WorldWideScience

Sample records for super heater tubes

  1. Failure evaluation on a high-strength alloy SA213-T91 super heater tube of a power generation

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, J.; Purbolaksono, J.; Beng, L.C.; Ahmad, A. [University of Tenaga Nas, Kajang (Malaysia). Dept. of Mechanical Engineering

    2010-07-01

    This article presents failure investigation on a high-strength alloy SA213-T91 superheater tube. This failure is the first occurrence involving the material in Kapar Power Station Malaysia. The investigation includes visual inspections, hardness measurements, and microscopic examinations. The failed super-heater tube shows a wide open rupture with thin and blunt edges. Hardness readings on all the as-received tubes are used for estimating the operating metal temperature of the super-heater tubes. Microstructures of the failed tube show numerous creep cavities consisting of individual pores and chain of pores which form micro-and macro-cracks. The findings confirmed that the super-heater tube is failed by short-term overheating. Higher temperatures of the flue gas due to the inconsistent feeding of pulverized fuels into the burner is identified to cause overheating of the failed tube.

  2. Failure investigation of super heater tubes of coal fired power plant

    Directory of Open Access Journals (Sweden)

    A.K. Pramanick

    2017-10-01

    Full Text Available Cause of failure of two adjacent super heater tubes made of Cr-Mo steel of a coal based 60 MW thermal power plant has been portrayed in present investigation. Oxide deposits were found on internal surface of tubes. Deposits created significant resistance to heat transfer and resulted in undesirable rise in component temperature. This situation, in turn, aggravated the condition of gas side that was exposed to high temperature. Localized heating coarsened carbides as well as propelled precipitation of new brittle phases along grain boundary resulting in embrittlement of tube material. Continuous exposure to high temperature softened the tube material and tube wall was thinned down with bulging toward outside. Creep void formation along grain boundary was observed and steered intergranular cracking. All these effects contributed synergistically and tubes were failed ultimately due to overload under high Hoop stress.

  3. Failure investigation of a secondary super heater tube in a 140 MW thermal power plant

    Directory of Open Access Journals (Sweden)

    Atanu Saha

    2017-04-01

    Full Text Available This article describes the findings of a detailed investigation into the failure of a secondary super heater tube in a 140 MW thermal power plant. Preliminary macroscopic examinations along with visual examination, dimensional measurement and chemical analysis were carried out to deduce the probable cause of failure. In addition optical microscopy was a necessary supplement to understand the cause of failure. It was concluded that the tube had failed due to severe creep damage caused by high metal temperature during service. The probable causes of high metal temperature may be in sufficient flow of steam due to partial blockage, presence of thick oxide scale on ID surface, high flue gas temperature etc. rupture.

  4. Creep life prediction of super heater coils used in coal based thermal power plants subjected to fly ash erosion and oxide scale formation

    Science.gov (United States)

    Srinivasan, P.; Kushwaha, Shashank

    2018-04-01

    Super heater coils of the coal based thermal power plants and subjected to severe operating conditions from both steam side and gas side. Formation of oxide scale due to prolonged service lead to temperature raise of the tube and erosion due to fly ash present in the combusted gases leads to tube thinning. Both these factors lead to creep rupture of the coils much before the designed service life. Failure of super heater coils during service of the boiler leads to power loss and huge monitory loss to the power plants. An attempt is made to model the creep damage caused to the super heater coils using heat transfer analysis tube thinning due to erosive wear of the tubes. Combined effects of these parameters are taken into consideration to predict the life of the super heater coils. This model may be used to estimate the life of the coils operating under the severe operating conditions to prevent the unexpected failure of the coils.

  5. Fire-tube immersion heater optimization program and field heater audit program

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, P. [Petro-Canada, Calgary, AB (Canada)

    2007-07-01

    This presentation provided an overview of the top 5 priorities for emission reduction and eco-efficiency by the Petroleum Technology Alliance of Canada (PTAC). These included venting of methane emissions; fuel consumption in reciprocating engines; fuel consumption in fired heaters; flaring and incineration; and fugitive emissions. It described the common concern for many upstream operating companies as being energy consumption associated with immersion heaters. PTAC fire-tube heater and line heater studies were presented. Combustion efficiency was discussed in terms of excess air, fire-tube selection, heat flux rate, and reliability guidelines. Other topics included heat transfer and fire-tube design; burner selection; burner duty cycle; heater tune up inspection procedure; and insulation. Two other programs were also discussed, notably a Petro-Canada fire-tube immersion heater optimization program and the field audit program run by Natural Resources Canada. It was concluded that improved efficiency involves training; managing excess air in combustion; managing the burner duty cycle; striving for 82 per cent combustion efficiency; and providing adequate insulation to reduce energy demand. tabs., figs.

  6. Analysis of algorithms for detection of resonance frequencies in vibration measurements on super heater tubes; Analys av algoritmer foer detektering av resonansfrekvenser i vibrationsmaetningar paa oeverhettartuber

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Daniel

    2010-07-01

    Combustion of fuel in thermal power plants emits particles which creates coatings on the super heater tubes. The coatings isolate the tubes and impairs the efficiency of the heat transfer. Cleaning the tubes occurs while the power plant is running but without any knowledge of the actual coating. A change in frequency corresponds to a change in mass of the coatings. This thesis has been focusing in estimating resonance frequencies in vibration measurements made by strain gauges on the tubes. To improve the estimations a target tracking algorithm had been added. The results indicates that it is possible to estimate the resonance frequencies but the algorithms need to be verified on more signals.

  7. Feedwater heater tube-to-tubesheet connections

    International Nuclear Information System (INIS)

    Yokell, S.

    1993-01-01

    This paper discusses some practical aspects of expanded, welded, and welded-and-expanded feedwater heater tube-to-tubesheet joints. It outlines elastic-plastic tube expanding theory. It examines uniform-pressure-expanded tube joint strength and correlating roller-expanded joint strength with wall reduction and rolling torque. For materials subject to stress-corrosion cracking (SCC), it recommends heat treating tube ends before expanding. For materials subject to fatigue and tube-end cracking, it advocates two-stage expanding: (1) expanding enough to create firm tube-hole contact over the full tubesheet thickness; and (2) re-expanding at full pressure or torque. The paper emphasizes the desirability of segregating heats of tubing, mapping the tube-heat locations and making the heat map a permanent part of the heater maintenance file. It recommends when to provide TEMA/HEI Power Plant Standard annular grooves for roller-expanding and provides an equation for determining optimum groove width for uniform-pressure expanding. The paper also reviews welding requirements for welds of tubes to tubesheets. The review covers front-face welding before and after expanding and the reasons for welding first. It outlines current thinking about definitions of strength- and seal-welds of front-face welded joint in terms of their functions and load-carrying abilities. It presents a proposal for determining the required size of strength welds for use in Section VIII of the ASME Boiler and Pressure Vessel Code (the Code). It shows why welded-and-expanded feedwater heater tube-to-tubesheet joints should be full-strength and full-depth expanded. It makes recommendations for pressure- and leak-testing. This work also proposes the industry consider butt welding the tubes to the steam-side face of the tubesheet as a regular method of tube joining. The results of a survey of manufacturers practices are appended. 30 refs., 14 figs

  8. Influence of Superheated Steam Temperature Regulation Quality on Service Life of Boiler Steam Super-Heater Metal

    Directory of Open Access Journals (Sweden)

    G. T. Kulakov

    2009-01-01

    Full Text Available The paper investigates influence of change in quality of superheated steam temperature regulations on service life of super-heater metal. А dependence between metal service life and dispersion value for different steel grades has been determined in the paper. Numerical values pertaining to increase of super-heater metal service life in case of transferring from manual regulation to standard system of automatic regulation (SAR have been determined and in case of transferring from standard SAR to improved SAR. The analysis of tabular data and plotted dependencies makes it possible to conclude that any change in conditions of convection super-heater metal work due to better quality of the regulation leads to essential increase of time period which is left till the completion of the service life of a super-heater heating surface.

  9. Tube Plugging Criteria for the High-pressure Heaters of Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyungnam; Cho, Nam-Cheoul; Lee, Kuk-hee [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In this paper, a method to establish the tube plugging criteria of BOP heat exchangers is introduced and the tube plugging criteria for the high pressure heaters of a nuclear power plant. This method relies on the similar plugging criteria used in the steam generator tubes. Power generation field urges nuclear power plants to reduce operating and maintaining costs to remain competitive. To reduce the cost by means of preventing the lowering thermal efficiency, the inspection of balance-of-plant heat exchanger, which was treated as not important work, becomes important. The tubing materials and tube thickness of heat exchangers in nuclear power plants are selected to withstand system temperature, pressure, and corrosion. But tubes have experienced leaks and failures and plugged based upon eddy current testing (ET) results. There are some problems for plugging the heat exchanger tubes since the criterion and its basis are not clearly described. For this reason, the criteria for the tube wall thickness are addressed in order to operate the heat exchangers in nuclear power plant without trouble during the cycle. The feed water heater is a kind of heat exchanger which raises the temperature of water supplied from the condenser. The heat source of high-pressure heaters is the extraction steam from the high-pressure turbine and moisture separator re-heater. If the tube wall of the heater is broken, the feed water flowing inside the tube intrudes to shell side. This forces the turbine to be stop in order to protect it. There are many codes and standards to be referred for calculating the minimum thickness of the heat exchanger tube in the designing stage. However, the codes and standards related to show the tube plugging criteria may not exist currently. A method to establish the tube plugging criteria of BOP heat exchangers is introduced and the tube plugging criteria for the high pressure heaters of Ulchin NPP No. 3 and 4. This method relies on the similar plugging

  10. Integrity Assessment of GOH Heater Tube

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Bong Sang; Hong, J. H.; Oh, Y. J.; Yoon, J. H.; Oh, J. M. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-08-01

    An assessment of structural integrity of ASTM A312-TP347 GOH heater tube was performed. The surface notches which had been produced during tube manufacturing process were analyzed microscopically. Chemical analysis, hardness tests, tensile tests, and J-Integral fracture resistance tests were carried out to compare the mechanical properties with those of the material specification and also with the other material of the same type. The test results showed the mechanical properties of the GOH tube material are within the specification range. An elastic-plastic fracture mechanics analysis based on the DPFAD method reveals the tube an appropriate safety margin for the normal operation. 13 refs., 5 tabs., 24 figs. (author)

  11. Collecting performance of an evacuated tubular solar high-temperature air heater with concentric tube heat exchanger

    International Nuclear Information System (INIS)

    Wang, Ping-Yang; Li, Shuang-Fei; Liu, Zhen-Hua

    2015-01-01

    Highlights: • A novel evacuated tube solar high temperature air heater is designed. • The solar air heater system consists of 30 linked collecting units. • Every unit consisted of a evacuated tube, a simplified CPC and concentric tube. • The flow air is heated over temperature of 200 °C. - Abstract: A set of evacuated tube solar high temperature air heaters with simplified CPC (compound parabolic concentrator) and concentric tube heat exchanger is designed to provide flow air with a temperature of 150–230 °C for industrial production. The solar air heater system consists of 30 linked collecting units. Each unit includes a simplified CPC and an all-glass evacuated tube absorber with a concentric copper tube heat exchanger installed inside. A stainless steel mesh layer with high thermal conductivity is filled between the evacuated tube and the concentric copper tube. Air passes through each collecting unit, and its temperature increases progressively. An experimental investigation of the thermal performance of the air heater is performed, and the experimental results demonstrate the presented high-temperature solar air heater has excellent collecting performance and large output power, even in the winter. The measured thermal efficiency corresponding to the air temperature of 70 °C reaches 0.52. With the increase of air temperature, thermal efficiency reaches 0.35 at an air temperature of 150 °C, and 0.21 at an air temperature of 220 °C.

  12. Ferromagnetic material inspection for feedwater heater and condenser tubes

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    In recent years, special ferritic stainless steels, such as AL29-4C/sup TM/, Sea-Cure/sup TM/, E-Brite/sup TM/, 439, and similar alloys have been introduced as tube material in condensers, feedwater heaters, moisture separator/reheaters, and other heat exchangers. In addition, carbon steel tubes are widely used in feedwater heaters and heat exchangers in chemical plants. The main problem with the in-service inspection of these ferritic alloys and carbon steel tubes lies in their highly ferromagnetic properties. These properties severely limit the application of the standard eddy current techniques. The effort was undertaken under EPRI sponsorship to develop a reliable technique for in-service inspection of ferromagnetic tubes. The new method combines the measurement of magnetic flux leakage generated around the defects with measurement of total flux in the tube wall. The heart of the inspection system is a special ID probe that magnetizes the tube and generates signals for any tube defect. A permanent record of inspection is provided with a strip-chart or magnetic tape recorder. The laboratory and field evaluation of this new system demonstrated its very good sensitivity to small defects, its reliability, and its ruggedness. Defects as small as 10% external wall loss in heavy wall carbon steel tube were detected. Tubes in the power plant were inspected at a rate of 300-500 tubes per eight-hour shift. The other advantages of this newly developed technique are its simplicity, low cost of instrumentation, easy data interpretation, and full portability

  13. MATHEMATICAL AND INFORMATION SUPPORT FOR CALCULATION AND DESIGN OF TUBE GAS HEATERS LOCATED IN STRUCTURES

    Directory of Open Access Journals (Sweden)

    CHORNOMORETS H. Y.

    2016-02-01

    Full Text Available Raising of problem. For the design and construction of tube gas heaters in building structures to need solve the problems of analysis and synthesis of such heating system. The mathematical model of this system is consists of: mathematical model of the tube gas heater, mathematical model of heat distribution in the building structure and corresponding boundary conditions. To solve the tasks of analysis and synthesis must be appropriate mathematical and information support. Purpose. The purpose of this paper is to describe the developed mathematical and information support that solve the problems of analysis and synthesis of heating systems with gas tube heaters, located in building constructions.Conclusion. Mathematical support includes the development of algorithms and software for the numerical solution of problems analysis and synthesis heating system. Information support includes all the necessary parameters characterizing the thermal properties of materials which used in the heating system, and the parameters characterizing the heat exchange between the coolant and components of the heating system. It was developed algorithms for solving problems of analysis and synthesis heating system with tube gas heater located in structures to use evolutionary search algorithm and software. It was made experimental study and was obtained results allow to calculate the heat transfer from the gas-air mixture to the boundary surface of the building structure. This results and computation will provide full information support for solving problems of analysis and synthesis of the heating system. Was developed mathematical and software support, which allows to solve the problems of analysis and synthesis heating systems with gas tube heaters, located in building structures. Tube gas heaters located in the building structures allows with small capital expenditures to provide space heating. Is necessary to solve the problems of analysis (calculation and

  14. Evaluation of examination techniques for ferritic stainless steel feedwater heater tubing

    International Nuclear Information System (INIS)

    Nugent, M.J.; Catapano, M.C.

    1995-01-01

    Ferritic stainless steel has been finding increased application in utility plant feedwater heaters due to good strength and corrosion resistance and absence of potential copper contamination of feedwater system. Ferritic stainless steel is highly magnetic and is generally not inspectable using conventional eddy current testing techniques. A variety of techniques have been developed for inspection of this tubing material used in typical heat exchanger applications. Through a project funded by the Empire State Electric Energy Research Corporation (ESEERCO), the evaluation of data generated by four present state of the art NDE testing techniques were evaluated on a controlled mock-up of the heater tubing with service related defects. The primary objective was to determine the strengths and limitations of each method. The testing of two in service feedwater heaters at the Consolidated Edison Company of New York, Inc. (Con Edison's) Arthur Kill Generating Station also allowed further evaluations based on actual field conditions

  15. Nocturnal reverse flow in water-in-glass evacuated tube solar water heaters

    International Nuclear Information System (INIS)

    Tang, Runsheng; Yang, Yuqin

    2014-01-01

    Highlights: • Performance of water-in-glass evacuated tube solar water heaters (SWH) at night was studied. • Experimental measurements showed that reverse flow occurred in SWHs at night. • Reverse flow in SWHs was very high but the heat loss due to reverse flow was very low. • Reverse flow seemed not sensitive to atmospheric clearness but sensitive to collector tilt-angle. - Abstract: In this work, the thermal performance of water-in-glass evacuated tube solar water heaters (SWH) at nights was experimentally investigated. Measurements at nights showed that the water temperature in solar tubes was always lower than that in the water tank but higher than the ambient air temperature and T exp , the temperature of water inside tubes predicted in the case of the water in tubes being naturally cooled without reverse flow. This signified that the reverse flow in the system occurred at nights, making the water in solar tubes higher than T exp . It is found that the reverse flow rate in the SWH, estimated based on temperature measurements of water in solar tubes, seemed not sensitive to the atmospheric clearness but sensitive to the collector tilt-angle, the larger the tilt-angle of the collector, the higher the reverse flow rate. Experimental results also showed that, the reverse flow in the SWH was much higher as compared to that in a thermosyphonic domestic solar water heater with flat-plate collectors, but the heat loss from collectors to the air due to reverse flow in SWHs was very small and only took about 8–10% of total heat loss of systems

  16. Investigation into Cause of High Temperature Failure of Boiler Superheater Tube

    Science.gov (United States)

    Ghosh, D.; Ray, S.; Roy, H.; Shukla, A. K.

    2015-04-01

    The failure of the boiler tubes occur due to various reasons like creep, fatigue, corrosion and erosion. This paper highlights a case study of typical premature failure of a final superheater tube of 210 MW thermal power plant boiler. Visual examination, dimensional measurement, chemical analysis, oxide scale thickness measurement, microstructural examination are conducted as part of the investigations. Apart from these investigations, sulfur print, Energy Dispersive spectroscopy (EDS) and X ray diffraction analysis (XRD) are also conducted to ascertain the probable cause of failure of final super heater tube. Finally it has been concluded that the premature failure of the super heater tube can be attributed to the combination of localized high tube metal temperature and loss of metal from the outer surface due to high temperature corrosion. The corrective actions have also been suggested to avoid this type of failure in near future.

  17. Research on temperature control and influence of the vacuum tubes with inserted tubes solar heater

    Science.gov (United States)

    Xiao, L. X.; He, Y. T.; Hua, J. Q.

    2017-11-01

    A novel snake-shape vacuum tube with inserted tubes solar collector is designed in this paper, the heat transfer characteristics of the collector are analyzed according to its structural characteristics, and the influence of different working temperature on thermal characteristics of the collector is studied. The solar water heater prototype consisting of 14 vacuum tubes with inserted tubes is prepared, and the hot water storage control subsystem is designed by hysteresis comparison algorithm. The heat characteristic of the prototype was experimentally studied under hot water output temperature of 40-45°C, 50-55°C and 60-65°C. The daily thermal efficiency was 64%, 50% and 46%, respectively. The experimental results are basically consistent with the theoretical analysis.

  18. CFD Study of Fluid Flow in an All-glass Evacuated Tube Solar Water Heater

    DEFF Research Database (Denmark)

    Ai, Ning; Fan, Jianhua; Li, Yumin

    2008-01-01

    Abstract: The all-glass evacuated tube solar water heater is one of the most widely used solar thermal technologies. The aim of the paper is to investigate fluid flow in the solar water heater by means of computational fluid dynamics (CFD). The investigation was carried out with a focus on the co...... for future system optimization....

  19. Development and Field Trial of Dimpled-Tube Technology for Chemical Industry Process Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Yaroslav Chudnovsky; Aleksandr Kozlov

    2006-10-12

    Most approaches to increasing heat transfer rates in the convection sections of gas-fired process heaters involve the incorporation of fins, baffles, turbulizers, etc. to increase either the heat transfer surface area or turbulence or both. Although these approaches are effective in increasing the heat transfer rates, this increase is invariably accompanied by an associated increase in convection section pressure drop as well as, for heaters firing ‘dirty’ fuel mixtures, increased fouling of the tubes – both of which are highly undesirable. GTI has identified an approach that will increase heat transfer rates without a significant increase in pressure drop or fouling rate. Compared to other types of heat transfer enhancement approaches, the proposed dimpled tube approach achieves very high heat transfer rates at the lowest pressure drops. Incorporating this approach into convection sections of chemical industry fired process heaters may increase energy efficiency by 3-5%. The energy efficiency increase will allow reducing firing rates to provide the required heating duty while reducing the emissions of CO2 and NOx.

  20. Techno-economıc Analysıs of Evacuated Tube Solar Water Heater usıng F-chart Method

    Science.gov (United States)

    Fayaz, H.; Rahim, N. A.; Saidur, R.; Hasanuzzaman, M.

    2018-05-01

    Solar thermal utilization, especially the application of solar water heater technology, has developed rapidly in recent decades. Solar water heating systems based on thermal collector alone or connected with photovoltaic called as photovoltaic-thermal (PVT) are practical applications to replace the use of electrical water heaters but weather dependent performance of these systems is not linear. Therefore on the basis of short term or average weather conditions, accurate analysis of performance is quite difficult. The objective of this paper is to show thermal and economic analysis of evacuated tube collector solar water heaters. Analysis done by F-Chart shows that evacuated tube solar water heater achieves fraction value of 1 to fulfil hot water demand of 150liters and above per day for a family without any auxiliary energy usage. Evacuated tube solar water heater show life cycle savings of RM 5200. At water set temperature of 100°C, RM 12000 is achieved and highest life cycle savings of RM 6100 at the environmental temperature of 18°C are achieved. Best thermal and economic performance is obtained which results in reduction of household greenhouse gas emissions, reduction of energy consumption and saves money on energy bills.

  1. Estimation of cobalt release from feed water heater tubes of BWRs

    International Nuclear Information System (INIS)

    Uchida, S.; Kitamura, M.; Ozawa, Y.

    1983-01-01

    To evaluate the release source of cobalt from heater tubes of the feed water line, release rate measurements were carried out by detecting 60 Co released from irradiated stainless steel in contact with neutral water at an oxygen concentration of 20 ppb. The dependences of cobalt release rate on temperature, flow velocity and exposure time were studied after 670 hours of release experiments, and an empirical equation (which is presented) was obtained in the temperature range from 150 to 240 deg C. A decrease in the cobalt release rate above 250 deg C was considered due to the formation of a protective oxide layer. From these data, the amount of cobalt released from individual feed water heaters was evaluated. It was demonstrated that low cobalt containing stainless steel was economically applied only in the higher temperature region of the heater (20% of the total surface) to reduce cobalt feed rate into the reactor (to approx. 1/2). (author)

  2. Analysis of Ruptured Heater Tube of Degasser Condenser in Wolsong Unit 4

    International Nuclear Information System (INIS)

    Kim, Hong Pyo; Kim, J. S.; Lim, Y. S.; Kim, S. S.; Hwang, S. S.; Kim, D. J.; Kim, S. W.; Jeong, M. K.; Hong, J. H.

    2007-08-01

    In a degasser condenser in Wolsong unit 4, the cracks were found in the heater tube no. 6 and no. 7. To avoid additional damages in the specimen during a decontamination process for the previous analysis, the cracks were analyzed without any decontamination process in this work. We performed the investigation of the ruptured surface morphology, the EDS analysis of the ruptured surface, the microstructural analysis of Alloy 800H sheath tube and literature survey to find the failure mechanism. From the results, it was expected that the sheath tube has been exposed in a steam condition as the coolant level was decreased in the degasser condenser, leading to the rupture of the sheath tube

  3. Evaluation of candidate Stirling engine heater tube alloys after 3500 hours exposure to high pressure doped hydrogen or helium

    Science.gov (United States)

    Misencik, J. A.; Titran, R. H.

    1984-01-01

    The heater head tubes of current prototype automotive Stirling engines are fabricated from alloy N-155, an alloy which contains 20 percent cobalt. Because the United States imports over 90 percent of the cobalt used in this country and resource supplies could not meet the demand imposed by automotive applications of cobalt in the heater head (tubes plus cylinders and regenerator housings), it is imperative that substitute alloys free of cobalt be identified. The research described herein focused on the heater head tubes. Sixteen alloys (15 potential substitutes plus the 20 percent Co N-155 alloy) were evaluated in the form of thin wall tubing in the NASA Lewis Research Center Stirling simulator materials diesel fuel fired test rigs. Tubes filled with either hydrogen doped with 1 percent CO2 or with helium at a gas pressure of 15 MPa and a temperature of 820 C were cyclic endurance tested for times up to 3500 hr. Results showed that two iron-nickel base superalloys, CG-27 and Pyromet 901 survived the 3500 hr endurance test. The remaining alloys failed by creep-rupture at times less than 3000 hr, however, several other alloys had superior lives to N-155. Results further showed that doping the hydrogen working fluid with 1 vol % CO2 is an effective means of reducing hydrogen permeability through all the alloy tubes investigated.

  4. High temperature collecting performance of a new all-glass evacuated tubular solar air heater with U-shaped tube heat exchanger

    International Nuclear Information System (INIS)

    Wang, Pin-Yang; Guan, Hong-Yang; Liu, Zhen-Hua; Wang, Guo-San; Zhao, Feng; Xiao, Hong-Sheng

    2014-01-01

    Highlights: • A novel solar air heater with simplified CPC and U-type heat exchanger is designed and tested. • The system is made up of 10 linked collecting panels. • Simplified CPC has a much lower cost at the expense of slight efficiency loss. • The air heater can propose the heated air exceeding 200 °C with great air flow rate. - Abstract: Experiment and simulation are conducted on a new-type all-glass evacuated tubular solar air heater with simplified compound parabolic concentrator (CPC). The system is made up of 10 linked collecting panels and each panel includes a simplified CPC and an all-glass evacuated tube with a U-shaped copper tube heat exchanger installed inside. Air is gradually heated when passing through each U-shaped copper tube. The heat transfer model of the solar air heater is established and the outlet air temperature, the heat power and heat efficiency are calculated. Calculated and experimental results show that the present experimental system can provide the heated air exceeding 200 °C. The whole system has an outstanding high-temperature collecting performance and the present heat transfer model can meet the general requirements of engineering calculations

  5. Comparative Experimental Analysis of the Thermal Performance of Evacuated Tube Solar Water Heater Systems With and Without a Mini-Compound Parabolic Concentrating (CPC Reflector(C < 1

    Directory of Open Access Journals (Sweden)

    Yuehong Su

    2012-04-01

    Full Text Available Evacuated tube solar water heater systems are widely used in China due to their high thermal efficiency, simple construction requirements, and low manufacturing costs. CPC evacuated tube solar water heaters with a geometrical concentration ratio C of less than one are rare. A comparison of the experimental rig of evacuated tube solar water heater systems with and without a mini-CPC reflector was set up, with a series of experiments done in Hefei (31°53'N, 117°15'E, China. The first and second laws of thermodynamics were used to analyze and contrast their thermal performance. The water in the tank was heated from 26.9 to 55, 65, 75, 85, and 95 °C. Two types of solar water heater systems were used, and the data gathered for two days were compared. The results show that when attaining low temperature water, the evacuated tube solar water heater system without a mini-CPC reflector has higher thermal and exergy efficiencies than the system with a mini-CPC reflector, including the average and immediate values. On the other hand, when attaining high temperature water, the system with a mini-CPC reflector has higher thermal and exergy efficiencies than the other one. The comparison presents the advantages of evacuated tube solar water heater systems with and without a mini-CPC reflector, which can be offered as a reference when choosing which solar water system to use for actual applications.

  6. Coiled Tube Gas Heaters For Nuclear Gas-Brayton Power Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Per F.

    2018-03-31

    This project developed an alternative design for heat exchangers for application to heating supercritical carbon dioxide (S-CO2) or air for power conversion. We have identified an annular coiled tube bundle configuration–where hot sodium enters tubes from multiple vertical inlet manifold pipes, flows in a spiral pattern radially inward and downward, and then exits into an equal number of vertical outlet manifold pipes–as a potentially attractive option. The S-CO2 gas or air flows radially outward through the tube bundle. Coiled tube gas heaters (CTGHs) are expected to have excellent thermal shock, long-term thermal creep, in-service inspection, and reparability characteristics, compared to alternative options. CTGHs have significant commonality with modern nuclear steam generators. Extensive experience exists with the design, manufacture, operation, in-service inspection and maintenance of nuclear steam generators. The U.S. Nuclear Regulatory Commission also has extensive experience with regulatory guidance documented in NUREG 0800. CTGHs leverage this experience and manufacturing capability. The most important difference between steam generators and gas-Brayton cycles such as the S-CO2 cycle is that the heat exchangers must operate with counter flow with high effectiveness to minimize the pinch-point temperature difference between the hot liquid coolant and the heated gas. S-CO2-cycle gas heaters also operate at sufficiently elevated temperatures that time dependent creep is important and allowable stresses are relatively low. Designing heat exchangers to operate in this regime requires configurations that minimize stresses and stress concentrations. The cylindrical tubes and cylindrical manifold pipes used in CTGHs are particularly effective geometries. The first major goal of this research project was to develop and experimentally validate a detailed, 3-D multi-phase (gas-solid-liquid) heat transport model for

  7. Artificial Neural Networks-Based Software for Measuring Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters.

    Science.gov (United States)

    Liu, Zhijian; Liu, Kejun; Li, Hao; Zhang, Xinyu; Jin, Guangya; Cheng, Kewei

    2015-01-01

    Measurements of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, conventional measurement requires expensive detection devices and undergoes a series of complicated procedures. To simplify the measurement and reduce the cost, software based on artificial neural networks for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters was developed. Using multilayer feed-forward neural networks with back-propagation algorithm, we developed and tested our program on the basis of 915 measured samples of water-in-glass evacuated tube solar water heaters. This artificial neural networks-based software program automatically obtained accurate heat collection rate and heat loss coefficient using simply "portable test instruments" acquired parameters, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, angle between tubes and ground and final temperature. Our results show that this software (on both personal computer and Android platforms) is efficient and convenient to predict the heat collection rate and heat loss coefficient due to it slow root mean square errors in prediction. The software now can be downloaded from http://t.cn/RLPKF08.

  8. Artificial Neural Networks-Based Software for Measuring Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters

    Science.gov (United States)

    Liu, Zhijian; Liu, Kejun; Li, Hao; Zhang, Xinyu; Jin, Guangya; Cheng, Kewei

    2015-01-01

    Measurements of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, conventional measurement requires expensive detection devices and undergoes a series of complicated procedures. To simplify the measurement and reduce the cost, software based on artificial neural networks for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters was developed. Using multilayer feed-forward neural networks with back-propagation algorithm, we developed and tested our program on the basis of 915measuredsamples of water-in-glass evacuated tube solar water heaters. This artificial neural networks-based software program automatically obtained accurate heat collection rateand heat loss coefficient using simply "portable test instruments" acquired parameters, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, angle between tubes and ground and final temperature. Our results show that this software (on both personal computer and Android platforms) is efficient and convenient to predict the heat collection rate and heat loss coefficient due to it slow root mean square errors in prediction. The software now can be downloaded from http://t.cn/RLPKF08. PMID:26624613

  9. Study of microstructural changes in boiler tubes and usage of time approach for determining of tube's failure

    International Nuclear Information System (INIS)

    Hemasi Taherabadi, L.; Raeiatpour, M.; Mehdizadeh, M.

    2001-01-01

    Operation condition of boilers such as corrosive media, high temperature and pressure has a pronounced effect on quality and performance of its components. Among these, the effect of temperature in microstructure and degradation of mechanical properties of boiler tubes is of most importance. Change in dimension, morphology, chemical composition and carbide spacing are the most important microstructural changes. Methods of study of such changes (through the investigation of composition, carbide spacing and thermal softening) are pointed in this article. Then, a number of failed super-heater tubes of a power plant were microlithography examined. Remaining life of tubes could be estimated by comparison of the results of metallographic and replication tests with microstructural standards

  10. 14 CFR 25.859 - Combustion heater fire protection.

    Science.gov (United States)

    2010-01-01

    ..., could cause heater failure. (d) Heater controls; general. Provision must be made to prevent the hazardous accumulation of water or ice on or in any heater control component, control system tubing, or... leakage. (2) The region surrounding the heater, if the heater fuel system has fittings that, if they...

  11. Application of field synergy principle for optimization fluid flow and convective heat transfer in a tube bundle of a pre-heater

    International Nuclear Information System (INIS)

    Hamid, Mohammed O.A.; Zhang, Bo; Yang, Luopeng

    2014-01-01

    The big problems facing solar-assisted MED (multiple-effect distillation) desalination unit are the low efficiency and bulky heat exchangers, which worsen its systematic economic feasibility. In an attempt to develop heat transfer technologies with high energy efficiency, a mathematical study is established, and optimization analysis using FSP (field synergy principle) is proposed to support meaning of heat transfer enhancement of a pre-heater in a solar-assisted MED desalination unit. Numerical simulations are performed on fluid flow and heat transfer characteristics in a circular and elliptical tube bundle. The numerical results are analyzed using the concept of synergy angle and synergy number as an indication of synergy between velocity vector and temperature gradient fields. Heat transfer in elliptical tube bundle is enhanced significantly with increasing initial velocity of the feed seawater and field synergy number and decreasing of synergy angle. Under the same operating conditions of the two designs, the total average synergy angle is 78.97° and 66.31° in circular and elliptical tube bundle, respectively. Optimization of the pre-heater by FSP shows that in case of elliptical tube bundle design, the average synergy number and heat transfer rate are increased by 22.68% and 35.98% respectively. - Highlights: • FSP (field synergy principle) is used to investigate heat transfer enhancement. • Numerical simulations are performed in circular and elliptical tubes pre-heater. • Numerical results are analyzed using concept of synergy angle and synergy number. • Optimization of elliptical tube bundle by FSP has better performance

  12. Is your electric process heater safe?

    Energy Technology Data Exchange (ETDEWEB)

    Tiras, C.S.

    2000-04-01

    Over the past 35 years, electric process heaters (EPHs) have been used to heat flowing fluids in different sectors of the energy industry: oil and gas exploration and production, refineries, petrochemical plants, pipeline compression facilities and power-generation plants. EPHs offer several advantages over fired heaters and shell-and-tube exchangers, which have been around for many years, including: smaller size, lighter weight, cleaner operation, lower capital costs, lower maintenance costs, no emissions or leakage, better control and improved safety. However, while many industrial standards have addressed safety concerns of fired heaters and shell-and-tube exchangers (API, TEMA, NFPA, OSHA and NEC), no standards address EPHs. The paper presents a list of questions that plant operators need to ask about the safety of their electric process heaters. The answers are also given.

  13. Experimental investigation of the higher coefficient of thermal performance for water-in-glass evacuated tube solar water heaters in China

    International Nuclear Information System (INIS)

    Zhang, Xinyu; You, Shijun; Xu, Wei; Wang, Min; He, Tao; Zheng, Xuejing

    2014-01-01

    Highlights: • The energy grades system for solar water heater (SWH) in China was introduced. • Heat loss and capacity of heat collection mainly affected SWH thermal performance. • Optimum ratio of tank volume to collector area for solar water heater is 57 to 72 L/m 2 . • The recommendation polyurethane insulation layer should be around 50 mm thick. • SWH with shorter tube has a better thermal performance. - Abstract: Solar water heaters (SWHs), now widely used in China, represent an environmentally friendly way to heat water. We tested the performance of more than 1000 water-in-glass evacuated tube SWHs according to Chinese standards and found that the heat loss from the storage tank and capacity of the solar collector affected their thermal performance. The optimum parameters to maximize the performance of water-in-glass evacuated tube SWHs included a ratio of tank volume to collector area of 57–72 L/m 2 , which should give a system efficiency of 0.49–0.57, meaning that the temperature of water in the tank will exceed 45 °C after one day of heat collection. In addition, the polyurethane insulation layer should be around 50 mm thick with a free foaming density of about 35 kg/m 3 , and the evacuated tube should be short. The tilt angle did not affect the performance of the SWHs. These results should aid in the design of highly efficient SWHs

  14. Core design of super LWR with double tube water rods

    International Nuclear Information System (INIS)

    Wu, Jianhui; Oka, Yoshiaki

    2014-01-01

    Highlights: • Supercritical light water cooled and moderated reactor with double tube water rods is developed. • Double-row fuel rod assembly and out-in fuel loading pattern are applied. • Separation plates in peripheral assemblies increase average outlet temperature. • Neutronic and thermal design criteria are satisfied during the cycle. - Abstract: Double tube water rods are employed in core design of super LWR to simplify the upper core structure and refueling procedure. The light water moderator flows up in the inner tube from the bottom of the core, then, changes the flow direction at the top of the core into the outer tube and flows out at the bottom of the core. It eliminates the moderator guide/distribution tubes into the single tube water rods from the top dome of the reactor pressure vessel of the previous super LWR design. Two rows of fuel rods are filled between the water rods in the fuel assembly. Out-in refueling pattern is adopted to flatten radial power distribution. The peripheral fuel assemblies of the core are divided into four flow zones by separation plates for increasing the average core outlet temperature. Three enrichment zones are used for axial power flattening. The equilibrium core is analyzed based on neutronic/thermal-hydraulic coupled model. The results show that, by applying the separation plates in peripheral fuel assemblies and low gadolinia enrichment, the maximum cladding surface temperature (MCST) is limited to 653 °C with the average outlet temperature of 500 °C. The inherent safety is satisfied by the negative void reactivity effects and sufficient shutdown margin

  15. Failure Investigation of Radiant Platen Superheater Tube of Thermal Power Plant Boiler

    Science.gov (United States)

    Ghosh, D.; Ray, S.; Mandal, A.; Roy, H.

    2015-04-01

    This paper highlights a case study of typical premature failure of a radiant platen superheater tube of 210 MW thermal power plant boiler. Visual examination, dimensional measurement and chemical analysis, are conducted as part of the investigations. Apart from these, metallographic analysis and fractography are also conducted to ascertain the probable cause of failure. Finally it has been concluded that the premature failure of the super heater tube can be attributed to localized creep at high temperature. The corrective actions has also been suggested to avoid this type of failure in near future.

  16. COMBINED UNCOVERED SHEET-AND-TUBE PVT-COLLECTOR SYSTEM WITH BUILT-IN STORAGE WATER HEATER

    Directory of Open Access Journals (Sweden)

    Muhammad Abid

    2012-02-01

    Full Text Available This work describes the design and investigation of a simple combined uncovered sheet-and-tube photo-voltaic-thermal (PVT collector system. The PVT-collector system consists of a support, standard PV module (1.22x0.305m, area=0.37m2, fill factor=0.75, sheet-and-tube water collector and storage tank-heater. The collector was fixed under PV module. Inclination angle of the PVT-collector to the horizontal plane was 45 degree. The storage tank-heater played double role i.e. for storage of hot water and for water heating. The PVT-collector system could work in the fixed and tracking modes of operation. During investigations of PVT-collector in natural conditions, solar irradiance, voltage and current of PV module, ambient temperature and water temperature in storage tank were measured. Average thermal and electrical powers of the PVT-collector system at the tracking mode of operation observed were 39W and 21W, with efficiencies of 15% and 8% respectively at the input power of 260W. The maximum temperature of the water obtained was 42oC. The system was observed efficient for low-temperature applications. The PVT-collector system may be used as a prototype for design of PVT-collector system for domestic application, teaching aid and for demonstration purposes.

  17. Finite element analyses of a heater-interruption in the HAW test field

    International Nuclear Information System (INIS)

    Horn, B.A. van den.

    1991-09-01

    In this report the results of two finite element analyses of the HAW field are presented. The determination of the influence of a heater-interruption on the tube load as well as the differences in the evaluation of the tube load for both types of boreholes (type A and type B) are the main objectives of this report. Axisymmetric models are made for both type of boreholes in order to simulate this heater-interruption. It appeared that a heater-interruption of 4 hours leads to a temperature drop of 17.2deg C at the borehole wall and to a maximum reduction of the tube load of 1.76 MPa. About 20 days after reparation of the heaters of the heaters the evolution of the maximum temperature and the maximum tube load will be rehabilitated; the difference with the corresponding evolutions due to an uninterrupted heat-production are negligible. (author). 9 refs.; 25 figs.; 5 tabs

  18. Effect of Chlorine and Sulphur on Stainless Steel (AISI 310) Due To High Temperature Corrosion.

    OpenAIRE

    Onaivi Daniel Azamata; Titus Yusuf Jibatswen; Odinize C. Michael

    2016-01-01

    In a power station boiler, there are temperature of regimes of corrosion which occurs mainly in the economizer, boiler steam generation tubes, super-heater tubes and air tubes. The specific gas temperatures in degrees centigrade for the following include: 150 – 370oC for the economizer, 1000 – 1650oC for the boiler steam generation tubes, 650 – 1000oC for super-heater tubes and 1000 – 1200oC for air tubes. For power station boilers that burn coal as the source of fuel it is recommended that a...

  19. Development of the SSC [Superconducting Super Collider] trim coil beam tube assembly

    International Nuclear Information System (INIS)

    Skaritka, J.; Kelly, E.; Schneider, W.

    1987-01-01

    The Superconducting Super Collider uses ≅9600 dipole magnets. The magnets have been carefully designed to exhibit minimal magnetic field harmonics. However, because of superconductor magnetization effects, iron saturation and conductor/coil positioning errors, certain harmonic errors are possible and must be corrected by use of multipole correctors called trim coils. For the most efficient use of axial space in the magnet, and lowest possible current, a distributed internal correction coil design is planned. The trim coil assembly is secured to the beam tube, a uhv tube with special strength, size, conductivity and vacuum. The report details the SSC trim coil/beam tube assembly specifications, history, and ongoing development

  20. Erosion–corrosion behaviour of Ni-based superalloy Superni-75

    Indian Academy of Sciences (India)

    The super-heater and re-heater tubes of the boilers used in thermal power plants are ... mechanism, resulting in the tube wall thinning and premature failure. The nickel-based superalloys can be used as boiler tube materials to increase the ...

  1. Air source heat pump water heater: Dynamic modeling, optimal energy management and mini-tubes condensers

    International Nuclear Information System (INIS)

    Ibrahim, Oussama; Fardoun, Farouk; Younes, Rafic; Louahlia-Gualous, Hasna

    2014-01-01

    This paper presents a dynamic simulation model to predict the performance of an ASHPWH (air source heat pump water heater). The developed model is used to assess its performance in the Lebanese context. It is shown that for the four Lebanese climatic zones, the expected monthly values of the average COP (coefficient of performance) varies from 2.9 to 5, leading to high efficiencies compared with conventional electric water heaters. The energy savings and GHG (greenhouse gas) emissions reduction are investigated for each zone. Furthermore, it is recommended to use the ASHPWH during the period of highest daily ambient temperatures (noon or afternoon), assuming that the electricity tariff and hot water loads are constant. In addition, an optimal management model for the ASHPWH is developed and applied for a typical winter day of Beirut. Moreover, the developed dynamic model of ASHPWH is used to compare the performance of three similar systems that differ only with the condenser geometry, where results show that using mini-condenser geometries increase the COP (coefficient of performance) and consequently, more energy is saved as well as more GHG emissions are reduced. In addition, the condenser “surface compactness” is increased giving rise to an efficient compact heat exchanger. - Highlights: • Numerical modeling and experimental validation for ASHPWH (air source heat pump water heater). • Optimization of the ASHPWH-condenser length. • Comparison of the ASHPWH with conventional electric water heater according to energy efficiency and green gas house emissions. • Development of an energetic-economic optimal management model for ASHPWH. • Energetic and environmental assessment of ASHPWH with mini-tubes condensers

  2. Improvement of reliability of heater and condenser

    International Nuclear Information System (INIS)

    Yamagishi, Hiroki

    1988-01-01

    Recently, the diversification of the operation modes of power plants has advanced as well as daily start and stop and weekly start and stop operations, as the result, the needs for the reliability improvement of various heat exchangers around steam turbines heighten. In newly constructed plants, the design to meet this demand is carried out, but also in existing platns, the application of the latest technology is investigated. As for the reliability of condensers, aluminum brass cooling tubes have been used by doing the optimal maintenance and taking the measures against deposit attack. In the case of requiring high reliability, the examples of adopting titanium cooling tubes increased. The technology of titanium tube condensers, completely assembled condensers, the replacement of existing brass tubes with titanium tubes and so on are discussed. In the case of feed heaters, the deterioration phenomena due to the lapse of long years, such as the attack of steel tube inlet, the drain attack on the external surfaces of steel tubes, the ammonia attack of aluminum brass tubes and the adhesion of scale to heaters, are explained, and the countermeasures are shown. (Kako, I.)

  3. Tube leak detection device and acoustic sensor support device for moisture separating heater

    International Nuclear Information System (INIS)

    Miyabe, Keisuke; Kobayashi, Takefumi.

    1995-01-01

    The device of the present invention comprises an acoustic sensor which detects leak sounds when leak occurs in a heating tube of a moisture separating heater incorporated into a plant, a threshold value memory and switching mechanism containing each of threshold values on every power of a plant, and a leak judging mechanism for judging presence or absence of leaks by comparing a selected threshold value and signals given from the acoustic sensor. Background noises changing currently during operation of a steam turbine plant are compared with a threshold value greater than the background noises in the leak judging mechanism, and they are judged as 'no leak' so as not to recognize them as 'presence of tube leak'. Output values from the acoustic sensor are obtained on every frequency component, and standard frequency spectra are selected by turbine load corresponding signals using a standard spectra memory and switching mechanism. They are sent to a leak judging mechanism to analyze the acoustic signals using a frequency analyzer and compare them with the frequency spectral thereby judging leaks. (N.H.)

  4. ELF radiation from the Tromsoe super heater facility

    International Nuclear Information System (INIS)

    Barr, R.; Stubbe, P.

    1991-01-01

    Direct comparisons have been made of the ionospheric ELF radiation produced by the new (1 GW ERP) and old (250 MW ERP) antennas of the Tromsoe heater system, but no significant differences in the ELF signal strength have been detected. This initially surprising result is shown to require a value of unity for the index relating the received ELF signal strength to HF power input to the antenna. A series of experiments performed solely to derive more accurate values for this power index provided values ranging from 0.74 to 0.97, dependent on the ELF frequencies generated. It has been suggested that ELF radiation from the normal Tromsoe heater facility should be limited by saturation effects, even when operating well below the maximum HF power density (3mW/m 2 in the D-region). No evidence for such saturation effects has been found even at power densities greater than 10mW/m 2

  5. Safety grade pressurizer heater power supply connector assembly

    International Nuclear Information System (INIS)

    Burnett, J.M.; Daftari, R.M.; Reyns, R.M.

    1987-01-01

    This patent describes a pressurizer heater power supply connector assembly for attaching a power cable to an electric heater within a pressurizer of a pressurized water nuclear reactor system, the electric heater having pin contacts. The assembly comprises: a pin-socket type connector including a tubular body having a first open end carrying a pin-socket contact member and an insert intermediate a shell and the pin-socket contact member, the contact member having socket means for electrically receiving and contacting the pin contacts, and a second open end; a flexible sealed conduit including a flexible corrugated tube having one end connected to the second open end of the pin-socket type connector, and another end; and a shop splice assembly including a header adapter and a hose clamp interconnected between the header adapter and another end of the flexible corrugated tube

  6. Heater induced quenches in SSC [Superconducting Super Collider] model dipoles

    International Nuclear Information System (INIS)

    Hassenzahl, W.V.

    1986-10-01

    A 1-m long SSC dipole constructed at the Lawrence Berkeley laboratory was subjected to a series of heater induced quenches to determine: axial quench propagation velocities, transverse quench propagation, and conductor temperature rise. Quenches were produced by 3 heaters at different locations in the magnet and at several currents. The results of these studies are described and are compared to previously published theoretical studies of quenches on the SSC dipoles. These results are shown to be in agreement with the calculations of the program ''QUENCH'', which includes an increase of the quench velocity during the first few milliseconds of the quench

  7. Workshop proceedings: U-bend tube cracking in steam generators

    Science.gov (United States)

    Shoemaker, C. E.

    1981-06-01

    A design to reduce the rate of tube failure in high pressure feedwater heaters, a number of failed drawn and stress relieved Monel 400 U-bend tubes removed from three high pressure feedwater heaters was examined. Steam extracted from the turbine is used to preheat the boiler feedwater in fossil fuel fired steam plants to improve thermal efficiency. This is accomplished in a series of heaters between the condenser hot well and the boiler. The heaters closest to the boiler handle water at high pressure and temperature. Because of the severe service conditions, high pressure feedwater heaters are frequently tubed with drawn and stress relieved Monel 400.

  8. Equipment reliability and life cycle optimization of a nuclear plant feedwater heater

    International Nuclear Information System (INIS)

    Thomas, Daniel; Coakley, Michael; Catapano, Michael; Svensson, Eric

    2006-01-01

    Many papers published over the last 25 years have strongly emphasized the need for an ongoing program of inspection and testing with subsequent failure cause analysis of feedwater heaters. Plants must be run more competitively; therefore, Utilities must lower operation and maintenance costs, while optimizing overall plant efficiency and capacity factor. One recognized area that needs to be addressed in accomplishing this goal is the heat cycle. This paper specifically deals with the feedwater heating system. Utility engineers must monitor feedwater heater performance in order to recognize degradation, identify and mitigate failure mechanisms, and prevent in-service failures thereby optimizing availability. Periodic tube plugging without complete analysis of the degraded/failed areas resolves the immediate need for return to service; however, heater life will not be optimized. This paper illustrates a complete life cycle management inspection, testing, and maintenance program implemented at Peach Bottom Atomic Power Station (PBAPS). Concerns that tubes may have been too conservatively plugged due to insufficient data and lack of root cause analysis, justified a program that included: - Removal of previously installed plugs; - Video-probe inspection of failed areas; - Extraction of tube samples for further analysis; - Eddy current testing of selected tubes; - Evaluation of the condition of 'insurance' plugged tubes for return to service; - Hydrostatic testing of selected individual tubes; - Final repair plan based on the results of the above program. This paper concludes that no single method of inspection or testing should solely be relied upon in establishing: - The extent of actual degraded conditions; - The mechanism(s) of failure; - The details of repair to be implemented. Evaluating all data affords the best chance in arresting problems and optimizing feedwater heater life. Problem heaters should be continuously monitored and inspected over time until the facts

  9. Performance comparison of air-source heat pump water heater with different expansion devices

    International Nuclear Information System (INIS)

    Peng, Jing-Wei; Li, Hui; Zhang, Chun-Lu

    2016-01-01

    Highlights: • An air-source heat pump water heater model was developed and validated. • System performance with EEV, capillary tube or short tube orifice were compared. • Short tube orifice is more suitable for heat pump water heater than capillary tube. - Abstract: Air source heat pump water heater (ASHPWH) is designed to work under wide operating conditions. Therefore, both the system and components require higher reliability and stability than ordinary heat pump air-conditioning systems. In this paper, a quasi-steady-state system model of ASHPWH using electronic expansion valve (EEV), capillary tube or short tube orifice as expansion device is developed and validated by a prototype using R134a and scroll compressor, by which the system performance is evaluated and compared at varying water temperature and different ambient temperature. Flow characteristics of those three expansion devices in ASHPWH are comparatively analyzed. Results show that the EEV throttling system performs best. Compared with capillary tube, flow characteristics of short tube orifice are closer to that of EEV and therefore more suitable for ASHPWH. Reliability concern of liquid carryover to the compressor in the system using short tube orifice is investigated as well. Higher superheat or less system refrigerant charge could help mitigate the risk.

  10. CO{sub 2} capture from oil refinery process heaters through oxyfuel combustion

    Energy Technology Data Exchange (ETDEWEB)

    M.B. Wilkinson; J.C. Boden; T. Gilmartin; C. Ward; D.A. Cross; R.J. Allam; N.W.Ivens [BP, Sunbury-on-Thames (United Kingdom)

    2003-07-01

    BP has a programme to develop technologies that could reduce greenhouse gas emissions, by the capture and storage of CO{sub 2} from existing industrial boilers and process heaters. One generic technology under development is oxyfuel combustion, with flue gas recycle. Previous studies, by three of the authors, have concluded that refinery steam boilers could be successfully converted to oxyfuel firing. Fired heaters, however, differ from boilers in several respects and so it was decided to study the feasibility of converting process heaters. Three heaters, located on BP s Grangemouth refinery, were chosen as examples, as they are typical of large numbers of heaters worldwide. In establishing the parameters of the study, it was decided that the heat fluxes to the process tubes should not be increased, compared to conventional air firing. For two of the heaters this was achieved by proposing a slightly higher recycle rate than for the boiler conversion studied earlier - the heater duty would be retained with no changes to the tubes. For the third heater, where the process duty uses only the radiant section, the CO{sub 2} capture cost and the firing rate could be reduced by lowering the recycle rate. Some air in leakage to these heaters was considered inevitable, despite measures to control it, and therefore plant to remove residual inerts from the CO{sub 2} product was designed. Cryogenic oxygen production was selected for two heaters, but for the smallest heater vacuum swing adsorption was more economic. 3 refs., 2 figs., 2 tabs.

  11. Proposal of 99.99%-aluminum/7N01-Aluminum clad beam tube for high energy booster of Superconducting Super Collider

    International Nuclear Information System (INIS)

    Ishimaru, Hajime

    1994-01-01

    Proposal of 99.99% pure aluminum/7N01 aluminum alloy clad beam tube for high energy booster in Superconducting Super Collider is described. This aluminum clad beam tube has many good performances, but a eddy current effect is large in superconducting magnet quench collapse. The quench test result for aluminum clad beam tube is basically no problem against magnet quench collapse. (author)

  12. Helium heater design for the helium direct cycle component test facility. [for gas-cooled nuclear reactor power plant

    Science.gov (United States)

    Larson, V. R.; Gunn, S. V.; Lee, J. C.

    1975-01-01

    The paper describes a helium heater to be used to conduct non-nuclear demonstration tests of the complete power conversion loop for a direct-cycle gas-cooled nuclear reactor power plant. Requirements for the heater include: heating the helium to a 1500 F temperature, operating at a 1000 psia helium pressure, providing a thermal response capability and helium volume similar to that of the nuclear reactor, and a total heater system helium pressure drop of not more than 15 psi. The unique compact heater system design proposed consists of 18 heater modules; air preheaters, compressors, and compressor drive systems; an integral control system; piping; and auxiliary equipment. The heater modules incorporate the dual-concentric-tube 'Variflux' heat exchanger design which provides a controlled heat flux along the entire length of the tube element. The heater design as proposed will meet all system requirements. The heater uses pressurized combustion (50 psia) to provide intensive heat transfer, and to minimize furnace volume and heat storage mass.

  13. A Study on Thermal Performance of a Novel All-Glass Evacuated Tube Solar Collector Manifold Header with an Inserted Tube

    Directory of Open Access Journals (Sweden)

    Jichun Yang

    2015-01-01

    Full Text Available A novel all-glass evacuated tube collector manifold header with an inserted tube is proposed in this paper which makes water in all-glass evacuated solar collector tube be forced circulated to improve the performance of solar collector. And a dynamic numerical model was presented for the novel all-glass evacuated tube collector manifold header water heater system. Also, a test rig was built for model validation and comparison with traditional all-glass evacuated tube collector. The experiment results show that the efficiency of solar water heater with a novel collector manifold header is higher than traditional all-glass evacuated tube collector by about 5% and the heat transfer model of water heater system is valid. Based on the model, the relationship between the average temperature of water tank and inserted tube diameter (water mass flow has been studied. The results show that the optimized diameter of inserted tube is 32 mm for the inner glass with the diameter of 47 mm and the water flow mass should be less than 1.6 Kg/s.

  14. Analytical study of condensation heat transfer on titanium tube with super-hydrophobic surface

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Dae Yun; Park, Hyun Gyu; Lee, Kwon Yeong [Handong Global University, Pohang (Korea, Republic of)

    2016-05-15

    There are many nuclear or fossil power plants which occupy more than 85% among entire power plants in the world. These plants release heat through condenser into nature. The condenser is an important component for cooling the working fluid after the turbine. Its performance is related with material and size of its tubes. To have good performance or to reduce condenser size, it is important to increase condensation heat transfer coefficient on condenser tubes. Ma et al. executed heat transfer experiment in dropwise condensation with non-condensable gas, and studied how the amount of air and pressure difference affect condensation heat transfer coefficient. The more non-condensable gas existed, the condensation heat transfer coefficient was decreased. Shen et al. studied condensation heat transfer at horizontal bundle tubes. Several variables such as coolant velocity, saturated pressure, and surface conditions were studied. As a result, surface modified brass tube and stainless tube showed higher condensation heat transfer coefficient as much as 1.3 and 1.4 times comparing with their bare tubes, in 70 kPa vacuum condition respectively. Rausch et al. studied dropwise condensation on ion-implanted titanium surface. Experimental study is performed to evaluate the performance of surface modified titanium tube in vacuum state. SAM coating is used to make super-hydrophobic surface of titanium tube. Preliminary analysis were performed considering filmwise and dropwise condensations, respectively. Experiment facility is almost prepared and the test result will be shown soon.

  15. Application Feasibility of PRE 50 grade Super Austenitic Stainless Steel as a Steam Generator Tubing

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yong Soo [Yonsei University, Seoul (Korea, Republic of); Kim, Young sik [Andong National University, Andong (Korea, Republic of); Kim, Taek Jun; Kim, Sun Tae; Park, Hui Sang [Yonsei University, Seoul (Korea, Republic of)

    1997-07-01

    The aim of this study is to evaluate the properties of the super austenitic stainless steel, SR-50A for application as steam generator tubing material. The microstructure, mechanical properties, corrosion properties, were analyzed and the results were compared between super austenitic stainless steel and Alloy 600 and Alloy 690. Super austenitic stainless steel, SR-50A is superior to Alloy 600, Alloy 690 and Alloy 800 in the mechanical properties(tensile strength, yield strength, and elongation). It was investigated that thermal conductivity of SR-50A was higher than Alloy 600. As a result of thermal treatment on super stainless steel, SR-50A, caustic SCC resistance was increased and its resistance was as much as Alloy 600TT and Alloy 690TT. In this study, optimum thermal treatment condition to improve the caustic corrosion properties was considered as 650 deg C or 550 deg C 15 hours. However, it is necessary to verify the corrosion mechanism and to prove the above results in the various corrosive environments. 27 refs., 6 tabs., 59 figs. (author)

  16. The efficacy of test tube warming devices used during oocyte retrieval for IVF.

    Science.gov (United States)

    Yeung, Queenie Sum Yee; Briton-Jones, Christine May; Tjer, Grace Ching Ching; Chiu, Tony Tak Yu; Haines, Christopher

    2004-10-01

    To investigate whether commonly used test tube warming devices maintain a constant temperature in follicular fluid aspirates. By using a digital thermocouple, temperature was measured and comparisons were made between an analog dry block heater, a digital dry block heater, and a thermostatic test tube heater. For small fluid volumes, temperature in the block heaters increased above 37 degrees C after being in the block for over 2 min. The thermostatic heater maintained a constant temperature, but this was below the factory setting of 36.9 degrees C. Temperature maintenance was influenced by fluid volume in each tube. One of the key factors in the handling of gametes and embryos is the maintenance of constant temperature. Test tube warming devices require verification of their ability to maintain fluid at the desired temperature. Temperature may vary with fluid volume and the type of test tube warming device used.

  17. Solar water heaters in China. A new day dawning

    International Nuclear Information System (INIS)

    Han, Jingyi; Mol, Arthur P.J.; Lu, Yonglong

    2010-01-01

    Solar thermal utilization, especially the application of solar water heater technology, has developed rapidly in China in recent decades. Manufacturing and marketing developments have been especially strong in provinces such as Zhejiang, Shandong and Jiangsu. This paper takes Zhejiang, a relatively affluent province, as a case study area to assess the performance of solar water heater utilization in China. The study will focus on institutional setting, economic and technological performance, energy performance, and environmental and social impact. Results show that China has greatly increased solar water heater utilization, which has brought China great economic, environmental and social benefits. However, China is confronted with malfeasant market competition, technical flaws in solar water heater products and social conflict concerning solar water heater installation. For further development of the solar water heater, China should clarify the compulsory installation policy and include solar water heaters into the current 'Home Appliances Going to the Countryside' project; most of the widely used vacuum tube products should be replaced by flat plate products, and the technology improvement should focus on anti-freezing and water saving; the resources of solar water heater market should be consolidated and most of the OEM manufacturers should evolve to ODM and OBM enterprises. (author)

  18. Extreme learning machine: a new alternative for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters.

    Science.gov (United States)

    Liu, Zhijian; Li, Hao; Tang, Xindong; Zhang, Xinyu; Lin, Fan; Cheng, Kewei

    2016-01-01

    Heat collection rate and heat loss coefficient are crucial indicators for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, the direct determination requires complex detection devices and a series of standard experiments, wasting too much time and manpower. To address this problem, we previously used artificial neural networks and support vector machine to develop precise knowledge-based models for predicting the heat collection rates and heat loss coefficients of water-in-glass evacuated tube solar water heaters, setting the properties measured by "portable test instruments" as the independent variables. A robust software for determination was also developed. However, in previous results, the prediction accuracy of heat loss coefficients can still be improved compared to those of heat collection rates. Also, in practical applications, even a small reduction in root mean square errors (RMSEs) can sometimes significantly improve the evaluation and business processes. As a further study, in this short report, we show that using a novel and fast machine learning algorithm-extreme learning machine can generate better predicted results for heat loss coefficient, which reduces the average RMSEs to 0.67 in testing.

  19. Connecting ring and process to fix heaters in a pressure vessel by means of these rings

    International Nuclear Information System (INIS)

    Bailleul, G.; Caloine, P.; Coville, P.

    1984-01-01

    The invention can applies to the installation of heaters for nuclear reactor pressurizer or to the installation of any kind of reheaters by means of electric resistances when these reheaters have to work under important pressures. The connecting ring is made of a single metallic piece, two coaxial tubes joined each other by a skirt nearly radial; the skirt joins an end of the outer cylindrical tube and an intermediate zone of the inner cylindrical tube. The invention concerns also a heater provided with such a connecting ring, substituted for a part of its metallic envelope, and a process of fastening of these heaters on a pressure vessel. The description given in the frame of a pressurizer applies to the case of a gas reheater or to a reheater for liquid under pressure such as liquid sodium in a tank [fr

  20. Novel Method for Measuring the Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters Based on Artificial Neural Networks and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Zhijian Liu

    2015-08-01

    Full Text Available The determinations of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, the direct determination requires complex detection devices and a series of standard experiments, which also wastes too much time and manpower. To address this problem, we propose machine learning models including artificial neural networks (ANNs and support vector machines (SVM to predict the heat collection rate and heat loss coefficient without a direct determination. Parameters that can be easily obtained by “portable test instruments” were set as independent variables, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, final temperature and angle between tubes and ground, while the heat collection rate and heat loss coefficient determined by the detection device were set as dependent variables respectively. Nine hundred fifteen samples from in-service water-in-glass evacuated tube solar water heaters were used for training and testing the models. Results show that the multilayer feed-forward neural network (MLFN with 3 nodes is the best model for the prediction of heat collection rate and the general regression neural network (GRNN is the best model for the prediction of heat loss coefficient due to their low root mean square (RMS errors, short training times, and high prediction accuracies (under the tolerances of 30%, 20%, and 10%, respectively.

