WorldWideScience

Sample records for super collider injector

  1. The super collider revisited

    International Nuclear Information System (INIS)

    Hussein, M.S.; Pato, M.P.

    1992-01-01

    In this paper, the authors suggest a revised version of the Superconducting Super Collider (SSC) that employs the planned SSC first stage machine as an injector of 0.5 TeV protons into a power laser accelerator. The recently developed Non-linear Amplification of Inverse Bremsstrahlung Acceleration (NAIBA) concept dictates the scenario of the next stage of acceleration. Post Star Wars lasers, available at several laboratories, can be used for the purpose. The 40 TeV CM energy, a target of the SSC, can be obtained with a new machine which can be 20 times smaller than the planned SSC

  2. Superconducting Super Collider project

    International Nuclear Information System (INIS)

    Perl, M.L.

    1986-04-01

    The scientific need for the Superconducting Super Collider (SSC) is outlined, along with the history of the development of the SSC concept. A brief technical description is given of each of the main points of the SSC conceptual design. The construction cost and construction schedule are discussed, followed by issues associated with the realization of the SSC. 8 refs., 3 figs., 3 tabs

  3. Superconducting super collider

    International Nuclear Information System (INIS)

    Limon, P.J.

    1987-01-01

    The Superconducting Super Collider is to be a 20 TeV per beam proton-proton accelerator and collider. Physically the SCC will be 52 miles in circumference and slightly oval in shape. The use of superconducting magnets instead of conventional cuts the circumference from 180 miles to the 52 miles. The operating cost of the SCC per year is estimated to be about $200-250 million. A detailed cost estimate of the project is roughly $3 billion in 1986 dollars. For the big collider ring, the technical cost are dominated by the magnet system. That is why one must focus on the cost and design of the magnets. Presently, the process of site selection is underway. The major R and D efforts concern superconducting dipoles. The magnets use niobium-titanium as a conductor stabilized in a copper matrix. 10 figures

  4. The Superconducting Super Collider: A status report

    International Nuclear Information System (INIS)

    Schwitters, R.F.

    1993-04-01

    The design of the Superconducting Super Collider (SSC) is briefly reviewed, including its key machine parameters. The scientific objectives are twofold: (1) investigation of high-mass, low-rate, rare phenomena beyond the standard model; and (2) investigation of processes within the domain of the standard model. Machine luminosity, a key parameter, is a function of beam brightness and current, and it must be preserved through the injector chain. Features of the various injectors are discussed. The superconducting magnet system is reviewed in terms of model magnet performance, including the highly successful Accelerator System String Test Various magnet design modifications are noted, reflecting minor changes in the collider arcs and improved installation procedures. The paper concludes with construction scenarios and priority issues for ensuring the earliest collider commissioning

  5. Siting the superconducting super collider

    International Nuclear Information System (INIS)

    Price, R.; Rooney, R.C.

    1988-01-01

    At the request of the Department of Energy, the National Academy of Sciences and the National Academy of Engineering established the Super Collider Site Evaluation Committee to evaluate the suitability of proposed sites for the Superconducting Super Collider. Thirty-six proposals were examined by the committee. Using the set of criteria announced by DOE in its Invitation for Site Proposals, the committee identified eight sites that merited inclusion on a ''best qualified list.'' The list represents the best collective judgment of 21 individuals, carefully chosen for their expertise and impartiality, after a detailed assessment of the proposals using 19 technical subcriteria and DOE's life cycle cost estimates. The sites, in alphabetical order, are: Arizona/Maricopa; Colorado; Illinois; Michigan/Stockbridge; New York/Rochester; North Carolina; Tennessee; and Texas/Dallas-Fort Worth. The evaluation of these sites and the Superconducting Super Collider are discussed in this book

  6. The Superconducting Super Collider (SSC) linac

    International Nuclear Information System (INIS)

    Watson, J.M.

    1990-09-01

    The preliminary design of the 600 MeV H - linac for the Superconducting Super Collider injector is described. The linac must provide a 25 mA beam during 7--35 μs macropulses at Hz within injection bursts. Normalized transverse emittances of less than 0.5 π mm-mrad (rms) are required for injection into the Low Energy Booster synchrotron. Cost, ease of commissioning, and operational reliability are important considerations. The linac will consists of an H - source with electrostatic LEBT, 2.5 MeV radiofrequency quadrupole accelerator, a 70 MeV drift-tube linac, and 530 MeV and the side-coupled linac operates at 1284 MHz. A modest total length of 150 m results from the tradeoff between cost optimization and reliability. The expected performance from beam dynamics simulations and the status of the project are described. 11 refs., 1 fig., 6 tabs

  7. The first tunnel section of the Superconducting Super Collider project

    International Nuclear Information System (INIS)

    Lundin, T.K.; Laughton, C.; Nelson, P.P.

    1990-11-01

    The Superconducting Super Collider (SSC) project will be constructed for the United States Department of Energy at a competitively-selected site in Ellis County, Texas, about 30 mile (50 km) south of the central business district of Dallas. The injector system and main collider ring will be housed in 70 mile (110 km) of tunnel, and the project will include additional shafts and underground enclosures with clear spans up to 30 ft (10 m) at depths of more than 250 ft (75 m). The first tunnel segment to be designed and constructed will include approximately 5.9 mile (9.4 km) of 12 ft (3.7 m) finished internal diameter tunnel, four shafts up to 55 ft (16.8 m) diameter, and various connecting tunnels and adits. Construction will be in weak rock lithologies, including mudstones, marls, and chalks with compressive strengths typically between 300 and 2500 psi (2.0 and 17.2 MPa). Design is underway, with an expected bid date before the end of 1990, and with start of construction following in the spring of 1991. 7 refs., 8 figs., 1 tab

  8. Computing and data handling requirements for SSC [Superconducting Super Collider] and LHC [Large Hadron Collider] experiments

    International Nuclear Information System (INIS)

    Lankford, A.J.

    1990-05-01

    A number of issues for computing and data handling in the online in environment at future high-luminosity, high-energy colliders, such as the Superconducting Super Collider (SSC) and Large Hadron Collider (LHC), are outlined. Requirements for trigger processing, data acquisition, and online processing are discussed. Some aspects of possible solutions are sketched. 6 refs., 3 figs

  9. SSC [Superconducting Super Collider] site evaluations

    International Nuclear Information System (INIS)

    1988-11-01

    With this report, the SSC Site Task Force forwards to the Director, Office of Energy Research, US Department of Energy (DOE), its evaluation of the technical criteria and life-cycle costs for the proposed SSC sites judged to be the best qualified. The criteria against which each site was evaluated are those set forth in the Invitation for Site Proposals for the Superconducting Super Collider (DOE/ER-0315) (Invitation) which was prepared by the Task Force and issued in April 1987. The methodology followed by the Task Force in this report and in all other phases of the proposal evaluation has been consistent with the SSC site selection process approved by DOE's Energy System Acquisition Advisory Board (ESAAB). The goal of the site selection process is to identify a site that will permit the highest level of research productivity and overall effectiveness of the SSC at a reasonable cost of construction and operation and with minimial impact on the environment. The Task Force acknowledges that all seven sites are, indeed, highly qualified locations for the construction and operation of the SSC on the basis of technical and cost considerations. In performing its evaluation, which is presented in this paper, the Task Force took an in-depth look at each site on the basis of site visits and extensive technical analyses. A consensus rating for each technical evaluation criterion and subcriterion was developed for each site

  10. Microcomputer control system for the SuperHILAC third injector

    International Nuclear Information System (INIS)

    Lancaster, H.D.; Magyary, S.B.; Glatz, J.; Selph, F.B.; Fahmie, M.P.; Ritchie, A.L.; Keith, S.R.; Stover, G.R.; Besse, L.J.

    1979-09-01

    A new control system using the latest technology in microcomputers will be used on the third injector at the SuperHILAC. It incorporates some new and progressive ideas in both hardware and software design. These ideas were inspired by the revolution in microprocessors. The third injector project consists of a high voltage pre-injector, a Wideroe type linear accelerator, and connecting beam lines, requiring control of 80 analog and 300 boolean devices. To solve this problem, emphasizing inexpensive, commercially available hardware, we designed a control system consisting of 20 microcomputer boards with a total of 700 kilobytes of memory. Each computer board using a 16-bit microprocessor has the computing power of a typical minicomputer. With these microcomputers operating in parallel, the programming can be greatly simplified, literally replacing software with hardware. This improves system response speed and cuts costs dramatically. An easy to use interpretive language, similar to BASIC, will allow operations personnel to write special purpose programs in addition to the compiled procedures

  11. Super High Energy Colliding Beam Accelerators

    International Nuclear Information System (INIS)

    Abdelaziz, M.E.

    2009-01-01

    This lecture presents a review of cyclic accelerators and their energy limitations. A description is given of the phase stability principle and evolution of the synchrotron, an accelerator without energy limitation. Then the concept of colliding beams emerged to yield doubling of the beam energy as in the Tevatron 2 trillion electron volts (TeV) proton collider at Fermilab and the Large Hadron Collider (LHC) which is now planned as a 14-TeV machine in the 27 kilometer tunnel of the Large Electron Positron (LEP) collider at CERN. Then presentation is given of the Superconducting Supercollider (SSC), a giant accelerator complex with energy 40-TeV in a tunnel 87 kilometers in circumference under the country surrounding Waxahachie in Texas, U.S.A. These superhigh energy accelerators are intended to smash protons against protons at energy sufficient to reveal the nature of matter and to consolidate the prevailing general theory of elementary particle.

  12. Optical data transmission at the superconducting super collider

    International Nuclear Information System (INIS)

    Leskovar, B.

    1989-02-01

    Digital and analog data transmissions via fiber optics for the Superconducting Super Collider have been investigated. The state of the art of optical transmitters, low loss fiber waveguides, receivers and associated electronics components are reviewed and summarized. Emphasis is placed on the effects of the radiation environment on the performance of an optical data transmission system components. Also, the performance of candidate components of the wide band digital and analog transmission systems intended for deployment of the Superconducting Super Collider Detector is discussed. 27 refs., 15 figs

  13. Concept for a Future Super Proton-Proton Collider

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jingyu; et al.

    2015-07-12

    Following the discovery of the Higgs boson at LHC, new large colliders are being studied by the international high-energy community to explore Higgs physics in detail and new physics beyond the Standard Model. In China, a two-stage circular collider project CEPC-SPPC is proposed, with the first stage CEPC (Circular Electron Positron Collier, a so-called Higgs factory) focused on Higgs physics, and the second stage SPPC (Super Proton-Proton Collider) focused on new physics beyond the Standard Model. This paper discusses this second stage.

  14. Concept for a Future Super Proton-Proton Collider

    CERN Document Server

    Tang, Jingyu; Chai, Weiping; Chen, Fusan; Chen, Nian; Chou, Weiren; Dong, Haiyi; Gao, Jie; Han, Tao; Leng, Yongbin; Li, Guangrui; Gupta, Ramesh; Li, Peng; Li, Zhihui; Liu, Baiqi; Liu, Yudong; Lou, Xinchou; Luo, Qing; Malamud, Ernie; Mao, Lijun; Palmer, Robert B.; Peng, Quanling; Peng, Yuemei; Ruan, Manqi; Sabbi, GianLuca; Su, Feng; Su, Shufang; Stratakis, Diktys; Sun, Baogeng; Wang, Meifen; Wang, Jie; Wang, Liantao; Wang, Xiangqi; Wang, Yifang; Wang, Yong; Xiao, Ming; Xing, Qingzhi; Xu, Qingjin; Xu, Hongliang; Xu, Wei; Witte, Holger; Yan, Yingbing; Yang, Yongliang; Yang, Jiancheng; Yuan, Youjin; Zhang, Bo; Zhang, Yuhong; Zheng, Shuxin; Zhu, Kun; Zhu, Zian; Zou, Ye

    2015-01-01

    Following the discovery of the Higgs boson at LHC, new large colliders are being studied by the international high-energy community to explore Higgs physics in detail and new physics beyond the Standard Model. In China, a two-stage circular collider project CEPC-SPPC is proposed, with the first stage CEPC (Circular Electron Positron Collier, a so-called Higgs factory) focused on Higgs physics, and the second stage SPPC (Super Proton-Proton Collider) focused on new physics beyond the Standard Model. This paper discusses this second stage.

  15. Site-specific design of the super collider in Texas

    International Nuclear Information System (INIS)

    Laughton, C.; Nelson, P.P.; Lundin, T.K.

    1990-01-01

    This paper outlines the scope of the Superconducting Super Collider (SSC) in Texas, underground works and present the current accelerator layout. After a brief overview of the site geotechnical characteristics, emphasis will be placed upon the possibilities for the incorporation of mechanical excavation technology into the construction of the various underground structures

  16. Detectors for the superconducting super collider, design concepts, and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Gabriel, T.A.

    1989-06-01

    The physics of compensation calorimetry is reviewed in the light of the needs of the Superconducting Super Collider (SSC) detectors. The four major detector types: liquid argon, scintillator, room temperature liquids, and silicon, are analyzed with respect to some of their strengths and weaknesses. Finally, general comments are presented which reflect the reliability of simulation code systems.

  17. Detectors for the superconducting super collider, design concepts, and simulation

    International Nuclear Information System (INIS)

    Gabriel, T.A.

    1989-06-01

    The physics of compensation calorimetry is reviewed in the light of the needs of the Superconducting Super Collider (SSC) detectors. The four major detector types: liquid argon, scintillator, room temperature liquids, and silicon, are analyzed with respect to some of their strengths and weaknesses. Finally, general comments are presented which reflect the reliability of simulation code systems

  18. Detectors for the Superconducting Super Collider, design concepts, and simulation

    International Nuclear Information System (INIS)

    Gabriel, T.A.

    1989-01-01

    The physics of compensation calorimetry is reviewed in the light of the need of the Superconducting Super Collider (SSC) detectors. The four major detector types: liquid argon, scintillator, room temperature liquids, and silicon, are analyzed with respect to some of their strengths and weaknesses. Finally, general comments are presented which reflect the reliability of simulation code systems. 29 refs., 20 figs., 6 tabs

  19. Site-specific design of the super collider in Texas

    International Nuclear Information System (INIS)

    Laughton, C.; Nelson, P.P.; Lundin, T.K.

    1990-06-01

    This paper will outline the scope of the Superconducting Super Collider (SSC), underground works and present the current accelerator layout. After a brief overview of the site geotechnical characteristics, emphasis will be placed upon the possibilities for the incorporation of mechanical excavation technology into the construction of the various underground structures. 5 figs

  20. Frequency scaling of linear super-colliders

    International Nuclear Information System (INIS)

    Mondelli, A.; Chernin, D.; Drobot, A.; Reiser, M.; Granatstein, V.

    1986-06-01

    The development of electron-positron linear colliders in the TeV energy range will be facilitated by the development of high-power rf sources at frequencies above 2856 MHz. Present S-band technology, represented by the SLC, would require a length in excess of 50 km per linac to accelerate particles to energies above 1 TeV. By raising the rf driving frequency, the rf breakdown limit is increased, thereby allowing the length of the accelerators to be reduced. Currently available rf power sources set the realizable gradient limit in an rf linac at frequencies above S-band. This paper presents a model for the frequency scaling of linear colliders, with luminosity scaled in proportion to the square of the center-of-mass energy. Since wakefield effects are the dominant deleterious effect, a separate single-bunch simulation model is described which calculates the evolution of the beam bunch with specified wakefields, including the effects of using programmed phase positioning and Landau damping. The results presented here have been obtained for a SLAC structure, scaled in proportion to wavelength

  1. Probing LINEAR Collider Final Focus Systems in SuperKEKB

    CERN Document Server

    Thrane, Paul Conrad Vaagen

    2017-01-01

    A challenge for future linear collider final focus systems is the large chromaticity produced by the final quadrupoles. SuperKEKB will be correcting high levels of chromaticity using the traditional scheme which has been also proposed for the CLIC FFS. We present early simulation results indicating that lowering β*у in the SuperKEKB Low Energy Ring might be possible given on-axis injection and low bunch current, opening the possibility of testing chromaticity correction beyond FFTB level, similar to ILC and approaching that of CLIC. CLIC – Note – 1077

  2. High speed data transmission at the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Leskovar, B.

    1990-04-01

    High speed data transmission using fiber optics in the data acquisition system of the Superconducting Super Collider has been investigated. Emphasis is placed on the high speed data transmission system overview, the local data network and on subassemblies, such as optical transmitters and receivers. Also, the performance of candidate subassemblies having a low power dissipation for the data acquisition system is discussed. 14 refs., 5 figs

  3. Vacuum technology issues for the SSC [Superconducting Super Collider

    International Nuclear Information System (INIS)

    Joestlein, H.

    1989-01-01

    The Superconducting Super Collider, to be built in Texas, will provide an energy of 40 TeV from colliding proton beams. This energy is twenty times higher than currently available from the only other cryogenic collider, the Fermilab Tevatron, and will allow experiments that can lead to a better understanding of the fundamental properties of matter. The energy scale and the size of the new machine pose intriguing challenges and opportunities for the its vacuum systems. The discussion will include the effects of synchrotron radiation on cryogenic beam tubes, cold adsorption pumps for hydrogen, methods of leak checking large cryogenic systems, the development of cold beam valves, and radiation damage to components, especially electronics. 9 figs., 1 tab

  4. Superconducting super collider second generation dipole magnet cryostat design

    International Nuclear Information System (INIS)

    Niemann, R.C.; Bossert, R.C.; Carson, J.A.; Engler, N.H.; Gonczy, J.D.; Larson, E.T.; Nicol, T.H.; Ohmori, T.

    1988-12-01

    The Superconducting Super Collider, a planned colliding beam particle physics research facility, requires /approximately/10,000 superconducting devices for the control of high energy particle beams. The /approximately/7,500 collider ring superconducting dipole magnets require cryostats that are functional, cryogenically efficient, mass producible and cost effective. A second generation cryostat design has been developed utilizing the experiences gained during the construction, installation and operation of several full length first generation dipole magnet models. The nature of the cryostat improvements is presented. Considered are the connections between the magnet cold mass and its supports, cryogenic supports, cold mass axial anchor, thermal shields, insulation, vacuum vessel and interconnections. The details of the improvements are enumerated and the abstracted results of available component and system evaluations are presented. 8 refs., 11 figs

  5. Emittance calculations for the Stanford Linear Collider injector

    International Nuclear Information System (INIS)

    Sheppard, J.C.; Clendenin, J.E.; Helm, R.H.; Lee, M.J.; Miller, R.H.; Blocker, C.A.

    1983-03-01

    A series of measurements have been performed to determine the emittance of the high intensity, single bunch beam that is to be injected into the Stanford Linear Collider. On-line computer programs were used to control the Linac for the purpose of data acquisition and to fit the data to a model in order to deduce the beam emittance. This paper will describe the method of emittance calculation and present some of the measurement results

  6. Update on the high-current injector for the Stanford Linear collider

    International Nuclear Information System (INIS)

    James, M.B.; Clendenin, J.E.; Ecklund, S.D.; Miller, R.H.; Sheppard, J.C.; Sinclair, C.K.; Sodja, J.

    1983-03-01

    The high current injector has become operational. There are two crucial areas where improvements must be made to meet collider specifications: while the injector can produce up to 10 11 e - in a single S-band bucket, initially much of this charge was captured in a low energy tail and was this not suitable for transport through the accelerator and injection into the damping ring. Pulse to pulse position jitter has been observed, resulting in transverse wake field which increases beam emittance. The problems described above contribute to substantial current loss during transport from the injector (40 MeV) to the SLC damping ring (1.2 GeV). Experimental studies are continuing with the aim of understanding and improving beam characteristics including bunch length, pulse to pulse stability and emittance. The present status of these studies is reported

  7. Beam measurements on Argonne linac for collider injector design

    International Nuclear Information System (INIS)

    Mavrogenes, G.; James, M.B.; Koontz, R.F.; Miller, R.H.

    1980-01-01

    The 20 MeV electron linac at Argonne produces 5 x 10 10 electrons in a single bunch. This amount of charge per bunch is required for the proposed single pass collider at SLAC. For this reason the characteristics of the beam from this machine are of interest. The longitudinal charge distribution has been measured by a new technique. The technique is a variation on the deduction of bunch shape from a spectrum measurement. Under favorable conditions a resolution of about 1 0 of phase is possible, which is considerably better than can be achieved with streak cameras. The bunch length at 4.5 x 10 10 e - per bunch was measured to be 15 0 FWHM. The transverse emittance has also been measured using standard techniques. The emittance is 16 mm-mrad at 17.2 MeV. (Auth.)

  8. 1994 expected to be year of decision for European Super Collider.

    CERN Multimedia

    Sweet, William N

    1994-01-01

    Plans to build Europe's counterpart to the US' Superconducting Super Collider, the Large Hadron Collider, may push through when the CERN Council meets on Apr 15, 1994. The European scientific community is optimistic that the plan will be approved.

  9. Dealing with abort kicker prefire in the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Drozhdin, A.I.; Baishev, I.S.; Mokhov, N.V.; Parker, B.; Richardson, R.D.; Zhou, J.

    1993-05-01

    The Superconducting Super Collider uses a single-turn extraction abort system to divert the circulating beam to a massive graphite absorber at normal termination of the operating cycle or in case of any of a number of predefined fault modes. The Collider rings must be designed to be tolerant to abort extraction kicker prefires and misfires because of the large circulating beam energy. We have studied the consequences of beam loss in the accelerator due to such prefires and misfires in terms of material heating and radiation generation using full scale machine simulations and Monte-Carlo energy deposition calculations. Some results from these calculations as well as possible protective measures for minimizing the damaging effects of kicker prefire and misfire are discussed in this paper

  10. The prototype message broadcast system for the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Low, K.; Skegg, R.

    1990-11-01

    A prototype unified message broadcast system to handle the site-wide distribution of all control system messages for the Superconducting Super Collider is presented. The messages are assembled in the control room area and encapsulated for transmission via a general fiber-optic link system to devices distributed throughout 70 miles of tunnels. An embedded timing signal is used by the distribution system to ensure that messages arrive at all devices simultaneously. Devices receive messages using a special receiver sub-system. A simple version of this system is to be used in the Accelerator Systems String Test (ASST) at the SSC site in 1991. 3 refs., 6 figs., 1 tab

  11. Radio frequency quadrupole linac for the superconducting super collider

    International Nuclear Information System (INIS)

    Schrage, D.L.; Young, L.M.; Clark, W.L.; Billen, J.H.; DePaula, R.F.; Naranjo, A.C.; Neuschaefer, G.H.; Roybal, P.L.; Stovall, J.E.; Ray, K.; Richter, R.

    1993-01-01

    A 2.5 MeV, 428 MHz radio frequency quadrupole (RFQ) linac has been designed and fabricated by the Los Alamos National Laboratory and GAR Electroforming for the Superconducting Super Collider Laboratory. This device is a two segment accelerator fabricated from tellurium-copper (CDA14500) vane/cavity quadrants which are joined by electroforming. The structure incorporates an integral vacuum jacket and has no longitudinal rf or mechanical joints. The SSC RFQ linac is an extension of the design of the 1.0 MeV RFQ which was successfully flown on the BEAR Project. (orig.)

  12. The prototype message broadcast system for the superconducting super collider

    International Nuclear Information System (INIS)

    Low, K.; Skegg, R.

    1991-01-01

    This paper presents a prototype unified message broadcast system to handle the site-wide distribution of all control system messages for the Superconducting Super Collider. The messages are assembled in the control room area and encapsulated for transmission via a general fiber-optic link system to devices distributed throughout 70 miles of tunnels. An embedded timing signal is used by the distribution system to ensure that messages arrive at all devices simultaneously. Devices receive messages using a special receiver sub-system

  13. SSC [Superconducting Super Collider] dipole coil production tooling

    International Nuclear Information System (INIS)

    Carson, J.A.; Barczak, E.J.; Bossert, R.C.; Brandt, J.S.; Smith, G.A.

    1989-03-01

    Superconducting Super Collider dipole coils must be produced to high precision to ensure uniform prestress and even conductor distribution within the collared coil assembly. Tooling is being prepared at Fermilab for the production of high precision 1M and 16.6M SSC dipole coils suitable for mass production. The design and construction methods builds on the Tevatron tooling and production experience. Details of the design and construction methods and measured coil uniformity of 1M coils will be presented. 4 refs., 10 figs

  14. SLAC collider injector, RF-drive synchronization and trigger electronics, and 15-AMP thermionic-gun development

    International Nuclear Information System (INIS)

    Koontz, R.; Miller, R.; McKinney, T.; Wilmunder, A.

    1981-02-01

    The rf drive system for the Collider Injector Development (EL CID) including laser timing, subharmonic buncher drive and phasing, and accelerator rf drive is described. The rf synchronized master trigger generation scheme for the collider is outlined. Also, a 15 amp peak, 200 kV short pulse gun being developed at SLAC as a backup to the Sinclair laser gun is described

  15. Radiation shielding for the Super Collider West Utility region

    International Nuclear Information System (INIS)

    Meinke, R.; Mokhov, N.; Orth, D.; Parker, B.; Plant, D.

    1994-02-01

    Shielding considerations in the 20 x 20-TeV Superconducting Super Collider are strongly correlated with detailed machine specifics in the various accelerator sections. The West Utility, the most complex area of the Collider, concentrates all the major accelerator subsystems in a single area. The beam loss rate and associated radiation levels in this region are anticipated to be quite high, and massive radiation shielding is therefore required to protect personnel, Collider components, and the environment. The challenging task of simultaneously optimizing accelerator design and radiation shielding, both of which are strongly influenced by subsystem design details, requires the integration of several complex simulation codes. To this end we have performed exhaustive hadronic shower simulations with the MARS12 program; detailed accelerator lattice and optics optimization via the SYNCH, MAD, and MAGIC codes; and extensive 3-D configuration modeling of the accelerator tunnel and subsystems geometries. Our technique and the non-trivial results from such a combined approach are presented here. An integrated procedure is found invaluable in developing cost-effective radiation shielding solutions

  16. Object-oriented simulation for the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Zhou, Jiasheng; Chung, Moon-Jung

    1992-10-01

    This paper describes the design and implementation of an object-oriented simulation environment called OZ for the Superconducting Super Collider (SSC). The design applies object-oriented technology to data visualization, behavior modelling, dynamic simulation and version control. A meta class structure is proposed to model different types of objects in large systems by their functionality. OZ provides a direct-manipulation user interface which allows the user to visualize the data as an object in the database and interactively model the component of the system. Modelling can be exercised at different levels of the class hierarchy and then can be dynamically bound into a system for simulation. Inheritance is used to derive new configurations of the system or subsystem from the existing one, and specify an object's behavior. Delegation is used to construct a system by instantiating existing objects and ''stealing'' their methods by delegators

  17. Systems engineering at the Superconducting Super Collider (one year later)

    International Nuclear Information System (INIS)

    Nonte, J.

    1991-03-01

    After one year of systems engineering at the Superconducting Super Collider (SSC), the project baseline of costs, schedule milestones, and top-level (point design) physics parameters has been accepted by the Department of Energy (DOE). This paper describes the role of systems engineering in developing the baseline and in establishing requirements specifications, change control, and methods of tracking to a baseline. The differences between the Department of Defense and DOE--specifically at the SSC Laboratory (SSCL)--in application of systems engineering disciplines and tools are discussed. The aim of the paper is to inform participating industries of the anticipated requirements format and of the emphasis that will be placed on physics requirements as opposed to procedures. Industry subcontractors should have a better understanding of the systems engineering expected by the SSCL. 3 figs

  18. Fierce debate looms over funding of superconducting super collider

    International Nuclear Information System (INIS)

    Lepkowski, W.

    1988-01-01

    The coming session of Congress looks like a crucial one in the present era of Big Science. Legislators will have to decide on whether to go ahead and approve construction funding for the biggest atom smasher of all time, the Superconducting Super Collider (SSC). The Administration will be asking for about $230 million (out of a scheduled $350 million) to begin work. But uncertainties loom, and the debate ahead looks bloody. The SSC is a project the Department of Energy says will cost $4.4 billion in fiscal 1988 dollars, rated according to a targeted completion date in 1996. The General Accounting Office pegs the cost at $4.9 billion in 1985 dollars. In inflationary and project stretchout dollars, the figure could easily double. But money for science is again tight in the government, and battles that lie ahead involve the competition between science and social programs, and, indeed, between the sciences themselves. This article discusses these battles

  19. Superconducting Super Collider: Final environmental impact statement: Volume 1

    International Nuclear Information System (INIS)

    1988-12-01

    This Environmental Impact Statement (EIS) provides as much information as possible at this stage of the project development regarding the potential environmental impacts of the proposed construction and operation of a Superconducting Super Collider (SSC) at each of the site alternatives. However, the DOE recognizes that further review under the National Environmental Policy Act (NEPA) is required prior to construction and operation of the proposed SSC project at the selected site based on more detailed design and to identify specific mitigation measures which can be incorporated into final design. Accordingly, following selection of a site for the proposed SSC, the DOE will prepare a Supplemental EIS to address in more detail the impacts of constructing and operating the proposed SSC at the selected site and alternatives for mitigating those impacts. To measure the effects of constructing the SSC at any of the seven alternative sites, the DOE determined which aspects of the human environment would be significantly affected. The EIS describes the baseline conditions at each of the seven site alternatives, the trends underway resulting in changes, the potential environmental impacts expected if the SSC were sited, possible mitigations of adverse impacts, and resulting residual adverse impacts

  20. Superconducting Super Collider Laboratory coupled-cavity linac mechanical design

    International Nuclear Information System (INIS)

    Starling, W.J.; Cain, T.

    1992-01-01

    A collaboration between the Superconducting Super Collider Laboratory (SSCL) and the Los Alamos National Laboratory (LANL) for the engineering and mechanical design of the SSCL Coupled-Cavity Linac (CCL) has yielded an innovative example of the well known side coupled-cavity type of linear accelerator. The SSCL CCL accelerates an H - beam from 70 MeV to 600 MeV with an rf cavity structure consisting of eight tanks in each of nine modules for a total length of about 112 meters. Magnetically-coupled bridge couplers transfer power from tank to tank within a module. A single rf power input is located at the center bridge coupler of each module. The bridge couplers permit placement along the beam line of combined function focusing/steering electromagnets and diagnostic pods for beam instrumentation. Each tank and bridge coupler is rf frequency stabilized, nominally to 1,283 MHz, by water pumped through integral water passages. Air isolation grooves surround the water passages at each braze joint so that water-to-vacuum interfaces are avoided. Each tank is supported by adjustable spherical bearing rod end struts to permit alignment and accommodate thermal expansion and contraction of the rf structure. Tank struts, electromagnet/diagnostic pod support frames, vacuum manifolds and utilities are all mounted to a girder-and-leg support stand running the full length of the CCL. (Author) tab., fig

  1. Automatic tuning of the LBL SuperHILAC third-injector transport line

    Energy Technology Data Exchange (ETDEWEB)

    Pines, H.

    1983-03-01

    Testing of a new automatic tuning procedure in an LBL SuperHILAC beam transport line has been conducted with the third injector microcomputer control system. This technique is an advance over the sequential station-by-station automatic tuning method developed for the Bevalac transfer line. The computer now performs steering/focusing adjustments simultaneously on a number of quadrupole and dipole magnets comprising multiple-station sections of the injection line. New magnet currents are computed from equations governing beam optics in a real-time simulation of the beam line. The key to this emittance utilizing the same control magnets and beam profile monitors used for manual tuning of the line. This emittance calculation requires high resolution beam profile measurements using multi-wire profile monitors recently installed in the third injector line.

  2. Superconducting Super Collider silicon tracking subsystem research and development

    International Nuclear Information System (INIS)

    Miller, W.O.; Thompson, T.C.; Ziock, H.J.; Gamble, M.T.

    1990-12-01

    The Alamos National Laboratory Mechanical Engineering and Electronics Division has been investigating silicon-based elementary particle tracking device technology as part of the Superconducting Super Collider-sponsored silicon subsystem collaboration. Structural, materials, and thermal issues have been addressed. This paper explores detector structural integrity and stability, including detailed finite element models of the silicon wafer support and predictive methods used in designing with advanced composite materials. The current design comprises a magnesium metal matrix composite (MMC) truss space frame to provide a sparse support structure for the complex array of silicon detectors. This design satisfies the 25-μm structural stability requirement in a 10-Mrad radiation environment. This stability is achieved without exceeding the stringent particle interaction constraints set at 2.5% of a radiation length. Materials studies have considered thermal expansion, elastic modulus, resistance to radiation and chemicals, and manufacturability of numerous candidate materials. Based on optimization of these parameters, the MMC space frame will possess a coefficient of thermal expansion (CTE) near zero to avoid thermally induced distortions, whereas the cooling rings, which support the silicon detectors and heat pipe network, will probably be constructed of a graphite/epoxy composite whose CTE is engineered to match that of silicon. Results from radiation, chemical, and static loading tests are compared with analytical predictions and discussed. Electronic thermal loading and its efficient dissipation using heat pipe cooling technology are discussed. Calculations and preliminary designs for a sprayed-on graphite wick structure are presented. A hydrocarbon such as butane appears to be a superior choice of heat pipe working fluid based on cooling, handling, and safety criteria

  3. The super collider transverse feedback system for suppression of the emittance growth and beam instabilities

    International Nuclear Information System (INIS)

    Lebedev, V.A.

    1993-01-01

    A super collider transverse feedback system designed to suppress injection errors, emittance growth due to external noises, and beam instabilities is considered. It is supposed that the feedback system should consist of two circuits: an injection damper operating just after injection and a super damper. To damp the emittance growth, the superdamper has to operate with the ultimate decrement close to the revolution frequency. The physics of such a feedback system and its main limitations are discussed. 9 refs.; 21 figs.; 1 tab

  4. Cryogenic systems for the HEB accelerator of the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Abramovich, S.; Yuecel, A.

    1994-07-01

    This report discusses the following topics related to the Superconducting Super Collider: Cryogenic system -- general requirements; cryogenic system components; heat load budgets and refrigeration plant capacities; flow and thermal characteristics; process descriptions; cryogenic control instrumentation and value engineering trade-offs

  5. Data acquisition and online processing requirements for experimentation at the superconducting super collider

    International Nuclear Information System (INIS)

    Lankford, A.J.; Barsotti, E.; Gaines, I.

    1990-01-01

    Differences in scale between data acquisition and online processing requirements for detectors at the Superconducting Super Collider and systems for existing large detectors will require new architectures and technological advances in these systems. Emerging technologies will be employed for data transfer, processing, and recording. (orig.)

  6. Review of the abort dump shown in the SSC [superconducting super collider] conceptual design report

    International Nuclear Information System (INIS)

    Cossairt, J.D.

    1987-04-01

    This report details the design of the abort dump for the Superconducting Super-Collider (SSC). The dump is made from graphite and designed to absorb the maximum beam energy of 400 MJ. The report considers long time activation effects of the dump components. The report concludes that the basic design of the abort dump is well defined

  7. Contracting practices for the underground construction of the Superconducting Super Collider

    International Nuclear Information System (INIS)

    1989-01-01

    This report was prepared by a specially appointed committee under the auspices of the National Academy of Sciences/National Research Council to address contracting and associated management issues essential to the successful execution of underground construction for the Superconducting Super Collider

  8. Data acquisition and online processing requirements for experimentation at the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Lankford, A.J.; Barsotti, E.; Gaines, I.

    1989-07-01

    Differences in scale between data acquisition and online processing requirements for detectors at the Superconducting Super Collider and systems for existing large detectors will require new architectures and technological advances in these systems. Emerging technologies will be employed for data transfer, processing, and recording. 9 refs., 3 figs

  9. Status of superconducting magnets for the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Schermer, R.I.

    1993-09-01

    The arc sections of the High Energy Booster and the two Collider Rings will need more than 10,000, very large, superconducting dipole and quadrupole magnets. Development work on these magnets was carried out at US/DOE laboratories in a program that began in the mid 1980's. In 1991-1992, the technology was transferred to industry and twenty, full-length, Collider dipoles were successfully fabricated and tested. This program, along with HERA and Tevatron experience, has provided industry a data base to use in formulating detailed designs for the prototypes of the accelerator magnets, with an eye to reducing cost and enhancing producibility. Several model magnets from this latest phase of the industrial program have already been tested. The excessive ramp-rate sensitivity of the magnets is understood and solutions are under investigation

  10. Status of superconducting magnets for the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Schermer, R.I.

    1994-01-01

    The arc sections of the High Energy Booster and the two Collider Rings will need more than 10,000, very large, superconducting dipole and quadrupole magnets. Development work on these magnets was carried out at US/DOE laboratories in a program that began in the mid 1980's. In 1991--92, the technology was transferred to industry and twenty, full-length, Collider dipoles were successfully fabricated and tested. This program, along with HERA and Tevatron experience, has provided industry a data base to use in formulating detailed designs for the prototypes of the accelerator magnets, with an eye to reducing cost and enhancing producibility. Several model magnets from this latest phase of the industrial program have already been tested. The excessive ramp-rate sensitivity of the magnets is understood and solutions are under investigation

  11. A liquid nitrogen temperature SSC [Superconducting Super Collider

    International Nuclear Information System (INIS)

    McAshan, M.S.; VanderArend, P.

    1987-04-01

    Under the assumption that new developments in the science of superconductivity will lead to dipole magnets suitable for the SSC that have the same properties with regard to field, field quality, size and cost as those in the present conception of the collider, but operating at 77 K rather than 4.35 K; the initial cost of the collider facility is found to be less by $213 M out of the $2,000 M actual construction cost for the collider technical systems and the conventional facilities estimated in the Conceptual Design Report. EDI and contingency is not included in these figures. Operation at the higher temperature is not, however, an unequivocal advantage. The beam line vacuum system in the 77 K case presents problems that will require a larger magnet aperture for satisfactory solution. The costs of this together with the cost of the development and construction of the new vacuum system required is estimated to be $156 M. The net capital cost saving associated with the higher temperature operation is thus found to be $57 M or about 3% of the estimated cost. In addition it is estimated that the operating cost of the facility will under conditions be less by $27.5 M per year in the steady-state including an allowance for the greater availability of the simpler cryogenic system. 14 refs., 1 fig., 4 tabs

  12. Thermal performance measurements of a graphite tube compact cryogenic support for the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Gonczy, J.D.; Boroski, W.N.; Larson, E.T.; Nicol, T.H.; Niemann, R.C.; Otavka, J.G.; Ruschman, M.K.

    1988-12-01

    The magnet cryostat development program for the Superconducting Super Collider (SSC) High Energy Physics Proton-Proton Collider has produced an innovative design for the structural support of the cold mass and thermal radiation shields. This work updates the continuing development of the support known as the Compact Cryogenic Support (CCS). As the structural and thermal requirements of the SSC became better defined, a CCS was developed that employs an innermost tube comprised of a graphite composite material. Presented is the thermal performance to 4.5K of the graphite CCS model. 8 refs., 6 figs., 2 tabs

  13. Final Report - The Decline and Fall of the Superconducting Super Collider

    Energy Technology Data Exchange (ETDEWEB)

    RIORDAN, MICHAEL

    2011-11-29

    In October 1993 the US Congress terminated the Superconducting Super Collider — at the time the largest pure-science project ever attempted, with a total cost estimated to exceed $10 billion. It was a stunning loss for the US highenergy physics community, which until that moment had perched for decades at the pinnacle of American science. Ever since 1993, this once-dominant scientific community has been in gradual decline. With the 2010 startup of research on the CERN Large Hadron Collider and the 2011 shutdown of the Fermilab Tevatron, world leadership in elementary-particle physics has crossed the Atlantic and returned to Europe.

  14. From a {nu} factory to {mu} super + mu super {minus} Colliders

    Energy Technology Data Exchange (ETDEWEB)

    David Neuffer

    2000-12-21

    An important feature of a {mu}-storage ring {nu}-source is that it can be extended to the possibility of a future high-energy muon collider. The neutrino source provides a useful physics device that initiates key technologies required for future {mu}{sup +}-{mu}{sup {minus}} Colliders, but with much less demanding parameter requirements. These technologies include high-intensity {mu}-production, {mu}-capture, {mu}-cooling, {mu}-acceleration and multiturn {mu} storage rings. {mu}{sup +}-{mu}{sup {minus}} colliders require a similar number of muons, but they require that the muons be cooled to a much smaller phase space and formed into a small number of bunches, and both positive and negative bunches must be simultaneously captured. These differences are discussed, and the extension of the {nu}-source to {mu}{sup +}-{mu}{sup {minus}} collider specifications is described.

  15. Controlling the crossing angle in the SSC [Superconducting Super Collider

    International Nuclear Information System (INIS)

    Garren, A.A.; Johnson, D.E.

    1989-04-01

    The colliding beams in the SSC must cross at a small angle, so that when the bunches pass each other away from the interaction point (IP), they are sufficiently separated to avoid disruptive beam-beam forces. However, the crossing angle is so small that the adjacent quadrupoles must be common to both beams. Only after passing through four common quadrupoles on each side of the IP, are the beams split by vertical dipoles into separate beamlines. In order to make the closed orbits of the two beams cross at a definite angle at the IP (within a range up to 150 μrad), a series of correction dipoles are placed in the insertions. If these dipoles are excited in such a way as to control the closed orbits alone, the dispersion will be mismatched, reaching values of up to 50 cm in the arcs. This mismatch is due to the closed orbit displacements in the interaction region (IR) quadrupoles, causing them to act as bending magnets. Therefore, both the closed orbit and dispersion must be matched simultaneously. Solutions to this problem are presented. 6 figs

  16. Model SSC [Superconducting Super Collider] dipole magnet cryostat assembly at Fermilab

    International Nuclear Information System (INIS)

    Niemann, R.C.

    1989-03-01

    The Superconducting Super Collider (SSC) magnet development program includes the design, fabrication and testing of full length model dipole magnets. A result of the program has been the development of a magnet cryostat design. The cryostat subsystems consist of cold mass connection-slide, suspension, thermal shields, insulation, vacuum vessel and interconnections. Design details are presented along with model magnet production experience. 6 refs., 13 figs

  17. A bipolar monolithic preamplifier for high-capacitance SSC [Superconducting Super Collider] silicon calorimetry

    International Nuclear Information System (INIS)

    Britton, C.L. Jr.; Kennedy, E.J.; Bugg, W.M.

    1990-01-01

    This paper describes a preamplifier designed and fabricated specifically to address the requirements of silicon calorimetry for the Superconducting Super Collider (SSC). The topology and its features are discussed in addition to the design methodology employed. The simulated and measured results for noise, power consumption, and speed are presented. Simulated an measured data for radiation damage effects as well as data for post-damage annealing are also presented. 8 refs., 7 figs., 2 tabs

  18. Design and analysis of the SSC [Superconducting Super Collider] dipole magnet suspension system

    International Nuclear Information System (INIS)

    Nicol, T.H.; Niemann, R.C.; Gonczy, J.D.

    1989-03-01

    The design of the suspension system for Superconducting Super Collider (SSC) dipole magnets has been driven by rigorous thermal and structural requirements. The current system, designed to meet those requirements, represents a significant departure from previous superconducting magnet suspension system designs. This paper will present a summary of the design and analysis of the vertical and lateral suspension as well as the axial anchor system employed in SSC dipole magnets. 5 refs., 9 figs., 4 tabs

  19. Design of the multilayer insulation system for the Superconducting Super Collider 50mm dipole cryostat

    International Nuclear Information System (INIS)

    Boroski, W.N.; Nicol, T.H.; Schoo, C.J.

    1991-03-01

    The development of the multilayer insulation (MLI) system for the Superconducting Super Collider (SSC) 50 mm collider dipole cryostat is an ongoing extension of work conducted during the 40 mm cryostat program. While the basic design of the MLI system for the 50 mm cryostat resembles that of the 40 mm cryostat, results from measurements of MLI thermal performance below 80K have prompted a re-design of the MLI system for the 20K thermal radiation shield. Presented is the design of the MLI system for the 50 mm collider dipole cryostat, with discussion focusing on system performance, blanket geometry, cost-effective fabrication techniques, and built-in quality control measures that assure consistent thermal performance throughout the SSC accelerator. 16 refs., 8 figs., 2 tabs

  20. SuperB: Next-Generation e+e− B-factory Collider

    CERN Document Server

    Novokhatski, A; Chao, A; Nosochkov, Y; Seeman, J T; Sullivan, M K; Wienands, J T; Wittmer, W; Baylac, M A; Bourrion, O; Monseu, N; Vescovi, C; Bettoni, S; Biagini, M E; Boni, R; Boscolo, M; Demma, T; Drago, A; Esposito, M; Guiducci, S; Preger, M A; Raimondi, P; Tomassini, S; Zobov, M; Bogomyagkov, A V; Nikitin, S A; Piminov, P A; Shatilov, D N; Sinyatkin, S V; Vobly, P; Bolzon, B; Brunetti, L; Jeremie, A; A. Chancé; Fabbricatore, P; Farinon, S; Musenich, R; Liuzzo, S M; Paoloni, E; Okunev, I N; Poirier, F; Rimbault, C; Variola, A

    2011-01-01

    The SuperB international team continues to optimize the design of an electron-positron collider, which will allow the enhanced study of the origins of flavor physics. The project combines the best features of a linear collider (high single-collision luminosity) and a storage-ring collider (high repetition rate), bringing together all accelerator physics aspects to make a very high luminosity of 1036 cm-2 s-1. This asymmetric-energy collider with a polarized electron beam will produce hundreds of millions of B-mesons at the Y(4S) resonance. The present design is based on extremely low emittance beams colliding at a large Piwinski angle to allow very low ßy* without the need for ultra short bunches. Use of crab-waist sextupoles will enhance the luminosity, suppressing dangerous resonances and allowing for a higher beam-beam parameter. The project has flexible beam parameters, improved dynamic aperture, and spin-rotators in the Low Energy Ring for longitudinal polarization of the electron beam at the Interactio...

  1. Development of the SSC [Superconducting Super Collider] trim coil beam tube assembly

    International Nuclear Information System (INIS)

    Skaritka, J.; Kelly, E.; Schneider, W.

    1987-01-01

    The Superconducting Super Collider uses ≅9600 dipole magnets. The magnets have been carefully designed to exhibit minimal magnetic field harmonics. However, because of superconductor magnetization effects, iron saturation and conductor/coil positioning errors, certain harmonic errors are possible and must be corrected by use of multipole correctors called trim coils. For the most efficient use of axial space in the magnet, and lowest possible current, a distributed internal correction coil design is planned. The trim coil assembly is secured to the beam tube, a uhv tube with special strength, size, conductivity and vacuum. The report details the SSC trim coil/beam tube assembly specifications, history, and ongoing development

  2. Structural performance of the first SSC [Superconducting Super Collider] Design B dipole magnet

    International Nuclear Information System (INIS)

    Nicol, T.H.

    1989-09-01

    The first Design B Superconducting Super Collider (SSC) dipole magnet has been successfully tested. This magnet was heavily instrumented with temperature and strain gage sensors in order to evaluate its adherence to design constraints and design calculations. The instrumentation and associated data acquisition system allowed monitoring of the magnet during cooldown, warmup, and quench testing. This paper will focus on the results obtained from structural measurements on the suspension system during normal and rapid cooldowns and during quench studies at full magnet current. 4 refs., 9 figs

  3. An expression of interest in a Super Fixed Target Beauty Facility (SFT) at the Superconducting Super Collider

    International Nuclear Information System (INIS)

    1990-01-01

    The concept of a Super Fixed Target Beauty Facility (SFT) which uses a relatively low intensity 20 TeV proton beam as a generator of very high momenta B's is an exciting prospect which is very competitive with other B factory ideas. The yields of B's in such a facility are quite high (3 x 10 10 → 10 11 B's per year). At this level of statistics, CP violation measurements will be possible in many modes. In addition, the fixed target configuration, because of the high momenta of the produced B's and the resulting long decay lengths, facilitates the detection and reconstruction of B's and offers unique opportunities for observation of the B decays. The limited solid angle coverage required for the fixed target spectrometer makes the cost of the facility much cheaper than other e + e - or hadron collider options under consideration. The relatively low intensity 20 TeV beam (1 → 2 x 10 8 protons/second) needed for the SFT makes it possible to consider an extraction system which operates concurrently and in a non-interfering manner with the other collider experiments. One possible method for generating such a beam, crystal channeling, is discussed

  4. Review of scientific and technical options for the Superconducting Super Collider Program

    Energy Technology Data Exchange (ETDEWEB)

    Dombeck, T.

    1993-11-01

    This document is a review of options for the Superconducting Super Collider (SSC) Program. It is the result of an informal study by an ad-hoc working group consisting of Laboratory physicists and engineers who investigated the physics and technical implications of a number of possible alternative SSC programs. Previous studies have shown, and early in this study it was confirmed, that a collider of approximately 20 TeV protons on 20 TeV protons with a luminosity of 10{sup 33} cm{sup {minus}2}s{sup {minus}1} at each interaction region is needed to support a physics program that is guaranteed to answer existing particle physics questions and make new discoveries. Therefore, all options considered in this document were consistent with attainment of these original goals for the SSC. One promising option considered was a program of colliding anti-protons on protons as a possible means to reduce the cost of the SSC by eliminating one of the Collider rings. However, the luminosity requirements to obtain the SSC physics goals remains the same as for protons colliding with protons and this study confirms that even though progress has been made over the last ten years in obtaining the high intensity anti-proton beams necessary, a luminosity higher than 10{sup 32} cannot be guaranteed. Other options were examined to see what advantages could be derived by departing from the SSC baseline program, either in schedule, in parameters, by staging, or by combinations of these options. Even though we considered re-examination of the cost of the baseline program to be beyond the scope of this document, differential cost savings were estimated. Finally, a brief survey of progress over the last ten years in various technical areas that might lead to more cost effective engineering designs was included in this study, such as higher magnetic field magnets resulting from lower operating temperatures or higher current-carrying superconducting materials.

  5. Review of scientific and technical options for the Superconducting Super Collider Program

    International Nuclear Information System (INIS)

    Dombeck, T.

    1993-11-01

    This document is a review of options for the Superconducting Super Collider (SSC) Program. It is the result of an informal study by an ad-hoc working group consisting of Laboratory physicists and engineers who investigated the physics and technical implications of a number of possible alternative SSC programs. Previous studies have shown, and early in this study it was confirmed, that a collider of approximately 20 TeV protons on 20 TeV protons with a luminosity of 10 33 cm -2 s -1 at each interaction region is needed to support a physics program that is guaranteed to answer existing particle physics questions and make new discoveries. Therefore, all options considered in this document were consistent with attainment of these original goals for the SSC. One promising option considered was a program of colliding anti-protons on protons as a possible means to reduce the cost of the SSC by eliminating one of the Collider rings. However, the luminosity requirements to obtain the SSC physics goals remains the same as for protons colliding with protons and this study confirms that even though progress has been made over the last ten years in obtaining the high intensity anti-proton beams necessary, a luminosity higher than 10 32 cannot be guaranteed. Other options were examined to see what advantages could be derived by departing from the SSC baseline program, either in schedule, in parameters, by staging, or by combinations of these options. Even though we considered re-examination of the cost of the baseline program to be beyond the scope of this document, differential cost savings were estimated. Finally, a brief survey of progress over the last ten years in various technical areas that might lead to more cost effective engineering designs was included in this study, such as higher magnetic field magnets resulting from lower operating temperatures or higher current-carrying superconducting materials

  6. DOENEWS: Address of John S. Herrington, Secretary of Energy, at the National symposium on the superconducting super collider in Denver, Colorado, December 3, 1987

    International Nuclear Information System (INIS)

    Herrington, J.S.

    1987-12-01

    In this address, the President's support for basic science is briefly discussed, and support for the Superconducting Super Collider in particular is emphasized. Perceived benefits of the Super Collider are discussed, including benefits to the world, training for scientists, maintaining American competitiveness. Federal support of science, including Congressional action, is discussed briefly

  7. Performance of six 4.5 m SSC [Superconducting Super Collider] dipole model magnets

    International Nuclear Information System (INIS)

    Willen, E.; Dahl, P.; Cottingham, J.

    1986-01-01

    Six 4.5 m long dipole models for the proposed Superconducting Super Collider have been successfully tested. The magnets are cold-iron (and cold bore) 1-in-1 dipoles, wound with current density-graded high homogeneity NbTi cable in a two-layer cos θ coil of 40 mm inner diameter. The coil is prestressed by 15 mm wide stainless steel collars, and mounted in a circular, split iron yoke of 267 mm outer diameter, supported in a cylindrical yoke containment vessel. At 4.5 K the magnets reached a field of about 6.6 T with little training, or the short sample limit of the conductor, and in subcooled (2.6 - 2.4 K) liquid, 8 T was achieved. The allowed harmonics were close to the predicted values, and the unallowed harmonics small. The sextupole trim coil operated well above the required current with little training

  8. Conceptual design of a superconducting solenoid for a magnetic SSC [Superconducting Super Collider] detector

    International Nuclear Information System (INIS)

    Fast, R.W.; Grimson, J.H.; Kephart, R.D.; Krebs, H.J.; Stone, M.E.; Theriot, D.; Wands, R.H.

    1988-07-01

    The conceptual design of a large superconducting solenoid suitable for a magnetic detector at the Superconducting Super Collider (SSC) has begun at Fermilab. The magnet will provide a magnetic field of 2 T over a volume 8 m in diameter by 16 m long. The particle-physics calorimetry will be inside the field volume and so the coil will be bath cooled and cryostable; the vessels will be stainless steel. Predictibility of performance and the ability to safely negotiate all probable failure modes, including a quench, are important items of the design philosophy. Although the magnet is considerably larger than existing solenoids of this type and although many issues of manufacturability, transportability and cost have not been completely addressed, our conceptual design has convinced us that this magnet is a reasonable extrapolation of present technology. 2 figs., 2 tabs

  9. Application of system safety engineering techniques for hazard prevention at the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Hendrix, B.L.

    1991-01-01

    A primary goal of the Superconducting Super Collider Laboratory (SSCL) is to establish an exemplary safety program. Achieving this goal requires leadership, planning, coordination, and technical know-how. To ensure that safety is an inherent part of the design, the Environment, Safety and Health Office employs a systems engineering discipline and process known as System Safety. The goal of System Safety - hazard prevention - is accomplished by analyzing systems to identify hazards and to evaluate design and procedural options and countermeasures to prevent, eliminate, mitigate, or control hazards and risks. Establishment of safety and human factors design criteria at the outset of the project prevents unsafe designs and safety violations, reduces risks, and helps in avoiding costly design changes later. This process requires a considerable amount of coordination with a variety of technical disciplines and safety professionals to integrate methods of hazard prevention, mitigation, and risk reduction throughout the system life-cycle

  10. Overview of real-time kernels at the Superconducting Super Collider Laboratory

    International Nuclear Information System (INIS)

    Low, K.; Acharya, S.; Allen, M.; Faught, E.; Haenni, D.; Kalbfleisch, C.

