WorldWideScience

Sample records for super collider design

  1. Superconducting super collider second generation dipole magnet cryostat design

    International Nuclear Information System (INIS)

    Niemann, R.C.; Bossert, R.C.; Carson, J.A.; Engler, N.H.; Gonczy, J.D.; Larson, E.T.; Nicol, T.H.; Ohmori, T.

    1988-12-01

    The Superconducting Super Collider, a planned colliding beam particle physics research facility, requires /approximately/10,000 superconducting devices for the control of high energy particle beams. The /approximately/7,500 collider ring superconducting dipole magnets require cryostats that are functional, cryogenically efficient, mass producible and cost effective. A second generation cryostat design has been developed utilizing the experiences gained during the construction, installation and operation of several full length first generation dipole magnet models. The nature of the cryostat improvements is presented. Considered are the connections between the magnet cold mass and its supports, cryogenic supports, cold mass axial anchor, thermal shields, insulation, vacuum vessel and interconnections. The details of the improvements are enumerated and the abstracted results of available component and system evaluations are presented. 8 refs., 11 figs

  2. Site-specific design of the super collider in Texas

    International Nuclear Information System (INIS)

    Laughton, C.; Nelson, P.P.; Lundin, T.K.

    1990-01-01

    This paper outlines the scope of the Superconducting Super Collider (SSC) in Texas, underground works and present the current accelerator layout. After a brief overview of the site geotechnical characteristics, emphasis will be placed upon the possibilities for the incorporation of mechanical excavation technology into the construction of the various underground structures

  3. Detectors for the superconducting super collider, design concepts, and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Gabriel, T.A.

    1989-06-01

    The physics of compensation calorimetry is reviewed in the light of the needs of the Superconducting Super Collider (SSC) detectors. The four major detector types: liquid argon, scintillator, room temperature liquids, and silicon, are analyzed with respect to some of their strengths and weaknesses. Finally, general comments are presented which reflect the reliability of simulation code systems.

  4. Detectors for the superconducting super collider, design concepts, and simulation

    International Nuclear Information System (INIS)

    Gabriel, T.A.

    1989-06-01

    The physics of compensation calorimetry is reviewed in the light of the needs of the Superconducting Super Collider (SSC) detectors. The four major detector types: liquid argon, scintillator, room temperature liquids, and silicon, are analyzed with respect to some of their strengths and weaknesses. Finally, general comments are presented which reflect the reliability of simulation code systems

  5. Detectors for the Superconducting Super Collider, design concepts, and simulation

    International Nuclear Information System (INIS)

    Gabriel, T.A.

    1989-01-01

    The physics of compensation calorimetry is reviewed in the light of the need of the Superconducting Super Collider (SSC) detectors. The four major detector types: liquid argon, scintillator, room temperature liquids, and silicon, are analyzed with respect to some of their strengths and weaknesses. Finally, general comments are presented which reflect the reliability of simulation code systems. 29 refs., 20 figs., 6 tabs

  6. Site-specific design of the super collider in Texas

    International Nuclear Information System (INIS)

    Laughton, C.; Nelson, P.P.; Lundin, T.K.

    1990-06-01

    This paper will outline the scope of the Superconducting Super Collider (SSC), underground works and present the current accelerator layout. After a brief overview of the site geotechnical characteristics, emphasis will be placed upon the possibilities for the incorporation of mechanical excavation technology into the construction of the various underground structures. 5 figs

  7. Superconducting Super Collider project

    International Nuclear Information System (INIS)

    Perl, M.L.

    1986-04-01

    The scientific need for the Superconducting Super Collider (SSC) is outlined, along with the history of the development of the SSC concept. A brief technical description is given of each of the main points of the SSC conceptual design. The construction cost and construction schedule are discussed, followed by issues associated with the realization of the SSC. 8 refs., 3 figs., 3 tabs

  8. Superconducting Super Collider Laboratory coupled-cavity linac mechanical design

    International Nuclear Information System (INIS)

    Starling, W.J.; Cain, T.

    1992-01-01

    A collaboration between the Superconducting Super Collider Laboratory (SSCL) and the Los Alamos National Laboratory (LANL) for the engineering and mechanical design of the SSCL Coupled-Cavity Linac (CCL) has yielded an innovative example of the well known side coupled-cavity type of linear accelerator. The SSCL CCL accelerates an H - beam from 70 MeV to 600 MeV with an rf cavity structure consisting of eight tanks in each of nine modules for a total length of about 112 meters. Magnetically-coupled bridge couplers transfer power from tank to tank within a module. A single rf power input is located at the center bridge coupler of each module. The bridge couplers permit placement along the beam line of combined function focusing/steering electromagnets and diagnostic pods for beam instrumentation. Each tank and bridge coupler is rf frequency stabilized, nominally to 1,283 MHz, by water pumped through integral water passages. Air isolation grooves surround the water passages at each braze joint so that water-to-vacuum interfaces are avoided. Each tank is supported by adjustable spherical bearing rod end struts to permit alignment and accommodate thermal expansion and contraction of the rf structure. Tank struts, electromagnet/diagnostic pod support frames, vacuum manifolds and utilities are all mounted to a girder-and-leg support stand running the full length of the CCL. (Author) tab., fig

  9. Superconducting super collider

    International Nuclear Information System (INIS)

    Limon, P.J.

    1987-01-01

    The Superconducting Super Collider is to be a 20 TeV per beam proton-proton accelerator and collider. Physically the SCC will be 52 miles in circumference and slightly oval in shape. The use of superconducting magnets instead of conventional cuts the circumference from 180 miles to the 52 miles. The operating cost of the SCC per year is estimated to be about $200-250 million. A detailed cost estimate of the project is roughly $3 billion in 1986 dollars. For the big collider ring, the technical cost are dominated by the magnet system. That is why one must focus on the cost and design of the magnets. Presently, the process of site selection is underway. The major R and D efforts concern superconducting dipoles. The magnets use niobium-titanium as a conductor stabilized in a copper matrix. 10 figures

  10. Review of the abort dump shown in the SSC [superconducting super collider] conceptual design report

    International Nuclear Information System (INIS)

    Cossairt, J.D.

    1987-04-01

    This report details the design of the abort dump for the Superconducting Super-Collider (SSC). The dump is made from graphite and designed to absorb the maximum beam energy of 400 MJ. The report considers long time activation effects of the dump components. The report concludes that the basic design of the abort dump is well defined

  11. Design and analysis of the SSC [Superconducting Super Collider] dipole magnet suspension system

    International Nuclear Information System (INIS)

    Nicol, T.H.; Niemann, R.C.; Gonczy, J.D.

    1989-03-01

    The design of the suspension system for Superconducting Super Collider (SSC) dipole magnets has been driven by rigorous thermal and structural requirements. The current system, designed to meet those requirements, represents a significant departure from previous superconducting magnet suspension system designs. This paper will present a summary of the design and analysis of the vertical and lateral suspension as well as the axial anchor system employed in SSC dipole magnets. 5 refs., 9 figs., 4 tabs

  12. Design of the multilayer insulation system for the Superconducting Super Collider 50mm dipole cryostat

    International Nuclear Information System (INIS)

    Boroski, W.N.; Nicol, T.H.; Schoo, C.J.

    1991-03-01

    The development of the multilayer insulation (MLI) system for the Superconducting Super Collider (SSC) 50 mm collider dipole cryostat is an ongoing extension of work conducted during the 40 mm cryostat program. While the basic design of the MLI system for the 50 mm cryostat resembles that of the 40 mm cryostat, results from measurements of MLI thermal performance below 80K have prompted a re-design of the MLI system for the 20K thermal radiation shield. Presented is the design of the MLI system for the 50 mm collider dipole cryostat, with discussion focusing on system performance, blanket geometry, cost-effective fabrication techniques, and built-in quality control measures that assure consistent thermal performance throughout the SSC accelerator. 16 refs., 8 figs., 2 tabs

  13. Design features of the SSC [Superconducting Super Collider] dipole magnet

    International Nuclear Information System (INIS)

    Willen, E.; Cottingham, J.; Ganetis, G.

    1989-01-01

    The main ring dipole for the SSC is specified as a high performance magnet that is required to provide a uniform, 6.6 T field in a 4 cm aperture at minimum cost. These design requirements have been addressed in an R ampersand D program in which the coil design, coil mechanical support, yoke and shell structure, trim coil and beam tube design, and a variety of new instrumentation, have been developed. The design of the magnet resulting from this intensive R ampersand D program, including various measurements from both 1.8 m and 17 m long models, is reviewed. 7 refs., 3 figs

  14. Second generation superconducting super collider dipole magnet cryostat design

    International Nuclear Information System (INIS)

    Niemann, R.C.; Bossert, R.C.; Carson, J.A.; Engler, N.H.; Gonczy, J.D.; Larson, E.T.; Nicol, T.H.; Ohmori, T.

    1988-12-01

    The SSC Magnet Development Program is developing accelerator dipole magnets in successive iterations. The initial iteration is complete with six full length model magnets and a thermal model having been built and tested. This initial experience along with the evolving SSC Magnet System Requirements have resulted in the second generation magnet cryostat design. It is this configuration that will be employed for the near term ongoing magnetic, thermal, string and accelerated life testing and will be the design considered for Phase I; i.e., Technology Orientation, of the SSC Magnet Industrialization Program. 5 refs., 7 figs., 1 tab

  15. The super collider revisited

    International Nuclear Information System (INIS)

    Hussein, M.S.; Pato, M.P.

    1992-01-01

    In this paper, the authors suggest a revised version of the Superconducting Super Collider (SSC) that employs the planned SSC first stage machine as an injector of 0.5 TeV protons into a power laser accelerator. The recently developed Non-linear Amplification of Inverse Bremsstrahlung Acceleration (NAIBA) concept dictates the scenario of the next stage of acceleration. Post Star Wars lasers, available at several laboratories, can be used for the purpose. The 40 TeV CM energy, a target of the SSC, can be obtained with a new machine which can be 20 times smaller than the planned SSC

  16. Structural performance of the first SSC [Superconducting Super Collider] Design B dipole magnet

    International Nuclear Information System (INIS)

    Nicol, T.H.

    1989-09-01

    The first Design B Superconducting Super Collider (SSC) dipole magnet has been successfully tested. This magnet was heavily instrumented with temperature and strain gage sensors in order to evaluate its adherence to design constraints and design calculations. The instrumentation and associated data acquisition system allowed monitoring of the magnet during cooldown, warmup, and quench testing. This paper will focus on the results obtained from structural measurements on the suspension system during normal and rapid cooldowns and during quench studies at full magnet current. 4 refs., 9 figs

  17. Conceptual design of a superconducting solenoid for a magnetic SSC [Superconducting Super Collider] detector

    International Nuclear Information System (INIS)

    Fast, R.W.; Grimson, J.H.; Kephart, R.D.; Krebs, H.J.; Stone, M.E.; Theriot, D.; Wands, R.H.

    1988-07-01

    The conceptual design of a large superconducting solenoid suitable for a magnetic detector at the Superconducting Super Collider (SSC) has begun at Fermilab. The magnet will provide a magnetic field of 2 T over a volume 8 m in diameter by 16 m long. The particle-physics calorimetry will be inside the field volume and so the coil will be bath cooled and cryostable; the vessels will be stainless steel. Predictibility of performance and the ability to safely negotiate all probable failure modes, including a quench, are important items of the design philosophy. Although the magnet is considerably larger than existing solenoids of this type and although many issues of manufacturability, transportability and cost have not been completely addressed, our conceptual design has convinced us that this magnet is a reasonable extrapolation of present technology. 2 figs., 2 tabs

  18. Design and results of the radio frequency quadrupole RF system at the Superconducting Super Collider Laboratory

    International Nuclear Information System (INIS)

    Grippe, J.; Marsden, E.; Marrufo, O.; Regan, A.; Rees, D.; Ziomek, C.

    1993-05-01

    The Superconducting Super Collider Laboratory (SSCL) and the Los Alamos National Laboratory (LANL) entered into a joint venture to design and develop a 600 kW amplifier and its low-level controls for use in the Radio-Frequency Quadrupole (RFQ) accelerating cavity of the SSC. The design and development work has been completed. After being tested separately, the high power amplifier and low level RF control system were integrated and tested on a test cavity. Results of that tests are given. Tests were then carried out on the actual RFQ with and without the presence of the accelerated beam. Results of these tests are also given, along with the phase and amplitude information

  19. Report of the reference designs study group on the superconducting super collider

    International Nuclear Information System (INIS)

    1984-01-01

    In December, 1983, the directors of the US high energy accelerator laboratories chartered the National SSC Reference Designs Study to review in detail the technical and economic feasibility of various options for creating the Superconducting Super Collider (SSC) facility, a 20 TeV on 20 TeV proton-proton collider having a luminosity up to 10 33 cm -2 sec -1 . The primary objective of the study was to help the DOE, the high energy physics community, and the scientific community as a whole to decide how best to proceed with SSC R and D directed toward improving the cost effectiveness of applicable accelerator technology. We have concluded that the basic principles of design used successfully for existing accelerators can be conservatively extended to a proton collider having the SSC primary specifications of energy and luminosity. Furthermore, each of the three reference magnet styles studied could serve as the foundation for an SSC facility meeting these specifications. A vigorous R and D program of approximately three years duration will be required to refine the cost estimates for the magnets, to determine their actual performance, to determine their manufacturability and reliability, and to develop cost-effective methods for their assembly and quality assurance. It is anticipated that the magnet options can be narrowed to a single one during an early phase of the R and D program. An important R and D goal will be to produce, using mass-production methods, a significant number of magnets of the chosen style. These magnets would then be thoroughly tested under conditions simulating actual accelerator operations

  20. Siting the superconducting super collider

    International Nuclear Information System (INIS)

    Price, R.; Rooney, R.C.

    1988-01-01

    At the request of the Department of Energy, the National Academy of Sciences and the National Academy of Engineering established the Super Collider Site Evaluation Committee to evaluate the suitability of proposed sites for the Superconducting Super Collider. Thirty-six proposals were examined by the committee. Using the set of criteria announced by DOE in its Invitation for Site Proposals, the committee identified eight sites that merited inclusion on a ''best qualified list.'' The list represents the best collective judgment of 21 individuals, carefully chosen for their expertise and impartiality, after a detailed assessment of the proposals using 19 technical subcriteria and DOE's life cycle cost estimates. The sites, in alphabetical order, are: Arizona/Maricopa; Colorado; Illinois; Michigan/Stockbridge; New York/Rochester; North Carolina; Tennessee; and Texas/Dallas-Fort Worth. The evaluation of these sites and the Superconducting Super Collider are discussed in this book

  1. Collarless, close-in, shaped iron aperture designs for the SSC [Superconducting Super Collider] dipole

    International Nuclear Information System (INIS)

    Gupta, R.C.; Morgan, G.H.

    1989-01-01

    The nominal-design SSC (Superconducting Super Collider) dipole encloses the coil in an iron yoke having a circular aperture. The radial gap between the coil and the iron is about 15 mm to provide space for a strong annular collar around the coil, and also to reduce the effects of iron saturation on central field harmonics. The 15 mm gap also reduces the desirable dipole field contributed by the iron. The present paper gives a coil and aperture configuration in which the gap is reduced to 5 mm at the midplane, in which the aperture is shaped to reduce the unwanted effects of iron saturation. The transfer function is increased about 5% at 6.6 Tesla and the unwanted harmonics are within SSC tolerances at all field levels. These designs would require that the yoke and containment vessel absorb the stresses due to assembly and magnetic forces. A short magnet is being built with a close-in shaped iron aperture and existing coil geometry to assess the benefits of this concept. 7 refs., 3 figs., 6 tabs

  2. The modified high-energy transport code, HETC, and design calculations for the SSC [Superconducting Super Collider

    International Nuclear Information System (INIS)

    Alsmiller, R.G. Jr.; Alsmiller, F.S.; Gabriel, T.A.; Hermann, O.W.; Bishop, B.L.

    1988-01-01

    The proposed Superconducting Super Collider (SSC) will have two circulating proton beams, each with an energy of 20 TeV. In order to perform detector and shield design calculations at these higher energies that are as accurate as possible, it is necessary to incorporate in the calculations the best available information on differential particle production from hadron-nucleus collisions. In this paper, the manner in which this has been done in the High-Energy Transport Code HETC will be described and calculated results obtained with the modified code will be compared with experimental data. 10 refs., 1 fig

  3. The Superconducting Super Collider: A status report

    International Nuclear Information System (INIS)

    Schwitters, R.F.

    1993-04-01

    The design of the Superconducting Super Collider (SSC) is briefly reviewed, including its key machine parameters. The scientific objectives are twofold: (1) investigation of high-mass, low-rate, rare phenomena beyond the standard model; and (2) investigation of processes within the domain of the standard model. Machine luminosity, a key parameter, is a function of beam brightness and current, and it must be preserved through the injector chain. Features of the various injectors are discussed. The superconducting magnet system is reviewed in terms of model magnet performance, including the highly successful Accelerator System String Test Various magnet design modifications are noted, reflecting minor changes in the collider arcs and improved installation procedures. The paper concludes with construction scenarios and priority issues for ensuring the earliest collider commissioning

  4. Report of the Reference Designs Study Group on the Superconducting Super Collider. Appendix A. Design details

    International Nuclear Information System (INIS)

    1984-05-01

    Designs are presented for magnets, cryogenics, vacuum systems, main power supply and quench protection system, correction element power supplies, radio-frequency system, injection system, beam abort system, beam instrumentation, control system, site safety, injector, survey and alignment

  5. Report of the Reference Designs Study Group on the superconducting super collider

    International Nuclear Information System (INIS)

    1984-05-01

    The study was based on three different styles of superconducting magnets, each emphasizing a different configuration aimed at sharply decreasing the cost of producing the needed magnet system below that achievable with existing designs. In the study three key areas were addressed: technical feasibility; economic feasibility; and identification of specific R and D needs. Primary emphasis was on estimating the cost range within which SSC construction can confidently be expected to fall. In doing this, attention was focused on the cost of creating the collider itself. The costs of research equipment, preconstruction R and D, and possible site acquisition are not included in this study. The report of the Reference Designs Study is meant neither as a proposal for SSC construction, nor as a site preference statement. We have concluded that the basic principles of design used successfully for existing accelerators can be conservatively extended to a proton collider having the SSC primary specifications of energy and luminosity. Furthermore, each of the three reference magnet styles studied could serve as the foundation for an SSC facility meeting these specifications. A vigorous R and D program of approximately three years duration will be required to refine the cost estimates for the magnets, to determine their actual performance, to determine their manufacturability and reliability, and to develop cost-effective methods for their assembly and quality assurance. It is anticipted that the magnet options can be narrowed to a single one during an early phase of the R and D program. An important R and D goal will be to produce, using mass-production methods, a significant number of magnets of the chosen style. These magnets would then be thoroughly tested under conditions simulating actual accelerator operations

  6. Report of the Department of Energy (DOE) Office of Energy Research Review Committee on the site-specific conceptual design of the Superconducting Super Collider

    International Nuclear Information System (INIS)

    1990-09-01

    After it was established in early 1989, the Superconducting Super Collider Laboratory (SSCL) began to prepare a detailed site-specific SSC conceptual design, including cost and schedule estimates. As detailed in the SSC Site-Specific Conceptual Design Report (SCDR), this design builds upon the design in the March 1986 SSC Conceptual Design Report (CDR) and takes into account characteristics of the SSC site, results of continuing magnet R ampersand D, and advances in accelerator design

  7. A blanket design, apparatus, and fabrication techniques for the mass production of multilayer insulation blankets for the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Gonczy, J.D.; Boroski, W.N.; Niemann, R.C.; Otavka, J.G.; Ruschman, M.K.; Schoo, C.J.

    1989-09-01

    The multilayer insulation (MLI) system for the Superconducting Super Collider (SSC) consists of full cryostat length assemblies of aluminized polyester film fabricated in the form of blankets and installed as blankets to the 4.5K cold mass and the 20K and 80K thermal radiation shields. Approximately 40,000 MLI blankets will be required in the 10,000 cryogenic devices comprising the SSC accelerator. Each blanket is nearly 17 meters long and 1.8 meters wide. This paper reports the blanket design, an apparatus, and the fabrication method used to mass produce pre-fabricated MLI blankets. Incorporated in the blanket design are techniques which automate quality control during installation of the MLI blankets in the SSC cryostat. The apparatus and blanket fabrication method insure consistency in the mass produced blankets by providing positive control of the dimensional parameters which contribute to the thermal performance of the MLI blanket. By virtue of the fabrication process, the MLI blankets have inherent features of dimensional stability three-dimensional uniformity, controlled layer density, layer-to-layer registration, interlayer cleanliness, and interlayer material to accommodate thermal contraction differences. 11 refs., 6 figs., 1 tab

  8. Status report on an engineering design study of hermetic liquid argon calorimetry for the SSC [Superconducting Super Collider

    International Nuclear Information System (INIS)

    Adams, T.; Davis, M.; DiGiacomo, N.J.

    1989-01-01

    There is general recognition that engineering issues are critical to the viability of liquid argon calorimetry (LAC) at the Superconducting Super Collider (SSC). We have undertaken to quantitatively address these issues and, if possible, perform a preliminary design of a ''proof of principle'' LAC for SSC. To establish LAC as viable at SSC, we must demonstrate that the physics performance of the device is acceptable, despite the presence of dead material due to vessels and support structure. Our approach involves the construction, by a team of physicists and engineers, of one three dimensional model of the LAC system, built as a hierarchy of components and structures, from which we directly perform interferences checks, mechanical, thermal and magnetic analyses, particle tracking, hermeticity evaluation, physics simulation and assembly. This study, begun in February 1989 as part of the SSC generic detector R and D program, was immediately preceded by a workshop at which engineering details of existing and planned LAC systems were thoroughly examined. We describe below the status of our work, beginning with short descriptions of the tools used, the study requirements and LAC configuration baseline. We then detail the LAC design as it presently stands, including assembly considerations, and conclude with a quantitative assessment of the LAC hermeticity. 19 refs., 12 figs

  9. The Superconducting Super Collider (SSC) linac

    International Nuclear Information System (INIS)

    Watson, J.M.

    1990-09-01

    The preliminary design of the 600 MeV H - linac for the Superconducting Super Collider injector is described. The linac must provide a 25 mA beam during 7--35 μs macropulses at Hz within injection bursts. Normalized transverse emittances of less than 0.5 π mm-mrad (rms) are required for injection into the Low Energy Booster synchrotron. Cost, ease of commissioning, and operational reliability are important considerations. The linac will consists of an H - source with electrostatic LEBT, 2.5 MeV radiofrequency quadrupole accelerator, a 70 MeV drift-tube linac, and 530 MeV and the side-coupled linac operates at 1284 MHz. A modest total length of 150 m results from the tradeoff between cost optimization and reliability. The expected performance from beam dynamics simulations and the status of the project are described. 11 refs., 1 fig., 6 tabs

  10. Design of a synchrotron radiation detector for the test beam lines at the Superconducting Super Collider Laboratory

    International Nuclear Information System (INIS)

    Hutton, R.D.

    1994-01-01

    As part of the particle- and momentum-tagging instrumentation required for the test beam lines of the Superconducting Super Collider (SSC), the synchrotron radiation detector (SRD) was designed to provide electron tagging at momentum above 75 GeV. In a parallel effort to the three test beam lines at the SSC, schedule demands required testing and calibration operations to be initiated at Fermilab. Synchrotron radiation detectors also were to be installed in the NM and MW beam lines at Femilab before the test beam lines at the SSC would become operational. The SRD is the last instrument in a series of three used in the SSC test beam fines. It follows a 20-m drift section of beam tube downstream of the last silicon strip detector. A bending dipole just in of the last silicon strip detector produces the synchrotron radiation that is detected in a 50-mm-square cross section NaI crystal. A secondary scintillator made of Bicron BC-400 plastic is used to discriminate whether it is synchrotron radiation or a stray particle that causes the triggering of the NaI crystal's photo multiplier tube (PMT)

  11. Checking the numbers for the labyrinths shown in the SSC [Superconducting Super Collider] conceptual design

    International Nuclear Information System (INIS)

    Cossairt, J.D.

    1987-04-01

    Reviewed are the designs for access labyrinths presently shown in the Conceptual Design Report to see if they are reasonable for radiation protection purposes. This matter was previously studied two years ago in a Fermilab TM (Co85a). The methods used are based upon scaling the results of calculations done by Gollon and Awschalom. Confidence in the results has been fortified by a successful experimental test. The Conceptual Design Report shows two types of access labyrinths which are significantly different. The first type is that at a Sector Service Area, while the second is that provided for personnel entry to the Interaction Regions

  12. Conceptual design report for a superconducting coil suitable for use in the large solenoid detector at the SSC [Superconducting Super Collider

    International Nuclear Information System (INIS)

    Fast, R.W.; Grimson, J.H.; Krebs, H.J.; Kephart, R.D.; Theriot, D.; Wands, R.H.

    1989-01-01

    The conceptual design of a large superconducting solenoid suitable for a magnetic detector at the Superconducting Super Collider (SSC) was done at Fermilab. The magnet will provide a magnetic field of 1.7 T over a volume 8 m in diameter by 16 m long. The particle-physics calorimetry will be inside the field volume and so the coil will be bath cooled and cryostable; the vessels will be stainless steel. Predictability of performance and the ability to safely negotiate all probable failure modes, including a quench, are important items of the design philosophy. Our conceptual design of the magnet and calorimeter has convinced us that this magnet is a reasonable extrapolation of present technology and is therefore feasible. The principal difficulties anticipated are those associated with the very large physical dimensions and stored energy of the magnet. 5 figs

  13. Radio frequency quadrupole linac for the superconducting super collider

    International Nuclear Information System (INIS)

    Schrage, D.L.; Young, L.M.; Clark, W.L.; Billen, J.H.; DePaula, R.F.; Naranjo, A.C.; Neuschaefer, G.H.; Roybal, P.L.; Stovall, J.E.; Ray, K.; Richter, R.

    1993-01-01

    A 2.5 MeV, 428 MHz radio frequency quadrupole (RFQ) linac has been designed and fabricated by the Los Alamos National Laboratory and GAR Electroforming for the Superconducting Super Collider Laboratory. This device is a two segment accelerator fabricated from tellurium-copper (CDA14500) vane/cavity quadrants which are joined by electroforming. The structure incorporates an integral vacuum jacket and has no longitudinal rf or mechanical joints. The SSC RFQ linac is an extension of the design of the 1.0 MeV RFQ which was successfully flown on the BEAR Project. (orig.)

  14. SSC [Superconducting Super Collider] dipole coil production tooling

    International Nuclear Information System (INIS)

    Carson, J.A.; Barczak, E.J.; Bossert, R.C.; Brandt, J.S.; Smith, G.A.

    1989-03-01

    Superconducting Super Collider dipole coils must be produced to high precision to ensure uniform prestress and even conductor distribution within the collared coil assembly. Tooling is being prepared at Fermilab for the production of high precision 1M and 16.6M SSC dipole coils suitable for mass production. The design and construction methods builds on the Tevatron tooling and production experience. Details of the design and construction methods and measured coil uniformity of 1M coils will be presented. 4 refs., 10 figs

  15. Computing and data handling requirements for SSC [Superconducting Super Collider] and LHC [Large Hadron Collider] experiments

    International Nuclear Information System (INIS)

    Lankford, A.J.

    1990-05-01

    A number of issues for computing and data handling in the online in environment at future high-luminosity, high-energy colliders, such as the Superconducting Super Collider (SSC) and Large Hadron Collider (LHC), are outlined. Requirements for trigger processing, data acquisition, and online processing are discussed. Some aspects of possible solutions are sketched. 6 refs., 3 figs

  16. SSC [Superconducting Super Collider] site evaluations

    International Nuclear Information System (INIS)

    1988-11-01

    With this report, the SSC Site Task Force forwards to the Director, Office of Energy Research, US Department of Energy (DOE), its evaluation of the technical criteria and life-cycle costs for the proposed SSC sites judged to be the best qualified. The criteria against which each site was evaluated are those set forth in the Invitation for Site Proposals for the Superconducting Super Collider (DOE/ER-0315) (Invitation) which was prepared by the Task Force and issued in April 1987. The methodology followed by the Task Force in this report and in all other phases of the proposal evaluation has been consistent with the SSC site selection process approved by DOE's Energy System Acquisition Advisory Board (ESAAB). The goal of the site selection process is to identify a site that will permit the highest level of research productivity and overall effectiveness of the SSC at a reasonable cost of construction and operation and with minimial impact on the environment. The Task Force acknowledges that all seven sites are, indeed, highly qualified locations for the construction and operation of the SSC on the basis of technical and cost considerations. In performing its evaluation, which is presented in this paper, the Task Force took an in-depth look at each site on the basis of site visits and extensive technical analyses. A consensus rating for each technical evaluation criterion and subcriterion was developed for each site

  17. Dealing with abort kicker prefire in the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Drozhdin, A.I.; Baishev, I.S.; Mokhov, N.V.; Parker, B.; Richardson, R.D.; Zhou, J.

    1993-05-01

    The Superconducting Super Collider uses a single-turn extraction abort system to divert the circulating beam to a massive graphite absorber at normal termination of the operating cycle or in case of any of a number of predefined fault modes. The Collider rings must be designed to be tolerant to abort extraction kicker prefires and misfires because of the large circulating beam energy. We have studied the consequences of beam loss in the accelerator due to such prefires and misfires in terms of material heating and radiation generation using full scale machine simulations and Monte-Carlo energy deposition calculations. Some results from these calculations as well as possible protective measures for minimizing the damaging effects of kicker prefire and misfire are discussed in this paper

  18. Final focus designs for crab waist colliders

    Directory of Open Access Journals (Sweden)

    A. Bogomyagkov

    2016-12-01

    Full Text Available The crab waist collision scheme promises significant luminosity gain. The successful upgrade of the DAΦNE collider proved the principle of crab waist collision and increased luminosity 3 times. Therefore, several new projects try to implement the scheme. The paper reviews interaction region designs with the crab waist collision scheme for already existent collider DAΦNE and SuperKEKB, presently undergoing commissioning, for the projects of SuperB in Italy, CTau in Novosibirsk and FCC-ee at CERN.

  19. Radiation shielding for the Super Collider West Utility region

    International Nuclear Information System (INIS)

    Meinke, R.; Mokhov, N.; Orth, D.; Parker, B.; Plant, D.

    1994-02-01

    Shielding considerations in the 20 x 20-TeV Superconducting Super Collider are strongly correlated with detailed machine specifics in the various accelerator sections. The West Utility, the most complex area of the Collider, concentrates all the major accelerator subsystems in a single area. The beam loss rate and associated radiation levels in this region are anticipated to be quite high, and massive radiation shielding is therefore required to protect personnel, Collider components, and the environment. The challenging task of simultaneously optimizing accelerator design and radiation shielding, both of which are strongly influenced by subsystem design details, requires the integration of several complex simulation codes. To this end we have performed exhaustive hadronic shower simulations with the MARS12 program; detailed accelerator lattice and optics optimization via the SYNCH, MAD, and MAGIC codes; and extensive 3-D configuration modeling of the accelerator tunnel and subsystems geometries. Our technique and the non-trivial results from such a combined approach are presented here. An integrated procedure is found invaluable in developing cost-effective radiation shielding solutions

  20. Object-oriented simulation for the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Zhou, Jiasheng; Chung, Moon-Jung

    1992-10-01

    This paper describes the design and implementation of an object-oriented simulation environment called OZ for the Superconducting Super Collider (SSC). The design applies object-oriented technology to data visualization, behavior modelling, dynamic simulation and version control. A meta class structure is proposed to model different types of objects in large systems by their functionality. OZ provides a direct-manipulation user interface which allows the user to visualize the data as an object in the database and interactively model the component of the system. Modelling can be exercised at different levels of the class hierarchy and then can be dynamically bound into a system for simulation. Inheritance is used to derive new configurations of the system or subsystem from the existing one, and specify an object's behavior. Delegation is used to construct a system by instantiating existing objects and ''stealing'' their methods by delegators

  1. Super High Energy Colliding Beam Accelerators

    International Nuclear Information System (INIS)

    Abdelaziz, M.E.

    2009-01-01

    This lecture presents a review of cyclic accelerators and their energy limitations. A description is given of the phase stability principle and evolution of the synchrotron, an accelerator without energy limitation. Then the concept of colliding beams emerged to yield doubling of the beam energy as in the Tevatron 2 trillion electron volts (TeV) proton collider at Fermilab and the Large Hadron Collider (LHC) which is now planned as a 14-TeV machine in the 27 kilometer tunnel of the Large Electron Positron (LEP) collider at CERN. Then presentation is given of the Superconducting Supercollider (SSC), a giant accelerator complex with energy 40-TeV in a tunnel 87 kilometers in circumference under the country surrounding Waxahachie in Texas, U.S.A. These superhigh energy accelerators are intended to smash protons against protons at energy sufficient to reveal the nature of matter and to consolidate the prevailing general theory of elementary particle.

  2. SSC collider dipole magnet end mechanical design

    International Nuclear Information System (INIS)

    Delchamps, S.W.; Bossert, R.C.; Carson, J.; Ewald, K.; Fulton, H.; Kerby, J.; Koska, W.; Strait, J.; Wake, M.; Leung, K.K.

    1991-01-01

    This paper describes the mechanical design of the ends of Superconducting Super Collider dipole magnets to be constructed and tested at Fermilab. Coil end clamps, end yoke configuration, and end plate design are discussed. Loading of the end plate by axial Lorentz forces is discussed. Relevant data from 40 mm and 50 mm aperture model dipole magnets built and tested at Fermilab are presented. In particular, the apparent influence of end clamp design on the quench behavior of model SSC dipoles is described

  3. Optical data transmission at the superconducting super collider

    International Nuclear Information System (INIS)

    Leskovar, B.

    1989-02-01

    Digital and analog data transmissions via fiber optics for the Superconducting Super Collider have been investigated. The state of the art of optical transmitters, low loss fiber waveguides, receivers and associated electronics components are reviewed and summarized. Emphasis is placed on the effects of the radiation environment on the performance of an optical data transmission system components. Also, the performance of candidate components of the wide band digital and analog transmission systems intended for deployment of the Superconducting Super Collider Detector is discussed. 27 refs., 15 figs

  4. Systems engineering at the Superconducting Super Collider (one year later)

    International Nuclear Information System (INIS)

    Nonte, J.

    1991-03-01

    After one year of systems engineering at the Superconducting Super Collider (SSC), the project baseline of costs, schedule milestones, and top-level (point design) physics parameters has been accepted by the Department of Energy (DOE). This paper describes the role of systems engineering in developing the baseline and in establishing requirements specifications, change control, and methods of tracking to a baseline. The differences between the Department of Defense and DOE--specifically at the SSC Laboratory (SSCL)--in application of systems engineering disciplines and tools are discussed. The aim of the paper is to inform participating industries of the anticipated requirements format and of the emphasis that will be placed on physics requirements as opposed to procedures. Industry subcontractors should have a better understanding of the systems engineering expected by the SSCL. 3 figs

  5. The first tunnel section of the Superconducting Super Collider project

    International Nuclear Information System (INIS)

    Lundin, T.K.; Laughton, C.; Nelson, P.P.

    1990-11-01

    The Superconducting Super Collider (SSC) project will be constructed for the United States Department of Energy at a competitively-selected site in Ellis County, Texas, about 30 mile (50 km) south of the central business district of Dallas. The injector system and main collider ring will be housed in 70 mile (110 km) of tunnel, and the project will include additional shafts and underground enclosures with clear spans up to 30 ft (10 m) at depths of more than 250 ft (75 m). The first tunnel segment to be designed and constructed will include approximately 5.9 mile (9.4 km) of 12 ft (3.7 m) finished internal diameter tunnel, four shafts up to 55 ft (16.8 m) diameter, and various connecting tunnels and adits. Construction will be in weak rock lithologies, including mudstones, marls, and chalks with compressive strengths typically between 300 and 2500 psi (2.0 and 17.2 MPa). Design is underway, with an expected bid date before the end of 1990, and with start of construction following in the spring of 1991. 7 refs., 8 figs., 1 tab

  6. Concept for a Future Super Proton-Proton Collider

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jingyu; et al.

    2015-07-12

    Following the discovery of the Higgs boson at LHC, new large colliders are being studied by the international high-energy community to explore Higgs physics in detail and new physics beyond the Standard Model. In China, a two-stage circular collider project CEPC-SPPC is proposed, with the first stage CEPC (Circular Electron Positron Collier, a so-called Higgs factory) focused on Higgs physics, and the second stage SPPC (Super Proton-Proton Collider) focused on new physics beyond the Standard Model. This paper discusses this second stage.

  7. Concept for a Future Super Proton-Proton Collider

    CERN Document Server

    Tang, Jingyu; Chai, Weiping; Chen, Fusan; Chen, Nian; Chou, Weiren; Dong, Haiyi; Gao, Jie; Han, Tao; Leng, Yongbin; Li, Guangrui; Gupta, Ramesh; Li, Peng; Li, Zhihui; Liu, Baiqi; Liu, Yudong; Lou, Xinchou; Luo, Qing; Malamud, Ernie; Mao, Lijun; Palmer, Robert B.; Peng, Quanling; Peng, Yuemei; Ruan, Manqi; Sabbi, GianLuca; Su, Feng; Su, Shufang; Stratakis, Diktys; Sun, Baogeng; Wang, Meifen; Wang, Jie; Wang, Liantao; Wang, Xiangqi; Wang, Yifang; Wang, Yong; Xiao, Ming; Xing, Qingzhi; Xu, Qingjin; Xu, Hongliang; Xu, Wei; Witte, Holger; Yan, Yingbing; Yang, Yongliang; Yang, Jiancheng; Yuan, Youjin; Zhang, Bo; Zhang, Yuhong; Zheng, Shuxin; Zhu, Kun; Zhu, Zian; Zou, Ye

    2015-01-01

    Following the discovery of the Higgs boson at LHC, new large colliders are being studied by the international high-energy community to explore Higgs physics in detail and new physics beyond the Standard Model. In China, a two-stage circular collider project CEPC-SPPC is proposed, with the first stage CEPC (Circular Electron Positron Collier, a so-called Higgs factory) focused on Higgs physics, and the second stage SPPC (Super Proton-Proton Collider) focused on new physics beyond the Standard Model. This paper discusses this second stage.

  8. The super collider transverse feedback system for suppression of the emittance growth and beam instabilities

    International Nuclear Information System (INIS)

    Lebedev, V.A.

    1993-01-01

    A super collider transverse feedback system designed to suppress injection errors, emittance growth due to external noises, and beam instabilities is considered. It is supposed that the feedback system should consist of two circuits: an injection damper operating just after injection and a super damper. To damp the emittance growth, the superdamper has to operate with the ultimate decrement close to the revolution frequency. The physics of such a feedback system and its main limitations are discussed. 9 refs.; 21 figs.; 1 tab

  9. Frequency scaling of linear super-colliders

    International Nuclear Information System (INIS)

    Mondelli, A.; Chernin, D.; Drobot, A.; Reiser, M.; Granatstein, V.

    1986-06-01

    The development of electron-positron linear colliders in the TeV energy range will be facilitated by the development of high-power rf sources at frequencies above 2856 MHz. Present S-band technology, represented by the SLC, would require a length in excess of 50 km per linac to accelerate particles to energies above 1 TeV. By raising the rf driving frequency, the rf breakdown limit is increased, thereby allowing the length of the accelerators to be reduced. Currently available rf power sources set the realizable gradient limit in an rf linac at frequencies above S-band. This paper presents a model for the frequency scaling of linear colliders, with luminosity scaled in proportion to the square of the center-of-mass energy. Since wakefield effects are the dominant deleterious effect, a separate single-bunch simulation model is described which calculates the evolution of the beam bunch with specified wakefields, including the effects of using programmed phase positioning and Landau damping. The results presented here have been obtained for a SLAC structure, scaled in proportion to wavelength

  10. Probing LINEAR Collider Final Focus Systems in SuperKEKB

    CERN Document Server

    Thrane, Paul Conrad Vaagen

    2017-01-01

    A challenge for future linear collider final focus systems is the large chromaticity produced by the final quadrupoles. SuperKEKB will be correcting high levels of chromaticity using the traditional scheme which has been also proposed for the CLIC FFS. We present early simulation results indicating that lowering β*у in the SuperKEKB Low Energy Ring might be possible given on-axis injection and low bunch current, opening the possibility of testing chromaticity correction beyond FFTB level, similar to ILC and approaching that of CLIC. CLIC – Note – 1077

  11. High speed data transmission at the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Leskovar, B.

    1990-04-01

    High speed data transmission using fiber optics in the data acquisition system of the Superconducting Super Collider has been investigated. Emphasis is placed on the high speed data transmission system overview, the local data network and on subassemblies, such as optical transmitters and receivers. Also, the performance of candidate subassemblies having a low power dissipation for the data acquisition system is discussed. 14 refs., 5 figs

  12. Superconducting Super Collider: Final environmental impact statement: Volume 1

    International Nuclear Information System (INIS)

    1988-12-01

    This Environmental Impact Statement (EIS) provides as much information as possible at this stage of the project development regarding the potential environmental impacts of the proposed construction and operation of a Superconducting Super Collider (SSC) at each of the site alternatives. However, the DOE recognizes that further review under the National Environmental Policy Act (NEPA) is required prior to construction and operation of the proposed SSC project at the selected site based on more detailed design and to identify specific mitigation measures which can be incorporated into final design. Accordingly, following selection of a site for the proposed SSC, the DOE will prepare a Supplemental EIS to address in more detail the impacts of constructing and operating the proposed SSC at the selected site and alternatives for mitigating those impacts. To measure the effects of constructing the SSC at any of the seven alternative sites, the DOE determined which aspects of the human environment would be significantly affected. The EIS describes the baseline conditions at each of the seven site alternatives, the trends underway resulting in changes, the potential environmental impacts expected if the SSC were sited, possible mitigations of adverse impacts, and resulting residual adverse impacts

  13. Vacuum technology issues for the SSC [Superconducting Super Collider

    International Nuclear Information System (INIS)

    Joestlein, H.

    1989-01-01

    The Superconducting Super Collider, to be built in Texas, will provide an energy of 40 TeV from colliding proton beams. This energy is twenty times higher than currently available from the only other cryogenic collider, the Fermilab Tevatron, and will allow experiments that can lead to a better understanding of the fundamental properties of matter. The energy scale and the size of the new machine pose intriguing challenges and opportunities for the its vacuum systems. The discussion will include the effects of synchrotron radiation on cryogenic beam tubes, cold adsorption pumps for hydrogen, methods of leak checking large cryogenic systems, the development of cold beam valves, and radiation damage to components, especially electronics. 9 figs., 1 tab

  14. SSC collider dipole magnet end mechanical design

    International Nuclear Information System (INIS)

    Delchamps, S.W.; Bossert, R.C.; Carson, J.; Ewald, K.; Fulton, H.; Kerby, J.; Koska, W.; Strait, J.; Wake, S.M.; Leung, K.K.

    1991-05-01

    This paper describes the mechanical design of the ends of Superconducting Super Collider dipole magnets to be constructed and tested at Fermilab. Coil end clamps, end yoke configuration, and end plate design are discussed. Loading of the end plate by axial Lorentz forces is discussed. Relevant data from 40 mm and 50 mm aperture model dipole magnets built and tested at Fermilab are presented. In particular, the apparent influence of end clamp design on the quench behavior of model SSC dipoles is described. 8 refs., 3 figs

  15. Model SSC [Superconducting Super Collider] dipole magnet cryostat assembly at Fermilab

    International Nuclear Information System (INIS)

    Niemann, R.C.

    1989-03-01

    The Superconducting Super Collider (SSC) magnet development program includes the design, fabrication and testing of full length model dipole magnets. A result of the program has been the development of a magnet cryostat design. The cryostat subsystems consist of cold mass connection-slide, suspension, thermal shields, insulation, vacuum vessel and interconnections. Design details are presented along with model magnet production experience. 6 refs., 13 figs

  16. Computing needs of the superconducting super collider

    International Nuclear Information System (INIS)

    Diebold, R.

    1984-01-01

    Following a brief description of the SSC, the computing needs are discussed for both the accelerator design and the experimentation. The computing power required is considerably beyond that being used at present facilities, and parallel processing is expected to play an important role in supplying these needs

  17. Superconducting Super Collider silicon tracking subsystem research and development

    International Nuclear Information System (INIS)

    Miller, W.O.; Thompson, T.C.; Ziock, H.J.; Gamble, M.T.

    1990-12-01

    The Alamos National Laboratory Mechanical Engineering and Electronics Division has been investigating silicon-based elementary particle tracking device technology as part of the Superconducting Super Collider-sponsored silicon subsystem collaboration. Structural, materials, and thermal issues have been addressed. This paper explores detector structural integrity and stability, including detailed finite element models of the silicon wafer support and predictive methods used in designing with advanced composite materials. The current design comprises a magnesium metal matrix composite (MMC) truss space frame to provide a sparse support structure for the complex array of silicon detectors. This design satisfies the 25-μm structural stability requirement in a 10-Mrad radiation environment. This stability is achieved without exceeding the stringent particle interaction constraints set at 2.5% of a radiation length. Materials studies have considered thermal expansion, elastic modulus, resistance to radiation and chemicals, and manufacturability of numerous candidate materials. Based on optimization of these parameters, the MMC space frame will possess a coefficient of thermal expansion (CTE) near zero to avoid thermally induced distortions, whereas the cooling rings, which support the silicon detectors and heat pipe network, will probably be constructed of a graphite/epoxy composite whose CTE is engineered to match that of silicon. Results from radiation, chemical, and static loading tests are compared with analytical predictions and discussed. Electronic thermal loading and its efficient dissipation using heat pipe cooling technology are discussed. Calculations and preliminary designs for a sprayed-on graphite wick structure are presented. A hydrocarbon such as butane appears to be a superior choice of heat pipe working fluid based on cooling, handling, and safety criteria

  18. pp Interaction Regions. [Superconducting super collider

    Energy Technology Data Exchange (ETDEWEB)

    Diebold, R.; Johnson, D.E.

    1984-01-01

    This group served as the interface between experimenters and accelerator physicists. A start was made on a portfolio of IR's, building on previous studies including the Reference Designs Study (RDS). The group also looked at limits on time structure and luminosity, the clustering of IR's, external beams of secondary particles from the IR's, and various operational issues connected with the IR's. Designs were developed for interaction regions for RDS-B (individual cryostats for two 5-T rings, separated by 60 cm vertically). For a fixed geometry, the quadrupoles have been tuned over a range to give a factor of 100 variation in ..beta..* (1 to 100 m) and thus in luminosity; an even larger variation may well be possible. Variation of the minimum ..beta..* with free space between the quadrupole triplets, for a quad strength of 280 T/m and under the constraint of fixed chromaticity, showed a factor of five decrease in maximum luminosity in going from a high luminosity region with +-20 m free space to a small-angle region with +-100 m. Similar variants of the RDS-A IR were also found.

  19. SSC [Superconducting Super Collider] magnet technology

    International Nuclear Information System (INIS)

    Taylor, C.

    1987-09-01

    To minimize cost of the SSC facility, small-bore high field dipole magnets have been developed;some of the new technology that has been developed at several U.S. national laboratories and in industry is summarized. Superconducting wire with high J/sub c/ and filaments as small as 5μm diameter is not produced iwht mechanical properties suitable for reliable cable production. A variety of collar designs of both aluminum and stainless steel have been used in model magnets. A low-heat leak post-type cryostat support system is used and a system for accurate alignment of coil-collar-yoke in the cryostat has been developed. Model magnets of 1-m, 1.8 m, 4.5 m, and 17 m lengths have been build during the past two years. 23 refs., 5 figs., 2 tabs

  20. A bipolar monolithic preamplifier for high-capacitance SSC [Superconducting Super Collider] silicon calorimetry

    International Nuclear Information System (INIS)

    Britton, C.L. Jr.; Kennedy, E.J.; Bugg, W.M.

    1990-01-01

    This paper describes a preamplifier designed and fabricated specifically to address the requirements of silicon calorimetry for the Superconducting Super Collider (SSC). The topology and its features are discussed in addition to the design methodology employed. The simulated and measured results for noise, power consumption, and speed are presented. Simulated an measured data for radiation damage effects as well as data for post-damage annealing are also presented. 8 refs., 7 figs., 2 tabs

  1. Status of the MEIC ion collider ring design

    International Nuclear Information System (INIS)

    Morozov, Vasiliy; Derbenev, Yaroslav; Harwood, Leigh; Hutton, Andrew; Lin, Fanglei; Pilat, Fulvia; Zhang, Yuhong; Cai, Yunhai; Nosochkov, Y. M.; Sullivan, Michael; Wang, M.-H.; Wienands, Uli; Gerity, James; Mann, Thomas; McIntyre, Peter; Pogue, Nathaniel; Sattarov, Akhdiyor

    2015-09-01

    We present an update on the design of the ion collider ring of the Medium-energy Electron-Ion Collider (MEIC) proposed by Jefferson Lab. The design is based on the use of super-ferric magnets. It provides the necessary momentum range of 8 to 100 GeV/c for protons and ions, matches the electron collider ring design using PEP-II components, fits readily on the JLab site, offers a straightforward path for a future full-energy upgrade by replacing the magnets with higher-field ones in the same tunnel, and is more cost effective than using presently available current-dominated super-conducting magnets. We describe complete ion collider optics including an independently-designed modular detector region.

  2. 1994 expected to be year of decision for European Super Collider.

    CERN Multimedia

    Sweet, William N

    1994-01-01

    Plans to build Europe's counterpart to the US' Superconducting Super Collider, the Large Hadron Collider, may push through when the CERN Council meets on Apr 15, 1994. The European scientific community is optimistic that the plan will be approved.

  3. The prototype message broadcast system for the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Low, K.; Skegg, R.

    1990-11-01

    A prototype unified message broadcast system to handle the site-wide distribution of all control system messages for the Superconducting Super Collider is presented. The messages are assembled in the control room area and encapsulated for transmission via a general fiber-optic link system to devices distributed throughout 70 miles of tunnels. An embedded timing signal is used by the distribution system to ensure that messages arrive at all devices simultaneously. Devices receive messages using a special receiver sub-system. A simple version of this system is to be used in the Accelerator Systems String Test (ASST) at the SSC site in 1991. 3 refs., 6 figs., 1 tab

  4. The prototype message broadcast system for the superconducting super collider

    International Nuclear Information System (INIS)

    Low, K.; Skegg, R.

    1991-01-01

    This paper presents a prototype unified message broadcast system to handle the site-wide distribution of all control system messages for the Superconducting Super Collider. The messages are assembled in the control room area and encapsulated for transmission via a general fiber-optic link system to devices distributed throughout 70 miles of tunnels. An embedded timing signal is used by the distribution system to ensure that messages arrive at all devices simultaneously. Devices receive messages using a special receiver sub-system

  5. Thermal performance measurements of a graphite tube compact cryogenic support for the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Gonczy, J.D.; Boroski, W.N.; Larson, E.T.; Nicol, T.H.; Niemann, R.C.; Otavka, J.G.; Ruschman, M.K.

    1988-12-01

    The magnet cryostat development program for the Superconducting Super Collider (SSC) High Energy Physics Proton-Proton Collider has produced an innovative design for the structural support of the cold mass and thermal radiation shields. This work updates the continuing development of the support known as the Compact Cryogenic Support (CCS). As the structural and thermal requirements of the SSC became better defined, a CCS was developed that employs an innermost tube comprised of a graphite composite material. Presented is the thermal performance to 4.5K of the graphite CCS model. 8 refs., 6 figs., 2 tabs

  6. Muon collider interaction region design

    Directory of Open Access Journals (Sweden)

    Y. I. Alexahin

    2011-06-01

    Full Text Available Design of a muon collider interaction region (IR presents a number of challenges arising from low β^{*}<1  cm, correspondingly large beta-function values and beam sizes at IR magnets, as well as the necessity to protect superconducting magnets and collider detectors from muon decay products. As a consequence, the designs of the IR optics, magnets and machine-detector interface are strongly interlaced and iterative. A consistent solution for the 1.5 TeV center-of-mass muon collider IR is presented. It can provide an average luminosity of 10^{34}  cm^{-2} s^{-1} with an adequate protection of magnet and detector components.

  7. Design flaw could delay collider

    CERN Multimedia

    Cho, Adrian

    2007-01-01

    "A magnet for the Large Hadron Collider (LHC) failed during a key test at the European particle physics laboratory CERN last week. Physicists and engineers will have to repair the damaged magnet and retrofit others to correct the underlynig design flaw, which could delay the start-up of the mammouth subterranean machine." (1,5 page)

  8. Muon collider design

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, R.B.; Muon Collider Collaboration

    1998-01-01

    Parameters are given of machines with center-of-mass (CoM) energies of 3 TeV and 400 GeV but, besides a comment on neutrino radiation, the paper concentrates on progress on the design of a machine to operate at a light Higgs mass, assumed, for this study, to be 100 GeV (CoM).

  9. Fierce debate looms over funding of superconducting super collider

    International Nuclear Information System (INIS)

    Lepkowski, W.

    1988-01-01

    The coming session of Congress looks like a crucial one in the present era of Big Science. Legislators will have to decide on whether to go ahead and approve construction funding for the biggest atom smasher of all time, the Superconducting Super Collider (SSC). The Administration will be asking for about $230 million (out of a scheduled $350 million) to begin work. But uncertainties loom, and the debate ahead looks bloody. The SSC is a project the Department of Energy says will cost $4.4 billion in fiscal 1988 dollars, rated according to a targeted completion date in 1996. The General Accounting Office pegs the cost at $4.9 billion in 1985 dollars. In inflationary and project stretchout dollars, the figure could easily double. But money for science is again tight in the government, and battles that lie ahead involve the competition between science and social programs, and, indeed, between the sciences themselves. This article discusses these battles

  10. SuperB A High-Luminosity Asymmetric $e^+ e^-$ Super Flavour Factory : Conceptual Design Report

    CERN Document Server

    Bona, M.; Grauges Pous, E.; Colangelo, P.; De Fazio, F.; Palano, A.; Manghisoni, M.; Re, V.; Traversi, G.; Eigen, G.; Venturini, M.; Soni, N.; Bruschi, M.; De Castro, S.; Faccioli, P.; Gabrieli, A.; Giacobbe, B.; Semprini Cesare, N.; Spighi, R.; Villa, M.; Zoccoli, A.; Hearty, C.; McKenna, J.; Soni, A.; Khan, A.; Barniakov, A.Y.; Barniakov, M.Y.; Blinov, V.E.; Druzhinin, V.P.; Golubev, V.B.; Kononov, S.A.; Koop, I.A.; Kravchenko, E.A.; Levichev, E.B.; Nikitin, S.A.; Onuchin, A.P.; Piminov, P.A.; Serednyakov, S.I.; Shatilov, D.N.; Skovpen, Y.I.; Solodov, E.A.; Cheng, C.H.; Echenard, B.; Fang, F.; Hitlin, D.J.; Porter, F.C.; Asner, D.M.; Pham, T.N.; Fleischer, R.; Giudice, G.F.; Hurth, T.; Mangano, M.; Mancinelli, G.; Meadows, B.T.; Schwartz, A.J.; Sokoloff, M.D.; Soffer, A.; Beard, C.D.; Haas, T.; Mankel, R.; Hiller, G.; Ball, P.; Pappagallo, M.; Pennington, M.R.; Gradl, W.; Playfer, S.; Abada, A.; Becirevic, D.; Descotes-Genon, S.; Pene, O.; Andreotti, D.; Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabresi, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Prencipe, E.; Santoro, V.; Stancari, G.; Anulli, F.; Baldini-Ferroli, R.; Biagini, M.E.; Boscolo, M.; Calcaterra, A.; Drago, A.; Finocchiaro, G.; Guiducci, S.; Isidori, G.; Pacetti, S.; Patteri, P.; Peruzzi, I.M.; Piccolo, M.; Preger, M.A.; Raimondi, P.; Rama, M.; Vaccarezza, C.; Zallo, A.; Zobov, M.; De Sangro, R.; Buzzo, A.; Lo Vetere, M.; Macri, M.; Monge, M.R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.; Matias, J.; Panduro Vazquez, W.; Borzumati, F.; Eyges, V.; Prell, S.A.; Pedlar, T.K.; Korpar, S.; Pestonik, R.; Staric, M.; Neubert, M.; Denig, A.G.; Nierste, U.; Agoh, T.; Ohmi, K.; Ohnishi, Y.; Fry, J.R.; Touramanis, C.; Wolski, A.; Golob, B.; Krizan, P.; Flaecher, H.; Bevan, A.J.; Di Lodovico, F.; George, K.A.; Barlow, R.; Lafferty, G.; Jawahery, A.; Roberts, D.A.; Simi, G.; Patel, P.M.; Robertson, S.H.; Lazzaro, A.; Palombo, F.; Kaidalov, A.; Buras, A.J.; Tarantino, C.; Buchalla, G.; Sanda, A.I.; D'Ambrosio, G.; Ricciardi, G.; Bigi, I.; Jessop, C.P.; Losecco, J.M.; Honscheid, K.; Arnaud, N.; Chehab, R.; Fedala, Y.; Polci, F.; Roudeau, P.; Sordini, V.; Soskov, V.; Stocchi, A.; Variola, A.; Vivoli, A.; Wormser, G.; Zomer, F.; Bertolin, A.; Brugnera, R.; Gagliardi, N.; Gaz, A.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Bonneaud, G.R.; Lombardo, V.; Calderini, G.; Ratti, L.; Speziali, V.; Biasini, M.; Covarelli, R.; Manoni, E.; Servoli, L.; Angelini, C.; Batignani, G.; Bettarini, S.; Bosi, F.; Carpinelli, M.; Cenci, R.; Cervelli, A.; Dell'Orso, M.; Forti, F.; Giannetti, P.; Giorgi, M.; Lusiani, A.; Marchiori, G.; Massa, M.; Mazur, M.A.; Morsani, F.; Neri, N.; Paoloni, E.; Raffaelli, F.; Rizzo, G.; Walsh, J.; Braun, V.; Lenz, A.; Adams, G.S.; Danko, I.Z.; Baracchini, E.; Bellini, F.; Cavoto, G.; D'Orazio, A.; Del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Gaspero, Mario; Jackson, P.; Martinelli, G.; Mazzoni, M.A.; Morganti, Silvio; Piredda, G.; Renga, F.; Silvestrini, L.; Voena, C.; Catani, L.; Di Ciaccio, A.; Messi, R.; Santovetti, E.; Satta, A.; Ciuchini, M.; Lubicz, V.; Wilson, F.F.; Godang, R.; Chen, X.; Liu, H.; Park, W.; Purohit, M.; Trivedi, A.; White, R.M.; Wilson, J.R.; Allen, M.T.; Aston, D.; Bartoldus, R.; Brodsky, S.J.; Cai, Y.; Coleman, J.; Convery, M.R.; DeBarger, S.; Dingfelder, J.C.; Dubois-Felsmann, G.P.; Ecklund, S.; Fisher, A.S.; Haller, G.; Heifets, S.A.; Kaminski, J.; Kelsey, M.H.; Kocian, M.L.; Leith, D.W.G.S.; Li, N.; Luitz, S.; Luth, V.; MacFarlane, D.; Messner, R.; Muller, D.R.; Nosochkov, Y.; Novokhatski, A.; Pivi, M.; Ratcliff, B.N.; Roodman, A.; Schwiening, J.; Seeman, J.; Snyder, A.; Sullivan, M.; Va'Vra, J.; Wienands, U.; Wisniewski, W.; Stoeck, H.; Cheng, H.Y.; Li, H.N.; Keum, Y.Y.; Gronau, M.; Grossman, Y.; Bianchi, F.; Gamba, D.; Gambino, P.; Marchetto, F.; Menichetti, Ezio A.; Mussa, R.; Pelliccioni, M.; Dalla Betta, G.F.; Bomben, M.; Bosisio, L.; Cartaro, C.; Lanceri, L.; Vitale, L.; Azzolini, V.; Bernabeu, J.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D.A.; Oyanguren, A.; Paradisi, P.; Pich, A.; Sanchis-Lozano, M.A.; Kowalewski, Robert V.; Roney, J.M.; Back, J.J.; Gershon, T.J.; Harrison, P.F.; Latham, T.E.; Mohanty, G.B.; Petrov, A.A.; Pierini, M.; INFN

    2007-01-01

    The physics objectives of SuperB, an asymmetric electron-positron collider with a luminosity above 10^36/cm^2/s are described, together with the conceptual design of a novel low emittance design that achieves this performance with wallplug power comparable to that of the current B Factories, and an upgraded detector capable of doing the physics in the SuperB environment.

