-current in a SC/Fi/SC junction, where both are topological insulator systems. NM and Fi are normal region and ferromagnetic region of thickness d with exchange energy m playing a role of the mass of the Dirac electrons and with the gate voltage V G , respectively. SC is superconducting region induced by a s-wave superconductor. We show that, interestingly, the critical super-current passing through a SC/Fi/SC junction behaves quite similar to the normal-current passing through a NM/Fi/NM junction. The normal-current and super-current exhibit N-peak oscillation, found when currents are plotted as a function of the magnetic barrier strength χ ∼ md/hv F . With the barrier strength Z ∼ V G d/hv F , the number of peaks N is determined through the relation Z ∼ Nπ + σπ (with 0 < σ≤1 for χ < Z). The normal- and the super-currents also exhibit oscillating with the same height for all of peaks, corresponding to the Dirac fermion tunneling behavior. These anomalous oscillating currents due to the interplay between gate voltage and magnetic field in the barrier were not found in graphene-based NM/Fi/NM and SC/Fi/SC junctions. This is due to the different magnetic effect between the Dirac fermions in topological insulator and graphene.

  20. Super Conducting and Conventional Magnets Test & Mapping Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — Vertical Magnet Test Facility: Accommodate a device up to 3.85 m long, 0.61 m diameter, and 14,400 lbs. Configured for 5 psig sub-cooled liquid helium bath cooling...

  1. Magnetic spectrograph for the Holifield heavy ion research facility

    International Nuclear Information System (INIS)

    Ford, J.L.C. Jr.; Enge, H.A.; Erskine, J.R.; Hendrie, D.L.; LeVine, M.J.

    1977-01-01

    The need for a new generation magnetic spectrograph for the Holifield Heavy Ion Research Facility is discussed. The advantages of a magnetic spectrograph for heavy ion research are discussed, as well as some of the types of experiments for which such an instrument is suited. The limitations which the quality of the incident beam, target and spectrograph itself impose on high resolution heavy ion measurements are discussed. Desired features of an ideal new spectrograph are: (1) intrinsic resolving power E/ΔE greater than or equal to 3000; (2) maximum solid angle greater than or equal to 20 msr; (3) dispersion approx. 4-8m; (4) maximum energy interval approx. 30%; and (5) mass-energy product greater than or equal to 200. Various existing and proposed spectrographs are compared with the specifications for a new heavy ion magnet design

  2. First Ideas Towards the Super-Conducting Magnet Design for the HESR at FAIR

    CERN Document Server

    Eichhorn, Ralf; Gussen, Achim; Martin, Siegfried

    2005-01-01

    The Forschungszentrum Juelich has taken the leadership of a consortium being responsible for the design of the HESR going to be part of the FAIR project at GSI. The HESR is a 50 Tm storage ring for antiprotons, based on a super-conducting magnet technology. On basis of the RHIC Dipole D0 (3.6 T), the magnet design for the HESR has started recently. One key issue will be a very compact layout because of the rather short magnets (been 1.82 m for the dipoles and 0.5 m for the other magnets). This paper will present first ideas of the magnetic and cryogenic layout, give a status report on the achievements so far and discuss the need and possible solutions for a bent magnet with a radius of curvature of 13.2 m.

  3. Design features of the SSC [Superconducting Super Collider] dipole magnet

    International Nuclear Information System (INIS)

    Willen, E.; Cottingham, J.; Ganetis, G.

    1989-01-01

    The main ring dipole for the SSC is specified as a high performance magnet that is required to provide a uniform, 6.6 T field in a 4 cm aperture at minimum cost. These design requirements have been addressed in an R ampersand D program in which the coil design, coil mechanical support, yoke and shell structure, trim coil and beam tube design, and a variety of new instrumentation, have been developed. The design of the magnet resulting from this intensive R ampersand D program, including various measurements from both 1.8 m and 17 m long models, is reviewed. 7 refs., 3 figs

  4. Band structure and magnetic properties of DO3-type Fe3-xVxAl alloys. Super-cell approach

    International Nuclear Information System (INIS)

    Deniszczyk, J.; Borgiel, W.

    2000-01-01

    The electronic structure of Fe 3-x V x Al alloys can be calculated using the super-cell methodology of alloy modeling. The concentration range of x 0.0-1.0 was investigated. For a concentration of x = 0.0625 the energy based analysis reveals that vanadium prefers to replace the Fe atom at sites with the octahedral coordination. It was found that the iron atoms coordinated by the eight nearest-neighbour Fe atoms preserve their high magnetic moment up to a concentration of x = 0.9375 even through the average total magnetic moment goes to zero. The relatively high (∼ -1.0 μ B ) negative magnetic moment of V remains constant up to x ∼ 0.5. In the concentration range of x = 0.75-0.9375 the gap at ε F of the minority density of states is observed while the majority density of states displays a sharp peak structure at the Fermi energy. This feature suggests the heavy-fermion behaviour of the Fe 2 VAl compound. (author)

  5. Field measuring probe for SSC [Superconducting Super Collider] magnets

    International Nuclear Information System (INIS)

    Ganetis, G.; Herrera, J.; Hogue, R.; Skaritka, J.; Wanderer, P.; Willen, E.

    1987-03-01

    The field probe developed for measuring the field in SSC dipole magnets is an adaptation of the rotating tangential coil system in use at Brookhaven for several years. Also known as the MOLE, it is a self-contained room-temperature mechanism that is pulled through the aperture of the magnet with regular stops to measure the local field. Several minutes are required to measure the field at each point. The probe measures the multipole components of the field as well as the field angle relative to gravity. The sensitivity of the coil and electronics is such that the field up to the full 6.6 T excitation of the magnet as well as the field when warm with only 0.01 T excitation can be measured. Tethers are attached to both ends of the probe to carry electrical connections and to supply dry nitrogen to the air motors that rotate the tangential windings as well as the gravity sensor. A small computer is attached to the probe for control and for data collection, analysis and storage. Digital voltmeters are used to digitize the voltages from the rotating coil and several custom circuits control motor speeds in the probe. The overall diameter of the probe is approximately 2 cm and its length is 2.4 m; the field sensitive windings are 0.6 m in length

  6. Conceptual design of a superconducting solenoid for a magnetic SSC [Superconducting Super Collider] detector

    International Nuclear Information System (INIS)

    Fast, R.W.; Grimson, J.H.; Kephart, R.D.; Krebs, H.J.; Stone, M.E.; Theriot, D.; Wands, R.H.

    1988-07-01

    The conceptual design of a large superconducting solenoid suitable for a magnetic detector at the Superconducting Super Collider (SSC) has begun at Fermilab. The magnet will provide a magnetic field of 2 T over a volume 8 m in diameter by 16 m long. The particle-physics calorimetry will be inside the field volume and so the coil will be bath cooled and cryostable; the vessels will be stainless steel. Predictibility of performance and the ability to safely negotiate all probable failure modes, including a quench, are important items of the design philosophy. Although the magnet is considerably larger than existing solenoids of this type and although many issues of manufacturability, transportability and cost have not been completely addressed, our conceptual design has convinced us that this magnet is a reasonable extrapolation of present technology. 2 figs., 2 tabs

  7. Flat super-oscillatory lens for heat-assisted magnetic recording with sub-50 nm resolution.

    Science.gov (United States)

    Yuan, Guanghui; Rogers, Edward T F; Roy, Tapashree; Shen, Zexiang; Zheludev, Nikolay I

    2014-03-24

    Heat-assisted magnetic recording (HAMR) is a future roadmap technology to overcome the superparamagnetic limit in high density magnetic recording. Existing HAMR schemes depend on a simultaneous magnetic stimulation and light-induced local heating of the information carrier. To achieve high-density recorded data, near-field plasmonic transducers have been proposed as light concentrators. Here we suggest and investigate in detail an alternative approach exploiting a far-field focusing device that can focus light into sub-50 nm hot-spots in the magnetic recording layer using a laser source operating at 473 nm. It is based on a recently introduced super-oscillatory flat lens improved with the use of solid immersion, giving an effective numerical aperture as high as 4.17. The proposed solution is robust and easy to integrate with the magnetic recording head thus offering a competitive advantage over plasmonic technology.

  8. Magnetic moments of the lowest-lying singly heavy baryons

    Science.gov (United States)

    Yang, Ghil-Seok; Kim, Hyun-Chul

    2018-06-01

    A light baryon is viewed as Nc valence quarks bound by meson mean fields in the large Nc limit. In much the same way a singly heavy baryon is regarded as Nc - 1 valence quarks bound by the same mean fields, which makes it possible to use the properties of light baryons to investigate those of the heavy baryons. A heavy quark being regarded as a static color source in the limit of the infinitely heavy quark mass, the magnetic moments of the heavy baryon are determined entirely by the chiral soliton consisting of a light-quark pair. The magnetic moments of the baryon sextet are obtained by using the parameters fixed in the light-baryon sector. In this mean-field approach, the numerical results of the magnetic moments of the baryon sextet with spin 3/2 are just 3/2 larger than those with spin 1/2. The magnetic moments of the bottom baryons are the same as those of the corresponding charmed baryons.

  9. Super high-speed magnetically levitated system approaches: practical use

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, S; Nakao, H; Takemasa, H

    1988-01-01

    The JR-MAGLEV, utilizing superconducting magnets, has been under development since 1970 with the manufacturing of a succession of trial vehicles such as the LSM 200, ML 100, ML 500 and MLU 001. In 1979, the ML 500 trial vehicle achieved a world-record speed of 517 km/h. This was followed by the MLU 001, which recorded a speed of 350 km/h as a 3-car formation in 1986 and 400 km/h as a 2-car formation with passengers in 1987. As a result of the satisfactory results obtained by the MLU 001, a prototype vehicle for commercial service, the MLU 002, was manufactured in March 1988 and is now under testing at the Miyazaki test track, with the aim of achieving a target operational speed of 420 km/h.

  10. Realistic ion optical transfer maps for Super-FRS magnets from numerical field data

    Energy Technology Data Exchange (ETDEWEB)

    Kazantseva, Erika; Boine-Frankenheim, Oliver [Technische Universitaet Darmstadt (Germany)

    2016-07-01

    In large aperture accelerators such as Super-FRS, the non-linearity of the magnetic field in bending elements leads to the non-linear beam dynamics, which cannot be described by means of linear ion optics. Existing non-linear approach is based on the Fourier harmonics formalism and is not working if horizontal aperture is bigger as vertical or vice versa. In Super-FRS dipole the horizontal aperture is much bigger than the vertical. Hence, it is necessary to find a way to create the higher order transfer map for this dipole to accurately predict the particle dynamics in the realistic magnetic fields in the whole aperture. The aim of this work is to generate an accurate high order transfer map of magnetic elements from measured or simulated 3D magnetic field data. Using differential algebraic formalism allows generating transfer maps automatically via numerical integration of ODEs of motion in beam physics coordinates along the reference path. To make the transfer map accurate for all particles in the beam, the magnetic field along the integration path should be represented by analytical function, matching with the real field distribution in the volume of interest. Within this work the steps of high order realistic transfer map production starting from the field values on closed box, covering the volume of interest, will be analyzed in detail.

  11. Magnetic dipole moments of the heavy tensor mesons in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Aliev, T. M., E-mail: taliev@metu.edu.tr [Physics Department, Middle East Technical University, 06531, Ankara (Turkey); Institute of Physics, Baku (Azerbaijan); Barakat, T., E-mail: tbarakat@KSU.EDU.SA [Physics Department, Middle East Technical University, 06531, Ankara (Turkey); Physics and Astronomy Department, King Saud University, Riyadh (Saudi Arabia); Savcı, M., E-mail: savci@metu.edu.tr [Physics Department, Middle East Technical University, 06531, Ankara (Turkey)

    2015-11-03

    The magnetic dipole moments of the D{sub 2}, and D{sub S{sub 2}}, B{sub 2}, and B{sub S{sub 2}} heavy tensor mesons are estimated in framework of the light cone QCD sum rules. It is observed that the magnetic dipole moments for the charged mesons are larger than that of its neutral counterpart. It is found that the SU(3) flavor symmetry violation is about 10 % in both b and c sectors.

  12. The superTIGER instrument: Measurement of elemental abundances of ultra-heavy galactic cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Binns, W. R.; Bose, R. G.; Braun, D. L.; Dowkontt, P. F.; Israel, M. H.; Moore, P.; Murphy, R. P.; Olevitch, M. A.; Rauch, B. F. [Washington University, St. Louis, MO 63130 (United States); Brandt, T. J.; Daniels, W. M.; Fitzsimmons, S. P.; Hahne, D. J.; Hams, T.; Link, J. T.; Mitchell, J. W.; Sakai, K. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Klemic, J.; Labrador, A. W.; Mewaldt, R. A., E-mail: wrb@wustl.edu [California Institute of Technology, Pasadena, CA 91125 (United States); and others

    2014-06-10

    The SuperTIGER (Super Trans-Iron Galactic Element Recorder) instrument was developed to measure the abundances of galactic cosmic-ray elements from {sub 10}Ne to {sub 40}Zr with individual element resolution and the high statistics needed to test models of cosmic-ray origins. SuperTIGER also makes exploratory measurements of the abundances of elements with 40 < Z ≤ 60 and measures the energy spectra of the more abundant elements for Z ≤ 30 from about 0.8 to 10 GeV/nucleon. This instrument is an enlarged and higher resolution version of the earlier TIGER instrument. It was designed to provide the largest geometric acceptance possible and to reach as high an altitude as possible, flying on a standard long-duration 1.11 million m{sup 3} balloon. SuperTIGER was launched from Williams Field, McMurdo Station, Antarctica, on 2012 December 8, and made about 2.7 revolutions around the South Pole in 55 days of flight, returning data on over 50 × 10{sup 6} cosmic-ray nuclei with Z ≥ 10, including ∼1300 with Z > 29 and ∼60 with Z > 49. Here, we describe the instrument, the methods of charge identification employed, the SuperTIGER balloon flight, and the instrument performance.

  13. Magnetic properties of alluvial soils polluted with heavy metals

    Science.gov (United States)

    Dlouha, S.; Petrovsky, E.; Boruvka, L.; Kapicka, A.; Grison, H.

    2012-04-01

    Magnetic properties of soils, reflecting mineralogy, concentration and grain-size distribution of Fe-oxides, proved to be useful tool in assessing the soil properties in terms of various environmental conditions. Measurement of soil magnetic properties presents a convenient method to investigate the natural environmental changes in soils as well as the anthropogenic pollution of soils with several risk elements. The effect of fluvial pollution with Cd, Cu, Pb and Zn on magnetic soil properties was studied on highly contaminated alluvial soils from the mining/smelting district (Příbram; CZ) using a combination of magnetic and geochemical methods. The basic soil characteristics, the content of heavy metals, oxalate, and dithionite extractable iron were determined in selected soil samples. Soil profiles were sampled using HUMAX soil corer and the magnetic susceptibility was measured in situ, further detailed magnetic analyses of selected distinct layers were carried out. Two types of variations of magnetic properties in soil profiles were observed corresponding to indentified soil types (Fluvisols, and Gleyic Fluvisols). Significantly higher values of topsoil magnetic susceptibility compared to underlying soil are accompanied with high concentration of heavy metals. Sequential extraction analysis proved the binding of Pb, Zn and Cd in Fe and Mn oxides. Concentration and size-dependent parameters (anhysteretic and isothermal magnetization) were measured on bulk samples in terms of assessing the origin of magnetic components. The results enabled to distinguish clearly topsoil layers enhanced with heavy metals from subsoil samples. The dominance of particles with pseudo-single domain behavior in topsoil and paramagnetic/antiferromagnetic contribution in subsoil were observed. These measurements were verified with room temperature hysteresis measurement carried out on bulk samples and magnetic extracts. Thermomagnetic analysis of magnetic susceptibility measured on

  14. Removal of heavy metals and radionuclides by seeded magnetic filtration

    International Nuclear Information System (INIS)

    Bibler, J.P.; Norrell, G.; Hemmings, R.L.; Bradbury, D.; Dunn, M.J.; Kalinauskas, G.L.

    1991-01-01

    Removal of traces of heavy metal or radionuclide contamination from solution at high flow rate presents a considerable technical challenge. Low flow methods of treatment such as particle gravity settling require expensive large volume equipment, whereas traditional methods of filtration can cause significant energy costs. Magnetic filtration can be used to provide a low cost method of solid-liquid separation at high flow rate, provided contaminants can be selectively bound to a magnetic solid particle. This paper describes the use of such selective magnetic particles made up of inorganic particles coupled with organic polymers

  15. The magnet system of the Relativistic Heavy Ion Collider (RHIC)

    International Nuclear Information System (INIS)

    Greene, A.; Anerella, M.; Cozzolino, J.

    1995-01-01

    The Relativistic Heavy Ion Collider now under construction at Brookhaven National Laboratory (BNL) is a colliding ring accelerator to be completed in 1999. Through collisions of heavy ions it is hoped to observe the creation of matter at extremely high temperatures and densities, similar to what may have occurred in the original ''Big Bang.'' The collider rings will consist of 1740 superconducting magnet elements. Some of elements are being manufactured by industrial partners (Northrop Grumman and Everson Electric). Others are being constructed or assembled at BNL. A description is given of the magnet designs, the plan for manufacturing and test results. In the manufacturing of the magnets, emphasis has been placed on uniformity of their performance and on quality. Results so far indicate that this emphasis has been very successful

  16. THERMAL EVOLUTION AND LIFETIME OF INTRINSIC MAGNETIC FIELDS OF SUPER-EARTHS IN HABITABLE ZONES

    International Nuclear Information System (INIS)

    Tachinami, C.; Ida, S.; Senshu, H.

    2011-01-01

    We have numerically studied the thermal evolution of different-mass terrestrial planets in habitable zones, focusing on the duration of dynamo activity to generate their intrinsic magnetic fields, which may be one of the key factors in habitability of the planets. In particular, we are concerned with super-Earths, observations of which are rapidly developing. We calculated the evolution of temperature distributions in the planetary interior using Vinet equations of state, the Arrhenius-type formula for mantle viscosity, and the astrophysical mixing-length theory for convective heat transfer modified for mantle convection. After calibrating the model with terrestrial planets in the solar system, we apply it for 0.1-10 M + rocky planets with a surface temperature of 300 K (in habitable zones) and Earth-like compositions. With the criterion of heat flux at the core-mantle boundary (CMB), the lifetime of the magnetic fields is evaluated from the calculated thermal evolution. We found that the lifetime slowly increases with planetary mass (M p ), independent of the initial temperature gap at the CMB (ΔT CMB ), but beyond the critical value M c,p (∼O(1) M + ) it abruptly declines from the mantle viscosity enhancement due to the pressure effect. We derived M c,p as a function of ΔT CMB and a rheological parameter (activation volume, V*). Thus, the magnetic field lifetime of super-Earths with M p >M p,c sensitively depends on ΔT CMB , which reflects planetary accretion, and V*, which has uncertainty at very high pressure. More advanced high-pressure experiments and first-principle simulation, as well as planetary accretion simulation, are needed to discuss the habitability of super-Earths.

  17. Chelating capture and magnetic removal of non-magnetic heavy metal substances from soil

    OpenAIRE

    Liren Fan; Jiqing Song; Wenbo Bai; Shengping Wang; Ming Zeng; Xiaoming Li; Yang Zhou; Haifeng Li; Haiwei Lu

    2016-01-01

    A soil remediation method based on magnetic beneficiation is reported. A new magnetic solid chelator powder, FS@IDA (core-shell Fe3O4@SiO2 nanoparticles coated with iminodiacetic acid chelators), was used as a reactive magnetic carrier to selectively capture non-magnetic heavy metals in soil by chelation and removal by magnetic separation. FS@IDA was prepared via inorganic-organic and organic synthesis reactions that generated chelating groups on the surface of magnetic, multi-core, core-shel...

  18. Super-oxidation of silicon nanoclusters: magnetism and reactive oxygen species at the surface

    Energy Technology Data Exchange (ETDEWEB)

    Lepeshkin, Sergey; Baturin, Vladimir; Tikhonov, Evgeny; Matsko, Nikita; Uspenskii, Yurii; Naumova, Anastasia; Feya, Oleg; Schoonen, Martin A.; Oganov, Artem R.

    2016-01-01

    Oxidation of silicon nanoclusters depending on the temperature and oxygen pressure is explored from first principles using the evolutionary algorithm, and structural and thermodynamic analysis. From our calculations of 90 SinOm clusters we found that under normal conditions oxidation does not stop at the stoichiometric SiO2 composition, as it does in bulk silicon, but goes further placing extra oxygen atoms on the cluster surface. These extra atoms are responsible for light emission, relevant to reactive oxygen species and many of them are magnetic. We argue that the super-oxidation effect is size-independent and discuss its relevance to nanotechnology and miscellaneous applications, including biomedical ones.

  19. Chelating capture and magnetic removal of non-magnetic heavy metal substances from soil

    Science.gov (United States)

    Fan, Liren; Song, Jiqing; Bai, Wenbo; Wang, Shengping; Zeng, Ming; Li, Xiaoming; Zhou, Yang; Li, Haifeng; Lu, Haiwei

    2016-02-01

    A soil remediation method based on magnetic beneficiation is reported. A new magnetic solid chelator powder, FS@IDA (core-shell Fe3O4@SiO2 nanoparticles coated with iminodiacetic acid chelators), was used as a reactive magnetic carrier to selectively capture non-magnetic heavy metals in soil by chelation and removal by magnetic separation. FS@IDA was prepared via inorganic-organic and organic synthesis reactions that generated chelating groups on the surface of magnetic, multi-core, core-shell Fe3O4@SiO2 (FS) nanoparticles. These reactions used a silane coupling agent and sodium chloroacetate. The results show that FS@IDA could chelate the heavy metal component of Cd, Zn, Pb, Cu and Ni carbonates, lead sulfate and lead chloride in water-insoluble salt systems. The resulting FS@IDA-Cd and FS@IDA-Pb chelates could be magnetically separated, resulting in removal rates of approximately 84.9% and 72.2% for Cd and Pb, respectively. FS@IDA could not remove the residual heavy metals and those bound to organic matter in the soil. FS@IDA did not significantly alter the chemical composition of the soil, and it allowed for fast chelating capture, simple magnetic separation and facilitated heavy metal elution. FS@IDA could also be easily prepared and reprocessed.

  20. Charge collection characteristics of a super-thin diamond membrane detector measured with high-energy heavy ions

    International Nuclear Information System (INIS)

    Iwamoto, N.; Makino, T.; Onoda, S.; Ohshima, T.; Kamiya, T.; Kada, W.; Skukan, N.; Grilj, V.; Jaksic, M.; Pomorski, M.

    2014-01-01

    A transmission particle detector based on a super-thin diamond membrane film which can also be used simultaneously as a vacuum window for ion beam extraction has been developed. Charge collection characteristics of a μ-thick diamond membrane detector for high-energy heavy ions including 75 MeV Ne, 150 MeV Ar, 322 MeV Kr, and 454 MeV Xe have been investigated for the first time. Charge collection signals under single particle flux from the thin part are stable and are well distinguishable from background signals. This behavior suggests that the diamond membrane detector could be used for counting single ions. On the other hand, charge collection efficiency is found to decrease with increasing of charge generated in the diamond membrane detector. This suggests that the pulse height defect, which has been previously reported for Si and SiC detectors, also occurs in the diamond membrane detector. (authors)

  1. Performance of six 4.5 m SSC [Superconducting Super Collider] dipole model magnets

    International Nuclear Information System (INIS)

    Willen, E.; Dahl, P.; Cottingham, J.

    1986-01-01

    Six 4.5 m long dipole models for the proposed Superconducting Super Collider have been successfully tested. The magnets are cold-iron (and cold bore) 1-in-1 dipoles, wound with current density-graded high homogeneity NbTi cable in a two-layer cos θ coil of 40 mm inner diameter. The coil is prestressed by 15 mm wide stainless steel collars, and mounted in a circular, split iron yoke of 267 mm outer diameter, supported in a cylindrical yoke containment vessel. At 4.5 K the magnets reached a field of about 6.6 T with little training, or the short sample limit of the conductor, and in subcooled (2.6 - 2.4 K) liquid, 8 T was achieved. The allowed harmonics were close to the predicted values, and the unallowed harmonics small. The sextupole trim coil operated well above the required current with little training

  2. Satellite drag effects due to uplifted oxygen neutrals during super magnetic storms

    Science.gov (United States)

    Lakhina, Gurbax S.; Tsurutani, Bruce T.

    2017-12-01

    During intense magnetic storms, prompt penetration electric fields (PPEFs) through E × B forces near the magnetic equator uplift the dayside ionosphere. This effect has been called the dayside super-fountain effect. Ion-neutral drag forces between the upward moving O+ (oxygen ions) and oxygen neutrals will elevate the oxygen atoms to higher altitudes. This paper gives a linear calculation indicating how serious the effect may be during an 1859-type (Carrington) superstorm. It is concluded that the oxygen neutral densities produced at low-Earth-orbiting (LEO) satellite altitudes may be sufficiently high to present severe satellite drag. It is estimated that with a prompt penetrating electric field of ˜ 20 mV m-1 turned on for 20 min, the O atoms and O+ ions are uplifted to 850 km where they produce about 40-times-greater satellite drag per unit mass than normal. Stronger electric fields will presumably lead to greater uplifted mass.

  3. Magnetic dipole moments of the heavy tensor mesons in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Aliev, T.M. [Middle East Technical University, Physics Department, Ankara (Turkey); Institute of Physics, Baku (Azerbaijan); Barakat, T. [Middle East Technical University, Physics Department, Ankara (Turkey); King Saud University, Physics and Astronomy Department, Riyadh (Saudi Arabia); Savci, M. [Middle East Technical University, Physics Department, Ankara (Turkey)

    2015-11-15

    The magnetic dipole moments of the D{sub 2}, and D{sub S{sub 2}}, B{sub 2}, and B{sub S{sub 2}} heavy tensor mesons are estimated in framework of the light cone QCD sum rules. It is observed that the magnetic dipole moments for the charged mesons are larger than that of its neutral counterpart. It is found that the SU(3) flavor symmetry violation is about 10 % in both b and c sectors. (orig.)

  4. Prediction of super-heavy N⁎ and Λ⁎ resonances with hidden beauty

    International Nuclear Information System (INIS)

    Wu Jiajun; Zhao Lu; Zou, B.S.

    2012-01-01

    The meson-baryon coupled channel unitary approach with the local hidden gauge formalism is extended to the hidden beauty sector. A few narrow N ⁎ and Λ ⁎ resonances around 11 GeV are predicted as dynamically generated states from the interactions of heavy beauty mesons and baryons. Production cross sections of these predicted resonances in pp and ep collisions are estimated as a guide for the possible experimental search at relevant facilities.

  5. A frequency response study of dipole magnet cold mass for the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Leung, K.K.; Nicol, T.

    1991-03-01

    This paper describes the technique for calculating the dynamic response of the Superconducting Super Collider (SSC) dipole magnet cold mass. Dynamic motion specification and beam location stability of the cold mass are not available at the present time. Dynamic response of the cold mass depends on measures excitation at the location of the magnet anchoring points on the other factors such as: (1) composite damping of the dipole magnet system, and (2) coupling effect of the cryogenic vessel, concrete slab, and soil to structure interactions. Nevertheless, the cold mass has the largest effect on the motion of the SSC machine. This dynamic analysis is based on response spectra analysis using the finite element method. An upper bond solution will result from this method of analysis, compared to the transient dynamic response method which involves step-by-step time integration from recorded accelerograms. Since no recorded ground motions are available for the SSC site, response spectra from another source shall be employed for the present analysis. 4 refs., 3 figs., 1 tab

  6. High blocking temperature in SnO{sub 2} based super-paramagnetic diluted magnetic semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Mounkachi, O., E-mail: o.mounkachi@mascir.com [Institute of Nanomaterials and Nanotechnology, MAScIR, Rabat (Morocco); Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble cedex 9 (France); Salmani, E. [LMPHE, associé au CNRST (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Rabat (Morocco); El Moussaoui, H. [Institute of Nanomaterials and Nanotechnology, MAScIR, Rabat (Morocco); Masrour, R. [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, Safi (Morocco); Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble cedex 9 (France); Hamedoun, M. [Institute of Nanomaterials and Nanotechnology, MAScIR, Rabat (Morocco); Ez-Zahraouy, H. [LMPHE, associé au CNRST (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Rabat (Morocco); Hlil, E.K. [Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble cedex 9 (France); Benyoussef, A. [Institute of Nanomaterials and Nanotechnology, MAScIR, Rabat (Morocco); LMPHE, associé au CNRST (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Rabat (Morocco)

    2014-11-25

    Highlights: • Simple doping, (Sn,Fe)O{sub 2} exhibits a soft ferromagnetism at low temperature. • High blocking temperature was observed for Cu doped (Sn,Fe)O{sub 2} nanocrystalline. • Experimental results are confirmed by ab initio calculations. - Abstract: (Fe,Cu)-doped SnO{sub 2} nanocrystals was synthesized using the co-precipitation method. Magnetic Properties Measurement System (MPMS) revealed that for simple doping, Fe-doped SnO{sub 2} soft ferromagnetism at low temperature appears, while the ferromagnetic phase is stable at temperature higher than room temperature for Cu co-doping element. The ferromagnetism is significantly enhanced by the Cu addition to Fe-doped SnO{sub 2}, according to the ZFC and FC magnetizations and the hysteresis loops. The evidences for the existence of superparamagnetism are characterized and high blocking temperature super-paramagnetism in (Fe,Cu)-doped SnO{sub 2} nanocrystals was observed. Based on first-principles calculations, we have investigated electronic structures and magnetic properties of Fe-doped SnO{sub 2} and (Fe,Cu)-doped SnO{sub 2} with and without defect with LDA and LDA-SIC approximations. The results suggest that the oxygen vacancies (V{sub O}) play a critical role in the activation of ferromagnetism in Fe doped SnO{sub 2}. For (Fe,Cu)-doped SnO{sub 2} the results exhibit that Cu strongly influences on the magnetic properties of these doped systems which are in good agreement with the experimental observations. Electronic structure show that the presence of Cu promote the ferromagnetic bound magnetic polaron interaction through the carriers introduce by d (Cu)

  7. Magnetic effects in heavy-ion collisions at intermediate energies

    International Nuclear Information System (INIS)

    Ou Li; Li Baoan

    2011-01-01

    The time evolution and space distribution of internal electromagnetic fields in heavy-ion reactions at beam energies between 200 and 2000 MeV/nucleon are studied within an isospin-dependent Boltzmann-Uhling-Uhlenbeck transport model (ibuu11). While the magnetic field can reach about 7x10 16 G, which is significantly higher than the estimated surface magnetic field (∼1x10 15 G) of magnetars, it has almost no effect on nucleon observables because the Lorentz force is normally much weaker than the nuclear force. Very interestingly, however, the magnetic field generated by the projectilelike (targetlike) spectator has a strong focusing and defocusing effect on positive and negative pions at forward (backward) rapidities. Consequently, the differential π - /π + ratio as a function of rapidity is significantly altered by the magnetic field, whereas the total multiplicities of both positive and negative pions remain about the same. At beam energies above about 1 GeV/nucleon, while the integrated ratio of total π - to π + multiplicities is not, the differential π - /π + ratio is sensitive to the density dependence of nuclear symmetry energy E sym (ρ). Our findings suggest that magnetic effects should be carefully considered in future studies of using the differential π - /π + ratio as a probe of the E sym (ρ) at suprasaturation densities.

  8. Project for a high resolution magnetic spectrometer for heavy ions

    International Nuclear Information System (INIS)

    Birien, P.; Valero, S.

    1981-05-01

    The energy loss spectrometer presented in this report has an energy resolution of 2x10 -4 with the full solid angle of 5 msr. The maximum magnetic rigidity of the particles analysed is 2.88 Tesla-meters on the optical axis and the total acceptance in energy is 14%. Experiments with reaction angles near 0 0 are possible. Kinematic compensation is adapted to heavy ion physics. In this report, we have paid special attention to the simplicity of the construction and of the use of this spectrometer by experimentalists. This report is addressed both to non-specialists and to future users as well [fr

  9. Rotating target wheel system for super-heavy element production at ATLAS

    CERN Document Server

    Greene, J P; Falout, J; Janssens, R V F

    2004-01-01

    A new scattering chamber housing a large diameter rotating target wheel has been designed and constructed in front of the Fragment Mass Analyzer (FMA) for the production of very heavy nuclei (Z greater than 100) using beams from the Argonne Tandem Linear Accelerator System (ATLAS). In addition to the target and drive system, the chamber is extensively instrumented in order to monitor target performance and deterioration. Capabilities also exist to install rotating entrance and exit windows for gas cooling of the target within the scattering chamber. The design and initial tests are described.

  10. Spin wave relaxation and magnetic properties in [M/Cu] super-lattices; M=Fe, Co and Ni

    International Nuclear Information System (INIS)

    Fahmi, A.; Qachaou, A.

    2009-01-01

    In this work, we study the elementary excitations and magnetic properties of the [M/Cu] super-lattices with: M=Fe, Co and Ni, represented by a Heisenberg ferromagnetic system with N atomic planes. The nearest neighbour (NN), next nearest neighbour (NNN) exchange, dipolar interactions and surface anisotropy effects are taken into account and the Hamiltonian is studied in the framework of the linear spin wave theory. In the presence of the exchange alone, the excitation spectrum E(k) and the magnetization z >/S analytical expressions are obtained using the Green's function formalism. The obtained relaxation time of the magnon populations is nearly the same in the Fe and Co-based super-lattices, while these magnetic excitations would last much longer in the Ni-based super lattice. A numerical study of the surface anisotropy and long-ranged dipolar interaction combined effects are also reported. The exchange integral values deduced from a comparison with experience for the three super-lattices are coherent.

  11. Mesoscale processes for super heavy rainfall of Typhoon Morakot (2009 over Southern Taiwan

    Directory of Open Access Journals (Sweden)

    C.-Y. Lin

    2011-01-01

    Full Text Available Within 100 h, a record-breaking rainfall, 2855 mm, was brought to Taiwan by typhoon Morakot in August 2009 resulting in devastating landslides and casualties. Analyses and simulations show that under favorable large-scale situations, this unprecedented precipitation was caused first by the convergence of the southerly component of the pre-existing strong southwesterly monsoonal flow and the northerly component of the typhoon circulation. Then the westerly component of southwesterly flow pushed the highly moist air (mean specific humidity >16 g/kg between 950 and 700 hPa from NCEP GFS data set eastward against the Central Mountain Range, and forced it to lift in the preferred area. From the fine-scale numerical simulation, not only did the convergence itself provide the source of the heavy rainfall when it interacted with the topography, but also convective cells existed within the typhoon's main rainband. The convective cells were in the form of small rainbands perpendicular to the main one, and propagated as wave trains downwind. As the main rainband moved northward and reached the southern CMR, convective cells inside the narrow convergence zone to the south and those to the north as wave trains, both rained heavily as they were lifted by the west-facing mountain slopes. Those mesoscale processes were responsible for the unprecedented heavy rainfall total that accompanied this typhoon.

  12. Relationships between magnetic susceptibility and heavy metals in urban topsoils in the arid region of Isfahan, central Iran

    Science.gov (United States)

    Karimi, Rezvan; Ayoubi, Shamsollah; Jalalian, Ahmad; Sheikh-Hosseini, Ahmad Reza; Afyuni, Majid

    2011-05-01

    Recently methods dealing with magnetometry have been proposed as a proper proxy for assessing the heavy metal pollution of soils. A total of 113 topsoil samples were collected from public parks and green strips along the rim of roads with high-density traffic within the city of Isfahan, central Iran. The magnetic susceptibility (χ) of the collected soil samples was measured at both low and high frequency (χlf and χhf) using the Bartington MS2 dual frequency sensor. As, Cd, Cr, Ba, Cu, Mn, Pb, Zn, Sr and V concentrations were measured in the all collected soil samples. Significant correlations were found between Zn and Cu (0.85) and between Zn and Pb (0.84). The χfd value of urban topsoil varied from 0.45% to 7.7%. Low mean value of χfd indicated that the magnetic properties of the samples are predominately contributed by multi-domain grains, rather than by super-paramagnetic particles. Lead, Cu, Zn, and Ba showed positive significant correlations with magnetic susceptibility, but As, Sr, Cd, Mn, Cr and V, had no significant correlation with the magnetic susceptibility. There was a significant correlation between pollution load index (PLI) and χlf. PLI was computed to evaluate the soil environmental quality of selected heavy metals. Moreover, the results of multiple regression analysis between χlf and heavy metal concentrations indicated the LnPb, V and LnCu could explain approximately 54% of the total variability of χlf in the study area. These results indicate the potential of the magnetometric methods to evaluate the heavy metal pollution of soils.

  13. 3D calculations of the Superconducting Super Collider (SSC) 3 Tesla magnet

    International Nuclear Information System (INIS)

    Lari, R.J.

    1984-01-01

    A 20 TeV Superconducting Super Collider (SSC) proton accelerator is being proposed by the High Energy Physics Community. One proposal would consist of a ring of magnets 164 km in circumference with a field strength of 3 Tesla and would cost 2.7 billion dollars. The magnet consists of stacked steel laminations with superconducting coils. The desired field uniformity is obtained for all fields from 0.2 to 3 Tesla by using three (or more) different pole shapes. These three different laminations are stacked in the order 1-2-3-1-2-3-... creating a truly three dimensional geometry. A three laminated stack 1-2-3 with periodic boundary conditions at 1 and 3 was assigned about 5000 finite elements per lamination and solved using the computer program TOSCA. To check the TOSCA results, the field of each of the three different shaped laminations was calculated separately using periodic boundary conditions and compared to the two dimensional field calculations using TRIM. This was done for a constant permeability of 2000 and using the B-H table for fully annealed 1010 steel. The difference of the field calculations in the region of interest was always less than +-.2%

  14. Satellite drag effects due to uplifted oxygen neutrals during super magnetic storms

    Directory of Open Access Journals (Sweden)

    G. S. Lakhina

    2017-12-01

    Full Text Available During intense magnetic storms, prompt penetration electric fields (PPEFs through E  ×  B forces near the magnetic equator uplift the dayside ionosphere. This effect has been called the dayside super-fountain effect. Ion-neutral drag forces between the upward moving O+ (oxygen ions and oxygen neutrals will elevate the oxygen atoms to higher altitudes. This paper gives a linear calculation indicating how serious the effect may be during an 1859-type (Carrington superstorm. It is concluded that the oxygen neutral densities produced at low-Earth-orbiting (LEO satellite altitudes may be sufficiently high to present severe satellite drag. It is estimated that with a prompt penetrating electric field of ∼ 20 mV m−1 turned on for 20 min, the O atoms and O+ ions are uplifted to 850 km where they produce about 40-times-greater satellite drag per unit mass than normal. Stronger electric fields will presumably lead to greater uplifted mass.

  15. Magnetic evidence for heavy metal pollution of topsoil in Shanghai, China

    Science.gov (United States)

    Wang, Guan; Liu, Yuan; Chen, Jiao; Ren, Feifan; Chen, Yuying; Ye, Fangzhou; Zhang, Weiguo

    2018-03-01

    This study presents the results obtained from magnetic susceptibility and heavy metal (Cu, Zn, Pb, and Cr) concentration measurements of soil profiles collected from arable land and urban parks in Baoshan District, an industrial district of Shanghai, China. The study focuses on the investigation of vertical variations in magnetic susceptibilities and heavy metal concentrations and on correlations between magnetic susceptibilities and heavy metal concentrations in soil profiles. The results demonstrate that magnetic enhancement in the surface layer of the soil profile is associated with increased heavy metal pollution. The enrichment factors (EF) and the Tomlinson Pollution Load Index (PLI-EF) are calculated for estimating the level of heavy metal pollution of soil profiles in the study. The significant positive correlations between heavy metal contents, enrichment factors (EF), Tomlinson pollution load index (PLI-CF), modified Tomlinson pollution load index (PLI-EF), and magnetic susceptibility (c) indicate that much of the heavy metal contamination in the study area is linked to combustion derived particulate emissions. The results confirm that the combined magnetic measurement and heavy metal concentration analysis could provide useful information for soil monitoring in urban environments. However, the use of magnetic technique to locate the heavy metal pollution boundary in the soil profile of this studied area should be confirmed by further geochemical analysis.

  16. Remote monitoring system for the cryogenic system of superconducting magnets in the SuperKEKB interaction region

    Science.gov (United States)

    Aoki, K.; Ohuchi, N.; Zong, Z.; Arimoto, Y.; Wang, X.; Yamaoka, H.; Kawai, M.; Kondou, Y.; Makida, Y.; Hirose, M.; Endou, T.; Iwasaki, M.; Nakamura, T.

    2017-12-01

    A remote monitoring system was developed based on the software infrastructure of the Experimental Physics and Industrial Control System (EPICS) for the cryogenic system of superconducting magnets in the interaction region of the SuperKEKB accelerator. The SuperKEKB has been constructed to conduct high-energy physics experiments at KEK. These superconducting magnets consist of three apparatuses, the Belle II detector solenoid, and QCSL and QCSR accelerator magnets. They are each contained in three cryostats cooled by dedicated helium cryogenic systems. The monitoring system was developed to read data of the EX-8000, which is an integrated instrumentation system to control all cryogenic components. The monitoring system uses the I/O control tools of EPICS software for TCP/IP, archiving techniques using a relational database, and easy human-computer interface. Using this monitoring system, it is possible to remotely monitor all real-time data of the superconducting magnets and cryogenic systems. It is also convenient to share data among multiple groups.

  17. Field quality evaluation of the superconducting magnets of the relativistic heavy ion collider

    International Nuclear Information System (INIS)

    Wei, J.; Gupta, R.C.; Jain, A.; Peggs, S.G.; Trahern, C.G.; Trbojevic, D.; Wanderer, P.

    1995-01-01

    In this paper, the authors first present the procedure established to evaluate the field quality, quench performance, and alignment of the superconducting magnets manufactured for the Relativistic Heavy Ion Collider (RHIC), and then discuss the strategies used to improve the field quality and to minimize undesirable effects by sorting the magnets. The field quality of the various RHIC magnets is briefly summarized

  18. Ion heating and magnetic flux pile-up in a magnetic reconnection experiment with super-Alfvénic plasma inflows

    Science.gov (United States)

    Suttle, L. G.; Hare, J. D.; Lebedev, S. V.; Ciardi, A.; Loureiro, N. F.; Burdiak, G. C.; Chittenden, J. P.; Clayson, T.; Halliday, J. W. D.; Niasse, N.; Russell, D.; Suzuki-Vidal, F.; Tubman, E.; Lane, T.; Ma, J.; Robinson, T.; Smith, R. A.; Stuart, N.

    2018-04-01

    This work presents a magnetic reconnection experiment in which the kinetic, magnetic, and thermal properties of the plasma each play an important role in the overall energy balance and structure of the generated reconnection layer. Magnetic reconnection occurs during the interaction of continuous and steady flows of super-Alfvénic, magnetized, aluminum plasma, which collide in a geometry with two-dimensional symmetry, producing a stable and long-lasting reconnection layer. Optical Thomson scattering measurements show that when the layer forms, ions inside the layer are more strongly heated than electrons, reaching temperatures of Ti˜Z ¯ Te≳300 eV—much greater than can be expected from strong shock and viscous heating alone. Later in time, as the plasma density in the layer increases, the electron and ion temperatures are found to equilibrate, and a constant plasma temperature is achieved through a balance of the heating mechanisms and radiative losses of the plasma. Measurements from Faraday rotation polarimetry also indicate the presence of significant magnetic field pile-up occurring at the boundary of the reconnection region, which is consistent with the super-Alfvénic velocity of the inflows.

  19. Removal of Heavy Metals from Drinking Water by Magnetic Carbon Nanostructures Prepared from Biomass

    OpenAIRE

    Muneeb Ur Rahman Khattak, Muhammad; Zahoor, Muhammad; Muhammad, Bakhtiar; Khan, Farhat Ali; Ullah, Riaz; AbdEI-Salam, Naser M.

    2017-01-01

    Heavy metals contamination of drinking water has significant adverse effects on human health due to their toxic nature. In this study a new adsorbent, magnetic graphitic nanostructures were prepared from watermelon waste. The adsorbent was characterized by different instrumental techniques (surface area analyzer, FTIR, XRD, EDX, SEM, and TG/DTA) and was used for the removal of heavy metals (As, Cr, Cu, Pb, and Zn) from water. The adsorption parameters were determined for heavy metals adsorpti...

  20. Positron creation in heavy ion collisions: The influence of the magnetic field

    International Nuclear Information System (INIS)

    Soff, G.; Reinhardt, J.

    1988-03-01

    We calculate the creation of positrons in heavy-ion collisions including the influence of the magnetic dipole field produced by the moving nuclei. Contrary to a recent claim we find no narrow structures in the positron energy spectrum. (orig.)

  1. Understanding heavy mineral dynamics using magnetic fingerprinting technique: A case study of North Maharashtra Coast, India

    Digital Repository Service at National Institute of Oceanography (India)

    Badesab, F.K.; Iyer, S.D.; Gujar, A; Naik, D.K.; Gaonkar, S.S.; Luis, R.A.A; Shirodkar, P.; Naik, Smita

    Environmental magnetic and grain size measurements were carried out on sand samples collected from nine sand pits along a 20-km coastal stretch of Arnala Beach, North Maharashtra, India. This study sets out to identify the potential heavy (magnetite...

  2. Brain Atlas Fusion from High-Thickness Diagnostic Magnetic Resonance Images by Learning-Based Super-Resolution.

    Science.gov (United States)

    Zhang, Jinpeng; Zhang, Lichi; Xiang, Lei; Shao, Yeqin; Wu, Guorong; Zhou, Xiaodong; Shen, Dinggang; Wang, Qian

    2017-03-01

    It is fundamentally important to fuse the brain atlas from magnetic resonance (MR) images for many imaging-based studies. Most existing works focus on fusing the atlases from high-quality MR images. However, for low-quality diagnostic images (i.e., with high inter-slice thickness), the problem of atlas fusion has not been addressed yet. In this paper, we intend to fuse the brain atlas from the high-thickness diagnostic MR images that are prevalent for clinical routines. The main idea of our works is to extend the conventional groupwise registration by incorporating a novel super-resolution strategy. The contribution of the proposed super-resolution framework is two-fold. First, each high-thickness subject image is reconstructed to be isotropic by the patch-based sparsity learning. Then, the reconstructed isotropic image is enhanced for better quality through the random-forest-based regression model. In this way, the images obtained by the super-resolution strategy can be fused together by applying the groupwise registration method to construct the required atlas. Our experiments have shown that the proposed framework can effectively solve the problem of atlas fusion from the low-quality brain MR images.

  3. Development of A Super High Speed Permanent Magnet Synchronous Motor (PMSM Controller and Analysis of The Experimental Results

    Directory of Open Access Journals (Sweden)

    Limei Zhao

    2005-02-01

    Full Text Available This paper presents the design and implementation of a DSP-based controller for a super high-speed (>80,000 rpm permanent magnet synchronous motor (PMSM. The PMSM is a key component of the centrifugal compressor drive of a reverse Brayton cryocooler that is currently under development for NASA and Florida Solar Energy Center. The design of the PMSM open-loop control is presented. Experimental results with open-loop control schemes are presented. System optimization and analysis are also illustrated. They verify the effectiveness of the controller design and the optimization scheme.

  4. Impact of ultrasonication time on elution of super heavy oil and its biomarkers from aging soils using a Triton X-100 micellar solution

    International Nuclear Information System (INIS)

    Ji Guodong; Zhou Guohui

    2010-01-01

    An ultrasound-enhanced elution system with Triton X-100 solution was used to remediate aging soils contaminated with super heavy oil. We used GC/MS, SEM, and X-ray diffraction (XRD) to analyze the effect of ultrasonic time (0-1800 s) on the elution of super heavy oil and its three characteristic biomarkers (C 26-34 17α 25-norhopanes, C 26-28 triaromatic steroid [TAS], and C 27-29 methyl triaromatic steroid [MTAS]). The oil and biomarkers remaining in the treated soils followed similar second-order functions with increasing ultrasonication times. Biomarker elution was closely related to carbon numbers in the marker. For C 26-34 17α 25-norhopanes, the smaller molecules were more readily eluted during 0-360 s ultrasound. This trend was reversed upon application of ultrasound during 1080-1800 s, with improved elution of larger molecules and elution followed a similar second-order function. For C 26-28 TAS, smaller molecules were more readily eluted but the elution of larger molecules followed a similar second-order function. For C 27-29 MTAS, elution of larger molecules was close to that of C 26-34 17α 25-norhopanes. Results of SEM and XRD indicated that the mineral and chemical compositions of soils eluted at ultrasonication times of 1080-1800 s closely resembled clean soils.

  5. A magnetic record of heavy metal pollution in the Yangtze River subaqueous delta

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Chenyin [State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062 (China); Zhang, Weiguo, E-mail: wgzhang@sklec.ecnu.edu.cn [State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062 (China); Ma, Honglei [State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062 (China); Feng, Huan [Department of Earth and Environmental Studies, Montclair State University, NJ 07043 (United States); Lu, Honghua [Department of Geography, College of Resources and Environmental Science, East China Normal University, Shanghai 200241 (China); Dong, Yan [State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062 (China); Institute of Geographic Engineering Technology, School of Geographical Science, Nantong University, Nantong 226007 (China); Yu, Lizhong [State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062 (China)

    2014-04-01

    The rapid industrial development in the Yangtze River watershed over the last several decades has drawn great attention with respect to heavy metal pollution to the Yangtze River estuary and nearby coastal areas. In this study, a 236 cm long sediment core was retrieved from the Yangtze River subaqueous delta (122°36′ E, 31°00′ N) in 2008 and analyzed for magnetic properties and geochemical compositions to investigate heavy metal pollution history. The activity of {sup 137}Cs peaked at depth 140 cm, with a broad plateau between 120 cm and 140 cm, suggesting an average sedimentation rate of 3.11 cm yr{sup −1} for the upper 140 cm layer. Magnetic susceptibility (χ), saturation isothermal remanent magnetization (SIRM), anhysteretic remanent magnetization (χ{sub ARM}) and heavy metal enrichment factors (EF) all showed an upward increase trend above depth 140 cm, suggesting that increased ferrimagnetic mineral concentration was accompanied by heavy metal enrichment in the sediment. Geochemical and granolumetric analyses showed that sediment sources and particle sizes played minor roles in the variations of magnetic properties. The effect of diagenesis, which can lead to the selective removal of magnetic minerals, was noticeable in the lower part of the core (140–236 cm). Co-variation between magnetic properties (χ, SIRM and χ{sub ARM}) and EF of Cu and Pb suggests that the elevated ferrimagnetic mineral concentration can be used as an indicator of heavy metal pollution in the reconstruction of environmental changes in estuarine and coastal settings. - Highlights: • Magnetic parameters can be used as heavy metal pollution proxy. • Heavy metal contents in the Yangtze River estuary increase since the 1960s. • Heavy metal pollution is largely driven by population growth in the catchment.

  6. A magnetic record of heavy metal pollution in the Yangtze River subaqueous delta

    International Nuclear Information System (INIS)

    Dong, Chenyin; Zhang, Weiguo; Ma, Honglei; Feng, Huan; Lu, Honghua; Dong, Yan; Yu, Lizhong

    2014-01-01

    The rapid industrial development in the Yangtze River watershed over the last several decades has drawn great attention with respect to heavy metal pollution to the Yangtze River estuary and nearby coastal areas. In this study, a 236 cm long sediment core was retrieved from the Yangtze River subaqueous delta (122°36′ E, 31°00′ N) in 2008 and analyzed for magnetic properties and geochemical compositions to investigate heavy metal pollution history. The activity of 137 Cs peaked at depth 140 cm, with a broad plateau between 120 cm and 140 cm, suggesting an average sedimentation rate of 3.11 cm yr −1 for the upper 140 cm layer. Magnetic susceptibility (χ), saturation isothermal remanent magnetization (SIRM), anhysteretic remanent magnetization (χ ARM ) and heavy metal enrichment factors (EF) all showed an upward increase trend above depth 140 cm, suggesting that increased ferrimagnetic mineral concentration was accompanied by heavy metal enrichment in the sediment. Geochemical and granolumetric analyses showed that sediment sources and particle sizes played minor roles in the variations of magnetic properties. The effect of diagenesis, which can lead to the selective removal of magnetic minerals, was noticeable in the lower part of the core (140–236 cm). Co-variation between magnetic properties (χ, SIRM and χ ARM ) and EF of Cu and Pb suggests that the elevated ferrimagnetic mineral concentration can be used as an indicator of heavy metal pollution in the reconstruction of environmental changes in estuarine and coastal settings. - Highlights: • Magnetic parameters can be used as heavy metal pollution proxy. • Heavy metal contents in the Yangtze River estuary increase since the 1960s. • Heavy metal pollution is largely driven by population growth in the catchment

  7. Scintillation Detector for the Measurement of Ultra-Heavy Cosmic Rays on the Super-TIGER Experiment

    Science.gov (United States)

    Link, Jason

    2011-01-01

    We discuss the design and construction of the scintillation detectors for the Super-TIGER experiment. Super-TIGER is a large-area (5.4sq m) balloon-borne experiment designed to measure the abundances of cosmic-ray nuclei between Z= 10 and Z=56. It is based on the successful TIGER experiment that flew in Antarctica in 2001 and 2003. Super-TIGER has three layers of scintillation detectors, two Cherenkov detectors and a scintillating fiber hodoscope. The scintillation detector employs four wavelength shifter bars surrounding the edges of the scintillator to collect the light from particles traversing the detector. PMTs are optically coupled at both ends of the bars for light collection. We report on laboratory performance of the scintillation counters using muons. In addition we discuss the design challenges and detector response over this broad charge range including the effect of scintilator saturation.

  8. Status of superconducting magnet development (SSC, RHIC, LHC)

    International Nuclear Information System (INIS)

    Wanderer, P.

    1993-01-01

    This paper summarize recent superconducting accelerator magnet construction and test activities at the Superconducting Super Collider Laboratory (SSC), the Large Hadron Collider at CERN (LHC), and the Relativistic Heavy Ion Collider at Brookhaven (RHIC). Future plan are also presented

  9. Status of superconducting magnet development (SSC, RHIC, LHC)

    International Nuclear Information System (INIS)

    Wanderer, P.

    1993-01-01

    This paper summarizes recent superconducting accelerator magnet construction and test activities at the Superconducting Super Collider Laboratory (SSC), the Large Hardon Collider at CERN (LHC), and the Relativistic Heavy Ion Collider at Brookhaven (RHIC). Future plans are also presented

  10. Environmentally friendly synthesis of reducing super-heavy oil viscosity; Sintesis amigable con el ambiente de reductores de viscosidad para petroleos Super-pesados

    Energy Technology Data Exchange (ETDEWEB)

    Castro Sotelo, Laura Veronica [Instituto Politecnico Nacional, ESIQIE, Mexico, D.F. (Mexico)]. E-mail: lcastros@ipn.mx; Flores Oropeza, Eugenio Alejandro [Instituto Mexicano del Petroleo, Mexico, D.F. (Mexico)]. E-mail: eaflores@imp.mx; Hernandez Garcia, Arnulfo [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)]. E-mail: arte8080@hotmail.com; Vazquez Moreno, Flavio Salvador [Instituto Mexicano del Petroleo, Mexico, D.F. (Mexico)]. E-mail: fvmoreno@imp.mx

    2010-11-15

    There are certain polymers that have the character to be flow modifiers, and this emerges of the chemical structure and molecular interaction that the polymers have with the crude oil. Three polymers were prepared by emulsion polymerization were characterized, they were characterized by Fourier transform infrared (FTIR) spectroscopy and Size exclusion Size exclusion chromatography (SEC). To assess its implementation, the polymers were evaluated in heavy crude oils with rotational tests. The polymer concentration was evaluated at 1000 ppm, and it presented an appreciable reduction of viscosity in heavy crude oil. [Spanish] Existen ciertos polimeros que tienen el caracter de ser modificadores de flujo, y esto surge de la estructura quimica y las interacciones moleculares que presentan estos al contacto con el aceite crudo. Se sintetizaron tres polimeros a traves de la tecnica de polimerizacion en emulsion, los polimeros fueron caracterizados por Espectroscopia Infrarroja con transformada de Fourier (FTIR), tambien se utilizo la tecnica de Cromatografia por Exclusion de Tamanos (SEC). Para valorar su aplicacion, se evaluaron en aceites crudos pesados con pruebas rotacionales. La concentracion de los polimeros se valuo en 1000 ppm, y se aprecio un notable abatimiento de la viscosidad del aceite crudo pesado.

  11. Full-power test of a string of magnets comprising a half-cell of the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Burgett, W.; Christianson, M.; Coombes, R.

    1992-10-01

    In this paper we describe the full-powered operation of a string of industrially-fabricated magnets comprising a half-cell of the Superconducting Super Collider (SSC). The completion of these tests marks the first successful operation of a major SSC subsystem. The five 15-m long dipole magnets in the string had an aperture of 50 mm and the single 5-m long quadrupole aperture was 40 mm. Power and cryogenic connections were made to the string through spool pieces that are prototypes for SSC operations. The string was cooled to cryogenic temperatures in early July, 1992, and power tests were performed at progressively higher currents up to the nominal SSC operating point above 6500 amperes achieved in mid-August. In this paper we report on the electrical and cryogenic performance of the string components and the quench protection system during these initial tests

  12. Response of magnetic properties to heavy metal pollution in dust from three industrial cities in China

    International Nuclear Information System (INIS)

    Zhu, Zongmin; Li, Zhonggen; Bi, Xiangyang; Han, Zhixuan; Yu, Genhua

    2013-01-01

    Highlights: ► Elevated magnetic particles and heavy metals coexist in dust. ► Morphology and mineralogy of magnetic particles were studied by SEM-EDX and XRD. ► Magnetic minerals in the dust consist of magnetite, hematite, and metallic iron. ► Impact of metallic iron particles and multi-sources of metal pollutants was notable. -- Abstract: Magnetic method is a reliable and powerful technique for identification of the relative contribution of industrial pollutants. However, it has not been fully applied in urban area impacted by non-ferrous metal (NFM) smelting/processing activities. The aim of this study is to explore the applicability of magnetic methods for detecting heavy metal contamination in dust from three NFM smelting/processing industrial cities (Ezhou, Zhuzhou, and Hezhang) in China. The enhancements of magnetic susceptibility (MS) and saturation isothermal remanent magnetization (SIRM) together with heavy metals were significant in the studied areas in comparison with the background values. Scanning electron microscope (SEM) analysis revealed that magnetic particles in dust from Ezhou were dominated by spherules, while those from Zhuzhou and Hezhang were mainly consisted of irregular-shaped particles. κ–T curves and X-ray diffraction (XRD) analyses indicated that the magnetic particles from Ezhou were dominated by magnetite and metallic iron, whereas those from Zhuzhou and Hezhang were consisted of magnetite and hematite. Our study indicates that magnetic properties of the dust are sensitive to the NFM smelting/processing related heavy metal pollutants. However, the relationship between magnetic parameters and heavy metals was influenced by the presence of metallic iron particles and multi-sources of metal pollutants

  13. Heavy metal multilayers for switching of magnetic unit via electrical current without magnetic field, method and applications

    Science.gov (United States)

    Ma, Qinli; Li, Yufan; Chien, Chia-ling

    2018-02-20

    Provided is an electric-current-controllable magnetic unit, including: a substrate, an electric-current channel disposed on the substrate, the electric-current channel including a composite heavy-metal multilayer comprising at least one heavy-metal; a capping layer disposed over the electric-current channel; and at least one ferromagnetic layer disposed between the electric-current channel and the capping layer.