    1991-05-01

    The Superconducting Super Collider Laboratory (SSCL) will have many subsystems that will require real-time microprocessor control. Examples of such sub-systems requiring real-time controls are power supply ramp generators and quench protection monitors for the superconducting magnets. We plan on using a commercial multitasking real-time kernel in these systems. These kernels must perform in a consistent, reliable and efficient manner. Actual performance measurements have been conducted on four different kernels, all running on the same hardware platform. The measurements fall into two categories. Throughput measurements covering the ''non-real-time'' aspects of the kernel include process creation/termination times, interprocess communication facilities involving messages, semaphores and shared memory and memory allocation/deallocation. Measurements concentrating on real-time response are context switch times, interrupt latencies and interrupt task response. 6 refs., 2 tabs

  11. An experimental study of the SSC [Superconducting Super Collider] magnet aperture criterion

    International Nuclear Information System (INIS)

    Merminga, N.; Edwards, D.; Finley, D.

    1988-01-01

    A beam dynamics experiment, performed in the Fermilab Tevatron, that was mainly motivated by planning for the Superconducting Super Collider (SSC) is described. Nonlinearities are introduced in the Tevatron by special sextupoles in order to stimulate the SSC environment. ''Smear'' is one of the parameters used to characterize the deviation from linear behavior. Smear is extracted from experimental data and compared with calculation over a wide range of conditions. The agreement is excellent. The closed orbit at injection trajectory reveal no deterioration even at the highest sextupole excitations. Measurements of the dynamic aperture are in general agreement with prediction. Particles captured on nonlinear resonance islands are directly observed and measurements are performed for the first time. The stability of the islands under tune modulation is investigated. 4 refs., 8 figs

  12. Design and results of the radio frequency quadrupole RF system at the Superconducting Super Collider Laboratory

    International Nuclear Information System (INIS)

    Grippe, J.; Marsden, E.; Marrufo, O.; Regan, A.; Rees, D.; Ziomek, C.

    1993-05-01

    The Superconducting Super Collider Laboratory (SSCL) and the Los Alamos National Laboratory (LANL) entered into a joint venture to design and develop a 600 kW amplifier and its low-level controls for use in the Radio-Frequency Quadrupole (RFQ) accelerating cavity of the SSC. The design and development work has been completed. After being tested separately, the high power amplifier and low level RF control system were integrated and tested on a test cavity. Results of that tests are given. Tests were then carried out on the actual RFQ with and without the presence of the accelerated beam. Results of these tests are also given, along with the phase and amplitude information

  13. Overview of real-time kernels at the Superconducting Super Collider Laboratory

    International Nuclear Information System (INIS)

    Low, K.; Acharya, S.; Allen, M.; Faught, E.; Haenni, D.; Kalbfleisch, C.

    1991-01-01

    The Superconducting Super Collider Laboratory (SSCL) will have many subsystems that will require real-time microprocessor control. Examples of such Sub-systems requiring real-time controls are power supply ramp generators and quench protection monitors for the superconducting magnets. The authors plan on using a commercial multitasking real-time kernel in these systems. These kernels must perform in a consistent, reliable and efficient manner. Actual performance measurements have been conducted on four different kernels, all running on the same hardware platform. The measurements fall into two categories. Throughput measurements covering the 'non-real-time' aspects of the kernel include process creation/termination times, interprocess communication facilities involving messages, semaphores and shared memory and memory allocation/deallocation. Measurements concentrating on real-time response are context switch times, interrupt latencies and interrupt task response

  14. Test results from recent 1.8-m SSC [Superconducting Super Collider] model dipoles

    International Nuclear Information System (INIS)

    Wanderer, P.; Cottingham, J.G.; Dahl, P.

    1988-01-01

    We report results from four 1.8 m-long dipoles built as part of the Superconducting Super Collider (SSC) RandD program. Except for length, these models have the features of the SSC design, which is based on a two-layer cosine theta coil with 4 cm aperture. As compared to the 17 m design length SSC dipoles, these 1.8 m magnets are a faster and more economical way of testing design changes in field shape, conductor support in the coil straight-section and ends, etc. The four magnets reported here all reach fields in excess of 7.5T with little training and have excellent field shape. 10 refs., 2 figs., 3 tabs

  15. An aerial radiological survey of the Superconducting Super Collider Laboratory and surrounding area, Waxahachie, Texas

    International Nuclear Information System (INIS)

    Fritzsche, A.E.

    1993-02-01

    An aerial radiological survey was conducted over the Superconducting Super Collider Laboratory (SSCL) site from July 22 through August 20,1991. Parallel lines were flown at intervals of 305 meters over a 1,036-square-kilometer (400-square-mile) area surrounding Waxahachie, Texas. The 70,000 terrestrial gamma energy spectra obtained were reduced to an exposure rate contour map overlaid on a United States Geological Survey (USGS) map of the area. The mean terrestrial exposure rate measured was 5.4 μR/h at 1 meter above ground level. Comparison to ground-based measurements shows good agreement. No anomalous or man-made isotopes were detected

  16. Tunnel visions the rise and fall of the Superconducting Super Collider

    CERN Document Server

    Riordan, Michael; Kolb, Adrienne W

    2015-01-01

    Starting in the 1950s, US physicists dominated the search for elementary particles; aided by the association of this research with national security, they held this position for decades. In an effort to maintain their hegemony and track down the elusive Higgs boson, they convinced President Reagan and Congress to support construction of the multibillion-dollar Superconducting Super Collider project in Texas-the largest basic-science project ever attempted. But after the Cold War ended and the estimated SSC cost surpassed ten billion dollars, Congress terminated the project in October 1993. Drawing on extensive archival research, contemporaneous press accounts, and over one hundred interviews with scientists, engineers, government officials, and others involved, Tunnel Visions tells the riveting story of the aborted SSC project. The authors examine the complex, interrelated causes for its demise, including problems of large-project management, continuing cost overruns, and lack of foreign contributions. In doi...

  17. Building the Superconducting Super Collider, 1989-1993: The Problem of Project Management

    Science.gov (United States)

    Riordan, Michael

    2011-04-01

    In attempting to construct the Superconducting Super Collider, US particle physicists faced a challenge unprecedented in the history of science. The SSC was the biggest and costliest pure scientific project ever, comparable in overall scale to the Manhattan Project or the Panama Canal - an order of magnitude larger than any previous particle accelerator or collider project. Managing such an enormous endeavor involved coordinating conventional-construction, magnet-manufacturing, and detector-building efforts costing over a billion dollars apiece. Because project-management experience at this scale did not exist within the physics community, the Universities Research Association and the US Department of Energy turned to companies and individuals from the military-industrial complex, with mixed results. The absence of a strong, qualified individual to serve as Project Manager throughout the duration of the project was a major problem. I contend that these problems in its project management contributed importantly to the SSC's 1993 demise. Research supported by NSF Award No. 823296.

  18. A Bridge Too Far: The Demise of the Superconducting Super Collider, 1989-1993

    Science.gov (United States)

    Riordan, Michael

    2015-04-01

    In October 1993 the US Congress terminated the Superconducting Super Collider -- at over 10 billion the largest and costliest basic-science project ever attempted. It was a disastrous loss for the nation's once-dominant high-energy physics community, which has been slowly declining since then. With the 2012 discovery of the Higgs boson at CERN's Large Hadron Collider, Europe has assumed world leadership in this field. A combination of fiscal austerity, continuing SSC cost overruns, intense Congressional scrutiny, lack of major foreign contributions, waning Presidential support, and the widespread public perception of mismanagement led to the project's demise nearly five years after it had begun. Its termination occurred against the political backdrop of changing scientific needs as US science policy shifted to a post-Cold War footing during the early 1990s. And the growing cost of the SSC inevitably exerted undue pressure upon other worthy research, thus weakening its support in Congress and the broader scientific community. As underscored by the Higgs boson discovery, at a mass substantially below that of the top quark, the SSC did not need to collide protons at 40 TeV in order to attain its premier physics goal. The selection of this design energy was governed more by politics than by physics, given that Europeans could build the LHC by eventually installing superconducting magnets in the LEP tunnel under construction in the mid-1980s. In hindsight, there were good alternative projects the US high-energy physics community could have pursued that did not involve building a gargantuan, multibillion-dollar machine at a green-field site in Texas. Research supported by the National Science Foundation, Department of Energy, and the Richard Lounsbery Foundation.

  19. Report of the reference designs study group on the superconducting super collider

    International Nuclear Information System (INIS)

    1984-01-01

    In December, 1983, the directors of the US high energy accelerator laboratories chartered the National SSC Reference Designs Study to review in detail the technical and economic feasibility of various options for creating the Superconducting Super Collider (SSC) facility, a 20 TeV on 20 TeV proton-proton collider having a luminosity up to 10 33 cm -2 sec -1 . The primary objective of the study was to help the DOE, the high energy physics community, and the scientific community as a whole to decide how best to proceed with SSC R and D directed toward improving the cost effectiveness of applicable accelerator technology. We have concluded that the basic principles of design used successfully for existing accelerators can be conservatively extended to a proton collider having the SSC primary specifications of energy and luminosity. Furthermore, each of the three reference magnet styles studied could serve as the foundation for an SSC facility meeting these specifications. A vigorous R and D program of approximately three years duration will be required to refine the cost estimates for the magnets, to determine their actual performance, to determine their manufacturability and reliability, and to develop cost-effective methods for their assembly and quality assurance. It is anticipated that the magnet options can be narrowed to a single one during an early phase of the R and D program. An important R and D goal will be to produce, using mass-production methods, a significant number of magnets of the chosen style. These magnets would then be thoroughly tested under conditions simulating actual accelerator operations

  20. Colliders

    CERN Document Server

    Chou, Weiren

    2014-01-01

    The idea of colliding two particle beams to fully exploit the energy of accelerated particles was first proposed by Rolf Wideröe, who in 1943 applied for a patent on the collider concept and was awarded the patent in 1953. The first three colliders — AdA in Italy, CBX in the US, and VEP-1 in the then Soviet Union — came to operation about 50 years ago in the mid-1960s. A number of other colliders followed. Over the past decades, colliders defined the energy frontier in particle physics. Different types of colliers — proton–proton, proton–antiproton, electron–positron, electron–proton, electron-ion and ion-ion colliders — have played complementary roles in fully mapping out the constituents and forces in the Standard Model (SM). We are now at a point where all predicted SM constituents of matter and forces have been found, and all the latest ones were found at colliders. Colliders also play a critical role in advancing beam physics, accelerator research and technology development. It is timel...

  1. Report of the Error and Emittance Task Force on the superconducting super collider: Part 1, Resistive machines

    International Nuclear Information System (INIS)

    1993-10-01

    A review of the design and specifications of the resistive accelerators in the SSC complex was conducted during the past year. This review was initiated in response to a request from the SSC Project Manager. The Error and Emittance Task Force was created October 30, 1992, and charged with reviewing issues associated with the specification of errors and tolerances throughout the injector chain and in the Collider, and to optimize the global error budget. Effects which directly impact the emittance budget were of prime importance. The Task Force responded to three charges: Examination of the resistive accelerators and their injection and extraction systems; examination of the connecting beamlines and the overall approach taken in their design; and global filling, timing, and synchronization issues. The High Energy Booster and the Collider were deemed to be sufficiently different from the resistive accelerators that it was decided to treat them as a separate group. They will be the subject of a second part to this report

  2. 3D calculations of the Superconducting Super Collider (SSC) 3 Tesla magnet

    International Nuclear Information System (INIS)

    Lari, R.J.

    1984-01-01

    A 20 TeV Superconducting Super Collider (SSC) proton accelerator is being proposed by the High Energy Physics Community. One proposal would consist of a ring of magnets 164 km in circumference with a field strength of 3 Tesla and would cost 2.7 billion dollars. The magnet consists of stacked steel laminations with superconducting coils. The desired field uniformity is obtained for all fields from 0.2 to 3 Tesla by using three (or more) different pole shapes. These three different laminations are stacked in the order 1-2-3-1-2-3-... creating a truly three dimensional geometry. A three laminated stack 1-2-3 with periodic boundary conditions at 1 and 3 was assigned about 5000 finite elements per lamination and solved using the computer program TOSCA. To check the TOSCA results, the field of each of the three different shaped laminations was calculated separately using periodic boundary conditions and compared to the two dimensional field calculations using TRIM. This was done for a constant permeability of 2000 and using the B-H table for fully annealed 1010 steel. The difference of the field calculations in the region of interest was always less than +-.2%

  3. Collarless, close-in, shaped iron aperture designs for the SSC [Superconducting Super Collider] dipole

    International Nuclear Information System (INIS)

    Gupta, R.C.; Morgan, G.H.

    1989-01-01

    The nominal-design SSC (Superconducting Super Collider) dipole encloses the coil in an iron yoke having a circular aperture. The radial gap between the coil and the iron is about 15 mm to provide space for a strong annular collar around the coil, and also to reduce the effects of iron saturation on central field harmonics. The 15 mm gap also reduces the desirable dipole field contributed by the iron. The present paper gives a coil and aperture configuration in which the gap is reduced to 5 mm at the midplane, in which the aperture is shaped to reduce the unwanted effects of iron saturation. The transfer function is increased about 5% at 6.6 Tesla and the unwanted harmonics are within SSC tolerances at all field levels. These designs would require that the yoke and containment vessel absorb the stresses due to assembly and magnetic forces. A short magnet is being built with a close-in shaped iron aperture and existing coil geometry to assess the benefits of this concept. 7 refs., 3 figs., 6 tabs

  4. Dynamic modeling and simulation of the superconducting super collider cryogenic helium system

    International Nuclear Information System (INIS)

    Hartzog, D.G.; Fox, V.G.; Mathias, P.M.; Nahmias, D.; McAshan, M.; Carcagno, R.

    1989-01-01

    To study the operation of the Superconducting Super Collider (SSC) cryogenic system during transient operating conditions, they have developed and programmed in FORTRAN, a time-dependent, nonlinear, homogeneous, lumped-parameter simulation model of the SSC cryogenic system. This dynamic simulator has a modular structure so that process flowsheet modifications can be easily accommodated with minimal recoding. It uses the LSODES integration package to advance the solution in time. For helium properties it uses Air Products implementation of the standard thermodynamic model developed by the NBS. Two additional simplified helium thermodynamic models developed by Air Products are available as options to reduce computation time. To facilitate the interpretation of output, they have linked the simulator to the speakeasy conversational language. The authors present a flowsheet of the process simulated, and the material and energy balances used in the engineering models. They then show simulation results for three transient operating scenarios: startup of the refrigeration system from standby to full load; the loss of 4K refrigeration caused by the tripping of one of two parallel compressors in a sector; and a full-field quench of a single magnet half-cell. They discuss the response of the fluid within the cryogenic circuits during these scenarios. 14 refs., 19 figs., 2 tabs

  5. The adoption of mechanized excavation techniques for the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Laughton, C.; Nelson, P.; Lundin, T.

    1991-01-01

    The Superconducting Super Collider (SSC) is the latest and largest in a line of high-energy physics accelerator projects. The five increasingly energetic accelerators which make up the physics laboratory complex are to be housed almost entirely in subsurface structures, which will include over 100 km of small-diameter tunnel. Among other reasons, the Texas SSC site was chosen from a set of state proposals because of the suitability of the host rock materials for the performance of rapid and efficient excavation work. This site bedrock units are relatively soft and homogeneous and should allow for a maximum use of mechanical excavation plant for the various underground openings. This paper will review the site conditions and describe the developed understanding of geologic material behavior. With completion of planned large-scale in-situ studies of the ground behavior to provide acquisition of early site-specific excavation data, final design and construction detail of critical structures can be undertaken with the necessary degree of confidence to satisfy the stringent performance requirements. 5 refs., 4 figs., 6 tabs

  6. Technical assessment of environmental and cost implications of superconducting super collider decommissioning

    International Nuclear Information System (INIS)

    Chen, S.Y.; Opelka, J.H.; Chambers, W.C.; Stavrou, J.

    1988-07-01

    Potential environmental and cost implications of decommissioning the proposed Superconducting Super Collider (SSC) are examined. One decommissioning alternative is selected for general assessment. That alternative includes removal of the major sources of radioactivity induced during operation and temporary entombment of remaining underground facilities. On the suface, the campus complex would be left in place for future use, but most other aboveground features would be dismantled and removed. Because of the low level of radioactivity that would be induced in SSC components during system operation, potential radiological impacts to the environment from decommissioning would be benign, and the estimated total occupational radiation dose to workers would be less that 5 person-rem. Potential nonradiological impacts of decommissioning are not evaluated because of the lack of site-specific data. The total estimated cost of decommissioning operations is $38 million. Although few current regulations are explicitly applicable, the SSC decommissioning operation should not encounter any difficulty in complying with potentially applicable regulatory constraints. Upon completion of decommissioning, the SSC site surface could be returned to unrestricted use, but it is recommended that a degree of institutional control and environmental monitoring be carried out for a short period following decommissioning. 11 refs., 8 figs., 6 tabs

  7. A frequency response study of dipole magnet cold mass for the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Leung, K.K.; Nicol, T.

    1991-03-01

    This paper describes the technique for calculating the dynamic response of the Superconducting Super Collider (SSC) dipole magnet cold mass. Dynamic motion specification and beam location stability of the cold mass are not available at the present time. Dynamic response of the cold mass depends on measures excitation at the location of the magnet anchoring points on the other factors such as: (1) composite damping of the dipole magnet system, and (2) coupling effect of the cryogenic vessel, concrete slab, and soil to structure interactions. Nevertheless, the cold mass has the largest effect on the motion of the SSC machine. This dynamic analysis is based on response spectra analysis using the finite element method. An upper bond solution will result from this method of analysis, compared to the transient dynamic response method which involves step-by-step time integration from recorded accelerograms. Since no recorded ground motions are available for the SSC site, response spectra from another source shall be employed for the present analysis. 4 refs., 3 figs., 1 tab

  8. Photon-counting monolithic avalanche photodiode arrays for the super collider

    International Nuclear Information System (INIS)

    Ishaque, A.N.; Castleberry, D.E.; Rougeot, H.M.

    1994-01-01

    In fiber tracking, calorimetry, and other high energy and nuclear physics experiments, the need arises to detect an optical signal consisting of a few photons (in some cases a single photoelectron) with a detector insensitive to magnetic fields. Previous attempts to detect a single photoelectron have involved avalanche photodiodes (APDs) operated in the Geiger mode, the visible light photon counter, and a photomultiplier tube with an APD as the anode. In this paper it is demonstrated that silicon APDs, biased below the breakdown voltage, can be used to detect a signal of a few photons with conventional pulse counting circuitry at room temperature. Moderate cooling, it is further argued, could make it possible to detect a single photoelectron. Monolithic arrays of silicon avalanche photodiodes fabricated by Radiation Monitoring Devices, Inc. (RMD) were evaluated for possible use in the Super Collider detector systems. Measurements on 3 element x 3 element (2 mm pitch) APD arrays, using pulse counting circuitry with a charge sensitive amplifier (CSA) and a Gaussian filter, are reported and found to conform to a simple noise model. The model is used to obtain the optimal operating point. Experimental results are described in Section II, modeling results in Section III, and the conclusions are summarized in Section IV

  9. Estimate of the longitudinal and transverse impedances for the superconducting super collider

    International Nuclear Information System (INIS)

    Ng, K.Y.

    1984-01-01

    We try to estimate the longitudinal impedance per harmonic Z/sub L//n as well as the transverse impedance Z/sub T/ for the 20 TeV Superconducting Super Collider (SSC). Effects due to space charge, wall resistivity, bellows, monitor plates, synchrotron radiation are considered. The resulting Z/sub L//n and Z/sub T/ are plotted. Such a knowledge of Z/sub L//n and Z/sub T/ is necessary in computing the limits of many types of instabilities for the bunched beam. To be more specific, in our estimation, we consider the special case of an injection energy of 1 TeV and assume a maximum field of 5 Tesla in the SSC dipoles. In some cases, we also assume a 60 0 FODO cell structure consisting of 4 dipoles and 2 quadrupoles each with 2 long straight sections. The beampipe radius and beam radius are chosen as b = 1.0 in. and a = 0.05 cm respectively. Totally, the storage ring consists of 364 cells and has a mean radius of R = 17.38 km. Our results show that when monitor plates matched at both ends (such as the ones used in the Tevatron) are used, their effects dominate both Z/sub L//n and Z/sub T. 7 references, 5 figures

  10. Successful NEPA compliance at the superconducting super collider laboratory: A case study

    International Nuclear Information System (INIS)

    Corning, B.C.; Wiebe, R.G.

    1992-01-01

    In January, 1970, the President signed the National Environmental Policy Act (NEPA) into law. NEPA has become the basic policy-setting federal law relating to protection of the environment and has provided the initiative for passage of other federal and state environmental statutes. Although many of these statutes have unique requirements, there is a need to coordinate NEPA compliance with review requirements of the other environmental statutes in order to avoid delays that can be caused by proceeding separately under each statute. Because of its multi-purpose scope, the NEPA process is an excellent means for accomplishing the required coordination. The Director of the Superconducting Super Collider Laboratory has committed the Laboratory to Total Environmental Compliance. Environmental Compliance involves a dynamic set of factors-requiring system maintenance with integrated planning and control-that by design will identify requirements, ensure implementation of mitigative actions, track follow-on efforts, and plan for future requirements. The Record of Decision to proceed with the building of the SSC required that several mitigation actions be addressed. Identifying these requirements, their sources, and whether they can be addressed within the context of existing policies and procedures is required to ensure appropriate and timely mitigative actions. Applicable requirements may include federal, state, and local regulations, applicable Department of Energy Orders, best management practices, Laboratory requirements, and the adequacy and effectiveness of DOE and contractor management programs. Mitigative action is a principal aspect of total environmental compliance, conducted at all levels of the Laboratory, not just as an environmental function. Identified requirements are prioritized. Goals and objectives are set for implementing and successfully completing each mitigative action. Feedback mechanisms required for tracking the progress of each action are developed

  11. Report on the program of 4 K irradiation of insulating materials for the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Spindel, A.

    1993-07-01

    This report is intended to serve as an aid to material selection. The results reported herein are the product of a careful investigation and can be used with confidence in their validity. The selection of materials based on this data, however, is not the responsibility of the author. This report will not approve or disapprove any specific material for use in the Super Collider. The author of this report does not assume any design responsibility or responsibility for material selection for any application. It is, therefore, very important that those with design responsibility use this report wisely. For this reason, the following informational guide to the material selection process has been provided. There are several issues to take into account when evaluating a material for radiation resistance. It is very important that the design criteria and operating loads for the application be known. For many applications the actual loading, and therefore required properties, are unknown. Certain materials have empirically been used successfully in a similar application and those materials have often been selected on that basis. Both percent degradation and the magnitude of the actual properties after irradiation need to be considered. Consider the scenario where two materials are being compared that both have acceptable properties after exposure to 10 9 rads. It is preferable to choose the material with less degradation because degradation tends to be a threshold phenomena with properties declining rapidly with dose after a certain threshold dose. The properties of the initially strong material, therefore, will be extremely sensitive to dose in that dose range and slight magnet-to-magnet differences in dose may, depending on the application, lead to performance variations

  12. Report of the Reference Designs Study Group on the Superconducting Super Collider. Appendix A. Design details

    International Nuclear Information System (INIS)

    1984-05-01

    Designs are presented for magnets, cryogenics, vacuum systems, main power supply and quench protection system, correction element power supplies, radio-frequency system, injection system, beam abort system, beam instrumentation, control system, site safety, injector, survey and alignment

  13. The modified high-energy transport code, HETC, and design calculations for the SSC [Superconducting Super Collider

    International Nuclear Information System (INIS)

    Alsmiller, R.G. Jr.; Alsmiller, F.S.; Gabriel, T.A.; Hermann, O.W.; Bishop, B.L.

    1988-01-01

    The proposed Superconducting Super Collider (SSC) will have two circulating proton beams, each with an energy of 20 TeV. In order to perform detector and shield design calculations at these higher energies that are as accurate as possible, it is necessary to incorporate in the calculations the best available information on differential particle production from hadron-nucleus collisions. In this paper, the manner in which this has been done in the High-Energy Transport Code HETC will be described and calculated results obtained with the modified code will be compared with experimental data. 10 refs., 1 fig

  14. Advanced composite materials and processes for the manufacture of SSC (Superconducting Super Collider) and RHIC (Relativistic Heavy Ion Collider) superconducting magnets used at cryogenic temperatures in a high radiation environment

    Energy Technology Data Exchange (ETDEWEB)

    Sondericker, J.H.

    1989-01-01

    Presently, BNL work on superconducting magnets centers mainly on the development of 17 meter length dipoles for the Superconducting Super Collider Project, approved for construction at Waxahatchie, Texas and 9.7 meter dipoles and quadrupoles for the Relativistic Heavy Ion Collider, a BNL project to start construction next year. This paper will discuss the role of composites in the manufacture of magnets, their operational requirements in cryogenic and radiation environments, and the benefits derived from their use. 13 figs.

  15. Advanced composite materials and processes for the manufacture of SSC [Superconducting Super Collider] and RHIC [Relativistic Heavy Ion Collider] superconducting magnets used at cryogenic temperatures in a high radiation environment

    International Nuclear Information System (INIS)

    Sondericker, J.H.

    1989-01-01

    Presently, BNL work on superconducting magnets centers mainly on the development of 17 meter length dipoles for the Superconducting Super Collider Project, approved for construction at Waxahatchie, Texas and 9.7 meter dipoles and quadrupoles for the Relativistic Heavy Ion Collider, a BNL project to start construction next year. This paper will discuss the role of composites in the manufacture of magnets, their operational requirements in cryogenic and radiation environments, and the benefits derived from their use. 13 figs

  16. Development and applications of super high energy collider accelerators. Vol. 1

    Energy Technology Data Exchange (ETDEWEB)

    Abdelaziz, E M [National Center for Nuclear Safety and Radiation Control, Atomic Energy Authority, Cairo, (Egypt)

    1996-03-01

    This paper presents a review of cyclic accelerators and their energy limitations. A description is given of the phase stability principle and evaluation of the synchrotron, an accelerator without energy limitation. Then the concept of colliding beams emerged to yield doubling of the beam energy as in the Tevatron 2 trillion electron volts (TeV) proton collider at Fermilab, and the large harden collider (LHD) which is now planned as a 14-TeV machine in the 27 Kilometer tunnel of the large electron positron (LEP) collider at CERN. Then presentation is given of the superconducting supercollider (SSC), a giant accelerator complex with energy 40-TeV in a tunnel 87 Kilometers in circumference under the country surrounding Waxahachile in Texas, U.S.A. These superhigh energy accelerators are intended to smash protons against protons at energy sufficient to reveal the nature of matter and to consolidate the prevailing general theory of elementary particles. 12 figs., 1 tab.

  17. Development and applications of super high energy collider accelerators. Vol. 1

    International Nuclear Information System (INIS)

    Abdelaziz, E.M.

    1996-01-01

    This paper presents a review of cyclic accelerators and their energy limitations. A description is given of the phase stability principle and evaluation of the synchrotron, an accelerator without energy limitation. Then the concept of colliding beams emerged to yield doubling of the beam energy as in the Tevatron 2 trillion electron volts (TeV) proton collider at Fermilab, and the large harden collider (LHD) which is now planned as a 14-TeV machine in the 27 Kilometer tunnel of the large electron positron (LEP) collider at CERN. Then presentation is given of the superconducting supercollider (SSC), a giant accelerator complex with energy 40-TeV in a tunnel 87 Kilometers in circumference under the country surrounding Waxahachile in Texas, U.S.A. These superhigh energy accelerators are intended to smash protons against protons at energy sufficient to reveal the nature of matter and to consolidate the prevailing general theory of elementary particles. 12 figs., 1 tab

  18. Integrated design of the SSC linac injector

    International Nuclear Information System (INIS)

    Evans, D.; Valiecnti, R.; Wood, F.

    1992-01-01

    The Ion Source, Low Energy Beam Transport (LEBT), and Radio Frequency Quadrupole (RFQ) of the Superconducting Super Collider (SSC) Linac act as a unit (referred to as the Linac Injector), the Ion Source and LEBT being cantilevered off of the RFQ. Immediately adjacent to both ends of the RFQ cavity proper are endwall chambers containing beam instrumentation and independently-operated vacuum isolation valves. The Linac Injector delivers 30 mA of H - beam at 2.5 MeV. This paper describes the design constraints imposed on the endwalls, aspects of the integration of the Ion Source and LEBT including attachment to the RFQ, maintainability and interchangeability of LEBTs, vacuum systems for each component, and the design of necessary support structure. (Author) 2 tab

  19. Thermal performance measurements of a 100 percent polyester MLI [multilayer insulation] system for the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Gonczy, J.D.; Boroski, W.N.; Niemann, R.C.

    1989-09-01

    The plastic materials used in the multilayer insulation (MLI) blankets of the superconducting magnets of the Superconducting Super Collider (SSC) are comprised entirely of polyesters. This paper reports on tests conducted in three separate experimental blanket arrangements. The tests explore the thermal performance of two candidate blanket joint configurations each employing a variation of a stepped-butted joint nested between sewn blanket seams. The results from the joint configurations are compared to measurements made describing the thermal performance of the basic blanket materials as tested in an ideal joint configuration. Twenty foil sensors were incorporated within each test blanket to measure interstitial layer and joint layer temperatures. Heat flux and thermal gradients are reported for high and degraded insulating vacuums, and during transient and steady state conditions. In complement with this paper is an associate paper bearing the same title head but with the title extension 'Part 1: Instrumentation and experimental preparation (300K-80K)'. 5 refs., 8 figs., 2 tabs

  20. Construction of cold mass assembly for full-length dipoles for the SSC [Superconducting Super Collider] accelerator

    International Nuclear Information System (INIS)

    Dahl, P.; Cottingham, J.; Garber, M.

    1986-10-01

    Four of the initial six 17m long demonstration dipole magnets for the proposed Superconducting Super Collider have been constructed, and the first one is now being tested. This paper describes the magnet design and construction of the cold mass assembly. The magnets are cold iron (and cold bore) 1-in-1 dipoles, wound with partially keystoned current density-graded high homogeneity NbTi cable in a two-layer cos θ coil of 40 mm inner diameter. The magnetic length is 16.6 m. The coil is prestressed by 15 mm wide stainless steel collars, and mounted in a circular, split iron yoke of 267 mm outer diameter, supported by a cylindrical yoke (and helium) containment vessel of stainless steel. The magnet bore tube assembly incorporates superconducting sextupole trim coils produced by an industrial, automatic process akin to printed circuit fabrication

  1. Full-power test of a string of magnets comprising a half-cell of the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Burgett, W.; Christianson, M.; Coombes, R.

    1992-10-01

    In this paper we describe the full-powered operation of a string of industrially-fabricated magnets comprising a half-cell of the Superconducting Super Collider (SSC). The completion of these tests marks the first successful operation of a major SSC subsystem. The five 15-m long dipole magnets in the string had an aperture of 50 mm and the single 5-m long quadrupole aperture was 40 mm. Power and cryogenic connections were made to the string through spool pieces that are prototypes for SSC operations. The string was cooled to cryogenic temperatures in early July, 1992, and power tests were performed at progressively higher currents up to the nominal SSC operating point above 6500 amperes achieved in mid-August. In this paper we report on the electrical and cryogenic performance of the string components and the quench protection system during these initial tests

  2. Proposal of 99.99%-aluminum/7N01-Aluminum clad beam tube for high energy booster of Superconducting Super Collider

    International Nuclear Information System (INIS)

    Ishimaru, Hajime

    1994-01-01

    Proposal of 99.99% pure aluminum/7N01 aluminum alloy clad beam tube for high energy booster in Superconducting Super Collider is described. This aluminum clad beam tube has many good performances, but a eddy current effect is large in superconducting magnet quench collapse. The quench test result for aluminum clad beam tube is basically no problem against magnet quench collapse. (author)

  3. Proposed Fermilab upgrade main injector project

    International Nuclear Information System (INIS)

    1992-04-01

    The US Department of Energy (DOE) proposes to construct and operate a ''Fermilab Main Injector'' (FMI), a 150 GeV proton injector accelerator, at the Fermi National Accelerator Laboratory (Fermilab) in Batavia, Illinois. The purpose and need for this action are given of this Environmental Assessment (EA). A description of the proposed FMI and construction activities are also given. The proposed FMI would be housed in an underground tunnel with a circumference of approximately 2.1 miles (3.4 kilometers), and the construction would affect approximately 135 acres of the 6,800 acre Fermilab site. The purpose of the proposed FMI is to construct and bring into operation a new 150 GeV proton injector accelerator. This addition to Fermilab's Tevatron would enable scientists to penetrate ever more deeply into the subatomic world through the detection of the super massive particles that can be created when a proton and antiproton collide head-on. The conversion of energy into matter in these collisions makes it possible to create particles that existed only an instant after the beginning of time. The proposed FMI would significantly extend the scientific reach of the Tevatron, the world's first superconducting accelerator and highest energy proton-antiproton collider

  4. A silicon strip module for the ATLAS inner detector upgrade in the super LHC collider

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Sevilla, S., E-mail: Sergio.Gonzalez.Sevilla@cern.ch [DPNC, University of Geneva, CH 1211 Geneva 4 (Switzerland); Barbier, G. [DPNC, University of Geneva, CH 1211 Geneva 4 (Switzerland); Anghinolfi, F. [European Organization for Nuclear Research, CERN CH-1211, Geneva 23 (Switzerland); Cadoux, F.; Clark, A. [DPNC, University of Geneva, CH 1211 Geneva 4 (Switzerland); Dabrowski, W.; Dwuznik, M. [AGH University of Sceince and Technology, Faculty of Physics and Applied Computer Science, Krakow (Poland); Ferrere, D. [DPNC, University of Geneva, CH 1211 Geneva 4 (Switzerland); Garcia, C. [IFIC, Instituto de Fisica Corpuscular (CSIC-Universitat de Valencia), Edificio Investigacion Paterna, Apartado 22085 46071 Valencia (Spain); Ikegami, Y. [KEK, High Energy Accelerator Research Organization, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan); Hara, K. [University of Tsukuba, School of Pure and Applied Sciences, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571 (Japan); Jakobs, K. [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Kaplon, J. [European Organization for Nuclear Research, CERN CH-1211, Geneva 23 (Switzerland); Koriki, T. [KEK, High Energy Accelerator Research Organization, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan); Lacasta, C. [IFIC, Instituto de Fisica Corpuscular (CSIC-Universitat de Valencia), Edificio Investigacion Paterna, Apartado 22085 46071 Valencia (Spain); La Marra, D. [DPNC, University of Geneva, CH 1211 Geneva 4 (Switzerland); Marti i Garcia, S. [IFIC, Instituto de Fisica Corpuscular (CSIC-Universitat de Valencia), Edificio Investigacion Paterna, Apartado 22085 46071 Valencia (Spain); Parzefall, U. [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Pohl, M. [DPNC, University of Geneva, CH 1211 Geneva 4 (Switzerland); Terada, S. [KEK, High Energy Accelerator Research Organization, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan)

    2011-04-21

    The ATLAS detector is a general purpose experiment designed to fully exploit the discovery potential of the Large Hadron Collider (LHC) at a nominal luminosity of 10{sup 34} cm{sup -2} s{sup -1}. It is expected that after several years of successful data-taking, the LHC physics program will be extended by increasing the peak luminosity by one order of magnitude. For ATLAS, an upgrade scenario will imply the complete replacement of the Inner Detector (ID), since the current tracker will not provide the required performance due to cumulated radiation damage and a dramatic increase in the detector occupancy. In this paper, a proposal of a double-sided silicon micro-strip module for the short-strip region of the future ATLAS ID is presented. The expected thermal performance based upon detailed FEA simulations is discussed. First electrical results from a prototype version of the next generation readout front-end chips are also shown.

  5. Report of the Reference Designs Study Group on the superconducting super collider

    International Nuclear Information System (INIS)

    1984-05-01

    The study was based on three different styles of superconducting magnets, each emphasizing a different configuration aimed at sharply decreasing the cost of producing the needed magnet system below that achievable with existing designs. In the study three key areas were addressed: technical feasibility; economic feasibility; and identification of specific R and D needs. Primary emphasis was on estimating the cost range within which SSC construction can confidently be expected to fall. In doing this, attention was focused on the cost of creating the collider itself. The costs of research equipment, preconstruction R and D, and possible site acquisition are not included in this study. The report of the Reference Designs Study is meant neither as a proposal for SSC construction, nor as a site preference statement. We have concluded that the basic principles of design used successfully for existing accelerators can be conservatively extended to a proton collider having the SSC primary specifications of energy and luminosity. Furthermore, each of the three reference magnet styles studied could serve as the foundation for an SSC facility meeting these specifications. A vigorous R and D program of approximately three years duration will be required to refine the cost estimates for the magnets, to determine their actual performance, to determine their manufacturability and reliability, and to develop cost-effective methods for their assembly and quality assurance. It is anticipted that the magnet options can be narrowed to a single one during an early phase of the R and D program. An important R and D goal will be to produce, using mass-production methods, a significant number of magnets of the chosen style. These magnets would then be thoroughly tested under conditions simulating actual accelerator operations

  6. Experimental program to build a multimegawatt lasertron for super linear colliders

    International Nuclear Information System (INIS)

    Garwin, E.L.; Herrmannsfeldt, W.B.; Sinclair, C.; Weaver, J.N.; Welch, J.J.; Wilson, P.B.

    1985-04-01

    A lasertron (a microwave ''triode'' with an RF output cavity and an RF modulated laser to illuminate a photocathode) is a possible high power RF amplifier for TeV linear colliders. As the first step toward building a 35 MW, S-band lasertron for a proof of principle demonstration, a 400 kV dc diode is being designed with a GaAs photocathode, a drift-tube and a collector. After some cathode life tests are made in the diode, an RF output cavity will replace the drift tube and a mode-locked, frequency-doubled, Nd:YAG laser, modulated to produce a 1 us-long comb of 60 ps pulses at a 2856 MHz rate, will be used to illuminate the photocathode to make an RF power source out of the device. This paper discusses the plans for the project and includes some results of numerical simulation studies of the lasertron as well as some of the ultra-high vacuum and mechanical design requirements for incorporating a photocathode

  7. A silicon strip module for the ATLAS inner detector upgrade in the super LHC collider

    CERN Document Server

    Gonzalez-Sevilla, S; Parzefall, U; Clark, A; Ikegami, Y; Hara, K; Garcia, C; Jakobs, K; Dwuznik, M; Terada, S; Barbier, G; Koriki, T; Lacasta, C; Unno, Y; Anghinolfi, F; Cadoux, F; Garcia, S M I; Ferrere, D; La Marra, D; Pohl, M; Dabrowski, W; Kaplon, J

    2011-01-01

    The ATLAS detector is a general purpose experiment designed to fully exploit the discovery potential of the Large Hadron Collider (LHC) at a nominal luminosity of 10(34)cm(-2)s(-1). It is expected that after several years of successful data-taking, the LHC physics program will be extended by increasing the peak luminosity by one order of magnitude. For ATLAS, an upgrade scenario will imply the complete replacement of the Inner Detector (ID), since the current tracker will not provide the required performance due to cumulated radiation damage and a dramatic increase in the detector occupancy. In this paper, a proposal of a double-sided silicon micro-strip module for the short-strip region of the future ATLAS ID is presented. The expected thermal performance based upon detailed FEA simulations is discussed. First electrical results from a prototype version of the next generation readout front-end chips are also shown. (C) 2010 Elsevier B.V. All rights reserved.

  8. Thermal and structural performance of a single tube support post for the Superconducting Super Collider dipole magnet cryostat

    International Nuclear Information System (INIS)

    Boroski, W.N.; Nicol, T.H.; Ruschman, M.K.; Schoo, C.J.

    1993-07-01

    The reentrant support post currently incorporated in the Superconducting Super Collider (SSC) dipole cryostat has been shown to meet the structural and thermal requirements of the cryostat, both in prototype magnet assemblies and through component testing. However, the reentrant post design has two major drawbacks: tight dimensional control on all components, and cost driven by these tolerance constraints and a complex assembly procedure. A single tube support post has been developed as an alternative to the reentrant post design. Several prototype assemblies have been fabricated and subjected to structural testing. Compressive, tensile, and bending forces were applied to each assembly with deflection measured at several locations. A prototype support post has also been thermally evaluated in a heat leak measurement facility. Heat load to 4.2 K was measured with the intermediate post intercept operating at various temperatures while thermometers positioned along the conductive path of the post mapped thermal gradients. Results from these measurements indicate the single tube support post meets the design criteria for the SSC dipole magnet cryostat support system

  9. Thermal performance measurements of a 100 percent polyester MLI [multilayer insulation] system for the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Boroski, W.N.; Gonczy, J.D.; Niemann, R.C.

    1989-09-01

    Thermal performance measurements of a 100 percent polyester multilayer insulation (MLI) system for the Superconducting Super Collider (SSC) were conducted in a Heat Leak Test Facility (HLTF) under three experimental test arrangements. Each experiment measured the thermal performance of a 32-layer MLI blanket instrumented with twenty foil sensors to measure interstitial layer temperatures. Heat leak values and sensor temperatures were monitored during transient and steady state conditions under both design and degraded insulating vacuums. Heat leak values were measured using a heatmeter. MLI interstitial layer temperatures were measured using Cryogenic Linear Temperature Sensors (CLTS). Platinum resistors monitored system temperatures. High vacuum was measured using ion gauges; degraded vacuum employed thermocouple gauges. A four-wire system monitored instrumentation sensors and calibration heaters. An on-line computerized data acquisition system recorded and processes data. This paper reports on the instrumentation and experimental preparation used in carrying out these measurements. In complement with this paper is an associate paper bearing the same title head, but with the title extension 'Part 2: Laboratory results (300K--80K). 13 refs., 7 figs

  10. A blanket design, apparatus, and fabrication techniques for the mass production of multilayer insulation blankets for the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Gonczy, J.D.; Boroski, W.N.; Niemann, R.C.; Otavka, J.G.; Ruschman, M.K.; Schoo, C.J.

    1989-09-01

    The multilayer insulation (MLI) system for the Superconducting Super Collider (SSC) consists of full cryostat length assemblies of aluminized polyester film fabricated in the form of blankets and installed as blankets to the 4.5K cold mass and the 20K and 80K thermal radiation shields. Approximately 40,000 MLI blankets will be required in the 10,000 cryogenic devices comprising the SSC accelerator. Each blanket is nearly 17 meters long and 1.8 meters wide. This paper reports the blanket design, an apparatus, and the fabrication method used to mass produce pre-fabricated MLI blankets. Incorporated in the blanket design are techniques which automate quality control during installation of the MLI blankets in the SSC cryostat. The apparatus and blanket fabrication method insure consistency in the mass produced blankets by providing positive control of the dimensional parameters which contribute to the thermal performance of the MLI blanket. By virtue of the fabrication process, the MLI blankets have inherent features of dimensional stability three-dimensional uniformity, controlled layer density, layer-to-layer registration, interlayer cleanliness, and interlayer material to accommodate thermal contraction differences. 11 refs., 6 figs., 1 tab

  11. Review of project definition studies of possible on-site uses of superconducting super collider assets and facilities. Final report

    International Nuclear Information System (INIS)

    1994-12-01

    This document reports on the results of a peer review and evaluation of studies made of potential uses of assets from the terminated Superconducting Super Collider (SSC) project. These project definition studies focused on nine areas of use of major assets and facilities at the SSC site near Waxahachie, Texas. The studies were undertaken as part of the effort to maximize the value of the investment made in the SSC and were supported by two sets of grants, one to the Texas National Research Laboratory Commission (TNRLC) and the second to various universities and other institutions for studies of ideas raised by a public call for expressions of interest. The Settlement Agreement, recently signed by the Department of Energy (DOE) and TNRLC, provides for a division of SSC property. As part of the goal of maximizing the value of the SSC investment, the findings contained in this report are thus addressed to officials in both the Department and TNRLC. In addition, this review had several other goals: to provide constructive feedback to those doing the studies; to judge the benefits and feasibility (including funding prospects) of the projects studied; and to help worthy projects become reality by matching projects with possible funding sources

  12. Review of project definition studies of possible on-site uses of superconducting super collider assets and facilities

    International Nuclear Information System (INIS)

    1994-12-01

    This document reports on the results of a peer review and evaluation of studies made of potential uses of assets from the terminated Superconducting Super Collider (SSC) project. These project definition studies focused on nine areas of use of major assets and facilities at the SSC site near Waxahachie, Texas. The studies were undertaken as part of the effort to maximize the value of the investment made in the SSC and were supported by two sets of grants, one to the Texas National Research Laboratory Commission (TNRLC) and the second to various universities and other institutions for studies of ideas raised by a public call for expressions of interest. The Settlement Agreement, recently signed by the Department of Energy (DOE) and TNRLC, provides for a division of SSC property. As part of the goal of maximizing the value of the SSC investment, the findings contained in this report are thus addressed to officials in both the Department and TNRLC. In addition, this review had several other goals: to provide constructive feedback to those doing the studies; to judge the benefits and feasibility (including funding prospects) of the projects studied; and to help worthy projects become reality by matching projects with possible funding sources

  13. Review of project definition studies of possible on-site uses of superconducting super collider assets and facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    This document reports on the results of a peer review and evaluation of studies made of potential uses of assets from the terminated Superconducting Super Collider (SSC) project. These project definition studies focused on nine areas of use of major assets and facilities at the SSC site near Waxahachie, Texas. The studies were undertaken as part of the effort to maximize the value of the investment made in the SSC and were supported by two sets of grants, one to the Texas National Research Laboratory Commission (TNRLC) and the second to various universities and other institutions for studies of ideas raised by a public call for expressions of interest. The Settlement Agreement, recently signed by the Department of Energy (DOE) and TNRLC, provides for a division of SSC property. As part of the goal of maximizing the value of the SSC investment, the findings contained in this report are thus addressed to officials in both the Department and TNRLC. In addition, this review had several other goals: to provide constructive feedback to those doing the studies; to judge the benefits and feasibility (including funding prospects) of the projects studied; and to help worthy projects become reality by matching projects with possible funding sources.

  14. Review of project definition studies of possible on-site uses of superconducting super collider assets and facilities. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    This document reports on the results of a peer review and evaluation of studies made of potential uses of assets from the terminated Superconducting Super Collider (SSC) project. These project definition studies focused on nine areas of use of major assets and facilities at the SSC site near Waxahachie, Texas. The studies were undertaken as part of the effort to maximize the value of the investment made in the SSC and were supported by two sets of grants, one to the Texas National Research Laboratory Commission (TNRLC) and the second to various universities and other institutions for studies of ideas raised by a public call for expressions of interest. The Settlement Agreement, recently signed by the Department of Energy (DOE) and TNRLC, provides for a division of SSC property. As part of the goal of maximizing the value of the SSC investment, the findings contained in this report are thus addressed to officials in both the Department and TNRLC. In addition, this review had several other goals: to provide constructive feedback to those doing the studies; to judge the benefits and feasibility (including funding prospects) of the projects studied; and to help worthy projects become reality by matching projects with possible funding sources.

  15. Status report on an engineering design study of hermetic liquid argon calorimetry for the SSC [Superconducting Super Collider

    International Nuclear Information System (INIS)

    Adams, T.; Davis, M.; DiGiacomo, N.J.

    1989-01-01

    There is general recognition that engineering issues are critical to the viability of liquid argon calorimetry (LAC) at the Superconducting Super Collider (SSC). We have undertaken to quantitatively address these issues and, if possible, perform a preliminary design of a ''proof of principle'' LAC for SSC. To establish LAC as viable at SSC, we must demonstrate that the physics performance of the device is acceptable, despite the presence of dead material due to vessels and support structure. Our approach involves the construction, by a team of physicists and engineers, of one three dimensional model of the LAC system, built as a hierarchy of components and structures, from which we directly perform interferences checks, mechanical, thermal and magnetic analyses, particle tracking, hermeticity evaluation, physics simulation and assembly. This study, begun in February 1989 as part of the SSC generic detector R and D program, was immediately preceded by a workshop at which engineering details of existing and planned LAC systems were thoroughly examined. We describe below the status of our work, beginning with short descriptions of the tools used, the study requirements and LAC configuration baseline. We then detail the LAC design as it presently stands, including assembly considerations, and conclude with a quantitative assessment of the LAC hermeticity. 19 refs., 12 figs

  16. Design of a synchrotron radiation detector for the test beam lines at the Superconducting Super Collider Laboratory

    International Nuclear Information System (INIS)

    Hutton, R.D.

    1994-01-01

    As part of the particle- and momentum-tagging instrumentation required for the test beam lines of the Superconducting Super Collider (SSC), the synchrotron radiation detector (SRD) was designed to provide electron tagging at momentum above 75 GeV. In a parallel effort to the three test beam lines at the SSC, schedule demands required testing and calibration operations to be initiated at Fermilab. Synchrotron radiation detectors also were to be installed in the NM and MW beam lines at Femilab before the test beam lines at the SSC would become operational. The SRD is the last instrument in a series of three used in the SSC test beam fines. It follows a 20-m drift section of beam tube downstream of the last silicon strip detector. A bending dipole just in of the last silicon strip detector produces the synchrotron radiation that is detected in a 50-mm-square cross section NaI crystal. A secondary scintillator made of Bicron BC-400 plastic is used to discriminate whether it is synchrotron radiation or a stray particle that causes the triggering of the NaI crystal's photo multiplier tube (PMT)

  17. Report of the Department of Energy (DOE) Office of Energy Research Review Committee on the site-specific conceptual design of the Superconducting Super Collider

    International Nuclear Information System (INIS)

    1990-09-01

    After it was established in early 1989, the Superconducting Super Collider Laboratory (SSCL) began to prepare a detailed site-specific SSC conceptual design, including cost and schedule estimates. As detailed in the SSC Site-Specific Conceptual Design Report (SCDR), this design builds upon the design in the March 1986 SSC Conceptual Design Report (CDR) and takes into account characteristics of the SSC site, results of continuing magnet R ampersand D, and advances in accelerator design

  18. Simulation of the SSC [Superconducting Super Collider] refrigeration system using the ASPEN/SP process simulator

    International Nuclear Information System (INIS)

    Rasson, J.; Dweck, J.

    1990-08-01

    The SSC Magnet must maintain at a super conducting temperature of 4 K. The proposed refrigeration cooling processes consist of fairly simple closed cycles which take advantage of the Joule-Thompson effect via a series of expansions and compressions of helium gas which has been precooled by liquid nitrogen. The processes currently under consideration consist of three cycles, the 20 K shield cooling, the 45 K helium refrigerator and the helium liquefier. The process units which are to be employed are compressors, turbines, expanders, mixers, flashes, two stream heat exchangers and multiple stream heat exchangers. The cycles are to be operated at or near steady state. Due to the large number of competing cooling sector designs to be considered and the high capital and operating costs of the proposed processes, the SSC Laboratory requires a software tool for the validation and optimization of the individual designs and for the performance of cost-benefit analyses among competing designs. Since these processes are steady state flow processes involving primarily standard unit operations, a decision was made to investigate the application of a commercial process simulator to the task. Several months of internal evaluations by the SSC Laboratory revealed that while the overall structure and calculation approach of number of the commercial simulators were appropriate for this task, all were lacking essential capabilities in the areas of thermodynamic property calculations for cryogenic systems and modeling of complex, multiple stream heat exchangers. An acceptable thermodynamics model was provided and a series of simple, but representative benchmark problems developed. The model and problems were provided to three software vendors. Based on the results of the benchmark test, the ASPEN/SP process simulator was selected for future modeling work

  19. NLC electron injector beam dynamics

    International Nuclear Information System (INIS)

    Yeremian, A.D.; Miller, R.H.

    1995-10-01

    The Next Linear Collider (NLC) being designed at SLAC requires a train of 90 electron bunches 1.4 ns apart at 120 Hz. The intensity and emittance required at the interaction point, and the various machine systems between the injector and the IP determine the beam requirements from the injector. The style of injector chosen for the NLC is driven by the fact that the production of polarized electrons at the IP is a must. Based on the successful operation of the SLC polarized electron source a similar type of injector with a DC gun and subharmonic bunching system is chosen for the NLC

  20. Impact of high energy high intensity proton beams on targets: Case studies for Super Proton Synchrotron and Large Hadron Collider

    Directory of Open Access Journals (Sweden)

    N. A. Tahir

    2012-05-01

    Full Text Available The Large Hadron Collider (LHC is designed to collide two proton beams with unprecedented particle energy of 7 TeV. Each beam comprises 2808 bunches and the separation between two neighboring bunches is 25 ns. The energy stored in each beam is 362 MJ, sufficient to melt 500 kg copper. Safety of operation is very important when working with such powerful beams. An accidental release of even a very small fraction of the beam energy can result in severe damage to the equipment. The machine protection system is essential to handle all types of possible accidental hazards; however, it is important to know about possible consequences of failures. One of the critical failure scenarios is when the entire beam is lost at a single point. In this paper we present detailed numerical simulations of the full impact of one LHC beam on a cylindrical solid carbon target. First, the energy deposition by the protons is calculated with the FLUKA code and this energy deposition is used in the BIG2 code to study the corresponding thermodynamic and the hydrodynamic response of the target that leads to a reduction in the density. The modified density distribution is used in FLUKA to calculate new energy loss distribution and the two codes are thus run iteratively. A suitable iteration step is considered to be the time interval during which the target density along the axis decreases by 15%–20%. Our simulations suggest that the full LHC proton beam penetrates up to 25 m in solid carbon whereas the range of the shower from a single proton in solid carbon is just about 3 m (hydrodynamic tunneling effect. It is planned to perform experiments at the experimental facility HiRadMat (High Radiation Materials at CERN using the proton beam from the Super Proton Synchrotron (SPS, to compare experimental results with the theoretical predictions. Therefore simulations of the response of a solid copper cylindrical target hit by the SPS beam were performed. The particle

  1. Impact of high energy high intensity proton beams on targets: Case studies for Super Proton Synchrotron and Large Hadron Collider

    Science.gov (United States)

    Tahir, N. A.; Sancho, J. Blanco; Shutov, A.; Schmidt, R.; Piriz, A. R.

    2012-05-01

    The Large Hadron Collider (LHC) is designed to collide two proton beams with unprecedented particle energy of 7 TeV. Each beam comprises 2808 bunches and the separation between two neighboring bunches is 25 ns. The energy stored in each beam is 362 MJ, sufficient to melt 500 kg copper. Safety of operation is very important when working with such powerful beams. An accidental release of even a very small fraction of the beam energy can result in severe damage to the equipment. The machine protection system is essential to handle all types of possible accidental hazards; however, it is important to know about possible consequences of failures. One of the critical failure scenarios is when the entire beam is lost at a single point. In this paper we present detailed numerical simulations of the full impact of one LHC beam on a cylindrical solid carbon target. First, the energy deposition by the protons is calculated with the FLUKA code and this energy deposition is used in the BIG2 code to study the corresponding thermodynamic and the hydrodynamic response of the target that leads to a reduction in the density. The modified density distribution is used in FLUKA to calculate new energy loss distribution and the two codes are thus run iteratively. A suitable iteration step is considered to be the time interval during which the target density along the axis decreases by 15%-20%. Our simulations suggest that the full LHC proton beam penetrates up to 25 m in solid carbon whereas the range of the shower from a single proton in solid carbon is just about 3 m (hydrodynamic tunneling effect). It is planned to perform experiments at the experimental facility HiRadMat (High Radiation Materials) at CERN using the proton beam from the Super Proton Synchrotron (SPS), to compare experimental results with the theoretical predictions. Therefore simulations of the response of a solid copper cylindrical target hit by the SPS beam were performed. The particle energy in the SPS beam is 440

  2. Multilayer insulation (MLI) in the Superconducting Super Collider: A practical engineering approach to physical parameters governing MLI thermal performance

    International Nuclear Information System (INIS)

    Gonczy, J.D.; Boroski, W.N.; Niemann, R.C.