  11. SuperB Technical Design Report

    CERN Document Server

    Baszczyk, M.; Kolodziej, J.; Kucewicz, W.; Sapor, M.; Jeremie, A.; Grauges Pous, E.; Bruno, G.E.; De Robertis, G.; Diacono, D.; Donvito, G.; Fusco, P.; Gargano, F.; Giordano, F.; Loddo, F.; Loparco, F.; Maggi, G.P.; Manzari, V.; Mazziotta, M.N.; Nappi, E.; Palano, A.; Santeramo, B.; Sgura, I.; Silvestris, L.; Spinoso, V.; Eigen, G.; Zalieckas, J.; Zhuo, Z.; Jenkovszky, L.; Balbi, G.; Boldini, M.; Bonacorsi, D.; Cafaro, V.; D'Antone, I.; Dallavalle, G.M.; Di Sipio, R.; Fabbri, F.; Fabbri, L.; Gabrielli, A.; Galli, D.; Giacomelli, P.; Giordano, V.; Giorgi, F.M.; Grandi, C.; Lax, I.; Lo Meo, S.; Marconi, U.; Montanari, A.; Pellegrini, G.; Piccinini, M.; Rovelli, T.; Semprini Cesari, N.; Torromeo, G.; Tosi, N.; Travaglini, R.; Vagnoni, V.M.; Valentinetti, S.; Villa, M.; Zoccoli, A.; Caron, J. -F.; Hearty, C.; Lu, P. F. -T.; Mattison, T.S.; McKenna, J.A.; So, R. Y.; Barnyakov, M. Yu.; Blinov, V.E.; Botov, A.A.; Druzhinin, V.P.; Golubev, V.B.; Kononov, S.A.; Kravchenko, E.A.; Levichev, E.B.; Onuchin, A.P.; Serednyakov, S.I.; Shtol, D.A.; Skovpen, Y.I.; Solodov, E.P.; Cardini, A.; Carpinelli, M.; Chao, D. S. -T.; Cheng, C.H.; Doll, D.A.; Echenard, B.; Flood, K.; Hanson, J.; Hitlin, D.G.; Ongmongkolkul, P.; Porter, F.C.; Zhu, R.Y.; Randazzo, N.; De La Cruz Burelo, E.; Zheng, Y.; Campos, P.; De Silva, M.; Kathirgamaraju, A.; Meadows, B.; Pushpawela, B.; Shi, Y.; Sokoloff, M.; Lopez Castro, G.; Ciaschini, V.; Franchini, P.; Giacomini, F.; Paolini, A.; Calderon Polania, G. A.; Laczek, S.; Romanowicz, P.; Szybinski, B.; Czuchry, M.; Flis, L.; Harezlak, D.; Kocot, J.; Radecki, M.; Sterzel, M.; Szepieniec, T.; Szymocha, T.; Wójcik, P.; Andreotti, M.; Baldini, W.; Calabrese, R.; Carassiti, V.; Cibinetto, G.; Cotta Ramusino, A.; Evangelisti, F.; Gianoli, A.; Luppi, E.; Malaguti, R.; Manzali, M.; Melchiorri, M.; Munerato, M.; Padoan, C.; Santoro, V.; Tomassetti, L.; Beretta, M.M.; Biagini, M.; Boscolo, M.; Capitolo, E.; de Sangro, R.; Esposito, M.; Felici, G.; Finocchiaro, G.; Gatta, M.; Gatti, C.; Guiducci, S.; Lauciani, S.; Patteri, P.; Peruzzi, I.; Piccolo, M.; Raimondi, P.; Rama, M.; Sanelli, C.; Tomassini, S.; Fabbricatore, P.; Delepine, D.; Reyes Santos, M. A.; Chrzaszcz, M.; Grzymkowski, R.; Knap, P.; Kotula, J.; Lesiak, T.; Ludwin, J.; Michalowski, J.; Pawlik, B.; Rachwal, B.; Stodulski, M.; Wiechczynski, J.; Witek, M.; Zawiejski, L.; Zdybal, M.; Aushev, V.Y.; Ustynov, A.; Arnaud, N.; Bambade, P.; Beigbeder, C.; Bogard, F.; Borsato, M.; Breton, D.; Brossard, J.; Burmistrov, L.; Charlet, D.; Chaumat, V.; Dadoun, O.; El Berni, M.; Maalmi, J.; Puill, V.; Rimbault, C.; Stocchi, A.; Tocut, V.; Variola, A.; Wallon, S.; Wormser, G.; Grancagnolo, F.; Ben-Haim, E.; Sitt, S.; Baylac, M.; Bourrion, O.; Deconto, J. -M.; Gomez Martinez, Y.; Monseu, N.; Muraz, J. -F.; Real, J. -S.; Vescovi, C.; Cenci, R.; Jawahery, A.; Roberts, D.; Twedt, E.W.; Cheaib, R.; Lindemann, D.; Nderitu, S.; Patel, P.; Robertson, S.H.; Swersky, D.; Warburton, A.; Cuautle Flores, E.; Toledo Sanchez, G.; Biassoni, P.; Bombelli, L.; Citterio, M.; Coelli, S.; Fiorini, C.; Liberali, V.; Monti, M.; Nasri, B.; Neri, N.; Palombo, F.; Sabatini, F.; Stabile, A.; Berra, A.; Giachero, A.; Gotti, C.; Lietti, D.; Maino, M.; Pessina, G.; Prest, M.; Martin, J. -P.; Simard, M.; Starinski, N.; Taras, P.; Drutskoy, A.; Makarychev, S.; Nefediev, A.V.; Aloisio, A.; Cavaliere, S.; De Nardo, G.; Della Pietra, M.; Doria, A.; Giordano, R.; Ordine, A.; Pardi, S.; Russo, G.; Sciacca, C.; Bigi, I.I.; Jessop, C.P.; Wang, W.; Bellato, M.; Benettoni, M.; Corvo, M.; Crescente, A.; Dal Corso, F.; Dosselli, U.; Fanin, C.; Gianelle, A.; Longo, S.; Michelotto, M.; Montecassiano, F.; Morandin, M.; Pengo, R.; Posocco, M.; Rotondo, M.; Simi, G.; Stroili, R.; Gaioni, L.; Manazza, A.; Manghisoni, M.; Ratti, L.; Re, V.; Traversi, G.; Zucca, S.; Bizzaglia, S.; Bizzarri, M.; Cecchi, C.; Germani, S.; Lebeau, M.; Lubrano, P.; Manoni, E.; Papi, A.; Rossi, A.; Scolieri, G.; Batignani, G.; Bettarini, S.; Casarosa, G.; Cervelli, A.; Fella, A.; Forti, F.; Giorgi, M.; Lilli, L.; Lusiani, A.; Oberhof, B.; Paladino, A.; Pantaleo, F.; Paoloni, E.; Perez Perez, A. L.; Rizzo, G.; Walsh, J.; Fernández Téllez, A.; Beck, G.; Berman, M.; Bevan, A.; Gannaway, F.; Inguglia, G.; Martin, A.J.; Morris, J.; Bocci, V.; Capodiferro, M.; Chiodi, G.; Dafinei, I.; Drenska, N.V.; Faccini, R.; Ferroni, F.; Gargiulo, C.; Gauzzi, P.; Luci, C.; Lunadei, R.; Martellotti, G.; Pellegrino, F.; Pettinacci, V.; Pinci, D.; Recchia, L.; Ruggeri, D.; Zullo, A.; Camarri, P.; Cardarelli, R.; De Santis, C.; Di Ciaccio, A.; Di Felice, V.; Di Palma, F.; Di Simone, A.; Marcelli, L.; Messi, R.; Moricciani, D.; Sparvoli, R.; Tammaro, S.; Branchini, P.; Budano, A.; Bussino, S.; Ciuchini, M.; Nguyen, F.; Passeri, A.; Ruggieri, F.; Spiriti, E.

    2013-01-01

    In this Technical Design Report (TDR) we describe the SuperB detector that was to be installed on the SuperB e+e- high luminosity collider. The SuperB asymmetric collider, which was to be constructed on the Tor Vergata campus near the INFN Frascati National Laboratory, was designed to operate both at the Upsilon(4S) center-of-mass energy with a luminosity of 10^{36} cm^{-2}s^{-1} and at the tau/charm production threshold with a luminosity of 10^{35} cm^{-2}s^{-1}. This high luminosity, producing a data sample about a factor 100 larger than present B Factories, would allow investigation of new physics effects in rare decays, CP Violation and Lepton Flavour Violation. This document details the detector design presented in the Conceptual Design Report (CDR) in 2007. The R&D and engineering studies performed to arrive at the full detector design are described, and an updated cost estimate is presented. A combination of a more realistic cost estimates and the unavailability of funds due of the global economic ...

  12. SuperB: Next-Generation e+e− B-factory Collider

    CERN Document Server

    Novokhatski, A; Chao, A; Nosochkov, Y; Seeman, J T; Sullivan, M K; Wienands, J T; Wittmer, W; Baylac, M A; Bourrion, O; Monseu, N; Vescovi, C; Bettoni, S; Biagini, M E; Boni, R; Boscolo, M; Demma, T; Drago, A; Esposito, M; Guiducci, S; Preger, M A; Raimondi, P; Tomassini, S; Zobov, M; Bogomyagkov, A V; Nikitin, S A; Piminov, P A; Shatilov, D N; Sinyatkin, S V; Vobly, P; Bolzon, B; Brunetti, L; Jeremie, A; A. Chancé; Fabbricatore, P; Farinon, S; Musenich, R; Liuzzo, S M; Paoloni, E; Okunev, I N; Poirier, F; Rimbault, C; Variola, A

    2011-01-01

    The SuperB international team continues to optimize the design of an electron-positron collider, which will allow the enhanced study of the origins of flavor physics. The project combines the best features of a linear collider (high single-collision luminosity) and a storage-ring collider (high repetition rate), bringing together all accelerator physics aspects to make a very high luminosity of 1036 cm-2 s-1. This asymmetric-energy collider with a polarized electron beam will produce hundreds of millions of B-mesons at the Y(4S) resonance. The present design is based on extremely low emittance beams colliding at a large Piwinski angle to allow very low ßy* without the need for ultra short bunches. Use of crab-waist sextupoles will enhance the luminosity, suppressing dangerous resonances and allowing for a higher beam-beam parameter. The project has flexible beam parameters, improved dynamic aperture, and spin-rotators in the Low Energy Ring for longitudinal polarization of the electron beam at the Interactio...

  13. Status of the MEIC ion collider ring design

    International Nuclear Information System (INIS)

    Morozov, V. S.; Derbenev, Ya. S.; Harwood, L.; Hutton, A.; Lin, F.; Pilat, F.; Zhang, Y.; Cai, Y.; Nosochkov, Y. M.; Sullivan, M.; Wang, M-H; Wienands, U.; Gerity, J.; Mann, T.; McIntyre, P.; Pogue, N. J.; Satttarov, A.

    2015-01-01

    We present an update on the design of the ion collider ring of the Medium-energy Electron-Ion Collider (MEIC) proposed by Jefferson Lab. The design is based on the use of super-ferric magnets. It provides the necessary momentum range of 8 to 100 GeV/c for protons and ions, matches the electron collider ring design using PEP-II components, fits readily on the JLab site, offers a straightforward path for a future full-energy upgrade by replacing the magnets with higher-field ones in the same tunnel, and is more cost effective than using presently available current-dominated superconducting magnets. We describe complete ion collider optics including an independently-designed modular detector region.

  14. Development of the SSC [Superconducting Super Collider] trim coil beam tube assembly

    International Nuclear Information System (INIS)

    Skaritka, J.; Kelly, E.; Schneider, W.

    1987-01-01

    The Superconducting Super Collider uses ≅9600 dipole magnets. The magnets have been carefully designed to exhibit minimal magnetic field harmonics. However, because of superconductor magnetization effects, iron saturation and conductor/coil positioning errors, certain harmonic errors are possible and must be corrected by use of multipole correctors called trim coils. For the most efficient use of axial space in the magnet, and lowest possible current, a distributed internal correction coil design is planned. The trim coil assembly is secured to the beam tube, a uhv tube with special strength, size, conductivity and vacuum. The report details the SSC trim coil/beam tube assembly specifications, history, and ongoing development

  15. Status of superconducting magnets for the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Schermer, R.I.

    1993-09-01

    The arc sections of the High Energy Booster and the two Collider Rings will need more than 10,000, very large, superconducting dipole and quadrupole magnets. Development work on these magnets was carried out at US/DOE laboratories in a program that began in the mid 1980's. In 1991-1992, the technology was transferred to industry and twenty, full-length, Collider dipoles were successfully fabricated and tested. This program, along with HERA and Tevatron experience, has provided industry a data base to use in formulating detailed designs for the prototypes of the accelerator magnets, with an eye to reducing cost and enhancing producibility. Several model magnets from this latest phase of the industrial program have already been tested. The excessive ramp-rate sensitivity of the magnets is understood and solutions are under investigation

  16. Status of superconducting magnets for the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Schermer, R.I.

    1994-01-01

    The arc sections of the High Energy Booster and the two Collider Rings will need more than 10,000, very large, superconducting dipole and quadrupole magnets. Development work on these magnets was carried out at US/DOE laboratories in a program that began in the mid 1980's. In 1991--92, the technology was transferred to industry and twenty, full-length, Collider dipoles were successfully fabricated and tested. This program, along with HERA and Tevatron experience, has provided industry a data base to use in formulating detailed designs for the prototypes of the accelerator magnets, with an eye to reducing cost and enhancing producibility. Several model magnets from this latest phase of the industrial program have already been tested. The excessive ramp-rate sensitivity of the magnets is understood and solutions are under investigation

  17. A liquid nitrogen temperature SSC [Superconducting Super Collider

    International Nuclear Information System (INIS)

    McAshan, M.S.; VanderArend, P.

    1987-04-01

    Under the assumption that new developments in the science of superconductivity will lead to dipole magnets suitable for the SSC that have the same properties with regard to field, field quality, size and cost as those in the present conception of the collider, but operating at 77 K rather than 4.35 K; the initial cost of the collider facility is found to be less by $213 M out of the $2,000 M actual construction cost for the collider technical systems and the conventional facilities estimated in the Conceptual Design Report. EDI and contingency is not included in these figures. Operation at the higher temperature is not, however, an unequivocal advantage. The beam line vacuum system in the 77 K case presents problems that will require a larger magnet aperture for satisfactory solution. The costs of this together with the cost of the development and construction of the new vacuum system required is estimated to be $156 M. The net capital cost saving associated with the higher temperature operation is thus found to be $57 M or about 3% of the estimated cost. In addition it is estimated that the operating cost of the facility will under conditions be less by $27.5 M per year in the steady-state including an allowance for the greater availability of the simpler cryogenic system. 14 refs., 1 fig., 4 tabs

  18. Application of system safety engineering techniques for hazard prevention at the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Hendrix, B.L.

    1991-01-01

    A primary goal of the Superconducting Super Collider Laboratory (SSCL) is to establish an exemplary safety program. Achieving this goal requires leadership, planning, coordination, and technical know-how. To ensure that safety is an inherent part of the design, the Environment, Safety and Health Office employs a systems engineering discipline and process known as System Safety. The goal of System Safety - hazard prevention - is accomplished by analyzing systems to identify hazards and to evaluate design and procedural options and countermeasures to prevent, eliminate, mitigate, or control hazards and risks. Establishment of safety and human factors design criteria at the outset of the project prevents unsafe designs and safety violations, reduces risks, and helps in avoiding costly design changes later. This process requires a considerable amount of coordination with a variety of technical disciplines and safety professionals to integrate methods of hazard prevention, mitigation, and risk reduction throughout the system life-cycle

  19. Review of scientific and technical options for the Superconducting Super Collider Program

    Energy Technology Data Exchange (ETDEWEB)

    Dombeck, T.

    1993-11-01

    This document is a review of options for the Superconducting Super Collider (SSC) Program. It is the result of an informal study by an ad-hoc working group consisting of Laboratory physicists and engineers who investigated the physics and technical implications of a number of possible alternative SSC programs. Previous studies have shown, and early in this study it was confirmed, that a collider of approximately 20 TeV protons on 20 TeV protons with a luminosity of 10{sup 33} cm{sup {minus}2}s{sup {minus}1} at each interaction region is needed to support a physics program that is guaranteed to answer existing particle physics questions and make new discoveries. Therefore, all options considered in this document were consistent with attainment of these original goals for the SSC. One promising option considered was a program of colliding anti-protons on protons as a possible means to reduce the cost of the SSC by eliminating one of the Collider rings. However, the luminosity requirements to obtain the SSC physics goals remains the same as for protons colliding with protons and this study confirms that even though progress has been made over the last ten years in obtaining the high intensity anti-proton beams necessary, a luminosity higher than 10{sup 32} cannot be guaranteed. Other options were examined to see what advantages could be derived by departing from the SSC baseline program, either in schedule, in parameters, by staging, or by combinations of these options. Even though we considered re-examination of the cost of the baseline program to be beyond the scope of this document, differential cost savings were estimated. Finally, a brief survey of progress over the last ten years in various technical areas that might lead to more cost effective engineering designs was included in this study, such as higher magnetic field magnets resulting from lower operating temperatures or higher current-carrying superconducting materials.

  20. Review of scientific and technical options for the Superconducting Super Collider Program

    International Nuclear Information System (INIS)

    Dombeck, T.

    1993-11-01

    This document is a review of options for the Superconducting Super Collider (SSC) Program. It is the result of an informal study by an ad-hoc working group consisting of Laboratory physicists and engineers who investigated the physics and technical implications of a number of possible alternative SSC programs. Previous studies have shown, and early in this study it was confirmed, that a collider of approximately 20 TeV protons on 20 TeV protons with a luminosity of 10 33 cm -2 s -1 at each interaction region is needed to support a physics program that is guaranteed to answer existing particle physics questions and make new discoveries. Therefore, all options considered in this document were consistent with attainment of these original goals for the SSC. One promising option considered was a program of colliding anti-protons on protons as a possible means to reduce the cost of the SSC by eliminating one of the Collider rings. However, the luminosity requirements to obtain the SSC physics goals remains the same as for protons colliding with protons and this study confirms that even though progress has been made over the last ten years in obtaining the high intensity anti-proton beams necessary, a luminosity higher than 10 32 cannot be guaranteed. Other options were examined to see what advantages could be derived by departing from the SSC baseline program, either in schedule, in parameters, by staging, or by combinations of these options. Even though we considered re-examination of the cost of the baseline program to be beyond the scope of this document, differential cost savings were estimated. Finally, a brief survey of progress over the last ten years in various technical areas that might lead to more cost effective engineering designs was included in this study, such as higher magnetic field magnets resulting from lower operating temperatures or higher current-carrying superconducting materials

  1. Test results from recent 1.8-m SSC [Superconducting Super Collider] model dipoles

    International Nuclear Information System (INIS)

    Wanderer, P.; Cottingham, J.G.; Dahl, P.

    1988-01-01

    We report results from four 1.8 m-long dipoles built as part of the Superconducting Super Collider (SSC) RandD program. Except for length, these models have the features of the SSC design, which is based on a two-layer cosine theta coil with 4 cm aperture. As compared to the 17 m design length SSC dipoles, these 1.8 m magnets are a faster and more economical way of testing design changes in field shape, conductor support in the coil straight-section and ends, etc. The four magnets reported here all reach fields in excess of 7.5T with little training and have excellent field shape. 10 refs., 2 figs., 3 tabs

  2. Design Studies for a 1036 SuperB-Factory

    International Nuclear Information System (INIS)

    Seeman, J

    2003-01-01

    A Super B Factory, an asymmetric e + e - collider with a luminosity of 10 36 cm -2 s -1 , can provide a sensitive probe of new physics in the flavor sector of the Standard Model. The success of PEP-II and KEKB in producing unprecedented luminosity with unprecedented short commissioning time has taught us about the accelerator physics of asymmetric e + e - colliders in a new parameter regime. It appears to be possible to build on this success to advance the state of the accelerator art by building a collider at a luminosity approaching 10 36 cm -2 s -1 . Such a collider would produce an integrated luminosity of 10,000 fb -1 (10 ab -1 ) in a running year. Design studies are underway to arrive at a complete parameter set based on a collider in the PEP-II tunnel but with an upgraded RF system (perhaps a higher frequency) and an upgraded interaction region [1-6

  3. Radiation safety design of super KEKB factory

    International Nuclear Information System (INIS)

    Sanami, Toshiya

    2015-01-01

    The SuperKEKB factory, which was scheduled to start operation early 2015, is an electron-positron collider designed to produce an 80x10"3"4-1/cm"2/s luminosity, which is 40 times greater than the KEKB factory. Built to investigate CP violation and 'new physics' beyond the Standard Model, the facility consists of a 7-GeV electron/3.5-GeV positron linac, a 1.1- GeV positron damping ring, beam transport, and a 7-GeV electron/4-GeV positron collider. To meet this level of luminosity, the collider will be operated with a small beam size and a large crossing angle at the interaction point. According to particle tracking simulations, beam losses under these conditions will be 35 times more than those previously operated. To help optimise shielding configurations, leakage radiation and induced activity are estimated through empirical equations and detailed Monte-Carlo simulations using MARS15 code for the interaction region, beam halo collimators, emergency pathways, ducts, forward direction tunnels, and positron production target. Examples of shielding strategies are presented to reduce both leakage dose and airborne activity for several locations in the facility. (authors)

  4. Cryogenic systems for the HEB accelerator of the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Abramovich, S.; Yuecel, A.

    1994-07-01

    This report discusses the following topics related to the Superconducting Super Collider: Cryogenic system -- general requirements; cryogenic system components; heat load budgets and refrigeration plant capacities; flow and thermal characteristics; process descriptions; cryogenic control instrumentation and value engineering trade-offs

  5. Data acquisition and online processing requirements for experimentation at the superconducting super collider

    International Nuclear Information System (INIS)

    Lankford, A.J.; Barsotti, E.; Gaines, I.

    1990-01-01

    Differences in scale between data acquisition and online processing requirements for detectors at the Superconducting Super Collider and systems for existing large detectors will require new architectures and technological advances in these systems. Emerging technologies will be employed for data transfer, processing, and recording. (orig.)

  6. Contracting practices for the underground construction of the Superconducting Super Collider

    International Nuclear Information System (INIS)

    1989-01-01

    This report was prepared by a specially appointed committee under the auspices of the National Academy of Sciences/National Research Council to address contracting and associated management issues essential to the successful execution of underground construction for the Superconducting Super Collider

  7. Data acquisition and online processing requirements for experimentation at the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Lankford, A.J.; Barsotti, E.; Gaines, I.

    1989-07-01

    Differences in scale between data acquisition and online processing requirements for detectors at the Superconducting Super Collider and systems for existing large detectors will require new architectures and technological advances in these systems. Emerging technologies will be employed for data transfer, processing, and recording. 9 refs., 3 figs

  8. A Bridge Too Far: The Demise of the Superconducting Super Collider, 1989-1993

    Science.gov (United States)

    Riordan, Michael

    2015-04-01

    In October 1993 the US Congress terminated the Superconducting Super Collider -- at over 10 billion the largest and costliest basic-science project ever attempted. It was a disastrous loss for the nation's once-dominant high-energy physics community, which has been slowly declining since then. With the 2012 discovery of the Higgs boson at CERN's Large Hadron Collider, Europe has assumed world leadership in this field. A combination of fiscal austerity, continuing SSC cost overruns, intense Congressional scrutiny, lack of major foreign contributions, waning Presidential support, and the widespread public perception of mismanagement led to the project's demise nearly five years after it had begun. Its termination occurred against the political backdrop of changing scientific needs as US science policy shifted to a post-Cold War footing during the early 1990s. And the growing cost of the SSC inevitably exerted undue pressure upon other worthy research, thus weakening its support in Congress and the broader scientific community. As underscored by the Higgs boson discovery, at a mass substantially below that of the top quark, the SSC did not need to collide protons at 40 TeV in order to attain its premier physics goal. The selection of this design energy was governed more by politics than by physics, given that Europeans could build the LHC by eventually installing superconducting magnets in the LEP tunnel under construction in the mid-1980s. In hindsight, there were good alternative projects the US high-energy physics community could have pursued that did not involve building a gargantuan, multibillion-dollar machine at a green-field site in Texas. Research supported by the National Science Foundation, Department of Energy, and the Richard Lounsbery Foundation.

  9. Final Report - The Decline and Fall of the Superconducting Super Collider

    Energy Technology Data Exchange (ETDEWEB)

    RIORDAN, MICHAEL

    2011-11-29

    In October 1993 the US Congress terminated the Superconducting Super Collider — at the time the largest pure-science project ever attempted, with a total cost estimated to exceed $10 billion. It was a stunning loss for the US highenergy physics community, which until that moment had perched for decades at the pinnacle of American science. Ever since 1993, this once-dominant scientific community has been in gradual decline. With the 2010 startup of research on the CERN Large Hadron Collider and the 2011 shutdown of the Fermilab Tevatron, world leadership in elementary-particle physics has crossed the Atlantic and returned to Europe.

  10. From a {nu} factory to {mu} super + mu super {minus} Colliders

    Energy Technology Data Exchange (ETDEWEB)

    David Neuffer

    2000-12-21

    An important feature of a {mu}-storage ring {nu}-source is that it can be extended to the possibility of a future high-energy muon collider. The neutrino source provides a useful physics device that initiates key technologies required for future {mu}{sup +}-{mu}{sup {minus}} Colliders, but with much less demanding parameter requirements. These technologies include high-intensity {mu}-production, {mu}-capture, {mu}-cooling, {mu}-acceleration and multiturn {mu} storage rings. {mu}{sup +}-{mu}{sup {minus}} colliders require a similar number of muons, but they require that the muons be cooled to a much smaller phase space and formed into a small number of bunches, and both positive and negative bunches must be simultaneously captured. These differences are discussed, and the extension of the {nu}-source to {mu}{sup +}-{mu}{sup {minus}} collider specifications is described.

  11. Controlling the crossing angle in the SSC [Superconducting Super Collider

    International Nuclear Information System (INIS)

    Garren, A.A.; Johnson, D.E.

    1989-04-01

    The colliding beams in the SSC must cross at a small angle, so that when the bunches pass each other away from the interaction point (IP), they are sufficiently separated to avoid disruptive beam-beam forces. However, the crossing angle is so small that the adjacent quadrupoles must be common to both beams. Only after passing through four common quadrupoles on each side of the IP, are the beams split by vertical dipoles into separate beamlines. In order to make the closed orbits of the two beams cross at a definite angle at the IP (within a range up to 150 μrad), a series of correction dipoles are placed in the insertions. If these dipoles are excited in such a way as to control the closed orbits alone, the dispersion will be mismatched, reaching values of up to 50 cm in the arcs. This mismatch is due to the closed orbit displacements in the interaction region (IR) quadrupoles, causing them to act as bending magnets. Therefore, both the closed orbit and dispersion must be matched simultaneously. Solutions to this problem are presented. 6 figs

  12. International linear collider reference design report

    Energy Technology Data Exchange (ETDEWEB)

    Aarons, G.

    2007-06-22

    The International Linear Collider will give physicists a new cosmic doorway to explore energy regimes beyond the reach of today's accelerators. A proposed electron-positron collider, the ILC will complement the Large Hadron Collider, a proton-proton collider at the European Center for Nuclear Research (CERN) in Geneva, Switzerland, together unlocking some of the deepest mysteries in the universe. With LHC discoveries pointing the way, the ILC -- a true precision machine -- will provide the missing pieces of the puzzle. Consisting of two linear accelerators that face each other, the ILC will hurl some 10 billion electrons and their anti-particles, positrons, toward each other at nearly the speed of light. Superconducting accelerator cavities operating at temperatures near absolute zero give the particles more and more energy until they smash in a blazing crossfire at the centre of the machine. Stretching approximately 35 kilometres in length, the beams collide 14,000 times every second at extremely high energies -- 500 billion-electron-volts (GeV). Each spectacular collision creates an array of new particles that could answer some of the most fundamental questions of all time. The current baseline design allows for an upgrade to a 50-kilometre, 1 trillion-electron-volt (TeV) machine during the second stage of the project. This reference design provides the first detailed technical snapshot of the proposed future electron-positron collider, defining in detail the technical parameters and components that make up each section of the 31-kilometer long accelerator. The report will guide the development of the worldwide R&D program, motivate international industrial studies and serve as the basis for the final engineering design needed to make an official project proposal later this decade.

  13. International linear collider reference design report 2007

    International Nuclear Information System (INIS)

    Aarons, G.

    2007-01-01

    The International Linear Collider will give physicists a new cosmic doorway to explore energy regimes beyond the reach of today's accelerators. A proposed electron-positron collider, the ILC will complement the Large Hadron Collider, a proton-proton collider at the European Center for Nuclear Research (CERN) in Geneva, Switzerland, together unlocking some of the deepest mysteries in the universe. With LHC discoveries pointing the way, the ILC -- a true precision machine -- will provide the missing pieces of the puzzle. Consisting of two linear accelerators that face each other, the ILC will hurl some 10 billion electrons and their anti-particles, positrons, toward each other at nearly the speed of light. Superconducting accelerator cavities operating at temperatures near absolute zero give the particles more and more energy until they smash in a blazing crossfire at the centre of the machine. Stretching approximately 35 kilometres in length, the beams collide 14,000 times every second at extremely high energies -- 500 billion-electron-volts (GeV). Each spectacular collision creates an array of new particles that could answer some of the most fundamental questions of all time. The current baseline design allows for an upgrade to a 50-kilometre, 1 trillion-electron-volt (TeV) machine during the second stage of the project. This reference design provides the first detailed technical snapshot of the proposed future electron-positron collider, defining in detail the technical parameters and components that make up each section of the 31-kilometer long accelerator. The report will guide the development of the worldwide R and D program, motivate international industrial studies and serve as the basis for the final engineering design needed to make an official project proposal later this decade

  14. The adoption of mechanized excavation techniques for the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Laughton, C.; Nelson, P.; Lundin, T.

    1991-01-01

    The Superconducting Super Collider (SSC) is the latest and largest in a line of high-energy physics accelerator projects. The five increasingly energetic accelerators which make up the physics laboratory complex are to be housed almost entirely in subsurface structures, which will include over 100 km of small-diameter tunnel. Among other reasons, the Texas SSC site was chosen from a set of state proposals because of the suitability of the host rock materials for the performance of rapid and efficient excavation work. This site bedrock units are relatively soft and homogeneous and should allow for a maximum use of mechanical excavation plant for the various underground openings. This paper will review the site conditions and describe the developed understanding of geologic material behavior. With completion of planned large-scale in-situ studies of the ground behavior to provide acquisition of early site-specific excavation data, final design and construction detail of critical structures can be undertaken with the necessary degree of confidence to satisfy the stringent performance requirements. 5 refs., 4 figs., 6 tabs

  15. Status of the Super-B factory Design

    CERN Document Server

    Wittmer, W; Chao, A; Novokhatski, A; Nosochkov, Y; Seeman, J; Sullivan, M K; Wienands, U; Weathersby, S; Bogomyagkov, A V; Levichev, E; Nikitin, S; Piminov, P; Shatilov, D; Sinyatkin, S; Vobly, P; Okunev, I N; Bolzon, B; Brunetti, L; Jeremie, A; Biagini, M E; Boni, R; Boscolo, M; Demma, T; Drago, A; Esposito, M; Guiducci, S; Liuzzo, S; Preger, M; Raimondi, P; Tomassini, S; Zobov, M; Paoloni, E; Fabbricatore, P; Musenich, R; Farinon, S; Bettoni, S; Poirier, F; Rimbault, C; Variola, A; Baylac, M; Bourrion, O; Monseu, N; Vescovi, C; Chance, A

    2011-01-01

    The SuperB international team continues to optimize the design of an electron-positron collider, which will allow the enhanced study of the origins of flavor physics. The project combines the best features of a linear collider (high single-collision luminosity) and a storage-ring collider (high repetition rate), bringing together all accelerator physics aspects to make a very high luminosity of 10$^{36}$ cm$^{-2}$ sec$^{-1}$. This asymmetric-energy collider with a polarized electron beam will produce hundreds of millions of B-mesons at the $\\Upsilon$(4S) resonance. The present design is based on extremely low emittance beams colliding at a large Piwinski angle to allow very low $\\beta_y^\\star$ without the need for ultra short bunches. Use of crab-waist sextupoles will enhance the luminosity, suppressing dangerous resonances and allowing for a higher beam-beam parameter. The project has flexible beam parameters, improved dynamic aperture, and spin-rotators in the Low Energy Ring for longitudinal polarization o...

  16. Cryogenics for the superconducting super collider: workshop proceedings

    International Nuclear Information System (INIS)

    1984-01-01

    Attendance at the workshop and information meeting on Cryogenics for the SSC held at Brookhaven National Laboratory on January 17 to 19, 1984 consisted of 109 engineers and scientists from 19 industrial organizations and 18 laboratories and universities - CERN, DESY, Grenoble, KEK and Saclay were represented. About one-third of the participants were from Brookhaven National Laboratory and Fermi National Laboratory. Talks which concentrated on informing the audience of the present status of the SSC research and development activities and progress towards design of the components were given, experience with the cryogenic system of the Tevatron was reported, and a wrap-up session was held on the last day where each of the five workshop leaders gave a summary of their group's discussions and conclusions. A brief summary of these presentations is given, with the detailed information gathered by the group leaders forming the bulk of these proceedings

  17. Report on the program of 4 K irradiation of insulating materials for the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Spindel, A.

    1993-07-01

    This report is intended to serve as an aid to material selection. The results reported herein are the product of a careful investigation and can be used with confidence in their validity. The selection of materials based on this data, however, is not the responsibility of the author. This report will not approve or disapprove any specific material for use in the Super Collider. The author of this report does not assume any design responsibility or responsibility for material selection for any application. It is, therefore, very important that those with design responsibility use this report wisely. For this reason, the following informational guide to the material selection process has been provided. There are several issues to take into account when evaluating a material for radiation resistance. It is very important that the design criteria and operating loads for the application be known. For many applications the actual loading, and therefore required properties, are unknown. Certain materials have empirically been used successfully in a similar application and those materials have often been selected on that basis. Both percent degradation and the magnitude of the actual properties after irradiation need to be considered. Consider the scenario where two materials are being compared that both have acceptable properties after exposure to 10 9 rads. It is preferable to choose the material with less degradation because degradation tends to be a threshold phenomena with properties declining rapidly with dose after a certain threshold dose. The properties of the initially strong material, therefore, will be extremely sensitive to dose in that dose range and slight magnet-to-magnet differences in dose may, depending on the application, lead to performance variations

  18. Workshop on Calorimetery for the Superconducting Super Collider

    Energy Technology Data Exchange (ETDEWEB)

    Mulholland, G.T.; /Fermilab

    1989-03-19

    The international workshop brought together 170 participants to further develop the SSC design and performance specifications of the LAr, Gas, Scintillation, Silicon, and Warm Liquid calorimeter technologies, and to develop the general topics of Requirements, Simulation, and Electronics. Progress was made across a broad front in all areas; at the feasibility level for some and In the fine structure for others. The meeting established areas of agreement, provided some general direction, and helped to quantify some differences at widely varying levels of detector technology development. The workshop helped to level the different understandings of the participants; increased the depth of the generalists and the breadth of the specialists. A high degree of group partitioning limited access to the detailed discussion within some detector groups. The communication was clearly necessary and rewarding, and seemed to meet or exceed the expectations of most participants. This report will deal with: the Liquid Argon detector and, to a lesser extent, the Requirements working groups, an update on uranIum material logistics, and a view of LAr calorimetry by others.

  19. Radiation damage testing at the SSC [Superconducting Super Collider

    International Nuclear Information System (INIS)

    Chinowsky, W.; Thun, R.

    1990-06-01

    A Task Force on Radiation Damage Testing met at the SSC Laboratory on March 5--6, 1990. This Task Force was asked to assess the availability of appropriate facilities for radiation damage tests of SSC detector materials and components. The Task Force was also instructed to review the techniques and standards for conducting such tests. Semiconductors were considered separately from other detector materials. Radiation damage test of electronic devices generally require exposures to both ionizing radiation and neutrons, whereas non-electric components such as plastic scintillating materials, adhesives, cable insulation, and other organic polymers are adequately tested with ionizing radiation only. Test standards are discussed with respect to irradiation techniques, environmental factors, dosimetry, and mechanisms whereby various materials are damaged. It is emphasized that radiation sources should be chosen to duplicate as much as possible the expected SSC environment and that the effects from ionizing particles and from neutrons be investigated separately. Radiation damage tests at reactors must be designed with particular care complex spectra of neutrons and gamma rays are produced at such facilities. It is also essential to investigate dose-rate effects since they are known to be important in many cases. The required irradiations may last several months and are most easily carried out with dedicated radioactive sources. Environmental factors such as the presence of oxygen when testing plastic scintillators, or temperature when measuring semiconductor annealing effects, must also be taken into account. The importance of reliable dosimetry is stressed and suitable references cited. Finally, it is noted that an understanding of the mechanisms for radiation damage in semiconductor and other materials is important in planning irradiations and evaluating results

  20. An expression of interest in a Super Fixed Target Beauty Facility (SFT) at the Superconducting Super Collider

    International Nuclear Information System (INIS)

    1990-01-01

    The concept of a Super Fixed Target Beauty Facility (SFT) which uses a relatively low intensity 20 TeV proton beam as a generator of very high momenta B's is an exciting prospect which is very competitive with other B factory ideas. The yields of B's in such a facility are quite high (3 x 10 10 → 10 11 B's per year). At this level of statistics, CP violation measurements will be possible in many modes. In addition, the fixed target configuration, because of the high momenta of the produced B's and the resulting long decay lengths, facilitates the detection and reconstruction of B's and offers unique opportunities for observation of the B decays. The limited solid angle coverage required for the fixed target spectrometer makes the cost of the facility much cheaper than other e + e - or hadron collider options under consideration. The relatively low intensity 20 TeV beam (1 → 2 x 10 8 protons/second) needed for the SFT makes it possible to consider an extraction system which operates concurrently and in a non-interfering manner with the other collider experiments. One possible method for generating such a beam, crystal channeling, is discussed

  1. Successful NEPA compliance at the superconducting super collider laboratory: A case study

    International Nuclear Information System (INIS)

    Corning, B.C.; Wiebe, R.G.

    1992-01-01

    In January, 1970, the President signed the National Environmental Policy Act (NEPA) into law. NEPA has become the basic policy-setting federal law relating to protection of the environment and has provided the initiative for passage of other federal and state environmental statutes. Although many of these statutes have unique requirements, there is a need to coordinate NEPA compliance with review requirements of the other environmental statutes in order to avoid delays that can be caused by proceeding separately under each statute. Because of its multi-purpose scope, the NEPA process is an excellent means for accomplishing the required coordination. The Director of the Superconducting Super Collider Laboratory has committed the Laboratory to Total Environmental Compliance. Environmental Compliance involves a dynamic set of factors-requiring system maintenance with integrated planning and control-that by design will identify requirements, ensure implementation of mitigative actions, track follow-on efforts, and plan for future requirements. The Record of Decision to proceed with the building of the SSC required that several mitigation actions be addressed. Identifying these requirements, their sources, and whether they can be addressed within the context of existing policies and procedures is required to ensure appropriate and timely mitigative actions. Applicable requirements may include federal, state, and local regulations, applicable Department of Energy Orders, best management practices, Laboratory requirements, and the adequacy and effectiveness of DOE and contractor management programs. Mitigative action is a principal aspect of total environmental compliance, conducted at all levels of the Laboratory, not just as an environmental function. Identified requirements are prioritized. Goals and objectives are set for implementing and successfully completing each mitigative action. Feedback mechanisms required for tracking the progress of each action are developed

  2. Construction of cold mass assembly for full-length dipoles for the SSC [Superconducting Super Collider] accelerator

    International Nuclear Information System (INIS)

    Dahl, P.; Cottingham, J.; Garber, M.

    1986-10-01

    Four of the initial six 17m long demonstration dipole magnets for the proposed Superconducting Super Collider have been constructed, and the first one is now being tested. This paper describes the magnet design and construction of the cold mass assembly. The magnets are cold iron (and cold bore) 1-in-1 dipoles, wound with partially keystoned current density-graded high homogeneity NbTi cable in a two-layer cos θ coil of 40 mm inner diameter. The magnetic length is 16.6 m. The coil is prestressed by 15 mm wide stainless steel collars, and mounted in a circular, split iron yoke of 267 mm outer diameter, supported by a cylindrical yoke (and helium) containment vessel of stainless steel. The magnet bore tube assembly incorporates superconducting sextupole trim coils produced by an industrial, automatic process akin to printed circuit fabrication

  3. Linear collider RF structure design using ARGUS

    International Nuclear Information System (INIS)

    Kwok Ko

    1991-01-01

    In a linear collider, both the driving system (klystrons) and the accelerating system (linac) consists of RF structures that are inherently three-dimensional. These structures which are responsible for power input/output, have to satisfy many requirements in order that instabilities, beam or RF related, are to be avoided. At the same time, system efficiencies have to be maintained at optimal to minimize cost. Theoretical analysis on these geometrically complex structures are difficult and until recently, numerical solutions have been limited. At SLAC, there has been a continuing and close collaboration among accelerator physicists, engineers and numericists to integrate supercomputing into the design procedure which involves 3-D RF structures. The outcome is very encouraging. Using the 3-D/electromagnetic code ARGUS (developed by SAIC) on the Cray computers at NERSC in conjunction with supporting theories, a wide variety of critical components have been simulated and evaluated. Aside from structures related to the linear collider, the list also includes the RF cavity for the proposed Boson Factory and the anode circuit for the Cross-Field Amplifier, once considered as an alternative to the klystron as a possible power source. This presentation will focus on two specific structures: (1) the klystron output cavity; and (2) the linac input coupler. As the results demonstrate, supercomputing is fast becoming a viable technology that could conceivably replace actual cold-testing in the near future

  4. DOENEWS: Address of John S. Herrington, Secretary of Energy, at the National symposium on the superconducting super collider in Denver, Colorado, December 3, 1987

    International Nuclear Information System (INIS)

    Herrington, J.S.

    1987-12-01

    In this address, the President's support for basic science is briefly discussed, and support for the Superconducting Super Collider in particular is emphasized. Perceived benefits of the Super Collider are discussed, including benefits to the world, training for scientists, maintaining American competitiveness. Federal support of science, including Congressional action, is discussed briefly

  5. Micro vertex detector design for collider geometries

    International Nuclear Information System (INIS)

    Atkinson, M.; Crennell, D.; Fisher, C.M.; Hughes, P.; Kurtz, N.

    1984-05-01

    Previously the analysis of fixed target jet events using a scintillating optical fibre target to provide a projection of the topology on the plane transverse to the event axis has been considered. It was argued that this transverse plane projection is optimal for the detection of charm or beauty particle decay vertices. The idea is generalised to a jet analysis in a collider geometry particularly when associated with a high Psub(perpendicular to) or missing Esub(T) trigger. This report proposes a simple arrangement of fibres to give high precision track elements in the transverse plane projection coupled with a fast read-out capability. The principle physics aim of the design is to provide a tag for selecting top quark jets by detecting a beauty flavoured particle in the jet. (U.K.)

  6. SLAC linear collider conceptual design report

    International Nuclear Information System (INIS)

    1980-06-01

    The linear collider system is described in detail, including the transport system, the collider lattice, final focusing system, positron production, beam damping and compression, high current electron source, instrumentation and control, and the beam luminosity. The experimental facilities and the experimental uses are discussed along with the construction schedule and estimated costs. Appendices include a discussion of space charge effects in the linear accelerator, emittance growth in the collider, the final focus system, beam-beam instabilities and pinch effects, and detector backgrounds

  7. Performance of six 4.5 m SSC [Superconducting Super Collider] dipole model magnets

    International Nuclear Information System (INIS)

    Willen, E.; Dahl, P.; Cottingham, J.

    1986-01-01

    Six 4.5 m long dipole models for the proposed Superconducting Super Collider have been successfully tested. The magnets are cold-iron (and cold bore) 1-in-1 dipoles, wound with current density-graded high homogeneity NbTi cable in a two-layer cos θ coil of 40 mm inner diameter. The coil is prestressed by 15 mm wide stainless steel collars, and mounted in a circular, split iron yoke of 267 mm outer diameter, supported in a cylindrical yoke containment vessel. At 4.5 K the magnets reached a field of about 6.6 T with little training, or the short sample limit of the conductor, and in subcooled (2.6 - 2.4 K) liquid, 8 T was achieved. The allowed harmonics were close to the predicted values, and the unallowed harmonics small. The sextupole trim coil operated well above the required current with little training

  8. Overview of real-time kernels at the Superconducting Super Collider Laboratory

    International Nuclear Information System (INIS)

    Low, K.; Acharya, S.; Allen, M.; Faught, E.; Haenni, D.; Kalbfleisch, C.

    1991-05-01

    The Superconducting Super Collider Laboratory (SSCL) will have many subsystems that will require real-time microprocessor control. Examples of such sub-systems requiring real-time controls are power supply ramp generators and quench protection monitors for the superconducting magnets. We plan on using a commercial multitasking real-time kernel in these systems. These kernels must perform in a consistent, reliable and efficient manner. Actual performance measurements have been conducted on four different kernels, all running on the same hardware platform. The measurements fall into two categories. Throughput measurements covering the ''non-real-time'' aspects of the kernel include process creation/termination times, interprocess communication facilities involving messages, semaphores and shared memory and memory allocation/deallocation. Measurements concentrating on real-time response are context switch times, interrupt latencies and interrupt task response. 6 refs., 2 tabs

  9. An experimental study of the SSC [Superconducting Super Collider] magnet aperture criterion

    International Nuclear Information System (INIS)

    Merminga, N.; Edwards, D.; Finley, D.

    1988-01-01

    A beam dynamics experiment, performed in the Fermilab Tevatron, that was mainly motivated by planning for the Superconducting Super Collider (SSC) is described. Nonlinearities are introduced in the Tevatron by special sextupoles in order to stimulate the SSC environment. ''Smear'' is one of the parameters used to characterize the deviation from linear behavior. Smear is extracted from experimental data and compared with calculation over a wide range of conditions. The agreement is excellent. The closed orbit at injection trajectory reveal no deterioration even at the highest sextupole excitations. Measurements of the dynamic aperture are in general agreement with prediction. Particles captured on nonlinear resonance islands are directly observed and measurements are performed for the first time. The stability of the islands under tune modulation is investigated. 4 refs., 8 figs

  10. Overview of real-time kernels at the Superconducting Super Collider Laboratory

    International Nuclear Information System (INIS)

    Low, K.; Acharya, S.; Allen, M.; Faught, E.; Haenni, D.; Kalbfleisch, C.

    1991-01-01

    The Superconducting Super Collider Laboratory (SSCL) will have many subsystems that will require real-time microprocessor control. Examples of such Sub-systems requiring real-time controls are power supply ramp generators and quench protection monitors for the superconducting magnets. The authors plan on using a commercial multitasking real-time kernel in these systems. These kernels must perform in a consistent, reliable and efficient manner. Actual performance measurements have been conducted on four different kernels, all running on the same hardware platform. The measurements fall into two categories. Throughput measurements covering the 'non-real-time' aspects of the kernel include process creation/termination times, interprocess communication facilities involving messages, semaphores and shared memory and memory allocation/deallocation. Measurements concentrating on real-time response are context switch times, interrupt latencies and interrupt task response

  11. An aerial radiological survey of the Superconducting Super Collider Laboratory and surrounding area, Waxahachie, Texas

    International Nuclear Information System (INIS)

    Fritzsche, A.E.

    1993-02-01

    An aerial radiological survey was conducted over the Superconducting Super Collider Laboratory (SSCL) site from July 22 through August 20,1991. Parallel lines were flown at intervals of 305 meters over a 1,036-square-kilometer (400-square-mile) area surrounding Waxahachie, Texas. The 70,000 terrestrial gamma energy spectra obtained were reduced to an exposure rate contour map overlaid on a United States Geological Survey (USGS) map of the area. The mean terrestrial exposure rate measured was 5.4 μR/h at 1 meter above ground level. Comparison to ground-based measurements shows good agreement. No anomalous or man-made isotopes were detected

  12. Tunnel visions the rise and fall of the Superconducting Super Collider

    CERN Document Server

    Riordan, Michael; Kolb, Adrienne W

    2015-01-01

    Starting in the 1950s, US physicists dominated the search for elementary particles; aided by the association of this research with national security, they held this position for decades. In an effort to maintain their hegemony and track down the elusive Higgs boson, they convinced President Reagan and Congress to support construction of the multibillion-dollar Superconducting Super Collider project in Texas-the largest basic-science project ever attempted. But after the Cold War ended and the estimated SSC cost surpassed ten billion dollars, Congress terminated the project in October 1993. Drawing on extensive archival research, contemporaneous press accounts, and over one hundred interviews with scientists, engineers, government officials, and others involved, Tunnel Visions tells the riveting story of the aborted SSC project. The authors examine the complex, interrelated causes for its demise, including problems of large-project management, continuing cost overruns, and lack of foreign contributions. In doi...

  13. Building the Superconducting Super Collider, 1989-1993: The Problem of Project Management

    Science.gov (United States)

    Riordan, Michael

    2011-04-01

    In attempting to construct the Superconducting Super Collider, US particle physicists faced a challenge unprecedented in the history of science. The SSC was the biggest and costliest pure scientific project ever, comparable in overall scale to the Manhattan Project or the Panama Canal - an order of magnitude larger than any previous particle accelerator or collider project. Managing such an enormous endeavor involved coordinating conventional-construction, magnet-manufacturing, and detector-building efforts costing over a billion dollars apiece. Because project-management experience at this scale did not exist within the physics community, the Universities Research Association and the US Department of Energy turned to companies and individuals from the military-industrial complex, with mixed results. The absence of a strong, qualified individual to serve as Project Manager throughout the duration of the project was a major problem. I contend that these problems in its project management contributed importantly to the SSC's 1993 demise. Research supported by NSF Award No. 823296.

  14. Acoustic Design of Super-light Structures

    DEFF Research Database (Denmark)

    Christensen, Jacob Ellehauge; Hertz, Kristian Dahl; Brunskog, Jonas

    in a controlled laboratory environment have been conducted with the element in order to evaluate its performance in airborne and impact sound insulation. These results have been employed in simulations of the flanking transmission to estimate the in-situ performance of the super-light slab element. The flanking...... aggregate (leca) along with a newly developed technology called pearl-chain reinforcement, which is a system for post-tensioning. Here, it is shown how to combine these technologies within a precast super-light slab element, while honoring the requirements of a holistic design. Acoustic experiments...

  15. SLAC linear collider conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    The linear collider system is described in detail, including the transport system, the collider lattice, final focusing system, positron production, beam damping and compression, high current electron source, instrumentation and control, and the beam luminosity. The experimental facilities and the experimental uses are discussed along with the construction schedule and estimated costs. Appendices include a discussion of space charge effects in the linear accelerator, emittance growth in the collider, the final focus system, beam-beam instabilities and pinch effects, and detector backgrounds. (GHT)

  16. Meeting to discuss laser cavity design for photon linear collider ...

    Indian Academy of Sciences (India)

    linear collider – Daresbury, UK, 10 January 2006. ALEXANDER JOHN FINCH ... On 10 January 2006, a meeting to discuss laser cavity design for the photon linear collider was held at the Daresbury .... important to continue making contact with people in fields outside the accelerator community. Few experts at this meeting ...

  17. Colliders

    CERN Document Server

    Chou, Weiren

    2014-01-01

    The idea of colliding two particle beams to fully exploit the energy of accelerated particles was first proposed by Rolf Wideröe, who in 1943 applied for a patent on the collider concept and was awarded the patent in 1953. The first three colliders — AdA in Italy, CBX in the US, and VEP-1 in the then Soviet Union — came to operation about 50 years ago in the mid-1960s. A number of other colliders followed. Over the past decades, colliders defined the energy frontier in particle physics. Different types of colliers — proton–proton, proton–antiproton, electron–positron, electron–proton, electron-ion and ion-ion colliders — have played complementary roles in fully mapping out the constituents and forces in the Standard Model (SM). We are now at a point where all predicted SM constituents of matter and forces have been found, and all the latest ones were found at colliders. Colliders also play a critical role in advancing beam physics, accelerator research and technology development. It is timel...

  18. Thermal and structural performance of a single tube support post for the Superconducting Super Collider dipole magnet cryostat

    International Nuclear Information System (INIS)

    Boroski, W.N.; Nicol, T.H.; Ruschman, M.K.; Schoo, C.J.

    1993-07-01

    The reentrant support post currently incorporated in the Superconducting Super Collider (SSC) dipole cryostat has been shown to meet the structural and thermal requirements of the cryostat, both in prototype magnet assemblies and through component testing. However, the reentrant post design has two major drawbacks: tight dimensional control on all components, and cost driven by these tolerance constraints and a complex assembly procedure. A single tube support post has been developed as an alternative to the reentrant post design. Several prototype assemblies have been fabricated and subjected to structural testing. Compressive, tensile, and bending forces were applied to each assembly with deflection measured at several locations. A prototype support post has also been thermally evaluated in a heat leak measurement facility. Heat load to 4.2 K was measured with the intermediate post intercept operating at various temperatures while thermometers positioned along the conductive path of the post mapped thermal gradients. Results from these measurements indicate the single tube support post meets the design criteria for the SSC dipole magnet cryostat support system

  19. Super liquid density target designs

    International Nuclear Information System (INIS)

    Pan, Y.L.; Bailey, D.S.

    1976-01-01

    The success of laser fusion depends on obtaining near isentropic compression of fuel to very high densities and igniting this fuel. To date, the results of laser fusion experiments have been based mainly on the exploding pusher implosion of fusion capsules consisting of thin glass microballoons (wall thickness of less than 1 micron) filled with low density DT gas (initial density of a few mg/cc). Maximum DT densities of a few tenths of g/cc and temperatures of a few keV have been achieved in these experiments. We will discuss the results of LASNEX target design calculations for targets which: (a) can compress fuel to much higher densities using the capabilities of existing Nd-glass systems at LLL; (b) allow experimental measurement of the peak fuel density achieved

  20. 3D calculations of the Superconducting Super Collider (SSC) 3 Tesla magnet

    International Nuclear Information System (INIS)

    Lari, R.J.

    1984-01-01

    A 20 TeV Superconducting Super Collider (SSC) proton accelerator is being proposed by the High Energy Physics Community. One proposal would consist of a ring of magnets 164 km in circumference with a field strength of 3 Tesla and would cost 2.7 billion dollars. The magnet consists of stacked steel laminations with superconducting coils. The desired field uniformity is obtained for all fields from 0.2 to 3 Tesla by using three (or more) different pole shapes. These three different laminations are stacked in the order 1-2-3-1-2-3-... creating a truly three dimensional geometry. A three laminated stack 1-2-3 with periodic boundary conditions at 1 and 3 was assigned about 5000 finite elements per lamination and solved using the computer program TOSCA. To check the TOSCA results, the field of each of the three different shaped laminations was calculated separately using periodic boundary conditions and compared to the two dimensional field calculations using TRIM. This was done for a constant permeability of 2000 and using the B-H table for fully annealed 1010 steel. The difference of the field calculations in the region of interest was always less than +-.2%

  1. Dynamic modeling and simulation of the superconducting super collider cryogenic helium system

    International Nuclear Information System (INIS)

    Hartzog, D.G.; Fox, V.G.; Mathias, P.M.; Nahmias, D.; McAshan, M.; Carcagno, R.