  14. [Magnetic Response of Dust-loaded Leaves in Parks of Shanghai to Atmospheric Heavy Metal Pollution].

    Science.gov (United States)

    Liu, Fei; Chu, Hui-min; Zheng, Xiang-min

    2015-12-01

    To reveal the magnetic response to the atmospheric heavy metal pollution in leaves along urban parks, Camphor leaf samples, widely distributed at urban parks, were collected along the year leading wind direction of Shanghai, by setting two vertical and horizontal sections, using rock magnetic properties and heavy metal contents analysis. The results showed that the magnetic minerals of samples were predominated by ferromagnetic minerals, and both the concentration and grain size of magnetite particles gradually decreased with the winter monsoon direction from the main industrial district. A rigorous cleaning of leaves using ultrasonic agitator washer could remove about 63%-90% of low-field susceptibility values of the leaves, and this strongly indicated that the intensity of magnetic signal was mainly controlled by the PMs accumulated on the leaves surfaces. Moreover, there was a significant linear relationship between heavy metals contents (Fe, Mn, Zn, Cu, Cr, V and Pb) and magnetic parameters (0.442 ≤ R ≤ 0.799, P atmospheric heavy metal pollution. The results of multivariate statistical analysis showed that the content of magnetic minerals and heavy metal indust-loaded tree leaves was affected by associated pollution of industry and traffic.

  15. Logic gates realized by nonvolatile GeTe/Sb2Te3 super lattice phase-change memory with a magnetic field input

    Science.gov (United States)

    Lu, Bin; Cheng, Xiaomin; Feng, Jinlong; Guan, Xiawei; Miao, Xiangshui

    2016-07-01

    Nonvolatile memory devices or circuits that can implement both storage and calculation are a crucial requirement for the efficiency improvement of modern computer. In this work, we realize logic functions by using [GeTe/Sb2Te3]n super lattice phase change memory (PCM) cell in which higher threshold voltage is needed for phase change with a magnetic field applied. First, the [GeTe/Sb2Te3]n super lattice cells were fabricated and the R-V curve was measured. Then we designed the logic circuits with the super lattice PCM cell verified by HSPICE simulation and experiments. Seven basic logic functions are first demonstrated in this letter; then several multi-input logic gates are presented. The proposed logic devices offer the advantages of simple structures and low power consumption, indicating that the super lattice PCM has the potential in the future nonvolatile central processing unit design, facilitating the development of massive parallel computing architecture.

  16. Magnetization curves of sintered heavy tungsten alloys for applications in MRI-guided radiotherapy

    International Nuclear Information System (INIS)

    Kolling, Stefan; Oborn, Bradley M.; Keall, Paul J.; Horvat, Joseph

    2014-01-01

    Purpose: Due to the current interest in MRI-guided radiotherapy, the magnetic properties of the materials commonly used in radiotherapy are becoming increasingly important. In this paper, measurement results for the magnetization (BH) curves of a range of sintered heavy tungsten alloys used in radiation shielding and collimation are presented. Methods: Sintered heavy tungsten alloys typically contain >90 % tungsten and 0 and the BH curve derived. Results: The iron content of the alloys was found to play a dominant role, directly influencing the magnetizationM and thus the nonlinearity of the BH curve. Generally, the saturation magnetization increased with increasing iron content of the alloy. Furthermore, no measurable magnetization was found for all alloys without iron content, despite containing up to 6% of nickel. For two samples from different manufacturers but with identical quoted nominal elemental composition (95% W, 3.5% Ni, 1.5% Fe), a relative difference in the magnetization of 11%–16% was measured. Conclusions: The measured curves show that the magnetic properties of sintered heavy tungsten alloys strongly depend on the iron content, whereas the addition of nickel in the absence of iron led to no measurable effect. Since a difference in the BH curves for two samples with identical quoted nominal composition from different manufacturers was observed, measuring of the BH curve for each individual batch of heavy tungsten alloys is advisable whenever accurate knowledge of the magnetic properties is crucial. The obtained BH curves can be used in FEM simulations to predict the magnetic impact of sintered heavy tungsten alloys

  17. [Heavy Metals Accmultio in the Caofeidian Reclamation Soils: Indicated by Soil Magnetic Susceptibility].

    Science.gov (United States)

    Xue, Yong; Zhou, Qian; Li, Yuan; Zhang, Hai-bo; Hu, Xue-feng; Luo, Yong-ming

    2016-04-15

    The environmental magnetism method has been widely applied to identify soil heavy metal pollution, which is characterized by simplicity, efficiency, non-destructivity and sensitivity. The present study used magnetic susceptibility to assess the accumulation of heavy metals in soils of the Caofeidian industrial zone which is a typical reclamation area in northern China. The study area was divided into three sub-zones based on the function, including industrial zone, living zone, natural tidal flat and wetland. A total of 35 topsoil samples (0-10 cm) and 3 soil profiles were collected from the three sub-zones. Magnetic susceptibility (X(lf)), iron oxide (Fe2O3) contents and heavy metals contents (Cr, Ni, Cu, Zn, As, Pb, Mn and V) of the samples were analyzed. The results showed that X(lf) values and heavy metals contents exhibited higher spatial variability in the top soil of the industrial zone, indicating the severe impacts of industrial activities. In the soil profiles of the industrial and living zones, all heavy metals were enriched to different degrees in the upper layer (0-20 cm). However, there was no significant change of heavy metal contents in the soil profiles of tidal flat which was far from the industrial area. The X(lf) value was significantly (P soil. This indicated that X(lf) could be used as an indicator for heavy metal accumulation in the industrial zone. However, the X(lf) value was not suitable to be an indicator to show the heavy metal accumulation in the soils of living zone and natural tidal flat. This might be associated with the different sources of magnetic materials among the different sub-zones and the special characteristics of the soils in the tidal flat and wetland.

  18. Magnetic Nulls and Super-radial Expansion in the Solar Corona

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, Sarah E.; Dalmasse, Kevin; Tomczyk, Steven; Toma, Giuliana de; Burkepile, Joan; Galloy, Michael [National Center for Atmospheric Research, 3080 Center Green Drive, Boulder, CO 80301 (United States); Rachmeler, Laurel A. [NASA Marshall Space Flight Center, Huntsville, AL 35811 (United States); Rosa, Marc L. De, E-mail: sgibson@ucar.edu [Lockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover Street B/252, Palo Alto, CA 94304 (United States)

    2017-05-10

    Magnetic fields in the Sun’s outer atmosphere—the corona—control both solar-wind acceleration and the dynamics of solar eruptions. We present the first clear observational evidence of coronal magnetic nulls in off-limb linearly polarized observations of pseudostreamers, taken by the Coronal Multichannel Polarimeter (CoMP) telescope. These nulls represent regions where magnetic reconnection is likely to act as a catalyst for solar activity. CoMP linear-polarization observations also provide an independent, coronal proxy for magnetic expansion into the solar wind, a quantity often used to parameterize and predict the solar wind speed at Earth. We introduce a new method for explicitly calculating expansion factors from CoMP coronal linear-polarization observations, which does not require photospheric extrapolations. We conclude that linearly polarized light is a powerful new diagnostic of critical coronal magnetic topologies and the expanding magnetic flux tubes that channel the solar wind.

  19. Anomalous magnetic torque in the heavy-fermion superconductor UBe13

    International Nuclear Information System (INIS)

    Schmiedeshoff, G.M.; Fisk, Z.; Smith, J.L.

    1994-01-01

    Measurements of the magnetic torque acting upon a single crystal of the heavy-fermion superconductor UBe 13 have been made at temperatures from 0.5 K to 30.0 K and in magnetic fields to 23 T using a capacitive magnetometer. We find that a large, anomalous contribution to the magnetic torque appears in at low temperatures and in high fields. The anomalous torque coexists with the superconducting state at low temperature. We propose that the anomalous torque reflects the existence of a field-induced magnetic phase transition. (orig.)

  20. A magnetic record of heavy metal pollution in the Yangtze River subaqueous delta.

    Science.gov (United States)

    Dong, Chenyin; Zhang, Weiguo; Ma, Honglei; Feng, Huan; Lu, Honghua; Dong, Yan; Yu, Lizhong

    2014-04-01

    The rapid industrial development in the Yangtze River watershed over the last several decades has drawn great attention with respect to heavy metal pollution to the Yangtze River estuary and nearby coastal areas. In this study, a 236 cm long sediment core was retrieved from the Yangtze River subaqueous delta (122°36' E, 31°00' N) in 2008 and analyzed for magnetic properties and geochemical compositions to investigate heavy metal pollution history. The activity of (137)Cs peaked at depth 140 cm, with a broad plateau between 120 cm and 140 cm, suggesting an average sedimentation rate of 3.11 cm yr(-1) for the upper 140 cm layer. Magnetic susceptibility (χ), saturation isothermal remanent magnetization (SIRM), anhysteretic remanent magnetization (χARM) and heavy metal enrichment factors (EF) all showed an upward increase trend above depth 140 cm, suggesting that increased ferrimagnetic mineral concentration was accompanied by heavy metal enrichment in the sediment. Geochemical and granolumetric analyses showed that sediment sources and particle sizes played minor roles in the variations of magnetic properties. The effect of diagenesis, which can lead to the selective removal of magnetic minerals, was noticeable in the lower part of the core (140-236 cm). Co-variation between magnetic properties (χ, SIRM and χARM) and EF of Cu and Pb suggests that the elevated ferrimagnetic mineral concentration can be used as an indicator of heavy metal pollution in the reconstruction of environmental changes in estuarine and coastal settings. Copyright © 2014. Published by Elsevier B.V.

  1. Spectroscopy of very heavy nuclei with a view to study super-heavy nuclei; Spectroscopie de noyaux tres lourds en vue de l'etude des noyaux super-lourds

    Energy Technology Data Exchange (ETDEWEB)

    Khalfallah, F

    2007-08-15

    Within the recent years, the spectroscopic study of single particle orbitals of very heavy elements (VHE) has become possible with the development of increasingly efficient experimental setups. This allows us, through nuclear deformation, to access with these deformed nuclei to orbitals situated around the Fermi level in the spherical superheavy elements (SHE) and learn more about the nuclear structure of these nuclei. The aim of this work is the spectroscopic studies of heavy and very heavy elements. Because of the experimental difficulties associated with the fusion reactions in the VHE region, a detailed optimization studies is essential. Simulation of energy loss and angular straggling of these nuclei due to the interaction in the target and to neutron's evaporation was carried out and allowed us to optimize the angular acceptance of the separators according to the target thickness. An extensive survey and exploration in the VHE region was also conducted on the basis of cross section's systematics in the literature and simulations carried out using the statistical code Hivap. In this framework, the possible extension of the range of validity of a set of Hivap parameters was investigated. This work has enabled us to prepare a list of experiments of interest for the production of very heavy nuclei. In this thesis, our work was concentrated on the spectroscopy of the nuclei No{sup 256} et Rf{sup 256} for which two experimental proposals were accepted. The octupole deformations predicted in the actinides region is studied in another part of this thesis, a part witch is dedicated to the gamma spectroscopy of Pa{sup 223}. The data from a new experiment carried out using the Jurogam-Ritu-Great setup are analysed and compared to previous results. They confirm the octupole deformed shape in this nucleus. (author)

  2. Magnetic Susceptibility and Heavy Metals in Guano from South Sulawesi Caves

    Science.gov (United States)

    Rifai, H.; Putra, R.; Fadila, M. R.; Erni, E.; Wurster, C. M.

    2018-04-01

    Measurement of some magnetic properties have been performed on vertical profile from South Sulawesi caves (Mampu and Bubau) by using low cost, rapid, sensitive and non destructive magnetic method. The aim is to attempt to use magnetic characters as a fingerprint for anthropogenic pollution in the caves. Guano samples were collected every 5 cm at a certain section of Mampu and Bubau cave, South Sulawesi, starting from surface through 300 cm in depth of mampu Cave and 30 cm of Bubau Cave. The magnetic parameters such as magnetic susceptibility and percentage frequency dependence susceptibility were measured using the Bartington MS2-MS2B instruments and supported by X-Ray Fluoroscence (XRF) to know their element composition. The results show that the samples had variations in magnetic susceptibility from 3.5 to 242.6 x 10‑8 m3/kg for Mampu Cave and from 8.6 to 106.5 x 10‑8 m3/kg for Bubau Cave and also magnetic domain. Then, the XRF results show that the caves contain several heavy metals. Magnetic and heavy metal analyses showing that the magnetic minerals in caves are lithogenic (Fe-bearing minerals) in origin and anthropogenic (Zn content) in the caves.

  3. The UKB prescription and the heavy atom effects on the nuclear magnetic shielding of vicinal heavy atoms.

    Science.gov (United States)

    Maldonado, Alejandro F; Aucar, Gustavo A

    2009-07-21

    Fully relativistic calculations of NMR magnetic shielding on XYH3 (X = C, Si, Ge and Sn; Y = Br, I), XHn (n = 1-4) molecular systems and noble gases performed with a fully relativistic polarization propagator formalism at the RPA level of approach are presented. The rate of convergence (size of basis set and time involved) for calculations with both kinetic balance prescriptions, RKB and UKB, were investigated. Calculations with UKB makes it feasible to obtain reliable results for two or more heavy-atom-containing molecules. For such XYH3 systems, the influence of heavy vicinal halogen atoms on sigma(X) is such that heavy atom effects on heavy atoms (vicinal plus their own effects or HAVHA + HAHA effects) amount to 30.50% for X = Sn and Y = I; being the HAHA effect of the order of 25%. So the vicinal effect alone is of the order of 5.5%. The vicinal heavy atom effect on light atoms (HALA effect) is of the order of 28% for X = C and Y = I. A similar behaviour, but of opposite sign, is observed for sigma(Y) for which sigmaR-NR (I; X = C) (HAHA effect) is around 27% and sigmaR-NR(I; X = Sn) (HAVHA + HAHA effects) is close to 21%. Its electronic origin is paramagnetic for halogen atoms but both dia- and paramagnetic for central atoms. The effect on two bond distant hydrogen atoms is such that the largest variation of sigma(H) within the same family of XYH3 molecules appears for X = Si and Y = I: around 20%. In this case sigma(H; X = Sn, Y = I) = 33.45 ppm and sigma(H; X = Sn, Y = H) = 27.82 ppm.

  4. An experimental study of the SSC [Superconducting Super Collider] magnet aperture criterion

    International Nuclear Information System (INIS)

    Merminga, N.; Edwards, D.; Finley, D.

    1988-01-01

    A beam dynamics experiment, performed in the Fermilab Tevatron, that was mainly motivated by planning for the Superconducting Super Collider (SSC) is described. Nonlinearities are introduced in the Tevatron by special sextupoles in order to stimulate the SSC environment. ''Smear'' is one of the parameters used to characterize the deviation from linear behavior. Smear is extracted from experimental data and compared with calculation over a wide range of conditions. The agreement is excellent. The closed orbit at injection trajectory reveal no deterioration even at the highest sextupole excitations. Measurements of the dynamic aperture are in general agreement with prediction. Particles captured on nonlinear resonance islands are directly observed and measurements are performed for the first time. The stability of the islands under tune modulation is investigated. 4 refs., 8 figs

  5. Simulations of super-structure domain walls in two dimensional assemblies of magnetic nanoparticles

    International Nuclear Information System (INIS)

    Jordanovic, J.; Frandsen, C.; Beleggia, M.; Schiøtz, J.

    2015-01-01

    We simulate the formation of domain walls in two-dimensional assemblies of magnetic nanoparticles. Particle parameters are chosen to match recent electron holography and Lorentz microscopy studies of almost monodisperse cobalt nanoparticles assembled into regular, elongated lattices. As the particles are small enough to consist of a single magnetic domain each, their magnetic interactions can be described by a spin model in which each particle is assigned a macroscopic “superspin.” Thus, the magnetic behaviour of these lattices may be compared to magnetic crystals with nanoparticle superspins taking the role of the atomic spins. The coupling is, however, different. The superspins interact only by dipolar interactions as exchange coupling between individual nanoparticles may be neglected due to interparticle spacing. We observe that it is energetically favorable to introduce domain walls oriented along the long dimension of nanoparticle assemblies rather than along the short dimension. This is unlike what is typically observed in continuous magnetic materials, where the exchange interaction introduces an energetic cost proportional to the area of the domain walls. Structural disorder, which will always be present in realistic assemblies, pins longitudinal domain walls when the external field is reversed, and makes a gradual reversal of the magnetization by migration of longitudinal domain walls possible, in agreement with previous experimental results

  6. Spin-orbit torque induced magnetization switching in heavy metal/ferromagnet multilayers with bilayer of heavy metals

    Science.gov (United States)

    Bekele, Zelalem Abebe; Meng, Kangkang; Zhao, Bing; Wu, Yong; Miao, Jun; Xu, Xiaoguang; Jiang, Yong

    2017-08-01

    Symmetry breaking provides new insight into the physics of spin-orbit torque (SOT) and the switching without a magnetic field could lead to significant impact. In this work, we demonstrate the robust zero-field SOT switching of a perpendicular ferromagnet (FM) layer where the symmetry is broken by a bilayer of heavy metals (HMs) with the strong spin-orbit coupling (SOC). We observed the change of coercivity value by 31% after inserting Co2FeAl in the multilayer structure. These two HM layers (Ta and Pt) are used to strengthen the SOC by linear combination. With different angles between the magnetization and the current (i.e. parallel and anti-parallel), the structures show different switching behaviors such as clockwise or counterclockwise.

  7. A route to explosive large-scale magnetic reconnection in a super-ion-scale current sheet

    Directory of Open Access Journals (Sweden)

    K. G. Tanaka

    2009-01-01

    Full Text Available How to trigger magnetic reconnection is one of the most interesting and important problems in space plasma physics. Recently, electron temperature anisotropy (αeo=Te⊥/Te|| at the center of a current sheet and non-local effect of the lower-hybrid drift instability (LHDI that develops at the current sheet edges have attracted attention in this context. In addition to these effects, here we also study the effects of ion temperature anisotropy (αio=Ti⊥/Ti||. Electron anisotropy effects are known to be helpless in a current sheet whose thickness is of ion-scale. In this range of current sheet thickness, the LHDI effects are shown to weaken substantially with a small increase in thickness and the obtained saturation level is too low for a large-scale reconnection to be achieved. Then we investigate whether introduction of electron and ion temperature anisotropies in the initial stage would couple with the LHDI effects to revive quick triggering of large-scale reconnection in a super-ion-scale current sheet. The results are as follows. (1 The initial electron temperature anisotropy is consumed very quickly when a number of minuscule magnetic islands (each lateral length is 1.5~3 times the ion inertial length form. These minuscule islands do not coalesce into a large-scale island to enable large-scale reconnection. (2 The subsequent LHDI effects disturb the current sheet filled with the small islands. This makes the triggering time scale to be accelerated substantially but does not enhance the saturation level of reconnected flux. (3 When the ion temperature anisotropy is added, it survives through the small island formation stage and makes even quicker triggering to happen when the LHDI effects set-in. Furthermore the saturation level is seen to be elevated by a factor of ~2 and large-scale reconnection is achieved only in this case. Comparison with two-dimensional simulations that exclude the LHDI effects confirms that the saturation level

  8. Thermal and structural performance of a single tube support post for the Superconducting Super Collider dipole magnet cryostat

    International Nuclear Information System (INIS)

    Boroski, W.N.; Nicol, T.H.; Ruschman, M.K.; Schoo, C.J.

    1993-07-01

    The reentrant support post currently incorporated in the Superconducting Super Collider (SSC) dipole cryostat has been shown to meet the structural and thermal requirements of the cryostat, both in prototype magnet assemblies and through component testing. However, the reentrant post design has two major drawbacks: tight dimensional control on all components, and cost driven by these tolerance constraints and a complex assembly procedure. A single tube support post has been developed as an alternative to the reentrant post design. Several prototype assemblies have been fabricated and subjected to structural testing. Compressive, tensile, and bending forces were applied to each assembly with deflection measured at several locations. A prototype support post has also been thermally evaluated in a heat leak measurement facility. Heat load to 4.2 K was measured with the intermediate post intercept operating at various temperatures while thermometers positioned along the conductive path of the post mapped thermal gradients. Results from these measurements indicate the single tube support post meets the design criteria for the SSC dipole magnet cryostat support system

  9. Fermilab R and D test facility for SSC [Superconducting Super Collider] magnets

    International Nuclear Information System (INIS)

    Strait, J.; Bleadon, M.; Hanft, R.; Lamm, M.; McGuire, K.; Mantsch, P.; Mazur, P.O.; Orris, D.; Pachnik, J.

    1989-02-01

    The test facility used for R and D testing of full scale development dipole magnets for the SSC is described. The Fermilab Magnet Test Facility, originally built for production testing of Tevatron magnets, has been substantially modified to allow testing also of SSC magnets. Two of the original six test stands have been rebuilt to accommodate testing of SSC magnets at pressures between 1.3 Atm and 4 Atm and at temperatures between 1.8 K and 4.8 K and the power system has been modified to allow operation to at least 8 kA. Recent magnets have been heavily instrumented with voltage taps to allow detailed study of quench location and propagation and with strain gage based stress, force and motion transducers. A data acquisition system has been built with a capacity to read from each SSC test stand up to 220 electrical quench signals, 32 dynamic pressure, temperature and mechanical transducer signals during quench and up to 200 high precision, low time resolution, pressure, temperature and mechanical transducer signals. The quench detection and protection systems is also described. 23 refs., 4 figs., 2 tabs

  10. Mesoporous magnetic secondary nanostructures as versatile adsorbent for efficient scavenging of heavy metals

    Science.gov (United States)

    Bhattacharya, Kakoli; Parasar, Devaborniny; Mondal, Bholanath; Deb, Pritam

    2015-01-01

    Porous magnetic secondary nanostructures exhibit high surface area because of the presence of plentiful interparticle spaces or pores. Mesoporous Fe3O4 secondary nanostructures (MFSNs) have been studied here as versatile adsorbent for heavy metal scavenging. The porosity combined with magnetic functionality of the secondary nanostructures has facilitated efficient heavy metal (As, Cu and Cd) remediation from water solution within a short period of contact time. It is because of the larger surface area of MFSNs due to the porous network in addition to primary nanostructures which provides abundant adsorption sites facilitating high adsorption of the heavy metal ions. The brilliance of adsorption property of MFSNs has been realized through comprehensive adsorption studies and detailed kinetics. Due to their larger dimension, MFSNs help in overcoming the Brownian motion which facilitates easy separation of the metal ion sorbed secondary nanostructures and also do not get drained out during filtration, thus providing pure water. PMID:26602613

  11. Identification of Heavy Metal Pollution Derived From Traffic in Roadside Soil Using Magnetic Susceptibility.

    Science.gov (United States)

    Yang, Pingguo; Ge, Jing; Yang, Miao

    2017-06-01

    The study integrates surface and vertical distribution of magnetic susceptibility and heavy metal contents (Pb, Cu, Zn and Fe) to characterize the signature of vehicle pollutants in roadside soils at Linfen city, China. Sites with reforestation and without vegetation cover were investigated. The results showed that magnetic susceptibility and heavy metal contents were higher at the roadside without trees than in the reforest belt. The variations of magnetic susceptibility and heavy metal contents decreased both with distance and with depth. The maximum value was observed at 5-10 m away from the roadside edge. The vertical distribution in soil revealed accumulation of pollutants in 0-5 cm topsoils. The average contents were higher than the background values and in the order Fe (107.21 g kg -1 ), Zn (99.72 mg kg -1 ), Pb (90.99 mg kg -1 ), Cu (36.14 mg kg -1 ). Coarse multi domain grains were identified as the dominating magnetic particles. Multivariate statistical and SEM/EDX analyses suggested that the heavy metals derived from traffic sources. Trees act as efficient receptors and green barrier, which can reduce vehicle derived pollution.

  12. Magnetic excitations in the heavy-Fermion superconductor URu2Si2

    DEFF Research Database (Denmark)

    Broholm, C.; Lin, H.; Matthews, P.T.

    1991-01-01

    Antiferromagnetic order and fluctuations in the heavy-fermion superconductor URu2Si2 have been studied by magnetic neutron scattering. Below T(N) = 17.5 K, URu2Si2 is a type-I antiferromagnet with an anomalously small ordered moment of (0.04 +/- 0.01)mu-B polarized along the tetragonal c axis...

  13. Magnetic response of soils and vegetation to heavy metal pollution - a case study

    Czech Academy of Sciences Publication Activity Database

    Jordanova, N. V.; Jordanova, D. V.; Veneva, L.; Yorova, K.; Petrovský, Eduard

    2003-01-01

    Roč. 37, č. 19 (2003), s. 4417-4424 ISSN 0013-936X Grant - others:BMSE(BG) MU-F-1201/02 Institutional research plan: CEZ:AV0Z3012916 Keywords : environmental pollution * magnetometric method * heavy metals Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 3.592, year: 2003

  14. Large solid angle tracking of Monte Carlo events of heavy ion collisions in TPC magnetic spectrometers

    International Nuclear Information System (INIS)

    Lindenbaum, S.J.; Etkin, A.; Foley, K.J.; Hackenburg, R.W.; Longacre, R.S.; Love, W.A.; Morris, T.W.; Platner, E.D.; Saulys, A.C.; Asoka-Kumar, P.P.V.; Chan, C.S.; Kramer, M.A.

    1987-01-01

    The BNL/CCNY collaboration has for some time had as its goal the development and use of ≅ 4π solid angle magnetic spectrometer tracking of charged particles produced in heavy ion collision experiments at AGS, and eventually RHIC. (orig./HSI)

  15. A GEM-TPC in twin configuration for the Super-FRS tracking of heavy ions at FAIR

    Science.gov (United States)

    García, F.; Grahn, T.; Hoffmann, J.; Jokinen, A.; Kaya, C.; Kunkel, J.; Rinta-Antila, S.; Risch, H.; Rusanov, I.; Schmidt, C. J.; Simon, H.; Simons, C.; Turpeinen, R.; Voss, B.; Äystö, J.; Winkler, M.

    2018-03-01

    The GEM-TPC described herein will be part of the standard beam-diagnostics equipment of the Super-FRS. This chamber will provide tracking information for particle identification at rates up to 1 MHz on an event-by-event basis. The key requirements of operation for these chambers are: close to 100% tracking efficiency under conditions of high counting rate, spatial resolution below 1 mm and a superb large dynamic range covering projectiles from Z = 1 up to Z = 92. The current prototype consists of two GEM-TPCs inside a single vessel, which are operating independently and have electrical drift fields in opposite directions. The twin configuration is done by flipping one of the GEM-TPCs on the middle plane with respect to the second one. In order to put this development in context, the evolution of previous prototypes will be described and its performances discussed. Finally, this chamber was tested at the University of Jyväskylä accelerator with proton projectiles and at GSI with Uranium, Xenon, fragments and Carbon beams. The results obtained have shown a position resolution between 120 to 300 μm at moderate counting rate under conditions of full tracking efficiency.

  16. The critical magnetic fields of heavy fermions superconductors ...

    African Journals Online (AJOL)

    It can easily be seen that sharp change of HC2 between the two solutions exists in all orders of perturbation because there is no finite matrix element between the two states (ƞ, ƞ3) = (|0>, 0) and (ƞ, ƞ3) = (0, |0>) in any higher order of perturbation in the coupling term. This is different if the Magnetic field is pointing along ...

  17. Deflection analysis for an SSC [Superconducting Super Collider] dipole magnet with two external supports

    International Nuclear Information System (INIS)

    Nicol, T.H.

    1987-01-01

    SSC dipole magnets are presently supported at five mounting locations coincident with the internal cold mass supports. There is growing interest in reducing the number of external supports from five to two for reasons of simplified installation and alignment and as a cost reduction measure. This reports examines the placement of two external supports required to minimize the deflection of the cold mass assembly

  18. Temperature and magnetic field dependence of magnetic correlations in the heavy fermion compound CeCu6

    International Nuclear Information System (INIS)

    Regnault, L.P.; Rossat-Mignod, J.; Jacoud, J.L.; Erkelens, W.A.C.; Rijksuniversiteit Leiden

    1988-01-01

    Inelastic neutron scattering experiments have been performed on the heavy fermion compound CeCu 6 at very low temperatures (T > 20 mK) and under magnetic fields up to 50 kOe. The analysis of the data shows that the magnetic scattering is the superposition of a single site contribution of Lorentzian type and of a broadened inelastic contribution associated with AF correlations. These correlations saturate below 1.5 - 2 K and are completely destroyed above 40 kOe

  19. Design and Test Results of Superconducting Magnet for Heavy-Ion Rotating Gantry

    Science.gov (United States)

    Takayama, S.; Koyanagi, K.; Miyazaki, H.; Takami, S.; Orikasa, T.; Ishii, Y.; Kurusu, T.; Iwata, Y.; Noda, K.; Obana, T.; Suzuki, K.; Ogitsu, T.; Amemiya, N.

    2017-07-01

    Heavy-ion radiotherapy has a high curative effect in cancer treatment and also can reduce the burden on patients. These advantages have been generally recognized. Furthermore, a rotating gantry can irradiate a tumor with ions from any direction without changing the position of the patient. This can reduce the physical dose on normal cells, and is thus commonly used in proton radiotherapy. However, because of the high magnetic rigidity of carbon ions, the weight of the rotating gantry for heavy-ion therapy is about three-times heavier than those used for proton cancer therapy, according to our estimation. To overcome this issue, we developed a small and lightweight rotating gantry in collaboration with the National Institute of Radiological Sciences (NIRS). The compact rotating gantry was composed of ten low-temperature superconducting (LTS) magnets that were designed from the viewpoint of beam optics. These LTS magnets have a surface-winding coil-structure and provide both dipole and quadrupole fields. The maximum dipole and quadrupole magnetic field of the magnets were 2.88 T and 9.3 T/m, respectively. The rotating gantry was installed at NIRS, and beam commissioning is in progress to achieve the required beam quality. In the three years since 2013, in a project supported by the Ministry of Economy, Trade and Industry (METI) and the Japan Agency for Medical Research and Development (AMED), we have been developing high-temperature superconducting (HTS) magnets with the aim of a further size reduction of the rotating gantry. To develop fundamental technologies for designing and fabricating HTS magnets, a model magnet was manufactured. The model magnet was composed of 24 saddle-shaped HTS coils and generated a magnetic field of 1.2 T. In the presentation, recent progress in this research will be reported.

  20. Theory of Magnetic Properties of Heavy Rare Earth Metals:

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker; Danielsen, O.

    1975-01-01

    results are given for the magnetization agreeing with experiment for Gd, Tb, and Dy. For Tb and Dy the zero-point deviations were found to be 0.05μB and 0.08μB, respectively, and the ratio [b(T)-b(0)]/[ΔM(T)-ΔM(0)] is approximately 1/3 for all temperatures below 100 K. This gives rise to large corrections......The contributions to the macroscopic-anisotropy constants and resonance energy from crystal-field anisotropy, magnetoelastic effects in the frozen and flexible lattice model, and two-ion interactions have been found for all terms allowed in a crystal of hexagonal symmetry. The temperature...... dependence is expressed as expansions of thermal averages of the Stevens operators 〈Olm〉. A systematic spin-wave theory, renormalized in the Hartree-Fock approximation, is developed and used to find the temperature dependence of the Stevens operators and the resonance energy in terms of the magnetization...

  1. A high gradient quadrupole magnet for the SSC [Superconducting Super Collider

    International Nuclear Information System (INIS)

    Taylor, C.; Caspi, S.; Helm, M.; Mirk, K.; Peters, C.; Wandesforde, A.

    1987-03-01

    A quadrupole magnet for the SSC has been designed with a gradient of 234 T/m at 6500 A. Coil ID is 40 mm. The two-layer windings have 9 inner turns and 13 outer turns per pole with a wedge-shaped spacer in each layer. The 30-strand cable is identical to that used in the outer layer of the SSC dipole magnet. Interlocking aluminum alloy collars are compressed around the coils using a four-way press and are locked with four keys. The collared coil is supported and centered in a cold split iron yoke. A one-meter model was constructed and tested. Design details including quench behavior are presented

  2. A fast spinning magnetic white dwarf in the double degenerate, super-Chandrasekhar system NLTT 12758

    Czech Academy of Sciences Publication Activity Database

    Kawka, Adela; Briggs, G.; Vennes, Stephane; Ferrario, L.; Paunzen, E.; Wickramasinghe, D.T.

    2017-01-01

    Roč. 466, č. 1 (2017), s. 1127-1139 ISSN 0035-8711 R&D Projects: GA ČR GAP209/12/0217; GA ČR GA15-15943S; GA MŠk LG14013; GA MŠk(CZ) LG15010 Institutional support: RVO:67985815 Keywords : close binaries * NLTT 12758 * magnetic field Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 4.961, year: 2016

  3. Simulations of super-structure domain walls in two dimensional assemblies of magnetic nanoparticles

    DEFF Research Database (Denmark)

    Jordanovic, Jelena; Beleggia, Marco; Schiøtz, Jakob

    2015-01-01

    We simulate the formation of domain walls in two-dimensional assemblies of magnetic nanoparticles. Particle parameters are chosen to match recent electron holography and Lorentz microscopy studies of almost monodisperse cobalt nanoparticles assembled into regular, elongated lattices. As the parti......We simulate the formation of domain walls in two-dimensional assemblies of magnetic nanoparticles. Particle parameters are chosen to match recent electron holography and Lorentz microscopy studies of almost monodisperse cobalt nanoparticles assembled into regular, elongated lattices...... taking the role of the atomic spins. The coupling is, however, different. The superspins interact only by dipolar interactions as exchange coupling between individual nanoparticles may be neglected due to interparticle spacing. We observe that it is energetically favorable to introduce domain walls...... oriented along the long dimension of nanoparticle assemblies rather than along the short dimension. This is unlike what is typically observed in continuous magnetic materials, where the exchange interaction introduces an energetic cost proportional to the area of the domain walls. Structural disorder...

  4. Report on achievements in fiscal 1999. Research and development of electric power storage using high-temperature super-conductive flywheels (research and development on manufacture of super-conductive magnetic bearings); 1999 nendo koon chodendo flywheel denryoku chozo kenkyu kaihatsu. Chodendo jiki jikuuke no seisaku no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-01

    Introduction of electric power storage equipment is sought, which will be discretely installed in power distribution substations. Therefore, elementary technologies were researched on 'manufacture of super-conductive magnetic bearings' intended for practical application of an electric power storage system of 10-MWh class using high-temperature super-conductive flywheels. Research and development has been performed on different kinds of super-conductive magnetic bearings which combine high-temperature super-conductive materials with permanent magnets. In order to measure the characteristics of the super-conductive magnetic bearings, measurements were executed on rotation loss, loading power and bearing constants. In the measurement of the rotation loss, a {phi} 180 axial type super-conductive magnetic bearing using an Sm-based superconductor ({phi} 180AxSMB2) was given various kinds of tests by using a rotation loss measuring and testing machine. The results were compared with those for the {phi} 180AxSMB1 using the YBCO-based superconductor and other SMBs. In the measurements for the other items, various items were measured on dynamic rotation properties of the {phi} 180AxSMB and {phi} 180RaSMB by using a static bearing constant testing machine. In discussing the loading power characteristics, the dynamic rotation properties of the {phi} 180RaSMB were measured, and the loading power characteristics were discussed on super-conductive magnetic bearings for medium size models and super-conductive magnetic bearings for large system FS. (NEDO)

  5. The heavy ion diffusion region in magnetic reconnection in the Earth's magnetotail

    Science.gov (United States)

    Liu, Y. H.; Mouikis, C. G.; Kistler, L. M.; Wang, S.; Roytershteyn, V.; Karimabadi, H.

    2015-05-01

    While the plasma in the Earth's magnetotail predominantly consists of protons and electrons, there are times when a significant amount of oxygen is present. When magnetic reconnection occurs, the behavior of these heavy ions can be significantly different from that of the protons, due to their larger gyroradius. In this study, we investigate the heavy ion distribution functions in the reconnection ion diffusion region from a 2.5D three-species particle-in-cell numerical simulation and compare those with Cluster observations from the near-Earth magnetotail. From the simulation results, we find that the heavy ions are demagnetized and accelerated in a larger diffusion region, the heavy ion diffusion region. The ion velocity distribution functions show that, inside the heavy ion diffusion region, heavy ions appear as counterstreaming beams along z in the GSM x-z plane, while drifting in y, carrying cross-tail current. We compare this result with Cluster observations in the vicinity of reconnection regions in the near-Earth magnetotail and find that the simulation predictions are consistent with the observed ion distribution functions in the ion diffusion region, as well as the inflow, exhaust, and separatrix regions. Based on the simulation and observation results, the presence of a multiscale diffusion region model, for O+ abundant reconnection events in the Earth's magnetotail, is demonstrated. A test particle simulation shows that in the diffusion region, the H+ gains energy mainly through Ex, while the O+ energy gain comes equally from Ex and Ey.

  6. Perspectives of Super-Heavy Nuclei research with the upcoming separator-spectrometer setup S3 at GANIL/SPIRAL2 - The VAMOS Gas-Filled separator and AGATA

    Science.gov (United States)

    Theisen, Christophe

    2017-11-01

    Several facilities or apparatus for the synthesis and spectroscopy of the Super-Heavy Nuclei (SHN) are presently under construction in the world, which reflect the large interest for this region of extreme mass and charge, but also for the need of even more advanced research infrastructures. Among this new generation, the GANIL/SPIRAL2 facility in Caen, France, will soon deliver very high intense ion beams of several tens of particle μA. The Super Separator Spectrometer S3 has been designed to exploit these new beams for the study of SHN after separation. It will provide the needed beam rejection, mass selection and full arsenal of state-of-the art detection setups. Still at GANIL, the AGATA new generation gamma-ray tracking array is being operated. The VAMOS high acceptance spectrometer is being upgraded as a gas-filled separator. Its coupling with AGATA will lower the spectroscopic limits for the prompt gamma-ray studies of heavy and super-heavy nuclei. In this proceeding, these new devices will be presented along with a selected physics case.

  7. The Refining Mechanism of Super Gravity on the Solidification Structure of Al-Cu Alloys

    Directory of Open Access Journals (Sweden)

    Yuhou Yang

    2016-12-01

    Full Text Available There is far less study of the refining effect of super gravity fields on solidification structures of metals than of the effects of electrical currents, magnetic and ultrasonic fields. Moreover, the refining mechanisms of super gravity are far from clear. This study applied a super gravity field to Al-Cu alloys to investigate its effect on refining their structures and the mechanism of interaction. The experimental results showed that the solidification structure of Al-Cu alloys can be greatly refined by a super gravity field. The major refining effect was mainly achieved when super gravity was applied at the initial solidification stage; only slight refinement could be obtained towards the end of solidification. No refinement was obtained by the super gravity treatment on pure liquid or solid stages. The effectiveness of super gravity results from its promoting the multiplication of crystal nuclei, which we call “Heavy Crystal Rain”, thereby greatly strengthening the migration of crystal nuclei within the alloy. Increasing the solute Cu content can increase nucleation density and restrict the growth of crystals, which further increases the refining effect of super gravity. Within this paper, we also discuss the motile behavior of crystals in a field of super gravity.

  8. Performance of a Bounce-Averaged Global Model of Super-Thermal Electron Transport in the Earth's Magnetic Field

    Science.gov (United States)

    McGuire, Tim

    1998-01-01

    In this paper, we report the results of our recent research on the application of a multiprocessor Cray T916 supercomputer in modeling super-thermal electron transport in the earth's magnetic field. In general, this mathematical model requires numerical solution of a system of partial differential equations. The code we use for this model is moderately vectorized. By using Amdahl's Law for vector processors, it can be verified that the code is about 60% vectorized on a Cray computer. Speedup factors on the order of 2.5 were obtained compared to the unvectorized code. In the following sections, we discuss the methodology of improving the code. In addition to our goal of optimizing the code for solution on the Cray computer, we had the goal of scalability in mind. Scalability combines the concepts of portabilty with near-linear speedup. Specifically, a scalable program is one whose performance is portable across many different architectures with differing numbers of processors for many different problem sizes. Though we have access to a Cray at this time, the goal was to also have code which would run well on a variety of architectures.

  9. Polarization in heavy-ion collisions: magnetic field and vorticity

    Science.gov (United States)

    Baznat, M.; Gudima, K.; Prokhorov, G.; Sorin, A.; Teryaev, O.; Zakharov, V.

    2017-12-01

    The polarization of hyperons due to axial chiral vortical effect is discussed. The effect is proportional to (strange) chemical potential and is pronounced at lower energies, contrary to that of magnetic field. The polarization of antihyperons has the same sign and larger magnitude. The emergence of vortical structures is observed in kinetic QGSM models. The hydrodynamical helicity separation receives the contribution of longitudinal velocity and vorticity implying the quadrupole structure of the latter. The transition from the quark vortical effects to baryons in confined phase may be achieved by exploring the axial charge. At the hadronic level the polarization corresponds to the cores of quantized vortices in pionic superfluid. The chiral vortical effects may be also studied in the frmework of Wigner function establishing the relation to the thermodynamical approach to polarization.

  10. Experiments with a magnetic separator for heavy recoil ions

    International Nuclear Information System (INIS)

    Mosler, E.

    1981-01-01

    Using a triple-focusing (position and momentum), crescent-shaped separator for heavy recoil-ions different experiments were performed. The improvement consists in the enhancement of the transmission from 8% to 25% for 500 keV recoil ions from the reaction 238 U(α, 3n)sup(239m)Pu. For sup(237m)Pu the electromagnetic decay of the 1.1 μs shape isomer into the 82 ns shape isomer was searched for. The upper limit for gamma decay is 1.25 +- 1.25% for Esub(γ) = 200 keV and for electron decay 0.29 +- 0.29% in comparison to isomeric fission. The upper limit for interband transitions is 2.5% (2 delta), from which the upper limit of the partial half-life for the electromagnetic decay of the 1.1 μs isomer is calculated to 44 μs. Due to the performed interpretation the spin difference between both isomers extends at least to ΔI = 3. For sup(238m)U the back-decay into the 1. minimum by the EO-transition and the converted 2 + → 0 + transition in the first decay and the decay by alpha articles was looked for both in single measurements as in a coincidence measurement to L-X-ray quanta. The upper limits are GAMMAsub(EO) = 2.0, GAMMAsub(α)/GAMMAsub(F) = 0.4 and GAMMA(back-decay)/GAMMAsub(F) approx. equal to 100. (orig./HSI) [de

  11. Evaluation of Composite Wire Ropes Using Unsaturated Magnetic Excitation and Reconstruction Image with Super-Resolution

    Directory of Open Access Journals (Sweden)

    Xiaojiang Tan

    2018-05-01

    Full Text Available Estimating the exact residual lifetime of wire rope involves the security of industry manufacturing, mining, tourism, and so on. In this paper, a novel testing technology was developed based on unsaturated magnetic excitation, and a fabricating prototype overcame the shortcomings of traditional detection equipment in terms of volume, sensibility, reliability, and weight. Massive artificial discontinuities were applied to examine the effectiveness of this new technology with a giant magneto resistance(GMR sensor array, which included types of small gaps, curling wires, wide fractures, and abrasion. A resolution enhancement method, which was adopted for multiframe images, was proposed for promoting magnetic flux leakage images of a few sensors. Characteristic vectors of statistics and geometry were extracted, then we applied a radial basis function neural network to achieve a quantitative recognition rate of 91.43% with one wire-limiting error. Experimental results showed that the new device can detect defects in various types of wire rope and prolong the service life with high lift-off distance and high reliability, and the system could provide useful options to evaluate the lifetime of wire rope.

  12. Magnetism and superconductivity in a heavy-fermion superconductor, CePt3Si

    International Nuclear Information System (INIS)

    Takeuchi, T; Hashimoto, S; Yasuda, T; Shishido, H; Ueda, T; Yamada, M; Obiraki, Y; Shiimoto, M; Kohara, H; Yamamoto, T; Sugiyama, K; Kindo, K; Matsuda, T D; Haga, Y; Aoki, Y; Sato, H; Settai, R; Onuki, Y

    2004-01-01

    We have studied the magnetic and thermal properties of a single crystal of CePt 3 Si, which is a recently reported heavy-fermion superconductor with a superconducting transition temperature T c = 0.75 K and a Neel temperature T N = 2.2 K. The overall experimental data are principally explained on the basis of the crystalline electric field (CEF) scheme. Even in the antiferromagnetic state, the CEF model applies well to the characteristic features in the magnetization curve. These results indicate the existence of a localized magnetic moment at the Ce site, with a considerably reduced ordered moment of 0.16 μ B /Ce, and the strongly correlated conduction electrons are condensed into the superconducting state. We have also constructed the magnetic phase diagram including the superconducting phase for H parallel [110] and [001]. (letter to the editor)

  13. Consideration of magnetic field fluctuation measurements in a torus plasma with heavy ion beam probe

    International Nuclear Information System (INIS)

    Shimizu, A.; Fujisawa, A.; Ohshima, S.; Nakano, H.

    2004-03-01

    The article discusses feasibility of magnetic fluctuation measurement with a heavy ion beam probe (HIBP) in an axisymmetric torus configuration. In the measurements, path integral fluctuation along the probing beam orbit should be considered as is similar to the density fluctuation measurements with HIBP. A calculation, based on an analytic formula, is performed to estimate the path integral effects for fluctuation patterns that have difference in profile, the correlation length, the radial wavelength, and the poloidal mode number. In addition, the large distance between the plasma and the detector is considered to lessen the path integral effect. As a result, it is found that local fluctuation of magnetic field can be properly detected with a heavy ion beam probe. (author)

  14. Treatment of heavy metals and radionuclides in groundwater and wastewater by magnetic separation

    International Nuclear Information System (INIS)

    Bradbury, D.; Elder, G.R.; Tucker, P.M.; Dunn, M.J.

    1992-01-01

    Removal of trace quantities of heavy metal or radionuclide contamination from solutions at high flow rate presents a considerable technical challenge. Low flow methods of treatment such as particle gravity settling require expensive large volume equipment, whereas traditional methods of filtration demand significant energy costs. Magnetic filtration can be used to provide a low cost method of solid-liquid separation at high flow rate, provided contaminants can be selectively bound to a magnetic solid particle. This paper describes recent progress with this technique including performance tests of composite materials produced to selectively remove specific contaminants such as cesium, uranium, lead, cadmium, and mercury from solution

  15. Investigations about the effects of magnetic fields on QGP in heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Inghirami, Gabriele; Bleicher, Marcus [FIAS, Frankfurt am Main (Germany); Goethe Universitaet, Frankfurt am Main (Germany); Del Zanna, Luca [Universita degli Studi di Firenze, Firenze (Italy); Osservatorio Astrofisico di Arcetri - INAF, Firenze (Italy); INFN, Sezione di Firenze (Italy); Haddadi, Mohsen [Hakim Sabzevari University, Sabzevar (Iran, Islamic Republic of); Becattini, Francesco [Universita degli Studi di Firenze, Firenze (Italy); INFN, Sezione di Firenze (Italy); Beraudo, Andrea [INFN, Sezione di Torino (Italy); Rolando, Valentina [Universita degli Studi di Ferrara, Ferrara (Italy); INFN, Sezione di Ferrara (Italy)

    2016-07-01

    Numerical hydrodynamic simulations of heavy ion collisions are constantly refined through the addition of effects that may significantly improve the matching with experimental data, like viscosity or fluctuating initial conditions, but, so far, electromagnetic interactions have been almost completely neglected. However, recent lattice QCD computations and classical electrodynamics estimates both suggest that the magnetic fields produced immediately after the collisions between nuclei may live long enough and with a strength sufficient to produce measurable effects. We would like to present the results of some preliminary investigations about the influence on the properties of the medium due the presence of a strong magnetic field.

  16. Formation of iron oxides from acid mine drainage and magnetic separation of the heavy metals adsorbed iron oxides

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hee Won; Kim, Jeong Jin; Kim, Young Hun [Andong National University, Andong (Korea, Republic of); Ha, Dong Woo [Korea Electrotechnology Research Institute, Changwon (Korea, Republic of)

    2016-03-15

    There are a few thousand abandoned metal mines in South Korea. The abandoned mines cause several environmental problems including releasing acid mine drainage (AMD), which contain a very high acidity and heavy metal ions such as Fe, Cu, Cd, Pb, and As. Iron oxides can be formed from the AMD by increasing the solution pH and inducing precipitation. Current study focused on the formation of iron oxide in an AMD and used the oxide for adsorption of heavy metals. The heavy metal adsorbed iron oxide was separated with a superconducting magnet. The duration of iron oxide formation affected on the type of mineral and the degree of magnetization. The removal rate of heavy metal by the adsorption process with the formed iron oxide was highly dependent on the type of iron oxide and the solution pH. A high gradient magnetic separation (HGMS) system successfully separated the iron oxide and harmful heavy metals.

  17. Super-paramagnetic core-shell material with tunable magnetic behavior by regulating electron transfer efficiency and structure stability of the shell

    Directory of Open Access Journals (Sweden)

    Wenyan Zhang

    Full Text Available In this work, a spherical nano core-shell material was constructed by encapsulating Fe3O4 microsphere into conductive polymer-metal composite shell. The Fe3O4 microspheres were fabricated by assembling large amounts of Fe3O4 nano-crystals, which endowed the microspheres with super-paramagnetic property and high saturation magnetization. The polymer-metal composite shell was constructed by inserting Pt nano-particles (NPs into the conductive polymer polypyrrole (PPy. As size and dispersion of the Pt NPs has an important influence on their surface area and surface energy, it was effective to enlarge the interface area between PPy and Pt NPs, enhance the electron transfer efficiency of PPy/Pt composite shell, and reinforced the shell’s structural stability just by tuning the size and dispersion of Pt NPs. Moreover, core-shell structure of the materials made it convenient to investigate the PPy/Pt shell’s shielding effect on the Fe3O4 core’s magnetic response to external magnetic fields. It was found that the saturation magnetization of Fe3O4/PPy/Pt core-shell material could be reduced by 20.5% by regulating the conductivity of the PPy/Pt shell. Keywords: Super-paramagnetic, Conductivity, Magnetic shielding, Structural stability

  18. Relating Magnetic Parameters to Heavy Metal Concentrations and Environmental Factors at Formosa Mine Superfund Site, Douglas County, OR

    Science.gov (United States)

    Upton, T. L.

    2016-12-01

    Advances in the field of environmental magnetism have led to exciting new applications for this field. Magnetic minerals are ubiquitous in the environment and tend to have an affinity for heavy metals. Hence, it has been demonstrated that magnetic properties are often significantly related to concentrations of heavy metals and other pollutants. As a result, magnetic techniques have been used as proxy for determining hot spots of several types of pollution produced from a diversity of anthropogenic sources. Magnetic measurements are non-destructive and relatively inexpensive compared to geochemical analyses. The utility of environmental magnetic methods varies widely depending on biological, chemical and physical processes that create and transform soils and sediments. Applications in the direction of mapping heavy metals have been studied and shown to be quite useful in countries such as China and India but to date, little research has been done in the US. As such, there is need to expand the scope of research to a wider range of soil types and land uses, especially within the US. This study investigates the application of environmental magnetic techniques to mapping of heavy metal concentrations at the Formosa Mine Superfund Site, an abandoned mine about 25 miles southwest of Roseburg, OR. The soils and sediment at this site are derived from pyrite-rich bedrock which is weak in terms of magnetic susceptibility. Using hotspot analysis, correlation and cluster analyses, interactions between metals and magnetic parameters are investigated in relation to environmental factors such as proximity to seeps and adits. Preliminary results suggest significant correlation of magnetic susceptibility with certain heavy metals, signifying that magnetic methods may be useful in mapping heavy metal hotspots at this site. Further analysis examines the relation of various land use differences in magnetic signatures obtained throughout the Cow Creek watershed.

  19. Removal of Heavy Metals from Drinking Water by Magnetic Carbon Nanostructures Prepared from Biomass

    Directory of Open Access Journals (Sweden)

    Muhammad Muneeb Ur Rahman Khattak

    2017-01-01

    Full Text Available Heavy metals contamination of drinking water has significant adverse effects on human health due to their toxic nature. In this study a new adsorbent, magnetic graphitic nanostructures were prepared from watermelon waste. The adsorbent was characterized by different instrumental techniques (surface area analyzer, FTIR, XRD, EDX, SEM, and TG/DTA and was used for the removal of heavy metals (As, Cr, Cu, Pb, and Zn from water. The adsorption parameters were determined for heavy metals adsorption using Freundlich and Langmuir isotherms. The adsorption kinetics and effect of time, pH, and temperature on heavy metal ions were also determined. The best fits were obtained for Freundlich isotherm. The percent adsorption showed a decline at high pH. Best fit was obtained with second-order kinetics model for the kinetics experiments. The values of ΔH° and ΔG° were negative while that of ΔS° was positive. The prepared adsorbent has high adsorption capacities and can be efficiently used for the removal of heavy metals from water.

  20. Magnet strength fluctuations in the SSC [Superconducting Super Collider] lattice: Part 2, Frequency modulation

    International Nuclear Information System (INIS)

    Goderre, G.P.

    1987-06-01

    This is a continuation of SSC-N-305. SSC-N-305 examined the effects of field strength modulation, when the modulation frequency (f/sub mod/) was equal to zero (i.e., current offset). The objective of this study is to examine the effect of field strength modulation with modulation frequencies other than zero. To this end, the tracking routine TEAPOT is modified to simulate frequency modulation of the current output from the 10 main SSC magnet power supplies. The amplitude (A/sub i/) and phase (phi/sub i/) of the modulation for the i/sup th/ power supply are chosen randomly. Effects of bore tube shielding are included only when studying 60 Hz modulation frequency. Bore tube shielding is due to the copper coating on the bore tube walls. This coating modifies the amplitude and phase of the modulation inside the bore tube. The bore tube is more effective at shielding the dipole field and it becomes most effective as the modulation frequency increases. 3 refs., 10 figs., 3 tabs

  1. Magnetic massive stars as progenitors of `heavy' stellar-mass black holes

    Science.gov (United States)

    Petit, V.; Keszthelyi, Z.; MacInnis, R.; Cohen, D. H.; Townsend, R. H. D.; Wade, G. A.; Thomas, S. L.; Owocki, S. P.; Puls, J.; ud-Doula, A.

    2017-04-01

    The groundbreaking detection of gravitational waves produced by the inspiralling and coalescence of the black hole (BH) binary GW150914 confirms the existence of 'heavy' stellar-mass BHs with masses >25 M⊙. Initial characterization of the system by Abbott et al. supposes that the formation of BHs with such large masses from the evolution of single massive stars is only feasible if the wind mass-loss rates of the progenitors were greatly reduced relative to the mass-loss rates of massive stars in the Galaxy, concluding that heavy BHs must form in low-metallicity (Z ≲ 0.25-0.5 Z⊙) environments. However, strong surface magnetic fields also provide a powerful mechanism for modifying mass-loss and rotation of massive stars, independent of environmental metallicity. In this paper, we explore the hypothesis that some heavy BHs, with masses >25 M⊙ such as those inferred to compose GW150914, could be the natural end-point of evolution of magnetic massive stars in a solar-metallicity environment. Using the MESA code, we developed a new grid of single, non-rotating, solar-metallicity evolutionary models for initial zero-age main sequence masses from 40 to 80 M⊙ that include, for the first time, the quenching of the mass-loss due to a realistic dipolar surface magnetic field. The new models predict terminal-age main-sequence (TAMS) masses that are significantly greater than those from equivalent non-magnetic models, reducing the total mass lost by a strongly magnetized 80 M⊙ star during its main-sequence evolution by 20 M⊙. This corresponds approximately to the mass-loss reduction expected from an environment with metallicity Z = 1/30 Z⊙.

  2. Are Complex Magnetic Field Structures Responsible for the Confined X-class Flares in Super Active Region 12192?

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jun; Li, Ting; Chen, Huadong, E-mail: zjun@nao.cas.cn, E-mail: hdchen@nao.cas.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2017-08-10

    From 2014 October 19 to 27, six X-class flares occurred in super active region (AR) 12192. They were all confined flares and were not followed by coronal mass ejections. To examine the structures of the four flares close to the solar disk center from October 22 to 26, we firstly employ composite triple-time images in each flare process to display the stratified structure of these flare loops. The loop structures of each flare in both the lower (171 Å) and higher (131 Å) temperature channels are complex, e.g., the flare loops rooting at flare ribbons are sheared or twisted (enwound) together, and the complex structures were not destroyed during the flares. For the first flare, although the flare loop system appears as a spindle shape, we can estimate its structures from observations, with lengths ranging from 130 to 300 Mm, heights from 65 to 150 Mm, widths at the middle part of the spindle from 40 to 100 Mm, and shear angles from 16° to 90°. Moreover, the flare ribbons display irregular movements, such as the left ribbon fragments of the flare on October 22 sweeping a small region repeatedly, and both ribbons of the flare on October 26 moved along the same direction instead of separating from each other. These irregular movements also imply that the corresponding flare loops are complex, e.g., several sets of flare loops are twisted together. Although previous studies have suggested that the background magnetic fields prevent confined flares from erupting,based on these observations, we suggest that complex flare loop structures may be responsible for these confined flares.

  3. Heavy quark potential in a static and strong homogeneous magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, Mujeeb; Chatterjee, Bhaswar; Patra, Binoy Krishna [Indian Institute of Technology Roorkee, Department of Physics, Roorkee (India)

    2017-11-15

    We have investigated the properties of quarkonia in a thermal QCD medium in the background of strong magnetic field. For that purpose, we employ the Schwinger proper-time quark propagator in the lowest Landau level to calculate the one-loop gluon self-energy, which in the sequel gives the effective gluon propagator. As an artifact of strong magnetic field approximation (eB >> T{sup 2} and eB >> m{sup 2}), the Debye mass for massless flavors is found to depend only on the magnetic field which is the dominant scale in comparison to the scales prevalent in the thermal medium. However, for physical quark masses, it depends on both magnetic field and temperature in a low temperature and high magnetic field but the temperature dependence is very meager and becomes independent of the temperature beyond a certain temperature and magnetic field. With the above mentioned ingredients, the potential between heavy quark (Q) and anti-quark (anti Q) is obtained in a hot QCD medium in the presence of a strong magnetic field by correcting both short- and long-range components of the potential in the real-time formalism. It is found that the long-range part of the quarkonium potential is affected much more by magnetic field as compared to the short-range part. This observation facilitates us to estimate the magnetic field beyond which the potential will be too weak to bind Q anti Q together. For example, the J/ψ is dissociated at eB ∝ 10 m{sub π}{sup 2} and Υ is dissociated at eB ∝ 100 m{sub π}{sup 2} whereas its excited states, ψ{sup '} and Υ{sup '} are dissociated at smaller magnetic field eB = m{sub π}{sup 2}, 13 m{sub π}{sup 2}, respectively. (orig.)