    1989-03-01

    Multilayer insulation (MLI) is employed in cryogenic devices to control the heat load of those devices. The physics defining the thermal performance of an MLI system is extremely complex due to the thermal dynamics of numerous interdependent parameters which in themselves contribute differently depending on whether boundary conditions are transient or steady-state. The Multilayer Insulation system for the Superconducting Super Collider (SSC) consists of full cryostat length assemblies of aluminized polyester film, fabricated in the form of blankets, and installed as blankets to the 4.5K cold mass, and the 20K and 80K thermal radiation shields. Approximately 40,000 blankets will be required in the 10,000 cryogenic devices comprising the SSC accelerator. Each blanket will be nearly 56 feet long by 6 feet wide and will consist of as many as 32 reflective and 31 spacer layers of material. Discussed are MLI material choices, and the physical parameters which contribute to the operational performance of MLI systems. Disclosed is a method for fabricating MLI blankets by employing a large diameter winding mandrel having a circumference sufficient for the required blanket length. The blanket fabrication method assures consistency in mass produced MLI blankets by providing positive control of the dimensional parameters which contribute to the MLI blanket thermal performance. The fabrication method can be used to mass produce prefabricated MLI blankets that by virtue of the product have inherent features of dimensional stability, three-dimensional uniformity, controlled layer density, layer-to-layer registration, interlayer cleanliness, and interlayer material to accommodate thermal contraction differences. 9 refs., 4 figs., 2 tabs

  3. Report of the DOE Office of Energy Research review committee on the Solenoidal Detector Collaboration of the Superconducting Super Collider

    International Nuclear Information System (INIS)

    1992-11-01

    At the request of Dr. James F. Decker, Deputy Director of DOE's Office of Energy Research, a technical review committee was assembled to perform a peer review of the Solenoidal Detector Collaboration (SDC) from October 26 to October 30, 1992, at the Superconducting Super Collider Laboratory (SSCL). The Energy Research Review Committee (ERC) evaluated the technical feasibility, the estimated cost, the proposed construction schedule, and the management arrangements for the SDC detector as documented in the SDC Technical Design Report, SDC Project Cost/Schedule Summary Book, SDC draft Project Management Plan, and other materials prepared for and presented to the Committee by the SDC management. The SDC detector is one of two major detector facilities anticipated at the SSC. The SDC project will be carried out by a worldwide collaboration of almost 1000 scientists, engineers, and managers from over 100 universities, national laboratories, and industries. The SDC will construct a state-of-the-art, general-purpose detector weighing over 26,000 tons and the size of an eight-story building, to perform a broad class of high energy physics experiments at the SSC beginning in the fall of 1999. The design of the SSC detector emphasizes tracking in a strong solenoidal magnetic field to measure charged-particle momenta and to assist in providing good electron and muon identification; identification of neutrinos and other penetrating particles using a hermetic calorimeter; studies of jets of hadrons using both calorimeter and tracking systems; and studies of short-lived particles, such as B mesons, and pattern recognition within complex events using a silicon-based vertex tracking system. These capabilities are the result of the intensive research, development, and design activities undertaken since 1989 by this very large and capable collaboration

  4. Analysis of tritium production in the vicinity of Linac and LEB tunnels at the Superconducting Super Collider Laboratory

    International Nuclear Information System (INIS)

    Nabelssi, B.K.

    1994-01-01

    Monte Carlo calculations were performed to estimate the tritium production in groundwater around the Linear Accelerator (Linac) and the Low Energy Booster (LEB) tunnels at the Superconducting Super Collider Laboratory (SSCL). The calculations were performed using the new version of the Los Alamos High Energy Transport (LAHET) code system (SUPERHET). Most of the tritium activity was found to occur in a zone extending 2 m from the tunnel wall. The calculated tritium production rate was used to derive the. maximum allowable beam losses that would result in an average groundwater concentration in the activation zone of 20 pCi/cm 3 , the federal maximum contaminant level (MCL) for tritium in drinking water. The maximum allowable beam losses were found to be about 4% and 2% of the maximum operating be.-un for the Linac at 1 GeV and the LEB at 11 GeV, resnectively. These percentages are well in excess of typical operational losses at existing highenergy accelerators. The results are in good agreement with previously reported calculations. Tritium saturation activity in water pipes resultina, from the derived maximum allowable beam loss was found to be 355 pCi/cm 3 in the Linac operating at 600 MeV and 363 pCi/cm 3 in the LEB operating at 11 GeV. Accidental tritium releases from water pipes were found to cause an inhalation dose rate of less than 0.013 (Linac at 600 MeV) and 0.009 mrem/hr (LEB at 11 Gev) in the tunnels. These dose rates are well within the laboratory's design limit of 0.1 mrem/hr for controlled areas. Accidental beam losses were found to cause activation in excess of the MCL only after an irradiation time of more than 557 hours in the Linac at 600 MeV and 69 hours in the LEB at 11 GeV. A full-beam accident lasting more than one hour is considered unlikely

  5. Ion colliders

    International Nuclear Information System (INIS)

    Fischer, W.

    2010-01-01

    Ion colliders are research tools for high-energy nuclear physics, and are used to test the theory of Quantum Chromo Dynamics (QCD). The collisions of fully stripped high-energy ions create matter of a temperature and density that existed only microseconds after the Big Bang. Ion colliders can reach higher densities and temperatures than fixed target experiments although at a much lower luminosity. The first ion collider was the CERN Intersecting Storage Ring (ISR), which collided light ions (77Asb1, 81Bou1). The BNL Relativistic Heavy Ion Collider (RHIC) is in operation since 2000 and has collided a number of species at numerous energies. The CERN Large Hadron Collider (LHC) started the heavy ion program in 2010. Table 1 shows all previous and the currently planned running modes for ISR, RHIC, and LHC. All three machines also collide protons, which are spin-polarized in RHIC. Ion colliders differ from proton or antiproton colliders in a number of ways: the preparation of the ions in the source and the pre-injector chain is limited by other effects than for protons; frequent changes in the collision energy and particle species, including asymmetric species, are typical; and the interaction of ions with each other and accelerator components is different from protons, which has implications for collision products, collimation, the beam dump, and intercepting instrumentation devices such a profile monitors. In the preparation for the collider use the charge state Z of the ions is successively increased to minimize the effects of space charge, intrabeam scattering (IBS), charge change effects (electron capture and stripping), and ion-impact desorption after beam loss. Low charge states reduce space charge, intrabeam scattering, and electron capture effects. High charge states reduce electron stripping, and make bending and acceleration more effective. Electron stripping at higher energies is generally more efficient. Table 2 shows the charge states and energies in the

  6. Ion colliders

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, W.

    2011-12-01

    Ion colliders are research tools for high-energy nuclear physics, and are used to test the theory of Quantum Chromo Dynamics (QCD). The collisions of fully stripped high-energy ions create matter of a temperature and density that existed only microseconds after the Big Bang. Ion colliders can reach higher densities and temperatures than fixed target experiments although at a much lower luminosity. The first ion collider was the CERN Intersecting Storage Ring (ISR), which collided light ions [77Asb1, 81Bou1]. The BNL Relativistic Heavy Ion Collider (RHIC) is in operation since 2000 and has collided a number of species at numerous energies. The CERN Large Hadron Collider (LHC) started the heavy ion program in 2010. Table 1 shows all previous and the currently planned running modes for ISR, RHIC, and LHC. All three machines also collide protons, which are spin-polarized in RHIC. Ion colliders differ from proton or antiproton colliders in a number of ways: the preparation of the ions in the source and the pre-injector chain is limited by other effects than for protons; frequent changes in the collision energy and particle species, including asymmetric species, are typical; and the interaction of ions with each other and accelerator components is different from protons, which has implications for collision products, collimation, the beam dump, and intercepting instrumentation devices such a profile monitors. In the preparation for the collider use the charge state Z of the ions is successively increased to minimize the effects of space charge, intrabeam scattering (IBS), charge change effects (electron capture and stripping), and ion-impact desorption after beam loss. Low charge states reduce space charge, intrabeam scattering, and electron capture effects. High charge states reduce electron stripping, and make bending and acceleration more effective. Electron stripping at higher energies is generally more efficient. Table 2 shows the charge states and energies in the

  7. NLCTA injector experimental results

    International Nuclear Information System (INIS)

    Yeremian, A.D.; Adolphsen, C.; Miller, R.H.; Nantista, C.D.; Wang, J.W.

    1997-04-01

    The purpose of the Next Linear Collider Test Accelerator (NLCTA) at SLAC is to integrate the new technologies of X-band accelerator structures and RF systems for the Next Linear Collider (NLC), demonstrate multibunch beam-loading energy compensation and suppression of high-order deflecting modes, measure the transverse components of the accelerating field, and measure the dark current generated by RF field emission in the accelerator. For beam loading R and D, an average current of about 1 A in a 120 ns long bunch train is required. The initial commissioning of the NLCTA injector, as well as the rest of the accelerator have been progressing very well. The initial beam parameters are very close to the requirement and they expect that injector will meet the specified requirements by the end of this summer

  8. Fermilab Main Injector plan

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1990-07-15

    The Fermilab Main Injector is the centrepiece of the 'Fermilab III' scheme to significantly upgrade the Laboratory's existing accelerator complex. The new accelerator is designed to provide increased particle beam levels to boost the collision rate in the Tevatron proton-antiproton collider (luminosity in excess of 5 x 10{sup 31} per sq cm per s) and, if approved, would provide increased flexibility in all areas of high energy physics research.

  9. Fermilab Main Injector plan

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The Fermilab Main Injector is the centrepiece of the 'Fermilab III' scheme to significantly upgrade the Laboratory's existing accelerator complex. The new accelerator is designed to provide increased particle beam levels to boost the collision rate in the Tevatron proton-antiproton collider (luminosity in excess of 5 x 10 31 per sq cm per s) and, if approved, would provide increased flexibility in all areas of high energy physics research

  10. Adaptation of lessons learned from the Eurotunnel Project and CDM magnet production to super collider main ring installation

    International Nuclear Information System (INIS)

    Belding, J.; Di Domenico, P.; Gillin, J.; Hahn, W.; Naventi, R.; Nielsen, M.; Seely, M.; Hopkins, J.; Patterson, L.R.

    1994-01-01

    This paper will present preliminary findings from the Phase I Collider Installation contract studies performed by the Bechtel/General Dynamics/Belding Team related to the installation of technical systems for the SSC main ring north and south arcs. Specific focus is given to the adaptation of lessons learned during construction of the Eurotunnel, including equipment and personnel logistics and transportation. The incorporation of Collider Dipole Magnet manufacturing techniques and process methodologies as related to the handling and interconnection of main ring components is also discussed

  11. Conceptual design report for a superconducting coil suitable for use in the large solenoid detector at the SSC [Superconducting Super Collider

    International Nuclear Information System (INIS)

    Fast, R.W.; Grimson, J.H.; Krebs, H.J.; Kephart, R.D.; Theriot, D.; Wands, R.H.

    1989-01-01

    The conceptual design of a large superconducting solenoid suitable for a magnetic detector at the Superconducting Super Collider (SSC) was done at Fermilab. The magnet will provide a magnetic field of 1.7 T over a volume 8 m in diameter by 16 m long. The particle-physics calorimetry will be inside the field volume and so the coil will be bath cooled and cryostable; the vessels will be stainless steel. Predictability of performance and the ability to safely negotiate all probable failure modes, including a quench, are important items of the design philosophy. Our conceptual design of the magnet and calorimeter has convinced us that this magnet is a reasonable extrapolation of present technology and is therefore feasible. The principal difficulties anticipated are those associated with the very large physical dimensions and stored energy of the magnet. 5 figs

  12. Disbursement of $65 million to the State of Texas for construction of a Regional Medical Technology Center at the former Superconducting Super Collider Site, Waxahachie, Texas

    International Nuclear Information System (INIS)

    1995-05-01

    As part of a settlement agreement between the US DOE and the State of Texas, DOE proposes to transfer $65 million of federal funds to the Texas National Research Laboratory Commission (TNLRC) for construction of the Regional Medical Technology Center (RMTC) to be located in Ellis County, Texas. The RMTC would be a state-of-the-art medical facility for proton cancer therapy, operated by the State of Texas in conjunction with the University of Texas Southwestern Medical Center. The RMTC would use the linear accelerator assets of the recently terminated DOE Superconducting Super Collider Project to accelerate protons to high energies for the treatment of cancer patients. The current design provides for treatment areas, examination rooms, support laboratories, diagnostic imaging equipment, and office space as well as the accelerators (linac and synchrotron) and beam steering and shaping components. The potential environmental consequences of the proposed action are expected to be minor

  13. Injector MD Days 2017

    CERN Document Server

    Rumolo, G

    2017-01-01

    The Injector Machine Development (MD) days 2017 were held on 23-24 March, 2017, at CERN with thefollowing main goals:Give a chance to the MD users to present their results and show the relevant progress made in 2016 onseveral fronts.Provide the MD users and the Operation (OP) crews with a general overview on the outcome and theimpact of all ongoing MD activities.Identify the open questions and consequently define - with priorities - a list of machine studies in theinjectors for 2017 (covering the operational beams, LHC Injectors Upgrade, High Luminosity LHC,Physics Beyond Colliders, other projects).Create the opportunity to collect and document the highlights of the 2016 MDs and define the perspectivesfor 2017.Discuss how to make best use of the MD time, in particular let the main MD user express their wishesand see whether/how OP teams can contribute to their fulfilment.

  14. Asymmetric collider

    International Nuclear Information System (INIS)

    Bharadwaj, V.; Colestock, P.; Goderre, G.; Johnson, D.; Martin, P.; Holt, J.; Kaplan, D.

    1993-01-01

    The study of CP violation in beauty decay is one of the key challenges facing high energy physics. Much work has not yielded a definitive answer how this study might best be performed. However, one clear conclusion is that new accelerator facilities are needed. Proposals include experiments at asymmetric electron-positron colliders and in fixed-target and collider modes at LHC and SSC. Fixed-target and collider experiments at existing accelerators, while they might succeed in a first observation of the effect, will not be adequate to study it thoroughly. Giomataris has emphasized the potential of a new approach to the study of beauty CP violation: the asymmetric proton collider. Such a collider might be realized by the construction of a small storage ring intersecting an existing or soon-to-exist large synchrotron, or by arranging collisions between a large synchrotron and its injector. An experiment at such a collider can combine the advantages of fixed-target-like spectrometer geometry, facilitating triggering, particle identification and the instrumentation of a large acceptance, while the increased √s can provide a factor > 100 increase in beauty-production cross section compared to Tevatron or HERA fixed-target. Beams crossing at a non-zero angle can provide a small interaction region, permitting a first-level decay-vertex trigger to be implemented. To achieve large √s with a large Lorentz boost and high luminosity, the most favorable venue is the high-energy booster (HEB) at the SSC Laboratory, though the CERN SPS and Fermilab Tevatron are also worth considering

  15. The NLC Injector System

    International Nuclear Information System (INIS)

    Bharadwaj, V.; Clendenin, J.E.; Emma, P.; Frisch, J.; Jobe, R.; Kotseroglou, T.; Krejcik, P.; Kulikov, A.V.; Li, Z.; Maruyama, T.; Millage, K.K.; McKee, B.; Mulhollan, G.; Munro, M.H.; Rago, C.E.; Raubenheimer, T.O.; Ross, M.C.; Phinney, N.; Schultz, D.C.; Sheppard, J.C.; Spencer, C.M.; Vlieks, A.E.; Woodley, M D.; Bibber, K. van; Takeda, S.

    1999-01-01

    The Next Linear Collider (NW) Injector System is designed to produce low emittance, 10 GeV electron and positron beams at 120 hertz for injection into the NLC main linacs. Each beam consists of a train of 9.5 bunches spaced by 2.8 ns; each bunch has a population of 1.15 x 10 10 particles. At injection into the main linacs, the horizontal and vertical emittances are specified to be γ var e psilon x = 3 x 10 -6 m-rad and γ var e psilon

  16. SLC injector modeling

    International Nuclear Information System (INIS)

    Hanerfeld, H; Herrmannsfeldt, W.B.; James, M.B.; Miller, R.H.

    1985-03-01

    The injector for the Stanford Linear Collider is being studied using the fully electromagnetic particle-in-cell program MASK. The program takes account of cylindrically symmetrical rf fields from the external source, as well as fields produced by the beam and dc magnetic fields. It calculates the radial and longitudinal motion of electrons and plots their positions in various planes in phase space. Bunching parameters can be optimized and insights into the bunching process and emittance growth have been gained. The results of the simulations are compared to the experimental results

  17. Impact of high energy high intensity proton beams on targets: Case studies for Super Proton Synchrotron and Large Hadron Collider

    CERN Document Server

    Tahir, N A; Shutov, A; Schmidt, R; Piriz, A R

    2012-01-01

    The Large Hadron Collider (LHC) is designed to collide two proton beams with unprecedented particle energy of 7 TeV. Each beam comprises 2808 bunches and the separation between two neighboring bunches is 25 ns. The energy stored in each beam is 362 MJ, sufficient to melt 500 kg copper. Safety of operation is very important when working with such powerful beams. An accidental release of even a very small fraction of the beam energy can result in severe damage to the equipment. The machine protection system is essential to handle all types of possible accidental hazards; however, it is important to know about possible consequences of failures. One of the critical failure scenarios is when the entire beam is lost at a single point. In this paper we present detailed numerical simulations of the full impact of one LHC beam on a cylindrical solid carbon target. First, the energy deposition by the protons is calculated with the FLUKA code and this energy deposition is used in the BIG2 code to study the corresponding...

  18. FERMILAB: Main Injector

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The Fermilab Main Injector (FMI) project is the centerpiece of the Laboratory's Fermilab III programme for the 1990s. Designed to support a luminosity of at least 5x10 31 cm -2 s -1 in the Tevatron collider, it will also provide new capabilities for rare neutral kaon decay and neutrino oscillation studies. The Fermilab Main Injector 8-150 GeV synchrotron is designed to replace the existing Main Ring which seriously limits beam intensities for the Tevatron and the antiproton production target. The project has passed several significant milestones and is now proceeding rapidly towards construction. The project received a $11.65M appropriation in 1992 and has been given $15M for the current fiscal year. Through the Energy Systems Acquisition Advisory Board (ESAAB) process, the US Department of Energy (DoE) has authorized funds for construction of the underground enclosure and service building where the Main Injector will touch the Tevatron, and to the preparation of bids for remaining project construction

  19. FERMILAB: Main Injector

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1993-06-15

    The Fermilab Main Injector (FMI) project is the centerpiece of the Laboratory's Fermilab III programme for the 1990s. Designed to support a luminosity of at least 5x10{sup 31} cm{sup -2} s{sup -1} in the Tevatron collider, it will also provide new capabilities for rare neutral kaon decay and neutrino oscillation studies. The Fermilab Main Injector 8-150 GeV synchrotron is designed to replace the existing Main Ring which seriously limits beam intensities for the Tevatron and the antiproton production target. The project has passed several significant milestones and is now proceeding rapidly towards construction. The project received a $11.65M appropriation in 1992 and has been given $15M for the current fiscal year. Through the Energy Systems Acquisition Advisory Board (ESAAB) process, the US Department of Energy (DoE) has authorized funds for construction of the underground enclosure and service building where the Main Injector will touch the Tevatron, and to the preparation of bids for remaining project construction.

  20. Measuring Gauge-Mediated SuperSymmetry Breaking Parameters at a 500 GeV $e^{+}e^{-}$ Linear Collider

    CERN Document Server

    Ambrosanio, S; Ambrosanio, Sandro; Blair, Grahame A.

    2000-01-01

    We consider the phenomenology of a class of gauge-mediated supersymmetry (SUSY) breaking (GMSB) models at a e+e- Linear Collider (LC) with c.o.m. energy up to 500 GeV. In particular, we refer to a high-luminosity (L ~ 3 x 10^34 cm^-2 s^-1) machine, and use detailed simulation tools for a proposed detector. Among the GMSB-model building options, we define a simple framework and outline its predictions at the LC, under the assumption that no SUSY signal is detected at LEP or Tevatron. Our focus is on the case where a neutralino (N1) is the next-to-lightest SUSY particle (NLSP), for which we determine the relevant regions of the GMSB parameter space. Many observables are calculated and discussed, including production cross sections, NLSP decay widths, branching ratios and distributions, for dominant and rare channels. We sketch how to extract the messenger and electroweak scale model parameters from a spectrum measured via, e.g. threshold-scanning techniques. Several experimental methods to measure the NLSP mass...

  1. Geological-geotechnical studies for siting the Superconducting Super Collider in Illinois: results of the 1986 test drilling program. Environmental geology notes

    International Nuclear Information System (INIS)

    Curry, B.B.; Graese, A.M.; Hasek, M.J.; Vaiden, R.C.; Bauer, R.A.

    1988-01-01

    From 1984 through 1986, geologists from the Illinois State Geological Survey (ISGS) conducted a thorough field investigation in northeastern Illinois to determine whether the surface and subsurface geology would be suitable for constructing the U.S. Department of Energy's 20-TeV (trillion electron volt) particle accelerator - the Superconducting Super Collider (SSC). The third and final stage of test drilling in 1986 concentrated on a specific corridor proposed for the racetrack-shaped SSC that would circle deep below the surface of Kane, Kendall, and Du Page Counties. The main objective was to verify that bedrock lying under the region satisified the site criteria for construction of a 10-foot-diameter tunnel to hold the particle accelerator and the superconducting magnets, large chambers to house the laboratories and computers for conducting and recording experiments, and shafts to provide access to the subterranean facilities. Thirteen test holes, ISGS S-18 through S-30, were drilled to depths ranging from 398.2 to 646.6 feet. The field team recovered 5675 feet of bedrock core and 212 samples of glacial drift (sand, clay, gravel) for laboratory analyses and recorded on-site data that establish the thickness, distribution, lithology (composition), and other properties of the rocks lying under the study area

  2. Beam-loss induced pressure rise of Large Hadron Collider collimator materials irradiated with 158 GeV/u $In^{49+}$ ions at the CERN Super Proton Synchrotron

    CERN Document Server

    Mahner, Edgar; Hansen, Jan; Page, Eric; Vincke, H

    2004-01-01

    During heavy ion operation, large pressure rises, up to a few orders of magnitude, were observed at CERN, GSI, and BNL. The dynamic pressure rises were triggered by lost beam ions that impacted onto the vacuum chamber walls and desorbed about 10/sup 4/ to 10/sup 7/ molecules per ion. The deterioration of the dynamic vacuum conditions can enhance charge-exchange beam losses and can lead to beam instabilities or even to beam abortion triggered by vacuum interlocks. Consequently, a dedicated measurement of heavy-ion induced molecular desorption in the GeV/u energy range is important for Large Hadron Collider (LHC) ion operation. In 2003, a desorption experiment was installed at the super proton synchrotron to measure the beam-loss induced pressure rise of potential LHC collimator materials. Samples of bare graphite, sputter coated (Cu, TiZrV) graphite, and 316 LN (low carbon with nitrogen) stainless steel were irradiated under grazing angle with 158 GeV/u indium ions. After a description of the new experimental ...

  3. Geological-geotechnical studies for siting the Superconducting Super Collider in Illinois: results of drilling large-diameter holes in 1986. Environmental geology notes

    International Nuclear Information System (INIS)

    Vaiden, R.C.; Hasek, M.J.; Gendron, C.R.; Curry, B.B.; Graese, A.M.

    1988-01-01

    The Illinois State Geological Survey (ISGS) has completed an extensive four-year exploration of the area near Fermi National Accelerator Laboratory (Fermilab) at Batavia, 30 miles west of Chicago. The comprehensive investigation was conducted to locate the most suitable site for construction and operation of the Superconducting Super Collider (SSC) - a 20-trillion electron volt (TeV) subatomic particle accelerator. Underlying the proposed site in northeastern Illinois, between 250 and 600 feet deep, are the Galena and Platteville dolomites - strong, stable, nearly impermeable bedrock. To confirm that these bedrock units are suitable for construction of the SSC, ISGS geologists designed a four-year study including test drilling, rock sampling and analysis, geophysical logging, hydrogeologic studies, and seismic exploration. Initially, the study covered parts of six counties. Subsequent research focused on successively smaller areas until the final stage of test drilling in spring 1986 concentrated on a proposed corridor for the SSC tunnel. From 1984 to 1986, thirty 3-inch-diameter test holes were drilled and more than 2 miles of bedrock core was recovered for stratigraphic description and geotechnical analysis

  4. Neutral technicolor pseudo Goldstone bosons production and QCD [quantum chromodynamics] background at the SSC [Superconducting Super Collider

    International Nuclear Information System (INIS)

    Kuo, Wang-Chuang.

    1990-01-01

    The production of the neutral technicolor pseudo Goldstone bosons, P 0 'and P 8 0 ', at large transverse momentum in pp collisions, pp → g(q)P 0 ' (P 8 0 ')X has been investigated in reactions at a high energy collider such as the SSC. The major two-body and three-body decay modes in tree diagrams are investigated in detail. The t bar t decay channel would dominate both the decays of P 0 ' and P 8 0 ' if it is allowed. Otherwise, gg and 3g will be the dominant decay modes unless the mass of the P 0 ' and P 8 0 ' are below 40 GeV, where b bar b becomes dominant. According to the QCD backgrounds, which we have also investigated in detail in this work, the signal for t bar t is much larger than the background and will be the ideal signal for detecting these bosons. However, in the absence of the t bar t channel, the τ bar τ mode can be used to identify P 0 ' up to m P = 300 GeV in the transverse momentum range P perpendicular approx-lt 100 GeV. Similarly, the b bar b decay mode can serve us a signal to identify P 8 0 ' up to m P = 300 GeV for P perpendicular between 500 and 700 GeV. Our results show that these high transverse momentum production processes are useful for the searching for the P 8 0 ' at the SSC. 63 refs

  5. Neutral technicolor pseudo Goldstone bosons production and QCD (quantum chromodynamics) background at the SSC (Superconducting Super Collider)

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Wang-Chuang.

    1990-09-21

    The production of the neutral technicolor pseudo Goldstone bosons, P{sup 0}{prime}and P{sub 8}{sup 0}{prime}, at large transverse momentum in pp collisions, pp {yields} g(q)P{sup 0}{prime} (P{sub 8}{sup 0}{prime})X has been investigated in reactions at a high energy collider such as the SSC. The major two-body and three-body decay modes in tree diagrams are investigated in detail. The t{bar t} decay channel would dominate both the decays of P{sup 0}{prime} and P{sub 8}{sup 0}{prime} if it is allowed. Otherwise, gg and 3g will be the dominant decay modes unless the mass of the P{sup 0}{prime} and P{sub 8}{sup 0}{prime} are below 40 GeV, where b{bar b} becomes dominant. According to the QCD backgrounds, which we have also investigated in detail in this work, the signal for t{bar t} is much larger than the background and will be the ideal signal for detecting these bosons. However, in the absence of the t{bar t} channel, the {tau}{bar {tau}} mode can be used to identify P{sup 0}{prime} up to m{sub P} = 300 GeV in the transverse momentum range P{sub {perpendicular}} {approx lt} 100 GeV. Similarly, the b{bar b} decay mode can serve us a signal to identify P{sub 8}{sup 0}{prime} up to m{sub P} = 300 GeV for P{sub {perpendicular}} between 500 and 700 GeV. Our results show that these high transverse momentum production processes are useful for the searching for the P{sub 8}{sup 0}{prime} at the SSC. 63 refs.

  6. The Super-B project accelerator status

    CERN Document Server

    Biagini, M.E.; Boni, R; Boscolo, M; Demma, T; Drago, A; Esposito, M; Guiducci, S; Marcellini, F; Mazzitelli, G; Preger, M; Raimondi, P; Sanelli, C; Serio, M; Stecchi, A; Stella, A; Tomassini, S; Zobov, M; Bertsche, K; Brachmann, A; Cai, Y; Chao, A; DeLira, A; Donald, M; Fisher, A; Kharakh, D; Krasnykh, A; Li, N; MacFarlane, D; Nosochkov, Y; Novokhatski, A; Pivi, M.; Seeman, J; Sullivan, M; Wienands, U; Weisend, J; Wittmer, W; Koop, I; Levichev, E; Nikitin, S; Piminov, P; Sinyatkin, S; Shatilov, D; Bolzon, B; Brunetti, L; Jeremie, A; Baylac, M; DeConto, J M; Gomez, Y; Meot, F; Monseu, N; Tourres, D; Bonis, J.; Chehab, R; Le Meur, G; Mercier, B; Poirier, F; Prevost, C; Rimbault, C; Touze, F; Variola, A; Chance, A; Napoly, O; Bosi, F; Liuzzo, S; Paoloni, E; Bettoni, S

    2010-01-01

    The SuperB project is an international effort aiming at building in Italy a very high luminosity e+e- (1036 cm-2 sec-1) asymmetric collider at the Y(4S) energy in the cm. The accelerator design has been extensively studied and changed during the past year. The present design, based on the new collision scheme, with large Piwinski angle and the use of “crab waist” sextupoles already successfully tested at the DANE -Factory at LNF Frascati, provides larger flexibility, better dynamic aperture and spin manipulation sections in the Low Energy Ring (LER) for longitudinal polarization of the electron beam at the Interaction Point (IP). The Interaction Region (IR) has been further optimized in terms of apertures and reduced backgrounds in the detector. The injector complex design has been also updated. A summary of the project status will be presented in this paper

  7. Photon collider at TESLA

    International Nuclear Information System (INIS)

    Telnov, Valery

    2001-01-01

    High energy photon colliders (γγ, γe) based on backward Compton scattering of laser light is a very natural addition to e + e - linear colliders. In this report, we consider this option for the TESLA project. Recent study has shown that the horizontal emittance in the TESLA damping ring can be further decreased by a factor of four. In this case, the γγ luminosity in the high energy part of spectrum can reach about (1/3)L e + e - . Typical cross-sections of interesting processes in γγ collisions are higher than those in e + e - collisions by about one order of magnitude, so the number of events in γγ collisions will be more than that in e + e - collisions. Photon colliders can, certainly, give additional information and they are the best for the study of many phenomena. The main question is now the technical feasibility. The key new element in photon colliders is a very powerful laser system. An external optical cavity is a promising approach for the TESLA project. A free electron laser is another option. However, a more straightforward solution is ''an optical storage ring (optical trap)'' with a diode pumped solid state laser injector which is today technically feasible. This paper briefly reviews the status of a photon collider based on the linear collider TESLA, its possible parameters and existing problems

  8. SuperB Progress Report for Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Biagini, M.E.; Boni, R.; Boscolo, M.; Buonomo, B.; Demma, T.; Drago, A.; Esposito, M.; Guiducci, S.; Mazzitelli, G.; Pellegrino, L.; Preger, M.A.; Raimondi, P.; Ricci, R.; Rotundo, U.; Sanelli, C.; Serio, M.; Stella, A.; Tomassini, S.; Zobov, M.; /Frascati; Bertsche, K.; Brachman, A.; /SLAC /Novosibirsk, IYF /INFN, Pisa /Pisa U. /Orsay, LAL /Annecy, LAPP /LPSC, Grenoble /IRFU, SPP, Saclay /DESY /Cockroft Inst. Accel. Sci. Tech. /U. Liverpool /CERN

    2012-02-14

    This report details the progress made in by the SuperB Project in the area of the Collider since the publication of the SuperB Conceptual Design Report in 2007 and the Proceedings of SuperB Workshop VI in Valencia in 2008. With this document we propose a new electron positron colliding beam accelerator to be built in Italy to study flavor physics in the B-meson system at an energy of 10 GeV in the center-of-mass. This facility is called a high luminosity B-factory with a project name 'SuperB'. This project builds on a long history of successful e+e- colliders built around the world, as illustrated in Figure 1.1. The key advances in the design of this accelerator come from recent successes at the DAFNE collider at INFN in Frascati, Italy, at PEP-II at SLAC in California, USA, and at KEKB at KEK in Tsukuba Japan, and from new concepts in beam manipulation at the interaction region (IP) called 'crab waist'. This new collider comprises of two colliding beam rings, one at 4.2 GeV and one at 6.7 GeV, a common interaction region, a new injection system at full beam energies, and one of the two beams longitudinally polarized at the IP. Most of the new accelerator techniques needed for this collider have been achieved at other recently completed accelerators including the new PETRA-3 light source at DESY in Hamburg (Germany) and the upgraded DAFNE collider at the INFN laboratory at Frascati (Italy), or during design studies of CLIC or the International Linear Collider (ILC). The project is to be designed and constructed by a worldwide collaboration of accelerator and engineering staff along with ties to industry. To save significant construction costs, many components from the PEP-II collider at SLAC will be recycled and used in this new accelerator. The interaction region will be designed in collaboration with the particle physics detector to guarantee successful mutual use. The accelerator collaboration will consist of several groups at present

  9. The Large Hadron Collider and the Super Proton Synchrotron at CERN as Tools to Generate Warm Dense Matter and Non–Ideal Plasmas

    CERN Document Server

    Tahir, N A; Shutov, A; Lomonosov, I V; Gryaznov, V; Piriz, A R; Deutsch, C; Fortov, V E

    2011-01-01

    The largest accelerator in the world, the Large Hadron Collider (LHC) at CERN, has entered into commission- ing phase. It is expected that when this impressive machine will become fully operational, it will generate two counter rotating 7 TeV/c proton beams that will be made to collide, leading to an unprecedented luminosity of 1034 cm−2s−1. Total energy stored in each LHC beam is about 362 MJ, sufficient to melt 500 kg copper. Safety of operation is a very critical issue when working with such extremely powerful beams. It is important to know the consequences of an accidental release of the beam energy in order to design protection system for the equipment. For this purpose we have carried out extensive numerical simulations of the interaction of one full LHC beam with copper and graphite targets which are materials of practical importance. Our calculations have shown that the LHC protons will penetrate up to about 35 m in solid copper and 10 m in solid graphite. A very interesting outcome of this work i...

  10. The Large Hadron Collider and the Super Proton Synchrotron at CERN as Tools to Generate Warm Dense Matter and Non-Ideal Plasmas

    CERN Document Server

    Tahir, N A; Deutsch, C; Gryaznov, V; Lomonosov, I V; Shutov, A; Piriz, A R; Fortov, V E; Geissel, H; Redmer, R

    2011-01-01

    The largest accelerator in the world, the Large Hadron Collider (LHC) at CERN, has entered into commissioning phase. It is expected that when this impressive machine will become fully operational, it will generate two counter rotating 7 TeV/c proton beams that will be made to collide, leading to an unprecedented luminosity of 10(34) cm(-2)s(-1). Total energy stored in each LHC beam is about 362 MJ, sufficient to melt 500 kg copper. Safety of operation is a very critical issue when working with such extremely powerful beams. It is important to know the consequences of an accidental release of the beam energy in order to design protection system for the equipment. For this purpose we have carried out extensive numerical simulations of the interaction of one full LHC beam with copper and graphite targets which are materials of practical importance. Our calculations have shown that the LHC protons will penetrate up to about 35 m in solid copper and 10 m in solid graphite. A very interesting outcome of this work i...

  11. Collider Scaling and Cost Estimation

    International Nuclear Information System (INIS)

    Palmer, R.B.

    1986-01-01

    This paper deals with collider cost and scaling. The main points of the discussion are the following ones: 1) scaling laws and cost estimation: accelerating gradient requirements, total stored RF energy considerations, peak power consideration, average power consumption; 2) cost optimization; 3) Bremsstrahlung considerations; 4) Focusing optics: conventional, laser focusing or super disruption. 13 refs

  12. Production of high intensity electron bunches for the SLAC Linear Collider

    International Nuclear Information System (INIS)

    James, M.B.

    1987-08-01

    This thesis describes the design and performance of a high intensity electron injecfor for the SLAC Linear Collider. Motivation for the collider and the specifications for the injector are discussed. An analytic theory of the bunching and capture of electrons by rf fields is discussed in the limit of low space charge and small signal. The design and performance of SLAC's main injector are described to illustrate a successful application of this theory. The bunching and capture of electrons by rf fields are then discussed in the limit of high space charge and large signal, and a description of the design of the collider injector follows. In the limit of high space charge forces and large rf signals, the beam dynamics are considerably more complex and numerical simulations are required to predict particle motion. A computer code which models the longitudinal dynamics of electrons in the presence of space charge and rf fields is described. The results of the simulations, the resulting collider injector design and the various components which make up the collider injector are described. These include the gun, subharmonic bunchers, traveling-wave buncher and velocity-of-light accelerator section. Finally, the performance of the injector is described including the beam intensity, bunch length, transverse emittance and energy spectrum. While the final operating conditions differ somewaht from the design, the performance of the collider injector is in good agreement with the numerical simulations and meets all of the collider specifications. 28 refs

  13. Injector for the University of Maryland Electron Ring (UMER)

    Energy Technology Data Exchange (ETDEWEB)

    Kehne, D. E-mail: dkehne@gmu.edu; Godlove, T.; Haldemann, P.; Bernal, S.; Guharay, S.; Kishek, R.; Li, Y.; O' Shea, P.; Reiser, M.; Yun, V.; Zou, Y.; Haber, I

    2001-05-21

    The electron beam injector constructed by FM technologies for the University of Maryland Electron Ring (UMER) program is described. The program will use an electron beam to model space-charge-dominated ion beams in a recirculating linac for heavy ion inertial fusion, as well as for high-current muon colliders. The injector consists of a 10 keV, 100 mA electron gun with 50-100 nsec pulse width and a repetition rate of 120 Hz. The e-gun system includes a 6-mask, rotatable aperture plate, a Rogowski current monitor, an ion pump, and a gate valve. The injector beamline consists of a solenoid, a five-quadrupole matching section, two diagnostic chambers, and a fast current monitor. An independent diagnostic chamber also built for UMER will be used to measure horizontal and vertical emittance, current, energy, energy spread, and the evolution of the beam envelope and profile along the injector beamline.

  14. Injector for the University of Maryland Electron Ring (UMER)

    Science.gov (United States)

    Kehne, D.; Godlove, T.; Haldemann, P.; Bernal, S.; Guharay, S.; Kishek, R.; Li, Y.; O'Shea, P.; Reiser, M.; Yun, V.; Zou, Y.; Haber, I.

    2001-05-01

    The electron beam injector constructed by FM technologies for the University of Maryland Electron Ring (UMER) program is described. The program will use an electron beam to model space-charge-dominated ion beams in a recirculating linac for heavy ion inertial fusion, as well as for high-current muon colliders. The injector consists of a 10 keV, 100 mA electron gun with 50-100 nsec pulse width and a repetition rate of 120 Hz. The e-gun system includes a 6-mask, rotatable aperture plate, a Rogowski current monitor, an ion pump, and a gate valve. The injector beamline consists of a solenoid, a five-quadrupole matching section, two diagnostic chambers, and a fast current monitor. An independent diagnostic chamber also built for UMER will be used to measure horizontal and vertical emittance, current, energy, energy spread, and the evolution of the beam envelope and profile along the injector beamline.

  15. Beam-loss induced pressure rise of Large Hadron Collider collimator materials irradiated with 158  GeV/u In^{49+} ions at the CERN Super Proton Synchrotron

    Directory of Open Access Journals (Sweden)

    E. Mahner

    2004-10-01

    Full Text Available During heavy ion operation, large pressure rises, up to a few orders of magnitude, were observed at CERN, GSI, and BNL. The dynamic pressure rises were triggered by lost beam ions that impacted onto the vacuum chamber walls and desorbed about 10^{4} to 10^{7} molecules per ion. The deterioration of the dynamic vacuum conditions can enhance charge-exchange beam losses and can lead to beam instabilities or even to beam abortion triggered by vacuum interlocks. Consequently, a dedicated measurement of heavy-ion induced molecular desorption in the GeV/u energy range is important for Large Hadron Collider (LHC ion operation. In 2003, a desorption experiment was installed at the Super Proton Synchrotron to measure the beam-loss induced pressure rise of potential LHC collimator materials. Samples of bare graphite, sputter coated (Cu, TiZrV graphite, and 316 LN (low carbon with nitrogen stainless steel were irradiated under grazing angle with 158  GeV/u indium ions. After a description of the new experimental setup, the results of the pressure rise measurements are presented, and the derived desorption yields are compared with data from other experiments.

  16. Muon colliders

    International Nuclear Information System (INIS)

    Palmer, R.B.; Sessler, A.; Skrinsky, A.

    1996-01-01

    Muon Colliders have unique technical and physics advantages and disadvantages when compared with both hadron and electron machines. They should thus be regarded as complementary. Parameters are given of 4 TeV and 0.5 TeV high luminosity micro + micro - colliders, and of a 0.5 TeV lower luminosity demonstration machine. We discuss the various systems in such muon colliders, starting from the proton accelerator needed to generate the muons and proceeding through muon cooling, acceleration and storage in a collider ring. Problems of detector background are also discussed

  17. Muon colliders

    International Nuclear Information System (INIS)

    Cline, David

    1995-01-01

    The increasing interest in the possibility of positive-negative muon colliders was reflected in the second workshop on the Physics Potential and Development of Muon Colliders, held in Sausalito, California, from 16-19 November, with some 60 attendees. It began with an overview of the particle physics goals, detector constraints, the muon collider and mu cooling, and source issues. The major issue confronting muon development is the possible luminosity achievable. Two collider energies were considered: 200 + 200 GeV and 2 + 2 TeV. The major particle physics goals are the detection of the higgs boson(s) for the lower energy collider, together with WW scattering and supersymmetric particle discovery. At the first such workshop, held in Napa, California, in 1992, it was estimated that a luminosity of some 10 30 and 3 x 10 32 cm -2 s -1 for the low and high energy collider might be achieved (papers from this meeting were published in the October issue of NIM). This was considered a somewhat conservative estimate at the time. At the Sausalito workshop the goal was to see if a luminosity of 10 32 to 10 34 for the two colliders might be achievable and usable by a detector. There were five working groups - physics, 200 + 200 GeV collider, 2 + 2 TeV collider, detector design and backgrounds, and muon cooling and production methods. Considerable progress was made in all these areas at the workshop.

  18. Injector of solid indicator

    Energy Technology Data Exchange (ETDEWEB)

    Chernyshev, G.I.; Luk' yanov, E.P.; Pruslin, Y.A.; Zabrodin, P.I.

    1981-04-25

    The injector can be used with remote introduction of indicators into a borehole for study in an oil well of the parameters of movement of fluid currents, control of the state of the equipment, and study of the properties of the rocks. Proposed is a method of increasing the reliability of operation of the injector by stabilizing the rate of its dispersing. Introduced to the injector of a solid indicator are auxiliary brackets and a cathode made from nonmetallic electrical conducting material and reinforced at the end by an elastic bracket. The auxillary cathode is attached to the end surface of the anode and cathode.

  19. Redirecting by Injector

    Science.gov (United States)

    Filman, Robert E.; Lee, Diana D.; Norvig, Peter (Technical Monitor)

    2000-01-01

    We describe the Object Infrastructure Framework, a system that seeks to simplify the creation of distributed applications by injecting behavior on the communication paths between components. We touch on some of the ilities and services that can be achieved with injector technology, and then focus on the uses of redirecting injectors, injectors that take requests directed at a particular server and generate requests directed at others. We close by noting that OIF is an Aspect-Oriented Programming system, and comparing OIF to related work.

  20. Electron linac injector developments

    International Nuclear Information System (INIS)

    Fraser, J.S.

    1986-01-01

    There is a continuing demand for improved injectors for electron linacs. Free-electron laser (FEL) oscillators require pulse trains of high brightness and, in some applications, high average power at the same time. Wakefield-accelerator and laser-acceleration experiments require isolated bunches of high peak brightness. Experiments with alkali-halide photoemissive and thermionic electron sources in rf cavities for injector applications are described. For isolated pulses, metal photocathodes (illuminated by intense laser pulses) are being employed. Reduced emittance growth in high-peak-current electron injectors may be achieved by linearizing the cavity electric field's radial component and by using high field strengths at the expense of lower shunt impedance. Harmonically excited cavities have been proposed for enlarging the phase acceptance of linac cavities and thereby reducing the energy spread produced in the acceleration process. Operation of injector linacs at a subharmonic of the main linac frequency is also proposed for enlarging the phase acceptance

  1. The super-LHC

    CERN Document Server

    Mangano, Michelangelo L

    2010-01-01

    We review here the prospects of a long-term upgrade programme for the Large Hadron Collider (LHC), CERN laboratory's new proton-proton collider. The super-LHC, which is currently under evaluation and design, is expected to deliver of the order of ten times the statistics of the LHC. In addition to a non-technical summary of the principal physics arguments for the upgrade, I present a pedagogical introduction to the technological challenges on the accelerator and experimental fronts, and a review of the current status of the planning.

  2. Technological Challenges for High-Brightness Photo-Injectors

    CERN Multimedia

    Suberlucq, Guy

    2004-01-01

    Many applications, from linear colliders to free-electron lasers, passing through light sources and many other electron sources, require high brightness electron beams, usually produced by photo-injectors. Because certain parameters of these applications differ by several orders of magnitude, various solutions were implemented for the design and construction of the three main parts of the photo-injectors: lasers, photocathodes and guns. This paper summarizes the different requirements, how they lead to technological challenges and how R&D programs try to overcome these challenges. Some examples of state-of-the-art parts are presented.

  3. Ion Colliders

    CERN Document Server

    Fischer, W

    2014-01-01

    High-energy ion colliders are large research tools in nuclear physics to study the Quark-Gluon-Plasma (QGP). The range of collision energy and high luminosity are important design and operational considerations. The experiments also expect flexibility with frequent changes in the collision energy, detector fields, and ion species. Ion species range from protons, including polarized protons in RHIC, to heavy nuclei like gold, lead and uranium. Asymmetric collision combinations (e.g. protons against heavy ions) are also essential. For the creation, acceleration, and storage of bright intense ion beams, limits are set by space charge, charge change, and intrabeam scattering effects, as well as beam losses due to a variety of other phenomena. Currently, there are two operating ion colliders, the Relativistic Heavy Ion Collider (RHIC) at BNL, and the Large Hadron Collider (LHC) at CERN.

  4. Colliding druthers

    International Nuclear Information System (INIS)

    Ankenbrandt, C.; Johnson, R.P.

    1977-01-01

    Recommendations are made to maximize the usefulness of the colliding beam facility of the Main Ring and Energy Doubler at the Fermilab accelerator. The advantages of the transposed crossing geometry over the kissing geometry are pointed out

  5. Collider Physics

    OpenAIRE

    Zeppenfeld, D.

    1999-01-01

    These lectures are intended as a pedagogical introduction to physics at $e^+e^-$ and hadron colliders. A selection of processes is used to illustrate the strengths and capabilities of the different machines. The discussion includes $W$ pair production and chargino searches at $e^+e^-$ colliders, Drell-Yan events and the top quark search at the Tevatron, and Higgs searches at the LHC.

  6. CTF3 Drive Beam Injector Optimisation

    CERN Document Server

    AUTHOR|(CDS)2082899; Doebert, S

    2015-01-01

    In the Compact Linear Collider (CLIC) the RF power for the acceleration of the Main Beam is extracted from a high-current Drive Beam that runs parallel to the main linac. The main feasibility issues of the two-beam acceleration scheme are being demonstrated at CLIC Test Facility 3 (CTF3). The CTF3 Drive Beam injector consists of a thermionic gun followed by the bunching system and two accelerating structures all embedded in solenoidal magnetic field and a magnetic chicane. Three sub-harmonic bunchers (SHB), a prebuncher and a travelling wave buncher constitute the bunching system. The phase coding process done by the sub-harmonic bunching system produces unwanted satellite bunches between the successive main bunches. The beam dynamics of the CTF3 Drive Beam injector is reoptimised with the goal of improving the injector performance and in particular decreasing the satellite population, the beam loss in the magnetic chicane and the beam emittance in transverse plane compare to the original model based on P. Ur...

  7. ELECTRON BEAM ION SOURCE PRE-INJECTOR DIGNOSTICS

    International Nuclear Information System (INIS)

    WILINSKI, M.; ALESSI, J.; BEEBE, E.; BELLAVIA, S.; PIKIN, A.

    2006-01-01

    A new ion pre-injector line is currently under design at Brookhaven National Laboratory (BNL) for the Relativistic Heavy Ion Collider (RHIC) and the NASA Space Radiation Laboratory (NSRL,). Collectively, this new line is referred to as the EBIS project. This pre-injector is based on an Electron Beam Ion Source (EBIS), a Radio Frequency Quadrupole (R-FQ) accelerator, and a linear accelerator. The new EBIS will be able to produce a wide range of heavy ion species as well as rapidly switching between species. To aid in operation of the pre-injector line, a suite of diagnostics is currently proposed which includes faraday cups, current transformers, profile monitors, and a pepperpot emittance measurement device

  8. Linear Colliders

    International Nuclear Information System (INIS)

    Alcaraz, J.

    2001-01-01

    After several years of study e''+ e''- linear colliders in the TeV range have emerged as the major and optimal high-energy physics projects for the post-LHC era. These notes summarize the present status form the main accelerator and detector features to their physics potential. The LHC era. These notes summarize the present status, from the main accelerator and detector features to their physics potential. The LHC is expected to provide first discoveries in the new energy domain, whereas an e''+ e''- linear collider in the 500 GeV-1 TeV will be able to complement it to an unprecedented level of precision in any possible areas: Higgs, signals beyond the SM and electroweak measurements. It is evident that the Linear Collider program will constitute a major step in the understanding of the nature of the new physics beyond the Standard Model. (Author) 22 refs

  9. Collider workshop

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    The promise of initial results after the start of operations at CERN's SPS proton-antiproton collider and the prospects for high energy hadron collisions at Fermilab (Tevatron) and Brookhaven (ISABELLE) provided a timely impetus for the recent Topical Workshop on Forward Collider Physics', held at Madison, Wisconsin, from 10-12 December. It became the second such workshop to be held, the first having been in 1979 at the College de France, Paris. The 100 or so participants had the chance to hear preliminary results from the UA1, UA4 and UA5 experiments at the CERN SPS collider, together with other new data, including that from proton-antiproton runs at the CERN Intersecting Storage Rings

  10. Linac pre-injector

    CERN Multimedia

    CERN PhotoLab

    1965-01-01

    New accelerating column of the linac pre-injector, supporting frame and pumping system. This new system uses two mercury diffusion pumps (in the centre) and forms part of the modifications intended to increase the intensity of the linac. View taken during assembly in the workshop.

  11. SSC [Superconducting Super Collider] magnet technology

    International Nuclear Information System (INIS)

    Taylor, C.

    1987-09-01

    To minimize cost of the SSC facility, small-bore high field dipole magnets have been developed;some of the new technology that has been developed at several U.S. national laboratories and in industry is summarized. Superconducting wire with high J/sub c/ and filaments as small as 5μm diameter is not produced iwht mechanical properties suitable for reliable cable production. A variety of collar designs of both aluminum and stainless steel have been used in model magnets. A low-heat leak post-type cryostat support system is used and a system for accurate alignment of coil-collar-yoke in the cryostat has been developed. Model magnets of 1-m, 1.8 m, 4.5 m, and 17 m lengths have been build during the past two years. 23 refs., 5 figs., 2 tabs

  12. SSC [Superconducting Super Collider] magnet mechanical interconnections

    International Nuclear Information System (INIS)

    Bossert, R.C.; Niemann, R.C.; Carson, J.A.; Ramstein, W.L.; Reynolds, M.P.; Engler, N.H.

    1989-03-01

    Installation of superconducting accelerator dipole and quadrupole magnets and spool pieces in the SSC tunnel requires the interconnection of the cryostats. The connections are both of an electrical and mechanical nature. The details of the mechanical connections are presented. The connections include piping, thermal shields and insulation. There are seven piping systems to be connected. These systems must carry cryogenic fluids at various pressures or maintain vacuum and must be consistently leak tight. The interconnection region must be able to expand and contract as magnets change in length while cooling and warming. The heat leak characteristics of the interconnection region must be comparable to that of the body of the magnet. Rapid assembly and disassembly is required. The magnet cryostat development program is discussed. Results of quality control testing are reported. Results of making full scale interconnections under magnet test situations are reviewed. 11 figs., 4 tabs

  13. Environmental impacts of the Super Collider

    International Nuclear Information System (INIS)

    Baillieul, T.A.; Hasselkus, W.

    1991-01-01

    The National Environmental Policy Act of 1969, affectionately referred to as NEPA, is a simple piece of legislation with far-reaching implications. (a) It sets a requirement for Federal government decision makers to consider the environmental consequences of their actions before deciding on a course of action. (b) A decision maker is essentially anyone who causes something to happen; and the action can be just about anything. (c) NEPA comes into play at the point in time where a proposed action is matched to a physical location. (d) NEPA implementation is recorded in many ways. The DOE maintains a long list of categorical exclusions for actions which practice has shown to be inconsequential - such as processing records, or maintaining physical plants. However, in selecting a categorical exclusion for an action, the decision maker/project manager must at least think about the activity to be performed and its possible environmental consequences. (e) A large project like the SSC, involving an undeveloped site, automatically qualifies for the highest level of environmental analysis under NEPA - the Environmental Impact Statement (or EIS)

  14. Computing needs of the superconducting super collider

    International Nuclear Information System (INIS)

    Diebold, R.

    1984-01-01

    Following a brief description of the SSC, the computing needs are discussed for both the accelerator design and the experimentation. The computing power required is considerably beyond that being used at present facilities, and parallel processing is expected to play an important role in supplying these needs

  15. pp Interaction Regions. [Superconducting super collider

    Energy Technology Data Exchange (ETDEWEB)

    Diebold, R.; Johnson, D.E.

    1984-01-01

    This group served as the interface between experimenters and accelerator physicists. A start was made on a portfolio of IR's, building on previous studies including the Reference Designs Study (RDS). The group also looked at limits on time structure and luminosity, the clustering of IR's, external beams of secondary particles from the IR's, and various operational issues connected with the IR's. Designs were developed for interaction regions for RDS-B (individual cryostats for two 5-T rings, separated by 60 cm vertically). For a fixed geometry, the quadrupoles have been tuned over a range to give a factor of 100 variation in ..beta..* (1 to 100 m) and thus in luminosity; an even larger variation may well be possible. Variation of the minimum ..beta..* with free space between the quadrupole triplets, for a quad strength of 280 T/m and under the constraint of fixed chromaticity, showed a factor of five decrease in maximum luminosity in going from a high luminosity region with +-20 m free space to a small-angle region with +-100 m. Similar variants of the RDS-A IR were also found.