  1. Expansion lyre-shaped tube

    International Nuclear Information System (INIS)

    Andro, Jean.

    1973-01-01

    The invention relates the expansion lyre-shaped tube portions formed in dudgeoned tubular bundles between two bottom plates. An expansion lyre comprises at least two sets of tubes of unequal lengths coplanar and symmetrical with respect to the main tube axis, with connecting portions between the tubes forming said sets. The invention applies to apparatus such as heat exchangers, heaters, superheaters or breeders [fr

  2. Experimental and theoretical investigation of Stirling engine heater: Parametrical optimization

    International Nuclear Information System (INIS)

    Gheith, R.; Hachem, H.; Aloui, F.; Ben Nasrallah, S.

    2015-01-01

    Highlights: • A Stirling engine was investigated to optimize its operation and its performance. • The porous medium present the highest amount of heat exchanged in a Stirling engine. • The heater characteristics are determinant points to enhance the thermal exchange in Stirling engine. • All operation parameters influence the heater performances. • Thermal and exergy heater efficiencies are sensible to temperature and pressure. - Abstract: The aim of this work is to optimize γ Stirling engine performances with a special care given to the heater. This latter consists of 20 tubes in order to increase the exchange area between the working gas and the hot source. Different parameters were chosen to evaluate numerically and experimentally the heater. The selected four independent parameters are: heating temperature (300–500 °C), initial filling pressure (3–8 bar), cooling water flow rate (0.2–3 l/min) and frequency (2–7 Hz). The amount of energy exchanged in the heater is significantly influenced by the frequency and heating temperature but it is slightly enhanced with the increase in the cooling water flow rate. The thermal and the exergy efficiencies of the heater are very sensible to the temperature and pressure variations.

  3. Remote Visual Testing (RVT) for the diagnostic inspection of feedwater heaters

    International Nuclear Information System (INIS)

    Nugent, M.J.; Pellegrino, B.A.

    1993-01-01

    Feedwater heaters are an important component in the overall plant heat rate, reliability, availability, performance and maintenance considerations at power stations. The ability to diagnose heater problems in-situ properly can lead to: (1) Preventative plugging of damaged, but unfailed tubes; (2) In-place repair procedures; (3) Incorporation of corrective actions into replacement designs or heater/unit operations. The benefits and limitations of Non-Destructive Testing (NDT) on feedwater heaters are briefly reviewed. All Remote Visual Testing (RVT) including borescopes, fiberscopes, videoborescopes and Closed Circuit Television (CCTV) cameras are discussed along with currently accepted formats for documentation. The benefits of a comprehensive in-place inspection involving Remote Visual Testing are discussed in relationship to its diagnostic capabilities. The results of eight post-service heater inspections are discussed along with the root cause of failure of seven unique failure mechanisms. These inspections, including FWH access, RVT tool and data analysis, are detailed. 13 figs

  4. Performance Study of a Cylindrical Parabolic Concentrating Solar Water Heater with Nail Type Twisted Tape Inserts in the Copper Absorber Tube

    Directory of Open Access Journals (Sweden)

    Amit K. Bhakta

    2018-01-01

    Full Text Available This paper reports the overall thermal performance of a cylindrical parabolic concentrating solar water heater (CPCSWH with inserting nail type twisted tape (NTT in the copper absorber tube for the nail twist pitch ratios, 4.787, 6.914 and 9.042, respectively. The experiments are conducted for a constant volumetric water flow rate and during the time period 9:00 a.m. to 15:00 p.m. The useful heat gain, hourly solar energy collected and hourly solar energy stored in this solar water heater were found to be higher for the nail twist pitch ratio 4.787. The above said parameters were found to be at a peak at noon and observed to follow the path of variation of solar intensity. At the start of the experiment, the value of charging efficiency was observed to be maximum, whereas the maximum values of instantaneous efficiency and overall thermal efficiency were observed at noon. The key finding is that the nail twist pitch ratio enhances the overall thermal performance of the CPCSWH.

  5. Modular Low-Heater-Power Cathode/Electron Gun Assembly for Microwave and Millimeter Wave Traveling Wave Tubes

    Science.gov (United States)

    Wintucky, Edwin G.

    2000-01-01

    A low-cost, low-mass, electrically efficient, modular cathode/electron gun assembly has been developed by FDE Inc. of Beaverton, Oregon, under a Small Business Innovation Research (SBIR) contract with the NASA Glenn Research Center at Lewis Field. This new assembly offers significant improvements in the design and manufacture of microwave and millimeter wave traveling-wave tubes (TWT's) used for radar and communications. It incorporates a novel, low-heater-power, reduced size and mass, high-performance barium dispenser type thermionic cathode and provides for easy integration of the cathode into a large variety of conventional TWT circuits. Among the applications are TWT's for Earth-orbiting communication satellites and for deep space communications, where future missions will require smaller spacecraft, higher data transfer rates (higher frequencies and radiofrequency output power), and greater electrical efficiency. A particularly important TWT application is in the microwave power module (a hybrid microwave/millimeter wave amplifier consisting of a low-noise solid-state driver, a small TWT, and an electronic power conditioner integrated into a single compact package), where electrical efficiency and thermal loading are critical factors and lower cost is needed for successful commercialization. The design and fabrication are based on practices used in producing cathode ray tubes (CRT's), which is one of the most competitive and efficient manufacturing operations in the world today. The approach used in the design and manufacture of thermionic cathodes and electron guns for CRT's has been optimized for fully automated production, standardization of parts, and minimization of costs. It is applicable to the production of similar components for microwave tubes, with the additional benefits of low mass and significantly lower cathode heater power (less than half that of dispenser cathodes presently used in TWT s). Modular cathode/electron gun assembly. The modular

  6. Experimental study of a high-efficiency low-emission surface combustor-heater

    International Nuclear Information System (INIS)

    Xiong, Tian-yu; Khinkis, M.J.; Fish, F.F.

    1991-01-01

    The surface combustor-heater is a combined combustion/heat-transfer device in which the heat-exchange surfaces are embedded in a stationary bed of refractory material where gaseous fuel is burned. Because of intensive heat radiation from the hot solid particles and enhanced heat convection from the gas flow to the heat-exchange tubes, heat transfer is significantly intensified. Removing heat simultaneously with the combustion process has the benefit of reducing the combustion temperature, which suppresses NO x formation. A basic experimental study was conducted on a 60-kW bench-scale surface combustor-heater with two rows of water-cooled tube coils to evaluate its performance and explore the mechanism of combined convective-radiative heat transfer and its interaction with combustion in the porous matrix. Combustion stability in the porous matrix, heat-transfer rates, emissions, and pressure drop through the unit have been investigated for the variable parameters of operation and unit configurations. Experimental results have demonstrated that high combustion intensity (up to 2.5 MW/m 2 ), high heat-transfer rates (up to 310 kW/m 2 ), high density of energy conversion (up to 8 MW/m 3 ), as well as ultra-low emissions (NO x and CO as low as 15 vppm*) have been achieved. The excellent performance of the test unit and the extensive data obtained from the present experimental study provide the basis for further development of high-efficiency and ultra low-emission water heaters, boilers, and process heaters based on the surface combustor-heater concept. 4 refs., 16 figs

  7. Feasibility of applying coal-fired boiler technology to process heaters

    Energy Technology Data Exchange (ETDEWEB)

    O' Sullivan, T F

    1978-01-01

    The preponderance of coal in US fossil fuel reserves has raised the question of the conversion of hydrocarbon process heaters to coal firing. A review undertaken in 1977 by an API sub-committee concluded that neither existing heaters nor existing heater designs were capable of modification or revision to burn coal, and that new coal-fired design consistent with process requirements would be needed for this purpose. In recognition of this need a cooperative investigation was undertaken by Combustion Engineering and Lummus. The present paper, reporting on this investigation, reviews existing coal-fired boiler equipment and techniques and describes their adaptation to the development of a design concept for a coal-fired process heater. To this end, the design parameters for both steam boilers and fired heaters have been compared and have been incorporated into a workable coal-fired process heater design which includes the following features; a coutant bottom for ash removal, an ash-hopper located under both radiant and convection chambers, a tangent type finned wall construction, a straight through gas flow pattern, a vertical tube convection section, horizontal firing using round burners, and an overall geometry allowing a coil arrangement capable of accommodating varying numbers of parallel serpentine coils. These features are integrated into a conceptual heater design which is detailed in a series of illustrations.

  8. Color superconductivity, ZN flux tubes and monopole confinement in deformed N=2* super Yang-Mills theories

    International Nuclear Information System (INIS)

    Kneipp, Marco A.C.

    2003-11-01

    We study the ZN flux tubes and monopole confinement in deformed N=2* super Yang-Mills theories. In order to do that we consider an N=4 super Yang-Mills theory with an arbitrary gauge group G and add some N=2, N=1 and N=0 deformation terms. We analyze some possible vacuum solutions and phases of the theory, depending on the deformation terms which are added. In the Coulomb phase for the N=2* theory, G is broken to U(1)r and the theory has monopole solutions. Then, by adding some deformation terms, the theory passes to the Higgs or color superconducting phase, in which G is broken to its center CG. In this phase we construct the ZN flux tubes Ansatz and obtain the BPS string tension. We show that the monopole magnetic fluxes are linear integer combinations of the string fluxes and therefore the monopoles can become confined. Then, we obtain a bound for the threshold length of the string-breaking. We also show the possible formation of a confining system with 3 different monopoles for the SU(3) gauge group. Finally we show that the BPS string tensions of the theory satisfy the Casimir scaling law. (author)

  9. Fuzzy Logic Approach to Diagnosis of Feedwater Heater Performance Degradation

    International Nuclear Information System (INIS)

    Kang, Yeon Kwan; Kim, Hyeon Min; Heo, Gyun Young; Sang, Seok Yoon

    2014-01-01

    Since failure in, damage to, and performance degradation of power generation components in operation under harsh environment of high pressure and high temperature may cause both economic and human loss at power plants, highly reliable operation and control of these components are necessary. Therefore, a systematic method of diagnosing the condition of these components in its early stages is required. There have been many researches related to the diagnosis of these components, but our group developed an approach using a regression model and diagnosis table, specializing in diagnosis relating to thermal efficiency degradation of power plant. However, there was a difficulty in applying the method using the regression model to power plants with different operating conditions because the model was sensitive to value. In case of the method that uses diagnosis table, it was difficult to find the level at which each performance degradation factor had an effect on the components. Therefore, fuzzy logic was introduced in order to diagnose performance degradation using both qualitative and quantitative results obtained from the components' operation data. The model makes performance degradation assessment using various performance degradation variables according to the input rule constructed based on fuzzy logic. The purpose of the model is to help the operator diagnose performance degradation of components of power plants. This paper makes an analysis of power plant feedwater heater by using fuzzy logic. Feedwater heater is one of the core components that regulate life-cycle of a power plant. Performance degradation has a direct effect on power generation efficiency. It is not easy to observe performance degradation of feedwater heater. However, on the other hand, troubles such as tube leakage may bring simultaneous damage to the tube bundle and therefore it is the object of concern in economic aspect. This study explains the process of diagnosing and verifying typical

  10. Fuzzy Logic Approach to Diagnosis of Feedwater Heater Performance Degradation

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Yeon Kwan; Kim, Hyeon Min; Heo, Gyun Young [Kyung Hee University, Yongin (Korea, Republic of); Sang, Seok Yoon [Engineering and Technical Center, Korea Hydro, Daejeon (Korea, Republic of)

    2014-08-15

    Since failure in, damage to, and performance degradation of power generation components in operation under harsh environment of high pressure and high temperature may cause both economic and human loss at power plants, highly reliable operation and control of these components are necessary. Therefore, a systematic method of diagnosing the condition of these components in its early stages is required. There have been many researches related to the diagnosis of these components, but our group developed an approach using a regression model and diagnosis table, specializing in diagnosis relating to thermal efficiency degradation of power plant. However, there was a difficulty in applying the method using the regression model to power plants with different operating conditions because the model was sensitive to value. In case of the method that uses diagnosis table, it was difficult to find the level at which each performance degradation factor had an effect on the components. Therefore, fuzzy logic was introduced in order to diagnose performance degradation using both qualitative and quantitative results obtained from the components' operation data. The model makes performance degradation assessment using various performance degradation variables according to the input rule constructed based on fuzzy logic. The purpose of the model is to help the operator diagnose performance degradation of components of power plants. This paper makes an analysis of power plant feedwater heater by using fuzzy logic. Feedwater heater is one of the core components that regulate life-cycle of a power plant. Performance degradation has a direct effect on power generation efficiency. It is not easy to observe performance degradation of feedwater heater. However, on the other hand, troubles such as tube leakage may bring simultaneous damage to the tube bundle and therefore it is the object of concern in economic aspect. This study explains the process of diagnosing and verifying typical

  11. Condensation heat transfer of a feed-water heater and improvement of its performance

    International Nuclear Information System (INIS)

    Takamori, Kazuhide; Murase, Michio; Baba, Yoshikazu; Aihara, Tsuyoshi

    1995-01-01

    In this study, a condensation heat transfer model, coupled with a three-dimensional two-phase flow analysis, was developed. In the heat transfer model, the liquid film flow rate on the heat transfer tubes was calculated by a mass balance equation and the liquid film thickness was calculated from the liquid film flow rate using Nusselt's laminar flow model and Fujii's equation for the steam velocity effect. The model was verified by condensation heat transfer experiments. In the experiments, 112 horizontal, staggered tubes with an outer diameter of 16mm and length of 0.55m were used. The calculated over-all heat transfer coefficients agreed with the data within ±5% under the inlet quality conditions of 13-100%. Based on a three-dimensional two-phase flow analysis, an improved feed-water heater with support plates, which have flow holes between the upper and lower tube bundles, was designed. The total heat exchange capacity of the improved feed-water heater increased about 6%. (author)

  12. Recent advances in Reltron and Super-Reltron HPM source development

    Science.gov (United States)

    Miller, Robert B.; Muehlenweg, Carl A.; Habiger, Kerry W.; Smith, John R.; Shiffler, Donald A.

    1994-05-01

    Reltron and super-reltron microwave tubes use post acceleration of a well-modulated beam and multiple output cavity extraction sections to generate high power microwave pulses with excellent efficiency. We have continued our development of these tubes with emphasis being given to four specific topics: (1) Recent experiments with our 1-GHz super-reltron tube have demonstrated operation at a peak power level of 600 MW. With pulse durations of several hundred nanoseconds, the microwave energy per pulse is about 250 J. (2) We have extracted significant power (several tens of megawatts) at the third multiple (3 GHz) of our 1-GHz super-reltron tube using output cavities designed for operation in S-band. (3) We have fielded a small S-band super-reltron tube on our 260 kV modulator. We have obtained lifetime data for this tube under repetitive (20 Hz), long pulse (2 microsecond(s) ec) operating conditions. (4) We have initiated feasibility experiments of the reltron concept by post accelerating the bunched beam produced by a SLAC XK-5 klystron. In this paper we report our experimental results and discuss relevant theoretical considerations related to each of these four topics.

  13. Experimental investigation of the performance of an elbow-bend type heat exchanger with a water tube bank used as a heater or cooler in alpha-type Stirling machines

    Energy Technology Data Exchange (ETDEWEB)

    El-Ehwany, A.A.; Hennes, G.M. [Mech. Power Dept., Faculty of Eng., Ain Shams University, Cairo (Egypt); Eid, E.I. [Mech. Dept., Faculty of Ind. Education, Suez Canal University, Suez 43515 (Egypt); El-Kenany, E. [The Specialized Studies Academy, Workers University, Tech. Dept., Mansura (Egypt)

    2011-02-15

    In this work the effect of the elbow-bend geometry and the effect of the tube arrangement on the performance of air-to-water heat exchanger is studied experimentally. In elbow-bend heat exchanger, the direction of the working fluid is bended at 90 degrees to its inlet direction. The heating or cooling fluid flows inside straight tubes while the working fluid flows past the tubes along an elbow pass. Three different types of the geometry of the elbow with three different tube bank arrangements were studied. The results were plotted and analyzed to clarify the effects of the elbow-bend geometry, the tube bank arrangements and the dead volume in the heat exchanger on the heat transfer and pressure drop. Two empirical correlations were deduced for each design, one to predict the relation between Nusselt and Reynolds numbers, while the other relation is between the friction factor and Reynolds number. This work was done to select the more suitable design to be used as a heater or a cooler in Stirling machines. (author)

  14. Feed-water heaters alternative design comparison; Comparacion de disenos alternativos de calentadores

    Energy Technology Data Exchange (ETDEWEB)

    Torres Toledano, Gerardo [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1988-12-31

    A procedure is presented for the alternative design comparison of feed water heaters, based in the failure records of damaged tubes during operation. The procedure is used for cases in which non-continuous or random inspections are made to the feed-water heaters. [Espanol] Se presenta un procedimiento para comparar disenos alternativos de calentadores, basandose en los registros de fallas de los tubos rotos acumuladas durante su operacion. El procedimiento se emplea para casos en los que se realizan inspecciones a los calentadores no continuas, ya sea periodicas o al azar.

  15. Feed water pre-heater with two steam spaces

    International Nuclear Information System (INIS)

    Tratz, H.; Kelp, F.; Netsch, E.

    1976-01-01

    A feed water pre-heater for the two stage heating of feed water by condensing steam, having a low installed height is described, which can be installed in the steam ducts of turbines of large output, as in LWRs in nuclear power stations. The inner steam space is closed on one side by the water vessel, while the tubes of the inner steam space go straight from the water vessel, and the tubes of the outer steam space are bent into a U shape and open out into the water vessel. The two-stage preheater is thus surrounded by feedwater in two ways. (UWI) [de

  16. Thermal performance measurements of a graphite tube compact cryogenic support for the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Gonczy, J.D.; Boroski, W.N.; Larson, E.T.; Nicol, T.H.; Niemann, R.C.; Otavka, J.G.; Ruschman, M.K.

    1988-12-01

    The magnet cryostat development program for the Superconducting Super Collider (SSC) High Energy Physics Proton-Proton Collider has produced an innovative design for the structural support of the cold mass and thermal radiation shields. This work updates the continuing development of the support known as the Compact Cryogenic Support (CCS). As the structural and thermal requirements of the SSC became better defined, a CCS was developed that employs an innermost tube comprised of a graphite composite material. Presented is the thermal performance to 4.5K of the graphite CCS model. 8 refs., 6 figs., 2 tabs

  17. Design and stability limits of the HPLWR re-heater

    International Nuclear Information System (INIS)

    Herbell, H.; Class, A.; Starflinger, J.; Schulenberg, T.

    2010-01-01

    The High Performance Light Water Reactor (HPLWR) is a particular design study of a supercritical water cooled reactor. A heat exchanger design has been proposed for the re-heater as a shell-and-tube heat exchanger. Inside the tubes fluid undergoes pseudo-condensing, e.g. it changes its density from steam-like to liquid-like properties (from 80 kg/m 3 to 582 kg/m 3 ) at supercritical pressure, whereas the shell side superheats intermediate pressure steam. For sub-critical pressures an instability has been reported by Goodykoontz and Dorsch (19679. The experiment exhibits unstable steam condensation in case of downward flow inside a tube of 7.4 mm diameter and 2.42 m length in some specific cases. The counter-current condenser was cooled with water flowing in an annulus surrounding the condenser tube. This experiment motivates the current investigation of instabilities for supercritical pseudo-condensation. The study includes static instabilities, i.e. Ledingegg instability and flow maldistribution of the parallel tubes, as well as pressure drop oscillations. At the present stage, no instabilities are predicted for the specific operation conditions of the HPLWR. The commercial system code APROS is used to perform one dimensional transient simulations of the described experiment to understand the physical mechanism. These simulations show that choking flow initiates the pressure oscillations. These periodically change steam temperatures, and consequently the condensation rate. In turn, this modifies the sound speed which is responsible for choking. Condensate reverse flow at choked conditions triggers the pressure waves. APROS simulations and experimental results agree well both in pressure amplitude and frequency. APROS simulations at supercritical pressure conditions did not exhibit any instability as the fluid velocity is clearly sub-sonic in the entire HPLWR re-heater. (authors)

  18. Packaged die heater

    Science.gov (United States)

    Spielberger, Richard; Ohme, Bruce Walker; Jensen, Ronald J.

    2011-06-21

    A heater for heating packaged die for burn-in and heat testing is described. The heater may be a ceramic-type heater with a metal filament. The heater may be incorporated into the integrated circuit package as an additional ceramic layer of the package, or may be an external heater placed in contact with the package to heat the die. Many different types of integrated circuit packages may be accommodated. The method provides increased energy efficiency for heating the die while reducing temperature stresses on testing equipment. The method allows the use of multiple heaters to heat die to different temperatures. Faulty die may be heated to weaken die attach material to facilitate removal of the die. The heater filament or a separate temperature thermistor located in the package may be used to accurately measure die temperature.

  19. Effect of Tube Diameter on The Design of Heat Exchanger in Solar Drying system

    Science.gov (United States)

    Husham Abdulmalek, Shaymaa; Khalaji Assadi, Morteza; Al-Kayiem, Hussain H.; Gitan, Ali Ahmed

    2018-03-01

    The drying of agriculture product consumes a huge fossil fuel rates that demand to find an alternative source of sustainable environmental friendly energy such as solar energy. This work presents the difference between using solar heat source and electrical heater in terms of design aspect. A circular-finned tube bank heat exchanger is considered against an electrical heater used as a heat generator to regenerate silica gel in solar assisted desiccant drying system. The impact of tube diameter on the heat transfer area was investigated for both the heat exchanger and the electrical heater. The fin performance was investigated by determining fin effectiveness and fin efficiency. A mathematical model was developed using MATLAB to describe the forced convection heat transfer between hot water supplied by evacuated solar collector with 70 °C and ambient air flow over heat exchanger finned tubes. The results revealed that the increasing of tube diameter augments the heat transfer area of both heat exchanger and electrical heater. The highest of fin efficiency was around 0.745 and the lowest was around 0.687 while the fin effectiveness was found to be around 0.998.

  20. One dimensional analysis model for condensation heat transfer in feed water heater

    International Nuclear Information System (INIS)

    Murase, Michio; Takamori, Kazuhide; Aihara, Tsuyoshi

    1998-01-01

    In order to simplify condensation heat transfer calculations for feed water heaters, one dimensional (1D) analyses were compared with three dimensional (3D) analyses. The results showed that average condensation heat transfer coefficients by 1D analyses with 1/2 rows of heat transfer tubes agreed with those by 3D analyses within 7%. Using the 1D analysis model, effects of the pitch of heat transfer tubes were evaluated. The results showed that the pitch did not affect much on heat transfer rates and that the size of heat transfer tube bundle could be decreased by a small pitch. (author)

  1. Temperature measurements from a horizontal heater test in G-Tunnel

    International Nuclear Information System (INIS)

    Lin, Wunan; Ramirez, A.L.; Watwood, D.

    1991-10-01

    A horizontal heater test was conducted in G-Tunnel, Nevada Test Site, to study the hydrothermal response of the rock mass due to a thermal loading. The results of the temperature measurements are reported here. The measured temperatures agree well with a scoping calculation that was performed using a model which investigates the transport of water, vapor, air, and heat in fractured porous media. Our results indicate that the temperature field might be affected by the initial moisture content of the rock, the fractures in the rock, the distance from the free surface of the alcove wall, and the temperature distribution on the heater surface. Higher initial moisture content, higher fracture density, and cooling from the alcove wall tend to decrease the measured temperature. The temperature on top of the horizontal heater can was about 30 degrees C greater than at the bottom throughout most of the heating phase, causing the rock temperatures above the heater to be greater than those below. Along a radius from the center of the heater, the heating created a dry zone, followed by a boiling zone and condensation zone. Gravity drainage of the condensed water in the condensation zone had a strong effect on the boiling process in the test region. The temperatures below and to the side of the heater indicated a region receiving liquid drainage from an overlying region of condensation. We verified that a thermocouple in a thin-wall tubing measures the same temperature as one grouted in a borehole

  2. Methods for determining the wall thickness variation of tubular heaters used in thermalhydraulic studies

    International Nuclear Information System (INIS)

    Cubizolles, G.; Garnier, J.; Groeneveld, D.; Tanase, A.

    2009-01-01

    Fuel bundle simulators used in thermalhydraulic studies typically consist of bundles of directly heated tubes. It is usually assumed that the heater tubes have a uniform circumferential heat flux distribution. In practice, this heat flux distribution is never exactly uniform because of wall thickness variations and bore eccentricity. Ignoring the non-uniformity in wall thickness can lead to under-estimating the local heat transfer coefficients. During nucleate boiling tests in a 5x5 PWR-type bundle subassembly at CEA-Grenoble, a sinusoidal temperature distribution was observed around the inside circumference of the heater rods. These heater rods were equipped with high-accuracy sliding thermocouple probes that permit the detailed measurement of the internal wall temperature distribution, both axially and circumferentially. The sinusoidal temperature distribution strongly suggests a variation in wall thickness. A methodology was subsequently derived to determine the circumferential wall thickness variation. The method is based on the principle that for directly heated fuel-element simulators, the nucleate boiling wall superheat at high pressures is nearly uniform around the heater rod circumference. The results show wall thickness variations of up to ±4% which was confirmed by subsequent ultrasonic wall-thickness measurements performed after bundle disassembly. Non-uniformities in circumferential temperature distributions were also observed during parallel thermalhydraulic tests at the University of Ottawa (UofO) on an electrically heated tube cooled internally by R-134a and equipped with fixed thermocouples on the outside. From the measured wall temperatures and knowledge of the inside heat transfer coefficient or wall temperature distribution, the variations in wall thickness and surface heat flux to the coolant were evaluated by solving conduction equations using three separate sets of data (1) single phase heat transfer data, (2) nucleate boiling data, and (3

  3. Development of the performance of an alpha-type heat engine by using elbow-bend transposed-fluids heat exchanger as a heater and a cooler

    Energy Technology Data Exchange (ETDEWEB)

    El-Ehwany, A.A.; Hennes, G.M. [Mechanical Power Department, Faculty of Engineering, Ain Shams University, 11566 Cairo (Egypt); Eid, E.I. [Mechanical Department, Faculty of Industrial Education, Suez Canal University, 43515 Suez (Egypt); El-Kenany, E.A. [Technological Development Department, Technological Studies Academy, Workers University, Tanta (Egypt)

    2011-02-15

    In this work, elbow-bend heat exchangers were suggested to be used as a heater and a cooler in an alpha-type Stirling engine. Elbow-bend heat exchanger is a bank of tubes arranged in a quadrant either in line or staggered with different normal and parallel pitches. Eight of such heat exchangers having different dimensions were tested experimentally for steady flow (in a previous work by the same authors). The experimental results were correlated for heat transfer and pressure drop. In the present work, an alpha-Stirling engine with twin parallel cylinders on a common crankcase was suggested to use elbow-bend heat exchangers as a heater and a cooler. In the heater, the flue gases flow inside the tubes and the working gas fluctuates about the heater tubes. In the cooler, the coolant flows inside the cooler tubes and the gas flows about the cooler tubes. A computer program in the form of a spread sheet was prepared to solve numerically the engine cycle in the vision of Schmidt theory. Upon calculations, the most suitable stroke/bore ratio, phase angle and speed were found out for nitrogen as a working gas. In a comparison among the proposed engine and practical ones by the literature, it was found that; the proposed engine delivers about 13% more power per cc per {delta}T than those by the literature at high thermal efficiency level. (author)

  4. Drift tube alignment and beam emittance codes in use at the SuperHILAC

    International Nuclear Information System (INIS)

    Spence, D.A.

    1974-01-01

    Two Fortran-IV codes in use at the SuperHILAC are of significant value in optimizing the geometry of the accelerator and in evaluating the performance of the heavy ion beams. The first routine described is used to determine the existing root mean square deviation of the 210 internal drift tube quadrupoles fitted to a straight line or to a second-order quadratic. It then predicts the minimum number of drift tubes, and their identities, to be moved in order to attain a user-elected margin of error fit. Brief mention is made of the pulsed-wire alignment technique for the quadrupole positioning. The second program described is part of a data system which utilizes a PDP-8/I as a control device for the manipulation of beam-scanning hardware and a CDC-6600 in an off-line interactive mode which gives the user maximum versatility in treating the raw data and displaying the results of calculations. The code portrays the transverse beam emittance figures and their transmission through the accelerator and transport lines. Also discussed are future plans which include on-line data reduction and CRT display by the PDP-8/I to enable the operators to optimize the tuning of the HILAC. (U.S.)

  5. Leak Detection of High Pressure Feedwater Heater Using Empirical Models

    International Nuclear Information System (INIS)

    Lee, Song Kyu; Kim, Eun Kee; Heo, Gyun Young; An, Sang Ha

    2009-01-01

    Even small leak from tube side or pass partition within the high pressure feedwater heater (HPFWH) causes a significant deficiency in its performance. Plant operation under the HPFWH leak condition for long time will result in cost increase. Tube side leak within HPFWH can produce the high velocity jet of water and it can cause neighboring tube failures. However, most of plants are being operated without any information for internal leaks of HPFWH, even though it is prone to be damaged under high temperature and high pressure operating conditions. Leaks from tubes and/or pass partition of HPFWH occurred in many nuclear power plants, for example, Mihama PS-2, Takahama PS-2 and Point Beach Nuclear Plant Unit 1. If the internal leaks of HPFWH are monitored, the cost can be reduced by inexpensive repairs relative to loss in performance and moreover plant shutdown as well as further tube damages can be prevented

  6. Evaluation method for two-phase flow and heat transfer in a feed-water heater

    International Nuclear Information System (INIS)

    Takamori, Kazuhide; Minato, Akihiko

    1993-01-01

    A multidimensional analysis code for two-phase flow using a two-fluid model was improved by taking into consideration the condensation heat transfer, film thickness, and film velocity, in order to develop an evaluation method for two-phase flow and heat transfer in a feed-water heater. The following results were obtained by a two-dimensional analysis of a feed-water heater for a power plant. (1) In the model, the film flowed downward in laminar flow due to gravity, with droplet entrainment and deposition. For evaluation of the film thickness, Fujii's equation was used in order to account for forced convection of steam flow. (2) Based on the former experimental data, the droplet deposition coefficient and droplet entrainment rate of liquid film were determined. When the ratio at which the liquid film directly flowed from an upper heat transfer tube to a lower heat transfer tube was 0.7, the calculated total heat transfer rate agreed with the measured value of 130 MW. (3) At the upper region of a heat transfer tube bundle where film thickness was thin, and at the outer region of a heat transfer tube bundle where steam velocity was high, the heat transfer rate was large. (author)

  7. Temperature distribution of a water droplet moving on a heated super-hydrophobic surface under the icing condition

    Science.gov (United States)

    Yamazaki, Masafumi; Sumino, Yutaka; Morita, Katsuaki

    2017-11-01

    In the aviation industry, ice accretion on the airfoil has been a hazardous issue since it greatly declines the aerodynamic performance. Electric heaters and bleed air, which utilizes a part of gas emissions from engines, are used to prevent the icing. Nowadays, a new de-icing system combining electric heaters and super hydrophobic coatings have been developed to reduce the energy consumption. In the system, the heating temperature and the coating area need to be adjusted. Otherwise, the heater excessively consumes energy when it is set too high and when the coating area is not properly located, water droplets which are once dissolved possibly adhere again to the rear part of the airfoil as runback ice In order to deal with these problems, the physical phenomena of water droplets on the hydrophobic surface demand to be figured out. However, not many investigations focused on the behavior of droplets under the icing condition have been conducted. In this research, the temperature profiling of the rolling droplet on a heated super-hydrophobic surface is experimentally observed by the dual luminescent imaging.

  8. Self-shielding flex-circuit drift tube, drift tube assembly and method of making

    Science.gov (United States)

    Jones, David Alexander

    2016-04-26

    The present disclosure is directed to an ion mobility drift tube fabricated using flex-circuit technology in which every other drift electrode is on a different layer of the flex-circuit and each drift electrode partially overlaps the adjacent electrodes on the other layer. This results in a self-shielding effect where the drift electrodes themselves shield the interior of the drift tube from unwanted electro-magnetic noise. In addition, this drift tube can be manufactured with an integral flex-heater for temperature control. This design will significantly improve the noise immunity, size, weight, and power requirements of hand-held ion mobility systems such as those used for explosive detection.

  9. Analysis of Polycyclic Aromatic Hydrocarbons (PAHs in soils using ultrasonic agitation, heater/mini condenser tube and gaseous chromatography

    Directory of Open Access Journals (Sweden)

    Jurandir Pereira Pinto

    2006-02-01

    Full Text Available The increase in the number of gas stations in Brazil made it also possible the increase in the risk of underground waters contamination due to fuel spill. The polycyclic aromatic hydrocarbons (PAHs are petroleum-derived components and constitute a group of organic pollutants which are persistent in the environment and have highly carcinogenic capacity. In this work it was developed a PAHs analysis methodology in soils for quantifying these components, using the gaseous chromatography technique, through the optimization and validation of the chromatographic as well as the extraction, concentration and purification conditions of the PAHs. A good resolution for the sixteen PAHs was obtained, with retention times ranging from 6.1 to 43.7 minutes. The tube-heater/mini condenser system used for the solvent evaporation also showed satisfactory recovery for the naphthalene (83% as well as the extraction method by ultrasonic agitation with dichloromethane, obtaining recoveries that ranged from 74 to 104%. The analysis method proved to be appropriate for the quantification of the 16 PAHs in the evaluation of the environmental contamination in gas stations.

  10. Leak detection in Phenix and Super Phenix steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Cambillard, E [Centre d' Etudes Nucleaires de Saclay, Gif-sur-Yvette (France)

    1978-10-01

    Water leak detection Phenix and Super Phenix steam generators is based on measurement of the hydrogen produced by the reaction of sodium with water. The hydrogen evolves in the sodium in which the steam generator tubes are completely immersed. Depending on service conditions, however (sodium temperature and flow velocity), the hydrogen may appear in the argon existing above the free levels. This is why, although the Phenix steam generators do not feature free levels, measurement systems were added to measure the hydrogen concentration in the argon in the expansion tanks. Super Phenix steam generators are fitted at their outlet with systems for measuring hydrogen in the sodium, and above their free level with a system for measuring hydrogen in the argon. The measurement systems have nickel tube probes connected to circuits kept under vacuum by an ion pump. The hydrogen partial pressure is measured by a mass spectrometer. Super Phenix measurement systems differ from Phenix systems essentially in the temperature regulation of the sodium reaching the nickel tube probes, and in the centralization of the supply and measurement systems of the ion pumps and mass spectrometers. This paper deals with description, calibration and operating conditions of the hydrogen detection systems in sodium and argon in Phenix and Super Phenix steam generators. (author)

  11. A modernized high-pressure heater protection system for nuclear and thermal power stations

    Science.gov (United States)

    Svyatkin, F. A.; Trifonov, N. N.; Ukhanova, M. G.; Tren'kin, V. B.; Koltunov, V. A.; Borovkov, A. I.; Klyavin, O. I.

    2013-09-01

    Experience gained from operation of high-pressure heaters and their protection systems serving to exclude ingress of water into the turbine is analyzed. A formula for determining the time for which the high-pressure heater shell steam space is filled when a rupture of tubes in it occurs is analyzed, and conclusions regarding the high-pressure heater design most advisable from this point of view are drawn. A typical structure of protection from increase of water level in the shell of high-pressure heaters used in domestically produced turbines for thermal and nuclear power stations is described, and examples illustrating this structure are given. Shortcomings of components used in the existing protection systems that may lead to an accident at the power station are considered. A modernized protection system intended to exclude the above-mentioned shortcomings was developed at the NPO Central Boiler-Turbine Institute and ZioMAR Engineering Company, and the design solutions used in this system are described. A mathematical model of the protection system's main elements (the admission and check valves) has been developed with participation of specialists from the St. Petersburg Polytechnic University, and a numerical investigation of these elements is carried out. The design version of surge tanks developed by specialists of the Central Boiler-Turbine Institute for excluding false operation of the high-pressure heater protection system is proposed.

  12. Mapping ionospheric backscatter measured by the SuperDARN HF radars – Part 2: Assessing SuperDARN virtual height models

    Directory of Open Access Journals (Sweden)

    T. K. Yeoman

    2008-05-01

    Full Text Available The Super Dual Auroral Radar Network (SuperDARN network of HF coherent backscatter radars form a unique global diagnostic of large-scale ionospheric and magnetospheric dynamics in the Northern and Southern Hemispheres. Currently the ground projections of the HF radar returns are routinely determined by a simple rangefinding algorithm, which takes no account of the prevailing, or indeed the average, HF propagation conditions. This is in spite of the fact that both direct E- and F-region backscatter and 1½-hop E- and F-region backscatter are commonly used in geophysical interpretation of the data. In a companion paper, Chisham et al. (2008 have suggested a new virtual height model for SuperDARN, based on average measured propagation paths. Over shorter propagation paths the existing rangefinding algorithm is adequate, but mapping errors become significant for longer paths where the roundness of the Earth becomes important, and a correct assumption of virtual height becomes more difficult. The SuperDARN radar at Hankasalmi has a propagation path to high power HF ionospheric modification facilities at both Tromsø on a ½-hop path and SPEAR on a 1½-hop path. The SuperDARN radar at Þykkvibǽr has propagation paths to both facilities over 1½-hop paths. These paths provide an opportunity to quantitatively test the available SuperDARN virtual height models. It is also possible to use HF radar backscatter which has been artificially induced by the ionospheric heaters as an accurate calibration point for the Hankasalmi elevation angle of arrival data, providing a range correction algorithm for the SuperDARN radars which directly uses elevation angle. These developments enable the accurate mappings of the SuperDARN electric field measurements which are required for the growing number of multi-instrument studies of the Earth's ionosphere and magnetosphere.

  13. Modeling of a split type air conditioner with integrated water heater

    International Nuclear Information System (INIS)

    Techarungpaisan, P.; Theerakulpisut, S.; Priprem, S.

    2007-01-01

    This paper presents a steady state simulation model to predict the performance of a small split type air conditioner with integrated water heater. The mathematical model consists of submodels of system components such as evaporator, condenser, compressor, capillary tube, receiver and water heater. These submodels were built based on fundamental principles of heat transfer, thermodynamics, fluid mechanics, empirical relationships and manufacturer's data as necessary. The model was coded into a simulation program and used to predict system parameters of interest such as hot water temperature, condenser exit air temperature, evaporator exit air temperature, mass flow rate of refrigerant, heat rejection in the condenser and cooling capacity of the system. The simulation results were compared with experimental data obtained from an experimental rig built for validating the mathematical model. It was found that the experimental and simulation results are in good agreement

  14. Low cost solar air heater

    International Nuclear Information System (INIS)

    Gill, R.S.; Singh, Sukhmeet; Singh, Parm Pal

    2012-01-01

    Highlights: ► Single glazed low cost solar air heater is more efficient during summer while double glazed is better in winter. ► For the same initial investment, low cost solar air heaters collect more energy than packed bed solar air heater. ► During off season low cost solar air heater can be stored inside as it is light in weight. - Abstract: Two low cost solar air heaters viz. single glazed and double glazed were designed, fabricated and tested. Thermocole, ultraviolet stabilised plastic sheet, etc. were used for fabrication to reduce the fabrication cost. These were tested simultaneously at no load and with load both in summer and winter seasons along with packed bed solar air heater using iron chips for absorption of radiation. The initial costs of single glazed and double glazed are 22.8% and 26.8% of the initial cost of packed bed solar air heater of the same aperture area. It was found that on a given day at no load, the maximum stagnation temperatures of single glazed and double glazed solar air heater were 43.5 °C and 62.5 °C respectively. The efficiencies of single glazed, double glazed and packed bed solar air heaters corresponding to flow rate of 0.02 m 3 /s-m 2 were 30.29%, 45.05% and 71.68% respectively in winter season. The collector efficiency factor, heat removal factor based on air outlet temperature and air inlet temperature for three solar air heaters were also determined.

  15. Immersible solar heater for fluids

    Science.gov (United States)

    Kronberg, James W.

    1995-01-01

    An immersible solar heater comprising a light-absorbing panel attached to a frame for absorbing heat energy from the light and transferring the absorbed heat energy directly to the fluid in which the heater is immersed. The heater can be used to heat a swimming pool, for example, and is held in position and at a preselected angle by a system of floats, weights and tethers so that the panel can operate efficiently. A skid can be used in one embodiment to prevent lateral movement of the heater along the bottom of the pool. Alternative embodiments include different arrangements of the weights, floats and tethers and methods for making the heater.

  16. Thermal and structural performance of a single tube support post for the Superconducting Super Collider dipole magnet cryostat

    International Nuclear Information System (INIS)

    Boroski, W.N.; Nicol, T.H.; Ruschman, M.K.; Schoo, C.J.

    1993-07-01

    The reentrant support post currently incorporated in the Superconducting Super Collider (SSC) dipole cryostat has been shown to meet the structural and thermal requirements of the cryostat, both in prototype magnet assemblies and through component testing. However, the reentrant post design has two major drawbacks: tight dimensional control on all components, and cost driven by these tolerance constraints and a complex assembly procedure. A single tube support post has been developed as an alternative to the reentrant post design. Several prototype assemblies have been fabricated and subjected to structural testing. Compressive, tensile, and bending forces were applied to each assembly with deflection measured at several locations. A prototype support post has also been thermally evaluated in a heat leak measurement facility. Heat load to 4.2 K was measured with the intermediate post intercept operating at various temperatures while thermometers positioned along the conductive path of the post mapped thermal gradients. Results from these measurements indicate the single tube support post meets the design criteria for the SSC dipole magnet cryostat support system

  17. Coupled solar still, solar heater

    Energy Technology Data Exchange (ETDEWEB)

    Davison, R R; Harris, W B; Moor, D H; Delyannis, A; Delyannis, E [eds.

    1976-01-01

    Computer simulation of combinations of solar stills and solar heaters indicates the probable economic advantage of such an arrangement in many locations if the size of the heater is optimized relative to that of the still. Experience with various low cost solar heaters is discussed.

  18. Analysis of solar water heater with parabolic dish concentrator and conical absorber

    Science.gov (United States)

    Rajamohan, G.; Kumar, P.; Anwar, M.; Mohanraj, T.

    2017-06-01

    This research focuses on developing novel technique for a solar water heating system. The novel solar system comprises a parabolic dish concentrator, conical absorber and water heater. In this system, the conical absorber tube directly absorbs solar radiation from the sun and the parabolic dish concentrator reflects the solar radiations towards the conical absorber tube from all directions, therefore both radiations would significantly improve the thermal collector efficiency. The working fluid water is stored at the bottom of the absorber tubes. The absorber tubes get heated and increases the temperature of the working fluid inside of the absorber tube and causes the working fluid to partially evaporate. The partially vaporized working fluid moves in the upward direction due to buoyancy effect and enters the heat exchanger. When fresh water passes through the heat exchanger, temperature of the vapour decreases through heat exchange. This leads to condensation of the vapour and forms liquid phase. The working fluid returns to the bottom of the collector absorber tube by gravity. Hence, this will continue as a cyclic process inside the system. The proposed investigation shows an improvement of collector efficiency, enhanced heat transfer and a quality water heating system.

  19. Nuclear plant power up-rate study: feedwater heater evaluations

    International Nuclear Information System (INIS)

    Svensson, Eric; Catapano, Michael; Coakley, Michael; Thomas, Dan

    2014-01-01

    Given today's nuclear industry business climate, it has become common for Utility companies to consider increasing unit capacities through turbine replacement and power up-rates. An integral part of the studies conducted by many towards this end, involve the generation of a set of turbine cycle heat balances with predicted performance parameters for the up-rated condition. Once these tentative operating values are established, it becomes necessary to evaluate the suitability of the existing components within each system to ensure they are capable of continued safe and reliable operation. The ultimate cost for the up-rate, including the cost for any major required modifications or significant replacements is weighed against increased revenue generated from the up-rate over time. Exelon's Peach Bottom Atomic Power Station (PBAPS) is currently planning for an Extended Power up-rate (EPU) for both units. To ensure the existing Feedwater Heaters (FWH) could maintain the operating and transient response margins at the EPU condition, an engineering study was conducted. Powerfect Inc. in conjunction with SPX Heat Transfer LLC were contracted to provide engineering services to analyze the design, thermal performance, reliability and operating conditions at projected EPU conditions. Specifically, to address the following with regard to the station's Feedwater Heaters (FWHs): 1. Evaluate Drain Cooler (DC) Velocities - including zone inlet velocity, cross and window velocities and outlet velocities. 2. Evaluate Drain Cooler Zone Pressure Drop for effect on drain cooler margins to flashing. 3. Evaluate differential pressure allowable across the pass partition plate. 4. Evaluate Drain Cooler Tube Vibration Potential. 5. Perform detailed steam dome velocity calculations. The goal of the study was to identify the most susceptible areas within the heaters for problems and potential failures when operating at the higher duty of the EPU condition for the remaining life

  20. 46 CFR 182.320 - Water heaters.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Water heaters. 182.320 Section 182.320 Shipping COAST...) MACHINERY INSTALLATION Auxiliary Machinery § 182.320 Water heaters. (a) A water heater must meet the...), except that an electric water heater is also acceptable if it: (1) Has a capacity of not more than 454...

  1. 46 CFR 119.320 - Water heaters.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Water heaters. 119.320 Section 119.320 Shipping COAST... Machinery § 119.320 Water heaters. (a) A water heater must meet the requirements of Parts 53 and 63 in... electric water heater is also acceptable if it: (1) Has a capacity of not more than 454 liters (120 gallons...

  2. Device for starting a steam generator by heating sodium in a reactor

    International Nuclear Information System (INIS)

    Nakano, Hisao.

    1975-01-01

    Object: To enhance cooperation between ventilation and steam conditions of turbine and ventilation condition relative to a superheater at the time of starting a plant using a fast breeder, and to enhance safety with respect to failure of heat transmission tubes at the time of start. Structure: In a device in which steam generated in an evaporator is fed to a high pressure turbine through a super-heater and an outlet steam of high pressure turbine is reheated by means of a re-heater and fed into a turbine on the side of low pressure to drive the turbine for power generation, opening and closing valves are mounted on outlet and inlet pipes, respectively, of the heat transmission pipe in the super heater, said outlet and inlet pipes being connected by a bypass pipe. Upstream side of the opening and closing valve on the inlet pipe and the downstream side of the opening and closing valve on the outlet pipe and connected by a bypass pipe in the re-heater and said bypass pipe in the re-heater is provided with a steam heat exchanger to be heated by steam in the outlet of the superheater, and a steam line in an auxiliary boiler is connected to the side of re-heater from the opening and closing valve on the heat transmission pipe in the re-heater. (Hanada, M.)

  3. Heat exchanger tubing materials for CANDU nuclear generating stations

    International Nuclear Information System (INIS)

    Taylor, G.F.

    1977-07-01

    The performance of steam generator tubing (nickel-chromium-iron alloy in NPD and nickel-copper alloy in Douglas Point and Pickering generating stations) has been outstanding and no corrosion-induced failures have occurred. The primary coolant will be allowed to boil in the 600 MW (electrical) CANDU-PHW reactors. An iron-nickel-chromium alloy has been selected for the steam generator tubing because it will result in lower radiation fields than the alloys used before. It is also more resistant than nickel-chromium-iron alloy to stress corrosion cracking in the high purity water of the primary circuit, an unlikely but conceivable hazard associated with higher operating temperatures. Austenitic alloy and ferritic-austenitic stainless steel tubing have been selected for the moderator coolers in CANDU reactors being designed and under construction. These materials will reduce the radiation fields around the moderator circuit while retaining the good resistance to corrosion in service water that has characterized the copper-nickel alloys now in use. Brass and bronze tubes in feedwater heaters and condensers have given satisfactory service but do, however, complicate corrosion control in the steam cycle and, to reduce the transport of corrosion products from the feedtrain to the steam generator, stainless steel is preferred for feedwater heaters and stainlss steel or titanium for condensers. (author)

  4. Development of Empirical Correlation to Calculate Pool Boiling Heat Transfer of Tandem Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Myeong-Gie [Andong National University, Andong (Korea, Republic of)

    2015-10-15

    The heat exchanging tubes are in vertical alignment. For the cases, the upper tube is affected by the lower tube. Since heat transfer is closely related to the conditions of tube surface, bundle geometry, and liquid, lots of studies have been carried out for the several decades to investigate the combined effects of those factors on pool boiling heat transfer. One of the most important parameters in the analysis of a tube array is the pitch ( P ) between tubes. Many researchers have been investigated its effect on heat transfer enhancement for the tube bundles and the tandem tubes. The effect of a tube array on heat transfer enhancement was also studied for application to the flooded evaporators. Cornwell and Schuller studied the sliding bubbles by high speed photography to account the enhancement of heat transfer observed at the upper tubes of a bundle. The study by Memory et al. shows the effects of the enhanced surface and oil adds to the heat transfer of tube bundles. They identified that, for the structured and porous bundles, oil addition leads to a steady decrease in performance. The flow boiling of n-pentane across a horizontal tube bundle was investigated experimentally by Roser et al. They identified that convective evaporation played a significant part of the total heat transfer. The fouling of the tube bundle under pool boiling was also studied by Malayeri et al. They identified that the mechanisms of fouling on the middle and top heater substantially differ from those at the bottom heater.

  5. 14 CFR 23.859 - Combustion heater fire protection.

    Science.gov (United States)

    2010-01-01

    ... relief of any backfire that, if so restricted, could cause heater failure. (d) Heater controls: general. Provision must be made to prevent the hazardous accumulation of water or ice on or in any heater control... heater in case of leakage. (2) The region surrounding the heater, if the heater fuel system has fittings...

  6. Lifespan estimation of seal welded super stainless steels for water condenser of nuclear power plants

    Science.gov (United States)

    Kim, Young Sik; Park, Sujin; Chang, Hyun Young

    2014-01-01

    When sea water was used as cooling water for water condenser of nuclear power plants, commercial stainless steels can not be applied because chloride concentration exceeds 20,000 ppm. There are many opinions for the materials selection of tube and tube sheets of a condenser. This work reviewed the application guide line of stainless steels for sea-water facilities and the estimation equations of lifespan were proposed from the analyses of both field data for sea water condenser and experimental results of corrosion. Empirical equations for lifespan estimation were derived from the pit initiation time and re-tubing time of stainless steel tubing in sea water condenser of nuclear power plants. The lifespan of seal-welded super austenitic stainless steel tube/tube sheet was calculated from these equations. Critical pitting temperature of seal-welded PRE 50 grade super stainless steel was evaluated as 60 °C. Using the proposed equation in engineering aspect, tube pitting corrosion time of seal-welded tube/tube sheet was calculated as 69.8 years and re-tubing time was estimated as 82.0 years.

  7. Studies of super-critical CO2 gas turbine power generation fast reactor (Contract research, translated document)

    International Nuclear Information System (INIS)

    Kisohara, Naoyuki; Kotake, Shoji; Sakamoto, Toshihiko

    2008-08-01

    The following studies have been executed for a super-critical CO 2 turbine system of an SFR. (1) Preliminary design of a SFR adopting a super-critical CO 2 cycle turbine. Preliminary system design of an SFR that adopts a super-critical CO 2 cycle turbine has been made. This SFR system eliminates secondary sodium circuits because of no sodium/water reaction. The power generation efficiency of the SFR has been estimated to be approximately 42%. Compared to a conventional SFR that adopts a steam Rankine cycle with secondary sodium circuits, the volume of the reactor building of the SC-CO 2 SFR has been reduced by 20%. (2) Thermal-hydraulic experiment of a super-critical CO 2 cycle loop. A test loop that simulates a super-critical CO 2 whole cycle was fabricated. An electrical heater was used for a heat source of the test loop. The high efficiency of the compressor has been experimentally confirmed near the super-critical region. The temperature efficiencies of PCHE recuperators have been approximately 98-99% (hot leg), and the recuperators have exhibited high heat transfer performance. No significant flow instability has been observed in the test loop operation. (3) Liquid sodium/CO 2 reaction test. Reaction tests have been executed by contacting a small amount of liquid sodium and CO 2 gas. Continuous sodium/CO 2 reactions with flame have occurred at the temperature higher than 570-580degC. Main reaction products have been Na 2 CO 3 and CO gas. The reaction heat has been also measured to be 50-75kJ/Na-mol. (4) Computer code safety analysis for tube failure of sodium/CO 2 heat exchanger. Safety calculation has been done for one double ended guillotine tube failure (1 DEG) of a helical coil type sodium/CO 2 heat exchanger. The analysis has showed that the maximum pressure in the primary sodium circuit is 0.28MPa due to a gas leak. It has been, however, below the allowed level of the primary circuit structural integrity. The void reactivity of the reactor core has

  8. MHD oxidant intermediate temperature ceramic heater study

    Science.gov (United States)

    Carlson, A. W.; Chait, I. L.; Saari, D. P.; Marksberry, C. L.

    1981-09-01

    The use of three types of directly fired ceramic heaters for preheating oxygen enriched air to an intermediate temperature of 1144K was investigated. The three types of ceramic heaters are: (1) a fixed bed, periodic flow ceramic brick regenerative heater; (2) a ceramic pebble regenerative heater. The heater design, performance and operating characteristics under conditions in which the particulate matter is not solidified are evaluated. A comparison and overall evaluation of the three types of ceramic heaters and temperature range determination at which the particulate matter in the MHD exhaust gas is estimated to be a dry powder are presented.

  9. Solar air heaters and their applications

    Science.gov (United States)

    Selcuk, M. K.

    1977-01-01

    The solar air heater appears to be the most logical choice, as far as the ultimate application of heating air to maintain a comfortable environment is concerned. One disadvantage of solar air heaters is the need for handling larger volumes of air than liquids due to the low density of air as a working substance. Another disadvantage is the low thermal capacity of air. In cases where thermal storage is needed, water is superior to air. Design variations of solar air heaters are discussed along with the calculation of the efficiency of a flat plate solar air heater, the performance of various collector types, and the applications of solar air heaters. Attention is given to collectors with nonporous absorber plates, collectors with porous absorbers, the performance of flat plate collectors with finned absorbers, a wire mesh absorber, and an overlapped glass plate air heater.

  10. Infrared Heaters

    Science.gov (United States)

    1979-01-01

    The heating units shown in the accompanying photos are Panelbloc infrared heaters, energy savers which burn little fuel in relation to their effective heat output. Produced by Bettcher Manufacturing Corporation, Cleveland, Ohio, Panelblocs are applicable to industrial or other facilities which have ceilings more than 12 feet high, such as those pictured: at left the Bare Hills Tennis Club, Baltimore, Maryland and at right, CVA Lincoln- Mercury, Gaithersburg, Maryland. The heaters are mounted high above the floor and they radiate infrared energy downward. Panelblocs do not waste energy by warming the surrounding air. Instead, they beam invisible heat rays directly to objects which absorb the radiation- people, floors, machinery and other plant equipment. All these objects in turn re-radiate the energy to the air. A key element in the Panelbloc design is a coating applied to the aluminized steel outer surface of the heater. This coating must be corrosion resistant at high temperatures and it must have high "emissivity"-the ability of a surface to emit radiant energy. The Bettcher company formerly used a porcelain coating, but it caused a production problem. Bettcher did not have the capability to apply the material in its own plant, so the heaters had to be shipped out of state for porcelainizing, which entailed extra cost. Bettcher sought a coating which could meet the specifications yet be applied in its own facilities. The company asked The Knowledge Availability Systems Center, Pittsburgh, Pennsylvania, a NASA Industrial Applications Center (IAC), for a search of NASA's files

  11. Analisis Termal High Pressure Feedwater Heater di PLTU PT. XYZ

    Directory of Open Access Journals (Sweden)

    Maria Ulfa Damayanti

    2017-01-01

    Full Text Available Abstrak- PT. XYZ mengoperasikan tiga unit Pembangkit Listrik Tenaga Uap (PLTU unit 3, 7 dan 8 berkapasitas 2.030 MegaWatt. Pada PLTU Paiton unit 7 dan 8 terdapat delapan buah feedwater heater yaitu empat buah Low Pressure Water Heater (LPWH, tiga buah High Pressure Water Heater (HPWH, dan sebuah dearator. Pada PLTU Paiton unit 7 dan 8 terdapat kerusakan pada HPWH 6 yang menyebabkan penurunan efisiensi dari siklus secara keseluruhan. Penurunan efisiensi dapat terjadi karena temperatur feedwater sebelum masuk ke boiler terlalu rendah, sehingga kalor yang dibutuhkan oleh boiler untuk memanaskan feedwater meningkat. Oleh karena itu konsumsi batubara akan meningkat dan menyebabkan terjadi kenaikan biaya operasional harian dalam sistem pembangkit. Dari data Divisi Produksi PT. XYZ Unit 7 dan 8 diperoleh spesifikasi HPWH 6, 7, dan 8 dan propertis fluida dalam HPWH 6, 7, dan 8. Data tersebut digunakan sebagai dasar analisis termal yang meliputi performa masing-masing HPH. Tahap selanjutnya dalam analisis termal adalah memvariasikan beban 25%, 50%, 75%, 100%, dan 105%. Tahap terakhir analisis adalah menghitung performa dengan variasi sumbatan (plug 5%, 10%, 15%, dan 20% sesuai dengan variasi beban. Hasil yang didapatkan dari penelitian tugas akhir ini adalah nilai effectiveness tertinggi tercapai pada pembebanan 100% serta menghasilkan pressure drop tertinggi pada pembebanan 105%, nilai effectiveness terbesar serta nilai pressure drop terkecil terjadi pada zona Condensing, serta sumbatan (plugging pada HPH akan menyebabkan penurunan nilai effectiveness dan kenaikan pressure drop sisi tube.

  12. An experimental investigation of performance of a double pass solar air heater with thermal storage medium

    Directory of Open Access Journals (Sweden)

    Ali Hafiz Muhammad

    2015-01-01

    Full Text Available The performance of a double pass solar air heater was experimentally investigated using four different configurations. First configuration contained only absorber plate whereas copper tubes filled with thermal storage medium (paraffin wax were added on the absorber plate in the second configuration. Aluminum and steel rods as thermal enhancer were inserted in the middle of paraffin wax of each tube for configurations three and four respectively. Second configuration provided useful heat for about 1.5 hours after the sunset compared to first configuration. Configurations three and four provided useful heat for about 2 hours after the sunset. The maximum efficiency of about 96% was achieved using configuration three (i.e. using Aluminum rods in the middle of copper tubes filled with paraffin wax.

  13. Parallel heater system for subsurface formations

    Science.gov (United States)

    Harris, Christopher Kelvin [Houston, TX; Karanikas, John Michael [Houston, TX; Nguyen, Scott Vinh [Houston, TX

    2011-10-25

    A heating system for a subsurface formation is disclosed. The system includes a plurality of substantially horizontally oriented or inclined heater sections located in a hydrocarbon containing layer in the formation. At least a portion of two of the heater sections are substantially parallel to each other. The ends of at least two of the heater sections in the layer are electrically coupled to a substantially horizontal, or inclined, electrical conductor oriented substantially perpendicular to the ends of the at least two heater sections.

  14. Build Your Own Solar Air Heater.

    Science.gov (United States)

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    The solar air heater is a simple device for catching some of the sun's energy to heat a home. Procedures for making and installing such a heater are presented. Included is a materials list, including tools needed for constructing the heater, sources for obtaining further details, and a list of material specifications. (JN)

  15. Design and performance of a straw tube drift chamber

    International Nuclear Information System (INIS)

    Oh, S.H.; Wesson, D.K.; Cooke, J.; Goshaw, A.T.; Robertson, W.J.; Walker, W.D.

    1991-01-01

    The design and performance of the straw drift chambers used in E735 is reported. The chambers are constructed from 2.5 cm radius aluminized mylar straw tubes with wall thickness less than 0.2 mm. Also, presented are the results of tests with 2 mm radius straw tubes. The small tube has a direct detector application at the Superconducting Super Collider. (orig.)

  16. Design and performance of a straw tube drift chamber

    Science.gov (United States)

    Oh, S. H.; Wesson, D. K.; Cooke, J.; Goshaw, A. T.; Robertson, W. J.; Walker, W. D.

    1991-06-01

    The design and performance of the straw drift chambers used in E735 is reported. The chambers are constructed from 2.5 cm radius aluminized mylar straw tubes with wall thickness less than 0.2 mm. Also, presented are the results of tests with 2 mm radius straw tubes. The small tube has a direct detector application at the Superconducting Super Collider.

  17. The effect of inlet conditions on the air side hydraulic resistance and flow maldistribution in industrial air heaters

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann-Vocke, Jonas, E-mail: jh63@waikato.ac.nz [University of Waikato, Energy Research Group, School of Science and Engineering, Private Bag 3105, Hamilton 3240 (New Zealand); Neale, James, E-mail: jamesn@waikato.ac.nz [University of Waikato, Energy Research Group, School of Science and Engineering, Private Bag 3105, Hamilton 3240 (New Zealand); Walmsley, Michael, E-mail: walmsley@waikato.ac.nz [University of Waikato, Department of Engineering, School of Science and Engineering, Private Bag 3105, Hamilton 3240 (New Zealand)

    2011-08-15

    Highlights: > Measured the effects of air heater inlet header geometry on hydraulic performance. > Measured the effects of inlet header flow maldistribution on hydraulic performance. > Inlet header flow maldistribution increases air heater system hydraulic resistance. - Abstract: Experimental system hydraulic resistance measurements on a scale air heater unit have highlighted the excessive hydraulic resistance of typical industry configurations. Both poor header inlet conditions and large header expansion angles are shown to contribute to system hydraulic resistance magnitudes 20-100% higher than suitable benchmark cases. Typical centrifugal fan system efficiencies well under 80% multiply the system resistance effects resulting in larger fan power penalties. Velocity profile measurements taken upstream and downstream of the test heat exchanger under flow maldistribution conditions provide insight into the flow maldistribution spreading caused by the heat exchanger resistance. The anisotropic resistance of the plate fin-and-tube heat exchanger is shown to result in resistance induced flow dispersion being concentrated in the axis parallel to the plate fins.

  18. The effect of inlet conditions on the air side hydraulic resistance and flow maldistribution in industrial air heaters

    International Nuclear Information System (INIS)

    Hoffmann-Vocke, Jonas; Neale, James; Walmsley, Michael

    2011-01-01

    Highlights: → Measured the effects of air heater inlet header geometry on hydraulic performance. → Measured the effects of inlet header flow maldistribution on hydraulic performance. → Inlet header flow maldistribution increases air heater system hydraulic resistance. - Abstract: Experimental system hydraulic resistance measurements on a scale air heater unit have highlighted the excessive hydraulic resistance of typical industry configurations. Both poor header inlet conditions and large header expansion angles are shown to contribute to system hydraulic resistance magnitudes 20-100% higher than suitable benchmark cases. Typical centrifugal fan system efficiencies well under 80% multiply the system resistance effects resulting in larger fan power penalties. Velocity profile measurements taken upstream and downstream of the test heat exchanger under flow maldistribution conditions provide insight into the flow maldistribution spreading caused by the heat exchanger resistance. The anisotropic resistance of the plate fin-and-tube heat exchanger is shown to result in resistance induced flow dispersion being concentrated in the axis parallel to the plate fins.