    1989-01-01

    To study the operation of the Superconducting Super Collider (SSC) cryogenic system during transient operating conditions, they have developed and programmed in FORTRAN, a time-dependent, nonlinear, homogeneous, lumped-parameter simulation model of the SSC cryogenic system. This dynamic simulator has a modular structure so that process flowsheet modifications can be easily accommodated with minimal recoding. It uses the LSODES integration package to advance the solution in time. For helium properties it uses Air Products implementation of the standard thermodynamic model developed by the NBS. Two additional simplified helium thermodynamic models developed by Air Products are available as options to reduce computation time. To facilitate the interpretation of output, they have linked the simulator to the speakeasy conversational language. The authors present a flowsheet of the process simulated, and the material and energy balances used in the engineering models. They then show simulation results for three transient operating scenarios: startup of the refrigeration system from standby to full load; the loss of 4K refrigeration caused by the tripping of one of two parallel compressors in a sector; and a full-field quench of a single magnet half-cell. They discuss the response of the fluid within the cryogenic circuits during these scenarios. 14 refs., 19 figs., 2 tabs

  2. Technical assessment of environmental and cost implications of superconducting super collider decommissioning

    International Nuclear Information System (INIS)

    Chen, S.Y.; Opelka, J.H.; Chambers, W.C.; Stavrou, J.

    1988-07-01

    Potential environmental and cost implications of decommissioning the proposed Superconducting Super Collider (SSC) are examined. One decommissioning alternative is selected for general assessment. That alternative includes removal of the major sources of radioactivity induced during operation and temporary entombment of remaining underground facilities. On the suface, the campus complex would be left in place for future use, but most other aboveground features would be dismantled and removed. Because of the low level of radioactivity that would be induced in SSC components during system operation, potential radiological impacts to the environment from decommissioning would be benign, and the estimated total occupational radiation dose to workers would be less that 5 person-rem. Potential nonradiological impacts of decommissioning are not evaluated because of the lack of site-specific data. The total estimated cost of decommissioning operations is $38 million. Although few current regulations are explicitly applicable, the SSC decommissioning operation should not encounter any difficulty in complying with potentially applicable regulatory constraints. Upon completion of decommissioning, the SSC site surface could be returned to unrestricted use, but it is recommended that a degree of institutional control and environmental monitoring be carried out for a short period following decommissioning. 11 refs., 8 figs., 6 tabs

  3. A frequency response study of dipole magnet cold mass for the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Leung, K.K.; Nicol, T.

    1991-03-01

    This paper describes the technique for calculating the dynamic response of the Superconducting Super Collider (SSC) dipole magnet cold mass. Dynamic motion specification and beam location stability of the cold mass are not available at the present time. Dynamic response of the cold mass depends on measures excitation at the location of the magnet anchoring points on the other factors such as: (1) composite damping of the dipole magnet system, and (2) coupling effect of the cryogenic vessel, concrete slab, and soil to structure interactions. Nevertheless, the cold mass has the largest effect on the motion of the SSC machine. This dynamic analysis is based on response spectra analysis using the finite element method. An upper bond solution will result from this method of analysis, compared to the transient dynamic response method which involves step-by-step time integration from recorded accelerograms. Since no recorded ground motions are available for the SSC site, response spectra from another source shall be employed for the present analysis. 4 refs., 3 figs., 1 tab

  4. Photon-counting monolithic avalanche photodiode arrays for the super collider

    International Nuclear Information System (INIS)

    Ishaque, A.N.; Castleberry, D.E.; Rougeot, H.M.

    1994-01-01

    In fiber tracking, calorimetry, and other high energy and nuclear physics experiments, the need arises to detect an optical signal consisting of a few photons (in some cases a single photoelectron) with a detector insensitive to magnetic fields. Previous attempts to detect a single photoelectron have involved avalanche photodiodes (APDs) operated in the Geiger mode, the visible light photon counter, and a photomultiplier tube with an APD as the anode. In this paper it is demonstrated that silicon APDs, biased below the breakdown voltage, can be used to detect a signal of a few photons with conventional pulse counting circuitry at room temperature. Moderate cooling, it is further argued, could make it possible to detect a single photoelectron. Monolithic arrays of silicon avalanche photodiodes fabricated by Radiation Monitoring Devices, Inc. (RMD) were evaluated for possible use in the Super Collider detector systems. Measurements on 3 element x 3 element (2 mm pitch) APD arrays, using pulse counting circuitry with a charge sensitive amplifier (CSA) and a Gaussian filter, are reported and found to conform to a simple noise model. The model is used to obtain the optimal operating point. Experimental results are described in Section II, modeling results in Section III, and the conclusions are summarized in Section IV

  5. Estimate of the longitudinal and transverse impedances for the superconducting super collider

    International Nuclear Information System (INIS)

    Ng, K.Y.

    1984-01-01

    We try to estimate the longitudinal impedance per harmonic Z/sub L//n as well as the transverse impedance Z/sub T/ for the 20 TeV Superconducting Super Collider (SSC). Effects due to space charge, wall resistivity, bellows, monitor plates, synchrotron radiation are considered. The resulting Z/sub L//n and Z/sub T/ are plotted. Such a knowledge of Z/sub L//n and Z/sub T/ is necessary in computing the limits of many types of instabilities for the bunched beam. To be more specific, in our estimation, we consider the special case of an injection energy of 1 TeV and assume a maximum field of 5 Tesla in the SSC dipoles. In some cases, we also assume a 60 0 FODO cell structure consisting of 4 dipoles and 2 quadrupoles each with 2 long straight sections. The beampipe radius and beam radius are chosen as b = 1.0 in. and a = 0.05 cm respectively. Totally, the storage ring consists of 364 cells and has a mean radius of R = 17.38 km. Our results show that when monitor plates matched at both ends (such as the ones used in the Tevatron) are used, their effects dominate both Z/sub L//n and Z/sub T. 7 references, 5 figures

  6. Concept design of the high voltage transmission system for the collider tunnel

    International Nuclear Information System (INIS)

    Norman, L.S.

    1992-03-01

    In order to provide electrical service to the Superconducting Super Collider Laboratory (SSCL) 54-mile-circumference collider of 125 MVA at 69 kV or 155 MVA at 138 kV of distributed power, it must be demonstrated that the concept design for a high-voltage transmission system can meet the distribution requirements of the collider electrical system with its cryogenic system's large motor loads and its pulsed power technical systems. It is a practical design, safe for operating personnel and cost-effective. The normal high-voltage transmission techniques of overhead and underground around the 54-mile collider tunnel could not be applied because of technical and physical constraints, or was environmentally unacceptable. The approach taken to solve these problems is the installation of 69-kV or 138-kV exposed solid dielectric transmission cable inside the collider tunnel with the superconducting magnets, cryogenic piping, electrical medium, and low-voltage distribution systems, and electronic/instrumentation wiring systems. This mixed-use approach has never been attempted in a collider tunnel. Research into all aspects of the engineering and installation problems and consultation with transmission cable manufacturers, electrical utilities, and European entities with similar installations -- such as the Channel Tunnel -- demonstrate that the concept design is feasible and practical. This paper presents a history of the evolution of the concept design. Design studies are underway to determine the system configuration and voltages. Included in this report are tunnel transmission cable system considerations and evaluation of solid dielectric high-voltage cable design

  7. Concept design of the high-voltage transmission system for the collider tunnel

    International Nuclear Information System (INIS)

    Norman, L.S.

    1992-01-01

    In order to provide electrical service to the Superconducting Super Collider Laboratory (SSCL) 54-mile-circumference collider of 125 MVA at 69 kV or 155 MVA at 138 kV of distributed power, it must be demonstrated that the concept design for a high-voltage transmission system can meet the distribution requirements of the collider electrical system with its cryogenic system's large motor loads and its pulsed power technical systems. It is a practical design, safe for operating personnel and cost-effective. The normal high-voltage transmission techniques of overhead and underground around the 54-mile collider tunnel could not be applied because of technical and physical constraints, or was environmentally unacceptable. The approach taken to solve these problems is the installation of 69-kV or 138-kV exposed solid dielectric transmission cable inside the collider tunnel with the superconducting magnets, cryogenic piping, electrical medium, and low-voltage distribution systems, and electronic/instrumentation wiring systems. This mixed-use approach has never been attempted in a collider tunnel. Research into all aspects of the engineering and installation problems and consultation with transmission cable manufacturers, electrical utilities, and European entities with similar installations-such as the Channel Tunnel-demonstrate that the concept design is feasible and practical. This paper presents a history of the evolution of the concept design. Design studies are underway to determine the system configuration and voltages. Included in this report are tunnel transmission cable system considerations and evaluation of solid dielectric high-voltage cable design

  8. A conceptual design of Final Focus Systems for linear colliders

    International Nuclear Information System (INIS)

    Brown, K.L.

    1987-06-01

    Linear colliders are a relatively recent development in the evolution of particle accelerators. This report discusses some of the approaches that have been considered for the design of Final Focus Systems to demagnify the beam exiting from a linac to the small size suitable for collisions at the interaction point. The system receiving the most attention is the one adopted for the SLAC Linear Collider. However, the theory and optical techniques discussed should be applicable to the design efforts for future machines

  9. The Next Linear Collider Design: NLC 2001

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Alberta

    2001-08-21

    Recent studies in elementary particle physics have made the need for an e{sup +}e{sup -} linear collider able to reach energies of 500 GeV and above with high luminosity more compelling than ever. Observations and measurements completed in the last five years at the SLC (SLAC), LEP (CERN), and the Tevatron (FNAL) can be explained only by the existence of at least one particle or interaction that has not yet been directly observed in experiment. The Higgs boson of the Standard Model could be that particle. The data point strongly to a mass for the Higgs boson that is just beyond the reach of existing colliders. This brings great urgency and excitement to the potential for discovery at the upgraded Tevatron early in this decade, and almost assures that later experiments at the LHC will find new physics. But the next generation of experiments to be mounted by the world-wide particle physics community must not only find this new physics, they must find out what it is. These experiments must also define the next important threshold in energy. The need is to understand physics at the TeV energy scale as well as the physics at the 100-GeV energy scale is now understood. This will require both the LHC and a companion linear electron-positron collider.

  10. The Next Linear Collider Design: NLC 2001

    International Nuclear Information System (INIS)

    Larsen, Alberta

    2001-01-01

    Recent studies in elementary particle physics have made the need for an e + e - linear collider able to reach energies of 500 GeV and above with high luminosity more compelling than ever. Observations and measurements completed in the last five years at the SLC (SLAC), LEP (CERN), and the Tevatron (FNAL) can be explained only by the existence of at least one particle or interaction that has not yet been directly observed in experiment. The Higgs boson of the Standard Model could be that particle. The data point strongly to a mass for the Higgs boson that is just beyond the reach of existing colliders. This brings great urgency and excitement to the potential for discovery at the upgraded Tevatron early in this decade, and almost assures that later experiments at the LHC will find new physics. But the next generation of experiments to be mounted by the world-wide particle physics community must not only find this new physics, they must find out what it is. These experiments must also define the next important threshold in energy. The need is to understand physics at the TeV energy scale as well as the physics at the 100-GeV energy scale is now understood. This will require both the LHC and a companion linear electron-positron collider

  11. Thermal performance measurements of a 100 percent polyester MLI [multilayer insulation] system for the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Boroski, W.N.; Gonczy, J.D.; Niemann, R.C.

    1989-09-01

    Thermal performance measurements of a 100 percent polyester multilayer insulation (MLI) system for the Superconducting Super Collider (SSC) were conducted in a Heat Leak Test Facility (HLTF) under three experimental test arrangements. Each experiment measured the thermal performance of a 32-layer MLI blanket instrumented with twenty foil sensors to measure interstitial layer temperatures. Heat leak values and sensor temperatures were monitored during transient and steady state conditions under both design and degraded insulating vacuums. Heat leak values were measured using a heatmeter. MLI interstitial layer temperatures were measured using Cryogenic Linear Temperature Sensors (CLTS). Platinum resistors monitored system temperatures. High vacuum was measured using ion gauges; degraded vacuum employed thermocouple gauges. A four-wire system monitored instrumentation sensors and calibration heaters. An on-line computerized data acquisition system recorded and processes data. This paper reports on the instrumentation and experimental preparation used in carrying out these measurements. In complement with this paper is an associate paper bearing the same title head, but with the title extension 'Part 2: Laboratory results (300K--80K). 13 refs., 7 figs

  12. Design considerations and expectations of a very large hadron collider

    International Nuclear Information System (INIS)

    Ruggiero, A.G.

    1996-01-01

    The ELOISATRON Project is a proton-proton collider at very high energy and very large luminosity. The main goal is to determine the ultimate performance that is possible to achieve with reasonable extrapolation of the present accelerator technology. A complete study and design of the collider requires that several steps of investigations are undertaken. The authors count five of such steps as outlined in the report

  13. Report of the DOE Office of Energy Research review committee on the Solenoidal Detector Collaboration of the Superconducting Super Collider

    International Nuclear Information System (INIS)

    1992-11-01

    At the request of Dr. James F. Decker, Deputy Director of DOE's Office of Energy Research, a technical review committee was assembled to perform a peer review of the Solenoidal Detector Collaboration (SDC) from October 26 to October 30, 1992, at the Superconducting Super Collider Laboratory (SSCL). The Energy Research Review Committee (ERC) evaluated the technical feasibility, the estimated cost, the proposed construction schedule, and the management arrangements for the SDC detector as documented in the SDC Technical Design Report, SDC Project Cost/Schedule Summary Book, SDC draft Project Management Plan, and other materials prepared for and presented to the Committee by the SDC management. The SDC detector is one of two major detector facilities anticipated at the SSC. The SDC project will be carried out by a worldwide collaboration of almost 1000 scientists, engineers, and managers from over 100 universities, national laboratories, and industries. The SDC will construct a state-of-the-art, general-purpose detector weighing over 26,000 tons and the size of an eight-story building, to perform a broad class of high energy physics experiments at the SSC beginning in the fall of 1999. The design of the SSC detector emphasizes tracking in a strong solenoidal magnetic field to measure charged-particle momenta and to assist in providing good electron and muon identification; identification of neutrinos and other penetrating particles using a hermetic calorimeter; studies of jets of hadrons using both calorimeter and tracking systems; and studies of short-lived particles, such as B mesons, and pattern recognition within complex events using a silicon-based vertex tracking system. These capabilities are the result of the intensive research, development, and design activities undertaken since 1989 by this very large and capable collaboration

  14. Conceptual Design for SuperCDMS SNOLAB

    International Nuclear Information System (INIS)

    Brink, Paul

    2012-01-01

    Beyond the present dark matter direct detection experiment at the Soudan underground laboratory, the SuperCDMS Collaboration is engaged in R and D activities for a 100-kg scale germanium dark matter experiment nominally sited at SNOLAB (2070 m overburden of rock). The expected sensitivity after 3 years of running is 3 x 10 -46 cm 2 for the spin-independent cross section, an order of magnitude improvement over present exclusion limits for WIMP masses ∼80 GeV/c 2 . At this depth, and appropriate design of shielding and cryostat, neutron backgrounds will be negligible. The baseline design is an expanded version of CDMS II with Ge substrates (100 x 33 mm discs) instrumented with the iZIP phonon sensor layout to achieve the electron surface-event rejection power required.

  15. A silicon strip module for the ATLAS inner detector upgrade in the super LHC collider

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Sevilla, S., E-mail: Sergio.Gonzalez.Sevilla@cern.ch [DPNC, University of Geneva, CH 1211 Geneva 4 (Switzerland); Barbier, G. [DPNC, University of Geneva, CH 1211 Geneva 4 (Switzerland); Anghinolfi, F. [European Organization for Nuclear Research, CERN CH-1211, Geneva 23 (Switzerland); Cadoux, F.; Clark, A. [DPNC, University of Geneva, CH 1211 Geneva 4 (Switzerland); Dabrowski, W.; Dwuznik, M. [AGH University of Sceince and Technology, Faculty of Physics and Applied Computer Science, Krakow (Poland); Ferrere, D. [DPNC, University of Geneva, CH 1211 Geneva 4 (Switzerland); Garcia, C. [IFIC, Instituto de Fisica Corpuscular (CSIC-Universitat de Valencia), Edificio Investigacion Paterna, Apartado 22085 46071 Valencia (Spain); Ikegami, Y. [KEK, High Energy Accelerator Research Organization, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan); Hara, K. [University of Tsukuba, School of Pure and Applied Sciences, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571 (Japan); Jakobs, K. [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Kaplon, J. [European Organization for Nuclear Research, CERN CH-1211, Geneva 23 (Switzerland); Koriki, T. [KEK, High Energy Accelerator Research Organization, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan); Lacasta, C. [IFIC, Instituto de Fisica Corpuscular (CSIC-Universitat de Valencia), Edificio Investigacion Paterna, Apartado 22085 46071 Valencia (Spain); La Marra, D. [DPNC, University of Geneva, CH 1211 Geneva 4 (Switzerland); Marti i Garcia, S. [IFIC, Instituto de Fisica Corpuscular (CSIC-Universitat de Valencia), Edificio Investigacion Paterna, Apartado 22085 46071 Valencia (Spain); Parzefall, U. [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Pohl, M. [DPNC, University of Geneva, CH 1211 Geneva 4 (Switzerland); Terada, S. [KEK, High Energy Accelerator Research Organization, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan)

    2011-04-21

    The ATLAS detector is a general purpose experiment designed to fully exploit the discovery potential of the Large Hadron Collider (LHC) at a nominal luminosity of 10{sup 34} cm{sup -2} s{sup -1}. It is expected that after several years of successful data-taking, the LHC physics program will be extended by increasing the peak luminosity by one order of magnitude. For ATLAS, an upgrade scenario will imply the complete replacement of the Inner Detector (ID), since the current tracker will not provide the required performance due to cumulated radiation damage and a dramatic increase in the detector occupancy. In this paper, a proposal of a double-sided silicon micro-strip module for the short-strip region of the future ATLAS ID is presented. The expected thermal performance based upon detailed FEA simulations is discussed. First electrical results from a prototype version of the next generation readout front-end chips are also shown.

  16. Mechanical design and analysis of the 2D cross-section of the SSC collider dipole magnet

    International Nuclear Information System (INIS)

    Strait, J.; Kerby, J.; Bossert, R.; Carson, J.

    1991-05-01

    This paper describes the mechanical design of the two dimensional cross-section of the base-line collider dipole magnet for the Superconducting Super Collider. The components described here are the collar laminations, the tapered keys that lock the upper and lower collars, the yoke laminations, the cold mass shell. We describe in detail the shape of the outer surface of the collars which defines the yoke-collar interface, and the shape of the collar interior, which defines the conductor placement. Other features of the collar and yoke will be described in somewhat less detail. 20 refs., 12 figs. , 6 tabs

  17. Impact of high energy high intensity proton beams on targets: Case studies for Super Proton Synchrotron and Large Hadron Collider

    Directory of Open Access Journals (Sweden)

    N. A. Tahir

    2012-05-01

    Full Text Available The Large Hadron Collider (LHC is designed to collide two proton beams with unprecedented particle energy of 7 TeV. Each beam comprises 2808 bunches and the separation between two neighboring bunches is 25 ns. The energy stored in each beam is 362 MJ, sufficient to melt 500 kg copper. Safety of operation is very important when working with such powerful beams. An accidental release of even a very small fraction of the beam energy can result in severe damage to the equipment. The machine protection system is essential to handle all types of possible accidental hazards; however, it is important to know about possible consequences of failures. One of the critical failure scenarios is when the entire beam is lost at a single point. In this paper we present detailed numerical simulations of the full impact of one LHC beam on a cylindrical solid carbon target. First, the energy deposition by the protons is calculated with the FLUKA code and this energy deposition is used in the BIG2 code to study the corresponding thermodynamic and the hydrodynamic response of the target that leads to a reduction in the density. The modified density distribution is used in FLUKA to calculate new energy loss distribution and the two codes are thus run iteratively. A suitable iteration step is considered to be the time interval during which the target density along the axis decreases by 15%–20%. Our simulations suggest that the full LHC proton beam penetrates up to 25 m in solid carbon whereas the range of the shower from a single proton in solid carbon is just about 3 m (hydrodynamic tunneling effect. It is planned to perform experiments at the experimental facility HiRadMat (High Radiation Materials at CERN using the proton beam from the Super Proton Synchrotron (SPS, to compare experimental results with the theoretical predictions. Therefore simulations of the response of a solid copper cylindrical target hit by the SPS beam were performed. The particle

  18. Impact of high energy high intensity proton beams on targets: Case studies for Super Proton Synchrotron and Large Hadron Collider

    Science.gov (United States)

    Tahir, N. A.; Sancho, J. Blanco; Shutov, A.; Schmidt, R.; Piriz, A. R.

    2012-05-01

    The Large Hadron Collider (LHC) is designed to collide two proton beams with unprecedented particle energy of 7 TeV. Each beam comprises 2808 bunches and the separation between two neighboring bunches is 25 ns. The energy stored in each beam is 362 MJ, sufficient to melt 500 kg copper. Safety of operation is very important when working with such powerful beams. An accidental release of even a very small fraction of the beam energy can result in severe damage to the equipment. The machine protection system is essential to handle all types of possible accidental hazards; however, it is important to know about possible consequences of failures. One of the critical failure scenarios is when the entire beam is lost at a single point. In this paper we present detailed numerical simulations of the full impact of one LHC beam on a cylindrical solid carbon target. First, the energy deposition by the protons is calculated with the FLUKA code and this energy deposition is used in the BIG2 code to study the corresponding thermodynamic and the hydrodynamic response of the target that leads to a reduction in the density. The modified density distribution is used in FLUKA to calculate new energy loss distribution and the two codes are thus run iteratively. A suitable iteration step is considered to be the time interval during which the target density along the axis decreases by 15%-20%. Our simulations suggest that the full LHC proton beam penetrates up to 25 m in solid carbon whereas the range of the shower from a single proton in solid carbon is just about 3 m (hydrodynamic tunneling effect). It is planned to perform experiments at the experimental facility HiRadMat (High Radiation Materials) at CERN using the proton beam from the Super Proton Synchrotron (SPS), to compare experimental results with the theoretical predictions. Therefore simulations of the response of a solid copper cylindrical target hit by the SPS beam were performed. The particle energy in the SPS beam is 440

  19. Design of the muon collider lattice: Present status

    International Nuclear Information System (INIS)

    Garren, A.; Courant, E.; Gallardo, J.

    1996-05-01

    The last component of a muon collider facility, as presently envisioned, is a colliding-beam storage ring. Design studies on various problems for this ring have been in progress over the past year. In this paper we discuss the current status of the design. The projected muon currents require very low beta values at the IP, β* = 3 mm, in order to achieve the design luminosity of L = 10 35 cm -2 s -1 . The beta values in the final-focus quadrupoles are roughly 400 km. To cancel the corresponding chromaticities, sextupole schemes for local correction have been included in the optics of the experimental insertion. The hour-glass effect constraints the bunch length to be comparable too. To obtain such short bunches with reasonable rf voltage requires a very small value of the momentum compaction a, which can be obtained by using flexible momentum compaction (FMC) modules in the arcs. A preliminary design of a complete collider ring has now been made; it uses an experimental insertion and arc modules as well as a utility insertion. The layout of this ring is shown schematically, and its parameters are summarized. Though some engineering features are unrealistic, and the beam performance needs some improvement, we believe that this study can serve as the basis for a workable collider design. The remaining sections of the paper will describe the lattice, show beam behaviour, and discuss future design studies

  20. Advanced composite materials and processes for the manufacture of SSC (Superconducting Super Collider) and RHIC (Relativistic Heavy Ion Collider) superconducting magnets used at cryogenic temperatures in a high radiation environment

    Energy Technology Data Exchange (ETDEWEB)

    Sondericker, J.H.

    1989-01-01

    Presently, BNL work on superconducting magnets centers mainly on the development of 17 meter length dipoles for the Superconducting Super Collider Project, approved for construction at Waxahatchie, Texas and 9.7 meter dipoles and quadrupoles for the Relativistic Heavy Ion Collider, a BNL project to start construction next year. This paper will discuss the role of composites in the manufacture of magnets, their operational requirements in cryogenic and radiation environments, and the benefits derived from their use. 13 figs.

  1. Advanced composite materials and processes for the manufacture of SSC [Superconducting Super Collider] and RHIC [Relativistic Heavy Ion Collider] superconducting magnets used at cryogenic temperatures in a high radiation environment

    International Nuclear Information System (INIS)

    Sondericker, J.H.

    1989-01-01

    Presently, BNL work on superconducting magnets centers mainly on the development of 17 meter length dipoles for the Superconducting Super Collider Project, approved for construction at Waxahatchie, Texas and 9.7 meter dipoles and quadrupoles for the Relativistic Heavy Ion Collider, a BNL project to start construction next year. This paper will discuss the role of composites in the manufacture of magnets, their operational requirements in cryogenic and radiation environments, and the benefits derived from their use. 13 figs

  2. Experimental program to build a multimegawatt lasertron for super linear colliders

    International Nuclear Information System (INIS)

    Garwin, E.L.; Herrmannsfeldt, W.B.; Sinclair, C.; Weaver, J.N.; Welch, J.J.; Wilson, P.B.

    1985-04-01

    A lasertron (a microwave ''triode'' with an RF output cavity and an RF modulated laser to illuminate a photocathode) is a possible high power RF amplifier for TeV linear colliders. As the first step toward building a 35 MW, S-band lasertron for a proof of principle demonstration, a 400 kV dc diode is being designed with a GaAs photocathode, a drift-tube and a collector. After some cathode life tests are made in the diode, an RF output cavity will replace the drift tube and a mode-locked, frequency-doubled, Nd:YAG laser, modulated to produce a 1 us-long comb of 60 ps pulses at a 2856 MHz rate, will be used to illuminate the photocathode to make an RF power source out of the device. This paper discusses the plans for the project and includes some results of numerical simulation studies of the lasertron as well as some of the ultra-high vacuum and mechanical design requirements for incorporating a photocathode

  3. Progress towards the design of a next linear collider

    International Nuclear Information System (INIS)

    Ruth, R.D.

    1990-06-01

    The purpose of this paper is to review the ongoing research at SLAC toward the design of a next-generation linear collider (NLC). The energy of the collider is taken to be 0.5 TeV in the CM with a view towards upgrading to 1.0 TeV. The luminosity is in the range of 10 33 to 10 34 cm -2 sec -1 . The energy is achieved by acceleration with a gradient of about a factor of five higher than SLC, which yields a linear collider approximately twice as long as SLC. The detailed trade-off length and acceleration will be based on total cost. A very broad optimum occurs when the total linear costs equals the total cost of RF power. The luminosity of the linear collider is obtained basically in two ways. First, the cross-sectional area of the beam is decreased primarily by decreasing the vertical size. This creates a flat beam and is useful for controlling beamstrahlung. Secondly, several bunches (∼10) are accelerated on each RF fill in order to more efficiently extract energy from the RF structure. This effectively increases the repetition rate by an order of magnitude. In the next several sections, we trace the beam through the collider to review the research program at SLAC. 41 refs., 1 fig

  4. Vacuum design for a superconducting mini-collider

    International Nuclear Information System (INIS)

    Barletta, W.A.; Monteiro, S.

    1991-01-01

    The phi factory (Superconducting Mini-Collider or SMC) proposed for construction at UCLA is a single storage ring with circulating currents of 2 A each of electrons and positrons. The small circumference exacerbates the difficulties of handling the gas load due to photodesorption from the chamber walls. The authors analyze the vacuum system for the phi factory to specify design choices

  5. A Novel Final Focus Design for Future Linear Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Seryi, Andrei

    2000-05-30

    The length, complexity and cost of the present Final Focus designs for linear colliders grows very quickly with the beam energy. In this letter, a novel final focus system is presented and compared with the one proposed for NLC. This new design is simpler, shorter and cheaper, with comparable bandwidth, tolerances and tunability. Moreover, the length scales slower than linearly with energy allowing for a more flexible design which is applicable over a much larger energy range.

  6. Development and applications of super high energy collider accelerators. Vol. 1

    Energy Technology Data Exchange (ETDEWEB)

    Abdelaziz, E M [National Center for Nuclear Safety and Radiation Control, Atomic Energy Authority, Cairo, (Egypt)

    1996-03-01

    This paper presents a review of cyclic accelerators and their energy limitations. A description is given of the phase stability principle and evaluation of the synchrotron, an accelerator without energy limitation. Then the concept of colliding beams emerged to yield doubling of the beam energy as in the Tevatron 2 trillion electron volts (TeV) proton collider at Fermilab, and the large harden collider (LHD) which is now planned as a 14-TeV machine in the 27 Kilometer tunnel of the large electron positron (LEP) collider at CERN. Then presentation is given of the superconducting supercollider (SSC), a giant accelerator complex with energy 40-TeV in a tunnel 87 Kilometers in circumference under the country surrounding Waxahachile in Texas, U.S.A. These superhigh energy accelerators are intended to smash protons against protons at energy sufficient to reveal the nature of matter and to consolidate the prevailing general theory of elementary particles. 12 figs., 1 tab.

  7. Development and applications of super high energy collider accelerators. Vol. 1

    International Nuclear Information System (INIS)

    Abdelaziz, E.M.

    1996-01-01

    This paper presents a review of cyclic accelerators and their energy limitations. A description is given of the phase stability principle and evaluation of the synchrotron, an accelerator without energy limitation. Then the concept of colliding beams emerged to yield doubling of the beam energy as in the Tevatron 2 trillion electron volts (TeV) proton collider at Fermilab, and the large harden collider (LHD) which is now planned as a 14-TeV machine in the 27 Kilometer tunnel of the large electron positron (LEP) collider at CERN. Then presentation is given of the superconducting supercollider (SSC), a giant accelerator complex with energy 40-TeV in a tunnel 87 Kilometers in circumference under the country surrounding Waxahachile in Texas, U.S.A. These superhigh energy accelerators are intended to smash protons against protons at energy sufficient to reveal the nature of matter and to consolidate the prevailing general theory of elementary particles. 12 figs., 1 tab

  8. A silicon strip module for the ATLAS inner detector upgrade in the super LHC collider

    CERN Document Server

    Gonzalez-Sevilla, S; Parzefall, U; Clark, A; Ikegami, Y; Hara, K; Garcia, C; Jakobs, K; Dwuznik, M; Terada, S; Barbier, G; Koriki, T; Lacasta, C; Unno, Y; Anghinolfi, F; Cadoux, F; Garcia, S M I; Ferrere, D; La Marra, D; Pohl, M; Dabrowski, W; Kaplon, J

    2011-01-01

    The ATLAS detector is a general purpose experiment designed to fully exploit the discovery potential of the Large Hadron Collider (LHC) at a nominal luminosity of 10(34)cm(-2)s(-1). It is expected that after several years of successful data-taking, the LHC physics program will be extended by increasing the peak luminosity by one order of magnitude. For ATLAS, an upgrade scenario will imply the complete replacement of the Inner Detector (ID), since the current tracker will not provide the required performance due to cumulated radiation damage and a dramatic increase in the detector occupancy. In this paper, a proposal of a double-sided silicon micro-strip module for the short-strip region of the future ATLAS ID is presented. The expected thermal performance based upon detailed FEA simulations is discussed. First electrical results from a prototype version of the next generation readout front-end chips are also shown. (C) 2010 Elsevier B.V. All rights reserved.

  9. Simulation of the SSC [Superconducting Super Collider] refrigeration system using the ASPEN/SP process simulator

    International Nuclear Information System (INIS)

    Rasson, J.; Dweck, J.

    1990-08-01

    The SSC Magnet must maintain at a super conducting temperature of 4 K. The proposed refrigeration cooling processes consist of fairly simple closed cycles which take advantage of the Joule-Thompson effect via a series of expansions and compressions of helium gas which has been precooled by liquid nitrogen. The processes currently under consideration consist of three cycles, the 20 K shield cooling, the 45 K helium refrigerator and the helium liquefier. The process units which are to be employed are compressors, turbines, expanders, mixers, flashes, two stream heat exchangers and multiple stream heat exchangers. The cycles are to be operated at or near steady state. Due to the large number of competing cooling sector designs to be considered and the high capital and operating costs of the proposed processes, the SSC Laboratory requires a software tool for the validation and optimization of the individual designs and for the performance of cost-benefit analyses among competing designs. Since these processes are steady state flow processes involving primarily standard unit operations, a decision was made to investigate the application of a commercial process simulator to the task. Several months of internal evaluations by the SSC Laboratory revealed that while the overall structure and calculation approach of number of the commercial simulators were appropriate for this task, all were lacking essential capabilities in the areas of thermodynamic property calculations for cryogenic systems and modeling of complex, multiple stream heat exchangers. An acceptable thermodynamics model was provided and a series of simple, but representative benchmark problems developed. The model and problems were provided to three software vendors. Based on the results of the benchmark test, the ASPEN/SP process simulator was selected for future modeling work

  10. Disbursement of $65 million to the State of Texas for construction of a Regional Medical Technology Center at the former Superconducting Super Collider Site, Waxahachie, Texas

    International Nuclear Information System (INIS)

    1995-05-01

    As part of a settlement agreement between the US DOE and the State of Texas, DOE proposes to transfer $65 million of federal funds to the Texas National Research Laboratory Commission (TNLRC) for construction of the Regional Medical Technology Center (RMTC) to be located in Ellis County, Texas. The RMTC would be a state-of-the-art medical facility for proton cancer therapy, operated by the State of Texas in conjunction with the University of Texas Southwestern Medical Center. The RMTC would use the linear accelerator assets of the recently terminated DOE Superconducting Super Collider Project to accelerate protons to high energies for the treatment of cancer patients. The current design provides for treatment areas, examination rooms, support laboratories, diagnostic imaging equipment, and office space as well as the accelerators (linac and synchrotron) and beam steering and shaping components. The potential environmental consequences of the proposed action are expected to be minor

  11. Physical design of JT-60 Super Upgrade

    International Nuclear Information System (INIS)

    Nagashima, K.; Kikuchi, M.; Kurita, G.; Ozeki, T.; Aoyagi, T.; Ushigusa, K.; Neyatani, Y.; Kubo, T.; Mori, K.; Nakagawa, S.; Kuriyama, M.; Nagami, M.

    1997-01-01

    The JT-60 Super Upgrade (JT-60SU) is an upgraded tokamak device of JT-60U for developing the steady-state reactor and advanced tokamak operation in the International Thermonuclear Experimental Reactor. The device is planned to utilize the JT-60 facilities fully and to minimize the needed modification. The major radius is 4.8 m and the maximum plasma current is 10 MA. Neutral beam injection with 750 keV beam energy is the primary heating method. The machine is capable of steady-state operation with high density up to 8.8 x 10 19 m -3 at 5 MA plasma current. The high operating density, over the Greenwald et al. limit, is critically important in order to achieve high bootstrap current fraction. Ballooning mode and low n ideal magnetohydrodynamic (MHD) mode including the bootstrap current were analyzed for steady-state operation. The current profile must be optimized to obtain a normalized beta up to 3. The plasma configuration with high triangularity was adopted in order to get good MHD stability and high energy confinement. A compact divertor was designed in order to get the large plasma space. (orig.)

  12. General method for final focus system design for circular colliders

    Directory of Open Access Journals (Sweden)

    Riccardo de Maria

    2008-03-01

    Full Text Available Colliders use final focus systems to reduce the transverse beam sizes at the interaction point in order to increase collision event rates. The maximum focal strength (gradient of the quadrupoles, and the maximum beam size in them, together limit the beam size reduction that is possible. The goal of a final focus system design is to find the best compromise between quadrupole aperture and quadrupole gradient, for the magnet technology that is used. This paper develops a design method that identifies the intrinsic limitations of a final focus system, validates the results of the method against realistic designs, and reports its application to the upgrade of the Large Hadron Collider final focus.

  13. Analysis of tritium production in the vicinity of Linac and LEB tunnels at the Superconducting Super Collider Laboratory

    International Nuclear Information System (INIS)

    Nabelssi, B.K.

    1994-01-01

    Monte Carlo calculations were performed to estimate the tritium production in groundwater around the Linear Accelerator (Linac) and the Low Energy Booster (LEB) tunnels at the Superconducting Super Collider Laboratory (SSCL). The calculations were performed using the new version of the Los Alamos High Energy Transport (LAHET) code system (SUPERHET). Most of the tritium activity was found to occur in a zone extending 2 m from the tunnel wall. The calculated tritium production rate was used to derive the. maximum allowable beam losses that would result in an average groundwater concentration in the activation zone of 20 pCi/cm 3 , the federal maximum contaminant level (MCL) for tritium in drinking water. The maximum allowable beam losses were found to be about 4% and 2% of the maximum operating be.-un for the Linac at 1 GeV and the LEB at 11 GeV, resnectively. These percentages are well in excess of typical operational losses at existing highenergy accelerators. The results are in good agreement with previously reported calculations. Tritium saturation activity in water pipes resultina, from the derived maximum allowable beam loss was found to be 355 pCi/cm 3 in the Linac operating at 600 MeV and 363 pCi/cm 3 in the LEB operating at 11 GeV. Accidental tritium releases from water pipes were found to cause an inhalation dose rate of less than 0.013 (Linac at 600 MeV) and 0.009 mrem/hr (LEB at 11 Gev) in the tunnels. These dose rates are well within the laboratory's design limit of 0.1 mrem/hr for controlled areas. Accidental beam losses were found to cause activation in excess of the MCL only after an irradiation time of more than 557 hours in the Linac at 600 MeV and 69 hours in the LEB at 11 GeV. A full-beam accident lasting more than one hour is considered unlikely

  14. Design and performance of the Stanford Linear Collider Control System

    International Nuclear Information System (INIS)

    Melen, R.E.

    1984-10-01

    The success of the Stanford Linear Collider (SLC) will be dependent upon the implementation of a very large advanced computer-based instrumentation and control system. This paper describes the architectural design of this system as well as a critique of its performance. This critique is based on experience obtained from its use in the control and monitoring of 1/3 of the SLAC linac and in support of an expensive experimental machine physics experimental program. 11 references, 3 figures

  15. Thermal performance measurements of a 100 percent polyester MLI [multilayer insulation] system for the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Gonczy, J.D.; Boroski, W.N.; Niemann, R.C.

    1989-09-01

    The plastic materials used in the multilayer insulation (MLI) blankets of the superconducting magnets of the Superconducting Super Collider (SSC) are comprised entirely of polyesters. This paper reports on tests conducted in three separate experimental blanket arrangements. The tests explore the thermal performance of two candidate blanket joint configurations each employing a variation of a stepped-butted joint nested between sewn blanket seams. The results from the joint configurations are compared to measurements made describing the thermal performance of the basic blanket materials as tested in an ideal joint configuration. Twenty foil sensors were incorporated within each test blanket to measure interstitial layer and joint layer temperatures. Heat flux and thermal gradients are reported for high and degraded insulating vacuums, and during transient and steady state conditions. In complement with this paper is an associate paper bearing the same title head but with the title extension 'Part 1: Instrumentation and experimental preparation (300K-80K)'. 5 refs., 8 figs., 2 tabs

  16. Full-power test of a string of magnets comprising a half-cell of the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Burgett, W.; Christianson, M.; Coombes, R.

    1992-10-01

    In this paper we describe the full-powered operation of a string of industrially-fabricated magnets comprising a half-cell of the Superconducting Super Collider (SSC). The completion of these tests marks the first successful operation of a major SSC subsystem. The five 15-m long dipole magnets in the string had an aperture of 50 mm and the single 5-m long quadrupole aperture was 40 mm. Power and cryogenic connections were made to the string through spool pieces that are prototypes for SSC operations. The string was cooled to cryogenic temperatures in early July, 1992, and power tests were performed at progressively higher currents up to the nominal SSC operating point above 6500 amperes achieved in mid-August. In this paper we report on the electrical and cryogenic performance of the string components and the quench protection system during these initial tests

  17. Proposal of 99.99%-aluminum/7N01-Aluminum clad beam tube for high energy booster of Superconducting Super Collider

    International Nuclear Information System (INIS)

    Ishimaru, Hajime

    1994-01-01

    Proposal of 99.99% pure aluminum/7N01 aluminum alloy clad beam tube for high energy booster in Superconducting Super Collider is described. This aluminum clad beam tube has many good performances, but a eddy current effect is large in superconducting magnet quench collapse. The quench test result for aluminum clad beam tube is basically no problem against magnet quench collapse. (author)

  18. A RECIPE FOR LINEAR COLLIDER FINAL FOCUS SYSTEM DESIGN

    International Nuclear Information System (INIS)

    Seryi, Andrei

    2003-01-01

    The design of Final Focus systems for linear colliders is challenging because of the large demagnifications needed to produce nanometer-sized beams at the interaction point. Simple first- and second-order matrix matching have proven insufficient for this task, and minimization of third- and higher-order aberrations is essential. An appropriate strategy is required for the latter to be successful. A recipe for Final Focus design, and a set of computational tools used to implement this approach, are described herein. An example of the use of this procedure is given

  19. SSC collider quadrupole cold mass design and development

    International Nuclear Information System (INIS)

    Farrell, R.A.; Murray, F.S.; Jonas, P.A.; Mischler, W.R.; Blecher, L.

    1992-01-01

    Approximately 1,664 focussing and defocussing superconducting quadrupoles are required for the two SSC collider rings. Collider quadruple magnets (CQMS) must satisfy stringent performance, reliability, life and low cost criteria. Performance requirements include field uniformity, training, quench, tracking, thermal cycling and alignment. The CQM cold mass design presented incorporates lessons IGC and Alsthom Intermagnetics S.A. (AISA), our joint venture with GEC-Alsthom, learned in the design, development and manufacture of 500 MRI, 160 high-field custom and 126 HERA quadruple superconducting magnets. This baseline design reflects careful quantitative assessment of coil winding placement and collar material, evaluation of field uniformity and mechanical performance of the magnet coil ends using 3-D modeling and analysis, and considers tolerance and process variability. Selected CQM cold mass design highlights and a proposed prototype development program that allows incorporation of test feedback into the design to minimize risk are detailed in this paper. This information may be helpful to SSCL in the design and development of prototype CQM'S

  20. Conceptual design of the Relativistic Heavy Ion Collider: RHIC

    International Nuclear Information System (INIS)

    1986-05-01

    The complete Relativistic Heavy Ion Collider (RHIC) facility will be a complex set of accelerators and beam transfer equipment connecting them. A significant portion of the total facility either exists or is under construction. Two existing Tandem Van de Graaff accelerators will serve for the initial ion acceleration. Ions with a charge of -1 would be accelerated from ground to +15 MV potential, pass through a stripping foil, and accelerate back to ground potential, where they would pass through a second stripping foil. From there the ions will traverse a long transfer line to the AGS tunnel and be injected into the Booster accelerator. The Booster accelerates the ion bunch, and then the ions pass through one more stripper and then enter the Alternating Gradient Synchrotron (AGS), where they are accelerated to the top AGS energy and transferred to the collider. Bending and focusing of ion beams is to be achieved by superconducting magnets. The physics goals behind the RHIC are enumerated, particularly as regards the study of quark matter and the characteristics of high energy nucleus-nucleus collisions. The design of the collider and all its components is described, including the injector, the lattice, magnet system, cryogenic and vacuum systems, beam transfer, injection, and dump, rf system, and beam instrumentation and control system. Also given are cost estimates, construction schedules, and a management plan

  1. Design of the large hadron electron collider interaction region

    Science.gov (United States)

    Cruz-Alaniz, E.; Newton, D.; Tomás, R.; Korostelev, M.

    2015-11-01

    The large hadron electron collider (LHeC) is a proposed upgrade of the Large Hadron Collider (LHC) within the high luminosity LHC (HL-LHC) project, to provide electron-nucleon collisions and explore a new regime of energy and luminosity for deep inelastic scattering. The design of an interaction region for any collider is always a challenging task given that the beams are brought into crossing with the smallest beam sizes in a region where there are tight detector constraints. In this case integrating the LHeC into the existing HL-LHC lattice, to allow simultaneous proton-proton and electron-proton collisions, increases the difficulty of the task. A nominal design was presented in the the LHeC conceptual design report in 2012 featuring an optical configuration that focuses one of the proton beams of the LHC to β*=10 cm in the LHeC interaction point to reach the desired luminosity of L =1033 cm-2 s-1 . This value is achieved with the aid of a new inner triplet of quadrupoles at a distance L*=10 m from the interaction point. However the chromatic beta beating was found intolerable regarding machine protection issues. An advanced chromatic correction scheme was required. This paper explores the feasibility of the extension of a novel optical technique called the achromatic telescopic squeezing scheme and the flexibility of the interaction region design, in order to find the optimal solution that would produce the highest luminosity while controlling the chromaticity, minimizing the synchrotron radiation power and maintaining the dynamic aperture required for stability.

  2. Design of the large hadron electron collider interaction region

    Directory of Open Access Journals (Sweden)

    E. Cruz-Alaniz

    2015-11-01

    Full Text Available The large hadron electron collider (LHeC is a proposed upgrade of the Large Hadron Collider (LHC within the high luminosity LHC (HL-LHC project, to provide electron-nucleon collisions and explore a new regime of energy and luminosity for deep inelastic scattering. The design of an interaction region for any collider is always a challenging task given that the beams are brought into crossing with the smallest beam sizes in a region where there are tight detector constraints. In this case integrating the LHeC into the existing HL-LHC lattice, to allow simultaneous proton-proton and electron-proton collisions, increases the difficulty of the task. A nominal design was presented in the the LHeC conceptual design report in 2012 featuring an optical configuration that focuses one of the proton beams of the LHC to β^{*}=10  cm in the LHeC interaction point to reach the desired luminosity of L=10^{33}  cm^{-2} s^{-1}. This value is achieved with the aid of a new inner triplet of quadrupoles at a distance L^{*}=10  m from the interaction point. However the chromatic beta beating was found intolerable regarding machine protection issues. An advanced chromatic correction scheme was required. This paper explores the feasibility of the extension of a novel optical technique called the achromatic telescopic squeezing scheme and the flexibility of the interaction region design, in order to find the optimal solution that would produce the highest luminosity while controlling the chromaticity, minimizing the synchrotron radiation power and maintaining the dynamic aperture required for stability.

  3. Evaluation of mini super computers for nuclear design applications

    International Nuclear Information System (INIS)

    Altomare, S.; Baradari, F.

    1987-01-01

    The evolution of the mini super computers will force changes from the current environment of performing nuclear design calculations on mainframe computers (such as a CRAY) to mini super computers. This change will come about for a number of reasons. First, the mini super computers currently available in the marketplace offer the power and speed comparable to mainframes and can provide the capability to support highly computer intensive calculations. Second, the equipment is physically smaller and can easily be installed and operated without extensive investments in facilities and operations support. Third, the computer capacity can be acquired with as much needed memory, disk, and tape capacity as may be needed. Another reasons is that the performance/cost ratio has increased drastically as hardware costs have decreased. A study was conducted at the Westinghouse Commercial Nuclear Fuel Division (CNFD) to evaluate the mini super computers for use in nuclear core design. As a result of this evaluation, Westinghouse CNFD is offering a combined hardware/software technology transfer package for core design. This package provides the utility designer with a totally dedicated mini super computer comparable in speed to the CRAY 1S with sufficient capacity for a sizable design group to perform the engineering activities related to nuclear core design and operations support. This also assures the utility of being totally compatible with the CNFD design codes, thus assuring total update compatibility

  4. Report of the Error and Emittance Task Force on the superconducting super collider: Part 1, Resistive machines

    International Nuclear Information System (INIS)

    1993-10-01

    A review of the design and specifications of the resistive accelerators in the SSC complex was conducted during the past year. This review was initiated in response to a request from the SSC Project Manager. The Error and Emittance Task Force was created October 30, 1992, and charged with reviewing issues associated with the specification of errors and tolerances throughout the injector chain and in the Collider, and to optimize the global error budget. Effects which directly impact the emittance budget were of prime importance. The Task Force responded to three charges: Examination of the resistive accelerators and their injection and extraction systems; examination of the connecting beamlines and the overall approach taken in their design; and global filling, timing, and synchronization issues. The High Energy Booster and the Collider were deemed to be sufficiently different from the resistive accelerators that it was decided to treat them as a separate group. They will be the subject of a second part to this report

  5. Conceptual Design Report. Antiproton - Proton Collider Upgrade 20 GeV Rings. Technical Components and Civil Construction May, 1988

    Energy Technology Data Exchange (ETDEWEB)

    None

    1988-05-01

    This report contains a description of the design and cost estimate of two new 20 GeV rings which will be required to support the upgrade of the Fermilab Collider with a luminosity goal of 5x10 31 cm-2s-1. The new rings include an antiproton post-accumulator, denoted the Antiproton Super Booster (ASB), and a proton post-booster, denoted the Proton Super Booster (PSB). The siting of the rings is shown in Figure I-1. Both rings are capable of operation at 20 GeV, eliminating the need for ever again injecting beam into the Main Ring below transition, and significantly enhancing Main Ring performance. The Antiproton Super Booster is designed to accept and accumulate up to 4x1012 antiprotons from the existing Antiproton Accumulator, and deliver them to the Main Ring at 20 GeV for acceleration and injection into the Collider. It is also designed to accept diluted antiprotons from the Main Ring at 20 GeV for recooling. The PSB accepts 8.9 GeV protons from the existing Booster and accelerates them to 20 GeV for injection into the Main Ring. The PSB is designed to operate at 5 Hz. The siting shown in Figure I-1 has the attractive feature that it removes all Main Ring injection hardware from the AO straight section, opening the possibility of installing a third proton-antiproton interaction region in the Tevatron Collider.

  6. Conceptual design of the Relativistic Heavy Ion Collider [RHIC

    International Nuclear Information System (INIS)

    1989-05-01

    In August 1984 Brookhaven National Laboratory submitted a proposal for the construction of a Relativistic Heavy Ion Collider (RHIC) to the US Department of Energy. A Conceptual Design Report for the RHIC facility was completed in May 1986 after detailed reviews of the machine design, and of the requirements of the physics research program. Since that time an extensive R ampersand D program has been initiated and considerable work has been carried out to refine the design and specification of the major accelerator components, as well as the needs for research detectors, and to prepare the project for construction. This document is an update of the Conceptual Design Report, incorporating the results of work carried out since the beginning of Fiscal Year 1987 when a formal R ampersand D program for the RHIC project funded by DOE was initiated

  7. The International Linear Collider Technical Design Report - Volume 2: Physics

    CERN Document Server

    Barklow, Tim; Fujii, Keisuke; Gao, Yuanning; Hoang, Andre; Kanemura, Shinya; List, Jenny; Logan, Heather E; Nomerotski, Andrei; Perelstein, Maxim; Peskin, Michael E; Pöschl, Roman; Reuter, Jürgen; Riemann, Sabine; Savoy-Navarro, Aurore; Servant, Geraldine; Tait, Tim M P

    2013-01-01

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carried out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to incr...

  8. The International Linear Collider Technical Design Report - Volume 4: Detectors

    CERN Document Server

    Behnke, Ties; Burrows, Philip N.; Fuster, Juan; Peskin, Michael; Stanitzki, Marcel; Sugimoto, Yasuhiro; Yamada, Sakue; Yamamoto, Hitoshi

    2013-01-01

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carried out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to incr...

  9. The International Linear Collider Technical Design Report - Volume 2: Physics

    Energy Technology Data Exchange (ETDEWEB)

    Baer, Howard [Univ. of Oklahoma, Norman, OK (United States); Barklow, Tim [SLAC National Accelerator Lab., Menlo Park, CA (United States); Fujii, Keisuke [National Lab. for High Energy Physics (KEK), Tokai (Japan); Gao, Yuanning [Unlisted; Hoang, Andre [Univ. of Vienna (Austria); Kanemura, Shinya [Univ. of Toyama (Japan); List, Jenny [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Logan, Heather E. [Carleton Univ., Ottawa, ON (Canada); Nomerotski, Andrei [Univ. of Oxford (United Kingdom); Perelstein, Maxim [Cornell Univ., Ithaca, NY (United States); Peskin, Michael E. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Pöschl, Roman [Univ. Paris-Sud, Orsay (France). Linear Accelerator Lab. (LAL); Reuter, Jürgen [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Riemann, Sabine [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Savoy-Navarro, Aurore [CNRS/IN2P3. Univ. Paris (France). Observatoire de Paris. AstroParticule et Cosmologie (APC); Servant, Geraldine [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Tait, Tim P. [Univ. of California, Los Angeles, CA (United States); Yu, Jaehoon [Univ. of Science and Technology of China, Hefei (China)

    2013-06-26

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carried out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to increase significantly our understanding of the fundamental processes that govern the evolution of the Universe.

  10. The International Linear Collider Technical Design Report - Volume 4: Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Behnke, Ties [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2013-06-26

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carried out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to increase significantly our understanding of the fundamental processes that govern the evolution of the Universe.

  11. Review of project definition studies of possible on-site uses of superconducting super collider assets and facilities. Final report

    International Nuclear Information System (INIS)

    1994-12-01

    This document reports on the results of a peer review and evaluation of studies made of potential uses of assets from the terminated Superconducting Super Collider (SSC) project. These project definition studies focused on nine areas of use of major assets and facilities at the SSC site near Waxahachie, Texas. The studies were undertaken as part of the effort to maximize the value of the investment made in the SSC and were supported by two sets of grants, one to the Texas National Research Laboratory Commission (TNRLC) and the second to various universities and other institutions for studies of ideas raised by a public call for expressions of interest. The Settlement Agreement, recently signed by the Department of Energy (DOE) and TNRLC, provides for a division of SSC property. As part of the goal of maximizing the value of the SSC investment, the findings contained in this report are thus addressed to officials in both the Department and TNRLC. In addition, this review had several other goals: to provide constructive feedback to those doing the studies; to judge the benefits and feasibility (including funding prospects) of the projects studied; and to help worthy projects become reality by matching projects with possible funding sources

  12. Review of project definition studies of possible on-site uses of superconducting super collider assets and facilities

    International Nuclear Information System (INIS)

    1994-12-01

    This document reports on the results of a peer review and evaluation of studies made of potential uses of assets from the terminated Superconducting Super Collider (SSC) project. These project definition studies focused on nine areas of use of major assets and facilities at the SSC site near Waxahachie, Texas. The studies were undertaken as part of the effort to maximize the value of the investment made in the SSC and were supported by two sets of grants, one to the Texas National Research Laboratory Commission (TNRLC) and the second to various universities and other institutions for studies of ideas raised by a public call for expressions of interest. The Settlement Agreement, recently signed by the Department of Energy (DOE) and TNRLC, provides for a division of SSC property. As part of the goal of maximizing the value of the SSC investment, the findings contained in this report are thus addressed to officials in both the Department and TNRLC. In addition, this review had several other goals: to provide constructive feedback to those doing the studies; to judge the benefits and feasibility (including funding prospects) of the projects studied; and to help worthy projects become reality by matching projects with possible funding sources

  13. Review of project definition studies of possible on-site uses of superconducting super collider assets and facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    This document reports on the results of a peer review and evaluation of studies made of potential uses of assets from the terminated Superconducting Super Collider (SSC) project. These project definition studies focused on nine areas of use of major assets and facilities at the SSC site near Waxahachie, Texas. The studies were undertaken as part of the effort to maximize the value of the investment made in the SSC and were supported by two sets of grants, one to the Texas National Research Laboratory Commission (TNRLC) and the second to various universities and other institutions for studies of ideas raised by a public call for expressions of interest. The Settlement Agreement, recently signed by the Department of Energy (DOE) and TNRLC, provides for a division of SSC property. As part of the goal of maximizing the value of the SSC investment, the findings contained in this report are thus addressed to officials in both the Department and TNRLC. In addition, this review had several other goals: to provide constructive feedback to those doing the studies; to judge the benefits and feasibility (including funding prospects) of the projects studied; and to help worthy projects become reality by matching projects with possible funding sources.

  14. Review of project definition studies of possible on-site uses of superconducting super collider assets and facilities. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    This document reports on the results of a peer review and evaluation of studies made of potential uses of assets from the terminated Superconducting Super Collider (SSC) project. These project definition studies focused on nine areas of use of major assets and facilities at the SSC site near Waxahachie, Texas. The studies were undertaken as part of the effort to maximize the value of the investment made in the SSC and were supported by two sets of grants, one to the Texas National Research Laboratory Commission (TNRLC) and the second to various universities and other institutions for studies of ideas raised by a public call for expressions of interest. The Settlement Agreement, recently signed by the Department of Energy (DOE) and TNRLC, provides for a division of SSC property. As part of the goal of maximizing the value of the SSC investment, the findings contained in this report are thus addressed to officials in both the Department and TNRLC. In addition, this review had several other goals: to provide constructive feedback to those doing the studies; to judge the benefits and feasibility (including funding prospects) of the projects studied; and to help worthy projects become reality by matching projects with possible funding sources.

  15. Design constraints for electron-positron linear colliders

    International Nuclear Information System (INIS)

    Mondelli, A.; Chernin, D.

    1991-01-01

    A prescription for examining the design constraints in the e + -e - linear collider is presented. By specifying limits on certain key quantities, an allowed region of parameter space can be presented, hopefully clarifying some of the design options. The model starts with the parameters at the interaction point (IP), where the expressions for the luminosity, the disruption parameter, beamstrahlung, and average beam power constitute four relations among eleven IP parameters. By specifying the values of five of these quantities, and using these relationships, the unknown parameter space can be reduced to a two-dimensional space. Curves of constraint can be plotted in this space to define an allowed operating region. An accelerator model, based on a modified, scaled SLAC structure, can then be used to derive the corresponding parameter space including the constraints derived from power consumption and wake field effects. The results show that longer, lower gradient accelerators are advantageous

  16. Next Linear Collider Test Accelerator conceptual design report

    International Nuclear Information System (INIS)

    1993-08-01

    This document presents the scientific justification and the conceptual design for the open-quotes Next Linear Collider Test Acceleratorclose quotes (NLCTA) at SLAC. The goals of the NLCTA are to integrate the new technologies of X-band accelerator structures and rf systems being developed for the Next Linear Collider, to measure the growth of the open-quotes dark currentclose quotes generated by rf field emission in the accelerator, to demonstrate multi-bunch beam-loading energy compensation and suppression of higher-order deflecting modes, and to measure any transverse components of the accelerating field. The NLCTA will be a 42-meter-long beam line consisting, consecutively, of a thermionic-cathode gun, an X-band buncher, a magnetic chicane, six 1.8-meter-long sections of 11.4-GHz accelerator structure, and a magnetic spectrometer. Initially, the unloaded accelerating gradient will be 50 MV/m. A higher-gradient upgrade option eventually would increase the unloaded gradient to 100 MV/m

  17. Concept and design of super junction devices

    Science.gov (United States)

    Zhang, Bo; Zhang, Wentong; Qiao, Ming; Zhan, Zhenya; Li, Zhaoji

    2018-02-01

    The super junction (SJ) has been recognized as the " milestone” of the power MOSFET, which is the most important innovation concept of the voltage-sustaining layer (VSL). The basic structure of the SJ is a typical junction-type VSL (J-VSL) with the periodic N and P regions. However, the conventional VSL is a typical resistance-type VSL (R-VSL) with only an N or P region. It is a qualitative change of the VSL from the R-VSL to the J-VSL, introducing the bulk depletion to increase the doping concentration and optimize the bulk electric field of the SJ. This paper firstly summarizes the development of the SJ, and then the optimization theory of the SJ is discussed for both the vertical and the lateral devices, including the non-full depletion mode, the minimum specific on-resistance optimization method and the equivalent substrate model. The SJ concept breaks the conventional " silicon limit” relationship of R on∝V B 2.5, showing a quasi-linear relationship of R on∝V B 1.03.