  16. Final focus designs for crab waist colliders

    Directory of Open Access Journals (Sweden)

    A. Bogomyagkov

    2016-12-01

    Full Text Available The crab waist collision scheme promises significant luminosity gain. The successful upgrade of the DAΦNE collider proved the principle of crab waist collision and increased luminosity 3 times. Therefore, several new projects try to implement the scheme. The paper reviews interaction region designs with the crab waist collision scheme for already existent collider DAΦNE and SuperKEKB, presently undergoing commissioning, for the projects of SuperB in Italy, CTau in Novosibirsk and FCC-ee at CERN.

  17. Future colliders

    International Nuclear Information System (INIS)

    Palmer, R.B.; Gallardo, J.C.

    1996-10-01

    The high energy physics advantages, disadvantages and luminosity requirements of hadron (pp, pp), of lepton (e + e - , μ + μ - ) and photon-photon colliders are considered. Technical arguments for increased energy in each type of machine are presented. Their relative size, and the implications of size on cost are discussed

  18. Collider Physics

    Indian Academy of Sciences (India)

    This is summary of the activities of the working group on collider physics in the IXth Workshop on High Energy Physics Phenomenology (WHEPP-9) held at the Institute of Physics, Bhubaneswar, India in January 2006. Some of the work subsequently done on these problems by the subgroups formed during the workshop is ...

  19. Tritium pellet injector results

    International Nuclear Information System (INIS)

    Fisher, P.W.; Bauer, M.L.; Baylor, L.R.; Deleanu, L.E.; Fehling, D.T.; Milora, S.L.; Whitson, J.C.

    1988-01-01

    Injection of solid tritium pellets is considered to be the most promising way of fueling fusion reactors. The Tritium Proof-of- Principle (TPOP) experiment has demonstrated the feasibility of forming and accelerating tritium pellets. This injector is based on the pneumatic pipe-gun concept, in which pellets are formed in situ in the barrel and accelerated with high-pressure gas. This injector is ideal for tritium service because there are no moving parts inside the gun and because no excess tritium is required in the pellet production process. Removal of 3 He from tritium to prevent blocking of the cryopumping action by the noncondensible gas has been demonstrated with a cryogenic separator. Pellet velocities of 1280 m/s have been achieved for 4-mm-diam by 4-mm-long cylindrical tritium pellets with hydrogen propellant at 6.96 MPa (1000 psi). 10 refs., 10 figs

  20. ANL high resolution injector

    International Nuclear Information System (INIS)

    Minehara, E.; Kutschera, W.; Hartog, P.D.; Billquist, P.

    1985-01-01

    The ANL (Argonne National Laboratory) high-resolution injector has been installed to obtain higher mass resolution and higher preacceleration, and to utilize effectively the full mass range of ATLAS (Argonne Tandem Linac Accelerator System). Preliminary results of the first beam test are reported briefly. The design and performance, in particular a high-mass-resolution magnet with aberration compensation, are discussed. 7 refs., 5 figs., 2 tabs

  1. Pellet injectors for JET

    International Nuclear Information System (INIS)

    Andelfinger, C.; Buechl, K.; Lang, R.S.; Schilling, H.B.; Ulrich, M.

    1981-09-01

    Pellet injection for the purpose of refuelling and diagnostic of fusion experiments is considered for the parameters of JET. The feasibility of injectors for single pellets and for quasistationary refuelling is discussed. Model calculations on pellet ablation with JET parameters show the required pellet velocity ( 3 ). For single pellet injection a light gas gun, for refuelling a centrifuge accelerator is proposed. For the latter the mechanical stress problems are discussed. Control and data acquisition systems are outlined. (orig.)

  2. Final Focus Systems in Linear Colliders

    International Nuclear Information System (INIS)

    Raubenheimer, Tor

    1998-01-01

    In colliding beam facilities, the ''final focus system'' must demagnify the beams to attain the very small spot sizes required at the interaction points. The first final focus system with local chromatic correction was developed for the Stanford Linear Collider where very large demagnifications were desired. This same conceptual design has been adopted by all the future linear collider designs as well as the SuperConducting Supercollider, the Stanford and KEK B-Factories, and the proposed Muon Collider. In this paper, the over-all layout, physics constraints, and optimization techniques relevant to the design of final focus systems for high-energy electron-positron linear colliders are reviewed. Finally, advanced concepts to avoid some of the limitations of these systems are discussed

  3. Colliding muons

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Is a muon-muon collider really practical? That is the question being asked by Bob Palmer. Well known in particle physics, Palmer, with Nick Samios and Ralph Shutt, recently won the American Physical Society's Panofsky Prize for their 1964 discovery of the omega minus. As well as contributing to other major experiments, both at CERN and in the US, he has contributed ideas to stochastic cooling and novel acceleration schemes

  4. High energy accelerator and colliding beam user group

    International Nuclear Information System (INIS)

    1990-09-01

    This report discusses the following topics: OPAL experiment at LEP; Dφ experiment at Fermilab; deep inelastic muon interactions at TEV II; CYGNUS experiment; final results from ν e -e elastic scattering; physics with CLEO detector at CESR; results from JADE at PETRA; rare kaon-decay experiment at BNL; search for top quark; and super conducting super collider activities

  5. Deuterium pellet injector gun design

    International Nuclear Information System (INIS)

    Lunsford, R.V.; Wysor, R.B.; Bryan, W.E.; Shipley, W.D.; Combs, S.K.; Foust, C.R.; Milora, S.L.; Fisher, P.W.

    1985-01-01

    The Deuterium Pellet Injector (DPI), an eight-pellet pneumatic injector, is being designed and fabricated for the Tokamak Fusion Test Reactor (TFTR). It will accelerate eight pellets, 4 by 4 mm maximum, to greater than 1500 m/s. It utilizes a unique pellet-forming mechanism, a cooled pellet storage wheel, and improved propellant gas scavenging

  6. On the possibility of a normal conducting photo-injector for Tesla

    International Nuclear Information System (INIS)

    Travier, C.

    1992-12-01

    The possibility of using a normal conducting photo-injector for the TESLA linear collider is investigated. It is shown that the 8 nC,3 ps bunch can be produced with a normalized emittance less than 100 Π mm mrad. The generation of the train depends on the feasibility of the laser which has to be looked at more carefully

  7. Colliding nuclei

    International Nuclear Information System (INIS)

    Balian, Roger; Remaud, Bernard; Suraud, E.; Durand, Dominique; Tamain, Bernard; Gobbi, A.; Cugnon, J.; Drapier, Olivier; Govaerts, Jan; Prieels, Rene

    1995-09-01

    This 14. international school Joliot-Curie of nuclear physic deals with nuclei in collision at high energy. Nine lectures are included in the proceedings of this summer school: 1 - From statistical mechanics outside equilibrium to transport equations (Balian, R.); 2 - Modeling of heavy ions reactions (Remaud, B.); 3 - Kinetic equations in heavy ions physics (Suraud, E.); 4 - Colliding nuclei near the Fermi energy (Durand, D.; Tamain, B.); 5 - From the Fermi to the relativistic energy domain: which observable? For which physics? (Gobbi, A.); 6 - Collisions at relativistic and ultra relativistic energies, Theoretical aspects (Cugnon, J.); 7 - Quark-gluon plasma: experimental signatures (Drapier, O.); 8 - Electroweak interaction: a window on physics beyond the standard model (Govaerts, J.); 9 - Symmetry tests in β nuclear process: polarization techniques (Prieels, R.)

  8. The future of the Large Hadron Collider and CERN.

    Science.gov (United States)

    Heuer, Rolf-Dieter

    2012-02-28

    This paper presents the Large Hadron Collider (LHC) and its current scientific programme and outlines options for high-energy colliders at the energy frontier for the years to come. The immediate plans include the exploitation of the LHC at its design luminosity and energy, as well as upgrades to the LHC and its injectors. This may be followed by a linear electron-positron collider, based on the technology being developed by the Compact Linear Collider and the International Linear Collider collaborations, or by a high-energy electron-proton machine. This contribution describes the past, present and future directions, all of which have a unique value to add to experimental particle physics, and concludes by outlining key messages for the way forward.

  9. The proton-antiproton collider

    International Nuclear Information System (INIS)

    Evans, L.

    1988-01-01

    The subject of this lecture is the CERN Proton-Antiproton (panti p) Collider, in which John Adams was intimately involved at the design, development, and construction stages. Its history is traced from the original proposal in 1966, to the first panti p collisions in the Super Proton Synchrotron (SPS) in 1981, and to the present time with drastically improved performance. This project led to the discovery of the intermediate vector boson in 1983 and produced one of the most exciting and productive physics periods in CERN's history. (orig.)

  10. Development of technologies on innovative-simplified nuclear power plant using high-efficiency steam injectors (5) operating characteristics of center water jet type supersonic steam injector

    International Nuclear Information System (INIS)

    Abe, Y.; Kawamoto, Y.; Iwaki, C.; Narabayashi, T.; Mori, M.; Ohmori, S.

    2005-01-01

    Next-generation reactor systems have been under development aiming at simplified system and improvement of safety and credibility. A steam injector has a function of a passive pump without large motor or turbo-machinery, and has been investigated as one of the most important component of the next-generation reactor. Its performance as a pump depends on direct contact condensation phenomena between a supersonic steam and a sub-cooled water jet. As previous studies of the steam injector, there are studies about formulation of operating characteristic of steam injector and analysis of jet structure in steam injector by Narabayashi etc. And as previous studies of the direct contact condensation, there is the study about the direct contact condensation in steam atmosphere. However the study about the turbulent heat transfer under the great shear stress is not enough investigated. Therefore it is necessary to examine in detail about the operating characteristic of the steam injector. The present paper reports the observation results of the water jet behavior in the super sonic steam injector by using the video camera and the high-speed video camera. And the measuring results of the temperature and the pressure distribution in the steam injector are reported. From observation results by video camera, it is cleared that the water jet is established at the center of the steam injector right after steam supplied and the operation of the steam injector depends on the throat diameter. And from observation results by high-speed video camera, it is supposed that the columned water jet surface is established in the mixing nozzle and the water jet surface movement exists. And from temperature measuring results, it is supposed that the steam temperature at the mixing nozzle is changed between about 80 degree centigrade and about 60 degree centigrade. Then from the pressure measuring results, it is confirmed that the pressure at the diffuser depends on each the throat diameter and

  11. Initial operation of the new bevatron local injector

    International Nuclear Information System (INIS)

    Staples, J.; Dwinell, R.; Gough, R.

    1985-01-01

    Initial operational characteristics of a new Bevatron injector system are described. It is capable of providing an independent source of ions to the Bevatron through mass 40. The new injector consists of a sputter ion PIG source, operating on a 60 kV DC platform, an RFQ linac, and two Alvarez linacs, all operating at 199 MHz. Beams with q/A greater than or equal to 0.14 are accelerated to 200 keV/n in the RFQ and to 800 keV/n in the first Alvarez tank. Each Alvarez operates in the 2βlambda mode, and each is followed by a foil stripper. Beams with a q/A greater than or equal to 0.32 are accelerated through the second Alvarez to 5 MeV/n, fully stripped, and injected into the Bevatron. Because the Bevatron can be efficiently switched between this injector and the Super HILAC injector, a more efficient operations schedule is made possible to meet the increasingly diverse needs of the Biomedical and Nuclear Science research programs

  12. Initial operation of the new Bevatron local injector

    International Nuclear Information System (INIS)

    Staples, J.; Dwinell, R.; Gough, R.

    1985-05-01

    Initial operational characteristics of a new Bevatron injector system are described. It is capable of providing an independent source of ions to the Bevatron through mass 40. The new injector consists of a sputter ion PIG source, operating on a 60 kV dc platform, an RFQ linac, and two Alvarez linacs, all operating at 199 MHz. Beams with q/A greater than or equal to 0.14 are accelerated to 200 keV/n in the RFQ and to 800 keV/n in the first Alvarez tank. Each Alvarez operates in the 2βlambda mode, and each is followed by a foil stripper. Beams with a q/A greater than or equal to 0.32 are accelerated through the second Alvarez to 5 MeV/n, fully stripped, and injected into the Bevatron. Because the Bevatron can be efficiently switched between this injector and the SuperHILAC injector, a more efficient operations schedule is made possible to meet the increasingly diverse needs of the Biomedical and Nuclear Science research programs. 5 refs

  13. Water jet behavior in center water jet type supersonic steam injector

    International Nuclear Information System (INIS)

    Kawamoto, Y.; Abe, Y.

    2005-01-01

    Next-generation reactor systems have been under development aiming at simplified system and improvement of safety and credibility. A steam injector has a function of a passive pump without large motor or turbo-machinery, and has been investigated as one of the most important component of the next-generation reactor. Its performance as a pump depends on direct contact condensation phenomena between a supersonic steam and a sub-cooled water jet. As previous studies of the steam injector, there are studies about formulation of operating characteristic of steam injector and analysis of jet structure in steam injector by Narabayashi etc. And as previous studies of the direct contact condensation, there is the study about the direct contact condensation in steam atmosphere. However the study about the turbulent heat transfer under the great shear stress is not enough investigated. Therefore it is necessary to examine in detail about the operating characteristic of the steam injector. The present paper reports the observation results of the water jet behavior in the super sonic steam injector by using the video camera and the high-speed video camera. And the measuring results of the temperature and the pressure distribution in the steam injector are reported. From observation results by video camera, it is cleared that the water jet is established at the center of the steam injector right after steam supplied and the operation of the steam injector depends on the throat diameter. And from observation results by high-speed video camera, it is supposed that the columned water jet surface is established in the mixing nozzle and the water jet surface movement exists. Furthermore and effect of the non-condensable gas on the steam injector is investigated by measuring the radial temperature distributions in the water jet. From measuring results, it is supposed the more the air included in the steam, the more the temperature fluctuation of both steam and discharge water

  14. Injector of the Utrecht EN tandem

    Energy Technology Data Exchange (ETDEWEB)

    Borg, K. van der; Haas, A.P. de; Hoogenboom, A.M.; Strasters, B.A.; Vermeer, A.; Zwol, N.A. van (Rijksuniversiteit Utrecht (Netherlands). Fysisch Lab.)

    1984-02-15

    An injector has been built to obtain improved beam transmission through the EN tandem. The injector has been provided with a 90/sup 0/ analysing magnet, m/..delta..m=300, and 130 kV preacceleration. Beam optics calculations have been made for the injector and tandem. The injector has been equipped with a fiber optics control and data acquisition system.

  15. The injector of the Utrecht EN tandem

    International Nuclear Information System (INIS)

    Borg, K. van der; Haas, A.P. de; Hoogenboom, A.M.; Strasters, B.A.; Vermeer, A.; Zwol, N.A. van

    1984-01-01

    An injector has been built to obtain improved beam transmission through the EN tandem. The injector has been provided with a 90 0 analysing magnet, m/Δm=300, and 130 kV preacceleration. Beam optics calculations have been made for the injector and tandem. The injector has been equipped with a fiber optics control and data acquisition system. (orig.)

  16. Beam dynamics and optics studies for the LHC injectors upgrade

    CERN Document Server

    Bartosik, Hannes; Benedikt, Michael

    The Large Hadron Collider (LHC) upgrade, which aims at reaching significantly higher luminosities at the experiment sites, requires the existing injector chain to provide proton beams with unprecedented beam intensity and brightness. The required beam parameters are out of reach for the CERN accelerator complex in its present state. Therefore, upgrade possibilities of the existing injectors for mitigating their performance limitations or their partial replacement by new machines have been studied. The transition energy plays a central role for the performance of synchrotrons. Designing a lattice with negative momentum compaction (NMC), i.e. imaginary transition energy, allows avoiding transition crossing and thus the associated performance limitations. In the first part of this thesis, the properties of an NMC cell are studied. The limits of betatron stability are evaluated by a combination of analytical and numerical calculations. The NMC cell is then used for the design study of a new synchrotron called P...

  17. High-brightness electron injectors

    International Nuclear Information System (INIS)

    Sheffield, R.L.

    1987-01-01

    Free-electron laser (FEL) oscillators and synchrotron light sources require pulse trains of high peak brightness and, in some applications, high-average power. Recent developments in the technology of photoemissive and thermionic electron sources in rf cavities for electron-linac injector applications offer promising advances over conventional electron injectors. Reduced emittance growth in high peak-current electron injectors may be achieved by using high field strengths and by linearizing the radial component of the cavity electric field at the expense of lower shunt impedance

  18. Tevatron energy and luminosity upgrades beyond the Main Injector

    International Nuclear Information System (INIS)

    Amidei, D.; Kamon, T.; Lopez, J.; McIntyre, P.; White, J.

    1994-08-01

    The Fermilab Tevatron will be the world's highest energy hadron collider until the LHC is commissioned, it has the world's highest energy fixed target beams, and Fermilab will be the leading high energy physics laboratory in the US for the foreseeable future. Following the demise of the SSC, a number of possible upgrades to the Tevatron complex, beyond construction of the Main Injector, are being discussed. Using existing technology, it appears possible to increase the luminosity of the bar pp Collider to at least 10 33 cm -2 sec -1 (Tevatron-Star) and to increase the beam energy to 2 TeV (DiTevatron). Fixed target beam of energy about 1.5 TeV could also be delivered. Leaving the existing Tevatron in the tunnel and constructing bypasses around the collider halls would allow simultaneous 800 GeV fixed target and √s = 4 TeV collider operation. These upgrades would give Fermilab an exciting physics program which would be complementary to the LHC, and they would lay the groundwork for the construction of a possible post-LHC ultra-high energy hadron collider

  19. High-brightness injector modeling

    International Nuclear Information System (INIS)

    Lewellen, J.W.

    2004-01-01

    There are many aspects to the successful conception, design, fabrication, and operation of high-brightness electron beam sources. Accurate and efficient modeling of the injector are critical to all phases of the process, from evaluating initial ideas to successful diagnosis of problems during routine operation. The basic modeling tasks will vary from design to design, according to the basic nature of the injector (dc, rf, hybrid, etc.), the type of cathode used (thermionic, photo, field emitter, etc.), and 'macro' factors such as average beam current and duty factor, as well as the usual list of desired beam properties. The injector designer must be at least aware of, if not proficient at addressing, the multitude of issues that arise from these considerations; and, as high-brightness injectors continue to move out of the laboratory, the number of such issues will continue to expand.

  20. CFD simulation of coaxial injectors

    Science.gov (United States)

    Landrum, D. Brian

    1993-01-01

    The development of improved performance models for the Space Shuttle Main Engine (SSME) is an important, ongoing program at NASA MSFC. These models allow prediction of overall system performance, as well as analysis of run-time anomalies which might adversely affect engine performance or safety. Due to the complexity of the flow fields associated with the SSME, NASA has increasingly turned to Computational Fluid Dynamics (CFD) techniques as modeling tools. An important component of the SSME system is the fuel preburner, which consists of a cylindrical chamber with a plate containing 264 coaxial injector elements at one end. A fuel rich mixture of gaseous hydrogen and liquid oxygen is injected and combusted in the chamber. This process preheats the hydrogen fuel before it enters the main combustion chamber, powers the hydrogen turbo-pump, and provides a heat dump for nozzle cooling. Issues of interest include the temperature and pressure fields at the turbine inlet and the thermal compatibility between the preburner chamber and injector plate. Performance anomalies can occur due to incomplete combustion, blocked injector ports, etc. The performance model should include the capability to simulate the effects of these anomalies. The current approach to the numerical simulation of the SSME fuel preburner flow field is to use a global model based on the MSFC sponsored FNDS code. This code does not have the capabilities of modeling several aspects of the problem such as detailed modeling of the coaxial injectors. Therefore, an effort has been initiated to develop a detailed simulation of the preburner coaxial injectors and provide gas phase boundary conditions just downstream of the injector face as input to the FDNS code. This simulation should include three-dimensional geometric effects such as proximity of injectors to baffles and chamber walls and interaction between injectors. This report describes an investigation into the numerical simulation of GH2/LOX coaxial

  1. Steady state neutral beam injector

    International Nuclear Information System (INIS)

    Mattoo, S.K.; Bandyopadhyay, M.; Baruah, U.K.; Bisai, N.; Chakbraborty, A.K.; Chakrapani, Ch.; Jana, M.R.; Bajpai, M.; Jaykumar, P.K.; Patel, D.; Patel, G.; Patel, P.J.; Prahlad, V.; Rao, N.V.M.; Rotti, C.; Singh, N.P.; Sridhar, B.

    2000-01-01

    Learning from operational reliability of neutral beam injectors in particular and various heating schemes including RF in general on TFTR, JET, JT-60, it has become clear that neutral beam injectors may find a greater role assigned to them for maintaining the plasma in steady state devices under construction. Many technological solutions, integrated in the present day generation of injectors have given rise to capability of producing multimegawatt power at many tens of kV. They have already operated for integrated time >10 5 S without deterioration in the performance. However, a new generation of injectors for steady state devices have to address to some basic issues. They stem from material erosion under particle bombardment, heat transfer > 10 MW/m 2 , frequent regeneration of cryopanels, inertial power supplies, data acquisition and control of large volume of data. Some of these engineering issues have been addressed to in the proposed neutral beam injector for SST-1 at our institute; the remaining shall have to wait for the inputs of the database generated from the actual experience with steady state injectors. (author)

  2. Very large hadron collider (VLHC)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    A VLHC informal study group started to come together at Fermilab in the fall of 1995 and at the 1996 Snowmass Study the parameters of this machine took form. The VLHC as now conceived would be a 100 TeV hadron collider. It would use the Fermilab Main Injector (now nearing completion) to inject protons at 150 GeV into a new 3 TeV Booster and then into a superconducting pp collider ring producing 100 TeV c.m. interactions. A luminosity of {approximately}10{sup 34} cm{sup -2}s{sup -1} is planned. Our plans were presented to the Subpanel on the Planning for the Future of US High- Energy Physics (the successor to the Drell committee) and in February 1998 their report stated ``The Subpanel recommends an expanded program of R&D on cost reduction strategies, enabling technologies, and accelerator physics issues for a VLHC. These efforts should be coordinated across laboratory and university groups with the aim of identifying design concepts for an economically and technically viable facility`` The coordination has been started with the inclusion of physicists from Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL), and Cornell University. Clearly, this collaboration must expanded internationally as well as nationally. The phrase ``economically and technically viable facility`` presents the real challenge.

  3. LHC Report: imaginative injectors

    CERN Multimedia

    Pierre Freyermuth for the LHC team

    2016-01-01

    A new bunch injection scheme from the PS to the SPS allowed the LHC to achieve a new peak luminosity record.   Figure 1: PSB multi-turn injection principle: to vary the parameters during injection with the aim of putting the newly injected beam in a different region of the transverse phase-space plan. The LHC relies on the injector complex to deliver beam with well-defined bunch populations and the necessary transverse and longitudinal characteristics – all of which fold directly into luminosity performance. There are several processes taking place in the PS Booster (PSB) and the Proton Synchrotron (PS) acting on the beam structure in order to obtain the LHC beam characteristics. Two processes are mainly responsible for the beam brightness: the PSB multi-turn injection and the PS radio-frequency (RF) gymnastics. The total number of protons in a bunch and the transverse emittances are mostly determined by the multi-turn Booster injection, while the number of bunches and their time spacin...

  4. Initial operation of the Tevatron collider

    International Nuclear Information System (INIS)

    Johnson, R.

    1987-03-01

    The Tevatron is now the highest energy proton synchrotron and the only accelerator made with superconducting magnets. Operating since 1983 as a fixed-target machine at energies up to 800 GeV, it has now been modified to operate as a 900 GeV antiproton-proton collider. This paper describes the initial operation of the machine in this mode. The new features of the Fermilab complex, including the antiproton source and the Main Ring injector with its two overpasses and new rf requirements, are discussed. Beam characteristics in the Tevatron (including lifetimes, emittances, luminosity, beam-beam tune shifts, backgrounds, and low beta complications), the coordination of the steps in the accelerator chain, and the commissioning history are also discussed. Finally, some plans for the improvement of the collider are presented

  5. A Wideroee pre-accelerator for the SuperHILAC

    International Nuclear Information System (INIS)

    Staples, J.; Alonso, J.; Behrsing, G.; Clark, D.; Grunder, H.; Olivier, M.; Spence, D.; Yourd, R.

    1976-01-01

    Plans to upgrade both the Bevatron vacuum system and the SuperHILAC ion sources and injectors have been formulated. A proposed new pre-accelerator based on an air-insulated Cockcroft-Walton and a Wideroee linac is presented

  6. 1987 DOE review: First collider run operation

    International Nuclear Information System (INIS)

    Childress, S.; Crawford, J.; Dugan, G.

    1987-05-01

    This review covers the operations of the first run of the 1.8 TeV superconducting super collider. The papers enclosed cover: PBAR source status, fixed target operation, Tevatron cryogenic reliability and capacity upgrade, Tevatron Energy upgrade progress and plans, status of the D0 low beta insertion, 1.8 K and 4.7 K refrigeration for low-β quadrupoles, progress and plans for the LINAC and booster, near term and long term and long term performance improvements

  7. SSC collider dipole magnet end mechanical design

    International Nuclear Information System (INIS)

    Delchamps, S.W.; Bossert, R.C.; Carson, J.; Ewald, K.; Fulton, H.; Kerby, J.; Koska, W.; Strait, J.; Wake, M.; Leung, K.K.

    1991-01-01

    This paper describes the mechanical design of the ends of Superconducting Super Collider dipole magnets to be constructed and tested at Fermilab. Coil end clamps, end yoke configuration, and end plate design are discussed. Loading of the end plate by axial Lorentz forces is discussed. Relevant data from 40 mm and 50 mm aperture model dipole magnets built and tested at Fermilab are presented. In particular, the apparent influence of end clamp design on the quench behavior of model SSC dipoles is described

  8. Status of the MEIC ion collider ring design

    International Nuclear Information System (INIS)

    Morozov, Vasiliy; Derbenev, Yaroslav; Harwood, Leigh; Hutton, Andrew; Lin, Fanglei; Pilat, Fulvia; Zhang, Yuhong; Cai, Yunhai; Nosochkov, Y. M.; Sullivan, Michael; Wang, M.-H.; Wienands, Uli; Gerity, James; Mann, Thomas; McIntyre, Peter; Pogue, Nathaniel; Sattarov, Akhdiyor

    2015-09-01

    We present an update on the design of the ion collider ring of the Medium-energy Electron-Ion Collider (MEIC) proposed by Jefferson Lab. The design is based on the use of super-ferric magnets. It provides the necessary momentum range of 8 to 100 GeV/c for protons and ions, matches the electron collider ring design using PEP-II components, fits readily on the JLab site, offers a straightforward path for a future full-energy upgrade by replacing the magnets with higher-field ones in the same tunnel, and is more cost effective than using presently available current-dominated super-conducting magnets. We describe complete ion collider optics including an independently-designed modular detector region.

  9. Super jackstraws and super waterwheels

    International Nuclear Information System (INIS)

    Cho, Jin-Ho

    2007-01-01

    We construct various new BPS states of D-branes preserving 8 supersymmetries. These include super Jackstraws (a bunch of scattered D- or (p, q)-strings preserving supersymmetries), and super waterwheels (a number of D2-branes intersecting at generic angles on parallel lines while preserving supersymmetries). Super D-Jackstraws are scattered in various dimensions but are dynamical with all their intersections following a common null direction. Meanwhile, super (p, q)-Jackstraws form a planar static configuration. We show that the SO(2) subgroup of SL(2, R), the group of classical S-duality transformations in IIB theory, can be used to generate this latter configuration of variously charged (p, q)-strings intersecting at various angles. The waterwheel configuration of D2-branes preserves 8 supersymmetries as long as the 'critical' Born-Infeld electric fields are along the common direction

  10. Super differential forms on super Riemann surfaces

    International Nuclear Information System (INIS)

    Konisi, Gaku; Takahasi, Wataru; Saito, Takesi.

    1994-01-01

    Line integral on the super Riemann surface is discussed. A 'super differential operator' which possesses both properties of differential and of differential operator is proposed. With this 'super differential operator' a new theory of differential form on the super Riemann surface is constructed. We call 'the new differentials on the super Riemann surface' 'the super differentials'. As the applications of our theory, the existency theorems of singular 'super differentials' such as 'super abelian differentials of the 3rd kind' and of a super projective connection are examined. (author)

  11. SuperB A High-Luminosity Asymmetric $e^+ e^-$ Super Flavour Factory : Conceptual Design Report

    CERN Document Server

    Bona, M.; Grauges Pous, E.; Colangelo, P.; De Fazio, F.; Palano, A.; Manghisoni, M.; Re, V.; Traversi, G.; Eigen, G.; Venturini, M.; Soni, N.; Bruschi, M.; De Castro, S.; Faccioli, P.; Gabrieli, A.; Giacobbe, B.; Semprini Cesare, N.; Spighi, R.; Villa, M.; Zoccoli, A.; Hearty, C.; McKenna, J.; Soni, A.; Khan, A.; Barniakov, A.Y.; Barniakov, M.Y.; Blinov, V.E.; Druzhinin, V.P.; Golubev, V.B.; Kononov, S.A.; Koop, I.A.; Kravchenko, E.A.; Levichev, E.B.; Nikitin, S.A.; Onuchin, A.P.; Piminov, P.A.; Serednyakov, S.I.; Shatilov, D.N.; Skovpen, Y.I.; Solodov, E.A.; Cheng, C.H.; Echenard, B.; Fang, F.; Hitlin, D.J.; Porter, F.C.; Asner, D.M.; Pham, T.N.; Fleischer, R.; Giudice, G.F.; Hurth, T.; Mangano, M.; Mancinelli, G.; Meadows, B.T.; Schwartz, A.J.; Sokoloff, M.D.; Soffer, A.; Beard, C.D.; Haas, T.; Mankel, R.; Hiller, G.; Ball, P.; Pappagallo, M.; Pennington, M.R.; Gradl, W.; Playfer, S.; Abada, A.; Becirevic, D.; Descotes-Genon, S.; Pene, O.; Andreotti, D.; Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabresi, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Prencipe, E.; Santoro, V.; Stancari, G.; Anulli, F.; Baldini-Ferroli, R.; Biagini, M.E.; Boscolo, M.; Calcaterra, A.; Drago, A.; Finocchiaro, G.; Guiducci, S.; Isidori, G.; Pacetti, S.; Patteri, P.; Peruzzi, I.M.; Piccolo, M.; Preger, M.A.; Raimondi, P.; Rama, M.; Vaccarezza, C.; Zallo, A.; Zobov, M.; De Sangro, R.; Buzzo, A.; Lo Vetere, M.; Macri, M.; Monge, M.R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.; Matias, J.; Panduro Vazquez, W.; Borzumati, F.; Eyges, V.; Prell, S.A.; Pedlar, T.K.; Korpar, S.; Pestonik, R.; Staric, M.; Neubert, M.; Denig, A.G.; Nierste, U.; Agoh, T.; Ohmi, K.; Ohnishi, Y.; Fry, J.R.; Touramanis, C.; Wolski, A.; Golob, B.; Krizan, P.; Flaecher, H.; Bevan, A.J.; Di Lodovico, F.; George, K.A.; Barlow, R.; Lafferty, G.; Jawahery, A.; Roberts, D.A.; Simi, G.; Patel, P.M.; Robertson, S.H.; Lazzaro, A.; Palombo, F.; Kaidalov, A.; Buras, A.J.; Tarantino, C.; Buchalla, G.; Sanda, A.I.; D'Ambrosio, G.; Ricciardi, G.; Bigi, I.; Jessop, C.P.; Losecco, J.M.; Honscheid, K.; Arnaud, N.; Chehab, R.; Fedala, Y.; Polci, F.; Roudeau, P.; Sordini, V.; Soskov, V.; Stocchi, A.; Variola, A.; Vivoli, A.; Wormser, G.; Zomer, F.; Bertolin, A.; Brugnera, R.; Gagliardi, N.; Gaz, A.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Bonneaud, G.R.; Lombardo, V.; Calderini, G.; Ratti, L.; Speziali, V.; Biasini, M.; Covarelli, R.; Manoni, E.; Servoli, L.; Angelini, C.; Batignani, G.; Bettarini, S.; Bosi, F.; Carpinelli, M.; Cenci, R.; Cervelli, A.; Dell'Orso, M.; Forti, F.; Giannetti, P.; Giorgi, M.; Lusiani, A.; Marchiori, G.; Massa, M.; Mazur, M.A.; Morsani, F.; Neri, N.; Paoloni, E.; Raffaelli, F.; Rizzo, G.; Walsh, J.; Braun, V.; Lenz, A.; Adams, G.S.; Danko, I.Z.; Baracchini, E.; Bellini, F.; Cavoto, G.; D'Orazio, A.; Del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Gaspero, Mario; Jackson, P.; Martinelli, G.; Mazzoni, M.A.; Morganti, Silvio; Piredda, G.; Renga, F.; Silvestrini, L.; Voena, C.; Catani, L.; Di Ciaccio, A.; Messi, R.; Santovetti, E.; Satta, A.; Ciuchini, M.; Lubicz, V.; Wilson, F.F.; Godang, R.; Chen, X.; Liu, H.; Park, W.; Purohit, M.; Trivedi, A.; White, R.M.; Wilson, J.R.; Allen, M.T.; Aston, D.; Bartoldus, R.; Brodsky, S.J.; Cai, Y.; Coleman, J.; Convery, M.R.; DeBarger, S.; Dingfelder, J.C.; Dubois-Felsmann, G.P.; Ecklund, S.; Fisher, A.S.; Haller, G.; Heifets, S.A.; Kaminski, J.; Kelsey, M.H.; Kocian, M.L.; Leith, D.W.G.S.; Li, N.; Luitz, S.; Luth, V.; MacFarlane, D.; Messner, R.; Muller, D.R.; Nosochkov, Y.; Novokhatski, A.; Pivi, M.; Ratcliff, B.N.; Roodman, A.; Schwiening, J.; Seeman, J.; Snyder, A.; Sullivan, M.; Va'Vra, J.; Wienands, U.; Wisniewski, W.; Stoeck, H.; Cheng, H.Y.; Li, H.N.; Keum, Y.Y.; Gronau, M.; Grossman, Y.; Bianchi, F.; Gamba, D.; Gambino, P.; Marchetto, F.; Menichetti, Ezio A.; Mussa, R.; Pelliccioni, M.; Dalla Betta, G.F.; Bomben, M.; Bosisio, L.; Cartaro, C.; Lanceri, L.; Vitale, L.; Azzolini, V.; Bernabeu, J.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D.A.; Oyanguren, A.; Paradisi, P.; Pich, A.; Sanchis-Lozano, M.A.; Kowalewski, Robert V.; Roney, J.M.; Back, J.J.; Gershon, T.J.; Harrison, P.F.; Latham, T.E.; Mohanty, G.B.; Petrov, A.A.; Pierini, M.; INFN

    2007-01-01

    The physics objectives of SuperB, an asymmetric electron-positron collider with a luminosity above 10^36/cm^2/s are described, together with the conceptual design of a novel low emittance design that achieves this performance with wallplug power comparable to that of the current B Factories, and an upgraded detector capable of doing the physics in the SuperB environment.

  12. R&D status of linear collider technology at KEK

    Science.gov (United States)

    Urakawa, Junji

    1992-02-01

    This paper gives an outline of the Japan Linear Collider (JLC) project, especially JLC-I. The status of the various R&D works is particularly presented for the following topics: (1) electron and positron sources, (2) S-band injector linacs, (3) damping rings, (4) high power klystrons and accelerating structures, (5) the final focus system. Finally, the status of the construction and design studies for the Accelerator Test Facility (ATF) is summarized.

  13. High energy accelerator and colliding beam user group

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    This report discusses the following topics: OPAL experiment at LEP; D{phi} experiment at Fermilab; deep inelastic muon interactions at TEV II; CYGNUS experiment; final results from {nu}{sub e}{sup {minus}e} elastic scattering; physics with CLEO detector at CESR; results from JADE at PETRA; rare kaon-decay experiment at BNL; search for top quark; and super conducting super collider activities.

  14. DIAGNOSTICS AND REGENERATION OF COMMON RAIL INJECTORS

    Directory of Open Access Journals (Sweden)

    Łukasz KONIECZNY

    2015-03-01

    Full Text Available The article presents the methodology of Common Rail injector diagnostic, regeneration and regulation with use of professional test stands. The EPS 815 machine can be used to test and repair all BOSCH injectors fully satisfying the producer requirements and standards. The article describes an example injector diagnosis with use of such test stand and additionally presents appropriate injector regeneration and encoding techniques

  15. Physics at Future Colliders

    CERN Document Server

    Ellis, John R.

    1999-01-01

    After a brief review of the Big Issues in particle physics, we discuss the contributions to resolving that could be made by various planned and proposed future colliders. These include future runs of LEP and the Fermilab Tevatron collider, B factories, RHIC, the LHC, a linear electron-positron collider, an electron-proton collider in the LEP/LHC tunnel, a muon collider and a future larger hadron collider (FLHC). The Higgs boson and supersymmetry are used as benchmarks for assessing their capabilities. The LHC has great capacities for precision measurements as well as exploration, but also shortcomings where the complementary strengths of a linear electron-positron collider would be invaluable. It is not too soon to study seriously possible subsequent colliders.

  16. Super families

    International Nuclear Information System (INIS)

    Amato, N.; Maldonado, R.H.C.

    1989-01-01

    The study on phenomena in the super high energy region, Σ E j > 1000 TeV revealed events that present a big dark spot in central region with high concentration of energy and particles, called halo. Six super families with halo were analysed by Brazil-Japan Cooperation of Cosmic Rays. For each family the lateral distribution of energy density was constructed and R c Σ E (R c ) was estimated. For studying primary composition, the energy correlation with particles released separately in hadrons and gamma rays was analysed. (M.C.K.)

  17. Berkeley mini-collider

    International Nuclear Information System (INIS)

    Schroeder, L.S.

    1984-06-01

    The Berkeley Mini-Collider, a heavy-ion collider being planned to provide uranium-uranium collisions at T/sub cm/ less than or equal to 4 GeV/nucleon, is described. The central physics to be studied at these energies and our early ideas for a collider detector are presented

  18. Linear colliders - prospects 1985

    International Nuclear Information System (INIS)

    Rees, J.

    1985-06-01

    We discuss the scaling laws of linear colliders and their consequences for accelerator design. We then report on the SLAC Linear Collider project and comment on experience gained on that project and its application to future colliders. 9 refs., 2 figs

  19. Very high energy colliders

    International Nuclear Information System (INIS)

    Richter, B.

    1986-03-01

    The luminosity and energy requirements are considered for both proton colliders and electron-positron colliders. Some of the basic design equations for high energy linear electron colliders are summarized, as well as design constraints. A few examples are given of parameters for very high energy machines. 4 refs., 6 figs

  20. LHC Injectors Upgrade (LIU) Project at CERN

    CERN Document Server

    Shaposhnikova, Elena; Damerau, Heiko; Funken, Anne; Gilardoni, Simone; Goddard, Brennan; Hanke, Klaus; Kobzeva, Lelyzaveta; Lombardi, Alessandra; Manglunki, Django; Mataguez, Simon; Meddahi, Malika; Mikulec, Bettina; Rumolo, Giovanni; Scrivens, Richard; Vretenar, Maurizio

    2016-01-01

    A massive improvement program of the LHC injector chain is presently being conducted under the LIU project. For the proton chain, this includes the replacement of Linac2 with Linac4 as well as all necessary upgrades to the Proton Synchrotron Booster (PSB), the Proton Synchrotron (PS) and Super Proton Synchrotron (SPS), aimed at producing beams with the challenging High Luminosity LHC (HL-LHC) parameters. Regarding the heavy ions, plans to improve the performance of Linac3 and the Low Energy Ion Ring (LEIR) are also pursued under the general LIU program. The full LHC injection chain returned to operation after Long Shutdown 1, with extended beam studies taking place in Run 2. A general project Cost and Schedule Review also took place in March 2015, and several dedicated LIU project reviews were held to address issues awaiting pending decisions. In view of these developments, 2014 and 2015 have been key years to define a number of important aspects of the final LIU path. This paper will describe the reviewed LI...

  1. INTOR neutral beam injector concept

    International Nuclear Information System (INIS)

    Metzler, D.H.; Stewart, L.D.

    1981-01-01

    The US INTOR phase 1 effort in the plasma heating area is described. Positive ion based sources extrapolated from present day technology are proposed. These sources operate at 175 keV beam energy for 6 s. Five injectors - plus one spare - inject 75 MW. Beam energy, source size, interface, radiation hardening, and many other studies are summarized

  2. New developments of HIF injector

    Directory of Open Access Journals (Sweden)

    Liang Lu

    2018-01-01

    Full Text Available The ultra-high intensity heavy-ion beam is highly pursued for heavy-ion researches and applications. However, it is limited by heavy-ion production of ion source and space-charge-effect in the low energy region. The Heavy-ion Inertial Fusion (HIF facilities were proposed in 1970s. The HIF injectors have large cavity number and long total length, e.g., there are 27 injectors in HIDIF and HIBLIC is 30 km in length, and the corresponding HIF facilities are too large and too expensive to be constructed. Recently, ion acceleration technologies have been developing rapidly, especially in the low energy region, where the acceleration of high intensity heavy-ions is realized. Meanwhile, superconducting (SC acceleration matures and increases the acceleration gradient in medium and high energy regions. The length of HIF injectors can be shortened to a buildable length of 2.5 km. This paper will present a review of a renewed HIF injector, which adopts multi-beam linac-based cavities. Keywords: Heavy-ion inertial fusion (HIF, Radio frequency quadrupole (RFQ, IH cavity, Heavy-ion, Multi-beam accelerator, PACS Codes: 52.58.Hm, 28.52.Av, 29.20.Ej, 29.27.-a, 29.27.Ac, 41.75.Lx

  3. Tritium pellet injector for TFTR

    International Nuclear Information System (INIS)

    Gouge, M.J.; Baylor, L.R.; Cole, M.J.; Combs, S.K.; Dyer, G.R.; Fehling, D.T.; Fisher, P.W.; Foust, C.R.; Langley, R.A.; Milora, S.L.; Qualls, A.L.; Wilgen, J.B.; Schmidt, G.L.; Barnes, G.W.; Persing, R.G.

    1992-01-01

    The tritium pellet injector (TPI) for the Tokamak Fusion Test Reactor (TFTR) will provide a tritium pellet fueling capability with pellet speeds in the 1- to 3-km/s range for the TFTR deuterium-tritium (D-T) phase. The existing TFTR deuterium pellet injector (DPI) has been modified at Oak Ridge National Laboratory (ORNL) to provide a four-shot, tritium-compatible, pipe-gun configuration with three upgraded single-stage pneumatic guns and a two-stage light gas gun driver. The TPI was designed to provide pellets ranging from 3.3 to 4.5 mm in diameter in arbitrarily programmable firing sequences at speeds up to approximately 1.5 km/s for the three single-stage drivers and 2.5 to 3 km/s for the two-stage driver. Injector operation is controlled by a programmable logic controller. The new pipe-gun injector assembly was installed in the modified DPI guard vacuum box, and modifications were made to the internals of the DPI vacuum injection line, including a new pellet diagnostics package. Assembly of these modified parts with existing DPI components was then completed, and the TPI was tested at ORNL with deuterium pellet. Results of the limited testing program at ORNL are described. The TPI is being installed on TFTR to support the D-D run period in 1992. In 1993, the tritium pellet injector will be retrofitted with a D-T fuel manifold and secondary tritium containment systems and integrated into TFTR tritium processing systems to provide full tritium pellet capability

  4. Performance of the Charge Injectors of the ALICE Silicon Drift Detectors

    Czech Academy of Sciences Publication Activity Database

    Kushpil, Svetlana

    2012-01-01

    Roč. 37, č. 37 (2012), s. 970-975 ISSN 1875-3892. [TIPP 2011 - Technology and Instrumentation in Particle Physics 2011. Chicago, 09.06.2011-14.06.2011] R&D Projects: GA MŠk LA08015 Institutional support: RVO:61389005 Keywords : semiconductor detector * silicon drift detector * MOS charge injector Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders http://www.sciencedirect.com/science/article/pii/S1875389212017920

  5. Operational performance of a bunch by bunch digital damper in the Fermilab Main Injector

    International Nuclear Information System (INIS)

    Adamson, P.; Ashmanskas, W.J.; Foster, G.W.; Hansen, S.; Marchionni, A.; Nicklaus, D.; Semenov, A.; Wildman, D.; Kang, H.

    2005-01-01

    We have implemented a transverse and longitudinal bunch by bunch digital damper system in the Fermilab Main Injector, using a single digital board for all 3 coordinates. The system has been commissioned over the last year, and is now operational in all MI cycles, damping beam bunched at both 53MHz and 2.5MHz. We describe the performance of this system both for collider operations and high-intensity running for the NuMI project

  6. Cavitation and primary atomization in real injectors at low injection pressure condition

    Science.gov (United States)

    Dumouchel, Christophe; Leboucher, Nicolas; Lisiecki, Denis

    2013-06-01

    This experimental work investigates the influence of the geometry of GDI devices on primary atomization processes under low injection pressure and reduced back pressure. These pressure conditions ensure cavitating flows and observable atomization processes. Measurements include mass flux, structure velocity from high-speed visualizations and spray characterization with a laser diffraction technique. Super-cavitation regime and cavitation string, which have their own influence on the mass flux, develop independently in different injector regions. These regimes impact the flow pattern in the orifice and the subsequent atomization process. A possible interaction between cavitation string and super-cavitation is found to promote a hydraulic-flip-like regime and to deteriorate atomization quality. As far as the geometry of the injector is concerned, the profile of the orifice inlet and the roughness of the sac volume region are found to be important geometrical characteristics.

  7. The upgraded data acquisition system for beam loss monitoring at the Fermilab Tevatron and Main Injector

    International Nuclear Information System (INIS)

    Baumbaugh, A.; Briegel, C.; Brown, B.C.; Capista, D.; Drennan, C.; Fellenz, B.; Knickerbocker, K.; Lewis, J.D.; Marchionni, A.; Needles, C.; Olson, M.

    2011-01-01

    A VME-based data acquisition system for beam-loss monitors has been developed and is in use in the Tevatron and Main Injector accelerators at the Fermilab complex. The need for enhanced beam-loss protection when the Tevatron is operating in collider-mode was the main driving force for the new design. Prior to the implementation of the present system, the beam-loss monitor system was disabled during collider operation and protection of the Tevatron magnets relied on the quench protection system. The new Beam-Loss Monitor system allows appropriate abort logic and thresholds to be set over the full set of collider operating conditions. The system also records a history of beam-loss data prior to a beam-abort event for post-abort analysis. Installation of the Main Injector system occurred in the fall of 2006 and the Tevatron system in the summer of 2007. Both systems were fully operation by the summer of 2008. In this paper we report on the overall system design, provide a description of its normal operation, and show a number of examples of its use in both the Main Injector and Tevatron.

  8. Proceedings of the Fifth International Workshop on Next-Generation Linear Colliders. Addendum

    International Nuclear Information System (INIS)

    Paterson, J.M.; Asher, K.

    1993-01-01

    This report contains viewgraphs on the following topics: Electron and positron sources and injectors; damping rings, bunch compressors and pre-accelerators; RF sources and structures for normal and superconducting linacs; beam dynamics of the main accelerator; instrumentation for linear colliders; final focus and interaction regions; and overall parameters and construction techniques

  9. The Collider dipole magnet program

    International Nuclear Information System (INIS)

    Baldi, R.W.; Bailey, R.; Bever, D.; Bogart, L.; Gigg, G.; Packer, M.; Page, L.; Stranberg, N.

    1991-01-01

    The Superconducting Super Collider will consist of more large superconducting magnets than have been built to date. Over 12,000 superconducting magnets are required and more than 8,000 will be Collider dipoles. The dipole magnet program is on the critical path of the project and requires the optimized utilization of the Nation's resources - National Laboratories, Universities and Industry. General Dynamics and Westinghouse Electric Corporation have been chosen as the Leader and Follower companies for the design of producible magnets and the manufacturing of the SSC dipoles. Industry has the necessary experience, skills and facilities required to produce reliable and cost effective dipole magnets. At peak production, 10 CDMs per day, very large quantities (nearly 130 metric tonnes/day) of materials will have to be procured from companies nationwide and fabricated into defect-free magnets. A key element of the SSCL's strategy to produce the most efficient CDM program is to employ the Leader-Follower approach, with the Leader transferring technology from the laboratories to the Leader's facility, fully integrating the Follower in the producibility and tooling/factory design efforts, and assisting the Follower in magnet qualification tests. General Dynamics is ready to help build America's most powerful research tool. Management is in place, the facilities are ready for activation and resources are available for immediate assignment

  10. Test accelerator for linear collider

    International Nuclear Information System (INIS)

    Takeda, S.; Akai, K.; Akemoto, M.; Araki, S.; Hayano, H.; Hugo, T.; Ishihara, N.; Kawamoto, T.; Kimura, Y.; Kobayashi, H.; Kubo, T.; Kurokawa, S.; Matsumoto, H.; Mizuno, H.; Odagiri, J.; Otake, Y.; Sakai, H.; Shidara, T.; Shintake, T.; Suetake, M.; Takashima, T.; Takata, K.; Takeuchi, Y.; Urakawa, J.; Yamamoto, N.; Yokoya, K.; Yoshida, M.; Yoshioka, M.; Yamaoka, Y.

    1989-01-01

    KEK has proposed to build Test Accelerator Facility (TAF) capable of producing a 2.5 GeV electron beam for the purpose of stimulating R ampersand D for linear collider in TeV region. The TAF consists of a 1.5 GeV S-band linear accelerator, 1.5 GeV damping ring and 1.0 GeV X-band linear accelerator. The TAF project will be carried forward in three phases. Through Phase-I and Phase-II, the S-band and X-band linacs will be constructed, and in Phase-III, the damping ring will be completed. The construction of TAF Phase-I has started, and the 0.2 GeV S-band injector linac has been almost completed. The Phase-I linac is composed of a 240 keV electron gun, subharmonic bunchers, prebunchers and traveling buncher followed by high-gradient accelerating structures. The SLAC 5045 klystrons are driven at 450 kV in order to obtain the rf-power of 100 MW in a 1 μs pulse duration. The rf-power from a pair of klystrons are combined into an accelerating structure. The accelerating gradient up to 100 MeV/m will be obtained in a 0.6 m long structure. 5 refs., 3 figs., 2 tabs

  11. Superstrong Adjustable Permanent Magnet for a Linear Collider Final Focus

    CERN Document Server

    Iwashita, Y

    2004-01-01

    Super-strong permanent magnets are being considered as one of the candidates for the final focus quadrupole magnets in a linear collider. A short prototype with temperature compensation included and variable strength capability has been designed and fabricated. Fabrication details and some magnetic measurement results will be presented.

  12. The ATLAS positive ion injector

    International Nuclear Information System (INIS)

    Shepard, K.W.; Bollinger, L.M.; Pardo, R.C.

    1990-01-01

    This paper reviews the design, construction status, and beam tests to date of the positive ion injector (PII) which is replacing the tandem injector for the ATLAS heavy-ion facility. PII consists of an ECR ion source on a 350 KV platform injecting a very low velocity superconducting linac. The linac is composed of an independently-phased array of superconducting four-gap interdigital resonators which accelerate over a velocity range of .006 to .05c. In finished form, PII will be able to inject ions as heavy as uranium into the existing ATLAS linac. Although at the present time little more than 50% of the linac is operational, the indenpently-phased array is sufficiently flexible that ions in the lower half of the periodic table can be accelerated and injected into ATLAS. Results of recent operational experience will be discussed. 5 refs

  13. ATA injector-gun calculations

    International Nuclear Information System (INIS)

    Paul, A.C.

    1981-01-01

    ATA is a pulsed, 50 ns 10 KA, 50 MeV linear induction electron accelerator at LLNL. The ETA could be used as an injector for ATA. However the possibility of building a new injector gun for ATA, raised the question as to what changes from the ETA gun in electrode dimensions or potentials, if any, should be considered. In this report the EBQ code results for the four electrode configurations are reviewed and an attempt is made to determine the geometrical scaling laws appropriate to these ETA type gun geometries. Comparison of these scaling laws will be made to ETA operation. The characteristic operating curves for these geometries will also be presented and the effect of washer position determined. It will be shown that emittance growth will impose a limitation on beam current for a given anode potential before the virtual cathode limit is reached

  14. The ATLAS positive ion injector

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.; Bollinger, L.M.; Pardo, R.C.

    1990-01-01

    This paper reviews the design, construction status, and beam tests to date of the positive ion injector (PII) which is replacing the tandem injector for the ATLAS heavy-ion facility. PII consists of an ECR ion source on a 350 KV platform injecting a very low velocity superconducting linac. The linac is composed of an independently-phased array of superconducting four-gap interdigital resonators which accelerate over a velocity range of .006 to .05c. In finished form, PII will be able to inject ions as heavy as uranium into the existing ATLAS linac. Although at the present time little more than 50% of the linac is operational, the indenpently-phased array is sufficiently flexible that ions in the lower half of the periodic table can be accelerated and injected into ATLAS. Results of recent operational experience will be discussed. 5 refs.

  15. Centrifuge pellet injector for JET

    International Nuclear Information System (INIS)

    Andelfinger, C.; Buchelt, E.; Jacobi, D.; Lackner, E.; Schilling, H.B.; Ulrich, M.; Weber, G.

    1983-08-01

    An engineering design of a centrifuge pellet injector for JET is reported as part of the Phase I contract number JE 2/9016. A rather detailed design is presented for the mechanical and electronic features. Stress calculations, dynamic behaviour and life estimates are considered. The interfaces to the JET vacuum system and CODAS are discussed. Proposals for the pellet diagnostics (velocity, mass and shape) are presented. (orig.)

  16. Injector linac of SPring-8

    International Nuclear Information System (INIS)

    Yoshikawa, H.; Hori, T.; Suzuki, S.; Yanagida, K.; Itoh, Y.; Mizuno, A.; Taniuchi, T.; Sakaki, H.; Kuba, A.; Fukushima, S.; Kobayashi, T.; Asaka, T.; Yokomizo, H.

    1996-01-01

    The linac that is SPring-8 injector was completed and started operation from August 1. A beam was able to be transported to the final beam dumping at a tail end on August 8. From now on this linac carries out beam adjustment and be scheduled to do a beam injection to a synchrotron in October. The construction and fundamental performance of the linac are described. (author)

  17. The development of colliders

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1997-03-01

    During the period of the 50's and the 60's colliders were developed. Prior to that time there were no colliders, and by 1965 a number of small devices had worked, good understanding had been achieved, and one could speculate, as Gersh Budker did, that in a few years 20% of high energy physics would come from colliders. His estimate was an under-estimate, for now essentially all of high energy physics comes from colliders. The author presents a brief review of that history: sketching the development of the concepts, the experiments, and the technological advances which made it all possible

  18. The Super Patalan Numbers

    OpenAIRE

    Richardson, Thomas M.

    2014-01-01

    We introduce the super Patalan numbers, a generalization of the super Catalan numbers in the sense of Gessel, and prove a number of properties analagous to those of the super Catalan numbers. The super Patalan numbers generalize the super Catalan numbers similarly to how the Patalan numbers generalize the Catalan numbers.