  4. Heavy rare earths, permanent magnets, and renewable energies: An imminent crisis

    International Nuclear Information System (INIS)

    Smith Stegen, Karen

    2015-01-01

    This article sounds the alarm that a significant build-out of efficient lighting and renewable energy technologies may be endangered by shortages of rare earths and rare earth permanent magnets. At the moment, China is the predominant supplier of both and its recent rare earth industrial policies combined with its own growing demand for rare earths have caused widespread concern. To diversify supplies, new mining—outside of China—is needed. But what many observers of the “rare earth problem” overlook is that China also dominates in (1) the processing of rare earths, particularly the less abundant heavy rare earths, and (2) the supply chains for permanent magnets. Heavy rare earths and permanent magnets are critical for many renewable energy technologies, and it will require decades to develop new non-Chinese deposits, processing capacity, and supply chains. This article clarifies several misconceptions, evaluates frequently proposed solutions, and urges policy makers outside of China to undertake measures to avert a crisis, such as greater support for research and development and for the cultivation of intellectual capital. - Highlights: • Rare earths are needed for many efficient lighting and renewable energy technologies. • The industries for rare earths and permanent magnets are dominated by China. • China's reliability is compromised, necessitating non-Chinese mining and processing. • Recycling, substitution and reducing rare earth content are long-term solutions only. • Policy makers should support development of supply chains and intellectual capital

  5. Nuclear magnetic resonance with dc SQUID [Super-conducting QUantum Interference Device] preamplifiers

    International Nuclear Information System (INIS)

    Fan, N.Q.; Heaney, M.B.; Clark, J.; Newitt, D.; Wald, L.; Hahn, E.L.; Bierlecki, A.; Pines, A.

    1988-08-01

    Sensitive radio-frequency (rf) amplifiers based on dc Superconducting QUantum Interface Devices (SQUIDS) are available for frequencies up to 200 MHz. At 4.2 K, the gain and noise temperature of a typical tuned amplifier are 18.6 +- 0.5 dB and 1.7 +- 0.5 K at 93 MHz. These amplifiers are being applied to a series of novel experiments on nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR). The high sensitivity of these amplifiers was demonstrated in the observation of ''nuclear spin noise'', the emission of photons by 35 Cl nuclei in a state of zero polarization. In the more conventional experiments in which one applies a large rf pulse to the spins, a Q-spoiler, consisting of a series array of Josephson junctions, is used to reduce the Q of the input circuit to a very low value during the pulse. The Q-spoiler enables the circuit to recover quickly after the pulse, and has been used in an NQR experiment to achieve a sensitivity of about 2 /times/ 10 16 nuclear Bohr magnetons in a single free precession signal with a bandwidth of 10 kHz. In a third experiment, a sample containing 35 Cl nuclei was placed in a capacitor and the signal detected electrically using a tuned SQUID amplifier and Q-spoiler. In this way, the electrical polarization induced by the precessing Cl nuclear quadrupole moments was detected: this is the inverse of the Stark effect in NQR. Two experiments involving NMR have been carried out. In the first, the 30 MHz resonance in 119 Sn nuclei is detected with a tuned amplifier and Q-spoiler, and a single pulse resolution of 10 18 nuclear Bohr magnetons in a bandwidth of 25 kHz has been achieved. For the second, a low frequency NMR system has been developed that uses an untuned input circuit coupled to the SQUID. The resonance in 195 Pt nuclei has been observed at 55 kHz in a field of 60 gauss. 23 refs., 11 figs

  6. Magnetism and superconductivity driven by identical 4f states in a heavy-fermion metal

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Joe E [Los Alamos National Laboratory; Nair, S [MAX PLANCK INST.; Stockert, O [MAX PLANCK INST.; Witte, U [INST. FUR FESTKORPERPHYSIK; Nicklas, M [MAX PLANCK INST.; Schedler, R [HELMHOLTZ - ZENTRUM; Bianchi, A [UC, IRVINE; Fisk, Z [UC, IRVINE; Wirth, S [MAX PLANCK INST.; Steglich, K [HELMHOLTZ - ZENTRUM

    2009-01-01

    The apparently inimical relationship between magnetism and superconductivity has come under increasing scrutiny in a wide range of material classes, where the free energy landscape conspires to bring them in close proximity to each other. Particularly enigmatic is the case when these phases microscopically interpenetrate, though the manner in which this can be accomplished remains to be fully comprehended. Here, we present combined measurements of elastic neutron scattering, magnetotransport, and heat capacity on a prototypical heavy fermion system, in which antiferromagnetism and superconductivity are observed. Monitoring the response of these states to the presence of the other, as well as to external thermal and magnetic perturbations, points to the possibility that they emerge from different parts of the Fermi surface. Therefore, a single 4f state could be both localized and itinerant, thus accounting for the coexistence of magnetism and superconductivity.

  7. Heavy metal removal from aqueous solutions using engineered magnetic biochars derived from waste marine macro-algal biomass.

    Science.gov (United States)

    Son, Eun-Bi; Poo, Kyung-Min; Chang, Jae-Soo; Chae, Kyu-Jung

    2018-02-15

    Despite the excellent sorption ability of biochar for heavy metals, it is difficult to separate and reuse after adsorption when applied to wastewater treatment process. To overcome these drawbacks, we developed an engineered magnetic biochar by pyrolyzing waste marine macro-algae as a feedstock, and we doped iron oxide particles (e.g., magnetite, maghemite) to impart magnetism. The physicochemical characteristics and adsorption properties of the biochar were evaluated. When compared to conventional pinewood sawdust biochar, the waste marine algae-based magnetic biochar exhibited a greater potential to remove heavy metals despite having a lower surface area (0.97m 2 /g for kelp magnetic biochar and 63.33m 2 /g for hijikia magnetic biochar). Although magnetic biochar could be effectively separated from the solution, however, the magnetization of the biochar partially reduced its heavy metal adsorption efficiency due to the biochar's surface pores becoming plugged with iron oxide particles. Therefore, it is vital to determine the optimum amount of iron doping that maximizes the biochar's separation without sacrificing its heavy metal adsorption efficiency. The optimum concentration of the iron loading solution for the magnetic biochar was determined to be 0.025-0.05mol/L. The magnetic biochar's heavy metal adsorption capability is considerably higher than that of other types of biochar reported previously. Further, it demonstrated a high selectivity for copper, showing two-fold greater removal (69.37mg/g for kelp magnetic biochar and 63.52mg/g for hijikia magnetic biochar) than zinc and cadmium. This high heavy metal removal performance can likely be attributed to the abundant presence of various oxygen-containing functional groups (COOH and OH) on the magnetic biochar, which serve as potential adsorption sites for heavy metals. The unique features of its high heavy metal removal performance and easy separation suggest that the magnetic algae biochar can potentially

  8. Magnetic signature of industrial pollution of stream sediments and correlation with heavy metals: case study from South France

    Czech Academy of Sciences Publication Activity Database

    Desenfant, F.; Petrovský, Eduard; Rochette, P.

    2004-01-01

    Roč. 152, 1/4 (2004), s. 297-312 ISSN 0049-6979 R&D Projects: GA AV ČR KSK3012103 Institutional research plan: CEZ:AV0Z3012916 Keywords : Arc river * heavy metals * magnetic susceptibility Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.058, year: 2004

  9. Search for magnetic dipole strength and giant spin-flip resonances in heavy nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Horen, D. J. [Oak Ridge National Lab., TN (USA); Ikegami, H.; Muraoka, M. [eds.; Osaka Univ., Suita (Japan). Research Center for Nuclear Physics

    1980-01-01

    A description is given of the use of high resolution (n, n) scattering and the (p, n) reaction as tools to investigate highly excited states with emphasis on information pertaining to magnetic dipole strength and giant spin-flip resonances in heavy nuclei. It is shown how the ability to uniquely determine the spins and parities of resonances observed in neutron scattering has been instrumental to an understanding of the distribution of M1 strength in sup(207,208)Pb. Some recent results of (p, n) studies with intermediate energy protons are discussed. Energy systematics of the giant Gamow-Teller (GT) resonance as well as a new ..delta..l = 1, ..delta..S = 1 resonance with J sup(..pi..) = (1,2)/sup -/ are presented. It is shown how the (p, n) reaction might be useful to locate M1 strength in heavy nuclei.

  10. Effective heavy metal removal from aqueous systems by thiol functionalized magnetic mesoporous silica

    International Nuclear Information System (INIS)

    Li Guoliang; Zhao Zongshan; Liu Jiyan; Jiang Guibin

    2011-01-01

    A thiol-functionalized magnetic mesoporous silica material (called SH-mSi-Fe 3 O 4 ), synthesized by a modified Stoeber method, has been investigated as a convenient and effective adsorbent for heavy metal ions. Structural characterization by powder X-ray diffraction, N 2 adsorption-desorption isotherm, Fourier transform infrared spectroscopy and elemental analyses confirms the mesoporous structure and the organic moiety content of this adsorbent. The high saturation magnetization (38.4 emu/g) make it easier and faster to be separated from water under a moderate magnetic field. Adsorption kinetics was elucidated by pseudo-second-order kinetic equation and exhibited 3-stage intraparticle diffusion mode. Adsorption isotherms of Hg and Pb fitted well with Langmuir model, exhibiting high adsorption capacity of 260 and 91.5 mg of metal/g of adsorbent, respectively. The distribution coefficients of the tested metal ions between SH-mSi-Fe 3 O 4 and different natural water sources (groundwater, lake water, tap water and river water) were above the level of 10 5 mL/g. The material was very stable in different water matrices, even in strong acid and alkaline solutions. Metal-loaded SH-mSi-Fe 3 O 4 was able to regenerate in acid solution under ultrasonication. This novel SH-mSi-Fe 3 O 4 is suitable for repeated use in heavy metal removal from different water matrices.

  11. Magnetic properties of nearly stoichiometric CeAuBi2 heavy fermion compound

    International Nuclear Information System (INIS)

    Adriano, C.; Jesus, C. B. R.; Pagliuso, P. G.; Rosa, P. F. S.; Grant, T.; Fisk, Z.; Garcia, D. J.

    2015-01-01

    Motivated by the interesting magnetic anisotropy found in the heavy fermion family CeTX 2 (T = transition metal and X = pnictogen), here, we study the novel parent compound CeAu 1−x Bi 2−y by combining magnetization, pressure dependent electrical resistivity, and heat-capacity measurements. The magnetic properties of our nearly stoichiometric single crystal sample of CeAu 1−x Bi 2−y (x = 0.92 and y = 1.6) revealed an antiferromagnetic ordering at T N  = 12 K with an easy axis along the c-direction. The field dependent magnetization data at low temperatures reveal the existence of a spin-flop transition when the field is applied along the c-axis (H c  ∼ 7.5 T and T = 5 K). The heat capacity and pressure dependent resistivity data suggest that CeAu 0.92 Bi 1.6 exhibits a weak heavy fermion behavior with strongly localized Ce 3+ 4f electrons. Furthermore, the systematic analysis using a mean field model including anisotropic nearest-neighbors interactions and the tetragonal crystalline electric field (CEF) Hamiltonian allows us to extract a CEF scheme and two different values for the anisotropic J RKKY exchange parameters between the Ce 3+ ions in this compound. Thus, we discuss a scenario, considering both the anisotropic magnetic interactions and the tetragonal CEF effects, in the CeAu 1−x Bi 2−y compounds, and we compare our results with the isostructural compound CeCuBi 2

  12. Soft errors in 10-nm-scale magnetic tunnel junctions exposed to high-energy heavy-ion radiation

    Science.gov (United States)

    Kobayashi, Daisuke; Hirose, Kazuyuki; Makino, Takahiro; Onoda, Shinobu; Ohshima, Takeshi; Ikeda, Shoji; Sato, Hideo; Inocencio Enobio, Eli Christopher; Endoh, Tetsuo; Ohno, Hideo

    2017-08-01

    The influences of various types of high-energy heavy-ion radiation on 10-nm-scale CoFeB-MgO magnetic tunnel junctions with a perpendicular easy axis have been investigated. In addition to possible latent damage, which has already been pointed out in previous studies, high-energy heavy-ion bombardments demonstrated that the magnetic tunnel junctions may exhibit clear flips between their high- and low-resistance states designed for a digital bit 1 or 0. It was also demonstrated that flipped magnetic tunnel junctions still may provide proper memory functions such as read, write, and hold capabilities. These two findings proved that high-energy heavy ions can produce recoverable bit flips in magnetic tunnel junctions, i.e., soft errors. Data analyses suggested that the resistance flips stem from magnetization reversals of the ferromagnetic layers and that each of them is caused by a single strike of heavy ions. It was concurrently found that an ion strike does not always result in a flip, suggesting a stochastic process behind the flip. Experimental data also showed that the flip phenomenon is dependent on the device and heavy-ion characteristics. Among them, the diameter of the device and the linear energy transfer of the heavy ions were revealed as the key parameters. From their dependences, the physical mechanism behind the flip was discussed. It is likely that a 10-nm-scale ferromagnetic disk loses its magnetization due to a local temperature increase induced by a single strike of heavy ions; this demagnetization is followed by a cooling period associated with a possible stochastic recovery process. On the basis of this hypothesis, a simple analytical model was developed, and it was found that the model accounts for the results reasonably well. This model also predicted that magnetic tunnel junctions provide sufficiently high soft-error reliability for use in space, highlighting their advantage over their counterpart conventional semiconductor memories.

  13. Comparison of conventional and novel quadrupole drift tube magnets inspired by Klaus Halbach

    Energy Technology Data Exchange (ETDEWEB)

    Feinberg, B. [Lawrence Berkeley Lab., CA (United States)

    1995-02-01

    Quadrupole drift tube magnets for a heavy-ion linac provide a demanding application of magnet technology. A comparison is made of three different solutions to the problem of providing an adjustable high-field-strength quadrupole magnet in a small volume. A conventional tape-wound electromagnet quadrupole magnet (conventional) is compared with an adjustable permanent-magnet/iron quadrupole magnet (hybrid) and a laced permanent-magnet/iron/electromagnet (laced). Data is presented from magnets constructed for the SuperHILAC heavy-ion linear accelerator, and conclusions are drawn for various applications.

  14. On the impact of the elastic-plastic flow upon the process of destruction of the solenoid in a super strong pulsed magnetic field

    Science.gov (United States)

    Krivosheev, S. I.; Magazinov, S. G.; Alekseev, D. I.

    2018-01-01

    At interaction of super strong magnetic fields with a solenoid material, a specific mode of the material flow forms. To describe this process, magnetohydrodynamic approximation is traditionally used. The formation of plastic shock-waves in material in a rapidly increasing pressure of 100 GPa/μs, can significantly alter the distribution of the physical parameters in the medium and affect the flow modes. In this paper, an analysis of supporting results of numerical simulations in comparison with available experimental data is presented.

  15. Specific heat of heavy-fermion CePd2Si2 in high magnetic fields

    International Nuclear Information System (INIS)

    Sheikin, I.; Wang, Y.; Bouquet, F.; Junod, A.; Lejay, P.

    2002-01-01

    We report specific heat measurements on the heavy-fermion compound CePd 2 Si 2 in magnetic fields up to 16 T and in the temperature range 1.4-16 K. A sharp peak in the specific heat signals the antiferromagnetic transition at T N ∼ 9.3 K in zero field. The transition is found to shift to lower temperatures when a magnetic field is applied along the crystallographic a-axis, while a field applied parallel to the tetragonal c-axis does not affect the transition. The magnetic contribution to the specific heat below T N is well described by a sum of a linear electronic term and an antiferromagnetic spin-wave contribution. Just below T N , an additional positive curvature, especially at high fields, arises most probably due to thermal fluctuations. The field dependence of the coefficient of the low-temperature linear term, γ 0 , extracted from the fits shows a maximum at about 6 T, at the point where an anomaly was detected in susceptibility measurements. The relative field dependences of both T N and the magnetic entropy at T N scale as [1-(B/B 0 ) 2 ] for B parallel a, suggesting the disappearance of antiferromagnetism at B 0 ∼42 T. The expected suppression of the antiferromagnetic transition temperature to zero makes the existence of a magnetic quantum critical point possible. (author). Letter-to-the-editor

  16. Higher-order hadronic and heavy-lepton contributions to the anomalous magnetic moment

    International Nuclear Information System (INIS)

    Kurz, Alexander; Liu, Tao; Steinhauser, Matthias

    2014-07-01

    We report about recent results obtained for the muon anomalous magnetic moment. Three-loop kernel functions have been computed to obtain the next-to-next-to-leading-order hadronic vacuum polarization contributions. The numerical result, a μ had,NNLO = 1.24 ± 0.01 x 10 -10 , is of the same order of magnitude as the current uncertainty from the hadronic contributions. For heavy-lepton corrections, analytical results are obtained at four-loop order and compared with the known results.

  17. Engineering giant magnetic anisotropy in single-molecule magnets by dimerizing heavy transition-metal atoms

    Science.gov (United States)

    Qu, Jiaxing; Hu, Jun

    2018-05-01

    The search for single-molecule magnets with large magnetic anisotropy energy (MAE) is essential for the development of molecular spintronics devices for use at room temperature. Through systematic first-principles calculations, we found that an Os–Os or Ir–Ir dimer embedded in the (5,5‧-Br2-salophen) molecule gives rise to a large MAE of 41.6 or 51.4 meV, respectively, which is large enough to hold the spin orientation at room temperature. Analysis of the electronic structures reveals that the top Os and Ir atoms play the most important part in the total spin moments and large MAEs of the molecules.

  18. Density-matrix-functional calculations for matter in strong magnetic fields: Ground states of heavy atoms

    DEFF Research Database (Denmark)

    Johnsen, Kristinn; Yngvason, Jakob

    1996-01-01

    We report on a numerical study of the density matrix functional introduced by Lieb, Solovej, and Yngvason for the investigation of heavy atoms in high magnetic fields. This functional describes exactly the quantum mechanical ground state of atoms and ions in the limit when the nuclear charge Z...... and the electron number N tend to infinity with N/Z fixed, and the magnetic field B tends to infinity in such a way that B/Z4/3→∞. We have calculated electronic density profiles and ground-state energies for values of the parameters that prevail on neutron star surfaces and compared them with results obtained...... by other methods. For iron at B=1012 G the ground-state energy differs by less than 2% from the Hartree-Fock value. We have also studied the maximal negative ionization of heavy atoms in this model at various field strengths. In contrast to Thomas-Fermi type theories atoms can bind excess negative charge...

  19. Heavy metal ion adsorption behavior in nitrogen-doped magnetic carbon nanoparticles: Isotherms and kinetic study

    International Nuclear Information System (INIS)

    Shin, Keun-Young; Hong, Jin-Yong; Jang, Jyongsik

    2011-01-01

    Graphical abstract: Display Omitted Research highlights: → The monodisperse and multigram-scale N-MCNPs are fabricated by carbonization of polypyrrole as a carbon precursor. → The synthesized N-MCNPs provide an enhanced adsorption uptake for various heavy metal ions. → The N-MCNPs can be applied to the Langmuir model and pseudo-second-order kinetics. → The iron-impregnated N-MCNPs are reused up to 5 times with no loss of removal efficiency. - Abstract: To clarify the heavy metal adsorption mechanism of nitrogen-doped magnetic carbon nanoparticles (N-MCNPs), adsorption capacity was investigated from the adsorption isotherms, kinetics and thermodynamics points of view. The obtained results showed that the equilibrium adsorption behavior of Cr 3+ ion onto the N-MCNPs can be applied to the Langmuir model and pseudo-second-order kinetics. It indicated that the fabricated N-MCNPs had the homogenous surface for adsorption and all adsorption sites had equal adsorption energies. Furthermore, the adsorption onto N-MCNPs taken place through a chemical process involving the valence forces. According to the thermodynamics, the adsorption process is spontaneous and endothermic in nature which means that the adsorption capacity increases with increasing temperature due to the enhanced mobility of adsorbate molecules. The effects of the solution pH and the species of heavy metal ion on the adsorption uptake were also studied. The synthesized N-MCNPs exhibited an enhanced adsorption capacity for the heavy metal ions due to the high surface area and large amount of nitrogen contents.

  20. A Concept for the Use and Integration of Super-Conducting Magnets in Structural Systems in General and Maglev Guideway Mega-Structures in Particular

    Science.gov (United States)

    Ussery, Wilfred T.; MacCalla, Eric; MacCalla, Johnetta; Elnimeiri, Mahjoub; Goldsmith, Myron; Polk, Sharon Madison; Jenkins, Mozella; Bragg, Robert H.

    1996-01-01

    Recent breakthroughs in several different fields now make it possible to incorporate the use of superconducting magnets in structures in ways which enhance the performance of structural members or components of structural systems in general and Maglev guideway mega-structures in particular. The building of structural systems which connect appropriately scaled superconducting magnets with the post-tensioned tensile components of beams, girders, or columns would, if coupled with 'state of the art' structure monitoring, feedback and control systems, and advanced computer software, constitute a distinct new generation of structures that would possess the unique characteristic of being heuristic and demand or live-load responsive. The holistic integration of powerful superconducting magnets in structures so that they do actual structural work, creates a class of 'technologically endowed' structures that, in part - literally substitute superconductive electric power and magnetism for concrete and steel. The research and development engineering, and architectural design issues associated with such 'technologically endowed' structural system can now be conceptualized, designed, computer simulates built and tested. The Maglev guideway mega-structure delineated herein incorporates these concepts, and is designed for operation in the median strip of U.S. Interstate Highway 5 from San Diego to Seattle an Vancouver, and possibly on to Fairbanks, Alaska. This system also fits in the median strip of U.S. Interstate Highway 55 and 95 North-South, and 80 and 10, East-West. As a Western Region 'Peace Dividend' project, it could become a National or Bi-National research, design and build, super turnkey project that would create thousands of jobs by applying superconducting, material science, electronic aerospace and other defense industry technologies to a multi-vehicle, multi-use Maglev guideway megastructure that integrates urban mass transit Lower Speed (0-100 mph), High Speed

  1. Localized-itinerant magnetism: a simple model with applications to intermetallic of heavy rare-earths

    International Nuclear Information System (INIS)

    Ranke Perlingueiro, P.J. von.

    1986-01-01

    We have investigated various magnetic quantities of a system consisting of conduction electrons coupled to localized spins. In obtaining the magnetic state equations (which relate the ionic and electronic magnetisations to temperature and the model parameters) we have adopted the molecular field approximation. This simple model is of interest to the magnetism of the heavy rare earth intermettallics. For these systems the localized spin is that of the 4f shell; it is described by the parameters g (the Lande's factor) and J (the total angular momentum of the 4f electrons in the ground state). We derive an analytical linear relation between the critical temperature and The Gennes Factors J(J+1)(g-1) which is experimentally observed for RAl 2 . A fitting between the experimental points and the theoretical prediction gives for the exchange parameter the value J o = 48.6 meV. We have also performed a parametric study of the model, using a rectangular energy density of states. The results are shown on tables and diagrams. (author) [pt

  2. The Use of Activated Alumina and Magnetic Field for the Removal Heavy Metals from Water

    Directory of Open Access Journals (Sweden)

    Ewa Szatyłowicz

    2018-05-01

    Full Text Available The objective of this work was to verify the granular activated alumina (AA sorption properties, during the process of removing copper, lead and cadmium from water, and to monitor the impact of magnetic field (MF on the effectiveness of removing copper, lead and cadmium from water. Activated alumina adsorption is known to be an effective and inexpensive technology for the removal of selenium and arsenic from water and was suggested by EPA as a BAT for point-of-use applications. The removal of copper, lead and cadmium from water using AA and impact of magnetic field was less reported. Pilot tests showed that the use of AA sorption materials with MF impact could possibly decrease the copper, lead and cadmium content in the model water. The MF had also a positive effect on the efficiency of removal copper, lead and cadmium on AA. Increasing the efficiency of heavy metals removal in the samples had been exposed magnetic field varied from 1.9% to 8.2% compared to the control samples.

  3. Assessment of heavy metal pollution from a Fe-smelting plant in urban river sediments using environmental magnetic and geochemical methods

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Chunxia, E-mail: cxzhang@mail.iggcas.ac.cn [State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, No. 19 Bei Tucheng Xilu, Chaoyang Dist., Beijing 100029 (China); Qiao Qingqing [State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, No. 19 Bei Tucheng Xilu, Chaoyang Dist., Beijing 100029 (China); Piper, John D.A. [Geomagnetism Laboratory, Department of Earth and Ocean Science, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Huang, Baochun [State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, No. 19 Bei Tucheng Xilu, Chaoyang Dist., Beijing 100029 (China)

    2011-10-15

    Environmental magnetic proxies provide a rapid means of assessing the degree of industrial heavy metal pollution in soils and sediments. To test the efficiency of magnetic methods for detecting contaminates from a Fe-smelting plant in Loudi City, Hunan Province (China) we investigated river sediments from Lianshui River. Both magnetic and non-magnetic (microscopic, chemical and statistical) methods were used to characterize these sediments. Anthropogenic heavy metals coexist with coarse-grained magnetic spherules. It can be demonstrated that the Pollution Load Index of industrial heavy metals (Fe, V, Cr, Mo, Zn, Pb, Cd, Cu) and the logarithm of saturation isothermal remanent magnetization, a proxy for magnetic concentration, are significantly correlated. The distribution heavy metal pollution in the Lianshui River is controlled by surface water transport and deposition. Our findings demonstrate that magnetic methods have a useful and practical application for detecting and mapping pollution in and around modern industrial cities. - Highlights: > Assessment of heavy metal (HM) pollution in river sediment using magnetic and chemical methods. > HMs from an Fe-smelting plant coexist with coarse-grained magnetic spherules. > A linear correlation between the Pollution Load Index (PLI) of industrial HMs and a magnetic concentration parameter is demonstrated. > The distribution of HM pollution in river sediments is controlled by surface water flow and deposition. - Heavy metal (HM) contamination of river sediments from industrial input by surface water transport and deposition can be detected by using magnetic methods providing a convenient assessment of HM pollution in industrialized cities.

  4. Assessment of heavy metal pollution from a Fe-smelting plant in urban river sediments using environmental magnetic and geochemical methods

    International Nuclear Information System (INIS)

    Zhang Chunxia; Qiao Qingqing; Piper, John D.A.; Huang, Baochun

    2011-01-01

    Environmental magnetic proxies provide a rapid means of assessing the degree of industrial heavy metal pollution in soils and sediments. To test the efficiency of magnetic methods for detecting contaminates from a Fe-smelting plant in Loudi City, Hunan Province (China) we investigated river sediments from Lianshui River. Both magnetic and non-magnetic (microscopic, chemical and statistical) methods were used to characterize these sediments. Anthropogenic heavy metals coexist with coarse-grained magnetic spherules. It can be demonstrated that the Pollution Load Index of industrial heavy metals (Fe, V, Cr, Mo, Zn, Pb, Cd, Cu) and the logarithm of saturation isothermal remanent magnetization, a proxy for magnetic concentration, are significantly correlated. The distribution heavy metal pollution in the Lianshui River is controlled by surface water transport and deposition. Our findings demonstrate that magnetic methods have a useful and practical application for detecting and mapping pollution in and around modern industrial cities. - Highlights: → Assessment of heavy metal (HM) pollution in river sediment using magnetic and chemical methods. → HMs from an Fe-smelting plant coexist with coarse-grained magnetic spherules. → A linear correlation between the Pollution Load Index (PLI) of industrial HMs and a magnetic concentration parameter is demonstrated. → The distribution of HM pollution in river sediments is controlled by surface water flow and deposition. - Heavy metal (HM) contamination of river sediments from industrial input by surface water transport and deposition can be detected by using magnetic methods providing a convenient assessment of HM pollution in industrialized cities.

  5. The Search for QCD Sphalerons and the Chiral Magnetic Effect in Heavy-Ion Collisions with ALICE

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    In non-central heavy-ion collisions unprecedented strong magnetic fields, of the order of 10^14 T, are expected to be produced by the incoming protons contained in the nuclei. These fields can be used to detect possible non-conservation of chirality in the QCD sector, a signature of sphaleron transitions. In particular, the interplay of chiral imbalance and magnetic fields results in the separation of positive and negative charges along the direction of the field, a phenomenon called “Chiral Magnetic Effect” (CME). In this seminar, the challenges and the opportunities in the search for the CME and the detection of magnetic fields in heavy-ion collisions will be discussed, with an emphasis on recent ALICE results.

  6. Effect of c-f hybridization on electric and magnetic properties of some Heavy Fermion (HF) systems

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, J., E-mail: jitendrasahoo2008@gmail.com [Regional Office of Vocational Education, Sambalpur, Odisha -768 004 (India); Nayak, P. [School of Physics, Sambalpur University, Sambalpur, Odisha - 768 019 (India)

    2017-02-01

    Representing the heavy fermion systems by the Periodic Anderson Model (PAM), we have used Zubarev technique to see the effect of c-f hybridization on the temperature dependence of resistivity and magnetic susceptibility. The calculated resistivity and magnetic susceptibility show the general features observed in these materials experimentally. Further, we have shown how the strength of hybridization as well as the position of the f-level affects both the properties and the Kondo temperature of these systems.

  7. Super jackstraws and super waterwheels

    International Nuclear Information System (INIS)

    Cho, Jin-Ho

    2007-01-01

    We construct various new BPS states of D-branes preserving 8 supersymmetries. These include super Jackstraws (a bunch of scattered D- or (p, q)-strings preserving supersymmetries), and super waterwheels (a number of D2-branes intersecting at generic angles on parallel lines while preserving supersymmetries). Super D-Jackstraws are scattered in various dimensions but are dynamical with all their intersections following a common null direction. Meanwhile, super (p, q)-Jackstraws form a planar static configuration. We show that the SO(2) subgroup of SL(2, R), the group of classical S-duality transformations in IIB theory, can be used to generate this latter configuration of variously charged (p, q)-strings intersecting at various angles. The waterwheel configuration of D2-branes preserves 8 supersymmetries as long as the 'critical' Born-Infeld electric fields are along the common direction

  8. Studies of heavy ion beam transport in a magnetic quadrupole channel

    International Nuclear Information System (INIS)

    Klabunde, J.; Reiser, M.; Schonlein, A.; Spadtke, P.; Struckmeier, J.

    1983-01-01

    In connection with the West German Heavy Ion Fusion Program the first stage (six periods) of a magnetic quadrupole channel (FODO type) to study the transport of intense ion beams was built at GSI. Different ion beams can be used and the variation of the brightness of these beams (hence of the tune depression sigma/sigma /SUB o/ ) is sufficiently large that regions of theoretically predicted instabilities can be covered. The initial studies are being carried out with a high-brightness beam of 190 keV Ar+ ions and currents of a few mA. Since the pulse length is > 0.5 ms and the pressure is between 10 -6 and 10 -7 torr partial space charge neutralization occurs. Clearing electrodes can be used to remove the electrons from the beam. Results of theoretical studies, measurements of charge neutralization effects and first results of transport experiments are reported

  9. Super differential forms on super Riemann surfaces

    International Nuclear Information System (INIS)

    Konisi, Gaku; Takahasi, Wataru; Saito, Takesi.

    1994-01-01

    Line integral on the super Riemann surface is discussed. A 'super differential operator' which possesses both properties of differential and of differential operator is proposed. With this 'super differential operator' a new theory of differential form on the super Riemann surface is constructed. We call 'the new differentials on the super Riemann surface' 'the super differentials'. As the applications of our theory, the existency theorems of singular 'super differentials' such as 'super abelian differentials of the 3rd kind' and of a super projective connection are examined. (author)

  10. High-entropy ejections from magnetized proto-neutron star winds: implications for heavy element nucleosynthesis

    Science.gov (United States)

    Thompson, Todd A.; ud-Doula, Asif

    2018-06-01

    Although initially thought to be promising for production of the r-process nuclei, standard models of neutrino-heated winds from proto-neutron stars (PNSs) do not reach the requisite neutron-to-seed ratio for production of the lanthanides and actinides. However, the abundance distribution created by the r-, rp-, or νp-processes in PNS winds depends sensitively on the entropy and dynamical expansion time-scale of the flow, which may be strongly affected by high magnetic fields. Here, we present results from magnetohydrodynamic simulations of non-rotating neutrino-heated PNS winds with strong dipole magnetic fields from 1014 to 1016 G, and assess their role in altering the conditions for nucleosynthesis. The strong field forms a closed zone and helmet streamer configuration at the equator, with episodic dynamical mass ejections in toroidal plasmoids. We find dramatically enhanced entropy in these regions and conditions favourable for third-peak r-process nucleosynthesis if the wind is neutron-rich. If instead the wind is proton-rich, the conditions will affect the abundances from the νp-process. We quantify the distribution of ejected matter in entropy and dynamical expansion time-scale, and the critical magnetic field strength required to affect the entropy. For B ≳1015 G, we find that ≳10-6 M⊙ and up to ˜10-5 M⊙ of high-entropy material is ejected per highly magnetized neutron star birth in the wind phase, providing a mechanism for prompt heavy element enrichment of the universe. Former binary companions identified within (magnetar-hosting) supernova remnants, the remnants themselves, and runaway stars may exhibit overabundances. We provide a comparison with a semi-analytic model of plasmoid eruption and discuss implications and extensions.

  11. Magnetism and unconventional superconductivity in CenMmIn3n+2m heavy-fermion crystals

    International Nuclear Information System (INIS)

    Thompson, J.D.; Nicklas, M.; Bianchi, A.; Movshovich, R.; Llobet, A.; Bao, W.; Malinowski, A.; Hundley, M.F.; Moreno, N.O.; Pagliuso, P.G.; Sarrao, J.L.; Nakatsuji, S.; Fisk, Z.; Borth, R.; Lengyel, E.; Oeschler, N.; Sparn, G.; Steglich, F.

    2003-01-01

    We review magnetic, superconducting and non-Fermi-liquid properties of the structurally layered heavy-fermion compounds Ce n M m In 3n+2m (M=Co,Rh,Ir). These properties suggest d-wave superconductivity and proximity to an antiferromagetic quantum-critical point

  12. Development of a magnetic beam guiding system for tumor-specific radiotherapy using heavy, charged particles

    International Nuclear Information System (INIS)

    Haberer, T.

    1994-06-01

    An active, magnetic beam guiding system was developed and tested for the purpose of enhanced and tumor-specific irradiation of irregularly shaped target volumina. Combining intensity-controlled wobbling in rapidly changing magnetic fields with the heavy-ion synchrotron's capacity of fast energy variation achieved a new technique allowing good range modulation. This technique allows the calculated dose distribution to be exactly matched to target contours, and at the same time guarantees best possible quality of the radiation beam, since there is no need for use of mechanical beam shaping members. The components of the scanning system and a specifically designed instrumentation and control concept for this configuration were integrated into the synchrotron's control system, so that there is now a system available offering free selection of beam characteristics combined with energy variation along with the pulsed operation of the accelerator. The system was tested at the biophysical measuring unit of the GSI implementing an elaborated irradiation method at this unit equipped with tools for physico-technical irradiation planning and performance. Methods were designed and tested for optimizing the beam path within a given contour, the optimization taking into account the effects of transmission functions of the scanner components on the results of radiation treatments. (orig.) [de

  13. Combination of magnetic parameters and heavy metals to discriminate soil-contamination sources in Yinchuan--a typical oasis city of Northwestern China.

    Science.gov (United States)

    Xia, Dunsheng; Wang, Bo; Yu, Ye; Jia, Jia; Nie, Yan; Wang, Xin; Xu, Shujing

    2014-07-01

    Various industrial processes and vehicular traffic result in harmful emissions containing both magnetic minerals and heavy metals. In this study, we investigated the levels of magnetic and heavy metal contamination of topsoils from Yinchuan city in northwestern China. The results demonstrate that magnetic mineral assemblages in the topsoil are dominated by pseudo-single domain (PSD) and multi-domain (MD) magnetite. The concentrations of anthropogenic heavy metals (Cr, Cu, Pb and Zn) and the magnetic properties of χlf, SIRM, χARM, and 'SOFT' and 'HARD' remanence are significantly correlated, suggesting that the magnetic minerals and heavy metals have common sources. Combined use of principal components and fuzzy cluster analysis of the magnetic and chemical data set indicates that the magnetic and geochemical properties of the particulates emitted from different sources vary significantly. Samples from university campus and residential areas are mainly affected by crustal material, with low concentrations of magnetic minerals and heavy metals, while industrial pollution sources are characterized by high concentrations of coarse magnetite and Cr, Cu, Pb and Zn. Traffic pollution is characterized by Pb and Zn, and magnetite. Magnetic measurements of soils are capable of differentiating sources of magnetic minerals and heavy metals from industrial processes, vehicle fleets and soil parent material. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. A double zero-dispersion magnetic spectrometer used in a telescopic mode for very forward heavy ions studies

    International Nuclear Information System (INIS)

    Bacri, C.O.; Roussel, P.

    1990-01-01

    An original method based on the use of a double magnetic spectrometer in a telescopic mode is proposed for the studies of heavy ions collisions both at very forward angles and for magnetic rigidities close to that of the beam. It consists in the direct measurement of angular distributions on doubly - Bρ and angle - sorted events. The method has been tested on the LISE spectrometer at GANIL with a 44 MeV/A 40 Ar beam impinging on C, Al, Ni and Au targets. Milliradian angular accuracy have been obtained at magnetic rigidities as close as 0.9977 of that of the beam

  15. Magnetic super-hydrophilic carbon nanotubes/graphene oxide composite as nanocarriers of mesenchymal stem cells: Insights into the time and dose dependences.

    Science.gov (United States)

    Granato, Alessandro E C; Rodrigues, Bruno V M; Rodrigues-Junior, Dorival M; Marciano, Fernanda R; Lobo, Anderson O; Porcionatto, Marimelia A

    2016-10-01

    Among nanostructured materials, multi-walled carbon nanotubes (MWCNT) have demonstrated great potential for biomedical applications in recent years. After oxygen plasma etching, we can obtain super-hydrophilic MWCNT that contain graphene oxide (GO) at their tips. This material exhibits good dispersion in biological systems due to the presence of polar groups and its excellent magnetic properties due to metal particle residues from the catalyst that often remain trapped in its walls and tips. Here, we show for the first time a careful biological investigation using magnetic superhydrophilic MWCNT/GO (GCN composites). The objective of this study was to investigate the application of GCN for the in vitro immobilization of mesenchymal stem cells. Our ultimate goal was to develop a system to deliver mesenchymal stem cells to different tissues and organs. We show here that mesenchymal stem cells were able to internalize GCN with a consequent migration when subjected to a magnetic field. The cytotoxicity of GCN was time- and dose-dependent. We also observed that GCN internalization caused changes in the gene expression of the proteins involved in cell adhesion and migration, such as integrins, laminins, and the chemokine CXCL12, as well as its receptor CXCR4. These results suggest that GCN represents a potential new platform for mesenchymal stem cell immobilization at injury sites. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Super families

    International Nuclear Information System (INIS)

    Amato, N.; Maldonado, R.H.C.

    1989-01-01

    The study on phenomena in the super high energy region, Σ E j > 1000 TeV revealed events that present a big dark spot in central region with high concentration of energy and particles, called halo. Six super families with halo were analysed by Brazil-Japan Cooperation of Cosmic Rays. For each family the lateral distribution of energy density was constructed and R c Σ E (R c ) was estimated. For studying primary composition, the energy correlation with particles released separately in hadrons and gamma rays was analysed. (M.C.K.)

  17. Spin-selective depopulation of triplet sublevels in rapidly rotating triplet exciplexes detected by a heavy-atom-induced magnetic field effect

    OpenAIRE

    Steiner, Ulrich

    1980-01-01

    A mechanism is presented explaining a reported heavy-atom-induced magnetic field effect as a consequence of non-equilibrium triplet sublevel population in an intermediate exciplex. The triplet exciplex spin polarization is induced by sub-level-selective intersystem crossing from the exciplex triplet to its singlet ground state and is decreased by an external magnetic field. The theory accounts almost quantitatively for the observed influence of magnetic field strength and heavy-atom substitue...

  18. Superconducting super collider

    International Nuclear Information System (INIS)

    Limon, P.J.

    1987-01-01

    The Superconducting Super Collider is to be a 20 TeV per beam proton-proton accelerator and collider. Physically the SCC will be 52 miles in circumference and slightly oval in shape. The use of superconducting magnets instead of conventional cuts the circumference from 180 miles to the 52 miles. The operating cost of the SCC per year is estimated to be about $200-250 million. A detailed cost estimate of the project is roughly $3 billion in 1986 dollars. For the big collider ring, the technical cost are dominated by the magnet system. That is why one must focus on the cost and design of the magnets. Presently, the process of site selection is underway. The major R and D efforts concern superconducting dipoles. The magnets use niobium-titanium as a conductor stabilized in a copper matrix. 10 figures

  19. Novel Super-Resolution Approach to Time-Resolved Volumetric 4-Dimensional Magnetic Resonance Imaging With High Spatiotemporal Resolution for Multi-Breathing Cycle Motion Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guang, E-mail: lig2@mskcc.org [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York (United States); Wei, Jie [Department of Computer Science, City College of New York, New York, New York (United States); Kadbi, Mo [Philips Healthcare, MR Therapy Cleveland, Ohio (United States); Moody, Jason; Sun, August; Zhang, Shirong; Markova, Svetlana; Zakian, Kristen; Hunt, Margie; Deasy, Joseph O. [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York (United States)

    2017-06-01

    Purpose: To develop and evaluate a super-resolution approach to reconstruct time-resolved 4-dimensional magnetic resonance imaging (TR-4DMRI) with a high spatiotemporal resolution for multi-breathing cycle motion assessment. Methods and Materials: A super-resolution approach was developed to combine fast 3-dimensional (3D) cine MRI with low resolution during free breathing (FB) and high-resolution 3D static MRI during breath hold (BH) using deformable image registration. A T1-weighted, turbo field echo sequence, coronal 3D cine acquisition, partial Fourier approximation, and SENSitivity Encoding parallel acceleration were used. The same MRI pulse sequence, field of view, and acceleration techniques were applied in both FB and BH acquisitions; the intensity-based Demons deformable image registration method was used. Under an institutional review board–approved protocol, 7 volunteers were studied with 3D cine FB scan (voxel size: 5 × 5 × 5 mm{sup 3}) at 2 Hz for 40 seconds and a 3D static BH scan (2 × 2 × 2 mm{sup 3}). To examine the image fidelity of 3D cine and super-resolution TR-4DMRI, a mobile gel phantom with multi-internal targets was scanned at 3 speeds and compared with the 3D static image. Image similarity among 3D cine, 4DMRI, and 3D static was evaluated visually using difference image and quantitatively using voxel intensity correlation and Dice index (phantom only). Multi-breathing-cycle waveforms were extracted and compared in both phantom and volunteer images using the 3D cine as the references. Results: Mild imaging artifacts were found in the 3D cine and TR-4DMRI of the mobile gel phantom with a Dice index of >0.95. Among 7 volunteers, the super-resolution TR-4DMRI yielded high voxel-intensity correlation (0.92 ± 0.05) and low voxel-intensity difference (<0.05). The detected motion differences between TR-4DMRI and 3D cine were −0.2 ± 0.5 mm (phantom) and −0.2 ± 1.9 mm (diaphragms). Conclusion: Super-resolution TR-4

  20. Novel Super-Resolution Approach to Time-Resolved Volumetric 4-Dimensional Magnetic Resonance Imaging With High Spatiotemporal Resolution for Multi-Breathing Cycle Motion Assessment

    International Nuclear Information System (INIS)

    Li, Guang; Wei, Jie; Kadbi, Mo; Moody, Jason; Sun, August; Zhang, Shirong; Markova, Svetlana; Zakian, Kristen; Hunt, Margie; Deasy, Joseph O.

    2017-01-01

    Purpose: To develop and evaluate a super-resolution approach to reconstruct time-resolved 4-dimensional magnetic resonance imaging (TR-4DMRI) with a high spatiotemporal resolution for multi-breathing cycle motion assessment. Methods and Materials: A super-resolution approach was developed to combine fast 3-dimensional (3D) cine MRI with low resolution during free breathing (FB) and high-resolution 3D static MRI during breath hold (BH) using deformable image registration. A T1-weighted, turbo field echo sequence, coronal 3D cine acquisition, partial Fourier approximation, and SENSitivity Encoding parallel acceleration were used. The same MRI pulse sequence, field of view, and acceleration techniques were applied in both FB and BH acquisitions; the intensity-based Demons deformable image registration method was used. Under an institutional review board–approved protocol, 7 volunteers were studied with 3D cine FB scan (voxel size: 5 × 5 × 5 mm"3) at 2 Hz for 40 seconds and a 3D static BH scan (2 × 2 × 2 mm"3). To examine the image fidelity of 3D cine and super-resolution TR-4DMRI, a mobile gel phantom with multi-internal targets was scanned at 3 speeds and compared with the 3D static image. Image similarity among 3D cine, 4DMRI, and 3D static was evaluated visually using difference image and quantitatively using voxel intensity correlation and Dice index (phantom only). Multi-breathing-cycle waveforms were extracted and compared in both phantom and volunteer images using the 3D cine as the references. Results: Mild imaging artifacts were found in the 3D cine and TR-4DMRI of the mobile gel phantom with a Dice index of >0.95. Among 7 volunteers, the super-resolution TR-4DMRI yielded high voxel-intensity correlation (0.92 ± 0.05) and low voxel-intensity difference (<0.05). The detected motion differences between TR-4DMRI and 3D cine were −0.2 ± 0.5 mm (phantom) and −0.2 ± 1.9 mm (diaphragms). Conclusion: Super-resolution TR-4DMRI has been

  1. Oblique Propagation of Electrostatic Waves in a Magnetized Electron-Positron-Ion Plasma in the Presence of Heavy Particles

    Science.gov (United States)

    Sarker, M.; Hossen, M. R.; Shah, M. G.; Hosen, B.; Mamun, A. A.

    2018-06-01

    A theoretical investigation is carried out to understand the basic features of nonlinear propagation of heavy ion-acoustic (HIA) waves subjected to an external magnetic field in an electron-positron-ion plasma that consists of cold magnetized positively charged heavy ion fluids and superthermal distributed electrons and positrons. In the nonlinear regime, the Korteweg-de Vries (K-dV) and modified K-dV (mK-dV) equations describing the propagation of HIA waves are derived. The latter admits a solitary wave solution with both positive and negative potentials (for K-dV equation) and only positive potential (for mK-dV equation) in the weak amplitude limit. It is observed that the effects of external magnetic field (obliqueness), superthermal electrons and positrons, different plasma species concentration, heavy ion dynamics, and temperature ratio significantly modify the basic features of HIA solitary waves. The application of the results in a magnetized EPI plasma, which occurs in many astrophysical objects (e.g. pulsars, cluster explosions, and active galactic nuclei) is briefly discussed.

  2. Defects induced magnetic transition in Co doped ZnS thin films: Effects of swift heavy ion irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Shiv P., E-mail: shivpoojanbhola@gmail.com [Physics Department, University of Allahabad, Allahabad 211002 (India); Pivin, J.C. [CSNSM, IN2P3-CNRS, Batiment 108, F-91405 Orsay Campus (France); Patel, M.K; Won, Jonghan [Materials Science and Technology Division, MST-8, P.O.Box 1663, Mail Stop G755, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Chandra, Ramesh [Nanoscience Laboratory, IIC, Indian Institute of Technology, Roorkee 247667 (India); Kanjilal, D. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Kumar, Lokendra [Physics Department, University of Allahabad, Allahabad 211002 (India)

    2012-07-15

    The effect of swift heavy ions (SHI) on magnetic ordering in ZnS thin films with Co ions substituted on Zn sites is investigated. The materials have been synthesized by pulsed laser deposition on substrates held at 600 Degree-Sign C for obtaining films with wurtzite crystal structure and it showed ferromagnetic ordering up to room temperature with a paramagnetic component. 120 MeV Ag ions have been used at different fluences of 1 Multiplication-Sign 10{sup 11} ions/cm{sup 2} and 1 Multiplication-Sign 10{sup 12} ions/cm{sup 2} for SHI induced modifications. The long range correlation between paramagnetic spins on Co ions was destroyed by irradiation and the material became purely paramagnetic. The effect is ascribed to the formation of cylindrical ion tracks due to the thermal spikes resulting from electron-phonon coupling. - Highlights: Black-Right-Pointing-Pointer Effect of swift heavy ions on magnetic ordering in Co doped ZnS thin films are presented. Black-Right-Pointing-Pointer Magnetization in the pristine films is composed of ferromagnetic and paramagnetic components. Black-Right-Pointing-Pointer The films become purely paramagnetic after swift heavy ions irradiation. Black-Right-Pointing-Pointer The magnetic transition is ascribed to the formation of ion track (or cylindrical defects) due to the thermal spikes.

  3. Neutron scattering investigation of Ce based heavy fermion systems. From magnetism to unconventional phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Geselbracht, Philipp

    2016-12-05

    In Ce based heavy fermion systems the hybridization of the 4f orbital of the Ce ion and the conduction band lead to unconventional phenomena such as quantum critical points or superconductivity. The aim of this thesis is to investigate and compare the magnetism on a microscopic scale within the heavy fermion families CeT{sub 2}X{sub 2} (X=Si,Ge) and CeTIn{sub 5}. To do so neutron scattering was used as the experimental method. For CeCu{sub 2}Ge{sub 2}, the antiferromagnetic order AF1 (vector τ=(0.285 0.285 0.544)) is well described as a spin density wave with reduced ordered moments in [1 anti 10] direction. The phase diagram with magnetic field applied along [1 anti 10] direction was investigated. Two new phases were observed: the elliptical helix phase AF2 with modified propagation vector vector τ=(0.34 0.27 0.55) and the C-phase with a yet unknown magnetic order. Above T{sub N}, in zero field, short range order was observed, hinting competition of AF1 and AF2. It is assumed that both structures are due to different nesting properties of the Fermi surface. The RKKY character of the electronic system leads to effective Lande factors in the AF1 (g{sup eff}=0.36) and AF2 (g{sup eff}=0.525) phases. From the zero field dispersion the strength of the next nearest neighbor RKKY interactions was extracted, yielding 2SJ{sub 1}=(-0.042±0.007) meV (basal plane) and 2SJ{sub 2}=(-0.18±0.01) meV (body diagonal). Comparing the RKKY interaction to CeCu{sub 2}Si{sub 2} and CeNi{sub 2}Ge{sub 2} reveals a strong enhancement of the interaction in the basal plane going from antiferromagnetism (CeCu{sub 2}Ge{sub 2}) to superconductivity (CeCu{sub 2}Si{sub 2}) and finally paramagnetism (CeNi{sub 2}Ge{sub 2}). This new finding appears to be an important puzzle piece for the understanding of the CeT{sub 2}X{sub 2} family as it suggests a dependence of the anisotropy of the RKKY interaction from the hybridization strength of the 4f orbital and the conduction band. The obtained phase

  4. The Challenge to Scavenge IRON from Tailings Produced By FLOTATION A New Approach: The Super-WHIMS & the BigFLUX Magnetic Matrix

    Directory of Open Access Journals (Sweden)

    José Pancrácio Ribeiro

    Full Text Available Abstract Tailings recovery has been a constant challenge for most engineers. Along more than five years, GAUSTEC joined major players in the mining Industry to scavenge Iron from tailings produced by flotation making use of WHIMS (Wet High Intensity Magnetic Separation. In the early 1980s, in USA, the US 4,192,738 patent was granted with promising results. Despite this, thirty years have passed with no significant application worldwide. One main reason is reported: the market missed a really high feed capacity WHIMS in order to avoid the huge number of the WHIMS that were available at that time (such projects would typically require more than 20 WHIMS to scavenge iron from tailings produced by flotation plants. Such a huge asset to scavenge low grade iron tailings would not payback. The Mega sized WHIMS launched by GAUSTEC in 2014, the GHX-1400, improved by the Super-WHIMS Technology (18.000 Gauss and BigFlow Magnetic Matrixes (Gaps smaller than 1.5 mm, faced this challenge. Specially designed ancillary equipment described here also played a decisive role in the scene.

  5. Magnetic moments of the spin-(3)/(2) doubly heavy baryons

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Lu; Li, Hao-Song [Peking University, School of Physics and State Key Laboratory of Nuclear Physics and Technology, Beijing (China); Liu, Zhan-Wei [Lanzhou University, School of Physical Science and Technology, Lanzhou (China); Zhu, Shi-Lin [Peking University, School of Physics and State Key Laboratory of Nuclear Physics and Technology, Beijing (China); Collaborative Innovation Center of Quantum Matter, Beijing (China)

    2017-12-15

    In this work, we investigate the chiral corrections to the magnetic moments of the spin-(3)/(2) doubly charmed baryons systematically up to next-to-next-to-leading order with the heavy baryon chiral perturbation theory. The numerical results are given up to next-to-leading order: μ{sub Ξ}{sup {sub *}{sub +}{sub +{sub c{sub c}}}} = 2.61μ{sub N}, μ{sub Ξ}{sup {sub *}{sub +{sub c{sub c}}}} = -0.18μ{sub N}, μ{sub Ω}{sup {sub *}{sub +{sub c{sub c}}}} = 0.17μ{sub N}. As a by-product, we have also calculated the magnetic moments of the spin-(3)/(2) doubly bottom baryons and charmed bottom baryons: μ{sub Ξ}{sup {sub *}{sub 0{sub b{sub b}}}} = 2.83μ{sub N}, μ{sub Ξ}{sup {sub *}{sub -{sub b{sub b}}}} = -1.33μ{sub N}, μ{sub Ω}{sup {sub *}{sub -{sub b{sub b}}}} = -1.54μ{sub N}, μ{sub Ξ}{sup {sub *}{sub +{sub b{sub c}}}} = 3.22μ{sub N}, μ{sub Ξ}{sup {sub *}{sub 0{sub b{sub c}}}} = -0.84μ{sub N}, μ{sub Ω}{sup {sub *}{sub 0{sub b{sub c}}}} = -1.09μ{sub N}. (orig.)

  6. SuperMAG: Present and Future Capabilities

    Science.gov (United States)

    Hsieh, S. W.; Gjerloev, J. W.; Barnes, R. J.

    2009-12-01

    SuperMAG is a global collaboration that provides ground magnetic field perturbations from a long list of stations in the same coordinate system, identical time resolution and with a common baseline removal approach. This unique high quality dataset provides a continuous and nearly global monitoring of the ground magnetic field perturbation. Currently, only archived data are available on the website and hence it targets basic research without any operational capabilities. The existing SuperMAG software can be easily adapted to ingest real-time or near real-time data and provide a now-casting capability. The SuperDARN program has a long history of providing near real-time maps of the northern hemisphere electrostatic potential and as both SuperMAG and SuperDARN share common software it is relatively easy to adapt these maps for global magnetic perturbations. Magnetometer measurements would be assimilated by the SuperMAG server using a variety of techniques, either by downloading data at regular intervals from remote servers or by real-time streaming connections. The existing SuperMAG analysis software would then process these measurements to provide the final calibrated data set using the SuperMAG coordinate system. The existing plotting software would then be used to produce regularly updated global plots. The talk will focus on current SuperMAG capabilities illustrating the potential for now-casting and eventually forecasting.

  7. EUROv Super Beam Studies

    International Nuclear Information System (INIS)

    Dracos, Marcos

    2011-01-01

    Neutrino Super Beams use conventional techniques to significantly increase the neutrino beam intensity compared to the present neutrino facilities. An essential part of these facilities is an intense proton driver producing a beam power higher than a MW. The protons hit a target able to accept the high proton beam intensity. The produced charged particles are focused by a system of magnetic horns towards the experiment detectors. The main challenge of these projects is to deal with the high beam intensity for many years. New high power neutrino facilities could be build at CERN profiting from an eventual construction of a high power proton driver. The European FP7 Design Study EUROv, among other neutrino beams, studies this Super Beam possibility. This paper will give the latest developments in this direction.

  8. Millimeter length micromachining using a heavy ion nuclear microprobe with standard magnetic scanning

    International Nuclear Information System (INIS)

    Nesprías, F.; Debray, M.E.; Davidson, J.; Kreiner, A.J.

    2013-01-01

    In order to increase the scanning length of our microprobe, we have developed an irradiation procedure suitable for use in any nuclear microprobe, extending at least up to 400% the length of our heavy ion direct writing facility using standard magnetic exploration. Although this method is limited to patterns of a few millimeters in only one direction, it is useful for the manufacture of curved waveguides, optical devices such Mach–Zehnder modulators, directional couplers as well as channels for micro-fluidic applications. As an example, this technique was applied to the fabrication of 3 mm 3D-Mach–Zehnder modulators in lithium niobate with short Y input/output branches and long shaped parallel-capacitor control electrodes. To extend and improve the quality of the machined structures we developed new scanning control software in LabView™ platform. The new code supports an external dose normalization, electrostatic beam blanking and is capable of scanning figures at 16 bit resolution using a National Instruments™ PCI-6731 High-Speed I/O card. A deep and vertical micromachining process using swift 35 Cl ions 70 MeV bombarding energy and direct write patterning was performed on LiNbO 3 , a material which exhibits a strong natural anisotropy to conventional etching. The micromachined structures show the feasibility of this method for manufacturing micro-fluidic channels as well

  9. Millimeter length micromachining using a heavy ion nuclear microprobe with standard magnetic scanning

    Energy Technology Data Exchange (ETDEWEB)

    Nesprías, F. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. Gral Paz 1499 (1650), San Martín, Buenos Aires (Argentina); Debray, M.E., E-mail: debray@tandar.cnea.gov.ar [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. Gral Paz 1499 (1650), San Martín, Buenos Aires (Argentina); Escuela de Ciencia y Tecnología. Universidad Nacional de Gral. San Martín, M. De Irigoyen 3100 (1650), San Martín, Buenos Aires (Argentina); Davidson, J. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. Gral Paz 1499 (1650), San Martín, Buenos Aires (Argentina); CONICET, Avda. Rivadavia 1917 (C1033AAJ), Ciudad Autónoma de Buenos Aires (Argentina); Kreiner, A.J. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. Gral Paz 1499 (1650), San Martín, Buenos Aires (Argentina); Escuela de Ciencia y Tecnología. Universidad Nacional de Gral. San Martín, M. De Irigoyen 3100 (1650), San Martín, Buenos Aires (Argentina); CONICET, Avda. Rivadavia 1917 (C1033AAJ), Ciudad Autónoma de Buenos Aires (Argentina); and others

    2013-04-01

    In order to increase the scanning length of our microprobe, we have developed an irradiation procedure suitable for use in any nuclear microprobe, extending at least up to 400% the length of our heavy ion direct writing facility using standard magnetic exploration. Although this method is limited to patterns of a few millimeters in only one direction, it is useful for the manufacture of curved waveguides, optical devices such Mach–Zehnder modulators, directional couplers as well as channels for micro-fluidic applications. As an example, this technique was applied to the fabrication of 3 mm 3D-Mach–Zehnder modulators in lithium niobate with short Y input/output branches and long shaped parallel-capacitor control electrodes. To extend and improve the quality of the machined structures we developed new scanning control software in LabView™ platform. The new code supports an external dose normalization, electrostatic beam blanking and is capable of scanning figures at 16 bit resolution using a National Instruments™ PCI-6731 High-Speed I/O card. A deep and vertical micromachining process using swift {sup 35}Cl ions 70 MeV bombarding energy and direct write patterning was performed on LiNbO{sub 3}, a material which exhibits a strong natural anisotropy to conventional etching. The micromachined structures show the feasibility of this method for manufacturing micro-fluidic channels as well.