  18. Design of an intense positron source for linear colliders

    International Nuclear Information System (INIS)

    Ida, H.; Yamada, K.; Funahashi, Y.

    1994-01-01

    The Japan Linear Collider (JLC) requires an intense positron source of 8x10 11 particles per rf-pulse. A computer simulation reveals the possibility of such an intense positron source using 'conventional' technology. In order to relax the limitation of the incident electron energy density due to thermal stress in the converter target, the incident beam radius is enlarged within the range so as not to reduce the positron capture efficiency. A pre-damping ring and beam transport system to the pre-damping ring, which have a large transverse acceptance, play important roles for a high capture efficiency. A prototype positron source has been designed and installed at downstream of 1.54 GeV S-band linac in Accelerator Test Facility (ATF) in order to carry out experiments to develop the essential technology for JLC. The simulated results will be tested in experiments with the prototype positron source. (author)

  19. "The Battery" designed with Super-Light (concrete) Decks

    DEFF Research Database (Denmark)

    Castberg, Niels Andreas; Hertz, Kristian Dahl

    This paper describes how Super-Light structures can be used as a structural principle for the buildings in the project ‘The Battery’ designed by Bjarke Ingels Group. The overall structural concept is described and the advantages of using super-light slabs for the project are explored. Especially...... the cantilevered internal corridors are investigated. Super-Light Structures is a newly patented structural concrete concept. Slabs based on the concept are the first structural element developed under the patent. The slabs called SL-decks have multiple advantages compared to traditional hollow core slabs....... The paper aims to describe the concept of how the deck can be used in these innovative buildings and how the special advantages of the SL-decks are applied....

  20. Geological-geotechnical studies for siting the Superconducting Super Collider in Illinois: results of drilling large-diameter holes in 1986. Environmental geology notes

    International Nuclear Information System (INIS)

    Vaiden, R.C.; Hasek, M.J.; Gendron, C.R.; Curry, B.B.; Graese, A.M.

    1988-01-01

    The Illinois State Geological Survey (ISGS) has completed an extensive four-year exploration of the area near Fermi National Accelerator Laboratory (Fermilab) at Batavia, 30 miles west of Chicago. The comprehensive investigation was conducted to locate the most suitable site for construction and operation of the Superconducting Super Collider (SSC) - a 20-trillion electron volt (TeV) subatomic particle accelerator. Underlying the proposed site in northeastern Illinois, between 250 and 600 feet deep, are the Galena and Platteville dolomites - strong, stable, nearly impermeable bedrock. To confirm that these bedrock units are suitable for construction of the SSC, ISGS geologists designed a four-year study including test drilling, rock sampling and analysis, geophysical logging, hydrogeologic studies, and seismic exploration. Initially, the study covered parts of six counties. Subsequent research focused on successively smaller areas until the final stage of test drilling in spring 1986 concentrated on a proposed corridor for the SSC tunnel. From 1984 to 1986, thirty 3-inch-diameter test holes were drilled and more than 2 miles of bedrock core was recovered for stratigraphic description and geotechnical analysis

  1. An overview of the multilayer insulation system for the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Boroski, W.; Nicol, T.; Schoo, C.J.

    1991-08-01

    The MLI system for the SSC is designed to meet strict performance requirements over the 25 year life of the accelerator. Thermal measurements at 80K and 20K have been used to create an MLI system that limits heat flow to design values while incorporating features that permit the use of large-scale fabrication techniques. The result is a cost-effective means of mass-producing MLI blankets of consistent geometry and thermal performance

  2. Multilayer insulation (MLI) in the Superconducting Super Collider: A practical engineering approach to physical parameters governing MLI thermal performance

    International Nuclear Information System (INIS)

    Gonczy, J.D.; Boroski, W.N.; Niemann, R.C.

    1989-03-01

    Multilayer insulation (MLI) is employed in cryogenic devices to control the heat load of those devices. The physics defining the thermal performance of an MLI system is extremely complex due to the thermal dynamics of numerous interdependent parameters which in themselves contribute differently depending on whether boundary conditions are transient or steady-state. The Multilayer Insulation system for the Superconducting Super Collider (SSC) consists of full cryostat length assemblies of aluminized polyester film, fabricated in the form of blankets, and installed as blankets to the 4.5K cold mass, and the 20K and 80K thermal radiation shields. Approximately 40,000 blankets will be required in the 10,000 cryogenic devices comprising the SSC accelerator. Each blanket will be nearly 56 feet long by 6 feet wide and will consist of as many as 32 reflective and 31 spacer layers of material. Discussed are MLI material choices, and the physical parameters which contribute to the operational performance of MLI systems. Disclosed is a method for fabricating MLI blankets by employing a large diameter winding mandrel having a circumference sufficient for the required blanket length. The blanket fabrication method assures consistency in mass produced MLI blankets by providing positive control of the dimensional parameters which contribute to the MLI blanket thermal performance. The fabrication method can be used to mass produce prefabricated MLI blankets that by virtue of the product have inherent features of dimensional stability, three-dimensional uniformity, controlled layer density, layer-to-layer registration, interlayer cleanliness, and interlayer material to accommodate thermal contraction differences. 9 refs., 4 figs., 2 tabs

  3. Toolbox for super-structured and super-structure free multi-disciplinary building spatial design optimisation

    NARCIS (Netherlands)

    Boonstra, S.; van der Blom, K.; Hofmeyer, H.; Emmerich, M.T.M.; van Schijndel, A.W.M.; de Wilde, P.

    2018-01-01

    Multi-disciplinary optimisation of building spatial designs is characterised by large solution spaces. Here two approaches are introduced, one being super-structured and the other super-structure free. Both are different in nature and perform differently for large solution spaces and each requires

  4. Super Spool: An Experiment in Powerplant Design

    Science.gov (United States)

    Kesler, Ronald

    1974-01-01

    Discusses the use of rubberbands, an empty wooden thread spool, two wooden matches, a wax washer, and a small nail to conduct an experiment or demonstration in powerplant design. Detailed procedures and suggested activities are included. (CC)

  5. A high gradient quadrupole magnet for the SSC [Superconducting Super Collider

    International Nuclear Information System (INIS)

    Taylor, C.; Caspi, S.; Helm, M.; Mirk, K.; Peters, C.; Wandesforde, A.

    1987-03-01

    A quadrupole magnet for the SSC has been designed with a gradient of 234 T/m at 6500 A. Coil ID is 40 mm. The two-layer windings have 9 inner turns and 13 outer turns per pole with a wedge-shaped spacer in each layer. The 30-strand cable is identical to that used in the outer layer of the SSC dipole magnet. Interlocking aluminum alloy collars are compressed around the coils using a four-way press and are locked with four keys. The collared coil is supported and centered in a cold split iron yoke. A one-meter model was constructed and tested. Design details including quench behavior are presented

  6. [Superferric Super Collider R and D Collaboration]: Final technical report: Volume 1

    International Nuclear Information System (INIS)

    Huson, F.R.

    1987-07-01

    The idea of using a superferric magnet for a large accelerator such as the SSC arises from three considerations: Low Current. If the field is dominated by the iron, then the current is minimized. Forces and stored energy are lower by an order of magnitude than coil dominated magnets. Persistent currents and field errors due to coil placement are negligible; Simple and Reliable. Since the current is low and the number of turns is 8, the magnets are much simpler to construct and easier to operate. Reliability should be very good; and Inexpensive. The dominant cost of a superconducting magnet is the superconductor. The total cost of superconductor is directly proportional to the ampere-turns. Superferric magnets have 1/4 or less total pounds of superconductor than the 5 or 6.5 T magnets. This report describes a design of a superferric magnet that satisfies the three previous conditions. The first section of the report discusses a lattice that is designed for this magnet. The body of the report discusses the design, construction, assembly and installation of the magnets. The cryogenic section describes a complete system including cooldown, warm-up, steady state and quenches. The power supply is described with the quench detection and response system. Finally, the instrumentation is discussed

  7. The international linear collider. Technical design report. Vol. 1. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    Behnke, Ties; Brau, James E.; Foster, Brian; Fuster, Juan; Harrison, Mike; McEwan Paterson, James; Peskin, Michael; Stanitzki, Marcel; Walker, Nicholas; Yamamoto, Hitoshi (eds.)

    2013-07-01

    A review is given about the planned International Linear Collider. Especially described are the technical design, the accelerator layout and design, the R and D during the technical design phase, and the detectors. (HSI)

  8. The international linear collider. Technical design report. Vol. 1. Executive summary

    International Nuclear Information System (INIS)

    Behnke, Ties; Brau, James E.; Foster, Brian; Fuster, Juan; Harrison, Mike; McEwan Paterson, James; Peskin, Michael; Stanitzki, Marcel; Walker, Nicholas; Yamamoto, Hitoshi

    2013-01-01

    A review is given about the planned International Linear Collider. Especially described are the technical design, the accelerator layout and design, the R and D during the technical design phase, and the detectors. (HSI)

  9. Wire chamber requirements and tracking simulation studies for tracking systems at the superconducting super collider

    International Nuclear Information System (INIS)

    Hanson, G.G.; Niczyporuk, B.B.; Palounek, A.P.T.

    1989-02-01

    Limitations placed on wire chambers by radiation damage and rate requirements in the SSC environment are reviewed. Possible conceptual designs for wire chamber tracking systems which meet these requirements are discussed. Computer simulation studies of tracking in such systems are presented. Simulations of events from interesting physics at the SSC, including hits from minimum bias background events, are examined. Results of some preliminary pattern recognition studies are given. Such computer simulation studies are necessary to determine the feasibility of wire chamber tracking systems for complex events in a high-rate environment such as the SSC. 11 refs., 9 figs., 1 tab

  10. Impact of high energy high intensity proton beams on targets: Case studies for Super Proton Synchrotron and Large Hadron Collider

    CERN Document Server

    Tahir, N A; Shutov, A; Schmidt, R; Piriz, A R

    2012-01-01

    The Large Hadron Collider (LHC) is designed to collide two proton beams with unprecedented particle energy of 7 TeV. Each beam comprises 2808 bunches and the separation between two neighboring bunches is 25 ns. The energy stored in each beam is 362 MJ, sufficient to melt 500 kg copper. Safety of operation is very important when working with such powerful beams. An accidental release of even a very small fraction of the beam energy can result in severe damage to the equipment. The machine protection system is essential to handle all types of possible accidental hazards; however, it is important to know about possible consequences of failures. One of the critical failure scenarios is when the entire beam is lost at a single point. In this paper we present detailed numerical simulations of the full impact of one LHC beam on a cylindrical solid carbon target. First, the energy deposition by the protons is calculated with the FLUKA code and this energy deposition is used in the BIG2 code to study the corresponding...

  11. Field quality of the end sections of SSC [Superconducting Super Collider] dipoles

    International Nuclear Information System (INIS)

    Hassenzahl, W.V.; Caspi, S.; Gilbert, W.; Helm, M.; Laslett, L.J.; Morgan, G.A.

    1986-09-01

    The central or two-dimensional field of a dipole magnet can be calculated with some precision. The fields at the end of the magnet, which are three-dimensional in nature, provide a more complicated problem. Starting with an end design that produced a relatively good end in terms of multipole components, a method of extending parts of the straight section was used to reduce the most important harmonics, the sextupole and decapole, to a negligible level. In addition, the effect of extending an iron yoke over the ends of a magnet was investigated and it was found to have little effect on the harmonics, though it will raise the dipole field. These results are encouraging as they imply that good ends can be developed with relative ease should the two dimensional cross-section of a dipole magnet such as the SSC have to be changed

  12. The design, construction and commissioning of the CERN Large Electron-Positron collider

    International Nuclear Information System (INIS)

    Myers, S.; Picasso, E.

    1990-01-01

    A description is given of the most important parameters considered in the design of the CERN Large Electron-Positron collider. It is shown how these parameters affect the collider performance and how they have been optimised with respect to the cost of the project. The functioning of each major subsystem is described with respect to its role as part of the collider. Finally, the planning, testing and initial commissioning of LEP is described and possible future developments are outlined. (author)

  13. Medical surveillance of employee health at the superconducting super collider laboratory

    International Nuclear Information System (INIS)

    Chester, T.J.

    1992-01-01

    Medical surveillance can best be defined as conducting specific, targeted medical examinations at predetermined intervals for the purpose of assessing whether individuals have suffered work-related illness or injury. The objectives of the medical examinations are to determine if there is any evidence of illness or injury and to determine whether any illness or injury found is occupationally related. If illness or injury is found, the employee under medical surveillance can be referred for immediate treatment. Other employees in the same work group can be examined, and any hazardous defects in the workplace can be corrected. Additional objectives of these periodic examinations are to determine whether the employee's health status and physical fitness continue to be compatible with the safe performance of his assigned job tasks; to contribute to employee health maintenance by providing the opportunity for early detection, treatment, and prevention of disease or injuries; and to provide a documented record of health status that can be used in analysis of the health of the work group as a whole. Medical surveillance is one of several measures used in a good occupational health and safety program to prevent occupational illness or injury. A heirarchy of preventive health and safety programs is offered: system safety-design review; health and safety procedures; operational readiness review; management safety awareness; employee safety awareness; periodic professional inspections of industrial hygiene, health physics, safety, fire, medical; industrial hygiene/health physics monitoring; medical surveillance examinations; epidemiologic analysis. The earlier in the list a program appears, the more basic it is to the prevention effort and the more likely it is to prevent occupational illness and injuries with the least risk and least expense. A good occupational safety and health program contains all of these elements

  14. SSC 50 MM collider dipole cryostat single tube support post conceptual design and analysis

    International Nuclear Information System (INIS)

    Nicol, T.H.

    1992-01-01

    Superconducting Super Collider (SSC) dipole magnet cold masses are connected to the cryostat vacuum vessel at five places equally spaced along their length. Five supports limit sag of the cold assembly due to its own weight to a level consistent with the final magnet alignment specifications. The design essentially consists of two composite tubes nested within each other as a means of maximizing the thermal path length. In addition it provides an ideal way to utilize materials best suited for the temperature range over which they must operate. Filament wound S-glass is used between 300K and 80K. Filament wound graphite fiber is used between 80K and 20K and between 20K and 4.5K. S-glass is a better thermal performer above approximately 40K. Graphite composites are ideally suited for operation below 40K. The designs for the 50 mm reentrant supports are well documented in the literature. The current design of the reentrant support has two major drawbacks. First, it requires very tight dimensional control on all components; composite tubes and metal attachment parts. Second, it is expensive, with cost being driven by both the tolerance constraints and by a complex assembly procedure. It seems clear that production magnets will require a support structure which is considerably less expensive than that which is currently used. It seems clear that a design alternate for reentrant support posts will be required for production dipoles primarily due to their cost. It seems less clear that injection molded composite materials are the ideal choice. This report describes the conceptual design for a support post whose function is identical to that of the current reentrant design, which requires very few modifications to surrounding cryostat components, is thermally equivalent to the current 50 mm support post, and is nearly equivalent structurally

  15. Meshed-Pumpkin Super-Pressure Balloon Design

    Science.gov (United States)

    Jones, Jack; Yavrouian, Andre

    2003-01-01

    An improved, lightweight design has been proposed for super-pressure balloons used to carry scientific instruments at high altitudes in the atmosphere of Earth for times as long as 100 days. [A super-pressure balloon is one in which the pressure of the buoyant gas (typically, helium) is kept somewhat above ambient pressure in order to maintain approximately constant density and thereby regulate the altitude.] The proposed design, called "meshed pumpkin," incorporates the basic concept of the pumpkin design, which is so named because of its appearance. The pumpkin design entails less weight than does a spherical design, and the meshed-pumpkin design would reduce weight further. The basic idea of the meshed-pumpkin design is to reinforce the membrane of a pumpkin balloon by attaching a strong, lightweight fabric mesh to its outer surface. The reinforcement would make it possible to reduce the membrane mass to one-third or less of that of the basic pumpkin design while retaining sufficient strength to enable the balloon to remain at approximately constant altitude for months.

  16. First Considerations on Beam Optics and Lattice Design for the Future Hadron-Hadron Collider FCC

    CERN Document Server

    Alemany Fernandez, R

    2014-01-01

    The present document explains the steps carried out in order to make the first design of the Future Hadron-Hadron Collider (FCC-hh) following the base line parameters that can be found in [1]. Two lattice layouts are presented, a ring collider with 12 arcs and 12 straight sections, four of them designed as interaction points, and a racetrack like collider with two arcs and two straight sections, each of them equipped with two interaction points. The lattice design presented in the paper is modular allowing the same modules be used for both layouts. The present document addresses as well the beta star reach at the interaction points.

  17. Preliminary design for a 20 TeV Collider in a deep tunnel at Fermilab

    International Nuclear Information System (INIS)

    1985-01-01

    The Reference Design Study for a 20 TeV Collider demonstrated the technical and cost feasibility of a 20 TeV superconducting collider facility. Based on magnets of 3T, 5T, and 6.5T the Main Ring of the Collider would have a circumference of 164 km, 113 km, or 90 km. There would be six collision regions, of which four would be developed intially. The 5T and 6.5T rings would have twelve major refrigeration stations, while the 3T design would have 24 major refrigeration stations

  18. Design Study for a Staged Very Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Alex W.

    2002-02-27

    Particle physics makes its greatest advances with experiments at the highest energy. The only sure way to advance to a higher-energy regime is through hadron colliders--the Tevatron, the LHC, and then, beyond that, a Very Large Hadron Collider. At Snowmass-1996 [1], investigators explored the best way to build a VLHC, which they defined as a 100 TeV collider. The goals in this study are different. The current study seeks to identify the best and cheapest way to arrive at frontier-energy physics, while simultaneously starting down a path that will eventually lead to the highest-energy collisions technologically possible in any accelerator using presently conceivable technology. This study takes the first steps toward understanding the accelerator physics issues, the technological possibilities and the approximate cost of a particular model of the VLHC. It describes a staged approach that offers exciting physics at each stage for the least cost, and finally reaches an energy one-hundred times the highest energy currently achievable.

  19. The super-LHC

    CERN Document Server

    Mangano, Michelangelo L

    2010-01-01

    We review here the prospects of a long-term upgrade programme for the Large Hadron Collider (LHC), CERN laboratory's new proton-proton collider. The super-LHC, which is currently under evaluation and design, is expected to deliver of the order of ten times the statistics of the LHC. In addition to a non-technical summary of the principal physics arguments for the upgrade, I present a pedagogical introduction to the technological challenges on the accelerator and experimental fronts, and a review of the current status of the planning.

  20. Final Focus Systems in Linear Colliders

    International Nuclear Information System (INIS)

    Raubenheimer, Tor

    1998-01-01

    In colliding beam facilities, the ''final focus system'' must demagnify the beams to attain the very small spot sizes required at the interaction points. The first final focus system with local chromatic correction was developed for the Stanford Linear Collider where very large demagnifications were desired. This same conceptual design has been adopted by all the future linear collider designs as well as the SuperConducting Supercollider, the Stanford and KEK B-Factories, and the proposed Muon Collider. In this paper, the over-all layout, physics constraints, and optimization techniques relevant to the design of final focus systems for high-energy electron-positron linear colliders are reviewed. Finally, advanced concepts to avoid some of the limitations of these systems are discussed

  1. Adaptation of lessons learned from the Eurotunnel Project and CDM magnet production to super collider main ring installation

    International Nuclear Information System (INIS)

    Belding, J.; Di Domenico, P.; Gillin, J.; Hahn, W.; Naventi, R.; Nielsen, M.; Seely, M.; Hopkins, J.; Patterson, L.R.

    1994-01-01

    This paper will present preliminary findings from the Phase I Collider Installation contract studies performed by the Bechtel/General Dynamics/Belding Team related to the installation of technical systems for the SSC main ring north and south arcs. Specific focus is given to the adaptation of lessons learned during construction of the Eurotunnel, including equipment and personnel logistics and transportation. The incorporation of Collider Dipole Magnet manufacturing techniques and process methodologies as related to the handling and interconnection of main ring components is also discussed

  2. Core design of super LWR with double tube water rods

    International Nuclear Information System (INIS)

    Wu, Jianhui; Oka, Yoshiaki

    2014-01-01

    Highlights: • Supercritical light water cooled and moderated reactor with double tube water rods is developed. • Double-row fuel rod assembly and out-in fuel loading pattern are applied. • Separation plates in peripheral assemblies increase average outlet temperature. • Neutronic and thermal design criteria are satisfied during the cycle. - Abstract: Double tube water rods are employed in core design of super LWR to simplify the upper core structure and refueling procedure. The light water moderator flows up in the inner tube from the bottom of the core, then, changes the flow direction at the top of the core into the outer tube and flows out at the bottom of the core. It eliminates the moderator guide/distribution tubes into the single tube water rods from the top dome of the reactor pressure vessel of the previous super LWR design. Two rows of fuel rods are filled between the water rods in the fuel assembly. Out-in refueling pattern is adopted to flatten radial power distribution. The peripheral fuel assemblies of the core are divided into four flow zones by separation plates for increasing the average core outlet temperature. Three enrichment zones are used for axial power flattening. The equilibrium core is analyzed based on neutronic/thermal-hydraulic coupled model. The results show that, by applying the separation plates in peripheral fuel assemblies and low gadolinia enrichment, the maximum cladding surface temperature (MCST) is limited to 653 °C with the average outlet temperature of 500 °C. The inherent safety is satisfied by the negative void reactivity effects and sufficient shutdown margin

  3. Detectors for Linear Colliders: Detector design for a Future Electron-Positron Collider (4/4)

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    In this lecture I will discuss the issues related to the overall design and optimization of a detector for ILC and CLIC energies. I will concentrate on the two main detector concepts which are being developed in the context of the ILC. Here there has been much recent progress in developing realistic detector models and in understanding the physics performance of the overall detector concept. In addition, I will discuss the how the differences in the detector requirements for the ILC and CLIC impact the overall detector design.

  4. Cooling water for SSC experiments: Supplemental Conceptual Design Report (SCDR)

    International Nuclear Information System (INIS)

    Doyle, R.E.

    1989-01-01

    This paper discusses the following topics on cooling water design on the superconducting super collider; low conductivity water; industrial cooling water; chilled water systems; and radioactive water systems

  5. Beam measurements on Argonne linac for collider injector design

    International Nuclear Information System (INIS)

    Mavrogenes, G.; James, M.B.; Koontz, R.F.; Miller, R.H.

    1980-01-01

    The 20 MeV electron linac at Argonne produces 5 x 10 10 electrons in a single bunch. This amount of charge per bunch is required for the proposed single pass collider at SLAC. For this reason the characteristics of the beam from this machine are of interest. The longitudinal charge distribution has been measured by a new technique. The technique is a variation on the deduction of bunch shape from a spectrum measurement. Under favorable conditions a resolution of about 1 0 of phase is possible, which is considerably better than can be achieved with streak cameras. The bunch length at 4.5 x 10 10 e - per bunch was measured to be 15 0 FWHM. The transverse emittance has also been measured using standard techniques. The emittance is 16 mm-mrad at 17.2 MeV. (Auth.)

  6. The International Linear Collider Technical Design Report - Volume 3.I: Accelerator \\& in the Technical Design Phase

    Energy Technology Data Exchange (ETDEWEB)

    Adolphsen, Chris [SLAC National Accelerator Lab., Menlo Park, CA (United States); et al.

    2013-06-26

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carried out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to increase significantly our understanding of the fundamental processes that govern the evolution of the Universe.

  7. The International Linear Collider Technical Design Report - Volume 3.II: Accelerator Baseline Design

    Energy Technology Data Exchange (ETDEWEB)

    Adolphsen, Chris [SLAC National Accelerator Lab., Menlo Park, CA (United States); et al.

    2013-06-26

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carried out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to increase significantly our understanding of the fundamental processes that govern the evolution of the Universe.

  8. The International Linear Collider Technical Design Report - Volume 3.II: Accelerator Baseline Design

    CERN Document Server

    Adolphsen, Chris; Barish, Barry; Buesser, Karsten; Burrows, Philip; Carwardine, John; Clark, Jeffrey; Durand, Helene Mainaud; Dugan, Gerry; Elsen, Eckhard; Enomoto, Atsushi; Foster, Brian; Fukuda, Shigeki; Gai, Wei; Gastal, Martin; Geng, Rongli; Ginsburg, Camille; Guiducci, Susanna; Harrison, Mike; Hayano, Hitoshi; Kershaw, Keith; Kubo, Kiyoshi; Kuchler, Victor; List, Benno; Liu, Wanming; Michizono, Shinichiro; Nantista, Christopher; Osborne, John; Palmer, Mark; Paterson, James McEwan; Peterson, Thomas; Phinney, Nan; Pierini, Paolo; Ross, Marc; Rubin, David; Seryi, Andrei; Sheppard, John; Solyak, Nikolay; Stapnes, Steinar; Tauchi, Toshiaki; Toge, Nobu; Walker, Nicholas; Yamamoto, Akira; Yokoya, Kaoru

    2013-01-01

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carried out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to incr...

  9. Performance-based seismic design of steel frames utilizing colliding bodies algorithm.

    Science.gov (United States)

    Veladi, H

    2014-01-01

    A pushover analysis method based on semirigid connection concept is developed and the colliding bodies optimization algorithm is employed to find optimum seismic design of frame structures. Two numerical examples from the literature are studied. The results of the new algorithm are compared to the conventional design methods to show the power or weakness of the algorithm.

  10. Experimental and Theoretical Progress of Linear Collider Final Focus Design and ATF2 Facility

    CERN Document Server

    Seryi, Andrei; Zimmermann, Frank; Kubo, Kiyoshi; Kuroda, Shigeru; Okugi, Toshiyuki; Tauchi, Toshiaki; Terunuma, Nobuhiro; Urakawa, Junji; White, Glen; Woodley, Mark; Angal-Kalinin, Deepa

    2014-01-01

    In this brief overview we will reflect on the process of the design of the linear collider (LC) final focus (FF) optics, and will also describe the theoretical and experimental efforts on design and practical realisation of a prototype of the LC FF optics implemented in the ATF2 facility at KEK, Japan, presently being commissioned and operated.

  11. International Linear Collider Technical Design Report (Volumes 1 through 4)

    Energy Technology Data Exchange (ETDEWEB)

    Harrison M.

    2013-03-27

    The design report consists of four volumes: Volume 1, Executive Summary; Volume 2, Physics; Volume 3, Accelerator (Part I, R and D in the Technical Design Phase, and Part II, Baseline Design); and Volume 4, Detectors.

  12. Conceptual design study of the GSI electron-nucleon collider

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    Design concepts, beam-beam instability, ion bunch cooling, intrabeam scattering, conventional collective effects, lattice design, polarization control, injection chain, basic technical systems, cost estimations, time schedule.

  13. Conceptual design study of the GSI electron-nucleon collider

    International Nuclear Information System (INIS)

    1997-07-01

    Design concepts, beam-beam instability, ion bunch cooling, intrabeam scattering, conventional collective effects, lattice design, polarization control, injection chain, basic technical systems, cost estimations, time schedule

  14. Structure design for a 500 GeV S-band linear collider

    International Nuclear Information System (INIS)

    Hahne, P.; Holtkamp, N.; Klatt, R.; Weiland, T.

    1991-01-01

    Constant gradient structures with an accelerating gradient of 20 MeV per meter are commonly used with S-band frequency. The well known features of these travelling wave tubes provide a dedicated design for their use in the next generation linear collider. Some of the required design parameters for this tubes are presented within the whole concept of this collider with an active length of about 30 km. The choice of these parameters is explained and calculations concerning the structure are presented

  15. A review on the lattice design of large hadron colliders

    International Nuclear Information System (INIS)

    Lee, S.Y.

    1987-01-01

    The conceptual evolution of the accelerator lattice design is discussed. Indicated are aspects of IR design. We emphasize the cancellation of stop-band width in the cluster design. The case of symmetric vs antisymmetric design is also discussed. The SSC lattice is used as an example. 9 refs

  16. Physics and design issues of asymmetric storage ring colliders as B-factories

    International Nuclear Information System (INIS)

    Chattopadhyay, S.

    1989-08-01

    This paper concentrates on generic R ampersand D and design issues of asymmetric colliders via a specific example, namely a 9 GeV x 3 GeV collider based on PEP at SLAC. An asymmetric e + -e - collider at the Y(4s) and with sufficiently high luminosity (10 33 -10 34 cm -2 s -1 ) offers the possibility of studying mixing, rare decays, and CP violation in the B bar B meson system, as well as ''beautiful'' tau-charm physics, and has certain qualitative advantages from detection and machine design points of view. These include: the energy constraint; clean environment (∼25% B + B - , B 0 bar B 0 ); large cross section (1 nb); vertex reconstruction (from the time development of space-time separated B and bar B decays due to moving center-of-mass); reduced backgrounds; greatest sensitivity to CP violation in B → CP eigenstate; the possibility of using higher collision frequencies, up to 100 MHz, in a head-on colliding mode using magnetic separation. It is estimated that for B → ΨK s , an asymmetric collider has an advantage equivalent to a factor of five in luminosity relative to a symmetric one. There are, however, questions with regard to the physics of the asymmetric beam-beam coulomb interaction that may limit the intrinsic luminosity and the possibility of realizing the small beam pipes necessary to determine the vertices. 16 refs., 2 figs

  17. Argonne Tau-charm factory collider design study

    International Nuclear Information System (INIS)

    Teng, L.C.; Crosbie, E.A.; Norem, J.

    1995-01-01

    The design approach and design principles for a Tau-charm Factory at Argonne were studied. These studies led to a set of preliminary parameters and tentative component features as presented in this paper

  18. Argonne Tau-charm Factory collider design study

    International Nuclear Information System (INIS)

    Teng, L.C.; Crosbie, E.A.; Norem, J.; Repond, J.

    1996-01-01

    The design approach and design principles for a Tau-charm Factory at Argonne were studied. These studies led to a set of preliminary parameters and tentative component features as presented in this paper. copyright 1996 American Institute of Physics

  19. Muon colliders

    International Nuclear Information System (INIS)

    Cline, David

    1995-01-01

    The increasing interest in the possibility of positive-negative muon colliders was reflected in the second workshop on the Physics Potential and Development of Muon Colliders, held in Sausalito, California, from 16-19 November, with some 60 attendees. It began with an overview of the particle physics goals, detector constraints, the muon collider and mu cooling, and source issues. The major issue confronting muon development is the possible luminosity achievable. Two collider energies were considered: 200 + 200 GeV and 2 + 2 TeV. The major particle physics goals are the detection of the higgs boson(s) for the lower energy collider, together with WW scattering and supersymmetric particle discovery. At the first such workshop, held in Napa, California, in 1992, it was estimated that a luminosity of some 10 30 and 3 x 10 32 cm -2 s -1 for the low and high energy collider might be achieved (papers from this meeting were published in the October issue of NIM). This was considered a somewhat conservative estimate at the time. At the Sausalito workshop the goal was to see if a luminosity of 10 32 to 10 34 for the two colliders might be achievable and usable by a detector. There were five working groups - physics, 200 + 200 GeV collider, 2 + 2 TeV collider, detector design and backgrounds, and muon cooling and production methods. Considerable progress was made in all these areas at the workshop.

  20. submitter Can you afford to wait? Designing the collider of the future

    CERN Document Server

    Benedikt, Michael

    2017-01-01

    Designing a future circular collider is a next step in humanity’s quest to explain the world. This effort is not only about striving for a profound understanding of nature, but also about creating an exciting perspective for future generations.

  1. Analysis and Design of the Cryogenic System of the Future Circular Collider

    CERN Document Server

    Kotnig, Claudio; Brenn, Günter

    Particle colliders are today's most advanced tools to perform particle physics experiments and penetrate the mysteries of matter. The largest existing particle collider, the LHC, is about to reach its technical limits and the particle physics society has to decide which future machine will enable the successful research to gain new knowledge. One option is the superconducting Future Circular Collider (FCC), which would exceed the LHC's size and generated particle energies by far. The enormous particle energies call for high magnetic fields, which only can be created reliably and economically by special superconducting materials at cryogenic temperature level. The intelligent design of the cryogenic distribution and discharge system to sustain the thermodynamic state of the superconducting electromagnets is the basis for an efficient and functional refrigeration and consequently for the physics experiments themselves. Several requirements and constraints limit the technical possibilities and the cryogenic syst...

  2. Design and analysis of the Collider SPXA/SPRA spool piece vacuum barrier

    International Nuclear Information System (INIS)

    Cruse, G.; Aksel, G.

    1993-04-01

    A design for the Collider SPXA/SPRA spool piece vacuum barrier was developed to meet a variety of thermal and structural performance requirements. Both composite and stainless steel alternatives were investigated using detailed finite-element analysis before selecting an optimized version of the ASST SPR spool vacuum barrier design. This design meets the structural requirements and will be able to meet the thermal performance requirements by using some newer thermal strapping configurations

  3. Measuring Gauge-Mediated SuperSymmetry Breaking Parameters at a 500 GeV $e^{+}e^{-}$ Linear Collider

    CERN Document Server

    Ambrosanio, S; Ambrosanio, Sandro; Blair, Grahame A.

    2000-01-01

    We consider the phenomenology of a class of gauge-mediated supersymmetry (SUSY) breaking (GMSB) models at a e+e- Linear Collider (LC) with c.o.m. energy up to 500 GeV. In particular, we refer to a high-luminosity (L ~ 3 x 10^34 cm^-2 s^-1) machine, and use detailed simulation tools for a proposed detector. Among the GMSB-model building options, we define a simple framework and outline its predictions at the LC, under the assumption that no SUSY signal is detected at LEP or Tevatron. Our focus is on the case where a neutralino (N1) is the next-to-lightest SUSY particle (NLSP), for which we determine the relevant regions of the GMSB parameter space. Many observables are calculated and discussed, including production cross sections, NLSP decay widths, branching ratios and distributions, for dominant and rare channels. We sketch how to extract the messenger and electroweak scale model parameters from a spectrum measured via, e.g. threshold-scanning techniques. Several experimental methods to measure the NLSP mass...

  4. Geological-geotechnical studies for siting the Superconducting Super Collider in Illinois: results of the 1986 test drilling program. Environmental geology notes

    International Nuclear Information System (INIS)

    Curry, B.B.; Graese, A.M.; Hasek, M.J.; Vaiden, R.C.; Bauer, R.A.

    1988-01-01

    From 1984 through 1986, geologists from the Illinois State Geological Survey (ISGS) conducted a thorough field investigation in northeastern Illinois to determine whether the surface and subsurface geology would be suitable for constructing the U.S. Department of Energy's 20-TeV (trillion electron volt) particle accelerator - the Superconducting Super Collider (SSC). The third and final stage of test drilling in 1986 concentrated on a specific corridor proposed for the racetrack-shaped SSC that would circle deep below the surface of Kane, Kendall, and Du Page Counties. The main objective was to verify that bedrock lying under the region satisified the site criteria for construction of a 10-foot-diameter tunnel to hold the particle accelerator and the superconducting magnets, large chambers to house the laboratories and computers for conducting and recording experiments, and shafts to provide access to the subterranean facilities. Thirteen test holes, ISGS S-18 through S-30, were drilled to depths ranging from 398.2 to 646.6 feet. The field team recovered 5675 feet of bedrock core and 212 samples of glacial drift (sand, clay, gravel) for laboratory analyses and recorded on-site data that establish the thickness, distribution, lithology (composition), and other properties of the rocks lying under the study area

  5. Beam-loss induced pressure rise of Large Hadron Collider collimator materials irradiated with 158 GeV/u $In^{49+}$ ions at the CERN Super Proton Synchrotron

    CERN Document Server

    Mahner, Edgar; Hansen, Jan; Page, Eric; Vincke, H

    2004-01-01

    During heavy ion operation, large pressure rises, up to a few orders of magnitude, were observed at CERN, GSI, and BNL. The dynamic pressure rises were triggered by lost beam ions that impacted onto the vacuum chamber walls and desorbed about 10/sup 4/ to 10/sup 7/ molecules per ion. The deterioration of the dynamic vacuum conditions can enhance charge-exchange beam losses and can lead to beam instabilities or even to beam abortion triggered by vacuum interlocks. Consequently, a dedicated measurement of heavy-ion induced molecular desorption in the GeV/u energy range is important for Large Hadron Collider (LHC) ion operation. In 2003, a desorption experiment was installed at the super proton synchrotron to measure the beam-loss induced pressure rise of potential LHC collimator materials. Samples of bare graphite, sputter coated (Cu, TiZrV) graphite, and 316 LN (low carbon with nitrogen) stainless steel were irradiated under grazing angle with 158 GeV/u indium ions. After a description of the new experimental ...

  6. Selection of the optimum magnet design for the International Linear Collider positron source helical undulator

    Directory of Open Access Journals (Sweden)

    D. J. Scott

    2007-03-01

    Full Text Available A comparison of possible undulator designs for the International Linear Collider positron source has resulted in a superconducting bifilar wire design being selected. After a comprehensive paper study and fabrication of the two preeminent designs, the superconducting undulator was chosen instead of the permanent magnet alternative. This was because of its superior performance in terms of magnetic field strength and quality, operational flexibility, risk of radiation damage, ease in achieving the required vacuum, and cost. The superconducting undulator design will now be developed into a complete system design for the full 200 m long magnet that is required.

  7. Neutral technicolor pseudo Goldstone bosons production and QCD [quantum chromodynamics] background at the SSC [Superconducting Super Collider

    International Nuclear Information System (INIS)

    Kuo, Wang-Chuang.

    1990-01-01

    The production of the neutral technicolor pseudo Goldstone bosons, P 0 'and P 8 0 ', at large transverse momentum in pp collisions, pp → g(q)P 0 ' (P 8 0 ')X has been investigated in reactions at a high energy collider such as the SSC. The major two-body and three-body decay modes in tree diagrams are investigated in detail. The t bar t decay channel would dominate both the decays of P 0 ' and P 8 0 ' if it is allowed. Otherwise, gg and 3g will be the dominant decay modes unless the mass of the P 0 ' and P 8 0 ' are below 40 GeV, where b bar b becomes dominant. According to the QCD backgrounds, which we have also investigated in detail in this work, the signal for t bar t is much larger than the background and will be the ideal signal for detecting these bosons. However, in the absence of the t bar t channel, the τ bar τ mode can be used to identify P 0 ' up to m P = 300 GeV in the transverse momentum range P perpendicular approx-lt 100 GeV. Similarly, the b bar b decay mode can serve us a signal to identify P 8 0 ' up to m P = 300 GeV for P perpendicular between 500 and 700 GeV. Our results show that these high transverse momentum production processes are useful for the searching for the P 8 0 ' at the SSC. 63 refs

  8. Neutral technicolor pseudo Goldstone bosons production and QCD (quantum chromodynamics) background at the SSC (Superconducting Super Collider)

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Wang-Chuang.

    1990-09-21

    The production of the neutral technicolor pseudo Goldstone bosons, P{sup 0}{prime}and P{sub 8}{sup 0}{prime}, at large transverse momentum in pp collisions, pp {yields} g(q)P{sup 0}{prime} (P{sub 8}{sup 0}{prime})X has been investigated in reactions at a high energy collider such as the SSC. The major two-body and three-body decay modes in tree diagrams are investigated in detail. The t{bar t} decay channel would dominate both the decays of P{sup 0}{prime} and P{sub 8}{sup 0}{prime} if it is allowed. Otherwise, gg and 3g will be the dominant decay modes unless the mass of the P{sup 0}{prime} and P{sub 8}{sup 0}{prime} are below 40 GeV, where b{bar b} becomes dominant. According to the QCD backgrounds, which we have also investigated in detail in this work, the signal for t{bar t} is much larger than the background and will be the ideal signal for detecting these bosons. However, in the absence of the t{bar t} channel, the {tau}{bar {tau}} mode can be used to identify P{sup 0}{prime} up to m{sub P} = 300 GeV in the transverse momentum range P{sub {perpendicular}} {approx lt} 100 GeV. Similarly, the b{bar b} decay mode can serve us a signal to identify P{sub 8}{sup 0}{prime} up to m{sub P} = 300 GeV for P{sub {perpendicular}} between 500 and 700 GeV. Our results show that these high transverse momentum production processes are useful for the searching for the P{sub 8}{sup 0}{prime} at the SSC. 63 refs.

  9. Science Requirements and Conceptual Design for a Polarized Medium Energy Electron-Ion Collider at Jlab

    Energy Technology Data Exchange (ETDEWEB)

    Abeyratne, S; Ahmed, S; Barber, D; Bisognano, J; Bogacz, A; Castilla, A; Chevtsov, P; Corneliussen, S; Deconinck, W; Degtiarenko, P; Delayen, J; Derbenev, Ya; DeSilva, S; Douglas, D; Dudnikov, V; Ent, R; Erdelyi, B; Evtushenko, P; Fujii, Yu; Filatov, Yury; Gaskell, D; Geng, R; Guzey, V; Horn, T; Hutton, A; Hyde, C; Johnson, R; Kim, Y; Klein, F; Kondratenko, A; Kondratenko, M; Krafft, G; Li, R; Lin, F; Manikonda, S; Marhauser, F; McKeown, R; Morozov, V; Dadel-Turonski, P; Nissen, E; Ostroumov, P; Pivi, M; Pilat, F; Poelker, M; Prokudin, A; Rimmer, R; Satogata, T; Sayed, H; Spata, M; Sullivan, M; Tennant, C; Terzic, B; Tiefenback, M; Wang, M; Wang, S; Weiss, C; Yunn, B

    2012-08-01

    Researchers have envisioned an electron-ion collider with ion species up to heavy ions, high polarization of electrons and light ions, and a well-matched center-of-mass energy range as an ideal gluon microscope to explore new frontiers of nuclear science. In its most recent Long Range Plan, the Nuclear Science Advisory Committee (NSAC) of the US Department of Energy and the National Science Foundation endorsed such a collider in the form of a 'half-recommendation.' As a response to this science need, Jefferson Lab and its user community have been engaged in feasibility studies of a medium energy polarized electron-ion collider (MEIC), cost-effectively utilizing Jefferson Lab's already existing Continuous Electron Beam Accelerator Facility (CEBAF). In close collaboration, this community of nuclear physicists and accelerator scientists has rigorously explored the science case and design concept for this envisioned grand instrument of science. An electron-ion collider embodies the vision of reaching the next frontier in Quantum Chromodynamics - understanding the behavior of hadrons as complex bound states of quarks and gluons. Whereas the 12 GeV Upgrade of CEBAF will map the valence-quark components of the nucleon and nuclear wave functions in detail, an electron-ion collider will determine the largely unknown role sea quarks play and for the first time study the glue that binds all atomic nuclei. The MEIC will allow nuclear scientists to map the spin and spatial structure of quarks and gluons in nucleons, to discover the collective effects of gluons in nuclei, and to understand the emergence of hadrons from quarks and gluons. The proposed electron-ion collider at Jefferson Lab will collide a highly polarized electron beam originating from the CEBAF recirculating superconducting radiofrequency (SRF) linear accelerator (linac) with highly polarized light-ion beams or unpolarized light- to heavy-ion beams from a new ion accelerator and storage complex. Since the very

  10. Science Requirements and Conceptual Design for a Polarized Medium Energy Electron-Ion Collider at Jlab

    International Nuclear Information System (INIS)

    Abeyratne, S.; Accardi, A.; Ahmed, S.; Barber, D.; Bisognano, J.; Bogacz, A.; Castilla, A.; Chevtsov, P.; Corneliussen, S.; Deconinck, W.; Degtiarenko, P.; Delayen, J.; Derbenev, Ya.; DeSilva, S.; Douglas, D.; Dudnikov, V.; Ent, R.; Erdelyi, B.; Evtushenko, P.; Fujii, Yu; Filatov, Yury; Gaskell, D.; Geng, R.; Guzey, V.; Horn, T.; Hutton, A.; Hyde, C.; Johnson, R.; Kim, Y.; Klein, F.; Kondratenko, A.; Kondratenko, M.; Krafft, G.; Li, R.; Lin, F.; Manikonda, S.; Marhauser, F.; McKeown, R.; Morozov, V.; Dadel-Turonski, P.; Nissen, E.; Ostroumov, P.; Pivi, M.; Pilat, F.; Poelker, M.; Prokudin, A.; Rimmer, R.; Satogata, T.; Sayed, H.; Spata, M.; Sullivan, M.; Tennant, C.; Terzic, B.; Tiefenback, M.; Wang, H.; Wang, S.; Weiss, C.; Yunn, B.; Zhang, Y.

    2012-01-01

    Researchers have envisioned an electron-ion collider with ion species up to heavy ions, high polarization of electrons and light ions, and a well-matched center-of-mass energy range as an ideal gluon microscope to explore new frontiers of nuclear science. In its most recent Long Range Plan, the Nuclear Science Advisory Committee (NSAC) of the US Department of Energy and the National Science Foundation endorsed such a collider in the form of a 'half-recommendation.' As a response to this science need, Jefferson Lab and its user community have been engaged in feasibility studies of a medium energy polarized electron-ion collider (MEIC), cost-effectively utilizing Jefferson Lab's already existing Continuous Electron Beam Accelerator Facility (CEBAF). In close collaboration, this community of nuclear physicists and accelerator scientists has rigorously explored the science case and design concept for this envisioned grand instrument of science. An electron-ion collider embodies the vision of reaching the next frontier in Quantum Chromodynamics - understanding the behavior of hadrons as complex bound states of quarks and gluons. Whereas the 12 GeV Upgrade of CEBAF will map the valence-quark components of the nucleon and nuclear wave functions in detail, an electron-ion collider will determine the largely unknown role sea quarks play and for the first time study the glue that binds all atomic nuclei. The MEIC will allow nuclear scientists to map the spin and spatial structure of quarks and gluons in nucleons, to discover the collective effects of gluons in nuclei, and to understand the emergence of hadrons from quarks and gluons. The proposed electron-ion collider at Jefferson Lab will collide a highly polarized electron beam originating from the CEBAF recirculating superconducting radiofrequency (SRF) linear accelerator (linac) with highly polarized light-ion beams or unpolarized light- to heavy-ion beams from a new ion accelerator and storage complex. Since the very

  11. Design of textured surfaces for super-hydrophobicity

    Indian Academy of Sciences (India)

    Prithvi Raj Jelia

    2017-11-11

    Nov 11, 2017 ... as silicon wafer [1, 10, 11]. Yoon et al [12] used a modified ... The explanation for the increase in the contact angle or hydrophobicity on the ... water droplets on super-hydrophobic surfaces that exhibit large contact angles are ...

  12. Three-dimensional Core Design of a Super Fast Reactor with a High Power Density

    International Nuclear Information System (INIS)

    Cao, Liangzhi; Oka, Yoshiaki; Ishiwatari, Yuki; Ikejiri, Satoshi; Ju, Haitao

    2010-01-01

    The SuperCritical Water-cooled Reactor (SCWR) pursues high power density to reduce its capital cost. The fast spectrum SCWR, called a super fast reactor, can be designed with a higher power density than thermal spectrum SCWR. The mechanism of increasing the average power density of the super fast reactor is studied theoretically and numerically. Some key parameters affecting the average power density, including fuel pin outer diameter, fuel pitch, power peaking factor, and the fraction of seed assemblies, are analyzed and optimized to achieve a more compact core. Based on those sensitivity analyses, a compact super fast reactor is successfully designed with an average power density of 294.8 W/cm 3 . The core characteristics are analyzed by using three-dimensional neutronics/thermal-hydraulics coupling method. Numerical results show that all of the design criteria and goals are satisfied

  13. Preliminary design of the beam screen cooling for the Future Circular Collider of hadron beams

    Science.gov (United States)

    Kotnig, C.; Tavian, L.

    2015-12-01

    Following recommendations of the recent update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. This study considers an option for a very high energy (100 TeV) hadron-hadron collider located in a quasi-circular underground tunnel having a circumference of 80 to 100 km. The synchrotron radiation emitted by the high-energy hadron beam increases by more than two orders of magnitude compared to the LHC. To reduce the entropic load on the superconducting magnets’ refrigeration system, beam screens are indispensable to extract the heat load at a higher temperature level. After illustrating the decisive constraints of the beam screen's refrigeration design, this paper presents a preliminary design of the length of a continuous cooling loop comparing helium and neon, for different cooling channel geometries with emphasis on the cooling length limitations and the exergetic efficiency.

  14. Preliminary design of the beam screen cooling for the Future Circular Collider of hadron beams

    CERN Document Server

    Kotnig, C

    2015-01-01

    Following recommendations of the recent update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. This study considers an option for a very high energy (100 TeV) hadron-hadron collider located in a quasi-circular underground tunnel having a circumference of 80 to 100 km. The synchrotron radiation emitted by the high-energy hadron beam increases by more than two orders of magnitude compared to the LHC. To reduce the entropic load on the superconducting magnets' refrigeration system, beam screens are indispensable to extract the heat load at a higher temperature level. After illustrating the decisive constraints of the beam screen's refrigeration design, this paper presents a preliminary design of the length of a continuous cooling loop comparing helium and neon, for different cooling channel geometries with emphasis on the cooling length limitations and the exergetic efficiency.

  15. Radiation protection considerations in the design of the LHC, CERN's large hadron collider

    International Nuclear Information System (INIS)

    Hoefert, M.; Huhtinen, M.; Moritz, L.E.; Nakashima, H.; Potter, K.M.; Rollet, S.; Stevenson, G.R.; Zazula, J.M.

    1996-01-01

    This paper describes the radiological concerns which are being taken into account in the design of the LHC (CERN's future Large Hadron Collider). The machine will be built in the 27 km circumference ring tunnel of the existing LEP collider at CERN. The high intensity of the circulating beams (each containing more than 10 14 protons at 7 TeV) determines the thickness specification of the shielding of the main-ring tunnel, the precautions to be taken in the design of the beam dumps and their associated caverns and the radioactivity induced by the loss of protons in the main ring by inelastic beam-gas interactions. The high luminosity of the collider is designed to provide inelastic collision rates of 10 9 per second in each of the two principal detector installations, ATLAS and CMS. These collisions determine the shielding of the experimental areas, the radioactivity induced in both the detectors and in the machine components on either side of the experimental installations and, to some extent, the radioactivity induced in the beam-cleaning (scraper) systems. Some of the environmental issues raised by the project will be discussed. (author)

  16. Zeroth-order design report for the next linear collider. Volume 1

    International Nuclear Information System (INIS)

    Raubenheimer, T.O.

    1996-05-01

    This Zeroth Order Design Report (ZDR) for the Next Linear Collider (NLC) has been completed as a feasibility study for a TeV-scale linear collider that incorporates a room-temperature accelerator powered by rf microwaves at 11.424 GHz--similar to that presently used in the SLC, but at four times the rf frequency. The purpose of this study is to examine the complete systems of such a collider, to understand how the parts fit together, and to make certain that every required piece has been included. The design presented here is not fully engineered in any sense, but to be assured that the NLC can be built, attention has been given to a number of critical components and issues that present special challenges. More engineering and development of a number of mechanical and electrical systems remain to be done, but the conclusion of this study is that indeed the NLC is technically feasible and can be expected to reach the performance levels required to perform research at the TeV energy scale. Volume one covers the following: the introduction; electron source; positron source; NLC damping rings; bunch compressors and prelinac; low-frequency linacs and compressors; main linacs; design and dynamics; and RF systems for main linacs

  17. Zeroth-order design report for the next linear collider. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Raubenheimer, T.O. [ed.

    1996-05-01

    This Zeroth Order Design Report (ZDR) for the Next Linear Collider (NLC) has been completed as a feasibility study for a TeV-scale linear collider that incorporates a room-temperature accelerator powered by rf microwaves at 11.424 GHz--similar to that presently used in the SLC, but at four times the rf frequency. The purpose of this study is to examine the complete systems of such a collider, to understand how the parts fit together, and to make certain that every required piece has been included. The design presented here is not fully engineered in any sense, but to be assured that the NLC can be built, attention has been given to a number of critical components and issues that present special challenges. More engineering and development of a number of mechanical and electrical systems remain to be done, but the conclusion of this study is that indeed the NLC is technically feasible and can be expected to reach the performance levels required to perform research at the TeV energy scale. Volume one covers the following: the introduction; electron source; positron source; NLC damping rings; bunch compressors and prelinac; low-frequency linacs and compressors; main linacs; design and dynamics; and RF systems for main linacs.

  18. Development of a custom monolithic device for data acquisition from a scintillating calorimeter at the superconducting super collider

    International Nuclear Information System (INIS)

    Ekenberg, T.; Dawson, J.W.; Talaga, R.L.; Stevens, A.E.; Haberichter, W.N.

    1991-01-01

    A clock-driven continuous sequential write/random read data acquisition architecture for a scintillating calorimeter at the SSC is presented. Simplicity of design and operation as well as potentially dead time-less operation are the motivations of this effort. The architecture minimizes the number of fast control signals, thereby reducing pickup from digital control lines by sensitive analog circuits in the front-end device. This architecture also reduces the logic necessary on the front-end device improving reliability and easing design and operation. Operation and design of the front-end device are discussed. 3 refs., 7 figs

  19. Ion Colliders

    CERN Document Server

    Fischer, W

    2014-01-01

    High-energy ion colliders are large research tools in nuclear physics to study the Quark-Gluon-Plasma (QGP). The range of collision energy and high luminosity are important design and operational considerations. The experiments also expect flexibility with frequent changes in the collision energy, detector fields, and ion species. Ion species range from protons, including polarized protons in RHIC, to heavy nuclei like gold, lead and uranium. Asymmetric collision combinations (e.g. protons against heavy ions) are also essential. For the creation, acceleration, and storage of bright intense ion beams, limits are set by space charge, charge change, and intrabeam scattering effects, as well as beam losses due to a variety of other phenomena. Currently, there are two operating ion colliders, the Relativistic Heavy Ion Collider (RHIC) at BNL, and the Large Hadron Collider (LHC) at CERN.

  20. The ERL-based Design of Electron-Hadron Collider eRHIC

    Energy Technology Data Exchange (ETDEWEB)

    Ptitsyn, Vadim [et al.

    2016-06-01

    Recent developments of the ERL-based design of future high-luminosity electron-hadron collider eRHIC focused on balancing technological risks present in the design versus the design cost. As a result a lower risk design has been adopted at moderate cost increase. The modifications include a change of the main linac RF frequency, reduced number of SRF cavity types and modified electron spin transport using a spin rotator. A luminosity-staged approach is being explored with a Nominal design ($L \\sim 10^{33} {\\rm cm}^2 {\\rm s}^{-1}$) that employs reduced electron current and could possibly be based on classical electron cooling, and then with the Ultimate design ($L \\gt 10^{34} {\\rm cm}^{-2} {\\rm s}^{-1}$) that uses higher electron current and an innovative cooling technique (CeC). The paper describes the recent design modifications, and presents the full status of the eRHIC ERL-based design.

  1. Zeroth-order design report for the next linear collider. Volume 2

    International Nuclear Information System (INIS)

    Raubenheimer, T.O.

    1996-05-01

    This Zeroth-Order Design Report (ZDR) for the Next Linear Collider (NLC) has been completed as a feasibility study for a TeV-scale linear collider that incorporates a room-temperature accelerator powered by rf microwaves at 11.424 GHz--similar to that presently used in the SLC, but at four times the rf frequency. The purpose of this study is to examine the complete systems of such a collider, to understand how the parts fit together, and to make certain that every required piece has been included. The ''design'' presented here is not fully engineered in any sense, but to be assured that the NLC can be built, attention has been given to a number of critical components and issues that present special challenges. More engineering and development of a number of mechanical and electrical systems remain to be done, but the conclusion of this study is that indeed the NLC is technically feasible and can be expected to reach the performance levels required to perform research at the TeV energy scale. Volume II covers the following: collimation systems; IP switch and big bend; final focus; the interaction region; multiple bunch issues; control systems; instrumentation; machine protection systems; NLC reliability considerations; NLC conventional facilities. Also included are four appendices on the following topics: An RF power source upgrade to the NLC; a second interaction region for gamma-gamma, gamma-electron; ground motion: theory and measurement; and beam-based feedback: theory and implementation

  2. Towards the conceptual design of the cryogenic system of the Future Circular Collider (FCC)

    Science.gov (United States)

    Chorowski, M.; Correia Rodrigues, H.; Delikaris, D.; Duda, P.; Haberstroh, C.; Holdener, F.; Klöppel, S.; Kotnig, C.; Millet, F.; Polinski, J.; Quack, H.; Tavian, L.

    2017-12-01

    Following the update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. The study considers several options for very high-energy hadron-hadron, electron-positron and hadron-electron colliders. From the cryogenics point of view, the most challenging option is the hadron-hadron collider (FCC-hh) for which the conceptual design of the cryogenic system is progressing. The FCC-hh cryogenic system will have to produce up to 120 kW at 1.8 K for the superconducting magnet cooling, 6 MW between 40 and 60 K for the beam-screen and thermal-shield cooling as well as 850 g/s between 40 and 290 K for the HTS current-lead cooling. The corresponding total entropic load represents about 1 MW equivalent at 4.5 K and this cryogenic system will be by far the largest ever designed. In addition, the total mass to be cooled down is about 250’000 t and an innovative cool-down process must be proposed. This paper will present the proposed cryogenic layout and architecture, the cooling principles of the main components, the corresponding cooling schemes, as well as the cryogenic plant arrangement and proposed process cycles. The corresponding required development plan for such challenging cryogenic system will be highlighted.

  3. Zeroth-order design report for the next linear collider. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Raubenheimer, T.O. [ed.