  19. Pellet injectors for steady state plasma fuelling

    International Nuclear Information System (INIS)

    Vinyar, I.; Geraud, A.; Yamada, H.; Lukin, A.; Sakamoto, R.; Skoblikov, S.; Umov, A.; Oda, Y.; Gros, G.; Krasilnikov, I.; Reznichenko, P.; Panchenko, V.

    2005-01-01

    Successful steady state operation of a fusion reactor should be supported by repetitive pellet injection of solidified hydrogen isotopes in order to produce high performance plasmas. This paper presents pneumatic pellet injectors and its implementation for long discharge on the LHD and TORE SUPRA, and a new centrifuge pellet injector test results. All injectors are fitted with screw extruders well suited for steady state operation

  20. Design status of heavy ion injector program

    International Nuclear Information System (INIS)

    Ballard, E.O.; Meyer, E.A.; Rutkowski, H.L.; Shurter, R.P.; Van Haaften, F.W.; Riepe, K.B.

    1985-01-01

    Design and development of a sixteen beam, heavy ion injector is in progress at Los Alamos National Laboratory (LANL) to demonstrate the injector technology for the High Temperature Experiment (HTE) proposed by Lawrence Livermore Laboratory (LBL). The injector design provides for individual ion sources mounted to a support plate defining the sixteen beam array. The beamlets are electrostatically accelerated through a series of electrodes inside an evacuated (10 -7 torr) high voltage (HV) accelerating column

  1. Pneumatic pellet injectors for TFTR and JET

    International Nuclear Information System (INIS)

    Combs, S.K.; Milora, S.L.

    1986-01-01

    This paper describes the development of pneumatic hydrogen pellet injectors for plasma fueling applications on the Tokamak Fusion Test Reactor (TFTR) and the Joint European Torus (JET). The performance parameters of these injectors represent an extension of previous experience and include pellet sizes in the range 2-6 mm in diameter and speeds approaching 2 km/s. Design features and operating characteristics of these pneumatic injectors are presented

  2. Direct Fuel Injector Power Drive System Optimization

    Science.gov (United States)

    2014-04-01

    solenoid coil to create magnetic field in the stator. Then, the stator pulls the pintle to open the injector nozzle . This pintle movement occurs when the...that typically deal with power strategies to the injector solenoid coil. Numerical simulation codes for diesel injection systems were developed by...Laboratory) for providing the JP-8 test fuel. REFERENCES 1. Digesu, P. and Laforgia D., “ Diesel electro- injector : A numerical simulation code”. Journal of

  3. Numerical Simulation of Twin Nozzle Injectors

    OpenAIRE

    Milak, Dino

    2015-01-01

    Fuel injectors for marine applications have traditionally utilized nozzles with symmetric equispaced orifice configuration. But in light of the new marine emission legislations the twin nozzle concept has arisen. The twin nozzle differs from the conventional configuration by utilizing two closely spaced orifices to substitute each orifice in the conventional nozzle. Injector manufacturers regard twin nozzle injectors as a promising approach to facilitate stable spray patterns independent of t...

  4. The status of the SuperHILAC

    International Nuclear Information System (INIS)

    Grunder, H.A.; Selph, F.B.

    1976-01-01

    The SuperHILAC is an Alvarez linear accelerator designed to accelerate all ions to a maximum energy of 8.5 MeV/u. Duplication of effort is made possible by the utilization of a technique known as timeshare - two different ion beams are accelerated independently through the same linac structure. Recent operating experience is reviewed. Also discussed are recent major improvements which have been made to the accelerator, and a proposed improvement which will increase reliability and beam intensity for the very heavy ions (A > approximately 84) by adding a third injector of improved design

  5. Tevatron Collider physics

    International Nuclear Information System (INIS)

    Eichten, E.J.

    1990-02-01

    The physics of hadron colliders is briefly reviewed. Issues for further study are presented. Particular attention is given to the physics opportunities for a high luminosity (≥ 100 pb -1 /experiment/run) Upgrade of the Tevatron Collider. 25 refs., 10 figs., 2 tabs

  6. Stanford's linear collider

    International Nuclear Information System (INIS)

    Southworth, B.

    1985-01-01

    The peak of the construction phase of the Stanford Linear Collider, SLC, to achieve 50 GeV electron-positron collisions has now been passed. The work remains on schedule to attempt colliding beams, initially at comparatively low luminosity, early in 1987. (orig./HSI).

  7. The SLAC linear collider

    International Nuclear Information System (INIS)

    Richter, B.

    1985-01-01

    A report is given on the goals and progress of the SLAC Linear Collider. The author discusses the status of the machine and the detectors and give an overview of the physics which can be done at this new facility. He also gives some ideas on how (and why) large linear colliders of the future should be built

  8. Tunneling technologies for the collider ring tunnels

    International Nuclear Information System (INIS)

    Frobenius, P.

    1989-01-01

    The Texas site chosen for the Superconducting Super Collider has been studied, and it has been determined that proven, conventional technology and accepted engineering practice are suitable for constructing the collider tunnels. The Texas National Research Laboratory Commission report recommended that two types of tunneling machines be used for construction of the tunnels: a conventional hard rock tunnel boring machine (TBM) for the Austin chalk and a double shielded, rotary TBM for the Taylor marl. Since the tunneling machines usually set the pace for the project, efficient planning, operation, and coordination of the tunneling system components will be critical to the schedule and cost of the project. During design, tunneling rate prediction should be refined by focusing on the development of an effective tunneling system and evaluating its capacity to meet or exceed the required schedules. 8 refs., 13 figs

  9. SSC collider dipole magnet end mechanical design

    International Nuclear Information System (INIS)

    Delchamps, S.W.; Bossert, R.C.; Carson, J.; Ewald, K.; Fulton, H.; Kerby, J.; Koska, W.; Strait, J.; Wake, S.M.; Leung, K.K.

    1991-05-01

    This paper describes the mechanical design of the ends of Superconducting Super Collider dipole magnets to be constructed and tested at Fermilab. Coil end clamps, end yoke configuration, and end plate design are discussed. Loading of the end plate by axial Lorentz forces is discussed. Relevant data from 40 mm and 50 mm aperture model dipole magnets built and tested at Fermilab are presented. In particular, the apparent influence of end clamp design on the quench behavior of model SSC dipoles is described. 8 refs., 3 figs

  10. Beam Dynamics Challenges for Future Circular Colliders

    CERN Multimedia

    Zimmermann, Frank

    2004-01-01

    The luminosity of hadron colliders rises with the beam intensity, until some limit is encountered, mostly due to head-on and long-range beam-beam interaction, due to electron cloud, or due to conventional impedance sources. Also beam losses caused by various mechanisms may affect the performance. The limitations can be alleviated, if not overcome, by a proper choice of beam parameters and by dedicated compensation schemes. Examples include alternating crossing at several interaction points, electromagnetic wires, super-bunches, electron lenses, clearing electrodes, and nonlinear collimation. I discuss such mitigating measures and related research efforts, with special emphasis on the LHC and its upgrade.

  11. High intensity uranium beams from the superHILAC and the bevatron: final report

    International Nuclear Information System (INIS)

    1982-03-01

    The two injectors formerly used at the SuperHILAC were a 750-kV air-insulated Cockcroft-Walton (EVE) and a 2.5-MV pressurized HV multiplier (ADAM). The EVE injector can deliver adequate intensities of ions up to mass 40 (argon). The ADAM injector can accelerate ions with lower charge-to-mass ratios, and they can produce beams of heavier ions. The intensity of these beams decreases as the mass number increases, with the lowest practical intensity being achieved with lead beams. Experience with the two existing injectors provided substantial help in defining the general requirements for a new injector which would provide ample beams above mass 40. The requirements for acceptance by the first tank of the SuperHILAC are a particle velocity #betta# = 0.0154 (corresponding to an energy of 113 keV/amu) and a charge-to-mass ratio of 0.046 or larger. Present ion source performance dictates an air-insulated Cockcroft-Walton as a pre-accelerator because of its easy accessibility and its good overall reliability. The low charge state ions then receive further acceleration and, if necessary, subsequent stripping to the required charge state before injection into the SuperHILAC. A low-beta linac of the Widereoe type has been built to perform this acceleration. The injector system described consists of a Cockcroft-Walton pre-injector, injection beam lines and isotope analysis, a low-velocity linear accelerator, and SuperHILAC control center modifications

  12. A super soliton connection

    International Nuclear Information System (INIS)

    Gurses, M.; Oguz, O.

    1985-07-01

    Integrable super non-linear classical partial differential equations are considered. A super s1(2,R) algebra valued connection 1-form is constructed. It is shown that curvature 2-form of this super connection vanishes by virtue of the integrable super equations of motion. A super extension of the AKNS scheme is presented and a class of super extension of the Lax hierarchy and super non-linear Schroedinger equation are found. O(N) extension and the Baecklund transformations of the above super equations are also considered. (author)

  13. Pellet injector development at ORNL

    International Nuclear Information System (INIS)

    Milora, S.L.; Argo, B.E.; Baylor, L.R.; Cole, M.J.; Combs, S.K.; Dyer, G.R.; Fehling, D.T.; Fisher, P.W.; Foster, C.A.; Foust, C.R.; Gouge, M.J.; Jernigan, T.C.; Langley, R.A.; Qualls, A.L.; Schechter, D.E.; Sparks, D.O.; Tsai, C.C.; Whealton, J.H.; Wilgen, J.B.; Schmidt, G.L.

    1992-01-01

    Plasma fueling systems for magnetic confinement experiments are under development at Oak Ridge National Laboratory (ORNL). ORNL has recently provided a four-shot tritium pellet injector with up to 4-mm-diam capability for the Tokamak Fusion Test Reactor (TFTR). This injector, which is based on the in situ condensation technique for pellet formation, features three single-stage gas guns that have been qualified in deuterium at up to 1.7 km/s and a two-stage light gas gun driver that has been operated at 2.8-km/s pellet speeds for deep penetration in the high-temperature TFTR supershot regime. Performance improvements to the centrifugal pellet injector for the Tore Supra tokamak are being made by modifying the storage-type pellet feed system, which has been redesigned to improve the reliability of delivery of pellets and to extend operation to longer pulse durations (up to 400 pellets). Two-stage light gas guns and electron-beam (e-beam) rocket accelerators for speeds in the range from 2 to 10 km/s are also under development. A repeating, two-stage light gas gun that has been developed can accelerate low-density plastic pellets at a 1-Hz repetition rate to speeds of 3 km/s. In a collaboration with ENEA-Frascati, a test facility has been prepared to study repetitive operation of a two-stage gas gun driver equipped with an extrusion-type deuterium pellet source. Extensive testing of the e-beam accelerator has demonstrated a parametric dependence of propellant burn velocity and pellet speed, in accordance with a model derived from the neutral gas shielding theory for pellet ablation in a magnetized plasma

  14. Status of the MEIC ion collider ring design

    International Nuclear Information System (INIS)

    Morozov, V. S.; Derbenev, Ya. S.; Harwood, L.; Hutton, A.; Lin, F.; Pilat, F.; Zhang, Y.; Cai, Y.; Nosochkov, Y. M.; Sullivan, M.; Wang, M-H; Wienands, U.; Gerity, J.; Mann, T.; McIntyre, P.; Pogue, N. J.; Satttarov, A.

    2015-01-01

    We present an update on the design of the ion collider ring of the Medium-energy Electron-Ion Collider (MEIC) proposed by Jefferson Lab. The design is based on the use of super-ferric magnets. It provides the necessary momentum range of 8 to 100 GeV/c for protons and ions, matches the electron collider ring design using PEP-II components, fits readily on the JLab site, offers a straightforward path for a future full-energy upgrade by replacing the magnets with higher-field ones in the same tunnel, and is more cost effective than using presently available current-dominated superconducting magnets. We describe complete ion collider optics including an independently-designed modular detector region.

  15. Ion source and injector development

    International Nuclear Information System (INIS)

    Curtis, C.D.

    1976-01-01

    This is a survey of low energy accelerators which inject into proton linacs. Laboratories covered include Argonne, Brookhaven, CERN, Chalk River, Fermi, ITEP, KEK, Rutherford, and Saclay. This paper emphasizes complete injector systems, comparing significant hardware features and beam performance data, including recent additions. There is increased activity now in the acceleration of polarized protons, H + and H - , and of unpolarized H - . New source development and programs for these ion beams is outlined at the end of the report. Heavy-ion sources are not included

  16. Pneumatic pellet injector for JET

    International Nuclear Information System (INIS)

    Andelfinger, C.; Buechl, K.; Jacobi, D.; Sandmann, W.; Schiedeck, J.; Schilling, H.B.; Weber, G.

    1983-07-01

    Pellet injection is a useful tool for plasma diagnostics of tokamaks. Pellets can be applied for investigation of particle, energy and impurity transport, fueling efficiency and magnetic surfaces. Design, operation and control of a single shot pneumatic pellet gun is described in detail including all supplies, the vacuum system and the diagnostics of the pellet. The arrangement of this injector in the torus hall and the interfaces to the JET system and CODAS are considered. A guide tube system for pellet injection is discussed but it will not be recommended for JET. (orig.)

  17. Status and performance of PF injector linac

    International Nuclear Information System (INIS)

    Sato, Isamu

    1994-01-01

    PF injector linac has been improved on a buncher section for accelerating of intense electron beam, and reinforced a focusing system of the positron generator linac for the expansion of phase space. In this presentation, I shall report present status and performance of PF injector linac, and discuss its upgrade program for B-factory project. (author)

  18. Engineering problems of future neutral beam injectors

    International Nuclear Information System (INIS)

    Fink, J.

    1977-01-01

    Because there is no limit to the energy or power that can be delivered by a neutral-beam injector, its use will be restricted by either its cost, size, or reliability. Studies show that these factors can be improved by the injector design, and several examples, taken from mirror reactor studies, are given

  19. CNG INJECTOR RESEARCH FOR DUAL FUEL ENGINE

    Directory of Open Access Journals (Sweden)

    Adam Majczak

    2017-03-01

    Full Text Available The article presents the tests results of the prototype design of hydraulically assisted injector, that is designed for gas supply into diesel engines. The construction of the injector allows for it positioning in the glow plug socket, so that the gas is injected directly into the combustion chamber. The cycle analysis of the four-cylinder Andoria ADCR engine with a capacity of 2.6 dm3 for different crankshaft rotational speeds allowed to determine the necessary time for fuel injection. Because of that, it was possible to determine the required mass flow rate of the injector, for replacing as much of the original fuel by gaseous fuel. To ensure a high value of flow inside the injector, supply pressure equal to 1 MPa was applied. High gas supply pressure requires high value of valve opening forces. For this purpose a injector with hydraulic control system, using a liquid under pressure for the opening process was designed. On the basis of air pressure measurements in the flow line after the injector, the analysis of opening and closing of the valve was made. Measurements of outflow mass of the injector were also carried out. The results showed that the designed injector meets the requirements necessary to supply ADCR engine by the CNG fuel.

  20. Commissioning of the RFQ1 injector

    International Nuclear Information System (INIS)

    Arbique, G.M.; Sheikh, J.Y.; Taylor, T.; Birney, L.F.; Davidson, A.D.; Wills, J.S.C.

    1987-01-01

    The RFQ1 accelerator is being developed at Chalk River to test the limits of the cw RFQ technology. A 50 kV injector has been built and is now being commissioned as the first phase of the program. This paper describes some of the innovative features of the RFQ1 injector and reports on initial operating experience

  1. Towards future circular colliders

    Science.gov (United States)

    Benedikt, Michael; Zimmermann, Frank

    2016-09-01

    The Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) presently provides proton-proton collisions at a center-of-mass (c.m.) energy of 13 TeV. The LHC design was started more than 30 years ago, and its physics program will extend through the second half of the 2030's. The global Future Circular Collider (FCC) study is now preparing for a post-LHC project. The FCC study focuses on the design of a 100-TeV hadron collider (FCC-hh) in a new ˜100 km tunnel. It also includes the design of a high-luminosity electron-positron collider (FCCee) as a potential intermediate step, and a lepton-hadron collider option (FCC-he). The scope of the FCC study comprises accelerators, technology, infrastructure, detectors, physics, concepts for worldwide data services, international governance models, and implementation scenarios. Among the FCC core technologies figure 16-T dipole magnets, based on Nb3 S n superconductor, for the FCC-hh hadron collider, and a highly-efficient superconducting radiofrequency system for the FCC-ee lepton collider. Following the FCC concept, the Institute of High Energy Physics (IHEP) in Beijing has initiated a parallel design study for an e + e - Higgs factory in China (CEPC), which is to be succeeded by a high-energy hadron collider (SPPC). At present a tunnel circumference of 54 km and a hadron collider c.m. energy of about 70 TeV are being considered. After a brief look at the LHC, this article reports the motivation and the present status of the FCC study, some of the primary design challenges and R&D subjects, as well as the emerging global collaboration.

  2. SLAC linear collider

    International Nuclear Information System (INIS)

    Richter, B.; Bell, R.A.; Brown, K.L.

    1980-06-01

    The SLAC LINEAR COLLIDER is designed to achieve an energy of 100 GeV in the electron-positron center-of-mass system by accelerating intense bunches of particles in the SLAC linac and transporting the electron and positron bunches in a special magnet system to a point where they are focused to a radius of about 2 microns and made to collide head on. The rationale for this new type of colliding beam system is discussed, the project is described, some of the novel accelerator physics issues involved are discussed, and some of the critical technical components are described

  3. Injector machine development days 2017

    CERN Document Server

    Bartosik, H

    2017-01-01

    Following the important progress made in 2016 in the Machine Development (MD) activities that took place in all the accelerators of the LHC injector chain, the days 23-24 March, 2017, have been devoted to summarise the main out- come from the MDs and lay out the plans for the next steps. The event was also triggered by the following motivations and goals: Give a chance to the MD users to present their results; Provide a platform in which MD users, MD coordinators and operations crews meet and discuss openly the optimisation of the MD time and procedures, taking into account of the different perspectives; Provide an overview of all the ongoing activities to better frame their impact in the broader picture of the CERN short and long term projects; Identify the open questions, define and prioritise ma- chine studies in the injectors for 2017; Create the opportunity to obtain and document written reports from MD users. Within this contribution, we just summarise the context and the main points discussed at the ev...

  4. Pellet injector research at ORNL

    International Nuclear Information System (INIS)

    Combs, S.K.; Foster, C.A.; Milora, S.L.

    1988-01-01

    Advanced plasma fueling systems for magnetic confinement devices are under development a the Oak Ridge National Laboratory (ORNL). The general approach is that of producing and accelerating frozen hydrogen isotope pellets at speeds in the range 1-2 km/s and higher. Recently, ORNL provided pneumataic-based pellet fueling systems for two of the world's largest tokamak experiments, the Tokamak Fusion Test Reactor (TFTR) and the Joint European Torus (JET). A new versatile centrifuge type injector is being readied at ORNL for use on the Tore Supra tokamak. Also, a new simplified eight-shot injector design has been developed for use on the Princeton Beta Experiment (PBX) and the Advanced Toroidal Facility (ATF). In addition to these confinement physics related activities, ORNL is pursuing advanced technologies to achieve pellet velocities significantly in excess of 2 km/s and is carrying out a Tritium Proof-of-Principle (TPOP) experiment in which the fabrication and acceleration of tritium pellets have already been demonstrated. This paper describes these ongoing activities. 25 refs., 9 figs

  5. Wideroe pre-accelerator for the SuperHILAC

    International Nuclear Information System (INIS)

    Staples, J.; Alonso, J.; Behrsing, G.; Clark, D.; Grunder, H.; Olivier, M.; Spence, D.; Yourd, R.

    1976-09-01

    In 1971 the Bevatron successfully accelerated low-intensity heavy ion beams up to neon to energies of 2.1 GeV/amu. More recently, beams up to argon have been accelerated using the SuperHILAC as an injector to the Bevatron--the Bevalac concept. With increasing scientific interest in high-energy high-intensity beams of heavier ions, plans to upgrade both the Bevatron vacuum system and the SuperHILAC ion sources and injectors have been formulated. A proposed new pre-accelerator based on an air-insulated Cockcroft-Walton and a Wideroe linac is presented. The Wideroe linac uses the design concepts established at UNILAC, modified for frequency and energy requirements. U 7 + from the ion source is accelerated from 12 keV/amu to 113 keV/amu and stripped to a mean charge state acceptable to the first tank of the SuperHILAC. The expected intensity improvement over the present pressurized injector is a factor of 100 at the highest masses. The physical modeling of the Wideroe linac structure will be kept to a minimum. Computer models predicting the characteristics of the structure have improved to the point where the probability of satisfactory performance is high

  6. Linear collider: a preview

    Energy Technology Data Exchange (ETDEWEB)

    Wiedemann, H.

    1981-11-01

    Since no linear colliders have been built yet it is difficult to know at what energy the linear cost scaling of linear colliders drops below the quadratic scaling of storage rings. There is, however, no doubt that a linear collider facility for a center of mass energy above say 500 GeV is significantly cheaper than an equivalent storage ring. In order to make the linear collider principle feasible at very high energies a number of problems have to be solved. There are two kinds of problems: one which is related to the feasibility of the principle and the other kind of problems is associated with minimizing the cost of constructing and operating such a facility. This lecture series describes the problems and possible solutions. Since the real test of a principle requires the construction of a prototype I will in the last chapter describe the SLC project at the Stanford Linear Accelerator Center.

  7. Muon collider progress

    Energy Technology Data Exchange (ETDEWEB)

    Noble, Robert J. FNAL

    1998-08-01

    Recent progress in the study of muon colliders is presented. An international collaboration consisting of over 100 individuals is involved in calculations and experiments to demonstrate the feasibility of this new type of lepton collider. Theoretical efforts are now concentrated on low-energy colliders in the 100 to 500 GeV center-of-mass energy range. Credible machine designs are emerging for much of a hypothetical complex from proton source to the final collider. Ionization cooling has been the most difficult part of the concept, and more powerful simulation tools are now in place to develop workable schemes. A collaboration proposal for a muon cooling experiment has been presented to the Fermilab Physics Advisory Committee, and a proposal for a targetry and pion collection channel experiment at Brookhaven National Laboratory is in preparation. Initial proton bunching and space-charge compensation experiments at existing hadron facilities have occurred to demonstrate proton driver feasibility.

  8. FERMILAB: Preparing to collide

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Against the background of stringent Environment, Safety and Health (ES&H) regulations mandated by the US Department of Energy for all national Labs, Fermilab prepared to mount the next major Tevatron proton-antiproton collider run

  9. Linear collider: a preview

    International Nuclear Information System (INIS)

    Wiedemann, H.

    1981-11-01

    Since no linear colliders have been built yet it is difficult to know at what energy the linear cost scaling of linear colliders drops below the quadratic scaling of storage rings. There is, however, no doubt that a linear collider facility for a center of mass energy above say 500 GeV is significantly cheaper than an equivalent storage ring. In order to make the linear collider principle feasible at very high energies a number of problems have to be solved. There are two kinds of problems: one which is related to the feasibility of the principle and the other kind of problems is associated with minimizing the cost of constructing and operating such a facility. This lecture series describes the problems and possible solutions. Since the real test of a principle requires the construction of a prototype I will in the last chapter describe the SLC project at the Stanford Linear Accelerator Center

  10. Design Studies for a 1036 SuperB-Factory

    International Nuclear Information System (INIS)

    Seeman, J

    2003-01-01

    A Super B Factory, an asymmetric e + e - collider with a luminosity of 10 36 cm -2 s -1 , can provide a sensitive probe of new physics in the flavor sector of the Standard Model. The success of PEP-II and KEKB in producing unprecedented luminosity with unprecedented short commissioning time has taught us about the accelerator physics of asymmetric e + e - colliders in a new parameter regime. It appears to be possible to build on this success to advance the state of the accelerator art by building a collider at a luminosity approaching 10 36 cm -2 s -1 . Such a collider would produce an integrated luminosity of 10,000 fb -1 (10 ab -1 ) in a running year. Design studies are underway to arrive at a complete parameter set based on a collider in the PEP-II tunnel but with an upgraded RF system (perhaps a higher frequency) and an upgraded interaction region [1-6

  11. Dedicating Fermilab's Collider

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-01-15

    It was a bold move to have a fullscale dedication ceremony for the new proton-antiproton Collider at the Fermilab Tevatron on 13 October, two days before the first collisions were seen. However the particles dutifully behaved as required, and over the following weekend the Collider delivered its goods at a total energy of 1600 GeV, significantly boosting the world record for laboratory collisions.

  12. Superconducting linear colliders

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The advantages of superconducting radiofrequency (SRF) for particle accelerators have been demonstrated by successful operation of systems in the TRISTAN and LEP electron-positron collider rings respectively at the Japanese KEK Laboratory and at CERN. If performance continues to improve and costs can be lowered, this would open an attractive option for a high luminosity TeV (1000 GeV) linear collider

  13. FERMILAB: Collider detectors -2

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Last month's edition (April, page 12) included a status report on data collection and preliminary physics results from the 'newcomer' DO detector at Fermilab's Tevatron proton-antiproton collider. This time the spotlight falls in the Veteran' CDF detector, in action since 1985 and meanwhile significantly upgraded. Meanwhile the Tevatron collider continues to improve, with record collision rates

  14. Towards Future Circular Colliders

    CERN Document Server

    AUTHOR|(CDS)2108454; Zimmermann, Frank

    2016-01-01

    The Large Hadron Collider (LHC) at CERN presently provides proton-proton collisions at a centre-of-mass (c.m.) energy of 13 TeV. The LHC design was started more than 30 years ago, and its physics programme will extend through the second half of the 2030’s. The global Future Circular Collider (FCC) study is now preparing for a post-LHC project. The FCC study focuses on the design of a 100-TeV hadron collider (FCC-hh) in a new ∼100 km tunnel. It also includes the design of a high-luminosity electron-positron collider (FCC-ee) as a potential intermediate step, and a lepton-hadron collider option (FCC-he). The scope of the FCC study comprises accelerators, technology, infrastructure, detectors, physics, concepts for worldwide data services, international governance models, and implementation scenarios. Among the FCC core technologies figure 16-T dipole magnets, based on $Nb_3Sn$ superconductor, for the FCC-hh hadron collider, and a highly efficient superconducting radiofrequency system for the FCC-ee lepton c...

  15. Future Circular Colliders

    CERN Document Server

    AUTHOR|(CDS)2108454; Zimmermann, Frank

    2016-01-01

    In response to a request from the 2013 Update of the European Strategy for Particle Physics, the global Future Circular Collider (FCC) study is preparing the foundation for a next-generation large-scale accelerator infrastructure in the heart of Europe. The FCC study focuses on the design of a 100-TeV hadron collider (FCC-hh), to be accommodated in a new ∼100 km tunnel near Geneva. It also includes the design of a high-luminosity electron-positron collider (FCC-ee), which could be installed in the same tunnel as a potential intermediate step, and a lepton-hadron collider option (FCC-he). The scope of the FCC study comprises accelerators, technology, infrastructure, detector, physics, concepts for worldwide data services, international governance models, and implementation scenarios. Among the FCC core technologies figure 16-T dipole magnets, based on Nb$_{3}$Sn superconductor, for the FCC-hh hadron collider, and a highly efficient superconducting radiofrequency system for the FCC-ee lepton collider. The int...

  16. Future Circular Colliders

    CERN Document Server

    AUTHOR|(CDS)2108454; Zimmermann, Frank

    2016-01-01

    In response to a request from the 2013 Update of the European Strategy for Particle Physics, the global Future Circular Collider (FCC) study is preparing the foundation for a next-generation large-scale accelerator infrastructure in the heart of Europe. The FCC study focuses on the design of a 100-TeV hadron collider (FCC-hh), to be accommodated in a new ∼100 km tunnel near Geneva. It also includes the design of a high-luminosity electron-positron collider (FCC-ee), which could be installed in the same tunnel as a potential intermediate step, and a lepton-hadron collider option (FCC-he). The scope of the FCC study comprises accelerators, technology, infrastructure, detectors, physics, concepts for worldwide data services, international governance models, and implementation scenarios. Among the FCC core technologies figure 16-T dipole magnets, based on Nb$_{3}$Sn superconductor, for the FCC-hh hadron collider, and a highly efficient superconducting radiofrequency system for the FCC-ee lepton collider. The in...

  17. Towards a Muon Collider

    International Nuclear Information System (INIS)

    Eichten, E.

    2011-01-01

    A multi TeV Muon Collider is required for the full coverage of Terascale physics. The physics potential for a Muon Collider at ∼3 TeV and integrated luminosity of 1 ab -1 is outstanding. Particularly strong cases can be made if the new physics is SUSY or new strong dynamics. Furthermore, a staged Muon Collider can provide a Neutrino Factory to fully disentangle neutrino physics. If a narrow s-channel resonance state exists in the multi-TeV region, the physics program at a Muon Collider could begin with less than 10 31 cm -2 s -1 luminosity. Detailed studies of the physics case for a 1.5-4 TeV Muon Collider are just beginning. The goals of such studies are to: (1) identify benchmark physics processes; (2) study the physics dependence on beam parameters; (3) estimate detector backgrounds; and (4) compare the physics potential of a Muon Collider with those of the ILC, CLIC and upgrades to the LHC.

  18. Pellet injector research and development at ORNL

    International Nuclear Information System (INIS)

    Combs, S.K.; Barber, G.C.; Baylor, L.R.

    1994-01-01

    Oak Ridge National Laboratory has been developing pellet injectors for plasma fueling experiments on magnetic confinement devices for more than 15 years. Recent major applications of the ORNL development program include (1) a tritium-compatible four-shot pneumatic injector for the Tokamak Fusion Test Reactor, (2) a centrifuge pellet injector for the Tore Supra tokamak, and most recently (3) a three-barrel repeating pneumatic injector for the DIII-D tokamak. In addition to applications, ORNL is developing advanced technologies, including high-speed pellet injectors, tritium injectors, and long-pulse pellet feed systems. The high-speed research involves a collaboration between ORNL and ENEA-Frascati in the development of a repeating two-stage light gas gun based on an extrusion-type pellet feed system. Construction of a new tritium-compatible, extruder-based repeating pneumatic injector (8-mm-diam) is complete and will replace the pipe gun in the original tritium proof-of-principle experiment. The development of a steady-state feed system in which three standard extruders operate in tandem is under way. These research and development activities are relevant to the International Thermonuclear Experimental Reactor and are briefly described in this paper

  19. Understanding the spectrum of diesel injector deposits

    Energy Technology Data Exchange (ETDEWEB)

    Quigley, Robert; Barbour, Robert [Lubrizol Limited, Derby (United Kingdom); Arters, David; Bush, Jim [Lubrizol Corporation, Wickliffe, OH (United States)

    2013-06-01

    Understanding the origin of diesel fuel injector deposits used to be relatively simple; for the most part they were caused by the decomposition of fuel during the combustion process, were generally organic in nature and typically only affected the nozzle orifices. However, modem fuel injector designs appear to be both more severe in terms of generating conditions conducive to creating new and different types of deposits and more likely to have their operation affected by those deposits. Changes to fuel composition and type have in some cases increased the potential pool of reactive species or provided new potential deposit precursors. As a result, the universe of diesel injector deposits now range from the traditional organic to partially or fully inorganic in nature and from nozzle coking deposits to deposits which can seize the internal components of the injector; so called internal diesel injector deposits. Frequently, combinations of inorganic and organic deposits are found. While power loss is one well known issue associated with nozzle deposits, other field problems resulting from these new deposits include severe issues with drivability, emissions, fuel consumption and even engine failure. Conventional deposit control additive chemistries were developed to be effective against organic nozzle coking deposits. These conventional additives in many cases may prove ineffective against this wide range of deposit types. This paper discusses the range of deposits that have been found to adversely impact modem diesel fuel injectors and compares the performance of conventional and new, advanced deposit control additives against these various challenges to proper fuel injector functioning. (orig.)

  20. SuperB Progress Report for Physics

    Energy Technology Data Exchange (ETDEWEB)

    O' Leary, B.; /Aachen, Tech. Hochsch.; Matias, J.; Ramon, M.; /Barcelona, IFAE; Pous, E.; /Barcelona U.; De Fazio, F.; Palano, A.; /INFN, Bari; Eigen, G.; /Bergen U.; Asgeirsson, D.; /British Columbia U.; Cheng, C.H.; Chivukula, A.; Echenard, B.; Hitlin, D.G.; Porter, F.; Rakitin, A.; /Caltech; Heinemeyer, S.; /Cantabria Inst. of Phys.; McElrath, B.; /CERN; Andreassen, R.; Meadows, B.; Sokoloff, M.; /Cincinnati U.; Blanke, M.; /Cornell U., Phys. Dept.; Lesiak, T.; /Cracow, INP /DESY /Zurich, ETH /INFN, Ferrara /Frascati /INFN, Genoa /Glasgow U. /Indiana U. /Mainz U., Inst. Phys. /Karlsruhe, Inst. Technol. /KEK, Tsukuba /LBL, Berkeley /UC, Berkeley /Lisbon, IST /Ljubljana U. /Madrid, Autonoma U. /Maryland U. /MIT /INFN, Milan /McGill U. /Munich, Tech. U. /Notre Dame U. /PNL, Richland /INFN, Padua /Paris U., VI-VII /Orsay, LAL /Orsay, LPT /INFN, Pavia /INFN, Perugia /INFN, Pisa /Queen Mary, U. of London /Regensburg U. /Republica U., Montevideo /Frascati /INFN, Rome /INFN, Rome /INFN, Rome /Rutherford /Sassari U. /Siegen U. /SLAC /Southern Methodist U. /Tel Aviv U. /Tohoku U. /INFN, Turin /INFN, Trieste /Uppsala U. /Valencia U., IFIC /Victoria U. /Wayne State U. /Wisconsin U., Madison

    2012-02-14

    SuperB is a high luminosity e{sup +}e{sup -} collider that will be able to indirectly probe new physics at energy scales far beyond the reach of any man made accelerator planned or in existence. Just as detailed understanding of the Standard Model of particle physics was developed from stringent constraints imposed by flavour changing processes between quarks, the detailed structure of any new physics is severely constrained by flavour processes. In order to elucidate this structure it is necessary to perform a number of complementary studies of a set of golden channels. With these measurements in hand, the pattern of deviations from the Standard Model behavior can be used as a test of the structure of new physics. If new physics is found at the LHC, then the many golden measurements from SuperB will help decode the subtle nature of the new physics. However if no new particles are found at the LHC, SuperB will be able to search for new physics at energy scales up to 10-100 TeV. In either scenario, flavour physics measurements that can be made at SuperB play a pivotal role in understanding the nature of physics beyond the Standard Model. Examples for using the interplay between measurements to discriminate New Physics models are discussed in this document. SuperB is a Super Flavour Factory, in addition to studying large samples of B{sub u,d,s}, D and {tau} decays, SuperB has a broad physics programme that includes spectroscopy both in terms of the Standard Model and exotica, and precision measurements of sin{sup 2} {theta}{sub W}. In addition to performing CP violation measurements at the {Upsilon}(4S) and {phi}(3770), SuperB will test CPT in these systems, and lepton universality in a number of different processes. The multitude of rare decay measurements possible at SuperB can be used to constrain scenarios of physics beyond the Standard Model. In terms of other precision tests of the Standard Model, this experiment will be able to perform precision over

  1. SuperB Progress Report for Physics

    International Nuclear Information System (INIS)

    O'Leary, B.; Matias, J.; Ramon, M.

    2012-01-01

    SuperB is a high luminosity e + e - collider that will be able to indirectly probe new physics at energy scales far beyond the reach of any man made accelerator planned or in existence. Just as detailed understanding of the Standard Model of particle physics was developed from stringent constraints imposed by flavour changing processes between quarks, the detailed structure of any new physics is severely constrained by flavour processes. In order to elucidate this structure it is necessary to perform a number of complementary studies of a set of golden channels. With these measurements in hand, the pattern of deviations from the Standard Model behavior can be used as a test of the structure of new physics. If new physics is found at the LHC, then the many golden measurements from SuperB will help decode the subtle nature of the new physics. However if no new particles are found at the LHC, SuperB will be able to search for new physics at energy scales up to 10-100 TeV. In either scenario, flavour physics measurements that can be made at SuperB play a pivotal role in understanding the nature of physics beyond the Standard Model. Examples for using the interplay between measurements to discriminate New Physics models are discussed in this document. SuperB is a Super Flavour Factory, in addition to studying large samples of B u,d,s , D and τ decays, SuperB has a broad physics programme that includes spectroscopy both in terms of the Standard Model and exotica, and precision measurements of sin 2 θ W . In addition to performing CP violation measurements at the Υ(4S) and φ(3770), SuperB will test CPT in these systems, and lepton universality in a number of different processes. The multitude of rare decay measurements possible at SuperB can be used to constrain scenarios of physics beyond the Standard Model. In terms of other precision tests of the Standard Model, this experiment will be able to perform precision over-constraints of the unitarity triangle through

  2. Pellet injector development and experiments at ORNL

    International Nuclear Information System (INIS)

    Baylor, L.R.; Argo, B.E.; Barber, G.C.; Combs, S.K.; Cole, M.J.; Dyer, G.R.; Fehling, D.T.; Fisher, P.W.; Foster, C.A.; Foust, C.R.; Gouge, M.J.; Jernigan, T.C.; Langley, R.A.; Milora, S.L.; Qualls, A.L.; Schechter, D.E.; Sparks, D.O.; Tsai, C.C.; Wilgen, J.B.; Whealton, J.H.

    1993-01-01

    The development of pellet injectors for plasma fueling of magnetic confinement fusion experiments has been under way at Oak Ridge National Laboratory (ORNL) for the past 15 years. Recently, ORNL provided a tritium-compatible four-shot pneumatic injector for the Tokamak Fusion Test Reactor (TFTR) based on the in situ condensation technique that features three single-stage gas guns and an advanced two-stage light gas gun driver. In another application, ORNL supplied the Tore Supra tokamak with a centrifuge pellet injector in 1989 for pellet fueling experiments that has achieved record numbers of injected pellets into a discharge. Work is progressing on an upgrade to that injector to extend the number of pellets to 400 and improve pellet repeatability. In a new application, the ORNL three barrel repeating pneumatic injector has been returned from JET and is being readied for installation on the DIII-D device for fueling and enhanced plasma performance experiments. In addition to these experimental applications, ORNL is developing advanced injector technologies, including high-velocity pellet injectors, tritium pellet injectors, and long-pulse feed systems. The two-stage light gas gun and electron-beam-driven rocket are the acceleration techniques under investigation for achieving high velocity. A tritium proof-of-principle (TPOP) experiment has demonstrated the feasibility of tritium pellet production and acceleration. A new tritium-compatible, extruder-based, repeating pneumatic injector is being fabricated to replace the pipe gun in the TPOP experiment and will explore issues related to the extrudability of tritium and acceleration of large tritium pellets. The tritium pellet formation experiments and development of long-pulse pellet feed systems are especially relevant to the International Tokamak Engineering Reactor (ITER)

  3. 49 CFR 230.57 - Injectors and feedwater pumps.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Injectors and feedwater pumps. 230.57 Section 230... Appurtenances Injectors, Feedwater Pumps, and Flue Plugs § 230.57 Injectors and feedwater pumps. (a) Water.... Injectors and feedwater pumps must be kept in good condition, free from scale, and must be tested at the...

  4. Radiation levels at CERN's injectors and their impact on electronic equipment

    CERN Document Server

    AUTHOR|(SzGeCERN)649218; Brugger, Markus

    2013-01-01

    Electronic devices operating in hostile radiation environments, such as those found close to high-energy particle accelerators, can suffer from different types of radiation induced failures. At CERN, the mixed particle and energy radiation fields present at the Large Hadron Collider (LHC) and its injector chain can give rise to both stochastic and cumulative effects causing radiation induced failures of exposed electronics and materials, thus directly impacting components and system lifetimes, as well as maintenance requirements. With its original focus on the LHC, the Radiation to Electronics (R2E) project has been successfully implementing mitigation actions in order to avoid accelerator downtime due to radiation induced failures on active electronics. In a next step, the emphasis is put on CERN's injector chain, collecting the respective available information about radiation levels, the definition of additional monitoring requirements and a critical analysis of present and future equipment installations. T...

  5. Conductor development for the Superconducting Super Collider (SSC)

    International Nuclear Information System (INIS)

    Gregory, E.

    1988-01-01

    This review investigates the developments in fine filamentary materials over the last three years and traces how the relations between the magnet requirements and property improvements have fashioned SSC conductor specifications. The review emphasizes factors that affect filament nonuniformity and the overall quality of the product. The elimination of proximity effect-induced coupling in SCC type conductors, by introducing small percentages of manganese into the copper between the filaments, is discussed. Modification of a Fermi kit has produced materials with improved critical current densities. The possibility of using this approach to make conductors for accelerator magnets is assessed

  6. Field measuring probe for SSC [Superconducting Super Collider] magnets

    International Nuclear Information System (INIS)

    Ganetis, G.; Herrera, J.; Hogue, R.; Skaritka, J.; Wanderer, P.; Willen, E.

    1987-03-01

    The field probe developed for measuring the field in SSC dipole magnets is an adaptation of the rotating tangential coil system in use at Brookhaven for several years. Also known as the MOLE, it is a self-contained room-temperature mechanism that is pulled through the aperture of the magnet with regular stops to measure the local field. Several minutes are required to measure the field at each point. The probe measures the multipole components of the field as well as the field angle relative to gravity. The sensitivity of the coil and electronics is such that the field up to the full 6.6 T excitation of the magnet as well as the field when warm with only 0.01 T excitation can be measured. Tethers are attached to both ends of the probe to carry electrical connections and to supply dry nitrogen to the air motors that rotate the tangential windings as well as the gravity sensor. A small computer is attached to the probe for control and for data collection, analysis and storage. Digital voltmeters are used to digitize the voltages from the rotating coil and several custom circuits control motor speeds in the probe. The overall diameter of the probe is approximately 2 cm and its length is 2.4 m; the field sensitive windings are 0.6 m in length

  7. Heater induced quenches in SSC [Superconducting Super Collider] model dipoles

    International Nuclear Information System (INIS)

    Hassenzahl, W.V.

    1986-10-01

    A 1-m long SSC dipole constructed at the Lawrence Berkeley laboratory was subjected to a series of heater induced quenches to determine: axial quench propagation velocities, transverse quench propagation, and conductor temperature rise. Quenches were produced by 3 heaters at different locations in the magnet and at several currents. The results of these studies are described and are compared to previously published theoretical studies of quenches on the SSC dipoles. These results are shown to be in agreement with the calculations of the program ''QUENCH'', which includes an increase of the quench velocity during the first few milliseconds of the quench

  8. Optical computer utilization at the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Johnson, M.B.; Woosley, J.K.; Fennelly, A.J.

    1990-01-01

    Optical computer systems offer the possibility of extremely high-speed, high efficiency processing for the SSC. The state of the art in optical computer system is described, with emphasis on the problems of timing, digitization, data readout, and storage. Particular emphasis is placed on the potential of utilizing detector optical signal readouts as a real-time trigger in a signal-rich environment (two to ten events per 16ns bunch crossing). A comparison of projected optical computer technology growth during the next decade and the capabilities required of SSC detectors and off-line processors is performed

  9. Cryogenics for the superconducting super collider: workshop proceedings

    International Nuclear Information System (INIS)

    1984-01-01

    Attendance at the workshop and information meeting on Cryogenics for the SSC held at Brookhaven National Laboratory on January 17 to 19, 1984 consisted of 109 engineers and scientists from 19 industrial organizations and 18 laboratories and universities - CERN, DESY, Grenoble, KEK and Saclay were represented. About one-third of the participants were from Brookhaven National Laboratory and Fermi National Laboratory. Talks which concentrated on informing the audience of the present status of the SSC research and development activities and progress towards design of the components were given, experience with the cryogenic system of the Tevatron was reported, and a wrap-up session was held on the last day where each of the five workshop leaders gave a summary of their group's discussions and conclusions. A brief summary of these presentations is given, with the detailed information gathered by the group leaders forming the bulk of these proceedings

  10. Radioactivation in ''quiet'' sections of the SSC [Superconducting Super Collider

    International Nuclear Information System (INIS)

    Cossairt, J.D.

    1987-10-01

    Estimation of induced radioactivity in the ''quiet'' sections of the SSC is approached using elementary methods. Estimates are given of total activity and residual dose rates on the surface of magnets in the quiet regions, as well as estimates of the activation of tunnel concrete. The residual radioactivity produced in the magnets and concrete walls of the ''quiet'' regions of the SSC are found to be quite small and of little radiological impact, but that simple scaling could yield results for more ''lossy'' regions

  11. Design features of the SSC [Superconducting Super Collider] dipole magnet

    International Nuclear Information System (INIS)

    Willen, E.; Cottingham, J.; Ganetis, G.

    1989-01-01

    The main ring dipole for the SSC is specified as a high performance magnet that is required to provide a uniform, 6.6 T field in a 4 cm aperture at minimum cost. These design requirements have been addressed in an R ampersand D program in which the coil design, coil mechanical support, yoke and shell structure, trim coil and beam tube design, and a variety of new instrumentation, have been developed. The design of the magnet resulting from this intensive R ampersand D program, including various measurements from both 1.8 m and 17 m long models, is reviewed. 7 refs., 3 figs

  12. Second generation superconducting super collider dipole magnet cryostat design

    International Nuclear Information System (INIS)

    Niemann, R.C.; Bossert, R.C.; Carson, J.A.; Engler, N.H.; Gonczy, J.D.; Larson, E.T.; Nicol, T.H.; Ohmori, T.

    1988-12-01

    The SSC Magnet Development Program is developing accelerator dipole magnets in successive iterations. The initial iteration is complete with six full length model magnets and a thermal model having been built and tested. This initial experience along with the evolving SSC Magnet System Requirements have resulted in the second generation magnet cryostat design. It is this configuration that will be employed for the near term ongoing magnetic, thermal, string and accelerated life testing and will be the design considered for Phase I; i.e., Technology Orientation, of the SSC Magnet Industrialization Program. 5 refs., 7 figs., 1 tab

  13. Signals for supersymmetry at the SSC [Superconducting Super Collider

    International Nuclear Information System (INIS)

    Barnett, R.M.

    1986-11-01

    Progress is reviewed in setting mass limits for supersymmetric particles. Since missing energy is a prime signal for supersymmetry, we have calculated several sources of ''fake'' missing energy in ordinary events. The techniques for finding squark-squark and gluino-gluino production are examined and constrasted for √s = 0.63, 2, and 40 TeV; methods of reducing backgrounds are described. The branching ratios of scalar quarks to the lightest supersymmetric particle are calculated with full gaugino mixing. We have considered signals and backgrounds involving hard photons from photino decay and other sources. The process H → H → Higgsino 0 zino 0 with H → Higgsino 0 → gamma photino and zino 0 → ee photino was examined in detail and found to have few backgrounds, and to provide a means of detecting a heavy Higgs particle. The direct production of charginos and neutralinos was calculated. Gluinos are considered as constituents of the proton

  14. Radiation damage testing at the SSC [Superconducting Super Collider

    International Nuclear Information System (INIS)

    Chinowsky, W.; Thun, R.

    1990-06-01

    A Task Force on Radiation Damage Testing met at the SSC Laboratory on March 5--6, 1990. This Task Force was asked to assess the availability of appropriate facilities for radiation damage tests of SSC detector materials and components. The Task Force was also instructed to review the techniques and standards for conducting such tests. Semiconductors were considered separately from other detector materials. Radiation damage test of electronic devices generally require exposures to both ionizing radiation and neutrons, whereas non-electric components such as plastic scintillating materials, adhesives, cable insulation, and other organic polymers are adequately tested with ionizing radiation only. Test standards are discussed with respect to irradiation techniques, environmental factors, dosimetry, and mechanisms whereby various materials are damaged. It is emphasized that radiation sources should be chosen to duplicate as much as possible the expected SSC environment and that the effects from ionizing particles and from neutrons be investigated separately. Radiation damage tests at reactors must be designed with particular care complex spectra of neutrons and gamma rays are produced at such facilities. It is also essential to investigate dose-rate effects since they are known to be important in many cases. The required irradiations may last several months and are most easily carried out with dedicated radioactive sources. Environmental factors such as the presence of oxygen when testing plastic scintillators, or temperature when measuring semiconductor annealing effects, must also be taken into account. The importance of reliable dosimetry is stressed and suitable references cited. Finally, it is noted that an understanding of the mechanisms for radiation damage in semiconductor and other materials is important in planning irradiations and evaluating results

  15. Workshop on Calorimetery for the Superconducting Super Collider

    Energy Technology Data Exchange (ETDEWEB)

    Mulholland, G.T.; /Fermilab

    1989-03-19

    The international workshop brought together 170 participants to further develop the SSC design and performance specifications of the LAr, Gas, Scintillation, Silicon, and Warm Liquid calorimeter technologies, and to develop the general topics of Requirements, Simulation, and Electronics. Progress was made across a broad front in all areas; at the feasibility level for some and In the fine structure for others. The meeting established areas of agreement, provided some general direction, and helped to quantify some differences at widely varying levels of detector technology development. The workshop helped to level the different understandings of the participants; increased the depth of the generalists and the breadth of the specialists. A high degree of group partitioning limited access to the detailed discussion within some detector groups. The communication was clearly necessary and rewarding, and seemed to meet or exceed the expectations of most participants. This report will deal with: the Liquid Argon detector and, to a lesser extent, the Requirements working groups, an update on uranIum material logistics, and a view of LAr calorimetry by others.

  16. The Antiproton-Ion-Collider at FAIR

    International Nuclear Information System (INIS)

    Kruecken, R.; Fabbietti, L.; Faestemann, T.; Homolka, J.; Kienle, P.; Ring, P.; Suzuki, K.; Bosch, F.; Franzke, B.; Kozhuharov, Ch.; Litvinov, Y.; Nolden, F.; Cargnelli, M.; Fuhrmann, H.; Hirtl, A.; Marton, J.; Widmann, E.; Zmeskal, J.; Hayano, R. S.; Lenske, H.

    2006-01-01

    An antiproton-ion collider (AIC) has been proposed for the FAIR Project at Darmstadt to independently determine rms radii for protons and neutrons in stable and short lived nuclei by means of antiproton annihilation at medium energies. The AIC makes use of the ELISe electron ion collider complex to store, cool and collide antiprotons of 30 MeV energy with short lived radioactive ions in the NESR. The exotic nuclei are produced by projectile fragmentation or projectile fission and separated in the Super FRS. By detecting the loss of stored ions using the Schottky method the total absorption cross-section for antiprotons on the stored ions with mass A will be measured. Cross sections for the absorption on protons and neutrons, respectively, will be measured by the detection of residual nuclei with A-1 either by the Schottky method or by detecting them in recoil detectors after the first dipole stage of the NESR following the interaction zone. The absorption cross sections are in first order directly proportional to the mean square radii

  17. The development of colliders

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1993-02-01

    Don Kerst, Gersh Budker, and Bruno Touschek were the individuals, and the motivating force, which brought about the development of colliders, while the laboratories at which it happened were Stanford, MURA, the Cambridge Electron Accelerator, Orsay, Frascati, CERN, and Novosibirsk. These laboratories supported, during many years, this rather speculative activity. Of course, many hundreds of physicists contributed to the development of colliders but the men who started it, set it in the right direction, and forcefully made it happen, were Don, Gersh, and Bruno. Don was instrumental in the development of proton-proton colliders, while Bruno and Gersh spearheaded the development of electron-positron colliders. In this brief review of the history, I will sketch the development of the concepts, the experiments, and the technological developments which made possible the development of colliders. It may look as if the emphasis is on theoretical concepts, but that is really not the case, for in this field -- the physics of beams -- the theory and experiment go hand in hand; theoretical understanding and advances are almost always motivated by the need to explain experimental results or the desire to construct better experimental devices

  18. Photon-photon colliders

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1995-04-01

    Since the seminal work by Ginsburg, et at., the subject of giving the Next Linear Collider photon-photon capability, as well as electron-positron capability, has drawn much attention. A 1990 article by V.I. Teinov describes the situation at that time. In March 1994, the first workshop on this subject was held. This report briefly reviews the physics that can be achieved through the photon-photon channel and then focuses on the means of achieving such a collider. Also reviewed is the spectrum of backscattered Compton photons -- the best way of obtaining photons. We emphasize the spectrum actually obtained in a collider with both polarized electrons and photons (peaked at high energy and very different from a Compton spectrum). Luminosity is estimated for the presently considered colliders, and interaction and conversion-point geometries are described. Also specified are laser requirements (such as wavelength, peak power, and average power) and the lasers that might be employed. These include conventional and free-electron lasers. Finally, we describe the R ampersand D necessary to make either of these approaches viable and explore the use of the SLC as a test bed for a photon-photon collider of very high energy

  19. COLLIDE Pro Helvetia Award

    CERN Multimedia

    2016-01-01

    The COLLIDE Pro Helvetia Award is run in partnership with Pro Helvetia, giving the opportunity to Swiss artists to do research at CERN for three months.   From left to right: Laura Perrenoud, Marc Dubois and Simon de Diesbach. The photo shows their VR Project, +2199. Fragment.In are the winning artists of COLLIDE Pro Helvetia. They came to CERN for two months in 2015, and will now continue their last month in the laboratory. Fragment.In is a Swiss based interaction design studio. They create innovative projects, interactive installations, video and game design. Read more about COLLIDE here.

  20. Heavy ion fusion 2 MV injector

    International Nuclear Information System (INIS)

    Yu, S.; Eylon, S.; Henestroza, E.

    1995-04-01

    A heavy-ion-fusion driver-scale injector has been constructed and operated at Lawrence Berkeley Laboratory. The injector has produced 2.3 MV and 950 mA of K + , 15% above original design goals in energy and current. Normalized edge emittance of less than 1 π mm-mr was measured over a broad range of parameters. The head-to-tail energy flatness is less than ± 0.2% over the 1 micros pulse

  1. An introduction to photo-injector design

    International Nuclear Information System (INIS)

    Travier, C.

    1993-07-01

    A quick overview is given of the RF gun basic theory for photo-injectors and of the presently achievable technical parameters thus providing some guidelines to help the designer in his choices. Simple scaling laws and formulas for both beam dynamics and technical parameters are proposed and compared to corresponding values for existing photo-injectors. Various sophisticated schemes used to improve the performances beyond those given by a straightforward approach are reviewed. (author) 65 refs., 11 figs., 3 tabs

  2. A light ion four rod RFQ injector

    International Nuclear Information System (INIS)

    Schempp, A.; Ferch, M.; Klein, H.

    1987-01-01

    The four-rod RFQ has been developed in Frankfurt as an alternative solution for ion injectors. A 202 MHz resonator has been built with design parameters taken from the HERA injector (18keV-750keV, 20mA H - ). Properties of this structure are described and applications as light ion accelerator for particles from an EBIS ion source are discussed

  3. Collide@CERN Geneva

    CERN Multimedia

    CERN. Geneva; Kieffer, Robert; Blas Temino, Diego; Bertolucci, Sergio; Mr. Decelière, Rudy; Mr. Hänni, Vincent

    2014-01-01

    CERN, the Republic and Canton of Geneva, and the City of Geneva are delighted to invite you to “Collide@CERN Geneva Music”. Come to the public lecture about collisions between music and particle physics by the third winners of Collide@CERN Geneva, Vincent Hänni & Rudy Decelière, and their scientific inspiration partners, Diego Blas and Robert Kieffer. The event marks the beginning of their residency at CERN, and will be held at the CERN Globe of Science and Innovation on 16 October 2014 at 19.00. Doors will open at 18.30.