  19. High-temperature MEMS Heater Platforms: Long-term Performance of Metal and Semiconductor Heater Materials

    Directory of Open Access Journals (Sweden)

    Theodor Doll

    2006-04-01

    Full Text Available Micromachined thermal heater platforms offer low electrical power consumptionand high modulation speed, i.e. properties which are advantageous for realizing non-dispersive infrared (NDIR gas- and liquid monitoring systems. In this paper, we report oninvestigations on silicon-on-insulator (SOI based infrared (IR emitter devices heated byemploying different kinds of metallic and semiconductor heater materials. Our resultsclearly reveal the superior high-temperature performance of semiconductor over metallicheater materials. Long-term stable emitter operation in the vicinity of 1300 K could beattained using heavily antimony-doped tin dioxide (SnO2:Sb heater elements.

  20. Heater Validation for the NEXT-C Hollow Cathodes

    Science.gov (United States)

    Verhey, Timothy R.; Soulas, George C.; Mackey, Jonathan A.

    2018-01-01

    Swaged cathode heaters whose design was successfully demonstrated under a prior flight project are to be provided by the NASA Glenn Research Center for the NEXT-C ion thruster being fabricated by Aerojet Rocketdyne. Extensive requalification activities were performed to validate process controls that had to be re-established or revised because systemic changes prevented reuse of the past approaches. A development batch of heaters was successfully fabricated based on the new process controls. Acceptance and cyclic life testing of multiple discharge and neutralizer sized heaters extracted from the development batch was initiated in August, 2016, with the last heater completing testing in April, 2017. Cyclic life testing results substantially exceeded the NEXT-C thruster requirement as well as all past experience for GRC-fabricated units. The heaters demonstrated ultimate cyclic life capability of 19050 to 33500 cycles. A qualification batch of heaters is now being fabricated using the finalized process controls. A set of six heaters will be acceptance and cyclic tested to verify conformance to the behavior observed with the development heaters. The heaters for flight use will be then be provided to the contractor from the remainder of the qualification batch. This paper summarizes the fabrication process control activities and the acceptance and life testing of the development heater units.

  1. Heater for Combustible-Gas Tanks

    Science.gov (United States)

    Ingle, Walter B.

    1987-01-01

    Proposed heater for pressurizing hydrogen, oxygen, or another combustible liquid or gas sealed in immersion cup in pressurized tank. Firmly supported in finned cup, coiled rod transfers heat through liquid metal to gas tank. Heater assembly welded or bolted to tank flange.

  2. 14 CFR 29.859 - Combustion heater fire protection.

    Science.gov (United States)

    2010-01-01

    ... relief of any backfire that, if so restricted, could cause heater failure. (d) Heater controls; general. There must be means to prevent the hazardous accumulation of water or ice on or in any heater control... malfunctioning; or (ii) Allow flammable fluids or vapors to reach the heater in case of leakage. (2) Each part of...

  3. 49 CFR 179.12 - Interior heater systems.

    Science.gov (United States)

    2010-10-01

    ... Design Requirements § 179.12 Interior heater systems. (a) Interior heater systems shall be of approved design and materials. If a tank is divided into compartments, a separate system shall be provided for... 49 Transportation 2 2010-10-01 2010-10-01 false Interior heater systems. 179.12 Section 179.12...

  4. Predictive Power of Machine Learning for Optimizing Solar Water Heater Performance: The Potential Application of High-Throughput Screening

    Directory of Open Access Journals (Sweden)

    Hao Li

    2017-01-01

    Full Text Available Predicting the performance of solar water heater (SWH is challenging due to the complexity of the system. Fortunately, knowledge-based machine learning can provide a fast and precise prediction method for SWH performance. With the predictive power of machine learning models, we can further solve a more challenging question: how to cost-effectively design a high-performance SWH? Here, we summarize our recent studies and propose a general framework of SWH design using a machine learning-based high-throughput screening (HTS method. Design of water-in-glass evacuated tube solar water heater (WGET-SWH is selected as a case study to show the potential application of machine learning-based HTS to the design and optimization of solar energy systems.

  5. Electrical heaters for thermo-mechanical tests at the Stripa mine

    International Nuclear Information System (INIS)

    Burleigh, R.H.; Binnall, E.P.; DuBois, A.O.; Norgren, D.U.; Ortiz, A.R.

    1979-01-01

    Electrical heaters were installed at the Stripa mine in Sweden to simulate the heat flux expected from canisters containing nuclear waste. Three heater types were designed and fabricated: two full scale heaters, 2.6 m in length and 324 mm in diameter, supplying a maximum power output of 5 kW; eight peripheral heaters of 25 mm diameter, supplying 1.1 kW; and eight time scale heaters, one-third the size and power of the full scale heaters. The heater power can be monitored by panel meters as well as by a computer-based data acquisition system. Both the controller and the heater were designed with a high degree of redundancy in case of component failure. Auxiliary items were provided with the heaters to monitor borehole decrepitation and heater temperature, and to dewater the heater holes. This report describes the above systems and relates experience gained during testing, installation, and operation

  6. Solar water heaters in Taiwan

    International Nuclear Information System (INIS)

    Chang, K.; Lee, T.; Chung, K.

    2006-01-01

    Solar water heater has been commercialized during the last two decades in Taiwan. The government initiated the incentive programs during 1986-1991 and 2000-2004. This created an economic incentive for the end-users. The total area of solar collectors installed was more than one million square meters. The data also show that most of the solar water heaters are mainly used by the domestic sector for hot water production (about 97%). The regional popularization analysis indicates limited installation of solar water heaters in the northern district. In the eastern district and remote islands, the problems of climatic conditions and availability of localized installers/dealers are addressed. (author)

  7. Solar Water-Heater Design Package

    Science.gov (United States)

    1982-01-01

    Information on a solar domestic-hot water heater is contained in 146 page design package. System consists of solar collector, storage tanks, automatic control circuitry and auxiliary heater. Data-acquisition equipment at sites monitors day-by-day performance. Includes performance specifications, schematics, solar-collector drawings and drawings of control parts.

  8. Picking up the pieces of Super-Kamiokande

    CERN Multimedia

    Lee, T

    2002-01-01

    On Nov 12th as the tank of the SuperK detector was being refilled after routine maintenance, a shock wave calculated at 100 times greater than atmospheric pressure was triggered by the implosion of one weakened photomultiplier tube. In only five seconds the resulting chain reaction destroyed 6,665 PMTs, wrecking the detector and seriously delaying neutrino research.

  9. Outlook for solar water heaters in Taiwan

    International Nuclear Information System (INIS)

    Chang, Keh-Chin; Lee, Tsong-Sheng; Chung, Kung-Ming; Lin, Wei-Min

    2008-01-01

    The share of indigenous energy supply continuously decreases over the last two decades in Taiwan. The development and use of renewable energy sources and technologies are becoming vital for the management of energy supply and demand. For promotion of solar water heaters, the incentive programs were firstly initiated in the period of 1986-1991 and re-initiated from 2000 to the present. These programs create an economic incentive for the end users and have a drastic effect on the popularization of solar water heaters. To further promote solar water heaters during the current incentive program period, several key factors are addressed. In addition to the cost of solar water heaters and energy price index, the potential market of solar water heaters in Taiwan is associated with the climatic conditions, population structure, urbanization, building type of housing and status of new construction. (author)

  10. Outlook for solar water heaters in Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Keh-Chin [Department of Aeronautical and Astronautical Engineering, National Cheng Kung University, Kueijen, Tainan, Taiwan 711 (China); Lee, Tsong-Sheng; Chung, Kung-Ming [Aerospace Science and Technology Research Center, National Cheng Kung University, Kueijen, Tainan, Taiwan 711 (China); Lin, Wei-Min [Tainan University of Technology (China)

    2008-01-15

    The share of indigenous energy supply continuously decreases over the last two decades in Taiwan. The development and use of renewable energy sources and technologies are becoming vital for the management of energy supply and demand. For promotion of solar water heaters, the incentive programs were firstly initiated in the period of 1986-1991 and re-initiated from 2000 to the present. These programs create an economic incentive for the end users and have a drastic effect on the popularization of solar water heaters. To further promote solar water heaters during the current incentive program period, several key factors are addressed. In addition to the cost of solar water heaters and energy price index, the potential market of solar water heaters in Taiwan is associated with the climatic conditions, population structure, urbanization, building type of housing and status of new construction. (author)

  11. Buffer mass test - Heater design and operation

    International Nuclear Information System (INIS)

    Nilsson, J.; Ramqvist, G.; Pusch, R.

    1984-06-01

    The nuclear waste is assumed to be contained in cylindrical metal canisters which will be inserted in deposition holes. Heat is generated as a result of the continuing decay of the radioactive waste and in the Buffer Mass Test (BMT) the heat flux expected from such canisters was simulated by the use of six electric heaters. the heaters were constructed partly of aluminium and partly of stainless steel. They are 1520 mm in length and 380 mm in diameter, and give a maximum power output of 3000 W. The heater power can be monitored by panel meters coupled to a computer-based data acquisition system. Both the heater and the control system were manufactured with a high degree of redundancy in case of component failure. This report describes the design, construction, testing, installation and necessary tools for heater installation and dismantling operation. (author)

  12. Shape Modeling of a Concentric-tube Continuum Robot

    DEFF Research Database (Denmark)

    Bai, Shaoping; Xing, Charles Chuhao

    2012-01-01

    Concentric-tube continuum robots feature with simple and compact structures and have a great potential in medical applications. The paper is concerned with the shape modeling of a type of concentric-tube continuum robot built with a collection of super-elastic NiTiNol tubes. The mechanics...... is modeled on the basis of energy approach for both the in-plane and out-plane cases. The torsional influences on the shape of the concentric-tube robots are considered. An experimental device was build for the model validation. The results of simulation and experiments are included and analyzed....

  13. Numerical investigation on effect of riser diameter and inclination on system parameters in a two-phase closed loop thermosyphon solar water heater

    International Nuclear Information System (INIS)

    Aung, Nay Zar; Li, Songjing

    2013-01-01

    Highlights: • Optimum inclination for maximum heat flux changes with latitude of location. • Optimum inclination for maximum heat flux also changes local solar time. • Maximum flow rate increases with increasing of riser tube size. • Maximum mass flow rate is obtained at different inclinations for different risers. • Length of two-phase region depends on inclination angles but not riser tube size. - Abstract: In this work, the effect of riser diameter and its inclination angle on system parameters in a two-phase closed loop thermosyphon solar water heater has been numerically investigated. Here, receivable heat flux by the collector, circulating mass flow rate, driving pressure, total pressure drop, heat transfer coefficient in risers and collector efficiency are defined as system parameters. For this aim, a model of two-phase thermosyphon solar water heater that is acceptable for various inclinations is presented and variations of riser diameter and inclination are considered. The riser tube size is varied from 1.25 cm to 2.5 cm with inclination range 2–75°. The system absolute pressure is set as 3567 Pa and water is chosen as working fluid. The results show that higher inclination angle is required for higher latitude location to obtain maximum solar heat flux. At local solar noon of 21.996 north latitude, the optimum inclination angle increases in the range of 24–44° with increasing of riser diameter giving maximum circulating mass flow rate from 0.02288 kg/s to 0.03876 kg/s. The longer two-phase heat transfer characteristics can be obtained at smaller inclination angles and mass flow rate for all riser tube sizes. Therefore, it is observed that the optimum inclination angles and diameters for solar heat flux, circulating mass flow rate and heat transfer coefficient in two-phase thermosyphon systemdo not coincide. From this work, better understanding and useful information are provided for constructing two-phase thermosyphon solar heaters

  14. Assessment of radioisotope heaters for remote terrestrial applications

    International Nuclear Information System (INIS)

    Uherka, K.L.

    1987-05-01

    This paper examines the feasibility of using radioisotope byproducts for special heating applications at remote sites in Alaska and other cold regions. The investigation included assessment of candidate radioisotope materials for heater applications, identification of the most promising cold region applications, evaluation of key technical issues and implementation constraints, and development of conceptual heater designs for candidate applications. Strontium-90 (Sr-90) was selected as the most viable fuel for radioisotopic heaters used in terrestrial applications. Opportunities for the application of radioisotopic heaters were determined through site visits to representative Alaska installations. Candidate heater applications included water storage tanks, sludge digesters, sewage lagoons, water piping systems, well-head pumping stations, emergency shelters, and fuel storage tank deicers. Radioisotopic heaters for water storage tank freeze-up protection and for enhancement of biological waste treatment processes at remote sites were selected as the most promising applications

  15. Experimental observations on uniaxial whole-life transformation ratchetting and low-cycle stress fatigue of super-elastic NiTi shape memory alloy micro-tubes

    Science.gov (United States)

    Song, Di; Kang, Guozheng; Kan, Qianhua; Yu, Chao; Zhang, Chuanzeng

    2015-07-01

    In this work, the low-cycle fatigue failure of super-elastic NiTi shape memory alloy micro-tubes with a wall thickness of 150 μm is investigated by uniaxial stress-controlled cyclic tests at human body temperature 310 K. The effects of mean stress, peak stress, and stress amplitude on the uniaxial whole-life transformation ratchetting and fatigue failure of the NiTi alloy are observed. It is concluded that the fatigue life depends significantly on the stress levels, and the extent of martensite transformation and its reverse play an important role in determining the fatigue life. High peak stress or complete martensite transformation shortens the fatigue life.

  16. Experimental observations on uniaxial whole-life transformation ratchetting and low-cycle stress fatigue of super-elastic NiTi shape memory alloy micro-tubes

    International Nuclear Information System (INIS)

    Song, Di; Kang, Guozheng; Kan, Qianhua; Yu, Chao; Zhang, Chuanzeng

    2015-01-01

    In this work, the low-cycle fatigue failure of super-elastic NiTi shape memory alloy micro-tubes with a wall thickness of 150 μm is investigated by uniaxial stress-controlled cyclic tests at human body temperature 310 K. The effects of mean stress, peak stress, and stress amplitude on the uniaxial whole-life transformation ratchetting and fatigue failure of the NiTi alloy are observed. It is concluded that the fatigue life depends significantly on the stress levels, and the extent of martensite transformation and its reverse play an important role in determining the fatigue life. High peak stress or complete martensite transformation shortens the fatigue life. (paper)

  17. Particulate matter sensor with a heater

    Science.gov (United States)

    Hall, Matthew [Austin, TX

    2011-08-16

    An apparatus to detect particulate matter. The apparatus includes a sensor electrode, a shroud, and a heater. The electrode measures a chemical composition within an exhaust stream. The shroud surrounds at least a portion of the sensor electrode, exclusive of a distal end of the sensor electrode exposed to the exhaust stream. The shroud defines an air gap between the sensor electrode and the shroud and an opening toward the distal end of the sensor electrode. The heater is mounted relative to the sensor electrode. The heater burns off particulate matter in the air gap between the sensor electrode and the shroud.

  18. Strategy Guideline: Proper Water Heater Selection

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, M. [Alliance for Residential Building Innovation, Davis, CA (United States); Springer, D. [Alliance for Residential Building Innovation, Davis, CA (United States); German, A. [Alliance for Residential Building Innovation, Davis, CA (United States); Staller, J. [Alliance for Residential Building Innovation, Davis, CA (United States); Zhang, Y. [Alliance for Residential Building Innovation, Davis, CA (United States)

    2015-04-01

    This Strategy Guideline on proper water heater selection was developed by the Building America team Alliance for Residential Building Innovation to provide step-by-step procedures for evaluating preferred cost-effective options for energy efficient water heater alternatives based on local utility rates, climate, and anticipated loads.

  19. Strategy Guideline. Proper Water Heater Selection

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, M. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Springer, D. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); German, A. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Staller, J. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Zhang, Y. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2015-04-09

    This Strategy Guideline on proper water heater selection was developed by the Building America team Alliance for Residential Building Innovation to provide step-by-step procedures for evaluating preferred cost-effective options for energy efficient water heater alternatives based on local utility rates, climate, and anticipated loads.

  20. A prototype construction of bearing heater system

    International Nuclear Information System (INIS)

    Firman Silitonga

    2007-01-01

    A bearing heater system has been successfully constructed using transformer-like method of 1000 VA power, 220 V primary voltage, and 50 Hz electrical frequency. The bearing heater consists of primary coil 230 turns, U type and bar-type iron core with 36 cm 2 , 9 cm 2 ,and 3 cm 2 cross-section, and electrical isolation. The bearing heater is used to enlarge the diameter of the bearing so that it can be easily fixed on an electric motor shaft during replacement because the heating is conducted by treated the bearing as a secondary coil of a transformer. This bearing heater can be used for bearing with 3 and 6 cm of inner diameter and 12 cm of maximum outside diameter. (author)

  1. Technical support document: Energy efficiency standards for consumer products: Room air conditioners, water heaters, direct heating equipment, mobile home furnaces, kitchen ranges and ovens, pool heaters, fluorescent lamp ballasts and television sets. Volume 3, Water heaters, pool heaters, direct heating equipment, and mobile home furnaces

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    This is Volume 3 in a series of documents on energy efficiency of consumer products. This volume discusses energy efficiency of water heaters. Water heaters are defined by NAECA as products that utilize oil, gas, or electricity to heat potable water for use outside the heater upon demand. These are major appliances, which use a large portion (18% on average) of total energy consumed per household (1). They differ from most other appliances in that they are usually installed in obscure locations as part of the plumbing and are ignored until they fail. Residential water heaters are capable of heating water up to 180{degrees}F, although the setpoints are usually set lower.

  2. Feedwater heater

    International Nuclear Information System (INIS)

    Murata, Shigeto; Minato, Akihiko; Yokomizo, Osamu; Masuhara, Yasuhiro.

    1991-01-01

    The present invention concerns a feedwater heater for a BWR type reactor. A cylinder is fit into the lower portion of a drain inlet pipe, to which drain water inflows from a turbine, and a disk is disposed to the lower end of the cylinder vertically to the axis of the cylinder, to constitute a drain water dispersing mechanism. Drain water inflown from the drain inlet pipe is fallen in the cylinder and collides against the disk. The collided drain water is splashed horizontally by its kinetic energy to reach the heat transfer pipe and conducts heat exchange. In this case, the drain water is converted into fine droplets by the collision against the disk and scattered in a wide range in the heater. As a result, sensible heat in the drain water can be transferred to feedwater effectively. Then, even the heat energy of the drain water can be utilized effectively for heat exchange, to improve the heat exchange efficiency. (I.N.)

  3. Super differential forms on super Riemann surfaces

    International Nuclear Information System (INIS)

    Konisi, Gaku; Takahasi, Wataru; Saito, Takesi.

    1994-01-01

    Line integral on the super Riemann surface is discussed. A 'super differential operator' which possesses both properties of differential and of differential operator is proposed. With this 'super differential operator' a new theory of differential form on the super Riemann surface is constructed. We call 'the new differentials on the super Riemann surface' 'the super differentials'. As the applications of our theory, the existency theorems of singular 'super differentials' such as 'super abelian differentials of the 3rd kind' and of a super projective connection are examined. (author)

  4. Architecture for Absorption Based Heaters

    Science.gov (United States)

    Moghaddam, Saeed; Chugh, Devesh

    2018-04-24

    An absorption based heater is constructed on a fluid barrier heat exchanging plate such that it requires little space in a structure. The absorption based heater has a desorber, heat exchanger, and absorber sequentially placed on the fluid barrier heat exchanging plate. The vapor exchange faces of the desorber and the absorber are covered by a vapor permeable membrane that is permeable to a refrigerant vapor but impermeable to an absorbent. A process fluid flows on the side of the fluid barrier heat exchanging plate opposite the vapor exchange face through the absorber and subsequently through the heat exchanger. The absorption based heater can include a second plate with a condenser situated parallel to the fluid barrier heat exchanging plate and opposing the desorber for condensation of the refrigerant for additional heating of the process fluid.

  5. Probable causes of damage of heat-exchange tubes of low-pressure-exchanges of PND-3 type and repair methods

    Science.gov (United States)

    Trifonov, N. N.; Esin, S. B.; Nikolaenkova, E. K.; Sukhorukov, Yu. G.; Svyatkin, F. A.; Sintsova, T. G.; Modestov, V. S.

    2017-08-01

    The structures of low-pressure heaters (LPH), which are installed at nuclear power plants with the K-1000-60/1500 type turbine plants are considered. It was revealed that only the PND-3 type low-pressure heaters have the damages of the heat exchange tubes. For a short operation life, the number of the damaged heat-exchange tubes of PND-3 is approximately 50 pcs for Kalinin NPP and 100-150 pcs for Balakovo NPP. The low-pressure heaters were manufactured at AO Ural Plant of Chemical Machine-Building "Uralkhimmash," OAO Taganrog Boiler-Making Works "Krasny Kotelshchik," and Vitkovice Machinery Group, but the damage nature of the heat-exchange tubes is identical for all PND-3. The damages occur in the place of passage of the heat exchange tubes through the first, the second, and the third partitions over the lower tube plate (the first path of the turbine condensate). Hydraulic shocks can be one of the possible causes of the damage of the heat-exchange tubes of PND-3. The analysis of the average thermal and dynamic loads of the tube systems of PND-1-PND-4 revealed that PND-3 by the thermal power are loaded 1.4-1.6 times and by the dynamic effects are loaded 1.8-2.0 times more than the remaining LPHs. Another possible cause of damage can be the cascaded drain of the separate into PND-4 and then through the drainage heat exchange into PND-3. An additional factor can be the structure of the condensate drainage unit. The advanced system of the heating steam flow and pumping scheme of the separate drain using the existing drainage pumps of PND-3 for K-1000-60/1500 turbine plants for Balakovo and Kalinin NPPs were proposed. The considered decisions make it possible to reduce the flow rate of the heating steam condensate from PND-3 into PND-4 and the speed of the heating steam in the tube space of PND-3 and eliminate the occurrence of hydraulic shocks and damages of the heat exchanger tubes.

  6. Energy discharge heater power supply

    International Nuclear Information System (INIS)

    Jaskierny, W.

    1992-11-01

    The heater power supply is intended to supply capacitively stored,energy to embedded heater strips in cryo magnets. The amount of energy can be controlled by setting different charge different capacitor values. Two chassis' can be operated in series or interlocks are provided. The charge voltage, number of capacitors pulse can be monitored. There and dual channel has two discharge supplies in one chassis. This report reviews the characteristics of this power supply further

  7. Simple Retrofit High-Efficiency Natural Gas Water Heater Field Test

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, Ben [NorthernSTAR, St. Paul, MN (United States)

    2017-03-01

    High-performance water heaters are typically more time consuming and costly to install in retrofit applications, making high performance water heaters difficult to justify economically. However, recent advancements in high performance water heaters have targeted the retrofit market, simplifying installations and reducing costs. Four high efficiency natural gas water heaters designed specifically for retrofit applications were installed in single-family homes along with detailed monitoring systems to characterize their savings potential, their installed efficiencies, and their ability to meet household demands. The water heaters tested for this project were designed to improve the cost-effectiveness and increase market penetration of high efficiency water heaters in the residential retrofit market. The retrofit high efficiency water heaters achieved their goal of reducing costs, maintaining savings potential and installed efficiency of other high efficiency water heaters, and meeting the necessary capacity in order to improve cost-effectiveness. However, the improvements were not sufficient to achieve simple paybacks of less than ten years for the incremental cost compared to a minimum efficiency heater. Significant changes would be necessary to reduce the simple payback to six years or less. Annual energy savings in the range of $200 would also reduce paybacks to less than six years. These energy savings would require either significantly higher fuel costs (greater than $1.50 per therm) or very high usage (around 120 gallons per day). For current incremental costs, the water heater efficiency would need to be similar to that of a heat pump water heater to deliver a six year payback.

  8. Simple Retrofit High-Efficiency Natural Gas Water Heater Field Test

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, Ben [NorthernSTAR, St. Paul, MN (United States)

    2017-03-28

    High performance water heaters are typically more time consuming and costly to install in retrofit applications, making high performance water heaters difficult to justify economically. However, recent advancements in high performance water heaters have targeted the retrofit market, simplifying installations and reducing costs. Four high efficiency natural gas water heaters designed specifically for retrofit applications were installed in single-family homes along with detailed monitoring systems to characterize their savings potential, their installed efficiencies, and their ability to meet household demands. The water heaters tested for this project were designed to improve the cost-effectiveness and increase market penetration of high efficiency water heaters in the residential retrofit market. The retrofit high efficiency water heaters achieved their goal of reducing costs, maintaining savings potential and installed efficiency of other high efficiency water heaters, and meeting the necessary capacity in order to improve cost-effectiveness. However, the improvements were not sufficient to achieve simple paybacks of less than ten years for the incremental cost compared to a minimum efficiency heater. Significant changes would be necessary to reduce the simple payback to six years or less. Annual energy savings in the range of $200 would also reduce paybacks to less than six years. These energy savings would require either significantly higher fuel costs (greater than $1.50 per therm) or very high usage (around 120 gallons per day). For current incremental costs, the water heater efficiency would need to be similar to that of a heat pump water heater to deliver a six year payback.

  9. Computational Fluid Dynamics Model for Solar Thermal Storage Tanks with Helical Jacket Heater and Upper Spiral Coil Heater

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Seung Man [Seoul Nat' l Univ., Seoul (Korea, Republic of); Zhong, Yiming; Nam, Jin Hyun [Daegu Univ., Daegu (Korea, Republic of); Chung, Jae Dong [Sejong Univ., Seoul (Korea, Republic of); Hong, Hiki [Kyung Hee Univ., Seoul (Korea, Republic of)

    2013-04-15

    In a solar domestic hot water (Shadow) system, solar energy is collected using collector panels, transferred to a circulating heat transfer fluid (brine), and eventually stored in a thermal storage tank (Test) as hot water. In this study, a computational fluid dynamics (CAD) model was developed to predict the solar thermal energy storage in a hybrid type Test equipped with a helical jacket heater (mantle heat exchanger) and an immersed spiral coil heater. The helical jacket heater, which is the brine flow path attached to the side wall of a Test, has advantages including simple system design, low brine flow rate, and enhanced thermal stratification. In addition, the spiral coil heater further enhances the thermal performance and thermal stratification of the Test. The developed model was validated by the good agreement between the CAD results and the experimental results performed with the hybrid-type Test in Shadow settings.

  10. Computational Fluid Dynamics Model for Solar Thermal Storage Tanks with Helical Jacket Heater and Upper Spiral Coil Heater

    International Nuclear Information System (INIS)

    Baek, Seung Man; Zhong, Yiming; Nam, Jin Hyun; Chung, Jae Dong; Hong, Hiki

    2013-01-01

    In a solar domestic hot water (Shadow) system, solar energy is collected using collector panels, transferred to a circulating heat transfer fluid (brine), and eventually stored in a thermal storage tank (Test) as hot water. In this study, a computational fluid dynamics (CAD) model was developed to predict the solar thermal energy storage in a hybrid type Test equipped with a helical jacket heater (mantle heat exchanger) and an immersed spiral coil heater. The helical jacket heater, which is the brine flow path attached to the side wall of a Test, has advantages including simple system design, low brine flow rate, and enhanced thermal stratification. In addition, the spiral coil heater further enhances the thermal performance and thermal stratification of the Test. The developed model was validated by the good agreement between the CAD results and the experimental results performed with the hybrid-type Test in Shadow settings

  11. Pressure tube reactors

    International Nuclear Information System (INIS)

    Natori, Hisahide.

    1981-01-01

    Purpose: To improve the electrical power generation efficiency in a pressure tube reactor in which coolants and moderators are separated by feedwater heating with heat generated in heavy water and by decreasing the amount of steams to be extracted from the turbine. Constitution: A heat exchanger and a heavy water cooler are additionally provided to a conventional pressure tube reactor. The heat exchanger is disposed at the pre-stage of a low pressure feedwater heater series. High temperature heavy water heated in the core is passed through the primary side of the exchanger, while feedwater is passed through the secondary side. The cooler is disposed on the downstream of the heat exchanger in the flowing direction of the heavy water, in which heavy water from the heat exchanger is passed through the primary side and the auxiliary equipment cooling water is sent to the secondary side thereof. Accordingly, since extraction of heating steams is no more necessary, the steam can be used for the rotation of the turbine, and the electrical power generation efficiency can be improved. (Seki, T.)

  12. Process and device for replacing heater in PWR pressurizer

    International Nuclear Information System (INIS)

    Gente, D.; Giron, M.

    1990-01-01

    To assure the tight fixation of replacing heater on a pressurizer penetration sleeve, a gas metal-arc welding single pass is executed. A tubular shaft is fixed over end of heater projecting from penetration sleeve. Over shaft is fixed tubular support for the torch which can rotate about axis of support axis heater. Welding torch and welding wire feeder roll are rotated in synchronisation by appropriate motors. Weld is made in single pass round periphery of heater and penetration sleeve [fr

  13. Heater improves cold-temperature capacity of silver-cadmium batteries

    Science.gov (United States)

    Webster, W. H., Jr.; Jackson, T. P.

    1975-01-01

    Eight heaters are included in 14-cell package to provide 14-Vdc. Each heater is 11-ohm self-adhesive strip placed across broad face of each pair of cells. They are installed before cells are wired. Heaters are in series and are connected through pair of redundant thermostats.

  14. Multi-step heater deployment in a subsurface formation

    Science.gov (United States)

    Mason, Stanley Leroy [Allen, TX

    2012-04-03

    A method for installing a horizontal or inclined subsurface heater includes placing a heating section of a heater in a horizontal or inclined section of a wellbore with an installation tool. The tool is uncoupled from the heating section. A lead in section is mechanically and electrically coupled to the heating section of the heater. The lead-in section is located in an angled or vertical section of the wellbore.

  15. Life cycle management, design review, and condition assessment of feedwater heaters

    Energy Technology Data Exchange (ETDEWEB)

    Gammage, D.; Idvorian, N. [Babcock & Wilcox Canada Ltd., Cambridge, Ontario (Canada)

    2012-07-01

    OPEX from both the Nuclear and Fossil Power Generation Industries shows that Feedwater Heaters (FWHs) are subject to several degradation mechanisms and that this degradation commonly leads to replacement of these vessels in order to ensure reliable, efficient operation of the plants. Loss of feedwater heating will impact plant thermal performance. In response to inspection results showing on-going degradation as well as other factors, B&W Canada completed a project in conjunction with a US PWR utility to review the design, condition, and Life Cycle Management of their FWHs. This project involved a multi-disciplinary approach in order to consider all aspects of the FWHs in order to provide insight into the Life Cycle Management Plan (LCMP) so that the FWHs can be operated reliably into the future and so that adequate inspections can be conducted in order to produce a detailed condition assessment. The utility was interested in evaluating their FWH LCMP to determine if it was adequate in its requirements to enable reliable, leak-free operation of their FWH equipment. As inputs to this evaluation, it was required that B&W Canada evaluate both confirmed and plausible degradation mechanisms. They also required that the thermal hydraulic and functional design be evaluated for their particular FWHs. It was important to also incorporate industry OPEX in order to provide proper trending information for tube plugging. Out of this evaluation there were several findings and recommendations that could be used to update the utilities’ LCMP as it was apparent that the current version may not be truly reflective of the current condition of the equipment or of current industry OPEX of such FWHs. Several recommendations came from this evaluation, the most significant were: • Performing thermal/hydraulic, FIV (flow-induced vibration), and tube/shell interaction calculations to determine how the FWHs operate and how their performance can change over time as a function of tube

  16. Life cycle management, design review, and condition assessment of feedwater heaters

    International Nuclear Information System (INIS)

    Gammage, D.; Idvorian, N.

    2012-01-01

    OPEX from both the Nuclear and Fossil Power Generation Industries shows that Feedwater Heaters (FWHs) are subject to several degradation mechanisms and that this degradation commonly leads to replacement of these vessels in order to ensure reliable, efficient operation of the plants. Loss of feedwater heating will impact plant thermal performance. In response to inspection results showing on-going degradation as well as other factors, B&W Canada completed a project in conjunction with a US PWR utility to review the design, condition, and Life Cycle Management of their FWHs. This project involved a multi-disciplinary approach in order to consider all aspects of the FWHs in order to provide insight into the Life Cycle Management Plan (LCMP) so that the FWHs can be operated reliably into the future and so that adequate inspections can be conducted in order to produce a detailed condition assessment. The utility was interested in evaluating their FWH LCMP to determine if it was adequate in its requirements to enable reliable, leak-free operation of their FWH equipment. As inputs to this evaluation, it was required that B&W Canada evaluate both confirmed and plausible degradation mechanisms. They also required that the thermal hydraulic and functional design be evaluated for their particular FWHs. It was important to also incorporate industry OPEX in order to provide proper trending information for tube plugging. Out of this evaluation there were several findings and recommendations that could be used to update the utilities’ LCMP as it was apparent that the current version may not be truly reflective of the current condition of the equipment or of current industry OPEX of such FWHs. Several recommendations came from this evaluation, the most significant were: • Performing thermal/hydraulic, FIV (flow-induced vibration), and tube/shell interaction calculations to determine how the FWHs operate and how their performance can change over time as a function of tube

  17. Heater experiments in the Climax Stock, Nevada Test Site

    International Nuclear Information System (INIS)

    Ramspott, L.; Ballou, L.

    1977-01-01

    The Climax Stock is a composite granitic intrusive at the Nevada Test Site, with an existing shaft and an open drift about 1400 ft. below the surface. In September 1977, the Lawrence Livermore Laboratory plans to operate three in-situ heater experiments in this area. The first experiment consists of a single heater surrounded by thermocouples at distances of from 1/10 to 5 meters. The close spacing will scale down the time required for useful thermal measurements. The heater, which is 3 meters long and capable of about 3 kW, will be energized for a month, turned off for a month, and the cycle repeated. The rock surface temperature in the heater hole is not expected to exceed 500 to 600 0 C, and the temperature beyond 0.1 m into the rock is not expected to exceed 400 0 C. Measurements will be taken during all four months. These measurements will be compared with numerical simulations to determine the thermal properties of the medium. The second experiment, also involving only a single heater, will be more completely instrumented to include the measurement of permeability, rock displacement, stress/strain, and possibly acoustic emission measurements. The scale of the experiment will be larger, and the heater will be energized continuously for about 4 months. The third test in the series is envisioned to be a scale-up of the second, except that multiple heaters will be used. These heaters will be energized for about a year. They will be arranged around a pillar structure left in the room to obtain information on mine stability in the presence of multiple heaters

  18. Baking system for ports of experimental advanced super-conducting tokamak vacuum vessel and thermal stress analysis

    International Nuclear Information System (INIS)

    Cheng Yali; Bao Liman; Song Yuntao; Yao Damao

    2006-01-01

    The baking system of Experimental Advanced Super-Conducting Toakamk (EAST) vacuum vessel is necessary to obtain the baking temperature of 150 degree C. In order to define suitable alloy heaters and achieve their reasonable layouts, thermal analysis was carried out with ANSYS code. The analysis results indicate that the temperature distribution and thermal stress of most parts of EAST vacuum vessel ports are uniform, satisfied for the requirement, and are safe based on ASME criterion. Feasible idea on reducing the stress focus is also considered. (authors)

  19. A Study on the Uncertainty of Flow-Induced Vibration in a Cross Flow over Staggered Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji-Su; Park, Jong-Woon [Dongguk univ, Gyeong Ju (Korea, Republic of); Choi, Hyeon-Kyeong [HanNam University, Daejeon (Korea, Republic of)

    2015-05-15

    Cross-flow in many support columns of very high temperature reactor (VHTR) lower plenum would have FIV issues under high speed flow jetting from the core. For a group of multiple circular cylinders subjected to a cross-flow, three types of potential vibration mechanisms may exist: (1) Vortex-induced vibration (VIV), (2) Fluid-elastic vibration (FEV) and (3) Turbulence-induced vibration (TIV). Kevalahan studied the free vibration of circular cylinders in a tightly packed periodic square inline array of cylinders. Pandey et al. studied the flue gas flow distribution in the Low Temperature Super Heater (LTSH) tube bundles situated in second pass of a utility boiler and the phenomenon of flow induced vibration. Nakamura et al. studied flow instability of cylinder arrays resembling U-bend tubes in steam generators. The FIV evaluation is usually performed with computational fluid dynamic (CFD) analysis to obtain unknown frequency of oscillation of the multiple objects under turbulent flow and thus the uncertainty residing in the turbulence model used should be quantified. In this paper, potential FIV uncertainty arising from the turbulence phenomena are evaluated for a typical cross flow through staggered tube bundles resembling the VHTR lower plenum support columns. Flow induced vibration (FIV) is one of the important mechanical and fatigue issues in nuclear systems. Especially, cross-flow in many support structures of VHTR lower plenum would have FIV issues under highly turbulent jet flows from the core. The results show that the effect of turbulence parameters on FIV is not negligible and the uncertainty is 5 to 10%. Present method can be applied to future FIV evaluations of nuclear systems. More extensive studies on flow induced vibration in a plant scale by using more rigorous computational methods are under way.

  20. Feasibility study on the guided wave technique for condenser tube in NPP

    International Nuclear Information System (INIS)

    Choi, Sung Nam; Kim, Young Ho; Kim, Hyung Nam; Yoo, Hyun Joo; Hwang, W. G.

    2004-01-01

    The condenser tube is examined by the eddy current test (ECT) method to identify the integrity of the nuclear power plant. Because ECT probe is moved through the tube inside to identify flaws, the ECT probe should be exchanged periodically due to the wear of probe surface in order to remove the noise form the ECT signal. Moreover, it is impossible to examine the tube by ECT method because the ECT probe can not move through the inside due to the deformation such as dent. Recently, the theory of guided wave was established and the equipment applying the theory has been actively developed so as to overcome the limitation of ECT method for the tube inspection of heater exchanger in nuclear power plant. The object of this study is to know the feasibility of applying the guided wave technique to condenser tube in NPP

  1. The development of an auto-sealing system using an electrically shrinkable tube under a low-pressure condition

    Energy Technology Data Exchange (ETDEWEB)

    Okano, Yoshihiro; Kitagawa, Takao [NKK Corp, Tsu, Mie (Japan); Shoji, Norio [NKK Corp., Yokohama (Japan); Namioka, Toshiyuki [Nippon Kokan Koji Corp., Yokohama (Japan). Research and Development Dept.; Komura, Minoru [Nitto Denko Corp., Fukaya, Saitama (Japan)

    1997-04-01

    This article describes the development of a system to create high quality, automatic sealing of field joints of polyethylene coated pipelines. The system uses a combination of an electrically heated shrinkable tube and a low-pressure chamber. The self-heating shrinkable tube includes electric heater wires that heat when connected to electricity. A method was developed to eliminate air trapped between the tube and the steel pipe by shrinking the tube under a low-pressure condition. The low-pressure condition was automatic and easily attained by using a vacuum chamber. It was verified that the system produced high quality sealing of the field joints.

  2. Analysis of polymer foil heaters as infrared radiation sources

    International Nuclear Information System (INIS)

    Witek, Krzysztof; Piotrowski, Tadeusz; Skwarek, Agata

    2012-01-01

    Infrared radiation as a heat source is used in many fields. In particular, the positive effect of far-infrared radiation on living organisms has been observed. This paper presents two technological solutions for infrared heater production using polymer-silver and polymer-carbon pastes screenprinted on foil substrates. The purpose of this work was the identification of polymer layers as a specific frequency range IR radiation sources. The characterization of the heaters was determined mainly by measurement of the surface temperature distribution using a thermovision camera and the spectral characteristics were determined using a special measuring system. Basic parameters obtained for both, polymer silver and polymer carbon heaters were similar and were as follows: power rating of 10–12 W/dm 2 , continuous working surface temperature of 80–90 °C, temperature coefficient of resistance (TCR) about +900 ppm/K for polymer-carbon heater and about +2000 ppm/K for polymer-silver, maximum radiation intensity in the wavelength range of 6–14 μm with top intensity at 8.5 μm and heating time about 20 min. For comparison purposes, commercial panel heater was tested. The results show that the characteristics of infrared polymer heaters are similar to the characteristics of the commercial heater, so they can be taken into consideration as the alternative infrared radiation sources.

  3. Effects of heater location and heater size on the natural convection heat transfer in a square cavity using finite element method

    Energy Technology Data Exchange (ETDEWEB)

    Ngo, Ich Long; Byon, Chan [Yeungnam University, Gyeongsan (Korea, Republic of)

    2015-07-15

    Finite element method was used to investigate the effects of heater location and heater size on the natural convection heat transfer in a 2D square cavity heated partially or fully from below and cooled from above. Rayleigh number (5 X 10{sup 2} ≤ Ra ≤ 5X10{sup 5}), heater size (0.1 ≤ D/L ≤ 1.0), and heater location (0.1 ≤ x{sub h}/L ≤ 0.5) were considered. Numerical results indicated that the average Nusselt number (Nu{sub m}) increases as the heater size decreases. In addition, when x{sub h}/L is less than 0.4, Nu{sub m} increases as x{sub h}/L increases, and Num decreases again for a larger value of x{sub h}/L. However, this trend changes when Ra is less than 10{sup 4}, suggesting that Nu{sub m} attains its maximum value at the region close to the bottom surface center. This study aims to gain insight into the behaviors of natural convection in order to potentially improve internal natural convection heat transfer.

  4. Householders' use of storage heaters

    Energy Technology Data Exchange (ETDEWEB)

    Crawshaw, C M; Williams, D I; Steele, L M

    1986-11-01

    An investigation into the understanding and use of storage heater controls was carried out. The general level of satisfaction with storage heating was high (90%) and most people had a reasonable idea of how the system works, what the controls do and of the tariff costs. However, the study did find substantial areas of ignorance; 37% could not say what controls their heater had and 15% did not know what tariff they were on. This lack of knowledge may prevent users getting the best performance from their heating system, resulting in discomfort and large bills.

  5. Evaluation of the Effect of Tube Pitch and Surface Alterations on Temperature Field at Sprinkled Tube Bundle

    Directory of Open Access Journals (Sweden)

    Kracík Petr

    2015-01-01

    Full Text Available Water flowing on a sprinkled tube bundle forms three basic modes: It is the Droplet mode (liquid drips from one tube to another, the Jet mode (with an increasing flow rate droplets merge into a column and the Membrane (Sheet mode (with further increasing of falling film liquid flow rate columns merge and create sheets between the tubes. With sufficient flow rate sheets merge at this state and the tube bundle is completely covered by a thin liquid film. There are several factors influencing the individual mode types as well as heat transfer. Beside the above mentioned falling film liquid flow rate they are for instance tube diameters, tube pitches in a tube bundle or a physical condition of a falling film liquid. This paper presents a summary of data measured at atmospheric pressure at a tube bundle consisting of copper tubes of 12 milimeters diameter and of the studied tube length one meter. The tubes are positioned horizontally one above another with the tested pitches of 15, 20, 25 and 30 mm and there is a distribution tube placed above them with water flowing out. The thermal gradient of 15–40 has been tested with all pitches where the falling film liquid’s temperature at the inlet of the distribution tube was 15 °C. The liquid was heated during the flow through the exchanger and the temperature of the sprinkled (heater liquid at the inlet of the exchanger with a constant flow rate about 7.2 litres per minute was 40 °C. The tested flow of the falling film liquid ranged from 1.0 to 13.0 litres per minute. Sequences of 180 exposures have been recorded in partial flow rate stages by thermographic camera with record frequency of 30 Hz which were consequently assessed using the Matlab programme. This paper presents results achieved at the above mentioned pitches and at three types of tube bundle surfaces.

  6. Infrared transparent graphene heater for silicon photonic integrated circuits.

    Science.gov (United States)

    Schall, Daniel; Mohsin, Muhammad; Sagade, Abhay A; Otto, Martin; Chmielak, Bartos; Suckow, Stephan; Giesecke, Anna Lena; Neumaier, Daniel; Kurz, Heinrich

    2016-04-18

    Thermo-optical tuning of the refractive index is one of the pivotal operations performed in integrated silicon photonic circuits for thermal stabilization, compensation of fabrication tolerances, and implementation of photonic operations. Currently, heaters based on metal wires provide the temperature control in the silicon waveguide. The strong interaction of metal and light, however, necessitates a certain gap between the heater and the photonic structure to avoid significant transmission loss. Here we present a graphene heater that overcomes this constraint and enables an energy efficient tuning of the refractive index. We achieve a tuning power as low as 22 mW per free spectral range and fast response time of 3 µs, outperforming metal based waveguide heaters. Simulations support the experimental results and suggest that for graphene heaters the spacing to the silicon can be further reduced yielding the best possible energy efficiency and operation speed.

  7. Application of the Guided Wave Technique to the Heat Exchanger Tube in NPP

    International Nuclear Information System (INIS)

    Yang, Dong Soon; Kim, Hyung Nam; Yoo, Hyun Joo

    2005-01-01

    The heat exchanger tube is examined by the method of eddy current test(ECT) to identify the integrity of the nuclear power plant. Because ECT probe is moved through the tube inside to identify flaws, the ECT probe should be exchanged periodically due to the wear of probe surface in order to remove the noise form the ECT signal. Moreover, it is impossible to examine the tube by ECT method because the ECT probe can not move through the inside due to the deformation such as dent. Recently, the theory of guided wave was established and the equipment applying the theory has been actively developed so as to overcome the limitation of ECT method for the tube inspection of heater exchanger in nuclear power plant. The object of this study is to know the application of the guided wave technique to heat exchanger tube in NPP

  8. A theoretical model for flow boiling CHF from short concave heaters

    International Nuclear Information System (INIS)

    Galloway, J.E.; Mudawar, I.

    1995-01-01

    Experiments were performed to enable the development of a new theoretical mode for the enhancement in CHF commonly observed with flow boiling on concave heater as compared to straight heaters. High-speed video imaging and photomicrography were employed to capture the trigger mechanism for CHF each type heater. A wavy vapor layer was observed to engulf the heater surface in each case, permitting liquid access to the surface only in regions where depressions (troughs) in the liquid vapor interface made contact with the surface. CHF in each case occurred when the pressure force exerted upon the wavy vapor-liquid inter ace in the contact region could no longer overcome the momentum of the vapor produced in these regional. Shorter interfacial wavelengths with greater curvature were measured on the curve, heater than on the straight heater, promoting a greater pressure force on the wave interface and a corresponding increase in CHF for the curved heater. A theoretics. CHF model is developed from these observations, based upon a new theory for hydrodynamic instability, along a curved interface. CHF data are predicted with good accuracy for both heaters. 23 refs., 9 figs

  9. Thermally driven self-healing using copper nanofiber heater

    Science.gov (United States)

    Lee, Min Wook; Jo, Hong Seok; Yoon, Sam S.; Yarin, Alexander L.

    2017-07-01

    Nano-textured transparent heaters made of copper nanofibers (CuNFs) are used to facilitate accelerated self-healing of bromobutyl rubber (BIIR). The heater and BIIR layer are separately deposited on each side of a transparent flexible polyethylene terephthalate (PET) substrate. A pre-notched crack on the BIIR layer was bridged due to heating facilitated by CuNFs. In the corrosion test, a cracked BIIR layer covered a steel substrate. An accelerated self-healing of the crack due to the transparent copper nanofiber heater facilitated an anti-corrosion protective effect of the BIIR layer.

  10. Implementation of heaters on thermally actuated spacecraft mechanisms

    Science.gov (United States)

    Busch, John D.; Bokaie, Michael D.

    1994-01-01

    This paper presents general insight into the design and implementation of heaters as used in actuating mechanisms for spacecraft. Problems and considerations that were encountered during development of the Deep Space Probe and Science Experiment (DSPSE) solar array release mechanism are discussed. Obstacles included large expected fluctuations in ambient temperature, variations in voltage supply levels outgassing concerns, heater circuit design, materials selection, and power control options. Successful resolution of these issues helped to establish a methodology which can be applied to many of the heater design challenges found in thermally actuated mechanisms.

  11. Temperature buffer test. Installation of buffer, heaters and instruments in the deposition hole

    Energy Technology Data Exchange (ETDEWEB)

    Johannesson, Lars-Erik; Sanden, Torbjoern; Aakesson, Mattias [Clay Technology AB, Lund (Sweden); Barcena, Ignacio; Garcia-Sineriz, Jose Luis [Aitemin, Madrid (Spain)

    2010-12-15

    During 2003 the Temperature Buffer Test was installed in Aespoe Hard Rock Laboratory. Temperature, water pressure, relative humidity, total pressure and displacements etc. are measured in numerous points in the test. Most of the cables from the transducers are led in the deposition hole through slots in the rock surface of the deposition hole in watertight tubes to the data collection system in a container placed in the tunnel close to the deposition hole. This report describes the work with the installations of the buffer, heaters, and instruments and yields a description of the final location of all instruments. The report also contains a description of the materials that were installed and the densities yielded after placement.

  12. Temperature buffer test. Installation of buffer, heaters and instruments in the deposition hole

    International Nuclear Information System (INIS)

    Johannesson, Lars-Erik; Sanden, Torbjoern; Aakesson, Mattias; Barcena, Ignacio; Garcia-Sineriz, Jose Luis

    2010-12-01

    During 2003 the Temperature Buffer Test was installed in Aespoe Hard Rock Laboratory. Temperature, water pressure, relative humidity, total pressure and displacements etc. are measured in numerous points in the test. Most of the cables from the transducers are led in the deposition hole through slots in the rock surface of the deposition hole in watertight tubes to the data collection system in a container placed in the tunnel close to the deposition hole. This report describes the work with the installations of the buffer, heaters, and instruments and yields a description of the final location of all instruments. The report also contains a description of the materials that were installed and the densities yielded after placement

  13. DEVELOPMENT OF TECHNICAL DECISIONS FOR HEAT SUPPLY WITH TUBULAR GAS HEATERS

    Directory of Open Access Journals (Sweden)

    IRODOV V. F.

    2017-05-01

    Full Text Available Annotation. Problems formulation. The problem that is solved is the development of autonomous heat supply systems that reduce the capital costs of construction and increase the efficiency of the use of energy resources. One of the ways to solve this problem is the use of tubular gas heaters. For this, it is necessary to develop new technical solutions for heat supply with tubular gas heaters, as well as scientific and methodological support for the development, construction and operation of heat supply systems with tubular gas heaters. Analysis of recent research. Preliminary studies of infrared tubular gas heaters are considered, which were used to heat industrial enterprises with sufficiently high premises. The task was to extend the principles of heat supply by means of tubular heaters for heating air, water and heating medium in relatively low rooms. Goal and tasks. To lay out the development of technical solutions for heat supply with tubular gas heaters, which increase the efficiency and reliability of heat supply systems and extend the use of tubular gas heaters in heat supply. Results. Technical solutions for heat supply with tubular gas heaters have made it possible to extend their applications for heating air, water and heating medium in relatively low rooms. Scientific novelty. New technical solutions for heat supply with tubular gas heaters increase the efficiency of using fuel and energy resources at low capital costs. Practical significance. Technical solutions for heat supply using tubular heaters have the potential for wide application in the heat supply of industrial, public and residential facilities. Conclusions. For two decades, new technical solutions for heat supply with tubular gas heaters have been developed, which increase the efficiency and reliability of heat supply systems and can be widely used for autonomous heating.

  14. Simulated nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    Berta, V.T.

    1993-01-01

    An apparatus for electrically simulating a nuclear reactor fuel assembly. It includes a heater assembly having a top end and a bottom end and a plurality of concentric heater tubes having electrical circuitry connected to a power source, and radially spaced from each other. An outer target tube and an inner target tube is concentric with the heater tubes and with each other, and the outer target tube surrounds and is radially spaced from the heater tubes. The inner target tube is surrounded by and radially spaced from the heater tubes and outer target tube. The top of the assembly is generally open to allow for the electrical power connection to the heater tubes, and the bottom of the assembly includes means for completing the electrical circuitry in the heater tubes to provide electrical resistance heating to simulate the power profile in a nuclear reactor. The embedded conductor elements in each heater tube is split into two halves for a substantial portion of its length and provided with electrical isolation such that each half of the conductor is joined at one end and is not joined at the other end

  15. Intermediate heat exchanger project for Super Phenix

    International Nuclear Information System (INIS)

    Roumailhac, J.; Desir, D.

    1975-01-01

    The Super Phenix (1200 MWe) intermediate heat exchangers are derived directly from those of Phenix (250 MWe). The intermediate exchangers are housed in the reactor vessel annulus: as this annulus must be of the smallest volume possible, these IHX are required to work at a high specific rating. The exchange surface is calculated for nominal conditions. A range is then defined, consistent with the above requirements and throughout which the ratio between bundle thickness and bundle length remains acceptable. Experimental technics and calculations were used to determine the number of tube constraint systems required to keep the vibration amplitude within permissible limits. From a knowledge of this number, the pressure drop produced by the primary flow can be calculated. The bundle geometry is determined together with the design of the corresponding tube plates and the way in which these plates should be joined to the body of the IHX. The experience (technical and financial) acquired in the construction of Phenix is then used to optimize the design of the Super Phenix project. An approximate definition of the structure of the IHX is obtained by assuming a simplified load distribution in the calculations. More sophisticated calculations (e.g. finite element method) are then used to determine the behaviour of the different points of the IHX, under nominal and transient conditions

  16. Natural convection in a parallel-plate vertical channel with discrete heating by two flush-mounted heaters: effect of the clearance between the heaters

    Science.gov (United States)

    Sarper, Bugra; Saglam, Mehmet; Aydin, Orhan; Avci, Mete

    2018-04-01

    In this study, natural convection in a vertical channel is studied experimentally and numerically. One of the channel walls is heated discretely by two flush-mounted heaters while the other is insulated. The effects of the clearance between the heaters on heat transfer and hot spot temperature while total length of the heaters keeps constant are investigated. Four different settlements of two discrete heaters are comparatively examined. Air is used as the working fluid. The range of the modified Grashof number covers the values between 9.6 × 105 and 1.53 × 10.7 Surface to surface radiation is taken into account. Flow visualizations and temperature measurements are performed in the experimental study. Numerical computations are performed using the commercial CFD code ANSYS FLUENT. The results are represented as the variations of surface temperature, hot spot temperature and Nusselt number with the modified Grashof number and the clearance between the heaters as well as velocity and temperature variations of the fluid.

  17. Recovery Act: Water Heater ZigBee Open Standard Wireless Controller

    Energy Technology Data Exchange (ETDEWEB)

    Butler, William P. [Emerson Electric Co., St. Louis, MO (United States); Buescher, Tom [Emerson Electric Co., St. Louis, MO (United States)

    2014-04-30

    The objective of Emerson's Water Heater ZigBee Open Standard Wireless Controller is to support the DOE's AARA priority for Clean, Secure Energy by designing a water heater control that levels out residential and small business peak electricity demand through thermal energy storage in the water heater tank.

  18. A silicon nanowire heater and thermometer

    Science.gov (United States)

    Zhao, Xingyan; Dan, Yaping

    2017-07-01

    In the thermal conductivity measurements of thermoelectric materials, heaters and thermometers made of the same semiconducting materials under test, forming a homogeneous system, will significantly simplify fabrication and integration. In this work, we demonstrate a high-performance heater and thermometer made of single silicon nanowires (SiNWs). The SiNWs are patterned out of a silicon-on-insulator wafer by CMOS-compatible fabrication processes. The electronic properties of the nanowires are characterized by four-probe and low temperature Hall effect measurements. The I-V curves of the nanowires are linear at small voltage bias. The temperature dependence of the nanowire resistance allows the nanowire to be used as a highly sensitive thermometer. At high voltage bias, the I-V curves of the nanowire become nonlinear due to the effect of Joule heating. The temperature of the nanowire heater can be accurately monitored by the nanowire itself as a thermometer.

  19. Test design requirements: Canister-scale heater test

    International Nuclear Information System (INIS)

    Schauer, M.I.; Craig, P.A.; Stickney, R.G.

    1986-03-01

    This document establishes the Test Design Requirements for the design of a canister scale heater test to be performed in the Exploratory Shaft test facility. The purpose of the test is to obtain thermomechanical rock mass response data for use in validation of the numerical models. The canister scale heater test is a full scale simulation of a high-level nuclear waste container in a prototypic emplacement borehole. Electric heaters are used to simulate the heat loads expected in an actual waste container. This document presents an overview of the test including objectives and justification for the test. A description of the test as it is presently envisioned is included. Discussions on Quality Assurance and Safety are also included in the document. 12 refs., 1 fig

  20. Filament heater current modulation for increased filament lifetime

    International Nuclear Information System (INIS)

    Paul, J.D.; Williams, H.E. III.

    1996-01-01

    The surface conversion H-minus ion source employs two 60 mil tungsten filaments which are approximately 17 centimeters in length. These filaments are heated to approximately 2,800 degrees centigrade by 95--100 amperes of DC heater current. The arc is struck at a 120 hertz rate, for 800 microseconds and is generally run at 30 amperes peak current. Although sputtering is considered a contributing factor in the demise of the filament, evaporation is of greater concern. If the peak arc current can be maintained with less average heater current, the filament evaporation rate for this arc current will diminish. In the vacuum of an ion source, the authors expect the filaments to retain much of their heat throughout a 1 millisecond (12% duty) loss of heater current. A circuit to eliminate 100 ampere heater currents from filaments during the arc pulse was developed. The magnetic field due to the 100 ampere current tends to hold electrons to the filament, decreasing the arc current. By eliminating this magnetic field, the arc should be more efficient, allowing the filaments to run at a lower average heater current. This should extend the filament lifetime. The circuit development and preliminary filament results are discussed

  1. Diagnosis of Feedwater Heater Performance Degradation using Fuzzy Approach

    International Nuclear Information System (INIS)

    Kim, Hyeonmin; Kang, Yeon Kwan; Heo, Gyunyoung; Song, Seok Yoon

    2014-01-01

    It is inevitable to avoid degradation of component, which operates continuously for long time in harsh environment. Since this degradation causes economical loss and human loss, it is important to monitor and diagnose the degradation of component. The diagnosis requires a well-systematic method for timely decision. Before this article, the methods using regression model and diagnosis table have been proposed to perform the diagnosis study for thermal efficiency in Nuclear Power Plants (NPPs). Since the regression model was numerically less-stable under changes of operating variables, it was difficult to provide good results in operating plants. Contrary to this, the diagnosis table was hard to use due to ambiguous points and to detect how it affects degradation. In order to cover the issues of previous researches, we proposed fuzzy approaches and applied it to diagnose Feedwater Heater (FWH) degradation to check the feasibility. The degradation of FWHs is not easy to be observed, while trouble such as tube leakage may bring simultaneous damage to the tube bundle. This study explains the steps of diagnosing typical failure modes of FWHs. In order to cover the technical issues of previous researches, we adopted fuzzy logic to suggest a diagnosis algorithm for the degradation of FHWs and performed feasibility study. In this paper, total 7 modes of FWH degradation modes are considered, which are High Drain Level, Low Shell Pressure, Tube Pressure Increase, Tube Fouling, Pass Partition Plate Leakage, Tube Leakage, Abnormal venting. From the literature survey and simulation, diagnosis table for FWH is made. We apply fuzzy logic based on diagnosis table. Authors verify fuzzy diagnosis for FWH degradation synthesized the random input sets from made diagnosis table. Comparing previous researches, suggested method more-stable under changes of operating variables, than regression model. On the contrary, the problem which ambiguous points and detect how it affects degradation

  2. Diagnosis of Feedwater Heater Performance Degradation using Fuzzy Approach

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyeonmin; Kang, Yeon Kwan; Heo, Gyunyoung [Kyung Hee Univ., Yongin (Korea, Republic of); Song, Seok Yoon [Korea Hydro and Nuclear Power, Daejeon (Korea, Republic of)

    2014-05-15

    It is inevitable to avoid degradation of component, which operates continuously for long time in harsh environment. Since this degradation causes economical loss and human loss, it is important to monitor and diagnose the degradation of component. The diagnosis requires a well-systematic method for timely decision. Before this article, the methods using regression model and diagnosis table have been proposed to perform the diagnosis study for thermal efficiency in Nuclear Power Plants (NPPs). Since the regression model was numerically less-stable under changes of operating variables, it was difficult to provide good results in operating plants. Contrary to this, the diagnosis table was hard to use due to ambiguous points and to detect how it affects degradation. In order to cover the issues of previous researches, we proposed fuzzy approaches and applied it to diagnose Feedwater Heater (FWH) degradation to check the feasibility. The degradation of FWHs is not easy to be observed, while trouble such as tube leakage may bring simultaneous damage to the tube bundle. This study explains the steps of diagnosing typical failure modes of FWHs. In order to cover the technical issues of previous researches, we adopted fuzzy logic to suggest a diagnosis algorithm for the degradation of FHWs and performed feasibility study. In this paper, total 7 modes of FWH degradation modes are considered, which are High Drain Level, Low Shell Pressure, Tube Pressure Increase, Tube Fouling, Pass Partition Plate Leakage, Tube Leakage, Abnormal venting. From the literature survey and simulation, diagnosis table for FWH is made. We apply fuzzy logic based on diagnosis table. Authors verify fuzzy diagnosis for FWH degradation synthesized the random input sets from made diagnosis table. Comparing previous researches, suggested method more-stable under changes of operating variables, than regression model. On the contrary, the problem which ambiguous points and detect how it affects degradation

  3. Energy efficiency improvement and fuel savings in water heaters using baffles

    International Nuclear Information System (INIS)

    Moeini Sedeh, Mahmoud; Khodadadi, J.M.

    2013-01-01

    Highlights: ► Thermal efficiency improved by simple/novel design of baffles inside water reservoir. ► Noticeable steady-state natural gas savings of about 5%. ► Extensive 3-D numerical investigations followed by experimental verifications. ► Baffle designs prototyped in identical water heaters for ANSI/US DOE test protocols. ► Numerical/experimental results verified thermal efficiency improvement and fuel savings. -- Abstract: Thermal efficiency improvement of a water heater was investigated numerically and experimentally in response to presence of a baffle, particularly designed for modifying the flow field within the water reservoir and enhancing heat transfer extracted into the water tank. A residential natural gas-fired water heater was selected for modifying its water tank through introducing a baffle for lowering natural gas consumption by 5% as a target. Based on the geometric features of the selected water heater, three-dimensional models of the water heater subsections were developed. Upon detailed studies of flow and heat transfer in each subsection, various sub-models were integrated to a complete model of the water heater. Thermal performance of the selected water heater was investigated numerically using computational fluid dynamics analysis. Prior to baffle design process and in order to verify the developed model of the water heater, time-dependent numerically-predicted temperatures were compared to the experimentally-measured temperatures under the same conditions at six (6) different locations inside the water tank and good agreement was observed. Upon verifying the numerical model, the fluid flow and heat transfer patterns were characterized for the selected water heater. The overall design of the baffle and its location and orientation were finalized based on the numerical results and a set of parametric studies. Finally, two baffle designs were proposed, with the second design being an optimized version of the first design. The

  4. Experimental Research of a Water-Source Heat Pump Water Heater System

    OpenAIRE

    Zhongchao Zhao; Yanrui Zhang; Haojun Mi; Yimeng Zhou; Yong Zhang

    2018-01-01

    The heat pump water heater (HPWH), as a portion of the eco-friendly technologies using renewable energy, has been applied for years in developed countries. Air-source heat pump water heaters and solar-assisted heat pump water heaters have been widely applied and have become more and more popular because of their comparatively higher energy efficiency and environmental protection. Besides use of the above resources, the heat pump water heater system can also adequately utilize an available wat...