    1996-05-01

    This Zeroth-Order Design Report (ZDR) for the Next Linear Collider (NLC) has been completed as a feasibility study for a TeV-scale linear collider that incorporates a room-temperature accelerator powered by rf microwaves at 11.424 GHz--similar to that presently used in the SLC, but at four times the rf frequency. The purpose of this study is to examine the complete systems of such a collider, to understand how the parts fit together, and to make certain that every required piece has been included. The ``design`` presented here is not fully engineered in any sense, but to be assured that the NLC can be built, attention has been given to a number of critical components and issues that present special challenges. More engineering and development of a number of mechanical and electrical systems remain to be done, but the conclusion of this study is that indeed the NLC is technically feasible and can be expected to reach the performance levels required to perform research at the TeV energy scale. Volume II covers the following: collimation systems; IP switch and big bend; final focus; the interaction region; multiple bunch issues; control systems; instrumentation; machine protection systems; NLC reliability considerations; NLC conventional facilities. Also included are four appendices on the following topics: An RF power source upgrade to the NLC; a second interaction region for gamma-gamma, gamma-electron; ground motion: theory and measurement; and beam-based feedback: theory and implementation.

  4. Alignment and vibration issues in TeV linear collider design

    International Nuclear Information System (INIS)

    Fischer, G.E.

    1989-07-01

    The next generation of linear colliders will require alignment accuracies and stabilities of component placement at least one, perhaps two, orders of magnitude better than can be achieved by the conventional methods and procedures in practice today. The magnitudes of these component-placement tolerances for current designs of various linear collider subsystems are tabulated. In the micron range, long-term ground motion is sufficiently rapid that on-line reference and mechanical correction systems are called for. Some recent experiences with the upgraded SLAC laser alignment systems and examples of some conceivable solutions for the future are described. The so called ''girder'' problem is discussed in the light of ambient and vibratory disturbances. The importance of the quality of the underlying geology is stressed. The necessity and limitations of public-beam-derived placement information are mentioned. 40 refs., 4 figs., 1 tab

  5. Alighment and Vibration Issues in TeV Linear Collider Design

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, G.E.; /SLAC

    2005-08-12

    The next generation of linear colliders will require alignment accuracies and stabilities of component placement at least one, perhaps two, orders of magnitude better than can be achieved by the conventional methods and procedures in practice today. The magnitudes of these component-placement tolerances for current designs of various linear collider subsystems are tabulated. In the micron range, long-term ground motion is sufficiently rapid that on-line reference and mechanical correction systems are called for. Some recent experiences with the upgraded SLAC laser alignment systems and examples of some conceivable solutions for the future are described. The so called ''girder'' problem is discussed in the light of ambient and vibratory disturbances. The importance of the quality of the underlying geology is stressed. The necessity and limitations of particle-beam-derived placement information are mentioned.

  6. Beam transfer between the coupled cavity linac and the low energy booster synchrotron for the SSC [Superconducting Super Collider

    International Nuclear Information System (INIS)

    Bhandari, R.K.; Penner, S.

    1990-09-01

    Ion optical design of the transfer line, which will be used to inject H - beam at 600 MeV from the Coupled Cavity Linac (CCL) into the Low Energy Booster (LEB) synchrotron, is described. Space charge effects of up to 50 mA average beam current have been taken into account

  7. Technical design of a detector to be operated at the Superconducting Super Collider

    International Nuclear Information System (INIS)

    1992-01-01

    This report discusses the following topics on the Soleoidal Detector Collaboration: Summary and overview of the detector; physics and detector requirements; central tracking system; superconducting magnet; calorimetry; muon system; electronics; online computing; offline computing; safety; experimental facilities; installation; test and calibration beam plan; and cost and schedule summary

  8. Technical design of a detector to be operated at the Superconducting Super Collider

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This report discusses the following topics on the Soleoidal Detector Collaboration: Summary and overview of the detector; physics and detector requirements; central tracking system; superconducting magnet; calorimetry; muon system; electronics; online computing; offline computing; safety; experimental facilities; installation; test and calibration beam plan; and cost and schedule summary.

  9. On the design of fully-integrated charge preamplifiers for the Superconducting Super Collider

    International Nuclear Information System (INIS)

    VanPeteghem, P.M.; Ling, K.Y.; Lee, S.Y.; Liu, H.H.; DiBitonto, D.

    1990-01-01

    The specifications imposed on the charge preamplifiers, to be used in the Superconducting Supercollider are very demanding: the rise time should be less than 100 nsec and noise should be less than 1,000 electrons RMS for a total power consumption of less than 80 mWatt. Furthermore, several hundreds of thousands (or even millions) of channels have to be manufactured. Hence, integrated circuit (IC) implementations can be more economical than discrete implementations, due to the compact size and ease of manufacturing. BiFET IC technology is currently the most attractive technology, because it is a mature IC technology, and readily available from several industrial vendors. As a case study, a BiFET prototype preamplifier is presented, where circuit performance has been tested for total radiation doses up to 1.4 MegaRads

  10. Design and fabrication procedures of Super-Phenix fuel elements

    International Nuclear Information System (INIS)

    Leclere, J.; Vialard, J.-L.; Delpeyroux, P.

    1975-01-01

    For Super-Phenix fuel assemblies, Phenix technological arrangements will be used again, but they will be simplified as far as possible. The maximum fuel can temperature has been lowered in order to obtain a good behavior of hexagonal tubes and cans at high irradiation levels. An important experimental programme and the experience gained from Phenix operation will confirm the merits of the options retained. The fuel element fabrication is envisaged to take place in the plutonium workshop at Cadarache. Usual procedures will be employed and both reliability and automation will be increased [fr

  11. The feasibility of low-mass conductors for toroidal superconducting magnets for SSC [Superconducting Super Collider] detectors

    International Nuclear Information System (INIS)

    Luton, J.N.

    1990-01-01

    An earlier study by Luton and Bonanos concluded that the design and fabrication of superconducting toroidal bending magnets would require a major effort but would be feasible. This study is an extension to examine the feasibility of low-mass conductors for such use. It included a literature search, consultations, with conductor manufacturers, and design calculations, but no experimental work. An unoptimized sample design that used a residual resistivity ratio for aluminum of 1360 and a current density of 3.5 kA/cm 2 over the uninsulated conductor for a 4.5-T toroid with 1 GJ of stored energy obtained a hot-spot temperature of 120 K with a maximum dump voltage of 3.6 kV and 24% of the initial current inductively transferred into the shorted aluminum structure. The stability margin was 200 mJ/cm 3 of cable space. Limiting the quench pressure to 360 atm to give conservative stresses in the sheath and assuming that the whole flow path quenched immediately resulted in helium taps that could be a kilometer apart if the flow friction factor were the same as that experienced in the Westinghouse (W) Large Coil Task (LCT) coil. This indicates that the 520-m conductor length of each of the 72 individual coil segments of a toroid would be a single flow path. If some practical uncertainties can be favorably resolved by producing and testing sample conductors, the use of a conductor with clad-aluminum stabilizer and extruded aluminum-alloy sheath should be feasible and economical. 9 refs., 3 figs

  12. The Large Hadron Collider and the Super Proton Synchrotron at CERN as Tools to Generate Warm Dense Matter and Non–Ideal Plasmas

    CERN Document Server

    Tahir, N A; Shutov, A; Lomonosov, I V; Gryaznov, V; Piriz, A R; Deutsch, C; Fortov, V E

    2011-01-01

    The largest accelerator in the world, the Large Hadron Collider (LHC) at CERN, has entered into commission- ing phase. It is expected that when this impressive machine will become fully operational, it will generate two counter rotating 7 TeV/c proton beams that will be made to collide, leading to an unprecedented luminosity of 1034 cm−2s−1. Total energy stored in each LHC beam is about 362 MJ, sufficient to melt 500 kg copper. Safety of operation is a very critical issue when working with such extremely powerful beams. It is important to know the consequences of an accidental release of the beam energy in order to design protection system for the equipment. For this purpose we have carried out extensive numerical simulations of the interaction of one full LHC beam with copper and graphite targets which are materials of practical importance. Our calculations have shown that the LHC protons will penetrate up to about 35 m in solid copper and 10 m in solid graphite. A very interesting outcome of this work i...

  13. The Large Hadron Collider and the Super Proton Synchrotron at CERN as Tools to Generate Warm Dense Matter and Non-Ideal Plasmas

    CERN Document Server

    Tahir, N A; Deutsch, C; Gryaznov, V; Lomonosov, I V; Shutov, A; Piriz, A R; Fortov, V E; Geissel, H; Redmer, R

    2011-01-01

    The largest accelerator in the world, the Large Hadron Collider (LHC) at CERN, has entered into commissioning phase. It is expected that when this impressive machine will become fully operational, it will generate two counter rotating 7 TeV/c proton beams that will be made to collide, leading to an unprecedented luminosity of 10(34) cm(-2)s(-1). Total energy stored in each LHC beam is about 362 MJ, sufficient to melt 500 kg copper. Safety of operation is a very critical issue when working with such extremely powerful beams. It is important to know the consequences of an accidental release of the beam energy in order to design protection system for the equipment. For this purpose we have carried out extensive numerical simulations of the interaction of one full LHC beam with copper and graphite targets which are materials of practical importance. Our calculations have shown that the LHC protons will penetrate up to about 35 m in solid copper and 10 m in solid graphite. A very interesting outcome of this work i...

  14. Study of passive and active protection system for the SSC [Superconducting Super Collider] R ampersand D dipole magnet

    International Nuclear Information System (INIS)

    Lopez, G.; Snitchler, G.

    1990-06-01

    A comparative study of Passive versus Active Protection Systems is made using the computer programs SSC*, designed especially for this proposal. These programs track the quench evolution of each conductor independently, the axial quench velocity is given by a modified expression which correctly fits the experimental data, the phenomenological turn-to-turn transversal quench propagation is considered as an input parameter of the programs. The results of the simulations for a 40 mm dipole indicate that a single dipole is widely self-protected, which suggests that a Cold Diode Passive Protection System is a safe method to protect the magnet (no heaters are needed), and also that two or three magnets (Conceptual Design) will be a safe Active Protection System is the heater-time-delay to cause other quenching is sufficiently brief (τ h < 50 ms). Assuming the same turn-to-turn quench propagation for the 50 mm SSC R ampersand D Dipole Magnet, the predictions for this magnet will have much lower axial quench velocity and the above results will be still valid for this new magnet. 10 refs., 30 figs

  15. Experimental investigation of undesired stable equilibria in pumpkin shape super-pressure balloon designs

    Science.gov (United States)

    Schur, W. W.

    2004-01-01

    Excess in skin material of a pneumatic envelope beyond what is required for minimum enclosure of a gas bubble is a necessary but by no means sufficient condition for the existence of multiple equilibrium configurations for that pneumatic envelope. The very design of structurally efficient super-pressure balloons of the pumpkin shape type requires such excess. Undesired stable equilibria in pumpkin shape balloons have been observed on experimental pumpkin shape balloons. These configurations contain regions with stress levels far higher than those predicted for the cyclically symmetric design configuration under maximum pressurization. Successful designs of pumpkin shape super-pressure balloons do not allow such undesired stable equilibria under full pressurization. This work documents efforts made so far and describes efforts still underway by the National Aeronautics and Space Administration's Balloon Program Office to arrive on guidance on the design of pumpkin shape super-pressure balloons that guarantee full and proper deployment.

  16. Development of superconducting strand and cable with improved properties for use in SSC [Superconducting Super Collider] magnets

    International Nuclear Information System (INIS)

    Scanlan, R.M.

    1989-02-01

    The critical current requirement for the NbTi superconductor strand was set at 2750 A/mm 2 (5 T, 4.2 K) in the SSC Conceptual Design, compared with a value of 1800 A/mm 2 which was specified for the strand used in the Tevatron dipoles. In addition, a filament diameter of 5 μm, instead of the 9 μm diameter used in the Tevatron, was chosen to reduce field distortion at injection. In order to meet the requirements for field homogeneity, the dimensional requirements for both strand and cable were also tightened. The technical solutions employed to achieve these improved properties and the resulting specifications will be discussed. 9 refs

  17. Superstrong Adjustable Permanent Magnet for a Linear Collider Final Focus

    CERN Document Server

    Iwashita, Y

    2004-01-01

    Super-strong permanent magnets are being considered as one of the candidates for the final focus quadrupole magnets in a linear collider. A short prototype with temperature compensation included and variable strength capability has been designed and fabricated. Fabrication details and some magnetic measurement results will be presented.

  18. The proton-antiproton collider

    International Nuclear Information System (INIS)

    Evans, L.

    1988-01-01

    The subject of this lecture is the CERN Proton-Antiproton (panti p) Collider, in which John Adams was intimately involved at the design, development, and construction stages. Its history is traced from the original proposal in 1966, to the first panti p collisions in the Super Proton Synchrotron (SPS) in 1981, and to the present time with drastically improved performance. This project led to the discovery of the intermediate vector boson in 1983 and produced one of the most exciting and productive physics periods in CERN's history. (orig.)

  19. Progress on the design of the polarized Medium-energy Electron Ion Collider at JLAB

    Energy Technology Data Exchange (ETDEWEB)

    Lin, F.; Bogacz, A.; Brindza, P.; Camsonne, A.; Daly, E.; Derbenev, Ya. S.; Douglas, D.; Ent, R.; Gaskell, D.; Geng, R.; Grames, J.; Guo, J.; Harwood, L.; Hutton, A.; Jordan, K.; Kimber, A.; Krafft, G.; Li, R.; Michalski, T.; Morozov, V. S.; Nadel-Turonski, P.; /Jefferson Lab /Argonne /DESY /Moscow , Inst. Phys. Tech., Dolgoprydny /Dubna, JINR /Northern Illinois U. /Old Doominion U. /Novosibirsk, GOO Zaryad /SLAC /Texas A-M

    2015-07-14

    The Medium-energy Electron Ion Collider (MEIC) at JLab is designed to provide high luminosity and high polarization needed to reach new frontiers in the exploration of nuclear structure. The luminosity, exceeding 1033 cm-2s-1 in a broad range of the center-of-mass (CM) energy and maximum luminosity above 1034 cm-2s-1, is achieved by high-rate collisions of short small-emittance low-charge bunches made possible by high-energy electron cooling of the ion beam and synchrotron radiation damping of the electron beam. The polarization of light ion species (p, d, 3He) can be easily preserved and manipulated due to the unique figure-8 shape of the collider rings. A fully consistent set of parameters have been developed considering the balance of machine performance, required technical development and cost. This paper reports recent progress on the MEIC accelerator design including electron and ion complexes, integrated interaction region design, figure-8-ring-based electron and ion polarization schemes, RF/SRF systems and ERL-based high-energy electron cooling. Luminosity performance is also presented for the MEIC baseline design.

  20. Very high energy colliders

    International Nuclear Information System (INIS)

    Richter, B.

    1986-03-01

    The luminosity and energy requirements are considered for both proton colliders and electron-positron colliders. Some of the basic design equations for high energy linear electron colliders are summarized, as well as design constraints. A few examples are given of parameters for very high energy machines. 4 refs., 6 figs

  1. Choke-mode damped structure design for the Compact Linear Collider main linac

    CERN Document Server

    Zha, Hao; Grudiev, Alexej; Huang, Wenhui; Shi, Jiaru; Tang, Chuanxiang; Wuensch, Walter

    2012-01-01

    Choke-mode damped structures are being studied as an alternative design to waveguide damped structures for the main linac of the Compact Linear Collider (CLIC). Choke-mode structures have the potential for lower pulsed temperature rise and simpler and less expensive fabrication. An equivalent circuit model based on transmission line theory for higher-order-mode damping is presented. Using this model, a new choke geometry is proposed and the wakefield performance is verified using GDFIDL. This structure has a comparable wakefield damping effect to the baseline design which uses waveguide damping. A prototype structure with the same iris dimensions and accelerating gradient as the nominal CLIC design, but with the new choke geometry, has been designed for high-power tests. DOI: 10.1103/PhysRevSTAB.15.122003

  2. Interim report on the Global Design Effort Global International Linear Collider (ILC) R&D

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, M.

    2011-04-30

    The International Linear Collider: A Technical Progress Report marks the halfway point towards the Global Design Effort fulfilling its mandate to follow up the ILC Reference Design Report with a more optimised Technical Design Report (TDR) by the end of 2012. The TDR will be based on much of the work reported here and will contain all the elements needed to propose the ILC to collaborating governments, including a technical design and implementation plan that are realistic and have been better optimised for performance, cost and risk. We are on track to develop detailed plans for the ILC, such that once results from the Large Hadron Collider (LHC) at CERN establish the main science goals and parameters of the next machine, we will be in good position to make a strong proposal for this new major global project in particle physics. The two overriding issues for the ILC R&D programme are to demonstrate that the technical requirements for the accelerator are achievable with practical technologies, and that the ambitious physics goals can be addressed by realistic ILC detectors. This GDE interim report documents the impressive progress on the accelerator technologies that can make the ILC a reality. It highlights results of the technological demonstrations that are giving the community increased confidence that we will be ready to proceed with an ILC project following the TDR. The companion detector and physics report document likewise demonstrates how detector designs can meet the ambitious and detailed physics goals set out by the ILC Steering Committee. LHC results will likely affect the requirements for the machine design and the detectors, and we are monitoring that very closely, intending to adapt our design as those results become available.

  3. Design study of primary ion provider for relativistic heavy ion collider electron beam ion source.

    Science.gov (United States)

    Kondo, K; Kanesue, T; Tamura, J; Okamura, M

    2010-02-01

    Brookhaven National Laboratory has developed the new preinjector system, electron beam ion source (EBIS) for relativistic heavy ion collider (RHIC) and National Aeronautics and Space Administration Space Radiation Laboratory. Design of primary ion provider is an essential problem since it is required to supply beams with different ion species to multiple users simultaneously. The laser ion source with a defocused laser can provide a low charge state and low emittance ion beam, and is a candidate for the primary ion source for RHIC-EBIS. We show a suitable design with appropriate drift length and solenoid, which helps to keep sufficient total charge number with longer pulse length. The whole design of primary ion source, as well as optics arrangement, solid targets configuration and heating about target, is presented.

  4. Fundamental Design Principles of Linear Collider Damping Rings, with an Application to CLIC

    CERN Document Server

    Potier, J P

    2000-01-01

    Damping Rings for Linear Colliders have to produce very small normalised emittances at a high repetition rate. A previous paper presented analytical expressions for the equilibrium emittance of an arc cell as a function of the deflection angle per dipole. In addition, an expression for the lattice parameters providing the minimum emittance, and a strategy to stay close to this, were proposed. This analytical approach is extended to the detailed design of Damping Rings, taking into account the straight sections and the damping wigglers. Complete rings, including wiggler and injection insections, were modelled with the MAD [1] program, and their performance was found to be in good agreement with the analytical calculation. With such an approach it is shown that a Damping Ring corresponding to the Compact Linear Collider (CLIC) parameters at 0.5 and 1 TeV centre-of-mass energy, and tunable for two different sets of emittance and injection repetition rate, can be designed using the same ring layout.

  5. Design optimization of the International Linear Collider Final Focus System with a long L*

    CERN Document Server

    Plassard, Fabien

    This Master's Thesis work has been done in the Aerospace Engineering master's programme framework and carried out at the European Organization for Nuclear Research (CERN). It was conducted under the 500 GeV e-e+ International Linear Collider (ILC) study and focused on the design and performance optimization of the Final Focus System (FFS). The purpose of the final focus system of the future linear colliders (ILC and CLIC) is to demagnify the beam to the required transverse size at the interaction point (IP). The FFS is designed for a flat-beam in a compact way based on a local chromaticity correction which corrects both horizontal and vertical chromaticities simultaneously. An alternative FFS configuration based on the traditional scheme with two dedicated chromatic correction sections for horizontal and vertical chromaticities and a long L * option has been developed. A longer free space between the last quadrupole and the IP allows to place the last quadrupole on a stable ground, with fewer engineering ...

  6. The International Linear Collider Technical Design Report - Volume 1: Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    Behnke, Ties [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Brau, James E. [Univ. of Oregon, Eugene, OR (United States); Foster, Brian [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Fuster, Juan [Univ. of Valencia (Spain); Harrison, Mike [Brookhaven National Lab. (BNL), Upton, NY (United States); Paterson, James McEwan [SLAC National Accelerator Lab., Menlo Park, CA (United States); Peskin, Michael [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanitzki, Marcel [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Walker, Nicholas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Yamamoto, Hitoshi [Tohoku Univ., Sendai (Japan)

    2013-06-26

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carried out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to increase significantly our understanding of the fundamental processes that govern the evolution of the Universe.

  7. Conceptual design of hollow electron lenses for beam halo control in the Large Hadron Collider

    CERN Document Server

    Stancari, Giulio; Valishev, Alexander; Bruce, Roderik; Redaelli, Stefano; Rossi, Adriana; Salvachua Ferrando, Belen

    2014-01-01

    Collimation with hollow electron beams is a technique for halo control in high-power hadron beams. It is based on an electron beam (possibly pulsed or modulated in intensity) guided by strong axial magnetic fields which overlaps with the circulating beam in a short section of the ring. The concept was tested experimentally at the Fermilab Tevatron collider using a hollow electron gun installed in one of the Tevatron electron lenses. Within the US LHC Accelerator Research Program (LARP) and the European FP7 HiLumi LHC Design Study, we are proposing a conceptual design for applying this technique to the Large Hadron Collider at CERN. A prototype hollow electron gun for the LHC was built and tested. The expected performance of the hollow electron beam collimator was based on Tevatron experiments and on numerical tracking simulations. Halo removal rates and enhancements of halo diffusivity were estimated as a function of beam and lattice parameters. Proton beam core lifetimes and emittance growth rates were check...

  8. Design of a Multi-Bunch BPM for the Next Linear Collider

    International Nuclear Information System (INIS)

    Young, Andrew

    2003-01-01

    The Next Linear Collider (NLC) design requires precise control of colliding trains of high-intensity (1.4 x 10 10 particles/bunch) and low-emittance beams. High-resolution multi-bunch beam position monitors (BPMs) are required to ensure uniformity across the bunch trains with bunch spacing of 1.4ns. A high bandwidth (∼350 MHz) multi-bunch BPM has been designed based on a custom-made stripline sum and difference hybrid on a Teflon-based material. High bandwidth RF couplers were included to allow injection of a calibration tone. Three prototype BPMs were fabricated at SLAC and tested in the Accelerator Test Facility at KEK and in the PEP-II ring at SLAC. Tone calibration data and single-bunch and multi-bunch beam data were taken with high-speed (5Gsa/s) digitizers. Offline analysis determined the deconvolution of individual bunches in the multi-bunch mode by using the measured single bunch response. The results of these measurements are presented in this paper

  9. Development of a Super-Pressure Balloon with an Improved Design

    Science.gov (United States)

    Izutsu, Naoki; Akita, Daisuke; Fuke, Hideyuki; Iijima, Issei; Kato, Yoichi; Kawada, Jiro; Matsushima, Kiyoho; Matsuzaka, Yukihiko; Mizuta, Eiichi; Nakada, Takashi; Nonaka, Naoki; Saito, Yoshitaka; Takada, Atsushi; Tamura, Keisuke; Yamada, Kazuhiko; Yoshida, Tetsuya

    A zero-pressure balloon used for scientific observation in the stratosphere has an unmanageable limitation that its floating altitude decreases during a nighttime because of temperature drop of the lifting gas. Since a super-pressure balloon may not change its volume, the lifetime can extend very long. We had introduced so called the ‘lobed-pumpkin’ type of super-pressure balloon that can realize a full-scale long-duration balloon and it will be in practical use in the very near future. As for larger super-pressure balloons, however, we still have some potential difficulties to be resolved. We here propose a new design suitable for a larger super-pressure balloon, which is roughly ‘lobed pumpkin with lobed cylinder’ and can adapt a single design for balloons of a wide range of volumes. Indoor inflation tests were successfully carried out with balloons designed and made by the method. It has been shown that the limit of the resisting pressure differential for a new designed balloon is same as that of a normal lobed-pumpkin balloon.

  10. Design and investigation of photo-induced super-hydrophilic materials for car mirrors

    International Nuclear Information System (INIS)

    Eiamchai, Pitak; Chindaudom, Pongpan; Horprathum, Mati; Patthanasettakul, Viyapol; Limsuwan, Pichet

    2009-01-01

    During the past decades, interests in various properties in titanium dioxide thin films have been growing rapidly. There have been several reports for TiO 2 thin films prepared on various media with photocatalytic and hydrophilic properties, in order to function as self-cleaning and/or anti-fogging materials. An obvious application is usually found in side-view car mirrors in the automobile industries. In this study, a number of photocatalytic TiO 2 films are prepared on soda-lime glasses for car mirrors by an electron-beam evaporation. The designs and development of the photocatalytic TiO 2 films, based on crystallinity, deposition rate, film thickness, film structure, and surface roughness are discussed. In comparison to the commercialized products, a systematic investigation procedure for the super-hydrophilic properties of the light-induced TiO 2 films for car mirrors has been developed, based on super-hydrophilicity, sustainability, self-cleaning property, and degradation of the samples. In addition, physical characterization by X-ray diffraction and surface roughness are also discussed. It has been found that most commercial products attain super-hydrophilicity only after exposed to ultraviolet and solar irradiation in less than 1 h. They can also maintain hydrophilicity after rigorous cleaning process. On the other hand, our prepared TiO 2 thin films demonstrate super-hydrophilic and photocatalytic properties after exposed to ultraviolet light for more than 2 h. According to the study, their anatase crystallinity, small grain size, and surface conditions all contributes to the excellent results. However, the prepared samples do not attain sufficient retention property to maintain their hydrophilicity. Conclusively, the designs of the TiO 2 films on car mirrors prove adequate to produce super-hydrophilic materials, which still degrade over normal usage. Nevertheless, our proposed investigation methods prove useful in quality evaluation in order to

  11. Linear colliders - prospects 1985

    International Nuclear Information System (INIS)

    Rees, J.

    1985-06-01

    We discuss the scaling laws of linear colliders and their consequences for accelerator design. We then report on the SLAC Linear Collider project and comment on experience gained on that project and its application to future colliders. 9 refs., 2 figs

  12. 600 kV modulator design for the SLAC Next Linear Collider Test Accelerator

    International Nuclear Information System (INIS)

    Harris, K.; de Lamare, J.; Nesterov, V.; Cassel, R.

    1992-07-01

    Preliminary design for the SLAC Next Linear Collider Test Accelerator (NLCTA) requires a pulse power source to produce a 600 kV, 600 A, 1.4 μs, 0.1% flat top pulse with rise and fall times of approximately 100 ns to power an X-Band klystron with a microperveance of 1.25 at ∼ 100 MW peak RF power. The design goals for the modulator, including those previously listed, are peak modulator pulse power of 340 MW operating at 120 Hz. A three-stage darlington pulse-forming network, which produces a >100 kV, 1.4 μs pulse, is coupled to the klystron load through a 6:1 pulse transformer. Careful consideration of the transformer leakage inductance, klystron capacitance, system layout, and component choice is necessary to produce the very fast rise and fall times at 600 kV operating continuously at 120 Hz

  13. An isochronous lattice design for a 50 on 50 GeV muon collider

    International Nuclear Information System (INIS)

    Johnstone, C.; Drozhdin, A.; Mokhov, N.; Wan, W.; Garren, A.

    1998-01-01

    Using local chromatic correction techniques, a lattice for a 50 on 5-GeV muon collider has been developed which can serve as a broad-band (broad momentum acceptance) or a high-resolution (narrow momentum acceptance) Higgs factory. To reach design luminosities of 13 32 and 10 31 cm -2 s -1 , a short bunch length, minimal ring circumference and a β* of 4 cm and 13 cm must be realized in the broad-band and high-resolution machines, respectively. In the broad-band machine, local chromatic correction of the Interaction Region is required to provide adequate momentum acceptance. However, local chromatic correction conflicts with demands for extreme compactness and isochronicity, making the lattice design challenging

  14. Beam Delivery System Dogleg Design and Integration for the International Linear Collider

    CERN Document Server

    Jones, J

    2010-01-01

    It is proposed to investigate the option of moving the positron source to the end of the main linac as a part of the central integration in the International Linear Collider(ILC) project. The positron source incorporates an undulator at the end of the main linac and the photons generated in the undulator are transported to the target, located at a distance of around 400 m. The dogleg design has been optimised to provide the required transverse offset at the location of the target and to give minimum emittance growth at 500 GeV. The design of the dogleg, the layout changes and the tolerances on beam tuning as a result of locating this dogleg in the beginning of the beam delivery system (BDS) are presented.

  15. The design of a liquid lithium lens for a muon collider

    International Nuclear Information System (INIS)

    Balbekov, V.; Geer, S.; Hassanein, A.; Holtkamp, N.; Lebrun, P.; Neuffer, D.; Norem, J.; Palmer, R.; Reed, C.; Silvestrov, G.; Spentzouris, P.; Tollestrup, A.; Vsevolozhskaya, T. A.

    1999-01-01

    The last stage of ionization cooling for the muon collider requires a multistage liquid lithium lens. This system uses a large (approximately0.5 MA) pulsed current through liquid lithium to focus the beam while energy loss in the lithium removes momentum which is replaced by linacs. The beam optics are designed to maximize the 6 dimensional transmission from one lens to the next while minimizing emittance growth. The mechanical design of the lithium vessel is constrained by a pressure pulse due to the sudden ohmic heating, and the stress on the Be window. The authors describe beam optics, the liquid lithium pressure vessel, pumping, power supplies, as well as the overall optimization of the system

  16. Conceptual design of a high luminosity 510 MeV collider

    International Nuclear Information System (INIS)

    Pellegrini, C.; Robin, D.; Cornacchia, M.

    1991-01-01

    The authors discuss the magnetic lattice design of a high luminosity 510 MeV electron-positron collider, based on high field superconduction bending dipoles. The design criteria are flexibility in the choice of the tune and beta functions at the interaction point, horizontal emittance larger than 1 mm mrad to produce a luminosity larger than 10 32 cm -2 s -1 , large synchrotron radiation damping rate, and large momentum compaction. The RF system parameter are chosen to provide a short bunch length also when the beam energy spread is determined by the microwave instability. A satisfactory ring dynamic aperature, and a simultaneous small value of the horizontal and vertical beta function at the interaction point, the authors expect will be achieved by using Cornacchia-Halbach modified sextupoles

  17. Design, construction, and performance of superconducting magnet support posts for the Large Hadron Collider

    International Nuclear Information System (INIS)

    Blin, M.; Danielsson, H.; Evans, B.; Mathieu, M.

    1994-01-01

    Different support posts for the Large Hadron Collider (LHC) prototype superconducting magnets have been designed and manufactured. They have been evaluated both mechanically and thermally. The posts are made of a tubular section in composite materials, i.e. glass- or carbon-fibre and epoxy resin, with glued metallic heat intercepts and connections. Mechanical tests have been carried out with both radial and axial loads, before and after cooldown to working temperature. The design considerations and future developments concerning dimensions and other materials are also discussed in this paper. Thermal performance has been evaluated at 1.8 K, 5 K and 80 K in a precision heat leak measuring bench. The measurements have been carried out using calibrated thermal conductances (open-quotes heatmetersclose quotes) and boil-off methods. The measured performances of the posts have been compared with analytical predictions

  18. Radiation calculations and shielding considerations for the design of the Next Linear Collider

    International Nuclear Information System (INIS)

    Nelson, W.R.; Rokni, S.H.; Vylet, V.

    1996-11-01

    The authors describe some of the work that they have done as a contribution to the Next Linear Collider (NLC) Zeroth-Order Design Report (ZDR), with specific emphasis placed on radiation-protection issues. However, because of the very nature of this machine--namely, extremely-small beam spots of high intensity--a new approach in accelerator radiation-protection philosophy appears to be warranted. Accordingly, the presentation will first take a look at recent design studies directed at protecting the machine itself, since this has resulted in a much better understanding of the very short exposure times involved whenever beam is lost and radiation sources are created. At the end of the paper, the authors suggest a Beam Containment System (BCS) that would provide an independent, redundant guarantee that exposure times are, indeed, kept very short. This, in turn, has guided them in the determination of the transverse shield thickness for the machine

  19. Conceptual design of hollow electron lenses for beam halo control in the Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Stancari, Giulio [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Previtali, Valentina [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Valishev, Alexander [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Bruce, Roderik [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Redaelli, Stefano [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Rossi, Adriana [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Salvachua Ferrando, Belen [European Organization for Nuclear Research (CERN), Geneva (Switzerland)

    2014-06-26

    Collimation with hollow electron beams is a technique for halo control in high-power hadron beams. It is based on an electron beam (possibly pulsed or modulated in intensity) guided by strong axial magnetic fields which overlaps with the circulating beam in a short section of the ring. The concept was tested experimentally at the Fermilab Tevatron collider using a hollow electron gun installed in one of the Tevatron electron lenses. We are proposing a conceptual design for applying this technique to the Large Hadron Collider at CERN. A prototype hollow electron gun for the LHC was built and tested. The expected performance of the hollow electron beam collimator was based on Tevatron experiments and on numerical tracking simulations. Halo removal rates and enhancements of halo diffusivity were estimated as a function of beam and lattice parameters. Proton beam core lifetimes and emittance growth rates were checked to ensure that undesired effects were suppressed. Hardware specifications were based on the Tevatron devices and on preliminary engineering integration studies in the LHC machine. Required resources and a possible timeline were also outlined, together with a brief discussion of alternative halo-removal schemes and of other possible uses of electron lenses to improve the performance of the LHC.

  20. Ground motion optimized orbit feedback design for the future linear collider

    Energy Technology Data Exchange (ETDEWEB)

    Pfingstner, J., E-mail: juergen.pfingstner@cern.ch [CERN, Geneva 23, CH-1211 (Switzerland); Vienna University of Technology, Karlsplatz 13, 1040 Wien (Austria); Snuverink, J. [CERN, Geneva 23, CH-1211 (Switzerland); John Adams Institute at Royal Holloway, University of London, Surrey (United Kingdom); Schulte, D. [CERN, Geneva 23, CH-1211 (Switzerland)

    2013-03-01

    The future linear collider has strong stability requirements on the position of the beam along the accelerator and at the interaction point (IP). The beam position will be sensitive to dynamic imperfections in particular ground motion. A number of mitigation techniques have been proposed to be deployed in parallel: active and passive quadrupole stabilization and positioning as well as orbit and IP feedback. This paper presents a novel design of the orbit controller in the main linac and beam delivery system. One global feedback controller is proposed based on an SVD-controller (Singular Value Decomposition) that decouples the large multi-input multi-output system into many independent single-input single-output systems. A semi-automatic procedure is proposed for the controller design of the independent systems by exploiting numerical models of ground motion and measurement noise to minimize a target parameter, e.g. luminosity loss. The novel design for the orbit controller is studied for the case of the Compact Linear Collider (CLIC) in integrated simulations, which include all proposed mitigation methods. The impact of the ground motion on the luminosity performance is examined in detail. It is shown that with the proposed orbit controller the tight luminosity budget for ground motion effects is fulfilled and accordingly, an essential feasibility issue of CLIC has been addressed. The orbit controller design is robust and allows for a relaxed BPM resolution, while still maintaining a strong ground motion suppression performance compared to traditional methods. We believe that the described method could easily be applied to other accelerators and light sources.

  1. Conceptual design report for the scientific program of the super-FRS experiment collaboration

    International Nuclear Information System (INIS)

    2016-01-01

    This Conceptual Design Report (CDR) presents the plans of the Super-FRS Experiment Collaboration for a variety of experiments, which build on the versatile high-resolution separator and spectrometer performance of the Super-FRS. The characteristic feature of these experiments is the fact that they use the separator as an integral part of the measurement. These experiments build on the experience of the collaboration and their scientific program pursued at the FRS in the last 25 years, but also includes recently developed novel topics. Under these premises, the Super-FRS Experiment Collaboration has identified ten major topics of current interest and with far-reaching scientific potential. In this CDR, the scientific case is briefly recapitulated and the conceptual design of the experiments, the setups and their implementation are described. Much of the needed equipment is already available or, if not, will be realized with new, additional resources and efforts outside the FAIR Cost Books. The related R and D works and some pilot experiments can be carried out at the existing FRS of GSI in FAIR Phase-0. On the midterm, the science program of this collaboration can start at the commissioning phase of the Super-FRS and will continue on the long term with the established full performance. Accordingly, the prototype equipment and other already existing devices can be tested and used at the FRS and can later, when completed or upgraded, be moved to the Super-FRS. The related developments and organization of the Super-FRS Experiment Collaboration are described,and the collaboration partners and institutes are listed. The Super-FRS Experiment Collaboration is formally and firmly established and is a comprising part of the NUSTAR Collaboration. A large variety of modern nuclear physics experiments with new scientific possibilities and outstanding scientific potential were presented in the scientific program (GSI-Report 2014-4), which was very positively evaluated and

  2. Conceptual design report for the scientific program of the super-FRS experiment collaboration

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-11-01

    This Conceptual Design Report (CDR) presents the plans of the Super-FRS Experiment Collaboration for a variety of experiments, which build on the versatile high-resolution separator and spectrometer performance of the Super-FRS. The characteristic feature of these experiments is the fact that they use the separator as an integral part of the measurement. These experiments build on the experience of the collaboration and their scientific program pursued at the FRS in the last 25 years, but also includes recently developed novel topics. Under these premises, the Super-FRS Experiment Collaboration has identified ten major topics of current interest and with far-reaching scientific potential. In this CDR, the scientific case is briefly recapitulated and the conceptual design of the experiments, the setups and their implementation are described. Much of the needed equipment is already available or, if not, will be realized with new, additional resources and efforts outside the FAIR Cost Books. The related R and D works and some pilot experiments can be carried out at the existing FRS of GSI in FAIR Phase-0. On the midterm, the science program of this collaboration can start at the commissioning phase of the Super-FRS and will continue on the long term with the established full performance. Accordingly, the prototype equipment and other already existing devices can be tested and used at the FRS and can later, when completed or upgraded, be moved to the Super-FRS. The related developments and organization of the Super-FRS Experiment Collaboration are described,and the collaboration partners and institutes are listed. The Super-FRS Experiment Collaboration is formally and firmly established and is a comprising part of the NUSTAR Collaboration. A large variety of modern nuclear physics experiments with new scientific possibilities and outstanding scientific potential were presented in the scientific program (GSI-Report 2014-4), which was very positively evaluated and

  3. Theoretical design and advanced microstructure in super high strength steels

    International Nuclear Information System (INIS)

    Caballero, F.G.; Santofimia, M.J.; Garcia-Mateo, C.; Chao, J.; Garcia de Andres, C.

    2009-01-01

    A theoretical design procedure based on phase transformation theory alone has been successfully applied to design steels with a microstructure consisting of a mixture of bainitic ferrite and retained austenite. Using thermodynamics and kinetics models, a set of four carbide free bainitic steels with a 0.3 wt.% carbon content were designed and manufactured following a thermomechanical treatment consisting of hot rolling and two-step cooling. The designed steels present significant combinations of strength and ductility, with tensile strengths ranging from 1500 to 1800 MPa and total elongations over 15%. However, a carbon content of 0.3 wt.% is still high for in-use properties such as weldability. In this sense, a reduction in the average carbon content of advanced bainitic steels was proposed. Improved bainitic steels with a carbon content of 0.2 wt.% reached combinations of strength and ductility comparable to those in TRIP assisted steels.

  4. Quench protection analysis integrated in the design of dipoles for the Future Circular Collider

    Directory of Open Access Journals (Sweden)

    Tiina Salmi

    2017-03-01

    Full Text Available The EuroCirCol collaboration is designing a 16 T Nb_{3}Sn dipole that can be used as the main bending magnet in a 100 km long 100 TeV hadron-hadron collider. For economic reasons, the magnets need to be as compact as possible, requiring optimization of the cable cross section in different magnetic field regions. This leads to very high stored energy density and poses serious challenges for the magnet protection in case of a quench, i.e., sudden loss of superconductivity in the winding. The magnet design therefore must account for the limitations set by quench protection from the earliest stages of the design. In this paper we describe how the aspect of quench protection has been accounted for in the process of developing different options for the 16 T dipole designs. We discuss the assumed safe values for hot spot temperatures and voltages, and the efficiency of the protection system. We describe the developed tools for the quench analysis, and how their usage in the magnet design will eventually ensure a secure magnet operation.

  5. The International Linear Collider Technical Design Report - Volume 3.I: Accelerator R&D in the Technical Design Phase

    CERN Document Server

    Adolphsen, Chris; Barish, Barry; Buesser, Karsten; Burrows, Philip; Carwardine, John; Clark, Jeffrey; Durand, Hélène Mainaud; Dugan, Gerry; Elsen, Eckhard; Enomoto, Atsushi; Foster, Brian; Fukuda, Shigeki; Gai, Wei; Gastal, Martin; Geng, Rongli; Ginsburg, Camille; Guiducci, Susanna; Harrison, Mike; Hayano, Hitoshi; Kershaw, Keith; Kubo, Kiyoshi; Kuchler, Victor; List, Benno; Liu, Wanming; Michizono, Shinichiro; Nantista, Christopher; Osborne, John; Palmer, Mark; Paterson, James McEwan; Peterson, Thomas; Phinney, Nan; Pierini, Paolo; Ross, Marc; Rubin, David; Seryi, Andrei; Sheppard, John; Solyak, Nikolay; Stapnes, Steinar; Tauchi, Toshiaki; Toge, Nobu; Walker, Nicholas; Yamamoto, Akira; Yokoya, Kaoru

    2013-01-01

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carried out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to incr...

  6. Design Evolution and Methodology for Pumpkin Super-Pressure Balloons

    Science.gov (United States)

    Farley, Rodger

    The NASA Ultra Long Duration Balloon (ULDB) program has had many technical development issues discovered and solved along its road to success as a new vehicle. It has the promise of being a sub-satellite, a means to launch up to 2700 kg to 33.5 km altitude for 100 days from a comfortable mid-latitude launch point. Current high-lift long duration ballooning is accomplished out of Antarctica with zero-pressure balloons, which cannot cope with the rigors of diurnal cycles. The ULDB design is still evolving, the product of intense analytical effort, scaled testing, improved manufacturing, and engineering intuition. The past technical problems, in particular the s-cleft deformation, their solutions, future challenges, and the methodology of pumpkin balloon design will generally be described.

  7. Design of electronic modules for the low-level RF systems at CERN. With particular regard to a new trigger unit for the Super Proton Synchrotron.

    CERN Document Server

    Levens, Thomas Edward; Knox, Andrew

    This report presents the work completed while the author was working for the BE-RF-FB group at the European Organization for Nuclear Research during the period of June to December 2010. The placement was completed as part of the University of Glasgow course ‘Industrial Project EE5’ which is requirement during the final year of the Degree of Master of Engineering. The report will pay particular attention to the hardware and firmware design of the ‘Dual Trigger Unit’, a new electronic module for the low-level RF system of the Super Proton Synchrotron accelerator which generates delayed timing pulses in order to trigger other hardware. In addition to this, the report will cover other projects completed during the period, including work on a prototype of the ‘VME Peak Detector’ card for the Large Hadron Collider beam observation system.

  8. Super conducting fault current limiter and inductor design

    International Nuclear Information System (INIS)

    Rogers, J.; Boenig, H.; Chowdhuri, P.; Schermer, R.; Weldon, D.; Wollan, J.

    1983-01-01

    A superconducting fault current limiter (SFCL) that uses a biased superconducting inductor in a diode or thyristor bridge circuit was analyzed for transmission systems in 69, 138, and 230 rms kV utility transmission systems. The limiter was evaluated for costs with all components--superconducting coil, diode and/or SCR power electronics, high voltage insulation, high voltage bushings and vapor cooled leads, dewar, and refrigerator--included. A design was undertaken for the superconducting cable and coils for both diode and SCR 69 kV limiter circuits

  9. Design Concept and Parameters of a 15 T $Nb_{3}Sn$ Dipole Demonstrator for a 100 TEV Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Zlobin, A. V. [Fermilab; Andreev, N. [Fermilab; Barzi, E. [Fermilab; Kashikhin, V. V. [Fermilab; Novitski, I. [Fermilab

    2015-06-01

    FNAL has started the development of a 15 T $Nb_{3}Sn$ dipole demonstrator for a 100 TeV scale hadron collider. This paper describes the design concept and parameters of the 15 T $Nb_{3}Sn$ dipole demonstrator. The dipole magnetic, mechanical and quench protection concept and parameters are presented and discussed.

  10. Study on design of light-weight super-abrasive wheel

    Science.gov (United States)

    Nohara, K.; Yanagihara, K.; Ogawa, M.

    2018-01-01

    Fixed-abrasive tool, also called a grinding wheel, is produced by furnacing abrasive compound which contains abrasive grains and binding powder such as vitrified materials or resins. Fixed-abrasive tool is installed on spindle of grinding machine. And it is given 1,800-2,000 min-1 of spindle rotation for the usage. The centrifugal fracture of the compound of fixed- abrasive tool is one of the careful respects in designing. In recent years, however, super-abrasive wheel as a fixed-abrasive tool has been developed and applied widely. One of the most characteristic respects is that metal is applied for the body of grinding-wheel. The strength to hold abrasive grain and the rigidity of wheel become stronger than those of general grinding wheel, also the lifespan of fixed-abrasive tool becomes longer. The weight of fixed-abrasive tool, however, becomes heavier. Therefore, when the super-abrasive wheel is used, the power consumption of spindle motor becomes larger. It also becomes difficult for the grinding-wheel to respond to sudden acceleration or deceleration. Thus, in order to reduce power consumption in grinding and to obtain quicker frequency response of super-abrasive wheel, the new wheel design is proposed. The design accomplishes 46% weight reduction. Acceleration that is one second quicker than that of conventional grinding wheel is obtained.

  11. High-Luminosity Large Hadron Collider (HL-LHC) : Preliminary Design Report

    International Nuclear Information System (INIS)

    Apollinari, G.; Béjar Alonso, I.; Brüning, O.; Lamont, M.; Rossi, L.

    2015-01-01

    The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community of about 7,000 scientists working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will need a major upgrade in the 2020s. This will increase its luminosity (rate of collisions) by a factor of five beyond the original design value and the integrated luminosity (total collisions created) by a factor ten. The LHC is already a highly complex and exquisitely optimised machine so this upgrade must be carefully conceived and will require about ten years to implement. The new configuration, known as High Luminosity LHC (HL-LHC), will rely on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11-12 tesla superconducting magnets, compact superconducting cavities for beam rotation with ultra-precise phase control, new technology and physical processes for beam collimation and 300 metre-long high-power superconducting links with negligible energy dissipation. The present document describes the technologies and components that will be used to realise the project and is intended to serve as the basis for the detailed engineering design of HL-LHC.

  12. High-Luminosity Large Hadron Collider (HL-LHC) : Preliminary Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Apollinari, G. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Béjar Alonso, I. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Brüning, O. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Lamont, M. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Rossi, L. [European Organization for Nuclear Research (CERN), Geneva (Switzerland)

    2015-12-17

    The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community of about 7,000 scientists working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will need a major upgrade in the 2020s. This will increase its luminosity (rate of collisions) by a factor of five beyond the original design value and the integrated luminosity (total collisions created) by a factor ten. The LHC is already a highly complex and exquisitely optimised machine so this upgrade must be carefully conceived and will require about ten years to implement. The new configuration, known as High Luminosity LHC (HL-LHC), will rely on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11-12 tesla superconducting magnets, compact superconducting cavities for beam rotation with ultra-precise phase control, new technology and physical processes for beam collimation and 300 metre-long high-power superconducting links with negligible energy dissipation. The present document describes the technologies and components that will be used to realise the project and is intended to serve as the basis for the detailed engineering design of HL-LHC.

  13. Mechanical design of 56 MHz superconducting RF cavity for RHIC collider

    Energy Technology Data Exchange (ETDEWEB)

    Pai, C.; Ben-Zvi, I.; Burrill, A.; Chang, X.; McIntyre, G.; Than, Y.; Tuozzolo, J.; Wu, Q.

    2011-03-28

    A 56 MHz Superconducting RF Cavity operating at 4.4K is being constructed for the RHIC collider. This cavity is a quarter wave resonator with beam transmission along the centerline. This cavity will increase collision luminosity by providing a large longitudinal bucket for stored bunches of RHIC ion beam. The major components of this assembly are the niobium cavity with the mechanical tuner, its titanium helium vessel and vacuum cryostat, the support system, and the ports for HOM and fundamental dampers. The cavity and its helium vessel must meet equivalent safety with the ASME pressure vessel code and it must not be sensitive to frequency shift due to pressure fluctuations from the helium supply system. Frequency tuning achieved by a two stage mechanical tuner is required to meet performance parameters. This tuner mechanism pushes and pulls the tuning plate in the gap of niobium cavity. The tuner mechanism has two separate drive systems to provide both coarse and fine tuning capabilities. This paper discusses the design detail and how the design requirements are met.

  14. Radiation problems in the design of the large electron-positron collider (LEP)

    International Nuclear Information System (INIS)

    Fasso, A.; Goebel, K.; Hoefert, M.; Rau, G.; Schoenbacher, H.; Stevenson, G.R.; Sullivan, A.H.; Swanson, W.P.; Tuyn, J.W.N.

    1984-01-01

    This is a comprehensive review of the radiation problems taken into account in the design studies for the Large Electron-Positron collider (LEP) now under construction at CERN. It provides estimates and calculations of the magnitude of the most important hazards, including those from non-ionizing radiations and magnetic fields as well as from ionizing radiation, and describes the measures to be taken in the design, construction, and operation to limit them. Damage to components is considered as well as the risk to people. More general explanations are given of the physical processes and technical parameters that influence the production and effects of radiation, and a comprehensive bibliography provides access to the basic theories and other discussions of the subject. The report effectively summarizes the findings of the Working Group on LEP radiation problems and parallels the results of analogous studies made for the previous large accelerator. The concluding chapters describe the LEP radiation protection system, which is foreseen to reduce doses far below the legal limits for all those working with the machine or living nearby, and summarize the environmental impact. Costs are also briefly considered. (orig.)

  15. CERN 's large hadron collider : Radiation protection aspects of design and commissioning

    International Nuclear Information System (INIS)

    Forkel-Wirth, Doris; Brugger, Markus; Menzel, Hans; Roesler, Stefan; Vincke, Heinz; Vincke, Helmut

    2008-01-01

    Full text: CERN, the world's largest particle physics laboratory provides high energy hadron beams for experiments exploring matter. For this purpose various accelerators are operated and in 2008 the last link will be added to the accelerator chain: beam will be injected into CERN 's new 'flagship', the Large Hadron Collider (LHC). From then on high energy physics experiments will exploit the LHC 's colliding beams of protons and lead ions with a center of mass energy of 14 TeV and 1150 TeV, respectively. Radiation Protection aspects were taken into account during the whole duration of the design phase. Conservative design constraints were defined in 1996; some years later some of them, in particular with respect to the dose to occupational exposed workers, had to be readjusted to account for the latest development in CERN 's radiation protection rules and regulations. Numerous radiation protection studies had been performed to ensure a lay-out of the machine and its experiments in compliance with these constraints. These studies assessed all radiation risks related to the various beam-operation modes of the accelerator. In all cases external exposure was identified as the major risk: due to high energetic, mixed radiation fields during beam-on and due to beta and gamma radiation fields caused by induced radioactivity during beam-off. Counter measures were implemented like an optimized beam operation to limit beam losses, installation of thick shielding, prohibition of access to the major part of the LHC underground areas during beam-operation and optimization of the equipment and its handling during maintenance and repair. Detailed Monte Carlo simulations were performed to derive from the various beam loss scenarios the dose rates the workers will be exposed to. Individual and collective doses were projected based on the calculations and the maintenance scenarios provided by the teams concerned. In an iterative way the lay-out of the various regions were optimized

  16. The Injection System of the INFN-SuperB Factory Project: Preliminary Design

    Energy Technology Data Exchange (ETDEWEB)

    Boni, Roberto; /INFN, Rome; Guiducci, Susanna; /INFN, Rome; Preger, Miro; /INFN, Rome; Raimondi, Pantaleo; /INFN, Rome; Chance, Antoine; /Saclay; Dadoun, Olivier; /Orsay, LAL; Poirier, Freddy; /Orsay, LAL; Variola, Alessandro; /Orsay, LAL; Seeman, John; /SLAC

    2012-07-05

    The ultra high luminosity B-factory (SuperB) project of INFN requires a high performance and reliable injection system, providing electrons at 4 GeV and positrons at 7 GeV, to fulfil the very tight requirements of the collider. Due to the short beam lifetime, continuous injection of electron and positron bunches in both LER and HER rings is necessary to maintain an high average luminosity. Polarized electrons are required for experiments and must be delivered by the injection system, due to the beam lifetime shorter than the ring polarization build-up: they will be produced by means of a SLAC-SLC polarized gun. The emittance and the energy spread of the e{sup -}/e{sup +} beams are reduced in a 1 GeV Damping Ring (DR) before injection in the main rings. Two schemes for positron production are under study, one with e{sup -}/e{sup +} conversion at low energy (< 1 Gev) and one with conversion at 6 GeV and a recirculation line to bring the positrons back to the DR. Acceleration through the Linac is provided by a 2856 MHz RF system made of travelling wave (TW), room temperature accelerating structures.

  17. Low emittance design of the electron gun and the focusing channel of the Compact Linear Collider drive beam

    Directory of Open Access Journals (Sweden)

    M. Dayyani Kelisani

    2017-04-01

    Full Text Available For the Compact Linear Collider project at CERN, the power for the main linacs is extracted from a drive beam generated from a high current electron source. The design of the electron source and its subsequent focusing channel has a great impact on the beam dynamic considerations of the drive beam. We report the design of a thermionic electron source and the subsequent focusing channels with the goal of production of a high quality beam with a very small emittance.

  18. High-Luminosity Large Hadron Collider (HL-LHC) Technical Design Report V. 0.1

    CERN Document Server

    Béjar Alonso I.; Brüning O.; Fessia P.; Lamont M.; Rossi L.; Tavian L.

    2017-01-01

    The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a newenergy frontier for exploration in 2010, it has gathered a global user community of about 7,000 scientists work-ing in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. Tosustain and extend its discovery potential, the LHC will need a major upgrade in the 2020s. This will increase itsinstantaneous luminosity (rate of collisions) by a factor of five beyond the original design value and the integratedluminosity (total collisions created) by a factor ten. The LHC is already a highly complex and exquisitely opti-mised machine so this upgrade must be carefully conceived and will require about ten years to implement. Thenew configuration, known as High Luminosity LHC (HL-LHC), relies on a number of key innovations that pushaccelerator technology beyond its present limits. Among these are cutting-edge 11-12 tesla superconducting mag-nets, compact superconduc...

  19. Elementary design of a 30 TeV on 30 TeV proton antiproton collider

    International Nuclear Information System (INIS)

    Kondo, Takahiko

    1984-01-01

    A crude conceptual design was made for a 30TeV on 30TeV antiproton-proton collider. The choice of energy and antiproton-proton (instead of PP) are somewhat arbitrary. The basic parameters of the main ring are listed in a table; the bending radius, ring radius and circumference are 11.1km, 14.4km, and 90.6km, respectively; 7680 dipole magnets with maximum field of 9 Tesla; 1280 quadrupole magnets with maximum gradient of 200Tesla/m. The development of high-field, low-heat loss dipoles and quadrupoles are essential, together with the consideration for their mass production method. On the other hand, the possibility of obtaining antiproton-proton luminosity exceeding 10 32 /cm 2 sec is suggested without any fundamental limitation. With such high luminosity, however, it should be pointed out that particle detectors must face their limitation due to extremely high rate, high multiplicity interaction, requiring large steps of detector research and development efforts. (Aoki, K.)

  20. Dynamic imperfections and optimized feedback design in the Compact Linear Collider main linac

    Directory of Open Access Journals (Sweden)

    Peder Eliasson

    2008-05-01

    Full Text Available The Compact Linear Collider (CLIC main linac is sensitive to dynamic imperfections such as element jitter, injected beam jitter, and ground motion. These effects cause emittance growth that, in case of ground motion, has to be counteracted by a trajectory feedback system. The feedback system itself will, due to jitter effects and imperfect beam position monitors (BPMs, indirectly cause emittance growth. Fast and accurate simulations of both the direct and indirect effects are desirable, but due to the many elements of the CLIC main linac, simulations may become very time consuming. In this paper, an efficient way of simulating linear (or nearly linear dynamic effects is described. The method is also shown to facilitate the analytic determination of emittance growth caused by the different dynamic imperfections while using a trajectory feedback system. Emittance growth expressions are derived for quadrupole, accelerating structure, and beam jitter, for ground motion, and for noise in the feedback BPMs. Finally, it is shown how the method can be used to design a feedback system that is optimized for the optics of the machine and the ground motion spectrum of the particular site. This feedback system gives an emittance growth rate that is approximately 10 times lower than that of traditional trajectory feedbacks. The robustness of the optimized feedback system is studied for a number of additional imperfections, e.g., dipole corrector imperfections and faulty knowledge about the machine optics, with promising results.

  1. Dynamic imperfections and optimized feedback design in the Compact Linear Collider main linac

    Science.gov (United States)

    Eliasson, Peder

    2008-05-01

    The Compact Linear Collider (CLIC) main linac is sensitive to dynamic imperfections such as element jitter, injected beam jitter, and ground motion. These effects cause emittance growth that, in case of ground motion, has to be counteracted by a trajectory feedback system. The feedback system itself will, due to jitter effects and imperfect beam position monitors (BPMs), indirectly cause emittance growth. Fast and accurate simulations of both the direct and indirect effects are desirable, but due to the many elements of the CLIC main linac, simulations may become very time consuming. In this paper, an efficient way of simulating linear (or nearly linear) dynamic effects is described. The method is also shown to facilitate the analytic determination of emittance growth caused by the different dynamic imperfections while using a trajectory feedback system. Emittance growth expressions are derived for quadrupole, accelerating structure, and beam jitter, for ground motion, and for noise in the feedback BPMs. Finally, it is shown how the method can be used to design a feedback system that is optimized for the optics of the machine and the ground motion spectrum of the particular site. This feedback system gives an emittance growth rate that is approximately 10 times lower than that of traditional trajectory feedbacks. The robustness of the optimized feedback system is studied for a number of additional imperfections, e.g., dipole corrector imperfections and faulty knowledge about the machine optics, with promising results.