  4. The Colliding Beams Sequencer

    International Nuclear Information System (INIS)

    Johnson, D.E.; Johnson, R.P.

    1989-01-01

    The Colliding Beam Sequencer (CBS) is a computer program used to operate the pbar-p Collider by synchronizing the applications programs and simulating the activities of the accelerator operators during filling and storage. The Sequencer acts as a meta-program, running otherwise stand alone applications programs, to do the set-up, beam transfers, acceleration, low beta turn on, and diagnostics for the transfers and storage. The Sequencer and its operational performance will be described along with its special features which include a periodic scheduler and command logger. 14 refs., 3 figs

  5. Superphysics at UNK collider

    International Nuclear Information System (INIS)

    Kereselidze, A.R.; Liparteliani, A.G.; Sokolov, A.A.; Volkov, G.G.

    1988-01-01

    The theoretical incompleteness of standard model and the way of going beyond frames on the basis of supersymmetry are considered. The most important directions of experimental researches at the colliders of a new generation are given. Theoretical estimates of masses of supersymmetrical particles in the framework of N=1 supergravity obtained from compactification of the popular E 8 xE 8 superstring theories are presented. The experimental search for supersymmetrical particles at the UNK pp-collider (√s=6 TeV) is performed

  6. Hadron collider luminosity limitations

    CERN Document Server

    Evans, Lyndon R

    1992-01-01

    The three colliders operated to date have taught us a great deal about the behaviour of both bunched and debunched beams in storage rings. The main luminosity limitations are now well enough understood that most of them can be stronglu attenuated or eliminated by approriate design precautions. Experience with the beam-beam interaction in both the SPS and the Tevatron allow us to predict the performance of the new generation of colliders with some degree of confidence. One of the main challenges that the accelerator physicist faces is the problem of the dynamic aperture limitations due to the lower field quality expected, imposed by economic and other constraints.

  7. The Fermilab main injector dipole construction techniques and prototype magnet measurements

    International Nuclear Information System (INIS)

    Bleadon, M.; Brown, B.; Chester, N.; Desavouret, E.; Garvey, J.; Glass, H.; Harding, D.; Harfoush, F.; Holmes, S.; Humbert, J.; Kerby, J.; Knauf, A.; Kobliska, G.; Lipski, A.; Martin, P.; Mazur, P.; Orris, D.; Ostiguy, J.; Peggs, S.; Pachnik, J.; Pewitt, E.; Satti, J.; Schmidt, E.; Sim, J.; Snowdon, S.; Walbridge, D.

    1991-09-01

    The Fermilab Main Injector Project will provide 120--150 GeV Proton and Antiproton Beams for Fermilab Fixed Target Physics and Colliding Beams Physics use. A dipole magnet has been designed and prototypes constructed for the principal bending magnets of this new accelerator. The design considerations and fabrication techniques are described. Measurement results on prototypes are reported, emphasizing the field uniformity achieved in both body field and end field at excitation levels from injection at 0.1 T to full field of 1.7 T. 6 refs., 5 figs., 3 tabs

  8. Progress in the study and construction of the TESLA test facility injector

    Energy Technology Data Exchange (ETDEWEB)

    Chehab, R.; Bernard, M.; Bourdon, J.C.; Garvey, T. [Paris-11 Univ., 91 - Orsay (France). Lab. de l`Accelerateur Lineaire; Aune, B.; Desmons, M.; Fusellier, J.; Gougnaud, F. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. d`Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l`Instrumentation Associee; Buhler, S.; Junquera, T. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire] [and others

    1995-12-31

    A 500 MeV, 1.3 GHz superconducting linear accelerator is being studied and built to serve as a test facility for the TESLA linear collider project. The phase 1 injector consists of a 250 keV electron gun, buncher and a superconducting capture cavity at the main linac frequency. The main characteristics (intensity, position, emittance, bunch length, energy spread) are to be measured using different techniques. A particular effort will be made on the use of optical transition radiation (OTR) for the determination of the transverse beam emittance as well as the bunch length. (K.A.). 7 refs.

  9. Progress in the study and construction of the TESLA test facility injector

    International Nuclear Information System (INIS)

    Chehab, R.; Bernard, M.; Bourdon, J.C.; Garvey, T.; Aune, B.; Desmons, M.; Fusellier, J.; Gougnaud, F.; Buhler, S.; Junquera, T.

    1995-01-01

    A 500 MeV, 1.3 GHz superconducting linear accelerator is being studied and built to serve as a test facility for the TESLA linear collider project. The phase 1 injector consists of a 250 keV electron gun, buncher and a superconducting capture cavity at the main linac frequency. The main characteristics (intensity, position, emittance, bunch length, energy spread) are to be measured using different techniques. A particular effort will be made on the use of optical transition radiation (OTR) for the determination of the transverse beam emittance as well as the bunch length. (K.A.)

  10. On the average luminosity of electron positron collider and positron-producing energy

    International Nuclear Information System (INIS)

    Xie Jialin

    1985-01-01

    In this paper, the average luminosity of linac injected electron positron collider is investigated from the positron-producing energy point of view. When the energy of the linac injector is fixed to be less than the operating energy of the storage ring, it has been found that there exists a positron-producing energy to give optimum average luminosity. Two cases have been studied, one for an ideal storage ring with no single-beam instability and the other for practical storage ring with fast head-tail instability. The result indicates that there is a positron-producing energy corresponding to the minimum injection time, but this does not correspond to the optimum average luminosity for the practical storage rings. For Beijing Electron Positron Collider (BEPC), the positron-producing energy corresponding to the optimum average luminosity is about one tenth of the total injector energy

  11. Searching for color sextet quarks at high energy hardon colliders

    International Nuclear Information System (INIS)

    Kantar, M.

    2005-01-01

    We analyze the resonance and pair production of color sextet quarks and their decay modes at very high energy hadron colliders such as VHLC (Very Large Hadron Collider) with the energy of 28 TeV and SSC (Superconducting Super Collider) for two options with energies of 40 TeV and 100 TeV, respectively. The total cross sections of color sextet quark for three different machines are calculated and plotted versus its mass. The distributions of transverse momentum T p and invariant mass jj m of two final state jets are plotted for signals and backgrounds and analyzed the discovery limits of this resonance particle. The observation condition of color sextet quarks are performed by the number of signal events to the number of background events

  12. SuperB Technical Design Report

    CERN Document Server

    Baszczyk, M.; Kolodziej, J.; Kucewicz, W.; Sapor, M.; Jeremie, A.; Grauges Pous, E.; Bruno, G.E.; De Robertis, G.; Diacono, D.; Donvito, G.; Fusco, P.; Gargano, F.; Giordano, F.; Loddo, F.; Loparco, F.; Maggi, G.P.; Manzari, V.; Mazziotta, M.N.; Nappi, E.; Palano, A.; Santeramo, B.; Sgura, I.; Silvestris, L.; Spinoso, V.; Eigen, G.; Zalieckas, J.; Zhuo, Z.; Jenkovszky, L.; Balbi, G.; Boldini, M.; Bonacorsi, D.; Cafaro, V.; D'Antone, I.; Dallavalle, G.M.; Di Sipio, R.; Fabbri, F.; Fabbri, L.; Gabrielli, A.; Galli, D.; Giacomelli, P.; Giordano, V.; Giorgi, F.M.; Grandi, C.; Lax, I.; Lo Meo, S.; Marconi, U.; Montanari, A.; Pellegrini, G.; Piccinini, M.; Rovelli, T.; Semprini Cesari, N.; Torromeo, G.; Tosi, N.; Travaglini, R.; Vagnoni, V.M.; Valentinetti, S.; Villa, M.; Zoccoli, A.; Caron, J. -F.; Hearty, C.; Lu, P. F. -T.; Mattison, T.S.; McKenna, J.A.; So, R. Y.; Barnyakov, M. Yu.; Blinov, V.E.; Botov, A.A.; Druzhinin, V.P.; Golubev, V.B.; Kononov, S.A.; Kravchenko, E.A.; Levichev, E.B.; Onuchin, A.P.; Serednyakov, S.I.; Shtol, D.A.; Skovpen, Y.I.; Solodov, E.P.; Cardini, A.; Carpinelli, M.; Chao, D. S. -T.; Cheng, C.H.; Doll, D.A.; Echenard, B.; Flood, K.; Hanson, J.; Hitlin, D.G.; Ongmongkolkul, P.; Porter, F.C.; Zhu, R.Y.; Randazzo, N.; De La Cruz Burelo, E.; Zheng, Y.; Campos, P.; De Silva, M.; Kathirgamaraju, A.; Meadows, B.; Pushpawela, B.; Shi, Y.; Sokoloff, M.; Lopez Castro, G.; Ciaschini, V.; Franchini, P.; Giacomini, F.; Paolini, A.; Calderon Polania, G. A.; Laczek, S.; Romanowicz, P.; Szybinski, B.; Czuchry, M.; Flis, L.; Harezlak, D.; Kocot, J.; Radecki, M.; Sterzel, M.; Szepieniec, T.; Szymocha, T.; Wójcik, P.; Andreotti, M.; Baldini, W.; Calabrese, R.; Carassiti, V.; Cibinetto, G.; Cotta Ramusino, A.; Evangelisti, F.; Gianoli, A.; Luppi, E.; Malaguti, R.; Manzali, M.; Melchiorri, M.; Munerato, M.; Padoan, C.; Santoro, V.; Tomassetti, L.; Beretta, M.M.; Biagini, M.; Boscolo, M.; Capitolo, E.; de Sangro, R.; Esposito, M.; Felici, G.; Finocchiaro, G.; Gatta, M.; Gatti, C.; Guiducci, S.; Lauciani, S.; Patteri, P.; Peruzzi, I.; Piccolo, M.; Raimondi, P.; Rama, M.; Sanelli, C.; Tomassini, S.; Fabbricatore, P.; Delepine, D.; Reyes Santos, M. A.; Chrzaszcz, M.; Grzymkowski, R.; Knap, P.; Kotula, J.; Lesiak, T.; Ludwin, J.; Michalowski, J.; Pawlik, B.; Rachwal, B.; Stodulski, M.; Wiechczynski, J.; Witek, M.; Zawiejski, L.; Zdybal, M.; Aushev, V.Y.; Ustynov, A.; Arnaud, N.; Bambade, P.; Beigbeder, C.; Bogard, F.; Borsato, M.; Breton, D.; Brossard, J.; Burmistrov, L.; Charlet, D.; Chaumat, V.; Dadoun, O.; El Berni, M.; Maalmi, J.; Puill, V.; Rimbault, C.; Stocchi, A.; Tocut, V.; Variola, A.; Wallon, S.; Wormser, G.; Grancagnolo, F.; Ben-Haim, E.; Sitt, S.; Baylac, M.; Bourrion, O.; Deconto, J. -M.; Gomez Martinez, Y.; Monseu, N.; Muraz, J. -F.; Real, J. -S.; Vescovi, C.; Cenci, R.; Jawahery, A.; Roberts, D.; Twedt, E.W.; Cheaib, R.; Lindemann, D.; Nderitu, S.; Patel, P.; Robertson, S.H.; Swersky, D.; Warburton, A.; Cuautle Flores, E.; Toledo Sanchez, G.; Biassoni, P.; Bombelli, L.; Citterio, M.; Coelli, S.; Fiorini, C.; Liberali, V.; Monti, M.; Nasri, B.; Neri, N.; Palombo, F.; Sabatini, F.; Stabile, A.; Berra, A.; Giachero, A.; Gotti, C.; Lietti, D.; Maino, M.; Pessina, G.; Prest, M.; Martin, J. -P.; Simard, M.; Starinski, N.; Taras, P.; Drutskoy, A.; Makarychev, S.; Nefediev, A.V.; Aloisio, A.; Cavaliere, S.; De Nardo, G.; Della Pietra, M.; Doria, A.; Giordano, R.; Ordine, A.; Pardi, S.; Russo, G.; Sciacca, C.; Bigi, I.I.; Jessop, C.P.; Wang, W.; Bellato, M.; Benettoni, M.; Corvo, M.; Crescente, A.; Dal Corso, F.; Dosselli, U.; Fanin, C.; Gianelle, A.; Longo, S.; Michelotto, M.; Montecassiano, F.; Morandin, M.; Pengo, R.; Posocco, M.; Rotondo, M.; Simi, G.; Stroili, R.; Gaioni, L.; Manazza, A.; Manghisoni, M.; Ratti, L.; Re, V.; Traversi, G.; Zucca, S.; Bizzaglia, S.; Bizzarri, M.; Cecchi, C.; Germani, S.; Lebeau, M.; Lubrano, P.; Manoni, E.; Papi, A.; Rossi, A.; Scolieri, G.; Batignani, G.; Bettarini, S.; Casarosa, G.; Cervelli, A.; Fella, A.; Forti, F.; Giorgi, M.; Lilli, L.; Lusiani, A.; Oberhof, B.; Paladino, A.; Pantaleo, F.; Paoloni, E.; Perez Perez, A. L.; Rizzo, G.; Walsh, J.; Fernández Téllez, A.; Beck, G.; Berman, M.; Bevan, A.; Gannaway, F.; Inguglia, G.; Martin, A.J.; Morris, J.; Bocci, V.; Capodiferro, M.; Chiodi, G.; Dafinei, I.; Drenska, N.V.; Faccini, R.; Ferroni, F.; Gargiulo, C.; Gauzzi, P.; Luci, C.; Lunadei, R.; Martellotti, G.; Pellegrino, F.; Pettinacci, V.; Pinci, D.; Recchia, L.; Ruggeri, D.; Zullo, A.; Camarri, P.; Cardarelli, R.; De Santis, C.; Di Ciaccio, A.; Di Felice, V.; Di Palma, F.; Di Simone, A.; Marcelli, L.; Messi, R.; Moricciani, D.; Sparvoli, R.; Tammaro, S.; Branchini, P.; Budano, A.; Bussino, S.; Ciuchini, M.; Nguyen, F.; Passeri, A.; Ruggieri, F.; Spiriti, E.

    2013-01-01

    In this Technical Design Report (TDR) we describe the SuperB detector that was to be installed on the SuperB e+e- high luminosity collider. The SuperB asymmetric collider, which was to be constructed on the Tor Vergata campus near the INFN Frascati National Laboratory, was designed to operate both at the Upsilon(4S) center-of-mass energy with a luminosity of 10^{36} cm^{-2}s^{-1} and at the tau/charm production threshold with a luminosity of 10^{35} cm^{-2}s^{-1}. This high luminosity, producing a data sample about a factor 100 larger than present B Factories, would allow investigation of new physics effects in rare decays, CP Violation and Lepton Flavour Violation. This document details the detector design presented in the Conceptual Design Report (CDR) in 2007. The R&D and engineering studies performed to arrive at the full detector design are described, and an updated cost estimate is presented. A combination of a more realistic cost estimates and the unavailability of funds due of the global economic ...

  13. Main injector synchronous timing system

    International Nuclear Information System (INIS)

    Blokland, W.; Steimel, J.

    1998-01-01

    The Synchronous Timing System is designed to provide sub-nanosecond timing to instrumentation during the acceleration of particles in the Main Injector. Increased energy of the beam particles leads to a small but significant increase in speed, reducing the time it takes to complete a full turn of the ring by 61 nanoseconds (or more than 3 rf buckets). In contrast, the reference signal, used to trigger instrumentation and transmitted over a cable, has a constant group delay. This difference leads to a phase slip during the ramp and prevents instrumentation such as dampers from properly operating without additional measures. The Synchronous Timing System corrects for this phase slip as well as signal propagation time changes due to temperature variations. A module at the LLRF system uses a 1.2 Gbit/s G-Link chip to transmit the rf clock and digital data (e.g. the current frequency) over a single mode fiber around the ring. Fiber optic couplers at service buildings split off part of this signal for a local module which reconstructs a synchronous beam reference signal. This paper describes the background, design and expected performance of the Synchronous Timing System. copyright 1998 American Institute of Physics

  14. Main injector synchronous timing system

    International Nuclear Information System (INIS)

    Blokland, Willem; Steimel, James

    1998-01-01

    The Synchronous Timing System is designed to provide sub-nanosecond timing to instrumentation during the acceleration of particles in the Main Injector. Increased energy of the beam particles leads to a small but significant increase in speed, reducing the time it takes to complete a full turn of the ring by 61 nanoseconds (or more than 3 rf buckets). In contrast, the reference signal, used to trigger instrumentation and transmitted over a cable, has a constant group delay. This difference leads to a phase slip during the ramp and prevents instrumentation such as dampers from properly operating without additional measures. The Synchronous Timing System corrects for this phase slip as well as signal propagation time changes due to temperature variations. A module at the LLRF system uses a 1.2 Gbit/s G-Link chip to transmit the rf clock and digital data (e.g. the current frequency) over a single mode fiber around the ring. Fiber optic couplers at service buildings split off part of this signal for a local module which reconstructs a synchronous beam reference signal. This paper describes the background, design and expected performance of the Synchronous Timing System

  15. The LHC Lead Injector Chain

    CERN Document Server

    Beuret, A; Blas, A; Burkhardt, H; Carli, Christian; Chanel, M; Fowler, A; Gourber-Pace, M; Hancock, S; Hourican, M; Hill, C E; Jowett, John M; Kahle, K; Küchler, D; Lombardi, A M; Mahner, E; Manglunki, Django; Martini, M; Maury, S; Pedersen, F; Raich, U; Rossi, C; Royer, J P; Schindl, Karlheinz; Scrivens, R; Sermeus, L; Shaposhnikova, Elena; Tranquille, G; Vretenar, Maurizio; Zickler, T

    2004-01-01

    A sizeable part of the LHC physics programme foresees lead-lead collisions with a design luminosity of 1027 cm-2 s-1. This will be achieved after an upgrade of the ion injector chain comprising Linac3, LEIR, PS and SPS machines [1,2]. Each LHC ring will be filled in 10 min by almost 600 bunches, each of 7×107 lead ions. Central to the scheme is the Low Energy Ion Ring (LEIR) [3,4], which transforms long pulses from Linac3 into high-brilliance bunches by means of multi-turn injection, electron cooling and accumulation. Major limitations along the chain, including space charge, intrabeam scattering, vacuum issues and emittance preservation are highlighted. The conversion from LEAR (Low Energy Antiproton Ring) to LEIR involves new magnets and power converters, high-current electron cooling, broadband RF cavities, and a UHV vacuum system with getter (NEG) coatings to achieve a few 10-12 mbar. Major hardware changes in Linac3 and the PS are also covered. An early ion scheme with fewer bunches (but each at nominal...

  16. Solid deuterium centrifuge pellet injector

    International Nuclear Information System (INIS)

    Foster, C.A.

    1982-01-01

    Pellet injectors are needed to fuel long pulse tokamak plasmas and other magnetic confinement devices. For this purpose, an apparatus has been developed that forms 1.3-mm-diam pellets of frozen deuterium at a rate of 40 pellets per second and accelerates them to a speed of 1 km/s. Pellets are formed by extruding a billet of solidified deuterium through a 1.3-mm-diam nozzle at a speed of 5 cm/s. The extruding deuterium is chopped with a razor knife, forming 1.3-mm right circular cylinders of solid deuterium. The pellets are accelerated by synchronously injecting them into a high speed rotating arbor containing a guide track, which carries them from a point near the center of rotation to the periphery. The pellets leave the wheel after 150 0 of rotation at double the tip speed. The centrifuge is formed in the shape of a centrifugal catenary and is constructed of high strength KEVLAR/epoxy composite. This arbon has been spin-tested to a tip speed of 1 km/s

  17. The light-ion injector

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    In an extensive field mapping program the magnetic fields of the main coils and various pole-gap coils of the light-ion injector (SPC1) were measured. As a further test, the measured field maps were used to calculate the excitation currents through the various coils for a specific field shape. Orbit calculations, based on the electric potential fields measured is the electrolytic tank on the 3:1 scale model of the central region, made it possible to optimise the ion-source position, improve the axial focussing of the beam and specify an approximate position for the second axial. The coils for the first magnetic channel were manufactured and field measurements with the channel in position in the pole-gap have been performed. The radio-frequency system of SPC1 consists of three main sections, namely resonators, power amplifiers and the control systems. The purpose of the rf-system is to provide the accelerating voltages of up to 70 kV peak in the 8,6 to 26 MHz frequency range, which are required to accelerate the particle beams

  18. Solid deuterium centrifuge pellet injector

    International Nuclear Information System (INIS)

    Foster, C.A.

    1983-01-01

    Pellet injectors are needed to fuel long pulse tokamak plasmas and other magnetic confinement devices. For this purpose, an apparatus has been developed that forms 1.3-mm-diam pellets of frozen deuterium at a rate of 40 pellets per second and accelerates them to a speed of 1 km/s. Pellets are formed by extruding a billet of solidified deuterium through a 1.3-mm-diam nozzle at a speed of 5 cm/s. The extruding deuterium is chopped with a razor knife, forming 1.3-mm right circular cylinders of solid deuterium. The pellets are accelerated by synchronously injecting them into a high speed rotating arbor containing a guide track, which carries them from a point near the center of rotation to the periphery. The pellets leave the wheel after 150 0 of rotation at double the tip speed. The centrifuge is formed in the shape of a centrifugal catenary and is constructed of high strength Kevlar/epoxy composite. This arbor has been spin-tested to a tip speed of 1 km/s

  19. The large hadron collider project

    International Nuclear Information System (INIS)

    Maiani, L.

    1999-01-01

    Knowledge of the fundamental constituents of matter has greatly advanced, over the last decades. The standard theory of fundamental interactions presents us with a theoretically sound picture, which describes with great accuracy known physical phenomena on most diverse energy and distance scales. These range from 10 -16 cm, inside the nucleons, up to large-scale astrophysical bodies, including the early Universe at some nanosecond after the Big-Bang and temperatures of the order of 10 2 GeV. The picture is not yet completed, however, as we lack the observation of the Higgs boson, predicted in the 100-500 GeV range - a particle associated with the generation of particle masses and with the quantum fluctuations in the primordial Universe. In addition, the standard theory is expected to undergo a change of regime in the 10 3 GeV region, with the appearance of new families of particles, most likely associated with the onset of a new symmetry (supersymmetry). In 1994, the CERN Council approved the construction of the large hadron collider (LHC), a proton-proton collider of a new design to be installed in the existing LEP tunnel, with an energy of 7 TeV per beam and extremely large luminosity, of ∝10 34 cm -2 s -1 . Construction was started in 1996, with the additional support of the US, Japan, Russia, Canada and other European countries, making the LHC a really global project, the first one in particle physics. After a short review of the physics scenario, I report on the present status of the LHC construction. Special attention is given to technological problems such as the realization of the super-conducting dipoles, following an extensive R and D program with European industries. The construction of the large LHC detectors has required a vast R and D program by a large international community, to overcome the problems posed by the complexity of the collisions and by the large luminosity of the machine. (orig.)

  20. Hadron collider physics

    Energy Technology Data Exchange (ETDEWEB)

    Pondrom, L.

    1991-10-03

    An introduction to the techniques of analysis of hadron collider events is presented in the context of the quark-parton model. Production and decay of W and Z intermediate vector bosons are used as examples. The structure of the Electroweak theory is outlined. Three simple FORTRAN programs are introduced, to illustrate Monte Carlo calculation techniques. 25 refs.

  1. QCD and collider physics

    CERN Document Server

    Stirling, William James

    1991-12-01

    1. Some basic theory. 2. Two important applications: - e+ e- annihilation (LEPSLS) ; deep inelastic scattering (HERA). 3. Other applications..., large Pt jets, W and Z, heavy quark production..., (pp- colliders). In this lecture: some basic theory. 1. QCD as a non abelian gauge field theory. 2. Asymptotic freedom. 3. Beyond leading order - renormalisation schemes. 4. MS.

  2. High luminosity particle colliders

    International Nuclear Information System (INIS)

    Palmer, R.B.; Gallardo, J.C.

    1997-03-01

    The authors consider the high energy physics advantages, disadvantages and luminosity requirements of hadron (pp, p anti p), lepton (e + e - , μ + μ - ) and photon-photon colliders. Technical problems in obtaining increased energy in each type of machine are presented. The machines relative size are also discussed

  3. Diffraction at collider energies

    International Nuclear Information System (INIS)

    Frankfurt, L.L.

    1992-01-01

    Lessons with ''soft'' hadron physics to explain (a) feasibility to observe and to investigate color transparency, color opacity effects at colliders; (b) significant probability and specific features of hard diffractive processes; (c) feasibility to investigate components of parton wave functions of hadrons with minimal number of constituents. This new physics would be more important with increase of collision energy

  4. LINEAR COLLIDERS: 1992 workshop

    International Nuclear Information System (INIS)

    Settles, Ron; Coignet, Guy

    1992-01-01

    As work on designs for future electron-positron linear colliders pushes ahead at major Laboratories throughout the world in a major international collaboration framework, the LC92 workshop held in Garmisch Partenkirchen this summer, attended by 200 machine and particle physicists, provided a timely focus

  5. The Large Hadron Collider

    CERN Multimedia

    't Hooft, Gerardus; Llewellyn Smith, Christopher Hubert; Brüning, Oliver Sim; Collier, Paul; Stapnes, Steinar; Ellis, Jonathan Richard; Braun-Munzinger, Peter; Stachel, Johanna; Lederman, Leon Max

    2007-01-01

    Several articles about the LHC: The Making of the standard model; high-energy colliders and the rise of the standard model; How the LHC came to be; Building a behemoth; Detector challenges at the LHC; Beyond the standard model with the LHC; The quest for the quark-gluon plasma; The God particle et al. (42 pages

  6. Review of linear colliders

    International Nuclear Information System (INIS)

    Takeda, Seishi

    1992-01-01

    The status of R and D of future e + e - linear colliders proposed by the institutions throughout the world is described including the JLC, NLC, VLEPP, CLIC, DESY/THD and TESLA projects. The parameters and RF sources are discussed. (G.P.) 36 refs.; 1 tab

  7. Large Hadron Collider

    CERN Multimedia

    2007-01-01

    "In the spring 2008, the Large Hadron Collider (LHC) machine at CERN (the European Particle Physics laboratory) will be switched on for the first time. The huge machine is housed in a circular tunnel, 27 km long, excavated deep under the French-Swiss border near Geneva." (1,5 page)

  8. High energy colliders

    International Nuclear Information System (INIS)

    Palmer, R.B.; Gallardo, J.C.

    1997-02-01

    The authors consider the high energy physics advantages, disadvantages and luminosity requirements of hadron (pp, p anti p), lepton (e + e - , μ + μ - ) and photon-photon colliders. Technical problems in obtaining increased energy in each type of machine are presented. The machines relative size are also discussed

  9. Hadron collider physics

    International Nuclear Information System (INIS)

    Pondrom, L.

    1991-01-01

    An introduction to the techniques of analysis of hadron collider events is presented in the context of the quark-parton model. Production and decay of W and Z intermediate vector bosons are used as examples. The structure of the Electroweak theory is outlined. Three simple FORTRAN programs are introduced, to illustrate Monte Carlo calculation techniques. 25 refs

  10. B factory with hadron colliders

    International Nuclear Information System (INIS)

    Lockyer, N.S.

    1990-01-01

    The opportunities to study B physics in a hadron collider are discussed. Emphasis is placed on the technological developments necessary for these experiments. The R and D program of the Bottom Collider Detector group is reviewed. (author)

  11. Modeling of classical swirl injector dynamics

    Science.gov (United States)

    Ismailov, Maksud M.

    The knowledge of the dynamics of a swirl injector is crucial in designing a stable liquid rocket engine. Since the swirl injector is a complex fluid flow device in itself, not much work has been conducted to describe its dynamics either analytically or by using computational fluid dynamics techniques. Even the experimental observation is limited up to date. Thus far, there exists an analytical linear theory by Bazarov [1], which is based on long-wave disturbances traveling on the free surface of the injector core. This theory does not account for variation of the nozzle reflection coefficient as a function of disturbance frequency, and yields a response function which is strongly dependent on the so called artificial viscosity factor. This causes an uncertainty in designing an injector for the given operational combustion instability frequencies in the rocket engine. In this work, the author has studied alternative techniques to describe the swirl injector response, both analytically and computationally. In the analytical part, by using the linear small perturbation analysis, the entire phenomenon of unsteady flow in swirl injectors is dissected into fundamental components, which are the phenomena of disturbance wave refraction and reflection, and vortex chamber resonance. This reveals the nature of flow instability and the driving factors leading to maximum injector response. In the computational part, by employing the nonlinear boundary element method (BEM), the author sets the boundary conditions such that they closely simulate those in the analytical part. The simulation results then show distinct peak responses at frequencies that are coincident with those resonant frequencies predicted in the analytical part. Moreover, a cold flow test of the injector related to this study also shows a clear growth of instability with its maximum amplitude at the first fundamental frequency predicted both by analytical methods and BEM. It shall be noted however that Bazarov

  12. Computer simulation of the emittance growth due to noise in large hadron colliders

    International Nuclear Information System (INIS)

    Lebedev, V.

    1993-03-01

    The problem of emittance growth due to random fluctuations of the magnetic field in a hadron collider is considered. The results of computer simulations are compared with the analytical theory developed earlier. A good agreement was found between the analytical theory predictions and the computer simulations for the collider tunes located far enough from high order betatron resonances. The dependencies of the emittance growth rate on noise spectral density, beam separation at the Interaction Point (IP) and value of beam separation at long range collisions are studied. The results are applicable to the Superconducting Super Collider (SSC)

  13. The SSRL injector beam position monitoring systems

    International Nuclear Information System (INIS)

    Lavender, W.; Baird, S.; Brennan, S.; Borland, M.; Hettel, R.; Nuhn, H.D.; Ortiz, R.; Safranek, J.; Sebek, J.; Wermelskirchen, C.; Yang, J.

    1991-01-01

    The beam position monitoring system of the SSRL injector forms a vital component of its operation. Several different types of instrumentation are used to measure the position or intensity of the electron beam in the injector. These include current toroids, fluorescent screens, Faraday cups, the 'Q' meter, a synchrotron light monitor, and electron beam position monitors. This paper focuses on the use of the electron beam position monitors to measure electron trajectories in the injector transport lines and the booster ring. The design of the beam position monitors is described in another paper to be presented at this conference. There are three different beam position monitor systems in the injector. One system consists of a set of five BPMs located on the injection transport line from the linac to the booster (known as the LTB line). There is a second system of six BPMs located on the ejection transport line (known as the BTS line). Finally, there is an array of 40 BPMs installed on the main booster ring itself. This article describes the software and processing electronics of the systems used to measure electron beam trajectories for the new SSRL injector for SPEAR

  14. Tracking study of hadron collider boosters

    Energy Technology Data Exchange (ETDEWEB)

    Machida, S.; Bourianoff, G.; Huang, Y.; Mahale, N.

    1992-07-01

    A simulation code SIMPSONS (previously called 6D-TEASE T) of single- and multi-particle tracking has been developed for proton synchrotrons. The 6D phase space coordinates are calculated each time step including acceleration with an arbitrary ramping curve by integration of the rf phase. Space-charge effects are modelled by means of the Particle In Cell (PIC) method. We observed the transverse emittance growth around the injection energy of the Low Energy Booster (LEB) of the Superconducting Super Collider (SSC) with and without second harmonic rf cavities which reduce peak line density. We also employed the code to see the possible transverse emittance deterioration around the transition energy in the Medium Energy Booster (MEB) and to estimate the emittance dilution due to an injection error of the MEB.

  15. Large Hadron Collider manual

    CERN Document Server

    Lavender, Gemma

    2018-01-01

    What is the universe made of? How did it start? This Manual tells the story of how physicists are seeking answers to these questions using the world’s largest particle smasher – the Large Hadron Collider – at the CERN laboratory on the Franco-Swiss border. Beginning with the first tentative steps taken to build the machine, the digestible text, supported by color photographs of the hardware involved, along with annotated schematic diagrams of the physics experiments, covers the particle accelerator’s greatest discoveries – from both the perspective of the writer and the scientists who work there. The Large Hadron Collider Manual is a full, comprehensive guide to the most famous, record-breaking physics experiment in the world, which continues to capture the public imagination as it provides new insight into the fundamental laws of nature.

  16. The International Linear Collider

    Directory of Open Access Journals (Sweden)

    List Benno

    2014-04-01

    Full Text Available The International Linear Collider (ILC is a proposed e+e− linear collider with a centre-of-mass energy of 200–500 GeV, based on superconducting RF cavities. The ILC would be an ideal machine for precision studies of a light Higgs boson and the top quark, and would have a discovery potential for new particles that is complementary to that of LHC. The clean experimental conditions would allow the operation of detectors with extremely good performance; two such detectors, ILD and SiD, are currently being designed. Both make use of novel concepts for tracking and calorimetry. The Japanese High Energy Physics community has recently recommended to build the ILC in Japan.

  17. The International Linear Collider

    Science.gov (United States)

    List, Benno

    2014-04-01

    The International Linear Collider (ILC) is a proposed e+e- linear collider with a centre-of-mass energy of 200-500 GeV, based on superconducting RF cavities. The ILC would be an ideal machine for precision studies of a light Higgs boson and the top quark, and would have a discovery potential for new particles that is complementary to that of LHC. The clean experimental conditions would allow the operation of detectors with extremely good performance; two such detectors, ILD and SiD, are currently being designed. Both make use of novel concepts for tracking and calorimetry. The Japanese High Energy Physics community has recently recommended to build the ILC in Japan.

  18. The SLAC linear collider

    International Nuclear Information System (INIS)

    Phinney, N.

    1992-01-01

    The SLAC Linear Collider has begun a new era of operation with the SLD detector. During 1991 there was a first engineering run for the SLD in parallel with machine improvements to increase luminosity and reliability. For the 1992 run, a polarized electron source was added and more than 10,000 Zs with an average of 23% polarization have been logged by the SLD. This paper discusses the performance of the SLC in 1991 and 1992 and the technical advances that have produced higher luminosity. Emphasis will be placed on issues relevant to future linear colliders such as producing and maintaining high current, low emittance beams and focusing the beams to the micron scale for collisions. (Author) tab., 2 figs., 18 refs

  19. Polarized proton colliders

    International Nuclear Information System (INIS)

    Roser, T.

    1995-01-01

    High energy polarized beam collisions will open up the unique physics opportunities of studying spin effects in hard processes. This will allow the study of the spin structure of the proton and also the verification of the many well documented expectations of spin effects in perturbative QCD and parity violation in W and Z production. Proposals for polarized proton acceleration for several high energy colliders have been developed. A partial Siberian Snake in the AGS has recently been successfully tested and full Siberian Snakes, spin rotators, and polarimeters for RHIC are being developed to make the acceleration of polarized beams to 250 GeV possible. This allows for the unique possibility of colliding two 250 GeV polarized proton beams at luminosities of up to 2 x 10 32 cm -2 s -1

  20. Linear Colliders TESLA

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    The aim of the TESLA (TeV Superconducting Linear Accelerator) collaboration (at present 19 institutions from seven countries) is to establish the technology for a high energy electron-positron linear collider using superconducting radiofrequency cavities to accelerate its beams. Another basic goal is to demonstrate that such a collider can meet its performance goals in a cost effective manner. For this the TESLA collaboration is preparing a 500 MeV superconducting linear test accelerator at the DESY Laboratory in Hamburg. This TTF (TESLA Test Facility) consists of four cryomodules, each approximately 12 m long and containing eight 9-cell solid niobium cavities operating at a frequency of 1.3 GHz

  1. Numerical and experimental study of the beam dynamics of CANDELA photo-injector and associated instrumentation

    International Nuclear Information System (INIS)

    Devanz, Guillaume

    1999-01-01

    Laser triggered radiofrequency guns are the most luminous electron sources allowing to reach the performances requested by highly demanding applications like the e + /e - linear colliders and the short wave free electron lasers. CANDELA is a band S photo-injector triggered by a sub-picosecond laser. It allows reaching peak currents of hundred of amperes at average energies higher than 2 MeV. The original concept of two accelerating cavities aims at minimizing the transverse and longitudinal emittances following the Gao's principles. From practical reasons the operating parameters, particularly the laser pulse duration, do not correspond to those considered in the design. Hence, numerical simulations were performed to evaluate the gun's performances in experimental environment. The study of a stabile injector operation resulted in evolutions with consequences in the phase control systems implying the laser and the HF (Hyper Frequency) source. The beam transverse and longitudinal characteristics have been measured as a function of the main parameters i.e., the beam charge and the phase shift between the laser and the HF wave. Measurements of the transverse emittance energy dispersion and wave packed duration are presented for several injector configurations. The systems of existing beam measurements have been studied to determine the resolution and the experimental conditions to fulfill, in order to suggest improvements for the CANDELA beam. The experiments with the beam have been compared with numerical simulations. Agreement was obtained within wide ranges of parameters for most of the characteristic beam quantities

  2. Muon Collider Progress: Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Zisman, Michael S.

    2011-09-10

    A muon collider would be a powerful tool for exploring the energy-frontier with leptons, and would complement the studies now under way at the LHC. Such a device would offer several important benefits. Muons, like electrons, are point particles so the full center-of-mass energy is available for particle production. Moreover, on account of their higher mass, muons give rise to very little synchrotron radiation and produce very little beamstrahlung. The first feature permits the use of a circular collider that can make efficient use of the expensive rf system and whose footprint is compatible with an existing laboratory site. The second feature leads to a relatively narrow energy spread at the collision point. Designing an accelerator complex for a muon collider is a challenging task. Firstly, the muons are produced as a tertiary beam, so a high-power proton beam and a target that can withstand it are needed to provide the required luminosity of ~1 × 10{sup 34} cm{sup –2}s{sup –1}. Secondly, the beam is initially produced with a large 6D phase space, which necessitates a scheme for reducing the muon beam emittance (“cooling”). Finally, the muon has a short lifetime so all beam manipulations must be done very rapidly. The Muon Accelerator Program, led by Fermilab and including a number of U.S. national laboratories and universities, has undertaken design and R&D activities aimed toward the eventual construction of a muon collider. Design features of such a facility and the supporting R&D program are described.

  3. The Large Hadron Collider

    CERN Document Server

    Juettner Fernandes, Bonnie

    2014-01-01

    What really happened during the Big Bang? Why did matter form? Why do particles have mass? To answer these questions, scientists and engineers have worked together to build the largest and most powerful particle accelerator in the world: the Large Hadron Collider. Includes glossary, websites, and bibliography for further reading. Perfect for STEM connections. Aligns to the Common Core State Standards for Language Arts. Teachers' Notes available online.

  4. QCD for Collider Physics

    OpenAIRE

    Skands, Peter

    2011-01-01

    These lectures are directed at a level suitable for graduate students in experimental and theoretical High Energy Physics. They are intended to give an introduction to the theory and phenomenology of quantum chromodynamics (QCD) as it is used in collider physics applications. The aim is to bring the reader to a level where informed decisions can be made concerning different approaches and their uncertainties. The material is divided into four main areas: 1) fundamentals, 2) perturbative QCD, ...

  5. A proposed injector for the LCLS linac

    International Nuclear Information System (INIS)

    Yeremian, A.D.; Bharadwaj, V.K.; Emma, P.; Miller, R.H.; Palmer, D.T.; Woodley, M.D.

    1996-11-01

    The Linac Coherent Light Source (LCLS) will use the last portion of the SLAC accelerator as a driver for a short wavelength FEL. The injector must produce 1-nC, 3-ps rms electron bunches at a repetition rate of up to 120 Hz with a normalized rms emittance of about 1 mm-mrad. The injector design takes advantage of the photocathode rf gun technology developed since its conception in the mid 1980's, in particular the S-band rf gun developed by the SLAC/BNL/UCLA collaboration, and emittance compensation techniques developed in the last decade. The injector beamline has been designed using the SUPERFISH, POISSON, PARMELA, and TRANSPORT codes in a consistent way to simulate the beam from the gun up to the entrance of the main accelerator linac where the beam energy is 150 MeV. PARMELA simulations indicate that at 150 MeV, space charge effects are negligible

  6. LTP fibre injector qualification and status

    International Nuclear Information System (INIS)

    Bogenstahl, J; Cunningham, L; Fitzsimons, E D; Hough, J; Killow, C J; Perreur-Lloyd, M; Robertson, D; Rowan, S; Ward, H

    2009-01-01

    This paper presents the current state of the LISA Technology Package (LTP) fibre injector qualification project in terms of vibration and shock tests. The fibre injector is a custom built part and therefore must undergo a full space qualification process. The mounting structure and method for sinusoidal vibration and random vibration tests as well as shock tests will be presented. Furthermore a proposal will be presented to use the fibre injector pair qualification model to build an optical prototype bench. The optical prototype bench is a full-scale model of the flight model. It will be used for development and rehearsal of all the assembly stages of the flight model and will provide an on-ground simulator for investigation as an updated engineering model.

  7. Status of the SPIRAL2 injector commissioning

    Energy Technology Data Exchange (ETDEWEB)

    Thuillier, T., E-mail: thuillier@lpsc.in2p3.fr; Angot, J.; Jacob, J.; Lamy, T.; Sole, P. [LPSC, Université Grenoble Alpes, CNRS/IN2P3, 53 rue des Martyrs, 38026 Grenoble Cedex (France); Barué, C.; Bertrand, P.; Canet, C.; Ferdinand, R.; Flambard, J.-L.; Jardin, P.; Lemagnen, F.; Maunoury, L.; Osmond, B. [GANIL, CNRS/IN2P3, Bvd Henri Becquerel, BP 55027, 14076 Caen Cedex 5 (France); Biarrotte, J. L. [IPN Orsay, Université Paris Sud, CNRS/IN2P3, 15 rue Georges Clémenceau, 91406 Orsay Cedex (France); Denis, J.-F.; Roger, A.; Touzery, R.; Tuske, O.; Uriot, D. [Irfu, CEA Saclay, DSM/Irfu/SACM, 91191 Gif Sur Yvette (France); and others

    2016-02-15

    The SPIRAL2 injector, installed in its tunnel, is currently under commissioning at GANIL, Caen, France. The injector is composed of two low energy beam transport lines: one is dedicated to the light ion beam production, the other to the heavy ions. The first light ion beam, created by a 2.45 GHz electron cyclotron resonance ion source, has been successfully produced in December 2014. The first beam of the PHOENIX V2 18 GHz heavy ion source was analyzed on 10 July 2015. A status of the SPIRAL2 injector commissioning is given. An upgrade of the heavy ion source, named PHOENIX V3 aimed to replace the V2, is presented. The new version features a doubled plasma chamber volume and the high charge state beam intensity is expected to increase by a factor of 1.5 to 2 up to the mass ∼50. A status of its assembly is proposed.

  8. Future Hadron Colliders

    CERN Document Server

    Keil, Eberhard

    1998-01-01

    Plans for future hadron colliders are presented, and accelerator physics and engineering aspects common to these machines are discussed. The Tevatron is presented first, starting with a summary of the achievements in Run IB which finished in 1995, followed by performance predictions for Run II which will start in 1999, and the TeV33 project, aiming for a peak luminosity $L ~ 1 (nbs)^-1$. The next machine is the Large Hadron Collider LHC at CERN, planned to come into operation in 2005. The last set of machines are Very Large Hadron Colliders which might be constructed after the LHC. Three variants are presented: Two machines with a beam energy of 50 TeV, and dipole fields of 1.8 and 12.6 T in the arcs, and a machine with 100 TeV and 12 T. The discussion of accelerator physics aspects includes the beam-beam effect, bunch spacing and parasitic collisions, and the crossing angle. The discussion of the engineering aspects covers synchrotron radiation and stored energy in the beams, the power in the debris of the p...

  9. The Stanford Linear Collider

    International Nuclear Information System (INIS)

    Emma, P.

    1995-01-01

    The Stanford Linear Collider (SLC) is the first and only high-energy e + e - linear collider in the world. Its most remarkable features are high intensity, submicron sized, polarized (e - ) beams at a single interaction point. The main challenges posed by these unique characteristics include machine-wide emittance preservation, consistent high intensity operation, polarized electron production and transport, and the achievement of a high degree of beam stability on all time scales. In addition to serving as an important machine for the study of Z 0 boson production and decay using polarized beams, the SLC is also an indispensable source of hands-on experience for future linear colliders. Each new year of operation has been highlighted with a marked improvement in performance. The most significant improvements for the 1994-95 run include new low impedance vacuum chambers for the damping rings, an upgrade to the optics and diagnostics of the final focus systems, and a higher degree of polarization from the electron source. As a result, the average luminosity has nearly doubled over the previous year with peaks approaching 10 30 cm -2 s -1 and an 80% electron polarization at the interaction point. These developments as well as the remaining identifiable performance limitations will be discussed

  10. Neutral beam injector performance on the PLT and PDX tokamaks

    International Nuclear Information System (INIS)

    Schilling, G.; Ashcroft, D.L.; Eubank, H.P.; Grisham, L.R.; Kozub, T.A.; Kugel, H.W.; Rossmassler, J.; Williams, M.D.

    1981-02-01

    An overall injector system description is presented first, and this will be followed by a detailed discussion of those problems unique to multiple injector operation on the tokamaks, i.e., power transmission, conditioning, reliability, and failures

  11. Spray Modeling for Outwardly-Opening Hollow-Cone Injector

    KAUST Repository

    Sim, Jaeheon; Badra, Jihad; Elwardani, Ahmed Elsaid; Im, Hong G.

    2016-01-01

    linear instability sheet atomization (LISA) model was originally developed for pressure swirl hollow-cone injectors with moderate spray angle and toroidal ligament breakups. Therefore, it is not appropriate for the outwardly-opening injectors having wide

  12. Additive Manufacturing of Fuel Injectors

    Energy Technology Data Exchange (ETDEWEB)

    Sadek Tadros, Dr. Alber Alphonse [Edison Welding Institute, Inc., Columbus, OH (United States); Ritter, Dr. George W. [Edison Welding Institute, Inc., Columbus, OH (United States); Drews, Charles Donald [Edison Welding Institute, Inc., Columbus, OH (United States); Ryan, Daniel [Solar Turbines Inc., San Diego, CA (United States)

    2017-10-24

    Additive manufacturing (AM), also known as 3D-printing, has been shifting from a novelty prototyping paradigm to a legitimate manufacturing tool capable of creating components for highly complex engineered products. An emerging AM technology for producing metal parts is the laser powder bed fusion (L-PBF) process; however, industry manufacturing specifications and component design practices for L-PBF have not yet been established. Solar Turbines Incorporated (Solar), an industrial gas turbine manufacturer, has been evaluating AM technology for development and production applications with the desire to enable accelerated product development cycle times, overall turbine efficiency improvements, and supply chain flexibility relative to conventional manufacturing processes (casting, brazing, welding). Accordingly, Solar teamed with EWI on a joint two-and-a-half-year project with the goal of developing a production L-PBF AM process capable of consistently producing high-nickel alloy material suitable for high temperature gas turbine engine fuel injector components. The project plan tasks were designed to understand the interaction of the process variables and their combined impact on the resultant AM material quality. The composition of the high-nickel alloy powders selected for this program met the conventional cast Hastelloy X compositional limits and were commercially available in different particle size distributions (PSD) from two suppliers. Solar produced all the test articles and both EWI and Solar shared responsibility for analyzing them. The effects of powder metal input stock, laser parameters, heat treatments, and post-finishing methods were evaluated. This process knowledge was then used to generate tensile, fatigue, and creep material properties data curves suitable for component design activities. The key process controls for ensuring consistent material properties were documented in AM powder and process specifications. The basic components of the project

  13. Beam divergence scaling in neutral beam injectors

    International Nuclear Information System (INIS)

    Holmes, A.J.T.

    1976-01-01

    One of the main considerations in the design of neutral beam injectors is to monimize the divergence of the primary ion beam and hence maximize the beam transport and minimize the input of thermal gas. Experimental measurements of the divergence of a cylindrical ion beam are presented and these measurements are used to analyze the major components of ion beam divergence, namely: space charge expansion, gas-ion scattering, emittance and optical aberrations. The implication of these divergence components in the design of a neutral beam injector system is discussed and a method of maximizing the beam current is described for a given area of source plasma

  14. The Fermilab Main Injector Technical Design Handbook

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1994-08-01

    This report contains a description of the design, cost estimate, and construction schedule of the Fermilab Main Injector (FMI) Project. The technical, cost, and schedule baselines for the FMI Project have already been established and may be found in the Fermilab Main Injector Title I Design Report, issued in August 1992. This report updates and expands upon the design and schedule for construction of all subsystem components and associated civil construction described in the Title I Design Report. The facilities described have been designed in conformance with DOE 6430.1A, "United States Department of Energy General Design Criteria."

  15. Repeating pneumatic pellet injector in JAERI

    International Nuclear Information System (INIS)

    Kasai, Satoshi; Hasegawa, Kouichi; Suzuki, Sadaaki; Miura, Yukitoshi; Oda, Yasushi; Onozuka, Masanori; Tsujimura, Seiichi.

    1992-09-01

    A repeating pneumatic pellet injector has been developed and constructed at Japan Atomic Energy Research Institute. This injector can provide repetitive pellet injection to fuel tokamak plasmas for an extended period of time, aiming at the improvement of plasma performance. The pellets with nearly identical speed and mass can be repeatedly injected with a repetition rate of 2-3.3 Hz and a speed of up to 1.7 km/s by controlling the temperature of the cryogenic system, the piston speed and the pressure of the propellant gas. (author)

  16. Mechanical design for TMX injector system

    International Nuclear Information System (INIS)

    Calderon, M.O.; Chen, F.F.K.; Denhoy, B.S.

    1977-01-01

    The injector system for the Tandem Mirror Experiment (TMX) contains the components required to create and maintain a high-temperature, high-density plasma. These components include a streaming-plasma gun in each of the plug tanks to form the target-plasma, 24 neutral-beam source modules for injecting neutral deuterium atoms to heat and replace losses from the plasma, and a gas box system that applies a streaming cold gas to the plasma to stabilize it. This paper discusses the mechanical design problems and solutions for this injector system

  17. Repeating pneumatic pellet injector in JAERI

    Energy Technology Data Exchange (ETDEWEB)

    Kasai, Satoshi; Hasegawa, Kouichi; Suzuki, Sadaaki; Miura, Yukitoshi (Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment); Oda, Yasushi; Onozuka, Masanori; Tsujimura, Seiichi.

    1992-09-01

    A repeating pneumatic pellet injector has been developed and constructed at Japan Atomic Energy Research Institute. This injector can provide repetitive pellet injection to fuel tokamak plasmas for an extended period of time, aiming at the improvement of plasma performance. The pellets with nearly identical speed and mass can be repeatedly injected with a repetition rate of 2-3.3 Hz and a speed of up to 1.7 km/s by controlling the temperature of the cryogenic system, the piston speed and the pressure of the propellant gas. (author).

  18. Narrow electron injector for ballistic electron spectroscopy

    International Nuclear Information System (INIS)

    Kast, M.; Pacher, C.; Strasser, G.; Gornik, E.

    2001-01-01

    A three-terminal hot electron transistor is used to measure the normal energy distribution of ballistic electrons generated by an electron injector utilizing an improved injector design. A triple barrier resonant tunneling diode with a rectangular transmission function acts as a narrow (1 meV) energy filter. An asymmetric energy distribution with its maximum on the high-energy side with a full width at half maximum of ΔE inj =10 meV is derived. [copyright] 2001 American Institute of Physics

  19. 21 CFR 870.1670 - Syringe actuator for an injector.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Syringe actuator for an injector. 870.1670 Section 870.1670 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... actuator for an injector. (a) Identification. A syringe actuator for an injector is an electrical device...

  20. Status of the SuperHILAC

    International Nuclear Information System (INIS)

    Grunder, H.A.; Selph, F.B.

    1976-09-01

    The SuperHILAC is an Alvarez linear accelerator designed to accelerate all ions to a maximum energy of 8.5 MeV/u. It functions as an essential part of two research programs of national importance--first, as a supplier of beams for research at less than 10 MeV/u, secondly as an injector for the Bevalac facility, for nuclear physics and medical research at energies greater than 200 MeV/u. This duplication of effort from a single accelerator is made possible by the utilization of a technique known as timeshare--two different ion beams are accelerated independently through the same linac structure. Recent operation has been in the mass range 12 less than or equal to A less than or equal to 136. Usually, a heavy ion (A greater than 40) is delivered to the SuperHILAC experimental area for nuclear physics experiments while concurrently delivering a lighter ion (A less than or equal to 40) to the Bevatron for further acceleration (max. 2.5 GeV/u) to be used in experiments exploring the physics of very high energy heavy ions, in investigations of radiation biology, and in preclinical tests as a tool for cancer treatment. Recent operating experience is reviewed. Also discussed are recent major improvements which have been made to the accelerator, and a proposed improvement which will increase reliability and beam intensity for the very heavy ions (A greater than or equal to 84) by adding a third injector of improved design

  1. Super Riemann surfaces

    International Nuclear Information System (INIS)

    Rogers, Alice

    1990-01-01

    A super Riemann surface is a particular kind of (1,1)-dimensional complex analytic supermanifold. From the point of view of super-manifold theory, super Riemann surfaces are interesting because they furnish the simplest examples of what have become known as non-split supermanifolds, that is, supermanifolds where the odd and even parts are genuinely intertwined, as opposed to split supermanifolds which are essentially the exterior bundles of a vector bundle over a conventional manifold. However undoubtedly the main motivation for the study of super Riemann surfaces has been their relevance to the Polyakov quantisation of the spinning string. Some of the papers on super Riemann surfaces are reviewed. Although recent work has shown all super Riemann surfaces are algebraic, some areas of difficulty remain. (author)

  2. Demise of Texas collider has made Europe's lab a magnet for scientists

    CERN Multimedia

    Siegfried, Tom

    2004-01-01

    Had U.S. politics and science meshed more favorably, physicists from around the world would now be flocking to Waxahachie. The defunct Superconducting Super Collider (SSC) should by now have been smashing atoms, but now Europe's top nuclear research lab offers a more picturesque world capital of physics that the prairie south of Dallas

  3. Supermanifolds and super Riemann surfaces

    International Nuclear Information System (INIS)

    Rabin, J.M.