  5. Acoustic feedwater heater leak detection: Industry application of low ampersand high frequency detection increases response and reliability

    International Nuclear Information System (INIS)

    Woyshner, W.S.; Bryson, T.; Robertson, M.O.

    1993-01-01

    The Electric Power Research Institute has sponsored research associated with acoustic Feedwater Heater Leak Detection since the early 1980s. Results indicate that this technology is economically beneficial and dependable. Recent research work has employed acoustic sensors and signal conditioning with wider frequency range response and background noise elimination techniques to provide increased accuracy and dependability. Dual frequency sensors have been applied at a few facilities to provide information on this application of dual frequency response. Sensor mounting methods and attenuation due to various mounting configurations are more conclusively understood. These are depicted and discussed in detail. The significance of trending certain plant parameters such as heat cycle flows, heater vent and drain valve position, proper relief valve operation, etc. is also addressed. Test data were collected at various facilities to monitor the effect of varying several related operational parameters. A group of FWHLD Users have been involved from the inception of the project and reports on their latest successes and failures, along with various data depicting early detection of FWHLD tube leaks, will be included. 3 refs., 12 figs., 1 tab

  6. Baking of tandem accelerator tube by low voltage arc discharge

    International Nuclear Information System (INIS)

    Nakajima, Yutaka

    1982-01-01

    In designing the accelerating tube for a static tandem accelerator in Kyushu University, the basic policy was as described below: individual unit composing the accelerating tube should fully withstand the electric field of 2 MV/m, and electric discharge must not be propagated from one unit to the adjacent unit when these are assembled to the accelerating tube. The accelerating tube units are each 25 cm in length, and both high and low energy sides are composed of 20 units, respectively. Although about 10 -9 Torr vacuum was obtained at the both ends of the accelerating tube by baking the tube at 300 to 350 deg C with electric heaters wound outside the tube in the conventional method, vast outgas was generated, which decreased vacuum by two or three figures if breakdown occurred through the intermediary of outgas. As a method of positively outgassing and cleaning the electrodes inside the accelerating tube, it was attempted to directly bake all the electrodes in the accelerating tube by causing strong arc discharge flowing H 2 gas in the tube. As a result of considering the conditions for this method, the low voltage arc discharge was employed using oxide cathodes. Thus, after implementing 10A arc discharge for several hours, the voltage was able to be raised to 10 MV almost immediately after the vacuum recovery, and further, after another conditioning for several hours, it was successful to raise voltage up to 11 MV. (Wakatsuki, Y.)

  7. Water hammers in direct contact heater systems

    International Nuclear Information System (INIS)

    Uffer, R.

    1983-01-01

    This paper discusses the causes and mitigation or prevention of water hammers occurring in direct contact heaters and their attached lines. These water hammers are generally caused by rapid pressure reductions in the heaters or by water lines not flowing full. Proper design and operating measures can prevent or mitigate water hammer occurrence. Water hammers often do not originate at the areas where damage is noted

  8. Temperature limited heater utilizing non-ferromagnetic conductor

    Science.gov (United States)

    Vinegar,; Harold J. , Harris; Kelvin, Christopher [Houston, TX

    2012-07-17

    A heater is described. The heater includes a ferromagnetic conductor and an electrical conductor electrically coupled to the ferromagnetic conductor. The ferromagnetic conductor is positioned relative to the electrical conductor such that an electromagnetic field produced by time-varying current flow in the ferromagnetic conductor confines a majority of the flow of the electrical current to the electrical conductor at temperatures below or near a selected temperature.

  9. Feasibility of using electrical downhole heaters in Faja heavy oil reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, R.; Bashbush, J.L.; Rincon, A. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Schlumberger, Sugar Land, TX (United States)

    2008-10-15

    Numerical models were used to examine the effect of downhole heaters in enhanced oil recovery (EOR) processes in Venezuela's Orinoco reservoir. The downhole heaters were equipped with mineral-insulated cables that allowed alternating currents to flow between 2 conductors packed in a resistive core composed of polymers and graphite. The heaters were used in conjunction with steam assisted gravity drainage (SAGD) processes and also used in horizontal wells for limited amounts of time in order to accelerate production and pressure declines. The models incorporated the petrophysical and fluid characteristics of the Ayacucho area in the Faja del Orinoco. A compositional-thermal simulator was used to describe heat and fluid flow within the reservoir. A total of 8 scenarios were used to examine the electrical heaters with horizontal and vertical wells with heaters of various capacities. Results of the study were then used in an economic analysis of capitalized and operating costs. Results of the study showed that downhole heaters are an economically feasible EOR option for both vertical and horizontal wells. Use of the heaters prior to SAGD processes accelerated production and achieved higher operational efficiencies. 5 refs., 9 tabs., 15 figs.

  10. Gravity and Heater Size Effects on Pool Boiling Heat Transfer

    Science.gov (United States)

    Kim, Jungho; Raj, Rishi

    2014-01-01

    The current work is based on observations of boiling heat transfer over a continuous range of gravity levels between 0g to 1.8g and varying heater sizes with a fluorinert as the test liquid (FC-72/n-perfluorohexane). Variable gravity pool boiling heat transfer measurements over a wide range of gravity levels were made during parabolic flight campaigns as well as onboard the International Space Station. For large heaters and-or higher gravity conditions, buoyancy dominated boiling and heat transfer results were heater size independent. The power law coefficient for gravity in the heat transfer equation was found to be a function of wall temperature under these conditions. Under low gravity conditions and-or for smaller heaters, surface tension forces dominated and heat transfer results were heater size dependent. A pool boiling regime map differentiating buoyancy and surface tension dominated regimes was developed along with a unified framework that allowed for scaling of pool boiling over a wide range of gravity levels and heater sizes. The scaling laws developed in this study are expected to allow performance quantification of phase change based technologies under variable gravity environments eventually leading to their implementation in space based applications.

  11. Super-quantum curves from super-eigenvalue models

    Energy Technology Data Exchange (ETDEWEB)

    Ciosmak, Paweł [Faculty of Mathematics, Informatics and Mechanics, University of Warsaw,ul. Banacha 2, 02-097 Warsaw (Poland); Hadasz, Leszek [M. Smoluchowski Institute of Physics, Jagiellonian University,ul. Łojasiewicza 11, 30-348 Kraków (Poland); Manabe, Masahide [Faculty of Physics, University of Warsaw,ul. Pasteura 5, 02-093 Warsaw (Poland); Sułkowski, Piotr [Faculty of Physics, University of Warsaw,ul. Pasteura 5, 02-093 Warsaw (Poland); Walter Burke Institute for Theoretical Physics, California Institute of Technology,1200 E. California Blvd, Pasadena, CA 91125 (United States)

    2016-10-10

    In modern mathematical and theoretical physics various generalizations, in particular supersymmetric or quantum, of Riemann surfaces and complex algebraic curves play a prominent role. We show that such supersymmetric and quantum generalizations can be combined together, and construct supersymmetric quantum curves, or super-quantum curves for short. Our analysis is conducted in the formalism of super-eigenvalue models: we introduce β-deformed version of those models, and derive differential equations for associated α/β-deformed super-matrix integrals. We show that for a given model there exists an infinite number of such differential equations, which we identify as super-quantum curves, and which are in one-to-one correspondence with, and have the structure of, super-Virasoro singular vectors. We discuss potential applications of super-quantum curves and prospects of other generalizations.

  12. Super-quantum curves from super-eigenvalue models

    International Nuclear Information System (INIS)

    Ciosmak, Paweł; Hadasz, Leszek; Manabe, Masahide; Sułkowski, Piotr

    2016-01-01

    In modern mathematical and theoretical physics various generalizations, in particular supersymmetric or quantum, of Riemann surfaces and complex algebraic curves play a prominent role. We show that such supersymmetric and quantum generalizations can be combined together, and construct supersymmetric quantum curves, or super-quantum curves for short. Our analysis is conducted in the formalism of super-eigenvalue models: we introduce β-deformed version of those models, and derive differential equations for associated α/β-deformed super-matrix integrals. We show that for a given model there exists an infinite number of such differential equations, which we identify as super-quantum curves, and which are in one-to-one correspondence with, and have the structure of, super-Virasoro singular vectors. We discuss potential applications of super-quantum curves and prospects of other generalizations.

  13. Super-quantum curves from super-eigenvalue models

    Science.gov (United States)

    Ciosmak, Paweł; Hadasz, Leszek; Manabe, Masahide; Sułkowski, Piotr

    2016-10-01

    In modern mathematical and theoretical physics various generalizations, in particular supersymmetric or quantum, of Riemann surfaces and complex algebraic curves play a prominent role. We show that such supersymmetric and quantum generalizations can be combined together, and construct supersymmetric quantum curves, or super-quantum curves for short. Our analysis is conducted in the formalism of super-eigenvalue models: we introduce β-deformed version of those models, and derive differential equations for associated α/ β-deformed super-matrix integrals. We show that for a given model there exists an infinite number of such differential equations, which we identify as super-quantum curves, and which are in one-to-one correspondence with, and have the structure of, super-Virasoro singular vectors. We discuss potential applications of super-quantum curves and prospects of other generalizations.

  14. Field Performance of Heat Pump Water Heaters in the Northeast

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, Carl [Consortium for Advanced Residential Buildings, Norwalk, CT (United States); Puttagunta, Srikanth [Consortium for Advanced Residential Buildings, Norwalk, CT (United States)

    2016-02-01

    Heat pump water heaters (HPWHs) are finally entering the mainstream residential water heater market. Potential catalysts are increased consumer demand for higher energy efficiency electric water heating and a new Federal water heating standard that effectively mandates use of HPWHs for electric storage water heaters with nominal capacities greater than 55 gallons. When compared to electric resistance water heating, the energy and cost savings potential of HPWHs is tremendous. Converting all electric resistance water heaters to HPWHs could save American consumers 7.8 billion dollars annually ($182 per household) in water heating operating costs and cut annual residential source energy consumption for water heating by 0.70 quads.

  15. Optimal and Learning-Based Demand Response Mechanism for Electric Water Heater System

    Directory of Open Access Journals (Sweden)

    Bo Lin

    2017-10-01

    Full Text Available This paper investigates how to develop a learning-based demand response approach for electric water heater in a smart home that can minimize the energy cost of the water heater while meeting the comfort requirements of energy consumers. First, a learning-based, data-driven model of an electric water heater is developed by using a nonlinear autoregressive network with external input (NARX using neural network. The model is updated daily so that it can more accurately capture the actual thermal dynamic characteristics of the water heater especially in real-life conditions. Then, an optimization problem, based on the NARX water heater model, is formulated to optimize energy management of the water heater in a day-ahead, dynamic electricity price framework. A genetic algorithm is proposed in order to solve the optimization problem more efficiently. MATLAB (R2016a is used to evaluate the proposed learning-based demand response approach through a computational experiment strategy. The proposed approach is compared with conventional method for operation of an electric water heater. Cost saving and benefits of the proposed water heater energy management strategy are explored.

  16. PWR pressurizer with heaters well which can be obturate and sealing process

    International Nuclear Information System (INIS)

    Godin, B.; Guicherd, L.

    1991-01-01

    Each heater well is prolongated at the end located outer the pressurizer containment by a sleeve internally tapped which is prolongated at the other end by a guiding and fixation sleeve for welding the heater. The heater well can be obturated by a threaded plug introduce in the tapped part of the sleeve after cutting the welding sleeve and extraction of the heater [fr

  17. Studies on Stress Corrosion Cracking of Super 304H Austenitic Stainless Steel

    Science.gov (United States)

    Prabha, B.; Sundaramoorthy, P.; Suresh, S.; Manimozhi, S.; Ravishankar, B.

    2009-12-01

    Stress corrosion cracking (SCC) is a common mode of failure encountered in boiler components especially in austenitic stainless steel tubes at high temperature and in chloride-rich water environment. Recently, a new type of austenitic stainless steels called Super304H stainless steel, containing 3% copper is being adopted for super critical boiler applications. The SCC behavior of this Super 304H stainless steel has not been widely reported in the literature. Many researchers have studied the SCC behavior of steels as per various standards. Among them, the ASTM standard G36 has been widely used for evaluation of SCC behavior of stainless steels. In this present work, the SCC behavior of austenitic Fe-Cr-Mn-Cu-N stainless steel, subjected to chloride environments at varying strain conditions as per ASTM standard G36 has been studied. The environments employed boiling solution of 45 wt.% of MgCl2 at 155 °C, for various strain conditions. The study reveals that the crack width increases with increase in strain level in Super 304H stainless steels.

  18. 40 CFR 63.7506 - Do any boilers or process heaters have limited requirements?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 13 2010-07-01 2010-07-01 false Do any boilers or process heaters have..., and Institutional Boilers and Process Heaters General Compliance Requirements § 63.7506 Do any boilers or process heaters have limited requirements? (a) New or reconstructed boilers and process heaters in...

  19. An overview of the development of solar water heater industry in China

    International Nuclear Information System (INIS)

    Runqing, Hu; Peijun, Sun; Zhongying, Wang

    2012-01-01

    This article introduce the development of China solar water heater industry .Gives an overview of stages, market, manufacturing, application and testing about China solar water heater industry. Show the market data from 1998 to 2009. Analyze the experiences and features about the industry. The article also introduces the policy for solar hot water industry in China. These policies have accelerated the development of industry in which the main two incentive policies have the greatest influence on solar water heater industry. First one is the policy of mandatory installation of solar water heater implemented since 2007 by some local governments at provincial and municipal levels. Second is the subsidy policy for solar water heaters in the household appliances going to the countryside scheme implemented since 2009. At last the article gives the reason why China solar water heater industry have so rapid growth. From technology research, industrialization, prices and policy environment gives analysis. - Highlights: ► We compared International and China market about solar thermal products. ► The reason for rapid development of China solar water heater is explained. ► The experience of China solar water heater industry would give reference to other develop country. ► “Meet the demands of customer” is the main driver for the solar water heater industry development. ► The policy framework about China solar thermal industry was introduced. The industry achieved commercial operation without subsidy.

  20. Structural Benchmark Testing for Stirling Convertor Heater Heads

    Science.gov (United States)

    Krause, David L.; Kalluri, Sreeramesh; Bowman, Randy R.

    2007-01-01

    The National Aeronautics and Space Administration (NASA) has identified high efficiency Stirling technology for potential use on long duration Space Science missions such as Mars rovers, deep space missions, and lunar applications. For the long life times required, a structurally significant design limit for the Stirling convertor heater head is creep deformation induced even under relatively low stress levels at high material temperatures. Conventional investigations of creep behavior adequately rely on experimental results from uniaxial creep specimens, and much creep data is available for the proposed Inconel-718 (IN-718) and MarM-247 nickel-based superalloy materials of construction. However, very little experimental creep information is available that directly applies to the atypical thin walls, the specific microstructures, and the low stress levels. In addition, the geometry and loading conditions apply multiaxial stress states on the heater head components, far from the conditions of uniaxial testing. For these reasons, experimental benchmark testing is underway to aid in accurately assessing the durability of Stirling heater heads. The investigation supplements uniaxial creep testing with pneumatic testing of heater head test articles at elevated temperatures and with stress levels ranging from one to seven times design stresses. This paper presents experimental methods, results, post-test microstructural analyses, and conclusions for both accelerated and non-accelerated tests. The Stirling projects use the results to calibrate deterministic and probabilistic analytical creep models of the heater heads to predict their life times.

  1. Flat plate solar air heater with latent heat storage

    Science.gov (United States)

    Touati, B.; Kerroumi, N.; Virgone, J.

    2017-02-01

    Our work contains two parts, first is an experimental study of the solar air heater with a simple flow and forced convection, we can use thatlaste oneit in many engineering's sectors as solardrying, space heating in particular. The second part is a numerical study with ansys fluent 15 of the storage of part of this solar thermal energy produced,using latent heat by using phase change materials (PCM). In the experimental parts, we realize and tested our solar air heater in URER.MS ADRAR, locate in southwest Algeria. Where we measured the solarradiation, ambient temperature, air flow, thetemperature of the absorber, glasses and the outlet temperature of the solar air heater from the Sunrise to the sunset. In the second part, we added a PCM at outlet part of the solar air heater. This PCM store a part of the energy produced in the day to be used in peak period at evening by using the latent heat where the PCMs present a grateful storagesystem.A numerical study of the fusion or also named the charging of the PCM using ANSYS Fluent 15, this code use the method of enthalpies to solve the fusion and solidification formulations. Furthermore, to improve the conjugate heat transfer between the heat transfer fluid (Air heated in solar plate air heater) and the PCM, we simulate the effect of adding fins to our geometry. Also, four user define are write in C code to describe the thermophysicalpropriety of the PCM, and the inlet temperature of our geometry which is the temperature at the outflow of the solar heater.

  2. Compact instantaneous water heater

    Energy Technology Data Exchange (ETDEWEB)

    Azevedo, Jorge G.W.; Machado, Antonio R.; Ferraz, Andre D.; Rocha, Ivan C.C. da; Konishi, Ricardo [Companhia de Gas de Santa Catarina (SCGAS), Florianopolis, SC (Brazil); Lehmkuhl, Willian A.; Francisco Jr, Roberto W.; Hatanaka, Ricardo L.; Pereira, Fernando M.; Oliveira, Amir A.M. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil)

    2012-07-01

    This paper presents an experimental study of combustion in an inert porous medium in a liquid heating device application. This project aims to increase efficiency in the application of natural gas in residential and commercial sectors with the use of advanced combustion and heat transfer. The goal is to facilitate the development of a high performance compact water heater allowing hot water supply for up to two simultaneous showers. The experiment consists in a cylindrical porous burner with an integrated annular water heat exchanger. The reactants were injected radially into the burner and the flame stabilizes within the porous matrix. The water circulates in a coiled pipe positioned at the center of the burner. This configuration allows for heat transfer by conduction and radiation from the solid matrix to the heat exchanger. This article presented preliminary experimental results of a new water heater based on an annular porous burner. The range of equivalence ratios tested varied from 0.65 to 0.8. The power range was varied from 3 to 5 kW. Increasing the equivalence ratio or decreasing the total power input of the burner resulted in increased thermal efficiencies of the water heater. Thermal efficiencies varying from 60 to 92% were obtained. The condition for the goal of a comfortable bath was 20 deg C for 8-12 L/min. This preliminary prototype has achieved water temperature of 11deg C for 5 L/min. Further optimizations will be necessary in order to achieve intense heating with high thermal efficiency. (author)

  3. Ultrathin Polyimide-Stainless Steel Heater for Vacuum System Bake-out

    CERN Document Server

    Rathjen, Christian; Henrist, Bernard; Kölemeijer, Wilhelmus; Libera, Bruno; Lutkiewicz, Przemyslaw

    2005-01-01

    Space constraints in several normal conducting magnets of the LHC required the development of a dedicated permanent heater for vacuum chamber bake-out. The new heater consists of stainless steel bands inside layers of polyimide. The overall heater thickness is about 0.3 mm. The low magnetic permeability is suitable for applications in magnetic fields. The material combination allows for temperatures high enough to activate a NEG coating. Fabrication is performed in consecutive steps of tape wrapping. Automation makes high volume production at low costs possible. About 800 m of warm vacuum system of the long straight sections of the LHC will be equipped with the new heater. This paper covers experience gained at CERN from studies up to industrialization.

  4. Super jackstraws and super waterwheels

    International Nuclear Information System (INIS)

    Cho, Jin-Ho

    2007-01-01

    We construct various new BPS states of D-branes preserving 8 supersymmetries. These include super Jackstraws (a bunch of scattered D- or (p, q)-strings preserving supersymmetries), and super waterwheels (a number of D2-branes intersecting at generic angles on parallel lines while preserving supersymmetries). Super D-Jackstraws are scattered in various dimensions but are dynamical with all their intersections following a common null direction. Meanwhile, super (p, q)-Jackstraws form a planar static configuration. We show that the SO(2) subgroup of SL(2, R), the group of classical S-duality transformations in IIB theory, can be used to generate this latter configuration of variously charged (p, q)-strings intersecting at various angles. The waterwheel configuration of D2-branes preserves 8 supersymmetries as long as the 'critical' Born-Infeld electric fields are along the common direction

  5. Nonlinear Super Integrable Couplings of Super Classical-Boussinesq Hierarchy

    Directory of Open Access Journals (Sweden)

    Xiuzhi Xing

    2014-01-01

    Full Text Available Nonlinear integrable couplings of super classical-Boussinesq hierarchy based upon an enlarged matrix Lie super algebra were constructed. Then, its super Hamiltonian structures were established by using super trace identity. As its reduction, nonlinear integrable couplings of the classical integrable hierarchy were obtained.

  6. Performance characteristics of solar air heater with surface mounted obstacles

    International Nuclear Information System (INIS)

    Bekele, Adisu; Mishra, Manish; Dutta, Sushanta

    2014-01-01

    Highlights: • Solar air heater with delta shaped obstacles have been studied. • Obstacle angle of incidence strongly affects the thermo-hydraulic performance. • Thermal performance of obstacle mounted collectors is superior to smooth collectors. • Thermo-hydraulic performance of the present SAH is higher than those in previous studies. - Abstract: The performance of conventional solar air heaters (SAHs) can be improved by providing obstacles on the heated wall (i.e. on the absorber plate). Experiments have been performed to collect heat transfer and flow-friction data from an air heater duct with delta-shaped obstacles mounted on the absorber surface and having an aspect ratio 6:1 resembling the conditions close to the solar air heaters. This study encompassed for the range of Reynolds number (Re) from 2100 to 30,000, relative obstacle height (e/H) from 0.25 to 0.75, relative obstacle longitudinal pitch (P l /e) from 3/2 to 11/2, relative obstacle transverse pitch (P t /b) from 1 to 7/3 and the angle of incidence (α) varied from 30° to 90°. The thermo-hydraulic performance characteristics of SAH have been compared with the previous published works and the optimum range of the geometries have been explored for the better performance of such air-heaters compared to the other designs of solar air heaters

  7. High-Temperature Compatible Nickel Silicide Thermometer And Heater For Catalytic Chemical Microreactors

    DEFF Research Database (Denmark)

    Jensen, Søren; Quaade, U.J.; Hansen, Ole

    2005-01-01

    Integration of heaters and thermometers is important for agile and accurate control and measurement of the thermal reaction conditions in microfabricated chemical reactors (microreactors). This paper describes development and operation of nickel silicide heaters and temperature sensors...... for temperatures exceeding 700 °C. The heaters and thermometers are integrated with chemical microreactors for heterogeneous catalytic conversion of gasses, and thermally activated catalytic conversion of CO to CO2 in the reactors is demonstrated. The heaters and thermometers are shown to be compatible...

  8. Unregulated heat output of a storage heater

    OpenAIRE

    Lysak, Oleg Віталійович

    2017-01-01

    In the article the factors determining the heat transfer between the outer surfaces of a storage heater and the ambient air. This heat exchange is unregulated, and its definition is a precondition for assessing heat output range of this type of units. It was made the analysis of the literature on choosing insulating materials for each of the external surfaces of storage heaters: in foreign literature, there are recommendations on the use of various types of insulation depending on the type of...

  9. Experimental Research of a Water-Source Heat Pump Water Heater System

    Directory of Open Access Journals (Sweden)

    Zhongchao Zhao

    2018-05-01

    Full Text Available The heat pump water heater (HPWH, as a portion of the eco-friendly technologies using renewable energy, has been applied for years in developed countries. Air-source heat pump water heaters and solar-assisted heat pump water heaters have been widely applied and have become more and more popular because of their comparatively higher energy efficiency and environmental protection. Besides use of the above resources, the heat pump water heater system can also adequately utilize an available water source. In order to study the thermal performance of the water-source heat pump water heater (WSHPWH system, an experimental prototype using the cyclic heating mode was established. The heating performance of the water-source heat pump water heater system, which was affected by the difference between evaporator water fluxes, was investigated. The water temperature unfavorably exceeded 55 °C when the experimental prototype was used for heating; otherwise, the compressor discharge pressure was close to the maximum discharge temperature, which resulted in system instability. The evaporator water flux allowed this system to function satisfactorily. It is necessary to reduce the exergy loss of the condenser to improve the energy utilization of the system.

  10. SINGLE HEATER TEST FINAL REPORT

    International Nuclear Information System (INIS)

    J.B. Cho

    1999-01-01

    The Single Heater Test is the first of the in-situ thermal tests conducted by the U.S. Department of Energy as part of its program of characterizing Yucca Mountain in Nevada as the potential site for a proposed deep geologic repository for the disposal of spent nuclear fuel and high-level nuclear waste. The Site Characterization Plan (DOE 1988) contained an extensive plan of in-situ thermal tests aimed at understanding specific aspects of the response of the local rock-mass around the potential repository to the heat from the radioactive decay of the emplaced waste. With the refocusing of the Site Characterization Plan by the ''Civilian Radioactive Waste Management Program Plan'' (DOE 1994), a consolidated thermal testing program emerged by 1995 as documented in the reports ''In-Situ Thermal Testing Program Strategy'' (DOE 1995) and ''Updated In-Situ Thermal Testing Program Strategy'' (CRWMS M and O 1997a). The concept of the Single Heater Test took shape in the summer of 1995 and detailed planning and design of the test started with the beginning fiscal year 1996. The overall objective of the Single Heater Test was to gain an understanding of the coupled thermal, mechanical, hydrological, and chemical processes that are anticipated to occur in the local rock-mass in the potential repository as a result of heat from radioactive decay of the emplaced waste. This included making a priori predictions of the test results using existing models and subsequently refining or modifying the models, on the basis of comparative and interpretive analyses of the measurements and predictions. A second, no less important, objective was to try out, in a full-scale field setting, the various instruments and equipment to be employed in the future on a much larger, more complex, thermal test of longer duration, such as the Drift Scale Test. This ''shake down'' or trial aspect of the Single Heater Test applied not just to the hardware, but also to the teamwork and cooperation between

  11. Space Station solar water heater

    Science.gov (United States)

    Horan, D. C.; Somers, Richard E.; Haynes, R. D.

    1990-01-01

    The feasibility of directly converting solar energy for crew water heating on the Space Station Freedom (SSF) and other human-tended missions such as a geosynchronous space station, lunar base, or Mars spacecraft was investigated. Computer codes were developed to model the systems, and a proof-of-concept thermal vacuum test was conducted to evaluate system performance in an environment simulating the SSF. The results indicate that a solar water heater is feasible. It could provide up to 100 percent of the design heating load without a significant configuration change to the SSF or other missions. The solar heater system requires only 15 percent of the electricity that an all-electric system on the SSF would require. This allows a reduction in the solar array or a surplus of electricity for onboard experiments.

  12. Protection Heater Design Validation for the LARP Magnets Using Thermal Imaging

    CERN Document Server

    Marchevsky, M; Cheng, D W; Felice, H; Sabbi, G; Salmi, T; Stenvall, A; Chlachidze, G; Ambrosio, G; Ferracin, P; Izquierdo Bermudez, S; Perez, J C; Todesco, E

    2016-01-01

    Protection heaters are essential elements of a quench protection scheme for high-field accelerator magnets. Various heater designs fabricated by LARP and CERN have been already tested in the LARP high-field quadrupole HQ and presently being built into the coils of the high-field quadrupole MQXF. In order to compare the heat flow characteristics and thermal diffusion timescales of different heater designs, we powered heaters of two different geometries in ambient conditions and imaged the resulting thermal distributions using a high-sensitivity thermal video camera. We observed a peculiar spatial periodicity in the temperature distribution maps potentially linked to the structure of the underlying cable. Two-dimensional numerical simulation of heat diffusion and spatial heat distribution have been conducted, and the results of simulation and experiment have been compared. Imaging revealed hot spots due to a current concentration around high curvature points of heater strip of varying cross sections and visuali...

  13. Integrated collector-storage solar water heater with extended storage unit

    International Nuclear Information System (INIS)

    Kumar, Rakesh; Rosen, Marc A.

    2011-01-01

    The integrated collector-storage solar water heater (ICSSWH) is one of the simplest designs of solar water heater. In ICSSWH systems the conversion of solar energy into useful heat is often simple, efficient and cost effective. To broaden the usefulness of ICSSWH systems, especially for overnight applications, numerous design modifications have been proposed and analyzed in the past. In the present investigation the storage tank of an ICSSWH is coupled with an extended storage section. The total volume of the modified ICSSWH has two sections. Section A is exposed to incoming solar radiation, while section B is insulated on all sides. An expression is developed for the natural convection flow rate in section A. The inter-related energy balances are written for each section and solved to ascertain the impact of the extended storage unit on the water temperature and the water heater efficiency. The volumes of water in the two sections are optimized to achieve a maximum water temperature at a reasonably high efficiency. The influence is investigated of inclination angle of section A on the temperature of water heater and the angle is optimized. It is determined that a volume ratio of 7/3 between sections A and B yields the maximum water temperature and efficiency in the modified solar water heater. The performance of the modified water heater is also compared with a conventional ICSSWH system under similar conditions.

  14. Management of aging of water heaters in nuclear power plants

    International Nuclear Information System (INIS)

    Martin-Serrano Ledesma, C.; Toro del toro, J.; Real Rubio, I.; Garcia Montejano, A.

    2014-01-01

    The scope of this work includes the study of all feedwater heaters (from 1 to 6) in their two trains (A and B). In this study the main degradation phenomena that affect them, the operating parameters that can warn of a possible malfunction of the heater and possible strategies inspection, repair and replacement are analyzed. As a result of this study, a higher priority is obtained at a lower state of degradation of the heaters, possibly with a strategy inspection, repair or replacement, for each recharge, until the end of life of the plant. This will be a live program, which must be fed back to the studies of the parameters of operation of the heater during operation and results of the inspection of each recharge. May verify the effectiveness of aging management program using different indicators. (Author)

  15. Heater-Integrated Cantilevers for Nano-Samples Thermogravimetric Analysis

    OpenAIRE

    Toffoli, Valeria; Carrato, Sergio; Lee, Dongkyu; Jeon, Sangmin; Lazzarino, Marco

    2013-01-01

    The design and characteristics of a micro-system for thermogravimetric analysis (TGA) in which heater, temperature sensor and mass sensor are integrated into a single device are presented. The system consists of a suspended cantilever that incorporates a microfabricated resistor, used as both heater and thermometer. A three-dimensional finite element analysis was used to define the structure parameters. TGA sensors were fabricated by standard microlithographic techniques and tested using mill...

  16. Performance evaluation of a once-through multi-stage flash distillation system: Impact of brine heater fouling

    International Nuclear Information System (INIS)

    Baig, Hasan; Antar, Mohamed A.; Zubair, Syed M.

    2011-01-01

    Multi-stage flash distillation (MSF) system modeling involves a number of process variables. An estimation of all these process variables requires both analytical solutions and experimental/field analysis. However, the accurate estimate of variables related to the brine heater operation in a MSF system is very important for a reliable operation of the system. For example, steam operating conditions as well as the brine properties including fouling of the brine heater tubes have a significant effect on the heat transfer characteristics of the brine heater, which in turn influence the distillate output from the system. In this study, the effect of various design as well as operating conditions on the performance ratio (PR), brine temperature and salinity as it leaves the last flash stage are investigated in a once-through system. Increasing the number of stages from 24 to 32 has a significant effect on the PR, it ranges between 79% (for ΔT = 1.5) and 327% (for ΔT = 2.3) for a top-brine temperature of 106 o C. This value increase as the top-brine temperature increases. Increasing the stage-to-stage temperature difference increases the water salinity as it leaves the final stage and reduces its temperature that would imply better energy utilization within the plant. Results show that brine side heat exchanger fouling has a significant effect in decreasing the overall heat transfer coefficient, which reduces the production rate as the fouling increases with time. A sensitivity analysis to identify the key parameters, which can have a significant influence on the desalination plant performance, is carried out in an attempt to contribute a better understanding and operation of MSF desalination processes.

  17. Influence of the receiver’s back surface radiative characteristics on the performance of a heat-pipe evacuated-tube solar collector

    International Nuclear Information System (INIS)

    Zheng, Hongfei; Xiong, Jianying; Su, Yuehong; Zhang, Haiyin

    2014-01-01

    Highlights: • A model for describing the heat transfer characteristics of the ETSC is derived. • A method by performing roughness treatment is proposed to change the emissivity. • Increasing the receiver’s back surface emissivity can greatly affect the heat loss. • Real weather test verifies the proposed method in controlling overheat phenomenon. - Abstract: The receiver’s back surface radiative characteristics of a heat-pipe evacuated-tube solar collector (ETSC) may have a significant influence on its performance. This influence is generally related to the back surface emissivity and temperature; however it has been not studied previously. This paper firstly presents a heat transfer model for the ETSC, which is then derived to characterize the relationship between the heat loss and the back surface emissivity of the ETSC. A steady state experiment has been also performed to measure the heat loss of ETSC with different back surface emissivity values. The experimental results indicate that the heat loss of the ETSC increases with the increase of the back surface emissivity, but the rate of increase differs for different operation temperatures. When the back surface emissivity increases from 0.03 to 0.12, the heat loss of ETSC only increases by 31% when the operation temperature is below 100 °C, but the heat loss will increase to 96% when the operation temperature is over 200 °C. This means that the change of back surface emissivity can significantly affect the performance of the ETSC at higher temperature but affect little at lower temperature. Based on this, a novel method by performing roughness treatment on the receiver’s back surface is proposed to solve the overheating problem of ETSC in summer. Two solar water heaters including 6 ETSCs with standard and roughness-treated tubes were tested under real weather condition. Experiment reveals that when the water temperature in tank is below 60 °C, the two solar water heaters own similar temperature

  18. The super-classical-Boussinesq hierarchy and its super-Hamiltonian structure

    International Nuclear Information System (INIS)

    Si-Xing, Tao; Tie-Cheng, Xia

    2010-01-01

    Based on the constructed Lie superalgebra, the super-classical-Boussinesq hierarchy is obtained. Then, its super-Hamiltonian structure is obtained by making use of super-trace identity. Furthermore, the super-classical-Boussinesq hierarchy is also integrable in the sense of Liouville. (general)

  19. UJI VIABILITAS DAN PERKEMBANGAN SERBUK SARI BUAH NAGA PUTIH (HYLOCEREUS UNDATUS (HAW. BRITTON & ROSE, MERAH (HYLOCEREUS POLYRHIZUS (WEB. BRITTON & ROSE DAN SUPER MERAH (HYLOCEREUS COSTARICENSIS (WEB. BRITTON & ROSE SETELAH PENYIMPANAN

    Directory of Open Access Journals (Sweden)

    NI KADEK YUNITA SARI

    2010-12-01

    Full Text Available The aim of the research was to determine pollen viability, pollen tube length and pollen development of white, red and super red dragon fruit after storage at different temperatures and times. The method used to test pollen viability was hanging drop technique and to observe the development of pollen used acetolysis techniques. The results showed viability and pollen tube length of white, red and super red dragon fruit after storage at temperature of 10° C and -20° C for 1, 2 and 3 weeks decreased (66% and 25%, tended to increase (2% after 4 weeks. Viability and pollen tube length decreased (100% after storage at 30° C for 4 weeks. Pollen development of white, red and super red dragon fruit after storage at 30°C, 10°C and -20°C for 1 to 4 weeks showed the majority of pollen consists of uninucleat and binucleat.

  20. Heat transfer enhancement with elliptical tube under turbulent flow TiO2-water nanofluid

    Directory of Open Access Journals (Sweden)

    Hussein Adnan M.

    2016-01-01

    Full Text Available Heat transfer and friction characteristics were numerically investigated, employing elliptical tube to increase the heat transfer rate with a minimum increase of pressure drop. The flow rate of the tube was in a range of Reynolds number between 10000 and 100000. FLUENT software is used to solve the governing equation of CFD (continuity, momentum and energy by means of a finite volume method (FVM. The electrical heater is connected around the elliptical tube to apply uniform heat flux (3000 W/m2 as a boundary condition. Four different volume concentrations in the range of 0.25% to 1% and different TiO2 nanoparticle diameters in the range of 27 nm to 50 nm, dispersed in water are utilized. The CFD numerical results indicate that the elliptical tube can enhance heat transfer and friction factor by approximately 9% and 6% than the circular tube respectively. The results show that the Nusselt number and friction factor increase with decreasing diameters but increasing volume concentrations of nanoparticles.

  1. Development of high-efficiency wastes-burning electric power generating technology. Volume 1. Report for fiscal 1999; Kokoritsu haikibutsu hatsuden gijutsu kaihatsu 1999 nendo hokokusho. 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This paper summarizes the achievements of developing a technology to generate electric power at high efficiency by using a combustion furnace that uses general wastes and combustible industrial wastes as fuel to generate high-temperature and high-pressure steam under a stabilized condition. In the developmental research of the combustion furnace, discussions were given on single-pass and double-pass type stalker furnaces, an internal circulation type fluidized bed furnace, and an external circulation type fluidized bed furnace, whereas technological prospects were established on any of them as the combustion furnace. In developing corrosion resistant super heater materials, demonstration tests were performed by using a pilot plant, corrosion mechanisms were elucidated, amount of corrosion in steam generating tubes was discussed, and corrosion life of super heaters was estimated. In developing a technology to reduce environmental load, developmental researches were carried out on a method to treat waste gases by using pulse plasma to have established nearly completely a waste gas treatment system technology. In the demonstration test using the pilot plant, the operation has started from February 1998, generating stably the steam conditions of 500 degrees C and 9.8 MPa, and the smooth operation has continued. (NEDO)

  2. Erosion-corrosion behaviour of Ni-based superalloy Superni-75 in the real service environment of the boiler

    Energy Technology Data Exchange (ETDEWEB)

    Sidhu, T.S.; Prakash, S.; Agrawal, R.D.; Bhagat, R. [Shaheed Bhagat Singh College of Engineering & Technology, Ferozepur (India)

    2009-04-15

    The super-heater and re-heater tubes of the boilers used in thermal power plants are subjected to unacceptable levels of surface degradation by the combined effect of erosion-corrosion mechanism, resulting in the tube wall thinning and premature failure. The nickel-based superalloys can be used as boiler tube materials to increase the service life of the boilers, especially for the new generation ultra-supercritical boilers. The aim of the present investigation is to evaluate the erosion-corrosion behaviour of Ni-based superalloy Superni-75 in the real service environment of the coal-fired boiler of a thermal power plant. The cyclic experimental study was performed for 1000 h in the platen superheater zone of the coal-fired boiler where the temperature was around 900{sup o}C. The corrosion products have been characterized with respect to surface morphology, phase composition and element concentration using the combined techniques of X-ray diffractometry (XRD), scanning electron microscopy/energy-dispersive analysis (SEM/EDAX) and electron probe micro analyser (EPMA). The Superni-75 performed well in the coal-fired boiler environment, which has been attributed mainly to the formation of a thick band of chromium in scale due to selective oxidation of the chromium.

  3. Exergy Based Performance Analysis of Double Flow Solar Air Heater with Corrugated Absorber

    OpenAIRE

    S. P. Sharma; Som Nath Saha

    2017-01-01

    This paper presents the performance, based on exergy analysis of double flow solar air heaters with corrugated and flat plate absorber. A mathematical model of double flow solar air heater based on energy balance equations has been presented and the results obtained have been compared with that of a conventional flat-plate solar air heater. The double flow corrugated absorber solar air heater performs thermally better than the flat plate double flow and conventional flat-plate solar air heate...

  4. Heat exchanger inventory cost optimization for power cycles with one feedwater heater

    International Nuclear Information System (INIS)

    Qureshi, Bilal Ahmed; Antar, Mohamed A.; Zubair, Syed M.

    2014-01-01

    Highlights: • Cost optimization of heat exchanger inventory in power cycles is investigated. • Analysis for an endoreversible power cycle with an open feedwater heater is shown. • Different constraints on the power cycle are investigated. • The constant heat addition scenario resulted in the lowest value of the cost function. - Abstract: Cost optimization of heat exchanger inventory in power cycles with one open feedwater heater is undertaken. In this regard, thermoeconomic analysis for an endoreversible power cycle with an open feedwater heater is shown. The scenarios of constant heat rejection and addition rates, power as well as rate of heat transfer in the open feedwater heater are studied. All cost functions displayed minima with respect to the high-side absolute temperature ratio (θ 1 ). In this case, the effect of the Carnot temperature ratio (Φ 1 ), absolute temperature ratio (ξ) and the phase-change absolute temperature ratio for the feedwater heater (Φ 2 ) are qualitatively the same. Furthermore, the constant heat addition scenario resulted in the lowest value of the cost function. For variation of all cost functions, the smaller the value of the phase-change absolute temperature ratio for the feedwater heater (Φ 2 ), lower the cost at the minima. As feedwater heater to hot end unit cost ratio decreases, the minimum total conductance required increases

  5. Ansys Benchmark of the Single Heater Test

    International Nuclear Information System (INIS)

    H.M. Wade; H. Marr; M.J. Anderson

    2006-01-01

    The Single Heater Test (SHT) is the first of three in-situ thermal tests included in the site characterization program for the potential nuclear waste monitored geologic repository at Yucca Mountain. The heating phase of the SHT started in August 1996 and was concluded in May 1997 after 9 months of heating. Cooling continued until January 1998, at which time post-test characterization of the test block commenced. Numerous thermal, hydrological, mechanical, and chemical sensors monitored the coupled processes in the unsaturated fractured rock mass around the heater (CRWMS M and O 1999). The objective of this calculation is to benchmark a numerical simulation of the rock mass thermal behavior against the extensive data set that is available from the thermal test. The scope is limited to three-dimensional (3-D) numerical simulations of the computational domain of the Single Heater Test and surrounding rock mass. This calculation supports the waste package thermal design methodology, and is developed by Waste Package Department (WPD) under Office of Civilian Radioactive Waste Management (OCRWM) procedure AP-3.12Q, Revision 0, ICN 3, BSCN 1, Calculations

  6. Thermal behaviour of solar air heater with compound parabolic concentrator

    International Nuclear Information System (INIS)

    Tchinda, Rene

    2008-01-01

    A mathematical model for computing the thermal performance of an air heater with a truncated compound parabolic concentrator having a flat one-sided absorber is presented. A computer code that employs an iterative solution procedure is constructed to solve the governing energy equations and to estimate the performance parameters of the collector. The effects of the air mass flow rate, the wind speed and the collector length on the thermal performance of the present air heater are investigated. Predictions for the performance of the solar heater also exhibit reasonable agreement, with experimental data with an average error of 7%

  7. Heater head for stirling engine

    Science.gov (United States)

    Corey, John A.

    1985-07-09

    A monolithic heater head assembly which augments cast fins with ceramic inserts which narrow the flow of combustion gas and obtains high thermal effectiveness with the assembly including an improved flange design which gives greater durability and reduced conduction loss.

  8. Development of an Accurate Feed-Forward Temperature Control Tankless Water Heater

    Energy Technology Data Exchange (ETDEWEB)

    David Yuill

    2008-06-30

    The following document is the final report for DE-FC26-05NT42327: Development of an Accurate Feed-Forward Temperature Control Tankless Water Heater. This work was carried out under a cooperative agreement from the Department of Energy's National Energy Technology Laboratory, with additional funding from Keltech, Inc. The objective of the project was to improve the temperature control performance of an electric tankless water heater (TWH). The reason for doing this is to minimize or eliminate one of the barriers to wider adoption of the TWH. TWH use less energy than typical (storage) water heaters because of the elimination of standby losses, so wider adoption will lead to reduced energy consumption. The project was carried out by Building Solutions, Inc. (BSI), a small business based in Omaha, Nebraska. BSI partnered with Keltech, Inc., a manufacturer of electric tankless water heaters based in Delton, Michigan. Additional work was carried out by the University of Nebraska and Mike Coward. A background study revealed several advantages and disadvantages to TWH. Besides using less energy than storage heaters, TWH provide an endless supply of hot water, have a longer life, use less floor space, can be used at point-of-use, and are suitable as boosters to enable alternative water heating technologies, such as solar or heat-pump water heaters. Their disadvantages are their higher cost, large instantaneous power requirement, and poor temperature control. A test method was developed to quantify performance under a representative range of disturbances to flow rate and inlet temperature. A device capable of conducting this test was designed and built. Some heaters currently on the market were tested, and were found to perform quite poorly. A new controller was designed using model predictive control (MPC). This control method required an accurate dynamic model to be created and required significant tuning to the controller before good control was achieved. The MPC

  9. Household wood heater usage and indoor leakage of BTEX in Launceston, Australia: A null result

    Science.gov (United States)

    Galbally, Ian E.; Gillett, Robert W.; Powell, Jennifer C.; Lawson, Sarah J.; Bentley, Simon T.; Weeks, Ian A.

    A study has been conducted in Launceston, Australia, to determine within households with wood heaters the effect of leakage from the heater and flue on the indoor air concentrations of the pollutants: benzene, toluene, ethylbenzene and xylene (BTEX). The study involved three classes: 28 households without wood heaters, 19 households with wood heaters compliant with the relevant Australian Standard and 30 households with non-compliant wood heaters. Outdoor and indoor BTEX concentrations were measured in each household for 7 days during summer when there was little or no wood heater usage, and for 7 days during winter when there was widespread wood heater usage. Each participant kept a household activity diary throughout their sampling periods. For wintertime, there were no significant differences of the indoor BTEX concentrations between the three classes of households. Also there were no significant relationships between BTEX indoor concentrations within houses and several measures of the amount of wood heater use within these houses. For the households sampled in this study, the use of a wood heater within a house did not lead to BTEX release within that house and had no direct detectable influence on the concentrations of BTEX within the house. We propose that the pressure differences associated with the both the leakiness or permeability of the building envelope and the draught of the wood heater have key roles in determining whether there will be backflow of smoke from the wood heater into the house. For a leaky house with a well maintained wood heater there should be no backflow of smoke from the wood heater into the house. However backflow of smoke may occur in well sealed houses. The study also found that wood heater emissions raise the outdoor concentrations of BTEX in winter in Launceston and through the mixing of outdoor air through the building envelopes into the houses, these emissions contribute to increases in the indoor concentrations of BTEX in

  10. Sheathed electrical resistance heaters for nuclear or other specialized service - approved 1973

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    This specification presents the requirements for cylindrical metal-sheathed, electrical resistance heaters with compacted mineral-oxide insulation for nuclear or other specialized service. The intended use of a sheathed heater in a specific nuclear or general application will require an evaluation by the purchaser of the compatibility of the heater assembly in the proposed application including the effects of the integrated proposed application including the effects of the integrated neutron flux, temperature, and atmosphere on the properties of the materials of construction. This specification does not include all possible specifications, standards, etc. for materials that may be used in sheathing, insulation, resistance wire, or conductors wire in nuclear environments. The requirements of this specification include only the austenitic stainless steels and nickel-based alloys for sheathing; magnesium oxide, aluminum oxide, beryllium oxide for insulation; and nickel-chromium or iron-chromium-aluminum heater elements with or without low-resistance connecting wires. The intent of this specification is to present the requirements for heaters capable of operating at sheath temperatures and heat fluxes that will limit the maximum internal heater-element temperature to 1050 0 C

  11. Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, B.; Hudon, K.; Christensen, D.

    2014-06-01

    This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of U.S. climate regions. HPWHs are expected to provide significant energy savings in certain climate zones when compared to typical electric resistance water heaters. Results show that this technology is a viable option in most climates, but differences in control schemes and design features impact the performance of the units tested. Tests were conducted to map heat pump performance across the operating range and to determine the logic used to control the heat pump and the backup electric heaters. Other tests performed include two unique draw profile tests, reduced air flow performance tests and the standard DOE rating tests. The results from all these tests are presented here for all five units tested. The results of these tests will be used to improve the EnergyPlus heat pump water heater for use in BEopt™ whole-house building simulations.

  12. Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, B.; Hudon, K.; Christensen, D.

    2014-06-01

    This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of US climate regions. HPWHs are expected to provide significant energy savings in certain climate zones when compared to typical electric resistance water heaters. Results show that this technology is a viable option in most climates, but differences in control schemes and design features impact the performance of the units tested. Tests were conducted to map heat pump performance across the operating range and to determine the logic used to control the heat pump and the backup electric heaters. Other tests performed include two unique draw profile tests, reduced air flow performance tests and the standard DOE rating tests. The results from all these tests are presented here for all five units tested. The results of these tests will be used to improve the EnergyPlus heat pump water heater for use in BEopt(tm) whole-house building simulations.

  13. Measured data from the Avery Island Site C heater test

    International Nuclear Information System (INIS)

    Waldman, H.; Stickney, R.G.

    1984-11-01

    Over the past six years, a comprehensive field testing program was conducted in the Avery Island salt mine. Three single canister heater tests were included in the testing program. Specifically, electric heaters, which simulate canisters of heat-generating nuclear waste, were placed in the floor of the Avery Island salt mine, and measurements were made of the response of the salt to heating. These tests were in operation by June 1978. One of the three heater tests, Site C, operated for a period of 1858 days and was decommissioned during July and August 1983. This data report presents the temperature and displacement data gathered during the operation and decommissioning of the Site C heater test. The purpose of this data report is to transmit the data to the scientific community. Rigorous analysis and interpretation of the data are considered beyond the scope of a data report. 6 references, 21 figures, 1 table

  14. Experimental and theoretical evaluation of the performance of a tar solar water heater

    International Nuclear Information System (INIS)

    Ammari, H.D.; Nimir, Y.L.

    2003-01-01

    The paper presents an experimental and theoretical evaluation of the performance of a tar solar water heater and comparison with that of a conventional type collector. The performance of both collectors is assessed under the same conditions. Both of the collectors have the same surface area and are glazed. The conventional type has the water tubes welded to the absorber plate, whereas in the tar type, the tar acts as an absorber plate that covers the water tubes. The theoretical model for each collector type, with the transient effects taken into account, is based on a control volume and a time base in the related energy equations. By considering a small element of the collector in each case, three partial differential equations were developed for each collector and were solved numerically by the Runge-Kutta method of the fifth order. A good agreement was achieved between the numerical and experimental results for both the conventional and tar collectors, indicating the feasibility of employing the theoretical model in the design of flat plate solar collectors. The results also showed that the conventional collector is more efficient than the tar type during most of the daylight, but the tar collector had the added advantage of better conservation of energy in late afternoon and evening

  15. SINGLE HEATER TEST FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    J.B. Cho

    1999-05-01

    The Single Heater Test is the first of the in-situ thermal tests conducted by the U.S. Department of Energy as part of its program of characterizing Yucca Mountain in Nevada as the potential site for a proposed deep geologic repository for the disposal of spent nuclear fuel and high-level nuclear waste. The Site Characterization Plan (DOE 1988) contained an extensive plan of in-situ thermal tests aimed at understanding specific aspects of the response of the local rock-mass around the potential repository to the heat from the radioactive decay of the emplaced waste. With the refocusing of the Site Characterization Plan by the ''Civilian Radioactive Waste Management Program Plan'' (DOE 1994), a consolidated thermal testing program emerged by 1995 as documented in the reports ''In-Situ Thermal Testing Program Strategy'' (DOE 1995) and ''Updated In-Situ Thermal Testing Program Strategy'' (CRWMS M&O 1997a). The concept of the Single Heater Test took shape in the summer of 1995 and detailed planning and design of the test started with the beginning fiscal year 1996. The overall objective of the Single Heater Test was to gain an understanding of the coupled thermal, mechanical, hydrological, and chemical processes that are anticipated to occur in the local rock-mass in the potential repository as a result of heat from radioactive decay of the emplaced waste. This included making a priori predictions of the test results using existing models and subsequently refining or modifying the models, on the basis of comparative and interpretive analyses of the measurements and predictions. A second, no less important, objective was to try out, in a full-scale field setting, the various instruments and equipment to be employed in the future on a much larger, more complex, thermal test of longer duration, such as the Drift Scale Test. This ''shake down'' or trial aspect of the Single Heater Test applied

  16. Assessment of a Hybrid Retrofit Gas Water Heater

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, Marc [Davis Energy Group, Davis, CA (United States); Weitzel, Elizabeth [Davis Energy Group, Davis, CA (United States); Backman, Christine [Davis Energy Group, Davis, CA (United States)

    2017-02-28

    This project completed a modeling evaluation of a hybrid gas water heater that combines a reduced capacity tankless unit with a downsized storage tank. This product would meet a significant market need by providing a higher efficiency gas water heater solution for retrofit applications while maintaining compatibility with the 1/2 inch gas lines and standard B vents found in most homes. The TRNSYS simulation tool was used to model a base case 0.60 EF atmospheric gas storage water, a 0.82 EF non-condensing gas tankless water heater, an existing (high capacity) hybrid unit on the market, and an alternative hybrid unit with lower storage volume and reduced gas input requirements. Simulations were completed under a 'peak day' sizing scenario with 183 gpd hot water loads in a Minnesota winter climate case. Full-year simulations were then completed in three climates (ranging from Phoenix to Minneapolis) for three hot water load scenarios (36, 57, and 96 gpd). Model projections indicate that the alternative hybrid offers an average 4.5% efficiency improvement relative to the 0.60 EF gas storage unit across all scenarios modeled. The alternative hybrid water heater evaluated does show promise, but the current low cost of natural gas across much of the country and the relatively small incremental efficiency improvement poses challenges in initially building a market demand for the product.

  17. Assessment of a Hybrid Retrofit Gas Water Heater

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, Marc [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Weitzel, Elizabeth [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Backman, Christine [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2017-02-01

    This project completed a modeling evaluation of a hybrid gas water heater that combines a reduced capacity tankless unit with a downsized storage tank. This product would meet a significant market need by providing a higher efficiency gas water heater solution for retrofit applications while maintaining compatibility with the 1/2 inch gas lines and standard B vents found in most homes. The TRNSYS simulation tool was used to model a base case 0.60 EF atmospheric gas storage water, a 0.82 EF non-condensing gas tankless water heater, an existing (high capacity) hybrid unit on the market, and an alternative hybrid unit with lower storage volume and reduced gas input requirements. Simulations were completed under a 'peak day' sizing scenario with 183 gpd hot water loads in a Minnesota winter climate case. Full-year simulations were then completed in three climates (ranging from Phoenix to Minneapolis) for three hot water load scenarios (36, 57, and 96 gpd). Model projections indicate that the alternative hybrid offers an average 4.5% efficiency improvement relative to the 0.60 EF gas storage unit across all scenarios modeled. The alternative hybrid water heater evaluated does show promise, but the current low cost of natural gas across much of the country and the relatively small incremental efficiency improvement poses challenges in initially building a market demand for the product.

  18. Feedwater heater performance evaluation using the heat exchanger workstation

    International Nuclear Information System (INIS)

    Ranganathan, K.M.; Singh, G.P.; Tsou, J.L.

    1995-01-01

    A Heat Exchanger Workstation (HEW) has been developed to monitor the condition of heat exchanging equipment power plants. HEW enables engineers to analyze thermal performance and failure events for power plant feedwater heaters. The software provides tools for heat balance calculation and performance analysis. It also contains an expert system that enables performance enhancement. The Operation and Maintenance (O ampersand M) reference module on CD-ROM for HEW will be available by the end of 1995. Future developments of HEW would result in Condenser Expert System (CONES) and Balance of Plant Expert System (BOPES). HEW consists of five tightly integrated applications: A Database system for heat exchanger data storage, a Diagrammer system for creating plant heat exchanger schematics and data display, a Performance Analyst system for analyzing and predicting heat exchanger performance, a Performance Advisor expert system for expertise on improving heat exchanger performance and a Water Calculator system for computing properties of steam and water. In this paper an analysis of a feedwater heater which has been off-line is used to demonstrate how HEW can analyze the performance of the feedwater heater train and provide an economic justification for either replacing or repairing the feedwater heater

  19. Welding shield for coupling heaters

    Science.gov (United States)

    Menotti, James Louis

    2010-03-09

    Systems for coupling end portions of two elongated heater portions and methods of using such systems to treat a subsurface formation are described herein. A system may include a holding system configured to hold end portions of the two elongated heater portions so that the end portions are abutted together or located near each other; a shield for enclosing the end portions, and one or more inert gas inlets configured to provide at least one inert gas to flush the system with inert gas during welding of the end portions. The shield may be configured to inhibit oxidation during welding that joins the end portions together. The shield may include a hinged door that, when closed, is configured to at least partially isolate the interior of the shield from the atmosphere. The hinged door, when open, is configured to allow access to the interior of the shield.

  20. 40 CFR 63.7491 - Are any boilers or process heaters not subject to this subpart?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 13 2010-07-01 2010-07-01 false Are any boilers or process heaters not..., and Institutional Boilers and Process Heaters What This Subpart Covers § 63.7491 Are any boilers or process heaters not subject to this subpart? The types of boilers and process heaters listed in paragraphs...

  1. A super soliton connection

    International Nuclear Information System (INIS)

    Gurses, M.; Oguz, O.

    1985-07-01

    Integrable super non-linear classical partial differential equations are considered. A super s1(2,R) algebra valued connection 1-form is constructed. It is shown that curvature 2-form of this super connection vanishes by virtue of the integrable super equations of motion. A super extension of the AKNS scheme is presented and a class of super extension of the Lax hierarchy and super non-linear Schroedinger equation are found. O(N) extension and the Baecklund transformations of the above super equations are also considered. (author)

  2. Distributed Nonstationary Heat Model of Two-Channel Solar Air Heater

    International Nuclear Information System (INIS)

    Klychev, Sh. I.; Bakhramov, S. A.; Ismanzhanov, A. I.; Tashiev, N.N.

    2011-01-01

    An algorithm for a distributed nonstationary heat model of a solar air heater (SAH) with two operating channels is presented. The model makes it possible to determine how the coolant temperature changes with time along the solar air heater channel by considering its main thermal and ambient parameters, as well as variations in efficiency. Examples of calculations are presented. It is shown that the time within which the mean-day efficiency of the solar air heater becomes stable is significantly higher than the time within which the coolant temperature reaches stable values. The model can be used for investigation of the performances of solar water-heating collectors. (authors)

  3. Development of a running robot in super high speed tube. Aiming at realization of in-tube inspection for primary cooler and so forth of nuclear reactor

    International Nuclear Information System (INIS)

    Kato, Shigeo

    2000-01-01

    Authors have carried out a study on an in-tube running robot in living body on a base of laying stretching of bellows at a means of running by thinking application of in-tube inspection in living body such as large and small bowels. As a result, an in-tube running robot with about 20 mm in inner diameter capable of running in soft small bowel as well as in hard running tube was developed successfully. After an accident of the Tsuruga nuclear power plant, inspection of a large diameter tube with 76 mm in inner diameter was found to be much important, to begin development of an in-tube running robot for 50 mm class diameter tube. As a result, an in-tube running robot capable of enough holding a micro video camera with about 20 g in mass and showing 4.6 N in tension at more than ten times higher speed of 248 mm/s in no loading state, could be made in trial. Here was reported on a foothold realizable on an in-tube running robot for the 76 mm class large diameter tube to be investigated in future. (G.K.)

  4. Design of twisted tape turbulator at different entrance angle for heat transfer enhancement in a solar heater

    Directory of Open Access Journals (Sweden)

    Suvanjan Bhattacharyya

    2018-03-01

    Full Text Available Numerical investigation of heat transfer characteristics in a tube fitted with inserted twisted tape swirl generator is performed. The twisted tapes are separately inserted from the tube wall. The configuration parameters include the, entrance angle (α and pitch (H. Investigations have been done in the range of α = 180°, 160° and 140° with Reynolds number varying between 100 and 20,000. In this paper, transition – SST model which can predict the transition of flow regime from laminar through intermittent to turbulent has been utilized for numerical simulations. The computational results are in good agreement with experimental data. The results show that higher entrance angle yields a higher heat transfer value. The using of single twist twisted tape supplies considerable increase on heat transfer and pressure drop when compared with the conventional twisted tapes. A large data set has been generated for heat transfer and thermal-hydraulic performance which is useful for the design of solar thermal heaters and heat exchangers.

  5. Design and fabrication procedures of Super-Phenix fuel elements

    International Nuclear Information System (INIS)

    Leclere, J.; Vialard, J.-L.; Delpeyroux, P.

    1975-01-01

    For Super-Phenix fuel assemblies, Phenix technological arrangements will be used again, but they will be simplified as far as possible. The maximum fuel can temperature has been lowered in order to obtain a good behavior of hexagonal tubes and cans at high irradiation levels. An important experimental programme and the experience gained from Phenix operation will confirm the merits of the options retained. The fuel element fabrication is envisaged to take place in the plutonium workshop at Cadarache. Usual procedures will be employed and both reliability and automation will be increased [fr

  6. Theoretical temperature fields for the Stripa heater project. Vol. 1

    International Nuclear Information System (INIS)

    Chan, T.; Cook, N.G.W.; Tsang, C.F.

    1978-09-01

    The report concerns thermal conduction calculations for the three in-situ heater experiments at Stripa which constitute part of the Swedish-American Cooperative Program on Radioactive Waste Storage in Mined Caverns. A semianalytic solution based on the Green's function method has been developed for an array of arbitrary time-dependent finite line heaters in a semi-infinite medium. This method as well as a three dimensional numerical model using IFD (Integrated Finite Difference) technique has been applied to model the field situations at Stripa. Comparison has demonstrated that the finite line source solution for the rock temperature is in excellent agreement with the numerical model solution as well as with a closed form finite cylinder source solution. It was found that maximum temperature rise in the rock within the two year experiment period will be 178 0 C for the 3.6 kW full-scale heater experiment, 345 0 C for the full-scale experiment with a 5 kW central heater and eight 0.72 kW peripheral heaters, and less than 200 0 C for the time-scaled experiment. The ring of eight peripheral heaters in the second full-scale experiment will provide a nominally uniform temperature rise within its perimeter a few weeks after turn-on. The high temperature zone is localized throughout the duration of all three experiments. Nevertheless, the effect of different spacings on the thermal interaction between adjacent radioactive waste canisters will be demonstrated by the time-scaled experiment. Detailed results are presented in the form of tables, temperature profiles and contour plots. Predicted temperatures have been stored in an on-site computer for real-time comparison with field data. 56 figures, 7 tables

  7. Borehole heater test at KAERI Underground Research Tunnel

    International Nuclear Information System (INIS)

    Kwon, S. K.; Cho, W. J.; Jeon, S. W.