  2. High-Luminosity Large Hadron Collider (HL-LHC) Preliminary Design Report

    CERN Document Server

    Apollinari, G; Béjar Alonso, I; Brüning, O; Lamont, M; Rossi, L

    2015-01-01

    The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community of about 7,000 scientists working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will need a major upgrade in the 2020s. This will increase its luminosity (rate of collisions) by a factor of five beyond the original design value and the integrated luminosity (total collisions created) by a factor ten. The LHC is already a highly complex and exquisitely optimised machine so this upgrade must be carefully conceived and will require about ten years to implement. The new configuration, known as High Luminosity LHC (HL-LHC), will rely on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11-12 tesla superconducting magnets, compact superconducting cav...

  3. URBAN COMMUNITY RESPONSES TO VISUAL APPROPRIATE THEMATIC DESIGN, SUPER HERO PARK BANDUNG

    Directory of Open Access Journals (Sweden)

    Dian Duhita

    2017-06-01

    Full Text Available Parks is one of city public area that serves as a communal place for city community. On another perspective, parks is an architectural design that is designed with an aesthetic element to attract. Bandung, since a few years was to make improvements in various sectors, especially in the public space. Through the slogan Creative City, Bandung City Government revived communities part of the citizens by providing place for a activities, creation and production. Thematic Parks became one of the alternative approaches responsive design as part of creative cities development. Object of research study object is Super Hero park. The purpose of research is to analyzing the response of communities to design a thematic park. The study was conducted with a qualitative approach through participation observation method. The scope of the research includes visual appropriate and city community response. The conclussion obtain that visual appropriate are in accordance with the theme. Urban Community was able to respond well the identity of Super Hero park with visual appropriate design.

  4. Design of a High Luminosity 100 TeV Proton-Antiproton Collider

    Science.gov (United States)

    Oliveros Tautiva, Sandra Jimena

    Currently new physics is being explored with the Large Hadron Collider at CERN and with Intensity Frontier programs at Fermilab and KEK. The energy scale for new physics is known to be in the multi-TeV range, signaling the need for a future collider which well surpasses this energy scale. A 10 34 cm-2 s-1 luminosity 100 TeV proton-antiproton collider is explored with 7x the energy of the LHC. The dipoles are 4.5 T to reduce cost. A proton-antiproton collider is selected as a future machine for several reasons. The cross section for many high mass states is 10 times higher in pp than pp collisions. Antiquarks for production can come directly from an antiproton rather than indirectly from gluon splitting. The higher cross sections reduce the synchrotron radiation in superconducting magnets and the number of events per bunch crossing, because lower beam currents can produce the same rare event rates. Events are also more centrally produced, allowing a more compact detector with less space between quadrupole triplets and a smaller beta* for higher luminosity. To adjust to antiproton beam losses (burn rate), a Fermilab-like antiproton source would be adapted to disperse the beam into 12 different momentum channels, using electrostatic septa, to increase antiproton momentum capture 12 times. At Fermilab, antiprotons were stochastically cooled in one Debuncher and one Accumulator ring. Because the stochastic cooling time scales as the number of particles, two options of 12 independent cooling systems are presented. One electron cooling ring might follow the stochastic cooling rings for antiproton stacking. Finally antiprotons in the collider ring would be recycled during runs without leaving the collider ring, by joining them to new bunches with snap bunch coalescence and synchrotron damping. These basic ideas are explored in this work on a future 100 TeV proton-antiproton collider and the main parameters are presented.

  5. Design of a High Luminosity 100 TeV Proton Antiproton Collider

    Energy Technology Data Exchange (ETDEWEB)

    Oliveros Tuativa, Sandra Jimena [Univ. of Mississippi, Oxford, MS (United States)

    2017-04-01

    Currently new physics is being explored with the Large Hadron Collider at CERN and with Intensity Frontier programs at Fermilab and KEK. The energy scale for new physics is known to be in the multi-TeV range, signaling the need for a future collider which well surpasses this energy scale. A 10$^{\\,34}$ cm$^{-2}$ s$^{-1}$ luminosity 100 TeV proton-antiproton collider is explored with 7$\\times$ the energy of the LHC. The dipoles are 4.5\\,T to reduce cost. A proton-antiproton collider is selected as a future machine for several reasons. The cross section for many high mass states is 10 times higher in $p\\bar{p}$ than $pp$ collisions. Antiquarks for production can come directly from an antiproton rather than indirectly from gluon splitting. The higher cross sections reduce the synchrotron radiation in superconducting magnets and the number of events per bunch crossing, because lower beam currents can produce the same rare event rates. Events are also more centrally produced, allowing a more compact detector with less space between quadrupole triplets and a smaller $\\beta^{*}$ for higher luminosity. To adjust to antiproton beam losses (burn rate), a Fermilab-like antiproton source would be adapted to disperse the beam into 12 different momentum channels, using electrostatic septa, to increase antiproton momentum capture 12 times. At Fermilab, antiprotons were stochastically cooled in one Debuncher and one Accumulator ring. Because the stochastic cooling time scales as the number of particles, two options of 12 independent cooling systems are presented. One electron cooling ring might follow the stochastic cooling rings for antiproton stacking. Finally antiprotons in the collider ring would be recycled during runs without leaving the collider ring, by joining them to new bunches with snap bunch coalescence and synchrotron damping. These basic ideas are explored in this work on a future 100 TeV proton-antiproton collider and the main parameters are presented.

  6. Design and implementation of a crystal collimation test stand at the Large Hadron Collider

    International Nuclear Information System (INIS)

    Mirarchi, D.; Redaelli, S.; Scandale, W.; Hall, G.

    2017-01-01

    Future upgrades of the CERN Large Hadron Collider (LHC) demand improved cleaning performance of its collimation system. Very efficient collimation is required during regular operations at high intensities, because even a small amount of energy deposited on superconducting magnets can cause an abrupt loss of superconducting conditions (quench). The possibility to use a crystal-based collimation system represents an option for improving both cleaning performance and impedance compared to the present system. Before relying on crystal collimation for the LHC, a demonstration under LHC conditions (energy, beam parameters, etc.) and a comparison against the present system is considered mandatory. Thus, a prototype crystal collimation system has been designed and installed in the LHC during the Long Shutdown 1 (LS1), to perform feasibility tests during the Run 2 at energies up to 6.5 TeV. The layout is suitable for operation with proton as well as heavy ion beams. In this paper, the design constraints and the solutions proposed for this test stand for feasibility demonstration of crystal collimation at the LHC are presented. The expected cleaning performance achievable with this test stand, as assessed in simulations, is presented and compared to that of the present LHC collimation system. The first experimental observation of crystal channeling in the LHC at the record beam energy of 6.5 TeV has been obtained in 2015 using the layout presented (Scandale et al., Phys Lett B 758:129, 2016). First tests to measure the cleaning performance of this test stand have been carried out in 2016 and the detailed data analysis is still on-going. (orig.)

  7. Design and implementation of a crystal collimation test stand at the Large Hadron Collider

    Science.gov (United States)

    Mirarchi, D.; Hall, G.; Redaelli, S.; Scandale, W.

    2017-06-01

    Future upgrades of the CERN Large Hadron Collider (LHC) demand improved cleaning performance of its collimation system. Very efficient collimation is required during regular operations at high intensities, because even a small amount of energy deposited on superconducting magnets can cause an abrupt loss of superconducting conditions (quench). The possibility to use a crystal-based collimation system represents an option for improving both cleaning performance and impedance compared to the present system. Before relying on crystal collimation for the LHC, a demonstration under LHC conditions (energy, beam parameters, etc.) and a comparison against the present system is considered mandatory. Thus, a prototype crystal collimation system has been designed and installed in the LHC during the Long Shutdown 1 (LS1), to perform feasibility tests during the Run 2 at energies up to 6.5 TeV. The layout is suitable for operation with proton as well as heavy ion beams. In this paper, the design constraints and the solutions proposed for this test stand for feasibility demonstration of crystal collimation at the LHC are presented. The expected cleaning performance achievable with this test stand, as assessed in simulations, is presented and compared to that of the present LHC collimation system. The first experimental observation of crystal channeling in the LHC at the record beam energy of 6.5 TeV has been obtained in 2015 using the layout presented (Scandale et al., Phys Lett B 758:129, 2016). First tests to measure the cleaning performance of this test stand have been carried out in 2016 and the detailed data analysis is still on-going.

  8. Design and implementation of a crystal collimation test stand at the Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Mirarchi, D.; Redaelli, S.; Scandale, W. [CERN, European Organization for Nuclear Research, Geneva 23 (Switzerland); Hall, G. [Imperial College, Blackett Laboratory, London (United Kingdom)

    2017-06-15

    Future upgrades of the CERN Large Hadron Collider (LHC) demand improved cleaning performance of its collimation system. Very efficient collimation is required during regular operations at high intensities, because even a small amount of energy deposited on superconducting magnets can cause an abrupt loss of superconducting conditions (quench). The possibility to use a crystal-based collimation system represents an option for improving both cleaning performance and impedance compared to the present system. Before relying on crystal collimation for the LHC, a demonstration under LHC conditions (energy, beam parameters, etc.) and a comparison against the present system is considered mandatory. Thus, a prototype crystal collimation system has been designed and installed in the LHC during the Long Shutdown 1 (LS1), to perform feasibility tests during the Run 2 at energies up to 6.5 TeV. The layout is suitable for operation with proton as well as heavy ion beams. In this paper, the design constraints and the solutions proposed for this test stand for feasibility demonstration of crystal collimation at the LHC are presented. The expected cleaning performance achievable with this test stand, as assessed in simulations, is presented and compared to that of the present LHC collimation system. The first experimental observation of crystal channeling in the LHC at the record beam energy of 6.5 TeV has been obtained in 2015 using the layout presented (Scandale et al., Phys Lett B 758:129, 2016). First tests to measure the cleaning performance of this test stand have been carried out in 2016 and the detailed data analysis is still on-going. (orig.)

  9. Design report for a cryostable 3m diameter superconducting solenoid for the Fermilab Collider Detector Facility

    International Nuclear Information System (INIS)

    Fast, R.; Grimson, J.; Kephart, R.; Leung, E.; Mruzek, M.; Theriot, D.; Wands, R.; Yamada, R.

    1981-10-01

    The Fermilab Collider Detector Facility (CDF) is a large detector system designed td study anti pp collisions at very high center of mass energies. The central detector for the CDF employs a large axial magnetic field volume instrumented with a central tracking chamber composed of multiple layers of cylindrical drift chambers and a pair of intermediate tracking chambers. The purpose of this system is to determine the trajectories, sign of electric charge, and momenta of charged particles produced with polar angles between 10 and 170 degrees. The magnetic field volume required for tracking is approximately 4 m long and 3 m in diameter. To provide the desired Δp/sub T//p/sub T/ less than or equal to 15% at 50 GeV/c using drift chambers with approx. 200μ resolution the field inside this volume should be 1.5 T. This field should be as uniform as is practical to simplify both track finding and the reconstruction of particle trajectories with the drift chambers. Such a field can be produced by a cylindrical current sheet solenoid with a uniform current density of 1.2 x 10 6 A/m (1200 A/mm) surrounded by an iron return yoke. For practical coils and return yokes, both central electromagnetic and central hadronic calorimetry must be located outside the coil of the magnet. This geometry requires that the coil and cryostat be thin both in physical thickness and in radiation and absorption lengths. This dual requirement of high linear current density and minimal coil thickness can only be satisfied using superconducting technology. In this report we describe a design for a cryostable superconducting solenoid intended to meet the requirements of the Fermilab ies TDF

  10. Design, fabrication and cold tests of a super ferric octupole corrector for the LHC

    International Nuclear Information System (INIS)

    Garcia-Tabares, L.; Calero, J.; Laurent, G.; Russenschuck, S.; Siegel, N.; Traveria, M.; Aguirre, P.; Etxeandia, J.; Garcia, J.

    1996-01-01

    In the corrections scheme of the LHC it is planed to install octupole corrector magnets in the short straight section of the lattice. Initially these correctors were distributed windings on the cold bore tube nested in the tuning quadrupoles. The latter being suppressed a new compact super ferric design was chosen for the octupole prototype, suitable for a two-in-one configuration. This prototype was designed by CERN and CEDEX/Spain, built at INDAR/Spain and tested at CEDEX. The paper reports on the design of the prototype, describes the fabrication and assembly and presents the measurement results. Special interest has been taken to design a simple and compact magnet, easy to fabricate and training free below nominal field. First results show the feasibility of the solution wich will be finally confirmed by magnetic measurement. (Author) 4 refs

  11. Core design and fuel rod analyses of a super fast reactor with high power density

    International Nuclear Information System (INIS)

    Ju, Haitao; Cao, Liangzhi; Lu, Haoliang; Oka, Yoshiaki; Ikejiri, Satoshi; Ishiwatari, Yuki

    2009-01-01

    A Super Fast Reactor is a pressure-vessel type, fast spectrum SuperCritical Water Reactor (SCWR) that is presently researched in a Japanese project. One of the most important advantages of the Super Fast Reactor is the higher power density compared to the thermal spectrum SCWR, which reduces the capital cost. A preliminary core has an average power density of 158.8W/cc. In this paper, the principle of improving the average power density is studied and the core design is improved. After the sensitivity analyses on the fuel rod configurations, the fuel assembly configurations and the core configurations, an improved core with an average power density of 294.8W/cc is designed by 3-D neutronic/thermal-hydraulic coupled calculations. This power density is competitive with that of typical Liquid Metal Fast Breeder Reactors (LMFBR). In order to ensure the fuel rod integrity of this core design, the fuel rod behaviors on the normal operating condition are analyzed using FEMAXI-6 code. The power histories of each fuel rod are taken from the neutronics calculation results in the core design. The cladding surface temperature histories are taken from the thermal-hydraulic calculation results in the core design. Four types of the limiting fuel rods, with the Maximum Cladding Surface Temperature (MCST), Maximum Power Peak(MPP), Maximum Discharge Burnup(MDB) and Different Coolant Flow Pattern (DCFP), are chosen to cover all the fuel rods in the core. The available design range of the fuel rod design parameters, such as initial gas plenum pressure, gas plenum position, gas plenum length, grain size and gap size, are found out in order to satisfy the following design criteria: (1) Maximum fuel centerline temperature should be less than 1900degC. (2) Maximum cladding stress in circumstance direction should be less than 100MPa. (3) Pressure difference on the cladding should be less than 1/3 of buckling collapse pressure. (4) Cumulative damage faction (CDF) of the cladding should be

  12. Computer utilization for design and operation of the SuperHILAC

    International Nuclear Information System (INIS)

    Selph, F.B.; Spence, D.A.

    1974-01-01

    The in-house constructed computer codes at the SuperHILAC can be divided into three main categories: (1) accelerator and component design; (2) control and operation; and (3) performance and diagnostics. The first category includes design programs of rf cavities, magnets, and beam optics. The second group contains programs for administration and logbook entries, machine parameter specifications, and openloop parameter control. Programs in the third category are those which directly or indirectly test the mechanical design and geometry of the machine, such as magnet testing, drift-tube-alignment, beam behavior and diagnostics. The present conversion of the SuperHILAC to computer control and a dual-ion time-sharing mode of operation is outlined in context with the complexities of operating this multi-ion, variable energy accelerator. Routines are discussed from the user's standpoint, covering such topics as on-line/off-line implementation, expected gain, actual results, and differences in characteristics which determine the method of computation. (U.S.)

  13. A Large Hadron Electron Collider at CERN: Report on the Physics and Design Concepts for Machine and Detector

    CERN Document Server

    Abelleira Fernandez, J.L.; Akay, A.N.; Aksakal, H.; Albacete, J.L.; Alekhin, S.; Allport, P.; Andreev, V.; Appleby, R.B.; Arikan, E.; Armesto, N.; Azuelos, G.; Bai, M.; Barber, D.; Bartels, J.; Behnke, O.; Behr, J.; Belyaev, A.S.; Ben-Zvi, I.; Bernard, N.; Bertolucci, S.; Bettoni, S.; Biswal, S.; Blumlein, J.; Bottcher, H.; Bogacz, A.; Bracco, C.; Brandt, G.; Braun, H.; Brodsky, S.; Buning, O.; Bulyak, E.; Buniatyan, A.; Burkhardt, H.; Cakir, I.T.; Cakir, O.; Calaga, R.; Cetinkaya, V.; Ciapala, E.; Ciftci, R.; Ciftci, A.K.; Cole, B.A.; Collins, J.C.; Dadoun, O.; Dainton, J.; De Roeck, A.; d'Enterria, D.; Dudarev, A.; Eide, A.; Enberg, R.; Eroglu, E.; Eskola, K.J.; Favart, L.; Fitterer, M.; Forte, S.; Gaddi, A.; Gambino, P.; Garcia Morales, H.; Gehrmann, T.; Gladkikh, P.; Glasman, C.; Godbole, R.; Goddard, B.; Greenshaw, T.; Guffanti, A.; Guzey, V.; Gwenlan, C.; Han, T.; Hao, Y.; Haug, F.; Herr, W.; Herve, A.; Holzer, B.J.; Ishitsuka, M.; Jacquet, M.; Jeanneret, B.; Jimenez, J.M.; Jowett, J.M.; Jung, H.; Karadeniz, H.; Kayran, D.; Kilic, A.; Kimura, K.; Klein, M.; Klein, U.; Kluge, T.; Kocak, F.; Korostelev, M.; Kosmicki, A.; Kostka, P.; Kowalski, H.; Kramer, G.; Kuchler, D.; Kuze, M.; Lappi, T.; Laycock, P.; Levichev, E.; Levonian, S.; Litvinenko, V.N.; Lombardi, A.; Maeda, J.; Marquet, C.; Mellado, B.; Mess, K.H.; Milanese, A.; Moch, S.; Morozov, I.I.; Muttoni, Y.; Myers, S.; Nandi, S.; Nergiz, Z.; Newman, P.R.; Omori, T.; Osborne, J.; Paoloni, E.; Papaphilippou, Y.; Pascaud, C.; Paukkunen, H.; Perez, E.; Pieloni, T.; Pilicer, E.; Pire, B.; Placakyte, R.; Polini, A.; Ptitsyn, V.; Pupkov, Y.; Radescu, V.; Raychaudhuri, S.; Rinol, L.; Rohini, R.; Rojo, J.; Russenschuck, S.; Sahin, M.; Salgado, C.A.; Sampei, K.; Sassot, R.; Sauvan, E.; Schneekloth, U.; Schorner-Sadenius, T.; Schulte, D.; Senol, A.; Seryi, A.; Sievers, P.; Skrinsky, A.N.; Smith, W.; Spiesberger, H.; Stasto, A.M.; Strikman, M.; Sullivan, M.; Sultansoy, S.; Sun, Y.P.; Surrow, B.; Szymanowski, L.; Taels, P.; Tapan, I.; Tasci, T.; Tassi, E.; Ten Kate, H.; Terron, J.; Thiesen, H.; Thompson, L.; Tokushuku, K.; Tomas Garcia, R.; Tommasini, D.; Trbojevic, D.; Tsoupas, N.; Tuckmantel, J.; Turkoz, S.; Trinh, T.N.; Tywoniuk, K.; Unel, G.; Urakawa, J.; VanMechelen, P.; Variola, A.; Veness, R.; Vivoli, A.; Vobly, P.; Wagner, J.; Wallny, R.; Wallon, S.; Watt, G.; Weiss, C.; Wiedemann, U.A.; Wienands, U.; Willeke, F.; Xiao, B.W.; Yakimenko, V.; Zarnecki, A.F.; Zhang, Z.; Zimmermann, F.; Zlebcik, R.; Zomer, F.

    2012-01-01

    The physics programme and the design are described of a new collider for particle and nuclear physics, the Large Hadron Electron Collider (LHeC), in which a newly built electron beam of 60 GeV, up to possibly 140 GeV, energy collides with the intense hadron beams of the LHC. Compared to HERA, the kinematic range covered is extended by a factor of twenty in the negative four-momentum squared, $Q^2$, and in the inverse Bjorken $x$, while with the design luminosity of $10^{33}$ cm$^{-2}$s$^{-1}$ the LHeC is projected to exceed the integrated HERA luminosity by two orders of magnitude. The physics programme is devoted to an exploration of the energy frontier, complementing the LHC and its discovery potential for physics beyond the Standard Model with high precision deep inelastic scattering measurements. These are designed to investigate a variety of fundamental questions in strong and electroweak interactions. The physics programme also includes electron-deuteron and electron-ion scattering in a $(Q^2, 1/x)$ ran...

  14. Tunneling technologies for the collider ring tunnels

    International Nuclear Information System (INIS)

    Frobenius, P.

    1989-01-01

    The Texas site chosen for the Superconducting Super Collider has been studied, and it has been determined that proven, conventional technology and accepted engineering practice are suitable for constructing the collider tunnels. The Texas National Research Laboratory Commission report recommended that two types of tunneling machines be used for construction of the tunnels: a conventional hard rock tunnel boring machine (TBM) for the Austin chalk and a double shielded, rotary TBM for the Taylor marl. Since the tunneling machines usually set the pace for the project, efficient planning, operation, and coordination of the tunneling system components will be critical to the schedule and cost of the project. During design, tunneling rate prediction should be refined by focusing on the development of an effective tunneling system and evaluating its capacity to meet or exceed the required schedules. 8 refs., 13 figs

  15. Conceptual design of hydrogen isotopes chromatographic separation system with super large capacity

    International Nuclear Information System (INIS)

    Xie Bo; Weng Kuiping; Liu Yunnu; Hou Jianping

    2012-01-01

    A super large capacity hydrogen isotopes separation system, including total plan, unit (including making and purification of gas, three-grade chromatographic columns, gas loop and auto-control, and carrier recovery) and experimental scheme, had been designed on the basis of a series of hydrogen-deuterium experiments by temperature programmed de- sorption. The characteristic of the system was that desorption kinetic parameters could be directly calculated from the hydrogen isotope separation desorption spectra information. In other words, the complicated dynamic process of separation could be described by the desorption rate equation, shape parameter and desorption activation energy calculation on the condition of the experimental data and appropriate assumptions (equilibrium and adsorption, uniform surface). In previous work, an experimental series of operation to verify the successive enrichment of D 2 from a H 2 -D 2 mixture, the production of the deuterium from natural hydrogen and the recovery of tritium such as from the nuclear heavy-water were carried out using MS5A at 77 K. This work was only conceptual design, so it was necessary to identify the availability of super large capacity system by experiment. (authors)

  16. The Collider dipole magnet program

    International Nuclear Information System (INIS)

    Baldi, R.W.; Bailey, R.; Bever, D.; Bogart, L.; Gigg, G.; Packer, M.; Page, L.; Stranberg, N.

    1991-01-01

    The Superconducting Super Collider will consist of more large superconducting magnets than have been built to date. Over 12,000 superconducting magnets are required and more than 8,000 will be Collider dipoles. The dipole magnet program is on the critical path of the project and requires the optimized utilization of the Nation's resources - National Laboratories, Universities and Industry. General Dynamics and Westinghouse Electric Corporation have been chosen as the Leader and Follower companies for the design of producible magnets and the manufacturing of the SSC dipoles. Industry has the necessary experience, skills and facilities required to produce reliable and cost effective dipole magnets. At peak production, 10 CDMs per day, very large quantities (nearly 130 metric tonnes/day) of materials will have to be procured from companies nationwide and fabricated into defect-free magnets. A key element of the SSCL's strategy to produce the most efficient CDM program is to employ the Leader-Follower approach, with the Leader transferring technology from the laboratories to the Leader's facility, fully integrating the Follower in the producibility and tooling/factory design efforts, and assisting the Follower in magnet qualification tests. General Dynamics is ready to help build America's most powerful research tool. Management is in place, the facilities are ready for activation and resources are available for immediate assignment

  17. Design and analysis on super-critical water cooled power reactors

    International Nuclear Information System (INIS)

    Ishiwatari, Yuki

    2005-01-01

    The Super-Critical Water Cooled Power Reactors (SCPR) is cooled by 25 MPa supercritical water of 280degC at reactor inlet and greater than 500degC at reactor outlet and directly connected with turbine/generators with high energy conversion efficiency. This corresponds to the deletion of recirculation system and steam-water separation system of BWR type reactors or of pressurizer and steam generator of PWR type reactors. In addition to the design study of the university of Tokyo, technology development of the SCPR for practical use has started under the collaboration of industry and academia since 2000. Mockup single tube and bundle tests for heat transfer/fluid flow characteristics of the design have been conducted with 3D heat transfer analysis. Materials compatible with coolant conditions for fuel cans and reactor internals are also assessed. Overall evaluation of the reactor concept is under way. (T. Tanaka)

  18. First Ideas Towards the Super-Conducting Magnet Design for the HESR at FAIR

    CERN Document Server

    Eichhorn, Ralf; Gussen, Achim; Martin, Siegfried

    2005-01-01

    The Forschungszentrum Juelich has taken the leadership of a consortium being responsible for the design of the HESR going to be part of the FAIR project at GSI. The HESR is a 50 Tm storage ring for antiprotons, based on a super-conducting magnet technology. On basis of the RHIC Dipole D0 (3.6 T), the magnet design for the HESR has started recently. One key issue will be a very compact layout because of the rather short magnets (been 1.82 m for the dipoles and 0.5 m for the other magnets). This paper will present first ideas of the magnetic and cryogenic layout, give a status report on the achievements so far and discuss the need and possible solutions for a bent magnet with a radius of curvature of 13.2 m.

  19. Design and Performance of Tropical Rainfall Measuring Mission (TRMM) Super NiCd Batteries

    Science.gov (United States)

    Ahmad, Anisa J.; Rao, Gopalakrishna M.; Jallice, Doris E.; Moran Vickie E.

    1999-01-01

    The Tropical Rainfall Measuring Mission (TRMM) is a joint mission between NASA and the National Space Development Agency (NASDA) of Japan. The observatory is designed to monitor and study tropical rainfall and the associated release of energy that helps to power the global atmospheric circulation shaping both weather and climate around the globe. The spacecraft was launched from Japan on November 27,1997 via the NASDA H-2 launch vehicle. The TRMM Power Subsystem is a Peak Power Tracking system that can support the maximum TRMM load of 815 watts at the end of its three year life. The Power Subsystem consists of two 50 Ampere Hour Super NiCd batteries, Gallium Arsenide Solar Array and the Power System Electronics. This paper describes the TRMM Power Subsystem, battery design, cell and battery ground test performance, and in-orbit battery operations and performance.

  20. Super Energy Efficiency Design (S.E.E.D.) Home Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    German, A.; Dakin, B.; Backman, C.; Weitzel, E.; Springer, D.

    2012-12-01

    This report describes the results of evaluation by the Alliance for Residential Building Innovation (ARBI) Building America team of the 'Super Energy Efficient Design' (S.E.E.D) home, a 1,935 sq. ft., single-story spec home located in Tucson, AZ. This prototype design was developed with the goal of providing an exceptionally energy efficient yet affordable home and includes numerous aggressive energy features intended to significantly reduce heating and cooling loads such as structural insulated panel (SIP) walls and roof, high performance windows, an ERV, an air-to-water heat pump with mixed-mode radiant and forced air delivery, solar water heating, and rooftop PV. Source energy savings are estimated at 45% over the Building America B10 Benchmark. System commissioning, short term testing, long term monitoring and detailed analysis of results was conducted to identify the performance attributes and cost effectiveness of the whole house measure package.

  1. Mechanical design and analysis of the 2D cross-section of the SSC collider dipole magnet

    International Nuclear Information System (INIS)

    Strait, J.; Kerby, J.; Bossert, R.; Carson, J.; Spigo, G.; Turner, J.R.

    1991-05-01

    The 50 mm aperture collider dipole magnet uses stainless steel collars to position the conductors at the locations specified by the magnetic design and to prestress the coil to prevent conductor motion under excitation. The collars are supported by the vertically-split yoke and cold mass skin to reduce their deflection under excitation. The collar interior is designed to give the coil its required shape at the operating temperature taking into account all deflections that occur from assembly and cooldown. 13 refs., 2 figs., 1 tab

  2. Electromagnetic Design and Optimization of Directivity of Stripline Beam Position Monitors for the High Luminosity Large Hadron Collider

    CERN Document Server

    Draskovic, Drasko; Jones, Owain Rhodri; Lefèvre, Thibaut; Wendt, Manfred

    2015-01-01

    This paper presents the preliminary electromagnetic design of a stripline Beam Position Monitor (BPM) for the High Luminosity program of the Large Hadron Collider (HL-LHC) at CERN. The design is fitted into a new octagonal shielded Beam Screen for the low-beta triplets and is optimized for high directivity. It also includes internal Tungsten absorbers, required to reduce the energy deposition in the superconducting magnets. The achieved broadband directivity in wakefield solver simulations presents significant improvement over the directivity of the current stripline BPMs installed in the LHC.

  3. CF60 Concrete Composition Design and Application on Fudiankou Xijiang Super Large Bridge

    Science.gov (United States)

    Qiu, Yi Mei; Wen, Sen Yuan; Chen, Jun Xiang

    2018-06-01

    Guangxi Wuzhou City Ring Road Fudiankou Xijiang super large bridge CF60 concrete is a new multi-phase composite high-performance concrete, this paper for the Fudiankou Xijiang bridge structure and characteristics of the project, in accordance with the principle of local materials and technical specification requirements, combined with the site conditions of CF60 engineering high performance concrete component materials, proportion and the technical performance, quantify the main physical and mechanical performance index. Analysis main influencing factors of the technical indicators, reasonable adjustment of concrete mix design parameters, and the use of technical means of admixture and multi-function composite admixture of concrete, obtain the optimal proportion of good work, process, mechanical properties stability and durability of engineering properties, recommend and verification of concrete mix; to explore the CF60 high performance concrete Soil in the Fudiankou Xijiang bridge application technology, detection and tracking the quality of concrete construction, concrete structure during the construction of the key technology and control points is proposed, evaluation of CF60 high performance concrete in the actual engineering application effect and benefit to ensure engineering quality of bridge structure and service life, and super long span bridge engineering construction to provide basis and reference.

  4. Collider Scaling and Cost Estimation

    International Nuclear Information System (INIS)

    Palmer, R.B.

    1986-01-01

    This paper deals with collider cost and scaling. The main points of the discussion are the following ones: 1) scaling laws and cost estimation: accelerating gradient requirements, total stored RF energy considerations, peak power consideration, average power consumption; 2) cost optimization; 3) Bremsstrahlung considerations; 4) Focusing optics: conventional, laser focusing or super disruption. 13 refs

  5. Beam-loss induced pressure rise of Large Hadron Collider collimator materials irradiated with 158  GeV/u In^{49+} ions at the CERN Super Proton Synchrotron

    Directory of Open Access Journals (Sweden)

    E. Mahner

    2004-10-01

    Full Text Available During heavy ion operation, large pressure rises, up to a few orders of magnitude, were observed at CERN, GSI, and BNL. The dynamic pressure rises were triggered by lost beam ions that impacted onto the vacuum chamber walls and desorbed about 10^{4} to 10^{7} molecules per ion. The deterioration of the dynamic vacuum conditions can enhance charge-exchange beam losses and can lead to beam instabilities or even to beam abortion triggered by vacuum interlocks. Consequently, a dedicated measurement of heavy-ion induced molecular desorption in the GeV/u energy range is important for Large Hadron Collider (LHC ion operation. In 2003, a desorption experiment was installed at the Super Proton Synchrotron to measure the beam-loss induced pressure rise of potential LHC collimator materials. Samples of bare graphite, sputter coated (Cu, TiZrV graphite, and 316 LN (low carbon with nitrogen stainless steel were irradiated under grazing angle with 158  GeV/u indium ions. After a description of the new experimental setup, the results of the pressure rise measurements are presented, and the derived desorption yields are compared with data from other experiments.

  6. Super Energy Efficient Design (S.E.E.D.) Home Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    German, A. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Dakin, B. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Backman, C. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Weitzel, E. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Springer, D. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2012-12-01

    This report describes the results of evaluation by the Alliance for Residential Building Innovation (ARBI) Building America team of the “Super Energy Efficient Design” (S.E.E.D) home, a 1,935 sq. ft., single-story spec home located in Tucson, AZ. This prototype design was developed with the goal of providing an exceptionally energy efficient yet affordable home and includes numerous aggressive energy features intended to significantly reduce heating and cooling loads such as structural insulated panel (SIP) walls and roof, high performance windows, an ERV, an air-to-water heat pump with mixed-mode radiant and forced air delivery, solar water heating, and rooftop PV. Source energy savings are estimated at 45% over the Building America B10 Benchmark. System commissioning, short term testing, long term monitoring and detailed analysis of results was conducted to identify the performance attributes and cost effectiveness of the whole house measure package.

  7. Towards future circular colliders

    Science.gov (United States)

    Benedikt, Michael; Zimmermann, Frank

    2016-09-01

    The Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) presently provides proton-proton collisions at a center-of-mass (c.m.) energy of 13 TeV. The LHC design was started more than 30 years ago, and its physics program will extend through the second half of the 2030's. The global Future Circular Collider (FCC) study is now preparing for a post-LHC project. The FCC study focuses on the design of a 100-TeV hadron collider (FCC-hh) in a new ˜100 km tunnel. It also includes the design of a high-luminosity electron-positron collider (FCCee) as a potential intermediate step, and a lepton-hadron collider option (FCC-he). The scope of the FCC study comprises accelerators, technology, infrastructure, detectors, physics, concepts for worldwide data services, international governance models, and implementation scenarios. Among the FCC core technologies figure 16-T dipole magnets, based on Nb3 S n superconductor, for the FCC-hh hadron collider, and a highly-efficient superconducting radiofrequency system for the FCC-ee lepton collider. Following the FCC concept, the Institute of High Energy Physics (IHEP) in Beijing has initiated a parallel design study for an e + e - Higgs factory in China (CEPC), which is to be succeeded by a high-energy hadron collider (SPPC). At present a tunnel circumference of 54 km and a hadron collider c.m. energy of about 70 TeV are being considered. After a brief look at the LHC, this article reports the motivation and the present status of the FCC study, some of the primary design challenges and R&D subjects, as well as the emerging global collaboration.

  8. SuperB Progress Report for Physics

    Energy Technology Data Exchange (ETDEWEB)

    O' Leary, B.; /Aachen, Tech. Hochsch.; Matias, J.; Ramon, M.; /Barcelona, IFAE; Pous, E.; /Barcelona U.; De Fazio, F.; Palano, A.; /INFN, Bari; Eigen, G.; /Bergen U.; Asgeirsson, D.; /British Columbia U.; Cheng, C.H.; Chivukula, A.; Echenard, B.; Hitlin, D.G.; Porter, F.; Rakitin, A.; /Caltech; Heinemeyer, S.; /Cantabria Inst. of Phys.; McElrath, B.; /CERN; Andreassen, R.; Meadows, B.; Sokoloff, M.; /Cincinnati U.; Blanke, M.; /Cornell U., Phys. Dept.; Lesiak, T.; /Cracow, INP /DESY /Zurich, ETH /INFN, Ferrara /Frascati /INFN, Genoa /Glasgow U. /Indiana U. /Mainz U., Inst. Phys. /Karlsruhe, Inst. Technol. /KEK, Tsukuba /LBL, Berkeley /UC, Berkeley /Lisbon, IST /Ljubljana U. /Madrid, Autonoma U. /Maryland U. /MIT /INFN, Milan /McGill U. /Munich, Tech. U. /Notre Dame U. /PNL, Richland /INFN, Padua /Paris U., VI-VII /Orsay, LAL /Orsay, LPT /INFN, Pavia /INFN, Perugia /INFN, Pisa /Queen Mary, U. of London /Regensburg U. /Republica U., Montevideo /Frascati /INFN, Rome /INFN, Rome /INFN, Rome /Rutherford /Sassari U. /Siegen U. /SLAC /Southern Methodist U. /Tel Aviv U. /Tohoku U. /INFN, Turin /INFN, Trieste /Uppsala U. /Valencia U., IFIC /Victoria U. /Wayne State U. /Wisconsin U., Madison

    2012-02-14

    SuperB is a high luminosity e{sup +}e{sup -} collider that will be able to indirectly probe new physics at energy scales far beyond the reach of any man made accelerator planned or in existence. Just as detailed understanding of the Standard Model of particle physics was developed from stringent constraints imposed by flavour changing processes between quarks, the detailed structure of any new physics is severely constrained by flavour processes. In order to elucidate this structure it is necessary to perform a number of complementary studies of a set of golden channels. With these measurements in hand, the pattern of deviations from the Standard Model behavior can be used as a test of the structure of new physics. If new physics is found at the LHC, then the many golden measurements from SuperB will help decode the subtle nature of the new physics. However if no new particles are found at the LHC, SuperB will be able to search for new physics at energy scales up to 10-100 TeV. In either scenario, flavour physics measurements that can be made at SuperB play a pivotal role in understanding the nature of physics beyond the Standard Model. Examples for using the interplay between measurements to discriminate New Physics models are discussed in this document. SuperB is a Super Flavour Factory, in addition to studying large samples of B{sub u,d,s}, D and {tau} decays, SuperB has a broad physics programme that includes spectroscopy both in terms of the Standard Model and exotica, and precision measurements of sin{sup 2} {theta}{sub W}. In addition to performing CP violation measurements at the {Upsilon}(4S) and {phi}(3770), SuperB will test CPT in these systems, and lepton universality in a number of different processes. The multitude of rare decay measurements possible at SuperB can be used to constrain scenarios of physics beyond the Standard Model. In terms of other precision tests of the Standard Model, this experiment will be able to perform precision over

  9. SuperB Progress Report for Physics

    International Nuclear Information System (INIS)

    O'Leary, B.; Matias, J.; Ramon, M.

    2012-01-01

    SuperB is a high luminosity e + e - collider that will be able to indirectly probe new physics at energy scales far beyond the reach of any man made accelerator planned or in existence. Just as detailed understanding of the Standard Model of particle physics was developed from stringent constraints imposed by flavour changing processes between quarks, the detailed structure of any new physics is severely constrained by flavour processes. In order to elucidate this structure it is necessary to perform a number of complementary studies of a set of golden channels. With these measurements in hand, the pattern of deviations from the Standard Model behavior can be used as a test of the structure of new physics. If new physics is found at the LHC, then the many golden measurements from SuperB will help decode the subtle nature of the new physics. However if no new particles are found at the LHC, SuperB will be able to search for new physics at energy scales up to 10-100 TeV. In either scenario, flavour physics measurements that can be made at SuperB play a pivotal role in understanding the nature of physics beyond the Standard Model. Examples for using the interplay between measurements to discriminate New Physics models are discussed in this document. SuperB is a Super Flavour Factory, in addition to studying large samples of B u,d,s , D and τ decays, SuperB has a broad physics programme that includes spectroscopy both in terms of the Standard Model and exotica, and precision measurements of sin 2 θ W . In addition to performing CP violation measurements at the Υ(4S) and φ(3770), SuperB will test CPT in these systems, and lepton universality in a number of different processes. The multitude of rare decay measurements possible at SuperB can be used to constrain scenarios of physics beyond the Standard Model. In terms of other precision tests of the Standard Model, this experiment will be able to perform precision over-constraints of the unitarity triangle through

  10. Muon colliders

    International Nuclear Information System (INIS)

    Palmer, R.B.; Sessler, A.; Skrinsky, A.

    1996-01-01

    Muon Colliders have unique technical and physics advantages and disadvantages when compared with both hadron and electron machines. They should thus be regarded as complementary. Parameters are given of 4 TeV and 0.5 TeV high luminosity micro + micro - colliders, and of a 0.5 TeV lower luminosity demonstration machine. We discuss the various systems in such muon colliders, starting from the proton accelerator needed to generate the muons and proceeding through muon cooling, acceleration and storage in a collider ring. Problems of detector background are also discussed

  11. Design and Installation Challenges of the Neutral Beam Absorbers for the Large Hadron Collider at CERN

    OpenAIRE

    Fernández Vélez, Óscar

    2005-01-01

    El CERN (Consejo Europeo de Investigación Nuclear) está construyendo su nuevo acelerador de partículas en la frontera franco-suiza. Actualmente en la fase de instalación, El Large Hadron Collider (LHC), con 26,7 kilómetros de longitud a 100 metros bajo tierra, será el mayor y más potente acelerador de partículas jamás construido. A su llegada al CERN, cada uno de casi 2000 imanes superconductores que formarán parte del acelerador debe ser verificado, ensamblado y transportado hasta ...

  12. Optimization design of foundation excavation for Xiluodu super-high arch dam in China

    Directory of Open Access Journals (Sweden)

    Qixiang Fan

    2015-04-01

    Full Text Available With better understanding of the quality and physico-mechanical properties of rocks of dam foundation, and the physico-mechanical properties and structure design of arch dam in association with the foundation excavation of Xiluodu arch dam, the excavation optimization design was proposed for the foundation surface on the basis of feasibility study. Common analysis and numerical analysis results demonstrated the feasibility of using the weakly weathered rocks III1 and III2 as the foundation surface of super-high arch dam. In view of changes in the geological conditions at the dam foundation along the riverbed direction, the design of extending foundation surface excavation area and using consolidating grouting and optimizing structure of dam bottom was introduced, allowing for harmonization of the arch dam and foundation. Three-dimensional (3D geomechanics model test and finite element analysis results indicated that the dam body and foundation have good overload stability and high bearing capacity. The monitoring data showed that the behaviors of dam and foundation correspond with the designed patterns in the construction period and the initial operation period.

  13. Design of an extended range long counter using super Monte Carlo simulation

    International Nuclear Information System (INIS)

    Mazunga, Mohamed; Li, Taosheng; Li, Yanan; Hong, Bing; Wang, Yongfeng; Ji, Xiang

    2017-01-01

    We have designed an extended range neutron long counter on the basis of work optimized using SuperMC code. The problem of the existing traditional long counters is that their response function falls rapidly above 5 MeV. We proposed a new designed by adding two layers of converter material inside the polyethylene moderator. The relatively low density chromium and high density lead metals convert high energy neutron by (n, xn) spallation reaction. This produces more neutrons of lower energies, which have higher probability of being detected by thermal 3 He-counter. The response function at lower neutron energies was improved by inserting small polyethylene cylinder in front of 3 He counter. In this design we achieved to extent the flat response function of the long counter from few keV up to 150 MeV. The total fluctuation of response curve is less than ±9% over the entire energy range. The designed long counter is suitable to be used as neutron monitor for monitoring neutron fluence at high-energy neutron source. (authors)

  14. Current status of International Linear Collider Project in Technical Design stage and activities of Japan Society of Civil Engineers

    International Nuclear Information System (INIS)

    2008-01-01

    In order to invite the International Linear Collider (ILC) in Japan, Japan Society of Civil Engineers (JSCE) established the Linear Collider Subcommittee of JSCE (LC subcommittee) in April, 2006. Abstracts of the activities and objects of LC subcommittee are stated. The LC subcommittee consists of five working groups. Each working group investigated the previous reports of 2006 and 2007 and reported some important notices. The working group on planning and project and management reported the site conditions of Japan, tunnels and facilities. The working group on geological survey, test and environmental design stated the earthquake, fault, ground water, water quality, long-term displacement and survey methods. The working group on structural and environmental design described the tunnel design in fault and fracture zone, hollow, beam tunnel and service tunnel. The working group on construction and maintenance reported some examples of troubles in granite zone, survey for steering, shaft and inclined shaft. The working group on information investigation of ILC described analysis of reference materials, construction of LHC, beam tunnel and some points under consideration. (S.Y.)

  15. Development and optimization design of pit turbine with super low-head

    International Nuclear Information System (INIS)

    Yang, C X; Li, X X; Huang, F J; Zheng, Y; QZhou, D

    2012-01-01

    Tubular turbines have many advantages such as large flow, high-speed, high efficiency, wide and high efficiency area, compact structure, simple layout, etc. With those advantages, tubular turbine is becoming one of the most economic and suitable types of turbines to develop low head hydraulic resources. According to the general situation of the hydropower station in the north of Jiangsu, a super low head pit turbine which head is set as about 2m is developed by the research to utilize the low head hydraulic resource.The CFD technology was used to calculate the flow field. The computing zone was meshed with unstructured gird. The whole flow passage of shaft type tubular turbine was calculated by 3-d steady turbulent numerical simulation. The detail of flowthrough the whole flowpassage was attained and the influence to the turbine's performance was analyzed by the low head runner blade's various diameters, airfoils and setting angles. The best turbine runner was obtained by considering all the methods. Meeting the station's requirements, the results show that the runner exhibits the highest performance in the efficiency, hydraulic loss and static pressure sides with 1.75m diameter, optimized airfoil and 23 degree setting angle. The developed super low head pit turbine shows highest efficiency under the design condition of 2.1m water head and 10m 3 /s flow rate. GD-WS-35 turbine model test was carried out tostudy the performance of the turbine. On the basis ofmodel transformation principle,the numerical simulationresultof GD-WS-175turbine was compared with the model results. It's showed that the model test result is basically consistent with numerical simulationresult. The producing error in the numerical computation is not easy to control. The efficiency's error range is ±3%.

  16. Lattice design and beam optics calculations for the new large-scale electron-positron collider FCC-ee

    CERN Document Server

    Haerer, Bastian; Prof. Dr. Schmidt, Ruediger; Dr. Holzer, Bernhard

    Following the recommendations of the European Strategy Group for High Energy Physics, CERN launched the Future Circular Collider Study (FCC) to investigate the feasibility of large-scale circular colliders for future high energy physics research. This thesis presents the considerations taken into account during the design process of the magnetic lattice in the arc sections of the electron-positron version FCC-ee. The machine is foreseen to operate at four different centre-of-mass energies in the range of 90 to 350 GeV. Different beam parameters need to be achieved for every energy, which requires a flexible lattice design in the arc sections. Therefore methods to tune the horizontal beam emittance without re-positioning machine components are implemented. In combination with damping and excitation wigglers a precise adjustment of the emittance can be achieved. A very first estimation of the vertical emittance arising from lattice imperfections is performed. Special emphasis is put on the optimisation of the ...

  17. SLAC linear collider

    International Nuclear Information System (INIS)

    Richter, B.; Bell, R.A.; Brown, K.L.

    1980-06-01

    The SLAC LINEAR COLLIDER is designed to achieve an energy of 100 GeV in the electron-positron center-of-mass system by accelerating intense bunches of particles in the SLAC linac and transporting the electron and positron bunches in a special magnet system to a point where they are focused to a radius of about 2 microns and made to collide head on. The rationale for this new type of colliding beam system is discussed, the project is described, some of the novel accelerator physics issues involved are discussed, and some of the critical technical components are described

  18. A Multi-TeV Linear Collider Based on CLIC Technology : CLIC Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Aicheler, M [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Burrows, P. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Draper, M. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Garvey, T. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Lebrun, P. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Peach, K. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Phinney, N. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Schmickler, H. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Schulte, D. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Toge, N. [European Organization for Nuclear Research (CERN), Geneva (Switzerland)

    2014-02-13

    This report describes the accelerator studies for a future multi-TeV e+e- collider based on the Compact Linear Collider (CLIC) technology. The CLIC concept as described in the report is based on high gradient normal-conducting accelerating structures where the RF power for the acceleration of the colliding beams is extracted from a high-current Drive Beam that runs parallel with the main linac. The focus of CLIC R&D over the last years has been on addressing a set of key feasibility issues that are essential for proving the fundamental validity of the CLIC concept. The status of these feasibility studies are described and summarized. The report also includes a technical description of the accelerator components and R&D to develop the most important parts and methods, as well as a description of the civil engineering and technical services associated with the installation. Several larger system tests have been performed to validate the two-beam scheme, and of particular importance are the results from the CLIC test facility at CERN (CTF3). Both the machine and detector/physics studies for CLIC have primarily focused on the 3 TeV implementation of CLIC as a benchmark for the CLIC feasibility. This report also includes specific studies for an initial 500 GeV machine, and some discussion of possible intermediate energy stages. The performance and operation issues related to operation at reduced energy compared to the nominal, and considerations of a staged construction program are included in the final part of the report. The CLIC accelerator study is organized as an international collaboration with 43 partners in 22 countries. An associated report describes the physics potential and experiments at CLIC and a shorter report in preparation will focus on the CLIC implementation strategy, together with a plan for the CLIC R&D studies 2012–2016. Critical and important implementation issues such as cost, power and schedule will be addressed there.

  19. Design considerations for the semi-digital hadronic calorimeter (SDHCAL) for future leptonic colliders

    CERN Document Server

    Pingault, Antoine

    2016-07-29

    The first technological SDHCAL prototype having been successfully tested, a new phase of R&D, to validate completely the SDHCAL option for the International Linear Detector (ILD) project of the International Linear Collider (ILC), has started with the conception and the realisation of a new prototype. The new one is intended to host few but large active layers of the future SDHCAL. The new active layers, made of Glass Resistive Plate Chambers (GRPC) with sizes larger than 2m^2 will be equipped with a new version of the electronic readout, fulfilling the requirements of the future ILD detector. The new GRPC are conceived to improve the homogeneity with a new gas distribution scheme. Finally the mechanical structure will be achieved using the electron beam welding technique. The progress realised will be presented and future steps will be discussed.

  20. Design considerations for the semi-digital hadronic calorimeter (SDHCAL) for future leptonic colliders

    International Nuclear Information System (INIS)

    Pingault, A.

    2016-01-01

    The first technological SDHCAL prototype having been successfully tested, a new phase of R and D, to validate completely the SDHCAL option for the International Linear Detector (ILD) project of the International Linear Collider (ILC), has started with the conception and the realisation of a new prototype. The new one is intended to host few but large active layers of the future SDHCAL. The new active layers, made of Glass Resistive Plate Chambers (GRPC) with sizes larger than 2 m 2 will be equipped with a new version of the electronic readout, fulfilling the requirements of the future ILD detector. The new GRPC are conceived to improve the homogeneity with a new gas distribution scheme. Finally the mechanical structure will be achieved using the electron beam welding technique. The progress realised will be presented and future steps will be discussed.

  1. Dynamic imperfections and optimized feedback design in the Compact Linear Collider main linac

    CERN Document Server

    Eliasson, Peder

    2008-01-01

    The Compact Linear Collider (CLIC) main linac is sensitive to dynamic imperfections such as element jitter, injected beam jitter, and ground motion. These effects cause emittance growth that, in case of ground motion, has to be counteracted by a trajectory feedback system. The feedback system itself will, due to jitter effects and imperfect beam position monitors (BPMs), indirectly cause emittance growth. Fast and accurate simulations of both the direct and indirect effects are desirable, but due to the many elements of the CLIC main linac, simulations may become very time consuming. In this paper, an efficient way of simulating linear (or nearly linear) dynamic effects is described. The method is also shown to facilitate the analytic determination of emittance growth caused by the different dynamic imperfections while using a trajectory feedback system. Emittance growth expressions are derived for quadrupole, accelerating structure, and beam jitter, for ground motion, and for noise in the feedback BPMs. Fina...

  2. Conceptual design and performance simulations of super-compact electromagnetic calorimeter

    Directory of Open Access Journals (Sweden)

    Skoda Libor

    2013-11-01

    Full Text Available Measurements of particle production at forward rapidities in high energy p-p, p-A and A-A collisions provide access to physics processes at very low Bjorken x. These measurements will allow to study the gluon saturation scale and improve our knowledge of parton distribution in nuclei. Specific requirements must be fulfilled for a calorimeter to successfully operate in high-multiplicity forward region within often stringent space limits. Here we present a study of a conceptual design of super-compact electromagnetic calorimeter being developed at Czech Technical University in Prague. The design of the sampling calorimeter is based on a sandwich structure of thin tungsten and scintillator layers oriented in parallel to the beam. Used optical readout of individual scintillator pads guaranties the required high radiation hardness of the detector. We present simulation of the expected performance of the optical pad readout together with overall detector performance. It is aimed for the detector to allow measuring of high energy photons (1

  3. A Preliminary Interaction Region Design for a Super B-Factory

    CERN Document Server

    Sullivan, Michael K; Donald, Martin; Ecklund, Stanley; Novokhatski, Alexander; Seeman, John; Wienands, Ulrich

    2005-01-01

    The success of the two B-Factories (PEP-II and KEKB) has encouraged us to look at design parameters for a B-Factory with a 30-50 times increase in the luminosity of the present machines (L~1e36). In order to achieve this high luminosity, the beta y* values are reduced to 3-2 mm, the bunch spacing is minimized (0.6-0.3 m) and the bunch currents are increased. Total beam currents range from 5-25 A. The interaction region (IR) of these "SuperB" designs presents special challenges. Synchrotron radiation fans from local bending in shared magnets and from upstream sources pose difficulties due to the high power levels in these fans. High-order-mode(HOM)heating, effects that have been seen in the present B-factories, will become much more pronounced with the very short bunches and high beam currents. Masking the detector beam pipe from synchrotron radiation must take into account effects of HOM power generation. Backgrounds that are a function of the luminosity will become very important. We presen...

  4. Design of arc power supply for neutral beam injection system based on super capacitor energy storage

    International Nuclear Information System (INIS)

    Yang Puqiong; Xuan Weimin; Cao Jianyong; Li Qing; Liu Xiaolong

    2015-01-01

    The arc power supply is one of the most important equipment for neutral beam injection system. The stability of arc discharge and the quality of ion beam extraction were determined by its performance. For improving stability of the arc discharge, reducing the power network capacity and decreasing impulse on power network, the topology of the arc power supply applied the structure of DC/DC converter based on technology of super capacitor energy storage and switching power supply. Several IGBT power modules are operated in parallel, and it can improve the arc power supply's operating frequency and dynamic response. A filter circuit and a current fast transferring circuit were designed based on a detailed analysis on working process of the arc power sup- ply. According to the requirements and parameters of the arc power supply, and the current response of RL first order circuit, the minimum filter inductances were accurately calculated. Finally, using the model and Matlab, the performance of the arc power supply was simulated and verified, and it meets the design requirement. (authors)

  5. Supercollider design submitted

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The research and development programme for the proposed US Superconducting Super Collider (SSC) passed a major milestone on schedule with the submission of a conceptual design report to the US Department of Energy (DOE) on 31 March. Since then, the design has been favourably reviewed by DOE officials

  6. Design and study of new cables for superconducting accelerator magnets: Synchrotron SIS 100 at GSI and NICA collider at JINR*

    International Nuclear Information System (INIS)

    Khodzhibagiyan, H G; Drobin, V M; Kovalenko, A D; Vladimirova, N M; Fischer, E; Pantsyrny, V I; Potanina, L V; Shikov, A K

    2010-01-01

    Recent data from the design of new optimized options of NbTi composite wires and hollow cables for fast cycling synchrotron SIS100 at GSI and NICA collider at JINR are presented. The SIS100 new cable is proposed to be used for manufacturing of single-layer coil for dipole magnet with maximal amplitude of pulsed magnetic field up to 2 T. The cable should provide continues pulsed operation at the current amplitude of I = 13 kA and magnetic field ramp rate of dB/dt = 4 T/s. The results of experimental study of energy losses in the new wire and cable samples for SIS100 magnets are presented. The design cable parameters for the NICA 4 T dipole magnet are fixed at the level of I = 17 kA and dB/dt = 1 T/s. The status of the work is presented and discussed.

  7. Search for and selection of novel heavy scintillator crystals for calorimeter design for future high-energy colliders

    International Nuclear Information System (INIS)

    Ferrere, D.

    1993-01-01

    The discovery of some particles (Higgs, top,..) foreseen by theoretical models should be achieved at future colliders allowing to reach an energy scale of about 1 TeV. Efficient detectors must be designed to handle the very high luminosity of the LHC collider at CERN. In the intermediate mass region, M Z -2M Z , the diphoton decay mode of a Higgs boson produced inclusively or in association with W boson or a toponium gives good chance of observation. A very high resolution calorimeter with photon angle reconstruction and pion identification capability should detect a Higgs signal with high probability. So a homogeneous crystal calorimeter seems to be suitable. Because of the high luminosity and the high radiation level, a search for a new heavy scintillator has been undertaken. It must have a good radiation hardness (>0.5 MRad in a year) and a fast luminescence decay time (<30 ns). Among 50 crystals or glasses of specific chemical composition tested in transmission, luminescence, decay time, γ/neutrons radiation and light yield, cerium fluoride seems best suited for LHC. The necessity to have a good photon resolution in the intermediate Higgs mass region led us to optimise by Monte Carlo simulations the geometry of the calorimeter, the uniformisation of the light collection and crystal intercalibration parameters. (orig.)

  8. Towards Future Circular Colliders

    CERN Document Server

    AUTHOR|(CDS)2108454; Zimmermann, Frank

    2016-01-01

    The Large Hadron Collider (LHC) at CERN presently provides proton-proton collisions at a centre-of-mass (c.m.) energy of 13 TeV. The LHC design was started more than 30 years ago, and its physics programme will extend through the second half of the 2030’s. The global Future Circular Collider (FCC) study is now preparing for a post-LHC project. The FCC study focuses on the design of a 100-TeV hadron collider (FCC-hh) in a new ∼100 km tunnel. It also includes the design of a high-luminosity electron-positron collider (FCC-ee) as a potential intermediate step, and a lepton-hadron collider option (FCC-he). The scope of the FCC study comprises accelerators, technology, infrastructure, detectors, physics, concepts for worldwide data services, international governance models, and implementation scenarios. Among the FCC core technologies figure 16-T dipole magnets, based on $Nb_3Sn$ superconductor, for the FCC-hh hadron collider, and a highly efficient superconducting radiofrequency system for the FCC-ee lepton c...

  9. Prediction and design of first super-strong liquid-crystalline polymers

    International Nuclear Information System (INIS)

    Dowell, F.