  10. Magnetic chirality induced from Ruderman-Kittel-Kasuya-Yosida interaction at an interface of a ferromagnet/heavy metal heterostructure

    International Nuclear Information System (INIS)

    Shibuya, Taira; Matsuura, Hiroyasu; Ogata, Masao

    2016-01-01

    We study a microscopic derivation and the properties of the Dzyaloshinskii-Moriya interaction (DMI) between local magnetic moments in ferromagnet/heavy metal heterostructures. First, we derive DMI by Ruderman-Kittel-Kasuya-Yosida interaction through electrons in a heavy metal with Rashba spin orbit interaction (SOI). Next, we study the dependences of the DMI on the Rashba SOI, lattice constant, and chemical potential. We find that the DMI amplitude increases linearly when the Rashba SOI is small, has a maximum when the Rashba SOI is comparable to the hopping integral, and decreases when the Rashba SOI is large. The sign of the DMI not only changes depending on the sign of the Rashba SOI but also the lattice constants and the chemical potential of the heavy metal. The implications of the obtained results for experiments are discussed. (author)

  11. Study of passive and active protection system for the SSC [Superconducting Super Collider] R ampersand D dipole magnet

    International Nuclear Information System (INIS)

    Lopez, G.; Snitchler, G.

    1990-06-01

    A comparative study of Passive versus Active Protection Systems is made using the computer programs SSC*, designed especially for this proposal. These programs track the quench evolution of each conductor independently, the axial quench velocity is given by a modified expression which correctly fits the experimental data, the phenomenological turn-to-turn transversal quench propagation is considered as an input parameter of the programs. The results of the simulations for a 40 mm dipole indicate that a single dipole is widely self-protected, which suggests that a Cold Diode Passive Protection System is a safe method to protect the magnet (no heaters are needed), and also that two or three magnets (Conceptual Design) will be a safe Active Protection System is the heater-time-delay to cause other quenching is sufficiently brief (τ h < 50 ms). Assuming the same turn-to-turn quench propagation for the 50 mm SSC R ampersand D Dipole Magnet, the predictions for this magnet will have much lower axial quench velocity and the above results will be still valid for this new magnet. 10 refs., 30 figs

  12. Geometrically frustrated magnetic structures of the heavy-fermion compound CePdAl studied by powder neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Doenni, A.; Fischer, P.; Zolliker, M. [Laboratory for Neutron Scattering, ETH Zuerich and Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Ehlers, G.; Maletta, H. [Hahn Meitner Institute Berlin, Glienicker Strasse 100, D-14092 Berlin (Germany); Kitazawa, H. [National Research Institute for Metals, Tsukuba, Ibaraki 305 (Japan)

    1996-12-09

    The heavy-fermion compound CePdAl with ZrNiAl-type crystal structure (hexagonal space group P6-bar2m) was investigated by powder neutron diffraction. The triangular coordination symmetry of magnetic Ce atoms on site 3f gives rise to geometrical frustration. CePdAl orders below T{sub N} = 2.7 K with an incommensurate antiferromagnetic propagation vector k=[1/2, 0, {tau}], {tau} approx. 0.35, and a longitudinal sine-wave (LSW) modulated spin arrangement. Magnetically ordered moments at Ce(1) and Ce(3) coexist with frustrated disordered moments at Ce(2). The experimentally determined magnetic structure is in agreement with group theoretical symmetry analysis considerations, calculated by the program MODY, which confirm that for Ce(2) an ordered magnetic moment parallel to the magnetically easy c-axis is forbidden by symmetry. Further low-temperature experiments give evidence for a second magnetic phase transition in CePdAl between 0.6 and 1.3 K. Magnetic structures of CePdAl are compared with those of the isostructural compound TbNiAl, where a non-zero ordered magnetic moment for the geometrically frustrated Tb(2) atoms is allowed by symmetry. (author)

  13. Defect induced modification of structural, topographical and magnetic properties of zinc ferrite thin films by swift heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Raghavan, Lisha [Department of Physics, Cochin University of Science and Technology, Cochin 682022 (India); Inter University Accelerator Center, New Delhi 110067 (India); Joy, P.A. [National Chemical Laboratory, Pune (India); Vijaykumar, B. Varma; Ramanujan, R.V. [School of Materials Science and Engineering, Nanyang Technological University (Singapore); Anantharaman, M.R., E-mail: mraiyer@gmail.com [Department of Physics, Cochin University of Science and Technology, Cochin 682022 (India)

    2017-04-01

    Highlights: • Zinc ferrite films exhibited room temperature ferrimagnetic property. • On ion irradiation amorphisation of films were observed. • The surface morphology undergoes changes with ion irradiation. • The saturation magnetisation decreases on ion irradiation. - Abstract: Swift heavy ion irradiation provides unique ways to modify physical and chemical properties of materials. In ferrites, the magnetic properties can change significantly as a result of swift heavy ion irradiation. Zinc ferrite is an antiferromagnet with a Neel temperature of 10 K and exhibits anomalous magnetic properties in the nano regime. Ion irradiation can cause amorphisation of zinc ferrite thin films; thus the role of crystallinity on magnetic properties can be examined. The influence of surface topography in these thin films can also be studied. Zinc ferrite thin films, of thickness 320 nm, prepared by RF sputtering were irradiated with 100 MeV Ag ions. Structural characterization showed amorphisation and subsequent reduction in particle size. The change in magnetic properties due to irradiation was correlated with structural and topographical effects of ion irradiation. A rough estimation of ion track radius is done from the magnetic studies.

  14. SUPER STRONG MAGNETIC FIELDS OF NEUTRON STARS IN BE X-RAY BINARIES ESTIMATED WITH NEW TORQUE AND MAGNETOSPHERE MODELS

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Chang-Sheng; Zhang, Shuang-Nan [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Li, Xiang-Dong, E-mail: zhangsn@ihep.ac.cn [Key Laboratory of Modern Astronomy and Astrophysics (Nanjing University), Ministry of Education, Nanjing 210093 (China)

    2015-11-10

    We re-estimate the surface magnetic fields of neutron stars (NSs) in Be X-ray binaries (BeXBs) with different models of torque, improved beyond Klus et al. In particular, a new torque model is applied to three models of magnetosphere radius. Unlike the previous models, the new torque model does not lead to divergent results for any fastness parameter. The inferred surface magnetic fields of these NSs for the two compressed magnetosphere models are much higher than that for the uncompressed magnetosphere model. The new torque model using the compressed magnetosphere radius leads to unique solutions near spin equilibrium in all cases, unlike other models that usually give two branches of solutions. Although our conclusions are still affected by the simplistic assumptions about the magnetosphere radius calculations, we show several groups of possible surface magnetic field values with our new models when the interaction between the magnetosphere and the infalling accretion plasma is considered. The estimated surface magnetic fields for NSs BeXBs in the Large Magellanic Cloud, the Small Magellanic Cloud and the Milk Way are between the quantum critical field and the maximum “virial” value by the spin equilibrium condition.

  15. The Super Patalan Numbers

    OpenAIRE

    Richardson, Thomas M.

    2014-01-01

    We introduce the super Patalan numbers, a generalization of the super Catalan numbers in the sense of Gessel, and prove a number of properties analagous to those of the super Catalan numbers. The super Patalan numbers generalize the super Catalan numbers similarly to how the Patalan numbers generalize the Catalan numbers.

  16. Stepwise magnetic-geochemical approach for efficient assessment of heavy metal polluted sites

    Science.gov (United States)

    Appel, E.; Rösler, W.; Ojha, G.

    2012-04-01

    Previous studies have shown that magnetometry can outline the distribution of fly ash deposition in the surroundings of coal-burning power plants and steel industries. Especially the easy-to-measure magnetic susceptibility (MS) is capable to act as a proxy for heavy metal (HM) pollution caused by such kind of point source pollution. Here we present a demonstration project around the coal-burning power plant complex "Schwarze Pumpe" in eastern Germany. Before reunification of West and East Germany huge amounts of HM pollutants were emitted from the "Schwarze Pumpe" into the environment by both fly ash emission and dumped clinker. The project has been conducted as part of the TASK Centre of Competence which aims at bringing new innovative techniques closer to the market. Our project combines in situ and laboratory MS measurements and HM analyses in order to demonstrate the efficiency of a stepwise approach for site assessment of HM pollution around point sources of fly-ash emission and deposition into soil. The following scenario is played through: We assume that the "true" spatial distribution of HM pollution (given by the pollution load index PLI comprising Fe, Zn, Pb, and Cu) is represented by our entire set of 85 measured samples (XRF analyses) from forest sites around the "Schwarze Pumpe". Surface MS data (collected with a Bartington MS2D) and in situ vertical MS sections (logged by an SM400 instrument) are used to determine a qualitative overview of potentially higher and lower polluted areas. A suite of spatial HM distribution maps obtained by random selections of 30 out of the 85 analysed sites is compared to the HM map obtained from a targeted 30-sites-selection based on pre-information from the MS results. The PLI distribution map obtained from the targeted 30-sites-selection shows all essential details of the "true" pollution map, while the different random 30-sites-selections miss important features. This comparison shows that, for the same cost

  17. Enhancement in the interfacial perpendicular magnetic anisotropy and the voltage-controlled magnetic anisotropy by heavy metal doping at the Fe/MgO interface

    Directory of Open Access Journals (Sweden)

    Takayuki Nozaki

    2018-02-01

    Full Text Available We investigated the influence of heavy metal doping at the Fe/MgO interface on the interfacial perpendicular magnetic anisotropy (PMA and the voltage-controlled magnetic anisotropy (VCMA in magnetic tunnel junctions prepared by sputtering-based deposition. The interfacial PMA was increased by tungsten doping and a maximum intrinsic interfacial PMA energy, Ki,0 of 2.0 mJ/m2 was obtained. Ir doping led to a large increase in the VCMA coefficient by a factor of 4.7 compared with that for the standard Fe/MgO interface. The developed technique provides an effective approach to enhancing the interfacial PMA and VCMA properties in the development of voltage-controlled spintronic devices.

  18. Adaptation of lessons learned from the Eurotunnel Project and CDM magnet production to super collider main ring installation

    International Nuclear Information System (INIS)

    Belding, J.; Di Domenico, P.; Gillin, J.; Hahn, W.; Naventi, R.; Nielsen, M.; Seely, M.; Hopkins, J.; Patterson, L.R.

    1994-01-01

    This paper will present preliminary findings from the Phase I Collider Installation contract studies performed by the Bechtel/General Dynamics/Belding Team related to the installation of technical systems for the SSC main ring north and south arcs. Specific focus is given to the adaptation of lessons learned during construction of the Eurotunnel, including equipment and personnel logistics and transportation. The incorporation of Collider Dipole Magnet manufacturing techniques and process methodologies as related to the handling and interconnection of main ring components is also discussed

  19. A super soliton connection

    International Nuclear Information System (INIS)

    Gurses, M.; Oguz, O.

    1985-07-01

    Integrable super non-linear classical partial differential equations are considered. A super s1(2,R) algebra valued connection 1-form is constructed. It is shown that curvature 2-form of this super connection vanishes by virtue of the integrable super equations of motion. A super extension of the AKNS scheme is presented and a class of super extension of the Lax hierarchy and super non-linear Schroedinger equation are found. O(N) extension and the Baecklund transformations of the above super equations are also considered. (author)

  20. Effect of Quark Spins to the Hadron Distributions for Chiral Magnetic Wave in Ultrarelativistic Heavy-Ion Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Byungsik [Korea University, Seoul (Korea, Republic of)

    2017-07-15

    Topological fluctuation of the gluon field in quantum chromodynamics modifies the vacuum structure, and causes various chiral anomalies. In the strong magnetic field generated by semi-central heavy-ion collisions, the axial and vector density fluctuations propagate along the external magnetic field, called the chiral magnetic wave. Up to now the investigation of the various chiral anomalies in heavy ion collisions has been focussed on the charge distribution in the transverse plane. However, this paper points out that the information on the charge distribution is not enough and the spin effect should also be taken into account. Considering the charge and spin distributions together, π{sup ±} with spin 0 are not proper particle species to study the chiral anomalies, as the signal may be significantly suppressed as one of the constituent (anti)quarks should come from background to form the pseudoscalar states. It is, therefore, necessary to analyze explicitly the vector mesons with spin 1 (K⋆{sup ±} (892)) and baryons with spin 3/2 (Δ{sup ++}(1232), Σ{sup −} (1385) and Ω{sup −} ). If the chiral anomaly effects exist, the elliptic flow parameter is expected to be larger for negative particles for each particle species.

  1. Leptonic and charged kaon decay modes of the $\\phi$ meson measured in heavy-ion collisions at the CERN Super Proton Synchrotron

    CERN Document Server

    AUTHOR|(CDS)2073202; Antonczyk, D; Appelshäuser, H; Belaga, V; Bielcikova, J; Braun-Munzinger, P; Busch, O; Cherlin, A; Damjanovic, S; Dietel, T; Dietrich, L; Drees, A; Esumi, S I; Filimonov, K; Fomenko, K; Fraenkel, Zeev; Garabatos, C; Glässel, P; Hering, G; Holeczek, J; Kushpil, V; Ludolphs, W; Maas, A; Marin, A; Milosevic, J; Miskowiec, D; Ortega, R; Panebratsev, Yu A; Petchenova, O Yu; Petracek, V; Radomski, S; Rak, J; Ravinovich, I; Rehak, P; Sako, H; Schmitz, W; Schükraft, J; Sedykh, S; Shimansky, S S; Stachel, J; Sumbera, M; Tilsner, H; Tserruya, Itzhak; Tsiledakis, G; Wessels, J P; Wienold, T; Wurm, J P; Yurevich, S; Yurevich, V

    2006-01-01

    We report a measurement of $\\phi$ meson production in central Pb+Au collisions at E$_{lab}$/A=158 GeV. For the first time in heavy-ion collisions, $\\phi$ mesons were reconstructed in the same experiment both in the K$^+$K$^-$ and the dilepton decay channel. Near mid-rapidity, this yields rapidity densities, corrected for production at the same rapidity value, of 2.05 +- 0.14(stat) +- 0.25(syst) and 2.04 +- 0.49(stat)+-{0.32}(syst), respectively. The shape of the measured transverse momentum spectra is also in close agreement in both decay channels. The data rule out a possible enhancement of the $\\phi$ yield in the leptonic over the hadronic channel by a factor larger than 1.6 at 95% CL.

  2. Nuclear magnetic resonance investigation of the heavy fermion system Ce2CoAl7Ge4

    Science.gov (United States)

    Dioguardi, A. P.; Guzman, P.; Rosa, P. F. S.; Ghimire, N. J.; Eley, S.; Brown, S. E.; Thompson, J. D.; Bauer, E. D.; Ronning, F.

    2017-12-01

    We present nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements performed on single crystalline Ce2CoAl7Ge4 , a member of a recently discovered family of heavy fermion materials Ce2M Al7Ge4 (M =Co , Ir, Ni, or Pd). Previous measurements indicated a strong Kondo interaction as well as magnetic order below TM=1.8 K . Our NMR spectral measurements show that the Knight shift K is proportional to the bulk magnetic susceptibility χ at high temperatures. A clear Knight shift anomaly (K ¬∝χ ) is observed at coherence temperatures T*˜17.5 K for H0∥c ̂ and 10 K for H0∥a ̂ at the 59Co site, and T*˜12.5 K at the 27Al(3) site for H0∥a ̂ characteristic of the heavy fermion nature of this compound. At high temperatures, the 59Co NMR spin-lattice relaxation rate T1-1 is dominated by spin fluctuations of the 4 f local moments with a weak metallic background. The spin fluctuations probed by 59Co NMR are anisotropic and larger in the basal plane than in the c direction. Furthermore, we find (T1T K ) -1∝T-1 /2 at the 59Co site as expected for a Kondo system for T >T* and T >TK . 59Co NQR T1-1 measurements at low temperatures indicate slowing down of spin fluctuations above the magnetic ordering temperature TM˜1.8 K . A weak ferromagnetic character of fluctuations around q =0 is evidenced by an increase of χ T versus T above the magnetic ordering temperature. We also find good agreement between the observed and calculated electric field gradients at all observed sites.

  3. Transport and magnetic properties of new heavy-fermion antiferromagnet YbNi{sub 3}Al{sub 9}

    Energy Technology Data Exchange (ETDEWEB)

    Ohara, S; Yamashita, T; Mori, Y; Sakamoto, I, E-mail: ohara.shigeo@nitech.ac.jp [Department of Engineering Physics, Electronics and Mechanics, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555 (Japan)

    2011-01-01

    We have synthesized a new Yb-based Kondo-lattice compound YbNi{sub 3}Al{sub 9}. This compound crystallizes in a trigonal ErNi{sub 3}Al{sub 9}-type structure (space group R32), in which the Yb-ion is arranged in a two-dimensional honey-comb lattice perpendicular to the c-axis. We report the first measurements of electrical resistivity and magnetization for single-crystalline samples of YbNi{sub 3}Al{sub 9}. The electrical resistivity of YbNi{sub 3}Al{sub 9} is characteristic of the typical properties of heavy-fermion antiferromagnets with a Neel temperature of T{sub N} = 3.4 K. The transport and magnetic properties exhibit large anisotropy in the low-temperature region owing to an interplay among the crystalline-electric-field effect, the Ruderman-Kittel-Kasuya-Yoshida interaction, and the Kondo effect. Below T{sub N}, the metamagnetic transition is observed at a very low magnetic field of around 1 kOe with the field applied along the a-axis. The magnetic structure of YbNi{sub 3}Al{sub 9} is highly sensitive to the applied magnetic field.

  4. Observations of heavy ions in the auroral region during magnetic storms

    International Nuclear Information System (INIS)

    Gotselyuk, Yu.V.; Kuznetsov, S.N.; Kudela, K.

    1984-01-01

    The distribution and dynamics of precipitating protons, α-particles and C-, N-, O nuclei during the strong geomagnetic storms of October 27 and December 2, 1977 is studied from the data of polar ''Interkosmos-17'' satillite. The observed heavy ion fluxes are compared with the data obtained with ''Explorer-45'' and ''S3-3'' satellites. The scattering mechanism is suggested which enables one to explain the heavy ions observations at low altitudes

  5. The feasibility of low-mass conductors for toroidal superconducting magnets for SSC [Superconducting Super Collider] detectors

    International Nuclear Information System (INIS)

    Luton, J.N.

    1990-01-01

    An earlier study by Luton and Bonanos concluded that the design and fabrication of superconducting toroidal bending magnets would require a major effort but would be feasible. This study is an extension to examine the feasibility of low-mass conductors for such use. It included a literature search, consultations, with conductor manufacturers, and design calculations, but no experimental work. An unoptimized sample design that used a residual resistivity ratio for aluminum of 1360 and a current density of 3.5 kA/cm 2 over the uninsulated conductor for a 4.5-T toroid with 1 GJ of stored energy obtained a hot-spot temperature of 120 K with a maximum dump voltage of 3.6 kV and 24% of the initial current inductively transferred into the shorted aluminum structure. The stability margin was 200 mJ/cm 3 of cable space. Limiting the quench pressure to 360 atm to give conservative stresses in the sheath and assuming that the whole flow path quenched immediately resulted in helium taps that could be a kilometer apart if the flow friction factor were the same as that experienced in the Westinghouse (W) Large Coil Task (LCT) coil. This indicates that the 520-m conductor length of each of the 72 individual coil segments of a toroid would be a single flow path. If some practical uncertainties can be favorably resolved by producing and testing sample conductors, the use of a conductor with clad-aluminum stabilizer and extruded aluminum-alloy sheath should be feasible and economical. 9 refs., 3 figs

  6. Development of a compact HTS lead unit for the SC correction coils of the SuperKEKB final focusing magnet system

    Energy Technology Data Exchange (ETDEWEB)

    Zong, Zhanguo, E-mail: zhanguo.zong@kek.jp; Ohuchi, Norihito; Tsuchiya, Kiyosumi; Arimoto, Yasushi

    2016-09-11

    Forty-three superconducting (SC) correction coils with maximum currents of about 60 A are installed in the SuperKEKB final focusing magnet system. Current leads to energize the SC correction coils should have an affordable heat load and fit the spatial constraints in the service cryostat where the current leads are installed. To address the requirements, design optimization of individual lead was performed with vapor cooled current lead made of a brass material, and a compact unit was designed to accommodate eight current leads together in order to be installed with one port in the service cryostat. The 2nd generation high temperature SC (HTS) tape was adopted and soldered at the cold end of the brass current lead to form a hybrid HTS lead structure. A prototype of the compact lead unit with HTS tape was constructed and tested with liquid helium (LHe) environment. This paper presents a cryogenic measurement system to simulate the real operation conditions in the service cryostat, and analysis of the experimental results. The measured results showed excellent agreement with the theoretical analysis and numerical simulation. In total, 11 sets of the compact HTS lead units were constructed for the 43 SC correction coils at KEK. One set from the mass production was tested in cryogenic conditions, and exhibited the same performance as the prototype. The compact HTS lead unit can feed currents to four SC correction coils simultaneously with the simple requirement of controlling and monitoring helium vapor flow, and has a heat load of about 0.762 L/h in terms of LHe consumption. - Highlights: • The requirements of the SC correction coils on current leads are introduced. • The optimum design of the brass vapor cooled current lead is described. • The compact structure of eight leads with HTS tape is presented. • The theoretical, numerical, and experimental results are compared. • The current lead heat load is evaluated for cryogenic system.

  7. Leptonic and charged kaon decay modes of the phi meson measured in heavy-ion collisions at the CERN super proton synchrotron.

    Science.gov (United States)

    Adamová, D; Agakichiev, G; Antończyk, D; Appelshäuser, H; Belaga, V; Bielcíková, J; Braun-Munzinger, P; Busch, O; Cherlin, A; Damjanovic, S; Dietel, T; Dietrich, L; Drees, A; Esumi, S I; Filimonov, K; Fomenko, K; Fraenkel, Z; Garabatos, C; Glässel, P; Hering, G; Holeczek, J; Krobath, G; Kushpil, V; Ludolphs, W; Maas, A; Marín, A; Milosević, J; Miśkowiec, D; Ortega, R; Panebrattsev, Y; Petchenova, O; Petrácek, V; Radomski, S; Rak, J; Ravinovich, I; Rehak, P; Sako, H; Schmitz, W; Schukraft, J; Sedykh, S; Shimansky, S; Stachel, J; Sumbera, M; Tilsner, H; Tserruya, I; Tsiledakis, G; Wessels, J P; Wienold, T; Wurm, J P; Yurevich, S; Yurevich, V

    2006-04-21

    We report on results of a measurement of meson production in central Pb-Au collisions at E(lab) = 158A GeV. For the first time in the history of high energy heavy-ion collisions, phi mesons were reconstructed both in the K+K- and the dilepton decay channels in the same experiment. This measurement yields rapidity densities near midrapidity, from the two decay channels, of 2.05 +/- 0.14(stat) +/- 0.25(syst) and 2.04 +/- 0.49(stat) +/- 0.32(syst), respectively. The shape of the measured transverse momentum spectrum is also in close agreement in both decay channels. The data rule out a possible enhancement of the phi yield in the leptonic over the hadronic decay channel of a factor 1.6 or larger at the 95% C.L. This rules out the discrepancy reported in the literature between measurements of the hadronic and dimuon decay channels by two different experiments.

  8. Window frame or ''superferric'' magnet design for low B(<3T) heavy ion storage ring study

    International Nuclear Information System (INIS)

    Danby, G.; DeVito, B.; Jackson, J.; Keohane, G.; Lee, Y.; Phillips, R.; Plate, S.; Repata, L.; Skaritka, J.; Smith, L.

    1985-01-01

    Double magnets share common laminations without magnetic coupling. Single layer coils of rectangular conductor are dry wound on extruded bore tubes. Magnet construction requires no molding or prestress. Absence of superconducting (SC) magnetization fields in the aperture results in very large dynamic range. The coil is wound continuously across the modplane to give unusually large dynamic aperture. Above approx.2.2 T saturation is corrected by simple sextupole windings with no inductive coupling to the dipole. Ultrastable design requires no internal quench protection. A quadrupole pair of novel design gives excellent field quality to B > 2 T without corrections, with no SC magnetization. Experience shows magnets are accurate enough for the assembly to take place at its final location. No training is required. Test procedures (measurements with search coils or with the beam) and cooldown properties are discussed. 2 refs., 8 figs., 1 tab

  9. Magnetic moments of triply heavy baryons in quark-diquark model

    International Nuclear Information System (INIS)

    Thakkar, Kaushal; Majethiya, Ajay; Vinodkumar, P.C.

    2016-01-01

    Along with the well-established triply flavoured (uuu) and strange (sss) baryons, QCD predicts similar states made up of charm quarks, the triply-charmed baryon, ccc and bottom quarks, the triply-bottom baryon, bbb. Such a state has yet to be observed experimentally. After the observation of the doubly charmed baryon by the SELEX group, it is expected that the triply heavy flavour baryonic state may be in the offing very soon. Though considerable amount of data on the properties of the singly-heavy baryons are available in literature, only sparse attention has been paid to the spectroscopy of double and triple-heavy flavour baryons, perhaps mainly due to the lack of experimental incentives

  10. Magnetic fluctuations and the superconducting transition in the heavy-fermion material UPd2Al3

    DEFF Research Database (Denmark)

    Petersen, T.; Mason, T.E.; Aeppli, G.

    1994-01-01

    Inelastic neutron scattering has been performed on single crystals of the heavy-fermion superconductor UPd2Al3. The antiferromagnetically ordered state is characterized by an acoustic spin wave mode with no gap. The low-frequency magnitude excitations are unaffected by the transition to a superco...... to a superconducting state despite coupling to the conduction electrons as evidenced by the significant damping....

  11. Grain boundary engineering in sintered Nd-Fe-B permanent magnets for efficient utilization of heavy rare earth elements

    Energy Technology Data Exchange (ETDEWEB)

    Loewe, Konrad

    2016-10-18

    The first part of the thesis investigates the diffusion of rare-earth (RE) elements in commercial sintered Nd-Fe-B based permanent magnets. A strong temperature dependence of the diffusion distance and resulting change in magnetic properties were found. A maximum increase in coercivity of ∼+350 kA/m using a Dy diffusion source occurred at the optimum annealing temperature of 900 C. After annealing for 6 h at this temperature, a Dy diffusion distance of about 4 mm has been observed with a scanning Hall probe. Consequently, the maximum thickness of grain boundary diffusion processed magnets with homogeneous properties is also only a few mm. The microstructural changes in the magnets after diffusion were investigated by electron microscopy coupled with electron probe microanalysis. It was found that the diffusion of Dy into sintered Nd-Fe-B permanent magnets occurs along the grain boundary phases, which is in accordance with previous studies. A partial melting of the Nd-Fe-B grains during the annealing process lead to the formation of so - called (Nd,Dy)-Fe-B shells at the outer part of the grains. These shells are μm thick at the immediate surface of the magnet and become thinner with increasing diffusion distance towards the center of the bulk. With scanning transmission electron microscopy coupled with electron probe analysis a Dy content of about 1 at.% was found in a shell located about 1.5 mm away from the surface of the magnet. The evaluation of diffusion speeds of Dy and other RE (Tb, Ce, Gd) in Nd-Fe-B magnets showed that Tb diffuses significantly faster than Dy, and Ce slightly slower than Dy, which is attributed to differences in the respective phase diagrams. The addition of Gd to the grain boundaries has an adverse effect on coercivity. Exemplary of the heavy rare earth element Tb, the nano - scale elemental distribution around the grain boundaries after the diffusion process was visualized with high resolution scanning transmission electron microscopy

  12. Specific heat of heavy-fermion CePd{sub 2}Si{sub 2} in high magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Sheikin, I. [University of Geneva, DPMC, Geneva (Switzerland)]. E-mail: Ilya.Sheikin@physics.unige.ch; Wang, Y.; Bouquet, F.; Junod, A. [University of Geneva, DPMC, Geneva (Switzerland); Lejay, P. [CRTBT, CNRS, Grenoble (France)

    2002-07-22

    We report specific heat measurements on the heavy-fermion compound CePd{sub 2}Si{sub 2} in magnetic fields up to 16 T and in the temperature range 1.4-16 K. A sharp peak in the specific heat signals the antiferromagnetic transition at T{sub N} {approx} 9.3 K in zero field. The transition is found to shift to lower temperatures when a magnetic field is applied along the crystallographic a-axis, while a field applied parallel to the tetragonal c-axis does not affect the transition. The magnetic contribution to the specific heat below T{sub N} is well described by a sum of a linear electronic term and an antiferromagnetic spin-wave contribution. Just below T{sub N}, an additional positive curvature, especially at high fields, arises most probably due to thermal fluctuations. The field dependence of the coefficient of the low-temperature linear term, {gamma}{sub 0}, extracted from the fits shows a maximum at about 6 T, at the point where an anomaly was detected in susceptibility measurements. The relative field dependences of both T{sub N} and the magnetic entropy at T{sub N} scale as [1-(B/B{sub 0}){sup 2}] for B parallel a, suggesting the disappearance of antiferromagnetism at B{sub 0}{approx}42 T. The expected suppression of the antiferromagnetic transition temperature to zero makes the existence of a magnetic quantum critical point possible. (author). Letter-to-the-editor.

  13. Chromatographic and spectroscopic analysis of heavy crude oil mixtures with emphasis in nuclear magnetic resonance spectroscopy: A review

    International Nuclear Information System (INIS)

    Silva, Sandra L.; Silva, Artur M.S.; Ribeiro, Jorge C.; Martins, Fernando G.; Da Silva, Francisco A.; Silva, Carlos M.

    2011-01-01

    Graphical abstract: The chromatographic and spectroscopic techniques used to characterize heavy crude oils, although more focused in the nuclear magnetic resonance spectroscopy as the technique of choice, due to its capability to provide great information on the chemical nature of individual types of proton and carbon atoms in different and complex mixtures of crude oils are described. This review is based on 65 references and describes in a critical and interpretative ways the advantages of the NMR spectroscopy as a main technique to be used in crude oil refining industries that want to characterize crude oil fractions and the obtained refined products. Highlights: ► Chromatogrfaphic and spectroscopic techniques used to characterize heavy crude oils have been reviewed. ► This review describes in a critical and interpretative ways the advantages of the NMR spectroscopy as a main technique to be used in crude oil refining industries. ► The progress in the interpretation of the NMR spectra and of different multivariate data analyses and their potential in the identification and characterization of hydrocarbons and their physical and chemical properties have also been reviewed. - Abstract: The state of the art in the characterization of heavy crude oil mixtures is presented. This characterization can be done by different techniques, such as gas chromatography (GC), high performance liquid chromatography (HPLC), thin layer chromatography (TLC), infrared spectroscopy (IR), Raman spectroscopy, nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS). Nuclear magnetic resonance spectroscopy is the technique of choice due to its capability to provide information on the chemical nature of individual types of hydrogen and carbon atoms in different and complex mixtures of crude oils. The progress made in the interpretation of the NMR spectra with the development of new NMR techniques and different multivariate data analyses could give relevant

  14. Pressure and magnetic field effects in heavy-fermion UCu.sub.3.5./sub.Al.sub.1.5./sub..

    Czech Academy of Sciences Publication Activity Database

    Nasreen, F.; Kothapalli, K.; Nakotte, H.; Alsmadi, A.M.; Zapf, V.; Fabris, F.; Lacerda, A.; Kamarád, Jiří

    2009-01-01

    Roč. 105, č. 7 (2009), 07E112/1-07E112/3 ISSN 0021-8979 R&D Projects: GA ČR GA202/09/1027 Institutional research plan: CEZ:AV0Z10100521 Keywords : aluminium alloys * copper alloys * crystallisation * heavy fermion systems * high-pressure effects * long-range order * magnetic field effects * magnetoresis Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.072, year: 2009

  15. Investigation of the commensurate magnetic structure in the heavy-fermion compound CePt2In7 using magnetic resonant x-ray diffraction

    Science.gov (United States)

    Gauthier, Nicolas; Wermeille, Didier; Casati, Nicola; Sakai, Hironori; Baumbach, Ryan E.; Bauer, Eric D.; White, Jonathan S.

    2017-08-01

    We investigated the magnetic structure of the heavy-fermion compound CePt2In7 below TN=5.34 (2 ) K using magnetic resonant x-ray diffraction at ambient pressure. The magnetic order is characterized by a commensurate propagation vector k1 /2=(1/2 ,1/2 ,1/2 ) with spins lying in the basal plane. Our measurements did not reveal the presence of an incommensurate order propagating along the high-symmetry directions in reciprocal space but cannot exclude other incommensurate modulations or weak scattering intensities. The observed commensurate order can be described equivalently by either a single-k structure or by a multi-k structure. Furthermore we explain how a commensurate-only ordering may explain the broad distribution of internal fields observed in nuclear quadrupolar resonance experiments [Sakai et al., Phys. Rev. B 83, 140408 (2011), 10.1103/PhysRevB.83.140408] that was previously attributed to an incommensurate order. We also report powder x-ray diffraction showing that the crystallographic structure of CePt2In7 changes monotonically with pressure up to P =7.3 GPa at room temperature. The determined bulk modulus B0=81.1 (3 ) GPa is similar to those of the Ce-115 family. Broad diffraction peaks confirm the presence of pronounced strain in polycrystalline samples of CePt2In7 . We discuss how strain effects can lead to different electronic and magnetic properties between polycrystalline and single crystal samples.

  16. Super magnetic nanoparticles NiFe2O4, coated with aluminum-nickel oxide sol-gel lattices to safe, sensitive and selective purification of his-tagged proteins.

    Science.gov (United States)

    Mirahmadi-Zare, Seyede Zohreh; Allafchian, Alireza; Aboutalebi, Fatemeh; Shojaei, Pendar; Khazaie, Yahya; Dormiani, Kianoush; Lachinani, Liana; Nasr-Esfahani, Mohammad-Hossein

    2016-05-01

    Super magnetic nanoparticle NiFe2O4 with high magnetization, physical and chemical stability was introduced as a core particle which exhibits high thermal stability (>97%) during the harsh coating process. Instead of multi-stage process for coating, the magnetic nanoparticles was mineralized via one step coating by a cheap, safe, stable and recyclable alumina sol-gel lattice (from bohemite source) saturated by nickel ions. The TEM, SEM, VSM and XRD imaging and BET analysis confirmed the structural potential of NiFe2O4@NiAl2O4 core-shell magnetic nanoparticles for selective and sensitive purification of His-tagged protein, in one step. The functionality and validity of the nickel magnetic nanoparticles were attested by purification of three different bioactive His-tagged recombinant fusion proteins including hIGF-1, GM-CSF and bFGF. The bonding capacity of the nickel magnetics nanoparticles was studied by Bradford assay and was equal to 250 ± 84 μg Protein/mg MNP base on protein size. Since the metal ion leakage is the most toxicity source for purification by nickel magnetic nanoparticles, therefor the nickel leakage in purified final protein was determined by atomic absorption spectroscopy and biological activity of final purified protein was confirmed in comparison with reference. Also, in vitro cytotoxicity of nickel magnetic nanoparticles and trace metal ions were investigated by MTS assay analysis. The results confirmed that the synthesized nickel magnetic nanoparticles did not show metal ion toxicity and not affected on protein folding. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Distribution of Heavy-Metal Contamination in Regulated River-Channel Deposits: a Magnetic Susceptibility and Grain-Size Approach; River Morava, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Famera, M.; Bábek, O.; Matys Grygar, Tomáš; Nováková, Tereza

    2013-01-01

    Roč. 224, č. 5 (2013), 1525-1-1525-18 ISSN 0049-6979 R&D Projects: GA AV ČR IAAX00130801 Institutional support: RVO:61388980 Keywords : Fluvial transport * Fly-ash spherules * Geochemical background * Heavy metals * Lithology * Magnetic susceptibility Subject RIV: DD - Geochemistry Impact factor: 1.685, year: 2013

  18. Magnetically modified peanut husks as an effective sorbent of heavy metals

    Czech Academy of Sciences Publication Activity Database

    Rozumová, L.; Životský, O.; Seidlerová, J.; Motyka, O.; Šafařík, Ivo; Šafaříková, Miroslava

    2016-01-01

    Roč. 4, č. 1 (2016), s. 549-555 ISSN 2213-3437 R&D Projects: GA ČR GA13-13709S Institutional support: RVO:67179843 Keywords : Cadmium * Ions sorption * Lead * Magnetic modification * Peanut husks * Waste water Subject RIV: EI - Biotechnology ; Bionics

  19. Super oil cracking update

    International Nuclear Information System (INIS)

    Mulraney, D.

    1997-01-01

    The conversion of residual fuel oil to usable middle distillates was discussed. The residue conversion processing paths are usually based on separation, carbon rejection, or hydrogen addition principles. Super Oil Cracking (SOC) uses a slurry catalyst system in a new, tubular reactor to achieve high levels of hydrothermal conversion. SOC can upgrade a variety of heavy, high metals residue feedstocks with high yields of middle distillates. The SOC products can also be further treated into feedstocks for FCC or hydrocracking. The SOC process can be incorporated easily into a refinery to obtain incremental residue conversion directly. It can also be integrated with other residue processes, acting as a demetallization and decarbonization step which results in enhanced overall conversion. The relative rate of coke formation and its handling are distinguishing characteristics between residue upgrading technologies. The SOC process operates at higher temperatures that other residue hydrocracking processes resulting in higher rates of thermal decomposition, thus preventing coke formation. SOC process can operate as a stand-alone upgrader or can be integrated with other bottoms processing steps to extend the refiner's range of options for increasing bottoms conversion.3 tabs., 14 figs

  20. Electronic structure of super heavy atoms revisited

    International Nuclear Information System (INIS)

    Gitman, D M; Levin, A D; Tyutin, I V; Voronov, B L

    2013-01-01

    The electronic structure of an atom with Z ⩽ Z c = 137 can be described by the Dirac equation with the Coulomb field of a point charge Ze. It was believed that the Dirac equation with Z > Z c poses difficulties because the formula for the lower energy level of the Dirac Hamiltonian formally gives imaginary eigenvalues. But a strict mathematical consideration shows that difficulties with the electronic spectrum for Z > Z c do not arise if the Dirac Hamiltonian is correctly defined as a self-adjoint operator. In this paper, we briefly summarize the main physical results of that consideration in a form suitable for physicists with some additional new details and numerical calculations of the electronic spectra. (comment)

  1. Search for the Chiral Magnetic Effect in Heavy-Ion Collisions and Quantification of the Background with the AMPT Model

    Science.gov (United States)

    Bryon, Jacob

    2017-09-01

    The chiral magnetic effect (CME) arises from the chirality imbalance of quarks and its interaction to the strong magnetic field generated in non-central heavy-ion collisions. Possible formation of domains of quarks with chirality imbalances is an intrinsic property of the Quantum ChromoDynamics (QCD), which describes the fundamental strong interactions among quarks and gluons. Azimuthal-angle correlations have been used to measure the magnitude of charge- separation across the reaction plane, which was predicted to arise from the CME. However, backgrounds from collective motion (flow) of the collision system can also contribute to the correlation observable. In this poster, we investigate the magnitude of the background utilizing the AMPT model, which contains no CME signals. We demonstrate, for Au +Au collisions at 200 and 39 GeV, a scheme to remove the flow background via the event-shape engineering with the vanishing magnitude of the flow vector. We also calculate the ensemble average of the charge-separation observable, and provide a background baseline for the experimental data.

  2. Removal of heavy metal ions by magnetic chitosan nanoparticles prepared continuously via high-gravity reactive precipitation method.

    Science.gov (United States)

    Fan, Hong-Lei; Zhou, Shao-Feng; Jiao, Wei-Zhou; Qi, Gui-Sheng; Liu, You-Zhi

    2017-10-15

    This study aimed to provide a continuous method for the preparation of magnetic Fe 3 O 4 /Chitosan nanoparticles (Fe 3 O 4 /CS NPs) that can be applied to efficient removal of heavy metal ions from aqueous solution. Using a novel impinging stream-rotating packed bed, the continuous preparation of Fe 3 O 4 /CS NPs reached a theoretical production rate of 3.43kg/h. The as-prepared Fe 3 O 4 /CS NPs were quasi-spherical with average diameter of about 18nm and saturation magnetization of 33.5emu/g. Owing to the strong metal chelating ability of chitosan, the Fe 3 O 4 /CS NPs exhibited better adsorption capacity and faster adsorption rates for Pb(II) and Cd(II) than those of pure Fe 3 O 4 . The maximum adsorption capacities of Fe 3 O 4 /CS NPs for Pb(II) and Cd(II) were 79.24 and 36.42mgg -1 , respectively. In addition, the Fe 3 O 4 /CS NPs shown excellent reusability after five adsorption-desorption cycles. All the above results provided a potential method for continuously preparing recyclable adsorbent with a wide prospect of application in wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. The Super DREAM Project

    Energy Technology Data Exchange (ETDEWEB)

    Wigmans, Richard [Texas Tech Univ., Lubbock, TX (United States)

    2017-09-25

    Despite the fact that DOE provided only a fraction of the requested funds, the goals we defined in the proposal on which award ER41783 was based were essentially all met. This was partially due to the fact that other funding agencies, which supported our collaborators (especially from Italy and Korea) contributed as well, and partially due to the effective solutions that were developed to compensate for the fact that the detector we had proposed to build had to be scaled down. The performance of the SuperDREAM calorimeter is better than anything that has been built or proposed so far. This has of course not gone unnoticed in the scientific community. Scientists who are preparing experiments for the proposed new generation of particle accelerators (FCCee, CPEC,..) are all very seriously considering the technology developed in this project. Several new collaborations have formed which aim to adapt the dual-readout calorimeter principles to the demands of a 4 environment. Preliminary measurements using silicon photomultipliers as light sensors have already been carried out. This type of readout would make it possible to operate this detector in a magnetic field, and it would also allow for a longitudinal segmentation into electromagnetic and hadronic sections, if so desired. In addition, SiPM readout would eliminate the need for “forests” of fibers sticking out of the rear end of the calorimeter (Figure 1), and obtain an arbitrary fine lateral segmentation, which might be very important for recognizing electrons inside jets. The improvements in our understanding of the fundamental structure of matter and the forces that govern its behavior have always hinged on the availability of detectors that make it possible to explore the possibilities of new, more powerful particle accelerators to the fullest extent. We believe that the SuperDREAM project has created a quantum leap in detector technology, which may turn out to be crucially important for future discoveries in

  4. Magnetic field related mechanical tolerances for the proposed Chalk River superconducting heavy-ion cyclotron

    International Nuclear Information System (INIS)

    Heighway, E.A.; Chaplin, K.R.

    1977-11-01

    A four sector azimuthally varying field cyclotron with superconducting main coils has been proposed as a heavy-ion post-accelerator for the Chalk River MP Tandem van de Graaff. The radial profile of the average axial field will be variable using movable steel trim rods. The field errors due to coil, trim rod and flutter pole imperfections are calculated. Those considered are errors in the axial field, first and second azimuthal harmonic axial fields, transverse field and first azimuthal harmonic transverse field. Such fields induce phase slip, axial or radial coherent oscillations and can result in axial or radial beam instability. The allowed imperfections (tolerances) required to retain stability and maintain acceptably small coherent oscillation amplitudes are calculated. (author)

  5. Magnetic field structure of the U-120 cyclotron for heavy ions acceleration

    International Nuclear Information System (INIS)

    Schwabe, J.; Starzewski, J.

    1975-01-01

    The proposed magnetic structure makes possible the acceleration, in quasi-isochronous conditions, of ions having the ratio Z/A=0,665 - 0,1 on the U-120 cyclotron in Cracow. Simultaneously, significant improvement of the accelerated beam emittance, decrease in energy scattering down to a value of about 10 -3 , and an increase in the maximum accelerated beam energy may be obtained. (author)

  6. Novel superconductivity at the magnetic critical point in heavy-fermion systems: a systematic study of NQR under pressure

    International Nuclear Information System (INIS)

    Kitaoka, Y; Kawasaki, S; Kawasaki, Y; Mito, T; Zheng, G-q

    2007-01-01

    We report on the discovery of exotic superconductivity (SC) and novel magnetism in heavy-fermion (HF) compounds, CeCu 2 Si 2 , CeRhIn 5 and CeIn 3 , on the verge of antiferromagnetism (AFM) through nuclear-quadrupole-resonance (NQR) measurements under pressure (P). The exotic SC in a homogeneous CeCu 2 Si 2 (T c = 0.7 K) revealed antiferromagnetic critical fluctuations at the border to AFM or a marginal AFM. Remarkably, it has been found that the application of magnetic field induces a spin-density-wave (SDW) transition by suppressing the SC near the upper critical field. Furthermore, the uniform mixed phase of SC and AFM in CeCu 2 (Si 1-x Ge x ) 2 emerges on a microscopic level, once a tiny amount of 1% Ge (x = 0.01) is substituted for Si to expand its lattice. The application of minute pressure (P∼0.19 GPa) suppresses the sudden emergence of the AFM caused by doping Ge. The persistence of the low-lying magnetic excitations at temperatures lower than T c and T N is ascribed to the uniform mixed phase of SC and AFM. Likewise, the P-induced HF superconductor CeRhIn 5 coexists with AFM on a microscopic level in P = 1.5-1.9 GPa. It is demonstrated that SC does not yield any trace of gap opening in low-lying excitations below the onset temperature, presumably associated with an amplitude fluctuation of superconducting order parameter. The unconventional gapless nature of SC in the low-lying excitation spectrum emerges due to the uniform mixed phase of AFM and SC. By contrast, in CeIn 3 , the P-induced phase separation of AFM and paramagnetism (PM) takes place without any trace for a quantum phase transition. The outstanding finding is that SC sets in at both the phases magnetically separated into AFM and PM in P = 2.28-2.5 GPa. A new type of SC forms the uniform mixed phase with AFM and the HF SC occurs in PM. We propose that the magnetic excitations such as spin-density fluctuations induced by the first-order phase transition from AFM to PM might mediate attractive

  7. Magnetic susceptibility and electron–phonon (e–p) interaction in some U and Ce based heavy fermion (HF) systems

    International Nuclear Information System (INIS)

    Sahoo, J.; Shadangi, N.; Nayak, P.

    2015-01-01

    Here an attempt is made to explore the variation of magnetic susceptibility with temperature for different values of the position of f-level (d) and electron–phonon interaction (EPI) strength (r) in some U and Ce based heavy Fermion (HF) systems within Periodic Anderson Model (PAM) in the presence of a static magnetic field B and interaction of phonons with electrons of hybridization band. Since magnetic susceptibility χ is related to the f-electron occupation n ±σ f , the expression for the latter is analytically derived through f–f correlation function following the Green function technique of Zubarev. The numerical analysis of χ as a function of temperature ‘T’ is done for different values of d and r. The results show a good agreement with the experiments for some U and Ce based HFs. An explanation for the existence of a critical value of d w.r.t. E F for switching of nature of χ∼T from U to Ce based HF systems is provided. Our calculated value of the temperature T χmax corresponding to the peak position of χ for small values of hybridization constant γ=0.002 and 0.0036 coincides with the experimental value of 19 K for UPt 3 and 35 K for UPd 2 Al 3 reported by Frings et al. and Geibel et al. respectively. - Highlights: • Variation of magnetic susceptibility χ with temperature T is studied for some HF systems. • Periodic Anderson Model in presence of magnetic field and electron–phonon interaction is used for numerical evaluation. • The existence of a critical value of the position of f-level(d) is proposed for distinction between χ∼T behavior of U and Ce based HF systems. • Results obtained are in good agreement with the experimental observations for some Ce and U based HF systems. • Theoretically evaluated temperature corresponding to the peak value of χ matches with the experimental results of UPt 3 and UPd 2 Al 3

  8. An all permanent magnet electron cyclotron resonance ion source for heavy ion therapy.

    Science.gov (United States)

    Cao, Yun; Li, Jia Qing; Sun, Liang Ting; Zhang, Xue Zhen; Feng, Yu Cheng; Wang, Hui; Ma, Bao Hua; Li, Xi Xia

    2014-02-01

    A high charge state all permanent Electron Cyclotron Resonance ion source, Lanzhou All Permanent ECR ion source no. 3-LAPECR3, has been successfully built at IMP in 2012, which will serve as the ion injector of the Heavy Ion Medical Machine (HIMM) project. As a commercial device, LAPECR3 features a compact structure, small size, and low cost. According to HIMM scenario more than 100 eμA of C(5+) ion beam should be extracted from the ion source, and the beam emittance better than 75 π*mm*mrad. In recent commissioning, about 120 eμA of C(5+) ion beam was got when work gas was CH4 while about 262 eμA of C(5+) ion beam was obtained when work gas was C2H2 gas. The design and construction of the ion source and its low-energy transportation beam line, and the preliminary commissioning results will be presented in detail in this paper.

  9. An all permanent magnet electron cyclotron resonance ion source for heavy ion therapy

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Yun, E-mail: caoyun@impcas.ac.cn; Li, Jia Qing; Sun, Liang Ting; Zhang, Xue Zhen; Feng, Yu Cheng; Wang, Hui; Ma, Bao Hua; Li, Xi Xia [Institute of Modern Physics, CAS, Lanzhou 730000 (China)

    2014-02-15

    A high charge state all permanent Electron Cyclotron Resonance ion source, Lanzhou All Permanent ECR ion source no. 3-LAPECR3, has been successfully built at IMP in 2012, which will serve as the ion injector of the Heavy Ion Medical Machine (HIMM) project. As a commercial device, LAPECR3 features a compact structure, small size, and low cost. According to HIMM scenario more than 100 eμA of C{sup 5+} ion beam should be extracted from the ion source, and the beam emittance better than 75 π*mm*mrad. In recent commissioning, about 120 eμA of C{sup 5+} ion beam was got when work gas was CH{sub 4} while about 262 eμA of C{sup 5+} ion beam was obtained when work gas was C{sub 2}H{sub 2} gas. The design and construction of the ion source and its low-energy transportation beam line, and the preliminary commissioning results will be presented in detail in this paper.

  10. Heavy ion therapy: Bevalac epoch

    International Nuclear Information System (INIS)

    Castro, J.R.

    1993-10-01

    An overview of heavy ion therapy at the Bevelac complex (SuperHILac linear accelerator + Bevatron) is given. Treatment planning, clinical results with helium ions on the skull base and uveal melanoma, clinical results with high-LET charged particles, neon radiotherapy of prostate cancer, heavy charged particle irradiation for unfavorable soft tissue sarcoma, preliminary results in heavy charged particle irradiation of bone sarcoma, and irradiation of bile duct carcinoma with charged particles and-or photons are all covered

  11. Super Riemann surfaces

    International Nuclear Information System (INIS)

    Rogers, Alice

    1990-01-01

    A super Riemann surface is a particular kind of (1,1)-dimensional complex analytic supermanifold. From the point of view of super-manifold theory, super Riemann surfaces are interesting because they furnish the simplest examples of what have become known as non-split supermanifolds, that is, supermanifolds where the odd and even parts are genuinely intertwined, as opposed to split supermanifolds which are essentially the exterior bundles of a vector bundle over a conventional manifold. However undoubtedly the main motivation for the study of super Riemann surfaces has been their relevance to the Polyakov quantisation of the spinning string. Some of the papers on super Riemann surfaces are reviewed. Although recent work has shown all super Riemann surfaces are algebraic, some areas of difficulty remain. (author)

  12. Supermanifolds and super Riemann surfaces

    International Nuclear Information System (INIS)

    Rabin, J.M.

    1986-09-01

    The theory of super Riemann surfaces is rigorously developed using Rogers' theory of supermanifolds. The global structures of super Teichmueller space and super moduli space are determined. The super modular group is shown to be precisely the ordinary modular group. Super moduli space is shown to be the gauge-fixing slice for the fermionic string path integral

  13. Intense heavy-ion beam transport with electric and magnetic quadrupoles

    International Nuclear Information System (INIS)

    Fessenden, T.J.; Hopkins, H.S.

    1995-08-01

    As part of the small induction recirculator development at LLNL, the authors are testing an injector and transport line that delivers 4 micros beams of potassium with repetition rates up to 10 Hz at a nominal current of 2 mA. The normalized K-V equivalent emittance of the beams is near 0.02 π mm-mrad and is mostly determined by the temperature of the source (0.1 eV). K + ions generated at 80 keV in a Pierce diode are matched to an alternating gradient transport line by seven electric quadrupoles. Two additional quads have been modified to serve as two-axis steerers. The matching section is followed by a transport section comprised of seven permanent magnet quadrupoles. Matching to this section is achieved by adjusting the voltages on the electric quadrupoles to voltages calculated by an envelope matching code. Measurements of beam envelope parameters are made at the matching section entrance and exit as well as at the end of the permanent magnet transport section. Beam current waveforms along the experiment are compared with results from a one-dimension longitudinal dynamics code. Initial experiments show particle loss occurring at the beam head as a result of overtaking. The apparatus is also being used for the development of non or minimally intercepting diagnostics for future recirculator experiments. These include capacitive monitors for determining beam line-charge density and position in the recirculator; flying wire scanners for beam position; and gated TV scanners for measuring beam profiles and emittance

  14. Calculus super review

    CERN Document Server

    2012-01-01

    Get all you need to know with Super Reviews! Each Super Review is packed with in-depth, student-friendly topic reviews that fully explain everything about the subject. The Calculus I Super Review includes a review of functions, limits, basic derivatives, the definite integral, combinations, and permutations. Take the Super Review quizzes to see how much you've learned - and where you need more study. Makes an excellent study aid and textbook companion. Great for self-study!DETAILS- From cover to cover, each in-depth topic review is easy-to-follow and easy-to-grasp - Perfect when preparing for

  15. Algebra & trigonometry super review

    CERN Document Server

    2012-01-01

    Get all you need to know with Super Reviews! Each Super Review is packed with in-depth, student-friendly topic reviews that fully explain everything about the subject. The Algebra and Trigonometry Super Review includes sets and set operations, number systems and fundamental algebraic laws and operations, exponents and radicals, polynomials and rational expressions, equations, linear equations and systems of linear equations, inequalities, relations and functions, quadratic equations, equations of higher order, ratios, proportions, and variations. Take the Super Review quizzes to see how much y

  16. Super power generators

    International Nuclear Information System (INIS)

    Martin, T.H.; Johnson, D.L.; McDaniel, D.H.

    1977-01-01

    PROTO II, a super power generator, is presently undergoing testing at Sandia Laboratories. It has operated with an 80 ns, 50 ns, 35 ns, and 20 ns positive output pulse high voltage mode and achieved total current rates of rise of 4 x 10 14 A/s. The two sided disk accelerator concept using two diodes has achieved voltages of 1.5 MV and currents of 4.5 MA providing a power exceeding 6 TW in the electron beam and 8 TW in the transmission lines. A new test bed named MITE (Magnetically Insulated Transmission Experiment) was designed and is now being tested. The pulse forming lines are back to back short pulse Blumleins which use untriggered water switching. Output data showing a ten ns half width power pulse peaking above one terrawatt were obtained. MITE is a module being investigated for use in the Electron Beam Fusion Accelerator and will be used to test the effects of short pulses propagating down vacuum transmission lines

  17. Superconducting symmetries and magnetic responses of uranium heavy-fermion systems UBe13 and UPd2Al3

    Science.gov (United States)

    Shimizu, Yusei; Kittaka, Shunichiro; Sakakibara, Toshiro; Aoki, Dai

    2018-05-01

    Low-temperature thermodynamic investigation for UBe13 and UPd2Al3 were performed in order to gain insight into their unusual ground states of 5 f electrons. Our heat-capacity data for the cubic UBe13 strongly suggest that nodal quasiparticles are absent and its superconducting (SC) gap is fully open over the Fermi surface. Moreover, two unusual thermodynamic anomalies are also observed in UBe13 at ∼ 3 T and ∼ 9 T; the lower-field anomaly is seen only in the SC mixed state by dc magnetization M (H) as well as heat-capacity C (H) , while the higher-field anomaly appears for C (H) in the normal phase above the upper critical field. On the other hand, field-orientation dependence of the heat capacity in the hexagonal UPd2Al3 shows a significantly anisotropic behavior of C (H) ∝H 1 / 2 , reflecting the nodal gap structure of this system. Our result strongly suggests the presence of a horizontal line node on the Fermi surface with heavy effective mass in UPd2Al3.

  18. Removal of bisphenol A and some heavy metal ions by polydivinylbenzene magnetic latex particles.

    Science.gov (United States)

    Marzougui, Zied; Chaabouni, Amel; Elleuch, Boubaker; Elaissari, Abdelhamid

    2016-08-01

    In this study, magnetic polydivinylbenzene latex particles MPDVB with a core-shell structure were tested for the removal of bisphenol A (BPA), copper Cu(II), lead Pb(II), and zinc Zn(II) from aqueous solutions by a batch-adsorption technique. The effect of different parameters, such as initial concentration of pollutant, contact time, adsorbent dose, and initial pH solution on the adsorption of the different adsorbates considered was investigated. The adsorption of BPA, Cu(II), Pb(II), and Zn(II) was found to be fast, and the equilibrium was achieved within 30 min. The pH 5-5.5 was found to be the most suitable pH for metal removal. The presence of electrolytes and their increasing concentration reduced the metal adsorption capacity of the adsorbent. Whereas, the optimal pH for BPA adsorption was found 7, both hydrogen bonds and π-π interaction were thought responsible for the adsorption of BPA on MPDVB. The adsorption kinetics of BPA, Cu(II), Pb(II), and Zn(II) were found to follow a pseudo-second-order kinetic model. Equilibrium data for BPA, Cu(II), Pb(II), and Zn(II) adsorption were fitted well by the Langmuir isotherm model. Furthermore, the desorption and regeneration studies have proven that MPDVB can be employed repeatedly without impacting its adsorption capacity.

  19. Development of a super high speed railway and ML 100

    Energy Technology Data Exchange (ETDEWEB)

    Usami, Y

    1973-07-01

    A history of the development progress is given, followed by a discussion of the propulsion system for a super high speed railway-structure. Induction linear motors and synchronous linear motors are discussed in some detail. The maintenance system is then described (basic test apparatus-rotary type superconductive magnetic force maintenance system, etc.). Experiments using a linear running superconductive magnetic test car are discussed. Developments of super high speed railways in America, France, England, West Germany, etc. are described.

  20. Coupling between magnetic and superconducting order parameters and evidence for the spin excitation gap in the superconducting state of a heavy fermion superconductor UPd2Al3

    International Nuclear Information System (INIS)

    Metoki, Naoto; Haga, Yoshinori; Koike, Yoshihiro; Aso, Naofumi; Onuki, Yoshichika

    1997-01-01

    Neutron scattering experiments have been carried out in order to study the interplay between magnetism and superconductivity in a heavy fermion superconductor, UPd 2 Al 3 . We have observed 1% suppression of the (0 0 0.5) magnetic peak intensity below the superconducting transition temperature T c . This is direct evidence for the coupling of the magnetic order parameter with the superconducting one. Furthermore, we have observed a spin excitation gap associated with superconductivity. The gap energy ΔE g increases continuously from ΔE g =0 to 0.4 meV with decreasing temperature from T c to 0.4 K. This gap energy corresponds to 2k B T c , which is smaller than the superconducting gap expected from the BCS theory (3.5k B T c ). These results are indicative of the strong interplay between magnetism and superconductivity. (author)

  1. Deriving Global Convection Maps From SuperDARN Measurements

    Science.gov (United States)

    Gjerloev, J. W.; Waters, C. L.; Barnes, R. J.