    2009-09-01

    At HLW repository, the temperature change due to the decay heat in near field can affect the hydraulic, mechanical, and chemical behaviors and influence on the repository safety. Therefore, the understanding of the thermal behavior in near field is essential for the site selection, design, as well as operation of the repository. In this study, various studies for the in situ heater test, which is for the investigation of the thermo-mechanical behavior in rock mass, were carried out. At first, similar in situ tests at foreign URLs were reviewed and summarized the major conclusions from the tests. After then an adequate design of heater, observation sensors, and data logging system were developed and installed with a consideration of the site condition and test purposes. In order to minimize the effect of hydraulic phenomenon, a relatively day zone was chosen for the in situ test. Joint distribution and characteristics in the zone were surveyed and the rock mass properties were determined with various laboratory tests. In this study, an adequate location for an in situ borehole heater test was chosen. Also a heater for the test was designed and manufactured and the sensors for measuring the rock behavior were installed. It was possible to observe that stiff joints are developed overwhelmingly in the test area from the joint survey at the tunnel wall. The major rock and rock mass properties at the test site could be determined from the thermo-mechanical laboratory tests using the rock cores retrieved from the site. The measured data were implemented in the three-dimensional computer simulation. From the modeling using FLAC3D code, it was possible to find that the heat convection through the tunnel wall can influence on temperature distribution in rock. Because of that it was necessary to installed a blocking wall to minimize the effect of ventilation system on the heater test, which is carrying out nearby the tunnel wall. The in situ borehole heater test is the first

  8. Design and performance of low-wattage electrical heater probe

    International Nuclear Information System (INIS)

    Biddle, R.; Wetzel, J.R.; Cech, R.

    1997-01-01

    A mound electrical calibration heater (MECH) has been used in several EG and G Mound developed calorimeters as a calibration tool. They are very useful over the wattage range of a few to 500 W. At the lower end of the range, a bias develops between the MECH probe and calibrated heat standards. A low-wattage electrical calibration heater (L WECH) probe is being developed by the Safeguards Science and Technology group (NIS-5) of Los Alamos National Laboratory based upon a concept proposed by EG and G Mound personnel. The probe combines electrical resistive heating and laser-light powered heating. The LWECH probe is being developed for use with power settings up to 2W. The electrical heater will be used at the high end of the range, and laser-light power will be used low end of the wattage range. The system consists of two components: the heater probe and a control unit. The probe is inserted into the measuring cavity through an opening in the insulating baffle, and a sleeve is required to adapt to the measuring chamber. The probe is powered and controlled using electronics modules located separately. This paper will report on the design of the LWECH probe, initial tests, and expected performance

  9. Super-Calogero-Moser-Sutherland systems and free super-oscillators: a mapping

    International Nuclear Information System (INIS)

    Ghosh, Pijush K.

    2001-01-01

    We show that the supersymmetric rational Calogero-Moser-Sutherland (CMS) model of A N+1 -type is equivalent to a set of free super-oscillators, through a similarity transformation. We prescribe methods to construct the complete eigenspectrum and the associated eigenfunctions, both in supersymmetry-preserving as well as supersymmetry-breaking phases, from the free super-oscillator basis. Further we show that a wide class of super-Hamiltonians realizing dynamical OSp(2 vertical bar 2) supersymmetry, which also includes all types of rational super-CMS as a small subset, are equivalent to free super-oscillators. We study BC N+1 -type super-CMS model in some detail to understand the subtleties involved in this method

  10. Heater-Integrated Cantilevers for Nano-Samples Thermogravimetric Analysis

    Science.gov (United States)

    Toffoli, Valeria; Carrato, Sergio; Lee, Dongkyu; Jeon, Sangmin; Lazzarino, Marco

    2013-01-01

    The design and characteristics of a micro-system for thermogravimetric analysis (TGA) in which heater, temperature sensor and mass sensor are integrated into a single device are presented. The system consists of a suspended cantilever that incorporates a microfabricated resistor, used as both heater and thermometer. A three-dimensional finite element analysis was used to define the structure parameters. TGA sensors were fabricated by standard microlithographic techniques and tested using milli-Q water and polyurethane microcapsule. The results demonstrated that our approach provides a faster and more sensitive TGA with respect to commercial systems.

  11. Super Riemann surfaces

    International Nuclear Information System (INIS)

    Rogers, Alice

    1990-01-01

    A super Riemann surface is a particular kind of (1,1)-dimensional complex analytic supermanifold. From the point of view of super-manifold theory, super Riemann surfaces are interesting because they furnish the simplest examples of what have become known as non-split supermanifolds, that is, supermanifolds where the odd and even parts are genuinely intertwined, as opposed to split supermanifolds which are essentially the exterior bundles of a vector bundle over a conventional manifold. However undoubtedly the main motivation for the study of super Riemann surfaces has been their relevance to the Polyakov quantisation of the spinning string. Some of the papers on super Riemann surfaces are reviewed. Although recent work has shown all super Riemann surfaces are algebraic, some areas of difficulty remain. (author)

  12. Integrated straight - through automatic non-destructive examination and data acquisition system for thin-wall tubes

    International Nuclear Information System (INIS)

    Stoessel, A.; Boulanger, G.; Furlan, J.; Mogavero, R.

    1981-09-01

    This non-destructive testing unit inspects the cladding tubes for the SUPER-PHENIX fast neutron reactor. The quality level demanded for these tubes, as well as their number, required designing an installation that combined high performance with a great testing rate and complete automation. The testing is effected under immersion by means of six transducers, focused in line, working at 30 MHz. The tubes are numbered on an automatic rig; marking is by dark rings obtained by superficial electrolysis of the tube and regularly distributed on the abscissa; the quality of the tube is not affected by this. The advantage of this numbering system is that it enables the tubes to be fed to the test set in any order. An acquisition unit, constituted of a microprocessor, a semi-graphical printer and a double floppy disk unit, makes it possible to enter, edit and store the information for each tube [fr

  13. BREEDING SUPER-EARTHS AND BIRTHING SUPER-PUFFS IN TRANSITIONAL DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eve J.; Chiang, Eugene, E-mail: evelee@berkeley.edu, E-mail: echiang@astro.berkeley.edu [Department of Astronomy, University of California Berkeley, Berkeley, CA 94720-3411 (United States)

    2016-02-01

    The riddle posed by super-Earths (1–4R{sub ⊕}, 2–20M{sub ⊕}) is that they are not Jupiters: their core masses are large enough to trigger runaway gas accretion, yet somehow super-Earths accreted atmospheres that weigh only a few percent of their total mass. We show that this puzzle is solved if super-Earths formed late, as the last vestiges of their parent gas disks were about to clear. This scenario would seem to present fine-tuning problems, but we show that there are none. Ambient gas densities can span many (in one case up to 9) orders of magnitude, and super-Earths can still robustly emerge after ∼0.1–1 Myr with percent-by-weight atmospheres. Super-Earth cores are naturally bred in gas-poor environments where gas dynamical friction has weakened sufficiently to allow constituent protocores to gravitationally stir one another and merge. So little gas is present at the time of core assembly that cores hardly migrate by disk torques: formation of super-Earths can be in situ. The basic picture—that close-in super-Earths form in a gas-poor (but not gas-empty) inner disk, fed continuously by gas that bleeds inward from a more massive outer disk—recalls the largely evacuated but still accreting inner cavities of transitional protoplanetary disks. We also address the inverse problem presented by super-puffs: an uncommon class of short-period planets seemingly too voluminous for their small masses (4–10R{sub ⊕}, 2–6M{sub ⊕}). Super-puffs most easily acquire their thick atmospheres as dust-free, rapidly cooling worlds outside ∼1 AU where nebular gas is colder, less dense, and therefore less opaque. Unlike super-Earths, which can form in situ, super-puffs probably migrated in to their current orbits; they are expected to form the outer links of mean-motion resonant chains, and to exhibit greater water content. We close by confronting observations and itemizing remaining questions.

  14. BREEDING SUPER-EARTHS AND BIRTHING SUPER-PUFFS IN TRANSITIONAL DISKS

    International Nuclear Information System (INIS)

    Lee, Eve J.; Chiang, Eugene

    2016-01-01

    The riddle posed by super-Earths (1–4R ⊕ , 2–20M ⊕ ) is that they are not Jupiters: their core masses are large enough to trigger runaway gas accretion, yet somehow super-Earths accreted atmospheres that weigh only a few percent of their total mass. We show that this puzzle is solved if super-Earths formed late, as the last vestiges of their parent gas disks were about to clear. This scenario would seem to present fine-tuning problems, but we show that there are none. Ambient gas densities can span many (in one case up to 9) orders of magnitude, and super-Earths can still robustly emerge after ∼0.1–1 Myr with percent-by-weight atmospheres. Super-Earth cores are naturally bred in gas-poor environments where gas dynamical friction has weakened sufficiently to allow constituent protocores to gravitationally stir one another and merge. So little gas is present at the time of core assembly that cores hardly migrate by disk torques: formation of super-Earths can be in situ. The basic picture—that close-in super-Earths form in a gas-poor (but not gas-empty) inner disk, fed continuously by gas that bleeds inward from a more massive outer disk—recalls the largely evacuated but still accreting inner cavities of transitional protoplanetary disks. We also address the inverse problem presented by super-puffs: an uncommon class of short-period planets seemingly too voluminous for their small masses (4–10R ⊕ , 2–6M ⊕ ). Super-puffs most easily acquire their thick atmospheres as dust-free, rapidly cooling worlds outside ∼1 AU where nebular gas is colder, less dense, and therefore less opaque. Unlike super-Earths, which can form in situ, super-puffs probably migrated in to their current orbits; they are expected to form the outer links of mean-motion resonant chains, and to exhibit greater water content. We close by confronting observations and itemizing remaining questions

  15. Stretchable Tattoo-Like Heater with On-Site Temperature Feedback Control

    Directory of Open Access Journals (Sweden)

    Andrew Stier

    2018-04-01

    Full Text Available Wearable tissue heaters can play many important roles in the medical field. They may be used for heat therapy, perioperative warming and controlled transdermal drug delivery, among other applications. State-of-the-art heaters are too bulky, rigid, or difficult to control to be able to maintain long-term wearability and safety. Recently, there has been progress in the development of stretchable heaters that may be attached directly to the skin surface, but they often use expensive materials or processes and take significant time to fabricate. Moreover, they lack continuously active, on-site, unobstructive temperature feedback control, which is critical for accommodating the dynamic temperatures required for most medical applications. We have developed, fabricated and tested a cost-effective, large area, ultra-thin and ultra-soft tattoo-like heater that has autonomous proportional-integral-derivative (PID temperature control. The device comprises a stretchable aluminum heater and a stretchable gold resistance temperature detector (RTD on a soft medical tape as fabricated using the cost and time effective “cut-and-paste” method. It can be noninvasively laminated onto human skin and can follow skin deformation during flexure without imposing any constraint. We demonstrate the device’s ability to maintain a target temperature typical of medical uses over extended durations of time and to accurately adjust to a new set point in process. The cost of the device is low enough to justify disposable use.

  16. Heat Pump Water Heaters and American Homes: A Good Fit?

    Energy Technology Data Exchange (ETDEWEB)

    Franco, Victor; Lekov, Alex; Meyers, Steve; Letschert, Virginie

    2010-05-14

    Heat pump water heaters (HPWHs) are over twice as energy-efficient as conventional electric resistance water heaters, with the potential to save substantial amounts of electricity. Drawing on analysis conducted for the U.S. Department of Energy's recently-concluded rulemaking on amended standards for water heaters, this paper evaluates key issues that will determine how well, and to what extent, this technology will fit in American homes. The key issues include: 1) equipment cost of HPWHs; 2) cooling of the indoor environment by HPWHs; 3) size and air flow requirements of HPWHs; 4) performance of HPWH under different climate conditions and varying hot water use patterns; and 5) operating cost savings under different electricity prices and hot water use. The paper presents the results of a life-cycle cost analysis of the adoption of HPWHs in a representative sample of American homes, as well as national impact analysis for different market share scenarios. Assuming equipment costs that would result from high production volume, the results show that HPWHs can be cost effective in all regions for most single family homes, especially when the water heater is not installed in a conditioned space. HPWHs are not cost effective for most manufactured home and multi-family installations, due to lower average hot water use and the water heater in the majority of cases being installed in conditioned space, where cooling of the indoor environment and size and air flow requirements of HPWHs increase installation costs.

  17. The Super Patalan Numbers

    OpenAIRE

    Richardson, Thomas M.

    2014-01-01

    We introduce the super Patalan numbers, a generalization of the super Catalan numbers in the sense of Gessel, and prove a number of properties analagous to those of the super Catalan numbers. The super Patalan numbers generalize the super Catalan numbers similarly to how the Patalan numbers generalize the Catalan numbers.

  18. Grassmann, super-Kac-Moody and super-derivation algebras

    International Nuclear Information System (INIS)

    Frappat, L.; Ragoucy, E.; Sorba, P.

    1989-05-01

    We study the cyclic cocycles of degree one on the Grassmann algebra and on the super-circle with N supersymmetries (i.e. the tensor product of the algebra of functions on the circle times a Grassmann algebra with N generators). They are related to central extensions of graded loop algebras (i.e. super-Kac-Moody algebras). The corresponding algebras of super-derivations have to be compatible with the cocycle characterizing the extension; we give a general method for determining these algebras and examine in particular the cases N = 1,2,3. We also discuss their relations with the Ademollo et al. algebras, and examine the possibility of defining new kinds of super-conformal algebras, which, for N > 1, generalize the N = 1 Ramond-Neveu-Schwarz algebra

  19. Active heater control and regulation for the Varian VGT-8011 gyrotron

    International Nuclear Information System (INIS)

    Harris, T.E.

    1991-10-01

    The Varian VGT-8011 gyrotron is currently being used in the new 110 GHz 2 MW ECH system installed on D3-D. This new ECH system augments the 60 GHz system which uses Varian VA-8060 gyrotrons. The new 110 GHz system will be used for ECH experiments on D3-D with a pulse width capability of 10 sec. In order to maintain a constant RF outpower level during long pulse operation, active filament-heater control and regulation is required to maintain a constant cathode current. On past D3-D experiments involving the use of Varian VA-8060 gyrotrons for ECH power, significant gyrotron heater-emission depletion was experienced for pulse widths > 300 msec. This decline in heater-emission directly results in gyrotron-cathode current droop. Since RF power from gyrotrons decreases as cathode current decreases, it is necessary to maintain a constant cathode current level during gyrotron pulses for efficient gyrotron operation. Therefore, it was determined that a filament-heater control system should be developed for the Varian VGT-8011 gyrotron which will include cathode-current feed-back. This paper discusses the mechanisms used to regulate gyrotron filament-heater voltage by using cathode-current feed-back. 1 fig

  20. Heater test planning for the near surface test facility at the Hanford reservation

    International Nuclear Information System (INIS)

    DuBois, A.; Binnall, E.; Chan, T.; McEvoy, M.; Nelson, P.; Remer, J.

    1979-03-01

    The underground test facility NSTF being constructed at Gable Mountain, is the site for a group of experiments designed to evaluate the thermo-mechanical suitability of a deep basalt stratum as a permanent repository for nuclear waste. Thermo-mechanical modeling was performed to help design the instrumentation arrays for the three proposed heater tests (two full scale tests and one time scale test) and predict the thermal environment of the heaters and instruments. The modeling does not reflect recent RHO revisions to the in situ heater experiment plan. Heaters, instrumentation, and data acquisition system designs and recommendations were adapted from those used in Sweden

  1. Analysis of Large- Capacity Water Heaters in Electric Thermal Storage Programs

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, Alan L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Anderson, David M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Winiarski, David W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Carmichael, Robert T. [Cadeo Group, Washington D. C. (United States); Mayhorn, Ebony T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fisher, Andrew R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-03-17

    This report documents a national impact analysis of large tank heat pump water heaters (HPWH) in electric thermal storage (ETS) programs and conveys the findings related to concerns raised by utilities regarding the ability of large-tank heat pump water heaters to provide electric thermal storage services.

  2. Avery Island heater tests: measured data for 1000 days of heating

    International Nuclear Information System (INIS)

    Van Sambeek, L.L.; Stickney, R.G.; DeJong, K.B.

    1983-10-01

    Three heater tests were conducted in the Avery Island salt mine. The measurements of temperature and displacement, and the calculation of stress in the vicinity of each heater are of primary importance in the understanding of the thermal and thermomechanical response of the salt to an emplaced heat source. This report presents the temperature, displacement, and calculated stress data gathered during the heating phase of the three heater tests. The data presented have application in the ongoing studies of the response of geologicic media to an emplaced heat source. Specifically, electric heaters, which simulate canisters of heat-generating nuclear waste, were placed in the floor of the Avery Island salt mine, and measurements were made of the response of the salt caused by the heating. The purpose of this report is to transmit the data to the scientific community; rigorous analysis and interpretation of the data are considered beyond the scope of this data report. 11 references, 46 figures

  3. Experimental analysis of distinct design of a batch solar water heater with integrated collector storage system

    Directory of Open Access Journals (Sweden)

    Varghese Jaji

    2007-01-01

    Full Text Available The performance of a new design of batch solar water heater has been studied. In this system, the collector and storage were installed in one unit. Unlike the conventional design consisting of small diameter water tubes, it has a single large diameter drum which serves the dual purpose of absorber tube and storage tank. In principle it is a compound parabolic collector. The drum is sized to have a storage capacity of 100 liter to serve a family of four persons. The tests were carried out with a single glass cover and two glass covers. The tests were repeated for several days. Performance analysis of the collector has revealed that it has maximum mean daily efficiency with two glass covers as high as 37.2%. The maximum water temperature in the storage tank of 60°C has been achieved for a clear day operation at an average solar beam radiation level of 680 W/m2 and ambient temperature of 32°C. To judge the operating characteristics and to synchronize utility pattern of the collector, the different parameters such as efficiency, mean plate temperature and mass flow rate has been investigated.

  4. Development of low temperature solid state joining technology of dissimilar for nuclear heat exchanger tube components

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-08-15

    By conventional fusion welding process (TIG), a realization of reliable and sound joints for the nuclear heat exchanger components is very difficult, especially for the parts comprising of the dissimilar metal couples (Ti-STS, Ti-Cu alloy etc.). This is mainly attributed to the formation of brittle intermetallics (Ti{sub x}Cu{sub y}, Ti{sub x}Fe{sub y}, Ti{sub x}Ni{sub y} etc.) and wide difference in physical properties. Moreover, it usually employs very high thermal input, so making it difficult to obtain sound joints due to generations of high residual stresses and degradation of the adjacent base metals, even for similar metal combinations. In this project, the low temperature solid-state joining technology was established by developing new alloy fillers, e.g. the multi-component eutectic based alloys or amorphous alloys, and thereby lowering the joining temperature down to {approx}800 .deg. C without affecting the structural properties of base metals. Based on a low temperature joining, the interlayer engineering technology was then developed to be able to eliminate the brittleness of the joints for strong Ti-STS dissimilar joints, and the diffusion brazing technology of Ti-Ti with a superior joining strength and corrosion-resistance comparable to those of base metal were developed. By using those developed technologies, the joining procedures feasible for the heat exchanger components were finally established for the dissimilar metal joints including Ti tube sheet to super STS tube, Ti tube sheet to super STS tube sheet, and the joints of the Ti tube to Ti tube sheet

  5. Towards a CFD-based mechanistic deposit formation model for straw-fired boilers

    DEFF Research Database (Denmark)

    Kær, Søren Knudsen; Rosendahl, Lasse Aistrup; Baxter, L.L.

    2006-01-01

    is configured entirely through a graphical user interface integrated in the standard FLUENTe interface. The model considers fine and coarse mode ash deposition and sticking mechanisms for the complete deposit growth, as well as an influence on the local boundary conditions for heat transfer due to thermal...... in the reminder of the paper. The growth of deposits on furnace walls and super heater tubes is treated including the impact on heat transfer rates determined by the CFD code. Based on the commercial CFD code FLUENTe, the overall model is fully implemented through the User Defined Functions. The model...

  6. Solar water heater design package

    Science.gov (United States)

    1981-01-01

    Package describes commercial domestic-hot-water heater with roof or rack mounted solar collectors. System is adjustable to pre-existing gas or electric hot-water house units. Design package includes drawings, description of automatic control logic, evaluation measurements, possible design variations, list of materials and installation tools, and trouble-shooting guide and manual.

  7. Conasauga near-surface heater experiment. Final report

    International Nuclear Information System (INIS)

    Krumhansl, J.L.

    1979-11-01

    The Conasauga Experiment was undertaken to begin assessment of the thermomechanical and chemical response of a specific shale to the heat resulting from emplacement of high-level nuclear wastes. Canister-size heaters were implanted in Conasauga shale in Tennessee. Instrumentation arrays wee placed at various depths in drill holes around each heater. The heaters operated for 8 months and, after the first 4 days, were maintained at 385 0 C. Emphasis was on characterizing the thermal and mechanical response of the formation. Conduction was the major mode of heat transport; convection was perceptible only at temperatures above the boiling point of water. Despite dehydration of the shale at higher temperatures, in situ thermal conductivity was essentially constant and not a function of temperature. The mechanical response of the formation was a slight overall expansion, apparently resulting in a general decrease in permeability. Metallurgical observations were made, the stability of a borosilicate glass wasteform simulant was assessed, and changes in formation mineralogy and groundwater composition were documented. In each of these areas, transient nonequilibrium processes occur that affect material stability and may be important in determining the integrity of a repository. In general, data from the test reflect favorably on the use of shale as a disposal medium for nuclear waste

  8. Transient turbulent heat transfer for heating of water in a short vertical tube

    International Nuclear Information System (INIS)

    Hata, Koichi; Kai, Naoto; Shirai, Yasuyuki; Masuzaki, Suguru

    2011-01-01

    The transient turbulent heat transfer coefficients in a short vertical Platinum test tube were systematically measured for the flow velocities (u=4.0 to 13.6 m/s), the inlet liquid temperatures (T in =296.93 to 304.81 K), the inlet pressures (P in =794.39 to 858.27 kPa) and the increasing heat inputs (Q 0 exp(t/τ), exponential periods, τ, of 18.6 ms to 25.7 s) by an experimental water loop comprised of a multistage canned-type circulation pump with high pump head. The Platinum test tubes of test tube inner diameters (d=3 and 6 mm), heated lengths (L=66.5 and 69.6 mm), effective lengths (L eff =56.7 and 59.2 mm), ratios of heated length to inner diameter (L/d=22.16 and 11.6), ratios of effective length to inner diameter (L eff /d=18.9 and 9.87) and wall thickness (δ=0.5 and 0.4 mm) with average surface roughness (Ra=0.40 and 0.45 μm) were used in this work. The surface heat fluxes between the two potential taps were given the difference between the heat generation rate per unit surface area and the rate of change of energy storage in the test tube obtained from the faired average temperature versus time curve. The heater inner surface temperature between the two potential taps was also obtained by solving the unsteady heat conduction equation in the test tube under the conditions of measured average temperature and heat generation rate per unit surface area of the test tube. The transient turbulent heat transfer data for Platinum test tubes were compared with the values calculated by authors' correlation for the steady state turbulent heat transfer. The influence of inner diameter (d), ratio of effective length to inner diameter (L eff /d), flow velocity (u) and exponential period (τ) on the transient turbulent heat transfer is investigated into details and the widely and precisely predictable correlation of the transient turbulent heat transfer for heating of water in a short vertical tube is given based on the experimental data and authors' studies for the

  9. Transient turbulent heat transfer for heating of water in a short vertical tube

    International Nuclear Information System (INIS)

    Hata, Koichi; Kai, Naoto; Shirai, Yasuyuki; Masuzaki, Suguru

    2011-01-01

    The transient turbulent heat transfer coefficients in a short vertical Platinum test tube were systematically measured for the flow velocities (u=4.0 to 13.6 m/s), the inlet liquid temperatures (T in =296.93 to 304.81 K), the inlet pressures (P in =794.39 to 858.27 kPa) and the increasing heat inputs (Q 0 exp(t/τ), exponential periods, τ, of 18.6 ms to 25.7 s) by an experimental water loop comprised of a multistage canned-type circulation pump with high pump head. The Platinum test tubes of test tube inner diameters (d=3 and 6 mm), heated lengths (L=66.5 and 69.6 mm), effective lengths (L eff =56.7 and 59.2 mm), ratios of heated length to inner diameter (L/d=22.16 and 11.6), ratios of effective length to inner diameter (L eff /d=18.9 and 9.87) and wall thickness (δ=0.5 and 0.4 mm) with average surface roughness (Ra=0.40 and 0.45 μm) were used in this work. The surface heat fluxes between the two potential taps were given the difference between the heat generation rate per unit surface area and the rate of change of energy storage in the test tube obtained from the faired average temperature versus time curve. The heater inner surface temperature between the two potential taps was also obtained by solving the unsteady heat conduction equation in the test tube under the conditions of measured average temperature and heat generation rate per unit surface area of the test tube. The transient turbulent heat transfer data for Platinum test tubes were compared with the values calculated by authors' correlation for the steady state turbulent heat transfer. The influence of inner diameter (d), ratio of effective length to inner diameter (L eff /d), flow velocity (u) and exponential period (τ) on the transient turbulent heat transfer is investigated into details and the widely and precisely predictable correlation of the transient turbulent heat transfer for heating of water in a short vertical tube is given based on the experimental data and authors' studies for the

  10. Computer utilization for design and operation of the SuperHILAC

    International Nuclear Information System (INIS)

    Selph, F.B.; Spence, D.A.

    1974-01-01

    The in-house constructed computer codes at the SuperHILAC can be divided into three main categories: (1) accelerator and component design; (2) control and operation; and (3) performance and diagnostics. The first category includes design programs of rf cavities, magnets, and beam optics. The second group contains programs for administration and logbook entries, machine parameter specifications, and openloop parameter control. Programs in the third category are those which directly or indirectly test the mechanical design and geometry of the machine, such as magnet testing, drift-tube-alignment, beam behavior and diagnostics. The present conversion of the SuperHILAC to computer control and a dual-ion time-sharing mode of operation is outlined in context with the complexities of operating this multi-ion, variable energy accelerator. Routines are discussed from the user's standpoint, covering such topics as on-line/off-line implementation, expected gain, actual results, and differences in characteristics which determine the method of computation. (U.S.)

  11. 77 FR 74559 - Energy Conservation Program for Consumer Products: Test Procedures for Residential Water Heaters...

    Science.gov (United States)

    2012-12-17

    ... Conservation Program for Consumer Products: Test Procedures for Residential Water Heaters, Direct Heating... Energy (DOE) is amending its test procedures for residential water heaters, direct heating equipment (DHE... necessary for residential water heaters, because the existing test procedures for those products already...

  12. 76 FR 56347 - Energy Conservation Program for Consumer Products: Test Procedures for Residential Water Heaters...

    Science.gov (United States)

    2011-09-13

    ... Conservation Program for Consumer Products: Test Procedures for Residential Water Heaters, Direct Heating... proposed to amend, where appropriate, its test procedures for residential water heaters, direct heating... notes that the test procedure and metric for residential water heaters currently address and incorporate...

  13. Performance of Thermosyphon Solar Water Heaters in Series

    Directory of Open Access Journals (Sweden)

    Tsong-Sheng Lee

    2012-08-01

    Full Text Available More than a single thermosyphon solar water heater may be employed in applications when considerable hot water consumption is required. In this experimental investigation, eight typical Taiwanese solar water heaters were connected in series. Degree of temperature stratification and thermosyphon flow rate in a horizontal tank were evaluated. The system was tested under no-load, intermittent and continuous load conditions. Results showed that there was stratification in tanks under the no-load condition. Temperature stratification also redeveloped after the draw-off. Analysis of thermal performance of the system was conducted for each condition.

  14. Heater-Integrated Cantilevers for Nano-Samples Thermogravimetric Analysis

    Directory of Open Access Journals (Sweden)

    Valeria Toffoli

    2013-12-01

    Full Text Available The design and characteristics of a micro-system for thermogravimetric analysis (TGA in which heater, temperature sensor and mass sensor are integrated into a single device are presented. The system consists of a suspended cantilever that incorporates a microfabricated resistor, used as both heater and thermometer. A three-dimensional finite element analysis was used to define the structure parameters. TGA sensors were fabricated by standard microlithographic techniques and tested using milli-Q water and polyurethane microcapsule. The results demonstrated that our approach provides a faster and more sensitive TGA with respect to commercial systems.

  15. Evaluation of the Demand Response Performance of Electric Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Mayhorn, Ebony T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Widder, Sarah H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Parker, Steven A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pratt, Richard M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chassin, Forrest S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-03-17

    The purpose of this project is to verify or refute many of the concerns raised by utilities regarding the ability of large tank HPWHs to perform DR by measuring the performance of HPWHs compared to ERWHs in providing DR services. perform DR by measuring the performance of HPWHs compared to ERWHs in providing DR services. This project was divided into three phases. Phase 1 consisted of week-long laboratory experiments designed to demonstrate technical feasibility of individual large-tank HPWHs in providing DR services compared to large-tank ERWHs. In Phase 2, the individual behaviors of the water heaters were then extrapolated to a population by first calibrating readily available water heater models developed in GridLAB-D simulation software to experimental results obtained in Phase 1. These models were used to simulate a population of water heaters and generate annual load profiles to assess the impacts on system-level power and residential load curves. Such population modeling allows for the inherent and permanent load reduction accomplished by the more efficient HPWHs to be considered, in addition to the temporal DR services the water heater can provide by switching ON or OFF as needed by utilities. The economic and emissions impacts of using large-tank water heaters in DR programs are then analyzed from the utility and consumer perspective, based on National Impacts Analysis in Phase 3. Phase 1 is discussed in this report. Details on Phases 2 and 3 can be found in the companion report (Cooke et al. 2014).

  16. High voltage bus and auxiliary heater control system for an electric or hybrid vehicle

    Science.gov (United States)

    Murty, Balarama Vempaty

    2000-01-01

    A control system for an electric or hybrid electric vehicle includes a vehicle system controller and a control circuit having an electric immersion heater. The heater is electrically connected to the vehicle's high voltage bus and is thermally coupled to a coolant loop containing a heater core for the vehicle's climate control system. The system controller responds to cabin heat requests from the climate control system by generating a pulse width modulated signal that is used by the control circuit to operate the heater at a duty cycle appropriate for the amount of cabin heating requested. The control system also uses the heater to dissipate excess energy produced by an auxiliary power unit and to provide electric braking when regenerative braking is not desirable and manual braking is not necessary. The control system further utilizes the heater to provide a safe discharge of a bank of energy storage capacitors following disconnection of the battery or one of the high voltage connectors used to transmit high voltage operating power to the various vehicle systems. The control circuit includes a high voltage clamping circuit that monitors the voltage on the bus and operates the heater to clamp down the bus voltage when it exceeds a pre-selected maximum voltage. The control system can also be used to phase in operation of the heater when the bus voltage exceeds a lower threshold voltage and can be used to phase out the auxiliary power unit charging and regenerative braking when the battery becomes fully charged.

  17. 49 CFR 393.77 - Heaters.

    Science.gov (United States)

    2010-10-01

    ... or of any exposed portions of the heaters, inclusive of exhaust stacks, pipes, or conduits shall be... disassembly of any of its parts, including exhaust stacks, pipes, or conduits, upon overturn of the vehicle in... will never exceed 0.2 percent in the cargo space. The exhaust pipe, stack, or conduit if required shall...

  18. Accelerated Life Structural Benchmark Testing for a Stirling Convertor Heater Head

    Science.gov (United States)

    Krause, David L.; Kantzos, Pete T.

    2006-01-01

    For proposed long-duration NASA Space Science missions, the Department of Energy, Lockheed Martin, Infinia Corporation, and NASA Glenn Research Center are developing a high-efficiency, 110 W Stirling Radioisotope Generator (SRG110). A structurally significant limit state for the SRG110 heater head component is creep deformation induced at high material temperature and low stress level. Conventional investigations of creep behavior adequately rely on experimental results from uniaxial creep specimens, and a wealth of creep data is available for the Inconel 718 material of construction. However, the specified atypical thin heater head material is fine-grained with a heat treatment that limits precipitate growth, and little creep property data for this microstructure is available in the literature. In addition, the geometry and loading conditions apply a multiaxial stress state on the component, far from the conditions of uniaxial testing. For these reasons, an extensive experimental investigation is ongoing to aid in accurately assessing the durability of the SRG110 heater head. This investigation supplements uniaxial creep testing with pneumatic testing of heater head-like pressure vessels at design temperature with stress levels ranging from approximately the design stress to several times that. This paper presents experimental results, post-test microstructural analyses, and conclusions for four higher-stress, accelerated life tests. Analysts are using these results to calibrate deterministic and probabilistic analytical creep models of the SRG110 heater head.

  19. Energy consumption modeling of air source electric heat pump water heaters

    International Nuclear Information System (INIS)

    Bourke, Grant; Bansal, Pradeep

    2010-01-01

    Electric heat pump air source water heaters may provide an opportunity for significant improvements in residential water heater energy efficiency in countries with temperate climates. As the performance of these appliances can vary widely, it is important for consumers to be able to accurately assess product performance in their application to maximise energy savings and ensure uptake of this technology. For a given ambient temperature and humidity, the performance of an air source heat pump water heater is strongly correlated to the water temperature in or surrounding the condenser. It is therefore important that energy consumption models for these products duplicate the real-world water temperatures applied to the heat pump condenser. This paper examines a recently published joint Australian and New Zealand Standard, AS/NZS 4234: 2008; Heated water systems - Calculation of energy consumption. Using this standard a series TRNSYS models were run for several split type air source electric heat pump water heaters. An equivalent set of models was then run utilizing an alternative water use pattern. Unfavorable errors of up to 12% were shown to occur in modeling of heat pump water heater performance using the current standard compared to the alternative regime. The difference in performance of a model using varying water use regimes can be greater than the performance difference between models of product.

  20. Mechanical strength evaluation of the glass base material in the JRR-3 neutron guide tube

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Tetsuya [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-02-01

    The lifetime of the thermal neutron guide tube installed JRR-3 was investigated after 6 years from their first installation. And it was confirmed that a crack had been piercing into the glass base material of the side plate of the neutron guide tube. The cause of the crack was estimated as a static fatigue of the guide tube where an inside of the tube had been evacuated and stressed as well as an embrittlement of the glass base material by gamma ray irradiation. In this report, we evaluate the mechanical strength of the glass base material and estimate the time when the base material gets fatigue fracture. Furthermore, we evaluate a lifetime of the neutron guide tube and confirm the validity of update timing in 2000 and 2001 when the thermal neutron guide tubes T1 and T2 were exchanged into those using the super mirror. (author)

  1. A simulation study on the operating performance of a solar-air source heat pump water heater

    International Nuclear Information System (INIS)

    Xu Guoying; Zhang Xiaosong; Deng Shiming

    2006-01-01

    A simulation study on the operating performance of a new type of solar-air source heat pump water heater (SAS-HPWH) has been presented. The SAS-HPWH used a specially designed flat-plate heat collector/evaporator with spiral-finned tubes to obtain energy from both solar irradiation and ambient air for hot water heating. Using the meteorological data in Nanjing, China, the simulation results based on 150 L water heating capacity showed that such a SAS-HPWH can heat water up to 55 deg. C efficiently under various weather conditions all year around. In this simulation study, the influences of solar radiation, ambient temperature and compressor capacity on the performance of the SAS-HPWH were analyzed. In order to improve the overall operating performance, the use of a variable-capacity compressor has been proposed

  2. Control and Coordination of Frequency Responsive Residential Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Tess L.; Kalsi, Karanjit; Elizondo, Marcelo A.; Marinovici, Laurentiu D.; Pratt, Richard M.

    2016-07-31

    Demand-side frequency control can complement traditional generator controls to maintain the stability of large electric systems in the face of rising uncertainty and variability associated with renewable energy resources. This paper presents a hierarchical frequency-based load control strategy that uses a supervisor to flexibly adjust control gains that a population of end-use loads respond to in a decentralized manner to help meet the NERC BAL-003-1 frequency response standard at both the area level and interconnection level. The load model is calibrated and used to model populations of frequency-responsive water heaters in a PowerWorld simulation of the U.S. Western Interconnection (WECC). The proposed design is implemented and demonstrated on physical water heaters in a laboratory setting. A significant fraction of the required frequency response in the WECC could be supplied by electric water heaters alone at penetration levels of less than 15%, while contributing to NERC requirements at the interconnection and area levels.

  3. Research and development of super light water reactors and super fast reactors in Japan

    International Nuclear Information System (INIS)

    Oka, Y.; Morooka, S.; Yamakawa, M.; Ishiwatari, Y.; Ikejiri, S.; Katsumura, Y.; Muroya, Y.; Terai, T.; Sasaki, K.; Mori, H.; Hamamoto, Y.; Okumura, K.; Kugo, T.; Nakatsuka, T.; Ezato, K.; Akasaka, N.; Hotta, A.

    2011-01-01

    Super Light Water Reactors (Super LWR) and Super Fast Reactors (Super FR) are the supercritical- pressure light water cooled reactors (SCWR) that are developed by the research group of University of Tokyo since 1989 and now jointly under development with the researchers of Waseda University, University of Tokyo and other organizations in Japan. The principle of the reactor concept development, the results of the past Super LWR and Super FR R&D as well as the R&D program of the Super FR second phase project are described. (author)

  4. The super W∞ symmetry of the Manin-Radul super KP hierarchy

    International Nuclear Information System (INIS)

    Das, A.; Sin, S.J.

    1991-11-01

    We show that the Manin-Radul super KP hierarchy is invariant under super W ∞ transformations. These transformations are characterized by time dependent flows which commute with the usual flows generated by the conserved quantities of the super KP hierarchy. (author). 16 refs

  5. Solar Water Heater Installation Package

    Science.gov (United States)

    1982-01-01

    A 48-page report describes water-heating system, installation (covering collector orientation, mounting, plumbing and wiring), operating instructions and maintenance procedures. Commercial solar-powered water heater system consists of a solar collector, solar-heated-water tank, electrically heated water tank and controls. Analysis of possible hazards from pressure, electricity, toxicity, flammability, gas, hot water and steam are also included.

  6. Quench Heater Experiments on the LHC Main Superconducting Magnets

    OpenAIRE

    Rodríguez-Mateos, F; Pugnat, P; Sanfilippo, S; Schmidt, R; Siemko, A; Sonnemann, F

    2000-01-01

    In case of a quench in one of the main dipoles and quadrupoles of CERN's Large Hadron Collider (LHC), the magnet has to be protected against excessive temperatures and high voltages. In order to uniformly distribute the stored magnetic energy in the coils, heater strips installed in the magnet are fired after quench detection. Tests of different quench heater configurations were performed on various 1 m long model and 15 m long prototype dipole magnets, as well as on a 3 m long prototype quad...

  7. Review of the near surface heater experiment at Oak Ridge, TN

    International Nuclear Information System (INIS)

    Krumhansl, J.L.

    1977-01-01

    An experiment has been undertaken to assess the large scale effects that heat from a waste canister would have were the canister emplaced in shale. The experimental design includes a 10 foot long heater which will be buried at a depth of 55 feet and will run at 600 0 C for between six months and a year. The heater is surrounded by an array of thermocouples and stress gages. In addition, coupons of potential canister metals are affixed to the base of the heater. Before and after the experiment the permeability of the formation will be measured using a 85 Kr tracer. Laboratory tests supporting the field test are briefly reviewed

  8. Thermal-mechanical-hydrological-chemical responses in the single heater test at the ESF

    International Nuclear Information System (INIS)

    Lin, W.; Blair, S.; Buettner, M

    1997-01-01

    The Single Heater Test (SHT) is conducted in the Exploratory Studies Facility (ESF) to study the thermal-mechanical responses of the rock mass. A set of boreholes were drilled in the test region for conducting a scoping test of the coupled thermal-mechanical- hydrological-chemical (TMHC) processes. The holes for the TMHC tests include electrical resistivity tomography (ERT), neutron logging/temperature, hydrological, and optical multiple point borehole extensometers. A 4-kW heater was installed in the heater hole, and was energized on August 26, 1996. Some observed movements of the water around the heater are associated with a possible dry-out region near the heater. The water that has been moved is more dilute than the in situ ground water, except for the concentration of Ca. This indicates that fractures are the major water pathways, and the displaced water may have reached an equilibrium with carbonate minerals on the fracture surfaces. No mechanical-hydrological coupling has been observed. The tests are on-going, and more data will be collected and analyzed

  9. Preliminary results report: Conasauga near-surface heater experiment

    International Nuclear Information System (INIS)

    Krumhansl, J.L.

    1979-06-01

    From November 1977 to August 1978, two near-surface heater experiments were operated in two somewhat different stratigraphic sequences within the Conasauga formation which consist predominantly of shale. Specific phenomena investigated were the thermal and mechanical responses of the formation to an applied heat load, as well as the mineralogical changes induced by heating. Objective was to provide a minimal integrated field and laboratory study that would supply a data base which could be used in planning more expensive and complex vault-type experiments in other localities. The experiments were operated with heater power levels of between 6 and 8 kW for heater mid-plane temperatures of 385 0 C. The temperature fields within the shale were measured and analysis is in progress. Steady state conditions were achieved within 90 days. Conduction appears to be the principal mechanism of heat transport through the formation. Limited mechanical response measurements consisting of vertical displacement and stress data indicate general agreement with predictions. Posttest data, collection of which await experiment shutdown and cooling of the formation, include the mineralogy of posttest cores, posttest transmissivity measurements and corrosion data on metallurgical samples

  10. Microcontroller based instrumentation for heater control circuit of tin oxide based hydrogen sensor

    International Nuclear Information System (INIS)

    Premalatha, S.; Krithika, P.; Gunasekaran, G.; Ramakrishnan, R.; Ramanarayanan, R.R.; Prabhu, E.; Jayaraman, V.; Parthasarathy, R.

    2015-01-01

    A thin film sensor based on tin oxide developed in IGCAR is used to monitor very low levels of hydrogen (concentration ranging from 2 ppm to 80 ppm). The heater and the sensor patterns are integrated on a miniature alumina substrate and necessary electrical leads are taken out. For proper functioning of the sensor, the heater has to be maintained at a constant temperature of 350°C. The sensor output (voltage signal) varies with H 2 concentration. In fast breeder reactors, liquid sodium is used as coolant. The sensor is used to detect water/steam leak in secondary sodium circuit. During the start up of the reactor, steam leak into sodium circuit generates hydrogen gas as a product that doesn't dissolve in sodium, but escapes to the surge tank containing argon i.e. in cover gas plenum of sodium circuit. On-line monitoring of hydrogen in cover gas is done to detect an event of water/steam leakage. The focus of this project is on the instrumentation pertaining to the temperature control for the sensor heater. The tin oxide based hydrogen sensor is embedded in a substrate which consists of a platinum heater, essentially a resistor. There is no provision of embedding a temperature sensor on the heater surface due to the physical constraints, without which maintaining a constant heater temperature is a complex task

  11. Report of the workshop Energy Utility and Solar Water Heater 1993

    International Nuclear Information System (INIS)

    1993-01-01

    The title workshop was organized to increase the interest of energy utilities for the Solar Water Heater campaign by providing representatives of the utilities with information about the technical and marketing aspects of solar boilers, and to stimulate knowledge transfer between the energy utilities about the method, the possibilities and bottlenecks of solar water heater projects

  12. Energy efficiency and indoor thermal perception. A comparative study between radiant panel and portable convective heaters

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Ahmed Hamza H.; Morsy, Mahmoud Gaber [Department of Mechanical Engineering, Faculty of Engineering, Assiut University, Assiut, 71516 (Egypt)

    2010-11-15

    This study investigates experimentally the thermal perception of indoor environment for evaluating the ability of radiant panel heaters to produce thermal comfort for space occupants as well as the energy consumption in comparison with conventional portable natural convective heaters. The thermal perception results show that, compared with conventional convection heater, a radiantly heated office room maintains a lower ambient air temperature while providing equal levels of thermal perception on the thermal dummy head as the convective heater and saves up to 39.1% of the energy consumption per day. However, for human subjects' vote experiments, the results show that for an environmentally controlled test room at outdoor environment temperatures of 0C and 5C, using two radiant panel heaters with a total capacity of 580 W leads to a better comfort sensation than the conventional portable natural convective heater with a 670 W capacity, with an energy saving of about 13.4%. In addition, for an outdoor environment temperature of 10C, using one radiant panel heater with a capacity of 290 W leads to a better comfort sensation than the conventional convection heater with a 670 W capacity, with an energy saving of about 56.7%. From the analytical results, it is found that distributing the radiant panel heater inside the office room, one on the wall facing the window and the other on the wall close to the window, provides the best operative temperature distribution within the room.

  13. Design procedure of capsule with multistage heater control (named MUSTAC)

    International Nuclear Information System (INIS)

    Someya, Hiroyuki; Endoh, Yasuichi; Hoshiya, Taiji; Niimi, Motoji; Harayama, Yasuo

    1990-11-01

    A capsule with electric heaters at multistage (named MUSTAC) is a type of capsule used in JMTR. The heaters are assembled in the capsule. Supply electric current to the heaters can be independently adjusted with a control systems that keeps irradiation specimens to constant temperature. The capsule being used, the irradiation specimen are inserted into specimen holders. Gas-gap size, between outer surface of specimen holders and inner surface of capsule casing, is calculated and determined to be flatten temperature of loaded specimens over the region. The rise or drop of specimen temperature in accordance with reactor power fluctuations is corrected within the target temperature of specimen by using the heaters filled into groove at specimen holder surface. The present report attempts to propose a reasonable design procedure of the capsules by means of compiling experience for designs, works and irradiation data of the capsules and to prepare for useful informations against onward capsule design. The key point of the capsule lies on thermal design. Now design thermal calculations are complicated in case of specimen holder with multihole. Resolving these issues, it is considered from new on that an emphasis have to placed on settling a thermal calculation device, for an example, a computer program on calculation specimen temperature. (author)

  14. Tube-Super Dielectric Materials: Electrostatic Capacitors with Energy Density Greater than 200 J·cm-3.

    Science.gov (United States)

    Cortes, Francisco Javier Quintero; Phillips, Jonathan

    2015-09-17

    The construction and performance of a second generation of super dielectric material based electrostatic capacitors (EC), with energy density greater than 200 J·cm - ³, which rival the best reported energy density of electric double layer capacitors (EDLC), also known as supercapacitors, are reported. The first generation super dielectric materials (SDM) are multi-material mixtures with dielectric constants greater than 1.0 × 10⁵, composed of a porous, electrically insulating powder filled with a polarizable, ion-containing liquid. Second-generation SDMs (TSDM), introduced here, are anodic titania nanotube arrays filled with concentrated aqueous salt solutions. Capacitors using TiO₂ based TSDM were found to have dielectric constants at ~0 Hz greater than 10⁷ in all cases, a maximum operating voltage of greater than 2 volts and remarkable energy density that surpasses the highest previously reported for EC capacitors by approximately one order of magnitude. A simple model based on the classic ponderable media model was shown to be largely consistent with data from nine EC type capacitors employing TSDM.

  15. Tube-Super Dielectric Materials: Electrostatic Capacitors with Energy Density Greater than 200 J·cm−3

    Directory of Open Access Journals (Sweden)

    Francisco Javier Quintero Cortes

    2015-09-01

    Full Text Available The construction and performance of a second generation of super dielectric material based electrostatic capacitors (EC, with energy density greater than 200 J·cm−3, which rival the best reported energy density of electric double layer capacitors (EDLC, also known as supercapacitors, are reported. The first generation super dielectric materials (SDM are multi-material mixtures with dielectric constants greater than 1.0 × 105, composed of a porous, electrically insulating powder filled with a polarizable, ion-containing liquid. Second-generation SDMs (TSDM, introduced here, are anodic titania nanotube arrays filled with concentrated aqueous salt solutions. Capacitors using TiO2 based TSDM were found to have dielectric constants at ~0 Hz greater than 107 in all cases, a maximum operating voltage of greater than 2 volts and remarkable energy density that surpasses the highest previously reported for EC capacitors by approximately one order of magnitude. A simple model based on the classic ponderable media model was shown to be largely consistent with data from nine EC type capacitors employing TSDM.

  16. Thermal behaviour of a solar air heater with a compound parabolic concentrator

    International Nuclear Information System (INIS)

    Tchinda, R.

    2005-11-01

    A mathematical model for computing the thermal performance of an air heater with a truncated compound parabolic concentrator having a flat one-sided absorber is presented. A computed code that employs an iterative solution procedure is constructed to solve the governing energy equations and to estimate the performance parameters of the collector. The effects of the air mass flow rate, the wind speed and the collector length on the thermal performance of the present air heater are investigated. Prediction for the performance of the solar heater also exhibits reasonable agreement with experimental data with an average error of 7%. (author)

  17. Improvements in or relating to radio frequency heaters for thermoluminescent dosimetry discs

    International Nuclear Information System (INIS)

    Stephenson, R.

    1976-01-01

    A combination of radiofrequency heater adapted to receive thermoluminescent dosimetry discs, equipment for counting light emission from the discs, and a digital timer controlling both the heating time of the heater and the counting time of the counting equipment, is described. The heater includes a pair of power amplifiers arranged in push-pull configuration. A stabilised power supply is provided, with overload protection for the amplifiers, together with a control circuit arranged to maintain the power outputs of the amplifiers at a predetermined adjustable level. A variable frequency oscillator may be provided, together with driver stages for the amplifiers. (U.K.)

  18. Performance Study of Solar Air Heater Having Absorber Plate with Half-Perforated Baffles

    OpenAIRE

    Maheshwari, B. K.; Karwa, Rajendra; Gharai, S. K.

    2011-01-01

    The paper presents a detailed mathematical model for performance prediction of a smooth duct solar air heater validated against the experimental results. Experimental study on a solar air heater having absorber plate with half-perforated baffles on the air flow side shows thermal efficiency enhancement of 28%–45% over that of the smooth duct solar air heater, which is attributed to the heat transfer enhancement (of the order of 180%–235%) due to the perforated baffles attached to the absorber...

  19. Loss of feedwater heater analysis for the South Texas Project

    International Nuclear Information System (INIS)

    Joyce, K.C.; Johnson, M.R.; Albury, C.R.

    1987-01-01

    The results of the steady state and transient analyses of the low pressure feedwater heater train for the South Texas Nuclear Project are presented. The South Texas Project consists of two 1250 MW Westinghouse PWR units. This analysis was performed using the Modular Modeling System (MMS) simulation code. The model presented will be incorporated into the secondary side model in support of the plant training simulator and the analysis of secondary side transients. Results of this analysis are considered preliminary until benchmarked against actual plant data. A model description of the feedwater heater train from the condensate pumps to the deaerator is presented. The methodology used to develop the model is also discussed. Results of the steady state run are presented, and a transient, the loss of extraction steam to feedwater heater 15A, is examined

  20. Development of the robot for pressurizer electric heater inspection and repairing

    International Nuclear Information System (INIS)

    Jung, Seung Ho; Kim, Seung Ho; Su, Yong Chil

    1998-01-01

    In this study a robot system has been developed for inspection and maintenance of the pressurizer and the rod heater. The developed robot system consists of four parts: two links, a support frame, a movable gripper, and a controller box. The robot is attached on the support frame, which is attached at the man-way flange of the pressurizer such that the robot is positioned inside pressurizer. To access arbitrary heater, at first two links horizontally rotate, and then the gripper suspended by two steel wires moves up and down by turing wire drum because the rod heaters are located about 8 meters under the robot and are arranged in two circular rows. The robot must be designed under several constraint such as its weight and collision with pressurizer wall or spray nozzle because the robot is positioned and moves inside the pressurizer. To verify that the designed robot is free from collision during installation procedure and it can access any desired rod heater, it is simulated by 3-dimensional graphic software (RobCAD). For evaluating stress of the support frame finite element analysis is performed by using the ANSYS code. For gripping the rod heater the passive self-locking mechanism is adopted, which is made up three balls and springs. Because the mechanism is very simple, it is very hardly defected than that adopted motor. (author). 11 refs., 8 tabs., 13 figs

  1. Study on the selection method of feed water heater safety valves in nuclear power plants

    International Nuclear Information System (INIS)

    Shi Jianzhong; Huang Chao; Hu Youqing

    2014-01-01

    The selection of the high pressure feedwater heater's safety valve usually follows the principle recommended by HEI standards in thermal power plant. However, the nuclear power plant's heaters generally need to accept a lots of drain from a moisture separator reheater (MSR). When the drain regulating valve was failure in fully open position, a large number of high pressure steam will directly goes into the heater. It make high-pressure heater have a risk of overpressure. Therefore, the safety valve selection of the heaters for nuclear power plants not only need to follow the HEI standards, but also need to check his capacity in certain special conditions. The paper established a calculation method to determine the static running point of the heaters based on characteristic equations of the feed water heater, drain regulating valve and steam extraction pipings, and energy balance principle. The method can be used to calculate the equilibrium pressure of various special running conditions, so further determine whether the capacity of the safety valve meets the requirements of safety and emissions. The method proposed in this paper not only can be used for nuclear power plants, can also be used for thermal power plants. (authors)

  2. Metallurgical problems in the exchange tube of a fast reactor steam generator

    International Nuclear Information System (INIS)

    Coriou, M.; Champeix, L.; Weisz, M.

    1980-10-01

    The design of the 1200 MWe Super Phenix power station steam generators is based on the following principles: once through helical tube exchangers which can be completely drained on the sodium side; the single wall exchange tubes are accessible to Foucault current testing during shutdowns. The authors explain the reasons for selecting the 800 Alloy for the exchange tubes. This choice was borne out by the results of several years of studies in the following areas: 6000 test hours with a 45 MWe model; corrosion test under stress in a water-steam and sodium plus caustic soda environment; resistance to creep and fatigue (effects of ageing and annealing, of the chemical compound); industrial feasibility, fabrication, utilization, bending, coiling, welding, testing. Concurrently, the EMl2 qualification finalizing has been pursued for the same application [fr

  3. Design data brochure: Solar hot air heater

    Science.gov (United States)

    1978-01-01

    The design, installation, performance, and application of a solar hot air heater for residential, commercial and industrial use is reported. The system has been installed at the Concho Indian School in El Reno, Oklahoma.

  4. A high turndown, ultra low emission low swirl burner for natural gas, on-demand water heaters

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, Vi H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Cheng, Robert K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Therkelsen, Peter L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-06-13

    Previous research has shown that on-demand water heaters are, on average, approximately 37% more efficient than storage water heaters. However, approximately 98% of water heaters in the U.S. use storage water heaters while the remaining 2% are on-demand. A major market barrier to deployment of on-demand water heaters is their high retail cost, which is due in part to their reliance on multi-stage burner banks that require complex electronic controls. This project aims to research and develop a cost-effective, efficient, ultra-low emission burner for next generation natural gas on-demand water heaters in residential and commercial buildings. To meet these requirements, researchers at the Lawrence Berkeley National Laboratory (LBNL) are adapting and testing the low-swirl burner (LSB) technology for commercially available on-demand water heaters. In this report, a low-swirl burner is researched, developed, and evaluated to meet targeted on-demand water heater performance metrics. Performance metrics for a new LSB design are identified by characterizing performance of current on-demand water heaters using published literature and technical specifications, and through experimental evaluations that measure fuel consumption and emissions output over a range of operating conditions. Next, target metrics and design criteria for the LSB are used to create six 3D printed prototypes for preliminary investigations. Prototype designs that proved the most promising were fabricated out of metal and tested further to evaluate the LSB’s full performance potential. After conducting a full performance evaluation on two designs, we found that one LSB design is capable of meeting or exceeding almost all the target performance metrics for on-demand water heaters. Specifically, this LSB demonstrated flame stability when operating from 4.07 kBTU/hr up to 204 kBTU/hr (50:1 turndown), compliance with SCAQMD Rule 1146.2 (14 ng/J or 20 ppm NOX @ 3% O2), and lower CO emissions than state

  5. Modernization of the feedwater heaters control level of the Almaraz I Nuclear Power Plant by OVATION system

    International Nuclear Information System (INIS)

    Madronal Rodriguez, E.; Cabrero Munoz, J. E.

    2010-01-01

    As a result of the process of technological renovation of the heaters system and the power increase project, Almaraz Nuclear Power Plant has made several design changes in the feedwater heaters system. Within these changes, the old heaters control loops are replaced because the new power will increase the heaters drainage caudal. This modernization is carried out using the OVATION control system.

  6. Room chamber assessment of the pollutant emission properties of (nominally) low-emission unflued gas heaters

    Energy Technology Data Exchange (ETDEWEB)

    Brown, S.K.; Mahoney, K.J., Min Cheng [CSIRO Manufacturing and Infrastructure Technology, Victoria (Australia)

    2004-07-01

    Pollutant emissions from unflued gas heaters were assessed in CSIRO'a Room Dynamic Environmental Chamber. This paper describes the chamber assessment procedure and presents findings for major commercial heaters that are nominally 'low-emission'. The chamber was operated at controlled conditions of temperature, humidity, ventilation and air mixing, representative of those encountered in typical indoor environments. A fixed rate of heat removal from the chamber air ensured that the heaters operated at constant heating rates, typically {approx}6 MJ/h which simulated operation of a heater after warm-up in an insulated dwelling in south-east Australia. The pollutants assessed were nitrogen dioxide, carbon monoxide, formaldehyde, VOCs and respirable suspended particulates. One type of heater was lower emitting for nigroen dioxide, but emitted greater amounts of carbon monoxide and formaldehyde (the latter becoming significant to indoor air quality). When operated with low line pressure of slight misalignment of the gas burner, this heater became a hazardous source of these pollutants. Emissions from the heates changed little after continous operation for up to 2 months. (au)

  7. Reduction of 4-dim self dual super Yang-Mills onto super Riemann surfaces

    International Nuclear Information System (INIS)

    Mendoza, A.; Restuccia, A.; Martin, I.

    1990-05-01

    Recently self dual super Yang-Mills over a super Riemann surface was obtained as the zero set of a moment map on the space of superconnections to the dual of the super Lie algebra of gauge transformations. We present a new formulation of 4-dim Euclidean self dual super Yang-Mills in terms of constraints on the supercurvature. By dimensional reduction we obtain the same set of superconformal field equations which define self dual connections on a super Riemann surface. (author). 10 refs

  8. Biogas Digester with Simple Solar Heater

    Directory of Open Access Journals (Sweden)

    Kh S Karimov

    2012-10-01

    Full Text Available ABSTRACT: In this research work, the design, fabrication and investigation of a biogas digester with simple solar heater are presented. For the solar heater, a built-in reverse absorber type heater was used. The maximum temperature (50°C inside the methane tank was taken as a main parameter for the design of the digester. Then, the energy balance equation for the case of a static mass of fluid being heated was used to model the process. The parameters of thermal insulation of the methane tank were also included in the calculations. The biogas digester consisted of a methane tank with built-in solar reverse absorber heater to harness the radiant solar energy for heating the slurry comprising of different organic wastes (dung, sewage, food wastes etc.. The methane tank was initially filled to 70% of its volume with organic wastes from the GIK institute’s sewage. The remaining volume was filled with sewage and cow dung from other sources. During a three month period (October-December, 2009 and another two month period (February-March, 2010, the digester was investigated. The effects of solar radiation on the absorber, the slurry’s temperature, and the ambient temperature were all measured during these investigations. It was found that using sewage only and sewage with cow dung in the slurry resulted in retention times of four and two weeks, respectively. The corresponding biogas produced was 0.4 m3 and 8.0 m3, respectively. Finally, this paper also elaborates on the upgradation of biogas through the removal of carbon dioxide, hydrogen sulphide and water vapour, and also the process of conversion of biogas energy into electric powerABSTRAK: Kajian ini membentangkan rekabentuk, fabrikasi dan penyelidikan tentang pencerna biogas dengan pemanas solar ringkas. Sebagai pemanas solar, ia dilengkapkan dengan penyerap pemanas beralik. Suhu maksimum(50oC di dalam tangki metana telah diambil sebagai parameter utama rekabentuk pencerna. Dengan menggunakan

  9. Calculus super review

    CERN Document Server

    2012-01-01

    Get all you need to know with Super Reviews! Each Super Review is packed with in-depth, student-friendly topic reviews that fully explain everything about the subject. The Calculus I Super Review includes a review of functions, limits, basic derivatives, the definite integral, combinations, and permutations. Take the Super Review quizzes to see how much you've learned - and where you need more study. Makes an excellent study aid and textbook companion. Great for self-study!DETAILS- From cover to cover, each in-depth topic review is easy-to-follow and easy-to-grasp - Perfect when preparing for

  10. Research and development of an air-cycle heat-pump water heater. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dieckmann, J.T.; Erickson, A.J.; Harvey, A.C.; Toscano, W.M.

    1979-10-01

    A prototype reverse Brayton air cycle heat pump water heater has been designed and built for residential applications. The system consists of a compressor/expander, an air-water heat exchanger, an electric motor, a water circulation pump, a thermostat, and fluid management controls. The prototype development program consisted of a market analysis, design study, and development testing. A potential residential market for the new high-efficiency water heater of approximately 480,000 units/y was identified. The retail and installation cost of this water heater is estimated to be between $500 and $600 which is approximately $300 more than a conventional electric water heater. The average payback per unit is less than 3-1/2 y and the average recurring energy cost savings after the payback period is approximately $105/y at the average seasonal coefficient of performance (COP) of 1.7. As part of the design effort, a thermodynamic parametric analysis was performed on the water heater system. It was determined that to obtain a coefficient of performance of 1.7, the isentropic efficiency of both the compressor and the expander must be at least 85%. The selected mechanical configuration is described. The water heater has a diameter of 25 in. and a height of 73 in. The results of the development testing of the prototype water heater system showed: the electrical motor maximum efficiency of 78%; the compressor isentropic efficiency is 95 to 119% and the volumetric efficiency is approximately 85%; the expander isentropic efficiency is approximately 58% and the volumetric efficiency is 92%; a significant heat transfer loss of approximately 16% occurred in the expander; and the prototype heat pump system COP is 1.26 which is less than the design goal of at least 1.7. Future development work is recommended.

  11. Effect of Collector Aspect Ratio on the Thermal Performance of Wavy Finned Absorber Solar Air Heater

    OpenAIRE

    Abhishek Priyam; Prabha Chand

    2016-01-01

    A theoretical investigation on the effect of collector aspect ratio on the thermal performance of wavy finned absorber solar air heaters has been performed. For the constant collector area, the various performance parameters have been calculated for plane and wavy finned solar air heaters. It has been found that the performance of wavy finned solar air heater improved with the increase in the collector aspect ratio. The performance of wavy finned solar air heater has been found 30 percent hig...