    1989-01-01

    This paper presents the details of the theoretical prediction and design (atom by atom, bond by bond) of the molecule chemical structures of the first candidate super-strong liquid-crystalline polymers (SS LCPs). These LCPs are the first LCPs designed to have good compressive strengths, as well as to have tensile strengths and tensile moduli significantly larger than those of existing strong LCPs (such as Kevlar). The key feature of this new class of LCPs is that the exceptional strength is three dimensional on a microscopic, molecular level (thus, on a macroscopic level), in contrast to present LCPs (such as Kevlar) with their one-dimensional exceptional strength. These SS LCPs also have some solubility and processing advantages over existing strong LCPs. These SS LCPs are specially-designed combined LCPs such that the side chains of a molecule interdigitate with the side chains of other molecules. This paper also presents other essential general and specific features required for SS LCPs. Considerations in the design of SS LCPs include the spacing distance between side chains along the backbone, the need for rigid sections in the backbone and side chains, the degree of polymerization, the length of the side chains, the regularity of spacing of the side chains along the backbone, the interdigitation of side chains in submolecular strips, the packing of the side chains on one or two sides of the backbone, the symmetry of the side chains, the points of attachment of the side chains to the backbone, the flexibility and size of the chemical group connecting each side chain to the backbone, the effect of semiflexible sections in the backbone and side chains, and the choice of types of dipolar and/or hydrogen bonding forces in the backbones and side chains for easy alignment

  10. Colliding druthers

    International Nuclear Information System (INIS)

    Ankenbrandt, C.; Johnson, R.P.

    1977-01-01

    Recommendations are made to maximize the usefulness of the colliding beam facility of the Main Ring and Energy Doubler at the Fermilab accelerator. The advantages of the transposed crossing geometry over the kissing geometry are pointed out

  11. Ion colliders

    International Nuclear Information System (INIS)

    Fischer, W.

    2010-01-01

    Ion colliders are research tools for high-energy nuclear physics, and are used to test the theory of Quantum Chromo Dynamics (QCD). The collisions of fully stripped high-energy ions create matter of a temperature and density that existed only microseconds after the Big Bang. Ion colliders can reach higher densities and temperatures than fixed target experiments although at a much lower luminosity. The first ion collider was the CERN Intersecting Storage Ring (ISR), which collided light ions (77Asb1, 81Bou1). The BNL Relativistic Heavy Ion Collider (RHIC) is in operation since 2000 and has collided a number of species at numerous energies. The CERN Large Hadron Collider (LHC) started the heavy ion program in 2010. Table 1 shows all previous and the currently planned running modes for ISR, RHIC, and LHC. All three machines also collide protons, which are spin-polarized in RHIC. Ion colliders differ from proton or antiproton colliders in a number of ways: the preparation of the ions in the source and the pre-injector chain is limited by other effects than for protons; frequent changes in the collision energy and particle species, including asymmetric species, are typical; and the interaction of ions with each other and accelerator components is different from protons, which has implications for collision products, collimation, the beam dump, and intercepting instrumentation devices such a profile monitors. In the preparation for the collider use the charge state Z of the ions is successively increased to minimize the effects of space charge, intrabeam scattering (IBS), charge change effects (electron capture and stripping), and ion-impact desorption after beam loss. Low charge states reduce space charge, intrabeam scattering, and electron capture effects. High charge states reduce electron stripping, and make bending and acceleration more effective. Electron stripping at higher energies is generally more efficient. Table 2 shows the charge states and energies in the

  12. Ion colliders

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, W.

    2011-12-01

    Ion colliders are research tools for high-energy nuclear physics, and are used to test the theory of Quantum Chromo Dynamics (QCD). The collisions of fully stripped high-energy ions create matter of a temperature and density that existed only microseconds after the Big Bang. Ion colliders can reach higher densities and temperatures than fixed target experiments although at a much lower luminosity. The first ion collider was the CERN Intersecting Storage Ring (ISR), which collided light ions [77Asb1, 81Bou1]. The BNL Relativistic Heavy Ion Collider (RHIC) is in operation since 2000 and has collided a number of species at numerous energies. The CERN Large Hadron Collider (LHC) started the heavy ion program in 2010. Table 1 shows all previous and the currently planned running modes for ISR, RHIC, and LHC. All three machines also collide protons, which are spin-polarized in RHIC. Ion colliders differ from proton or antiproton colliders in a number of ways: the preparation of the ions in the source and the pre-injector chain is limited by other effects than for protons; frequent changes in the collision energy and particle species, including asymmetric species, are typical; and the interaction of ions with each other and accelerator components is different from protons, which has implications for collision products, collimation, the beam dump, and intercepting instrumentation devices such a profile monitors. In the preparation for the collider use the charge state Z of the ions is successively increased to minimize the effects of space charge, intrabeam scattering (IBS), charge change effects (electron capture and stripping), and ion-impact desorption after beam loss. Low charge states reduce space charge, intrabeam scattering, and electron capture effects. High charge states reduce electron stripping, and make bending and acceleration more effective. Electron stripping at higher energies is generally more efficient. Table 2 shows the charge states and energies in the

  13. SuperB Progress Report for Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Biagini, M.E.; Boni, R.; Boscolo, M.; Buonomo, B.; Demma, T.; Drago, A.; Esposito, M.; Guiducci, S.; Mazzitelli, G.; Pellegrino, L.; Preger, M.A.; Raimondi, P.; Ricci, R.; Rotundo, U.; Sanelli, C.; Serio, M.; Stella, A.; Tomassini, S.; Zobov, M.; /Frascati; Bertsche, K.; Brachman, A.; /SLAC /Novosibirsk, IYF /INFN, Pisa /Pisa U. /Orsay, LAL /Annecy, LAPP /LPSC, Grenoble /IRFU, SPP, Saclay /DESY /Cockroft Inst. Accel. Sci. Tech. /U. Liverpool /CERN

    2012-02-14

    This report details the progress made in by the SuperB Project in the area of the Collider since the publication of the SuperB Conceptual Design Report in 2007 and the Proceedings of SuperB Workshop VI in Valencia in 2008. With this document we propose a new electron positron colliding beam accelerator to be built in Italy to study flavor physics in the B-meson system at an energy of 10 GeV in the center-of-mass. This facility is called a high luminosity B-factory with a project name 'SuperB'. This project builds on a long history of successful e+e- colliders built around the world, as illustrated in Figure 1.1. The key advances in the design of this accelerator come from recent successes at the DAFNE collider at INFN in Frascati, Italy, at PEP-II at SLAC in California, USA, and at KEKB at KEK in Tsukuba Japan, and from new concepts in beam manipulation at the interaction region (IP) called 'crab waist'. This new collider comprises of two colliding beam rings, one at 4.2 GeV and one at 6.7 GeV, a common interaction region, a new injection system at full beam energies, and one of the two beams longitudinally polarized at the IP. Most of the new accelerator techniques needed for this collider have been achieved at other recently completed accelerators including the new PETRA-3 light source at DESY in Hamburg (Germany) and the upgraded DAFNE collider at the INFN laboratory at Frascati (Italy), or during design studies of CLIC or the International Linear Collider (ILC). The project is to be designed and constructed by a worldwide collaboration of accelerator and engineering staff along with ties to industry. To save significant construction costs, many components from the PEP-II collider at SLAC will be recycled and used in this new accelerator. The interaction region will be designed in collaboration with the particle physics detector to guarantee successful mutual use. The accelerator collaboration will consist of several groups at present

  14. Collider Physics

    OpenAIRE

    Zeppenfeld, D.

    1999-01-01

    These lectures are intended as a pedagogical introduction to physics at $e^+e^-$ and hadron colliders. A selection of processes is used to illustrate the strengths and capabilities of the different machines. The discussion includes $W$ pair production and chargino searches at $e^+e^-$ colliders, Drell-Yan events and the top quark search at the Tevatron, and Higgs searches at the LHC.

  15. Structural and thermal analysis of a solid-cooled, low energy booster, radio-frequency-cavity tuner at the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Ranganathan, R.; Propp, A.; Dao, B.; Campbell, B.

    1993-04-01

    A three-dimensional heat conduction and structural model was developed to analyze and optimize the design of a solid-cooled low energy booster (LEB) radio-frequency (RF) cavity tuner concept. Consideration was given to three cooling options: (1) using beryllium oxide (BeO) disks, (2) using aluminum nitride (A1N) disks and (3) using neither BeO nor AlN disks. The results indicate that solid cooling is feasible from thermal and structural viewpoints if a minimum of two BeO disks or four AlN disks are used

  16. Structural and thermal analysis of a solid-cooled, low energy booster, radio-frequency-cavity tuner at the Superconducting Super Collider

    Energy Technology Data Exchange (ETDEWEB)

    Ranganathan, R.; Propp, A.; Dao, B.; Campbell, B.

    1993-04-01

    A three-dimensional heat conduction and structural model was developed to analyze and optimize the design of a solid-cooled low energy booster (LEB) radio-frequency (RF) cavity tuner concept. Consideration was given to three cooling options: (1) using beryllium oxide (BeO) disks, (2) using aluminum nitride (A1N) disks and (3) using neither BeO nor AlN disks. The results indicate that solid cooling is feasible from thermal and structural viewpoints if a minimum of two BeO disks or four AlN disks are used.

  17. Preliminary study on flexible core design of super FBR with multi-axial fuel shuffling

    International Nuclear Information System (INIS)

    Sukarman; Yamaji, Akifumi; Someya, Takayuki; Noda, Shogo

    2017-01-01

    Preliminary study has been conducted on developing a new flexible core design concept for the Supercritical water-cooled Fast Breeder Reactor (Super FBR) with multi-axial fuel shuffling. The proposed new concept focuses on the characteristic large axial coolant density change in supercritical water cooled reactors (SCWRs) when the coolant inlet temperature is below the pseudocritical point and large coolant enthalpy rise is taken in the core for achieving high thermal efficiency. The aim of the concept is to attain both the high breeding performance and good thermal-hydraulic performance at the same time. That is, short Compound System Doubling Time (CSDT) for high breeding, large coolant enthalpy rise for high thermal efficiency, and large core power. The proposed core concept consists of horizontal layers of mixed oxide (MOX) fuels and depleted uranium (DU) blanket layers at different elevation levels. Furthermore, the upper core and the lower core are separated and independent fuel shuffling schemes in these two core regions are considered. The number of fuel batches and fuel shuffling scheme of the upper core were changed to investigate influence of multi-axial fuel shuffling on the core characteristics. The core characteristics are evaluated with-three-dimensional diffusion calculations, which are fully-coupled with thermal-hydraulics calculations based on single channel analysis model. The results indicate that the proposed multi-axial fuel shuffling scheme does have a large influence on CSDT. Further investigations are necessary to develop the core concept. (author)

  18. Muon collider progress

    Energy Technology Data Exchange (ETDEWEB)

    Noble, Robert J. FNAL

    1998-08-01

    Recent progress in the study of muon colliders is presented. An international collaboration consisting of over 100 individuals is involved in calculations and experiments to demonstrate the feasibility of this new type of lepton collider. Theoretical efforts are now concentrated on low-energy colliders in the 100 to 500 GeV center-of-mass energy range. Credible machine designs are emerging for much of a hypothetical complex from proton source to the final collider. Ionization cooling has been the most difficult part of the concept, and more powerful simulation tools are now in place to develop workable schemes. A collaboration proposal for a muon cooling experiment has been presented to the Fermilab Physics Advisory Committee, and a proposal for a targetry and pion collection channel experiment at Brookhaven National Laboratory is in preparation. Initial proton bunching and space-charge compensation experiments at existing hadron facilities have occurred to demonstrate proton driver feasibility.

  19. Transceiver Design for CMUT-Based Super-Resolution Ultrasound Imaging.

    Science.gov (United States)

    Behnamfar, Parisa; Molavi, Reza; Mirabbasi, Shahriar

    2016-04-01

    A recently introduced structure for the capacitive micromachined ultrasonic transducers (CMUTs) has focused on the applications of the asymmetric mode of vibration and has shown promising results in construction of super-resolution ultrasound images. This paper presents the first implementation and experimental results of a transceiver circuit to interface such CMUT structures. The multiple input/multiple output receiver in this work supports both fundamental and asymmetric modes of operation and includes transimpedance amplifiers and low-power variable-gain stages. These circuit blocks are designed considering the trade-offs between gain, input impedance, noise, linearity and power consumption. The high-voltage transmitter can generate pulse voltages up to 60 V while occupying a considerably small area. The overall circuit is designed and laid out in a 0.35 μm CMOS process and a four-channel transceiver occupies 0.86 × 0.38 mm(2). The prototype chip is characterized in both electrical and mechanical domains. Measurement results show that each receiver channel has a nominal gain of 110 dBΩ with a 3 dB bandwidth of 9 MHz while consuming 1.02 mW from a 3.3 V supply. The receiver is also highly linear, with 1 dB compression point of minimum 1.05 V which is considerably higher than the previously reported designs. The transmitter consumes 98.1 mW from a 30 V supply while generating 1.38 MHz, 30 V pulses. The CMOS-CMUT system is tested in the transmit mode and shows full functionality in air medium.

  20. Future Circular Colliders

    CERN Document Server

    AUTHOR|(CDS)2108454; Zimmermann, Frank

    2016-01-01

    In response to a request from the 2013 Update of the European Strategy for Particle Physics, the global Future Circular Collider (FCC) study is preparing the foundation for a next-generation large-scale accelerator infrastructure in the heart of Europe. The FCC study focuses on the design of a 100-TeV hadron collider (FCC-hh), to be accommodated in a new ∼100 km tunnel near Geneva. It also includes the design of a high-luminosity electron-positron collider (FCC-ee), which could be installed in the same tunnel as a potential intermediate step, and a lepton-hadron collider option (FCC-he). The scope of the FCC study comprises accelerators, technology, infrastructure, detector, physics, concepts for worldwide data services, international governance models, and implementation scenarios. Among the FCC core technologies figure 16-T dipole magnets, based on Nb$_{3}$Sn superconductor, for the FCC-hh hadron collider, and a highly efficient superconducting radiofrequency system for the FCC-ee lepton collider. The int...

  1. Future Circular Colliders

    CERN Document Server

    AUTHOR|(CDS)2108454; Zimmermann, Frank

    2016-01-01

    In response to a request from the 2013 Update of the European Strategy for Particle Physics, the global Future Circular Collider (FCC) study is preparing the foundation for a next-generation large-scale accelerator infrastructure in the heart of Europe. The FCC study focuses on the design of a 100-TeV hadron collider (FCC-hh), to be accommodated in a new ∼100 km tunnel near Geneva. It also includes the design of a high-luminosity electron-positron collider (FCC-ee), which could be installed in the same tunnel as a potential intermediate step, and a lepton-hadron collider option (FCC-he). The scope of the FCC study comprises accelerators, technology, infrastructure, detectors, physics, concepts for worldwide data services, international governance models, and implementation scenarios. Among the FCC core technologies figure 16-T dipole magnets, based on Nb$_{3}$Sn superconductor, for the FCC-hh hadron collider, and a highly efficient superconducting radiofrequency system for the FCC-ee lepton collider. The in...

  2. SuperB: A High-Luminosity Asymmetric e+e- Super Flavor Factory

    Energy Technology Data Exchange (ETDEWEB)

    Bona, M.; /et al.

    2007-05-18

    We discuss herein the exciting physics program that can be accomplished with a very large sample of heavy quark and heavy lepton decays produced in the very clean environment of an e{sup +}e{sup -} collider; a program complementary to that of an experiment such as LHCb at a hadronic machine. It then presents the conceptual design of a new type of e{sup +}e{sup -} collider that produces a nearly two-order-of-magnitude increase in luminosity over the current generation of asymmetric B Factories. The key idea is the use of low emittance beams produced in an accelerator lattice derived from the ILC Damping Ring Design, together with a new collision region, again with roots in the ILC final focus design, but with important new concepts developed in this design effort. Remarkably, SuperB produces this very large improvement in luminosity with circulating currents and wallplug power similar to those of the current B Factories. There is clear synergy with ILC R&D; design efforts have already influenced one another, and many aspects of the ILC Damping Rings and Final Focus would be operationally tested at SuperB. Finally, the design of an appropriate detector, based on an upgrade of BABAR as an example, is discussed in some detail. A preliminary cost estimate is presented, as is an example construction timeline.

  3. Mechanical stress analysis during a quench in CLIQ protected 16 T dipole magnets designed for the future circular collider

    Science.gov (United States)

    Zhao, Junjie; Prioli, Marco; Stenvall, Antti; Salmi, Tiina; Gao, Yuanwen; Caiffi, Barbara; Lorin, Clement; Marinozzi, Vittorio; Farinon, Stefania; Sorbi, Massimo

    2018-07-01

    Protecting the magnets in case of a quench is a challenge for the 16 T superconducting dipole magnets presently designed for the 100 TeV: Future Circular Collider (FCC). These magnets are driven to the foreseen technological limits in terms of critical current, mechanical strength and quench protection. The magnets are protected with CLIQ (Coupling-Loss Induced Quench) system, which is a recently developed quench protection method based on discharging a capacitor bank across part of the winding. The oscillation of the magnet currents and the dissipation of the high stored energy into the windings cause electrodynamic forces and thermal stresses, which may need to be considered in the magnet mechanical design. This paper focuses on mechanical stress analysis during a quench of the 16 T cos-θ and block type dipole magnets. A finite element model allowed studying the stress due to the non-uniform temperature and current distribution in the superconducting coils. Two different CLIQ configurations were considered for the cos-θ design and one for the block type magnet. The analyses of the mechanical behavior of two magnets during a quench without or with hot spot turn were separately carried out. The simulation results show that the stress related to a quench should be considered when designing a high field magnet.

  4. Muon colliders and neutrino factories

    Energy Technology Data Exchange (ETDEWEB)

    Geer, S.; /Fermilab

    2010-09-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture and accelerate {Omicron}(10{sup 21}) muons/year. This development prepares the way for a new type of neutrino source (Neutrino Factory) and a new type of very high energy lepton-antilepton collider (Muon Collider). This article reviews the motivation, design and R&D for Neutrino Factories and Muon Colliders.

  5. Linear Colliders

    International Nuclear Information System (INIS)

    Alcaraz, J.

    2001-01-01

    After several years of study e''+ e''- linear colliders in the TeV range have emerged as the major and optimal high-energy physics projects for the post-LHC era. These notes summarize the present status form the main accelerator and detector features to their physics potential. The LHC era. These notes summarize the present status, from the main accelerator and detector features to their physics potential. The LHC is expected to provide first discoveries in the new energy domain, whereas an e''+ e''- linear collider in the 500 GeV-1 TeV will be able to complement it to an unprecedented level of precision in any possible areas: Higgs, signals beyond the SM and electroweak measurements. It is evident that the Linear Collider program will constitute a major step in the understanding of the nature of the new physics beyond the Standard Model. (Author) 22 refs

  6. Collider workshop

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    The promise of initial results after the start of operations at CERN's SPS proton-antiproton collider and the prospects for high energy hadron collisions at Fermilab (Tevatron) and Brookhaven (ISABELLE) provided a timely impetus for the recent Topical Workshop on Forward Collider Physics', held at Madison, Wisconsin, from 10-12 December. It became the second such workshop to be held, the first having been in 1979 at the College de France, Paris. The 100 or so participants had the chance to hear preliminary results from the UA1, UA4 and UA5 experiments at the CERN SPS collider, together with other new data, including that from proton-antiproton runs at the CERN Intersecting Storage Rings

  7. Asymmetric collider

    International Nuclear Information System (INIS)

    Bharadwaj, V.; Colestock, P.; Goderre, G.; Johnson, D.; Martin, P.; Holt, J.; Kaplan, D.

    1993-01-01

    The study of CP violation in beauty decay is one of the key challenges facing high energy physics. Much work has not yielded a definitive answer how this study might best be performed. However, one clear conclusion is that new accelerator facilities are needed. Proposals include experiments at asymmetric electron-positron colliders and in fixed-target and collider modes at LHC and SSC. Fixed-target and collider experiments at existing accelerators, while they might succeed in a first observation of the effect, will not be adequate to study it thoroughly. Giomataris has emphasized the potential of a new approach to the study of beauty CP violation: the asymmetric proton collider. Such a collider might be realized by the construction of a small storage ring intersecting an existing or soon-to-exist large synchrotron, or by arranging collisions between a large synchrotron and its injector. An experiment at such a collider can combine the advantages of fixed-target-like spectrometer geometry, facilitating triggering, particle identification and the instrumentation of a large acceptance, while the increased √s can provide a factor > 100 increase in beauty-production cross section compared to Tevatron or HERA fixed-target. Beams crossing at a non-zero angle can provide a small interaction region, permitting a first-level decay-vertex trigger to be implemented. To achieve large √s with a large Lorentz boost and high luminosity, the most favorable venue is the high-energy booster (HEB) at the SSC Laboratory, though the CERN SPS and Fermilab Tevatron are also worth considering

  8. A summary of the quench behavior of B ampersand W 1 m collider quadrupole model magnets

    International Nuclear Information System (INIS)

    Rey, C.M.; Xu, M.F.; Hlasnicek, P.; Kelley, J.P.; Dixon, K.; Savignano, J.; Letterman, S.; Craig, P.; Maloney, J.; Boyes, D.

    1994-01-01

    In order to evaluate the quench performance of a B ampersand W-Siemens designed quadrupole magnet at the earliest possible stage, a model magnet program was developed at B ampersand W for the support of the Superconducting Super Collider. The authors report the quench performance, training behavior, and the ramp rate dependence for the QSH-801 through QSH-804 series of short (1.2 meter) quadrupole model magnets

  9. SSC [Superconducting Super Collider] magnet mechanical interconnections

    International Nuclear Information System (INIS)

    Bossert, R.C.; Niemann, R.C.; Carson, J.A.; Ramstein, W.L.; Reynolds, M.P.; Engler, N.H.

    1989-03-01

    Installation of superconducting accelerator dipole and quadrupole magnets and spool pieces in the SSC tunnel requires the interconnection of the cryostats. The connections are both of an electrical and mechanical nature. The details of the mechanical connections are presented. The connections include piping, thermal shields and insulation. There are seven piping systems to be connected. These systems must carry cryogenic fluids at various pressures or maintain vacuum and must be consistently leak tight. The interconnection region must be able to expand and contract as magnets change in length while cooling and warming. The heat leak characteristics of the interconnection region must be comparable to that of the body of the magnet. Rapid assembly and disassembly is required. The magnet cryostat development program is discussed. Results of quality control testing are reported. Results of making full scale interconnections under magnet test situations are reviewed. 11 figs., 4 tabs

  10. Environmental impacts of the Super Collider

    International Nuclear Information System (INIS)

    Baillieul, T.A.; Hasselkus, W.

    1991-01-01

    The National Environmental Policy Act of 1969, affectionately referred to as NEPA, is a simple piece of legislation with far-reaching implications. (a) It sets a requirement for Federal government decision makers to consider the environmental consequences of their actions before deciding on a course of action. (b) A decision maker is essentially anyone who causes something to happen; and the action can be just about anything. (c) NEPA comes into play at the point in time where a proposed action is matched to a physical location. (d) NEPA implementation is recorded in many ways. The DOE maintains a long list of categorical exclusions for actions which practice has shown to be inconsequential - such as processing records, or maintaining physical plants. However, in selecting a categorical exclusion for an action, the decision maker/project manager must at least think about the activity to be performed and its possible environmental consequences. (e) A large project like the SSC, involving an undeveloped site, automatically qualifies for the highest level of environmental analysis under NEPA - the Environmental Impact Statement (or EIS)

  11. Optics Design and Performance of an Ultra-Low Emittance Damping Ring for the Compact Linear Collider

    CERN Document Server

    Korostelev, M S

    2006-01-01

    A high-energy (0.5-3.0 TeV centre of mass) electron-positron Compact Linear Collider (CLIC) is being studied at CERN as a new physics facility. The design study has been optimized for 3 TeV centre-of-mass energy. Intense bunches injected into the main linac must have unprecedentedly small emittances to achieve the design luminosity 1035cm-2s-1 required for the physics experiments. The positron and electron bunch trains will be provided by the CLIC injection complex. This thesis describes an optics design and performance of a positron damping ring developed for producing such ultra-low emittance beam. The linear optics of the CLIC damping ring is optimized by taking into account the combined action of radiation damping, quantum excitation and intrabeam scattering. The required beam emittance is obtained by using a TME (Theoretical Minimum Emittance) lattice with compact arcs and short period wiggler magnets located in dispersionfree regions. The damping ring beam energy is chosen as 2.42 GeV. The lattice featu...

  12. COLLIDE Pro Helvetia Award

    CERN Multimedia

    2016-01-01

    The COLLIDE Pro Helvetia Award is run in partnership with Pro Helvetia, giving the opportunity to Swiss artists to do research at CERN for three months.   From left to right: Laura Perrenoud, Marc Dubois and Simon de Diesbach. The photo shows their VR Project, +2199. Fragment.In are the winning artists of COLLIDE Pro Helvetia. They came to CERN for two months in 2015, and will now continue their last month in the laboratory. Fragment.In is a Swiss based interaction design studio. They create innovative projects, interactive installations, video and game design. Read more about COLLIDE here.

  13. The optical design of the spin manipulation system for the SLAC Linear Collider

    International Nuclear Information System (INIS)

    Fieguth, T.H.

    1989-03-01

    The optical design of the beam transport lines between the SLAC Linac and the electron damping ring and the design of part of the Linac lattice itself will be modified to accommodate three superconducting solenoids for the purpose of manipulating the polarization of the electron beam. In order to allow arbitrary orientation of the polarization vector, this design will be capable of compensating the fields of two independent solenoids for arbitrary strengths ranging to 7.0 T-m. The method of dealing with the coupling of the betatron functions and the method of handling both the electron and positron beams in the common region are discussed. 8 refs., 5 figs

  14. Constant-gap spectrometer design for the electron/ion collider ELISe

    International Nuclear Information System (INIS)

    Adachi, T.; Harakeh, M.N.; Kalantar-Nayestanaki, N.; Wörtche, H.J.; Berg, G.P.A.; Simon, H.; Koop, I.A.; Couder, M.; Fujiwara, M.

    2011-01-01

    For the study of electron-scattering off radioactive nuclei, the ELISe spectrometer will be constructed as a part of the Facility of Antiprotons and Ion Research (FAIR) in Darmstadt. A conceptional design of a spectrometer with a “clam-shell” gap was presented before. Here, we will present an improved design with a pre-deflector with a constant gap. Such a pre-deflector is not only simpler to construct but also provides larger angle acceptances in the forward-angle range compared to those with the “clam-shell” design.

  15. Technical report on the design, construction, commissioning and operation of the super-FRS of FAIR

    International Nuclear Information System (INIS)

    Geissel, H.; Winkler, M.; Weick, H.

    2005-04-01

    In this report the construction of the super-FRS is described. Especially described are the ion-optical lay-out, the production targets, the magnets, the beam dumps, the degrader systems and the ion catcher, detectors and data-acquisition systems, as well as the safety aspects. (HSI)

  16. Future colliders

    International Nuclear Information System (INIS)

    Palmer, R.B.; Gallardo, J.C.

    1996-10-01

    The high energy physics advantages, disadvantages and luminosity requirements of hadron (pp, pp), of lepton (e + e - , μ + μ - ) and photon-photon colliders are considered. Technical arguments for increased energy in each type of machine are presented. Their relative size, and the implications of size on cost are discussed

  17. Collider Physics

    Indian Academy of Sciences (India)

    This is summary of the activities of the working group on collider physics in the IXth Workshop on High Energy Physics Phenomenology (WHEPP-9) held at the Institute of Physics, Bhubaneswar, India in January 2006. Some of the work subsequently done on these problems by the subgroups formed during the workshop is ...

  18. Uso de la simulación con SuperPro Designer en las prácticas de laboratorio de tratamiento de agua y residuales Using SuperPro Designer simulation in water and waste water treatment laboratory practices

    Directory of Open Access Journals (Sweden)

    Sarah Isabel Barreto Torrella

    2017-01-01

    Full Text Available This article aims to describe results of introducing simulation practice, using Super Pro Designer program, in laboratory practices of Water and Waste Water Treatment in Chemical Engineering career of the “Ignacio Agramonte Loynaz” University and designed teaching strategy for that purpose. The subject was studied to set its system of contents, frontier and environment, the relation to other subjects and the system, subsystem and learning dynamics as a whole. A system of laboratory practices and a teaching strategy to use the simulator SuperPro Designer were design. Learning and skills development were assessed through self-preparation control, performance in doing tasks, findings registered in the corresponding reports and application in other homework tasks. The set of activities designed favored students’ independent work of students by presenting problematic situations in a nice graphical environment and under the teacher leadership continue varying operating conditions to evaluate results. The strategy fostered the horizontal and vertical connection of subjects of and the fulfillment of language, economy and ICT curricular strategies. Keywords: , , , .

  19. International Linear Collider Reference Design Report Volume 2: Physics at the ILC

    Energy Technology Data Exchange (ETDEWEB)

    Aarons, Gerald; Abe, Toshinori; Abernathy, Jason; Ablikim, Medina; Abramowicz, Halina; Adey, David; Adloff, Catherine; Adolphsen, Chris; Afanaciev, Konstantin; Agapov, Ilya; Ahn, Jung-Keun; Aihara, Hiroaki; Akemoto, Mitsuo; del Carmen Alabau, Maria; Albert, Justin; Albrecht, Hartwig; Albrecht, Michael; Alesini, David; Alexander, Gideon; Alexander, Jim; Allison, Wade; /SLAC /Tokyo U. /Victoria U. /Beijing, Inst. High Energy Phys. /Tel Aviv U. /Birmingham U. /Annecy, LAPP /Minsk, High Energy Phys. Ctr. /DESY /Royal Holloway, U. of London /CERN /Pusan Natl. U. /KEK, Tsukuba /Orsay, LAL /Notre Dame U. /Frascati /Cornell U., Phys. Dept. /Oxford U. /Hefei, CUST /Bangalore, Indian Inst. Sci. /Fermilab

    2011-11-14

    The triumph of 20th century particle physics was the development of the Standard Model and the confirmation of many of its aspects. Experiments determined the particle constituents of ordinary matter, and identified four forces that hold matter together and transform it from one form to another. Particle interactions were found to obey precise laws of relativity and quantum theory. Remarkable features of quantum physics were observed, including the real effects of 'virtual' particles on the visible world. Building on this success, particle physicists are now able to address questions that are even more fundamental, and explore some of the deepest mysteries in science. The scope of these questions is illustrated by this summary from the report Quantum Universe: (1) Are there undiscovered principles of nature; (2) How can we solve the mystery of dark energy; (3) Are there extra dimensions of space; (4) Do all the forces become one; (5) Why are there so many particles; (6) What is dark matter? How can we make it in the laboratory; (7) What are neutrinos telling us; (8) How did the universe begin; and (9) What happened to the antimatter? A worldwide program of particle physics investigations, using multiple approaches, is already underway to explore this compelling scientific landscape. As emphasized in many scientific studies, the International Linear Collider is expected to play a central role in what is likely to be an era of revolutionary advances. Discoveries from the ILC could have breakthrough impact on many of these fundamental questions. Many of the scientific opportunities for the ILC involve the Higgs particle and related new phenomena at Terascale energies. The Standard Model boldly hypothesizes a new form of Terascale energy, called the Higgs field, that permeates the entire universe. Elementary particles acquire mass by interacting with this field. The Higgs field also breaks a fundamental electroweak force into two forces, the electromagnetic

  20. International Linear Collider Reference Design Report. Volume 2: Physics at the ILC

    International Nuclear Information System (INIS)

    Aarons, Gerald; Abe, Toshinori; Abernathy, Jason; Ablikim, Medina; Abramowicz, Halina; Adey, David; Adloff, Catherine; Adolphsen, Chris; Afanaciev, Konstantin; Agapov, Ilya

    2011-01-01

    The triumph of 20th century particle physics was the development of the Standard Model and the confirmation of many of its aspects. Experiments determined the particle constituents of ordinary matter, and identified four forces that hold matter together and transform it from one form to another. Particle interactions were found to obey precise laws of relativity and quantum theory. Remarkable features of quantum physics were observed, including the real effects of 'virtual' particles on the visible world. Building on this success, particle physicists are now able to address questions that are even more fundamental, and explore some of the deepest mysteries in science. The scope of these questions is illustrated by this summary from the report Quantum Universe: (1) Are there undiscovered principles of nature; (2) How can we solve the mystery of dark energy; (3) Are there extra dimensions of space; (4) Do all the forces become one; (5) Why are there so many particles; (6) What is dark matter? How can we make it in the laboratory; (7) What are neutrinos telling us; (8) How did the universe begin; and (9) What happened to the antimatter? A worldwide program of particle physics investigations, using multiple approaches, is already underway to explore this compelling scientific landscape. As emphasized in many scientific studies, the International Linear Collider is expected to play a central role in what is likely to be an era of revolutionary advances. Discoveries from the ILC could have breakthrough impact on many of these fundamental questions. Many of the scientific opportunities for the ILC involve the Higgs particle and related new phenomena at Terascale energies. The Standard Model boldly hypothesizes a new form of Terascale energy, called the Higgs field, that permeates the entire universe. Elementary particles acquire mass by interacting with this field. The Higgs field also breaks a fundamental electroweak force into two forces, the electromagnetic and weak

  1. A bottom collider vertex detector design, Monte-Carlo simulation and analysis package

    International Nuclear Information System (INIS)

    Lebrun, P.

    1990-01-01

    A detailed simulation of the BCD vertex detector is underway. Specifications and global design issues are briefly reviewed. The BCD design based on double sided strip detector is described in more detail. The GEANT3-based Monte-Carlo program and the analysis package used to estimate detector performance are discussed in detail. The current status of the expected resolution and signal to noise ratio for the ''golden'' CP violating mode B d → π + π - is presented. These calculations have been done at FNAL energy (√s = 2.0 TeV). Emphasis is placed on design issues, analysis techniques and related software rather than physics potentials. 20 refs., 46 figs

  2. Overview of the data acquisition electronics system design for the SLAC Linear Collider Detector (SLD)

    International Nuclear Information System (INIS)

    Larsen, R.S.

    1985-09-01

    The SLD Detector will contain five major electronics subsystems: Vertex, Drift, Liquid Argon Calorimeter, Cerenkov Ring Imaging, and Warm Iron Calorimeter. To implement the approximately 170,000 channels of electronics, extensive miniaturization and heavy use of multiplexing techniques are required. Design criteria for each subsystem, overall system architecture, and the R and D program are described

  3. Hadron collider luminosity limitations

    CERN Document Server

    Evans, Lyndon R

    1992-01-01

    The three colliders operated to date have taught us a great deal about the behaviour of both bunched and debunched beams in storage rings. The main luminosity limitations are now well enough understood that most of them can be stronglu attenuated or eliminated by approriate design precautions. Experience with the beam-beam interaction in both the SPS and the Tevatron allow us to predict the performance of the new generation of colliders with some degree of confidence. One of the main challenges that the accelerator physicist faces is the problem of the dynamic aperture limitations due to the lower field quality expected, imposed by economic and other constraints.

  4. LINEAR COLLIDERS: 1992 workshop

    International Nuclear Information System (INIS)

    Settles, Ron; Coignet, Guy

    1992-01-01

    As work on designs for future electron-positron linear colliders pushes ahead at major Laboratories throughout the world in a major international collaboration framework, the LC92 workshop held in Garmisch Partenkirchen this summer, attended by 200 machine and particle physicists, provided a timely focus

  5. Design study of beam dynamics issues for 1 TeV next linear collider based upon the relativistic-klystron two-beam accelerator

    International Nuclear Information System (INIS)

    Li, H.; Goffeney, N.; Henestroza, E.; Sessler, A.; Yu, S.; Houck, T.; Westenskow, G.

    1994-11-01

    A design study has recently been conducted for exploring the feasibility of a relativistic-klystron two-beam accelerator (RK-TBA) system as a rf power source for a 1 TeV linear collider. The author present, in this paper, the beam dynamics part of this study. They have achieved in their design study acceptable transverse and longitudinal beam stability properties for the resulting high efficiency and low cost RK-TBA

  6. Colliding muons

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Is a muon-muon collider really practical? That is the question being asked by Bob Palmer. Well known in particle physics, Palmer, with Nick Samios and Ralph Shutt, recently won the American Physical Society's Panofsky Prize for their 1964 discovery of the omega minus. As well as contributing to other major experiments, both at CERN and in the US, he has contributed ideas to stochastic cooling and novel acceleration schemes

  7. Some issues involved in designing a 1 TeV (c.m.) e+- linear collider using conventional technology

    International Nuclear Information System (INIS)

    Loew, G.A.

    1985-01-01

    In the series of reviews devoted to the future of e +- linear colliders in these proceedings, this article focuses on the design of a machine with a center of mass energy of 1 TeV which uses conventional technology. By conventional technology here is meant that the process of acceleration is achieved as is usual in common electron linear accelerators, namely that the electron and positron bunches receive their energy from RF fields stored in copper structures at room temperatures. The RF power is generated by a separate self-contained device such as a klystron or other microwave tube. This process contrasts with more futuristic schemes described in the other articles which use wake fields, plasmas and/or lasers. The 1 TeV c.m. energy (ten times that of the SLC) was chosen because it falls into an intermediate range where, as will be seen, the conventional techniques can conceivably still be used although they must be stretched to their capacity, but above which different regimes are entered and new approaches are clearly required

  8. SuperB Progress Report: Detector

    International Nuclear Information System (INIS)

    Grauges, E.; Donvito, G.; Spinoso, V.; Manghisoni, M.; Re, V.; Traversi, G.; Eigen, G.; Fehlker, D.; Helleve, L.; Cheng, C.; Chivukula, A.; Doll, D.; Echenard, B.; Hitlin, D.; Ongmongkolkul, P.; Porter, F.; Rakitin, A.; Thomas, M.; Zhu, R.; Tatishvili, G.; Andreassen, R.; Fabby, C.; Meadows, B.; Simpson, A.; Sokoloff, M.; Tomko, K.; Fella, A.; Andreotti, M.; Baldini, W.; Calabrese, R.; Carassiti, V.; Cibinetto, G.; Cotta Ramusino, A.; Gianoli, A.; Luppi, E.; Munerato, M.; Santoro, V.; Tomassetti, L.; Stoker, D.; Bezshyyko, O.; Dolinska, G.; Arnaud, N.; Beigbeder, C.; Bogard, F.; Breton, D.; Burmistrov, L.; Charlet, D.; Maalmi, J.; Perez Perez, L.; Puill, V.; Stocchi, A.; Tocut, V.; Wallon, S.; Wormser, G.; Brown, D.

    2012-01-01

    This report describes the present status of the detector design for SuperB. It is one of four separate progress reports that, taken collectively, describe progress made on the SuperB Project since the publication of the SuperB Conceptual Design Report in 2007 and the Proceedings of SuperB Workshop VI in Valencia in 2008.

  9. SuperB Progress Report: Detector

    Energy Technology Data Exchange (ETDEWEB)

    Grauges, E.; /Barcelona U., ECM; Donvito, G.; Spinoso, V.; /INFN, Bari /Bari U.; Manghisoni, M.; Re, V.; Traversi, G.; /INFN, Pavia /Bergamo U., Ingengneria Dept.; Eigen, G.; Fehlker, D.; Helleve, L.; /Bergen U.; Carbone, A.; Di Sipio, R.; Gabrielli, A.; Galli, D.; Giorgi, F.; Marconi, U.; Perazzini, S.; Sbarra, C.; Vagnoni, V.; Valentinetti, S.; Villa, M.; Zoccoli, A.; /INFN, Bologna /Bologna U. /Caltech /Carleton U. /Cincinnati U. /INFN, CNAF /INFN, Ferrara /Ferrara U. /UC, Irvine /Taras Shevchenko U. /Orsay, LAL /LBL, Berkeley /UC, Berkeley /Frascati /INFN, Legnaro /Orsay, IPN /Maryland U. /McGill U. /INFN, Milan /Milan U. /INFN, Naples /Naples U. /Novosibirsk, IYF /INFN, Padua /Padua U. /INFN, Pavia /Pavia U. /INFN, Perugia /Perugia U. /INFN, Perugia /Caltech /INFN, Pisa /Pisa U. /Pisa, Scuola Normale Superiore /PNL, Richland /Queen Mary, U. of London /Rutherford /INFN, Rome /Rome U. /INFN, Rome2 /Rome U.,Tor Vergata /INFN, Rome3 /Rome III U. /SLAC /Tel Aviv U. /INFN, Turin /Turin U. /INFN, Padua /Trento U. /INFN, Trieste /Trieste U. /TRIUMF /British Columbia U. /Montreal U. /Victoria U.

    2012-02-14

    This report describes the present status of the detector design for SuperB. It is one of four separate progress reports that, taken collectively, describe progress made on the SuperB Project since the publication of the SuperB Conceptual Design Report in 2007 and the Proceedings of SuperB Workshop VI in Valencia in 2008.

  10. SuperB Progress Reports Accelerator

    CERN Document Server

    Biagini, Maria Enrica; Boscolo, M; Buonomo, B; Demma, T; Drago, A; Esposito, M; Guiducci, S; Mazzitelli, G; Pellegrino, L; Preger, M A; Raimondi, P; Ricci, R; Rotundo, U; Sanelli, C; Serio, M; Stella, A; Tomassini, S; Zobov, M; Bertsche, K; Brachman, A; Cai, Y; Chao, A; Chesnut, R; Donald, M.H; Field, C; Fisher, A; Kharakh, D; Krasnykh, A; Moffeit, K; Nosochkov, Y; Pivi, M; Seeman, J; Sullivan, M.K; Weathersby, S; Weidemann, A; Weisend, J; Wienands, U; Wittmer, W; Woods, M; Yocky, G; Bogomiagkov, A; Koop, I; Levichev, E; Nikitin, S; Okunev, I; Piminov, P; Sinyatkin, S; Shatilov, D; Vobly, P; Bosi, F; Liuzzo, S; Paoloni, E; Bonis, J; Chehab, R; Le Meur, G; Lepercq, P; Letellier-Cohen, F; Mercier, B; Poirier, F; Prevost, C; Rimbault, C; Touze, F; Variola, A; Bolzon, B; Brunetti, L; Jeremie, A; Baylac, M; Bourrion, O; De Conto, J M; Gomez, Y; Meot, F; Monseu, N; Tourres, D; Vescovi, C; Chanci, A; Napoly, O; Barber, D P; Bettoni, S; Quatraro, D

    2010-01-01

    This report details the present status of the Accelerator design for the SuperB Project. It is one of four separate progress reports that, taken collectively, describe progress made on the SuperB Project since the publication of the SuperB Conceptual Design Report in 2007 and the Proceedings of SuperB Workshop VI in Valencia in 2008.

  11. Handbook of Super 8 Production.

    Science.gov (United States)

    Telzer, Ronnie, Ed.

    This handbook is designed for anyone interested in producing super 8 films at any level of complexity and cost. Separate chapters present detailed discussions of the following topics: super 8 production systems and super 8 shooting and editing systems; budgeting; cinematography and sound recording; preparing to edit; editing; mixing sound tracks;…

  12. Analysis and Design of a Bidirectional Isolated DC-DC Converter for Fuel Cell and Super-Capacitor Hybrid System

    DEFF Research Database (Denmark)

    Zhang, Zhe; Ouyang, Ziwei; Thomsen, Ole Cornelius

    2012-01-01

    Electrical power system in future uninterruptible power supply (UPS) or electrical vehicle (EV) may employ hybrid energy sources, such as fuel cells and super-capacitors. It will be necessary to efficiently draw the energy from these two sources as well as recharge the energy storage elements...... by the DC bus. In this paper, a bidirectional isolated DC-DC converter controlled by phase-shift and duty cycle for the fuel cell hybrid energy system is analyzed and designed. The proposed topology minimizes the number of switches and their associated gate driver components by using two high frequency...

  13. High energy accelerator and colliding beam user group

    International Nuclear Information System (INIS)

    1990-09-01

    This report discusses the following topics: OPAL experiment at LEP; Dφ experiment at Fermilab; deep inelastic muon interactions at TEV II; CYGNUS experiment; final results from ν e -e elastic scattering; physics with CLEO detector at CESR; results from JADE at PETRA; rare kaon-decay experiment at BNL; search for top quark; and super conducting super collider activities

  14. Compact X-ray source at STF (Super Conducting Accelerator Test Facility)

    International Nuclear Information System (INIS)

    Urakawa, J

    2012-01-01

    KEK-STF is a super conducting linear accelerator test facility for developing accelerator technologies for the ILC (International Linear Collider). We are supported in developing advanced accelerator technologies using STF by Japanese Ministry (MEXT) for Compact high brightness X-ray source development. Since we are required to demonstrate the generation of high brightness X-ray based on inverse Compton scattering using super conducting linear accelerator and laser storage cavity technologies by October of next year (2012), the design has been fixed and the installation of accelerator components is under way. The necessary technology developments and the planned experiment are explained.

  15. Design report for an indirectly cooled 3-m diameter superconducting solenoid for the Fermilab Collider Detector Facility

    International Nuclear Information System (INIS)

    Fast, R.; Grimson, J.; Kephart, R.

    1982-01-01

    The Fermilab Collider Detector Facility (CDF) is a large detector system designed to study anti pp collisions at very high center of mass energies. The central detector for the CDF shown employs a large axial magnetic field volume instrumented with a central tracking chamber composed of multiple layers of cylindrical drift chambers and a pair of intermediate tracking chambers. The purpose of this system is to determine the trajectories, sign of electric charge, and momenta of charged particles produced with polar angles between 10 and 170 degrees. The magnetic field volume required for tracking is approximately 3.5 m long an 3 m in diameter. To provide the desired δp/sub T/p/sub T/ less than or equal to 1.5% at 50 GeV/c using drift chambers with approx. 200μ resolution the field inside this volume should be 1.5 T. The field should be as uniform as is practical to simplify both track finding and the reconstruction of particle trajectories with the drift chambers. Such a field can be produced by a cylindrical current sheet solenoid with a uniform current density of 1.2 x 10 6 A/m (1200 A/mm) surrounded by an iron return yoke. For practical coils and return yokes, both central electromagnetic and central hadronic calorimetry must be located outside the coil of the magnet. This geometry requires that the coil and the cryostat be thin both in physical thickness and in radiation and absorption lengths. This dual requirement of high linear current density and minimal coil thickness can only be satisfied using superconducting technology. In this report we describe the design for an indirectly cooled superconducting solenoid to meet the requirements of the Fermilab CDF. The components of the magnet system are discussed in the following chapters, with a summary of parameters listed in Appendix A

  16. PHENIX Conceptual Design Report. An experiment to be performed at the Brookhaven National Laboratory Relativistic Heavy Ion Collider

    Energy Technology Data Exchange (ETDEWEB)

    Nagamiya, Shoji; Aronson, Samuel H.; Young, Glenn R.; Paffrath, Leo

    1993-01-29

    The PHENIX Conceptual Design Report (CDR) describes the detector design of the PHENIX experiment for Day-1 operation at the Relativistic Heavy Ion Collider (RHIC). The CDR presents the physics capabilities, technical details, cost estimate, construction schedule, funding profile, management structure, and possible upgrade paths of the PHENIX experiment. The primary goals of the PHENIX experiment are to detect the quark-gluon plasma (QGP) and to measure its properties. Many of the potential signatures for the QGP are measured as a function of a well-defined common variable to see if any or all of these signatures show a simultaneous anomaly due to the formation of the QGP. In addition, basic quantum chromodynamics phenomena, collision dynamics, and thermodynamic features of the initial states of the collision are studied. To achieve these goals, the PHENIX experiment measures lepton pairs (dielectrons and dimuons) to study various properties of vector mesons, such as the mass, the width, and the degree of yield suppression due to the formation of the QGP. The effect of thermal radiation on the continuum is studied in different regions of rapidity and mass. The e{mu} coincidence is measured to study charm production, and aids in understanding the shape of the continuum dilepton spectrum. Photons are measured to study direct emission of single photons and to study {pi}{sup 0} and {eta} production. Charged hadrons are identified to study the spectrum shape, production of antinuclei, the {phi} meson (via K{sup +}K{sup {minus}} decay), jets, and two-boson correlations. The measurements are made down to small cross sections to allow the study of high p{sub T} spectra, and J/{psi} and {Upsilon} production. The PHENIX collaboration consists of over 300 scientists, engineers, and graduate students from 43 institutions in 10 countries. This large international collaboration is supported by US resources and significant foreign resources.

  17. The Super-B project accelerator status

    CERN Document Server

    Biagini, M.E.; Boni, R; Boscolo, M; Demma, T; Drago, A; Esposito, M; Guiducci, S; Marcellini, F; Mazzitelli, G; Preger, M; Raimondi, P; Sanelli, C; Serio, M; Stecchi, A; Stella, A; Tomassini, S; Zobov, M; Bertsche, K; Brachmann, A; Cai, Y; Chao, A; DeLira, A; Donald, M; Fisher, A; Kharakh, D; Krasnykh, A; Li, N; MacFarlane, D; Nosochkov, Y; Novokhatski, A; Pivi, M.; Seeman, J; Sullivan, M; Wienands, U; Weisend, J; Wittmer, W; Koop, I; Levichev, E; Nikitin, S; Piminov, P; Sinyatkin, S; Shatilov, D; Bolzon, B; Brunetti, L; Jeremie, A; Baylac, M; DeConto, J M; Gomez, Y; Meot, F; Monseu, N; Tourres, D; Bonis, J.; Chehab, R; Le Meur, G; Mercier, B; Poirier, F; Prevost, C; Rimbault, C; Touze, F; Variola, A; Chance, A; Napoly, O; Bosi, F; Liuzzo, S; Paoloni, E; Bettoni, S

    2010-01-01

    The SuperB project is an international effort aiming at building in Italy a very high luminosity e+e- (1036 cm-2 sec-1) asymmetric collider at the Y(4S) energy in the cm. The accelerator design has been extensively studied and changed during the past year. The present design, based on the new collision scheme, with large Piwinski angle and the use of “crab waist” sextupoles already successfully tested at the DANE -Factory at LNF Frascati, provides larger flexibility, better dynamic aperture and spin manipulation sections in the Low Energy Ring (LER) for longitudinal polarization of the electron beam at the Interaction Point (IP). The Interaction Region (IR) has been further optimized in terms of apertures and reduced backgrounds in the detector. The injector complex design has been also updated. A summary of the project status will be presented in this paper

  18. Design of super-efficient mixer based on induced charge electroosmotic

    Directory of Open Access Journals (Sweden)

    Zhang Kai

    2012-01-01

    Full Text Available The super-efficient sample mixing induced by the induced-charge electrokinetic flow around conducting/Janus cylinder was numerically studied in a confined |U-shaped microchannel with suddenly applied DC weak electric filed. It’s found that there are four large circulations around the conducting cylinder and two smaller circulations around the Janus cylinder. The results show that samples can still be well mixed with high flux due to the induced electroosmosis. It is demonstrated that the local flow circulations provide effective means to enhance the flow mixing between different solutions. The dependence of the degree of mixing enhancement on the electric field is also predicted.

  19. NETL Super Computer

    Data.gov (United States)

    Federal Laboratory Consortium — The NETL Super Computer was designed for performing engineering calculations that apply to fossil energy research. It is one of the world’s larger supercomputers,...

  20. Preliminary design of CERN Future Circular Collider tunnel: first evaluation of the radiation environment in critical areas for electronics

    Science.gov (United States)

    Infantino, Angelo; Alía, Rubén García; Besana, Maria Ilaria; Brugger, Markus; Cerutti, Francesco

    2017-09-01

    As part of its post-LHC high energy physics program, CERN is conducting a study for a new proton-proton collider, called Future Circular Collider (FCC-hh), running at center-of-mass energies of up to 100 TeV in a new 100 km tunnel. The study includes a 90-350 GeV lepton collider (FCC-ee) as well as a lepton-hadron option (FCC-he). In this work, FLUKA Monte Carlo simulation was extensively used to perform a first evaluation of the radiation environment in critical areas for electronics in the FCC-hh tunnel. The model of the tunnel was created based on the original civil engineering studies already performed and further integrated in the existing FLUKA models of the beam line. The radiation levels in critical areas, such as the racks for electronics and cables, power converters, service areas, local tunnel extensions was evaluated.

  1. Preliminary design of CERN Future Circular Collider tunnel: first evaluation of the radiation environment in critical areas for electronics

    Directory of Open Access Journals (Sweden)

    Infantino Angelo

    2017-01-01

    Full Text Available As part of its post-LHC high energy physics program, CERN is conducting a study for a new proton-proton collider, called Future Circular Collider (FCC-hh, running at center-of-mass energies of up to 100 TeV in a new 100 km tunnel. The study includes a 90-350 GeV lepton collider (FCC-ee as well as a lepton-hadron option (FCC-he. In this work, FLUKA Monte Carlo simulation was extensively used to perform a first evaluation of the radiation environment in critical areas for electronics in the FCC-hh tunnel. The model of the tunnel was created based on the original civil engineering studies already performed and further integrated in the existing FLUKA models of the beam line. The radiation levels in critical areas, such as the racks for electronics and cables, power converters, service areas, local tunnel extensions was evaluated.

  2. Design, simulation, fabrication, and preliminary tests of 3D CMS pixel detectors for the super-LHC

    Energy Technology Data Exchange (ETDEWEB)

    Koybasi, Ozhan; /Purdue U.; Bortoletto, Daniela; /Purdue U.; Hansen, Thor-Erik; /SINTEF, Oslo; Kok, Angela; /SINTEF, Oslo; Hansen, Trond Andreas; /SINTEF, Oslo; Lietaer, Nicolas; /SINTEF, Oslo; Jensen, Geir Uri; /SINTEF, Oslo; Summanwar, Anand; /SINTEF, Oslo; Bolla, Gino; /Purdue U.; Kwan, Simon Wing Lok; /Fermilab

    2010-01-01

    The Super-LHC upgrade puts strong demands on the radiation hardness of the innermost tracking detectors of the CMS, which cannot be fulfilled with any conventional planar detector design. The so-called 3D detector architectures, which feature columnar electrodes passing through the substrate thickness, are under investigation as a potential solution for the closest operation points to the beams, where the radiation fluence is estimated to reach 10{sup 16} n{sub eq}/cm{sup 2}. Two different 3D detector designs with CMS pixel readout electronics are being developed and evaluated for their advantages and drawbacks. The fabrication of full-3D active edge CMS pixel devices with p-type substrate has been successfully completed at SINTEF. In this paper, we study the expected post-irradiation behaviors of these devices with simulations and, after a brief description of their fabrication, we report the first leakage current measurement results as performed on wafer.

  3. The CLIC programme: Towards a staged $e^{+}e^{−}$ linear collider exploring the terascale CLIC conceptual design report

    CERN Document Server

    Lebrun, P.; Lucaci-Timoce, A.; Schulte, D.; Simon, F.; Stapnes, S.; Toge, N.; Weerts, H.; Wells, J.

    2012-01-01

    This report describes the exploration of fundamental questions in particle physics at the energy frontier with a future TeV-scale $e^+e^-$ linear collider based on the Compact Linear Collider (CLIC) two-beam acceleration technology. A high-luminosity high-energy $e^+e^-$ collider allows for the exploration of Standard Model physics, such as precise measurements of the Higgs, top and gauge sectors, as well as for a multitude of searches for New Physics, either through direct discovery or indirectly, via high-precision observables. Given the current state of knowledge, following the observation of a 125 GeV Higgs-like particle at the LHC, and pending further LHC results at 8 TeV and 14 TeV, a linear $e^+e^-$ collider built and operated in centre-of-mass energy stages from a few-hundred GeV up to a few TeV will be an ideal physics exploration tool, complementing the LHC. In this document, an overview of the physics potential of CLIC is given. Two example scenarios are presented for a CLIC accelerator built in th...

  4. Control sample design using a geodemographic discriminator: An application of Super Profiles

    Science.gov (United States)

    Brown, Peter J. B.; McCulloch, Peter G.; Williams, Evelyn M. I.; Ashurst, Darren C.

    The development and application of an innovative sampling framework for use in a British study of the early detection of gastric cancer are described. The Super Profiles geodemographic discriminator is used in the identification of geographically distinct control and contrast areas from which samples of cancer registry case records may be drawn for comparison with the records of patients participating in the gastric cancer intervention project. Preliminary results of the application of the framework are presented and confirm its effectiveness in satisfactorily reflecting known patterns of variation in cancer occurrence by age, gender and social class. The method works well for cancers with a known and clear social gradient, such as lung and breast cancer, moderately well for gastric cancer and somewhat less well for oesophageal cancer, where the social class gradient is less clear.

  5. A new design for the CERN-Fréjus neutrino Super Beam

    CERN Document Server

    Longhin, A

    2011-01-01

    We present an optimization of the hadron focusing system for a low-energy high-intensity conventional neutrino beam (Super-Beam) proposed on the basis of the HP-SPL at CERN with a beam power of 4 MW and an energy of 4.5 GeV. The far detector would be a 440 kton Water Cherenkov detector (MEMPHYS) located at a baseline of 130 km in the Fr\\'ejus site. The neutrino fluxes simulation relies on a new GEANT4 based simulation coupled with an optimization algorithm based on the maximization of the sensitivity limit on the $\\theta_{13}$ mixing angle. A new configuration adopting a multiple horn system with solid targets is proposed which improves the sensitivity to $\\theta_{13}$ and the CP violating phase $\\delta_{CP}$.

  6. Colliding nuclei

    International Nuclear Information System (INIS)

    Balian, Roger; Remaud, Bernard; Suraud, E.; Durand, Dominique; Tamain, Bernard; Gobbi, A.; Cugnon, J.; Drapier, Olivier; Govaerts, Jan; Prieels, Rene

    1995-09-01

    This 14. international school Joliot-Curie of nuclear physic deals with nuclei in collision at high energy. Nine lectures are included in the proceedings of this summer school: 1 - From statistical mechanics outside equilibrium to transport equations (Balian, R.); 2 - Modeling of heavy ions reactions (Remaud, B.); 3 - Kinetic equations in heavy ions physics (Suraud, E.); 4 - Colliding nuclei near the Fermi energy (Durand, D.; Tamain, B.); 5 - From the Fermi to the relativistic energy domain: which observable? For which physics? (Gobbi, A.); 6 - Collisions at relativistic and ultra relativistic energies, Theoretical aspects (Cugnon, J.); 7 - Quark-gluon plasma: experimental signatures (Drapier, O.); 8 - Electroweak interaction: a window on physics beyond the standard model (Govaerts, J.); 9 - Symmetry tests in β nuclear process: polarization techniques (Prieels, R.)