    2018-04-01

    A new statistical modeling technique for determining the global ionospheric convection is described. The principal component regression (PCR)-based technique is based on Super Dual Auroral Radar Network (SuperDARN) observations and is an advanced version of the PCR technique that Waters et al. (https//:doi.org.10.1002/2015JA021596) used for the SuperMAG data. While SuperMAG ground magnetic field perturbations are vector measurements, SuperDARN provides line-of-sight measurements of the ionospheric convection flow. Each line-of-sight flow has a known azimuth (or direction), which must be converted into the actual vector flow. However, the component perpendicular to the azimuth direction is unknown. Our method uses historical data from the SuperDARN database and PCR to determine a fill-in model convection distribution for any given universal time. The fill-in data process is driven by a list of state descriptors (magnetic indices and the solar zenith angle). The final solution is then derived from a spherical cap harmonic fit to the SuperDARN measurements and the fill-in model. When compared with the standard SuperDARN fill-in model, we find that our fill-in model provides improved solutions, and the final solutions are in better agreement with the SuperDARN measurements. Our solutions are far less dynamic than the standard SuperDARN solutions, which we interpret as being due to a lack of magnetosphere-ionosphere inertia and communication delays in the standard SuperDARN technique while it is inherently included in our approach. Rather, we argue that the magnetosphere-ionosphere system has inertia that prevents the global convection from changing abruptly in response to an interplanetary magnetic field change.

  2. Main Design Principles of the Cold Beam Pipe in the FastRamped Superconducting Accelerator Magnets for Heavy Ion Synchrotron SIS100

    Science.gov (United States)

    Mierau, A.; Schnizer, P.; Fischer, E.; Macavei, J.; Wilfert, S.; Koch, S.; Weiland, T.; Kurnishov, R.; Shcherbakov, P.

    SIS100, the world second large scale heavy ion synchrotron using fast ramped superconducting magnets, is to be built at FAIR. Its high current operation of intermediate charge state ions requires stable vacuum pressures technological feasible design solutions, three opposite requirements have to be met: minimum magnetic field distortion caused by AC losses, mechanical stability and low and stable wall temperatures of the beam pipe. We present the possible design versions of the beam pipe for the high current curved dipole. The pros and cons of these proposed designs were studied using simplified analytical models, FEM calculations and tests on models.

  3. A heavy load for heavy ions

    CERN Multimedia

    2003-01-01

    On 25 September, the two large coils for the dipole magnet of ALICE, the LHC experiment dedicated to heavy ions, arrived at Point 2 on two heavy load trucks after a 1200 km journey from their assembly in Vannes, France.

  4. Half-length model of a Siberian Snake magnet for RHIC

    CERN Document Server

    Okamura, M; Kawaguchi, T; Katayama, T; Jain, A; Muratore, J; Morgan, G; Willen, E

    2000-01-01

    For the Relativistic Heavy Ion Collider (RHIC) Spin Project, super-conducting helical dipole magnets are being constructed. These magnets will be used in 'Siberian Snakes' and 'Spin Rotators', which manipulate spin direction of proton beams in RHIC. The dipole field in these magnets rotates 360 deg. and is required to reach a magnetic field strength of more than 4.0 T. The bore radius of the coils and the magnetic length of the magnets are 50 and 2400 mm, respectively. To ascertain the performance of these magnets, which are built using a new 'coil in a slot' technique, a half-length model has been fabricated and tested. The quench performance, field uniformity and rotation angle have been investigated. The measured values in the model magnet agreed well with field calculations. These results demonstrate the adequacy of the fabrication method adopted in the model magnet. (authors)

  5. Nonlinear Super Integrable Couplings of Super Classical-Boussinesq Hierarchy

    Directory of Open Access Journals (Sweden)

    Xiuzhi Xing

    2014-01-01

    Full Text Available Nonlinear integrable couplings of super classical-Boussinesq hierarchy based upon an enlarged matrix Lie super algebra were constructed. Then, its super Hamiltonian structures were established by using super trace identity. As its reduction, nonlinear integrable couplings of the classical integrable hierarchy were obtained.

  6. Design and synthesis of core-shell Fe3O4@PTMT composite magnetic microspheres for adsorption of heavy metals from high salinity wastewater.

    Science.gov (United States)

    Huang, Xin; Yang, Jinyue; Wang, Jingkang; Bi, Jingtao; Xie, Chuang; Hao, Hongxun

    2018-05-10

    In this study, a novel magnetic nanoparticles (MNP) modified by an organodisulfide polymer (PTMT) was designed for adsorption of heavy metals (Hg(II), Pb(II) and Cd(II)) from simulated coal chemical high salinity wastewater. The MNP-PTMT nano-composite was synthesize and characterized by SEM, TEM, FTIR, BET, VSM, TGA and XRD. The results indicate that the wanted MNP-PTMT magnetic nanoparticles were successfully obtained by modification. Adsorption experiments were systematically carried out to evaluate the performance of the obtained nanoparticles and to build up the adsorption models. The results demonstrate that the adsorption kinetic and isotherms thermodynamic followed the pseudo-second-order model and the Freundlich equation, respectively. In the presence of the inorganic salt in high salinity wastewater, the adsorption efficiency of MNP-PTMT for heavy metals was still excellent. The magnetic adsorbent could be recovered from aqueous solution by an external magnetic field in 20s and the subsequent regeneration of Hg(II)/Pb(II) loaded MNP-PTMT can be efficiently achieved by using EDTA-2Na solution as desorbent. The novel MNP-PTMT nanoparticles could be used reproductively for five times without apparent decrease in sorption capacity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Occupation-related squatting, kneeling, and heavy lifting and the knee joint: a magnetic resonance imaging-based study in men.

    Science.gov (United States)

    Amin, Shreyasee; Goggins, Joyce; Niu, Jingbo; Guermazi, Ali; Grigoryan, Mikayel; Hunter, David J; Genant, Harry K; Felson, David T

    2008-08-01

    We examined the relation between occupational exposures to frequent squatting/kneeling and/or heavy lifting with cartilage morphology, based on magnetic resonance imaging (MRI), at the tibiofemoral and patellofemoral joints in men and determined which compartments are most affected. We evaluated 192 men with symptomatic knee osteoarthritis (OA). The more symptomatic knee was imaged using MRI. Cartilage was scored using the Whole Organ MRI Score semiquantitative method at the medial and lateral tibiofemoral joint and patellofemoral joint. Occupational exposures to frequent squatting, kneeling, and/or heavy lifting were assessed using a validated questionnaire. Among the 192 men [mean (+/- standard deviation) age 69 +/- 9 yrs, body mass index (BMI) 30.8 +/- 4.7 kg/m(2)], those reporting occupational exposure to squatting/kneeling alone, heavy lifting alone, both squatting/kneeling and heavy lifting, or none of these activities numbered 7, 40, 47, and 98, respectively. Compared with men with no occupational exposure to these activities, and following adjustment for age, BMI, and history of knee injury or surgery, we found that men reporting occupational exposures to both squatting/kneeling and heavy lifting had a modest increased risk for worse cartilage morphology scores at the patellofemoral joint [odds ratio (OR) 1.8, 95% confidence interval (CI) 1.1 to 3.2] and medial tibiofemoral joint (OR 1.6, 95% CI 0.9, 3.0), although the latter did not reach statistical significance. Men with frequent occupational squatting/kneeling and heavy lifting have a greater likelihood for worse cartilage morphology scores at the patellofemoral joint. These findings add support to the important role of biomechanical loading on the pathogenesis of knee OA, particularly patellofemoral OA.

  8. Super periodic potential

    Science.gov (United States)

    Hasan, Mohammd; Mandal, Bhabani Prasad

    2018-04-01

    In this paper we introduce the concept of super periodic potential (SPP) of arbitrary order n, n ∈I+, in one dimension. General theory of wave propagation through SPP of order n is presented and the reflection and transmission coefficients are derived in their closed analytical form by transfer matrix formulation. We present scattering features of super periodic rectangular potential and super periodic delta potential as special cases of SPP. It is found that the symmetric self-similarity is the special case of super periodicity. Thus by identifying a symmetric fractal potential as special cases of SPP, one can obtain the tunnelling amplitude for a particle from such fractal potential. By using the formalism of SPP we obtain the close form expression of tunnelling amplitude of a particle for general Cantor and Smith-Volterra-Cantor potentials.

  9. NETL Super Computer

    Data.gov (United States)

    Federal Laboratory Consortium — The NETL Super Computer was designed for performing engineering calculations that apply to fossil energy research. It is one of the world’s larger supercomputers,...

  10. Effects of Fe3O4 Magnetic Nanoparticles on the Thermoelectric Properties of Heavy-Fermion YbAl3 Materials

    Science.gov (United States)

    He, Danqi; Mu, Xin; Zhou, Hongyu; Li, Cuncheng; Ma, Shifang; Ji, Pengxia; Hou, Weikang; Wei, Ping; Zhu, Wanting; Nie, Xiaolei; Zhao, Wenyu

    2018-06-01

    The magnetic nanocomposite thermoelectric materials xFe3O4/YbAl3 ( x = 0%, 0.3%, 0.6%, 1.0%, and 1.5%) have been prepared by the combination of ultrasonic dispersion and spark plasma sintering process. The nanocomposites retain good chemical stability in the presence of the second-phase Fe3O4. The second-phase Fe3O4 magnetic nanoparticles are distributed on the interfaces and boundaries of the matrix. The x dependences of thermoelectric properties indicate that Fe3O4 magnetic nanoparticles can significantly decrease the thermal conductivity and electrical conductivity. The magnetic nanoparticles embedded in YbAl3 matrix are not only the phonon scattering centers of nanostructures, but also the electron scattering centers due to the Kondo-like effect between the magnetic moment of Fe3O4 nanoparticles and the spin of electrons. The ZT values of the composites are first increased in the x range 0%-1.0% and then decreased when x > 1.0%. The highest ZT value reaches 0.3 at 300 K for the nanocomposite with x = 1.0%. Our work demonstrates that the Fe3O4 magnetic nanoparticles can greatly increase the thermoelectric performance of heavy-fermion YbAl3 thermoelectric materials through simultaneously scattering electrons and phonons.

  11. Presentations to the SuperHILAC Program Advisory Committee

    International Nuclear Information System (INIS)

    McDonald, R.J.

    1987-09-01

    This paper contains viewgraphs on the SuperHILAC. The topics of these viewgraphs are: light charged particle emission as a probe of heavy-ion reactions; correlated charged-changing interactions and x-ray emission in ion-atom collisions; progress report on Sassy II and new nuclear chemistry experiments at the SuperHILAC; precision x-ray spectroscopy of heavy ions; 180 0 -correlated equal energy photons from 5.9 MeV/N U + Th collisions; research statement of excited states of monatomic and molecular systems; search for entrance-channel effects in the production of superdeformed nuclei; present and future research with OASIS; relaxation mechanisms in damped heavy-ion reactions; excitation energy division and nucleon transfer; test of QED and relativistic effects for strongly-bound electrons; heavy-ion Coulomb excitation and transfer reactions as probes of nuclear structure; and preliminary design of the Dilepton spectrometer

  12. Toward the drip lines and the superheavy island of stability with the Super Separator Spectrometer S{sup 3}

    Energy Technology Data Exchange (ETDEWEB)

    Dechery, F.; Boutin, D.; Gall, B.; Le Blanc, F. [Universite de Strasbourg, IPHC, Strasbourg (France); CNRS, UMR7178, Strasbourg (France); Drouart, A.; Authier, M.; Delferriere, O.; Payet, J.; Uriot, D. [CEA-Saclay, Irfu, Gif-sur-Yvette (France); Savajols, H.; Stodel, M.H.; Traykov, E. [GANIL, Caen (France); Nolen, J. [Argonne National Laboratory, Argonne, IL (United States); Amthor, A.M. [Bucknell University, Lewisburg, PA (United States); Hue, A.; Laune, B. [Universite Paris-Sud 11, CNRS/IN2P3, IPNO, Orsay (France); Manikonda, S. [AML Superconductivity and Magnetics, Palm Bay, Florida (United States); Collaboration: S3 Collaboration

    2015-06-15

    The Super Separator Spectrometer S{sup 3} is a major experimental system developed for SPIRAL2. It has been designed for physics experiments with very low cross sections by taking full advantage of the very high intensity stable beams to be produced by LINAG, the superconducting linear accelerator at GANIL. These intensities will open new opportunities in several physics domains using fusion evaporation reactions, principally: super-heavy and very heavy element properties, spectroscopy at and beyond the dripline, and isomer and ground-state properties. The common feature of these experiments is the requirement to separate very rare events from intense backgrounds. S{sup 3} accomplishes this with a large acceptance, a high background rejection efficiency, and a physical mass separation. This article will present the technical specifications and optical constraints needed to achieve these physical goals. The optical layout of the spectrometer will be presented, focusing on technical elements of the target system, the superconducting multipole magnets used to correct high-order optical aberrations, the electric and magnetic dipoles, and the open multipole triplet used for primary beam rejection. The expected system performance will be presented for three experimental cases using 3 specific optical modes of the spectrometer. (orig.)

  13. Efficiency of SPIONs functionalized with polyethylene glycol bis(amine) for heavy metal removal

    Energy Technology Data Exchange (ETDEWEB)

    Wanna, Yongyuth, E-mail: yongyuth.wanna@gmail.com [College of KMITL Nanotechnology, King Mongkut' s Institute of Technology Ladkrabang, Chalongkrung Rd., Ladkrabang, Bangkok 10520 (Thailand); Nara Machinery Co., Ltd., 2-5-7, Jonan-Jima, Ohta-ku, Tokyo 143-0002 (Japan); Chindaduang, Anon; Tumcharern, Gamolwan [National Nanotechnology Center (NANOTEC), 111 Thailand Science Park, Pahol Yothin Rd, Klong Luang, Pathum Thani 12120 (Thailand); Phromyothin, Darinee [College of KMITL Nanotechnology, King Mongkut' s Institute of Technology Ladkrabang, Chalongkrung Rd., Ladkrabang, Bangkok 10520 (Thailand); Porntheerapat, Supanit [NECTEC, National Science and Technology Development Agency (NSTDA), 112 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani 12120 (Thailand); Nukeaw, Jiti [College of KMITL Nanotechnology, King Mongkut' s Institute of Technology Ladkrabang, Chalongkrung Rd., Ladkrabang, Bangkok 10520 (Thailand); Hofmann, Heirich [Laboratory of Powder Technology, Ecole Polytechnique Fédérale de Lausanne (Switzerland); Pratontep, Sirapat [College of KMITL Nanotechnology, King Mongkut' s Institute of Technology Ladkrabang, Chalongkrung Rd., Ladkrabang, Bangkok 10520 (Thailand)

    2016-09-15

    Hybrid magnetic nanoparticles based on poly(methylmethacrylate) (PMMA) and super-paramagnetic iron oxide nanopaticles (SPIONs) with selective surface modification has been developed for heavy metal removal by applying external magnetic fields. The nanoparticles were prepared by the emulsion polymerization technique in an aqueous suspension of SPIONs. The hydrolysis of carboxyl functional group was then applied for grafting polyethylene glycol bis(amine)(PEG-bis(amine)) onto the PMMA-coated SPIONs. The morphology, the chemical structure and the magnetic properties of the grafted nanoparticles were investigated. The efficiency of the hybrid nanoparticles for heavy metal removal were conducted on Pb(II), Hg(II), Cu(II) and Co(II) in aqueous solutions.The metal concentration in the solutions after separation by the hybrid nanoparticles was determined by inductively coupled plasma optical emission spectrometer (ICP-OES). The results show the heavy metal uptake ratios of 0.08, 0.04, 0.03, and 0.01 mM per gramme of the grafted SPIONs for Pb(II), Hg(II), Cu(II), and Co(II), respectively. A competitive removal of Cu(II), Pb(II), Co(II) and Hg(II) ions in mixed metal salt solutions has also been studied.The heavy metal removal efficiency of the hybrid nanoparitcles was found to depend on the cation radius, in accordance with capture of metal ions by the amine group. - Highlights: • We synthesis hybrid magnetic nanoparticles for heavy metal removal. • The efficiency of hybrid nanoparticles for heavy metal removal is proposed. • We investigated the characteristic of hybrid nanoparticle. • The heavy metal removal efficiency of the hybrid nanoparticle was founded that depend on the heavy metal cation radius.

  14. PSI-ECRIT(S) a hybrid magnetic system with a mirror ratio of 10 for H-like heavy ion production and trapping

    CERN Document Server

    Biri, S; Hitz, D

    1999-01-01

    At the Paul Scherrer Institut ( PSI, Switzerland) an experimental program is started to measure the ground state shift and width of pionic hydrogen. To calibrate the crystal spectrometer X-ray transitions in hydrogen-like heavy ions (e.g. Ar17+) produced by ECR ion sources, are necessary. In PSI a superconducting cyclotron trap magnet originally developed for high energy experiments will be transformed into an ECR Ion Trap (ECRIT). The SC-magnet can deliver more than 4 Tesla magnetic fields with a mirror ratio of 2. A careful calculation showed this mirror ratio can be increased upto 10 and the trap can operate with frequencies between 5 and 20 GHz. To form a closed resonance zone a relatively large open structure (LBL-AECRU-type) NdFeB hexapole will be applied. The first tests will be performed with 6.4 GHz. Later higher frequencies (10 or 14.5 GHz) and the 2-frequency heating (6.4+10, 6.4+14.5 or 10+14.5) are planned to be applied to get enough quantity of H-like heavy ions. Since the main goal of this mach...

  15. Influence of Heavy Fermion Ytterbium Substitution on the Electronic and Crystal Properties of the Frustrated Magnet CuFeO2 Oxide

    Science.gov (United States)

    Ozkendir, Osman Murat

    2017-11-01

    The influence of heavy fermion Ytterbium substitution was investigated on the crystal, electronic, and magnetic properties of CuFeO2 with the general formula Yb x Cu1- x FeO2. The results of the crystal structure study revealed polycrystalline formations in the sample. The electronic and magnetic properties of the samples were studied using X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) techniques. Both XAS and XMCD revealed that the substituted Yb atoms govern the entire phenomena with their narrow 4 f levels by forming broader molecular bonds with the 3 d levels of the transition metals. Owing to the prominent changes caused by the activity of the 4 f electrons in the crystal structures, Yb atoms were determined to be the main "role player" in the phase transitions. XMCD measurements were performed at room temperature 300 K (27 °C) to determine the magnetic properties of the samples and, except for CuFeO2 ( x = 0.0), the samples were observed to be ordered magnetically (mainly ferrimagnetic) in the bulk.

  16. Identifying Galactic Cosmic Ray Origins With Super-TIGER

    Science.gov (United States)

    deNolfo, Georgia; Binns, W. R.; Israel, M. H.; Christian, E. R.; Mitchell, J. W.; Hams, T.; Link, J. T.; Sasaki, M.; Labrador, A. W.; Mewaldt, R. A.; hide

    2009-01-01

    Super-TIGER (Super Trans-Iron Galactic Element Recorder) is a new long-duration balloon-borne instrument designed to test and clarify an emerging model of cosmic-ray origins and models for atomic processes by which nuclei are selected for acceleration. A sensitive test of the origin of cosmic rays is the measurement of ultra heavy elemental abundances (Z > or equal 30). Super-TIGER is a large-area (5 sq m) instrument designed to measure the elements in the interval 30 TIGER builds on the heritage of the smaller TIGER, which produced the first well-resolved measurements of elemental abundances of the elements Ga-31, Ge-32, and Se-34. We present the Super-TIGER design, schedule, and progress to date, and discuss the relevance of UH measurements to cosmic-ray origins.

  17. Super gene alternation of magnetite and pyrite and the role of their alternation products in the fixation of uranium from the circulating media. Vol. 3

    Energy Technology Data Exchange (ETDEWEB)

    El-Gemmizi, M A [Nuclear Materials Authority, Cairo, (Egypt)

    1996-03-01

    In most of the Egyptian altered radioactive granites, highly magnetic heavy particles were found to be radioactive. They are a mixture of several iron oxide minerals which are products of super gene alternation of the preexisting hypo gene iron-bearing minerals especially magnetite and pyrite. The end products of this super gene alternation are mainly hydrated iron oxide minerals limonite and/or goethite. During the alternation, deformation and defects in the mineral structure took place, thereby promoting diffusion of the substitutional and interstitial ions (uranium) towards these sites. The mechanism of the alternation of the hypo gene iron-bearing minerals, magnetite and pyrite to form the secondary mineral hematite, limonite and goethite; and the role of these secondary minerals in fixing uranium from the circulating media, and as indicators to the radioactivity of the host rocks are discussed. 2 figs.

  18. Super gene alternation of magnetite and pyrite and the role of their alternation products in the fixation of uranium from the circulating media. Vol. 3

    International Nuclear Information System (INIS)

    El-Gemmizi, M.A.

    1996-01-01

    In most of the Egyptian altered radioactive granites, highly magnetic heavy particles were found to be radioactive. They are a mixture of several iron oxide minerals which are products of super gene alternation of the preexisting hypo gene iron-bearing minerals especially magnetite and pyrite. The end products of this super gene alternation are mainly hydrated iron oxide minerals limonite and/or goethite. During the alternation, deformation and defects in the mineral structure took place, thereby promoting diffusion of the substitutional and interstitial ions (uranium) towards these sites. The mechanism of the alternation of the hypo gene iron-bearing minerals, magnetite and pyrite to form the secondary mineral hematite, limonite and goethite; and the role of these secondary minerals in fixing uranium from the circulating media, and as indicators to the radioactivity of the host rocks are discussed. 2 figs

  19. FPGA-based quench detection system for super-FRS super-ferric dipole prototype

    International Nuclear Information System (INIS)

    Yang Tongjun; Wu Wei; Yao Qinggao; Yuan Ping; He Yuan; Han Shaofei; Ma Lizhen

    2011-01-01

    The quench detection system for Super-FRS super-ferric dipole prototype magnet of FAIR has been designed and built. The balance bridge was used to detect quench signal. In order to avoid blind zone of quench detection, two independent bridges were used. NI PXI-7830R FPGA was used to implement filter to quench signal and algorithm of quench decision and to produce quench trigger signal. Pre-sample technique was used in quench data acquisition. The data before and after quench could be recorded for analysis later. The test result indicated that the quench of the dipole's superconducting coil could be reliably detected by the quench detection module. (authors)

  20. Performing the Super Instrument

    DEFF Research Database (Denmark)

    Kallionpaa, Maria

    2016-01-01

    can empower performers by producing super instrument works that allow the concert instrument to become an ensemble controlled by a single player. The existing instrumental skills of the performer can be multiplied and the qualities of regular acoustic instruments extended or modified. Such a situation......The genre of contemporary classical music has seen significant innovation and research related to new super, hyper, and hybrid instruments, which opens up a vast palette of expressive potential. An increasing number of composers, performers, instrument designers, engineers, and computer programmers...... have become interested in different ways of “supersizing” acoustic instruments in order to open up previously-unheard instrumental sounds. Super instruments vary a great deal but each has a transformative effect on the identity and performance practice of the performing musician. Furthermore, composers...

  1. Raspberry Pi super cluster

    CERN Document Server

    Dennis, Andrew K

    2013-01-01

    This book follows a step-by-step, tutorial-based approach which will teach you how to develop your own super cluster using Raspberry Pi computers quickly and efficiently.Raspberry Pi Super Cluster is an introductory guide for those interested in experimenting with parallel computing at home. Aimed at Raspberry Pi enthusiasts, this book is a primer for getting your first cluster up and running.Basic knowledge of C or Java would be helpful but no prior knowledge of parallel computing is necessary.

  2. Effects of heavy ion temperature on low-frequency kinetic Alfven waves

    International Nuclear Information System (INIS)

    Yang, L.; Wu, D. J.

    2011-01-01

    Heavy ion-electron (or proton) temperature ratio varies in a wide range in the solar and space environment. In this paper, proton and heavy ion temperatures are included in a three-fluid plasma model. For the specified parameters, low-frequency (<< heavy ion gyrofrequency) kinetic Alfven waves (KAWs) with sub- and super-Alfvenic speeds are found to coexist in the same plasma environment. Our results show that the temperature ratio of heavy ions to electrons can considerably affect the dispersion, propagation, and electromagnetic polarizations of the KAWs. In particular, the temperature ratio can increase the ratio of parallel to perpendicular electric fields and the normalized electric to magnetic field ratio, the variations of which are greatly different in regions with a high heavy ion temperature and with a low one. The results may help to understand the physical mechanism of some energization processes of heavy ions in the solar and space plasma environment. Effects of the ratio of electron thermal to Alfven speeds and the heavy ion abundance on these parameters are also discussed.

  3. The super-resolution debate

    Science.gov (United States)

    Won, Rachel

    2018-05-01

    In the quest for nanoscopy with super-resolution, consensus from the imaging community is that super-resolution is not always needed and that scientists should choose an imaging technique based on their specific application.

  4. Coke industry and steel metallurgy as the source of soil contamination by technogenic magnetic particles, heavy metals and polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Rachwał, Marzena; Magiera, Tadeusz; Wawer, Małgorzata

    2015-11-01

    Application of integrated magnetic, geochemical and mineralogical methods for qualitative and quantitative assessment of forest topsoils exposed to the industrial emissions was the objective of this manuscript. Volume magnetic susceptibility (κ) in three areas of southern Poland close to the coke and metallurgical plants was measured directly in the field. Representative topsoil samples were collected for further chemical and mineralogical analyses. Topsoil magnetic susceptibility in the studied areas depended mainly on the content of technogenic magnetic particles (TMPs) and decreased downwind at increasing distance from the emitters. In the vicinity of coking plants a high amount of polycyclic aromatic hydrocarbons (PAHs) was observed, especially the most carcinogenic ones with four- and five-member rings. No significant concentration of TMPs (estimated on the base of κ values) and heavy metals (HM) was observed in area where the coke plant was the only pollution source. In areas with both coke and metallurgical industry, higher amounts of TMPs, PAHs and HM were detected. Morphological and mineralogical analyses of TMPs separated from contaminated soil samples revealed their high heterogeneity in respect of morphology, grain size, mineral and chemical constitution. Pollution load index and toxicity equivalent concentration of PAHs used for soil quality assessment indicated its high level of pollution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. A new nano-sorbent for fast and efficient removal of heavy metals from aqueous solutions based on modification of magnetic mesoporous silica nanospheres

    Science.gov (United States)

    Vojoudi, Hossein; Badiei, Alireza; Bahar, Shahriyar; Mohammadi Ziarani, Ghodsi; Faridbod, Farnoush; Ganjali, Mohammad Reza

    2017-11-01

    In the present study, a new and efficient nanosorbent for the fast removal of heavy metal ions was prepared. The proposed nanosorbent was fabricated using Fe3O4 magnetic core shelled by mesoporous silica, and cetyltrimethylammonium bromide (CTAB) as surfactant template through a sol-gel process. The magnetic nanomaterial was further modified with bis(3-triethoxysilylpropyl)tetrasulfide (MSCMNPs-S4). The final nanosphers were characterized by FT-IR, XRD, TGA, BET, SEM, TEM, DLS, VSM, EDX, and UV-Vis. The potential of the resultant mesoporous magnetite nanomaterials was investigated as a convenient and effective adsorbent for the removal of toxic heavy metal ions from aqueous solutions in a batch system. The effect of essential parameters on the removal efficiency including initial pH of sample solution, adsorbent amount, metal ion concentration, contact time and type and quantity of the eluent on the adsorption characteristics of the MSCMNPs-S4 were studied. Under the optimized conditions, the proposed nanosorbent exhibited high adsorption capacity of 303.03, 256.41 and 270.27 mg g-1 and maximum removal percentages of 98.8%, 96.4%, 95.7% for Hg(II), Pd(II) and Pb(II) ions, respectively. The mechanism of the adsorbtion was found to be in good agreement with the Langmuir isotherm model. Furthermore, the reusability investigation indicated that the MSCMNPs-S4 could be used frequently at least for five cycles without any significant loss in its performance.

  6. The status of the SuperHILAC

    International Nuclear Information System (INIS)

    Grunder, H.A.; Selph, F.B.

    1976-01-01

    The SuperHILAC is an Alvarez linear accelerator designed to accelerate all ions to a maximum energy of 8.5 MeV/u. Duplication of effort is made possible by the utilization of a technique known as timeshare - two different ion beams are accelerated independently through the same linac structure. Recent operating experience is reviewed. Also discussed are recent major improvements which have been made to the accelerator, and a proposed improvement which will increase reliability and beam intensity for the very heavy ions (A > approximately 84) by adding a third injector of improved design

  7. Frames in super Hilbert modules

    Directory of Open Access Journals (Sweden)

    Mehdi Rashidi-Kouchi

    2018-01-01

    Full Text Available In this paper, we define super Hilbert module and investigate frames in this space. Super Hilbert modules are  generalization of super Hilbert spaces in Hilbert C*-module setting. Also, we define frames in a super Hilbert module and characterize them by using of the concept of g-frames in a Hilbert C*-module. Finally, disjoint frames in Hilbert C*-modules are introduced and investigated.

  8. Handbook of Super 8 Production.

    Science.gov (United States)

    Telzer, Ronnie, Ed.

    This handbook is designed for anyone interested in producing super 8 films at any level of complexity and cost. Separate chapters present detailed discussions of the following topics: super 8 production systems and super 8 shooting and editing systems; budgeting; cinematography and sound recording; preparing to edit; editing; mixing sound tracks;…

  9. Super-resolution

    DEFF Research Database (Denmark)

    Nasrollahi, Kamal; Moeslund, Thomas B.

    2014-01-01

    Super-resolution, the process of obtaining one or more high-resolution images from one or more low-resolution observations, has been a very attractive research topic over the last two decades. It has found practical applications in many real world problems in different fields, from satellite...

  10. Superconducting Super Collider project

    International Nuclear Information System (INIS)

    Perl, M.L.

    1986-04-01

    The scientific need for the Superconducting Super Collider (SSC) is outlined, along with the history of the development of the SSC concept. A brief technical description is given of each of the main points of the SSC conceptual design. The construction cost and construction schedule are discussed, followed by issues associated with the realization of the SSC. 8 refs., 3 figs., 3 tabs

  11. Super Refractory Status Epilepticus

    African Journals Online (AJOL)

    user

    et al did retrospective cohort study from 1 January st. 1994 to 31 March 1998 at Presbyterian Medical. Centre in Columbia, to determine the frequency, risk factors and impact on the outcome of RSE. They found out that 69% of seizures recurred after. Key Words: Super refractory status epilepticus, Zambia. Medical Journal of ...

  12. Optimal Super Dielectric Material

    Science.gov (United States)

    2015-09-01

    plate capacitor will reduce the net field to an unprecedented extent. This family of materials can form materials with dielectric values orders of... Capacitor -Increase Area (A)............8 b. Multi-layer Ceramic Capacitor -Decrease Thickness (d) .......10 c. Super Dielectric Material-Increase...circuit modeling, from [44], and B) SDM capacitor charge and discharge ...................................................22 Figure 15. Dielectric

  13. SuperHILAC

    International Nuclear Information System (INIS)

    Nemetz, R.; Selph, F.; Barnes, A.C.

    1976-01-01

    A brief discussion is given of improvements, operations, and research programs at the SuperHILAC. Improvements were made in beam injection, ion sources, and computer control systems. The research efficiency ranged between 70 and 90 percent during most of the year

  14. Random errors in the magnetic field coefficients of superconducting quadrupole magnets

    International Nuclear Information System (INIS)

    Herrera, J.; Hogue, R.; Prodell, A.; Thompson, P.; Wanderer, P.; Willen, E.

    1987-01-01

    The random multipole errors of superconducting quadrupoles are studied. For analyzing the multipoles which arise due to random variations in the size and locations of the current blocks, a model is outlined which gives the fractional field coefficients from the current distributions. With this approach, based on the symmetries of the quadrupole magnet, estimates are obtained of the random multipole errors for the arc quadrupoles envisioned for the Relativistic Heavy Ion Collider and for a single-layer quadrupole proposed for the Superconducting Super Collider

  15. Operation of a 400MHz NMR magnet using a (RE:Rare Earth)Ba2Cu3O7-x high-temperature superconducting coil: Towards an ultra-compact super-high field NMR spectrometer operated beyond 1GHz.

    Science.gov (United States)

    Yanagisawa, Y; Piao, R; Iguchi, S; Nakagome, H; Takao, T; Kominato, K; Hamada, M; Matsumoto, S; Suematsu, H; Jin, X; Takahashi, M; Yamazaki, T; Maeda, H

    2014-12-01

    High-temperature superconductors (HTS) are the key technology to achieve super-high magnetic field nuclear magnetic resonance (NMR) spectrometers with an operating frequency far beyond 1GHz (23.5T). (RE)Ba 2 Cu 3 O 7- x (REBCO, RE: rare earth) conductors have an advantage over Bi 2 Sr 2 Ca 2 Cu 3 O 10- x (Bi-2223) and Bi 2 Sr 2 CaCu 2 O 8- x (Bi-2212) conductors in that they have very high tensile strengths and tolerate strong electromagnetic hoop stress, thereby having the potential to act as an ultra-compact super-high field NMR magnet. As a first step, we developed the world's first NMR magnet comprising an inner REBCO coil and outer low-temperature superconducting (LTS) coils. The magnet was successfully charged without degradation and mainly operated at 400MHz (9.39T). Technical problems for the NMR magnet due to screening current in the REBCO coil were clarified and solved as follows: (i) A remarkable temporal drift of the central magnetic field was suppressed by a current sweep reversal method utilizing ∼10% of the peak current. (ii) A Z2 field error harmonic of the main coil cannot be compensated by an outer correction coil and therefore an additional ferromagnetic shim was used. (iii) Large tesseral harmonics emerged that could not be corrected by cryoshim coils. Due to those harmonics, the resolution and sensitivity of NMR spectra are ten-fold lower than those for a conventional LTS NMR magnet. As a result, a HSQC spectrum could be achieved for a protein sample, while a NOESY spectrum could not be obtained. An ultra-compact 1.2GHz NMR magnet could be realized if we effectively take advantage of REBCO conductors, although this will require further research to suppress the effect of the screening current. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Chiral magnetic currents with QGP medium response in heavy-ion collisions at RHIC and LHC energies

    Science.gov (United States)

    She, Duan; Feng, Sheng-Qin; Zhong, Yang; Yin, Zhong-Bao

    2018-03-01

    We calculate the electromagnetic current with a more realistic approach in the RHIC and LHC energy regions in the article. We take the partons formation time as the initial time of the magnetic field response of QGP medium. The maximum electromagnetic current and the time-integrated current are two important characteristics of the chiral magnetic effect (CME), which can characterize the intensity and duration of fluctuations of CME. We consider the finite frequency response of CME to a time-varying magnetic field, find a significant impact from QGP medium feedback, and estimate the generated electromagnetic current as a function of time, beam energy and impact parameter.

  17. Deformations of super Riemann surfaces

    International Nuclear Information System (INIS)

    Ninnemann, H.

    1992-01-01

    Two different approaches to (Konstant-Leites-) super Riemann surfaces are investigated. In the local approach, i.e. glueing open superdomains by superconformal transition functions, deformations of the superconformal structure are discussed. On the other hand, the representation of compact super Riemann surfaces of genus greater than one as a fundamental domain in the Poincare upper half-plane provides a simple description of super Laplace operators acting on automorphic p-forms. Considering purely odd deformations of super Riemann surfaces, the number of linear independent holomorphic sections of arbitrary holomorphic line bundles will be shown to be independent of the odd moduli, leading to a simple proof of the Riemann-Roch theorem for compact super Riemann surfaces. As a further consequence, the explicit connections between determinants of super Laplacians and Selberg's super zeta functions can be determined, allowing to calculate at least the 2-loop contribution to the fermionic string partition function. (orig.)

  18. Deformations of super Riemann surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ninnemann, H [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    1992-11-01

    Two different approaches to (Konstant-Leites-) super Riemann surfaces are investigated. In the local approach, i.e. glueing open superdomains by superconformal transition functions, deformations of the superconformal structure are discussed. On the other hand, the representation of compact super Riemann surfaces of genus greater than one as a fundamental domain in the Poincare upper half-plane provides a simple description of super Laplace operators acting on automorphic p-forms. Considering purely odd deformations of super Riemann surfaces, the number of linear independent holomorphic sections of arbitrary holomorphic line bundles will be shown to be independent of the odd moduli, leading to a simple proof of the Riemann-Roch theorem for compact super Riemann surfaces. As a further consequence, the explicit connections between determinants of super Laplacians and Selberg's super zeta functions can be determined, allowing to calculate at least the 2-loop contribution to the fermionic string partition function. (orig.).

  19. Enhancement of strangeness in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Grassi, F.; Heiselberg, H.

    1990-01-01

    The theoretical and experimental conditions to obtain strange particle production in heavy ion collisions at high energies are discussed, by analysis of results obtained from Super Proton Synchrotron - CERN and Alternating Gradient Synchrotron in United States. (M.C.K.)

  20. Super-insulation

    International Nuclear Information System (INIS)

    Gerold, J.

    1985-01-01

    The invention concerns super-insulation, which also acts as spacing between two pressurized surfaces, where the crossing bars in at least two layers are provided, with interposed foil. The super-insulation is designed so that it can take compression forces and limits thermal radiation and thermal conduction sufficiently, where the total density of heat flow is usually limited to a few watts per m 2 . The solution to the problem is characterized by the fact that the bars per layer are parallel and from layer to layer they are at an angle to each other and the crossover positions of the bars of different layers are at fixed places and so form contact columns. The basic idea is that bars crossing over each other to support compression forces are used so that contact columns are formed, which are compressed to a certain extent by the load. (orig./PW) [de

  1. SuperSegger

    DEFF Research Database (Denmark)

    Stylianidou, Stella; Brennan, Connor; Nissen, Silas B

    2016-01-01

    -colonies with many cells, facilitating the analysis of cell-cycle dynamics in bacteria as well as cell-contact mediated phenomena. This package has a range of built-in capabilities for characterizing bacterial cells, including the identification of cell division events, mother, daughter, and neighboring cells......Many quantitative cell biology questions require fast yet reliable automated image segmentation to identify and link cells from frame-to-frame, and characterize the cell morphology and fluorescence. We present SuperSegger, an automated MATLAB-based image processing package well......-suited to quantitative analysis of high-throughput live-cell fluorescence microscopy of bacterial cells. SuperSegger incorporates machine-learning algorithms to optimize cellular boundaries and automated error resolution to reliably link cells from frame-to-frame. Unlike existing packages, it can reliably segment micro...

  2. Super-Lagrangians

    International Nuclear Information System (INIS)

    Beyl, L.M.

    1979-01-01

    It is shown that the Einstein, Weyl, supergravity and superconformal theories are special cases of gauge transformations in SU(4vertical-barN). This group is shown to contain SU(2,2) x SU(N) x U(1) for its commuting or Bose part, and to contain 8N supersymmetry generators for its anticommuting or Fermi part. Using the electromagnetic Lagrangian as a model, a super-Lagrangian is constructed for vector potentials. Invariance is automatic in free space, but, in the presence of matter, restrictions on the supersymmetry transformations are necessary. The Weyl action and the Einstein cosmological field equations are obtained in the appropriate limits. Finally, a super-Lagrangian is constructed from nongeometric principles which includes the Dirac Lagrangian and except for a sum over symmetry indices resembles the electron-electromagnetic Lagrangian

  3. Magnets

    International Nuclear Information System (INIS)

    Young, I.R.

    1984-01-01

    A magnet pole piece for an NMR imaging magnet is made of a plurality of magnetic wires with one end of each wire held in a non-magnetic spacer, the other ends of the wires being brought to a pinch, and connected to a magnetic core. The wires may be embedded in a synthetic resin and the magnetisation and uniformity thereof can be varied by adjusting the density of the wires at the spacer which forms the pole piece. (author)

  4. Minimal Super Technicolor

    DEFF Research Database (Denmark)

    Antola, M.; Di Chiara, S.; Sannino, F.

    2011-01-01

    We introduce novel extensions of the Standard Model featuring a supersymmetric technicolor sector (supertechnicolor). As the first minimal conformal supertechnicolor model we consider N=4 Super Yang-Mills which breaks to N=1 via the electroweak interactions. This is a well defined, economical......, between unparticle physics and Minimal Walking Technicolor. We consider also other N =1 extensions of the Minimal Walking Technicolor model. The new models allow all the standard model matter fields to acquire a mass....

  5. Characterising Super-Earths

    Directory of Open Access Journals (Sweden)

    Valencia D.

    2011-02-01

    Full Text Available The era of Super-Earths has formally begun with the detection of transiting low-mass exoplanets CoRoT-7b and GJ 1214b. In the path of characterising super-Earths, the first step is to infer their composition. While the discovery data for CoRoT-7b, in combination with the high atmospheric mass loss rate inferred from the high insolation, suggested that it was a rocky planet, the new proposed mass values have widened the possibilities. The combined mass range 1−10 M⊕ allows for a volatile-rich (and requires it if the mass is less than 4 M⊕ , an Earth-like or a super-Mercury-like composition. In contrast, the radius of GJ 1214b is too large to admit a solid composition, thus it necessarily to have a substantial gas layer. Some evidence suggests that within this gas layer H/He is a small but non-negligible component. These two planets are the first of many transiting low-mass exoplanets expected to be detected and they exemplify the limitations faced when inferring composition, which come from the degenerate character of the problem and the large error bars in the data.

  6. Super-quantum curves from super-eigenvalue models

    Energy Technology Data Exchange (ETDEWEB)

    Ciosmak, Paweł [Faculty of Mathematics, Informatics and Mechanics, University of Warsaw,ul. Banacha 2, 02-097 Warsaw (Poland); Hadasz, Leszek [M. Smoluchowski Institute of Physics, Jagiellonian University,ul. Łojasiewicza 11, 30-348 Kraków (Poland); Manabe, Masahide [Faculty of Physics, University of Warsaw,ul. Pasteura 5, 02-093 Warsaw (Poland); Sułkowski, Piotr [Faculty of Physics, University of Warsaw,ul. Pasteura 5, 02-093 Warsaw (Poland); Walter Burke Institute for Theoretical Physics, California Institute of Technology,1200 E. California Blvd, Pasadena, CA 91125 (United States)

    2016-10-10

    In modern mathematical and theoretical physics various generalizations, in particular supersymmetric or quantum, of Riemann surfaces and complex algebraic curves play a prominent role. We show that such supersymmetric and quantum generalizations can be combined together, and construct supersymmetric quantum curves, or super-quantum curves for short. Our analysis is conducted in the formalism of super-eigenvalue models: we introduce β-deformed version of those models, and derive differential equations for associated α/β-deformed super-matrix integrals. We show that for a given model there exists an infinite number of such differential equations, which we identify as super-quantum curves, and which are in one-to-one correspondence with, and have the structure of, super-Virasoro singular vectors. We discuss potential applications of super-quantum curves and prospects of other generalizations.

  7. Super-quantum curves from super-eigenvalue models

    International Nuclear Information System (INIS)

    Ciosmak, Paweł; Hadasz, Leszek; Manabe, Masahide; Sułkowski, Piotr

    2016-01-01

    In modern mathematical and theoretical physics various generalizations, in particular supersymmetric or quantum, of Riemann surfaces and complex algebraic curves play a prominent role. We show that such supersymmetric and quantum generalizations can be combined together, and construct supersymmetric quantum curves, or super-quantum curves for short. Our analysis is conducted in the formalism of super-eigenvalue models: we introduce β-deformed version of those models, and derive differential equations for associated α/β-deformed super-matrix integrals. We show that for a given model there exists an infinite number of such differential equations, which we identify as super-quantum curves, and which are in one-to-one correspondence with, and have the structure of, super-Virasoro singular vectors. We discuss potential applications of super-quantum curves and prospects of other generalizations.

  8. Super-quantum curves from super-eigenvalue models

    Science.gov (United States)

    Ciosmak, Paweł; Hadasz, Leszek; Manabe, Masahide; Sułkowski, Piotr

    2016-10-01

    In modern mathematical and theoretical physics various generalizations, in particular supersymmetric or quantum, of Riemann surfaces and complex algebraic curves play a prominent role. We show that such supersymmetric and quantum generalizations can be combined together, and construct supersymmetric quantum curves, or super-quantum curves for short. Our analysis is conducted in the formalism of super-eigenvalue models: we introduce β-deformed version of those models, and derive differential equations for associated α/ β-deformed super-matrix integrals. We show that for a given model there exists an infinite number of such differential equations, which we identify as super-quantum curves, and which are in one-to-one correspondence with, and have the structure of, super-Virasoro singular vectors. We discuss potential applications of super-quantum curves and prospects of other generalizations.

  9. Effective removal of heavy metal ions Cd2+, Zn2+, Pb2+, Cu2+ from aqueous solution by polymer-modified magnetic nanoparticles

    International Nuclear Information System (INIS)

    Ge, Fei; Li, Meng-Meng; Ye, Hui; Zhao, Bao-Xiang

    2012-01-01

    We prepared novel Fe 3 O 4 magnetic nanoparticles (MNPs) modified with 3-aminopropyltriethoxysilane (APS) and copolymers of acrylic acid (AA) and crotonic acid (CA). The MNPs were characterized by transmission electron microscopy, X-ray diffraction, infra-red spectra and thermogravimetric analysis. We explored the ability of the MNPs for removing heavy metal ions (Cd 2+ , Zn 2+ , Pb 2+ and Cu 2+ ) from aqueous solution. We investigated the adsorption capacity of Fe 3 O 4 -APS-AA-co-CA at different pH in solution and metal ion uptake capacity as a function of contact time and metal ion concentration. Moreover, adsorption isotherms, kinetics and thermodynamics were studied to understand the mechanism of the synthesized MNPs adsorbing metal ions. In addition, we evaluated the effect of background electrolytes on the adsorption. Furthermore, we explored desorption and reuse of MNPs. Fe 3 O 4 -APS-AA-co-CA MNPs are excellent for removal of heavy metal ions such as Cd 2+ , Zn 2+ , Pb 2+ and Cu 2+ from aqueous solution. Furthermore, the MNPs could efficiently remove the metal ions with high maximum adsorption capacity at pH 5.5 and could be used as a reusable adsorbent with convenient conditions.

  10. Non-perturbative renormalization of the chromo-magnetic operator in heavy quark effective theory and the B{sup *} - B mass splitting

    Energy Technology Data Exchange (ETDEWEB)

    Guazzini, D.; Sommer, R. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Meyer, H. [Massachusetts Institute of Technology, Cambridge, MA (United States). Center for Theoretical Physics

    2007-05-15

    We carry out the non-perturbative renormalization of the chromo-magnetic operator in Heavy Quark Effective Theory. At order 1/m of the expansion, the operator is responsible for the mass splitting between the pseudoscalar and vector B mesons. We obtain its two-loop anomalous dimension in a Schroedinger functional scheme by successive oneloop conversions to the lattice MS scheme and the MS scheme. We then compute the scale evolution of the operator non-perturbatively in the N{sub f}=0 theory between {mu} {approx}0.3 GeV and {mu} {approx}100 GeV, where contact is made with perturbation theory. The overall renormalization factor that converts the bare lattice operator to its renormalization group invariant form is given for the Wilson gauge action and two standard discretizations of the heavy-quark action. As an application, we find that this factor brings the previous quenched predictions of the B{sup *}-B mass splitting closer to the experimental value than found with a perturbative renormalization. The same renormalization factor is applicable to the spin-dependent potentials of Eichten and Feinberg. (orig.)

  11. A novel magnetic metal organic framework nanocomposite for extraction and preconcentration of heavy metal ions, and its optimization via experimental design methodology

    International Nuclear Information System (INIS)

    Taghizadeh, Mohsen; Asgharinezhad, Ali Akbar; Pooladi, Mohsen; Barzin, Mahnaz; Abbaszadeh, Abolfazl; Tadjarodi, Azadeh

    2013-01-01

    We describe a novel magnetic metal-organic framework (MOF) prepared from dithizone-modified Fe 3 O 4 nanoparticles and a copper-(benzene-1,3,5-tricarboxylate) MOF and its use in the preconcentration of Cd(II), Pb(II), Ni(II), and Zn(II) ions. The parameters affecting preconcentration were optimized by a Box-Behnken design through response surface methodology. Three variables (extraction time, amount of the magnetic sorbent, and pH value) were selected as the main factors affecting adsorption, while four variables (type, volume and concentration of the eluent; desorption time) were selected for desorption in the optimization study. Following preconcentration and elution, the ions were quantified by FAAS. The limits of detection are 0.12, 0.39, 0.98, and 1.2 ng mL −1 for Cd(II), Zn(II), Ni(II), and Pb(II) ions, respectively. The relative standard deviations were −1 of Cd(II), Zn(II), Ni(II), and Pb(II) ions. The adsorption capacities (in mg g −1 ) of this new MOF are 188 for Cd(II), 104 for Pb(II), 98 Ni(II), and 206 for Zn(II). The magnetic MOF nanocomposite has a higher capacity than the Fe 3 O 4 /dithizone conjugate. This magnetic MOF nanocomposite was successfully applied to the rapid extraction of trace quantities of heavy metal ions in fish, sediment, soil, and water samples. (author)

  12. Radioactive probe studies of coordination modes of heavy metal ions from natural waters to functionalized magnetic nanoparticles

    CERN Document Server

    Carvalho Soares, J; Lopes, C; Araujo, J

    We propose to use PAC, Perturbed Angular Correlations, to study the local environment of ionic species (Hg$^{2+}$, Cd$^{2+}$) coordinated on functionalized magnetic nanoparticles. Studies include the analysis of different nanoparticle sizes (30-100nm), and the monitoring of time/steps dependence of the coordination of those cations at the nanoparticle surfaces. Combined with theoretical calculations, the obtained data will support the understanding of local coordination modes, which is essential to help to improve methods of magnetically assisted separation of such hazardous contaminants from water.

  13. Environmental magnetic and geochemical characteristics of ...

    Indian Academy of Sciences (India)

    In this study, environmental magnetic, heavy metal and statistical analyses were conducted on 21 surface sediments ... ful tool for the assessment of heavy metal contam- ... natural sinks of magnetic minerals and heavy ... environment, and.

  14. Heavy leptons

    International Nuclear Information System (INIS)

    Smith, C.H.L.

    1977-01-01

    The possibility that a new lepton may exist is discussed under the headings; theoretical reasons for the introduction of heavy leptons, classification of heavy leptons (ortho and paraleptons), discrimination between different types of lepton, decays of charged heavy leptons, production of charged heavy leptons (in e + e - storage rings, neutrino production, photoproduction, and hadroproduction), neutral heavy leptons, and hadroleptons. (U.K.)

  15. Gigantic perpendicular magnetic anisotropy of heavy transition metal cappings on Fe/MgO(0 0 1)

    Science.gov (United States)

    Taivansaikhan, P.; Odkhuu, D.; Rhim, S. H.; Hong, S. C.

    2017-11-01

    Effects of capping layer by 5d transition metals (TM = Hf, Ta, W, Re, Os, Ir, Pt, and Au) on Fe/MgO(0 0 1), a typical magnetic tunneling junction, are systematically investigated using first-principles calculation for magnetism and magnetocrystalline-anisotropy (MCA). The early TMs having less than half-filled d bands favor magnetization antiparallel to Fe, whereas the late TMs having more than half-filled d bands favor parallel, which is explained in the framework of kinetic exchange energy. The Os capping, isovalent to Fe, enhances MCA significantly to gigantic energy of +11.31 meV/cell, where positive contribution is mostly from the partially filled majority d bands of magnetic quantum number of |m| = 1 along with stronger spin-orbit coupling of Os than Fe. Different TM cappings give different MCA energies as the Fermi level shifts according to the valence of TM: Re and Ir, just one valence more or less than Os, have still large PMCA but smaller than the Os. In the W and Pt cappings, valence difference by two, PMCA are further reduced; MCAs are lowered compared to Fe/MgO(0 0 1) by the cappings of the very early TMs (Hf and Ta), while the very late TM (Au) switches sign to in-plane MCA.

  16. The Superconducting Super Collider: A status report

    International Nuclear Information System (INIS)

    Schwitters, R.F.

    1993-04-01

    The design of the Superconducting Super Collider (SSC) is briefly reviewed, including its key machine parameters. The scientific objectives are twofold: (1) investigation of high-mass, low-rate, rare phenomena beyond the standard model; and (2) investigation of processes within the domain of the standard model. Machine luminosity, a key parameter, is a function of beam brightness and current, and it must be preserved through the injector chain. Features of the various injectors are discussed. The superconducting magnet system is reviewed in terms of model magnet performance, including the highly successful Accelerator System String Test Various magnet design modifications are noted, reflecting minor changes in the collider arcs and improved installation procedures. The paper concludes with construction scenarios and priority issues for ensuring the earliest collider commissioning

  17. Status of the SuperHILAC

    International Nuclear Information System (INIS)

    Grunder, H.A.; Selph, F.B.

    1976-09-01

    The SuperHILAC is an Alvarez linear accelerator designed to accelerate all ions to a maximum energy of 8.5 MeV/u. It functions as an essential part of two research programs of national importance--first, as a supplier of beams for research at less than 10 MeV/u, secondly as an injector for the Bevalac facility, for nuclear physics and medical research at energies greater than 200 MeV/u. This duplication of effort from a single accelerator is made possible by the utilization of a technique known as timeshare--two different ion beams are accelerated independently through the same linac structure. Recent operation has been in the mass range 12 less than or equal to A less than or equal to 136. Usually, a heavy ion (A greater than 40) is delivered to the SuperHILAC experimental area for nuclear physics experiments while concurrently delivering a lighter ion (A less than or equal to 40) to the Bevatron for further acceleration (max. 2.5 GeV/u) to be used in experiments exploring the physics of very high energy heavy ions, in investigations of radiation biology, and in preclinical tests as a tool for cancer treatment. Recent operating experience is reviewed. Also discussed are recent major improvements which have been made to the accelerator, and a proposed improvement which will increase reliability and beam intensity for the very heavy ions (A greater than or equal to 84) by adding a third injector of improved design

  18. Theory of super LIE groups

    International Nuclear Information System (INIS)

    Prakash, M.

    1985-01-01

    The theory of supergravity has attracted increasing attention in the recent years as a unified theory of elementary particle interactions. The superspace formulation of the theory is highly suggestive of an underlying geometrical structure of superspace. It also incorporates the beautifully geometrical general theory of relativity. It leads us to believe that a better understanding of its geometry would result in a better understanding of the theory itself, and furthermore, that the geometry of superspace would also have physical consequences. As a first step towards that goal, we develop here a theory of super Lie groups. These are groups that have the same relation to a super Lie algebra as Lie groups have to a Lie algebra. More precisely, a super Lie group is a super-manifold and a group such that the group operations are super-analytic. The super Lie algebra of a super Lie group is related to the local properties of the group near the identity. This work develops the algebraic and super-analytical tools necessary for our theory, including proofs of a set of existence and uniqueness theorems for a class of super-differential equations

  19. Defining and modeling the soil geochemical background of heavy metals from the Hengshi River watershed (southern China): Integrating EDA, stochastic simulation and magnetic parameters

    International Nuclear Information System (INIS)

    Zhou Xu; Xia Beicheng

    2010-01-01

    It is crucial to separate the soil geochemical background concentrations from anthropogenic anomalies and to provide a realistic environmental geochemical map honoring the fluctuations in original data. This study was carried out in the Hengshi River watershed, north of Guangdong, China and the method proposed combined exploratory data analysis (EDA), sequential indicator co-simulation (SIcS) and the ratio of isothermal remnant magnetization (S 100 = -IRM -100mT /SIRM). The results showed that this is robust procedure for defining and mapping soil geochemical background concentrations in mineralized regions. The rock magnetic parameter helps to improve the mapping process by distinguishing anthropogenic influences. In this study, the geochemical backgrounds for four potentially toxic heavy metals (copper 200 mg/kg; zinc 230 mg/kg; lead 190 mg/kg and cadmium 1.85 mg/kg) Cu, Zn and Cd exceeded the soil Grade II limits (for pH < 6.5) from the Chinese Environmental Quality Standard for Soils (GB 15618-1995) (EQSS) which are 100, 200, 250 and 0.3 mg/kg for Cu, Zn, Pb and Cd, respectively. In particular, the geochemical background level for Cd exceeds standard six times. Results suggest that local public health is at high-risk along the riparian region of the Hengshi River, although the watershed ecosystem has not been severely disturbed.

  20. Novel highly porous magnetic hydrogel beads composed of chitosan and sodium citrate: an effective adsorbent for the removal of heavy metals from aqueous solutions.

    Science.gov (United States)

    Pu, Shengyan; Ma, Hui; Zinchenko, Anatoly; Chu, Wei

    2017-07-01

    This research focuses on the removal of heavy metal ions from aqueous solutions using magnetic chitosan hydrogel beads as a potential sorbent. Highly porous magnetic chitosan hydrogel (PMCH) beads were prepared by a combination of in situ co-precipitation and sodium citrate cross-linking. Fourier transform infrared spectroscopy indicated that the high sorption efficiency of metal cations is attributable to the hydroxyl, amino, and carboxyl groups in PMCH beads. Thermogravimetric analysis demonstrated that introducing Fe 3 O 4 nanoparticles increases the thermal stability of the adsorbent. Laser confocal microscopy revealed highly uniform porous structure of the resultant PMCH beads, which contained a high moisture content (93%). Transmission electron microscopy micrographs showed that the Fe 3 O 4 nanoparticles, with a mean diameter of 5 ± 2 nm, were well dispersed inside the chitosan beads. Batch adsorption experiments and adsorption kinetic analysis revealed that the adsorption process obeys a pseudo-second-order model. Isotherm data were satisfactorily described by the Langmuir equation, and the maximum adsorption capacity of the adsorbent was 84.02 mg/g. Energy-dispersive X-ray spectroscopy and X-ray photoelectron spectra analyses were performed to confirm the adsorption of Pb 2+ and to identify the adsorption mechanism.