  12. Development of the robot for pressurizer electric heater inspection and repairing

    International Nuclear Information System (INIS)

    Jung, Seung Ho; Kim, Seung Ho; Su, Yong Chil

    1999-01-01

    In this study a robot system has been developed for inspection and maintenance of the pressurizer and the rod heaters. The developed robot system consists of four parts: two links, a support frame, a movable gripper, and a controller box. The robot is attached on the support frame, which is attached at the man-way flange of the pressurizer such that the robot is positioned inside pressurizer. To access arbitrary heater, at first two links horizontally rotate, and then the gripper suspended by two steel wires moves up and down by turing wire drum because the rod heaters are located about 8 meters under the robot and are arranged in two circular rows. The robot must be designed under several constraints such as its weight and collision with pressurized wall or spray nozzle because the robot is positioned and moves inside the pressurizer. To verify that the designed robot is free from collision during installation procedure and it can access any desired rod heater, it is simulated by 3-dimensional graphic software (RobCAD). For evaluating stress of the support frame finite element analysis is performed by using the ANSYS code

  13. Entropy Generation in Thermal Radiative Loading of Structures with Distinct Heaters

    Directory of Open Access Journals (Sweden)

    Mohammad Yaghoub Abdollahzadeh Jamalabadi

    2017-09-01

    Full Text Available Thermal loading by radiant heaters is used in building heating and hot structure design applications. In this research, characteristics of the thermal radiative heating of an enclosure by a distinct heater are investigated from the second law of thermodynamics point of view. The governing equations of conservation of mass, momentum, and energy (fluid and solid are solved by the finite volume method and the semi-implicit method for pressure linked equations (SIMPLE algorithm. Radiant heaters are modeled by constant heat flux elements, and the lower wall is held at a constant temperature while the other boundaries are adiabatic. The thermal conductivity and viscosity of the fluid are temperature-dependent, which leads to complex partial differential equations with nonlinear coefficients. The parameter study is done based on the amount of thermal load (presented by heating number as well as geometrical configuration parameters, such as the aspect ratio of the enclosure and the radiant heater number. The results present the effect of thermal and geometrical parameters on entropy generation and the distribution field. Furthermore, the effect of thermal radiative heating on both of the components of entropy generation (viscous dissipation and heat dissipation is investigated.

  14. Transient plasma injections in the dayside magnetosphere: one-to-one correlated observations by Cluster and SuperDARN

    Directory of Open Access Journals (Sweden)

    A. Marchaudon

    2004-01-01

    Full Text Available Conjunctions in the cusp between the four Cluster spacecraft and SuperDARN ground-based radars offer unique opportunities to compare the signatures of transient plasma injections simultaneously in the high-altitude dayside magnetosphere and in the ionosphere. We report here on such observations on 17 March 2001, when the IMF initially northward and duskward, turns southward and dawnward for a short period. The changes in the convection direction at Cluster are well correlated with the interplanetary magnetic field (IMF By variations. Moreover, the changes in the ionosphere follow those in the magnetosphere, with a 2–3min delay. When mapped into the ionosphere, the convection velocity at Cluster is about 1.5 times larger than measured by SuperDARN. In the high-altitude cusp, field and particle observations by Cluster display the characteristic signatures of plasma injections into the magnetosphere suggestive of Flux Transfer Events (FTEs. Simultaneous impulsive and localized convection plasma flows are observed in the ionospheric cusp by the HF radars. A clear one-to-one correlation is observed for three successive injections, with a 2–3min delay between the magnetospheric and ionospheric observations. For each event, the drift velocity of reconnected flux tubes (phase velocity has been compared in the magnetosphere and in the ionosphere. The drift velocity measured at Cluster is of the order of 400–600ms–1 when mapped into the ionosphere, in qualitative agreement with SuperDARN observations. Finally, the reconnected flux tubes are elongated in the north-south direction, with an east-west dimension of 30–60km in the ionosphere from mapped Cluster observations, which is consistent with SuperDARN observations, although slightly smaller. Key words. Ionosphere (plasma convection – Magnetospheric physics (magnetopause, cusp, and boundary layers; magnetosphere-ionosphere interactions

  15. Environmental aspects of the use of materials for solar water heaters

    International Nuclear Information System (INIS)

    Van der Leun, C.J.; De Jager, D.

    1994-10-01

    The study on the title subject has been carried out in order to apply the results in new designs and to improve the production of solar water heating systems. Attention is paid to solar water heaters that are under development and solar water heaters that are commercially available in the Netherlands. Use has been made of a IVAM-developed product analysis method. For seven solar water heater concepts, that were on the market or under development in the Netherlands in 1992, the applied amounts of materials have been inventorized. Data on the environmental effects of the production of these materials are outlined and aggregated on the level of the components and the systems. Based on those data, environmental profiles are drafted, comprising 'effect scores' on 9 environmental criteria. However, the environmental 'effect scores' are not reliable enough to determine the most important factors in order to identify options to reduce the negative environmental effects. Data on the energy consumption of the production of relevant materials are available and reliable. The solar water heaters, considered in this report, do not show large differences for that matter. It appears that the amounts of air pollution, water pollution and waste flow from the production of materials for solar water heaters are no reasons to further reduce environmental effects of the production. It is recommended to focus on the reduction of material quantities and to increase the quantity of recycled material. Also it is recommended that manufacturers of solar boilers set up a take-back system. 43 tabs., 1 appendix, 56 refs

  16. Supermanifolds and super Riemann surfaces

    International Nuclear Information System (INIS)

    Rabin, J.M.

    1986-09-01

    The theory of super Riemann surfaces is rigorously developed using Rogers' theory of supermanifolds. The global structures of super Teichmueller space and super moduli space are determined. The super modular group is shown to be precisely the ordinary modular group. Super moduli space is shown to be the gauge-fixing slice for the fermionic string path integral

  17. Solar Water-Heater Design and Installation

    Science.gov (United States)

    Harlamert, P.; Kennard, J.; Ciriunas, J.

    1982-01-01

    Solar/Water heater system works as follows: Solar--heated air is pumped from collectors through rock bin from top to bottom. Air handler circulates heated air through an air-to-water heat exchanger, which transfers heat to incoming well water. In one application, it may reduce oil use by 40 percent.

  18. Experimental Creep Life Assessment for the Advanced Stirling Convertor Heater Head

    Science.gov (United States)

    Krause, David L.; Kalluri, Sreeramesh; Shah, Ashwin R.; Korovaichuk, Igor

    2010-01-01

    The United States Department of Energy is planning to develop the Advanced Stirling Radioisotope Generator (ASRG) for the National Aeronautics and Space Administration (NASA) for potential use on future space missions. The ASRG provides substantial efficiency and specific power improvements over radioisotope power systems of heritage designs. The ASRG would use General Purpose Heat Source modules as energy sources and the free-piston Advanced Stirling Convertor (ASC) to convert heat into electrical energy. Lockheed Martin Corporation of Valley Forge, Pennsylvania, is integrating the ASRG systems, and Sunpower, Inc., of Athens, Ohio, is designing and building the ASC. NASA Glenn Research Center of Cleveland, Ohio, manages the Sunpower contract and provides technology development in several areas for the ASC. One area is reliability assessment for the ASC heater head, a critical pressure vessel within which heat is converted into mechanical oscillation of a displacer piston. For high system efficiency, the ASC heater head operates at very high temperature (850 C) and therefore is fabricated from an advanced heat-resistant nickel-based superalloy Microcast MarM-247. Since use of MarM-247 in a thin-walled pressure vessel is atypical, much effort is required to assure that the system will operate reliably for its design life of 17 years. One life-limiting structural response for this application is creep; creep deformation is the accumulation of time-dependent inelastic strain under sustained loading over time. If allowed to progress, the deformation eventually results in creep rupture. Since creep material properties are not available in the open literature, a detailed creep life assessment of the ASC heater head effort is underway. This paper presents an overview of that creep life assessment approach, including the reliability-based creep criteria developed from coupon testing, and the associated heater head deterministic and probabilistic analyses. The approach also

  19. Solar water heater for NASA's Space Station

    Science.gov (United States)

    Somers, Richard E.; Haynes, R. Daniel

    1988-01-01

    The feasibility of using a solar water heater for NASA's Space Station is investigated using computer codes developed to model the Space Station configuration, orbit, and heating systems. Numerous orbit variations, system options, and geometries for the collector were analyzed. Results show that a solar water heater, which would provide 100 percent of the design heating load and would not impose a significant impact on the Space Station overall design is feasible. A heat pipe or pumped fluid radial plate collector of about 10-sq m, placed on top of the habitat module was found to be well suited for satisfying water demand of the Space Station. Due to the relatively small area required by a radial plate, a concentrator is unnecessary. The system would use only 7 to 10 percent as much electricity as an electric water-heating system.

  20. Deterministic phase measurements exhibiting super-sensitivity and super-resolution

    DEFF Research Database (Denmark)

    Schäfermeier, Clemens; Ježek, Miroslav; Madsen, Lars S.

    2018-01-01

    Phase super-sensitivity is obtained when the sensitivity in a phase measurement goes beyond the quantum shot noise limit, whereas super-resolution is obtained when the interference fringes in an interferometer are narrower than half the input wavelength. Here we show experimentally that these two...

  1. Pretest thermal analysis of the Tuff Water Migration/In-Situ Heater Experiment

    International Nuclear Information System (INIS)

    Bulmer, B.M.

    1980-02-01

    This report describes the pretest thermal analysis for the Tuff Water Migration/In-Situ Heater Experiment to be conducted in welded tuff in G-tunnel, Nevada Test Site. The parametric thermal modeling considers variable boiling temperature, tuff thermal conductivity, tuff emissivity, and heater operating power. For nominal tuff properties, some near field boiling is predicted for realistic operating power. However, the extent of boiling will be strongly determined by the ambient (100% water saturated) rock thermal conductivity. In addition, the thermal response of the heater and of the tuff within the dry-out zone (i.e., bounded by boiling isotherm) is dependent on the temperature variation of rock conductivity as well as the extent of induced boiling

  2. Dissemination of Solar Water Heaters in Taiwan: The Case of Remote Islands

    Directory of Open Access Journals (Sweden)

    Kung-Ming Chung

    2013-10-01

    Full Text Available Solar water heaters represent the success story in the development of renewable energy in Taiwan. With increasing public awareness, there are over 0.3 million residential systems in operation. To disseminate solar water heaters in remote islands, economic feasibility and water quality are taken into account in this study. The payback period in Kinmen and Penghu Counties are evaluated, according to effective annual solar energy gain, hot water consumption pattern and cost. Assessment of the scaling and corrosion tendencies for solar water heaters using tap and underground water are also presented. For flat-plate solar collectors with metal components, favorable corrosion resistance and protective anti-corrosion coatings are required.

  3. Building America Case Study: Assessment of a Hybrid Retrofit Gas Water Heater

    Energy Technology Data Exchange (ETDEWEB)

    M. Hoeschele, E. Weitzel, C. Backman

    2017-06-01

    This project completed a modeling evaluation of a hybrid gas water heater that combines a reduced capacity tankless unit with a downsized storage tank. This product would meet a significant market need by providing a higher efficiency gas water heater solution for retrofit applications while maintaining compatibility with the half-inch gas lines and standard B vents found in most homes. The TRNSYS simulation tool was used to model a base case 0.60 EF atmospheric gas storage water, a 0.82 EF non-condensing gas tankless water heater, an existing (high capacity) hybrid unit on the market, and an alternative hybrid unit with lower storage volume and reduced gas input requirements.

  4. Analysis of Uncertainties in Protection Heater Delay Time Measurements and Simulations in Nb$_{3}$Sn High-Field Accelerator Magnets

    CERN Document Server

    Salmi, Tiina; Marchevsky, Maxim; Bajas, Hugo; Felice, Helene; Stenvall, Antti

    2015-01-01

    The quench protection of superconducting high-field accelerator magnets is presently based on protection heaters, which are activated upon quench detection to accelerate the quench propagation within the winding. Estimations of the heater delay to initiate a normal zone in the coil are essential for the protection design. During the development of Nb3Sn magnets for the LHC luminosity upgrade, protection heater delays have been measured in several experiments, and a new computational tool CoHDA (Code for Heater Delay Analysis) has been developed for heater design. Several computational quench analyses suggest that the efficiency of the present heater technology is on the borderline of protecting the magnets. Quantifying the inevitable uncertainties related to the measured and simulated delays is therefore of pivotal importance. In this paper, we analyze the uncertainties in the heater delay measurements and simulations using data from five impregnated high-field Nb3Sn magnets with different heater geometries. ...

  5. Analysis of Uncertainties in Protection Heater Delay Time Measurements and Simulations in Nb$_{3}$Sn High-Field Accelerator Magnets

    CERN Document Server

    Salmi, Tiina; Marchevsky, Maxim; Bajas, Hugo; Felice, Helene; Stenvall, Antti

    2015-01-01

    The quench protection of superconducting high-field accelerator magnets is presently based on protection heaters, which are activated upon quench detection to accelerate the quench propagation within the winding. Estimations of the heater delay to initiate a normal zone in the coil are essential for the protection design. During the development of Nb$_{3}$Sn magnets for the LHC luminosity upgrade, protection heater delays have been measured in several experiments, and a new computational tool CoHDA (Code for Heater Delay Analysis) has been developed for heater design. Several computational quench analyses suggest that the efficiency of the present heater technology is on the borderline of protecting the magnets. Quantifying the inevitable uncertainties related to the measured and simulated delays is therefore of pivotal importance. In this paper, we analyze the uncertainties in the heater delay measurements and simulations using data from five impregnated high-field Nb$_{3}$Sn magnets with different heater ge...

  6. Small scale heater tests in argillite of the Eleana Formation at the Nevada Test Site

    International Nuclear Information System (INIS)

    McVey, D.F.; Thomas, R.K.; Lappin, A.R.

    1979-11-01

    Near-surface heater tests were run in the Eleana Formation at the Nevada Test Site, in an effort to evaluate argillaceous rock for nuclear waste storage. The main test, which employed a full-scale heater with a thermal output approximating commercial borosilicate waste, was designed to operate for several months. Two smaller, scaled tests were run prior to the full-scale test. This report develops the thermal scaling laws, describes the pretest thermal and thermomechanical analysis conducted for these two tests, and discusses the material properties data used in the analyses. In the first test, scaled to a large heater of 3.5 kW power, computed heater temperatures were within 7% of measured values for the entire 96-hour test run. The second test, scaled to a large heater having 5.0 kW power, experienced periodic water in-flow onto the heater, which tended to damp the temperature. For the second test, the computed temperatures were within 7% of measured for the first 20 hours. After this time, the water effect became significant and the measured temperatures were 15 to 20% below those predicted. On the second test, rock surface spallation was noted in the bore hole above the heater, as predicted. The scaled tests indicated that in-situ argillite would not undergo major thermostructural failure during the follow-on, 3.5 kW, full-scale test. 24 figures, 6 tables

  7. Understanding the Ecological Adoption of Solar Water Heaters Among Customers of Island Economies

    Directory of Open Access Journals (Sweden)

    Pudaruth Sharmila

    2017-04-01

    Full Text Available This paper explores the major factors impacting upon the ecological adoption of solar water heaters in Mauritius. The paper applies data reduction technique by using exploratory factor analysis on a sample of 228 respondents and condenses a set of 32 attributes into a list of 8 comprehensible factors impacting upon the sustained adoption of solar water heater in Mauritius. Multiple regression analysis was also conducted to investigate upon the most predictive factor influencing the adoption of solar water heaters in Mauritius. The empirical estimates of the regression analysis have also depicted that the most determining factor pertaining to the ‘government incentives for solar water heaters’ impacts upon the adoption of solar water heaters. These results can be related to sustainable adoption of green energy whereby targeted incentive mechanisms can be formulated with the aim to accelerate and cascade solar energy adoption in emerging economies. A novel conceptual model was also proposed in this paper, whereby, ecological stakeholders in the sustainable arena could use the model as a reference to pave the way to encourage adoption of solar water heating energy. This research represents a different way of understanding ecological customers by developing an expanding on an original scale development for the survey on the ecological adoption of solar water heaters.

  8. Molded polymer solar water heater

    Science.gov (United States)

    Bourne, Richard C.; Lee, Brian E.

    2004-11-09

    A solar water heater has a rotationally-molded water box and a glazing subassembly disposed over the water box that enhances solar gain and provides an insulating air space between the outside environment and the water box. When used with a pressurized water system, an internal heat exchanger is integrally molded within the water box. Mounting and connection hardware is included to provide a rapid and secure method of installation.

  9. Accelerator Magnet Quench Heater Technology and Quality Control Tests for the LHC High Luminosity Upgrade

    CERN Document Server

    AUTHOR|(CDS)2132435; Seifert, Thomas

    The High Luminosity upgrade of the Large Hadron Collider (HL-LHC) foresees the installation of new superconducting Nb$_{3}$Sn magnets. For the protection of these magnets, quench heaters are placed on the magnet coils. The quench heater circuits are chemically etched from a stainless steel foil that is glued onto a flexible Polyimide film, using flexible printed circuit production technology. Approximately 500 quench heaters with a total length of about 3000 m are needed for the HL-LHC magnets. In order to keep the heater circuit electrical resistance in acceptable limits, an approximately 10 µm-thick Cu coating is applied onto the steel foil. The quality of this Cu coating has been found critical in the quench heater production. The work described in this thesis focuses on the characterisation of Cu coatings produced by electrolytic deposition, sputtering and electron beam evaporation. The quality of the Cu coatings from different manufacturers has been assessed for instance by ambient temperature electrica...

  10. Observation of convection phenomenon by high-performance transparent heater based on Pt-decorated Ni micromesh

    Directory of Open Access Journals (Sweden)

    Han-Jung Kim

    2017-02-01

    Full Text Available In this study, we report for the first time on the convection phenomenon for the consistent and sensitive detection of target materials (particulate matter (PM or gases with a high-performance transparent heater. The high-performance transparent heater, based on Pt-decorated Ni micromesh, was fabricated by a combination of transfer printing process and Pt sputtering. The resulting transparent heater exhibited excellent mechanical durability, adhesion with substrates, flexibility, and heat-generating performance. We monitored the changes in the PM concentration and temperature in an airtight chamber while operating the heater. The temperature in the chamber was increased slightly, and the PM2.5 concentration was increased by approximately 50 times relative to the initial state which PM is deposed in the chamber. We anticipate that our experimental findings will aid in the development and application of heaters for sensors and actuators as well as transparent electrodes and heating devices.

  11. STUDY ON THE OPTIMIZATION OF IGBT THERMAL MANAGEMENT FOR PTC HEATER

    Directory of Open Access Journals (Sweden)

    J. W. JEONG

    2015-12-01

    Full Text Available It is essential to optimize HVAC (Heating, Ventilation and Air-Conditioning system for a thermal plant or an electric vehicle since it has a significant effect on the thermal efficiency. PTC (positive temperature coefficient heaters are often used for a heating system and the power module of the PTC heaters, IGBT (insulated gate bipolar mode transistor, requires thermal management. In this study, in order to maximize the cooling performance for IGBT, a novel method that uses forced convection inside the HVAC duct with heat sinks was developed. In addition, heat sinks were optimized in terms of IGBT junction temperature and heat sink weight by 3-dimensional CFD (Computational Fluid Dynamics simulation. The results show that the junction temperature of IGBT for 5.6kW PTC heater can be maintained at about 335K.

  12. Performance analysis of solar air heater with jet impingement on corrugated absorber plate

    Directory of Open Access Journals (Sweden)

    Alsanossi M. Aboghrara

    2017-09-01

    Full Text Available This paper deals with the experimental investigation outlet temperature and efficiency, of Solar Air heater (SAH. The experimental test set up designed and fabricated to study the effect of jet impingement on the corrugated absorber plate, through circular jets in a duct flow of solar air heater, and compared with conventional solar air heater on flat plat absorber. Under effect of mass flow rate (ṁ of air and solar radiation on outlet air temperature, and efficiency, are analyzed. Results show the flow jet impingement on corrugated plat absorber is a strong function of heat transfer enhancement. The present investigation concludes that the mass flow rate of air substantially influences the heat transfer on solar air heaters. And the thermal efficiency of proposed design duct is observed almost 14% more as compare to the smooth duct. At solar radiation 500–1000 (W/M2, 308 K ambient temperature and 0.01–0.03 (Kg/S mass flow rate

  13. CFD modeling of fouling in crude oil pre-heaters

    International Nuclear Information System (INIS)

    Bayat, Mahmoud; Aminian, Javad; Bazmi, Mansour; Shahhosseini, Shahrokh; Sharifi, Khashayar

    2012-01-01

    Highlights: ► A conceptual CFD-based model to predict fouling in industrial crude oil pre-heaters. ► Tracing fouling formation in the induction and developing continuation periods. ► Effect of chemical components, shell-side HTC and turbulent flow on the fouling rate. - Abstract: In this study, a conceptual procedure based on the computational fluid dynamic (CFD) technique has been developed to predict fouling rate in an industrial crude oil pre-heater. According to the developed CFD concept crude oil was assumed to be composed of three pseudo-components comprising of petroleum, asphaltene and salt. The binary diffusion coefficients were appropriately categorized into five different groups. The species transport model was applied to simulate the mixing and transport of chemical species. The possibility of adherence of reaction products to the wall was taken into account by applying a high viscosity for the products in competition with the shear stress on the wall. Results showed a reasonable agreement between the model predictions and the plant data. The CFD model could be applied to new operating conditions to investigate the details of the crude oil fouling in the industrial pre-heaters.

  14. An experimental evaluation of multi-pass solar air heaters

    Energy Technology Data Exchange (ETDEWEB)

    Satcunanathan, S.; Persad, P.

    1980-12-01

    Three collectors of identical dimensions but operating in the single-pass, two-pass and three-pass modes were tested simultaneously under ambient conditions. It was found that the two-pass air heater was consistently better than the single-pass air heater over the day for the range of mass flow rates considered. It was also found that at a mass flow rate of 0.0095 kg s/sup -1/ m/sup -2/, the thermal performances of the two-pass and three-pass collectors were identical, but at higher flow rates the two-pass collector was superior to the three-pass collector, the superiority decreasing with increasing mass flow rate.

  15. 40 CFR 63.7499 - What are the subcategories of boilers and process heaters?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 13 2010-07-01 2010-07-01 false What are the subcategories of boilers..., and Institutional Boilers and Process Heaters Emission Limits and Work Practice Standards § 63.7499 What are the subcategories of boilers and process heaters? The subcategories of boilers and process...

  16. Transparent heaters based on solution-processed indium tin oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Im, Kiju [Department of Electrical Engineering and Institute for Nano Science, Korea University, 5-1, Anam-dong, Sungbuk-gu, Seoul 136-701 (Korea, Republic of); Research Institute of TNB Nanoelec Co. Ltd., Seoul 136-701 (Korea, Republic of); Cho, Kyoungah [Department of Electrical Engineering and Institute for Nano Science, Korea University, 5-1, Anam-dong, Sungbuk-gu, Seoul 136-701 (Korea, Republic of); Kim, Jonghyun [Research Institute of TNB Nanoelec Co. Ltd., Seoul 136-701 (Korea, Republic of); Kim, Sangsig, E-mail: sangsig@korea.ac.k [Department of Electrical Engineering and Institute for Nano Science, Korea University, 5-1, Anam-dong, Sungbuk-gu, Seoul 136-701 (Korea, Republic of)

    2010-05-03

    We demonstrate transparent heaters constructed on glass substrates using solution-processed indium tin oxide (ITO) nanoparticles (NPs) and their heating capability. The heat-generating characteristics of the heaters depended significantly on the sintering temperature at which the ITO NPs deposited on a glass substrate by spin-coating were transformed thermally into a solid film. The steady-state temperature of the ITO NP film sintered at 400 {sup o}C was 163 {sup o}C at a bias voltage of 20 V, and the defrosting capability of the film was confirmed by using dry-ice.

  17. Exposure of Ontario workers to radiofrequency fields from dielectric heaters

    International Nuclear Information System (INIS)

    Bitran, M.E.; Nishio, J.M.; Charron, D.E.

    1992-01-01

    As part of a program to assess and reduce the exposure of Ontario workers to non-ionizing radiations, stray electric and magnetic fields from 383 dielectric heaters were measured in 71 industrial establishments from 1988 to 1990. This represents a population of over 800 workers potentially exposed to radiofrequency (RE) electromagnetic fields. Electric and magnetic field strengths at the head, waist, and thigh levels of the operators, corrected by duty cycle, are presented for the different heater types surveyed. Worker exposure data and compliance with Ontario radiofrequency exposure guidelines are discussed. (author)

  18. Theory of super LIE groups

    International Nuclear Information System (INIS)

    Prakash, M.

    1985-01-01

    The theory of supergravity has attracted increasing attention in the recent years as a unified theory of elementary particle interactions. The superspace formulation of the theory is highly suggestive of an underlying geometrical structure of superspace. It also incorporates the beautifully geometrical general theory of relativity. It leads us to believe that a better understanding of its geometry would result in a better understanding of the theory itself, and furthermore, that the geometry of superspace would also have physical consequences. As a first step towards that goal, we develop here a theory of super Lie groups. These are groups that have the same relation to a super Lie algebra as Lie groups have to a Lie algebra. More precisely, a super Lie group is a super-manifold and a group such that the group operations are super-analytic. The super Lie algebra of a super Lie group is related to the local properties of the group near the identity. This work develops the algebraic and super-analytical tools necessary for our theory, including proofs of a set of existence and uniqueness theorems for a class of super-differential equations

  19. Economics of residential gas furnaces and water heaters in United States new construction market

    Energy Technology Data Exchange (ETDEWEB)

    Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

    2009-05-06

    New single-family home construction represents a significant and important market for the introduction of energy-efficient gas-fired space heating and water-heating equipment. In the new construction market, the choice of furnace and water-heater type is primarily driven by first cost considerations and the availability of power vent and condensing water heaters. Few analysis have been performed to assess the economic impacts of the different combinations of space and water-heating equipment. Thus, equipment is often installed without taking into consideration the potential economic and energy savings of installing space and water-heating equipment combinations. In this study, we use a life-cycle cost analysis that accounts for uncertainty and variability of the analysis inputs to assess the economic benefits of gas furnace and water-heater design combinations. This study accounts not only for the equipment cost but also for the cost of installing, maintaining, repairing, and operating the equipment over its lifetime. Overall, this study, which is focused on US single-family new construction households that install gas furnaces and storage water heaters, finds that installing a condensing or power-vent water heater together with condensing furnace is the most cost-effective option for the majority of these houses. Furthermore, the findings suggest that the new construction residential market could be a target market for the large-scale introduction of a combination of condensing or power-vent water heaters with condensing furnaces.

  20. Efficiency of the pre-heater against flow rate on primary the beta test loop

    International Nuclear Information System (INIS)

    Edy Sumarno; Kiswanta; Bambang Heru; Ainur R; Joko P

    2013-01-01

    Calculation of efficiency of the pre-heater has been carried out against the flow rate on primary the BETA Test Loop. BETA test loop (UUB) is a facilities of experiments to study the thermal hydraulic phenomenon, especially for thermal hydraulic post-LOCA (Lost of Coolant Accident). Sequences removal on the BETA Test Loop contained a pre-heater that serves as a getter heat from the primary side to the secondary side, determination of efficiency is to compare the incoming heat energy with the energy taken out by a secondary fluid. Characterization is intended to determine the performance of a pre-heater, then used as tool for analysis, and as a reference design experiments. Calculation of efficiency methods performed by operating the pre-heater with fluid flow rate variation on the primary side. Calculation of efficiency on the results obtained that the efficiency change with every change of flow rate, the flow rate is 71.26% on 163.50 ml/s and 60.65% on 850.90 ml/s. Efficiency value can be even greater if the pre-heater tank is wrapped with thermal insulation so there is no heat leakage. (author)

  1. Algebra & trigonometry super review

    CERN Document Server

    2012-01-01

    Get all you need to know with Super Reviews! Each Super Review is packed with in-depth, student-friendly topic reviews that fully explain everything about the subject. The Algebra and Trigonometry Super Review includes sets and set operations, number systems and fundamental algebraic laws and operations, exponents and radicals, polynomials and rational expressions, equations, linear equations and systems of linear equations, inequalities, relations and functions, quadratic equations, equations of higher order, ratios, proportions, and variations. Take the Super Review quizzes to see how much y

  2. Discussion on Boiler Efficiency Correction Method with Low Temperature Economizer-Air Heater System

    Science.gov (United States)

    Ke, Liu; Xing-sen, Yang; Fan-jun, Hou; Zhi-hong, Hu

    2017-05-01

    This paper pointed out that it is wrong to take the outlet flue gas temperature of low temperature economizer as exhaust gas temperature in boiler efficiency calculation based on GB10184-1988. What’s more, this paper proposed a new correction method, which decomposed low temperature economizer-air heater system into two hypothetical parts of air preheater and pre condensed water heater and take the outlet equivalent gas temperature of air preheater as exhaust gas temperature in boiler efficiency calculation. This method makes the boiler efficiency calculation more concise, with no air heater correction. It has a positive reference value to deal with this kind of problem correctly.

  3. Solair heater program: solair applications study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1977-12-01

    General Electric has designed and tested a low-cost solar system using a vacuum tube solar air heater under ERDA Contract E(11-1)-2705. This contract extension has been provided to evaluate various applications of this solar collector. The evaluation identified attractive applications, evaluated corresponding control procedures, estimated system performance, compared economically insolation and insulation, and evaluated the repackaging of off-the-shelf equipment for improved cost effectiveness. The results of this study prompted General Electric's marketing group to do a detailed commercialization study of a residential domestic water heating system using the Solair concept which has been selected as the most attractive application. Other attractive applications are space/domestic water heating and a heat pump assisted solar system/domestic water heating where the heat pump and the solar system function in parallel. A prime advantage of heated air solar systems over liquid systems is cost and longer life which results in higher BTU's/dollar. Other air system advantages are no liquid leakage problems, no toxicity of freezing problems, and less complicated equipment. A hybrid solar system has been identified that can improve the market penetration of solar energy. This system would use the existing mass of the house for energy storage thereby reducing solar cost and complexity. Adequate performance can be obtained with house temperature swings comparable to those used in nighttime setback of the thermostat. Details of this system are provided.

  4. Melting in super-earths.

    Science.gov (United States)

    Stixrude, Lars

    2014-04-28

    We examine the possible extent of melting in rock-iron super-earths, focusing on those in the habitable zone. We consider the energetics of accretion and core formation, the timescale of cooling and its dependence on viscosity and partial melting, thermal regulation via the temperature dependence of viscosity, and the melting curves of rock and iron components at the ultra-high pressures characteristic of super-earths. We find that the efficiency of kinetic energy deposition during accretion increases with planetary mass; considering the likely role of giant impacts and core formation, we find that super-earths probably complete their accretionary phase in an entirely molten state. Considerations of thermal regulation lead us to propose model temperature profiles of super-earths that are controlled by silicate melting. We estimate melting curves of iron and rock components up to the extreme pressures characteristic of super-earth interiors based on existing experimental and ab initio results and scaling laws. We construct super-earth thermal models by solving the equations of mass conservation and hydrostatic equilibrium, together with equations of state of rock and iron components. We set the potential temperature at the core-mantle boundary and at the surface to the local silicate melting temperature. We find that ancient (∼4 Gyr) super-earths may be partially molten at the top and bottom of their mantles, and that mantle convection is sufficiently vigorous to sustain dynamo action over the whole range of super-earth masses.

  5. MD#1826: Measurement of Quench Heater vertical kick

    CERN Document Server

    Valette, Matthieu; Lindstrom, Bjorn Hans Filip; Bortot, Lorenzo; Fernandez Navarro, Alejandro; Schmidt, Rudiger; Verweij, Arjan

    2018-01-01

    Following the observation of vertical orbit oscillations of the LHC beam between the detection of a (beam induced) quench of an LHC main dipole and the beam dump, a study was started to verify that the orbit distortions are caused by the firing of the quench heaters (QH). Simulation of the magnetic field generated by the discharge of the QH and its effect on the beam confirmed it was the most likely cause. A dedicated experiment with 450 GeV proton beams was performed to validate the simulation results. The results are presented below and compared to the simulations. Furthermore, estimates on the effect of quench heater firing in superconducting magnets other than the studied LHC main dipoles on the circulating proton beams in LHC and the future HL-LHC are discussed.

  6. Development of a helical-coil double wall tube steam generator for 4S reactor

    International Nuclear Information System (INIS)

    Kitajima, Yuko; Maruyama, Shigeki; Jimbo, Noboru; Hino, Takehisa; Sato, Katsuhiko

    2011-01-01

    The 4S, Super-Safe Small and Simple, is a small-sized sodium-cooled fast reactor. A fast reactor usually uses sodium as a coolant to transfer heat from core to turbine/generator system. The heat of the intermediate heat transport system and that of the water stream systems are exchanged by the steam generator (SG) tubes. If the tube failure occurs, a sodium/water reaction could be occurred. To prevent the reaction and enhance safety, a helical-coil-type double wall tube with wire mesh interlayer and continuous monitoring systems of tube failure are applied to the SG of the 4S. The development and general features of this type double wall tube were described in Ref. 1) and Ref. 2). Those paper summarized following results; The tubes studied in these references were straight type. To establish this SG, development of manufacturing method of helical-coil-type double wall tube and validation of the tube failure monitoring system are needed. In this study, three demonstration tests have been performed; welding test of the double wall tube to manufacture the tubes with 70-80m length, assembling test of the helical-coil tube, and confirmation test of the tube processing system using the fabricated helical-coil tubes. As a result, following technologies have been successfully established. (1) Development of the welding techniques for manufacturing of the helical-coil-type double wall tube with wire mesh interlayer. (2) The confirmation test for manufacturing the helical coil tube of the SG. (author)

  7. Numerical Analysis of Thermal Mixing in a Swirler-Embedded Line-Heater for Flow Assurance in Subsea Pipelines

    Directory of Open Access Journals (Sweden)

    Jang Min Park

    2015-02-01

    Full Text Available Flow assurance issue in subsea pipelines arises mainly due to hydrate plugs. We present a new line-heater for prevention of hydrate plug formation in subsea pipelines. The line heater has modular compact design where an electrical heater and a swirl generator are embedded inside the housing pipe so that the stream can be heated efficiently and homogeneously. In this paper, flow and heat transfer characteristics of the line heater are investigated numerically, with a particular emphasis on the mixing effect due to the swirl generator.

  8. Electric Water Heater Modeling and Control Strategies for Demand Response

    Energy Technology Data Exchange (ETDEWEB)

    Diao, Ruisheng; Lu, Shuai; Elizondo, Marcelo A.; Mayhorn, Ebony T.; Zhang, Yu; Samaan, Nader A.

    2012-07-22

    Abstract— Demand response (DR) has a great potential to provide balancing services at normal operating conditions and emergency support when a power system is subject to disturbances. Effective control strategies can significantly relieve the balancing burden of conventional generators and reduce investment on generation and transmission expansion. This paper is aimed at modeling electric water heaters (EWH) in households and tests their response to control strategies to implement DR. The open-loop response of EWH to a centralized signal is studied by adjusting temperature settings to provide regulation services; and two types of decentralized controllers are tested to provide frequency support following generator trips. EWH models are included in a simulation platform in DIgSILENT to perform electromechanical simulation, which contains 147 households in a distribution feeder. Simulation results show the dependence of EWH response on water heater usage . These results provide insight suggestions on the need of control strategies to achieve better performance for demand response implementation. Index Terms— Centralized control, decentralized control, demand response, electrical water heater, smart grid

  9. SuperB Progress Report: Detector

    Energy Technology Data Exchange (ETDEWEB)

    Grauges, E.; /Barcelona U., ECM; Donvito, G.; Spinoso, V.; /INFN, Bari /Bari U.; Manghisoni, M.; Re, V.; Traversi, G.; /INFN, Pavia /Bergamo U., Ingengneria Dept.; Eigen, G.; Fehlker, D.; Helleve, L.; /Bergen U.; Carbone, A.; Di Sipio, R.; Gabrielli, A.; Galli, D.; Giorgi, F.; Marconi, U.; Perazzini, S.; Sbarra, C.; Vagnoni, V.; Valentinetti, S.; Villa, M.; Zoccoli, A.; /INFN, Bologna /Bologna U. /Caltech /Carleton U. /Cincinnati U. /INFN, CNAF /INFN, Ferrara /Ferrara U. /UC, Irvine /Taras Shevchenko U. /Orsay, LAL /LBL, Berkeley /UC, Berkeley /Frascati /INFN, Legnaro /Orsay, IPN /Maryland U. /McGill U. /INFN, Milan /Milan U. /INFN, Naples /Naples U. /Novosibirsk, IYF /INFN, Padua /Padua U. /INFN, Pavia /Pavia U. /INFN, Perugia /Perugia U. /INFN, Perugia /Caltech /INFN, Pisa /Pisa U. /Pisa, Scuola Normale Superiore /PNL, Richland /Queen Mary, U. of London /Rutherford /INFN, Rome /Rome U. /INFN, Rome2 /Rome U.,Tor Vergata /INFN, Rome3 /Rome III U. /SLAC /Tel Aviv U. /INFN, Turin /Turin U. /INFN, Padua /Trento U. /INFN, Trieste /Trieste U. /TRIUMF /British Columbia U. /Montreal U. /Victoria U.

    2012-02-14

    This report describes the present status of the detector design for SuperB. It is one of four separate progress reports that, taken collectively, describe progress made on the SuperB Project since the publication of the SuperB Conceptual Design Report in 2007 and the Proceedings of SuperB Workshop VI in Valencia in 2008.

  10. SuperB Progress Report: Detector

    International Nuclear Information System (INIS)

    Grauges, E.; Donvito, G.; Spinoso, V.; Manghisoni, M.; Re, V.; Traversi, G.; Eigen, G.; Fehlker, D.; Helleve, L.; Cheng, C.; Chivukula, A.; Doll, D.; Echenard, B.; Hitlin, D.; Ongmongkolkul, P.; Porter, F.; Rakitin, A.; Thomas, M.; Zhu, R.; Tatishvili, G.; Andreassen, R.; Fabby, C.; Meadows, B.; Simpson, A.; Sokoloff, M.; Tomko, K.; Fella, A.; Andreotti, M.; Baldini, W.; Calabrese, R.; Carassiti, V.; Cibinetto, G.; Cotta Ramusino, A.; Gianoli, A.; Luppi, E.; Munerato, M.; Santoro, V.; Tomassetti, L.; Stoker, D.; Bezshyyko, O.; Dolinska, G.; Arnaud, N.; Beigbeder, C.; Bogard, F.; Breton, D.; Burmistrov, L.; Charlet, D.; Maalmi, J.; Perez Perez, L.; Puill, V.; Stocchi, A.; Tocut, V.; Wallon, S.; Wormser, G.; Brown, D.

    2012-01-01

    This report describes the present status of the detector design for SuperB. It is one of four separate progress reports that, taken collectively, describe progress made on the SuperB Project since the publication of the SuperB Conceptual Design Report in 2007 and the Proceedings of SuperB Workshop VI in Valencia in 2008.

  11. SuperB Progress Reports Accelerator

    CERN Document Server

    Biagini, Maria Enrica; Boscolo, M; Buonomo, B; Demma, T; Drago, A; Esposito, M; Guiducci, S; Mazzitelli, G; Pellegrino, L; Preger, M A; Raimondi, P; Ricci, R; Rotundo, U; Sanelli, C; Serio, M; Stella, A; Tomassini, S; Zobov, M; Bertsche, K; Brachman, A; Cai, Y; Chao, A; Chesnut, R; Donald, M.H; Field, C; Fisher, A; Kharakh, D; Krasnykh, A; Moffeit, K; Nosochkov, Y; Pivi, M; Seeman, J; Sullivan, M.K; Weathersby, S; Weidemann, A; Weisend, J; Wienands, U; Wittmer, W; Woods, M; Yocky, G; Bogomiagkov, A; Koop, I; Levichev, E; Nikitin, S; Okunev, I; Piminov, P; Sinyatkin, S; Shatilov, D; Vobly, P; Bosi, F; Liuzzo, S; Paoloni, E; Bonis, J; Chehab, R; Le Meur, G; Lepercq, P; Letellier-Cohen, F; Mercier, B; Poirier, F; Prevost, C; Rimbault, C; Touze, F; Variola, A; Bolzon, B; Brunetti, L; Jeremie, A; Baylac, M; Bourrion, O; De Conto, J M; Gomez, Y; Meot, F; Monseu, N; Tourres, D; Vescovi, C; Chanci, A; Napoly, O; Barber, D P; Bettoni, S; Quatraro, D

    2010-01-01

    This report details the present status of the Accelerator design for the SuperB Project. It is one of four separate progress reports that, taken collectively, describe progress made on the SuperB Project since the publication of the SuperB Conceptual Design Report in 2007 and the Proceedings of SuperB Workshop VI in Valencia in 2008.

  12. Vacuum technology issues for the SSC [Superconducting Super Collider

    International Nuclear Information System (INIS)

    Joestlein, H.

    1989-01-01

    The Superconducting Super Collider, to be built in Texas, will provide an energy of 40 TeV from colliding proton beams. This energy is twenty times higher than currently available from the only other cryogenic collider, the Fermilab Tevatron, and will allow experiments that can lead to a better understanding of the fundamental properties of matter. The energy scale and the size of the new machine pose intriguing challenges and opportunities for the its vacuum systems. The discussion will include the effects of synchrotron radiation on cryogenic beam tubes, cold adsorption pumps for hydrogen, methods of leak checking large cryogenic systems, the development of cold beam valves, and radiation damage to components, especially electronics. 9 figs., 1 tab

  13. Deformations of super Riemann surfaces

    International Nuclear Information System (INIS)

    Ninnemann, H.

    1992-01-01

    Two different approaches to (Konstant-Leites-) super Riemann surfaces are investigated. In the local approach, i.e. glueing open superdomains by superconformal transition functions, deformations of the superconformal structure are discussed. On the other hand, the representation of compact super Riemann surfaces of genus greater than one as a fundamental domain in the Poincare upper half-plane provides a simple description of super Laplace operators acting on automorphic p-forms. Considering purely odd deformations of super Riemann surfaces, the number of linear independent holomorphic sections of arbitrary holomorphic line bundles will be shown to be independent of the odd moduli, leading to a simple proof of the Riemann-Roch theorem for compact super Riemann surfaces. As a further consequence, the explicit connections between determinants of super Laplacians and Selberg's super zeta functions can be determined, allowing to calculate at least the 2-loop contribution to the fermionic string partition function. (orig.)

  14. Deformations of super Riemann surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ninnemann, H [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    1992-11-01

    Two different approaches to (Konstant-Leites-) super Riemann surfaces are investigated. In the local approach, i.e. glueing open superdomains by superconformal transition functions, deformations of the superconformal structure are discussed. On the other hand, the representation of compact super Riemann surfaces of genus greater than one as a fundamental domain in the Poincare upper half-plane provides a simple description of super Laplace operators acting on automorphic p-forms. Considering purely odd deformations of super Riemann surfaces, the number of linear independent holomorphic sections of arbitrary holomorphic line bundles will be shown to be independent of the odd moduli, leading to a simple proof of the Riemann-Roch theorem for compact super Riemann surfaces. As a further consequence, the explicit connections between determinants of super Laplacians and Selberg's super zeta functions can be determined, allowing to calculate at least the 2-loop contribution to the fermionic string partition function. (orig.).

  15. 75 FR 20111 - Energy Conservation Program: Energy Conservation Standards for Residential Water Heaters, Direct...

    Science.gov (United States)

    2010-04-16

    ... Program: Energy Conservation Standards for Residential Water Heaters, Direct Heating Equipment, and Pool... heating equipment and pool heaters. Table I.1--Amended Energy Conservation Standards for Residential Water... for national energy and water conservation; and 7. Other factors the Secretary of Energy (Secretary...

  16. Electrical resistivity monitoring of the single heater test in Yucca Mountain

    International Nuclear Information System (INIS)

    Ramirez, A.

    1997-10-01

    Of the several thermal, mechanical and hydrological measurements being used to monitor the rockmass response in the Single Heater Test, electrical resistance tomography (ERT) is being used to monitor the movement of liquid water with a special interest in the movement of condensate out of the system. Images of resistivity change were calculated using data collected before, during and after the heating episode. This report will concentrate on the results obtained after heating ceased; previous reports discuss the results obtained during the heating phase. The changes recovered show a region of increasing resistivity approximately centered around the heater as the rock mass cooled. The size of this region grows with time and the resistivity increases become stronger. The increases in resistivity are caused by both temperature and saturation changes. The Waxman Smits model has been used to calculate rock saturation after accounting for temperature effects. The saturation estimates suggest that during the heating phase, a region of drying forms around the heater. During the cooling phase, the dry region has remained relatively stable. Wetter rock regions which developed below the heater during the heating phase, are slowly becoming smaller in size during the cooling phase. The last set of images indicate that some rewetting of the dry zone may be occurring. The accuracy of the saturation estimates depends on several factors that are only partly understood

  17. Electrical resistivity monitoring of the thermomechanical heater test in Yucca Mountain

    International Nuclear Information System (INIS)

    Ramirez, A.; Daily, W.; Buettner, M.

    1997-01-01

    A test is being conducted in the densely welded Topopah Springs tuff within Yucca Mountain, Nevada to study the thermomechanical and hydrological behavior of this horizon when it is headed. A single 4 kW heater, placed in a horizontal borehole, was turned on August, 1996 and will continue to heat the rockmass until April 1997. Of the several thermal, mechanical and hydrological measurements being used to monitor the rockmass response, electrical resistance tomography (ERT) is being used to monitor the movement of liquid water with a special interest in the movement of condensate out of the system. Four boreholes, containing a total of 30 ERT electrodes, were drilled to form the sides of a 30 foot square with the heater at the center and perpendicular to the plane. Images of resistivity change were calculated using data collected before and during the heating episode. The changes recovered show a region of decreasing resistivity approximately centered around the heater. The size this region grows with time and the resistivity decreases become stronger. The changes in resistivity are caused by both temperature and saturation changes. The observed resistivity changes suggest that the rock adjacent to the heater dries as heating progresses. This dry region is surrounded by a region of increased saturation where steam recondenses and imbibes into the rock

  18. Electrical resistivity monitoring of the thermomechanical heater test in Yucca Mountain

    International Nuclear Information System (INIS)

    Ramirez, A.; Daily, W.; Buettner, M.; LaBrecque, L

    1996-01-01

    A test is being conducted in the densely welded Topopah Springs tuff within Yucca Mountain, Nevada to study the thermomechanical and hydrological behavior of this horizon when it is heated. A single 4 kW heater, placed in a horizontal borehole, was turned on August, 1996 and will continue to heat the rockmass until April 1997. Of the several thermal, mechanical and hydrological measurements being used to monitor the rockmass response, electrical resistance tomography (ERT) is being used to monitor the movement of liquid water with a special interest in the movement of condensate out of the system. Four boreholes, containing a total of 30 ERT electrodes, were drilled to form the sides of a 30 foot square with the heater at the center and perpendicular to the plane. Images of resistivity change were calculated using data collected before and during the heating episode. The changes recovered show a region of decreasing resistivity approximately centered around the heater. The size this region grows with time and -the resistivity decreases become stronger. The changes in resistivity are caused by both temperature and saturation changes. The observed resistivity changes suggest that the rock adjacent to the heater dries as heating progresses. This dry region is surrounded by a region of increased saturation where steam recondenses and imbibes into the rock

  19. Alkali/chloride release during refuse incineration on a grate: Full-scale experimental findings

    DEFF Research Database (Denmark)

    Bøjer, Martin; Jensen, Peter Arendt; Frandsen, Flemming

    2008-01-01

    in waste cause relatively high super heater corrosion rates. The Cl-content in waste is one of the key-factors for volatilisation of alkali and heavy metals in WtE plants. Little is known about the release of Cl, Na, K, Zn, Pb, and S along grate of waste incineration plants. The 26 t h(-1) WtE plant......Waste to energy (WtE) plants are utilised for the production of heat and electricity. However, due to corrosion at super heater surfaces a relatively low 25% of the waste lower heating value can with the present technology be converted to electricity. High contents of Cl, Na, K, Zn, Pb and S...... of the grate near port 3 with a high temperature, that contains relatively low amounts of corrosive elements, and lead to a separate high temperature super heater and thus increase the electrical efficiency....

  20. Field Performance of Heat Pump Water Heaters in the Northeast

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, Carl [Consortium for Advanced Residential Buildings, Norfolk, CT (United States); Puttagunta, Srikanth [Consortium for Advanced Residential Buildings, Norfolk, CT (United States)

    2016-02-05

    Heat pump water heaters (HPWHs) are finally entering the mainstream residential water heater market. Potential catalysts are increased consumer demand for higher energy efficiency electric water heating and a new Federal water heating standard that effectively mandates use of HPWHs for electric storage water heaters with nominal capacities greater than 55 gallons. When compared to electric resistance water heating, the energy and cost savings potential of HPWHs is tremendous. Converting all electric resistance water heaters to HPWHs could save American consumers 7.8 billion dollars annually ($182 per household) in water heating operating costs and cut annual residential source energy consumption for water heating by 0.70 quads. Steven Winter Associates, Inc. embarked on one of the first in situ studies of these newly released HPWH products through a partnership with two sponsoring electric utility companies, National Grid and NSTAR, and one sponsoring energy efficiency service program administrator, Cape Light Compact. Recent laboratory studies have measured performance of HPWHs under various operating conditions, but publically available field studies have not been as available. This evaluation attempts to provide publicly available field data on new HPWHs by monitoring the performance of three recently released products (General Electric GeoSpring(TM), A.O. Smith Voltex(R), and Stiebel Eltron Accelera(R) 300). Fourteen HPWHs were installed in Massachusetts and Rhode Island and monitored for over a year. Of the 14 units, ten were General Electric models (50 gallon units), two were Stiebel Eltron models (80 gallon units), and two were A.O. Smith models (one 60-gallon and one 80-gallon unit).

  1. Thermo-hydraulic performance enhancement of solar air heater ...

    African Journals Online (AJOL)

    DR OKE

    Keywords: Solar air heater; Nusselt number; thermal efficiency; multiple arcs with ... loss; and one or two covers of glass or transparent plastic provide resistance to ..... Methods of testing to determine the thermal performance of solar collectors.

  2. The Superconducting Super Collider (SSC) linac

    International Nuclear Information System (INIS)

    Watson, J.M.

    1990-09-01

    The preliminary design of the 600 MeV H - linac for the Superconducting Super Collider injector is described. The linac must provide a 25 mA beam during 7--35 μs macropulses at Hz within injection bursts. Normalized transverse emittances of less than 0.5 π mm-mrad (rms) are required for injection into the Low Energy Booster synchrotron. Cost, ease of commissioning, and operational reliability are important considerations. The linac will consists of an H - source with electrostatic LEBT, 2.5 MeV radiofrequency quadrupole accelerator, a 70 MeV drift-tube linac, and 530 MeV and the side-coupled linac operates at 1284 MHz. A modest total length of 150 m results from the tradeoff between cost optimization and reliability. The expected performance from beam dynamics simulations and the status of the project are described. 11 refs., 1 fig., 6 tabs

  3. Why extraction lines and heaters in the turbine-condenser steam space should be lagged

    Energy Technology Data Exchange (ETDEWEB)

    Burns, J.M.; Haynes, C.J.

    1998-07-01

    Deregulated utilities face conditions today that necessitate their nuclear and fossil steam plants have the best possible heat rates. The low pressure turbine exhaust and condenser areas are known to be particularly sensitive to betterment. One relatively modest but cost effective heat rate improvement and one whose function and design is often misunderstood is the insulation of the extraction lines and heaters that are located within the turbine-condenser steam space. This paper discusses the dynamic environment of that turbine exhaust region and quantifies the application and benefit of stainless steel lagging to the extraction lines and heater shells within. The paper first focuses on the high energy, non-uniform steam flows of the turbine exhaust and how that impacts the heat losses, mechanical design and support of any components located inside that space. It then examines and quantifies the varieties of heat transfer from the heaters and extraction lines to the passing lower temperature, moist, high velocity turbine exhaust steam as it travels to the condenser. A new relationship is developed that defines the predominantly evaporative heat transfer mechanism on the exterior surfaces in contact with the exhaust steam. For a typical 630 MW fossil plant with three heater of different temperature levels in the steam space as exemplified by the US Generation fossil fired Brayton Point 3, the paper determined the additional condenser heat load and extra extraction steam. The paper lastly concluded that in this case, lagging the larger diameter lines of the lowest pressure heater and the heater itself is likely not cost-effective.

  4. Method and apparatus for enhanced heat recovery from steam generators and water heaters

    Science.gov (United States)

    Knight, Richard A.; Rabovitser, Iosif K.; Wang, Dexin

    2006-06-27

    A heating system having a steam generator or water heater, at least one economizer, at least one condenser and at least one oxidant heater arranged in a manner so as to reduce the temperature and humidity of the exhaust gas (flue gas) stream and recover a major portion of the associated sensible and latent heat. The recovered heat is returned to the steam generator or water heater so as to increase the quantity of steam generated or water heated per quantity of fuel consumed. In addition, a portion of the water vapor produced by combustion of fuel is reclaimed for use as feed water, thereby reducing the make-up water requirement for the system.

  5. Development of Industrially Produced Composite Quench Heaters for the LHC Superconducting Lattice Magnets

    CERN Document Server

    Szeless, Balázs; Calvone, F

    1996-01-01

    The quench heaters are vital elements for the protection of the LHC superconducting lattice magnets in the case of resistive transitions of the conductor. The basic concept of magnet protection and technical solutions are briefly presented. The quench heater consists of partially copper clad stainless steel strips sandwiched in between electric insulating carrier foils with electrical and mechanical properties such as to withstand high voltages, low temperatures, pressures and ionizing radiation. Testing of some commercial available electric insulation foils, polyimide (PI), polyetheretherketon (PEEK) and polyarylate (PA) and combinations of adhesive systems which are suitable for industrial processing are described. Possible industrial methods for series production for some 80 km of these composite quench heaters are indicated.

  6. Lid heater for glass melter

    International Nuclear Information System (INIS)

    Phillips, T.D.

    1993-01-01

    A glass melter having a lid electrode for heating the glass melt radiantly. The electrode comprises a series of INCONEL 690 tubes running above the melt across the melter interior and through the melter walls and having nickel cores inside the tubes beginning where the tubes leave the melter interior and nickel connectors to connect the tubes electrically in series. An applied voltage causes the tubes to generate heat of electrical resistance for melting frit injected onto the melt. The cores limit heat generated as the current passes through the walls of the melter. Nickel bus connection to the electrical power supply minimizes heat transfer away from the melter that would occur if standard copper or water-cooled copper connections were used between the supply and the INCONEL 690 heating tubes. 3 figures

  7. Performance of a new solar air heater with packed-bed latent storage energy for nocturnal use

    International Nuclear Information System (INIS)

    Bouadila, Salwa; Kooli, Sami; Lazaar, Mariem; Skouri, Safa; Farhat, Abdelhamid

    2013-01-01

    Highlights: • A new solar air heater collector using a phase change material. • Experimental study of the new solar air heater collector with latent storage. • Energy and exergy analysis of the solar heater with latent storage collector. • Nocturnal use of solar air heater collector. - Abstract: An experimental study was conducted to evaluate the thermal performance of a new solar air heater collector using a packed bed of spherical capsules with a latent heat storage system. Using both first and second law of thermodynamics, the energetic and exegetic daily efficiencies were calculated in Closed/Opened and Opened cycle mode. The solar energy was stored in the packed bed through the diurnal period and extracted at night. The experimentally obtained results are used to analyze the performance of the system, based on temperature distribution in different localization of the collectors. The daily energy efficiency varied between 32% and 45%. While the daily exergy efficiency varied between 13% and 25%

  8. Super periodic potential

    Science.gov (United States)

    Hasan, Mohammd; Mandal, Bhabani Prasad

    2018-04-01

    In this paper we introduce the concept of super periodic potential (SPP) of arbitrary order n, n ∈I+, in one dimension. General theory of wave propagation through SPP of order n is presented and the reflection and transmission coefficients are derived in their closed analytical form by transfer matrix formulation. We present scattering features of super periodic rectangular potential and super periodic delta potential as special cases of SPP. It is found that the symmetric self-similarity is the special case of super periodicity. Thus by identifying a symmetric fractal potential as special cases of SPP, one can obtain the tunnelling amplitude for a particle from such fractal potential. By using the formalism of SPP we obtain the close form expression of tunnelling amplitude of a particle for general Cantor and Smith-Volterra-Cantor potentials.

  9. CREATION OF OPTIMIZATION MODEL OF STEAM BOILER RECUPERATIVE AIR HEATER

    Directory of Open Access Journals (Sweden)

    N. B. Carnickiy

    2006-01-01

    Full Text Available The paper proposes to use a mathematical modeling as one of the ways intended to improve quality of recuperative air heater design (RAH without significant additional costs, connected with the change of design materials or fuel type. The described conceptual mathematical AHP optimization model of RAH consists of optimized and constant parameters, technical limitations and optimality criteria.The paper considers a methodology for search of design and regime parameters of an air heater which is based on the methods of multi-criteria optimization. Conclusions for expediency of the given approach usage are made in the paper.

  10. Root cause analysis of oxide scale forming and shedding in high temperature reheater of a 200MW super high pressure boiler

    Science.gov (United States)

    Bo, Jiang; Hao, Weidong; Hu, Zhihong; Liu, Fuguo

    2015-12-01

    In order to solve the problem of over temperature tube-burst caused by oxide scale shedding and blocking tubes of high temperature reheater of a 200MW super high pressure power plant boiler, this paper expounds the mechanism of scale forming and shedding, and analyzes the probable causes of the tube-burst failure. The results show that the root cause of scale forming is that greater steam extraction flow after reforming of the second extraction leads to less steam flow into reheater, which causes over temperature to some of the heated tubes; and the root cause of scale shedding is that long term operation in AGC-R mode brings about great fluctuations of unit load, steam temperature and pressure, accelerating scale shedding. In conclusion, preventive measures are drawn up considering the operation mode of the unit.

  11. Power balance provision through co-ordinated control of modern storage heater load

    OpenAIRE

    Qazi, Hassan Wajahat; Flynn, Damian

    2013-01-01

    Operational inflexibility due to wind variability at high penetration levels can be mitigated through flexible demand. However, most flexible loads entail a subsequent short-term higher energy payback and aggregated load coincidence. Storage heaters operating on a dual tariff, that typically charge during a fixed time window, can be considered as distributed thermal storage without an associated energy payback period. Modern storage heaters have improved heat retention, the capability to esti...

  12. 46 CFR 52.01-35 - Auxiliary, donkey, fired thermal fluid heater, and heating boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Auxiliary, donkey, fired thermal fluid heater, and... (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-35 Auxiliary, donkey, fired thermal... requirements for miscellaneous boiler types, such as donkey, fired thermal fluid heater, heating boiler, etc...

  13. 76 FR 63211 - Energy Efficiency Program: Test Procedures for Residential Water Heaters, Direct Heating...

    Science.gov (United States)

    2011-10-12

    ... DEPARTMENT OF ENERGY 10 CFR Part 430 [Docket Number EERE-2011-BT-TP-0042] RIN 1904-AC53 Energy Efficiency Program: Test Procedures for Residential Water Heaters, Direct Heating Equipment, and Pool Heaters AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Request for...

  14. Consumers and experts. An econometric analysis of the demand for water heaters

    International Nuclear Information System (INIS)

    Van Soest, A.; Bartels, R.; Fiebig, D.G.

    2003-01-01

    Consumers can accumulate product information on the basis of a combination of searching, product advertising and expert advice. Examples of experts who provide product information include doctors advising patients on treatments, motor mechanics diagnosing car problems and recommending repairs, accountants recommending investment strategies, and plumbers making recommendations on alternative water heaters. In each of these examples, the transactions involve the sale of goods and services where the seller is at the same time an expert providing advice on the amount and type of product or service to be purchased. In the case of water heaters, the plumber advising a consumer on their choice of water heater will most likely also install the appliance. Because of the information asymmetry there is potentially a strategic element in the transmission of information from expert to consumer. This paper reports on an econometric investigation of the factors that determine the choices made by consumers and the recommendations made by plumbers and the extent to which plumbers act in the best interests of their customers. The empirical work is made possible by the availability of stated preference data generated by designed experiments involving separate samples of Australian consumers and plumbers. We find some evidence that plumbers have higher preferences than consumers for heater characteristics that increase their profit margin

  15. Frames in super Hilbert modules

    Directory of Open Access Journals (Sweden)

    Mehdi Rashidi-Kouchi

    2018-01-01

    Full Text Available In this paper, we define super Hilbert module and investigate frames in this space. Super Hilbert modules are  generalization of super Hilbert spaces in Hilbert C*-module setting. Also, we define frames in a super Hilbert module and characterize them by using of the concept of g-frames in a Hilbert C*-module. Finally, disjoint frames in Hilbert C*-modules are introduced and investigated.

  16. Energy Savings and Breakeven Costs for Residential Heat Pump Water Heaters in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, Jeff [National Renewable Energy Lab. (NREL), Golden, CO (United States); Burch, Jay [National Renewable Energy Lab. (NREL), Golden, CO (United States); Merrigan, Tim [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ong, Sean [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-07-01

    Heat pump water heaters (HPWHs) have recently re-emerged in the U.S. residential water heating market and have the potential to provide homeowners with significant energy savings. However, there are questions as to the actual performance and energy savings potential of these units, in particular in regards to the heat pump's performance in unconditioned space and the impact of the heat pump on space heating and cooling loads when it is located in conditioned space. To help answer these questions, NREL performed simulations of a HPWH in both conditioned and unconditioned space at over 900 locations across the continental United States and Hawaii. Simulations included a Building America benchmark home so that any interaction between the HPWH and the home's HVAC equipment could be captured. Comparisons were performed to typical gas and electric water heaters to determine the energy savings potential and cost effectiveness of a HPWH relative to these technologies. HPWHs were found to have a significant source energy savings potential when replacing typical electric water heaters, but only saved source energy relative to gas water heater in the most favorable installation locations in the southern United States. When replacing an electric water heater, the HPWH is likely to break even in California, the southern United States, and parts of the northeast in most situations. However, the HPWH will only break even when replacing a gas water heater in a few southern states.

  17. Energy Savings and Breakeven Cost for Residential Heat Pump Water Heaters in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, J.; Burch, J.; Merrigan, T.; Ong, S.