    1986-09-01

    The theory of super Riemann surfaces is rigorously developed using Rogers' theory of supermanifolds. The global structures of super Teichmueller space and super moduli space are determined. The super modular group is shown to be precisely the ordinary modular group. Super moduli space is shown to be the gauge-fixing slice for the fermionic string path integral

  4. Calculus super review

    CERN Document Server

    2012-01-01

    Get all you need to know with Super Reviews! Each Super Review is packed with in-depth, student-friendly topic reviews that fully explain everything about the subject. The Calculus I Super Review includes a review of functions, limits, basic derivatives, the definite integral, combinations, and permutations. Take the Super Review quizzes to see how much you've learned - and where you need more study. Makes an excellent study aid and textbook companion. Great for self-study!DETAILS- From cover to cover, each in-depth topic review is easy-to-follow and easy-to-grasp - Perfect when preparing for

  5. Algebra & trigonometry super review

    CERN Document Server

    2012-01-01

    Get all you need to know with Super Reviews! Each Super Review is packed with in-depth, student-friendly topic reviews that fully explain everything about the subject. The Algebra and Trigonometry Super Review includes sets and set operations, number systems and fundamental algebraic laws and operations, exponents and radicals, polynomials and rational expressions, equations, linear equations and systems of linear equations, inequalities, relations and functions, quadratic equations, equations of higher order, ratios, proportions, and variations. Take the Super Review quizzes to see how much y

  6. Conceptual design of the Relativistic Heavy Ion Collider: RHIC

    International Nuclear Information System (INIS)

    1986-05-01

    The complete Relativistic Heavy Ion Collider (RHIC) facility will be a complex set of accelerators and beam transfer equipment connecting them. A significant portion of the total facility either exists or is under construction. Two existing Tandem Van de Graaff accelerators will serve for the initial ion acceleration. Ions with a charge of -1 would be accelerated from ground to +15 MV potential, pass through a stripping foil, and accelerate back to ground potential, where they would pass through a second stripping foil. From there the ions will traverse a long transfer line to the AGS tunnel and be injected into the Booster accelerator. The Booster accelerates the ion bunch, and then the ions pass through one more stripper and then enter the Alternating Gradient Synchrotron (AGS), where they are accelerated to the top AGS energy and transferred to the collider. Bending and focusing of ion beams is to be achieved by superconducting magnets. The physics goals behind the RHIC are enumerated, particularly as regards the study of quark matter and the characteristics of high energy nucleus-nucleus collisions. The design of the collider and all its components is described, including the injector, the lattice, magnet system, cryogenic and vacuum systems, beam transfer, injection, and dump, rf system, and beam instrumentation and control system. Also given are cost estimates, construction schedules, and a management plan

  7. Displacement of cryomodule in CADS injector II

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Jiandong; Zhang, Bin; Wang, Fengfeng; Wan, Yuqin; Sun, Guozhen; Yao, Junjie; Zhang, Juihui; He, Yuan [Chinese Academy of Sciences, Lanzhou (China). Inst. of Modern Physics

    2017-06-15

    As Cryomodule can easily reduce higher power consumption and length of an accelerator and the accelerator can be operated more continuously. The Chinese academy of sciences institute of modern physics is developing an accelerator driven subcritical system (CADS) Injector II. Cryomodules are extremely complex systems, and their design optimization is strongly dependent on the accelerator application for which they are intended.

  8. Properties of high current RFQ injectors

    International Nuclear Information System (INIS)

    Schempp, A.; Goethe, J.W.

    1996-01-01

    RFQ linacs are efficient, compact low energy ion structures, which have found numerous applications. They use electrical rf focusing and can capture, bunch and transmit high current ion beams. Some recent development and new projects like a heavy ion injectors for a cyclotron, and the status of the work on high current high duty factor RFQs will be discussed. (author)

  9. Pellet injector research and development at ORNL

    International Nuclear Information System (INIS)

    Combs, S.K.; Argo, B.E.; Baylor, L.R.; Cole, M.J.; Dyer, G.R.; Fehling, D.T.; Fisher, P.W.; Foster, C.A.; Foust, C.R.; Gouge, M.J.; Jernigan, T.C.; Langley, R.A.; Milora, S.L.; Qualls, A.L.; Schechter, E.; Sparks, D.O.; Tsai, C.C.; Wilgen, J.B.; Whealton, J.W.

    1993-01-01

    A variety of pellet injector designs have been developed at ORNL including single-shot guns that inject one pellet, multiple-shot guns that inject four and eight pellets, machine gun-types (single- and multiple-barrel) that can inject up to >100 pellets, and centrifugal accelerators (mechanical devices that are inherently capable of high repetition rates and long-pulse operation). With these devices, macroscopic pellets (1--6 mm in diameter) composed of hydrogen isotopes are typically accelerated to speeds of ∼1.0 to 2.0 km/s for injection into plasmas of experimental fusion devices. In the past few years, steady progress has been made at ORNL in the development and application of pellet injectors for fueling present-day and future fusion devices. In this paper, we briefly describe some research and development activities at ORNL, including: (1) two recent applications and a new one on large experimental fusion devices, (2) high-velocity pellet injector development, and (3) tritium injector research

  10. Pneumatic pellet injector for JT-60

    International Nuclear Information System (INIS)

    Onozuka, Masanori; Hiratsuka, Hajime; Kawasaki, Kouzo.

    1990-01-01

    The pneumatic 4-shot pellet injector has been installed and operated for JT-60 (JAERI Tokamak-60). The performance tests have proven that the device provides high speed pellets as planned. The maximum pellet velocity obtained in the hydrogen pellet tests is greater than 2.3km/s at 100 bar propellant gas. (author)

  11. Pneumatic pellet injector for JT-60

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, Masanori (Mitsubishi Heavy Industries Ltd., Tokyo (Japan)); Hiratsuka, Hajime; Kawasaki, Kouzo

    1990-11-01

    The pneumatic 4-shot pellet injector has been installed and operated for JT-60 (JAERI Tokamak-60). The performance tests have proven that the device provides high speed pellets as planned. The maximum pellet velocity obtained in the hydrogen pellet tests is greater than 2.3km/s at 100 bar propellant gas. (author).

  12. Development of AMS high resolution injector system

    International Nuclear Information System (INIS)

    Bao Yiwen; Guan Xialing; Hu Yueming

    2008-01-01

    The Beijing HI-13 tandem accelerator AMS high resolution injector system was developed. The high resolution energy achromatic system consists of an electrostatic analyzer and a magnetic analyzer, which mass resolution can reach 600 and transmission is better than 80%. (authors)

  13. Acquisition system of tandem injector parameters

    International Nuclear Information System (INIS)

    Decourt, M.

    1986-01-01

    The system centralizes all the parameters belonging to the accelerator injector. The acquisition center system reinforces an original device made of cameras and video receivers. Besides giving access to all the parameters of the ion source, the new system allows, in the ''OSCILLO'' mode, to visualize in real time any channel on the oscilloscope [fr

  14. Bevalac injector final stage RF amplifier upgrades

    International Nuclear Information System (INIS)

    Howard, D.; Calvert, J.; Dwinell, R.; Lax, J.; Lindner, A.; Richter, R.; Ridgeway, W.

    1991-01-01

    With the assistance of the DOE In-house Energy Management Program, the Bevalac injector final stage RF amplifier systems have been successfully upgraded to reduce energy consumption and operating costs. This recently completed project removed the energy-inefficient plate voltage modulator circuits that were used in conjunction with the final stage RF amplifiers. Construction, design, and operating parameters are described in detail

  15. Properties of high current RFQ injectors

    Energy Technology Data Exchange (ETDEWEB)

    Schempp, A.; Goethe, J.W. [Frankfurt Univ. (Germany). Inst. fuer Angewandte Physik

    1996-12-31

    RFQ linacs are efficient, compact low energy ion structures, which have found numerous applications. They use electrical rf focusing and can capture, bunch and transmit high current ion beams. Some recent development and new projects like a heavy ion injectors for a cyclotron, and the status of the work on high current high duty factor RFQs will be discussed. (author) 2 refs.

  16. Spray analysis of the PFAMEN injector

    NARCIS (Netherlands)

    Reijnders, J.J.E.; Boot, M.D.; de Goey, L.P.H.; Bosi, M.; Postrioti, L.

    2013-01-01

    In an earlier study, a novel type of diesel fuel injector was proposed. This prototype injects fuel via porous (sintered) micro pores instead of via the conventional 6-8 holes. The micro pores are typically 10-50 micrometer in diameter, versus 120-200 micrometer in the conventional case. The

  17. Results on Fermilab main injector dipole measurements

    International Nuclear Information System (INIS)

    Brown, B.C.; Baiod, R.; DiMarco, J.; Glass, H.D.; Harding, D.J.; Martin, P.S.; Mishra, S.; Mokhtarani, A.; Orris, D.F.; russell, O.A.; Tompkins, J.C.; Walbridge, D.G.C.

    1995-06-01

    Measurements of the Productions run of Fermilab Main Injector Dipole magnets is underway. Redundant strength measurements provide a set of data which one can fit to mechanical and magnetic properties of the assembly. Plots of the field contribution from the steel supplement the usual plots of transfer function (B/I) vs. I in providing insight into the measured results

  18. Injector tip for an internal combustion engine

    Science.gov (United States)

    Shyu, Tsu Pin; Ye, Wen

    2003-05-20

    This invention relates to a the tip structure of a fuel injector as used in a internal combustion engine. Internal combustion engines using Homogeneous Charge Compression Ignition (HCCI) technology require a tip structure that directs fuel spray in a downward direction. This requirement necessitates a tip design that is capable of withstanding mechanical stresses associated with the design.

  19. Assessing Risk in Costing High-energy Accelerators: from Existing Projects to the Future Linear Collider

    CERN Document Server

    Lebrun, Philippe

    2010-01-01

    High-energy accelerators are large projects funded by public money, developed over the years and constructed via major industrial contracts both in advanced technology and in more conventional domains such as civil engineering and infrastructure, for which they often constitute one-of markets. Assessing their cost, as well as the risk and uncertainty associated with this assessment is therefore an essential part of project preparation and a justified requirement by the funding agencies. Stemming from the experience with large circular colliders at CERN, LEP and LHC, as well as with the Main Injector, the Tevatron Collider Experiments and Accelerator Upgrades, and the NOvA Experiment at Fermilab, we discuss sources of cost variance and derive cost risk assessment methods applicable to the future linear collider, through its two technical approaches for ILC and CLIC. We also address disparities in cost risk assessment imposed by regional differences in regulations, procedures and practices.

  20. Hadron-hadron colliders

    International Nuclear Information System (INIS)

    Month, M.; Weng, W.T.

    1983-01-01

    The objective is to investigate whether existing technology might be extrapolated to provide the conceptual framework for a major hadron-hadron collider facility for high energy physics experimentation for the remainder of this century. One contribution to this large effort is to formalize the methods and mathematical tools necessary. In this report, the main purpose is to introduce the student to basic design procedures. From these follow the fundamental characteristics of the facility: its performance capability, its size, and the nature and operating requirements on the accelerator components, and with this knowledge, we can determine the technology and resources needed to build the new facility

  1. Triaxial Swirl Injector Element for Liquid-Fueled Engines

    Science.gov (United States)

    Muss, Jeff

    2010-01-01

    A triaxial injector is a single bi-propellant injection element located at the center of the injector body. The injector element consists of three nested, hydraulic swirl injectors. A small portion of the total fuel is injected through the central hydraulic injector, all of the oxidizer is injected through the middle concentric hydraulic swirl injector, and the balance of the fuel is injected through an outer concentric injection system. The configuration has been shown to provide good flame stabilization and the desired fuel-rich wall boundary condition. The injector design is well suited for preburner applications. Preburner injectors operate at extreme oxygen-to-fuel mass ratios, either very rich or very lean. The goal of a preburner is to create a uniform drive gas for the turbomachinery, while carefully controlling the temperature so as not to stress or damage turbine blades. The triaxial injector concept permits the lean propellant to be sandwiched between two layers of the rich propellant, while the hydraulic atomization characteristics of the swirl injectors promote interpropellant mixing and, ultimately, good combustion efficiency. This innovation is suited to a wide range of liquid oxidizer and liquid fuels, including hydrogen, methane, and kerosene. Prototype testing with the triaxial swirl injector demonstrated excellent injector and combustion chamber thermal compatibility and good combustion performance, both at levels far superior to a pintle injector. Initial testing with the prototype injector demonstrated over 96-percent combustion efficiency. The design showed excellent high -frequency combustion stability characteristics with oxygen and kerosene propellants. Unlike the more conventional pintle injector, there is not a large bluff body that must be cooled. The absence of a protruding center body enhances the thermal durability of the triaxial swirl injector. The hydraulic atomization characteristics of the innovation allow the design to be

  2. Heavy leptons at hadron colliders

    International Nuclear Information System (INIS)

    Ohnemus, J.E.

    1987-01-01

    The recent advent of high energy hadron colliders capable of producing weak bosons has opened new vistas for particle physics research, including the search for a possible fourth generation heavy charged lepton, which is the primary topic of the thesis. Signals for identifying a new heavy lepton have been calculated and compared to Standard Model backgrounds. Results are presented for signals at the CERN collider, the Fermilab collider, and the proposed Superconducting Supercollider

  3. Hadron collider physics at UCR

    International Nuclear Information System (INIS)

    Kernan, A.; Shen, B.C.

    1997-01-01

    This paper describes the research work in high energy physics by the group at the University of California, Riverside. Work has been divided between hadron collider physics and e + -e - collider physics, and theoretical work. The hadron effort has been heavily involved in the startup activities of the D-Zero detector, commissioning and ongoing redesign. The lepton collider work has included work on TPC/2γ at PEP and the OPAL detector at LEP, as well as efforts on hadron machines

  4. Muon colliders and neutrino factories

    Energy Technology Data Exchange (ETDEWEB)

    Geer, S.; /Fermilab

    2010-09-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture and accelerate {Omicron}(10{sup 21}) muons/year. This development prepares the way for a new type of neutrino source (Neutrino Factory) and a new type of very high energy lepton-antilepton collider (Muon Collider). This article reviews the motivation, design and R&D for Neutrino Factories and Muon Colliders.

  5. Proton-antiproton collider physics

    CERN Document Server

    Altarelli, Guido

    1989-01-01

    This volume reviews the physics studied at the CERN proton-antiproton collider during its first phase of operation, from the first physics run in 1981 to the last one at the end of 1985. The volume consists of a series of review articles written by physicists who are actively involved with the collider research program. The first article describes the proton-antiproton collider facility itself, including the antiproton source and its principle of operation based on stochastic cooling. The subsequent six articles deal with the various physics subjects studied at the collider. Each article descr

  6. Majorana Higgses at colliders

    Science.gov (United States)

    Nemevšek, Miha; Nesti, Fabrizio; Vasquez, Juan Carlos

    2017-04-01

    Collider signals of heavy Majorana neutrino mass origin are studied in the minimal Left-Right symmetric model, where their mass is generated spontaneously together with the breaking of lepton number. The right-handed triplet Higgs boson Δ, responsible for such breaking, can be copiously produced at the LHC through the Higgs portal in the gluon fusion and less so in gauge mediated channels. At Δ masses below the opening of the V V decay channel, the two observable modes are pair-production of heavy neutrinos via the triplet gluon fusion gg → Δ → NN and pair production of triplets from the Higgs h → ΔΔ → 4 N decay. The latter features tri- and quad same-sign lepton final states that break lepton number by four units and have no significant background. In both cases up to four displaced vertices may be present and their displacement may serve as a discriminating variable. The backgrounds at the LHC, including the jet fake rate, are estimated and the resulting sensitivity to the Left-Right breaking scale extends well beyond 10 TeV. In addition, sub-dominant radiative modes are surveyed: the γγ, Zγ and lepton flavour violating ones. Finally, prospects for Δ signals at future e + e - colliders are presented.

  7. Report of Snowmass 2001 Working Group E2: Electron-Positron Colliders from the Phi to the Z

    Energy Technology Data Exchange (ETDEWEB)

    Decker, Franz-Josef

    2002-08-07

    We report on the status and plans of experiments now running or proposed for electron-positron colliders at energies between the {phi} and the Z. The e{sup +}e{sup -} B and charm factories we considered were PEP-II/BABAR, KEKB/Belle, superKEK, SuperBABAR, and CESR-c/CLEO-c. We reviewed the programs at the {phi} factory at Frascati and the proposed PEP-N facility at Stanford Linear Accelerator Center. We studied the prospects for B physics with a dedicated linear collider Z factory, associated with the TESLA high energy linear collider. In all cases, we compared the physics reach of these facilities with that of alternative experiments at hadron colliders or fixed target facilities.

  8. Swirl Coaxial Injector Testing with LOX/RP-J

    Science.gov (United States)

    Greene, Sandra Elam; Casiano, Matt

    2013-01-01

    Testing was conducted at NASA fs Marshall Space Flight Center (MSFC) in the fall of 2012 to evaluate the operation and performance of liquid oxygen (LOX) and kerosene (RP ]1) in an existing swirl coaxial injector. While selected Russian engines use variations of swirl coaxial injectors, component level performance data has not been readily available, and all previously documented component testing at MSFC with LOX/RP ]1 had been performed using a variety of impinging injector designs. Impinging injectors have been adequate for specific LOX/RP ]1 engine applications, yet swirl coaxial injectors offer easier fabrication efforts, providing cost and schedule savings for hardware development. Swirl coaxial elements also offer more flexibility for design changes. Furthermore, testing with LOX and liquid methane propellants at MSFC showed that a swirl coaxial injector offered improved performance compared to an impinging injector. So, technical interest was generated to see if similar performance gains could be achieved with LOX/RP ]1 using a swirl coaxial injector. Results would allow such injectors to be considered for future engine concepts that require LOX/RP ]1 propellants. Existing injector and chamber hardware was used in the test assemblies. The injector had been tested in previous programs at MSFC using LOX/methane and LOX/hydrogen propellants. Minor modifications were made to the injector to accommodate the required LOX/RP ]1 flows. Mainstage tests were performed over a range of chamber pressures and mixture ratios. Additional testing included detonated gbombs h for stability data. Test results suggested characteristic velocity, C*, efficiencies for the injector were 95 ]97%. The injector also appeared dynamically stable with quick recovery from the pressure perturbations generated in the bomb tests.

  9. Super-Penrose process due to collisions inside ergosphere

    Science.gov (United States)

    Zaslavskii, O. B.

    If two particles collide inside the ergosphere, the energy in the center of mass frame can be made unbound provided at least one of particles has a large negative angular momentum [A. A. Grib and Yu. V. Pavlov, Europhys. Lett. 101 (2013) 20004]. We show that the same condition can give rise to unbounded Killing energy of debris at infinity, i.e. super-Penrose process. Proximity of the point of collision to the black hole horizon is not required.

  10. Vanilla Technicolor at Linear Colliders

    DEFF Research Database (Denmark)

    T. Frandsen, Mads; Jarvinen, Matti; Sannino, Francesco

    2011-01-01

    We analyze the reach of Linear Colliders (LC)s for models of dynamical electroweak symmetry breaking. We show that LCs can efficiently test the compositeness scale, identified with the mass of the new spin-one resonances, till the maximum energy in the center-of-mass of the colliding leptons. In ...

  11. Future prospects for electron colliders

    CERN Document Server

    Toge, N

    2001-01-01

    An overview on the future prospects for electron colliders is presented. In the first part of this paper we will walk through the status of current development of next-generation electron linear colliders of sub-TeV to TeV energy range. Then we will visit recent results from technological developments which aim at longer term future for higher energy accelerators.

  12. Linear colliders for photon collisions

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    The enthusiasm of the first international workshop on photonphoton colliders and associated physics, held at the Lawrence Berkeley Laboratory from 28 March - 1 April, could have set a ball rolling. According to proponents of this physics, the particle physics one can study with a high energy linear collider is special and complements that of a hadron supercollider

  13. The photon collider at TESLA

    Czech Academy of Sciences Publication Activity Database

    Badelek, B.; Bloechinger, C.; Blümlein, J.; Boos, E.; Brinkman, R.; Burkhardt, H.; Bussey, P.; Carimalo, C.; Chýla, Jiří; Ciftci, A.K.

    2004-01-01

    Roč. 19, č. 30 (2004), s. 5097-5186 ISSN 0217-751X Institutional research plan: CEZ:AV0Z1010920 Keywords : photon collider * linear collider * gamma-gamma * photon-photon * photon electron * Compton scattering Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.054, year: 2004

  14. Overview of colliding beam facilities

    International Nuclear Information System (INIS)

    Herrera, J.C.; Month, M.

    1979-01-01

    A review is presented of the colliding beam facilities in existence today. The major high energy physics facilities around the world are described, and a view is presented of the beam collisions in which the instruments used to make the beams collide and those used to detect the products of particle interactions in the beam overlap region are described

  15. Radiation safety design of super KEKB factory

    International Nuclear Information System (INIS)

    Sanami, Toshiya

    2015-01-01

    The SuperKEKB factory, which was scheduled to start operation early 2015, is an electron-positron collider designed to produce an 80x10"3"4-1/cm"2/s luminosity, which is 40 times greater than the KEKB factory. Built to investigate CP violation and 'new physics' beyond the Standard Model, the facility consists of a 7-GeV electron/3.5-GeV positron linac, a 1.1- GeV positron damping ring, beam transport, and a 7-GeV electron/4-GeV positron collider. To meet this level of luminosity, the collider will be operated with a small beam size and a large crossing angle at the interaction point. According to particle tracking simulations, beam losses under these conditions will be 35 times more than those previously operated. To help optimise shielding configurations, leakage radiation and induced activity are estimated through empirical equations and detailed Monte-Carlo simulations using MARS15 code for the interaction region, beam halo collimators, emergency pathways, ducts, forward direction tunnels, and positron production target. Examples of shielding strategies are presented to reduce both leakage dose and airborne activity for several locations in the facility. (authors)

  16. Soviet Hadron Collider

    Science.gov (United States)

    Kotchetkov, Dmitri

    2017-01-01

    Rapid growth of the high energy physics program in the USSR during 1960s-1970s culminated with a decision to build the Accelerating and Storage Complex (UNK) to carry out fixed target and colliding beam experiments. The UNK was to have three rings. One ring was to be built with conventional magnets to accelerate protons up to the energy of 600 GeV. The other two rings were to be made from superconducting magnets, each ring was supposed to accelerate protons up to the energy of 3 TeV. The accelerating rings were to be placed in an underground tunnel with a circumference of 21 km. As a 3 x 3 TeV collider, the UNK would make proton-proton collisions with a luminosity of 4 x 1034 cm-1s-1. Institute for High Energy Physics in Protvino was a project leading institution and a site of the UNK. Accelerator and detector research and development studies were commenced in the second half of 1970s. State Committee for Utilization of Atomic Energy of the USSR approved the project in 1980, and the construction of the UNK started in 1983. Political turmoil in the Soviet Union during late 1980s and early 1990s resulted in disintegration of the USSR and subsequent collapse of the Russian economy. As a result of drastic reduction of funding for the UNK, in 1993 the project was restructured to be a 600 GeV fixed target accelerator only. While the ring tunnel and proton injection line were completed by 1995, and 70% of all magnets and associated accelerator equipment were fabricated, lack of Russian federal funding for high energy physics halted the project at the end of 1990s.

  17. Towards the International Linear Collider

    International Nuclear Information System (INIS)

    Lopez-Fernandez, Ricardo

    2006-01-01

    The broad physics potential of e+e- linear colliders was recognized by the high energy physics community right after the end of LEP in 2000. In 2007, the Large Hadron Collider (LHC) now under construction at CERN will obtain its first collisions. The LHC, colliding protons with protons at 14 TeV, will discover a standard model Higgs boson over the full potential mass range, and should be sensitive to new physics into the several TeV range. The program for the Linear Collider (LC) will be set in the context of the discoveries made at the LHC. All the proposals for a Linear Collider will extend the discoveries and provide a wealth of measurements that are essential for giving deeper understanding of their meaning, and pointing the way to further evolution of particle physics in the future. For the mexican groups is the right time to join such an effort

  18. CERN balances linear collider studies

    CERN Multimedia

    ILC Newsline

    2011-01-01

    The forces behind the two most mature proposals for a next-generation collider, the International Linear Collider (ILC) and the Compact Linear Collider (CLIC) study, have been steadily coming together, with scientists from both communities sharing ideas and information across the technology divide. In a support of cooperation between the two, CERN in Switzerland, where most CLIC research takes place, recently converted the project-specific position of CLIC Study Leader to the concept-based Linear Collider Study Leader.   The scientist who now holds this position, Steinar Stapnes, is charged with making the linear collider a viable option for CERN’s future, one that could include either CLIC or the ILC. The transition to more involve the ILC must be gradual, he said, and the redefinition of his post is a good start. Though not very much involved with superconducting radiofrequency (SRF) technology, where ILC researchers have made significant advances, CERN participates in many aspect...

  19. HIGH ENERGY PHYSICS POTENTIAL AT MUON COLLIDERS

    International Nuclear Information System (INIS)

    PARSA, Z.

    2000-01-01

    In this paper, high energy physics possibilities and future colliders are discussed. The μ + μ - collider and experiments with high intensity muon beams as the stepping phase towards building Higher Energy Muon Colliders (HEMC) are briefly reviewed and encouraged

  20. Nonlinear Super Integrable Couplings of Super Classical-Boussinesq Hierarchy

    Directory of Open Access Journals (Sweden)

    Xiuzhi Xing

    2014-01-01

    Full Text Available Nonlinear integrable couplings of super classical-Boussinesq hierarchy based upon an enlarged matrix Lie super algebra were constructed. Then, its super Hamiltonian structures were established by using super trace identity. As its reduction, nonlinear integrable couplings of the classical integrable hierarchy were obtained.

  1. SuperB Progress Reports - Physics

    CERN Document Server

    O'Leary, B.; Ramon, M.; Pous, E.; De Fazio, F.; Palano, A.; Eigen, G.; Asgeirsson, D.; Cheng, C.H.; Chivukula, A.; Echenard, B.; Hitlin, D.G.; Porter, F.; Rakitin, A.; Heinemeyer, S.; McElrath, B.; Andreassen, R.; Meadows, B.; Sokoloff, M.; Blanke, M.; Lesiak, T.; Shindou, T.; Ronga, F.; Baldini, W.; Bettoni, D.; Calabrese, R.; Cibinetto, G.; Luppi, E.; Rama, M.; Bossi, F.; Guido, E.; Patrignani, C.; Tosi, S.; Davies, C.; Lunghi, E.; Haisch, U.; Hurth, T.; Westhoff, S.; Crivellin, A.; Hofer, L.; Goto, T.; Brown, David Nathan; Branco, G.C.; Zupan, J.; Herrero, M.; Rodriguez-Sanchez, A.; Simi, G.; Tackmann, F.J.; Biassoni, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.; Lindemann, D.M.; Robertson, S.H.; Duling, B.; Gemmler, K.; Gorbahn, M.; Jager, S.; Paradisi, P.; Straub, D.M.; Bigi, I.; Asner, D.M.; Fast, J.E.; Kouzes, R.T.; Morandin, M.; Rotondo, M.; Ben-Haim, E.; Arnaud, N.; Burmistrov, L.; Kou, E.; Perez, A.; Stocchi, A.; Viaud, B.; Domingo, F.; Piccinini, F.; Manoni, E.; Batignani, G.; Cervelli, A.; Forti, F.; Giorgi, M.; Lusiani, A.; Oberhof, B.; Paoloni, E.; Neri, N.; Walsh, J.; Bevan, A.; Bona, M.; Walker, C.; Weiland, C.; Lenz, A.; Gonzalez-Sprinberg, G.; Faccini, R.; Renga, F.; Polosa, A.; Silvestrini, L.; Virto, J.; Ciuchini, M.; Lubicz, V.; Tarantino, C.; Wilson, F.F.; Carpinelli, M.; Huber, T.; Mannel, T.; Graham, M.; Ratcliff, B.N.; Santoro, V.; Sekula, S.; Shougaev, K.; Soffer, A.; Shimizu, Y.; Gambino, P.; Mussa, R.; Nardecchia, M.; Stal, O.; Bernabeu, J.; Botella, F.; Jung, M.; Lopez March, N.; Martinez Vidal, F.; Oyanguren, A.; Pich, A.; Lozano, M.A.Sanchis; Vidal, J.; Vives, O.; Banerjee, S.; Roney, J.M.; Petrov, A.A.; Flood, K.

    2010-01-01

    SuperB is a high luminosity e+e- collider that will be able to indirectly probe new physics at energy scales far beyond the reach of any man made accelerator planned or in existence. Just as detailed understanding of the Standard Model of particle physics was developed from stringent constraints imposed by flavour changing processes between quarks, the detailed structure of any new physics is severely constrained by flavour processes. In order to elucidate this structure it is necessary to perform a number of complementary studies of a set of golden channels. With these measurements in hand, the pattern of deviations from the Standard Model behavior can be used as a test of the structure of new physics. If new physics is found at the LHC, then the many golden measurements from SuperB will help decode the subtle nature of the new physics. However if no new particles are found at the LHC, SuperB will be able to search for new physics at energy scales up to 10-100 TeV. In either scenario, flavour physics measure...

  2. Atlas positive-ion injector project

    Energy Technology Data Exchange (ETDEWEB)

    Pardo, R C; Bollinger, L M; Shepard, K W

    1987-04-01

    The goal of the Argonne Positive Ion Injector project is to replace the ATLAS tandem injector with a facility which will increase the beam currents presently available by a factor of 100 and to make beams of essentially all elements including uranium available at ATLAS. The beam quality expected from the facility will be at least as good as that of the tandem based ATLAS. The project combines two relatively new technologies - the electron cyclotron resonance ion source, which provides ions of high charge states at microampere currents, and rf superconductivity which has been shown to be capable of generating accelerating fields as high as 10 MV/m resulting in an essentially new method of acceleration for low-energy heavy ions.

  3. Tritium proof-of-principle injector experiment

    International Nuclear Information System (INIS)

    Fisher, P.W.; Milora, S.L.; Combs, S.K.; Carlson, R.V.; Coffin, D.O.

    1988-01-01

    The Tritium Proof-of-Principle (TPOP) pellet injector was designed and built by Oak Ridge National Laboratory (ORNL) to evaluate the production and acceleration of tritium pellets for fueling future fision reactors. The injector uses the pipe-gun concept to form pellets directly in a short liquid-helium-cooled section of the barrel. Pellets are accelerated by using high-pressure hydrogen supplied from a fast solenoid valve. A versatile, tritium-compatible gas-handling system provides all of the functions needed to operate the gun, including feed gas pressure control and flow control, plus helium separation and preparation of mixtures. These systems are contained in a glovebox for secondary containment of tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory (LANL). 18 refs., 3 figs

  4. Chromaticity compensation scheme for the Main Injector

    International Nuclear Information System (INIS)

    Bogacz, S.A.

    1993-05-01

    The current Main Injector lattice is studied in the context of full chromaticity compensation in the presence of the eddy current, saturation and the end-pack sextupole fields generated by the dipole magnets. Two families of correcting sextupole magnets are placed to compensate these fields and to adjust the chromaticity (in both planes) to some desired value. Variation of the dipole induced sextupole fields with the B-field (changing along a ramp) are modeled according to recent experimental measurements of the Main Injector dipole magnet Analysis of the required sextupole strengths is carried out along two realistic momentum ramps. The results of our calculation give quantitative insight into the requisite performance of the sextupole magnets

  5. LS1 Report: injectors 2.0

    CERN Multimedia

    Anaïs Schaeffer

    2014-01-01

    Launched in 2009, the Accelerator Controls Renovation Project (ACCOR) will come to an end this year. It was brought in to replace the approximately 450 real-time control systems of the LHC injector complex, some of which were based on technology more than 20 years old.   One of the approximately 450 real-time systems that have been modified in the ACCOR project. These systems, which use special software and thousands of electronics boards, control devices that are essential to the proper functioning of the injectors – the radiofrequency system, the instrumentation, the injection kicker system, the magnets, etc. – and some of them were no longer capable of keeping pace with the LHC. As a result, they urgently needed to be upgraded. "In 2009, after assessing the new technology available on the market, we signed contracts with Europe's most cutting-edge electronics manufacturers," explains Marc Vanden Eynden, ACCOR Project Leader. We then quickly m...

  6. SuperKEKB Vacuum System

    CERN Document Server

    Shibata, K

    2013-01-01

    SuperKEKB, which is an upgrade of the KEKB Bfactory (KEKB), is a next-generation high-luminosity electron-positron collider. Its design luminosity is 8.0× 10$^{35}$ cm$^{-2}s^{-1}$, which is about 40 times than the KEKB’s record. To achieve this challenging goal, bunches of both beams are squeezed extremely to the nanometer scale and the beam currents are doubled. To realize this, many upgrades must be performed including the replacement of beam pipes mainly in the positron ring (LER). The beam pipes in the LER arc section are being replaced with new aluminium-alloy pipes with antechambers to cope with the electron cloud issue and heating problem. Additionally, several types of countermeasures will be adopted in the LER to deal with the electron cloud issues. In the wiggler section, electrons will be attracted by the clearing electrode, which is mounted on the inner surface of the beam pipe. On the other hand, in the bending magnet, the effective secondary electron yield (SEY) will be structurally reduced ...

  7. The tristan super light facility

    International Nuclear Information System (INIS)

    1992-12-01

    The Photon Factory and its user group have achieved excellent scientific results since its commissioning in 1982, ranging from material science to medical application, by using the synchrotron radiation at the 2.5 GeV PF storage ring, and since 1986, further at the 6.5 GeV Tristan accumulation ring which provides brilliant photons in high energy region. Efforts are exerted currently at National Laboratory for High Energy Physics for the extensive research and development works to study the feasibility of the Tristan e + e - collider main ring to be utilized as an extremely intense and highly advanced light source, which is called Tristan super light facility. What kinds of the application are expected for such highly brilliant source and their scientific significance should be clarified. This design report is an outcome by the joint work of in-house staffs and outside users, and it would serve as an excellent guide for the future studies on a next generation synchrotron radiation light source. The conversion plan of Tristan, the basic design of insertion devices, coherent X-ray sources, beam lines, instrumentation and others are reported. (K.I.)

  8. SuperKEKB Vacuum System

    International Nuclear Information System (INIS)

    Shibata, K

    2013-01-01

    SuperKEKB, which is an upgrade of the KEKB Bfactory (KEKB), is a next-generation high-luminosity electron-positron collider. Its design luminosity is 8.0 × 10 35 cm −2 s −1 , which is about 40 times than the KEKB’s record. To achieve this challenging goal, bunches of both beams are squeezed extremely to the nanometer scale and the beam currents are doubled. To realize this, many upgrades must be performed including the replacement of beam pipes mainly in the positron ring (LER). The beam pipes in the LER arc section are being replaced with new aluminium-alloy pipes with antechambers to cope with the electron cloud issue and heating problem. Additionally, several types of countermeasures will be adopted in the LER to deal with the electron cloud issues. In the wiggler section, electrons will be attracted by the clearing electrode, which is mounted on the inner surface of the beam pipe. On the other hand, in the bending magnet, the effective secondary electron yield (SEY) will be structurally reduced by the groove surface with a TiN coating. In the drift space, the electron cloud will be mitigated by the TiN coating and a conventional solenoid field. (author)

  9. Progress on Lead Photocathodes for Superconducting Injectors

    CERN Document Server

    Smedley, John; Langner, Jerzy; Lefferts, Richard; Lipski, Andrzej; Rao, Triveni; Sekutowicz, Jacek; Strzyzewski, P

    2005-01-01

    We present the results of our investigation of bulk, electroplated and vacuum deposited lead as suitable photocathode materials for superconducting RF injectors. The quantum efficiency of each sample is presented as a function of the wavelength of the incident light, from 310 nm to 190 nm. Quantum efficiencies of 0.3% have been obtained. Production of a niobium cavity with a lead-plated cathode is underway.

  10. Visualisation of diesel injector with neutron imaging

    Science.gov (United States)

    Lehmann, E.; Grünzweig, C.; Jollet, S.; Kaiser, M.; Hansen, H.; Dinkelacker, F.

    2015-12-01

    The injection process of diesel engines influences the pollutant emissions. The spray formation is significantly influenced by the internal flow of the injector. One of the key parameters here is the generation of cavitation caused by the geometry and the needle lift. In modern diesel engines the injection pressure is established up to 3000 bar. The details of the flow and phase change processes inside the injector are of increasing importance for such injectors. With these experimental measurements the validation of multiphase and cavitation models is possible for the high pressure range. Here, for instance, cavitation effects can occur. Cavitation effects in the injection port area destabilize the emergent fuel jet and improve the jet break-up. The design of the injection system in direct-injection diesel engines is an important challenge, as the jet breakup, the atomization and the mixture formation in the combustion chamber are closely linked. These factors have a direct impact on emissions, fuel consumption and performance of an engine. The shape of the spray at the outlet is determined by the internal flow of the nozzle. Here, geometrical parameters, the injection pressure, the injection duration and the cavitation phenomena play a major role. In this work, the flow dependency in the nozzles are analysed with the Neutron-Imaging. The great advantage of this method is the penetrability of the steel structure while a high contrast to the fuel is given due to the interaction of the neutrons with the hydrogen amount. Compared to other methods (optical with glass structures) we can apply real components under highest pressure conditions. During the steady state phase of the injection various cavitation phenomena are visible in the injector, being influenced by the nozzle geometry and the fuel pressure. Different characteristics of cavitation in the sac and spray hole can be detected, and the spray formation in the primary breakup zone is influenced.

  11. Radiation shielding of the main injector

    International Nuclear Information System (INIS)

    Bhat, C.M.; Martin, P.S.

    1995-05-01

    The radiation shielding in the Fermilab Main Injector (FMI) complex has been carried out by adopting a number of prescribed stringent guidelines established by a previous safety analysis. Determination of the required amount of radiation shielding at various locations of the FMI has been done using Monte Carlo computations. A three dimensional ray tracing code as well as a code based upon empirical observations have been employed in certain cases

  12. Lithium Pellet Injector Development for NSTX

    International Nuclear Information System (INIS)

    Gettelfinger, G.; Dong, J.; Gernhardt, R.; Kugel, H.; Sichta, P.; Timberlake, J.

    2003-01-01

    A pellet injector suitable for the injection of lithium and other low-Z pellets of varying mass into plasmas at precise velocities from 5 to 500 m/s is being developed for use on NSTX (National Spherical Torus Experiment). The ability to inject low-Z impurities will significantly expand NSTX experimental capability for a broad range of diagnostic and operational applications. The architecture employs a pellet-carrying cartridge propelled through a guide tube by deuterium gas. Abrupt deceleration of the cartridge at the end of the guide tube results in the pellet continuing along its intended path, thereby giving controlled reproducible velocities for a variety of pellets materials and a reduced gas load to the torus. The planned injector assembly has four hundred guide tubes contained in a rotating magazine with eight tubes provided for injection into plasmas. A PC-based control system is being developed as well and will be described elsewhere in these Proceedings. The development path and mechanical performance of the injector will be described

  13. The JET high frequency pellet injector project

    International Nuclear Information System (INIS)

    Geraud, Alain; Dentan, M.; Whitehead, A.; Butcher, P.; Communal, D.; Faisse, F.; Gedney, J.; Gros, G.; Guillaume, D.; Hackett, L.; Hennion, V.; Homfray, D.; Lucock, R.; McKivitt, J.; Sibbald, M.; Portafaix, C.; Perin, J.P.; Reade, M.; Sands, D.; Saille, A.

    2007-01-01

    A new deuterium ice pellet injector is in preparation for JET. It is designed to inject both small pellets (variable volume within 1-2 mm 3 ) at high frequency (up to 60 Hz) for ELM mitigation experiments and large pellets (volume within 35-70 mm 3 ) at moderate frequency (up to 15 Hz) for plasma fuelling. It is based on the screw extruder technology developed by PELIN and pneumatic acceleration. An injection line will connect the injector to the flight tubes already in place to convey the pellets toward the plasma either from the low field side or from the high field side of the torus. This injection line enables: (i) the pumping of the propellant gas, (ii) the provision of the vacuum interface with the torus and (iii) the selection of the flight tube to be used via a fast selector. All the interfaces have been designed and a prototype injector is being built, to demonstrate that the required performance is achievable

  14. Ramp injector scale effects on supersonic combustion

    Science.gov (United States)

    Trebs, Adam

    The combustion field downstream of a 10 degree compression ramp injector has been studied experimentally using wall static pressure measurement, OH-PLIF, and 2 kHz intensified video filtered for OH emission at 320 nm. Nominal test section entrance conditions were Mach 2, 131 kPa static pressure, and 756K stagnation temperature. The experiment was equipped with a variable length inlet duct that facilitated varying the boundary layer development length while the injector shock structure in relation to the combustor geometry remained nearly fixed. As the boundary within an engine varies with flight condition and does not scale linearly with the physical scale of the engine, the boundary layer scale relative to mixing structures of the engine becomes relevant to the problem of engine scaling and general engine performance. By varying the boundary layer thickness from 40% of the ramp height to 150% of the ramp height, changes in the combustion flowfield downstream of the injector could be diagnosed. It was found that flame shape changed, the persistence of the vortex cores was reduced, and combustion efficiency rose as the incident boundary layer grew.

  15. Design of the ITER Neutral Beam injectors

    International Nuclear Information System (INIS)

    Hemsworth, R.S.; Feist, J.; Hanada, M.; Heinemann, B.; Inoue, T.; Kuessel, E.; Kulygin, V.; Krylov, A.; Lotte, P.; Miyamoto, K.; Miyamoto, N.; Murdoch, D.; Nagase, A.; Ohara, Y.; Okumura, Y.; Pamela, J.; Panasenkov, A.; Shibata, K.; Tanii, M.

    1996-01-01

    This paper describes the Neutral Beam Injection system which is presently being designed in Europe, Japan and Russia, with co-ordination by the Joint Central Team of ITER at Naka, Japan. The proposed system consists of three negative ion based neutral injectors, delivering a total of 50 MW of 1 MeV D 0 to the ITER plasma for pulse length of ≥1000 s. The injectors each use a single caesiated volume arc discharge negative ion source, and a multi-grid, multi-aperture accelerator, to produce about 40 A of 1 MeV D - . This will be neutralized in a sub-divided gas neutralizer, which has a conversion efficiency of about 60%. The charged fraction of the beam emerging from the neutralizer is dumped in an electrostatic residual ion dump. A water cooled calorimeter can be moved into the beam path to intercept the neutral beam, allowing commissioning of the injector independent of ITER. copyright 1996 American Institute of Physics

  16. The SuperB Silicon Vertex Tracker and 3D vertical integration

    CERN Document Server

    Re, Valerio

    2011-01-01

    The construction of the SuperB high luminosity collider was approved and funded by the Italian government in 2011. The performance specifications set by the target luminosity of this machine (> 10^36 cm^-2 s^-1) ask for the development of a Silicon Vertex Tracker with high resolution, high tolerance to radiation and excellent capability of handling high data rates. This paper reviews the R&D activity that is being carried out for the SuperB SVT. Special emphasis is given to the option of exploiting 3D vertical integration to build advanced pixel sensors and readout electronics that are able to comply with SuperB vertexing requirements.

  17. Relativistic-Klystron two-beam accelerator as a power source for future linear colliders

    International Nuclear Information System (INIS)

    Lidia, S. M.; Anderson, D. E.; Eylon, S.; Henestroza, E.; Vanecek, D. L.; Yu, S. S.; Houck, T. L.; Westenskow, G. A.

    1999-01-01

    The technical challenge for making two-beam accelerators into realizable power sources for high-energy colliders lies in the creation of the drive beam and in its propagation over long distances through multiple extraction sections. This year we have been constructing a 1.2-kA, 1-MeV, induction gun for a prototype relativistic klystron two-beam accelerator (RK-TBA). The electron source will be a 8.9 cm diameter, thermionic, flat-surface cathode with a maximum shroud field stress of approximately 165 kV/cm. Additional design parameters for the injector include a pulse length of over 150-ns flat top (1% energy variation), and a normalized edge emittance of less than 300 pi-mm-mr. The prototype accelerator will be used to study, physics, engineering, and costing issues involved in the application of the RK-TBA concept to linear colliders. We have also been studying optimization parameters, such as frequency, for the application of the RK-TBA concept to multi-TeV linear colliders. As an rf power source the RK-TBA scales favorably up to frequencies around 35 GHz. An overview of this work with details of the design and performance of the prototype injector, beam line, and diagnostics will be presented

  18. Ion Sources and Injectors for HIF Induction Linacs

    International Nuclear Information System (INIS)

    Kwan, J.W.; Ahle, L.; Beck, D.N.; Bieniosek, F. M.; Faltens, A.; Grote, D.P.; Halaxa, E.; Henestroza, E.; Herrmannsfeldt, W.B.; Karpenko, V.; Sangster, T.C.

    2000-01-01

    Ion source and injector development is one of the major parts of the HIF program in the USA. Our challenge is to design a cost effective driver-scale injector and to build a multiple beam module within the next couple of years. In this paper, several current-voltage scaling laws are summarized for guiding the injector design. Following the traditional way of building injectors for HIF induction linac, we have produced a preliminary design for a multiple beam driver-scale injector. We also developed an alternate option for a high current density injector that is much smaller in size. One of the changes following this new option is the possibility of using other kinds of ion sources than the surface ionization sources. So far, we are still looking for an ideal ion source candidate that can readily meet all the essential requirements

  19. Super periodic potential

    Science.gov (United States)

    Hasan, Mohammd; Mandal, Bhabani Prasad

    2018-04-01

    In this paper we introduce the concept of super periodic potential (SPP) of arbitrary order n, n ∈I+, in one dimension. General theory of wave propagation through SPP of order n is presented and the reflection and transmission coefficients are derived in their closed analytical form by transfer matrix formulation. We present scattering features of super periodic rectangular potential and super periodic delta potential as special cases of SPP. It is found that the symmetric self-similarity is the special case of super periodicity. Thus by identifying a symmetric fractal potential as special cases of SPP, one can obtain the tunnelling amplitude for a particle from such fractal potential. By using the formalism of SPP we obtain the close form expression of tunnelling amplitude of a particle for general Cantor and Smith-Volterra-Cantor potentials.

  20. NETL Super Computer

    Data.gov (United States)

    Federal Laboratory Consortium — The NETL Super Computer was designed for performing engineering calculations that apply to fossil energy research. It is one of the world’s larger supercomputers,...

  1. Topics in Collider Physics

    Energy Technology Data Exchange (ETDEWEB)

    Petriello, Frank J

    2003-08-27

    It is an exciting time for high energy physics. Several experiments are currently exploring uncharted terrain; the next generation of colliders will begin operation in the coming decade. These experiments will together help us understand some of the most puzzling issues in particle physics: the mechanism of electroweak symmetry breaking and the generation of flavor physics. It is clear that the primary goal of theoretical particle physics in the near future is to support and guide this experimental program. These tasks can be accomplished in two ways: by developing experimental signatures for new models which address outstanding problems, and by improving Standard Model predictions for precision observables. We present here several results which advance both of these goals. We begin with a study of non-commutative field theories. It has been suggested that TeV-scale non-commutativity could explain the origin of CP violation in the SM. We identify several distinct signatures of non-commutativity in high energy processes. We also demonstrate the one-loop quantum consistency of a simple spontaneously broken non-commutative U(1) theory; this result is an important preface to any attempt to embed the SM within a non-commutative framework. We then investigate the phenomenology of extra-dimensional theories, which have been suggested recently as solutions to the hierarchy problem of particle physics. We first examine the implications of allowing SM fields to propagate in the full five-dimensional spacetime of the Randall-Sundrum model, which solves the hierarchy problem via an exponential ''warping'' of the Planck scale induced by a five-dimensional anti de-Sitter geometry. In an alternative extra-dimensional theory, in which all SM fields are permitted to propagate in flat extra dimensions, we show that properties of the Higgs boson are significantly modified. Finally, we discuss the next-to-next-to leading order QCD corrections to the dilepton

  2. Hadron collider physics 2005. Proceedings

    International Nuclear Information System (INIS)

    Campanelli, M.; Clark, A.; Wu, X.

    2006-01-01

    The Hadron Collider Physics Symposia (HCP) are a new series of conferences that follow the merger of the Hadron Collider Conferences with the LHC Symposia series, with the goal of maximizing the shared experience of the Tevatron and LHC communities. This book gathers the proceedings of the first symposium, HCP2005, and reviews the state of the art in the key physics directions of experimental hadron collider research: - QCD physics - precision electroweak physics - c-, b-, and t-quark physics - physics beyond the Standard Model - heavy ion physics The present volume will serve as a reference for everyone working in the field of accelerator-based high-energy physics. (orig.)

  3. The standard model and colliders

    International Nuclear Information System (INIS)

    Hinchliffe, I.

    1987-03-01

    Some topics in the standard model of strong and electroweak interactions are discussed, as well as how these topics are relevant for the high energy colliders which will become operational in the next few years. The radiative corrections in the Glashow-Weinberg-Salam model are discussed, stressing how these corrections may be measured at LEP and the SLC. CP violation is discussed briefly, followed by a discussion of the Higgs boson and the searches which are relevant to hadron colliders are then discussed. Some of the problems which the standard model does not solve are discussed, and the energy ranges accessible to the new colliders are indicated

  4. Physics at Future Hadron Colliders

    CERN Document Server

    Baur, U.; Parsons, J.; Albrow, M.; Denisov, D.; Han, T.; Kotwal, A.; Olness, F.; Qian, J.; Belyaev, S.; Bosman, M.; Brooijmans, G.; Gaines, I.; Godfrey, S.; Hansen, J.B.; Hauser, J.; Heintz, U.; Hinchliffe, I.; Kao, C.; Landsberg, G.; Maltoni, F.; Oleari, C.; Pagliarone, C.; Paige, F.; Plehn, T.; Rainwater, D.; Reina, L.; Rizzo, T.; Su, S.; Tait, T.; Wackeroth, D.; Vataga, E.; Zeppenfeld, D.

    2001-01-01

    We discuss the physics opportunities and detector challenges at future hadron colliders. As guidelines for energies and luminosities we use the proposed luminosity and/or energy upgrade of the LHC (SLHC), and the Fermilab design of a Very Large Hadron Collider (VLHC). We illustrate the physics capabilities of future hadron colliders for a variety of new physics scenarios (supersymmetry, strong electroweak symmetry breaking, new gauge bosons, compositeness and extra dimensions). We also investigate the prospects of doing precision Higgs physics studies at such a machine, and list selected Standard Model physics rates.

  5. Hadron collider physics at UCR

    Energy Technology Data Exchange (ETDEWEB)

    Kernan, A.; Shen, B.C.

    1997-07-01

    This paper describes the research work in high energy physics by the group at the University of California, Riverside. Work has been divided between hadron collider physics and e{sup +}-e{sup {minus}} collider physics, and theoretical work. The hadron effort has been heavily involved in the startup activities of the D-Zero detector, commissioning and ongoing redesign. The lepton collider work has included work on TPC/2{gamma} at PEP and the OPAL detector at LEP, as well as efforts on hadron machines.

  6. Initial use of the positive-ion injector of ATLAS

    International Nuclear Information System (INIS)

    Bollinger, L.M.; Billquist, P.J.; Bogaty, J.M.; Clifft, B.E.; Den Hartog, P.K.; Munson, F.H. Jr.; Pardo, R.C.; Shepard, K.W.; Zinkann, G.P.

    1989-01-01

    The positive-ion injector of ATLAS consists of an ECR heavy-ion source coupled to a 12-MV superconducting injector linac. The ECR source and a 3-MV version of the partially completed linac have been used to accelerate successfully several species of heavy ions. The operating experience is summarized, with emphasis on the excellent beam quality of beams from the new injector. Two new fast-timing detectors are described. 9 refs., 5 figs., 1 tab

  7. Development of 4-shot pellet injector for JET-2M

    International Nuclear Information System (INIS)

    Noda, O.; Kuribayashi, S.; Uchikawa, T.; Onozuka, M.; Kasaki, S.; Hasegawa, K.

    1987-01-01

    A pneumatic 4 pellet injector has been constructed for JFT-2M. The performance tests have proved high performance and reliability of the injector. The maximum pellet velocity obtained in hydrogen pellet tests is 1.4km sec. The device is now in use for JFT-2M in a place of a previous single pellet injector, contributing to plasma studies. In this paper the outline of features and performance of the device is presented

  8. When Black Holes Collide

    Science.gov (United States)

    Baker, John

    2010-01-01

    Among the fascinating phenomena predicted by General Relativity, Einstein's theory of gravity, black holes and gravitational waves, are particularly important in astronomy. Though once viewed as a mathematical oddity, black holes are now recognized as the central engines of many of astronomy's most energetic cataclysms. Gravitational waves, though weakly interacting with ordinary matter, may be observed with new gravitational wave telescopes, opening a new window to the universe. These observations promise a direct view of the strong gravitational dynamics involving dense, often dark objects, such as black holes. The most powerful of these events may be merger of two colliding black holes. Though dark, these mergers may briefly release more energy that all the stars in the visible universe, in gravitational waves. General relativity makes precise predictions for the gravitational-wave signatures of these events, predictions which we can now calculate with the aid of supercomputer simulations. These results provide a foundation for interpreting expect observations in the emerging field of gravitational wave astronomy.

  9. Detailed Measurement of ORSC Main Chamber Injector Dynamics

    Science.gov (United States)

    Bedard, Michael J.

    Improving fidelity in simulation of combustion dynamics in rocket combustors requires an increase in experimental measurement fidelity for validation. In a model rocket combustor, a chemiluminescence based spectroscopy technique was used to capture flame light emissions for direct comparison to a computational simulation of the production of chemiluminescent species. The comparison indicated that high fidelity models of rocket combustors can predict spatio-temporal distribution of chemiluminescent species with trend-wise accuracy. The comparison also indicated the limited ability of OH* and CH* emission to indicate flame heat release. Based on initial spectroscopy experiments, a photomultiplier based chemiluminescence sensor was designed to increase the temporal resolution of flame emission measurements. To apply developed methodologies, an experiment was designed to investigate the flow and combustion dynamics associated with main chamber injector elements typical of the RD-170 rocket engine. A unique feature of the RD-170 injector element is the beveled expansion between the injector recess and combustion chamber. To investigate effects of this geometry, a scaling methodology was applied to increase the physical scale of a single injector element while maintaining traceability to the RD-170 design. Two injector configurations were tested, one including a beveled injector face and the other a flat injector face. This design enabled improved spatial resolution of pressure and light emission measurements densely arranged in the injector recess and near-injector region of the chamber. Experimental boundary conditions were designed to closely replicate boundary conditions in simulations. Experimental results showed that the beveled injector face had a damping effect on pressure fluctuations occurring near the longitudinal resonant acoustic modes of the chamber, implying a mechanism for improved overall combustion stability. Near the injector, the beveled geometry

  10. Modelling the High-speed Injector for Diesel ICE

    Science.gov (United States)

    Buryuk, V. V.; Kayukov, S. S.; Gorshkalev, A. A.; Belousov, A. V.; Gallyamov, R. E.; Zvyagintsev, V. A.

    2018-01-01

    The article describes the results of research on the option of improving the operation speed of the electro-hydraulically driven injectors (Common Rail) for diesel ICE. The injector investigated in this article is a modified serial injector Common Rail-type with solenoid. The model and the injector parameters are represented in the package LMS Imagine. Lab AMESim with the detailed description of the substantiation and background for the research. Following the research results, the advantages of the proposed approach to analysing the operation speed were detected with outlining the direction of future studies.

  11. Application of advanced diagnostics to airblast injector flows

    Science.gov (United States)

    Mcvey, John B.; Kennedy, Jan B.; Russell, Sid

    1987-01-01

    This effort is concerned with the application of both conventional laser velocimetry and phase Doppler anemometry to the flow produced by an airblast nozzle. The emphasis is placed on the acquisition of data using actual engine injector/swirler components at (noncombusting) conditions simulating those encountered in the engine. The objective of the effort was to test the applicability of the instrumentation to real injector flows, to develop information on the behavior of injectors at high flow, and to provide data useful in the development of physical models of injector flows.