  1. Solid phase extraction of heavy metal ions based on a novel functionalized magnetic multi-walled carbon nanotube composite with the aid of experimental design methodology

    International Nuclear Information System (INIS)

    Taghizadeh, Mohsen; Asgharinezhad, Ali Akbar; Samkhaniany, Noorallah; Tadjarodi, Azadeh; Abbaszadeh, Abolfazl; Pooladi, Mohsen

    2014-01-01

    We report that magnetic multiwalled carbon nanotubes functionalized with 8-aminoquinoline can be applied to the preconcentration of Cd(II), Pb(II) and Ni(II) ions. The parameters affecting preconcentration were optimized by a Box-Behnken design through response surface methodology. Three variables (extraction time, magnetic sorbent amount, and pH value) were selected as the main factors affecting sorption, and four variables (type, volume and concentration of the eluent; elution time) were selected for optimizing elution. Following sorption and elution, the ions were quantified by FAAS. The LODs are 0.09, 0.72, and 1.0 ng mL −1 for Cd(II), Ni(II), and Pb(II) ions, respectively. The relative standard deviations are <5.1 % for five separate batch determinations at 30 ng mL −1 level of Cd(II), Ni(II), and Pb(II) ions. The sorption capacities (in mg g −1 ) of this new sorbent are 201 for Cd(II), 150 for Pb(II), and 172 Ni(II). The composite was successfully applied to the rapid extraction of trace quantities of heavy metal ions in fish, sediment, soil, and water samples. (author)

  2. Efficient removal of dyes by a novel magnetic Fe{sub 3}O{sub 4}/ZnCr-layered double hydroxide adsorbent from heavy metal wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dan; Li, Yang; Zhang, Jia [School of Environmental and Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai 200444 (China); Li, Wenhui [Department of Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China); Zhou, Jizhi; Shao, Li [School of Environmental and Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai 200444 (China); Qian, Guangren, E-mail: grqian@shu.edu.cn [School of Environmental and Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai 200444 (China)

    2012-12-15

    Graphical abstract: To purify heavy metal wastewater (pickling waste liquor (PWL{sub A} and PWL{sub B}) and electroplating wastewater (EPW{sub C} and EPW{sub D})), a novel magnetic Fe{sub 3}O{sub 4}/ZnCr-LDH material was formed via two-step microwave hydrothermal method (Step 1 and Step 2) and applicable for organic dyes wastewater treatment. Highlights: Black-Right-Pointing-Pointer Fe{sub 3}O{sub 4}/ZnCr-layered double hydroxide adsorbent was produced from wastewater. Black-Right-Pointing-Pointer RSM was successfully applied to the optimization of the preparation conditions. Black-Right-Pointing-Pointer The maximum adsorption capacity of MO was found to be 240.16 mg/g. Black-Right-Pointing-Pointer The MO adsorption mechanism on MFLA was certified. Black-Right-Pointing-Pointer MFLA could be recycled after catalytic regeneration by the oxidation technology. - Abstract: A novel magnetic Fe{sub 3}O{sub 4}/ZnCr-layered double hydroxide adsorbent was produced from electroplating wastewater and pickling waste liquor via a two-step microwave hydrothermal method. Adsorption of methyl orange (MO) from water was studied using this material. The effects of three variables have been investigated by a single-factor method. The response surface methodology (RSM) based on Box-Behnken design was successfully applied to the optimization of the preparation conditions. The maximum adsorption capacity of MO was found to be 240.16 mg/g, indicating that this material may be an effective adsorbent. It was shown that 99% of heavy metal ions (Fe{sup 2+}, Fe{sup 3+}, Cr{sup 3+}, and Zn{sup 2+}) can be effectively removed into precipitates and released far less in the adsorption process. In addition, this material with adsorbed dye can be easily separated by a magnetic field and recycled after catalytic regeneration with advanced oxidation technology. Meanwhile, kinetic models, FTIR spectra and X-ray diffraction pattern were applied to the experimental data to examine uptake mechanism. The

  3. Source Regions of the Interplanetary Magnetic Field and Variability in Heavy-Ion Elemental Composition in Gradual Solar Energetic Particle Events

    Science.gov (United States)

    Ko, Yuan-Kuen; Tylka, Allan J.; Ng, Chee K.; Wang, Yi-Ming; Dietrich, William F.

    2013-01-01

    Gradual solar energetic particle (SEP) events are those in which ions are accelerated to their observed energies by interactions with a shock driven by a fast coronal mass-ejection (CME). Previous studies have shown that much of the observed event-to-event variability can be understood in terms of shock speed and evolution in the shock-normal angle. But an equally important factor, particularly for the elemental composition, is the origin of the suprathermal seed particles upon which the shock acts. To tackle this issue, we (1) use observed solar-wind speed, magnetograms, and the PFSS model to map the Sun-L1 interplanetary magnetic field (IMF) line back to its source region on the Sun at the time of the SEP observations; and (2) then look for correlation between SEP composition (as measured by Wind and ACE at approx. 2-30 MeV/nucleon) and characteristics of the identified IMF-source regions. The study is based on 24 SEP events, identified as a statistically-significant increase in approx. 20 MeV protons and occurring in 1998 and 2003-2006, when the rate of newly-emergent solar magnetic flux and CMEs was lower than in solar-maximum years and the field-line tracing is therefore more likely to be successful. We find that the gradual SEP Fe/O is correlated with the field strength at the IMF-source, with the largest enhancements occurring when the footpoint field is strong, due to the nearby presence of an active region. In these cases, other elemental ratios show a strong charge-to-mass (q/M) ordering, at least on average, similar to that found in impulsive events. These results lead us to suggest that magnetic reconnection in footpoint regions near active regions bias the heavy-ion composition of suprathermal seed ions by processes qualitatively similar to those that produce larger heavy-ion enhancements in impulsive SEP events. To address potential technical concerns about our analysis, we also discuss efforts to exclude impulsive SEP events from our event sample.

  4. Dynamical limitations to heavy ion fusion

    International Nuclear Information System (INIS)

    Back, B.B.

    1983-01-01

    Dynamical limitations to heavy ion fusion reaction are considered. The experimental signatures and the importance of a quasi-fission process are examined. The anaular distributions of fission fragments for the 32 S+ 208 Pb and 16 O+ 238 U systems are presented. It is shown that the observations of quasi-fission for even rather ''light'' heavy ions poeess severe limitations on the fusion process. This result may consequently be responsible for the lack of success of the search for super heavy elements in heavy ion fusion reactions

  5. Football coil: a device to produce absolute minimum magnetic field and an isochronous cyclotron for heavy ions

    International Nuclear Information System (INIS)

    Szu, H.H.

    1977-01-01

    An electric solenoid is considered which consists of several discrete, circular and superconducting wires. The size of each loop varies from one to several meters in the radius. Furthermore, if such a solenoid is made into a football shape by squeezing the ends symmetrically, it is referred to here as a football coil. A discussion is given of the theory of synergic focusing; phase stability and universal orbit; application and computer simulation; and ion self-fields and self-focusing. An isochronous cyclotron was designed using the superconducted football coil and van resonators with flare height. It can accelerate various species of heavy ions; the heavier the rest mass of an ion, the better the present scheme will be

  6. JAPAN: Super-Kamiokande

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Excavation for the Japanese Super- KAMIOKANDE 50,000-ton water Cherenkov imaging detector was completed at the end of June. The goals include a search for nucleon decay up to a lifetime of 10 33-34 years, high-statistics studies of solar and atmospheric neutrinos, and detection of any nearby supernova explosions. The project was approved in 1991, with the official 'groundbreaking' in December of that year about 1,000 m underground in the Kamioka mine in Gifu Prefecture, about 250 km west of Tokyo

  7. The super collider revisited

    International Nuclear Information System (INIS)

    Hussein, M.S.; Pato, M.P.

    1992-01-01

    In this paper, the authors suggest a revised version of the Superconducting Super Collider (SSC) that employs the planned SSC first stage machine as an injector of 0.5 TeV protons into a power laser accelerator. The recently developed Non-linear Amplification of Inverse Bremsstrahlung Acceleration (NAIBA) concept dictates the scenario of the next stage of acceleration. Post Star Wars lasers, available at several laboratories, can be used for the purpose. The 40 TeV CM energy, a target of the SSC, can be obtained with a new machine which can be 20 times smaller than the planned SSC

  8. The super-LHC

    CERN Document Server

    Mangano, Michelangelo L

    2010-01-01

    We review here the prospects of a long-term upgrade programme for the Large Hadron Collider (LHC), CERN laboratory's new proton-proton collider. The super-LHC, which is currently under evaluation and design, is expected to deliver of the order of ten times the statistics of the LHC. In addition to a non-technical summary of the principal physics arguments for the upgrade, I present a pedagogical introduction to the technological challenges on the accelerator and experimental fronts, and a review of the current status of the planning.

  9. Super-heptazethrene

    KAUST Repository

    Zeng, Wangdong

    2016-05-30

    The challenging synthesis of a laterally extended heptazethrene molecule, the super-heptazethrene derivative SHZ-CF3, is reported. This molecule was prepared using a strategy involving a multiple selective intramolecular Friedel–Crafts alkylation followed by oxidative dehydrogenation. Compound SHZ-CF3 exhibits an open-shell singlet diradical ground state with a much larger diradical character compared with the heptazethrene derivatives. An intermediate dibenzo-terrylene SHZ-2H was also obtained during the synthesis. This study provides a new synthetic method to access large-size quinoidal polycyclic hydrocarbons with unique physical properties.

  10. Giant magnetic anisotropy of heavy p-elements on high-symmetry substrates: a new paradigm for supported nanostructures

    Science.gov (United States)

    Pang, Rui; Deng, Bei; Shi, Xingqiang; Zheng, Xiaohong

    2018-04-01

    Nanostructures with giant magnetic anisotropy energies (MAEs) are desired in designing miniaturized magnetic storage and quantum computing devices. Previous works focused mainly on materials or elements with d electrons. Here, by taking Bi–X(X = In, Tl, Ge, Sn, Pb) adsorbed on nitrogenized divacancy of graphene and Bi atoms adsorbed on MgO(100) as examples, through ab initio and model calculations, we propose that special p-element dimers and single-adatoms on symmetry-matched substrates possess giant atomic MAEs of 72–200 meV, and has room temperature structural stability. The huge MAEs originate from the p-orbital degeneracy around the Fermi level in a symmetry-matched surface ligand field and the lifting of this degeneracy when spin–orbit interaction (SOI) is taken into account. Especially, we developed a simplified quantum mechanical model for the design principles of giant MAEs of supported magnetic adatoms and dimers. Thus, our discoveries and mechanisms provide a new paradigm to design giant atomic MAE of p electrons in supported nanostructures.

  11. Magnetic order and spin dynamics in the heavy Fermion system YbNi{sub 4}P{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Spehling, Johannes; Guenther, Marco; Yeche, Nicholas; Klauss, Hans-Henning [Institut fuer Festkoerperphysik, TU Dresden (Germany); Luetkens, Hubertus; Baines, Chris [Laboratory for Muonm Spin Spectroscopy, Paul Scherrer Institut, Villigen (Switzerland); Krellner, Cornelius; Geibel, Christoph; Steglich, Frank [Max-Planck-Institut fuer Chemische Physik Fester Stoffe, Dresden (Germany)

    2012-07-01

    A longstanding question in the field of quantum criticality relates to the possible existence of a ferromagnetic (FM) quantum critical point (QCP). At a QCP, collective quantum fluctuations tune the system continuously from a magnetically ordered to a non-magnetic ground state. However, so far no 4f-material with a FM QCP is found. Recently, in the HF metal YbNi{sub 4}P{sub 2} with a quasi 1D-electronic structure, FM quantum criticality above a low FM transition temperature of T{sub C}=170 mK was suggested. Our zero field muon spin relaxation on YbNi{sub 4}P{sub 2} proves static magnetic order with a strongly reduced ordered Yb{sup 3+} moment below T{sub C}. Above T{sub C}, the muon asymmetry function P(t,B) is dominated by quasi homogeneous spin fluctuations and exhibits a time-field scaling relation P(t,B)=P(t/B{sup {gamma}}) indicating cooperative critical spin dynamics. At T=190 mK, slightly above T{sub C}, {gamma}=0.81(5) K suggesting time-scale invariant power-law behavior for the dynamic electronic spin-spin autocorrelation function. The results are discussed in comparison with the AFM compound YbRh{sub 2}Si{sub 2}.

  12. SuperKEKB Vacuum System

    CERN Document Server

    Shibata, K

    2013-01-01

    SuperKEKB, which is an upgrade of the KEKB Bfactory (KEKB), is a next-generation high-luminosity electron-positron collider. Its design luminosity is 8.0× 10$^{35}$ cm$^{-2}s^{-1}$, which is about 40 times than the KEKB’s record. To achieve this challenging goal, bunches of both beams are squeezed extremely to the nanometer scale and the beam currents are doubled. To realize this, many upgrades must be performed including the replacement of beam pipes mainly in the positron ring (LER). The beam pipes in the LER arc section are being replaced with new aluminium-alloy pipes with antechambers to cope with the electron cloud issue and heating problem. Additionally, several types of countermeasures will be adopted in the LER to deal with the electron cloud issues. In the wiggler section, electrons will be attracted by the clearing electrode, which is mounted on the inner surface of the beam pipe. On the other hand, in the bending magnet, the effective secondary electron yield (SEY) will be structurally reduced ...

  13. SuperKEKB Vacuum System

    International Nuclear Information System (INIS)

    Shibata, K

    2013-01-01

    SuperKEKB, which is an upgrade of the KEKB Bfactory (KEKB), is a next-generation high-luminosity electron-positron collider. Its design luminosity is 8.0 × 10 35 cm −2 s −1 , which is about 40 times than the KEKB’s record. To achieve this challenging goal, bunches of both beams are squeezed extremely to the nanometer scale and the beam currents are doubled. To realize this, many upgrades must be performed including the replacement of beam pipes mainly in the positron ring (LER). The beam pipes in the LER arc section are being replaced with new aluminium-alloy pipes with antechambers to cope with the electron cloud issue and heating problem. Additionally, several types of countermeasures will be adopted in the LER to deal with the electron cloud issues. In the wiggler section, electrons will be attracted by the clearing electrode, which is mounted on the inner surface of the beam pipe. On the other hand, in the bending magnet, the effective secondary electron yield (SEY) will be structurally reduced by the groove surface with a TiN coating. In the drift space, the electron cloud will be mitigated by the TiN coating and a conventional solenoid field. (author)

  14. Superconducting magnets

    International Nuclear Information System (INIS)

    Willen, E.

    1996-01-01

    Superconducting dipole magnets for high energy colliders are discussed. As an example, the magnets recently built for the Relativistic Heavy Ion Collider at Brookhaven are reviewed. Their technical performance and the cost for the industry-built production dipoles are given. The cost data is generalized in order to extrapolate the cost of magnets for a new machine

  15. Thermally tunable broadband omnidirectional and polarization-independent super absorber using phase change material VO2

    Directory of Open Access Journals (Sweden)

    Zhejun Liu

    Full Text Available In this letter, we numerically demonstrate a thermally tunable super absorber by using phase change material VO2 as absorbing layer in metal-insulator-metal structure. An omnidirectional super absorption at λ=2.56μm can be realized by heating the patterned grating VO2 film due to magnetic resonance mechanism. Furthermore, a broadband super absorption higher than 0.8 in the entire 1.6μm–4μm region is achieved when VO2 film is patterned chessboard structure and transformed to metal phase beyond transition temperature. This broadband super absorption can be fulfilled in a wide range of incident angle (0°–70° and under all polarization conditions. Keywords: Phase change material, Metal-insulator-metal, Super absorption, Magnetic resonance

  16. Impressive Super Phenix

    International Nuclear Information System (INIS)

    Olds, F.C.

    1979-01-01

    The 1200-MWe fast breeder reactor, Super Phenix at Creys-Malville, is scheduled for commercial operation in 1983. This is the world's first near-commercial-sized fast breeder. As a near-commercial-sized unit, it represents essentially the technology and hardware of the first fully commercial follow-on units. In its size, its components, its design, the technology it represents, and its project schedule, it is impressive. As of May 1979, the Super Phenix nuclear steam boiler in the Creys-Malville plant bore an estimated cost of $700 million, without fuel. The total cost of the Creys-Malville plant now is estimated at about $1.4 billion. This is about twice the cost of a comparable standardized PWR being built in France today. However, it should be borne in mind that Creys-Malville carries the high cost of a first-of-the-line prototype, and that France's PWRs are standardized, second-generation units. Electricity from Creys-Malville is estimated to cost a little more than electricity would cost from a coal-fired plant complete with flue gas scrubbing

  17. Magnetic field dependence of the specific heat of heavy-fermion YbCu4.5

    International Nuclear Information System (INIS)

    Amato, A.; Fisher, R.A.; Phillips, N.E.; Jaccard, D.; Walker, E.

    1990-03-01

    The specific heat of a polycrystalline sample of YbCu 4.5 has been measured between 0.3 and 20K in magnetic fields to 7T. At zero field a minimum in C/T is observed near 11K. Below that temperature C/T increases and below 0.5K exhibits an upturn ascribed to a hyperfine contribution. The increase in C/T below 11K is reduced by a factor 1.5 for H = 7T, whereas the hyperfine term is enhanced due to the contribution of the 63 Cu and 65 Cu and nuclei. 5 refs., 3 figs

  18. Melting in super-earths.

    Science.gov (United States)

    Stixrude, Lars

    2014-04-28

    We examine the possible extent of melting in rock-iron super-earths, focusing on those in the habitable zone. We consider the energetics of accretion and core formation, the timescale of cooling and its dependence on viscosity and partial melting, thermal regulation via the temperature dependence of viscosity, and the melting curves of rock and iron components at the ultra-high pressures characteristic of super-earths. We find that the efficiency of kinetic energy deposition during accretion increases with planetary mass; considering the likely role of giant impacts and core formation, we find that super-earths probably complete their accretionary phase in an entirely molten state. Considerations of thermal regulation lead us to propose model temperature profiles of super-earths that are controlled by silicate melting. We estimate melting curves of iron and rock components up to the extreme pressures characteristic of super-earth interiors based on existing experimental and ab initio results and scaling laws. We construct super-earth thermal models by solving the equations of mass conservation and hydrostatic equilibrium, together with equations of state of rock and iron components. We set the potential temperature at the core-mantle boundary and at the surface to the local silicate melting temperature. We find that ancient (∼4 Gyr) super-earths may be partially molten at the top and bottom of their mantles, and that mantle convection is sufficiently vigorous to sustain dynamo action over the whole range of super-earth masses.

  19. Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy, and Related Fields

    International Nuclear Information System (INIS)

    Grisham, L.R.; Kwan, J.W.

    2008-01-01

    Some years ago it was suggested that halogen negative ions (1)could offer a feasible alternative path to positive ions as a heavy ion fusion driver beam which would not suffer degradation due to electron accumulation in the accelerator and beam transport system, and which could be converted to a neutral beam by photodetachment near the chamber entrance if desired. Since then, experiments have demonstrated that negative halogen beams can be extracted and accelerated away from the gas plume near the source with a surviving current density close to what could be achieved with a positive ion of similar mass, and with comparable optical quality. In demonstrating the feasibility of halogen negative ions as heavy ion driver beams, ion-ion plasmas, an interesting and somewhat novel state of matter, were produced. These plasmas, produced near the extractor plane of the sources, appear, based upon many lines of experimental evidence, to consist of almost equal densities of positive and negative chlorine ions, with only a small component of free electrons. Serendipitously, the need to extract beams from this plasma for driver development provides a unique diagnostic tool to investigate the plasma, since each component--positive ions, negative ions, and electrons--can be extracted and measured separately. We discuss the relevance of these observations to understanding negative ion beam extraction from electronegative plasmas such as halogens, or the more familiar hydrogen of magnetic fusion ion sources. We suggest a concept which might improve negative hydrogen extraction by the addition of a halogen. The possibility and challenges of producing ion-ion plasmas with thin targets of halogens or, perhaps, salt, is briefly addressed

  20. Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy,and Related Fields

    International Nuclear Information System (INIS)

    Grisham, L.R.; Kwan, J.W.

    2008-01-01

    Some years ago it was suggested that halogen negative ions could offer a feasible alternative path to positive ions as a heavy ion fusion driver beam which would not suffer degradation due to electron accumulation in the accelerator and beam transport system, and which could be converted to a neutral beam by photodetachment near the chamber entrance if desired. Since then, experiments have demonstrated that negative halogen beams can be extracted and accelerated away from the gas plume near the source with a surviving current density close to what could be achieved with a positive ion of similar mass, and with comparable optical quality. In demonstrating the feasibility of halogen negative ions as heavy ion driver beams, ion - ion plasmas, an interesting and somewhat novel state of matter, were produced. These plasmas, produced near the extractor plane of the sources, appear, based upon many lines of experimental evidence, to consist of almost equal densities of positive and negative chlorine ions, with only a small component of free electrons. Serendipitously, the need to extract beams from this plasma for driver development provides a unique diagnostic tool to investigate the plasma, since each component - positive ions, negative ions, and electrons - can be extracted and measured separately. We discuss the relevance of these observations to understanding negative ion beam extraction from electronegative plasmas such as halogens, or the more familiar hydrogen of magnetic fusion ion sources. We suggest a concept which might improve negative hydrogen extraction by the addition of a halogen. The possibility and challenges of producing ion - ion plasmas with thin targets of halogens or, perhaps, salt, is briefly addressed.

  1. Study of the magnetic heavy fermions UCoGe and YbRh2Si2 by transport measurements

    International Nuclear Information System (INIS)

    Taupin, Mathieu

    2013-01-01

    Thermal conductivity measurements have been performed at low temperatures and under field in the superconducting ferromagnetic UCoGe and in the weak antiferromagnetic YbRh 2 S i 2. In both systems, the magnetic fluctuations have an important role in their properties, and it appeared that they contribute as a heat channel, seen by thermal conductivity at low temperatures. In UCoGe, the extra contribution due to the magnetic fluctuations have the same field dependence as the one measured by NMR, and, unexpectedly, a new heat channel appears at very low temperatures. Furthermore, thermal conductivity measurements in the superconducting state have confirmed the multi-gap superconductivity of UCoGe. XMCD measurements have also been performed in UCoGe. In YbRh 2 Si 2 , the very low temperature thermal conductivity measurements have shown that an extra contribution appears at very low temperature, which avoids to conclude de n itively about the violation or the validation of the Wiedemann-Franz law at the quantum critical point, even if the results can be interpreted supposing its validation. (author) [fr

  2. Determination of heavy water in heavy water - light water mixtures

    International Nuclear Information System (INIS)

    Sanhueza M, A.

    1986-01-01

    A description about experimental methodology to determine isotopic composition of heavy water - light water mixtures is presented. The employed methods are Nuclear Magnetic Resonance Spectroscopy, for measuring heavy water concentrations from 0 to 100% with intervals of 10% approx., and mass Spectrometry, for measuring heavy water concentrations from 0.1 to 1% with intervals of 0.15% approx., by means of an indirect method of Dilution. (Author)

  3. SuperB: A High-Luminosity Asymmetric e+e- Super Flavor Factory

    Energy Technology Data Exchange (ETDEWEB)

    Bona, M.; /et al.

    2007-05-18

    We discuss herein the exciting physics program that can be accomplished with a very large sample of heavy quark and heavy lepton decays produced in the very clean environment of an e{sup +}e{sup -} collider; a program complementary to that of an experiment such as LHCb at a hadronic machine. It then presents the conceptual design of a new type of e{sup +}e{sup -} collider that produces a nearly two-order-of-magnitude increase in luminosity over the current generation of asymmetric B Factories. The key idea is the use of low emittance beams produced in an accelerator lattice derived from the ILC Damping Ring Design, together with a new collision region, again with roots in the ILC final focus design, but with important new concepts developed in this design effort. Remarkably, SuperB produces this very large improvement in luminosity with circulating currents and wallplug power similar to those of the current B Factories. There is clear synergy with ILC R&D; design efforts have already influenced one another, and many aspects of the ILC Damping Rings and Final Focus would be operationally tested at SuperB. Finally, the design of an appropriate detector, based on an upgrade of BABAR as an example, is discussed in some detail. A preliminary cost estimate is presented, as is an example construction timeline.

  4. Observation of Charge Asymmetry Dependence of Pion Elliptic Flow and the Possible Chiral Magnetic Wave in Heavy-Ion Collisions.

    Science.gov (United States)

    Adamczyk, L; Adkins, J K; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Alford, J; Aparin, A; Arkhipkin, D; Aschenauer, E C; Averichev, G S; Banerjee, A; Bellwied, R; Bhasin, A; Bhati, A K; Bhattarai, P; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Bouchet, J; Brandin, A V; Bunzarov, I; Burton, T P; Butterworth, J; Caines, H; Calderón de la Barca Sánchez, M; Campbell, J M; Cebra, D; Cervantes, M C; Chakaberia, I; Chaloupka, P; Chang, Z; Chattopadhyay, S; Chen, J H; Chen, X; Cheng, J; Cherney, M; Christie, W; Contin, G; Crawford, H J; Das, S; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; di Ruzza, B; Didenko, L; Dilks, C; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Engelage, J; Eppley, G; Esha, R; Evdokimov, O; Eyser, O; Fatemi, R; Fazio, S; Federic, P; Fedorisin, J; Feng, Z; Filip, P; Fisyak, Y; Flores, C E; Fulek, L; Gagliardi, C A; Garand, D; Geurts, F; Gibson, A; Girard, M; Greiner, L; Grosnick, D; Gunarathne, D S; Guo, Y; Gupta, S; Gupta, A; Guryn, W; Hamad, A; Hamed, A; Haque, R; Harris, J W; He, L; Heppelmann, S; Heppelmann, S; Hirsch, A; Hoffmann, G W; Hofman, D J; Horvat, S; Huang, H Z; Huang, B; Huang, X; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jang, H; Jiang, K; Judd, E G; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Khan, Z H; Kikola, D P; Kisel, I; Kisiel, A; Koetke, D D; Kollegger, T; Kosarzewski, L K; Kotchenda, L; Kraishan, A F; Kravtsov, P; Krueger, K; Kulakov, I; Kumar, L; Kycia, R A; Lamont, M A C; Landgraf, J M; Landry, K D; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; Li, W; Li, Y; Li, C; Li, N; Li, Z M; Li, X; Li, X; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Lomnitz, M; Longacre, R S; Luo, X; Ma, L; Ma, R; Ma, Y G; Ma, G L; Magdy, N; Majka, R; Manion, A; Margetis, S; Markert, C; Masui, H; Matis, H S; McDonald, D; Meehan, K; Minaev, N G; Mioduszewski, S; Mohanty, B; Mondal, M M; Morozov, D A; Mustafa, M K; Nandi, B K; Nasim, Md; Nayak, T K; Nigmatkulov, G; Nogach, L V; Noh, S Y; Novak, J; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Okorokov, V; Olvitt, D L; Page, B S; Pak, R; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlik, B; Pei, H; Perkins, C; Peterson, A; Pile, P; Planinic, M; Pluta, J; Poljak, N; Poniatowska, K; Porter, J; Posik, M; Poskanzer, A M; Pruthi, N K; Putschke, J; Qiu, H; Quintero, A; Ramachandran, S; Raniwala, S; Raniwala, R; Ray, R L; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Roy, A; Ruan, L; Rusnak, J; Rusnakova, O; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandweiss, J; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, W B; Schmitz, N; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, P V; Shao, M; Sharma, B; Sharma, M K; Shen, W Q; Shi, S S; Shou, Q Y; Sichtermann, E P; Sikora, R; Simko, M; Skoby, M J; Smirnov, D; Smirnov, N; Song, L; Sorensen, P; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stepanov, M; Stock, R; Strikhanov, M; Stringfellow, B; Sumbera, M; Summa, B J; Sun, X; Sun, X M; Sun, Z; Sun, Y; Surrow, B; Svirida, D N; Szelezniak, M A; Tang, Z; Tang, A H; Tarnowsky, T; Tawfik, A N; Thomas, J H; Timmins, A R; Tlusty, D; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Tripathy, S K; Trzeciak, B A; Tsai, O D; Ullrich, T; Underwood, D G; Upsal, I; Van Buren, G; van Nieuwenhuizen, G; Vandenbroucke, M; Varma, R; Vasiliev, A N; Vertesi, R; Videbaek, F; Viyogi, Y P; Vokal, S; Voloshin, S A; Vossen, A; Wang, F; Wang, Y; Wang, H; Wang, J S; Wang, Y; Wang, G; Webb, G; Webb, J C; Wen, L; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y F; Xiao, Z; Xie, W; Xin, K; Xu, Y F; Xu, N; Xu, Z; Xu, Q H; Xu, H; Yang, Y; Yang, Y; Yang, C; Yang, S; Yang, Q; Ye, Z; Yepes, P; Yi, L; Yip, K; Yoo, I-K; Yu, N; Zbroszczyk, H; Zha, W; Zhang, X P; Zhang, J B; Zhang, J; Zhang, Z; Zhang, S; Zhang, Y; Zhang, J L; Zhao, F; Zhao, J; Zhong, C; Zhou, L; Zhu, X; Zoulkarneeva, Y; Zyzak, M

    2015-06-26

    We present measurements of π(-) and π(+) elliptic flow, v(2), at midrapidity in Au+Au collisions at √[s(NN)]=200, 62.4, 39, 27, 19.6, 11.5, and 7.7 GeV, as a function of event-by-event charge asymmetry, A(ch), based on data from the STAR experiment at RHIC. We find that π(-) (π(+)) elliptic flow linearly increases (decreases) with charge asymmetry for most centrality bins at √[s(NN)]=27  GeV and higher. At √[s(NN)]=200  GeV, the slope of the difference of v(2) between π(-) and π(+) as a function of A(ch) exhibits a centrality dependence, which is qualitatively similar to calculations that incorporate a chiral magnetic wave effect. Similar centrality dependence is also observed at lower energies.

  5. Observation of Charge Asymmetry Dependence of Pion Elliptic Flow and the Possible Chiral Magnetic Wave in Heavy-Ion Collisions

    Science.gov (United States)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Banerjee, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandin, A. V.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Cervantes, M. C.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, S.; Gupta, A.; Guryn, W.; Hamad, A.; Hamed, A.; Haque, R.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, H. Z.; Huang, B.; Huang, X.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Jiang, K.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikola, D. P.; Kisel, I.; Kisiel, A.; Koetke, D. D.; Kollegger, T.; Kosarzewski, L. K.; Kotchenda, L.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, W.; Li, Y.; Li, C.; Li, N.; Li, Z. M.; Li, X.; Li, X.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, L.; Ma, R.; Ma, Y. G.; Ma, G. L.; Magdy, N.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; Meehan, K.; Minaev, N. G.; Mioduszewski, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V.; Olvitt, D. L.; Page, B. S.; Pak, R.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Peterson, A.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, S.; Raniwala, R.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Sharma, M. K.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stepanov, M.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B. J.; Sun, X.; Sun, X. M.; Sun, Z.; Sun, Y.; Surrow, B.; Svirida, D. N.; Szelezniak, M. A.; Tang, Z.; Tang, A. H.; Tarnowsky, T.; Tawfik, A. N.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasiliev, A. N.; Vertesi, R.; Videbaek, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, F.; Wang, Y.; Wang, H.; Wang, J. S.; Wang, Y.; Wang, G.; Webb, G.; Webb, J. C.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, Y. F.; Xu, N.; Xu, Z.; Xu, Q. H.; Xu, H.; Yang, Y.; Yang, Y.; Yang, C.; Yang, S.; Yang, Q.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, X. P.; Zhang, J. B.; Zhang, J.; Zhang, Z.; Zhang, S.; Zhang, Y.; Zhang, J. L.; Zhao, F.; Zhao, J.; Zhong, C.; Zhou, L.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2015-06-01

    We present measurements of π- and π+ elliptic flow, v2, at midrapidity in Au +Au collisions at √{sNN }=200 , 62.4, 39, 27, 19.6, 11.5, and 7.7 GeV, as a function of event-by-event charge asymmetry, Ach, based on data from the STAR experiment at RHIC. We find that π- (π+) elliptic flow linearly increases (decreases) with charge asymmetry for most centrality bins at √{sNN }=27 GeV and higher. At √{sNN }=200 GeV , the slope of the difference of v2 between π- and π+ as a function of Ach exhibits a centrality dependence, which is qualitatively similar to calculations that incorporate a chiral magnetic wave effect. Similar centrality dependence is also observed at lower energies.

  6. MAGNET

    CERN Multimedia

    by B. Curé

    2011-01-01

    The magnet operation was very satisfactory till the technical stop at the end of the year 2010. The field was ramped down on 5th December 2010, following the successful regeneration test of the turbine filters at full field on 3rd December 2010. This will limit in the future the quantity of magnet cycles, as it is no longer necessary to ramp down the magnet for this type of intervention. This is made possible by the use of the spare liquid Helium volume to cool the magnet while turbines 1 and 2 are stopped, leaving only the third turbine in operation. This obviously requires full availability of the operators to supervise the operation, as it is not automated. The cryogenics was stopped on 6th December 2010 and the magnet was left without cooling until 18th January 2011, when the cryoplant operation resumed. The magnet temperature reached 93 K. The maintenance of the vacuum pumping was done immediately after the magnet stop, when the magnet was still at very low temperature. Only the vacuum pumping of the ma...

  7. Super insulating aerogel glazing

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Jensen, Karsten Ingerslev; Kristiansen, Finn Harken

    2004-01-01

    form the weakest part of the thermal envelope with respect to heat loss coefficient, but on the other hand also play an important role for passive solar energy utilisation. For window orientations other than south, the net energy balance will be close to or below zero. However, the properties......Monolithic silica aerogel offers the possibility of combining super insulation and high solar energy transmittance, which has been the background for a previous and a current EU project on research and development of monolithic silica aerogel as transparent insulation in windows. Generally, windows...... of aerogel glazing will allow for a positive net energy gain even for north facing vertical windows in a Danish climate during the heating season. This means that high quality daylight can be obtained even with additional energy gain. On behalf of the partners of the two EU projects, results related...

  8. Super Dielectric Materials

    Directory of Open Access Journals (Sweden)

    Samuel Fromille

    2014-12-01

    Full Text Available Evidence is provided here that a class of materials with dielectric constants greater than 105 at low frequency (<10−2 Hz, herein called super dielectric materials (SDM, can be generated readily from common, inexpensive materials. Specifically it is demonstrated that high surface area alumina powders, loaded to the incipient wetness point with a solution of boric acid dissolved in water, have dielectric constants, near 0 Hz, greater than 4 × 108 in all cases, a remarkable increase over the best dielectric constants previously measured for energy storage capabilities, ca. 1 × 104. It is postulated that any porous, electrically insulating material (e.g., high surface area powders of silica, titania, etc., filled with a liquid containing a high concentration of ionic species will potentially be an SDM. Capacitors created with the first generated SDM dielectrics (alumina with boric acid solution, herein called New Paradigm Super (NPS capacitors display typical electrostatic capacitive behavior, such as increasing capacitance with decreasing thickness, and can be cycled, but are limited to a maximum effective operating voltage of about 0.8 V. A simple theory is presented: Water containing relatively high concentrations of dissolved ions saturates all, or virtually all, the pores (average diameter 500 Å of the alumina. In an applied field the positive ionic species migrate to the cathode end, and the negative ions to the anode end of each drop. This creates giant dipoles with high charge, hence leading to high dielectric constant behavior. At about 0.8 V, water begins to break down, creating enough ionic species to “short” the individual water droplets. Potentially NPS capacitor stacks can surpass “supercapacitors” in volumetric energy density.

  9. Super high field ohmically heated tokamak operation

    International Nuclear Information System (INIS)

    Cohn, D.R.; Bromberg, L.; Leclaire, R.J.; Potok, R.E.; Jassby, D.L.

    1986-01-01

    The authors discuss a super high field mode of tokamak operation that uses ohmic heating or near ohmic heating to ignition. The super high field mode of operation uses very high values of Β/sup 2/α, where Β is the magnetic field and a is the minor radius (Β/sup 2/α > 100 T/sup 2/m). We analyze copper magnet devices with major radii from 1.7 to 3.0 meters. Minimizing or eliminating the need for auxiliary heating has the potential advantages of reducing uncertainty in extrapolating the energy confinement time of current tokamak devices, and reducing engineering problems associated with large auxiliary heating requirements. It may be possible to heat relatively short pulse, inertially cooled tokamaks to ignition with ohmic power alone. However, there may be advantages in using a very small amount of auxiliary power (less than the ohmic heating power) to boost the ohmic heating and provide a faster start-up, expecially in relatively compact devices

  10. Diagnosis of high-intensity pulsed heavy ion beam generated by a novel magnetically insulated diode with gas puff plasma gun.

    Science.gov (United States)

    Ito, H; Miyake, H; Masugata, K

    2008-10-01

    Intense pulsed heavy ion beam is expected to be applied to materials processing including surface modification and ion implantation. For those applications, it is very important to generate high-purity ion beams with various ion species. For this purpose, we have developed a new type of a magnetically insulated ion diode with an active ion source of a gas puff plasma gun. When the ion diode was operated at a diode voltage of about 190 kV, a diode current of about 15 kA, and a pulse duration of about 100 ns, the ion beam with an ion current density of 54 A/cm(2) was obtained at 50 mm downstream from the anode. By evaluating the ion species and the energy spectrum of the ion beam via a Thomson parabola spectrometer, it was confirmed that the ion beam consists of nitrogen ions (N(+) and N(2+)) of energy of 100-400 keV and the proton impurities of energy of 90-200 keV. The purity of the beam was evaluated to be 94%. The high-purity pulsed nitrogen ion beam was successfully obtained by the developed ion diode system.

  11. Grassmann, super-Kac-Moody and super-derivation algebras

    International Nuclear Information System (INIS)

    Frappat, L.; Ragoucy, E.; Sorba, P.

    1989-05-01

    We study the cyclic cocycles of degree one on the Grassmann algebra and on the super-circle with N supersymmetries (i.e. the tensor product of the algebra of functions on the circle times a Grassmann algebra with N generators). They are related to central extensions of graded loop algebras (i.e. super-Kac-Moody algebras). The corresponding algebras of super-derivations have to be compatible with the cocycle characterizing the extension; we give a general method for determining these algebras and examine in particular the cases N = 1,2,3. We also discuss their relations with the Ademollo et al. algebras, and examine the possibility of defining new kinds of super-conformal algebras, which, for N > 1, generalize the N = 1 Ramond-Neveu-Schwarz algebra

  12. Electrically tuned super-capacitors

    OpenAIRE

    Chowdhury, Tazima S.; Grebel, Haim

    2015-01-01

    Fast charging and discharging of large amounts of electrical energy make super-capacitors ideal for short-term energy storage [1-5]. In its simplest form, the super-capacitor is an electrolytic capacitor made of an anode and a cathode immersed in an electrolyte. As for an ordinary capacitor, minimizing the charge separation distance and increasing the electrode area increase capacitance. In super-capacitors, charge separation is of nano-meter scale at each of the electrode interface (the Helm...

  13. The Super-Kamiokande detector

    International Nuclear Information System (INIS)

    Fukuda, S.; Fukuda, Y.; Hayakawa, T.; Ichihara, E.; Ishitsuka, M.; Itow, Y.; Kajita, T.; Kameda, J.; Kaneyuki, K.; Kasuga, S.; Kobayashi, K.; Kobayashi, Y.; Koshio, Y.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakayama, S.; Namba, T.; Obayashi, Y.; Okada, A.; Oketa, M.; Okumura, K.; Oyabu, T.; Sakurai, N.; Shiozawa, M.; Suzuki, Y.; Takeuchi, Y.; Toshito, T.; Totsuka, Y.; Yamada, S.; Desai, S.; Earl, M.; Hong, J.T.; Kearns, E.; Masuzawa, M.; Messier, M.D.; Stone, J.L.; Sulak, L.R.; Walter, C.W.; Wang, W.; Scholberg, K.; Barszczak, T.; Casper, D.; Liu, D.W.; Gajewski, W.; Halverson, P.G.; Hsu, J.; Kropp, W.R.; Mine, S.; Price, L.R.; Reines, F.; Smy, M.; Sobel, H.W.; Vagins, M.R.; Ganezer, K.S.; Keig, W.E.; Ellsworth, R.W.; Tasaka, S.; Flanagan, J.W.; Kibayashi, A.; Learned, J.G.; Matsuno, S.; Stenger, V.J.; Hayato, Y.; Ishii, T.; Ichikawa, A.; Kanzaki, J.; Kobayashi, T.; Maruyama, T.; Nakamura, K.; Oyama, Y.; Sakai, A.; Sakuda, M.; Sasaki, O.; Echigo, S.; Iwashita, T.; Kohama, M.; Suzuki, A.T.; Hasegawa, M.; Inagaki, T.; Kato, I.; Maesaka, H.; Nakaya, T.; Nishikawa, K.; Yamamoto, S.; Haines, T.J.; Kim, B.K.; Sanford, R.; Svoboda, R.; Blaufuss, E.; Chen, M.L.; Conner, Z.; Goodman, J.A.; Guillian, E.; Sullivan, G.W.; Turcan, D.; Habig, A.; Ackerman, M.; Goebel, F.; Hill, J.; Jung, C.K.; Kato, T.; Kerr, D.; Malek, M.; Martens, K.; Mauger, C.; McGrew, C.; Sharkey, E.; Viren, B.; Yanagisawa, C.; Doki, W.; Inaba, S.; Ito, K.; Kirisawa, M.; Kitaguchi, M.; Mitsuda, C.; Miyano, K.; Saji, C.; Takahata, M.; Takahashi, M.; Higuchi, K.; Kajiyama, Y.; Kusano, A.; Nagashima, Y.; Nitta, K.; Takita, M.; Yamaguchi, T.; Yoshida, M.; Kim, H.I.; Kim, S.B.; Yoo, J.; Okazawa, H.; Etoh, M.; Fujita, K.; Gando, Y.; Hasegawa, A.; Hasegawa, T.; Hatakeyama, S.; Inoue, K.; Ishihara, K.; Iwamoto, T.; Koga, M.; Nishiyama, I.; Ogawa, H.; Shirai, J.; Suzuki, A.; Takayama, T.; Tsushima, F.; Koshiba, M.; Ichikawa, Y.; Hashimoto, T.; Hatakeyama, Y.; Koike, M.; Horiuchi, T.; Nemoto, M.; Nishijima, K.; Takeda, H.; Fujiyasu, H.; Futagami, T.; Ishino, H.; Kanaya, Y.; Morii, M.; Nishihama, H.; Nishimura, H.; Suzuki, T.; Watanabe, Y.; Kielczewska, D.; Golebiewska, U.; Berns, H.G.; Boyd, S.B.; Doyle, R.A.; George, J.S.; Stachyra, A.L.; Wai, L.L.; Wilkes, R.J.; Young, K.K.; Kobayashi, H.

    2003-01-01

    Super-Kamiokande is the world's largest water Cherenkov detector, with net mass 50,000 tons. During the period April, 1996 to July, 2001, Super-Kamiokande I collected 1678 live-days of data, observing neutrinos from the Sun, Earth's atmosphere, and the K2K long-baseline neutrino beam with high efficiency. These data provided crucial information for our current understanding of neutrino oscillations, as well as setting stringent limits on nucleon decay. In this paper, we describe the detector in detail, including its site, configuration, data acquisition equipment, online and offline software, and calibration systems which were used during Super-Kamiokande I

  14. Heavy liquid bubble chamber

    CERN Multimedia

    CERN PhotoLab

    1965-01-01

    The CERN Heavy liquid bubble chamber being installed in the north experimental hall at the PS. On the left, the 1180 litre body; in the centre the magnet, which can produce a field of 26 800 gauss; on the right the expansion mechanism.

  15. Fission delay and GDR γ-ray from very heavy system

    International Nuclear Information System (INIS)

    Shen, W.Q.; Wang, J.S.; Ye, W.; Cai, Y.H.; Ma, Y.G.; Feng, J.; Fang, D.Q.; Cai, X.Z.

    1999-01-01

    The study of the fission delay in reaction of 84 Kr+ 27 Al at 10.6 Mev/u and the systematics of fission delay are described. Authors also discussed the possibility to study the GDR γ rays emitted from the super-heavy compound system on the basis of the strong increasing of the GDR γ rays duo to the fission delay. The calculation results of the GDR γ rays from the super-heavy compound system via microscopic semi-classical Vlasov equation and the experimental data analysis for searching the super-heavy compound system via GDR γ were given

  16. SuperB Progress Report: Detector

    International Nuclear Information System (INIS)

    Grauges, E.; Donvito, G.; Spinoso, V.; Manghisoni, M.; Re, V.; Traversi, G.; Eigen, G.; Fehlker, D.; Helleve, L.; Cheng, C.; Chivukula, A.; Doll, D.; Echenard, B.; Hitlin, D.; Ongmongkolkul, P.; Porter, F.; Rakitin, A.; Thomas, M.; Zhu, R.; Tatishvili, G.; Andreassen, R.; Fabby, C.; Meadows, B.; Simpson, A.; Sokoloff, M.; Tomko, K.; Fella, A.; Andreotti, M.; Baldini, W.; Calabrese, R.; Carassiti, V.; Cibinetto, G.; Cotta Ramusino, A.; Gianoli, A.; Luppi, E.; Munerato, M.; Santoro, V.; Tomassetti, L.; Stoker, D.; Bezshyyko, O.; Dolinska, G.; Arnaud, N.; Beigbeder, C.; Bogard, F.; Breton, D.; Burmistrov, L.; Charlet, D.; Maalmi, J.; Perez Perez, L.; Puill, V.; Stocchi, A.; Tocut, V.; Wallon, S.; Wormser, G.; Brown, D.

    2012-01-01

    This report describes the present status of the detector design for SuperB. It is one of four separate progress reports that, taken collectively, describe progress made on the SuperB Project since the publication of the SuperB Conceptual Design Report in 2007 and the Proceedings of SuperB Workshop VI in Valencia in 2008.

  17. SuperB Progress Report: Detector

    Energy Technology Data Exchange (ETDEWEB)

    Grauges, E.; /Barcelona U., ECM; Donvito, G.; Spinoso, V.; /INFN, Bari /Bari U.; Manghisoni, M.; Re, V.; Traversi, G.; /INFN, Pavia /Bergamo U., Ingengneria Dept.; Eigen, G.; Fehlker, D.; Helleve, L.; /Bergen U.; Carbone, A.; Di Sipio, R.; Gabrielli, A.; Galli, D.; Giorgi, F.; Marconi, U.; Perazzini, S.; Sbarra, C.; Vagnoni, V.; Valentinetti, S.; Villa, M.; Zoccoli, A.; /INFN, Bologna /Bologna U. /Caltech /Carleton U. /Cincinnati U. /INFN, CNAF /INFN, Ferrara /Ferrara U. /UC, Irvine /Taras Shevchenko U. /Orsay, LAL /LBL, Berkeley /UC, Berkeley /Frascati /INFN, Legnaro /Orsay, IPN /Maryland U. /McGill U. /INFN, Milan /Milan U. /INFN, Naples /Naples U. /Novosibirsk, IYF /INFN, Padua /Padua U. /INFN, Pavia /Pavia U. /INFN, Perugia /Perugia U. /INFN, Perugia /Caltech /INFN, Pisa /Pisa U. /Pisa, Scuola Normale Superiore /PNL, Richland /Queen Mary, U. of London /Rutherford /INFN, Rome /Rome U. /INFN, Rome2 /Rome U.,Tor Vergata /INFN, Rome3 /Rome III U. /SLAC /Tel Aviv U. /INFN, Turin /Turin U. /INFN, Padua /Trento U. /INFN, Trieste /Trieste U. /TRIUMF /British Columbia U. /Montreal U. /Victoria U.

    2012-02-14

    This report describes the present status of the detector design for SuperB. It is one of four separate progress reports that, taken collectively, describe progress made on the SuperB Project since the publication of the SuperB Conceptual Design Report in 2007 and the Proceedings of SuperB Workshop VI in Valencia in 2008.

  18. SuperB Progress Reports Accelerator

    CERN Document Server

    Biagini, Maria Enrica; Boscolo, M; Buonomo, B; Demma, T; Drago, A; Esposito, M; Guiducci, S; Mazzitelli, G; Pellegrino, L; Preger, M A; Raimondi, P; Ricci, R; Rotundo, U; Sanelli, C; Serio, M; Stella, A; Tomassini, S; Zobov, M; Bertsche, K; Brachman, A; Cai, Y; Chao, A; Chesnut, R; Donald, M.H; Field, C; Fisher, A; Kharakh, D; Krasnykh, A; Moffeit, K; Nosochkov, Y; Pivi, M; Seeman, J; Sullivan, M.K; Weathersby, S; Weidemann, A; Weisend, J; Wienands, U; Wittmer, W; Woods, M; Yocky, G; Bogomiagkov, A; Koop, I; Levichev, E; Nikitin, S; Okunev, I; Piminov, P; Sinyatkin, S; Shatilov, D; Vobly, P; Bosi, F; Liuzzo, S; Paoloni, E; Bonis, J; Chehab, R; Le Meur, G; Lepercq, P; Letellier-Cohen, F; Mercier, B; Poirier, F; Prevost, C; Rimbault, C; Touze, F; Variola, A; Bolzon, B; Brunetti, L; Jeremie, A; Baylac, M; Bourrion, O; De Conto, J M; Gomez, Y; Meot, F; Monseu, N; Tourres, D; Vescovi, C; Chanci, A; Napoly, O; Barber, D P; Bettoni, S; Quatraro, D

    2010-01-01

    This report details the present status of the Accelerator design for the SuperB Project. It is one of four separate progress reports that, taken collectively, describe progress made on the SuperB Project since the publication of the SuperB Conceptual Design Report in 2007 and the Proceedings of SuperB Workshop VI in Valencia in 2008.

  19. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    Operation of the magnet has gone quite smoothly during the first half of this year. The magnet has been at 4.5K for the full period since January. There was an unplanned short stop due to the CERN-wide power outage on May 28th, which caused a slow dump of the magnet. Since this occurred just before a planned technical stop of the LHC, during which access in the experimental cavern was authorized, it was decided to leave the magnet OFF until 2nd June, when magnet was ramped up again to 3.8T. The magnet system experienced a fault also resulting in a slow dump on April 14th. This was triggered by a thermostat on a filter choke in the 20kA DC power converter. The threshold of this thermostat is 65°C. However, no variation in the water-cooling flow rate or temperature was observed. Vibration may have been the root cause of the fault. All the thermostats have been checked, together with the cables, connectors and the read out card. The tightening of the inductance fixations has also been checked. More tem...

  20. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      The magnet was energised at the beginning of March 2012 at a low current to check all the MSS safety chains. Then the magnet was ramped up to 3.8 T on 6 March 2012. Unfortunately two days later an unintentional switch OFF of the power converter caused a slow dump. This was due to a misunderstanding of the CCC (CERN Control Centre) concerning the procedure to apply for the CMS converter control according to the beam-mode status at that time. Following this event, the third one since 2009, a discussion was initiated to define possible improvement, not only on software and procedures in the CCC, but also to evaluate the possibility to upgrade the CMS hardware to prevent such discharge from occurring because of incorrect procedure implementations. The magnet operation itself was smooth, and no power cuts took place. As a result, the number of magnetic cycles was reduced to the minimum, with only two full magnetic cycles from 0 T to 3.8 T. Nevertheless the magnet suffered four stops of the cryogeni...

  1. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      Following the unexpected magnet stops last August due to sequences of unfortunate events on the services and cryogenics [see CMS internal report], a few more events and initiatives again disrupted the magnet operation. All the magnet parameters stayed at their nominal values during this period without any fault or alarm on the magnet control and safety systems. The magnet was stopped for the September technical stop to allow interventions in the experimental cavern on the detector services. On 1 October, to prepare the transfer of the liquid nitrogen tank on its new location, several control cables had to be removed. One cable was cut mistakenly, causing a digital input card to switch off, resulting in a cold-box (CB) stop. This tank is used for the pre-cooling of the magnet from room temperature down to 80 K, and for this reason it is controlled through the cryogenics control system. Since the connection of the CB was only allowed for a field below 2 T to avoid the risk of triggering a fast d...

  2. Super boson-fermion correspondence

    International Nuclear Information System (INIS)

    Kac, V.G.; Leur van de, J.W.

    1987-01-01

    Since the pioneering work of Skyrme, the boson-fermion correspondence has been playing an increasingly important role in 2-dimensional quantum field theory. More recently, it has become an important ingredient in the work of the Kyoto school on the KP hierarchy of soliton equations. In the present paper we establish a super boson-fermion correspondence, having in mind its applications to super KP hierarchies

  3. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      The magnet and its sub-systems were stopped at the beginning of the winter shutdown on 8th December 2011. The magnet was left without cooling during the cryogenics maintenance until 17th January 2012, when the cryoplant operation resumed. The magnet temperature reached 93 K. The vacuum pumping was maintained during this period. During this shutdown, the yearly maintenance was performed on the cryogenics, the vacuum pumps, the magnet control and safety systems, and the power converter and discharge lines. Several preventive actions led to the replacement of the electrovalve command coils, and the 20A DC power supplies of the magnet control system. The filters were cleaned on the demineralised water circuits. The oil of the diffusion pumps was changed. On the cryogenics, warm nitrogen at 343 K was circulated in the cold box to regenerate the filters and the heat exchangers. The coalescing filters have been replaced at the inlet of both the turbines and the lubricant trapping unit. The active cha...

  4. MAGNET

    CERN Multimedia

    B. Curé

    2013-01-01

      The magnet was operated without any problem until the end of the LHC run in February 2013, apart from a CERN-wide power glitch on 10 January 2013 that affected the CMS refrigerator, causing a ramp down to 2 T in order to reconnect the coldbox. Another CERN-wide power glitch on 15 January 2013 didn’t affect the magnet subsystems, the cryoplant or the power converter. At the end of the magnet run, the reconnection of the coldbox at 2.5 T was tested. The process will be updated, in particular the parameters of some PID valve controllers. The helium flow of the current leads was reduced but only for a few seconds. The exercise will be repeated with the revised parameters to validate the automatic reconnection process of the coldbox. During LS1, the water-cooling services will be reduced and many interventions are planned on the electrical services. Therefore, the magnet cryogenics and subsystems will be stopped for several months, and the magnet cannot be kept cold. In order to avoid unc...

  5. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    The magnet was successfully operated at the end of the year 2009 despite some technical problems on the cryogenics. The magnet was ramped up to 3.8 T at the end of November until December 16th when the shutdown started. The magnet operation met a few unexpected stops. The field was reduced to 3.5 T for about 5 hours on December 3rd due to a faulty pressure sensor on the helium compressor. The following day the CERN CCC stopped unintentionally the power converters of the LHC and the experiments, triggering a ramp down that was stopped at 2.7 T. The magnet was back at 3.8 T about 6 hours after CCC sent the CERN-wide command. Three days later, a slow dump was triggered due to a stop of the pump feeding the power converter water-cooling circuit, during an intervention on the water-cooling plant done after several disturbances on the electrical distribution network. The magnet was back at 3.8 T in the evening the same day. On December 10th a break occurred in one turbine of the cold box producing the liquid ...

  6. MAGNET

    CERN Multimedia

    B. Curé

    2011-01-01

    The CMS magnet has been running steadily and smoothly since the summer, with no detected flaw. The magnet instrumentation is entirely operational and all the parameters are at their nominal values. Three power cuts on the electrical network affected the magnet run in the past five months, with no impact on the data-taking as the accelerator was also affected at the same time. On 22nd June, a thunderstorm caused a power glitch on the service electrical network. The primary water cooling at Point 5 was stopped. Despite a quick restart of the water cooling, the inlet temperature of the demineralised water on the busbar cooling circuit increased by 5 °C, up to 23.3 °C. It was kept below the threshold of 27 °C by switching off other cooling circuits to avoid the trigger of a slow dump of the magnet. The cold box of the cryogenics also stopped. Part of the spare liquid helium volume was used to maintain the cooling of the magnet at 4.5 K. The operators of the cryogenics quickly restarted ...

  7. Heavy Chain Diseases

    Science.gov (United States)

    ... of heavy chain produced: Alpha Gamma Mu Alpha Heavy Chain Disease Alpha heavy chain disease (IgA heavy ... the disease or lead to a remission. Gamma Heavy Chain Disease Gamma heavy chain disease (IgG heavy ...

  8. Electronic Structure Calculation of Permanent Magnets using the KKR Green's Function Method

    Science.gov (United States)

    Doi, Shotaro; Akai, Hisazumi

    2014-03-01

    Electronic structure and magnetic properties of permanent magnetic materials, especially Nd2Fe14B, are investigated theoretically using the KKR Green's function method. Important physical quantities in magnetism, such as magnetic moment, Curie temperature, and anisotropy constant, which are obtained from electronics structure calculations in both cases of atomic-sphere-approximation and full-potential treatment, are compared with past band structure calculations and experiments. The site preference of heavy rare-earth impurities are also evaluated through the calculation of formation energy with the use of coherent potential approximations. Further, the development of electronic structure calculation code using the screened KKR for large super-cells, which is aimed at studying the electronic structure of realistic microstructures (e.g. grain boundary phase), is introduced with some test calculations.

  9. Synthesis and characterization of oleic acid surface modified magnetic iron oxide nanoparticles by using biocompatible w/o microemulsion for heavy metal removal

    Science.gov (United States)

    Rose, Laili Che; Suhaimi, Hamdan; Mamat, Mazidah; Lik, Thang Zhe

    2017-09-01

    Oleic acid modified magnetic iron oxide nanoparticles (OA-MIONs) was prepared for removal of Cu2+ ion from aqueous solution. OA-MIONs was prepared by W/O microemulsion template which composed of mixed non-ionic surfactants and 1-hexanol as emulsifier. The effect of weight ratio of the constituent of microemulsion template on the physical and chemical properties of OA-MIONs was studied by characterization using Fourier transform infrared (FT-IR), scanning electron microscopy (SEM) and X-ray powder diffraction (XRD) analysis. FT-IR spectra showed that all templates shared similar chemical structure with slight difference in the peak intensity. Scanning electron micrograph illustrated that the OA-MIONs synthesized via template with the lowest weight ratio of emulsifier to heptane had a more regular spherical shape and was well-distributed. XRD had confirmed that the identity of synthesized OA-MIONs was Fe3O4. Based on the characterization result, the template with lowest weight ratio of emulsifier to heptane was chosen for the heavy metal adsorption study. The adsorption capacity OA-MIONs as a function of pH, contact time and adsorbent dosage were studied. The adsorption process reached equilibrium for 90 minutes and successfully adsorbed 43% of Cu2+ ion from aqueous solution. The adsorption behavior was well described by Langmuir isotherm. The maximum adsorption capacity was determined and found to be 555.56 mg/g. The value of Langmuir equilibrium parameter, RL was found between 0 and 1, suggested that a favorable monolayer adsorption process had taken out.

  10. MAGNET

    CERN Multimedia

    B. Curé

    2011-01-01

    The magnet ran smoothly in the last few months until a fast dump occurred on 9th May 2011. Fortunately, this occurred in the afternoon of the first day of the technical stop. The fast dump was due to a valve position controller that caused the sudden closure of a valve. This valve is used to regulate the helium flow on one of the two current leads, which electrically connects the coil at 4.5 K to the busbars at room temperature. With no helium flow on the lead, the voltage drop and the temperatures across the leads increase up to the defined thresholds, triggering a fast dump through the Magnet Safety System (MSS). The automatic reaction triggered by the MSS worked properly. The helium release was limited as the pressure rise was just at the limit of the safety valve opening pressure. The average temperature of the magnet reached 72 K. It took four days to recover the temperature and refill the helium volumes. The faulty valve controller was replaced by a spare one before the magnet ramp-up resumed....