    2013-07-01

    Heat pump water heaters (HPWHs) have recently reemerged in the U.S. residential water heating market and have the potential to provide homeowners with significant energy savings. However, there are questions as to the actual performance and energy savings potential of these units, in particular in regards to the heat pump's performance in unconditioned space and the impact of the heat pump on space heating and cooling loads when it is located in conditioned space. To help answer these questions, simulations were performed of a HPWH in both conditioned and unconditioned space at over 900 locations across the continental United States and Hawaii. Simulations included a Building America benchmark home so that any interaction between the HPWH and the home's HVAC equipment could be captured. Comparisons were performed to typical gas and electric water heaters to determine the energy savings potential and cost effectiveness of a HPWH relative to these technologies. HPWHs were found to have a significant source energy savings potential when replacing typical electric water heaters, but only saved source energy relative to gas water heater in the most favorable installation locations in the southern US. When replacing an electric water heater, the HPWH is likely to break even in California, the southern US, and parts of the northeast in most situations. However, the HPWH will only break even when replacing a gas water heater in a few southern states.

  18. 75 FR 21981 - Energy Conservation Program: Energy Conservation Standards for Residential Water Heaters, Direct...

    Science.gov (United States)

    2010-04-27

    ... DEPARTMENT OF ENERGY 10 CFR Part 430 [Docket Number EE-2006-BT-STD-0129] RIN 1904-AA90 Energy Conservation Program: Energy Conservation Standards for Residential Water Heaters, Direct Heating Equipment, and Pool Heaters Correction In rule document 2010-7611 beginning on page 20112 in the issue of Friday...

  19. Ultraflexible Transparent Film Heater Made of Ag Nanowire/PVA Composite for Rapid-Response Thermotherapy Pads.

    Science.gov (United States)

    Lan, Wei; Chen, Youxin; Yang, Zhiwei; Han, Weihua; Zhou, Jinyuan; Zhang, Yue; Wang, Junya; Tang, Guomei; Wei, Yupeng; Dou, Wei; Su, Qing; Xie, Erqing

    2017-02-22

    Ultraflexible transparent film heaters have been fabricated by embedding conductive silver (Ag) nanowires into a thin poly(vinyl alcohol) film (AgNW/PVA). A cold-pressing method was used to rationally adjust the sheet resistance of the composite films and thus the heating powers of the AgNW/PVA film heaters at certain biases. The film heaters have a favorable optical transmittance (93.1% at 26 Ω/sq) and an outstanding mechanical flexibility (no visible change in sheet resistance after 10 000 bending cycles and at a radius of curvature ≤1 mm). The film heaters have an environmental endurance, and there is no significant performance degradation after being kept at high temperature (80 °C) and high humidity (45 °C, 80% humidity) for half a year. The efficient Joule heating can increase the temperature of the film heaters (20 Ω/sq) to 74 °C in ∼20 s at a bias of 5 V. The fast-heating characteristics at low voltages (a few volts) associated with its transparent and flexibility properties make the poly(dimethylsiloxane)/AgNW/PVA composite film a potential candidate in medical thermotherapy pads.

  20. Solving erosion corrosion problems in HP-preheaters at Loviisa NPS

    International Nuclear Information System (INIS)

    Lindberg, E.

    1984-01-01

    Several tubes have failed because of tube inlet erosion at Loviisa. Mild steel used as tube material will very easily be attacked by erosion corrosion because of unfavorable conditions in the heaters. One reason to the failures is the unsufficient design of the heaters. As a remedy we have replaced the thinned tube-ends with a ferritic-austenitic stainless steel NU 44LN. (author)

  1. Effect of Tube Diameter on Heat Transfer to Vertically Upward Flowing Supercritical CO2

    International Nuclear Information System (INIS)

    Kang, Deog Ji; Kim, Sin; Bae, Yoon Yeong; Kim, Hwan Yeol; Kim, Hyung Rae

    2007-01-01

    Heat transfer characteristics of supercritical carbon dioxide are being investigated experimentally in the test loop named as SPHINX(Supercritical Pressure Heat Transfer Investigation for NeXt generation) at KAERI. The main purpose of the experiment is to provide a reliable heat transfer database for a SCWR (SuperCritical Water-cooled Reactor) by a prudent extension of the carbon dioxide test results to the estimation of a heat transfer for water. The produced data will be used in the thermo-hydraulic design of core and safety analysis for SCWR. The aim of the present paper is to study the influence of a tube diameter on a heat transfer. The experiments were completed for tubes of an inside diameter of 4.4mm and 9.0mm, respectively. The heat transfer characteristics from the two tubes of different diameters were compared and discussed

  2. Solar water heaters: possibilities of using in the climatic conditions of the Russia medium area

    International Nuclear Information System (INIS)

    Popel', O.S.; Frid, S.E.

    2001-01-01

    On the basis of mathematical simulation of the simplest solar water heating facility using up-to-date software and data of typical meteorological year it was shown that under the real climatic conditions peculiar to Russia central region it is appropriate to use seasonal solar water heaters operating from March up to September. It is shown that to promote solar water heaters in the Russian market one should elaborate engineering approaches and should introduce new materials ensuring reduction of cost of solar water heaters with the availability of high quality and durability [ru

  3. Hydrodynamic aspects of the design of feed heaters and de-aerator storage tanks

    International Nuclear Information System (INIS)

    Kubie, J.; Rowe, M.; Jones, E.W.

    1979-01-01

    Regenerative feed heaters of the direct-contact type and feed water deaerators transmit large quantities of saturated, i.e. boiling, water. Drainage of saturated flows has long been a problem because of the possibility of the flow flashing to steam. Adequate drainage of direct-contact heaters is particularly important because of the danger of condensate returning to the turbine and causing serious damage. Likewise, a deaerator must drain easily or the boiler feed pump to which it drains will lose suction head and cavitate. This paper examines a number of hydrodynamic aspects of heater design and operating experience with particular emphasis on the problem of drainage. Formulae are derived and presented with recommendations for their use by designers in the power plant industry. (author)

  4. Impact of the operation of non-displaced feedwater heaters on the performance of Solar Aided Power Generation plants

    International Nuclear Information System (INIS)

    Qin, Jiyun; Hu, Eric; Nathan, Graham J.

    2017-01-01

    Highlights: • Impact of non-displaced feedwater heater on plant’s performance has been evaluated. • Two operation strategies for non-displaced feedwater heater has been proposed. • Constant temperature strategy is generally better. • Constant mass flow rate strategy is suit for rich solar thermal input. - Abstract: Solar Aided Power Generation is a technology in which low grade solar thermal energy is used to displace the high grade heat of the extraction steam in a regenerative Rankine cycle power plant for feedwater preheating purpose. The displaced extraction steam can then expand further in the steam turbine to generate power. In such a power plant, using the (concentrated) solar thermal energy to displace the extraction steam to high pressure/temperature feedwater heaters (i.e. displaced feedwater heaters) is the most popular arrangement. Namely the extraction steam to low pressure/temperature feedwater heaters (i.e. non-displaced feedwater heaters) is not displaced by the solar thermal energy. In a Solar Aided Power Generation plants, when solar radiation/input changes, the extraction steam to the displaced feedwater heaters requires to be adjusted according to the solar radiation. However, for the extraction steams to the non-displaced feedwater heaters, it can be either adjusted accordingly following so-called constant temperature strategy or unadjusted i.e. following so-called constant mass flow rate strategy, when solar radiation/input changes. The previous studies overlooked the operation of non-displaced feedwater heaters, which has also impact on the whole plant’s performance. This paper aims to understand/reveal the impact of the two different operation strategies for non-displaced feedwater heaters on the plant’s performance. In this paper, a 300 MW Rankine cycle power plant, in which the extraction steam to high pressure/temperature feedwater heaters is displaced by the solar thermal energy, is used as study case for this purpose. It

  5. solar dryer with biomass backup heater for drying fruits

    African Journals Online (AJOL)

    SOLAR DRYER WITH BIOMASS BACKUP HEATER FOR DRYING FRUITS: DEVELOPMENT AND PERFORMANCE ANALYSIS. ... Journal of Science and Technology (Ghana) ... Most solar dryers rely on only solar energy as the heat source.

  6. Data acquisition, handling, and display for the heater experiments at Stripa

    Energy Technology Data Exchange (ETDEWEB)

    McEvoy, M.B.

    1979-02-01

    In June 1978, a joint Swedish/American research team began acquiring data from the Stripa mine in Sweden, 340 m below the surface. Electrical heaters are used to assess the suitability of granite rock as a repository for radioactive waste material. Extensive instrumentation also measures temperature, stress, and displacement effects caused by these heaters. This report describes the data acquisition system, its design considerations, capabilities, and operational use. The techniques employed to detect and analyze any anomalous experimental results are also described. Environmental considerations are described in an appendix.

  7. Modification of heating system on HeaTiNG-02 test section of beta test loop

    International Nuclear Information System (INIS)

    Sagino; Dedy Haryanto; Riswan Djambiar; Edy Sumarno

    2013-01-01

    Modifications have been carried out on the heating test section heating-02 on the integration strand Beta Test (UUB). The activities carried out to overcome the obstacles that arise in the test section when used. Constraint that often arises is the fall of the heating source super chantal when it reaches a certain temperature. To mitigate the super chantal is initially converted into a horizontal vertical position. Change from vertical to horizontal position on super chantal aims to stabilize the position of super chantal, so it needs to be modified in the heating system. Modification activities include manufacturing, installation and testing of super chantal and refractory stone as super chantal support. Manufacturing refractory stone formation and assembly into the heater in accordance with design modifications that have been done in electromechanical workshop obtained using some machine tools. Testing results of fabrication has been done by providing voltage 110 volts until it reaches operating temperature 400°C. Test results obtained super chantal stable position when it reaches operating temperature, and heater of heating-02 test section feasible to be used for experiments. (author)

  8. Drastic Improvement in Adhesion Property of Polytetrafluoroethylene (PTFE) via Heat-Assisted Plasma Treatment Using a Heater.

    Science.gov (United States)

    Ohkubo, Yuji; Ishihara, Kento; Shibahara, Masafumi; Nagatani, Asahiro; Honda, Koji; Endo, Katsuyoshi; Yamamura, Kazuya

    2017-08-25

    The heating effect on the adhesion property of plasma-treated polytetrafluoroethylene (PTFE) was examined. For this purpose, a PTFE sheet was plasma-treated at atmospheric pressure while heating using a halogen heater. When plasma-treated at 8.3 W/cm 2 without using the heater (Low-P), the surface temperature of Low-P was about 95 °C. In contrast, when plasma-treated at 8.3 W/cm 2 while using the heater (Low-P+Heater), the surface temperature of Low-P+Heater was controlled to about 260 °C. Thermal compression of the plasma-treated PTFE with or without heating and isobutylene-isoprene rubber (IIR) was performed, and the adhesion strength of the IIR/PTFE assembly was measured via the T-peel test. The adhesion strengths of Low-P and Low-P+Heater were 0.12 and 2.3 N/mm, respectively. Cohesion failure of IIR occurred during the T-peel test because of its extremely high adhesion property. The surfaces of the plasma-treated PTFE with or without heating were investigated by the measurements of electron spin resonance, X-ray photoelectron spectroscopy, nanoindentation, scanning electron microscopy, and scanning probe microscopy. These results indicated that heating during plasma treatment promotes the etching of the weak boundary layer (WBL) of PTFE, resulting in a sharp increase in the adhesion property of PTFE.

  9. Análisis de un canal de YouTube : el caso de la youtuber Zoella.

    OpenAIRE

    Lite Muñoz, Nuria

    2017-01-01

    Zoe Sugg, coneguda a internet com Zoella, té més d'11 milions de seguidors al seu canal de YouTube. És una de les youtubers britàniques més conegudes mundialment i la seva influència li ha fet batre rècords a diferents àmbits comunicatius, superant a molts famosos de la comunicació tradicional. En aquest treball es pretén analitzar el potencial d'aquesta xarxa social i les causes de l'èxit en línia, a través de l'estudi de la metodologia i el contingut del canal de Zoe. YouTube ha canviat la ...

  10. Radioisotopic heater units warm an interplanetary spacecraft

    International Nuclear Information System (INIS)

    Franco-Ferreira, E.A.

    1998-01-01

    The Cassini orbiter and Huygens probe, which were successfully launched on October 15, 1997, constitute NASA's last grand-scale interplanetary mission of this century. The mission, which consists of a four-year, close-up study of Saturn and its moons, begins in July 2004 with Cassini's 60 orbits of Saturn and about 33 fly-bys of the large moon Titan. The Huygens probe will descend and land on Titan. Investigations will include Saturn's atmosphere, its rings and its magnetosphere. The atmosphere and surface of Titan and other icy moons also will be characterized. Because of the great distance of Saturn from the sun, some of the instruments and equipment on both the orbiter and the probe require external heaters to maintain their temperature within normal operating ranges. These requirements are met by Light Weight Radioisotope Heater Units (LWRHUs) designed, fabricated and safety tested at Los Alamos National Laboratory, New Mexico. An improved gas tungsten arc welding procedure lowered costs and decreased processing time for heat units for the Cassini spacecraft

  11. Design and optimization of resistance wire electric heater for hypersonic wind tunnel

    Science.gov (United States)

    Rehman, Khurram; Malik, Afzaal M.; Khan, I. J.; Hassan, Jehangir

    2012-06-01

    The range of flow velocities of high speed wind tunnels varies from Mach 1.0 to hypersonic order. In order to achieve such high speed flows, a high expansion nozzle is employed in the converging-diverging section of wind tunnel nozzle. The air for flow is compressed and stored in pressure vessels at temperatures close to ambient conditions. The stored air is dried and has minimum amount of moisture level. However, when this air is expanded rapidly, its temperature drops significantly and liquefaction conditions can be encountered. Air at near room temperature will liquefy due to expansion cooling at a flow velocity of more than Mach 4.0 in a wind tunnel test section. Such liquefaction may not only be hazardous to the model under test and wind tunnel structure; it may also affect the test results. In order to avoid liquefaction of air, a pre-heater is employed in between the pressure vessel and the converging-diverging section of a wind tunnel. A number of techniques are being used for heating the flow in high speed wind tunnels. Some of these include the electric arc heating, pebble bed electric heating, pebble bed natural gas fired heater, hydrogen burner heater, and the laser heater mechanisms. The most common are the pebble bed storage type heaters, which are inefficient, contaminating and time consuming. A well designed electrically heating system can be efficient, clean and simple in operation, for accelerating the wind tunnel flow up to Mach 10. This paper presents CFD analysis of electric preheater for different configurations to optimize its design. This analysis has been done using ANSYS 12.1 FLUENT package while geometry and meshing was done in GAMBIT.

  12. (Super Variable Costing-Throughput Costing)

    OpenAIRE

    Çakıcı, Cemal

    2006-01-01

    (Super Variable Costing-Throughput Costing) The aim of this study is to explain the super-variable costing method which is a new subject in cost and management accounting and to show it’s working practicly.Shortly, super-variable costing can be defined as a costing method which is use only direct material costs in calculate of product costs and treats all costs except these (direct labor and overhead) as periad costs or operating costs.By using super-variable costing method, product costs ar...

  13. New Home Buyer Solar Water Heater Trade-Off Study

    International Nuclear Information System (INIS)

    Symmetrics Marketing Corporation

    1999-01-01

    This report details the results of a research conducted in 1998 and 1999 and outlines a marketing deployment plan designed for businesses interested in marketing solar water heaters in the new home industry

  14. The Mechanical Behavior of a 25Cr Super Duplex Stainless Steel at Elevated Temperature

    Science.gov (United States)

    Lasebikan, B. A.; Akisanya, A. R.; Deans, W. F.

    2013-02-01

    Super duplex stainless steel (SDSS) is a candidate material for production tubing in oil and gas wells and subsea pipelines used to transport corrosive hydrocarbon fluids. The suitability of this material for high temperature applications is examined in this article. The uniaxial tensile properties are determined for a 25Cr SDSS over a range of temperature relevant to high pressure-high temperature oil and gas wells. It is shown that there is a significant effect of temperature on the uniaxial tensile properties. Elevated temperature was shown to reduce the Young's modulus and increase the strain hardening index; temperature effects on these two parameters are usually neglected in the design of subsea pipelines and oil well tubulars, and this could lead to wrong predictions of the collapse pressure. The manufacturing process of the super duplex tubular did not lead to significant anisotropy in the hardness and the ultimate tensile and uniaxial yield strengths.

  15. Swift BAT Thermal Recovery After Loop Heat Pipe #0 Secondary Heater Controller Failure in October 2015

    Science.gov (United States)

    Choi, Michael K.

    2016-01-01

    The Swift BAT LHP #0 primary heater controller failed on March 31, 2010. It has been disabled. On October 31, 2015, the secondary heater controller of this LHP failed. On November 1, 2015, the LHP #0 CC temperature increased to as 18.6 C, despite that the secondary heater controller set point was 8.8 C. It caused the average DM XA1 temperature to increase to 25.9 C, which was 5 C warmer than nominal. As a result, the detectors became noisy. To solve this problem, the LHP #1 secondary heater controller set point was decreased in 0.5 C decrements to 2.2 C. The set-point decrease restored the average DM XA1 temperature to a nominal value of 19.7 C on November 21.

  16. Design improvement for partial penetration welds of Pressurizer heater sleeves to head junctures

    International Nuclear Information System (INIS)

    Kim, Jin-Seon; Lee, Kyoung-Jin; Park, Tae-Jung; Kim, Moo-Yong

    2007-01-01

    ASME Code, Section III allows partial penetration welds for openings for instrumentation on which there are substantially no piping reactions and requires to have interference fit or limited diametral clearance between nozzles and vessel penetrations for the partial penetration welds. Pressurizer heater sleeves are nonaxisymmetrically attached on the hill-side of bottom head by partial penetration welds. The excessive stresses in the partial penetration weld regions of the heater sleeves are induced by pressure and thermal transient loads and also by the deformation due to manual welding process. The purpose of this study is 1) to improve design for the partial penetration welds between heater sleeves to head junctures, 2) to demonstrate the structural integrity according to the requirements of ASME Code, Section III and 3) to improve welding procedure considering the proposed design

  17. A high-response transparent heater based on a CuS nanosheet film with superior mechanical flexibility and chemical stability.

    Science.gov (United States)

    Xie, Shuyao; Li, Teng; Xu, Zijie; Wang, Yanan; Liu, Xiangyang; Guo, Wenxi

    2018-04-05

    Transparent heaters are widely used in technologies such as window defrosting/defogging, displays, gas sensing, and medical equipment. Apart from mechanical robustness and electrical and optical reliabilities, outstanding chemical stability is also critical to the application of transparent heaters. In this regard, we first present a highly flexible and large-area CuS transparent heater fabricated by a colloidal crackle pattern method with an optimized sheet resistance (Rs) as low as 21.5 Ω sq-1 at a ∼80% transmittance. The CuS transparent heater exhibits remarkable mechanical robustness during bending tests as well as high chemical stability against acid and alkali environments. In the application as a transparent heater, the CuS heater demonstrates a high thermal resistance of 197 °C W-1 cm2 with a fast switching time (solar panels. These CuS network TCEs with high flexibility, transparency, conductivity, and chemical stability could be widely used in wearable electronic products.

  18. An International Survey of Electric Storage Tank Water Heater Efficiency and Standards

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Alissa; Lutz, James; McNeil, Michael A.; Covary, Theo

    2013-11-13

    Water heating is a main consumer of energy in households, especially in temperate and cold climates. In South Africa, where hot water is typically provided by electric resistance storage tank water heaters (geysers), water heating energy consumption exceeds cooking, refrigeration, and lighting to be the most consumptive single electric appliance in the home. A recent analysis for the Department of Trade and Industry (DTI) performed by the authors estimated that standing losses from electric geysers contributed over 1,000 kWh to the annual electricity bill for South African households that used them. In order to reduce this burden, the South African government is currently pursuing a programme of Energy Efficiency Standards and Labelling (EES&L) for electric appliances, including geysers. In addition, Eskom has a history of promoting heat pump water heaters (HPWH) through incentive programs, which can further reduce energy consumption. This paper provides a survey of international electric storage water heater test procedures and efficiency metrics which can serve as a reference for comparison with proposed geyser standards and ratings in South Africa. Additionally it provides a sample of efficiency technologies employed to improve the efficiency of electric storage water heaters, and outlines programs to promote adoption of improved efficiency. Finally, it surveys current programs used to promote HPWH and considers the potential for this technology to address peak demand more effectively than reduction of standby losses alone

  19. Large-scale in situ heater tests for hydrothermal characterization at Yucca Mountain

    International Nuclear Information System (INIS)

    Buscheck, T.A.; Wilder, D.G.; Nitao, J.J.

    1993-01-01

    To safely and permanently store high-level nuclear waste, the potential Yucca Mountain repository site must mitigate the release and transport of radionuclides for tens of thousands of years. In the failure scenario of greatest concern, water would contact a waste package, accelerate its failure rate, and eventually transport radionuclides to the water table. Our analyses indicate that the ambient hydrological system will be dominated by repository-heat-driven hydrothermal flow for tens of thousands of years. In situ heater tests are required to provide an understanding of coupled geomechanical-hydrothermal-geochemical behavior in the engineered and natural barriers under repository thermal loading conditions. In situ heater tests have been included in the Site Characterization Plan in response to regulatory requirements for site characterization and to support the validation of process models required to assess the total systems performance at the site. Because of limited time, some of the in situ tests will have to be accelerated relative to actual thermal loading conditions. We examine the trade-offs between the limited test duration and generating hydrothermal conditions applicable to repository performance during the entire thermal loading cycle, including heating (boiling and dry-out) and cooldown (re-wetting). For in situ heater tests to be applicable to actual repository conditions, a minimum heater test duration of 6-7 yr (including 4 yr of full-power heating) is required

  20. Building America Case Study: Assessment of a Hybrid Retrofit Gas Water Heater

    Energy Technology Data Exchange (ETDEWEB)

    2017-06-19

    This project completed a modeling evaluation of a hybrid gas water heater that combines a reduced capacity tankless unit with a downsized storage tank. This product would meet a significant market need by providing a higher efficiency gas water heater solution for retrofit applications while maintaining compatibility with the half-inch gas lines and standard B vents found in most homes. The TRNSYS simulation tool was used to model a base case 0.60 EF atmospheric gas storage water, a 0.82 EF non-condensing gas tankless water heater, an existing (high capacity) hybrid unit on the market, and an alternative hybrid unit with lower storage volume and reduced gas input requirements. Simulations were completed under a 'peak day' sizing scenario with 183 gpd hot water loads in a Minnesota winter climate case. Full-year simulations were then completed in three climates (ranging from Phoenix to Minneapolis) for three hot water load scenarios (36, 57, and 96 gpd). Model projections indicate that the alternative hybrid offers an average 4.5% efficiency improvement relative to the 0.60 EF gas storage unit across all scenarios modeled. The alternative hybrid water heater evaluated does show promise, but the current low cost of natural gas across much of the country and the relatively small incremental efficiency improvement poses challenges in initially building a market demand for the product.

  1. South Africa. Fertile ground for solar water heaters

    Energy Technology Data Exchange (ETDEWEB)

    Oirere, Shem

    2012-07-01

    The national solar water heating plan, launched by South Africa's state power utility Eskom, seems to be making good progress with the power generator saying at least 215,000 solar water heater (SWH) systems had been installed by February this year. (orig.)

  2. The large scale in-situ PRACLAY heater and seal tests in URL HADES, Mol, Belgium

    Energy Technology Data Exchange (ETDEWEB)

    Xiangling Li; Guangjing Chen; Verstricht, Jan; Van Marcke, Philippe; Troullinos, Ioannis [ESV EURIDICE, Mol (Belgium)

    2013-07-01

    In Belgium, the URL HADES was constructed in the Boom Clay formation at the Mol site to investigate the feasibility of geological disposal in a clay formation. Since 1995, the URL R and D programme has focused on large scale demonstration tests like the PRACLAY Heater and Seal tests. The main objective of the Heater Test is to demonstrate that the thermal load generated by the heat-emitting waste will not jeopardise the safety functions of the host rock. The primary objective of the Seal Test is to provide suitable hydraulic boundary conditions for the Heater Test. The Seal Test also provides an opportunity to investigate the in-situ behaviour of a bentonite-based EBS. The PRACLAY gallery was constructed in 2007 and the hydraulic seal was installed in 2010. The bentonite is hydrated both naturally and artificially. The swelling, total pressure and pore pressure of the bentonite are continuously measured and analysed by numerical simulations to get a better understanding of this hydration processes. The timing of switching on the heater depends on the progress of the bentonite hydration, as a sufficient seal swelling is needed to fulfill its role. A set of conditions to be met for the heater switch-on and its schedule will be given. (authors)

  3. Electrically tuned super-capacitors

    OpenAIRE

    Chowdhury, Tazima S.; Grebel, Haim

    2015-01-01

    Fast charging and discharging of large amounts of electrical energy make super-capacitors ideal for short-term energy storage [1-5]. In its simplest form, the super-capacitor is an electrolytic capacitor made of an anode and a cathode immersed in an electrolyte. As for an ordinary capacitor, minimizing the charge separation distance and increasing the electrode area increase capacitance. In super-capacitors, charge separation is of nano-meter scale at each of the electrode interface (the Helm...

  4. Example-Based Super-Resolution Fluorescence Microscopy.

    Science.gov (United States)

    Jia, Shu; Han, Boran; Kutz, J Nathan

    2018-04-23

    Capturing biological dynamics with high spatiotemporal resolution demands the advancement in imaging technologies. Super-resolution fluorescence microscopy offers spatial resolution surpassing the diffraction limit to resolve near-molecular-level details. While various strategies have been reported to improve the temporal resolution of super-resolution imaging, all super-resolution techniques are still fundamentally limited by the trade-off associated with the longer image acquisition time that is needed to achieve higher spatial information. Here, we demonstrated an example-based, computational method that aims to obtain super-resolution images using conventional imaging without increasing the imaging time. With a low-resolution image input, the method provides an estimate of its super-resolution image based on an example database that contains super- and low-resolution image pairs of biological structures of interest. The computational imaging of cellular microtubules agrees approximately with the experimental super-resolution STORM results. This new approach may offer potential improvements in temporal resolution for experimental super-resolution fluorescence microscopy and provide a new path for large-data aided biomedical imaging.

  5. Effect of Tube Diameter on Heat Transfer to Vertically Upward Flowing Supercritical CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Deog Ji; Kim, Sin [Cheju National University, Jeju (Korea, Republic of); Bae, Yoon Yeong; Kim, Hwan Yeol; Kim, Hyung Rae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2007-07-01

    Heat transfer characteristics of supercritical carbon dioxide are being investigated experimentally in the test loop named as SPHINX(Supercritical Pressure Heat Transfer Investigation for NeXt generation) at KAERI. The main purpose of the experiment is to provide a reliable heat transfer database for a SCWR (SuperCritical Water-cooled Reactor) by a prudent extension of the carbon dioxide test results to the estimation of a heat transfer for water. The produced data will be used in the thermo-hydraulic design of core and safety analysis for SCWR. The aim of the present paper is to study the influence of a tube diameter on a heat transfer. The experiments were completed for tubes of an inside diameter of 4.4mm and 9.0mm, respectively. The heat transfer characteristics from the two tubes of different diameters were compared and discussed.

  6. Remote visual testing (RVT) for the diagnostic inspection of feedwater heaters

    International Nuclear Information System (INIS)

    Nugent, M.J.; Pellegrino, B.A.

    1991-01-01

    In this paper the benefits and limitations of Non-Destructive Testing (NDT) on feedwater heaters will be briefly reviewed. All Remote Visual Testing (RVT) devices including borescopes, fiberscopes, videoborescopes and Closed Circuit Television (CCTV) cameras will be discussed along with currently accepted formats for documentation. The benefits of a comprehensive in-place inspection involving Remote Visual Testing will be discussed in relationship to its diagnostic capabilities. The results of eight post-service heater inspections will be discussed along with the root cause of failure of seven unique failure mechanisms. These inspections, including FWH access, RVT tool and data analysis, will be detailed

  7. Handbook of Super 8 Production.

    Science.gov (United States)

    Telzer, Ronnie, Ed.

    This handbook is designed for anyone interested in producing super 8 films at any level of complexity and cost. Separate chapters present detailed discussions of the following topics: super 8 production systems and super 8 shooting and editing systems; budgeting; cinematography and sound recording; preparing to edit; editing; mixing sound tracks;…

  8. Characterization of ryanodine receptor and Ca2+-ATPase isoforms in the thermogenic heater organ of blue marlin (Makaira nigricans).

    Science.gov (United States)

    Morrissette, Jeffery M; Franck, Jens P G; Block, Barbara A

    2003-03-01

    A thermogenic organ is found beneath the brain of billfishes (Istiophoridae), swordfish (Xiphiidae) and the butterfly mackerel (Scombridae). The heater organ has been shown to warm the brain and eyes up to 14 degrees C above ambient water temperature. Heater cells are derived from extraocular muscle fibers and express a modified muscle phenotype with an extensive transverse-tubule (T-tubule) network and sarcoplasmic reticulum (SR) enriched in Ca(2+)-ATPase (SERCA) pumps and ryanodine receptors (RyRs). Heater cells have a high mitochondria content but have lost most of the contractile myofilaments. Thermogenesis has been hypothesized to be associated with release and reuptake of Ca(2+). In this study, Ca(2+) fluxes in heater SR vesicles derived from blue marlin (Makaira nigricans) were measured using fura-2 fluorescence. Upon the addition of MgATP, heater SR vesicles rapidly sequestered Ca(2+). Uptake of Ca(2+) was thapsigargin sensitive, and maximum loading ranged between 0.8 micro mol Ca(2+) mg(-1) protein and 1.0 micro mol Ca(2+) mg(-1) protein. Upon the addition of 10 mmol l(-1) caffeine or 350 micro mol l(-1) ryanodine, heater SR vesicles released only a small fraction of the loaded Ca(2+). However, ryanodine could elicit a much larger Ca(2+) release event when the activity of the SERCA pumps was reduced. RNase protection assays revealed that heater tissue expresses an RyR isoform that is also expressed in fish slow-twitch skeletal muscle but is distinct from the RyR expressed in fish fast-twitch skeletal muscle. The heater and slow-twitch muscle RyR isoform has unique physiological properties. In the presence of adenine nucleotides, this RyR remains open even though cytoplasmic Ca(2+) is elevated, a condition that normally closes RyRs. The fast Ca(2+) sequestration by the heater SR, coupled with a physiologically unique RyR, is hypothesized to promote Ca(2+) cycling, ATP turnover and heat generation. A branch of the oculomotor nerve innervates heater organs

  9. The super-resolution debate

    Science.gov (United States)

    Won, Rachel

    2018-05-01

    In the quest for nanoscopy with super-resolution, consensus from the imaging community is that super-resolution is not always needed and that scientists should choose an imaging technique based on their specific application.

  10. Experimental and simulation studies on a single pass, double duct solar air heater

    Energy Technology Data Exchange (ETDEWEB)

    Forson, F.K. [Kwame Nkrumah Univ. of Science and Technology, Dept. of Mechanical Engineering, Kumasi (Ghana); Rajakaruna, H. [De Montfort Univ., School of Engineering and Technology, Leicester (United Kingdom)

    2003-05-01

    A mathematical model of a single pass, double duct solar air heater (SPDDSAH) is described. The model provides a design tool capable of predicting: incident solar radiation, heat transfer coefficients, mean air flow rates, mean air temperature and relative humidity at the exit. Results from the simulation are presented and compared with experimental ones obtained on a full scale air heater and a small scale laboratory one. Reasonable agreement between the predicted and measured values is demonstrated. Predicted results from a parametric study are also presented. It is shown that significant improvement in the SPDDSAH performance can be obtained with an appropriate choice of the collector parameters and the top to bottom channel depth ratio of the two ducts. The air mass flow rate is shown to be the dominant factor in determining the overall efficiency of the heater. (Author)

  11. Tungsten-rhenium composite tube fabricated by CVD for application in 18000C high thermal efficiency fuel processing furnace

    International Nuclear Information System (INIS)

    Svedberg, R.C.; Bowen, W.W.; Buckman, R.W. Jr.

    1980-04-01

    Chemical Vapor Deposit (CVD) rhenium was selected as the muffle material for an 1800 0 C high thermal efficiency fuel processing furnace. The muffle is exposed to high vacuum on the heater/insulation/instrumentation side and to a flowing argon-8 V/0 hydrogen gas mixture at one atmosphere pressure on the load volume side. During operation, the muffle cycles from room temperature to 1800 0 C and back to room temperature once every 24 hours. Operational life is dependent on resistance to thermal fatigue during the high temperature exposure. For a prototypical furnace, the muffle is approximately 13 cm I.D. and 40 cm in length. A small (about one-half size) rhenium closed end tube overcoated with tungsten was used to evaluate the concept. The fabrication and testing of the composite tungsten-rhenium tube and prototypic rhenium muffle is described

  12. Temperature Profiles During Quenches in LHC Superconducting Dipole Magnets Protected by Quench Heaters

    OpenAIRE

    Maroussov, V; Sanfilippo, S; Siemko, A

    1999-01-01

    The efficiency of the magnet protection by quench heaters was studied using a novel method which derives the temperature profile in a superconducting magnet during a quench from measured voltage signals. In several Large Hadron Collider single aperture dipole models, temperature profiles and temperature gradients in the magnet coil have been evaluated in the case of protection by different sets of quench heaters and different powering and protection parameters. The influence of the insulation...

  13. SuperMAG: Present and Future Capabilities

    Science.gov (United States)

    Hsieh, S. W.; Gjerloev, J. W.; Barnes, R. J.

    2009-12-01

    SuperMAG is a global collaboration that provides ground magnetic field perturbations from a long list of stations in the same coordinate system, identical time resolution and with a common baseline removal approach. This unique high quality dataset provides a continuous and nearly global monitoring of the ground magnetic field perturbation. Currently, only archived data are available on the website and hence it targets basic research without any operational capabilities. The existing SuperMAG software can be easily adapted to ingest real-time or near real-time data and provide a now-casting capability. The SuperDARN program has a long history of providing near real-time maps of the northern hemisphere electrostatic potential and as both SuperMAG and SuperDARN share common software it is relatively easy to adapt these maps for global magnetic perturbations. Magnetometer measurements would be assimilated by the SuperMAG server using a variety of techniques, either by downloading data at regular intervals from remote servers or by real-time streaming connections. The existing SuperMAG analysis software would then process these measurements to provide the final calibrated data set using the SuperMAG coordinate system. The existing plotting software would then be used to produce regularly updated global plots. The talk will focus on current SuperMAG capabilities illustrating the potential for now-casting and eventually forecasting.

  14. Effect of Graphene-EC on Ag NW-Based Transparent Film Heaters: Optimizing the Stability and Heat Dispersion of Films.

    Science.gov (United States)

    Cao, Minghui; Wang, Minqiang; Li, Le; Qiu, Hengwei; Yang, Zhi

    2018-01-10

    To optimize the performance of silver nanowire (Ag NW) film heaters and explore the effect of graphene on a film, we introduced poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) and graphene modified with ethyl cellulose (graphene-EC) into the film. The high-quality and well-dispersed graphene-EC was synthesized from graphene obtained by electrochemical exfoliation as a precursor. The transparent film heaters were fabricated via spin-coating. With the assistance of graphene-EC, the stability of film heaters was greatly improved, and the conductivity was optimized by adjusting the Ag NW concentration. The film heaters exhibited a fast and accurate response to voltage, accompanied by excellent environmental endurance, and there was no significant performance degradation after being operated for a long period of time. These results indicate that graphene-EC plays a crucial role in optimizing film stability and heat dispersion in the film. The Ag NW/PEDOT:PSS-doped graphene-EC film heaters show a great potential in low-cost indium-tin-oxide-free flexible transparent electrodes, heating systems, and transparent film heaters.

  15. Super-quasi-conformal transformation and Schiffer variation on super-Riemann surface

    International Nuclear Information System (INIS)

    Takahasi, Wataru

    1990-01-01

    A set of equations which characterizes the super-Teichmueller deformations is proposed. It is a supersymmetric extension of the Beltrami equation. Relations between the set of equations and the Schiffer variations with the KN bases are discussed. This application of the KN bases shows the powerfulness of the KN theory in the study of super-Riemann surfaces. (author)

  16. Manual for investigation and correction of feedwater heater failures

    International Nuclear Information System (INIS)

    Bell, R.J.; Diaz-Tous, I.A.; Bartz, J.A.

    1993-01-01

    The Electric Power Research Institute (EPRI) has sponsored the development of a recently published manual which is designed to assist utility personnel in identifying and correcting closed feedwater heater problems. The main portion of the manual describes common failure modes, probable means of identifying root causes and appropriate corrective actions. These include materials selection, fabrication practices, design, normal/abnormal operation and maintenance. The manual appendices include various data, intended to aid those involved in monitoring and condition assessment of feedwater heaters. This paper contains a detailed overview of the manual content and suggested means for its efficient use by utility engineers and operations and maintenance personnel who are charged with the responsibilities of performing investigations to identify the root cause(s) of closed feedwater problems/failures and to provide appropriate corrective actions. 4 refs., 3 figs., 2 tabs

  17. Droplet Image Super Resolution Based on Sparse Representation and Kernel Regression

    Science.gov (United States)

    Zou, Zhenzhen; Luo, Xinghong; Yu, Qiang

    2018-05-01

    Microgravity and containerless conditions, which are produced via electrostatic levitation combined with a drop tube, are important when studying the intrinsic properties of new metastable materials. Generally, temperature and image sensors can be used to measure the changes of sample temperature, morphology and volume. Then, the specific heat, surface tension, viscosity changes and sample density can be obtained. Considering that the falling speed of the material sample droplet is approximately 31.3 m/s when it reaches the bottom of a 50-meter-high drop tube, a high-speed camera with a collection rate of up to 106 frames/s is required to image the falling droplet. However, at the high-speed mode, very few pixels, approximately 48-120, will be obtained in each exposure time, which results in low image quality. Super-resolution image reconstruction is an algorithm that provides finer details than the sampling grid of a given imaging device by increasing the number of pixels per unit area in the image. In this work, we demonstrate the application of single image-resolution reconstruction in the microgravity and electrostatic levitation for the first time. Here, using the image super-resolution method based on sparse representation, a low-resolution droplet image can be reconstructed. Employed Yang's related dictionary model, high- and low-resolution image patches were combined with dictionary training, and high- and low-resolution-related dictionaries were obtained. The online double-sparse dictionary training algorithm was used in the study of related dictionaries and overcome the shortcomings of the traditional training algorithm with small image patch. During the stage of image reconstruction, the algorithm of kernel regression is added, which effectively overcomes the shortcomings of the Yang image's edge blurs.

  18. Forecast of thermal-hydrological conditions and air injection test results of the single heater test at Yucca Mountain

    International Nuclear Information System (INIS)

    Birkholzer, J.T.; Tsang, Y.W.

    1996-12-01

    The heater in the Single Heater Test (SHT) in alcove 5 of the Exploratory Studies Facility (ESF) was turned on August 26, 1996. A large number of sensors are installed in the various instrumented boreholes to monitor the coupled thermal-hydrological-mechanical-chemical responses of the rock mass to the heat generated in the single heater. In this report the authors present the results of the modeling of both the heating and cooling phases of the Single Heater Test (SHT), with focus on the thermal-hydrological aspect of the coupled processes. Also in this report, the authors present simulations of air injection tests will be performed at different stages of the heating and cooling phase of the SHT

  19. Atmospheres in a Test Tube

    Science.gov (United States)

    Claudi, R.; Erculiani, M. S.; Giro, E.; D'Alessandro, M.; Galletta, G.

    2013-09-01

    The "Atmosphere in a Test Tube" project is a laboratory experiment that will be able to reproduce condition of extreme environments by means of a simulator. These conditions span from those existing inside some parts of the human body to combinations of temperatures, pressures, irradiation and atmospheric gases present on other planets. In this latter case the experiments to be performed will be useful as preliminary tests for both simulation of atmosphere of exoplanets and Solar System planets and Astrobiology experiments that should be performed by planetary landers or by instruments to be launched in the next years. In particular at INAF Astronomical Observatory of Padova Laboratory we are approaching the characterization of extrasolar planet atmospheres taking advantage by innovative laboratory experiments with a particular focus on low mass Neptunes and Super earths and low mass M dwarfs primaries.

  20. Super families

    International Nuclear Information System (INIS)

    Amato, N.; Maldonado, R.H.C.

    1989-01-01

    The study on phenomena in the super high energy region, Σ E j > 1000 TeV revealed events that present a big dark spot in central region with high concentration of energy and particles, called halo. Six super families with halo were analysed by Brazil-Japan Cooperation of Cosmic Rays. For each family the lateral distribution of energy density was constructed and R c Σ E (R c ) was estimated. For studying primary composition, the energy correlation with particles released separately in hadrons and gamma rays was analysed. (M.C.K.)

  1. Solar water heaters in China: A new day dawning

    NARCIS (Netherlands)

    Han, Jingyi; Mol, A.P.J.; Lu, Y.

    2010-01-01

    Solar thermal utilization, especially the application of solar water heater technology, has developed rapidly in China in recent decades. Manufacturing and marketing developments have been especially strong in provinces such as Zhejiang, Shandong and Jiangsu. This paper takes Zhejiang, a relatively

  2. Studi Kinerja Solar Water Heater Dengan Aliran Zig-zag Beralur Balok

    Directory of Open Access Journals (Sweden)

    M. Rizki Ikhsan

    2017-05-01

    Full Text Available Solar energy can be used for water heating by using solar water heater application. Therefore, its still needs some modification due to its low efficiency. This modification can be done by replacing the conventional plate of solar collectors into a double plate with a zig-zag pattern. The results shown that along with the decreasing of water flow rates could significantly increase the useful energy (Qu. Initial temperature of water inlet could affect the generated maximum temperature. The highest mean efficiencies of double plate solar water heater with a zig-zag grooved beams pattern of 49.11% was gained in the flow rate of 700 mL / min.

  3. 75 FR 11433 - Airworthiness Directives; Hawker Beechcraft Corporation Model G58 Airplanes

    Science.gov (United States)

    2010-03-11

    ... certain Hawker Beechcraft Corporation Model G58 airplanes. This AD requires inspecting the installation of... brake reservoir tubing and the heater fuel pump wiring for minimum clearance and installing acceptable... correct inadequate clearance of the brake reservoir tubing and the heater fuel pump wiring, which could...

  4. Extending the upper temperature range of gas chromatography with all-silicon microchip columns using a heater/clamp assembly.

    Science.gov (United States)

    Ghosh, Abhijit; Johnson, Jacob E; Nuss, Johnathan G; Stark, Brittany A; Hawkins, Aaron R; Tolley, Luke T; Iverson, Brian D; Tolley, H Dennis; Lee, Milton L

    2017-09-29

    Miniaturization of gas chromatography (GC) instrumentation is of interest because it addresses current and future issues relating to compactness, portability and field application. While incremental advancements continue to be reported in GC with columns fabricated in microchips (referred to in this paper as "microchip columns"), the current performance is far from acceptable. This lower performance compared to conventional GC is due to factors such as pooling of the stationary phase in corners of non-cylindrical channels, adsorption of sensitive compounds on incompletely deactivated surfaces, shorter column lengths and less than optimum interfacing to injector and detector. In this work, a GC system utilizing microchip columns was developed that solves the latter challenge, i.e., microchip interfacing to injector and detector. A microchip compression clamp was constructed to heat the microchip (i.e., primary heater), and seal the injector and detector fused silica interface tubing to the inlet and outlet ports of the microchip channels with minimum extra-column dead volume. This clamp allowed occasional operation up to 375°C and routine operation up to 300°C. The compression clamp was constructed of a low expansion alloy, Kovar™, to minimize leaking due to thermal expansion mismatch at the interface during repeated thermal cycling, and it was tested over several months for more than one hundred injections without forming leaks. A 5.9m long microcolumn with rectangular cross section of 158μm×80μm, which approximately matches a 100μm i.d. cylindrical fused silica column, was fabricated in a silicon wafer using deep reactive ion etching (DRIE) and high temperature fusion bonding; finally, the channel was coated statically with a 1% vinyl, 5% phenyl, 94% methylpolysiloxane stationary phase. High temperature separations of C10-C40 n-alkanes and a commercial diesel sample were demonstrated using the system under both temperature programmed GC (TPGC) and thermal

  5. 40 CFR 65.149 - Boilers and process heaters.

    Science.gov (United States)

    2010-07-01

    ... stream is not introduced as or with the primary fuel, a temperature monitoring device in the fire box...-throughput transfer racks, as applicable, shall meet the requirements of this section. (2) The vent stream... thermal units per hour) or greater. (ii) A boiler or process heater into which the vent stream is...

  6. Design and construction of the X-2 two-stage free piston driven expansion tube

    Science.gov (United States)

    Doolan, Con

    1995-01-01

    This report outlines the design and construction of the X-2 two-stage free piston driven expansion tube. The project has completed its construction phase and the facility has been installed in the new impulsive research laboratory where commissioning is about to take place. The X-2 uses a unique, two-stage driver design which allows a more compact and lower overall cost free piston compressor. The new facility has been constructed in order to examine the performance envelope of the two-stage driver and how well it couple to sub-orbital and super-orbital expansion tubes. Data obtained from these experiments will be used for the design of a much larger facility, X-3, utilizing the same free piston driver concept.

  7. Preparation of molecular tube from molecular necklace; Bunshi nekkuresu kara bunshi chubu no gosei

    Energy Technology Data Exchange (ETDEWEB)

    Harada, A [Osaka Univ., Osaka (Japan). Faculty of Science

    1995-08-01

    The peculiar functions of the spaces with various sizes in the nature are revealed. Especially, in the ecosystem, the micro-spaces formed by the macromolecules such as enzyme, antibody, DNA and so on are the sources of the working of lives. In this paper, the development of the synthesis of polymers with necklace-shape starting with the discovery of the cyclodextrin forming polymers and complexes is introduced. It is shown by the obtaining of tube-shaped polymers with the polymer chain as the mold that the formation of super molecule is applicable to varied sorts of synthesis. Further, said molecular tube, which is different from carbon nanotube, is water soluble since it is from sugar and is possible to be conducted into an organism. Consequently, multifarious uses of said tube are considered such as the capsules of diverse pharmaceuticals or as the materials for the selective permeation in the separation of various ions and molecules. 7 refs., 3 figs.

  8. EFFECT OF DISCRETE HEATER AT THE VERTICAL WALL OF THE CAVITY OVER THE HEAT TRANSFER AND ENTROPY GENERATION USING LBM

    Directory of Open Access Journals (Sweden)

    Mousa Farhadi

    2011-01-01

    Full Text Available In this paper Lattice Boltzmann Method (LBM was employed for investigation the effect of the heater location on flow pattern, heat transfer and entropy generation in a cavity. A 2D thermal lattice Boltzmann model with 9 velocities, D2Q9, is used to solve the thermal flow problem. The simulations were performed for Rayleigh numbers from 103 to 106 at Pr = 0.71. The study was carried out for heater length of 0.4 side wall length which is located at the right side wall. Results are presented in the form of streamlines, temperature contours, Nusselt number and entropy generation curves. Results show that the location of heater has a great effect on the flow pattern and temperature fields in the enclosure and subsequently on entropy generation. The dimensionless entropy generation decreases at high Rayleigh number for all heater positions. The ratio of averaged Nusselt number and dimensionless entropy generation for heater located on vertical and horizontal walls was calculated. Results show that higher heat transfer was observed from the cold walls when the heater located on vertical wall. On the other hand, heat transfer increases from the heater surface when it located on the horizontal wall.

  9. Gastrostomy Tube (G-Tube)

    Science.gov (United States)

    ... any of these problems: a dislodged tube a blocked or clogged tube any signs of infection (including redness, swelling, or warmth at the tube site; discharge that's yellow, green, or foul-smelling; fever) excessive bleeding or drainage from the tube site severe abdominal pain lasting ...

  10. SuperAGILE Services at ASDC

    International Nuclear Information System (INIS)

    Preger, B.; Verrecchia, F.; Pittori, C.; Antonelli, L. A.; Giommi, P.; Lazzarotto, F.; Evangelista, Y.

    2008-01-01

    The Italian Space Agency Science Data Center (ASDC) is a facility with several responsibilities including support to all the ASI scientific missions as for management and archival of the data, acting as the interface between ASI and the scientific community and providing on-line access to the data hosted. In this poster we describe the services that ASDC provides for SuperAGILE, in particular the ASDC public web pages devoted to the dissemination of SuperAGILE scientific results. SuperAGILE is the X-Ray imager onboard the AGILE mission, and provides the scientific community with orbit-by-orbit information on the observed sources. Crucial source information including position and flux in chosen energy bands will be reported in the SuperAGILE public web page at ASDC. Given their particular interest, another web page will be dedicated entirely to GRBs and other transients, where new event alerts will be notified and where users will find all the available informations on the GRBs detected by SuperAGILE

  11. COULD A MASONRY HEATER BE THE MAIN HEAT SOURCE IN A TIGHT HOUSE?

    OpenAIRE

    Kasiliauskas, Jonas

    2017-01-01

    Masonry heaters are the oldest heating method for one family houses. Earlier houses had high leakage air-flow rates because thermal efficient insulation material was combustible by that time /20/. The masonry heater perfectly fits for air leaky houses. Nowadays, houses are more insulated and have an air tight envelope. People don’t want to spend time for supervising heating systems, that’s the reason they choose a heating system with automatism. The main aim of my thesis is to evaluate if...

  12. The Super-Kamiokande detector

    International Nuclear Information System (INIS)

    Fukuda, S.; Fukuda, Y.; Hayakawa, T.; Ichihara, E.; Ishitsuka, M.; Itow, Y.; Kajita, T.; Kameda, J.; Kaneyuki, K.; Kasuga, S.; Kobayashi, K.; Kobayashi, Y.; Koshio, Y.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakayama, S.; Namba, T.; Obayashi, Y.; Okada, A.; Oketa, M.; Okumura, K.; Oyabu, T.; Sakurai, N.; Shiozawa, M.; Suzuki, Y.; Takeuchi, Y.; Toshito, T.; Totsuka, Y.; Yamada, S.; Desai, S.; Earl, M.; Hong, J.T.; Kearns, E.; Masuzawa, M.; Messier, M.D.; Stone, J.L.; Sulak, L.R.; Walter, C.W.; Wang, W.; Scholberg, K.; Barszczak, T.; Casper, D.; Liu, D.W.; Gajewski, W.; Halverson, P.G.; Hsu, J.; Kropp, W.R.; Mine, S.; Price, L.R.; Reines, F.; Smy, M.; Sobel, H.W.; Vagins, M.R.; Ganezer, K.S.; Keig, W.E.; Ellsworth, R.W.; Tasaka, S.; Flanagan, J.W.; Kibayashi, A.; Learned, J.G.; Matsuno, S.; Stenger, V.J.; Hayato, Y.; Ishii, T.; Ichikawa, A.; Kanzaki, J.; Kobayashi, T.; Maruyama, T.; Nakamura, K.; Oyama, Y.; Sakai, A.; Sakuda, M.; Sasaki, O.; Echigo, S.; Iwashita, T.; Kohama, M.; Suzuki, A.T.; Hasegawa, M.; Inagaki, T.; Kato, I.; Maesaka, H.; Nakaya, T.; Nishikawa, K.; Yamamoto, S.; Haines, T.J.; Kim, B.K.; Sanford, R.; Svoboda, R.; Blaufuss, E.; Chen, M.L.; Conner, Z.; Goodman, J.A.; Guillian, E.; Sullivan, G.W.; Turcan, D.; Habig, A.; Ackerman, M.; Goebel, F.; Hill, J.; Jung, C.K.; Kato, T.; Kerr, D.; Malek, M.; Martens, K.; Mauger, C.; McGrew, C.; Sharkey, E.; Viren, B.; Yanagisawa, C.; Doki, W.; Inaba, S.; Ito, K.; Kirisawa, M.; Kitaguchi, M.; Mitsuda, C.; Miyano, K.; Saji, C.; Takahata, M.; Takahashi, M.; Higuchi, K.; Kajiyama, Y.; Kusano, A.; Nagashima, Y.; Nitta, K.; Takita, M.; Yamaguchi, T.; Yoshida, M.; Kim, H.I.; Kim, S.B.; Yoo, J.; Okazawa, H.; Etoh, M.; Fujita, K.; Gando, Y.; Hasegawa, A.; Hasegawa, T.; Hatakeyama, S.; Inoue, K.; Ishihara, K.; Iwamoto, T.; Koga, M.; Nishiyama, I.; Ogawa, H.; Shirai, J.; Suzuki, A.; Takayama, T.; Tsushima, F.; Koshiba, M.; Ichikawa, Y.; Hashimoto, T.; Hatakeyama, Y.; Koike, M.; Horiuchi, T.; Nemoto, M.; Nishijima, K.; Takeda, H.; Fujiyasu, H.; Futagami, T.; Ishino, H.; Kanaya, Y.; Morii, M.; Nishihama, H.; Nishimura, H.; Suzuki, T.; Watanabe, Y.; Kielczewska, D.; Golebiewska, U.; Berns, H.G.; Boyd, S.B.; Doyle, R.A.; George, J.S.; Stachyra, A.L.; Wai, L.L.; Wilkes, R.J.; Young, K.K.; Kobayashi, H.

    2003-01-01

    Super-Kamiokande is the world's largest water Cherenkov detector, with net mass 50,000 tons. During the period April, 1996 to July, 2001, Super-Kamiokande I collected 1678 live-days of data, observing neutrinos from the Sun, Earth's atmosphere, and the K2K long-baseline neutrino beam with high efficiency. These data provided crucial information for our current understanding of neutrino oscillations, as well as setting stringent limits on nucleon decay. In this paper, we describe the detector in detail, including its site, configuration, data acquisition equipment, online and offline software, and calibration systems which were used during Super-Kamiokande I

  13. Generation of live offspring from vitrified embryos with synthetic polymers SuperCool X-1000 and SuperCool Z-1000.

    Science.gov (United States)

    Marco-Jimenez, F; Jimenez-Trigos, E; Lavara, R; Vicente, J S

    2014-01-01

    Ice growth and recrystallisation are considered important factors in determining vitrification outcomes. Synthetic polymers inhibit ice formation during cooling or warming of the vitrification process. The aim of this study was to assess the effect of adding commercially available synthetic polymers SuperCool X-1000 and SuperCool Z-1000 to vitrification media on in vivo development competence of rabbit embryos. Four hundred and thirty morphologically normal embryos recovered at 72 h of gestation were used. The vitrification media contained 20% dimethyl sulphoxide and 20% ethylene glycol, either alone or in combination with 1% of SuperCool X-1000 and 1% SuperCool. Our results show that embryos can be successfully vitrified using SuperCool X-1000 and SuperCool Z-1000 and when embryos are transferred, live offspring can be successfully produced. In conclusion, our results demonstrated that we succeeded for the first time in obtaining live offspring after vitrification of embryos using SuperCool X-1000 and SuperCool Z-1000 polymers.

  14. Further results on super graceful labeling of graphs

    Directory of Open Access Journals (Sweden)

    Gee-Choon Lau

    2016-08-01

    Full Text Available Let G=(V(G,E(G be a simple, finite and undirected graph of order p and size q. A bijection f:V(G∪E(G→{k,k+1,k+2,…,k+p+q−1} such that f(uv=|f(u−f(v| for every edge uv∈E(G is said to be a k-super graceful labeling of G. We say G is k-super graceful if it admits a k-super graceful labeling. For k=1, the function f is called a super graceful labeling and a graph is super graceful if it admits a super graceful labeling. In this paper, we study the super gracefulness of complete graph, the disjoint union of certain star graphs, the complete tripartite graphs K(1,1,n, and certain families of trees. We also present four methods of constructing new super graceful graphs. In particular, all trees of order at most 7 are super graceful. We conjecture that all trees are super graceful.

  15. The design of electrical heater pins to simulate transient dryout and post-dryout of water reactor fuel

    International Nuclear Information System (INIS)

    Burgess, M.H.; Butcher, A.A.; Sidoli, J.E.A.

    1978-11-01

    A theoretical assessment of indirect and direct filled heater simulations of nuclear reactor fuel pins is described. For reasons of fast temperature response, a direct unfilled heater, with thermocouples buried in the walls, is recommended for studies of Loss-of-Coolant Accidents leading to dryout, post-dryout and rewetting. A design of heater pins, for use in SGHWR or PWR experiments, and compatible with existing 9MW power supplies, is described. Experiments to confirm collapse pressure calculations at 1000 0 C and thermocouple response times are also reported. (author)

  16. Measure Guideline: Heat Pump Water Heaters in New and Existing Homes

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, C.; Puttagunta, S.; Owens, D.

    2012-02-01

    This Building America Measure Guideline is intended for builders, contractors, homeowners, and policy-makers. This document is intended to explore the issues surrounding heat pump water heaters (HPWHs) to ensure that homeowners and contractors have the tools needed to appropriately and efficiently install HPWHs. Heat pump water heaters (HPWHs) promise to significantly reduce energy consumption for domestic hot water (DHW) over standard electric resistance water heaters (ERWHs). While ERWHs perform with energy factors (EFs) around 0.9, new HPWHs boast EFs upwards of 2.0. High energy factors in HPWHs are achieved by combining a vapor compression system, which extracts heat from the surrounding air at high efficiencies, with electric resistance element(s), which are better suited to meet large hot water demands. Swapping ERWHs with HPWHs could result in roughly 50% reduction in water heating energy consumption for 35.6% of all U.S. households. This Building America Measure Guideline is intended for builders, contractors, homeowners, and policy-makers. While HPWHs promise to significantly reduce energy use for DHW, proper installation, selection, and maintenance of HPWHs is required to ensure high operating efficiency and reliability. This document is intended to explore the issues surrounding HPWHs to ensure that homeowners and contractors have the tools needed to appropriately and efficiently install HPWHs. Section 1 of this guideline provides a brief description of HPWHs and their operation. Section 2 highlights the cost and energy savings of HPWHs as well as the variables that affect HPWH performance, reliability, and efficiency. Section 3 gives guidelines for proper installation and maintenance of HPWHs, selection criteria for locating HPWHs, and highlights of important differences between ERWH and HPWH installations. Throughout this document, CARB has included results from the evaluation of 14 heat pump water heaters (including three recently released HPWH

  17. Actual performance and economic feasibility of residential solar water heaters

    International Nuclear Information System (INIS)

    Anhalt, J.

    1987-01-01

    Four residential solar water heaters currently available on the Brazilian market have been evaluated to their possible use for substituting the common electric shower head. The tests were carried out with the solar systems mounted side by side on an artificial roof. The hot water demand was simulated following a consumer profile which represents a Brazilian family with an income of seven minimum salaries. The data, which was collected automatically and presented in the form of graphs and tables, shows that an optimized solar water heater could save as much as 65% of the energy demand for residential water heating in the state of Sao Paulo. An economical study concludes that the installation and maintenance of such a solar system is feasible if long term financing is available. (author)

  18. Modeling the low-light response of photomultiplier tubes

    Science.gov (United States)

    Maxwell, Patrick; Niculescu, Ioana

    2017-09-01

    A number of crucial experiments exploring the intricate tomography of protons and neutrons will be carried out in Hall A at Jefferson Lab using the SuperBigBite Spectrometer (SBS), a large acceptance magnetic spectrometer sporting 0.5% momentum and 0.5 mr angular resolution. As part of the standard SBS detector package the Gas Ring Imaging Cherenkov (GRINCH) detector will help identify particles produced in the experiments. To determine which photomultiplier (PMT) tubes would be used in GRINCH, more than 900 29 mm 9125B PMTs were tested. Two models, were used to fit test data. For the parameters relevant to this study, results from both models were found to be equivalent, and will be discussed here.

  19. The construction of life prediction models for the design of Stirling engine heater components

    Science.gov (United States)

    Petrovich, A.; Bright, A.; Cronin, M.; Arnold, S.

    1983-01-01

    The service life of Stirling-engine heater structures of Fe-based high-temperature alloys is predicted using a numerical model based on a linear-damage approach and published test data (engine test data for a Co-based alloy and tensile-test results for both the Co-based and the Fe-based alloys). The operating principle of the automotive Stirling engine is reviewed; the economic and technical factors affecting the choice of heater material are surveyed; the test results are summarized in tables and graphs; the engine environment and automotive duty cycle are characterized; and the modeling procedure is explained. It is found that the statistical scatter of the fatigue properties of the heater components needs to be reduced (by decreasing the porosity of the cast material or employing wrought material in fatigue-prone locations) before the accuracy of life predictions can be improved.

  20. Pengaruh Pelat Penyerap Ganda Model Gelombang dengan Penambahan Reflector terhadap Kinerja Solar Water Heater Sederhana

    OpenAIRE

    Ismail, Nova Risdiyanto

    2011-01-01

    Telah banyak dilakukan USAha meningkatkan kinerja solar water heater diantaranya modifikasi pelat penyerap tunggal menjadi ganda, modifikasi aliran untuk meningkatkan penyerapan panas, modifikasi material dan pelat penyerap ganda model gelombang. Penelitian ini bertujuan untuk mengetahui pengaruh pelat penyerap ganda model gelombang dengan penambahan reflector terhadap kinerja solar water heater sederhana. Dalam penelitian ini dilakukan secara eksperimen, untuk embandingkan kinerja pelat pen...

  1. Benchmark Calibration Tests Completed for Stirling Convertor Heater Head Life Assessment

    Science.gov (United States)

    Krause, David L.; Halford, Gary R.; Bowman, Randy R.

    2005-01-01

    A major phase of benchmark testing has been completed at the NASA Glenn Research Center (http://www.nasa.gov/glenn/), where a critical component of the Stirling Radioisotope Generator (SRG) is undergoing extensive experimentation to aid the development of an analytical life-prediction methodology. Two special-purpose test rigs subjected SRG heater-head pressure-vessel test articles to accelerated creep conditions, using the standard design temperatures to stay within the wall material s operating creep-response regime, but increasing wall stresses up to 7 times over the design point. This resulted in well-controlled "ballooning" of the heater-head hot end. The test plan was developed to provide critical input to analytical parameters in a reasonable period of time.

  2. A Study on the Development of Nonglass Solar Vacuum Tube Collector

    International Nuclear Information System (INIS)

    Oh, Seung Jin

    2008-02-01

    Nature has been providing us energy from the beginning of the world. However human has hardly used it wisely. Solar energy is a kind of renewable energy from the nature. This study has been carried out to study the use of solar energy as it is harnessed in the form of thermal energy. Solar energy is one of the most promising energy resources such as hydrogen, biomass, wind and geothermal energy, because it is clean and inexhaustible. Space heating in buildings can be provided from solar energy by systems that are similar in many respects to water heater systems. By tapping into solar energy, we can not only solve the problem of energy shortage, but also can protect the environment and benefit the human beings. There are currently two types of evacuated tube; a single glass tube and a double glass tube. The former consists of a single glass tube which contains a flat or curved aluminium plate attached to a copper heat pipe or water flow pipe. The latter consists of rows of parallel transparent glass tubes, each of which contains an absorber tube. Evacuated tube collectors introduced above, however, pose some problems as they break rather easily under mechanical stresses. This paper introduces some preliminary results in design and fabrication of a non-glass solar vacuum tube collector in which the thermosyphon(heat pipe)made of copper is used as a heat transfer device. A series of tests have been performed to assess the ability of a non-glass solar vacuum tube collector. The series of experiments are as follows: 1)Vacuum level inside a vacuum tube. 2)Effects of the air remaining inside a vacuum tube on the temperature on the absorber plate. 3)Comparison of a non-glass vacuum solar collector with a single glass evacuated tube(SEIDO 5). Different vacuum levels inside non-glass vacuum tubes were applied to check any leakage or unexpected physical or chemical developments with time. The vacuum level changed from 10 -2 torr to 5torr in 5 days due to air infiltration from

  3. Super cool X-1000 and Super cool Z-1000, two ice blockers, and their effect on vitrification/warming of mouse embryos.