  12. Compact 250-kV injector system for PIGMI

    International Nuclear Information System (INIS)

    Hamm, R.W.; Stevens, R.R. Jr.; Mueller, D.W.; Lederer, H.M.

    1978-01-01

    A 250-kV proton injector to be used in the development of a linac suitable for medical applications has been constructed. This injector utilizes a spherical Pierce geometry to produce a converging beam. A gas insulated accelerating column is cantilevered on a grounded vacuum system, with a separate high voltage equipment dome connected to a 300-kV Cockcroft-Walton power supply. The injector can be operated locally or remotely, with the remote control accomplished by a microprocessor system linked to a central control minicomputer. This injector has been designed as a low-cost compact system. The design details and the data obtained during initial operation are presented

  13. SuperB: A High-Luminosity Asymmetric e+e- Super Flavor Factory

    Energy Technology Data Exchange (ETDEWEB)

    Bona, M.; /et al.

    2007-05-18

    We discuss herein the exciting physics program that can be accomplished with a very large sample of heavy quark and heavy lepton decays produced in the very clean environment of an e{sup +}e{sup -} collider; a program complementary to that of an experiment such as LHCb at a hadronic machine. It then presents the conceptual design of a new type of e{sup +}e{sup -} collider that produces a nearly two-order-of-magnitude increase in luminosity over the current generation of asymmetric B Factories. The key idea is the use of low emittance beams produced in an accelerator lattice derived from the ILC Damping Ring Design, together with a new collision region, again with roots in the ILC final focus design, but with important new concepts developed in this design effort. Remarkably, SuperB produces this very large improvement in luminosity with circulating currents and wallplug power similar to those of the current B Factories. There is clear synergy with ILC R&D; design efforts have already influenced one another, and many aspects of the ILC Damping Rings and Final Focus would be operationally tested at SuperB. Finally, the design of an appropriate detector, based on an upgrade of BABAR as an example, is discussed in some detail. A preliminary cost estimate is presented, as is an example construction timeline.

  14. Large Hadron Collider nears completion

    CERN Multimedia

    2008-01-01

    Installation of the final component of the Large Hadron Collider particle accelerator is under way along the Franco-Swiss border near Geneva, Switzerland. When completed this summer, the LHC will be the world's largest and most complex scientific instrument.

  15. Collider Physics an Experimental Introduction

    International Nuclear Information System (INIS)

    Elvezio Pagliarone, Carmine

    2011-01-01

    This paper reviews shortly a small part of the contents of a set of lectures, presented at the XIV International School of Particles and Fields in Morelia, state of Michoacan, Mexico, during November 2010. The main goal of those lectures was to introduce students to some of the basic ideas and tools required for experimental and phenomenological analysis of collider data. In particular, after an introduction to the scientific motivations, that drives the construction of powerful accelerator complexes, and the need of reaching high center of mass energies and luminosities, some basic concept about collider particle detectors will be discussed. A status about the present running colliders and collider experiments as well as future plans and research and development is also given.

  16. Prospects for Future Collider Physics

    CERN Document Server

    Ellis, John

    2016-10-20

    One item on the agenda of future colliders is certain to be the Higgs boson. What is it trying to tell us? The primary objective of any future collider must surely be to identify physics beyond the Standard Model, and supersymmetry is one of the most studied options. it Is supersymmetry waiting for us and, if so, can LHC Run 2 find it? The big surprise from the initial 13-TeV LHC data has been the appearance of a possible signal for a new boson X with a mass ~750 GeV. What are the prospects for future colliders if the X(750) exists? One of the most intriguing possibilities in electroweak physics would be the discovery of non-perturbative phenomena. What are the prospects for observing sphalerons at the LHC or a future collider?

  17. Feedback systems for linear colliders

    CERN Document Server

    Hendrickson, L; Himel, Thomas M; Minty, Michiko G; Phinney, N; Raimondi, Pantaleo; Raubenheimer, T O; Shoaee, H; Tenenbaum, P G

    1999-01-01

    Feedback systems are essential for stable operation of a linear collider, providing a cost-effective method for relaxing tight tolerances. In the Stanford Linear Collider (SLC), feedback controls beam parameters such as trajectory, energy, and intensity throughout the accelerator. A novel dithering optimization system which adjusts final focus parameters to maximize luminosity contributed to achieving record performance in the 1997-98 run. Performance limitations of the steering feedback have been investigated, and improvements have been made. For the Next Linear Collider (NLC), extensive feedback systems are planned as an intregal part of the design. Feedback requiremetns for JLC (the Japanese Linear Collider) are essentially identical to NLC; some of the TESLA requirements are similar but there are significant differences. For NLC, algorithms which incorporate improvements upon the SLC implementation are being prototyped. Specialized systems for the damping rings, rf and interaction point will operate at hi...

  18. CLIC: developing a linear collider

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    Compact Linear Collider (CLIC) is a CERN project to provide high-energy electron-positron collisions. Instead of conventional radio-frequency klystrons, CLIC will use a low-energy, high-intensity primary beam to produce acceleration.

  19. Stable massive particles at colliders

    Energy Technology Data Exchange (ETDEWEB)

    Fairbairn, M.; /Stockholm U.; Kraan, A.C.; /Pennsylvania U.; Milstead, D.A.; /Stockholm U.; Sjostrand, T.; /Lund U.; Skands, P.; /Fermilab; Sloan, T.; /Lancaster U.

    2006-11-01

    We review the theoretical motivations and experimental status of searches for stable massive particles (SMPs) which could be sufficiently long-lived as to be directly detected at collider experiments. The discovery of such particles would address a number of important questions in modern physics including the origin and composition of dark matter in the universe and the unification of the fundamental forces. This review describes the techniques used in SMP-searches at collider experiments and the limits so far obtained on the production of SMPs which possess various colour, electric and magnetic charge quantum numbers. We also describe theoretical scenarios which predict SMPs, the phenomenology needed to model their production at colliders and interactions with matter. In addition, the interplay between collider searches and open questions in cosmology such as dark matter composition are addressed.

  20. Feasibility Study for the CERN "CLIC" Photo-Injector Laser System

    CERN Document Server

    Ross, I N

    2000-01-01

    This study is designed to contribute to the development of the Cern Linear Collider (CLIC). One route to the generation of the required electron injection into this system is through the use of photo-cathodes illuminated with a suitably designed laser system. The requirements of the accelerator and photo-cathodes have led to a specification for the laser system given in Table 1. Because CLIC will not be built directly but in stages, notably via CLIC Test Facilities (CTF), this table also includes the specification for a photo-injector laser system for CTF3 which will be required before the final system for CLIC. Although there are significant differences between these two specifications it will be necessary to design the CTF3 system such that it can be easily upgraded to the system for CLIC and will be able to check all the critical issues necessary for CLIC.

  1. First operation of cesium telluride photocathodes in the TTF injector RF gun

    CERN Document Server

    Sertore, D; Flöttmann, K; Stephan, F; Zapfe, K; Michelato, P

    2000-01-01

    During the run 1998/1999 a new injector based on a laser-driven RF gun was brought in operation at the TESLA Test Facility (TTF) linac at DESY, in order to produce the beam structure and quality required either by TeV collider and SASE FEL experiments. High quantum efficiency cesium telluride photocathodes, prepared at Milano and transferred to DESY, have been successfully operated in the RF gun. A bunch charge of 50 nC, only limited by space charge effects, was achieved. The photocathodes have shown an operative lifetime of several months. A new cathode surface finishing has showed a promising decrease of the photocathode dark current. Measurements of dark current, quantum efficiency and lifetime are reported.

  2. The rise of colliding beams

    International Nuclear Information System (INIS)

    Richter, B.

    1992-06-01

    It is a particular pleasure for me to have this opportunity to review for you the rise of colliding beams as the standard technology for high-energy-physics accelerators. My own career in science has been intimately tied up in the transition from the old fixed-target technique to colliding-beam work. I have led a kind of double life both as a machine builder and as an experimenter, taking part in building and using the first of the colliding-beam machines, the Princeton-Stanford Electron-Electron Collider, and building the most recent advance in the technology, the Stanford Linear Collider. The beginning was in 1958, and in the 34 years since there has been a succession of both electron and proton colliders that have increased the available center-of-mass energy for hard collisions by more than a factor of 1000. For the historians here, I regret to say that very little of this story can be found in the conventional literature. Standard operating procedure for the accelerator physics community has been publication in conference proceedings, which can be obtained with some difficulty, but even more of the critical papers are in internal laboratory reports that were circulated informally and that may not even have been preserved. In this presentation I shall review what happened based on my personal experiences and what literature is available. I can speak from considerable experience on the electron colliders, for that is the topic in which I was most intimately involved. On proton colliders my perspective is more than of an observer than of a participant, but I have dug into the literature and have been close to many of the participants

  3. Polarized Electrons for Linear Colliders

    International Nuclear Information System (INIS)

    Clendenin, J.

    2004-01-01

    Future electron-positron linear colliders require a highly polarized electron beam with a pulse structure that depends primarily on whether the acceleration utilizes warm or superconducting rf structures. The International Linear Collider (ILC) will use cold structures for the main linac. It is shown that a dc-biased polarized photoelectron source such as successfully used for the SLC can meet the charge requirements for the ILC micropulse with a polarization approaching 90%

  4. Muon muon collider: Feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-18

    A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10{sup 35} cm{sup {minus}2} s{sup {minus}1}. The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice--the authors believe--to allow them to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potential and to evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring which has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design.

  5. Muon muon collider: Feasibility study

    International Nuclear Information System (INIS)

    1996-01-01

    A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10 35 cm -2 s -1 . The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice--the authors believe--to allow them to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potential and to evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring which has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design

  6. Above-cutoff impedance measurements of pumping holes for the Collider Liner

    International Nuclear Information System (INIS)

    Walling, L.; Barts, T.; Ruiz, E.; Turner, W.; Spayd, N.

    1994-04-01

    A holed liner was considered for the Superconducting Super Collider (SSC) Collider Ring because of vacuum problems caused by photon-induced desorption. The liner would serve to shield the cold surface of the beam tube from the synchrotron radiation and the holes (or slots) would allow distributed pumping by gas-absorption material that could be placed between the liner and the beam tube. The impedance of holes and slots in a liner were studied by means of simulations using both MAFIA and HFSS, analytical modelling, wire measurements and electron beam measurements

  7. Emittance growth due to noise and its suppression with the Feedback system in large hadron colliders

    International Nuclear Information System (INIS)

    Lebedev, V.; Parkhomchuk, V.; Shiltsev, V.; Stupakov, G.

    1993-03-01

    The problem of emittance growth due to random fluctuation of the magnetic field in hadron colliders is considered. Based on a simple one-dimensional linear model, a formula for an emittance growth rate as a function of the noise spectrum is derived. Different sources of the noise are analyzed and their role is estimated for the Superconducting Super Collider (SSC). A theory of feedback suppression of the emittance growth is developed which predicts the residual growth of the emittance in the accelerator with a feedback system

  8. Status of the Super-B factory Design

    CERN Document Server

    Wittmer, W; Chao, A; Novokhatski, A; Nosochkov, Y; Seeman, J; Sullivan, M K; Wienands, U; Weathersby, S; Bogomyagkov, A V; Levichev, E; Nikitin, S; Piminov, P; Shatilov, D; Sinyatkin, S; Vobly, P; Okunev, I N; Bolzon, B; Brunetti, L; Jeremie, A; Biagini, M E; Boni, R; Boscolo, M; Demma, T; Drago, A; Esposito, M; Guiducci, S; Liuzzo, S; Preger, M; Raimondi, P; Tomassini, S; Zobov, M; Paoloni, E; Fabbricatore, P; Musenich, R; Farinon, S; Bettoni, S; Poirier, F; Rimbault, C; Variola, A; Baylac, M; Bourrion, O; Monseu, N; Vescovi, C; Chance, A

    2011-01-01

    The SuperB international team continues to optimize the design of an electron-positron collider, which will allow the enhanced study of the origins of flavor physics. The project combines the best features of a linear collider (high single-collision luminosity) and a storage-ring collider (high repetition rate), bringing together all accelerator physics aspects to make a very high luminosity of 10$^{36}$ cm$^{-2}$ sec$^{-1}$. This asymmetric-energy collider with a polarized electron beam will produce hundreds of millions of B-mesons at the $\\Upsilon$(4S) resonance. The present design is based on extremely low emittance beams colliding at a large Piwinski angle to allow very low $\\beta_y^\\star$ without the need for ultra short bunches. Use of crab-waist sextupoles will enhance the luminosity, suppressing dangerous resonances and allowing for a higher beam-beam parameter. The project has flexible beam parameters, improved dynamic aperture, and spin-rotators in the Low Energy Ring for longitudinal polarization o...

  9. Maximum Acceptance Detector for the Fermilab Collider (MAX)

    International Nuclear Information System (INIS)

    Bjorken, James

    2003-01-01

    The authors propose a detector for the Collider which will cover the largest possible ranges of angles with electromagnetic calorimetry and charged tracking, and with hadronic calorimetry for the forward direction. The goal for the complete detector would be acceptance down to approx 1 mrad, in contrast to CDF and D0, which have coverage only to approx. 40 mrad. Because of the limitations of physical space and running time in all but B0 and D0, such a detector will have to be very compact and compatible with a variety of difficult boundary conditions. For this reason, they propose to run a test program at F0 during the second of the present Collider running period, utilizing existing calorimeters and tracking systems. A less desirable option which can be installed at E0 is also described. With luck there may be the possibility of physics from the test program as well. The final version of the detector would be installed at E0 after the main Injector upgrade. the detector is designed to study processes with relatively large cross sections. The running time requirements are thus minimal and data taking would require running a small fraction of the time with the electrostatic separators turned off

  10. FCC-hh Hadron Collider - Parameter Scenarios and Staging Options

    CERN Document Server

    Benedikt, Michael; Schulte, Daniel; Zimmermann, F; Syphers, M J

    2015-01-01

    FCC-hh is a proposed future energy-frontier hadron collider, based on dipole magnets with a field around 16 T installed in a new tunnel with a circumference of about 100 km, which would provide proton collisions at a centre-of-mass energy of 100 TeV, as well as heavy-ion collisions at the equivalent energy. The FCC-hh should deliver a high integrated proton-proton luminosity at the level of several 100 fb−1 per year, or more. The challenges for operating FCC-hh with high beam current and at high luminosity include the heat load from synchrotron radiation in a cold environment, the radiation from collision debris around the interaction region, and machine protection. In this paper, starting from the FCC-hh design baseline parameters we explore different approaches for increasing the integrated luminosity, and discuss the impact of key individual pa- rameters, such as the turnaround time. We also present some injector considerations and options for early hadron-collider operation.

  11. When Moons Collide

    Science.gov (United States)

    Rufu, Raluca; Aharonson, Oded

    2017-10-01

    Impacts between two orbiting satellites is a natural consequence of Moon formation. Mergers between moonlets are especially important for the newly proposed multiple-impact hypothesis as these moonlets formed from different debris disks merge together to form the final Moon. However, this process is relevant also for the canonical giant impact, as previous work shows that multiple moonlets are formed from the same debris disk.The dynamics of impacts between two orbiting bodies is substantially different from previously heavily studied planetary-sized impacts. Firstly, the impact velocities are smaller and limited to, thus heating is limited. Secondly, both fragments have similar mass therefore, they would contribute similarly and substantially to the final satellite. Thirdly, this process can be more erosive than planetary impacts as the velocity of ejected material required to reach the mutual Hill sphere is smaller than the escape velocity, altering the merger efficiency. Previous simulations show that moonlets inherit different isotopic signatures from their primordial debris disk, depending on the parameters of the collision with the planet. We therefore, evaluate the degree of mixing in moonlet-moonlet collisions in the presence of a planetary gravitational field, using Smooth Particle Hydrodynamics (SPH). Preliminary results show that the initial thermal state of the colliding moonlets has only a minor influence on the amount of mixing, compared to the effects of velocity and impact angle over their likely ranges. For equal mass bodies in accretionary collisions, impact angular momentum enhances mixing. In the hit-and-run regime, only small amounts of material are transferred between the bodies therefore mixing is limited. Overall, these impacts can impart enough energy to melt ~15-30% of the mantle extending the magma ocean phase of the final Moon.

  12. Economic evaluation of epinephrine auto-injectors for peanut allergy.

    Science.gov (United States)

    Shaker, Marcus; Bean, Katherine; Verdi, Marylee

    2017-08-01

    Three commercial epinephrine auto-injectors were available in the United States in the summer of 2016: EpiPen, Adrenaclick, and epinephrine injection, USP auto-injector. To describe the variation in pharmacy costs among epinephrine auto-injector devices in New England and evaluate the additional expense associated with incremental auto-injector costs. Decision analysis software was used to evaluate costs of the most and least expensive epinephrine auto-injector devices for children with peanut allergy. To evaluate regional variation in epinephrine auto-injector costs, a random sample of New England national and corporate pharmacies was compared with a convenience sample of pharmacies from 10 Canadian provinces. Assuming prescriptions written for 2 double epinephrine packs each year (home and school), the mean costs of food allergy over the 20-year model horizon totaled $58,667 (95% confidence interval [CI] $57,745-$59,588) when EpiPen was prescribed and $45,588 (95% CI $44,873-$46,304) when epinephrine injection, USP auto-injector was prescribed. No effectiveness differences were evident between groups, with 17.19 (95% CI 17.11-17.27) quality-adjusted life years accruing for each subject. The incremental cost per episode of anaphylaxis treated with epinephrine over the model horizon was $12,576 for EpiPen vs epinephrine injection, USP auto-injector. EpiPen costs were lowest at Canadian pharmacies ($96, 95% CI $85-$107). There was price consistency between corporate and independent pharmacies throughout New England by device brand, with the epinephrine injection, USP auto-injector being the most affordable device. Cost differences among epinephrine auto-injectors were significant. More expensive auto-injector brands did not appear to provide incremental benefit. Copyright © 2017 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  13. ILSE-ESQ injector scaled experiment

    International Nuclear Information System (INIS)

    Henestroza, E.; Eylon, S.; Yu, S.; Grote, D.

    1993-01-01

    A 2 MeV, 800 mA, K + injector for the Heavy Ion Fusion Induction Linac Systems Experiments (ISLE) is under development at LBL. It consists of a 500keV-1MeV diode pre-injector followed by an electrostatic quadrupole accelerator (ESQ). One of the key issues for the ESQ centers around the control of beam aberrations due to the open-quotes energy effectclose quotes: in a strong electrostatic quadrupole field, ions at beam edge will have energies very different from those on the axis. The resulting kinematic distortions lead to S-shaped phase spaces, which, if uncorrected, will lead eventually to emittance growth. These beam aberrations can be minimized by increasing the injection energy and/or strengthening the beam focusing. It may also be possible to compensate for the open-quotes energy effectclose quotes by proper shaping of the quadrupoles electrodes. In order to check the physics of the open-quotes energy effectclose quotes of the ESQ design a scaled experiment has been designed that will accommodate the parameters of the source, as well as the voltage limitations, of the Single Beam Transport Experiment (SBTE). Since the 500 KeV pre-injector delivers a 4 cm converging beam, a quarter-scale experiment will fit the 1 cm converging beam of the SBTE source. Also, a 10 mA beam in SBTE, and the requirement of equal perveance in both systems, forces all the voltages to scale down by a factor 0.054. Results from this experiment and corresponding 3D PIC simulations will be presented

  14. An L-Band Polarized Electron PWT Photoinjector for the International Linear Collider (ILC)

    CERN Document Server

    Yu, David; Chen Ping; Lundquist, Martin; Luo, Yan; Smirnov, Alexei Yu

    2005-01-01

    A multi-cell, standing-wave, L-band, p-mode, plane-wave-transformer (PWT) photoinjector with an integrated photocathode in a novel linac structure is proposed by DULY Research Inc. as a polarized electron source. The PWT photoinjector is capable of operation in ultra high vacuum and moderate field gradient. Expected performance of an L-band polarized electron PWT injector operating under the parameters for the International Linear Collider is presented. The projected normalized transverse rms emittance is an order of magnitude lower than that produced with a polarized electron dc gun followed by subharmonic bunchers.

  15. An injector for the proposed Berkeley Ultrafast X-Ray Light Source

    International Nuclear Information System (INIS)

    Lidia, Steven; Corlett, John; Pusina, Jan; Staples, John; Zholents, Alexander

    2003-01-01

    Berkeley Lab has proposed to build a recirculating linac based X-ray source for ultra-fast dynamic studies [1]. This machine requires a flat electron beam with a small vertical emittance and large x/y emittance ratio to allow for compression of spontaneous undulator emission of soft and hard x-ray pulses, and a low-emittance, round electron beam for coherent emission of soft x-rays via the FEL process based on cascaded harmonic generation [2]. We propose an injector system consisting of two high gradient high repetition rate photo cathode guns [3] (one for each application), an ∼120 MeV super conducting linear accelerator, a 3rd harmonic cavity for linearization of the longitudinal phase space, and a bunch compressor. We present details of the design and the results of particle tracking studies using several computer codes

  16. RIIM two-pulse injector experiments

    International Nuclear Information System (INIS)

    Mazarakis, M.G.; Smith, D.L.; Jones, E.E.; Hasti, D.E.; Jojola, J.M.; Lehmann, M.

    1987-01-01

    The RADLAC-II foilless diode injector was operated under double pulse conditions utilizing the RIIM accelerator as the test bed. The original RIIM accelerator pulse-power network was modified to provide for the generation, transmission, and delivery to the foilless diode of two distinct voltage pulses with variable interpulse separation from 0 to 2 ms. Two pulse-power assemblies were investigated and will be presented in connection with the diode performance. In both cases, the generated plasma and an excessive neutral gas release, following the first pulse, prevented the diode from producing a second beam pulse for interpulse separations larger than ∼1 μs. 4 refs

  17. An induction linac injector for scaled experiments

    International Nuclear Information System (INIS)

    Rutkowski, H.L.; Faltens, A.; Pike, C.; Brodzik, D.; Johnson, R.M.; Vanecek, D.; Hewett, D.W.

    1991-04-01

    An injector is being developed at LBL that would serve as the front end of a scaled induction linac accelerator technology experiment for heavy ion fusion. The ion mass being used is in the range 10--18. It is a multi-beam device intended to accelerate up to 2 MeV with 500 mA in each beam. The first half of the accelerating column has been built and experiments with one carbon beam are underway at the 1 MeV level. 5 refs., 1 fig

  18. Transition crossing in the main injector

    International Nuclear Information System (INIS)

    Wei, J.

    1990-01-01

    This report summarizes the study of various longitudinal problems pertaining to the transition-energy crossing in the proposed Fermi Lab Main Injector. The theory indicates that the beam loss and bunch-area growth are mainly caused by the chromatic non-linear effect, which is enhanced by the space-charge force near transition. Computer simulation using the program TIBETAN shows that a ''γ T jump'' of about 1.5 unit within 1 ms is adequate to achieve a ''clean'' crossing in the currently proposed h=588 scenario. 19 refs., 4 figs

  19. The positive ion injector for ALPI

    International Nuclear Information System (INIS)

    Bisoffi, G.

    1996-01-01

    In the framework of the ALPI upgrading, a new positive ion injector is foreseen in order to be able to accelerate ions with masses of the order of 200 and with high charge states from the velocity of β=0.009 up to β=0.055. The structures chosen for that velocity range are superconducting radio frequency quadrupoles operating at a frequency of 80 MHz, which is the operating frequency of the ALPI low β cavities. The paper describes the current status of the project including beam dynamics, cavity design, beam transfer lines and vacuum, control and cryogenic systems. (orig.)

  20. Development of repeating pneumatic pellet injector

    Energy Technology Data Exchange (ETDEWEB)

    Oda, Y.; Onozuka, M.; Shimomura, T. (Mitsubishi Heavy Industries Ltd., Kobe (Japan)) (and others)

    1990-01-01

    A repeating pneumatic pellet injector has been constructed to experiment with the technique of continuous injection for fueling fusion reactors. This device is composed of a cryogenic extruder and a gun assembly in (among others) a high-vacuum vessel, diagnostic vessels, LHe, fuel-gas and propellant-gas supply systems, control and data acquisition systems, etc. The performance tests, using hydrogen, have proved that the device provides the function of extruding frozen hydrogen ribbons at the speed of 6 mm s{sup -1}, chambering pellet at the rate of 5 Hz, and injecting pellet at the speed of 900 m s{sup -1}, as planned. (author).

  1. Development of repeating pneumatic pellet injector

    International Nuclear Information System (INIS)

    Oda, Y.; Onozuka, M.; Shimomura, T.

    1990-01-01

    A repeating pneumatic pellet injector has been constructed to experiment with the technique of continuous injection for fueling fusion reactors. This device is composed of a cryogenic extruder and a gun assembly in (among others) a high-vacuum vessel, diagnostic vessels, LHe, fuel-gas and propellant-gas supply systems, control and data acquisition systems, etc. The performance tests, using hydrogen, have proved that the device provides the function of extruding frozen hydrogen ribbons at the speed of 6 mm s -1 , chambering pellet at the rate of 5 Hz, and injecting pellet at the speed of 900 m s -1 , as planned. (author)

  2. Radiotracer injector: An Industrial Application (RIIA)

    International Nuclear Information System (INIS)

    Noraishah Othman; Mohd Arif Hamzah; Fadil Ismail; Nurliyana Abdullah

    2011-01-01

    The radiotracer injector is meant for transferring liquid radiotracer in the system for industrial radiotracer application with minimal radiation exposure to the operator. The motivation of its invention is coming from the experience of the workers who are very concern about the radiation safety while handling with the radioactive source. The idea ensuring the operation while handling the radioactive source is fast and safe without interrupting the efficiency and efficacy of the process. Thus, semi automated device assisting with pneumatic technology is applied for its invention. (author)

  3. Preliminary Design Study of a Pre-booster Damping Ring for the FCC e+e− Injector

    CERN Document Server

    Etisken, O; Papaphilippou, Y

    2017-01-01

    The aim of the FCC e+e− lepton collider is to collide particles in the energy range 40–175 GeV. The FCC e+e− injector complex needs to produce and transport high-intensity e+e− beams at a fast repetition rate of about 0.1 Hz to top up the collider at its collision energy. A basic parameter set exists for all collider energies, assuming a 10 GeV linac operating with a large number of bunches accumulating in the existing SPS, which serves as pre-accelerator and damping ring before the bunches are transferred to the high-energy booster. The purpose of this study is to provide the conceptual design of an alternative damping and accelerator ring, replacing the SPS in the current scheme. This ring will have an injection energy of around 6 GeV and an extraction energy of around 20 GeV. Apart from establishing the basic ring parameters, the final study will include the optics design and layout, and single particle linear and non-linear dynamics optimization, including magnetic and alignment error tolerances. ...

  4. Designing Liquid Rocket Engine Injectors for Performance, Stability, and Cost

    Science.gov (United States)

    Westra, Douglas G.; West, Jeffrey S.

    2014-01-01

    NASA is developing the Space Launch System (SLS) for crewed exploration missions beyond low Earth orbit. Marshall Space Flight Center (MSFC) is designing rocket engines for the SLS Advanced Booster (AB) concepts being developed to replace the Shuttle-derived solid rocket boosters. One AB concept uses large, Rocket-Propellant (RP)-fueled engines that pose significant design challenges. The injectors for these engines require high performance and stable operation while still meeting aggressive cost reduction goals for access to space. Historically, combustion stability problems have been a critical issue for such injector designs. Traditional, empirical injector design tools and methodologies, however, lack the ability to reliably predict complex injector dynamics that often lead to combustion stability. Reliance on these tools alone would likely result in an unaffordable test-fail-fix cycle for injector development. Recently at MSFC, a massively parallel computational fluid dynamics (CFD) program was successfully applied in the SLS AB injector design process. High-fidelity reacting flow simulations were conducted for both single-element and seven-element representations of the full-scale injector. Data from the CFD simulations was then used to significantly augment and improve the empirical design tools, resulting in a high-performance, stable injector design.

  5. Performing the Super Instrument

    DEFF Research Database (Denmark)

    Kallionpaa, Maria

    2016-01-01

    can empower performers by producing super instrument works that allow the concert instrument to become an ensemble controlled by a single player. The existing instrumental skills of the performer can be multiplied and the qualities of regular acoustic instruments extended or modified. Such a situation......The genre of contemporary classical music has seen significant innovation and research related to new super, hyper, and hybrid instruments, which opens up a vast palette of expressive potential. An increasing number of composers, performers, instrument designers, engineers, and computer programmers...... have become interested in different ways of “supersizing” acoustic instruments in order to open up previously-unheard instrumental sounds. Super instruments vary a great deal but each has a transformative effect on the identity and performance practice of the performing musician. Furthermore, composers...

  6. Department of Energy assessment of the Large Hadron Collider

    International Nuclear Information System (INIS)

    1996-06-01

    This report summarizes the conclusions of the committee that assessed the cost estimate for the Large Hadron Collider (LHC). This proton-proton collider will be built at CERN, the European Laboratory for Particle Physics near Geneva, Switzerland. The committee found the accelerator-project cost estimate of 2.3 billion in 1995 Swiss francs, or about $2 billion US, to be adequate and reasonable. The planned project completion date of 2005 also appears achievable, assuming the resources are available when needed. The cost estimate was made using established European accounting procedures. In particular, the cost estimate does not include R and D, prototyping and testing, spare parts, and most of the engineering labor. Also excluded are costs for decommissioning the Large Electron-Positron collider (LEP) that now occupies the tunnel, modifications to the injector system, the experimental areas, preoperations costs, and CERN manpower. All these items are assumed by CERN to be included in the normal annual operations budget rather than the construction budget. Finally, contingency is built into the base estimate, in contrast to Department of Energy (DOE) estimates that explicitly identify contingency. The committee's charge, given by Dr. James F. Decker, Deputy Directory of the DOE Office of Energy Research, was to understand the basis for the LHC cost estimate, identify uncertainties, and judge the overall validity of the estimate, proposed schedule, and related issues. The committee met at CERN April 22--26, 1996. The assessment was based on the October 1995 LHC Conceptual Design Report or ''Yellow Book,'' cost estimates and formal presentations made by the CERN staff, site inspection, detailed discussions with LHC technical experts, and the committee members' considerable experience

  7. Geometrical characterization and performance optimization of monopropellant thruster injector

    Directory of Open Access Journals (Sweden)

    T.R. Nada

    2012-12-01

    Full Text Available The function of the injector in a monopropellant thruster is to atomize the liquid hydrazine and to distribute it over the catalyst bed as uniformly as possible. A second objective is to place the maximum amount of catalyst in contact with the propellant in as short time as possible to minimize the starting transient time. Coverage by the spray is controlled mainly by cone angle and diameter of the catalyst bed, while atomization quality is measured by the Sauter Mean Diameter, SMD. These parameters are evaluated using empirical formulae. In this paper, two main types of injectors are investigated; plain orifice and full cone pressure swirl injectors. The performance of these two types is examined for use with blow down monopropellant propulsion system. A comprehensive characterization is given and design charts are introduced to facilitate optimizing the performance of the injector. Full-cone injector is a more suitable choice for monopropellant thruster and it might be available commercially.

  8. Review on pressure swirl injector in liquid rocket engine

    Science.gov (United States)

    Kang, Zhongtao; Wang, Zhen-guo; Li, Qinglian; Cheng, Peng

    2018-04-01

    The pressure swirl injector with tangential inlet ports is widely used in liquid rocket engine. Commonly, this type of pressure swirl injector consists of tangential inlet ports, a swirl chamber, a converging spin chamber, and a discharge orifice. The atomization of the liquid propellants includes the formation of liquid film, primary breakup and secondary atomization. And the back pressure and temperature in the combustion chamber could have great influence on the atomization of the injector. What's more, when the combustion instability occurs, the pressure oscillation could further affects the atomization process. This paper reviewed the primary atomization and the performance of the pressure swirl injector, which include the formation of the conical liquid film, the breakup and atomization characteristics of the conical liquid film, the effects of the rocket engine environment, and the response of the injector and atomization on the pressure oscillation.

  9. SLC injector simulation and tuning for high charge transport

    International Nuclear Information System (INIS)

    Yeremian, A.D.; Miller, R.H.; Clendenin, J.E.; Early, R.A.; Ross, M.C.; Turner, J.L.; Wang, J.W.

    1992-08-01

    We have simulated the SLC injector from the thermionic gun through the first accelerating section and used the resulting parameters to tune the injector for optimum performance and high charge transport. Simulations are conducted using PARMELA, a three-dimensional ray-trace code with a two-dimensional space-charge model. The magnetic field profile due to the existing magnetic optics is calculated using POISSON, while SUPERFISH is used to calculate the space harmonics of the various bunchers and the accelerator cavities. The initial beam conditions in the PARMELA code are derived from the EGUN model of the gun. The resulting injector parameters from the PARMELA simulation are used to prescribe experimental settings of the injector components. The experimental results are in agreement with the results of the integrated injector model

  10. SLC injector simulation and tuning for high charge transport

    International Nuclear Information System (INIS)

    Yeremian, A.D.; Miller, R.H.; Clendenin, J.E.; Early, R.A.; Ross, M.C.; Turner, J.L.; Wang, J.W.

    1992-01-01

    We have simulated the SLC injector from the thermionic gun through the first accelerating section and used the resulting parameters to tune the injector for optimum performance and high charge transport. Simulations are conducted using PARMELA, a three-dimensional space-charge model. The magnetic field profile due to the existing magnetic optics is calculated using POISSON, while SUPERFISH is used to calculate the space harmonics of the various bunchers and the accelerator cavities. The initial beam conditions in the PARMELA code are derived from the EGUN model of the gun. The resulting injector parameters from the PARMELA simulation are used to prescribe experimental settings of the injector components. The experimental results are in agreement with the results of the integrated injector model. (Author) 5 figs., 7 refs

  11. Improved Bevatron local injector ion source performance

    International Nuclear Information System (INIS)

    Stover, G.; Zajec, E.

    1985-05-01

    Performance tests of the improved Bevatron Local Injector PIG Ion Source using particles of Si 4 + , Ne 3 + , and He 2 + are described. Initial measurements of the 8.4 keV/nucleon Si 4 + beam show an intensity of 100 particle microamperes with a normalized emittance of .06 π cm-mrad. A low energy beam transport line provides mass analysis, diagnostics, and matching into a 200 MHz RFQ linac. The RFQ accelerates the beam from 8.4 to 200 keV/nucleon. The injector is unusual in the sense that all ion source power supplies, the ac distribution network, vacuum control equipment, and computer control system are contained in a four bay rack mounted on insulators which is located on a floor immediately above the ion source. The rack, transmission line, and the ion source housing are raised by a dc power supply to 80 kilovolts above earth ground. All power supplies, which are referenced to rack ground, are modular in construction and easily removable for maintenance. AC power is delivered to the rack via a 21 kVA, 3-phase transformer. 2 refs., 5 figs., 1 tab

  12. Multi-beam injector development at LBL

    International Nuclear Information System (INIS)

    Rutkowski, H.L.; Faltens, A.; Brodzik, D.A.; Johnson, R.M.; Pike, C.D.; Vanecek, D.L.; Humphries, S. Jr.; Meyer, E.A.; Hewett, D.W.

    1990-06-01

    LBL is developing a multi-beam injector that will be used for scaled accelerator experiments related to Heavy Ion Fusion. The device will produce sixteen 0.5 Amp beams of C+ at 2 MeV energy. The carbon arc source has been developed to the point where the emittance is within a factor of four of the design target. Modelling of the source behavior to find ways to reduce the emittance is discussed. Source lifetime and reliability is also of paramount importance to us and data regarding the lifetime and failure modes of different source configurations is discussed. One half of the accelerating column has been constructed and tested at high voltage. One beam experiments in this half column are underway. The second half of the column is being built and the transition 2 MV experiments should begin soon. In addition to beam and source performance we also discuss the controls for the injector and the electronics associated with the source and current injection. 3 refs., 2 figs

  13. 132 ns Bunch Spacing in the Tevatron Proton-Antiproton Collider

    International Nuclear Information System (INIS)

    Holmes, S.D.; Holt, J.; Johnstone, J.A.; Marriner, J.; Martens, M.; McGinnis, D.

    1994-12-01

    Following completion of the Fermilab Main Injector it is expected that the Tevatron proton-antiproton collider will be operating at a luminosity in excess of 5x10 3l cm -2 with 36 proton and antiproton bunches spaced at 396 nsec. At this luminosity, each of the experimental detectors will see approximately 1.3 interactions per crossing. Potential improvements to the collider low beta and rf systems could push the luminosity beyond 10x10 3l cm -2 sec -1 , resulting in more than three interactions per crossing if the bunch separation is left unchanged. This paper discusses issues related to moving to ∼100 bunch operation, with bunch spacings of 132 nsec, in the Tevatron. Specific scenarios and associated hardware requirements are described

  14. Physics at the FCC-hh, a 100 TeV pp collider

    CERN Document Server

    2017-01-01

    A 100 TeV pp collider is under consideration, by the high-energy physics community, as an important step for the future development of our field, following the completion of the LHC and High-luminosity LHC physics programmes. In particular, CERN is considering 100 TeV pp collisions as the key target of a Future Circular Collider facility, built around a 100 km tunnel and designed to deliver pp, e+e- and ep collisions, in addition to a programme with heavy ion beams and with the injector complex. CERN is coordinating an international study tasked with the completion, by the end of 2018, of a Conceptual Design Report (CDR) for this facility. This document presents the first results of the assessment of the physics potential of the hadronic part of this research programme (FCC-hh).

  15. Raspberry Pi super cluster

    CERN Document Server

    Dennis, Andrew K

    2013-01-01

    This book follows a step-by-step, tutorial-based approach which will teach you how to develop your own super cluster using Raspberry Pi computers quickly and efficiently.Raspberry Pi Super Cluster is an introductory guide for those interested in experimenting with parallel computing at home. Aimed at Raspberry Pi enthusiasts, this book is a primer for getting your first cluster up and running.Basic knowledge of C or Java would be helpful but no prior knowledge of parallel computing is necessary.

  16. The super-resolution debate

    Science.gov (United States)

    Won, Rachel

    2018-05-01

    In the quest for nanoscopy with super-resolution, consensus from the imaging community is that super-resolution is not always needed and that scientists should choose an imaging technique based on their specific application.

  17. Frames in super Hilbert modules

    Directory of Open Access Journals (Sweden)

    Mehdi Rashidi-Kouchi

    2018-01-01

    Full Text Available In this paper, we define super Hilbert module and investigate frames in this space. Super Hilbert modules are  generalization of super Hilbert spaces in Hilbert C*-module setting. Also, we define frames in a super Hilbert module and characterize them by using of the concept of g-frames in a Hilbert C*-module. Finally, disjoint frames in Hilbert C*-modules are introduced and investigated.

  18. A summary of the quench behavior of B ampersand W 1 m collider quadrupole model magnets

    International Nuclear Information System (INIS)

    Rey, C.M.; Xu, M.F.; Hlasnicek, P.; Kelley, J.P.; Dixon, K.; Savignano, J.; Letterman, S.; Craig, P.; Maloney, J.; Boyes, D.

    1994-01-01

    In order to evaluate the quench performance of a B ampersand W-Siemens designed quadrupole magnet at the earliest possible stage, a model magnet program was developed at B ampersand W for the support of the Superconducting Super Collider. The authors report the quench performance, training behavior, and the ramp rate dependence for the QSH-801 through QSH-804 series of short (1.2 meter) quadrupole model magnets

  19. Muon collider interaction region design

    Directory of Open Access Journals (Sweden)

    Y. I. Alexahin

    2011-06-01

    Full Text Available Design of a muon collider interaction region (IR presents a number of challenges arising from low β^{*}<1  cm, correspondingly large beta-function values and beam sizes at IR magnets, as well as the necessity to protect superconducting magnets and collider detectors from muon decay products. As a consequence, the designs of the IR optics, magnets and machine-detector interface are strongly interlaced and iterative. A consistent solution for the 1.5 TeV center-of-mass muon collider IR is presented. It can provide an average luminosity of 10^{34}  cm^{-2} s^{-1} with an adequate protection of magnet and detector components.

  20. Handbook of Super 8 Production.

    Science.gov (United States)

    Telzer, Ronnie, Ed.

    This handbook is designed for anyone interested in producing super 8 films at any level of complexity and cost. Separate chapters present detailed discussions of the following topics: super 8 production systems and super 8 shooting and editing systems; budgeting; cinematography and sound recording; preparing to edit; editing; mixing sound tracks;…

  1. Super-resolution

    DEFF Research Database (Denmark)

    Nasrollahi, Kamal; Moeslund, Thomas B.

    2014-01-01

    Super-resolution, the process of obtaining one or more high-resolution images from one or more low-resolution observations, has been a very attractive research topic over the last two decades. It has found practical applications in many real world problems in different fields, from satellite...

  2. Super Refractory Status Epilepticus

    African Journals Online (AJOL)

    user

    et al did retrospective cohort study from 1 January st. 1994 to 31 March 1998 at Presbyterian Medical. Centre in Columbia, to determine the frequency, risk factors and impact on the outcome of RSE. They found out that 69% of seizures recurred after. Key Words: Super refractory status epilepticus, Zambia. Medical Journal of ...

  3. Optimal Super Dielectric Material

    Science.gov (United States)

    2015-09-01

    plate capacitor will reduce the net field to an unprecedented extent. This family of materials can form materials with dielectric values orders of... Capacitor -Increase Area (A)............8 b. Multi-layer Ceramic Capacitor -Decrease Thickness (d) .......10 c. Super Dielectric Material-Increase...circuit modeling, from [44], and B) SDM capacitor charge and discharge ...................................................22 Figure 15. Dielectric

  4. SuperHILAC

    International Nuclear Information System (INIS)

    Nemetz, R.; Selph, F.; Barnes, A.C.

    1976-01-01

    A brief discussion is given of improvements, operations, and research programs at the SuperHILAC. Improvements were made in beam injection, ion sources, and computer control systems. The research efficiency ranged between 70 and 90 percent during most of the year

  5. Recent results from hadron colliders

    International Nuclear Information System (INIS)

    Frisch, H.J.

    1990-01-01

    This is a summary of some of the many recent results from the CERN and Fermilab colliders, presented for an audience of nuclear, medium-energy, and elementary particle physicists. The topics are jets and QCD at very high energies, precision measurements of electroweak parameters, the remarkably heavy top quark, and new results on the detection of the large flux of B mesons produced at these machines. A summary and some comments on the bright prospects for the future of hadron colliders conclude the talk. 39 refs., 44 figs., 3 tabs

  6. Dark spectroscopy at lepton colliders

    Science.gov (United States)

    Hochberg, Yonit; Kuflik, Eric; Murayama, Hitoshi

    2018-03-01

    Rich and complex dark sectors are abundant in particle physics theories. Here, we propose performing spectroscopy of the mass structure of dark sectors via mono-photon searches at lepton colliders. The energy of the mono-photon tracks the invariant mass of the invisible system it recoils against, which enables studying the resonance structure of the dark sector. We demonstrate this idea with several well-motivated models of dark sectors. Such spectroscopy measurements could potentially be performed at Belle II, BES-III and future low-energy lepton colliders.

  7. Physics beyond Colliders Kickoff Workshop

    CERN Document Server

    2016-01-01

    The aim of the workshop is to explore the opportunities offered by the CERN accelerator complex and infrastructure to get new insights into some of today's outstanding questions in particle physics through projects complementary to high-energy colliders and other initiatives in the world. The focus is on fundamental physics questions that are similar in spirit to those addressed by high-energy colliders, but that may require different types of experiments. The kickoff workshop is intended to stimulate new ideas for such projects, for which we encourage the submission of abstracts.

  8. Workshop on Physics Beyond Colliders

    CERN Document Server

    2016-01-01

    The aim of the workshop is to explore the opportunities offered by the CERN accelerator complex and infrastructure to get new insights into some of today's outstanding questions in particle physics through projects complementary to high-energy colliders and other initiatives in the world. The focus is on fundamental physics questions that are similar in spirit to those addressed by high-energy colliders, but that may require different types of experiments. The kick-off workshop is intended to stimulate new ideas for such projects, for which we encourage the submission of abstracts.

  9. Emittance control in linear colliders

    International Nuclear Information System (INIS)

    Ruth, R.D.

    1991-01-01

    Before completing a realistic design of a next-generation linear collider, the authors must first learn the lessons taught by the first generation, the SLC. Given that, they must make designs fault tolerant by including correction and compensation in the basic design. They must also try to eliminate these faults by improved alignment and stability of components. When these two efforts cross, they have a realistic design. The techniques of generation and control of emittance reviewed here provide a foundation for a design which can obtain the necessary luminosity in a next-generation linear collider

  10. Status of the positive-ion injector for ATLAS

    International Nuclear Information System (INIS)

    Bollinger, L.M.; Pardo, R.C.; Shepard, K.W.

    1986-01-01

    The planned positive-ion injector for ATLAS consists of an ECR ion source on a 350-kV platfrom and a superconducting injector linac of a new kind. The objective is to replace the present tandem injector with a system that can increase beam intensities by two orders of magnitude and extend the mass range up to uranium. In the first, developmental stage of the work, now in progress, the ECR source will be built, the technology of superconducting accelerating structures for low-velocity ions will be developed, and these structures will be used to form a 3-MV prototype injector linac. Even this small system, designed for ions with A < 130, will be superior to the present FN tandem as a heavy-ion injector. In later phases of the work, the injector linac will be enlarged enough to allow ATLAS to effectively accelerate uranium ions. The injector system is expected to provide exceptional beam quality. The status of the work, expected performance of the accelerator system, and the technical issues involved are summarized

  11. Muon Muon Collider: Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo, J.C.; Palmer, R.B.; /Brookhaven; Tollestrup, A.V.; /Fermilab; Sessler, A.M.; /LBL, Berkeley; Skrinsky, A.N.; /Novosibirsk, IYF; Ankenbrandt, C.; Geer, S.; Griffin, J.; Johnstone, C.; Lebrun, P.; McInturff, A.; Mills, Frederick E.; Mokhov, N.; Moretti, A.; Neuffer, D.; Ng, K.Y.; Noble, R.; Novitski, I.; Popovic, M.; Qian, C.; Van Ginneken, A. /Fermilab /Brookhaven /Wisconsin U., Madison /Tel Aviv U. /Indiana U. /UCLA /LBL, Berkeley /SLAC /Argonne /Sobolev IM, Novosibirsk /UC, Davis /Munich, Tech. U. /Virginia U. /KEK, Tsukuba /DESY /Novosibirsk, IYF /Jefferson Lab /Mississippi U. /SUNY, Stony Brook /MIT /Columbia U. /Fairfield U. /UC, Berkeley

    2012-04-05

    A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10{sup 35} cm{sup -2}s{sup -1}. The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice - we believe - to allow us to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potential and to evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring wich has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design. Muons because of their large mass compared to an electron, do not produce significant synchrotron radiation. As a result there is negligible beamstrahlung and high energy collisions are not limited by this phenomena. In addition, muons can be accelerated in circular devices which will be considerably smaller than two full-energy linacs as required in an e{sup +} - e{sup -} collider. A hadron collider would require a CM energy 5 to 10 times higher than 4 TeV to have an equivalent energy reach. Since the accelerator size is limited by the strength of bending magnets, the hadron collider for the same physics reach would have to be much larger than the muon collider. In addition, muon collisions should be cleaner than hadron collisions. There are many detailed particle

  12. GEM Detectors in the Experiments at e+e- Colliders in BINP

    CERN Document Server

    Maltsev, T V

    2017-01-01

    Micro-pattern gaseous detectors possess a high spatial resolution in tens micron scale together with high rate capability up to 107 cm-2s-1. In addition, they have all advantages of gaseous detectors, such as relatively low costs per unit area, the possibility to equip a large area as well as a high uniformity. Cascaded Gas Electron Multiplier (GEM) based detectors are used in the collider experiments at Budker Institute of Nuclear Physics (BINP), and they are being developed for a number of new projects. In this article the review of GEM based detectors for the tagging system of the KEDR experiment at the VEPP-4M collider and for the DEUTERON facility at the VEPP-3 storage ring is presented. The GEM detector application of the CMD-3 detector upgrade at the VEPP-2000 collider and the Super τ Factory detector are discussed.

  13. The injector linac for the Mainz microtron

    International Nuclear Information System (INIS)

    Euteneuer, H.; Braun, H.; Herminghaus, H.; Scholer, H.; Weis, T.

    1988-01-01

    The design and setup of a 3.5 MeV, 100μA injector for a cascade of race track microtrons is presented. It replaces a 2.1 MeV Van De Graaff for getting higher reliability, improved beam dynamics in the first RTM by increased and more stable input energy, as well as an easier access and a better vacuum to launch a beam of polarized electrons. In this paper, the considerations which led under given boundary conditions to the final design concept are discussed and its realization with PARMELA is described. Details of the linac setup are given. First operation showed a good longitudinal performance (energy stability ≤ ±2 star 10 -4 , spectrum ≤ 1 star 10 -3 FWHM, bunch length ≤ ± 1.5 degrees) and an excellent reproducibility of machine operation

  14. Siberian snakes for the Fermilab Main Injector

    International Nuclear Information System (INIS)

    Anferov, V.A.; Baiod, R.; Courant, E.D.

    1993-01-01

    Appropriate Siberian snakes were designed to maintain the proton beam polarization during acceleration in the Fermilab Main Injector from 8 to 150 GeV. Various snake designs were investigated to find one fitting into the 14 m straight section spaces with the required spin rotation axis and the minimum orbit excursion. The authors studied both cold and warm discrete magnet snakes as well as warm snakes with helical magnets. For the warm discrete magnet snake, obtaining small orbit excursions required a nearly longitudinal snake axis, while axes near ±45 degrees are needed when using two snakes in a ring. The authors found acceptable snakes either by using superconducting magnets or by using warm magnets with a helical dipole field

  15. 3 GeV Injector Design Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Wiedemann, H.; /SLAC, SSRL

    2009-12-16

    This Design Handbook is intended to be the main reference book for the specifications of the 3 GeV SPEAR booster synchrotron project. It is intended to be a consistent description of the project including design criteria, key technical specifications as well as current design approaches. Since a project is not complete till it's complete changes and modifications of early conceptual designs must be expected during the duration of the construction. Therefore, this Design Handbook is issued as a loose leaf binder so that individual sections can be replaced as needed. Each page will be dated to ease identification with respect to latest revisions. At the end of the project this Design Handbook will have become the 'as built' reference book of the injector for operations and maintenance personnel.

  16. NBS-LANL RTM injector installation

    International Nuclear Information System (INIS)

    Wilson, M.A.; Ayres, R.L.; Cutler, R.I.; Lindstrom, E.R.; Martin, E.R.; Mohr, D.L.; Penner, S.; Yoder, N.R.; Young, L.M.

    1983-01-01

    The injector for the NBS-LANL CW racetrack microtron consists of a 100 KeV electron gun and beam transport line followed by a 5 MeV linac. The function of the gun and transport line, which have been installed at NBS, is to provide a chopped and bunched 100 KeV and up to 0.67 mA dc or pulsed beam of very low transverse emittance for matched insertion into the linac. In this paper the authors present both the design and construction details of the 100 KeV system and the results of preliminary beam tests. The tests conducted thus far show the gun and transport system to be performing well within design specifications

  17. Commissioning the Linac Coherent Light Source injector

    Directory of Open Access Journals (Sweden)

    R. Akre

    2008-03-01

    Full Text Available The Linac Coherent Light Source is a SASE x-ray free-electron laser (FEL project presently under construction at SLAC [J. Arthur et al., SLAC-R-593, 2002.]. The injector section, from drive laser and rf photocathode gun through first bunch compressor chicane, was installed in the fall of 2006. The initial system commissioning with an electron beam was completed in August of 2007, with the goal of a 1.2-micron emittance in a 1-nC bunch demonstrated. The second phase of commissioning, including second bunch compressor and full linac, is planned for 2008, with FEL commissioning in 2009. We report experimental results and experience gained in the first phase of commissioning, including the photocathode drive laser, rf gun, photocathode, S-band and X-band rf systems, first bunch compressor, and the various beam diagnostics.

  18. String cavitation formation inside fuel injectors

    Science.gov (United States)

    Reid, B. A.; Gavaises, M.; Mitroglou, N.; Hargrave, G. K.; Garner, C. P.; McDavid, R. M.

    2015-12-01

    The formation of vortex or ‘string’ cavitation has been visualised at pressures up to 2000 bar in an automotive-sized optical diesel fuel injector nozzle. The multi-hole nozzle geometry studied allowed observation of the hole-to-hole vortex interaction and, in particular, that of a bridging vortex in the sac region between the holes. Above a threshold Reynolds number, their formation and appearance during a 2 ms injection event was repeatable and independent of upstream pressure and cavitation number. In addition, two different hole layouts and threedimensional flow simulations have been employed to describe how, the relative positions of adjacent holes influenced the formation and hole-to-hole interaction of the observed string cavitation vortices, with good agreement between the experimental and simulation results being achieved.

  19. The JET multi-pellet injector launcher

    International Nuclear Information System (INIS)

    Kupschus, P.; Bailey, W.; Gadeberg, M.; Hedley, L.; Twyman, P.; Szabo, T.; Evans, D.

    1987-01-01

    Under a collaborative agreement between the Joint European Torus JET and the United States Department of Energy US DOE, JET and Oak Ridge National Laboratory (ORNL) jointly built a multi-pellet injector for fuelling and re-fuelling of the JET plasma. A three-barrel repetitive pneumatic pellet Launcher - built by ORNL - is attached to a JET pellet launcher-machine interface (in short: Pellet Interface) which is the subject of this paper. The present Launcher-Interface combination provides deuterium or hydrogen injection at moderate pellet speeds for the next two operational periods on JET. The Pellet Interface, however, takes into account the future requirements of JET. It was designed to allow the attachment of the high speed pellet launchers now under development at JET and complies with the requirements of remote handling and tritium operation. In addition, the use of tritium pellets is being considered

  20. Injector upgrade for the S-DALINAC

    Energy Technology Data Exchange (ETDEWEB)

    Kuerzeder, Thorsten; Brunken, Marco; Conrad, Jens; Eichhorn, Ralf; Graef, Hans-Dieter; Richter, Achim; Sievers, Sven [Institut fuer Kernphysik, TU Darmstadt (Germany); Ackermann, Wolfgang; Mueller, Wolfgang F.O.; Steiner, Bastian; Weiland, Thomas [Institut fuer Theorie Elektromagnetischer Felder, TU Darmstadt (Germany); Fuerst, Joel [Argonne National Laboratory, Argonne (United States)

    2009-07-01

    The injector section of the S-DALINAC currently delivers beams of up to 10 MeV w ith a current of up to 60{mu}A. The upgrade aims to increase both parameters to 14 MeV and 150{mu}A in order to allow more demanding experiments. Therefor e, a modified cryostat module equipped with two new cavities is required. Due to an increase in rf power to 2 kW the old coaxial rf input couplers, being design ed for a maximum power of 500 W, have to be replaced by new waveguide couplers. We review the design principles and report on the fabrication of the cavities an d the whole module.