  11. Super Dielectric Materials.

    Science.gov (United States)

    Fromille, Samuel; Phillips, Jonathan

    2014-12-22

    Evidence is provided here that a class of materials with dielectric constants greater than 10⁵ at low frequency (dielectric materials (SDM), can be generated readily from common, inexpensive materials. Specifically it is demonstrated that high surface area alumina powders, loaded to the incipient wetness point with a solution of boric acid dissolved in water, have dielectric constants, near 0 Hz, greater than 4 × 10⁸ in all cases, a remarkable increase over the best dielectric constants previously measured for energy storage capabilities, ca. 1 × 10⁴. It is postulated that any porous, electrically insulating material (e.g., high surface area powders of silica, titania, etc. ), filled with a liquid containing a high concentration of ionic species will potentially be an SDM. Capacitors created with the first generated SDM dielectrics (alumina with boric acid solution), herein called New Paradigm Super (NPS) capacitors display typical electrostatic capacitive behavior, such as increasing capacitance with decreasing thickness, and can be cycled, but are limited to a maximum effective operating voltage of about 0.8 V. A simple theory is presented: Water containing relatively high concentrations of dissolved ions saturates all, or virtually all, the pores (average diameter 500 Å) of the alumina. In an applied field the positive ionic species migrate to the cathode end, and the negative ions to the anode end of each drop. This creates giant dipoles with high charge, hence leading to high dielectric constant behavior. At about 0.8 V, water begins to break down, creating enough ionic species to "short" the individual water droplets. Potentially NPS capacitor stacks can surpass "supercapacitors" in volumetric energy density.

  12. Superconductive MRI system, MRT-50A/SUPER

    International Nuclear Information System (INIS)

    Suzuki, Hirokazu; Goro, Takehiko

    1992-01-01

    The MRI (magnetic resonance imaging) market has been rapidly growing and more than 1,300 MRI systems are now operating in the Japanese domestic market. An upper-middle range MRI market, which is characterized by high-image quality, has newly appeared between the high-end and middle-range market niches since last year. To be competitive in this upper-middle range market, Toshiba has developed a superconductive MRI system, the MRT-50A/SUPER. The new system featured a high-performance actively shielded gradient coil called the TSGC (twin-shielded gradient coil), installed in a compact superconductive magnet. This paper introduces the MRT-50A/SUPER and describes recent developments in MRI technology. (author)

  13. Recent developments in the synthesis of super heavy elements

    International Nuclear Information System (INIS)

    Ackermann, D.

    2001-01-01

    Throughout the passed two decades isotopes of the elements with atomic numbers 107-112 have been synthesized and unambiguously identified at the velocity filter SHIP at GSI. In a recent experiment at SHIP the results for element 112 have been confirmed and a third decay chain of the isotope 277 112 has been observed. Cold fusion reactions using Pb- and Bi- targets and evaporation residue(ER)-α-α correlations together with an efficient separation and detection system are the major ingredients for the success of these experiments. The sensitivity limit of the set-up at GSI has reached the 1pb level. For a systematic investigation in this region of the chart of nuclei and to synthesize heavier nuclei this limit has to be pushed to even lower values. An extensive development program is pursued at SHIP in order to reach at least an order of magnitude lower cross sections. Systematic investigations, the construction of decay chain networks and mass measurements are some of the possible approaches to study the decay chains attributed to isotopes of the elements 114, 116 and 118 at Dubna and Berkeley, which are, in contrast to those observed at GSI, not connected to decays of known isotopes. For the Berkeley results, in particular, several trials of confirmation have been undertaken at various laboratories including GSI

  14. Super heavy element Copernicium: Cohesive and electronic properties revisited

    Science.gov (United States)

    Gyanchandani, Jyoti; Mishra, Vinayak; Dey, G. K.; Sikka, S. K.

    2018-01-01

    First principles scalar relativistic (SR) calculations with and without including the spin orbit (SO) interactions have been performed for solid Copernicium (Cn) to determine its ground state equilibrium structure, volume, bulk modulus, pressure derivative of the bulk modulus, density of states and band structure. Both SR and SR+SO calculations have been performed with 6p levels treated as part of core electrons and also as part of valence electrons. These calculations have been performed for the rhombohedral, BCT, FCC, HCP, BCC and SC structures. Results have been compared with the results for Hg which is lighter homologue of Cn in the periodic table. We find hcp to be the stable crystal structure at SR level of theory and also at SR+SO level of theory when the 6p electrons are treated as part of core electrons. With 6p as part of valence electrons, SR+SO level of computations, however, yield bcc structure to be the most stable structure. Equilibrium volume (V0) of the most stable crystal structure at SR level of theory viz. hcp structure is 188.66 a.u.3whereas its value for the bcc structure, the equilibrium ground state structure at SR+SO level of theory is 165.71 a.u.3 i.e a large change due to relativistic effects is seen. The density of states at Fermi level is much smaller in Cn than in Hg, making it a poorer metal than mercury. In addition the cohesive energy of Cn is computed to be almost two times that of Hg for SR+SO case.

  15. Study of a new magnetic dipole mode in the heavy deformed nuclei 154Sm, 156Gd, 158Gd, 164Dy, 168Er, and 174Yb by high-resolution electron spectroscopy

    International Nuclear Information System (INIS)

    Bohle, D.

    1985-01-01

    By inelastic electron scattering with high energy resolution a new magnetic dipole mode in heavy, deformed nuclei could be detected. For this the nuclei 154 Sm, 156 Gd, 158 Gd, 164 Dy, 168 Er, and 174 Yb were studied at the Darmstadt electron linear accelerator (DALINAC) at small momentum transfer q ≤ 0.6 fm -1 and low excitation energies. A collective magnetic dipole excitation could be discovered in all nuclei at an excitation energy of E x ≅ 66 δA -1/3 MeV whereby δ means the mass deformation. The transition strength extends in the mean to B(M1)↑ ≅ 1.3 μ N 2 . A systematic study of the nucleus 156 Gd yielded hints to a strong fragmentation of the magnetic dipole strength. A comparison of electron scattering, proton scattering, and nuclear resonance fluorescence experiments shows that the new mode is a pure orbital mode. (orig./HSI) [de

  16. Thermal properties of heavy fermion systems under unaxial and hydrostatic pressure: Anisotropic magnetic ordering in CeCu6-xAux and (B,T,p) phase diagram of UPt3

    International Nuclear Information System (INIS)

    Sieck, M.

    1996-01-01

    Single crystal samples of heavy fermion systems UPt 3 and CeCu 6-x Au x have been investigated under hydrostatic and uniaxial pressure, respectively, at low temperatures and in magnetic fields up to 3 T using measurements of the specific heat and the magnetocaloric effect. A light-weigth hydrostatic pressure cell made of CuBe was designed and built up. For CeCu 6-x Au x the interrelation between magnetic order and the non-magnetic ground state was studied as function of Au concentration. For the UPt 3 system the phase diagrams in the superconducting state has been constructed. In the magnetocaloric effect irreversibilities due to flux pinning in the flux line lattice were observed

  17. Heavy baryons

    International Nuclear Information System (INIS)

    Koerner, J.G.

    1994-06-01

    We review the experimental and theoretical status of baryons containing one heavy quark. The charm and bottom baryon states are classified and their mass spectra are listed. The appropriate theoretical framework for the description of heavy baryons is the Heavy Quark Effective Theory, whose general ideas and methods are introduced and illustrated in specific examples. We present simple covariant expressions for the spin wave functions of heavy baryons including p-wave baryons. The covariant spin wave functions are used to determine the Heavy Quark Symmetry structure of flavour-changing current-induced transitions between heavy baryons as well as one-pion and one-photon transitions between heavy baryons of the same flavour. We discuss 1/m Q corrections to the current-induced transitions as well as the structure of heavy to light baryon transitions. Whenever possible we attempt to present numbers to compare with experiment by making use of further model-dependent assumptions as e.g. the constituent picture for light quarks. We highlight recent advances in the theoretical understanding of the inclusive decays of hadrons containing one heavy quark including polarization. For exclusive semileptonic decays we discuss rates, angular decay distributions and polarization effects. We provide an update of the experimental and theoretical status of lifetimes of heavy baryons and of exclusive nonleptonic two body decays of charm baryons. (orig.)

  18. Quantization of super Teichmueller spaces

    International Nuclear Information System (INIS)

    Aghaei, Nezhla

    2016-08-01

    The quantization of the Teichmueller spaces of Riemann surfaces has found important applications to conformal field theory and N=2 supersymmetric gauge theories. We construct a quantization of the Teichmueller spaces of super Riemann surfaces, using coordinates associated to the ideal triangulations of super Riemann surfaces. A new feature is the non-trivial dependence on the choice of a spin structure which can be encoded combinatorially in a certain refinement of the ideal triangulation. We construct a projective unitary representation of the groupoid of changes of refined ideal triangulations. Therefore, we demonstrate that the dependence of the resulting quantum theory on the choice of a triangulation is inessential. In the quantum Teichmueller theory, it was observed that the key object defining the Teichmueller theory has a close relation to the representation theory of the Borel half of U q (sl(2)). In our research we observed that the role of U q (sl(2)) is taken by quantum superalgebra U q (osp(1 vertical stroke 2)). A Borel half of U q (osp(1 vertical stroke 2)) is the super quantum plane. The canonical element of the Heisenberg double of the quantum super plane is evaluated in certain infinite dimensional representations on L 2 (R) x C 1 vertical stroke 1 and compared to the flip operator from the Teichmueller theory of super Riemann surfaces.

  19. Investigation of Central Pb-Pb Interactions at Energies of 160 GeV/Nucleon with the Help of the Emulsion Magnetic Chamber

    CERN Multimedia

    2002-01-01

    % EMU15 \\\\ \\\\ The aim of this experiment is to investigate high energy heavy ion central collisions by the use of emulsion magnetic chamber with high spatial resolution. The emulsion chamber consists of 50~emulsion layers 50~microns thick each coated on 25~microns mylar base. A thin lead target plate 300~microns thick is installed immediately in front of the first emulsion layer. It is placed in the transverse magnetic field B~$\\sim$~2~Tesla and is to be installed perpendicularly to Pb nucleus beam. This set-up enables to measure full 3-momenta and charge signs of secondary particles. \\\\ \\\\Specific goal is to carry out detailed analysis of individual events with super high multiplicity of secondaries. These data are to be used for investigation of properties of super hot/dense matter, in particular to look for and analyze possible manifestations of quark-gluon plasma in central Pb-Pb collisions at energies of 160~GeV/nucleon.

  20. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    The magnet worked very well at 3.8 T as expected, despite a technical issue that manifested twice in the cryogenics since June. All the other magnet sub-systems worked without flaw. The issue in the cryogenics was with the cold box: it could be observed that the cold box was getting progressively blocked, due to some residual humidity and air accumulating in the first thermal exchanger and in the adsorber at 65 K. This was later confirmed by the analysis during the regeneration phases. An increase in the temperature difference between the helium inlet and outlet across the heat exchanger and a pressure drop increase on the filter of the adsorber were observed. The consequence was a reduction of the helium flow, first compensated by the automatic opening of the regulation valves. But once they were fully opened, the flow and refrigeration power reduced as a consequence. In such a situation, the liquid helium level in the helium Dewar decreased, eventually causing a ramp down of the magnet current and a field...

  1. MAGNET

    CERN Multimedia

    B. Curé

    MAGNET During the winter shutdown, the magnet subsystems went through a full maintenance. The magnet was successfully warmed up to room temperature beginning of December 2008. The vacuum was broken later on by injecting nitrogen at a pressure just above one atmosphere inside the vacuum tank. This was necessary both to prevent any accidental humidity ingress, and to allow for a modification of the vacuum gauges on the vacuum tank and maintenance of the diffusion pumps. The vacuum gauges had to be changed, because of erratic variations on the measurements, causing spurious alarms. The new type of vacuum gauges has been used in similar conditions on the other LHC experiments and without problems. They are shielded against the stray field. The lubricants of the primary and diffusion pumps have been changed. Several minor modifications were also carried out on the equipment in the service cavern, with the aim to ease the maintenance and to allow possible intervention during operation. Spare sensors have been bough...

  2. MAGNET

    CERN Multimedia

    Benoit Curé.

    The magnet operation restarted end of June this year. Quick routine checks of the magnet sub-systems were performed at low current before starting the ramps up to higher field. It appeared clearly that the end of the field ramp down to zero was too long to be compatible with the detector commissioning and operations plans. It was decided to perform an upgrade to keep the ramp down from 3.8T to zero within 4 hours. On July 10th, when a field of 1.5T was reached, small movements were observed in the forward region support table and it was decided to fix this problem before going to higher field. At the end of July the ramps could be resumed. On July 28th, the field was at 3.8T and the summer CRAFT exercise could start. This run in August went smoothly until a general CERN wide power cut took place on August 3rd, due to an insulation fault on the high voltage network outside point 5. It affected the magnet powering electrical circuit, as it caused the opening of the main circuit breakers, resulting in a fast du...

  3. MAGNET

    CERN Multimedia

    B. Curé

    2013-01-01

    The magnet is fully stopped and at room temperature. The maintenance works and consolidation activities on the magnet sub-systems are progressing. To consolidate the cryogenic installation, two redundant helium compressors will be installed as ‘hot spares’, to avoid the risk of a magnet downtime in case of a major failure of a compressor unit during operation. The screw compressors, their motors, the mechanical couplings and the concrete blocks are already available and stored at P5. The metallic structure used to access the existing compressors in SH5 will be modified to allow the installation of the two redundant ones. The plan is to finish the installation and commissioning of the hot spare compressors before the summer 2014. In the meantime, a bypass on the high-pressure helium piping will be installed for the connection of a helium drier unit later during the Long Shutdown 1, keeping this installation out of the schedule critical path. A proposal is now being prepared for the con...

  4. The SPL-based Neutrino Super Beam

    CERN Document Server

    Baussan, E; Bobeth, C; Bouquerel, E; Caretta, O; Cupial, P; Davenne, T; Densham, C; Dracos, M; Fitton, M; Gaudiot, G; Kozien, M; Lacny, L; Lepers, B; Longhin, A; Loveridge, P; Osswald, F; Poussot, P; Rooney, M; Skoczen, B; Szybinski, B; Ustrzycka, A; Vassilopoulos, N; Wilcox, D; Wroblewski, A; Wurtz, J; Zeter, V; Zito, M

    2012-01-01

    The EUROnu Super Beam work package has studied a neutrino beam based on SPL at CERN and aimed at MEMPHYS, a large water Cherenkov detector, proposed for the Laboratoire Souterrain de Modane (Fr\\'ejus tunnel, France), with a baseline of 130 km. The aim of this proposed experiment is to study the CP violation in the neutrino sector. In the study reported here, we have developed the conceptual design of the neutrino beam, especially the target and the magnetic focusing device. Indeed, this beam present several unprecedented challenges, like the high primary proton beam power (4 MW), the high repetition rate (50 Hz) and the low energy of the protons (4.5 GeV). The design is completed by a study of all the main component of the system, starting from the transport system to guide the beam to the target up to the beam dump.

  5. Siting the superconducting super collider

    International Nuclear Information System (INIS)

    Price, R.; Rooney, R.C.

    1988-01-01

    At the request of the Department of Energy, the National Academy of Sciences and the National Academy of Engineering established the Super Collider Site Evaluation Committee to evaluate the suitability of proposed sites for the Superconducting Super Collider. Thirty-six proposals were examined by the committee. Using the set of criteria announced by DOE in its Invitation for Site Proposals, the committee identified eight sites that merited inclusion on a ''best qualified list.'' The list represents the best collective judgment of 21 individuals, carefully chosen for their expertise and impartiality, after a detailed assessment of the proposals using 19 technical subcriteria and DOE's life cycle cost estimates. The sites, in alphabetical order, are: Arizona/Maricopa; Colorado; Illinois; Michigan/Stockbridge; New York/Rochester; North Carolina; Tennessee; and Texas/Dallas-Fort Worth. The evaluation of these sites and the Superconducting Super Collider are discussed in this book

  6. Heavy flavors

    International Nuclear Information System (INIS)

    Cox, B.; Gilman, F.J.; Gottschalk, T.D.

    1986-11-01

    A range of issues pertaining to heavy flavors at the SSC is examined including heavy flavor production by gluon-gluon fusion and by shower evolution of gluon jets, flavor tagging, reconstruction of Higgs and W bosons, and the study of rare decays and CP violation in the B meson system. A specific detector for doing heavy flavor physics and tuned to this latter study at the SSC, the TASTER, is described. 36 refs., 10 figs

  7. Quantisation of super Teichmueller theory

    International Nuclear Information System (INIS)

    Aghaei, Nezhla; Hamburg Univ.; Pawelkiewicz, Michal; Techner, Joerg

    2015-12-01

    We construct a quantisation of the Teichmueller spaces of super Riemann surfaces using coordinates associated to ideal triangulations of super Riemann surfaces. A new feature is the non-trivial dependence on the choice of a spin structure which can be encoded combinatorially in a certain refinement of the ideal triangulation. By constructing a projective unitary representation of the groupoid of changes of refined ideal triangulations we demonstrate that the dependence of the resulting quantum theory on the choice of a triangulation is inessential.

  8. A note on the super AKNS equations

    International Nuclear Information System (INIS)

    Li Yishen; Zhang Lining.

    1986-10-01

    We find some relationships between the usual AKNS scheme with the super one, when its elements take value from the Grassmann algebra on a two-dimensional vector space. The solutions of these super AKNS equations are discussed. (author)

  9. The physics and chemistry of heavy Fermions

    International Nuclear Information System (INIS)

    Fisk, Z.; Sarrao, J.L.

    1994-01-01

    The heavy Fermions are a subset of the f-element intermetallics straddling the magnetic/non-magnetic boundary. Their low temperature properties are characterized by an electronic energy scale of order 1--10 K. Among the low temperature ground states observed in heavy Fermion compounds are exotic superconductors and magnets, as well as unusual semiconductors. We review here the current experimental and theoretical understanding of these systems

  10. MAGNET

    CERN Multimedia

    Benoit Curé

    The magnet subsystems resumed operation early this spring. The vacuum pumping was restarted mid March, and the cryogenic power plant was restarted on March 30th. Three and a half weeks later, the magnet was at 4.5 K. The vacuum pumping system is performing well. One of the newly installed vacuum gauges had to be replaced at the end of the cool-down phase, as the values indicated were not coherent with the other pressure measurements. The correction had to be implemented quickly to be sure no helium leak could be at the origin of this anomaly. The pressure measurements have been stable and coherent since the change. The cryogenics worked well, and the cool-down went quite smoothly, without any particular difficulty. The automated start of the turbines had to be fine-tuned to get a smooth transition, as it was observed that the cooling power delivered by the turbines was slightly higher than needed, causing the cold box to stop automatically. This had no consequence as the cold box safety system acts to keep ...

  11. MAGNET

    CERN Multimedia

    B. Curé

    During the winter shutdown, the magnet subsystems went through a full maintenance. The magnet was successfully warmed up to room temperature beginning of December 2008. The vacuum was broken later on by injecting nitrogen at a pressure just above one atmosphere inside the vacuum tank. This was necessary both to prevent any accidental humidity ingress, and to allow for a modification of the vacuum gauges on the vacuum tank and maintenance of the diffusion pumps. The vacuum gauges had to be changed, because of erratic variations on the measurements, causing spurious alarms. The new type of vacuum gauges has been used in similar conditions on the other LHC experiments and without problems. They are shielded against the stray field. The lubricants of the primary and diffusion pumps have been changed. Several minor modifications were also carried out on the equipment in the service cavern, with the aim to ease the maintenance and to allow possible intervention during operation. Spare sensors have been bought. Th...

  12. The super-classical-Boussinesq hierarchy and its super-Hamiltonian structure

    International Nuclear Information System (INIS)

    Si-Xing, Tao; Tie-Cheng, Xia

    2010-01-01

    Based on the constructed Lie superalgebra, the super-classical-Boussinesq hierarchy is obtained. Then, its super-Hamiltonian structure is obtained by making use of super-trace identity. Furthermore, the super-classical-Boussinesq hierarchy is also integrable in the sense of Liouville. (general)

  13. Research and development of super light water reactors and super fast reactors in Japan

    International Nuclear Information System (INIS)

    Oka, Y.; Morooka, S.; Yamakawa, M.; Ishiwatari, Y.; Ikejiri, S.; Katsumura, Y.; Muroya, Y.; Terai, T.; Sasaki, K.; Mori, H.; Hamamoto, Y.; Okumura, K.; Kugo, T.; Nakatsuka, T.; Ezato, K.; Akasaka, N.; Hotta, A.

    2011-01-01

    Super Light Water Reactors (Super LWR) and Super Fast Reactors (Super FR) are the supercritical- pressure light water cooled reactors (SCWR) that are developed by the research group of University of Tokyo since 1989 and now jointly under development with the researchers of Waseda University, University of Tokyo and other organizations in Japan. The principle of the reactor concept development, the results of the past Super LWR and Super FR R&D as well as the R&D program of the Super FR second phase project are described. (author)

  14. Supergrassmannians, super τ-functions and strings

    International Nuclear Information System (INIS)

    Dolgikh, S.N.; Schwarz, A.S.

    1989-03-01

    Recently, infinite-dimensional grassmannians and their supergeneralizations were used to study conformal two-dimensional fields and strings. In particular, the super Mumford form (holomorphic square root from the superstring measure on moduli space) was expressed through super analog of Sato τ-function. In this paper we present results of supergrassmannians and super τ-functions. 8 refs

  15. Super-resolution Phase Tomography

    KAUST Repository

    Depeursinge, Christian; Cotte, Yann; Toy, Fatih; Jourdain, Pascal; Boss, Daiel; Marquet, Pierre; Magistretti, Pierre J.

    2013-01-01

    Digital Holographic Microscopy (DHM) yields reconstructed complex wavefields. It allows synthesizing the aperture of a virtual microscope up to 2π, offering super-resolution phase images. Live images of micro-organisms and neurons with resolution less than 100 nm are presented.

  16. Super-resolution Phase Tomography

    KAUST Repository

    Depeursinge, Christian

    2013-04-21

    Digital Holographic Microscopy (DHM) yields reconstructed complex wavefields. It allows synthesizing the aperture of a virtual microscope up to 2π, offering super-resolution phase images. Live images of micro-organisms and neurons with resolution less than 100 nm are presented.

  17. Magnetically robust non-fermi liquid behavior due to the competition between crystalline-electric field singlet and Kondo-Yosida singlet in f2-based heavy fermion systems

    International Nuclear Information System (INIS)

    Nishiyama, Shinya; Matsuura, Hiroyasu; Miyake, Kazumasa

    2011-01-01

    In f 2 -based heavy fermion systems with a tetragonal symmetry, we investigate the magnetic field dependence of a non-fermi liquid (NFL) which arises related to the quantum critical point (QCP) due to the competition between the crystalline-electric field (CEF) singlet and the Kondo-Yosida singlet states. On the basis of the Wilson numerical renormalization group method, we find that the magnetic field less than a characteristic magnetic field H z * does not affect the characteristic temperature T F * at which the specific heat takes a maximum value. Since such H z * increases as the deviation from the QCP increases, slightly off the QCP, there are parameter regions where NFL behaviors are robust at an observable temperature range T > T F *against a magnetic field of up to H z * which is far larger than T F *. Our result suggests that such robust NFL behaviors can arise also in systems with other CEF symmetries; e.g., magnetically robust NFL behaviors observed in UBe 13 may be understood on this basis.

  18. Super Virasoro algebra and solvable supersymmetric quantum field theories

    International Nuclear Information System (INIS)

    Yamanaka, Itaru; Sasaki, Ryu.

    1987-09-01

    Interesting and deep relationships between super Virasoro algebras and super soliton systems (super KdV, super mKdV and super sine-Gordon equations) are investigated at both classical and quantum levels. An infinite set of conserved quantities responsible for solvability is characterized by super Virasoro algebras only. Several members of the infinite set of conserved quantities are derived explicitly. (author)

  19. Solar Flare Super-Events: When they Can Occur and the Energy Limits of their Realization

    Science.gov (United States)

    Ishkov, Vitaly N.

    2015-03-01

    For the successful development of terrestrial civilization it is necessary to estimate the space factors, including phenomena on Sun, which can ruin it or cause such catastrophic loss, that the restoration to the initial level can take unacceptably long time. Super-powerful solar flares are the only such phenomena. Therefore an attempt is undertaken to estimate the possibility of such super-event occurrence at this stage of our star evolution. Since solar flare events are the consequence of the newly emerging magnetic fluxes interacting with the already existing magnetic fields of active regions, are investigated the observed cases which lead to the realization of such super-events. From the observations of the maximal magnetic fluxes during the period of reliable solar observations, the conclusion is made that the super- extreme solar flares cannot significantly exceed the most powerful solar flares which have already been observed. On the statistics of the reliable solar cycles the sunspot groups, in which occurred the most powerful solar super-events (August- September 1859 - solar cycle 10; June 1991 - SC 22; October-November 2003 - SC 23) appeared in the periods of the solar magnetic field reorganization between the epochs of "increased" and "lowered" solar activity.

  20. Nucleus-acoustic Solitons in Self-gravitating Magnetized Quantum Plasmas

    Science.gov (United States)

    Saaduzzaman, Dewan Mohammad; Amina, Moriom; Mamun, Abdullah Al

    2018-03-01

    The basic properties of the nucleus-acoustic (NA) solitary waves (SWs) are investigated in a super-dense self-gravitating magnetized quantum plasma (SDSGMQP) system in the presence of an external magnetic field, whose constituents are the non-degenerate light as well as heavy nuclei, and non-/ultra-relativistically degenerate electrons. The Korteweg-de Vries (KdV) equation has been derived by employing the reductive perturbation method. The NA SWs are formed with negative (positive) electrostatic (self-gravitational) potential. It is also observed that the effects of non-/ultra-relativistically degenerate electron pressure and the obliqueness of the external magnetic field significantly change the basic properties (e.g., amplitude, width, and speed) of NA SWs. The implications of the findings of our present investigation in explaining the physics behind the formation of the NA SWs in astrophysical compact objects like neutron stars are briefly discussed.

  1. Wideroe pre-accelerator for the SuperHILAC

    International Nuclear Information System (INIS)

    Staples, J.; Alonso, J.; Behrsing, G.; Clark, D.; Grunder, H.; Olivier, M.; Spence, D.; Yourd, R.

    1976-09-01

    In 1971 the Bevatron successfully accelerated low-intensity heavy ion beams up to neon to energies of 2.1 GeV/amu. More recently, beams up to argon have been accelerated using the SuperHILAC as an injector to the Bevatron--the Bevalac concept. With increasing scientific interest in high-energy high-intensity beams of heavier ions, plans to upgrade both the Bevatron vacuum system and the SuperHILAC ion sources and injectors have been formulated. A proposed new pre-accelerator based on an air-insulated Cockcroft-Walton and a Wideroe linac is presented. The Wideroe linac uses the design concepts established at UNILAC, modified for frequency and energy requirements. U 7 + from the ion source is accelerated from 12 keV/amu to 113 keV/amu and stripped to a mean charge state acceptable to the first tank of the SuperHILAC. The expected intensity improvement over the present pressurized injector is a factor of 100 at the highest masses. The physical modeling of the Wideroe linac structure will be kept to a minimum. Computer models predicting the characteristics of the structure have improved to the point where the probability of satisfactory performance is high

  2. Magnetic

    Science.gov (United States)

    Aboud, Essam; El-Masry, Nabil; Qaddah, Atef; Alqahtani, Faisal; Moufti, Mohammed R. H.

    2015-06-01

    The Rahat volcanic field represents one of the widely distributed Cenozoic volcanic fields across the western regions of the Arabian Peninsula. Its human significance stems from the fact that its northern fringes, where the historical eruption of 1256 A.D. took place, are very close to the holy city of Al-Madinah Al-Monawarah. In the present work, we analyzed aeromagnetic data from the northern part of Rahat volcanic field as well as carried out a ground gravity survey. A joint interpretation and inversion of gravity and magnetic data were used to estimate the thickness of the lava flows, delineate the subsurface structures of the study area, and estimate the depth to basement using various geophysical methods, such as Tilt Derivative, Euler Deconvolution and 2D modeling inversion. Results indicated that the thickness of the lava flows in the study area ranges between 100 m (above Sea Level) at the eastern and western boundaries of Rahat Volcanic field and getting deeper at the middle as 300-500 m. It also showed that, major structural trend is in the NW direction (Red Sea trend) with some minor trends in EW direction.

  3. MAGNET

    CERN Multimedia

    Benoit Curé

    The cooling down to the nominal temperature of 4.5 K was achieved at the beginning of August, in conjunction with the completion of the installation work of the connection between the power lines and the coil current leads. The temperature gradient on the first exchanger of the cold box is now kept within the nominal range. A leak of lubricant on a gasket of the helium compressor station installed at the surface was observed and several corrective actions were necessary to bring the situation back to normal. The compressor had to be refilled with lubricant and a regeneration of the filters and adsorbers was necessary. The coil cool down was resumed successfully, and the cryogenics is running since then with all parameters being nominal. Preliminary tests of the 20kA coil power supply were done earlier at full current through the discharge lines into the dump resistors, and with the powering busbars from USC5 to UXC5 without the magnet connected. On Monday evening August 25th, at 8pm, the final commissionin...

  4. MAGNET

    CERN Document Server

    B. Curé

    The first phase of the commissioning ended in August by a triggered fast dump at 3T. All parameters were nominal, and the temperature recovery down to 4.5K was carried out in two days by the cryogenics. In September, series of ramps were achieved up to 3 and finally 3.8T, while checking thoroughly the detectors in the forward region, measuring any movement of and around the HF. After the incident of the LHC accelerator on September 19th, corrective actions could be undertaken in the forward region. When all these displacements were fully characterized and repetitive, with no sign of increments in displacement at each field ramp, it was possible to start the CRAFT, Cosmic Run at Four Tesla (which was in fact at 3.8T). The magnet was ramped up to 18.16kA and the 3 week run went smoothly, with only 4 interruptions: due to the VIP visits on 21st October during the LHC inauguration day; a water leak on the cooling demineralized water circuit, about 1 l/min, that triggered a stop of the cooling pumps, and resulte...

  5. MAGNET

    CERN Multimedia

    Benoit Curé

    2013-01-01

    Maintenance work and consolidation activities on the magnet cryogenics and its power distribution are progressing according to the schedules. The manufacturing of the two new helium compressor frame units has started. The frame units support the valves, all the sensors and the compressors with their motors. This activity is subcontracted. The final installation and the commissioning at CERN are scheduled for March–April 2014. The overhauls of existing cryogenics equipment (compressors, motors) are in progress. The reassembly of the components shall start in early 2014. The helium drier, to be installed on the high-pressure helium piping, has been ordered and will be delivered in the first trimester of 2014. The power distribution for the helium compressors in SH5 on the 3.3kV network is progressing. The 3.3kV switches, between each compressor and its hot spare compressor, are being installed, together with the power cables for the new compressors. The 3.3kV electrical switchboards in SE5 will ...

  6. Super-Refractory Status Epilepticus: Report of a Case and Review of the Literature.

    Science.gov (United States)

    Lapenta, Leonardo; Frisullo, Giovanni; Vollono, Catello; Brunetti, Valerio; Giannantoni, Nadia Mariagrazia; Sandroni, Claudio; Di Lella, Giuseppe; Della Marca, Giacomo

    2015-10-01

    Super-refractory status epilepticus (SE; ie, SE continuing or recurring despite 24 hours of general anesthesia) is a severe condition with high percentage of mortality and morbidity. Usually, this condition occurs because of serious brain damage; nevertheless, some patients develop super-refractory SE without identifiable etiology. Although not uncommonly encountered in neurointensive care, scientific data on this condition are still lacking in terms of treatment and prognosis. Herein, we report a case of super-refractory SE with recovery after 50 days, despite electroencephalographic (EEG) and magnetic resonance imaging (MRI) signs traditionally related to poor prognosis. A review of the literature on super-refractory SE is also presented. © EEG and Clinical Neuroscience Society (ECNS) 2014.

  7. Window frame or ''superferric'' magnet design for low B(< 3T) heavy ion storage ring study

    Energy Technology Data Exchange (ETDEWEB)

    Danby, G.; DeVito, B.; Jackson, J.; Keohane, G.; Lee, Y.; Phillips, R.; Plate, S.; Repeta, L.; Skaritka, J.; Smith, L.

    1985-10-01

    Double magnets share common laminations without magnetic coupling. Single layer coils of rectangular conductor are dry wound on extruded bore tubes. Magnet construction requires no molding or prestress. Absence of superconducting (SC) magnetization fields in the aperture results in very large dynamic range. The coil is wound continuously across the midplane to give unusually large dynamic aperture. Above about2.2 T saturation is corrected by simple sextupole windings with no inductive coupling to the dipole. Ultrastable design requires no internal quench protection. A quadrupole pair of novel design gives excellent field quality to B > 2 T without corrections, with no SC magnetization. Experience shows magnets are accurate enough for the assembly to take place at its final location. No training is required. Test procedures (measurements with search coils or with the beam) and cooldown properties are discussed.

  8. Window frame or ''superferric'' magnet design for low B(<3T) heavy ion storage ring study

    Energy Technology Data Exchange (ETDEWEB)

    Danby, G.; DeVito, B.; Jackson, J.; Keohane, G., Lee, Y.; Phillips, R.; Plate, S.; Repata, L.; Skaritka, J.; Smith, L.

    1985-01-01

    Double magnets share common laminations without magnetic coupling. Single layer coils of rectangular conductor are dry wound on extruded bore tubes. Magnet construction requires no molding or prestress. Absence of superconducting (SC) magnetization fields in the aperture results in very large dynamic range. The coil is wound continuously across the modplane to give unusually large dynamic aperture. Above approx.2.2 T saturation is corrected by simple sextupole windings with no inductive coupling to the dipole. Ultrastable design requires no internal quench protection. A quadrupole pair of novel design gives excellent field quality to B > 2 T without corrections, with no SC magnetization. Experience shows magnets are accurate enough for the assembly to take place at its final location. No training is required. Test procedures (measurements with search coils or with the beam) and cooldown properties are discussed. 2 refs., 8 figs., 1 tab.

  9. Super-resolution for scanning light stimulation systems

    Energy Technology Data Exchange (ETDEWEB)

    Bitzer, L. A.; Neumann, K.; Benson, N., E-mail: niels.benson@uni-due.de; Schmechel, R. [Faculty of Engineering, NST and CENIDE, University of Duisburg-Essen, Bismarckstr. 81, 47057 Duisburg (Germany)

    2016-09-15

    Super-resolution (SR) is a technique used in digital image processing to overcome the resolution limitation of imaging systems. In this process, a single high resolution image is reconstructed from multiple low resolution images. SR is commonly used for CCD and CMOS (Complementary Metal-Oxide-Semiconductor) sensor images, as well as for medical applications, e.g., magnetic resonance imaging. Here, we demonstrate that super-resolution can be applied with scanning light stimulation (LS) systems, which are common to obtain space-resolved electro-optical parameters of a sample. For our purposes, the Projection Onto Convex Sets (POCS) was chosen and modified to suit the needs of LS systems. To demonstrate the SR adaption, an Optical Beam Induced Current (OBIC) LS system was used. The POCS algorithm was optimized by means of OBIC short circuit current measurements on a multicrystalline solar cell, resulting in a mean square error reduction of up to 61% and improved image quality.

  10. Super-stable Poissonian structures

    International Nuclear Information System (INIS)

    Eliazar, Iddo

    2012-01-01

    In this paper we characterize classes of Poisson processes whose statistical structures are super-stable. We consider a flow generated by a one-dimensional ordinary differential equation, and an ensemble of particles ‘surfing’ the flow. The particles start from random initial positions, and are propagated along the flow by stochastic ‘wave processes’ with general statistics and general cross correlations. Setting the initial positions to be Poisson processes, we characterize the classes of Poisson processes that render the particles’ positions—at all times, and invariantly with respect to the wave processes—statistically identical to their initial positions. These Poisson processes are termed ‘super-stable’ and facilitate the generalization of the notion of stationary distributions far beyond the realm of Markov dynamics. (paper)

  11. Super-stable Poissonian structures

    Science.gov (United States)

    Eliazar, Iddo

    2012-10-01

    In this paper we characterize classes of Poisson processes whose statistical structures are super-stable. We consider a flow generated by a one-dimensional ordinary differential equation, and an ensemble of particles ‘surfing’ the flow. The particles start from random initial positions, and are propagated along the flow by stochastic ‘wave processes’ with general statistics and general cross correlations. Setting the initial positions to be Poisson processes, we characterize the classes of Poisson processes that render the particles’ positions—at all times, and invariantly with respect to the wave processes—statistically identical to their initial positions. These Poisson processes are termed ‘super-stable’ and facilitate the generalization of the notion of stationary distributions far beyond the realm of Markov dynamics.

  12. swot: Super W Of Theta

    Science.gov (United States)

    Coupon, Jean; Leauthaud, Alexie; Kilbinger, Martin; Medezinski, Elinor

    2017-07-01

    SWOT (Super W Of Theta) computes two-point statistics for very large data sets, based on “divide and conquer” algorithms, mainly, but not limited to data storage in binary trees, approximation at large scale, parellelization (open MPI), and bootstrap and jackknife resampling methods “on the fly”. It currently supports projected and 3D galaxy auto and cross correlations, galaxy-galaxy lensing, and weighted histograms.

  13. Development of the SSC [Superconducting Super Collider] trim coil beam tube assembly

    International Nuclear Information System (INIS)

    Skaritka, J.; Kelly, E.; Schneider, W.

    1987-01-01

    The Superconducting Super Collider uses ≅9600 dipole magnets. The magnets have been carefully designed to exhibit minimal magnetic field harmonics. However, because of superconductor magnetization effects, iron saturation and conductor/coil positioning errors, certain harmonic errors are possible and must be corrected by use of multipole correctors called trim coils. For the most efficient use of axial space in the magnet, and lowest possible current, a distributed internal correction coil design is planned. The trim coil assembly is secured to the beam tube, a uhv tube with special strength, size, conductivity and vacuum. The report details the SSC trim coil/beam tube assembly specifications, history, and ongoing development

  14. BEWARE OF...SUPER GLUES!!

    CERN Multimedia

    2006-01-01

    What happened? A number of accidents have occurred with the use of 'Super Glues'. Some individuals have suffered injuries - severe irritation, or skin bonded together - through getting glue on their face and in their eyes. What are the hazards associated with glues? 'Super Glues' (i.e. cyanoacrylates): Are harmful if swallowed and are chemical irritants to the eyes, respiratory system and skin. Present the risk of polymerization (hardening) leading to skin damage. Be careful ! 'Super Glues' can bond to skin and eyes in seconds. Note: Other glues, resins and hardeners are also chemicals and as such can cause serious damage to the skin, eyes, respiratory or digestive tract. (For example: some components can be toxic, harmful, corrosive, sensitizing agents, etc.). How to prevent accidents in the future? Read the Material Safety Data Sheet (MSDS) for all of the glues you work with. Check the label on the container to find out which of the materials you work with are hazardous. Wear the right Per...

  15. Method of formation of a high gradient magnetic field and the device for division of substances

    International Nuclear Information System (INIS)

    Il'yashenko, E. I.; Glebov, V. A.; Skeltorp, A. T.

    2005-01-01

    Full text: The method and the device [1] are intended for use as a high-sensitivity magnetic separator for different types of paramagnetic substances and materials from diamagnetic ones, for division of paramagnetic substances and materials on the magnitudes of their paramagnetic susceptibility, for division of diamagnetic substances and materials on magnitudes of their diamagnetic susceptibility. Scopes: to produce pure and super pure substances and materials in electronics, metallurgy and chemistry, separation of biological objects (red blood cells, magnetic bacteria, etc.) in biology and medicine, water treatment removing heavy metals and organic impurities, etc. The main condition for magnetic separation is the magnetic force which acts on a particle of the substance and which is proportional to the magnetic susceptibility of the substance, magnetic induction B and gradient ∇B of the applied magnetic field. Therefore, to increase the sensitivity and selectivity of magnetic separation it will be required to use the largest possible values of the magnetic induction and the gradient of a magnetic field, or their product - B∇B. The device declared in the present work includes the magnetic system such as the open domain structure, consisting of permanent magnets with magnetic anisotropy much greater than the induction of a material of magnets. However, the declared device differs from the open domain structure in that [1]: *the surface of the neighbor poles of magnets is covered with a mask made from sheets of adjustable thickness of a soft magnetic material; *the soft magnetic material of the mask is selected on the basis of the magnitudes of the induction of saturation and magnetic permeability for achievement of the required magnitude of the induction and gradient of the magnetic field; *between the sheets of the mask there is an adjustable gap located symmetrically relative to the junction line of the magnets; *the size and the form of the gap between the

  16. Frontiers of heavy-ion physics and superheavy elements

    International Nuclear Information System (INIS)

    Muenzenberg, Gottfried

    2002-01-01

    This contribution will focus on three topics of GSI nuclear structure research: super heavy elements, direct mass measurements in the storage ring, and the measurement of spallation cross section in reversed kinematics. The GSI project for an extended synchrotron facility will be outlined. (author)

  17. Double and super-exchange model in one-dimensional systems

    International Nuclear Information System (INIS)

    Vallejo, E.; Navarro, O.; Avignon, M.

    2010-01-01

    We present an analytical and numerical study of the competition between double and super-exchange interactions in a one-dimensional model. For low super-exchange interaction energy we find phase separation between ferromagnetic and anti-ferromagnetic phases. When the super-exchange interaction energy gets larger, the conduction electrons are self-trapped within separate small magnetic polarons. These magnetic polarons contain a single electron inside two or three sites depending on the conduction electron density and form a Wigner crystallization. A new phase separation is found between these small polarons and the anti-ferromagnetic phase. Spin-glass behavior is obtained consistent with experimental results of the nickelate one-dimensional compound Y 2-x Ca x BaNiO 5 .

  18. Optimal super dense coding over memory channels

    OpenAIRE

    Shadman, Zahra; Kampermann, Hermann; Macchiavello, Chiara; Bruß, Dagmar

    2011-01-01

    We study the super dense coding capacity in the presence of quantum channels with correlated noise. We investigate both the cases of unitary and non-unitary encoding. Pauli channels for arbitrary dimensions are treated explicitly. The super dense coding capacity for some special channels and resource states is derived for unitary encoding. We also provide an example of a memory channel where non-unitary encoding leads to an improvement in the super dense coding capacity.

  19. Competition between fusion and quasi-fission in heavy ion induced reactions

    International Nuclear Information System (INIS)

    Back, B.B.

    1986-09-01

    Quantitative analyses of angular distributions and angle-mass correlations have been applied to the U + Ca reaction to obtain upper limit estimates for the cross sections for complete fusion near or below the interaction barrier. Extrapolating to the systems Ca + Cm and Ca + Es using the well established scaling properties of the extra push model, an estimate of the cross sections relevant to the efforts of synthesizing super-heavy elements in the region Z = 116 and N = 184 via heavy-ion fusion reactions are obtained. A simple evaporation calculation using properties of the super heavy elements shows that the failure to observe super-heavy elements with the Ca + Cm reaction is consistent with estimates of the complete fusion process. 33 refs., 9 figs., 1 tab

  20. Heavy flavours

    CERN Document Server

    Buras, Andrzej J

    1998-01-01

    This volume is a collection of review articles on the most outstanding topics in heavy flavour physics. All the authors have made significant contributions to this field. The book reviews in detail the theoretical structure of heavy flavour physics and confronts the Standard Model and some of its extensions with existing experimental data.This new edition covers new trends and ideas and includes the latest experimental information. Compared to the previous edition interesting new activities are included and some of the key contributions are updated. Particular attention is paid to the discover

  1. Characterization of a NIMONIC TYPE super alloy

    International Nuclear Information System (INIS)

    Zamora Rangel, L.; Martinez Martinez, E.

    1985-01-01

    Mechanical properties of strength and thermofluence of a NIMONIC type super alloy under thermal treatment was determined. The relationship between microstructure, phases and precipitates was also studied. (author)

  2. (Super Variable Costing-Throughput Costing)

    OpenAIRE

    Çakıcı, Cemal

    2006-01-01

    (Super Variable Costing-Throughput Costing) The aim of this study is to explain the super-variable costing method which is a new subject in cost and management accounting and to show it’s working practicly.Shortly, super-variable costing can be defined as a costing method which is use only direct material costs in calculate of product costs and treats all costs except these (direct labor and overhead) as periad costs or operating costs.By using super-variable costing method, product costs ar...

  3. Upgrade of the Super Proton Synchrotron Vertical Beam Dump System

    CERN Document Server

    Senaj, V; Vossenberg, E

    2010-01-01

    The vertical beam dump system of the CERN Super Proton Synchrotron (SPS) uses two matched magnets with an impedance of 2 W and a combined kick strength of 1.152 Tm at 60 kV supply voltage. For historical reasons the two magnets are powered from three 3 W pulse forming networks (PFN) through three thyratronignitron switches. Recently flashovers were observed at the entry of one of the magnets, which lead, because of the electrical coupling between the kickers, to a simultaneous breakdown of the pulse in both magnets. To improve the reliability an upgrade of the system was started. In a first step the radii of surfaces at the entry of the weak magnet were increased, and the PFN voltage was reduced by 4%; the kick strength could be preserved by reducing the magnet termination resistance by 10 %. The PFNs were protected against negative voltage reflections and their last cell was optimised. In a second step the two magnets will be electrically separated and powered individually by new 2 W PFNs with semiconductor ...

  4. Super rogue wave in plasma

    International Nuclear Information System (INIS)

    Pathak, Pallabi; Sharma, Sumita Kumari; Bailung, Heremba

    2015-01-01

    The evolution of super rogue wave having amplitude ∼5 times the background wave has been observed in multicomponent plasma with critical concentration of negative ions in a double plasma device. In normal electron-ion plasma the ion acoustic solitons are described by the Korteweg-de Vries (KdV) equation. At a critical concentration of negative ions, the ion acoustic modified KdV solitons are found to propagate. Multicomponent plasma also supports the propagation of a special kind of soliton namely 'Peregrine soliton' at critical concentration of negative ions. Peregrine soliton is a doubly localized solution of the nonlinear Schrodinger equation (NLSE) having amplitude 3 times the background carrier wave. In a double plasma device, ion-acoustic Peregrine soliton is excited by applying slowly varying amplitude modulated continuous sinusoidal signal to the source anode and described by the rational solution of NLSE. The ion acoustic wave is modulationally unstable in multicomponent plasma with critical concentration of negative ions and an initial modulated wave perturbation is found to undergo self-modulation to form localized structures by balancing the nonlinearity with the dispersion. In presence of higher order nonlinearity, propagation of a high amplitude (∼5 times of background carrier wave) ion acoustic Peregrine soliton has been observed experimentally. The existence of such types of higher order wave has been reported in other dispersive media. These are considered to be the prototype of super rogue wave in deep water. In this work, experimental results on the evolution of super rogue wave in a double plasma device are presented and compared with the numerical solution of NLSE. (author)

  5. The super W∞ symmetry of the Manin-Radul super KP hierarchy

    International Nuclear Information System (INIS)

    Das, A.; Sin, S.J.

    1991-11-01

    We show that the Manin-Radul super KP hierarchy is invariant under super W ∞ transformations. These transformations are characterized by time dependent flows which commute with the usual flows generated by the conserved quantities of the super KP hierarchy. (author). 16 refs

  6. The Super-Kamiokande experiment

    International Nuclear Information System (INIS)

    Nishijima, K.

    2000-01-01

    The Super-Kamiokande experiment is a multi purpose experiment using a large imaging water Cherenkov detector with 50,000 tons of pure water. The detector is located 1000 m underground in the Kamioka mine in Japan, and it can detect particle interactions whose visible energies are between 5 MeV and 100 GeV, so that we can study many physics subjects as follows. Solar neutrino problem is one of the most important unsolved problems in astrophysics. Kamiokande experiment confirmed the deficit of neutrino flux compared to the standard Solar model prediction, which was first reported by R. Davis's pioneering work. Currently it is widely believed that the deficit is due to the neutrino oscillation. The Super-Kamiokande is a unique detector to measure the distortion of the energy spectrum of neutrinos, variation of the neutrino flux between day and night, and the seasonal variation of the flux. Those are related to the neutrino oscillation and independent of the Solar model uncertainty. Atmospheric neutrino anomaly was first announced by Kamiokande experiment, and the Super-Kamiokande recently provided clear evidence for neutrino oscillation as the solution to the anomaly. Observed ratio of muons to electrons is significantly smaller than what is expected. Moreover, zenith-angle distribution of observed muon neutrinos shows the strong up-down asymmetry. The zenith angle distribution of upward-going muons provides another information and the result also supports the oscillation hypothesis. We investigate not only the Solar neutrino problem and atmospheric neutrino anomaly, but also other astrophysical neutrino phenomena such as neutrino bursts from supernova explosions, high energy neutrino emission from point sources, neutrino events in correlation with Solar flares, and gamma-ray bursts. Search for nucleon decay is also one of the primary objectives of our experiment. However no evidence for nucleon decay has been observed yet, and we only set a lower limit on the partial

  7. Notes on super Killing tensors

    Energy Technology Data Exchange (ETDEWEB)

    Howe, P.S. [Department of Mathematics, King’s College London,The Strand, London WC2R 2LS (United Kingdom); Lindström, University [Department of Physics and Astronomy, Theoretical Physics, Uppsala University,SE-751 20 Uppsala (Sweden); Theoretical Physics, Imperial College London,Prince Consort Road, London SW7 2AZ (United Kingdom)

    2016-03-14

    The notion of a Killing tensor is generalised to a superspace setting. Conserved quantities associated with these are defined for superparticles and Poisson brackets are used to define a supersymmetric version of the even Schouten-Nijenhuis bracket. Superconformal Killing tensors in flat superspaces are studied for spacetime dimensions 3,4,5,6 and 10. These tensors are also presented in analytic superspaces and super-twistor spaces for 3,4 and 6 dimensions. Algebraic structures associated with superconformal Killing tensors are also briefly discussed.

  8. Highlights from Super-Kamiokande

    International Nuclear Information System (INIS)

    Okumura, Kimihiro

    2016-01-01

    Recent results from Super-Kamiokande experiment are reviewed in this paper; Neutrino mass hierarchy and CP violation in the lepton sector are investigated via ν_μ → ν_e oscillation of the atmospheric neutrinos. The event rate, correlation with solar activity, energy spectrum of the solar neutrinos are measured via electron elastic scattering interactions. Neutrino emission from the WIMP annihilation at the center of the Sun are searched in the GeV energy regions. New project, SK-Gd project, to enhance anti-neutrino identification capability, has been approved inside the collaboration group

  9. Free-carrier-compensated charged domain walls produced with super-bandgap illumination in insulating ferroelectrics

    Czech Academy of Sciences Publication Activity Database

    Bednyakov, Petr; Sluka, T.; Tagantsev, A.; Damjanovic, D.; Setter, N.

    2016-01-01

    Roč. 28, č. 43 (2016), s. 9498-9503 ISSN 0935-9648 R&D Projects: GA ČR GA15-04121S Institutional support: RVO:68378271 Keywords : super-bandgap illumination * charged domain walls * ferroelectric BaTiO 3 * free-carrier generation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 19.791, year: 2016

  10. Technical report on the design, construction, commissioning and operation of the super-FRS of FAIR

    International Nuclear Information System (INIS)

    Geissel, H.; Winkler, M.; Weick, H.

    2005-04-01

    In this report the construction of the super-FRS is described. Especially described are the ion-optical lay-out, the production targets, the magnets, the beam dumps, the degrader systems and the ion catcher, detectors and data-acquisition systems, as well as the safety aspects. (HSI)

  11. Heavy-Ion Fusion Mechanism and Predictions of Super-Heavy Elements Production

    International Nuclear Information System (INIS)

    Abe, Yasuhisa; Shen Caiwan; Boilley, David; Giraud, Bertrand G.; Kosenko, Grigory

    2009-01-01

    Fusion process is shown to firstly form largely deformed mono-nucleus and then to undergo diffusion in two-dimensions with the radial and mass-asymmetry degrees of freedom. Examples of prediction of residue cross sections are given for the elements with Z = 117 and 118.

  12. Heavy quarks

    International Nuclear Information System (INIS)

    Khoze, V.A.

    1983-10-01

    We discuss the results accumulated during the last five years in heavy quark physics and try to draw a simple general picture of the present situation. The survey is based on a unified point of view resulting from quantum chromodynamics. (orig.)

  13. Applications of super - high intensity lasers in nuclear engineering

    International Nuclear Information System (INIS)

    Salomaa, R.; Hakola, A.; Santala, M.

    2007-01-01

    Laser-plasma interactions arising when a super intense ultrashort laser pulse impinges a solid target creates intense partly collimated and energy resolved photons, high energy electron and protons and neutrons. In addition the plasma plume can generate huge magnetic and electric fields. Also ultra short X-ray pulses are created. We have participated in some of such experiments at Rutherford and Max-Planck Institute and assessed the applications of such kind as laser-driven accelerators. This paper discusses applications in nuclear engineering (neutron sources, isotope separation, fast ignition and transmutation, etc). In particular the potential for extreme time resolution and to partial energy resolution are assessed

  14. An oxide filled extended trench gate super junction MOSFET structure

    International Nuclear Information System (INIS)

    Cai-Lin, Wang; Jun, Sun

    2009-01-01

    This paper proposes an oxide filled extended trench gate super junction (SJ) MOSFET structure to meet the need of higher frequency power switches application. Compared with the conventional trench gate SJ MOSFET, new structure has the smaller input and output capacitances, and the remarkable improvements in the breakdown voltage, on-resistance and switching speed. Furthermore, the SJ in the new structure can be realized by the existing trench etching and shallow angle implantation, which offers more freedom to SJ MOSFET device design and fabrication. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  15. COMPARATIVE ANALYSIS OF ENERGY ACCUMULATION SYSTEMS AND DETERMINATION OF OPTIMAL APPLICATION AREAS FOR MODERN SUPER FLYWHEELS

    Directory of Open Access Journals (Sweden)

    M. A. Sokolov

    2014-07-01

    Full Text Available The paper presents a review and comparative analysis of late years native and foreign literature on various energy storage devices: state of the art designs, application experience in various technical fields. Comparative characteristics of energy storage devices are formulated: efficiency, quality and stability. Typical characteristics are shown for such devices as electrochemical batteries, super capacitors, pumped hydroelectric storage, power systems based on compressed air and superconducting magnetic energy storage systems. The advantages and prospects of high-speed super flywheels as means of energy accumulation in the form of rotational kinetic energy are shown. High output power of a super flywheels energy storage system gives the possibility to use it as a buffer source of peak power. It is shown that super flywheels have great life cycle (over 20 years and are environmental. A distinctive feature of these energy storage devices is their good scalability. It is demonstrated that super flywheels are especially effective in hybrid power systems that operate in a charge/discharge mode, and are used particularly in electric vehicles. The most important factors for space applications of the super flywheels are their modularity, high efficiency, no mechanical friction and long operating time without maintenance. Quick response to network disturbances and high power output can be used to maintain the desired power quality and overall network stability along with fulfilling energy accumulation needs.

  16. Monte Carlo study of the double and super-exchange model with lattice distortion

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, J R; Vallejo, E; Navarro, O [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-360, 04510 Mexico D. F. (Mexico); Avignon, M, E-mail: jrsuarez@iim.unam.m [Institut Neel, Centre National de la Recherche Scientifique (CNRS) and Universite Joseph Fourier, BP 166, 38042 Grenoble Cedex 9 (France)

    2009-05-01

    In this work a magneto-elastic phase transition was obtained in a linear chain due to the interplay between magnetism and lattice distortion in a double and super-exchange model. It is considered a linear chain consisting of localized classical spins interacting with itinerant electrons. Due to the double exchange interaction, localized spins tend to align ferromagnetically. This ferromagnetic tendency is expected to be frustrated by anti-ferromagnetic super-exchange interactions between neighbor localized spins. Additionally, lattice parameter is allowed to have small changes, which contributes harmonically to the energy of the system. Phase diagram is obtained as a function of the electron density and the super-exchange interaction using a Monte Carlo minimization. At low super-exchange interaction energy phase transition between electron-full ferromagnetic distorted and electron-empty anti-ferromagnetic undistorted phases occurs. In this case all electrons and lattice distortions were found within the ferromagnetic domain. For high super-exchange interaction energy, phase transition between two site distorted periodic arrangement of independent magnetic polarons ordered anti-ferromagnetically and the electron-empty anti-ferromagnetic undistorted phase was found. For this high interaction energy, Wigner crystallization, lattice distortion and charge distribution inside two-site polarons were obtained.

  17. Coexistence of magnetic order and valence fluctuations in a heavy fermion system Ce{sub 2}Rh{sub 3}Sn{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Gamza, Monika [Jeremiah Horrocks Institute, University of Central Lancashire, Preston (United Kingdom); MPI CPfS, Dresden (Germany); Institute of Physics, University of Silesia, Katowice (Poland); Gumeniuk, Roman [Institute of Experimental Physics, Freiberg University of Mining and Technology, Freiberg (Germany); MPI CPfS, Dresden (Germany); Schnelle, Walter; Burkhardt, Ulrich; Rosner, Helge [MPI CPfS, Dresden (Germany); Slebarski, Andrzej [Institute of Physics, University of Silesia, Katowice (Poland)

    2016-07-01

    While most Ce-based intermetallics contain either trivalent or intermediate-valent Ce ions, only for a few compounds a coexistence of both species has been reported. Here, we present a combined experimental and theoretical study based on thermodynamic measurements and spectroscopic data together with ab-initio electronic structure calculations aiming at exploring magnetic properties of Ce ions in two nonequivalent sites in Ce{sub 2}Rh{sub 3}Sn{sub 5}. Ce L{sub III} XAS spectra give direct evidence for valence fluctuations. Magnetization measurements show an onset of an antiferromagnetic order at T{sub N}∼2.5 K. The electronic structure calculations suggest that the magnetic ordering is related only to one Ce sublattice. This is in-line with a small entropy associated with the magnetic transition S{sub mag}∼0.35 R ln2 per Ce atom as revealed by the specific heat measurement. Furthermore, the temperature dependence of the magnetic susceptibility can be well described assuming that there are fluctuating moments of Ce{sup 3+} ions in one sublattice, whereas Ce atoms from the second sublattice are in a nonmagnetic intermediate valence state.

  18. Reduction of 4-dim self dual super Yang-Mills onto super Riemann surfaces

    International Nuclear Information System (INIS)

    Mendoza, A.; Restuccia, A.; Martin, I.

    1990-05-01

    Recently self dual super Yang-Mills over a super Riemann surface was obtained as the zero set of a moment map on the space of superconnections to the dual of the super Lie algebra of gauge transformations. We present a new formulation of 4-dim Euclidean self dual super Yang-Mills in terms of constraints on the supercurvature. By dimensional reduction we obtain the same set of superconformal field equations which define self dual connections on a super Riemann surface. (author). 10 refs

  19. Study on competitive adsorption mechanism among oxyacid-type heavy metals in co-existing system: Removal of aqueous As(V), Cr(III) and As(III) using magnetic iron oxide nanoparticles (MIONPs) as adsorbents

    Science.gov (United States)

    Lin, Sen; Lian, Cheng; Xu, Meng; Zhang, Wei; Liu, Lili; Lin, Kuangfei

    2017-11-01

    The adsorption and co-adsorption of As(V), Cr(VI) and As(III) onto the magnetic iron oxide nanoparticles (MIONPs) surface were investigated comprehensively to clarify the competitive processes. The results reflected that the MIONPs had remarkable preferential adsorption to As(V) compared with Cr(VI) and As(III). And it was determined, relying on the analysis of heavy metals variations on the MIONPs surface at different co-adsorption stages using FTIR and XPS, that the inner-sphere complexation made vital contribution to the preferential adsorption for As(V), corresponding with the replacement experiments where As(V) could grab extensively active sites on the MIONPs pre-occupied by As(III) or Cr(V) uniaxially. The desorption processes displayed that the strongest affinity between the MIONPs and As(V) where As(III) and Cr(VI) were more inclined to wash out. It is wish to provide a helpful direction with this study for the wastewater treatment involving multiple oxyacid-type heavy metals using MIONPs as adsorbents.