    Science.gov (United States)

    Badrzadeh, H; Najmabadi, S; Paymani, R; Macaso, T; Azadbadi, Z; Ahmady, A

    2010-07-01

    To evaluate the survival and blastocyst formation rates of mouse embryos after vitrification/thaw process with different ice blocker media. We used X-1000 and Z-1000 separately and mixed using V-Kim, a closed vitrification system. Mouse embryos were vitrified using ethylene glycol based medium supplemented with Super cool X-1000 and/or Super cool Z-1000. Survival rates for the control, Super cool X-1000, Super cool Z-1000, and Super cool X-1000/Z-1000 groups were 74%, 72%, 68%, and 85% respectively, with no significant difference among experimental and control groups; however, a significantly higher survival rate was noticed in the Super cool X-1000/Z-1000 group when compared with the Super cool Z-1000 group. Blastocyst formation rates for the control, Super cool X-1000, Super cool Z-1000, and Super cool X-1000/Z-1000 groups were 71%, 66%, 65%, and 72% respectively. There was no significant difference in this rate among control and experimental groups. In a closed vitrification system, addition of ice blocker Super cool X-1000 to the vitrification solution containing Super cool Z-1000 may improve the embryo survival rate. We recommend combined ice blocker usage to optimize the vitrification outcome. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  4. Superstring field theories on super-flag manifolds: superdiff S1/S1 and superdiff S1/super S1

    International Nuclear Information System (INIS)

    Zhao Zhiyong; Wu, Ke; Saito, Takesi

    1987-01-01

    We generalize the geometric approach of Bowick and Rajeev [BR] to superstring field theories. The anomaly is identified with nonvanishing of the Ricci curvature of the super-flag manifold. We explicitly calculate the curvatures of superdiff S 1 /S 1 and superdiff S 1 /superS 1 using super-Toeplitz operator techniques. No regularization is needed in this formalism. The critical dimension D=10 is rediscovered as a result of vanishing curvature of the product bundle over the super-flag manifold. (orig.)

  5. Improvement in transdermal drug delivery performance by graphite oxide/temperature-responsive hydrogel composites with micro heater

    International Nuclear Information System (INIS)

    Yun, Jumi; Lee, Dae Hoon; Im, Ji Sun; Kim, Hyung-Il

    2012-01-01

    Transdermal drug delivery system (TDDS) was prepared with temperature-responsive hydrogel. The graphite was oxidized and incorporated into hydrogel matrix to improve the thermal response of hydrogel. The micro heater was fabricated to control the temperature precisely by adopting a joule heating method. The drug in hydrogel was delivered through a hairless mouse skin by controlling temperature. The efficiency of drug delivery was improved obviously by incorporation of graphite oxide due to the excellent thermal conductivity and the increased interfacial affinity between graphite oxide and hydrogel matrix. The fabricated micro heater was effective in controlling the temperature over lower critical solution temperature of hydrogel precisely with a small voltage less than 1 V. The cell viability test on graphite oxide composite hydrogel showed enough safety for using as a transdermal drug delivery patch. The performance of TDDS could be improved noticeably based on temperature-responsive hydrogel, thermally conductive graphite oxide, and efficient micro heater. - Graphical abstract: The high-performance transdermal drug delivery system could be prepared by combining temperature-responsive hydrogel, thermally conductive graphite oxide with improved interfacial affinity, and efficient micro heater fabricated by a joule heating method. Highlights: ► High performance of transdermal drug delivery system with an easy control of voltage. ► Improved thermal response of hydrogel by graphite oxide incorporation. ► Efficient micro heater fabricated by a joule heating method.

  6. Effect of Fuel Wobbe Number on Pollutant Emissions from Advanced Technology Residential Water Heaters: Results of Controlled Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, Vi H.; Singer, Brett C.

    2014-03-01

    The research summarized in this report is part of a larger effort to evaluate the potential air quality impacts of using liquefied natural gas in California. A difference of potential importance between many liquefied natural gas blends and the natural gas blends that have been distributed in California in recent years is the higher Wobbe number of liquefied natural gas. Wobbe number is a measure of the energy delivery rate for appliances that use orifice- or pressure-based fuel metering. The effect of Wobbe number on pollutant emissions from residential water heaters was evaluated in controlled experiments. Experiments were conducted on eight storage water heaters, including five with “ultra low-NO{sub X}” burners, and four on-demand (tankless) water heaters, all of which featured ultra low-NO{sub X} burners. Pollutant emissions were quantified as air-free concentrations in the appliance flue and fuel-based emission factors in units of nanogram of pollutant emitter per joule of fuel energy consumed. Emissions were measured for carbon monoxide (CO), nitrogen oxides (NO{sub X}), nitrogen oxide (NO), formaldehyde and acetaldehyde as the water heaters were operated through defined operating cycles using fuels with varying Wobbe number. The reference fuel was Northern California line gas with Wobbe number ranging from 1344 to 1365. Test fuels had Wobbe numbers of 1360, 1390 and 1420. The most prominent finding was an increase in NO{sub X} emissions with increasing Wobbe number: all five of the ultra low-NO{sub X} storage water heaters and two of the four ultra low-NO{sub X} on-demand water heaters had statistically discernible (p<0.10) increases in NO{sub X} with fuel Wobbe number. The largest percentage increases occurred for the ultra low-NO{sub X} water heaters. There was a discernible change in CO emissions with Wobbe number for all four of the on-demand devices tested. The on-demand water heater with the highest CO emissions also had the largest CO increase

  7. Economics of residential gas furnaces and water heaters in United States new construction market

    OpenAIRE

    Lekov, Alex B.

    2009-01-01

    New single-family home construction represents a significant and important market for the introduction of energy-efficient gas-fired space heating and water-heating equipment. In the new construction market, the choice of furnace and water-heater type is primarily driven by first cost considerations and the availability of power vent and condensing water heaters. Few analysis have been performed to assess the economic impacts of the different combinations of space and water-heating equipment....

  8. Improvement in reliability and accuracy of heater tube eddy current testing by integration with an appropriate destructive test

    International Nuclear Information System (INIS)

    Giovanelli, F.; Gabiccini, S.; Tarli, R.; Motta, P.

    1988-01-01

    A specially developed destructive test is described showing how the reliability and accuracy of a non-destructive technique can be improved if it is suitably accompanied by an appropriate destructive test. The experiment was carried out on samples of AISI 304L tubes from the low-pressure (LP) preheaters of a BWR 900 MW nuclear plant. (author)

  9. SuperB Progress Report for Physics

    Energy Technology Data Exchange (ETDEWEB)

    O' Leary, B.; /Aachen, Tech. Hochsch.; Matias, J.; Ramon, M.; /Barcelona, IFAE; Pous, E.; /Barcelona U.; De Fazio, F.; Palano, A.; /INFN, Bari; Eigen, G.; /Bergen U.; Asgeirsson, D.; /British Columbia U.; Cheng, C.H.; Chivukula, A.; Echenard, B.; Hitlin, D.G.; Porter, F.; Rakitin, A.; /Caltech; Heinemeyer, S.; /Cantabria Inst. of Phys.; McElrath, B.; /CERN; Andreassen, R.; Meadows, B.; Sokoloff, M.; /Cincinnati U.; Blanke, M.; /Cornell U., Phys. Dept.; Lesiak, T.; /Cracow, INP /DESY /Zurich, ETH /INFN, Ferrara /Frascati /INFN, Genoa /Glasgow U. /Indiana U. /Mainz U., Inst. Phys. /Karlsruhe, Inst. Technol. /KEK, Tsukuba /LBL, Berkeley /UC, Berkeley /Lisbon, IST /Ljubljana U. /Madrid, Autonoma U. /Maryland U. /MIT /INFN, Milan /McGill U. /Munich, Tech. U. /Notre Dame U. /PNL, Richland /INFN, Padua /Paris U., VI-VII /Orsay, LAL /Orsay, LPT /INFN, Pavia /INFN, Perugia /INFN, Pisa /Queen Mary, U. of London /Regensburg U. /Republica U., Montevideo /Frascati /INFN, Rome /INFN, Rome /INFN, Rome /Rutherford /Sassari U. /Siegen U. /SLAC /Southern Methodist U. /Tel Aviv U. /Tohoku U. /INFN, Turin /INFN, Trieste /Uppsala U. /Valencia U., IFIC /Victoria U. /Wayne State U. /Wisconsin U., Madison

    2012-02-14

    SuperB is a high luminosity e{sup +}e{sup -} collider that will be able to indirectly probe new physics at energy scales far beyond the reach of any man made accelerator planned or in existence. Just as detailed understanding of the Standard Model of particle physics was developed from stringent constraints imposed by flavour changing processes between quarks, the detailed structure of any new physics is severely constrained by flavour processes. In order to elucidate this structure it is necessary to perform a number of complementary studies of a set of golden channels. With these measurements in hand, the pattern of deviations from the Standard Model behavior can be used as a test of the structure of new physics. If new physics is found at the LHC, then the many golden measurements from SuperB will help decode the subtle nature of the new physics. However if no new particles are found at the LHC, SuperB will be able to search for new physics at energy scales up to 10-100 TeV. In either scenario, flavour physics measurements that can be made at SuperB play a pivotal role in understanding the nature of physics beyond the Standard Model. Examples for using the interplay between measurements to discriminate New Physics models are discussed in this document. SuperB is a Super Flavour Factory, in addition to studying large samples of B{sub u,d,s}, D and {tau} decays, SuperB has a broad physics programme that includes spectroscopy both in terms of the Standard Model and exotica, and precision measurements of sin{sup 2} {theta}{sub W}. In addition to performing CP violation measurements at the {Upsilon}(4S) and {phi}(3770), SuperB will test CPT in these systems, and lepton universality in a number of different processes. The multitude of rare decay measurements possible at SuperB can be used to constrain scenarios of physics beyond the Standard Model. In terms of other precision tests of the Standard Model, this experiment will be able to perform precision over

  10. SuperB Progress Report for Physics

    International Nuclear Information System (INIS)

    O'Leary, B.; Matias, J.; Ramon, M.

    2012-01-01

    SuperB is a high luminosity e + e - collider that will be able to indirectly probe new physics at energy scales far beyond the reach of any man made accelerator planned or in existence. Just as detailed understanding of the Standard Model of particle physics was developed from stringent constraints imposed by flavour changing processes between quarks, the detailed structure of any new physics is severely constrained by flavour processes. In order to elucidate this structure it is necessary to perform a number of complementary studies of a set of golden channels. With these measurements in hand, the pattern of deviations from the Standard Model behavior can be used as a test of the structure of new physics. If new physics is found at the LHC, then the many golden measurements from SuperB will help decode the subtle nature of the new physics. However if no new particles are found at the LHC, SuperB will be able to search for new physics at energy scales up to 10-100 TeV. In either scenario, flavour physics measurements that can be made at SuperB play a pivotal role in understanding the nature of physics beyond the Standard Model. Examples for using the interplay between measurements to discriminate New Physics models are discussed in this document. SuperB is a Super Flavour Factory, in addition to studying large samples of B u,d,s , D and τ decays, SuperB has a broad physics programme that includes spectroscopy both in terms of the Standard Model and exotica, and precision measurements of sin 2 θ W . In addition to performing CP violation measurements at the Υ(4S) and φ(3770), SuperB will test CPT in these systems, and lepton universality in a number of different processes. The multitude of rare decay measurements possible at SuperB can be used to constrain scenarios of physics beyond the Standard Model. In terms of other precision tests of the Standard Model, this experiment will be able to perform precision over-constraints of the unitarity triangle through

  11. In vitro adsorption of sodium pentobarbital by SuperChar, USP and Darco G-60 activated charcoals

    International Nuclear Information System (INIS)

    Curd-Sneed, C.D.; Parks, K.S.; Bordelon, J.G.; Stewart, J.J.

    1987-01-01

    This study was designed to examine the in vitro adsorption of sodium pentobarbital by three activated charcoals. Solutions of sodium pentobarbital (20 mM) were prepared in distilled water and in 70% sorbitol (w/v). Radiolabeled ( 14 C) sodium pentobarbital was added to each solution to serve as a concentration marker. Two ml of each drug solution was added to test tubes containing 40 mg of either Darco G-60, USP, or SuperChar activated charcoal. The drug-charcoal mixtures were incubated at 37 degrees C for O, 2.5, 5, 7.5 or 10 min. Equilibrium, indicated by a constant percentage of drug bound for two consecutive time periods, was established immediately for the aqueous mixtures and for Darco G-60 in sorbitol. The time to equilibrium was prolonged for USP (2.5 min) and SuperChar (5 min) in the presence of sorbitol. In the second series of experiments, solutions of sodium pentobarbital (1.25 to 160 mM) were prepared in either distilled water or sorbitol. Amount of drug bound by 10 to 320 mg of activated charcoal within a 10 min incubation period was determined. Scatchard analysis determined maximum binding capacity (Bmax) and dissociation constants (Kd) for each activated charcoal. In water, Bmax (mumoles/gm) was greatest for SuperChar (1141), followed by USP (580) and Darco G-60 (381), while the Kd's did not differ. Sorbitol did not change the Bmax or Kd of USP or Darco G-60, but the additive significantly decreased the Bmax (717) and increased the Kd for SuperChar (3.3 to 10.1 mM). The results suggest that relative binding capacity of activated charcoal is directly proportional to surface area, and that sorbitol significantly reduces sodium pentobarbital binding to SuperChar

  12. Application of computational fluid dynamics (CFD) to a gas heater used for the drying of agricultural products

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Douglas Romeu da; Coradi, Paulo Carteri; Visser, Evan Michael; Martins, Marcio Aredes [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Engenharia Agricola

    2008-07-01

    The objective of this study was to evaluate a gas heater used for the drying of agricultural products. The effects of fuel, primary air and secondary air flows on the distribution on temperature and velocity in a heater were evaluated with the objective of rationalizing combustion fuel. LPG was used as the energy source to provide heated air for drying. The Navier-Stokes equations were used to resolve the problem of air and fuel flow, respecting the energy conservation, equations in the heater. From the results generated, it was confirmed that greater temperature were obtained with the convection coefficient was minimal (h = 0.01). Velocity presented a parabolic, fully developed profile. The greatest velocity was encountered in the central region of the flow, obtained when the Reynolds number was at its greatest. CFD software proved to be applicable in order to resolve heat and mass transfer problems in heaters. (author)

  13. 40 CFR 63.988 - Incinerators, boilers, and process heaters.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Incinerators, boilers, and process... Routing to a Fuel Gas System or a Process § 63.988 Incinerators, boilers, and process heaters. (a) Equipment and operating requirements. (1) Owners or operators using incinerators, boilers, or process...

  14. Evaluation of radiofrequency dielectric heaters workers exposure

    International Nuclear Information System (INIS)

    Benes, M.; Del Frate, S.; Villalta, R.

    2008-01-01

    Radiofrequency dielectric heaters (RFDH) are widely used in the woodworking industry for gluing laminates by applying pressure and RF heating. The workers operating such equipment remain in the vicinity of the machinery all day and can therefore be exposed to considerable levels of electric and magnetic field at RFs. This work describes the method used to measure the strength of fields generated by this particular machinery. This procedure is based on current methods cited in the literature and introduces the necessary modifications to meet this specific case. In particular, as there is often a scarcity of technical data available relating to such heaters, it is suggested that a spectrum analyser be used for measurements in the frequencies domain. On the basis of the data obtained the norms of reference are established, the instrumentation to be used in successive stages determined as well as the identification of possible sources of interference from spurious signals. Furthermore, a mapping of the field strengths is presented and the means of determining the decay curve as a function of distance. This last type of measurement is done to estimate the effectiveness of grounding the machinery. The report ends with an estimate of the exposure of workers to electromagnetic fields and also some recommendations for reducing risk. (authors)

  15. Regional Variation in Residential Heat Pump Water Heater Performance in the U.S.

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, Jeff [National Renewable Energy Lab. (NREL), Golden, CO (United States); Burch, Jay [National Renewable Energy Lab. (NREL), Golden, CO (United States); Merrigan, Tim [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ong, Sean [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-01-01

    Residential heat pump water heaters (HPWHs) have recently re-emerged on the U.S. market, and they have the potential to provide homeowners significant cost and energy savings. However, actual in use performance of a HPWH will vary significantly with climate, installation location, HVAC equipment, and hot water use. To determine the actual energy consumption of a HPWH in different U.S. regions, annual simulations of both 50 and 80 gallon HPWHs as well as a standard electric water heater were performed for over 900 locations across the United States. The simulations included a benchmark home to take into account interactions between the space conditioning equipment and the HPWH and a realistic hot water draw profile. It was found that the HPWH will always save some source energy when compared to a standard electric resistance water heater, although savings varies widely with location. In addition to looking at source energy savings, the breakeven cost (the net installed cost a HPWH would have to have to be a cost neutral replacement for a standard water heater) was also examined. The highest breakeven costs were seen in cases with high energy savings, such as the southeastern U.S., or high energy costs, such as New England and California. While the breakeven cost is higher for 80 gallon units than 50 gallon units, the higher net installed costs of an 80 gallon unit lead to the 50 gallon HPWHs being more likely to be cost effective.

  16. Architectural Engineering to Super-Light Structures

    DEFF Research Database (Denmark)

    Castberg, Niels Andreas

    The increasing global urbanisation creates a great demand for new buildings. In the aim to honour this, a new structural system, offering flexibility and variation at no extra cost appears beneficial. Super-Light Structures constitute such a system. This PhD thesis examines Super-Light Structures...... with architectural engineering as a starting point. The thesis is based on a two stringed hypothesis: Architectural engineering gives rise to better architecture and Super-Light Structures support and enables a static, challenging architecture. The aim of the thesis is to clarify architectural engineering's impact...... on the work process between architects and engineers in the design development. Using architectural engineering, Super-Light Structures are examined in an architectural context, and it is explained how digital tools can support architectural engineering and design of Super-Light Structures. The experiences...

  17. 热泵与家用太阳热水器联合供热性能试验%Performance jointly test of heat pump water heater with household solar heating

    Institute of Scientific and Technical Information of China (English)

    谌学先; 高文峰; 兰青; 唐润生; 夏朝凤

    2011-01-01

    为解决家用太阳能热水器供热的间歇性和不稳定性,应用热泵辅助可达到全天候供热,该文通过对这种联合供热系统的供热性能和运行性能进行了测试,并对热水器的升温、保温和热泵的加热进行了试验和分析,结果表明:空气源热泵辅助型真空管家用太阳热水系统仅在累积太阳辐照量小于14 MJ/m2时,需要空气源热泵辅助加热,总制热性能系数可达6.18.%To solve the problems of heating intermittent and instability for household solar water heater, application of heat pump for evacuated tube solar water heater system can achieved auxiliary heat supply round-the-clock. Heating performance test and operation of the system were conducted and the temperature rise performance, heat preservation of the solar water heater system and the heating performance of heat pump were tested and analyzed in this paper. The result showed that when the solar radiation was less than 14 MJ/m2 , the system needed heating by air source heat pump,on this occasion, the system total coefficient of performance could reach 6.18.

  18. submitter Quench Protection Heater Study With the 2-m Model Magnet of Beam Separation Dipole for the HL-LHC Upgrade

    CERN Document Server

    Suzuki, Kento; Higashi, Norio; Iida, Masahisa; Ikemoto, Yukiko; Kawamata, Hiroshi; Kimura, Nobuhiro; Nakamoto, Tatsushi; Ogitsu, Toru; Ohata, H; Okada, Naoki; Okada, Ryutaro; Sugano, Michinaka; Musso, Andrea; Todesco, Ezio

    2018-01-01

    The beam separation dipole magnet (D1), which is being operated in the large hadron collider (LHC), has to be replaced in accordance with upgrade to the high-luminosity LHC. The new D1 will be equipped with several circuits of heaters by which most of the stored energy is dissipated in the whole of the magnet during its quench, thereby avoiding localization of hot spots. Prior to construction of the production magnet, the 2-m mechanical short model is fabricated, and performance of this quench protection heater is evaluated through a series of the cold tests. As a result, we confirm that the maximum hot spot temperature obtained in the measurement reaches the practical limit of 300 K, and determine to design a new heater circuit. In this paper, we report the heater studies together with the prospect for future design of the quench protection heater.

  19. Large-scale in situ heater tests for hydrothermal characterization at Yucca Mountain

    International Nuclear Information System (INIS)

    Buscheck, T.A.; Wilder, D.G.; Nitao, J.J.

    1993-01-01

    To safely and permanently store high-level nuclear-waste, the potential Yucca Mountain repository site must mitigate the release and transport of radionuclides for tens of thousands of years. In the failure scenario of greatest concern, water would contact a waste package, accelerate its failure rate, and eventually transport radionuclides to the water table. Our analysis indicate that the ambient hydrological system will be dominated by repository-heat-driven hydrothermal flow for tens of thousands of years. In situ heater tests are required to provide an understanding of coupled geomechanical-hydrothermal-geochemical behavior in the engineered and natural barriers under repository thermal loading conditions. In situ heater tests have been included in the Site Characterization Plan in response to regulatory requirements for site characterization and to support the validation of process models required to assess the total systems performance at the site. The success of the License Application (LA) hinges largely on how effectively we validate the process models that provide the basis for performance assessment. Because of limited time, some of the in situ tests will have to be accelerated relative to actual thermal loading conditions. We examine the trade-offs between the limited test duration and generating hydrothermal conditions applicable to repository performance during the entire thermal loading cycle, including heating (boiling and dry-out) and cooldown (re-wetting). For in situ heater tests duration of 6-7 yr (including 4 yr of full-power heating) is required. The parallel use of highly accelerated, shorter-duration tests may provide timely information for the LA, provided that the applicability of the test results can be validated against ongoing nominal-rate heater tests

  20. Experience with vertical down-fired, coal-fuelled, low emissions air heaters incorporating automatic ash removal

    Energy Technology Data Exchange (ETDEWEB)

    Keller, M.; Noble, R.K.; Keller, J. [Tulsa Combustion LLC, Tulsa, OK (United States)

    2009-07-01

    This paper discussed the conversion of a horizontally-oriented air heater system with a vertically-oriented pulverized coal-fuelled air heater system. The vertically-oriented heater was used for automatic de-ashing and avoiding the ash accumulation often seen in horizontally-oriented systems. The study showed that the use of the vertical system significantly reduced emissions of nitrous oxides (NO{sub x}), carbon monoxide (CO) and volatile organic compounds (VOCs). Slag and salt attacks on the refractory were also reduced. The vertical systems provided automatic ash removal and eliminated hot spots on the refractory. The potential for variations in composition was also reduced. It was concluded that the system's smaller footprint means that it can be used in retrofits and can be installed in small spaces. 12 figs.

  1. Detecting Water on Super-Earths Using JAVST

    Science.gov (United States)

    Deming, D.

    2010-01-01

    Nearby lower train sequence stars host a class of planets known as Super-Earths, that have no analog in our own solar system. Super-Earths are rocky and/or icy planets with masses up to about 10 Earth masses, They are expected to host atmospheres generated by a number of processes including accretion of chondritic material. Water vapor should be a common constituent of super-Earth atmospheres, and may be detectable in transiting super-Earths using transmission spectroscopy during primar y eclipse, and emission spectroscopy at secondary eclipse. I will discuss the prospects for super-Earth atmospheric measurements using JWST.

  2. Supergrassmannians, super τ-functions and strings

    International Nuclear Information System (INIS)

    Dolgikh, S.N.; Schwarz, A.S.

    1989-03-01

    Recently, infinite-dimensional grassmannians and their supergeneralizations were used to study conformal two-dimensional fields and strings. In particular, the super Mumford form (holomorphic square root from the superstring measure on moduli space) was expressed through super analog of Sato τ-function. In this paper we present results of supergrassmannians and super τ-functions. 8 refs

  3. A solar assisted heat-pump dryer and water heater

    International Nuclear Information System (INIS)

    Hawlader, M.N.A.; Chou, S.K.; Jahangeer, K.A.; Rahman, S.M.A.

    2006-01-01

    Growing concern about the depletion of conventional energy resources has provided impetus for considerable research and development in the area of alternative energy sources. A solar assisted heat pump dryer and water heater found to be one of the solutions while exploring for alternative energy sources. The heat pump system is used for drying and water heating applications with the major share of the energy derived from the sun and the ambient. The solar assisted heat pump dryer and water heater has been designed, fabricated and tested. The performance of the system has been investigated under the meteorological conditions of Singapore. The system consists of a variable speed reciprocating compressor, evaporator-collector, storage tank, air cooled condenser, auxiliary heater, blower, dryer, dehumidifier, and air collector. The drying medium used is air and the drying chamber is configured to carry out batch drying of good grains. A water tank connected in series with the air cooled condenser delivers hot water for domestic applications. The water tank also ensures complete condensation of the refrigerant vapour. A simulation program is developed using Fortran language to evaluate the performance of the system and the influence of different variables. The performance indices considered to evaluate the performance of the system are: Solar Fraction (SF), Coefficient of Performance (COP) and Specific Moisture Extraction Rate (SMER). A COP value of 7.5 for a compressor speed of 1800 rpm was observed. Maximum collector efficiencies of 0.86 and 0.81 have been found for evaporator-collector and air collector, respectively. A value of the SMER of 0.79 has been obtained for a load of 20 kg and a compressor speed of 1200 rpm

  4. Toolbox for super-structured and super-structure free multi-disciplinary building spatial design optimisation

    NARCIS (Netherlands)

    Boonstra, S.; van der Blom, K.; Hofmeyer, H.; Emmerich, M.T.M.; van Schijndel, A.W.M.; de Wilde, P.

    2018-01-01

    Multi-disciplinary optimisation of building spatial designs is characterised by large solution spaces. Here two approaches are introduced, one being super-structured and the other super-structure free. Both are different in nature and perform differently for large solution spaces and each requires

  5. Properties of super alloys for high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Izaki, Takashi; Nakai, Yasuo; Shimizu, Shigeki; Murakami, Takashi

    1975-01-01

    The existing data on the properties at high temperature in helium gas of iron base super alloys. Incoloy-800, -802 and -807, nickel base super alloys, Hastelloy-X, Inconel-600, -617 and -625, and a casting alloy HK-40 were collectively evaluated from the viewpoint of the selection of material for HTGRs. These properties include corrosion resistance, strength and toughness, weldability, tube making, formability, radioactivation, etc. Creep strength was specially studied, taking into consideration the data on the creep characteristics in the actual helium gas atmosphere. The necessity of further long run creep data is suggested. Hastelloy-X has completely stable corrosion resistance at high temperature in helium gas. Incoloy 800 and 807 and Inconel 617 are not preferable in view of corrosion resistance. The creep strength of Inconel 617 extraporated to 1,000 deg C for 100,000 hours in air was the greatest rupture strength of 0.6 kg/mm 2 in all above alloys. However, its strength in helium gas began to fall during a relatively short time, so that its creep strength must be re-evaluated in the use for long time. The radioactivation and separation of oxide film in primary construction materials came into question, Inconel 617 and Incoloy 807 showed high induced radioactivity intensity. Generally speaking, in case of nickel base alloys such as Hastelloy-X, oxide film is difficult to break away. (Iwakiri, K.)

  6. Turbulent heat transfer for heating of water in a short vertical tube

    International Nuclear Information System (INIS)

    Hata, Koichi; Noda, Nobuaki

    2008-01-01

    The turbulent heat transfer coefficients for the flow velocities (u=4.0 to 21 m/s), the inlet liquid temperatures (T in =296.5 to 353.4 K), the inlet pressures (P in =810 to 1014 kPa) and the increasing heat inputs (Q 0 exp(t/τ), τ=10, 20 and 33.3 s) are systematically measured by an experimental water loop. The Platinum test tubes of test tube inner diameters (d=3, 6 and 9 mm), heated lengths (L=32.7 to 100 mm), ratios of heated length to inner diameter (L/d=5.51 to 33.3) and wall thickness (δ=0.3, 0.4 and 0.5 mm) with surface roughness (Ra=0.40 to 0.78 μm) are used in this work. The turbulent heat transfer data for Platinum test tubes were compared with the values calculated by other workers' correlations for the turbulent heat transfer. The influence of Reynolds number (Re), Prandtl number (Pr), Dynamic viscosity (μ) and L/d on the turbulent heat transfer is investigated into details and, the widely and precisely predictable correlation of the turbulent heat transfer for heating of water in a short vertical tube is given based on the experimental data. The correlation can describe the turbulent heat transfer coefficients obtained in this work for the wide range of the temperature difference between heater inner surface temperature and average bulk liquid temperature (ΔT L =5 to 140 K) with d=3, 6 and 9 mm, L=32.7 to 100 mm and u=4.0 to 21 m/s within ±15%, difference. (author)

  7. Turbulent heat transfer for heating of water in a short vertical tube

    International Nuclear Information System (INIS)

    Hata, Koichi; Noda, Nobuaki

    2007-01-01

    The turbulent heat transfer coefficients for the flow velocities (u=4.0 to 21 m/s), the inlet liquid temperatures (T in =296.5 to 353.4 K), the inlet pressures (P in =810 to 1014 kPa) and the increasing heat inputs (Q 0 exp(t/τ), τ=10, 20 and 33.3 s) are systematically measured by the experimental water loop. The Platinum test tubes of test tube inner diameters (d=3, 6 and 9 mm), heated lengths (L=32.7 to 100 mm), ratios of heated length to inner diameter (L/d=5.51 to 33.3) and wall thicknesses (δ=0.3, 0.4 and 0.5 mm) with surface roughness (Ra=0.40 to 0.78 μm) are used in this work. The turbulent heat transfer data for Platinum test tubes were compared with the values calculated by other workers' correlations for the turbulent heat transfer. The influences of Reynolds number (Re), Prandtl number (Pr), Dynamic viscosity (μ) and L/d on the turbulent heat transfer are investigated into details and, the widely and precisely predictable correlation of the turbulent heat transfer for heating of water in a short vertical tube is given based on the experimental data. The correlation can describe the turbulent heat transfer coefficients obtained in this work for wide range of the temperature difference between heater inner surface temperature and average bulk liquid temperature (ΔT L =5 to 140 K) with d=3, 6 and 9 mm, L=32.7 to 100 mm and u=4.0 to 21 m/s within ±15% difference. (author)

  8. Prototype heater test of the environment around a simulated waste package

    International Nuclear Information System (INIS)

    Ramirez, A.L.; Buscheck, T.A.; Carlson, R.; Daily, W.; Latorre, V.R.; Lee, K; Lin, Wunan; Mao, Nai-hsien; Towse, D.; Ueng, Tzou-Shin; Watwood, D.

    1991-01-01

    This paper presents selected results obtained during the 301 day duration of the Prototype Engineered Barrier System Field Test (PEBSFT) performed in G-Tunnel within the Nevada Test Site. The test described is a precursor to the Engineered Barrier Systems Field Tests (EBSFT) planned for the Exploratory Shaft Facility in Yucca Mountain. The EBSFT will consist of in situ tests of the geohydrologic and geochemical environment in the near field (within a few meters) of heaters emplaced in welded tuff to simulate the thermal effects of waste packages. The paper discusses the evolution of hydrothermal behavior during the prototype test, including rock temperatures, changes in rock moisture content, air permeability of fractures and gas-phase humidity in the heater borehole

  9. Evaluating Residence Time for Cesium Removal from Simulated Hanford Tank Wastes Using SuperLig(R) 644 Resin

    International Nuclear Information System (INIS)

    Hassan, N.M.

    2003-01-01

    Batch contact and column experiments were performed to evaluate the effect of residence time on cesium (Cs) removal from two simulated Hanford tank wastes using SuperLig(R) 644 resin. The two waste simulants mimic the compositions of tanks 241-AZ-102 and 241-AN-107 at the U.S. Department of Energy (DOE) Hanford site. A single column made of glass tube (2.7-cm i.d.), which contained approximately 100 mL of H-form SuperLig(R) 644 resin was used in the column experiments. The experiments each consisted of loading, elution, and regeneration steps were performed at flow rates ranging from 0.64 to 8.2 BV/h for AZ-102 and from 1.5 to 18 BV/h for AN-107 simulant. The lowest flow rates of 0.64 and 1.5 BV/h were selected to evaluate less than optimal flow conditions in the plant. The range of the flow rates is consistent with the River Protection Project design for the waste treatment plant (WTP) columns, which will operate at a flow rate between 1.5 to 3 BV/h. Batch contact experiments were also performed for two batches of SuperLig(R) 644 to determine the equilibrium distribution coefficients (Kds) as a function of Cs concentration

  10. Improvement in transdermal drug delivery performance by graphite oxide/temperature-responsive hydrogel composites with micro heater

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Jumi [Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Lee, Dae Hoon [Environment Research Division, Korea Institute of Machinery and Materials, 171 Jang-dong, Yusong-gu, Daejeon 305-343 (Korea, Republic of); Im, Ji Sun [Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Kim, Hyung-Il, E-mail: hikim@cnu.ac.kr [Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2012-08-01

    Transdermal drug delivery system (TDDS) was prepared with temperature-responsive hydrogel. The graphite was oxidized and incorporated into hydrogel matrix to improve the thermal response of hydrogel. The micro heater was fabricated to control the temperature precisely by adopting a joule heating method. The drug in hydrogel was delivered through a hairless mouse skin by controlling temperature. The efficiency of drug delivery was improved obviously by incorporation of graphite oxide due to the excellent thermal conductivity and the increased interfacial affinity between graphite oxide and hydrogel matrix. The fabricated micro heater was effective in controlling the temperature over lower critical solution temperature of hydrogel precisely with a small voltage less than 1 V. The cell viability test on graphite oxide composite hydrogel showed enough safety for using as a transdermal drug delivery patch. The performance of TDDS could be improved noticeably based on temperature-responsive hydrogel, thermally conductive graphite oxide, and efficient micro heater. - Graphical abstract: The high-performance transdermal drug delivery system could be prepared by combining temperature-responsive hydrogel, thermally conductive graphite oxide with improved interfacial affinity, and efficient micro heater fabricated by a joule heating method. Highlights: Black-Right-Pointing-Pointer High performance of transdermal drug delivery system with an easy control of voltage. Black-Right-Pointing-Pointer Improved thermal response of hydrogel by graphite oxide incorporation. Black-Right-Pointing-Pointer Efficient micro heater fabricated by a joule heating method.

  11. 10 CFR 431.102 - Definitions concerning commercial water heaters, hot water supply boilers, and unfired hot water...

    Science.gov (United States)

    2010-01-01

    ... supply boilers, and unfired hot water storage tanks. 431.102 Section 431.102 Energy DEPARTMENT OF ENERGY... Water Heaters, Hot Water Supply Boilers and Unfired Hot Water Storage Tanks § 431.102 Definitions concerning commercial water heaters, hot water supply boilers, and unfired hot water storage tanks. The...

  12. 摩擦力の作用する柔軟回転軸の振動 : 実験(機械力学,計測,自動制御)

    OpenAIRE

    佐藤, 勇一; 長嶺, 拓夫; 永井, 純一; 片山, 圭一

    2004-01-01

    A soot blower is used to blow off soot on tubes in a tubular heat exchanger, or a gas heater. The soot blower has a long flexible tube, that is, a lance tube, 8 m long and 76.2 mm in diameter, which is put slowly into/out of a gas heater. Steam flows through the lance tube and is discharged at the free end to blow off soot. The lance tube, rotating slowly about its axis at about 12 rpm, is supported at an intermediate position by a support bearing, that is, a lance bearing. Vibrations and noi...

  13. 摩擦力の作用する縦型柔軟回転軸の振動(機械力学, 計測, 自動制御)

    OpenAIRE

    佐藤, 勇一; 長嶺, 拓夫; 大嶋, 弘志

    2007-01-01

    A soot blower is used to blow off soot on tubes in a tubular heat exchanger, or a gas heater. The soot blower has a long flexible tube, that is, a lance tube, about 10 m long and 76 mm in diameter, which is put slowly into/out of a gas heater. Steam flows through the lance tube and is discharged at the free end to blow off soot. The lance tube, rotating slowly about its axis at about 12 rpm, is supported at an intermediate position by a support bearing, that is, a lance bearing. Vibrations an...

  14. Incinerator for radioactive wastes

    International Nuclear Information System (INIS)

    Warren, J.H.; Hootman, H.E.

    1981-01-01

    A two-stage incinerator is provided which includes a primary combustion chamber and an afterburn chamber for off-gases. The latter is formed by vertical tubes in combination with associated manifolds which connect the tubes together to form a continuous tortuous path. Electrically-controlled heaters surround the tubes while electrically-controlled plate heaters heat the manifolds. A gravity-type ash removal system is located at the bottom of the first afterburner tube while an air mixer is disposed in that same tube just above the outlet from the primary chamber. A ram injector in combination with rotary a magazine feeds waste to a horizontal tube forming the primary combustion chamber. (author)

  15. Super Virasoro algebra and solvable supersymmetric quantum field theories

    International Nuclear Information System (INIS)

    Yamanaka, Itaru; Sasaki, Ryu.

    1987-09-01

    Interesting and deep relationships between super Virasoro algebras and super soliton systems (super KdV, super mKdV and super sine-Gordon equations) are investigated at both classical and quantum levels. An infinite set of conserved quantities responsible for solvability is characterized by super Virasoro algebras only. Several members of the infinite set of conserved quantities are derived explicitly. (author)

  16. An investigation of the Performance of a Conical Solar Water Heater in the Kingdom of Bahrain

    Science.gov (United States)

    Gaaliche, Nessreen; Ayhan, Teoman; Fathallah, Raouf

    2017-11-01

    Domestic water heater corresponds to 25% of the house energy consumption and can play an important role to reduce energy house expenses. Solar energy offers a preferred renewable energy resource because of its economic and environmental advantages. It is considered the best alternative to reduce domestic water heater energy consumption cost. Converting solar energy into heat can be considered among the simplest used systems. Solar thermal conversion is more efficient than solar electrical direct conversion method. Solar water heater systems are particularly easy to use and to repair. The integrated conical solar collector water heater (ICSCWH) is so far the easiest among water heating systems. The ICSCWH converts directly and efficiently the solar flux into heat. In order to expand the utilization of ICSCWH systems, many design modifications have been examined and analyzed. This study provides an experimental investigation and mathematical simulation of an ICSCWH system equipped with a glass cover resulting in the increase of the maximum absorption. Integrating the cone-shaped heat collector with an aluminum spiral pipe flow system may enhance the efficiency of the proposed system. In order to maximize the solar radiation of the system, the solar water heater has been designed in a conical shape, which removes the need to change its orientation toward the sun to receive the maximum sun radiation during the day. In this system, the heating of water has been obtained using the spiral pipe flow without the use of the solar cells and mirrors in order to reduce the total cost. The storage water tank of this system is coupled with a conical solar collector. Based on the above design, the solar water heater has been fabricated and tested. In addition, an analytical modeling approach aiming to predict the flow rate within the conical integrated collector storage solar water heater (ICSSWH) and its efficiency, was developed. Modeling through a numerical simulation approach

  17. An investigation of the Performance of a Conical Solar Water Heater in the Kingdom of Bahrain

    Directory of Open Access Journals (Sweden)

    Gaaliche Nessreen

    2017-01-01

    Full Text Available Domestic water heater corresponds to 25% of the house energy consumption and can play an important role to reduce energy house expenses. Solar energy offers a preferred renewable energy resource because of its economic and environmental advantages. It is considered the best alternative to reduce domestic water heater energy consumption cost. Converting solar energy into heat can be considered among the simplest used systems. Solar thermal conversion is more efficient than solar electrical direct conversion method. Solar water heater systems are particularly easy to use and to repair. The integrated conical solar collector water heater (ICSCWH is so far the easiest among water heating systems. The ICSCWH converts directly and efficiently the solar flux into heat. In order to expand the utilization of ICSCWH systems, many design modifications have been examined and analyzed. This study provides an experimental investigation and mathematical simulation of an ICSCWH system equipped with a glass cover resulting in the increase of the maximum absorption. Integrating the cone-shaped heat collector with an aluminum spiral pipe flow system may enhance the efficiency of the proposed system. In order to maximize the solar radiation of the system, the solar water heater has been designed in a conical shape, which removes the need to change its orientation toward the sun to receive the maximum sun radiation during the day. In this system, the heating of water has been obtained using the spiral pipe flow without the use of the solar cells and mirrors in order to reduce the total cost. The storage water tank of this system is coupled with a conical solar collector. Based on the above design, the solar water heater has been fabricated and tested. In addition, an analytical modeling approach aiming to predict the flow rate within the conical integrated collector storage solar water heater (ICSSWH and its efficiency, was developed. Modeling through a numerical

  18. Heaters to simulate fuel pins for heat transfer tests in single-phase liquid-metal-flow

    International Nuclear Information System (INIS)

    Casal, V.; Graf, E.; Hartmann, W.

    1976-09-01

    The development of heaters for thermal simulation of the fuel elements of liquid metal cooled fast breeder reactors (SNR) is reported. Beginning with the experimental demands various heating methods are discussed for thermodynamic investigations of the heat transfer in liquid metals. Then a preferred heater rod is derived to simulate the fuel pins of a SNR. Finally it is reported on the fabrication and the operation practice. (orig.) [de

  19. Preheating Water In The Covers Of Solar Water Heaters

    Science.gov (United States)

    Bhandari, Pradeep

    1995-01-01

    Solar water heaters that include glass covers over absorber plates redesigned to increase efficiencies according to proposal. Redesign includes modification of single-layer glass cover into double-layer glass cover and addition of plumbing so cool water to be heated made to flow between layers of cover before entering absorber plate.

  20. NORTH PORTAL-WATER HEATER CALCULATION-SHOP BUILDING No. 5006

    International Nuclear Information System (INIS)

    R. Blackstone

    1996-01-01

    The purpose of this design analysis and calculation is to determine the demand for hot and the selection of a water heater of appropriate size, in accordance with the Uniform Plumbing Code (Section 4.4.1) and U.S. Department of Energy Order 6430.1A-1540 (Section 4.4.2)

  1. Implementing and Testing the LINTAB, HEATER and PLOTTAB code package

    International Nuclear Information System (INIS)

    Cullen, D.E.; Smith, J.J.

    1987-07-01

    Enclosed is a description of the magnetic tape or floppy diskette containing the LINTAB, HEATER and PLOTTAB code package. In addition detailed information is provided on implementation and testing of these codes. These codes are documented in IAEA-NDS-84. (author)

  2. NRC Information No. 89-04: Potential problems from the use of space heaters

    International Nuclear Information System (INIS)

    Rossi, C.E.

    1992-01-01

    On December 7, 1988, with the Fort Calhoun Station in cold shutdown and defueled, an onsite release of toxic chlorine gas occurred. The chlorine gas leaked from a chlorine gas cylinder when the fusible plug melted because of the proximity of a space heater. The licensee stores the chlorine gas cylinders, used in the purification process of Missouri River water for plant cooling systems, in a ventilated, enclosed room approximately 4 by 6 feet. To keep the cylinders warm in preparation for use, a 13-kW heater was placed in the room. It appears, based on the licensee's initial investigation, that the fusible plug became overheated because of the close proximity of the heater to the cylinder and melted. The melting point of the plug is approximately 160 F. The melted fusible plug initiated the release of the chlorine gas. The licensee detected the chlorine leak by the odor of chlorine gas in the area adjacent to the gas bottle storage room. The area was immediately evacuated

  3. Field Monitoring Protocol. Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, B. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Earle, L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Christensen, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Maguire, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wilson, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hancock, C. E. [Mountain Energy Partnership, Longmont, CO (United States)

    2013-02-01

    This document provides a standard field monitoring protocol for evaluating the installed performance of Heat Pump Water Heaters in residential buildings. The report is organized to be consistent with the chronology of field test planning and execution. Research questions are identified first, followed by a discussion of analysis methods, and then the details of measuring the required information are laid out. A field validation of the protocol at a house near the NREL campus is included for reference.

  4. Field Monitoring Protocol: Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, B.; Earle, L.; Christensen, D.; Maguire, J.; Wilson, E.; Hancock, E.

    2013-02-01

    This document provides a standard field monitoring protocol for evaluating the installed performance of Heat Pump Water Heaters in residential buildings. The report is organized to be consistent with the chronology of field test planning and execution. Research questions are identified first, followed by a discussion of analysis methods, and then the details of measuring the required information are laid out. A field validation of the protocol at a house near the NREL campus is included for reference.

  5. Research and development of a high efficiency gas-fired water heater. Volume 2. Task reports

    Energy Technology Data Exchange (ETDEWEB)

    Vasilakis, A.D.; Pearson, J.F.; Gerstmann, J.

    1980-01-01

    Design and development of a cost-effective high efficiency gas-fired water heater to attain a service efficiency of 70% (including the effect of exfiltration) and a service efficiency of 78% (excluding exfiltration) for a 75 GPD draw at a 90/sup 0/F temperature rise, with a stored water to conditioned air temperature difference of 80/sup 0/F, are described in detail. Based on concept evaluation, a non-powered natural draft water heater was chosen as the most cost-effective design to develop. The projected installed cost is $374 compared to $200 for a conventional unit. When the project water heater is compared to a conventional unit, it has a payback of 3.7 years and life cycle savings of $350 to the consumer. A prototype water heater was designed, constructed, and tested. When operated with sealed combustion, the unit has a service efficiency of 66.4% (including the effect of exfiltration) below a burner input of 32,000 Btu/h. In the open combustion configuration, the unit operated at a measured efficiency of 66.4% Btu/h (excluding exfiltration). This compares with a service efficiency of 51.3% for a conventional water heater and 61% for a conventional high efficiency unit capable of meeting ASHRAE 90-75. Operational tests showed the unit performed well with no evidence of stacking or hot spots. It met or exceeded all capacity or usage tests specified in the program test plan and met all emission goals. Future work will concentrate on designing, building, and testing pre-production units. It is anticipated that both sealed combustion and open draft models will be pursued.

  6. Interim status report on the revision of ASME PTC 12.1 -- closed feedwater heaters

    International Nuclear Information System (INIS)

    Stellern, J.L.; Hoobler, J.V.; Milton, J.W.; Welch, T.; Kona, C.; Thompson, H.N.; Tsou, J.L.

    1993-01-01

    The ASME Performance Test Code (PTC) 12.1-1978 for the performance testing of feedwater heaters is being revised extensively and updated. The committee anticipates that the final draft of the proposed Code will be ready for industry review in 1993. This Code revision will greatly enhance the usefulness and cost effectiveness of feedwater heater performance testing. This paper has been prepared to report on the progress of the committee and to disseminate information on the nature of the revision. Included in this paper are some of the notable changes intended for the Code. The most extensive change is the calculation method, which is described in step-by-step detail. An approach is also described for using ultrasonic flow techniques to test individual or split-string feedwater heaters, when flow nozzles are not available. Additionally some educational information on the use and limitations of ultrasonic measurement instrumentation is included. Discussion is also included on the required uncertainty analysis. 3 refs., 2 figs., 2 tabs

  7. New heating system for heaters-treaters and glycol regenerators using liquid or gaseous fuel. Neues Beheizungsverfahren von Heatern-Treatern und Glykolregeneratoren mittels fluessigen oder gasfoermigen Brennstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Schmidtke, G.

    1990-12-01

    A new system for the heating of heaters-treaters and glycol regnerators is described. The main difference to the customary technique is that instead of an atmospheric gas burner, which uses the injector principle for drawing in gas, a compressed-air gas bruner with a blower is used. Burners of this type can be installed directly inside the flame tubes of the plants, so that flame arrestors with be unnecessary. Apart from its low noise, this combination technology has the further advantage of permitting near-stoichiometric operation in a wide control range. This will reduce the off-gas losses to a much lower level, as is illustrated by the dramtically lower off-gas values measured in the test phase. (orig.).

  8. Optimal design and placement of serpentine heat exchangers for indirect heat withdrawal, inside flat plate integrated collector storage solar water heaters (ICSSWH)

    Energy Technology Data Exchange (ETDEWEB)

    Gertzos, K.P.; Caouris, Y.G.; Panidis, T. [Dept. of Mechanical Engineering and Aeronautics, University of Patras, 265 00 Patras (Greece)

    2010-08-15

    Parameters that affect the temperature at which service hot water (SHW) is offered by an immersed tube heat exchanger (HX), inside a flat plate Integrated Collector Storage Solar Water Heater (ICSSWH), are examined numerically, by means of Computational Fluid Dynamics (CFD) analysis. The storage water is not refreshed and serves for heat accumulation. Service hot water is drawn off indirectly, through an immersed serpentine heat exchanger. For the intensification of the heat transfer process, the storage water is agitated by recirculation through a pump, which goes on only when service water flows inside the heat exchanger. Three main factors, which influence the performance, are optimized: The position of the HX relative to tank walls, the HX length and the tube diameter. All three factors are explored so that to maximize the service water outlet temperature. The settling time of the optimum configuration is also computed. Various 3-D CFD models were developed using the FLUENT package. The heat transfer rate between the two circuits of the optimum configuration is maintained at high levels, leading to service water outlet temperatures by 1-7 C lower than tank water temperatures, for the examined SHW flow rates. The settling time is retained at sufficient law values, such as 20 s. The optimal position was found to lay the HX in contact with the front and back walls of the tank, with an optimum inner tube diameter of 16 mm, while an acceptable HX length was found to be about 21.5 m. (author)

  9. Re-design High Pressure Heater (HPH 5 pada Perusahaan Pembangkit Tenaga Listrik

    Directory of Open Access Journals (Sweden)

    Devia Gahana Cindi Alfian

    2013-09-01

    Full Text Available Boiler merupakan komponen utama yang ada pada pembangkit. Jika terjadi penurunan efisiensi pada boiler, maka listrik yang dihasilkan juga menurun. Berbagai cara  dilakukan untuk meningkatkan efisiensi dari boiler, salah satunya adalah menggunakan High Pressure Heater (HPH. HPH merupakan alat pemanas feedwater sebelum masuk ke boiler sehingga mengurangi kerja dari boiler. Saat ini kondisi HPH 5 yang ada di salah satu perusahaan pembangkit listrik sudah lama digunakan sehingga perlu dilakukan analisa untuk mengatahui performa dari HPH ini. Jika terjadi kebocoran atau kerusakan hanya dilakukan re-tubing yang selalu menggunakan design Original Equipment Manufacturing (OEM yang memakan waktu cukup lama dan biaya yang mahal. Proses analisa yang dimaksudkan adalah re-design sehingga apabila terjadi kerusakan dapat diganti dengan buatan sendiri. Pada perancangannya digunakan analisa termodinamika dan perpindahan panas dengan metode LMTD untuk mendapatkan dimensi tiap zona. Perhitungan yang dilakukan meliputi menentukan panjang masing-masing tiap zona HPH, laju perpindahan panas, overall heat transfer coefficient (U, luas perpindahan panas (A, perhitungan pressure drop (∆p untuk masing-masing zona. Hasil yang didapatkan pada analisa ini adalah dimensi zona desuperheating didapatkan panjang maksimal 2,94 m, luasan perpindahan panas efektif 231,7 m2, Overall Heat Transfer Coefficient 520,43 Watt/m2K, baffle spacing 0,345 m, jumlah baffle 8 buah. Pada zona Condensing didapatkan panjang maksimal 9,39 m, luasan perpindahan panas efektif 739,5 m2, Overall Heat Transfer Coefficient 3738,3 Watt/m2K, baffle spacing 1,8 m, jumlah baffle 4 buah. Sedangkan pada zona Subcooling didapatkan panjang maksimal 1,66 m, luasan perpindahan panas efektif 131 m2, Overall Heat Transfer Coefficient 3659,84 Watt/m2K, baffle spacing 0,345 m, jumlah baffle 4 buah. Sehingga didapatkan panjang total tube 14 m, total luasan perpindahan panas efektif  1.102,34 m2, Total Overall

  10. In-situ heater test in sedimentary soft rocks under high temperature (Phase I)

    International Nuclear Information System (INIS)

    Ikenoya, Takafumi; Takakura, Nozomu; Okada, Tetsuji; Sawada, Masataka; Hirano, Kouhei; Tani, Kazuo

    2008-01-01

    Various researches have been conducted on high level radioactive waste geological disposal in sedimentary soft rocks. It's noted that the long-term mechanical behaviors of sedimentary soft rocks can be affected by various environmental factors such as temperatures or hydraulic conditions. Therefore, in-situ heater test was conducted in an underground cavern at a depth of 50 meters for the purpose of improving thermo-hydro-mechanical coupled analysis code. This report presents the test result demonstrating the changes of temperature and strain distributions with time at the elevated temperature of the heater up to 40 degrees Celsius. (author)

  11. Analysis of the influence of operating conditions on fouling rates in fired heaters

    International Nuclear Information System (INIS)

    Morales-Fuentes, A.; Picón-Núñez, M.; Polley, G.T.; Méndez-Díaz, S.

    2014-01-01

    Fouling due to chemical reaction in preheat trains for the processing of crude oil plays a key role in the operation and maintenance costs and on greenhouse emissions to atmosphere in crude processing plants. A preheat train consists of a set of heat transfer units that provide the crude oil stream the required amount of thermal energy to reach its target temperature either by heat recovery or by direct firing. Fired heaters supply external high temperature heating through the burning of fuel which result in complex heat transfer processes due to the large temperature and pressure changes and vaporization that takes place inside the unit. In this work, a thermo-hydraulic analysis of the performance of fired heaters is carried out through the application of commercial software to solve the mathematical models using finite difference methods; the analysis is applied to the crude side of a vertical fired heater in order to evaluate the impact of process conditions such as throughput and crude inlet temperature (CIT) on the fouling that take place at the early stages of operation. Using a fouling rate model based on thermo-hydraulic parameters, fouling rates are predicted assuming steady state operation and clean conditions. Although variations in process conditions are known to influence fouling rates, little work has been done on the subject. In this work excess air and steam injection are studied as a means to mitigate fouling. Results show that throughput reduction brings about a marked increase in the fouling rates. A decrease in CIT affects only the convection zone and it is found that this effect is negligible. In terms of excess air, it is found that although it affects negatively the heater efficiency it can be used to balance heat transfer between the convection and radiation zone in a way that fouling rates are reduced; however this strategy should be considered right from the design stage. Finally it is observed that steam injection is an effective method

  12. Classification of Feedwater Heater Performance Degradation Using Residual Sign Matrix

    International Nuclear Information System (INIS)

    Ha, Gayeon; Heo, Gyunyoung; Song, Seok Yoon

    2016-01-01

    Since a performance of Feedwater Heater (FWH) is directly related to the thermodynamic efficiency of Nuclear Power Plants (NPPs), performance degradation of FWH results in loss of thermal power and ultimately business benefit. Nevertheless, it is difficult to diagnose its degradation of performance during normal operation due to its minor changes in process parameters, for instance, pressure, temperature, and flowrate. In this paper, six degradation modes have been analyzed and the performance indices for FWH such as Terminal Temperature Difference (TTD) and Drain Cooling Approach (DCA) have been used to diagnose degradation modes. PEPSE (Performance Evaluation of Power System Efficiencies) simulation, which is a plant simulation software simulating plant static characteristic and building energy balance model, has been used to generate the data of performance indices of FWH and actual measurements of FWH from NPPs was used to validate the classification model. In this paper, six degradation modes have been analyzed and the performance indices for FWH have been used to diagnose what degradation mode occurs. The RSM was proposed as a trend identifier of variables. Using RSM, it is possible to obtain appropriate information of the variables in noise environment since noise can be compressed while the original information is being converted to a trend. The SVC has been performed to classify the degradation mode of FWH, and then actual measurements of FWH from NPPs was used to validate the classification model. Performance indices under various leakage conditions show different patterns. In further study, tube leakage simulations for the various cases will be needed

  13. Classification of Feedwater Heater Performance Degradation Using Residual Sign Matrix

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Gayeon; Heo, Gyunyoung [Kyung Hee University, Seoul (Korea, Republic of); Song, Seok Yoon [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    Since a performance of Feedwater Heater (FWH) is directly related to the thermodynamic efficiency of Nuclear Power Plants (NPPs), performance degradation of FWH results in loss of thermal power and ultimately business benefit. Nevertheless, it is difficult to diagnose its degradation of performance during normal operation due to its minor changes in process parameters, for instance, pressure, temperature, and flowrate. In this paper, six degradation modes have been analyzed and the performance indices for FWH such as Terminal Temperature Difference (TTD) and Drain Cooling Approach (DCA) have been used to diagnose degradation modes. PEPSE (Performance Evaluation of Power System Efficiencies) simulation, which is a plant simulation software simulating plant static characteristic and building energy balance model, has been used to generate the data of performance indices of FWH and actual measurements of FWH from NPPs was used to validate the classification model. In this paper, six degradation modes have been analyzed and the performance indices for FWH have been used to diagnose what degradation mode occurs. The RSM was proposed as a trend identifier of variables. Using RSM, it is possible to obtain appropriate information of the variables in noise environment since noise can be compressed while the original information is being converted to a trend. The SVC has been performed to classify the degradation mode of FWH, and then actual measurements of FWH from NPPs was used to validate the classification model. Performance indices under various leakage conditions show different patterns. In further study, tube leakage simulations for the various cases will be needed.

  14. Comparison of conventional and novel quadrupole drift tube magnets inspired by Klaus Halbach

    Energy Technology Data Exchange (ETDEWEB)

    Feinberg, B. [Lawrence Berkeley Lab., CA (United States)

    1995-02-01

    Quadrupole drift tube magnets for a heavy-ion linac provide a demanding application of magnet technology. A comparison is made of three different solutions to the problem of providing an adjustable high-field-strength quadrupole magnet in a small volume. A conventional tape-wound electromagnet quadrupole magnet (conventional) is compared with an adjustable permanent-magnet/iron quadrupole magnet (hybrid) and a laced permanent-magnet/iron/electromagnet (laced). Data is presented from magnets constructed for the SuperHILAC heavy-ion linear accelerator, and conclusions are drawn for various applications.

  15. Is Quantum Gravity a Super-Quantum Theory?

    OpenAIRE

    Chang, Lay Nam; Lewis, Zachary; Minic, Djordje; Takeuchi, Tatsu

    2013-01-01

    We argue that quantum gravity should be a super-quantum theory, that is, a theory whose non-local correlations are stronger than those of canonical quantum theory. As a super-quantum theory, quantum gravity should display distinct experimentally observable super-correlations of entangled stringy states.

  16. Characterization of large cadmium zinc telluride crystals grown by traveling heater method

    DEFF Research Database (Denmark)

    Chen, H.; Awadalla, S.A.; Iniewski, K.

    2008-01-01

    The focus of this paper is to evaluate thick, 20 X 20 X 10 and 10 X 10 X 10 mm(3), cadmium zinc telluride (CZT), Cd0.9Zn0.1Te, crystals grown using the traveling heater method (THIM). The phenomenal spectral performance and small size and low concentration of Te inclusions/precipitates of these c......The focus of this paper is to evaluate thick, 20 X 20 X 10 and 10 X 10 X 10 mm(3), cadmium zinc telluride (CZT), Cd0.9Zn0.1Te, crystals grown using the traveling heater method (THIM). The phenomenal spectral performance and small size and low concentration of Te inclusions...

  17. Application of a Linear Input/Output Model to Tankless Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Butcher T.; Schoenbauer, B.

    2011-12-31

    In this study, the applicability of a linear input/output model to gas-fired, tankless water heaters has been evaluated. This simple model assumes that the relationship between input and output, averaged over both active draw and idle periods, is linear. This approach is being applied to boilers in other studies and offers the potential to make a small number of simple measurements to obtain the model parameters. These parameters can then be used to predict performance under complex load patterns. Both condensing and non-condensing water heaters have been tested under a very wide range of load conditions. It is shown that this approach can be used to reproduce performance metrics, such as the energy factor, and can be used to evaluate the impacts of alternative draw patterns and conditions.

  18. Comparison of three systems of solar water heating by thermosiphon

    Science.gov (United States)

    Hernández, E.; Guzmán, R. E.

    2016-02-01

    The main purpose of this project was to elaborate a comparison between three water heating systems; using two plane water heating solar collector and another using a vacuum tube heater, all of them are on top of the cafeteria's roof on building of the “Universidad Pontificia Bolivariana” in Bucaramanga, Colombia. Through testing was determined each type of water heating systems' performance, where the Stainless Steel tube collector reached a maximum efficiency of 71.58%, the Copper Tubing Collector a maximum value of 76.31% and for the Vacuum Tube Heater Collector a maximum efficiency of 72.33%. The collector with copper coil was the system more efficient. So, taking into account the Performance and Temperature Curves, along with the weather conditions at the time of the testing we determined that the most efficient Solar Heating System is the one using a Vacuum Tube Heater Collector. Reaching a maximum efficiency of 72.33% and a maximum temperature of 62.6°C.

  19. Learning from errors in super-resolution.

    Science.gov (United States)

    Tang, Yi; Yuan, Yuan

    2014-11-01

    A novel framework of learning-based super-resolution is proposed by employing the process of learning from the estimation errors. The estimation errors generated by different learning-based super-resolution algorithms are statistically shown to be sparse and uncertain. The sparsity of the estimation errors means most of estimation errors are small enough. The uncertainty of the estimation errors means the location of the pixel with larger estimation error is random. Noticing the prior information about the estimation errors, a nonlinear boosting process of learning from these estimation errors is introduced into the general framework of the learning-based super-resolution. Within the novel framework of super-resolution, a low-rank decomposition technique is used to share the information of different super-resolution estimations and to remove the sparse estimation errors from different learning algorithms or training samples. The experimental results show the effectiveness and the efficiency of the proposed framework in enhancing the performance of different learning-based algorithms.

  20. Embedded cladding surface thermocouples on Zircaloy-sheathed heater rods

    International Nuclear Information System (INIS)

    Wilkins, S.C.

    1977-06-01

    Titanium-sheathed Type K thermocouples embedded in the cladding wall of zircaloy-sheathed heater rods are described. These thermocouples constitute part of a program intended to characterize the uncertainty of measurements made by surface-mounted cladding thermocouples on nuclear fuel rods. Fabrication and installation detail, and laboratory testing of sample thermocouple installations are included