  20. Exact solution of super Liouville model

    International Nuclear Information System (INIS)

    Yang Zhanying; Zhao Liu; Zhen Yi

    2000-01-01

    Using Leznov-Saveliev algebraic analysis and Drinfeld-Sokolov construction, the authors obtained the explicit solutions to the super Liouville system in super covariant form and component form. The explicit solution in component form reduces naturally into the Egnchi-Hanson instanton solution of the usual Liouville equation if all the Grassmann odd components are set equal to zero

  1. Heavy flavours: theory summary

    OpenAIRE

    Corcella, Gennaro

    2005-01-01

    I summarize the theory talks given in the Heavy Flavours Working Group. In particular, I discuss heavy-flavour parton distribution functions, threshold resummation for heavy-quark production, progress in fragmentation functions, quarkonium production, heavy-meson hadroproduction.

  2. Measurement of the magnetically-induced QED birefringence of the vacuum and an improved search for laboratory axions: Technical report. Project definition study of the use of assets and facilities of the Superconducting Super Collider Laboratory

    International Nuclear Information System (INIS)

    Lee, S.A.; Fairbank, W.M. Jr.; Toki, W.H.; Kraushaar, P.F. Jr.; Jaffery, T.S.

    1994-01-01

    The Colorado State Collaboration has studied the feasibility of a high sensitivity QED birefringence/axion search measurement. The objective of this work is to measure, for the first time, the birefringence induced in the vacuum on a light beam travelling in a powerful magnetic field. The same experimental setup also allows a highly sensitive search for axion or axion-like particles. The experiment would combined custom-designed optical heterodyne interferometry with a string of six SSC prototype superconducting dipole magnets at the N-15 site of the SSC Laboratory. With these powerful laser tools, sensitivity advances of 10 7 to 10 9 over previous optical experiments will be possible. The proposed experiment will be able to measure the QED light-by-light scattering effect with a 0.5% accuracy. The increased sensitivity for the axion-two photon interaction will result in a bound on this process rivaling the results based on astrophysical arguments. In the technical report the authors address the scientific significance of these experiments and examine the limiting technical parameters which control their feasibility. The proposed optical/electronic scheme is presented in the context of a background of the known and projected systematic problems which will confront any serious attempt to make such measurements

  3. SuperFormLab: showing SuperFormLab

    DEFF Research Database (Denmark)

    2013-01-01

    bachelor program, followed by two years of master studies. The courses are offered equally to students from other design disciplines, e.g. industrial design. Teaching is mainly in English as the program is attended by a relatively large group of non-Danish students, who seek exactly this combination......3D-printing in clay and ceramic objects shaped by your own sounds and movements! Digital form transferred via CNC-milling to ornamental ceramic wall-cladding. Brave New World… Students and their teacher at SuperFormLab, the new ceramic workshop of the School of Design at the Royal Danish Academy...... of Fine Arts in Copenhagen, will be showing results of their investigations into the potential of combining digital technologies with ceramic materials. It is now possible to shape the most complex mathematical, virtual 3D objects through the use of advanced software-programs. And more than that – you can...

  4. Superposition of DC magnetic fields by cascading multiple magnets in magnetic loops

    Directory of Open Access Journals (Sweden)

    Fei Sun

    2015-09-01

    Full Text Available A novel method that can effectively collect the DC magnetic field produced by multiple separated magnets is proposed. With the proposed idea of a magnetic loop, the DC magnetic field produced by these separated magnets can be effectively superimposed together. The separated magnets can be cascaded in series or in parallel. A novel nested magnetic loop is also proposed to achieve a higher DC magnetic field in the common air region without increasing the DC magnetic field in each magnetic loop. The magnetic loop can be made by a magnetic hose, which is designed by transformation optics and can be realized by the combination of super-conductors and ferromagnetic materials.

  5. Architectural Engineering to Super-Light Structures

    DEFF Research Database (Denmark)

    Castberg, Niels Andreas

    The increasing global urbanisation creates a great demand for new buildings. In the aim to honour this, a new structural system, offering flexibility and variation at no extra cost appears beneficial. Super-Light Structures constitute such a system. This PhD thesis examines Super-Light Structures...... with architectural engineering as a starting point. The thesis is based on a two stringed hypothesis: Architectural engineering gives rise to better architecture and Super-Light Structures support and enables a static, challenging architecture. The aim of the thesis is to clarify architectural engineering's impact...... on the work process between architects and engineers in the design development. Using architectural engineering, Super-Light Structures are examined in an architectural context, and it is explained how digital tools can support architectural engineering and design of Super-Light Structures. The experiences...

  6. Heavy weights

    International Nuclear Information System (INIS)

    2001-01-01

    The paper mentions the important thing that it was for the country, exporting the first shipping of crude de Castilla to a company of asphalts in United States. It was not a common sale, as those that it carries out the company with the crude of Cusiana or Cano Limon. The new of this shipping is that it was the first successful test of marketing the Colombian heavy crude in the exterior, since previously it was almost considered a curse to find heavy crude by the difficulties of its transport. Today it can be taken to any refinery of the world and the best test is that, after almost a year of efforts to overcome the barriers of the transport, the company achieved its conduction from the Castilla Field, in proximities to Villavicencio, until the Covenas Port, in the Caribbean Colombian coast

  7. Heavy ions

    CERN Multimedia

    CERN. Geneva; Antinori, Federico

    2001-01-01

    Colliding two heavy nuclei at ultrarelativistic energies allows to create in the laboratory a bulk system with huge density, pressure and temperature and to study its properties. It is estimated that in Pb-Pb collisions at CERN-SPS we reach over an appreciable volume an energy density which exceeds by more than a factor 20 that of normal nuclear matter. At such densities, the hadrons are so closely packed that they interpenetrate; novel physics phenomena are expected to appear. QCD predicts that under such conditions a phase transition from a system composed of colourless hadrons to a Quark-Gluon Plasma (QGP) should occur. A rich ultrarelativistic heavy-ion physics programme is under way both at BNL-AGS and at CERN-SPS since 1986. The results obtained so far have led CERN to officially announce evidence for a new state of matter last year. A long-range programme of heavy-ion physics at higher energies is under way (BNL-RHIC) and in preparation (CERN-LHC). These lectures are meant as an introduction to the phy...

  8. Heavy ions

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit

    2002-01-01

    Colliding two heavy nuclei at ultrarelativistic energies allows to create in the laboratory a bulk system with huge density, pressure and temperature and to study its properties. It is estimated that in Pb-Pb collisions at CERN-SPS we reach over an appreciable volume an energy density which exceeds by more than a factor 20 that of normal nuclear matter. At such densities, the hadrons are so closely packed that they interpenetrate; novel physics phenomena are expected to appear. QCD predicts that under such conditions a phase transition from a system composed of colourless hadrons to a Quark-Gluon Plasma (QGP) should occur. A rich ultrarelativistic heavy-ion physics programme is under way both at BNL-AGS and at CERN-SPS since 1986. The results obtained so far have led CERN to officially announce evidence for a new state of matter last year. A long-range programme of heavy-ion physics at higher energies is under way (BNL-RHIC) and in preparation (CERN-LHC). These lectures are meant as an introduction to the phy...

  9. Heavy ion fusion- Using heavy ions to make electricity

    International Nuclear Information System (INIS)

    Celata, C.M.

    2004-01-01

    The idea of using nuclear fusion as a source of commercial electrical power has been pursued worldwide since the 1950s. Two approaches, using magnetic and inertial confinement of the reactants, are under study. This paper describes the difference between the two approaches, and discusses in more detail the heavy-ion-driven inertial fusion concept. A multibeam induction linear accelerator would be used to bring ∼100 heavy ion beams to a few GeV. The beams would then heat and compress a target of solid D-T. This approach is unique among fusion concepts in its ability to protect the reaction chamber wall from neutrons and debris

  10. Heavy ion fusion

    International Nuclear Information System (INIS)

    Hofmann, Ingo

    1993-01-01

    With controlled thermonuclear fusion holding out the possibility of a prolific and clean new source of energy, the goal remains elusive after many years of continual effort. While the conventional Tokamak route with magnetic confinement continues to hit the headlines, other alternatives are now becoming competitive. One possible solution is to confine the thermonuclear fuel pellet by high power beams. Current research and perspectives for future work in such inertial confinement was the subject of the 'Prospects for Heavy Ion Fusion' European Research Conference held in Aghia Pelaghia, Crete, last year. Its main focus was on the potential of heavy ion accelerators as well as recent advances in target physics with high power lasers and light ion beams. Carlo Rubbia declared that high energy accelerators, with their high efficiency, are the most promising approach to economical fusion energy production. However the need for cost saving in the driver accelerator requires new ideas in target design tailored to the particularities of heavy ion beams, which need to be pushed to the limits of high current and phase space density at the same time

  11. Preservation of quantum states via a super-Zeno effect on ensemble quantum computers

    International Nuclear Information System (INIS)

    Ting-Ting, Ren; Jun, Luo; Xian-Ping, Sun; Ming-Sheng, Zhan

    2009-01-01

    Following a recent proposal by Dhar et al (2006 Phys. Rev. Lett. 96 100405), we demonstrate experimentally the preservation of quantum states in a two-qubit system based on a super-Zeno effect using liquid-state nuclear magnetic resonance techniques. Using inverting radiofrequency pulses and delicately selecting time intervals between two pulses, we suppress the effect of decoherence of quantum states. We observe that preservation of the quantum state |11) with the super-Zeno effect is three times more efficient than the ordinary one with the standard Zeno effect. (general)

  12. Actinides and heavy fermions

    International Nuclear Information System (INIS)

    Smith, J.L.; Fisk, Z.; Ott, H.R.

    1987-01-01

    The actinide series of elements begins with f-shell electrons forming energy bands, contributing to the bonding, and possessing no magnetic moments. At americium the series switches over to localized f electrons with magnetic moments. In metallic compounds this crossover of behavior can be modified and studied. In this continuum of behavior a few compounds on the very edge of localized f-electron behavior exhibit enormous electronic heat capacities at low temperatures. This is associated with an enhanced thermal mass of the conduction electrons, which is well over a hundred times the free electron mass, and is what led to the label heavy fermion for such compounds. A few of these become superconducting at even lower temperatures. The excitement in this field comes from attempting to understand how this heaviness arises and from the likelihood that the superconductivity is different from that of previously known superconductors. The effects of thorium impurities in UBe 13 were studied as a representative system for studying the nature of the superconductivity

  13. Super resolution for astronomical observations

    Science.gov (United States)

    Li, Zhan; Peng, Qingyu; Bhanu, Bir; Zhang, Qingfeng; He, Haifeng

    2018-05-01

    In order to obtain detailed information from multiple telescope observations a general blind super-resolution (SR) reconstruction approach for astronomical images is proposed in this paper. A pixel-reliability-based SR reconstruction algorithm is described and implemented, where the developed process incorporates flat field correction, automatic star searching and centering, iterative star matching, and sub-pixel image registration. Images captured by the 1-m telescope at Yunnan Observatory are used to test the proposed technique. The results of these experiments indicate that, following SR reconstruction, faint stars are more distinct, bright stars have sharper profiles, and the backgrounds have higher details; thus these results benefit from the high-precision star centering and image registration provided by the developed method. Application of the proposed approach not only provides more opportunities for new discoveries from astronomical image sequences, but will also contribute to enhancing the capabilities of most spatial or ground-based telescopes.

  14. Investigation of thermal transfers in super-fluid helium in porous media

    International Nuclear Information System (INIS)

    Allain, H.

    2009-10-01

    Particle accelerators are requiring increased magnetic fields for which niobium tin superconducting magnets are considered. This entails electric insulation and cooling problems. Porous ceramic insulations are potential candidates for cable insulation. As they are permeable to helium, they could allow a direct cooling by super-fluid helium. Therefore, this research thesis deals with the investigation of thermal transfers in superfluid helium in porous media. After a description of an accelerator's superconducting magnet, of its thermodynamics and its various cooling modes, the author describes the physical properties of super-fluid helium, its peculiarities with respect to conventional fluids as well as its different phases (fluid and super-fluid), its dynamics under different regimes (the Landau regime which is similar to the laminar regime for a conventional fluid, and the Gorter-Mellink regime which is the super-fluid turbulent regime). He determines the macroscopic equations governing the He II dynamics in porous media by applying the volume averaging method developed by Whitaker. Theoretical results are validated by comparison with a numerical analysis performed with a numerical code. Then, the author presents the various experimental setups which have been developed for the measurement of the intrinsic permeability, one at room temperature and another at high temperature. Experimental results are discussed, notably with respect to pore size and porosity

  15. Application of alpha spectrometry to the discovery of new elements by heavy-ion-beam bombardment

    International Nuclear Information System (INIS)

    Nitschke, J.M.

    1983-05-01

    Starting with polonium in 1898, α-spectrometry has played a decisive role in the discovery of new, heavy elements. For even-even nuclei, α-spectra have proved simple to interpret and exhibit systematic trends that allow extrapolation to unknown isotopes. The early discovery of the natural α-decay series led to the very powerful method of genetically linking the decay of new elements to the well-established α-emission of daughter and granddaughter nuclei. This technique has been used for all recent discoveries of new elements including Z = 109. Up to mendelevium (Z = 101), thin samples suitable for α-spectrometry were prepared by chemical methods. With the advent of heavy-ion accelerators new sample preparation methods emerged. These were based on the large momentum transfer associated with heavy-ion reactions, which produced energetic target recoils that, when ejected from the target, could be thermalized in He gas. Subsequent electrical deposition or a He-jet technique yielded samples that were not only thin enough for α-spectroscopy, but also for α- and #betta#-recoil experiments. Many variations of these methods have been developed and are discussed. For the synthesis of element 106 an aerosol-based recoil transport technique was devised. In the most recent experiments, α-spectrometry has been coupled with the magnetic analysis of the recoils. The time from production to analysis of an isotope has thereby been reduced to 10 - 6 s; while it was 10 - 1 to 10 0 s for He-jets and 10 1 to 10 3 s for rapid chemical separations. Experiments are now in progress to synthesize super heavy elements (SHE) and to analyze them with these latest techniques. Again, α-spectrometry will play a major role since the expected signature for the decay of a SHE is a sequence of α-decays followed by spontaneous fission

  16. Unconventional emergence of elastic softening induced by magnetic fields in the unusual heavy-fermion compound PrFe sub 4 P sub 1 sub 2

    CERN Document Server

    Nakanishi, Y; Yamaguchi, T; Hazama, H; Nemoto, Y; Goto, T; Matsuda, T D; Sugawara, H; Sato, H

    2002-01-01

    Ultrasonic measurement on the filled skutterudite compound PrFe sub 4 P sub 1 sub 2 exhibits a mysterious temperature dependence of the elastic constant (C sub 1 sub 1 - C sub 1 sub 2)/2. Pronounced elastic softening at low temperatures is revived by applying a magnetic field. This fact strongly suggests the 4f-multiplet ground state of the Pr ion split by the crystalline electric field (CEF) to be a GAMMA sub 3 non-Kramers doublet. The expectation value of a quadrupole moment with GAMMA sub 3 symmetry in the CEF ground state, which leads to elastic softening at low temperature, was evaluated by theoretical fitting to the present results. This may imply that suppression of the electric quadrupole Kondo effect occurs in PrFe sub 4 P sub 1 sub 2 and the quadrupole moment becomes steady due to the application of a magnetic field. (letter to the editor)

  17. Determination of relative populations of the magnetic sub-levels of the 4 1D level of HeI excited by heavy ion impact

    International Nuclear Information System (INIS)

    Carre, M.; Zgainski, A.; Gaillard, M.; Nouh, M.; Lombardi, M.

    1981-01-01

    The theoretical study of the depolarization of a transition, emitted from an excited atomic level J = 2, by a static electric field leads to the development of a new experimental method and the measurement of the relative population of the Zeeman sub-levels. This method is applied to the study of the 4 1 D level of HeI excited by several heavy ions (Li + , Ne + , Na + and Mg + ) at intermediate energy between 6 and 40 keV. From the obtained results, we derive informations on the target excitation phenomena: in particular present evidence for a long-range interaction, due to the ion charge, in the output channel of the collision [fr

  18. The magnet database system

    International Nuclear Information System (INIS)

    Ball, M.J.; Delagi, N.; Horton, B.; Ivey, J.C.; Leedy, R.; Li, X.; Marshall, B.; Robinson, S.L.; Tompkins, J.C.

    1992-01-01

    The Test Department of the Magnet Systems Division of the Superconducting Super Collider Laboratory (SSCL) is developing a central database of SSC magnet information that will be available to all magnet scientists at the SSCL or elsewhere, via network connections. The database contains information on the magnets' major components, configuration information (specifying which individual items were used in each cable, coil, and magnet), measurements made at major fabrication stages, and the test results on completed magnets. These data will facilitate the correlation of magnet performance with the properties of its constituents. Recent efforts have focused on the development of procedures for user-friendly access to the data, including displays in the format of the production open-quotes travelerclose quotes data sheets, standard summary reports, and a graphical interface for ad hoc queues and plots

  19. Super-Gaussian transport theory and the field-generating thermal instability in laser–plasmas

    International Nuclear Information System (INIS)

    Bissell, J J; Ridgers, C P; Kingham, R J

    2013-01-01

    Inverse bremsstrahlung (IB) heating is known to distort the electron distribution function in laser–plasmas from a Gaussian towards a super-Gaussian, thereby modifying the equations of classical transport theory (Ridgers et al 2008 Phys. Plasmas 15 092311). Here we explore these modified equations, demonstrating that super-Gaussian effects both suppress traditional transport processes, while simultaneously introducing new effects, such as isothermal (anomalous Nernst) magnetic field advection up gradients in the electron number density n e , which we associate with a novel heat-flow q n ∝∇n e . Suppression of classical phenomena is shown to be most pronounced in the limit of low Hall-parameter χ, in which case the Nernst effect is reduced by a factor of five, the ∇T e × ∇n e field generation mechanism by ∼30% (where T e is the electron temperature), and the diffusive and Righi–Leduc heat-flows by ∼80 and ∼90% respectively. The new isothermal field advection phenomenon and associated density-gradient driven heat-flux q n are checked against kinetic simulation using the Vlasov–Fokker–Planck code impact, and interpreted in relation to the underlying super-Gaussian distribution through simplified kinetic analysis. Given such strong inhibition of transport at low χ, we consider the impact of IB on the seeding and evolution of magnetic fields (in otherwise un-magnetized conditions) by examining the well-known field-generating thermal instability in the light of super-Gaussian transport theory (Tidman and Shanny 1974 Phys. Fluids 12 1207). Estimates based on conditions in an inertial confinement fusion (ICF) hohlraum suggest that super-Gaussian effects can reduce the growth-rate of the instability by ≳80%. This result may be important for ICF experiments, since by increasing the strength of IB heating it would appear possible to inhibit the spontaneous generation of large magnetic fields. (paper)

  20. Super-Gaussian transport theory and the field-generating thermal instability in laser-plasmas

    Science.gov (United States)

    Bissell, J. J.; Ridgers, C. P.; Kingham, R. J.

    2013-02-01

    Inverse bremsstrahlung (IB) heating is known to distort the electron distribution function in laser-plasmas from a Gaussian towards a super-Gaussian, thereby modifying the equations of classical transport theory (Ridgers et al 2008 Phys. Plasmas 15 092311). Here we explore these modified equations, demonstrating that super-Gaussian effects both suppress traditional transport processes, while simultaneously introducing new effects, such as isothermal (anomalous Nernst) magnetic field advection up gradients in the electron number density ne, which we associate with a novel heat-flow qn∝∇ne. Suppression of classical phenomena is shown to be most pronounced in the limit of low Hall-parameter χ, in which case the Nernst effect is reduced by a factor of five, the ∇Te × ∇ne field generation mechanism by ˜30% (where Te is the electron temperature), and the diffusive and Righi-Leduc heat-flows by ˜80 and ˜90% respectively. The new isothermal field advection phenomenon and associated density-gradient driven heat-flux qn are checked against kinetic simulation using the Vlasov-Fokker-Planck code impact, and interpreted in relation to the underlying super-Gaussian distribution through simplified kinetic analysis. Given such strong inhibition of transport at low χ, we consider the impact of IB on the seeding and evolution of magnetic fields (in otherwise un-magnetized conditions) by examining the well-known field-generating thermal instability in the light of super-Gaussian transport theory (Tidman and Shanny 1974 Phys. Fluids 12 1207). Estimates based on conditions in an inertial confinement fusion (ICF) hohlraum suggest that super-Gaussian effects can reduce the growth-rate of the instability by ≳80%. This result may be important for ICF experiments, since by increasing the strength of IB heating it would appear possible to inhibit the spontaneous generation of large magnetic fields.

  1. Synthesis of a novel poly-thiolated magnetic nano-platform for heavy metal adsorption. Role of thiol and carboxyl functions

    International Nuclear Information System (INIS)

    Odio, Oscar F.; Lartundo-Rojas, Luis; Palacios, Elia Guadalupe; Martínez, Ricardo; Reguera, Edilso

    2016-01-01

    Graphical abstract: Poly-thiols capping of magnetite nanoparticles for Pb(2+) and Cd(2+) adsorption. Display Omitted - Highlights: • A novel magnetic nano-platform containing free thiol and carboxyl groups is reported. • Thiols are protected by disulfide bridges during magnetite functionalization. • Adsorption of Pb"2"+ and Cd"2"+ onto the nano-platform was studied by XPS measurements. • Metal-sulfur interactions dominate if free thiol groups are present. • Metal-carboxyl interactions dominate if thiol groups are depleted by oxidation. - Abstract: We report a novel strategy for the synthesis of magnetic nano-platforms containing free thiol groups. It first involves the synthesis of a poly(acrylic acid) copolymer containing disulfide bridges between the linear chains through di-ester linkages, followed by the anchoring of this new ligand to magnetite nanoparticles using a ligand exchange reaction. Finally, free −SH groups are obtained by treating the resulting disulfide-functionalized magnetic nano-system with tributyl phosphine as reducing agent. The characterization of the resulting 17 nm nanoparticles (Fe_3O_4@PAA-HEDred) by FTIR and TGA confirms the attachment of the copolymer through iron carboxylates. XRD, TEM and magnetic measurements indicate an increase in the inorganic core diameter and the occurrence of strong magnetic inter-particle interactions during the exchange reaction, although coercitivity and remanence drop to near zero at room temperature. Afterwards, Fe_3O_4@PAA-HEDred nanoparticles were tested as sorbent for Pb"2"+ and Cd"2"+ cations in aqueous media. XPS measurements were performed in order to unravel the role of both carboxyl and thiol functions in the adsorption process. For the sake of comparison, the same study was performed using bare Fe_3O_4 nanoparticles and a nanosystem with disulfide groups (Fe_3O_4@DMSA). The joint analysis of the Pb 4f, Cd 3d, Fe 2p and S 2p high resolution spectra for the nanostructured materials

  2. Synthesis of a novel poly-thiolated magnetic nano-platform for heavy metal adsorption. Role of thiol and carboxyl functions

    Energy Technology Data Exchange (ETDEWEB)

    Odio, Oscar F. [Instituto de Ciencia y Tecnología de Materiales, Universidad de La Habana, La Habana 10400 (Cuba); Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada-Unidad Legaria, IPN, 11500 México City (Mexico); Lartundo-Rojas, Luis [Centro de Nanociencias y Micro-Nanotecnologías, IPN, 07738 México City (Mexico); Palacios, Elia Guadalupe [Instituto Politécnico Nacional, ESIQIE, UPALM Zacatenco, 07738 México City (Mexico); Martínez, Ricardo [Instituto de Ciencia y Tecnología de Materiales, Universidad de La Habana, La Habana 10400 (Cuba); Reguera, Edilso, E-mail: edilso.reguera@gmail.com [Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada-Unidad Legaria, IPN, 11500 México City (Mexico)

    2016-11-15

    Graphical abstract: Poly-thiols capping of magnetite nanoparticles for Pb(2+) and Cd(2+) adsorption. Display Omitted - Highlights: • A novel magnetic nano-platform containing free thiol and carboxyl groups is reported. • Thiols are protected by disulfide bridges during magnetite functionalization. • Adsorption of Pb{sup 2+} and Cd{sup 2+} onto the nano-platform was studied by XPS measurements. • Metal-sulfur interactions dominate if free thiol groups are present. • Metal-carboxyl interactions dominate if thiol groups are depleted by oxidation. - Abstract: We report a novel strategy for the synthesis of magnetic nano-platforms containing free thiol groups. It first involves the synthesis of a poly(acrylic acid) copolymer containing disulfide bridges between the linear chains through di-ester linkages, followed by the anchoring of this new ligand to magnetite nanoparticles using a ligand exchange reaction. Finally, free −SH groups are obtained by treating the resulting disulfide-functionalized magnetic nano-system with tributyl phosphine as reducing agent. The characterization of the resulting 17 nm nanoparticles (Fe{sub 3}O{sub 4}@PAA-HEDred) by FTIR and TGA confirms the attachment of the copolymer through iron carboxylates. XRD, TEM and magnetic measurements indicate an increase in the inorganic core diameter and the occurrence of strong magnetic inter-particle interactions during the exchange reaction, although coercitivity and remanence drop to near zero at room temperature. Afterwards, Fe{sub 3}O{sub 4}@PAA-HEDred nanoparticles were tested as sorbent for Pb{sup 2+} and Cd{sup 2+} cations in aqueous media. XPS measurements were performed in order to unravel the role of both carboxyl and thiol functions in the adsorption process. For the sake of comparison, the same study was performed using bare Fe{sub 3}O{sub 4} nanoparticles and a nanosystem with disulfide groups (Fe{sub 3}O{sub 4}@DMSA). The joint analysis of the Pb 4f, Cd 3d, Fe 2p and S 2p high

  3. Heavy quark effective theory and heavy baryon transitions

    International Nuclear Information System (INIS)

    Hussain, F.

    1992-01-01

    The heavy quark effective theory (HQET) is applied to study the weak decay of heavy mesons and heavy baryons and to predict the form factors for heavy to heavy and heavy to light transitions. 28 refs, 10 figs, 2 tabs

  4. SuperB Progress Report for Physics

    Energy Technology Data Exchange (ETDEWEB)

    O' Leary, B.; /Aachen, Tech. Hochsch.; Matias, J.; Ramon, M.; /Barcelona, IFAE; Pous, E.; /Barcelona U.; De Fazio, F.; Palano, A.; /INFN, Bari; Eigen, G.; /Bergen U.; Asgeirsson, D.; /British Columbia U.; Cheng, C.H.; Chivukula, A.; Echenard, B.; Hitlin, D.G.; Porter, F.; Rakitin, A.; /Caltech; Heinemeyer, S.; /Cantabria Inst. of Phys.; McElrath, B.; /CERN; Andreassen, R.; Meadows, B.; Sokoloff, M.; /Cincinnati U.; Blanke, M.; /Cornell U., Phys. Dept.; Lesiak, T.; /Cracow, INP /DESY /Zurich, ETH /INFN, Ferrara /Frascati /INFN, Genoa /Glasgow U. /Indiana U. /Mainz U., Inst. Phys. /Karlsruhe, Inst. Technol. /KEK, Tsukuba /LBL, Berkeley /UC, Berkeley /Lisbon, IST /Ljubljana U. /Madrid, Autonoma U. /Maryland U. /MIT /INFN, Milan /McGill U. /Munich, Tech. U. /Notre Dame U. /PNL, Richland /INFN, Padua /Paris U., VI-VII /Orsay, LAL /Orsay, LPT /INFN, Pavia /INFN, Perugia /INFN, Pisa /Queen Mary, U. of London /Regensburg U. /Republica U., Montevideo /Frascati /INFN, Rome /INFN, Rome /INFN, Rome /Rutherford /Sassari U. /Siegen U. /SLAC /Southern Methodist U. /Tel Aviv U. /Tohoku U. /INFN, Turin /INFN, Trieste /Uppsala U. /Valencia U., IFIC /Victoria U. /Wayne State U. /Wisconsin U., Madison

    2012-02-14

    SuperB is a high luminosity e{sup +}e{sup -} collider that will be able to indirectly probe new physics at energy scales far beyond the reach of any man made accelerator planned or in existence. Just as detailed understanding of the Standard Model of particle physics was developed from stringent constraints imposed by flavour changing processes between quarks, the detailed structure of any new physics is severely constrained by flavour processes. In order to elucidate this structure it is necessary to perform a number of complementary studies of a set of golden channels. With these measurements in hand, the pattern of deviations from the Standard Model behavior can be used as a test of the structure of new physics. If new physics is found at the LHC, then the many golden measurements from SuperB will help decode the subtle nature of the new physics. However if no new particles are found at the LHC, SuperB will be able to search for new physics at energy scales up to 10-100 TeV. In either scenario, flavour physics measurements that can be made at SuperB play a pivotal role in understanding the nature of physics beyond the Standard Model. Examples for using the interplay between measurements to discriminate New Physics models are discussed in this document. SuperB is a Super Flavour Factory, in addition to studying large samples of B{sub u,d,s}, D and {tau} decays, SuperB has a broad physics programme that includes spectroscopy both in terms of the Standard Model and exotica, and precision measurements of sin{sup 2} {theta}{sub W}. In addition to performing CP violation measurements at the {Upsilon}(4S) and {phi}(3770), SuperB will test CPT in these systems, and lepton universality in a number of different processes. The multitude of rare decay measurements possible at SuperB can be used to constrain scenarios of physics beyond the Standard Model. In terms of other precision tests of the Standard Model, this experiment will be able to perform precision over

  5. SuperB Progress Report for Physics

    International Nuclear Information System (INIS)

    O'Leary, B.; Matias, J.; Ramon, M.

    2012-01-01

    SuperB is a high luminosity e + e - collider that will be able to indirectly probe new physics at energy scales far beyond the reach of any man made accelerator planned or in existence. Just as detailed understanding of the Standard Model of particle physics was developed from stringent constraints imposed by flavour changing processes between quarks, the detailed structure of any new physics is severely constrained by flavour processes. In order to elucidate this structure it is necessary to perform a number of complementary studies of a set of golden channels. With these measurements in hand, the pattern of deviations from the Standard Model behavior can be used as a test of the structure of new physics. If new physics is found at the LHC, then the many golden measurements from SuperB will help decode the subtle nature of the new physics. However if no new particles are found at the LHC, SuperB will be able to search for new physics at energy scales up to 10-100 TeV. In either scenario, flavour physics measurements that can be made at SuperB play a pivotal role in understanding the nature of physics beyond the Standard Model. Examples for using the interplay between measurements to discriminate New Physics models are discussed in this document. SuperB is a Super Flavour Factory, in addition to studying large samples of B u,d,s , D and τ decays, SuperB has a broad physics programme that includes spectroscopy both in terms of the Standard Model and exotica, and precision measurements of sin 2 θ W . In addition to performing CP violation measurements at the Υ(4S) and φ(3770), SuperB will test CPT in these systems, and lepton universality in a number of different processes. The multitude of rare decay measurements possible at SuperB can be used to constrain scenarios of physics beyond the Standard Model. In terms of other precision tests of the Standard Model, this experiment will be able to perform precision over-constraints of the unitarity triangle through

  6. Super-radiance in Nuclear Physics

    International Nuclear Information System (INIS)

    Auerbach, N

    2015-01-01

    The theory of the super-radiant mechanism as applied to various phenomena in nuclear physics is presented. The connection between super-radiance and the notion of doorway is presented. The statistics of resonance widths in a many-body Fermi system with open channels is discussed. Depending on the strength of the coupling to the continuum such systems show deviations from the standard Porter-Thomas distribution. The deviations result from the process of increasing interaction of the intrinsic states via the common decay channels. In the limit of very strong coupling this leads to super-radiance. (paper)

  7. An innovative conceptual design of the safe and simplified boiling water reactor (SSBWR) with a super-long life core

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, J. [Hitachi Ltd., Power and Industrial Systems Nuclear System Div., Ibaraki (Japan); Ohtsuka, M.; Fujimura, K.; Hidaka, M.; Nagayoshi, T. [Hitachi Ltd., Power and Industrial Systems R and D Lab., Ibaraki (Japan); Kato, Y. [Tokyo Inst. of Tech. (Japan). Research Lab. for Nuclear Reactors

    2001-07-01

    An innovative concept for the SSBWR has been developed to provide a super-long life core of 20 years with neutron spectrum shift due to dilution from heavy to light water for coolant and to represent a passive core safety system with infinite grace period. Operability and maintainability can be largely improved by the super-long life core, reduction of the number of active components, and RPV renewal with no exchange of fuel assemblies, which can also significantly reduce the possibility of nuclear proliferation. (author)

  8. Super-Calogero-Moser-Sutherland systems and free super-oscillators: a mapping

    International Nuclear Information System (INIS)

    Ghosh, Pijush K.

    2001-01-01

    We show that the supersymmetric rational Calogero-Moser-Sutherland (CMS) model of A N+1 -type is equivalent to a set of free super-oscillators, through a similarity transformation. We prescribe methods to construct the complete eigenspectrum and the associated eigenfunctions, both in supersymmetry-preserving as well as supersymmetry-breaking phases, from the free super-oscillator basis. Further we show that a wide class of super-Hamiltonians realizing dynamical OSp(2 vertical bar 2) supersymmetry, which also includes all types of rational super-CMS as a small subset, are equivalent to free super-oscillators. We study BC N+1 -type super-CMS model in some detail to understand the subtleties involved in this method

  9. Three Super-Earths Orbiting HD 7924

    Science.gov (United States)

    Fulton, Benjamin J.; Weiss, Lauren M.; Sinukoff, Evan; Isaacson, Howard; Howard, Andrew W.; Marcy, Geoffrey W.; Henry, Gregory W.; Holden, Bradford P.; Kibrick, Robert I.

    2015-06-01

    We report the discovery of two super-Earth-mass planets orbiting the nearby K0.5 dwarf HD 7924, which was previously known to host one small planet. The new companions have masses of 7.9 and 6.4 {{M}\\oplus }, and orbital periods of 15.3 and 24.5 days. We perform a joint analysis of high-precision radial velocity data from Keck/HIRES and the new Automated Planet Finder Telescope (APF) to robustly detect three total planets in the system. We refine the ephemeris of the previously known planet using 5 yr of new Keck data and high-cadence observations over the last 1.3 yr with the APF. With this new ephemeris, we show that a previous transit search for the inner-most planet would have covered 70% of the predicted ingress or egress times. Photometric data collected over the last eight years using the Automated Photometric Telescope shows no evidence for transits of any of the planets, which would be detectable if the planets transit and their compositions are hydrogen-dominated. We detect a long-period signal that we interpret as the stellar magnetic activity cycle since it is strongly correlated with the Ca ii H and K activity index. We also detect two additional short-period signals that we attribute to rotationally modulated starspots and a one-month alias. The high-cadence APF data help to distinguish between the true orbital periods and aliases caused by the window function of the Keck data. The planets orbiting HD 7924 are a local example of the compact, multi-planet systems that the Kepler Mission found in great abundance. Based on observations obtained at the W. M. Keck Observatory, which is operated jointly by the University of California and the California Institute of Technology. Keck time was granted for this project by the University of Hawai‘i, the University of California, and NASA.

  10. Super-Memorizers Are Not Super-Recognizers.

    Directory of Open Access Journals (Sweden)

    Meike Ramon

    Full Text Available Humans have a natural expertise in recognizing faces. However, the nature of the interaction between this critical visual biological skill and memory is yet unclear. Here, we had the unique opportunity to test two individuals who have had exceptional success in the World Memory Championships, including several world records in face-name association memory. We designed a range of face processing tasks to determine whether superior/expert face memory skills are associated with distinctive perceptual strategies for processing faces. Superior memorizers excelled at tasks involving associative face-name learning. Nevertheless, they were as impaired as controls in tasks probing the efficiency of the face system: face inversion and the other-race effect. Super memorizers did not show increased hippocampal volumes, and exhibited optimal generic eye movement strategies when they performed complex multi-item face-name associations. Our data show that the visual computations of the face system are not malleable and are robust to acquired expertise involving extensive training of associative memory.

  11. Super-Memorizers Are Not Super-Recognizers.

    Science.gov (United States)

    Ramon, Meike; Miellet, Sebastien; Dzieciol, Anna M; Konrad, Boris Nikolai; Dresler, Martin; Caldara, Roberto

    2016-01-01

    Humans have a natural expertise in recognizing faces. However, the nature of the interaction between this critical visual biological skill and memory is yet unclear. Here, we had the unique opportunity to test two individuals who have had exceptional success in the World Memory Championships, including several world records in face-name association memory. We designed a range of face processing tasks to determine whether superior/expert face memory skills are associated with distinctive perceptual strategies for processing faces. Superior memorizers excelled at tasks involving associative face-name learning. Nevertheless, they were as impaired as controls in tasks probing the efficiency of the face system: face inversion and the other-race effect. Super memorizers did not show increased hippocampal volumes, and exhibited optimal generic eye movement strategies when they performed complex multi-item face-name associations. Our data show that the visual computations of the face system are not malleable and are robust to acquired expertise involving extensive training of associative memory.

  12. Super rigid nature of super-deformed bands

    International Nuclear Information System (INIS)

    Sharma, Neha; Mittal, H.M.; Jain, A.K.

    2012-01-01

    The phenomenon of high-spin super-deformation represents one of the most remarkable discoveries in nuclear physics. A large number of SD bands have been observed in A = 60, 80, 130, 150, 190 mass regions. The cascades of SD bands are known to be connected by electric quadruple E2 transitions. Because of absence of linking transitions between superdeformed (SD) and normal deformed (ND) levels, the spin assignments of most of these bands carry a minimum uncertainty ≈ 1-2ħ. It was found in an analysis of SD bands in the context of semi classical approach that moment of inertia comes close to the rigid body value in most of the cases. Lack of knowledge of spins has led to an emphasis on the study of dynamical moment of inertia of SD bands and systematic of kinematic moment of inertia has not been examined so far. In this paper, we extract the band moment of inertia J 0 and softness parameter (σ) of all the SD bands corresponding to axes ratio (x) = 1.5 and present their systematic

  13. A superparticle on the 'super' Poincare upper half plane

    International Nuclear Information System (INIS)

    Uehara, S.; Yasui, Yukinora

    1988-01-01

    A non-relativistic superparticle moving freely on the 'super' Poincare upper half plane is investigated. The lagrangian is invariant under the super Moebius transformations SPL (2, R), so that it can be projected into the lagrangian on the super Riemann surface. The quantum hamiltonian becomes the 'super' Laplace-Beltrami operator in the curved superspace. (orig.)

  14. Superparticle on the 'super' Poincare upper half plane

    Energy Technology Data Exchange (ETDEWEB)

    Uehara, S; Yasui, Yukinora

    1988-03-17

    A non-relativistic superparticle moving freely on the 'super' Poincare upper half plane is investigated. The lagrangian is invariant under the super Moebius transformations SPL (2, R), so that it can be projected into the lagrangian on the super Riemann surface. The quantum hamiltonian becomes the 'super' Laplace-Beltrami operator in the curved superspace.

  15. The Super-TIGER Instrument to Probe Galactic Cosmic Ray Origins

    Science.gov (United States)

    Mitchell, John W.; Binns, W. R.; Bose, R, G.; Braun, D. L.; Christian, E. R.; Daniels, W. M; DeNolfo, G. A.; Dowkontt, P. F.; Hahne, D. J.; Hams, T.; hide

    2011-01-01

    Super-TIGER (Super Trans-Iron Galactic Element Recorder) is under construction for the first of two planned Antarctic long-duration balloon flights in December 2012. This new instrument will measure the abundances of ultra-heavy elements (30Zn and heavier), with individual element resolution, to provide sensitive tests of the emerging model of cosmic-ray origins in OB associations and models of the mechanism for selection of nuclei for acceleration. Super-TIGER builds on the techniques of TIGER, which produced the first well-resolved measurements of elemental abundances of the elements 31Ga, 32Ge, and 34Se. Plastic scintillators together with acrylic and silica-aerogel Cherenkov detectors measure particle charge. Scintillating-fiber hodoscopes track particle trajectories. Super-TIGER has an active area of 5.4 sq m, divided into two independent modules. With reduced material thickness to decrease interactions, its effective geometry factor is approx.6.4 times larger than TIGER, allowing it to measure elements up to 42Mo with high statistical precision, and make exploratory measurements up to 56Ba. Super-TIGER will also accurately determine the energy spectra of the more abundant elements from l0Ne to 28Ni between 0.8 and 10 GeV/nucleon to test the hypothesis that microquasars or other sources could superpose spectral features. We will discuss the implications of Super-TIGER measurements for the study of cosmic-ray origins and will present the measurement technique, design, status, and expected performance, including numbers of events and resolution. Details of the hodoscopes, scintillators, and Cherenkov detectors will be given in other presentations at this conference.

  16. Study of the interactions of 13.8 GeV/c protons with the heavy nuclei of the emulsions exposed in magnetic fuel of 170 kgauss

    International Nuclear Information System (INIS)

    Gomez Aleixandre, J. L.

    1967-01-01

    145 stars with N h >8 produced by the interactions of 13.8 GeV/c protons with Ag and Br nuclei have been analysed. The emulsion stack was irradiated in a 170 K gauss magnetic field. Statistical results concerning the main characteristics of the different particles emitted are given and the energy balance is evaluated. The main features of both 24 GeV/c protons and 17 GeV/c π- interactions are compared with those we have found for 13.8 GeV/c protons interactions. (Author) 27 refs

  17. W∞ gravity and super-W∞ gravity

    International Nuclear Information System (INIS)

    Bergshoeff, E.; Pope, C.N.; Shen, X.; Sezgin, E.; Romans, L.J.

    1991-01-01

    In this paper, the authors construct gauge theories of the W ∞ algebra and its super-extension, and discuss their relation to earlier results for the gauging of the classical contraction to the w ∞ algebra

  18. Metabonomic Response to Milk Proteins after a Single Bout of Heavy Resistance Exercise Elucidated by 1H Nuclear Magnetic Resonance Spectroscopy

    Directory of Open Access Journals (Sweden)

    Hanne Christine Bertram

    2013-01-01

    Full Text Available In the present study, proton NMR-based metabonomics was applied on femoral arterial plasma samples collected from young male subjects (milk protein n = 12 in a crossover design; non-caloric control n = 8 at different time intervals (70, 220, 370 min after heavy resistance training and intake of either a whey or calcium caseinate protein drink in order to elucidate the impact of the protein source on post-exercise metabolism, which is important for muscle hypertrophy. Dynamic changes in the post-exercise plasma metabolite profile consisted of fluctuations in alanine, beta-hydroxybutyrate, branched amino acids, creatine, glucose, glutamine, glutamate, histidine, lipids and tyrosine. In comparison with the intake of a non-caloric drink, the same pattern of changes in low-molecular weight plasma metabolites was found for both whey and caseinate intake. However, the study indicated that whey and caseinate protein intake had a different impact on low-density and very-low-density lipoproteins present in the blood, which may be ascribed to different effects of the two protein sources on the mobilization of lipid resources during energy deficiency. In conclusion, no difference in the effects on low-molecular weight metabolites as measured by proton NMR-based metabonomics was found between the two protein sources.

  19. Synthesis Of Fe3O4-Chitosan Magnetic NanoComposites By Gamma Irradiation For Absorbing Of Heavy Metals In Aqueous Solutions

    International Nuclear Information System (INIS)

    Tran Minh Quynh; Nguyen Van Binh; Nguyen Quang Long; Hoang Dang Sang

    2014-01-01

    Studies on adsorption capacity of the obtained Fe 3 O 4 -chitosan nanoparticles for metal ions in aqueous solutions showed that initial amount of adsorbent and pH have much influenced on their adsorption capacity. Adsorption rate was quite fast at first, then slower. Maximum adsorption capacity were measured at 25 o C are 71, 41.4 and 26 mg/g obtained at pH 5, 6 and 7 for Cu(CH 3 COO) 2 .H 2 O, Pb(CH 3 COO) 2 .3H 2 O and NaH 2 AsO 4 .7H 2 O, respectively. The adsorption capacity increased with adsorbent amount to a certain value, then leveled off. These results suggested that the Fe 3 O 4 -chitosan nanoparticles can be applied as a potential adsorbent for removal of heavy metals from aqueous solution, but it required further studies including of adsorption kinetics and desorption in order to control the process in practice. (author)

  20. Charm Physics at SuperB

    International Nuclear Information System (INIS)

    Meadows, Brian; Bevan, Adrian

    2010-01-01

    The study of Charm Decays at SuperB provide unique opportunities to understand the Standard Model and constrain new physics, both at the Y(4S), and at charm threshold. We discuss the physics potential of such measurements from the proposed SuperB experiment with 75 ab -1 of data at the Y(4S) and a subsequent run dedicated to exploiting quantum correlations at the charm threshold. (author)

  1. Heavy ion accelerators at GSI

    International Nuclear Information System (INIS)

    Angert, N.

    1984-01-01

    The status of the Unilac heavy ion linear accelerator at GSI, Darmstadt is given. A schematic overall plan view of the Unilac is shown and its systems are described. List of isotopes and intensities accelerated at the Unilac is presented. The experimental possibilities at GSI should be considerably extended by a heavy ion synchrotron (SIS 18) in combination with an experimental storage ring (ESR). A prototype of the rf-accelerating system of the synchrotron has been built and tested. Prototypes for the quadrupole and dipole magnets for the ring are being constructed. The SIS 18 is desigmed for a maximum magnetic rigidity of 18Tm so that neon can be accelerated to 2 GeV/W and uranium to 1 GeV/u. The design allows also the acceleration of protons up to 4.5 GeV. The ESR permits to storage fully stripped uranium ions up to an energy of approximately R50 MeV/u

  2. Magnetic monopoles

    International Nuclear Information System (INIS)

    Preskill, J

    1984-01-01

    This article offers a review of the physics of the magnetic monopole, which, although as yet unseen, offers sound theoretical reasons to believe that it must exist. Several theories are presented and equations are given. The idea that magnetic monopoles, stable particles carrying magnetic charges, ought to exist has, according to the authors, proved to be very durable. One theory presented demonstrates the consistency of magnetic monopoles with quantum electrodynamics. Another theory demonstrates the necessity of monopoles in grand unified gauge theories. The authors believe it is reasonable to expect the monopole to be an extremely heavy stable elementary particle. The stability of the classical monopole solution given is ensured by a topological principle explained

  3. Studies of the Super VELO

    CERN Document Server

    AUTHOR|(CDS)2156302

    2016-01-01

    The Super VELO is the Run 5 upgrade of the VeloPix detector of the LHCb experiment. Its most challenging task is to cope with a luminosity increase of the factor 10. This study examines the potential physics performance of a detector based on the VeloPix design at high luminosity conditions. It is found that an unmodified VeloPix detector shows poor performance when exposed to 10x design luminosity, most gravely high ghost rates of 40 %. When applying basic assumptions about material changes such as cutting the silicon thickness by half and removing the RF foil, the ghost rate drops by 20 %. When using thin silicon and re-optimizing the tracking algorithm, the ghost rate can even be reduced by 60 %. Applying the additional modification of a pixel area size four times smaller, the ghost rate drops by 88 % and the IP resolution improves. Finally, in a dream scenario with thin silicon, smaller pixels and no RF foil, big gains in resolution and a ghost rate of less than 4 % can be achieved.

  4. The tristan super light facility

    International Nuclear Information System (INIS)

    1992-12-01

    The Photon Factory and its user group have achieved excellent scientific results since its commissioning in 1982, ranging from material science to medical application, by using the synchrotron radiation at the 2.5 GeV PF storage ring, and since 1986, further at the 6.5 GeV Tristan accumulation ring which provides brilliant photons in high energy region. Efforts are exerted currently at National Laboratory for High Energy Physics for the extensive research and development works to study the feasibility of the Tristan e + e - collider main ring to be utilized as an extremely intense and highly advanced light source, which is called Tristan super light facility. What kinds of the application are expected for such highly brilliant source and their scientific significance should be clarified. This design report is an outcome by the joint work of in-house staffs and outside users, and it would serve as an excellent guide for the future studies on a next generation synchrotron radiation light source. The conversion plan of Tristan, the basic design of insertion devices, coherent X-ray sources, beam lines, instrumentation and others are reported. (K.I.)

  5. A novel super-resolution camera model

    Science.gov (United States)

    Shao, Xiaopeng; Wang, Yi; Xu, Jie; Wang, Lin; Liu, Fei; Luo, Qiuhua; Chen, Xiaodong; Bi, Xiangli

    2015-05-01

    Aiming to realize super resolution(SR) to single image and video reconstruction, a super resolution camera model is proposed for the problem that the resolution of the images obtained by traditional cameras behave comparatively low. To achieve this function we put a certain driving device such as piezoelectric ceramics in the camera. By controlling the driving device, a set of continuous low resolution(LR) images can be obtained and stored instantaneity, which reflect the randomness of the displacements and the real-time performance of the storage very well. The low resolution image sequences have different redundant information and some particular priori information, thus it is possible to restore super resolution image factually and effectively. The sample method is used to derive the reconstruction principle of super resolution, which analyzes the possible improvement degree of the resolution in theory. The super resolution algorithm based on learning is used to reconstruct single image and the variational Bayesian algorithm is simulated to reconstruct the low resolution images with random displacements, which models the unknown high resolution image, motion parameters and unknown model parameters in one hierarchical Bayesian framework. Utilizing sub-pixel registration method, a super resolution image of the scene can be reconstructed. The results of 16 images reconstruction show that this camera model can increase the image resolution to 2 times, obtaining images with higher resolution in currently available hardware levels.

  6. Muon studies of heavy fermions

    International Nuclear Information System (INIS)

    Heffner, R.H.

    1991-01-01

    Recent muon spin relaxation (μSR) studies have been particularly effective in revealing important properties of the unusual magnetism and superconductivity found in heavy fermion (HF) systems. In this paper μSR experiments elucidating the symmetry of superconducting order parameter in UPt 3 and UBe 13 doped with thorium and reviewed. Also discussed is the correlation between the enhanced superconducting specific heat jump and the reduced Kondo temperature in B-doped UBe 13 , indicating possible direct experimental evidence for a magnetic pairing mechanism in HF superconductors. 23 refs., 3 figs

  7. SOLAR OPACITY CALCULATIONS USING THE SUPER-TRANSITION-ARRAY METHOD

    International Nuclear Information System (INIS)

    Krief, M.; Feigel, A.; Gazit, D.

    2016-01-01

    A new opacity model has been developed based on the Super-Transition-Array (STA) method for the calculation of monochromatic opacities of plasmas in local thermodynamic equilibrium. The atomic code, named STAR (STA-Revised), is described and used to calculate spectral opacities for a solar model implementing the recent AGSS09 composition. Calculations are carried out throughout the solar radiative zone. The relative contributions of different chemical elements and atomic processes to the total Rosseland mean opacity are analyzed in detail. Monochromatic opacities and charge-state distributions are compared with the widely used Opacity Project (OP) code, for several elements near the radiation–convection interface. STAR Rosseland opacities for the solar mixture show a very good agreement with OP and the OPAL opacity code throughout the radiation zone. Finally, an explicit STA calculation was performed of the full AGSS09 photospheric mixture, including all heavy metals. It was shown that, due to their extremely low abundance, and despite being very good photon absorbers, the heavy elements do not affect the Rosseland opacity

  8. SOLAR OPACITY CALCULATIONS USING THE SUPER-TRANSITION-ARRAY METHOD

    Energy Technology Data Exchange (ETDEWEB)

    Krief, M.; Feigel, A.; Gazit, D., E-mail: menahem.krief@mail.huji.ac.il [The Racah Institute of Physics, The Hebrew University, 91904 Jerusalem (Israel)

    2016-04-10

    A new opacity model has been developed based on the Super-Transition-Array (STA) method for the calculation of monochromatic opacities of plasmas in local thermodynamic equilibrium. The atomic code, named STAR (STA-Revised), is described and used to calculate spectral opacities for a solar model implementing the recent AGSS09 composition. Calculations are carried out throughout the solar radiative zone. The relative contributions of different chemical elements and atomic processes to the total Rosseland mean opacity are analyzed in detail. Monochromatic opacities and charge-state distributions are compared with the widely used Opacity Project (OP) code, for several elements near the radiation–convection interface. STAR Rosseland opacities for the solar mixture show a very good agreement with OP and the OPAL opacity code throughout the radiation zone. Finally, an explicit STA calculation was performed of the full AGSS09 photospheric mixture, including all heavy metals. It was shown that, due to their extremely low abundance, and despite being very good photon absorbers, the heavy elements do not affect the Rosseland opacity.

  9. Heavy Menstrual Bleeding (Menorrhagia)

    Science.gov (United States)

    ... Us Information For… Media Policy Makers Blood Disorders Heavy Menstrual Bleeding Recommend on Facebook Tweet Share Compartir ... It can also be bleeding that is very heavy. How do you know if you have heavy ...

  10. Synthèse des noyaux super-lourds : Rôle de l'analyse d'incertitude dans la modélisation

    OpenAIRE

    Lu, Hongliang

    2015-01-01

    The existence of super-heavy elements (SHE) has been predicted by the nuclear shell model. However, thenuclear reaction theory for heavy systems, which is essential for the synthesis of SHE, has not been wellestablished yet. Although we have reached a general agreement on the reaction mechanism, large discrepanciesbetween quantitative predictions still persist because of the presence of the fusion hindrance phenomenon. Thefirst aim of this Ph.D. work is to investigate different models associa...

  11. Heavy ion inertial fusion

    International Nuclear Information System (INIS)

    Keefe, D.; Sessler, A.M.

    1980-01-01

    Inertial fusion has not yet been as well explored as magnetic fusion but can offer certain advantages as an alternative source of electric energy for the future. Present experiments use high-power beams from lasers and light-ion diodes to compress the deuterium-tritium (D-T) pellets but these will probably be unsuitable for a power plant. A more promising method is to use intense heavy-ion beams from accelerator systems similar to those used for nuclear and high-energy physics; the present paper addresses itself to this alternative. As will be demonstrated the very high beam power needed poses new design questions, from the ion-source through the accelerating system, the beam transport system, to the final focus. These problems will require extensive study, both theoretically and experimentally, over the next several years before an optimum design for an inertial fusion driver can be arrived at. (Auth.)

  12. Heavy ion inertial fusion

    International Nuclear Information System (INIS)

    Keefe, D.; Sessler, A.M.

    1980-07-01

    Inertial fusion has not yet been as well explored as magnetic fusion but can offer certain advantages as an alternative source of electric energy for the future. Present experiments use high-power beams from lasers and light-ion diodes to compress the deuterium-tritium (D-T) pellets but these will probably be unsuitable for a power plant. A more promising method is to use intense heavy-ion beams from accelerator systems similar to those used for nuclear and high-energy physics; the present paper addresses itself to this alternative. As will be demonstrated the very high beam power needed poses new design questions, from the ion source through the accelerating system, the beam transport system, to the final focus. These problems will require extensive study, both theoretically and experimentally, over the next several years before an optimum design for an inertial fusion driver can be arrived at

  13. Now day methods for heavy ion monitoring

    International Nuclear Information System (INIS)

    Luk'yanov, S.M.; Penionzhkevich, Yu.Eh.; Chubaryan, G.G.

    1984-01-01

    Up-to-date methods for identification of products yield as a result of heavy ion interaction with nuclei are described. Monitoring of total ionization has been realized by gas-filled ionization chambers semiconductor detectors, scintillators. A method for specific ionization loss monitoring and time-of-flight technique for heavy-ion mass identification are considered. Advantages of the method for identification of nuclear reaction prodUcts by means of a magnetic analyzer are displayed

  14. Heavy flavour in ALICE

    CERN Document Server

    Pillot, Philippe

    2008-01-01

    Open heavy flavours and heavy quarkonium states are expected to provide essential informa- tion on the properties of the strongly interacting system fo rmed in the early stages of heavy-ion collisions at very high energy density. Such probes are espe cially promising at LHC energies where heavy quarks (both c and b) are copiously produced. The ALICE detector shall measure the production of open heavy flavours and heavy quarkonium st ates in both proton-proton and heavy-ion collisions at the LHC. The expected performances of ALICE for heavy flavour physics is discussed based on the results of simulation studies on a s election of benchmark channels

  15. Super-quasi-conformal transformation and Schiffer variation on super-Riemann surface

    International Nuclear Information System (INIS)

    Takahasi, Wataru

    1990-01-01

    A set of equations which characterizes the super-Teichmueller deformations is proposed. It is a supersymmetric extension of the Beltrami equation. Relations between the set of equations and the Schiffer variations with the KN bases are discussed. This application of the KN bases shows the powerfulness of the KN theory in the study of super-Riemann surfaces. (author)

  16. Deterministic phase measurements exhibiting super-sensitivity and super-resolution

    DEFF Research Database (Denmark)

    Schäfermeier, Clemens; Ježek, Miroslav; Madsen, Lars S.

    2018-01-01

    Phase super-sensitivity is obtained when the sensitivity in a phase measurement goes beyond the quantum shot noise limit, whereas super-resolution is obtained when the interference fringes in an interferometer are narrower than half the input wavelength. Here we show experimentally that these two...

  17. Super-multiplex vibrational imaging

    Science.gov (United States)

    Wei, Lu; Chen, Zhixing; Shi, Lixue; Long, Rong; Anzalone, Andrew V.; Zhang, Luyuan; Hu, Fanghao; Yuste, Rafael; Cornish, Virginia W.; Min, Wei

    2017-04-01

    potential of this 24-colour (super-multiplex) optical imaging approach for elucidating intricate interactions in complex biological systems.

  18. Selected topics in magnetism

    CERN Document Server

    Gupta, L C

    1993-01-01

    Part of the ""Frontiers in Solid State Sciences"" series, this volume presents essays on such topics as spin fluctuations in Heisenberg magnets, quenching of spin fluctuations by high magnetic fields, and kondo effect and heavy fermions in rare earths amongst others.

  19. Proposal of 99.99%-aluminum/7N01-Aluminum clad beam tube for high energy booster of Superconducting Super Collider

    International Nuclear Information System (INIS)

    Ishimaru, Hajime

    1994-01-01

    Proposal of 99.99% pure aluminum/7N01 aluminum alloy clad beam tube for high energy booster in Superconducting Super Collider is described. This aluminum clad beam tube has many good performances, but a eddy current effect is large in superconducting magnet quench collapse. The quench test result for aluminum clad beam tube is basically no problem against magnet quench collapse. (author)

  20. The last magnet on the bench

    CERN Multimedia

    2007-01-01

    A ceremony was held on Thursday, 1st March, to commemorate the end of the cryostat assembly and cryogenic testing on the LHC super-conducting magnets. The team, consisting of CERN staff, several industrial support teams and a hundred guest engineers from India, have tested 2000 magnets over the last four years.