  7. Physics at Future Hadron Colliders

    CERN Document Server

    Baur, U.; Parsons, J.; Albrow, M.; Denisov, D.; Han, T.; Kotwal, A.; Olness, F.; Qian, J.; Belyaev, S.; Bosman, M.; Brooijmans, G.; Gaines, I.; Godfrey, S.; Hansen, J.B.; Hauser, J.; Heintz, U.; Hinchliffe, I.; Kao, C.; Landsberg, G.; Maltoni, F.; Oleari, C.; Pagliarone, C.; Paige, F.; Plehn, T.; Rainwater, D.; Reina, L.; Rizzo, T.; Su, S.; Tait, T.; Wackeroth, D.; Vataga, E.; Zeppenfeld, D.

    2001-01-01

    We discuss the physics opportunities and detector challenges at future hadron colliders. As guidelines for energies and luminosities we use the proposed luminosity and/or energy upgrade of the LHC (SLHC), and the Fermilab design of a Very Large Hadron Collider (VLHC). We illustrate the physics capabilities of future hadron colliders for a variety of new physics scenarios (supersymmetry, strong electroweak symmetry breaking, new gauge bosons, compositeness and extra dimensions). We also investigate the prospects of doing precision Higgs physics studies at such a machine, and list selected Standard Model physics rates.

  8. Proposal to negotiate extensions to four collaboration agreements for the design of key components of the beam-delivery and linac systems for the Compact Linear Collider (CLIC) for a duration of two years

    CERN Document Server

    2017-01-01

    Proposal to negotiate extensions to four collaboration agreements for the design of key components of the beam-delivery and linac systems for the Compact Linear Collider (CLIC) for a duration of two years

  9. The large hadron collider project

    International Nuclear Information System (INIS)

    Maiani, L.

    1999-01-01

    Knowledge of the fundamental constituents of matter has greatly advanced, over the last decades. The standard theory of fundamental interactions presents us with a theoretically sound picture, which describes with great accuracy known physical phenomena on most diverse energy and distance scales. These range from 10 -16 cm, inside the nucleons, up to large-scale astrophysical bodies, including the early Universe at some nanosecond after the Big-Bang and temperatures of the order of 10 2 GeV. The picture is not yet completed, however, as we lack the observation of the Higgs boson, predicted in the 100-500 GeV range - a particle associated with the generation of particle masses and with the quantum fluctuations in the primordial Universe. In addition, the standard theory is expected to undergo a change of regime in the 10 3 GeV region, with the appearance of new families of particles, most likely associated with the onset of a new symmetry (supersymmetry). In 1994, the CERN Council approved the construction of the large hadron collider (LHC), a proton-proton collider of a new design to be installed in the existing LEP tunnel, with an energy of 7 TeV per beam and extremely large luminosity, of ∝10 34 cm -2 s -1 . Construction was started in 1996, with the additional support of the US, Japan, Russia, Canada and other European countries, making the LHC a really global project, the first one in particle physics. After a short review of the physics scenario, I report on the present status of the LHC construction. Special attention is given to technological problems such as the realization of the super-conducting dipoles, following an extensive R and D program with European industries. The construction of the large LHC detectors has required a vast R and D program by a large international community, to overcome the problems posed by the complexity of the collisions and by the large luminosity of the machine. (orig.)

  10. Preliminary design report of a relativistic-Klystron two-beam-accelerator based power source for a 1 TeV center-of-mass next linear collider

    International Nuclear Information System (INIS)

    Yu, S.; Goffeney, N.; Henestroza, E.

    1995-01-01

    A preliminary point design for an 11.4 GHz power source for a 1 TeV center-of-mass Next Linear Collider (NLC) based on the Relativistic-Klystron Two-Beam-Accelerator (RK-TBA) concept is presented. The present report is the result of a joint LBL-LLNL systems study. consisting of three major thrust areas: physics, engineering, and costing. The new RK-TBA point design, together with our findings in each of these areas, are reported

  11. Design Studies and Optimization of High-Field Nb$_3$Sn Dipole Magnets for a Future Very High Energy PP Collider

    Energy Technology Data Exchange (ETDEWEB)

    Kashikhin, V. V. [Fermilab; Novitski, I. [Fermilab; Zlobin, A. V. [Fermilab

    2017-05-01

    High filed accelerator magnets with operating fields of 15-16 T based on the $Nb_3Sn$ superconductor are being considered for the LHC energy upgrade or a future Very High Energy pp Collider. Magnet design studies are being conducted in the U.S., Europe and Asia to explore the limits of the $Nb_3Sn$ accelerator magnet technology while optimizing the magnet design and performance parame-ters, and reducing magnet cost. The first results of these studies performed at Fermilab in the framework of the US-MDP are reported in this paper.

  12. Emittance control in linear colliders

    International Nuclear Information System (INIS)

    Ruth, R.D.

    1991-01-01

    Before completing a realistic design of a next-generation linear collider, the authors must first learn the lessons taught by the first generation, the SLC. Given that, they must make designs fault tolerant by including correction and compensation in the basic design. They must also try to eliminate these faults by improved alignment and stability of components. When these two efforts cross, they have a realistic design. The techniques of generation and control of emittance reviewed here provide a foundation for a design which can obtain the necessary luminosity in a next-generation linear collider

  13. Muon Collider Progress: Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Zisman, Michael S.

    2011-09-10

    A muon collider would be a powerful tool for exploring the energy-frontier with leptons, and would complement the studies now under way at the LHC. Such a device would offer several important benefits. Muons, like electrons, are point particles so the full center-of-mass energy is available for particle production. Moreover, on account of their higher mass, muons give rise to very little synchrotron radiation and produce very little beamstrahlung. The first feature permits the use of a circular collider that can make efficient use of the expensive rf system and whose footprint is compatible with an existing laboratory site. The second feature leads to a relatively narrow energy spread at the collision point. Designing an accelerator complex for a muon collider is a challenging task. Firstly, the muons are produced as a tertiary beam, so a high-power proton beam and a target that can withstand it are needed to provide the required luminosity of ~1 × 10{sup 34} cm{sup –2}s{sup –1}. Secondly, the beam is initially produced with a large 6D phase space, which necessitates a scheme for reducing the muon beam emittance (“cooling”). Finally, the muon has a short lifetime so all beam manipulations must be done very rapidly. The Muon Accelerator Program, led by Fermilab and including a number of U.S. national laboratories and universities, has undertaken design and R&D activities aimed toward the eventual construction of a muon collider. Design features of such a facility and the supporting R&D program are described.

  14. Design optimization of 600 A-13 kA current leads for the Large Hadron Collider project at CERN

    CERN Document Server

    Spiller, D M; Al-Mosawl, M K; Friend, C M; Thacker, P; Ballarino, A

    2001-01-01

    The requirements of the Large Hadron Collider project at CERN for high-temperature superconducting (HTS) current leads have been widely publicized. CERN require hybrid current leads of resistive and HTS materials with current ratings of 600 A, 6 kA and 13 kA. BICC General Superconductors, in collaboration with the University of Southampton, have developed and manufactured prototype current leads for the Large Hadron Collider project. The resistive section consists of a phosphorus de-oxidized copper conductor and heat exchanger and the HTS section is constructed from BICC General's (Pb, Bi)2223 tapes with a reduced thermal conductivity Ag alloy sheath. We present the results of the materials optimization studies for the resistive and the HTS sections. Some results of the acceptance tests at CERN are discussed. (9 refs).

  15. Muon muon collider: Feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-18

    A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10{sup 35} cm{sup {minus}2} s{sup {minus}1}. The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice--the authors believe--to allow them to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potential and to evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring which has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design.

  16. Muon muon collider: Feasibility study

    International Nuclear Information System (INIS)

    1996-01-01

    A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10 35 cm -2 s -1 . The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice--the authors believe--to allow them to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potential and to evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring which has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design

  17. The tristan super light facility

    International Nuclear Information System (INIS)

    1992-12-01

    The Photon Factory and its user group have achieved excellent scientific results since its commissioning in 1982, ranging from material science to medical application, by using the synchrotron radiation at the 2.5 GeV PF storage ring, and since 1986, further at the 6.5 GeV Tristan accumulation ring which provides brilliant photons in high energy region. Efforts are exerted currently at National Laboratory for High Energy Physics for the extensive research and development works to study the feasibility of the Tristan e + e - collider main ring to be utilized as an extremely intense and highly advanced light source, which is called Tristan super light facility. What kinds of the application are expected for such highly brilliant source and their scientific significance should be clarified. This design report is an outcome by the joint work of in-house staffs and outside users, and it would serve as an excellent guide for the future studies on a next generation synchrotron radiation light source. The conversion plan of Tristan, the basic design of insertion devices, coherent X-ray sources, beam lines, instrumentation and others are reported. (K.I.)

  18. The International Linear Collider

    Directory of Open Access Journals (Sweden)

    List Benno

    2014-04-01

    Full Text Available The International Linear Collider (ILC is a proposed e+e− linear collider with a centre-of-mass energy of 200–500 GeV, based on superconducting RF cavities. The ILC would be an ideal machine for precision studies of a light Higgs boson and the top quark, and would have a discovery potential for new particles that is complementary to that of LHC. The clean experimental conditions would allow the operation of detectors with extremely good performance; two such detectors, ILD and SiD, are currently being designed. Both make use of novel concepts for tracking and calorimetry. The Japanese High Energy Physics community has recently recommended to build the ILC in Japan.

  19. The International Linear Collider

    Science.gov (United States)

    List, Benno

    2014-04-01

    The International Linear Collider (ILC) is a proposed e+e- linear collider with a centre-of-mass energy of 200-500 GeV, based on superconducting RF cavities. The ILC would be an ideal machine for precision studies of a light Higgs boson and the top quark, and would have a discovery potential for new particles that is complementary to that of LHC. The clean experimental conditions would allow the operation of detectors with extremely good performance; two such detectors, ILD and SiD, are currently being designed. Both make use of novel concepts for tracking and calorimetry. The Japanese High Energy Physics community has recently recommended to build the ILC in Japan.

  20. Feedback systems for linear colliders

    CERN Document Server

    Hendrickson, L; Himel, Thomas M; Minty, Michiko G; Phinney, N; Raimondi, Pantaleo; Raubenheimer, T O; Shoaee, H; Tenenbaum, P G

    1999-01-01

    Feedback systems are essential for stable operation of a linear collider, providing a cost-effective method for relaxing tight tolerances. In the Stanford Linear Collider (SLC), feedback controls beam parameters such as trajectory, energy, and intensity throughout the accelerator. A novel dithering optimization system which adjusts final focus parameters to maximize luminosity contributed to achieving record performance in the 1997-98 run. Performance limitations of the steering feedback have been investigated, and improvements have been made. For the Next Linear Collider (NLC), extensive feedback systems are planned as an intregal part of the design. Feedback requiremetns for JLC (the Japanese Linear Collider) are essentially identical to NLC; some of the TESLA requirements are similar but there are significant differences. For NLC, algorithms which incorporate improvements upon the SLC implementation are being prototyped. Specialized systems for the damping rings, rf and interaction point will operate at hi...

  1. Mechanical and electromagnetic analysis of 50 millimeter designs for the SSC dipole

    International Nuclear Information System (INIS)

    Jayakumar, J.; Leung, K.; Nobrega, F.; Orrell, D.; Sanger, P.; Snitchler, G.; Spigo, G.; Turner, J.; Goodzeit, C.; Gupta, R.; Kahn, S.; Morgan, G.; Willen, E.; Kerby, J.; Strait, J.; Schermer, R.

    1990-09-01

    Several designs for the Superconducting Super Collider dipole magnet have been analyzed. This note discusses the mechanical and electromagnetic features of each design. Electromagnetic and Mechanical analyses were performed using hand, computer programs and finite element techniques to evaluate the design. 10 refs., 6 figs., 3 tabs

  2. SuperKEKB Vacuum System

    CERN Document Server

    Shibata, K

    2013-01-01

    SuperKEKB, which is an upgrade of the KEKB Bfactory (KEKB), is a next-generation high-luminosity electron-positron collider. Its design luminosity is 8.0× 10$^{35}$ cm$^{-2}s^{-1}$, which is about 40 times than the KEKB’s record. To achieve this challenging goal, bunches of both beams are squeezed extremely to the nanometer scale and the beam currents are doubled. To realize this, many upgrades must be performed including the replacement of beam pipes mainly in the positron ring (LER). The beam pipes in the LER arc section are being replaced with new aluminium-alloy pipes with antechambers to cope with the electron cloud issue and heating problem. Additionally, several types of countermeasures will be adopted in the LER to deal with the electron cloud issues. In the wiggler section, electrons will be attracted by the clearing electrode, which is mounted on the inner surface of the beam pipe. On the other hand, in the bending magnet, the effective secondary electron yield (SEY) will be structurally reduced ...

  3. SuperKEKB Vacuum System

    International Nuclear Information System (INIS)

    Shibata, K

    2013-01-01

    SuperKEKB, which is an upgrade of the KEKB Bfactory (KEKB), is a next-generation high-luminosity electron-positron collider. Its design luminosity is 8.0 × 10 35 cm −2 s −1 , which is about 40 times than the KEKB’s record. To achieve this challenging goal, bunches of both beams are squeezed extremely to the nanometer scale and the beam currents are doubled. To realize this, many upgrades must be performed including the replacement of beam pipes mainly in the positron ring (LER). The beam pipes in the LER arc section are being replaced with new aluminium-alloy pipes with antechambers to cope with the electron cloud issue and heating problem. Additionally, several types of countermeasures will be adopted in the LER to deal with the electron cloud issues. In the wiggler section, electrons will be attracted by the clearing electrode, which is mounted on the inner surface of the beam pipe. On the other hand, in the bending magnet, the effective secondary electron yield (SEY) will be structurally reduced by the groove surface with a TiN coating. In the drift space, the electron cloud will be mitigated by the TiN coating and a conventional solenoid field. (author)

  4. Conceptual & Engineering Design of Plug-in Cryostat Cylinder for Super-Conducting Central Solenoid of SST-1

    Science.gov (United States)

    Biswas, Prabal; Santra, Prosenjit; Vasava, Kirit; Jayswal, Snehal; Parekh, Tejas; Chauhan, Pradeep; Patel, Hitesh; Pradhan, Subrata

    2017-04-01

    SST-1, country’s first indigenously built steady state super-conducting tokamak is planned to be equipped with an Nb3Sn based superconducting central solenoid, which will replace the existing copper conductor TR1 coil for the purpose of Ohmic breakdown. This central solenoid (CS) of four layers with each layer having 144 turns with an OD of 573 mm, ID of 423 mm length of 2483 mm will be housed inside a high vacuum, CRYO compatible plug-in cryostat thin shell having formed from SS 304L plate duly rolled and welded to form cylinder along with necessary accessories like LN2 bubble panel, current lead chamber, coil and cylinder support structure etc. This paper will present the design drivers, material selection, advantages and constraints of the plug-in cryostat concept, sub-systems of plug-in cryostat, its conceptual and engineering design, CAD models, finite element analysis using ANSYS, safety issues and diagnostics, on-going works about fabrication, quality assurance/control and assembly/integration aspects with in the existing SST-1 machine bore.

  5. The International Linear Collider Progress Report 2015

    Energy Technology Data Exchange (ETDEWEB)

    Evans, L. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Yamamoto, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2015-07-15

    The International Committee for Future Accelerators (ICFA) set up the Global Design Effort (GDE) for the design of the International Linear Collider (ILC) in 2005. Drawing on the resources of over 300 national laboratories, universities and institutes worldwide, the GDE produced a Reference Design Report in 2007, followed by a more detailed Technical Design Report (TDR) in 2013. Following this report, the GDE was disbanded. A compact core team, the Linear Collider Collaboration (LCC), replaced it. This is still under the auspices of ICFA and is directly overseen by the Linear Collider Board, which reports to ICFA. The LCC is charged with continuing the design effort on a much-reduced scale until the Project is approved for construction. An additional mandate of the LCC was to bring together all linear collider work, including the CERN-based Compact Linear Collider (CLIC) under one structure in order to exploit synergies between the two studies.

  6. Particle physics experiments at high energy colliders

    International Nuclear Information System (INIS)

    Hauptman, John

    2011-01-01

    Written by one of the detector developers for the International Linear Collider, this is the first textbook for graduate students dedicated to the complexities and the simplicities of high energy collider detectors. It is intended as a specialized reference for a standard course in particle physics, and as a principal text for a special topics course focused on large collider experiments. Equally useful as a general guide for physicists designing big detectors. (orig.)

  7. 1987 DOE review: First collider run operation

    International Nuclear Information System (INIS)

    Childress, S.; Crawford, J.; Dugan, G.

    1987-05-01

    This review covers the operations of the first run of the 1.8 TeV superconducting super collider. The papers enclosed cover: PBAR source status, fixed target operation, Tevatron cryogenic reliability and capacity upgrade, Tevatron Energy upgrade progress and plans, status of the D0 low beta insertion, 1.8 K and 4.7 K refrigeration for low-β quadrupoles, progress and plans for the LINAC and booster, near term and long term and long term performance improvements

  8. Super jackstraws and super waterwheels

    International Nuclear Information System (INIS)

    Cho, Jin-Ho

    2007-01-01

    We construct various new BPS states of D-branes preserving 8 supersymmetries. These include super Jackstraws (a bunch of scattered D- or (p, q)-strings preserving supersymmetries), and super waterwheels (a number of D2-branes intersecting at generic angles on parallel lines while preserving supersymmetries). Super D-Jackstraws are scattered in various dimensions but are dynamical with all their intersections following a common null direction. Meanwhile, super (p, q)-Jackstraws form a planar static configuration. We show that the SO(2) subgroup of SL(2, R), the group of classical S-duality transformations in IIB theory, can be used to generate this latter configuration of variously charged (p, q)-strings intersecting at various angles. The waterwheel configuration of D2-branes preserves 8 supersymmetries as long as the 'critical' Born-Infeld electric fields are along the common direction

  9. Hadron-hadron colliders

    International Nuclear Information System (INIS)

    Month, M.; Weng, W.T.

    1983-01-01

    The objective is to investigate whether existing technology might be extrapolated to provide the conceptual framework for a major hadron-hadron collider facility for high energy physics experimentation for the remainder of this century. One contribution to this large effort is to formalize the methods and mathematical tools necessary. In this report, the main purpose is to introduce the student to basic design procedures. From these follow the fundamental characteristics of the facility: its performance capability, its size, and the nature and operating requirements on the accelerator components, and with this knowledge, we can determine the technology and resources needed to build the new facility

  10. The potential of pyrolysis technology in climate change mitigation – influence of process design and –parameters, simulated in SuperPro Designer Software

    DEFF Research Database (Denmark)

    Thomsen, Tobias; Hauggaard-Nielsen, Henrik; Bruun, Esben

    This report investigates whether or not it would be possible to produce carbon-negative energy from pyrolysis of wheat straw in a series of Danish agricultural scenarios. A combination of process simulation in SuperPro Designer software, correlations derived from literature studies and experimental...... on scenario settings. The final results of the study have been compared to another study with convincing results. Results concluded that the primary force of the pyrolysis technology is the recalcitrant char product and not the pyrolysis oil. Based on this, the study suggests that despite the trend...... in commercial pyrolysis technology that focuses on fast pyrolysis processes with maximized bio-oil production, the twin challenge of climate mitigation and sustainable energy production is most efficiently addressed with a combination of slow pyrolysis and complete biomass conversion through combustion...

  11. Super differential forms on super Riemann surfaces

    International Nuclear Information System (INIS)

    Konisi, Gaku; Takahasi, Wataru; Saito, Takesi.

    1994-01-01

    Line integral on the super Riemann surface is discussed. A 'super differential operator' which possesses both properties of differential and of differential operator is proposed. With this 'super differential operator' a new theory of differential form on the super Riemann surface is constructed. We call 'the new differentials on the super Riemann surface' 'the super differentials'. As the applications of our theory, the existency theorems of singular 'super differentials' such as 'super abelian differentials of the 3rd kind' and of a super projective connection are examined. (author)

  12. Design of a Super-Pixel-Based Quantum Secure Authentication Demonstrator

    NARCIS (Netherlands)

    Toebes, Chris; Tentrup, Tristan B.H.; Pinkse, Pepijn W.H.

    2017-01-01

    Quantum Secure Authentication (QSA) is a method recently developed to authenticate a multiple-scattering key [1]. Previous implementations only showed proof-of-principle setups. We present a design of a compact and robust demonstration device for Quantum Secure Authentication. The challenge and

  13. Factors Affecting the Design and Development of a Personal Learning Environment: Research on Super-Users

    Science.gov (United States)

    Fournier, Helene; Kop, Rita

    2011-01-01

    After speculation in literature about the nature of Personal Learning Environments, research in the design and development of PLEs is now in progress. This paper reports on the first phase of the authors' research on PLE, the identification process of what potential users would consider important components, applications, and tools in a PLE. The…

  14. Design of an hybrid source with fuel cell and super-capacitors; Conception d'une source hybride utilisant une pile a combustible et des supercondensateurs

    Energy Technology Data Exchange (ETDEWEB)

    Thounthong, Ph

    2005-12-15

    The design and testing of a purely super-capacitor energy storage device as auxiliary power source in electrical vehicle applications having a PEM fuel cell as main source are presented. The two control strategies are explained. The control algorithms are that fuel cell is simply operating in almost steady state conditions in order to lessen the mechanical stresses of fuel cell and to ensure a good synchronization between fuel flow and fuel cell current. Super-capacitors are functioning during absence of energy from fuel cell, transient energy delivery or transient energy recovery. The system utilizes two modules of SAFT super-capacitive storage device. This device is connected to a 42 V DC bus by a 2-quadrant dc/dc converter, and fuel cell is connected to the dc bus by a boost converter. The system structure is realized by analogical current loops and digital control (dSPACE) for voltage loops and estimation algorithms. Experimental results with a 500 W PEM fuel cell point out the slow dynamics naturally of fuel cell because of thermodynamic and mechanical operation, and also substantiate that the super-capacitors can improve dynamics and power conditioning for automotive electrical system. (author)

  15. Design of an hybrid source with fuel cell and super-capacitors; Conception d'une source hybride utilisant une pile a combustible et des supercondensateurs

    Energy Technology Data Exchange (ETDEWEB)

    Thounthong, Ph.

    2005-12-15

    The design and testing of a purely super-capacitor energy storage device as auxiliary power source in electrical vehicle applications having a PEM fuel cell as main source are presented. The two control strategies are explained. The control algorithms are that fuel cell is simply operating in almost steady state conditions in order to lessen the mechanical stresses of fuel cell and to ensure a good synchronization between fuel flow and fuel cell current. Super-capacitors are functioning during absence of energy from fuel cell, transient energy delivery or transient energy recovery. The system utilizes two modules of SAFT super-capacitive storage device. This device is connected to a 42 V DC bus by a 2-quadrant dc/dc converter, and fuel cell is connected to the dc bus by a boost converter. The system structure is realized by analogical current loops and digital control (dSPACE) for voltage loops and estimation algorithms. Experimental results with a 500 W PEM fuel cell point out the slow dynamics naturally of fuel cell because of thermodynamic and mechanical operation, and also substantiate that the super-capacitors can improve dynamics and power conditioning for automotive electrical system. (author)

  16. High energy accelerator and colliding beam user group

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    This report discusses the following topics: OPAL experiment at LEP; D{phi} experiment at Fermilab; deep inelastic muon interactions at TEV II; CYGNUS experiment; final results from {nu}{sub e}{sup {minus}e} elastic scattering; physics with CLEO detector at CESR; results from JADE at PETRA; rare kaon-decay experiment at BNL; search for top quark; and super conducting super collider activities.

  17. SLAC-Linac-Collider (SLC) Project

    International Nuclear Information System (INIS)

    Wiedemann, H.

    1981-02-01

    The proposed SLAC Linear Collider Project (SLC) and its features are described in this paper. In times of ever increasing costs for energy the electron storage ring principle is about to reach its practical limit. A new class of colliding beam beam facilities, the Linear Colliders, are getting more and more attractive and affordable at very high center-of-mass energies. The SLC is designed to be a poineer of this new class of colliding beam facilities and at the same time will serve as a valuable tool to explore the high energy physics at the level of 100 GeV in the center-of-mass system

  18. Physics at Future Colliders

    CERN Document Server

    Ellis, John R.

    1999-01-01

    After a brief review of the Big Issues in particle physics, we discuss the contributions to resolving that could be made by various planned and proposed future colliders. These include future runs of LEP and the Fermilab Tevatron collider, B factories, RHIC, the LHC, a linear electron-positron collider, an electron-proton collider in the LEP/LHC tunnel, a muon collider and a future larger hadron collider (FLHC). The Higgs boson and supersymmetry are used as benchmarks for assessing their capabilities. The LHC has great capacities for precision measurements as well as exploration, but also shortcomings where the complementary strengths of a linear electron-positron collider would be invaluable. It is not too soon to study seriously possible subsequent colliders.

  19. CERN accelerator school: Antiprotons for colliding beam facilities

    International Nuclear Information System (INIS)

    Bryant, P.; Newman, S.

    1984-01-01

    This is a specialized course which addresses a wide spectrum of theoretical and technological problems confronting the designer of an antiproton facility for high-energy-physics research. A broad and profound basis is provided by the lecturers' substantial experience gained over many years with CERN's unique equipment. Topics include beam optics, special lattices for antiproton accumulation and storage rings, antiproton production, stochastic cooling, acceleration and storage, r.f. noise, r.f. beam manipulations, beam-beam interaction, beam stability due to ion accumulation, and diagnostics. The SPS (Super Proton Synchrotron) panti p collider, LEAR (the Low Energy Antiproton Ring at CERN), antiprotons in the ISR (Intersecting Storage Rings), the new antiproton collector (ACOL) and gas jet targets are also discussed. A table is included listing the parameters of all CERN's accelerators and storage rings. See hints under the relevant topics. (orig./HSI)

  20. Design and manufacture of super-multilayer optical filters based on PARMS technology

    Science.gov (United States)

    Lü, Shaobo; Wang, Ruisheng; Ma, Jing; Jiang, Chao; Mu, Jiali; Zhao, Shuaifeng; Yin, Xiaojun

    2018-04-01

    Three multilayer interference optical filters, including a UV band-pass, a VIS dual-band-pass and a notch filter, were designed by using Ta2O5, Nb2O5, Al2O3 and SiO2 as high- and low-index materials. During the design of the coating process, a hybrid optical monitoring and RATE-controlled layer thickness control scheme was adopted. The coating process was simulated by using the optical monitoring system (OMS) Simulator, and the simulation result indicated that the layer thickness can be controlled within an error of less than ±0.1%. The three filters were manufactured on a plasma-assisted reactive magnetic sputtering (PARMS) coating machine. The measurements indicate that for the UV band-pass filter, the peak transmittance is higher than 95% and the blocking density is better than OD6 in the 300-1100 nm region, whereas for the dual-band-pass filter, the center wavelength positioning accuracy of the two passbands are less than ±2 nm, the peak transmittance is higher than 95% and blocking density is better than OD6 in the 300-950 nm region. Finally, for the notch filter, the minimum transmittance rates are >90% and >94% in the visible and near infrared, respectively, and the blocking density is better than OD5.5 at 808 nm.

  1. Design and performance of a straw tube drift chamber

    Science.gov (United States)

    Oh, S. H.; Wesson, D. K.; Cooke, J.; Goshaw, A. T.; Robertson, W. J.; Walker, W. D.

    1991-06-01

    The design and performance of the straw drift chambers used in E735 is reported. The chambers are constructed from 2.5 cm radius aluminized mylar straw tubes with wall thickness less than 0.2 mm. Also, presented are the results of tests with 2 mm radius straw tubes. The small tube has a direct detector application at the Superconducting Super Collider.

  2. The experimental Balzac program at Masurca in support of the design of Super Phenix 2

    International Nuclear Information System (INIS)

    Sztark, H.; d'Angelo, A.; Soule, R.; Granget, G.

    1986-09-01

    The Balzac experimental program, performed in the Masurca critical assembly at Cadarache since 1985, is designed for the validation of the neutron physics requirements related to the physical options of the SPX2 project. Geometrically simple configurations are chosen in which parameters, typical for those physical options, are varied in a systematic manner while the basic fissile composition is kept the same. Measurements will be made especially of the critical mass, the distributions of reaction rates, spectral indices, 10 B(n,α) reaction and gamma-ray heating in particular in the control-rod and in internal storage regions. Reactivity effects of (UPu)O 2 isotopic composition variations and of different control-rod absorber configurations will be also measured using the MSM technique

  3. Super families

    International Nuclear Information System (INIS)

    Amato, N.; Maldonado, R.H.C.

    1989-01-01

    The study on phenomena in the super high energy region, Σ E j > 1000 TeV revealed events that present a big dark spot in central region with high concentration of energy and particles, called halo. Six super families with halo were analysed by Brazil-Japan Cooperation of Cosmic Rays. For each family the lateral distribution of energy density was constructed and R c Σ E (R c ) was estimated. For studying primary composition, the energy correlation with particles released separately in hadrons and gamma rays was analysed. (M.C.K.)

  4. Berkeley mini-collider

    International Nuclear Information System (INIS)

    Schroeder, L.S.

    1984-06-01

    The Berkeley Mini-Collider, a heavy-ion collider being planned to provide uranium-uranium collisions at T/sub cm/ less than or equal to 4 GeV/nucleon, is described. The central physics to be studied at these energies and our early ideas for a collider detector are presented

  5. The Relativistic Heavy Ion Collider at Brookhaven

    International Nuclear Information System (INIS)

    Hahn, H.

    1989-01-01

    The conceptual design of a collider capable of accelerating and colliding heavy ions and to be constructed in the existing 3.8 km tunnel at Brookhaven has been developed. The collider has been designed to provide collisions of gold ions at six intersection points with a luminosity of about 2 x 10 26 cm -2 sec -1 at an energy per nucleon of 100 GeV in each beam. Collisions with different ion species, including protons, will be possible. The salient design features and the reasons for major design choices of the proposed machine are discussed in this paper. 28 refs., 2 figs., 1 tab

  6. ASPUN: design for an Argonne super-intense pulsed neutron source

    International Nuclear Information System (INIS)

    Khoe, T.K.; Kustom, R.L.

    1983-01-01

    Argonne pioneered the pulsed spallation neutron source with the ZING-P and IPNS-I concepts. IPNS-I is now a reliable and actively used source for pulsed spallation neutrons. The accelerator is a 500-MeV, 8 to 9 μa, 30-Hz rapid-cycling proton synchrotron. Other proton spallation sources are now in operation or in construction. These include KENS-I at the National Laboratory for High Energy Physics in Japan, the WNR/PSR at Los Alamos National Laboratory in the USA, and the SNS at the Rutherford Appleton Laboratory in England. Newer and bolder concepts are being developed for more-intense pulsed spallation neutron sources. These include SNQ at the KFA Laboratory in Juelich, Germany, ASTOR at the Swiss Institute for Nuclear Physics in Switzerland, and ASPUN, the Argonne concept. ASPUN is based on the Fixed-Field Alternating Gradient concept. The design goal is to provide a time-averaged beam of 3.5 ma at 1100 MeV on a spallation target in intense bursts, 100 to 200 nanoseconds long, at a repetition rate of no more than 60 to 85 Hz

  7. Performing the Super Instrument

    DEFF Research Database (Denmark)

    Kallionpaa, Maria

    2016-01-01

    can empower performers by producing super instrument works that allow the concert instrument to become an ensemble controlled by a single player. The existing instrumental skills of the performer can be multiplied and the qualities of regular acoustic instruments extended or modified. Such a situation......The genre of contemporary classical music has seen significant innovation and research related to new super, hyper, and hybrid instruments, which opens up a vast palette of expressive potential. An increasing number of composers, performers, instrument designers, engineers, and computer programmers...... have become interested in different ways of “supersizing” acoustic instruments in order to open up previously-unheard instrumental sounds. Super instruments vary a great deal but each has a transformative effect on the identity and performance practice of the performing musician. Furthermore, composers...

  8. Fast Timing for Collider Detectors

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Advancements in fast timing particle detectors have opened up new possibilities to design collider detectors that fully reconstruct and separate event vertices and individual particles in the time domain. The applications of these techniques are considered for the physics at HL-LHC.

  9. The Impact of SuperB on Flavor Physics

    International Nuclear Information System (INIS)

    Meadows, B.

    2012-01-01

    This report provides a succinct summary of the physics programme of SuperB, and describes that potential in the context of experiments making measurements in flavour physics over the next 10 to 20 years. Detailed comparisons are made with Belle II and LHCb, the other B physics experiments that will run in this decade. SuperB will play a crucial role in defining the landscape of flavour physics over the next 20 years. SuperB is an approved high luminosity e + e - collider intended to search for indirect and some direct signs of new physics (NP) at low energy, while at the same time, enabling precision tests of the Standard Model (SM). This experiment will be built at a new laboratory on the Tor Vergata campus near Rome, Italy named after Nicola Cabibbo. The project has been described in a Conceptual Design Report, and more recently by a set of three white papers on the accelerator, detector, and physics programme. The main focus of the physics programme rests in the study of so-called Golden Modes, these are decay channels that provide access to measurements of theoretically clean observables that can provide both stringent constraints on models of NP, and precision tests of the SM. A number of ancillary measurements that remain important include those with observables that may not be theoretically clean, and those that can be used to provide stringent constraints on the SM but are not sensitive to NP. The remainder of this section introduces SuperB before discussing the golden modes for SuperB, precision CKM measurement modes, and an outline of the rest of this report.

  10. An innovative conceptual design of the safe and simplified boiling water reactor (SSBWR) with a super-long life core

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, J. [Hitachi Ltd., Power and Industrial Systems Nuclear System Div., Ibaraki (Japan); Ohtsuka, M.; Fujimura, K.; Hidaka, M.; Nagayoshi, T. [Hitachi Ltd., Power and Industrial Systems R and D Lab., Ibaraki (Japan); Kato, Y. [Tokyo Inst. of Tech. (Japan). Research Lab. for Nuclear Reactors

    2001-07-01

    An innovative concept for the SSBWR has been developed to provide a super-long life core of 20 years with neutron spectrum shift due to dilution from heavy to light water for coolant and to represent a passive core safety system with infinite grace period. Operability and maintainability can be largely improved by the super-long life core, reduction of the number of active components, and RPV renewal with no exchange of fuel assemblies, which can also significantly reduce the possibility of nuclear proliferation. (author)

  11. Proposal for the award of a blanket purchase contract for the design, supply, installation and maintenance of automatic fire-detection, fire-protection and voice-alarm systems for the Super Proton Synchrotron

    CERN Document Server

    2017-01-01

    Proposal for the award of a blanket purchase contract for the design, supply, installation and maintenance of automatic fire-detection, fire-protection and voice-alarm systems for the Super Proton Synchrotron

  12. Initial performance studies of a general-purpose detector for multi-TeV physics at a 100 TeV pp collider

    Energy Technology Data Exchange (ETDEWEB)

    Chekanov, S. V.; Beydler, M.; Kotwal, A. V.; Gray, L.; Sen, S.; Tran, N. V.; Yu, S. -S.; Zuzelski, J.

    2017-06-01

    This paper describes simulations of detector response to multi-TeV physics at the Future Circular Collider (FCC-hh) or Super proton-proton Collider (SppC) which aim to collide proton beams with a centre-of-mass energy of 100 TeV. The unprecedented energy regime of these future experiments imposes new requirements on detector technologies which can be studied using the detailed GEANT4 simulations presented in this paper. The initial performance of a detector designed for physics studies at the FCC-hh or SppC experiments is described with an emphasis on measurements of single particles up to 33 TeV in transverse momentum. The reconstruction of hadronic jets has also been studied in the transverse momentum range from 50 GeV to 26 TeV. The granularity requirements for calorimetry are investigated using the two-particle spatial resolution achieved for hadron showers.

  13. Perspectives on large linear colliders

    International Nuclear Information System (INIS)

    Richter, B.

    1987-11-01

    Three main items in the design of large linear colliders are presented. The first is the interrelation of energy and luminosity requirements. These two items impose severe constraints on the accelerator builder who must design a machine to meet the needs of experimentl high energy physics rather than designing a machine for its own sake. An introduction is also given for linear collider design, concentrating on what goes on at the collision point, for still another constraint comes here from the beam-beam interaction which further restricts the choices available to the accelerator builder. The author also gives his impressions of the state of the technology available for building these kinds of machines within the next decade. The paper concludes with a brief recommendation for how we can all get on with the work faster, and hope to realize these machines sooner by working together. 10 refs., 9 figs

  14. Linear collider systems and costs

    International Nuclear Information System (INIS)

    Loew, G.A.

    1993-05-01

    The purpose of this paper is to examine some of the systems and sub-systems involved in so-called ''conventional'' e + e - linear colliders and to study how their design affects the overall cost of these machines. There are presently a total of at least six 500 GeV c. of m. linear collider projects under study in the world. Aside from TESLA (superconducting linac at 1.3 GHz) and CLIC (two-beam accelerator with main linac at 30GHz), the other four proposed e + e - linear colliders can be considered ''conventional'' in that their main linacs use the proven technique of driving room temperature accelerator sections with pulsed klystrons and modulators. The centrally distinguishing feature between these projects is their main linac rf frequency: 3 GHz for the DESY machine, 11.424 GHz for the SLAC and JLC machines, and 14 GHz for the VLEPP machine. The other systems, namely the electron and positron sources, preaccelerators, compressors, damping rings and final foci, are fairly similar from project to project. Probably more than 80% of the cost of these linear colliders will be incurred in the two main linacs facing each other and it is therefore in their design and construction that major savings or extra costs may be found

  15. The principles and construction of linear colliders

    International Nuclear Information System (INIS)

    Rees, J.

    1986-09-01

    The problems posed to the designers and builders of high-energy linear colliders are discussed. Scaling laws of linear colliders are considered. The problem of attainment of small interaction areas is addressed. The physics of damping rings, which are designed to condense beam bunches in phase space, is discussed. The effect of wake fields on a particle bunch in a linac, particularly the conventional disk-loaded microwave linac structures, are discussed, as well as ways of dealing with those effects. Finally, the SLAC Linear Collider is described. 18 refs., 17 figs

  16. Multibunch operation in the Tevatron Collider

    International Nuclear Information System (INIS)

    Holt, J.A.; Finley, D.A.; Bharadwaj, V.

    1993-05-01

    The Tevatron Collider at Fermilab is the world's highest energy hadron collider, colliding protons with antiprotons at a center of mass energy of 1800 GeV. At present six proton bunches collide with six antiproton bunches to generate luminosities of up to 9 x 10 30 cm -2 s -1 . It is estimated that to reach luminosities significantly greater than 10 31 cm -2 s -1 while minimizing the number of interactions per crossing, the number of bunches will have to be increased. Thirty-six bunch operation looks like the most promising plan. This paper looks at the strategies for increasing the number of particle bunches, the new hardware that needs to be designed and changes to the operating mode in filling the Tevatron. An interactive program which simulates the filling of the Tevatron collider is also presented. The time scale for multibunch operation and progress towards running greater than six bunches is given in this paper

  17. Decoupling schemes for the SSC Collider

    International Nuclear Information System (INIS)

    Cai, Y.; Bourianoff, G.; Cole, B.; Meinke, R.; Peterson, J.; Pilat, F.; Stampke, S.; Syphers, M.; Talman, R.

    1993-05-01

    A decoupling system is designed for the SSC Collider. This system can accommodate three decoupling schemes by using 44 skew quadrupoles in the different configurations. Several decoupling schemes are studied and compared in this paper

  18. Muon Muon Collider: Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo, J.C.; Palmer, R.B.; /Brookhaven; Tollestrup, A.V.; /Fermilab; Sessler, A.M.; /LBL, Berkeley; Skrinsky, A.N.; /Novosibirsk, IYF; Ankenbrandt, C.; Geer, S.; Griffin, J.; Johnstone, C.; Lebrun, P.; McInturff, A.; Mills, Frederick E.; Mokhov, N.; Moretti, A.; Neuffer, D.; Ng, K.Y.; Noble, R.; Novitski, I.; Popovic, M.; Qian, C.; Van Ginneken, A. /Fermilab /Brookhaven /Wisconsin U., Madison /Tel Aviv U. /Indiana U. /UCLA /LBL, Berkeley /SLAC /Argonne /Sobolev IM, Novosibirsk /UC, Davis /Munich, Tech. U. /Virginia U. /KEK, Tsukuba /DESY /Novosibirsk, IYF /Jefferson Lab /Mississippi U. /SUNY, Stony Brook /MIT /Columbia U. /Fairfield U. /UC, Berkeley

    2012-04-05

    A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10{sup 35} cm{sup -2}s{sup -1}. The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice - we believe - to allow us to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potential and to evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring wich has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design. Muons because of their large mass compared to an electron, do not produce significant synchrotron radiation. As a result there is negligible beamstrahlung and high energy collisions are not limited by this phenomena. In addition, muons can be accelerated in circular devices which will be considerably smaller than two full-energy linacs as required in an e{sup +} - e{sup -} collider. A hadron collider would require a CM energy 5 to 10 times higher than 4 TeV to have an equivalent energy reach. Since the accelerator size is limited by the strength of bending magnets, the hadron collider for the same physics reach would have to be much larger than the muon collider. In addition, muon collisions should be cleaner than hadron collisions. There are many detailed particle

  19. The development of colliders

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1997-03-01

    During the period of the 50's and the 60's colliders were developed. Prior to that time there were no colliders, and by 1965 a number of small devices had worked, good understanding had been achieved, and one could speculate, as Gersh Budker did, that in a few years 20% of high energy physics would come from colliders. His estimate was an under-estimate, for now essentially all of high energy physics comes from colliders. The author presents a brief review of that history: sketching the development of the concepts, the experiments, and the technological advances which made it all possible

  20. Test results of distributed ion pump designs for the PEP-II Asymmetric B-Factory collider

    Energy Technology Data Exchange (ETDEWEB)

    Calderon, M.; Holdener, F.; Peterson, D. [Lawrence Livermore National Lab., CA (United States)] [and others

    1994-07-01

    The testing facility measurement methods and results of prototype distributed ion pump (DIP) designs for the PEP-II B-Factory High Energy Ring are presented. Two basic designs with 5- or 7-anode plates were tested at LLNL with penning cell sizes of 15, 18, and 21 mm. Direct comparison of 5- and 7-plate anodes with 18 mm holes shows increased pumping speed with the 7-plate design. The 5-plate, 18 mm and 7-plate, 15 mm designs both gave an average pumping speed of 135 1/s/m at 1 {times} 10{sup {minus}8} Torr nitrogen base pressure in a varying 0.18 T peak B-field. Comparison of the three hole sizes indicates that cells smaller than the 15 mm tested can be efficiently used to obtain higher pumping speeds for the same anode plate sizes used.

  1. Test results of distributed ion pump designs for the PEP-II Asymmetric B-Factory collider

    International Nuclear Information System (INIS)

    Calderon, M.; Holdener, F.; Peterson, D.

    1994-07-01

    The testing facility measurement methods and results of prototype distributed ion pump (DIP) designs for the PEP-II B-Factory High Energy Ring are presented. Two basic designs with 5- or 7-anode plates were tested at LLNL with penning cell sizes of 15, 18, and 21 mm. Direct comparison of 5- and 7-plate anodes with 18 mm holes shows increased pumping speed with the 7-plate design. The 5-plate, 18 mm and 7-plate, 15 mm designs both gave an average pumping speed of 135 1/s/m at 1 x 10 -8 Torr nitrogen base pressure in a varying 0.18 T peak B-field. Comparison of the three hole sizes indicates that cells smaller than the 15 mm tested can be efficiently used to obtain higher pumping speeds for the same anode plate sizes used

  2. Polarized proton collider at RHIC

    International Nuclear Information System (INIS)

    Alekseev, I.; Allgower, C.; Bai, M.; Batygin, Y.; Bozano, L.; Brown, K.; Bunce, G.; Cameron, P.; Courant, E.; Erin, S.; Escallier, J.; Fischer, W.; Gupta, R.; Hatanaka, K.; Huang, H.; Imai, K.; Ishihara, M.; Jain, A.; Lehrach, A.; Kanavets, V.; Katayama, T.; Kawaguchi, T.; Kelly, E.; Kurita, K.; Lee, S.Y.; Luccio, A.; MacKay, W.W.; Mahler, G.; Makdisi, Y.; Mariam, F.; McGahern, W.; Morgan, G.; Muratore, J.; Okamura, M.; Peggs, S.; Pilat, F.; Ptitsin, V.; Ratner, L.; Roser, T.; Saito, N.; Satoh, H.; Shatunov, Y.; Spinka, H.; Syphers, M.; Tepikian, S.; Tominaka, T.; Tsoupas, N.; Underwood, D.; Vasiliev, A.; Wanderer, P.; Willen, E.; Wu, H.; Yokosawa, A.; Zelenski, A.N.

    2003-01-01

    In addition to heavy ion collisions (RHIC Design Manual, Brookhaven National Laboratory), RHIC will also collide intense beams of polarized protons (I. Alekseev, et al., Design Manual Polarized Proton Collider at RHIC, Brookhaven National Laboratory, 1998, reaching transverse energies where the protons scatter as beams of polarized quarks and gluons. The study of high energy polarized protons beams has been a long term part of the program at BNL with the development of polarized beams in the Booster and AGS rings for fixed target experiments. We have extended this capability to the RHIC machine. In this paper we describe the design and methods for achieving collisions of both longitudinal and transverse polarized protons in RHIC at energies up to √s=500 GeV

  3. Crab cavities for linear colliders

    CERN Document Server

    Burt, G; Carter, R; Dexter, A; Tahir, I; Beard, C; Dykes, M; Goudket, P; Kalinin, A; Ma, L; McIntosh, P; Shulte, D; Jones, Roger M; Bellantoni, L; Chase, B; Church, M; Khabouline, T; Latina, A; Adolphsen, C; Li, Z; Seryi, Andrei; Xiao, L

    2008-01-01

    Crab cavities have been proposed for a wide number of accelerators and interest in crab cavities has recently increased after the successful operation of a pair of crab cavities in KEK-B. In particular crab cavities are required for both the ILC and CLIC linear colliders for bunch alignment. Consideration of bunch structure and size constraints favour a 3.9 GHz superconducting, multi-cell cavity as the solution for ILC, whilst bunch structure and beam-loading considerations suggest an X-band copper travelling wave structure for CLIC. These two cavity solutions are very different in design but share complex design issues. Phase stabilisation, beam loading, wakefields and mode damping are fundamental issues for these crab cavities. Requirements and potential design solutions will be discussed for both colliders.

  4. The Super Patalan Numbers

    OpenAIRE

    Richardson, Thomas M.

    2014-01-01

    We introduce the super Patalan numbers, a generalization of the super Catalan numbers in the sense of Gessel, and prove a number of properties analagous to those of the super Catalan numbers. The super Patalan numbers generalize the super Catalan numbers similarly to how the Patalan numbers generalize the Catalan numbers.

  5. Functional Requirements on the Design of the Detectors and the Interaction Region of an e+e- Linear Collider with a Push-Pull Arrangement of Detectors

    International Nuclear Information System (INIS)

    Markiewicz, T.

    2009-01-01

    The Interaction Region of the International Linear Collider is based on two experimental detectors working in a push-pull mode. A time efficient implementation of this model sets specific requirements and challenges for many detector and machine systems, in particular the IR magnets, the cryogenics and the alignment system, the beamline shielding, the detector design and the overall integration. This paper attempts to separate the functional requirements of a push pull interaction region and machine detector interface from any particular conceptual or technical solution that might have been proposed to date by either the ILC Beam Delivery Group or any of the three detector concepts. As such, we hope that it provides a set of ground rules for interpreting and evaluating the MDI parts of the proposed detector concept's Letters of Intent, due March 2009. The authors of the present paper are the leaders of the IR Integration Working Group within Global Design Effort Beam Delivery System and the representatives from each detector concept submitting the Letters Of Intent.

  6. Computing requirements for S.S.C. accelerator design and studies

    International Nuclear Information System (INIS)

    Dragt, A.; Talman, R.; Siemann, R.; Dell, G.F.; Leemann, B.; Leemann, C.; Nauenberg, U.; Peggs, S.; Douglas, D.

    1984-01-01

    We estimate the computational hardware resources that will be required for accelerator physics studies during the design of the Superconducting SuperCollider. It is found that both Class IV and Class VI facilities (1) will be necessary. We describe a user environment for these facilities that is desirable within the context of accelerator studies. An acquisition scenario for these facilities is presented

  7. When paradigms collide at the road rail interface: evaluation of a sociotechnical systems theory design toolkit for cognitive work analysis.

    Science.gov (United States)

    Read, Gemma J M; Salmon, Paul M; Lenné, Michael G

    2016-09-01

    The Cognitive Work Analysis Design Toolkit (CWA-DT) is a recently developed approach that provides guidance and tools to assist in applying the outputs of CWA to design processes to incorporate the values and principles of sociotechnical systems theory. In this paper, the CWA-DT is evaluated based on an application to improve safety at rail level crossings. The evaluation considered the extent to which the CWA-DT met pre-defined methodological criteria and aligned with sociotechnical values and principles. Both process and outcome measures were taken based on the ratings of workshop participants and human factors experts. Overall, workshop participants were positive about the process and indicated that it met the methodological criteria and sociotechnical values. However, expert ratings suggested that the CWA-DT achieved only limited success in producing RLX designs that fully aligned with the sociotechnical approach. Discussion about the appropriateness of the sociotechnical approach in a public safety context is provided. Practitioner Summary: Human factors and ergonomics practitioners need evidence of the effectiveness of methods. A design toolkit for cognitive work analysis, incorporating values and principles from sociotechnical systems theory, was applied to create innovative designs for rail level crossings. Evaluation results based on the application are provided and discussed.

  8. DESIGN OF DYADIC-INTEGER-COEFFICIENTS BASED BI-ORTHOGONAL WAVELET FILTERS FOR IMAGE SUPER-RESOLUTION USING SUB-PIXEL IMAGE REGISTRATION

    Directory of Open Access Journals (Sweden)

    P.B. Chopade

    2014-05-01

    Full Text Available This paper presents image super-resolution scheme based on sub-pixel image registration by the design of a specific class of dyadic-integer-coefficient based wavelet filters derived from the construction of a half-band polynomial. First, the integer-coefficient based half-band polynomial is designed by the splitting approach. Next, this designed half-band polynomial is factorized and assigned specific number of vanishing moments and roots to obtain the dyadic-integer coefficients low-pass analysis and synthesis filters. The possibility of these dyadic-integer coefficients based wavelet filters is explored in the field of image super-resolution using sub-pixel image registration. The two-resolution frames are registered at a specific shift from one another to restore the resolution lost by CCD array of camera. The discrete wavelet transform (DWT obtained from the designed coefficients is applied on these two low-resolution images to obtain the high resolution image. The developed approach is validated by comparing the quality metrics with existing filter banks.

  9. Feedback Systems for Linear Colliders

    International Nuclear Information System (INIS)

    1999-01-01

    Feedback systems are essential for stable operation of a linear collider, providing a cost-effective method for relaxing tight tolerances. In the Stanford Linear Collider (SLC), feedback controls beam parameters such as trajectory, energy, and intensity throughout the accelerator. A novel dithering optimization system which adjusts final focus parameters to maximize luminosity contributed to achieving record performance in the 1997-98 run. Performance limitations of the steering feedback have been investigated, and improvements have been made. For the Next Linear Collider (NLC), extensive feedback systems are planned as an integral part of the design. Feedback requirements for JLC (the Japanese Linear Collider) are essentially identical to NLC; some of the TESLA requirements are similar but there are significant differences. For NLC, algorithms which incorporate improvements upon the SLC implementation are being prototyped. Specialized systems for the damping rings, rf and interaction point will operate at high bandwidth and fast response. To correct for the motion of individual bunches within a train, both feedforward and feedback systems are planned. SLC experience has shown that feedback systems are an invaluable operational tool for decoupling systems, allowing precision tuning, and providing pulse-to-pulse diagnostics. Feedback systems for the NLC will incorporate the key SLC features and the benefits of advancing technologies

  10. Tevatron Collider physics

    International Nuclear Information System (INIS)

    Eichten, E.J.

    1990-02-01

    The physics of hadron colliders is briefly reviewed. Issues for further study are presented. Particular attention is given to the physics opportunities for a high luminosity (≥ 100 pb -1 /experiment/run) Upgrade of the Tevatron Collider. 25 refs., 10 figs., 2 tabs

  11. Stanford's linear collider

    International Nuclear Information System (INIS)

    Southworth, B.

    1985-01-01

    The peak of the construction phase of the Stanford Linear Collider, SLC, to achieve 50 GeV electron-positron collisions has now been passed. The work remains on schedule to attempt colliding beams, initially at comparatively low luminosity, early in 1987. (orig./HSI).

  12. The SLAC linear collider

    International Nuclear Information System (INIS)

    Richter, B.

    1985-01-01

    A report is given on the goals and progress of the SLAC Linear Collider. The author discusses the status of the machine and the detectors and give an overview of the physics which can be done at this new facility. He also gives some ideas on how (and why) large linear colliders of the future should be built

  13. Lessons in the Design and Characterization Testing of the Semi-Span Super-Sonic Transport (S4T) Wind-Tunnel Model

    Science.gov (United States)

    2012-01-01

    This paper focuses on some of the more challenging design processes and characterization tests of the Semi-Span Super-Sonic Transport (S4T)-Active Controls Testbed (ACT). The model was successfully tested in four entries in the National Aeronautics and Space Administration Langley Transonic Dynamics Tunnel to satisfy the goals and objectives of the Fundamental Aeronautics Program Supersonic Project Aero-Propulso-Servo-Elastic effort. Due to the complexity of the S4T-ACT, only a small sample of the technical challenges for designing and characterizing the model will be presented. Specifically, the challenges encountered in designing the model include scaling the Technology Concept Airplane to model scale, designing the model fuselage, aileron actuator, and engine pylons. Characterization tests included full model ground vibration tests, wing stiffness measurements, geometry measurements, proof load testing, and measurement of fuselage static and dynamic properties.

  14. CERN-BINP Workshop for Young Scientists in $e^{+}e^{-}$ Colliders

    CERN Document Server

    Linssen, Lucie; eCOL 2016

    2017-01-01

    The "CERN-BINP workshop for young scientists in e+e- colliders" is organised in the framework of the EU-funded CREMLIN project. The CREMLIN project aims at strengthening science cooperation between six Russian megascience facilities and related research infrastructure counterparts in Europe. BINP and CERN coordinate a dedicated CREMLIN work package focusing on a future super-charm-tau factory (SCT) at BINP. SCT aims at producing e+e- collisions with up to 5 GeV centre-of-mass energy and at very high luminosity. In parallel CERN is hosting design studies for two possible high-energy e+e- colliders: FCC-ee and CLIC. In matters of physics, design and technologies the BINP and CERN studies address technological and scientific questions of common interest. Similar issues are dealt with in the framework of other flavour factories and energy frontier e+e- colliders worldwide. The 3-day workshop provides young scientists (at the student and postdoc level) opportunities to present their work and exchange experiences. ...

  15. Beamstrahlung spectra in next generation linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Barklow, T.; Chen, P. (Stanford Linear Accelerator Center, Menlo Park, CA (United States)); Kozanecki, W. (DAPNIA-SPP, CEN-Saclay (France))

    1992-04-01

    For the next generation of linear colliders, the energy loss due to beamstrahlung during the collision of the e{sup +}e{sup {minus}} beams is expected to substantially influence the effective center-of-mass energy distribution of the colliding particles. In this paper, we first derive analytical formulae for the electron and photon energy spectra under multiple beamstrahlung processes, and for the e{sup +}e{sup {minus}} and {gamma}{gamma} differential luminosities. We then apply our formulation to various classes of 500 GeV e{sup +}e{sup {minus}} linear collider designs currently under study.

  16. Beam Dynamics Challenges for Future Circular Colliders

    CERN Multimedia

    Zimmermann, Frank

    2004-01-01

    The luminosity of hadron colliders rises with the beam intensity, until some limit is encountered, mostly due to head-on and long-range beam-beam interaction, due to electron cloud, or due to conventional impedance sources. Also beam losses caused by various mechanisms may affect the performance. The limitations can be alleviated, if not overcome, by a proper choice of beam parameters and by dedicated compensation schemes. Examples include alternating crossing at several interaction points, electromagnetic wires, super-bunches, electron lenses, clearing electrodes, and nonlinear collimation. I discuss such mitigating measures and related research efforts, with special emphasis on the LHC and its upgrade.

  17. Design of an 18 MW vortex flow water beam dump for 500 GeV electrons/positrons of an international linear collider

    International Nuclear Information System (INIS)

    Satyamurthy, Polepalle; Rai, Pravin; Tiwari, Vikas; Kulkarni, Kiran; Amann, John; Arnold, Raymond G.; Walz, Dieter; Seryi, Andrei; Davenne, Tristan; Caretta, Ottone; Densham, Chris; Appleby, Robert B.

    2012-01-01

    Beam dumps are essential components of any accelerator system. They are usually located at the end of the beam delivery systems and are designed to safely absorb and dissipate the particle energy. In the second stage of the proposed International Linear Collider (ILC), the electron and positron beams are accelerated to 500 GeV each (1 TeV total). Each bunch will have 2×10 10 electrons/positrons, and 2820 bunches form one beam bunch train with time duration of 0.95 ms and 4 Hz frequency. The average beam power will be 18 MW with a peak power of 4.5 GW. The FLUKA code was used to determine the power deposited by the beam at all critical locations. This data forms the input into the thermal hydraulic analysis CFD code for detailed flow and thermal evaluation. Both 2D and 3D flow analyses were carried out at all the critical regions to arrive at optimum geometry and flow parameters of the beam dump. The generation and propagation of pressure waves due to rapid deposition of heat has also been analyzed.

  18. Physics goals of future colliders

    International Nuclear Information System (INIS)

    Kane, G.L.

    1987-01-01

    These lectures describe some of the physics goals that future colliders are designed to achieve. Emphasis is on the SSC, but its capabilities are compared to those of other machines, and set in a context of what will be measured before the SSC is ready. Physics associated with the Higgs sector is examined most thoroughly, with a survey of the opportunities to find evidence of extended gauge theories

  19. A super soliton connection

    International Nuclear Information System (INIS)

    Gurses, M.; Oguz, O.

    1985-07-01

    Integrable super non-linear classical partial differential equations are considered. A super s1(2,R) algebra valued connection 1-form is constructed. It is shown that curvature 2-form of this super connection vanishes by virtue of the integrable super equations of motion. A super extension of the AKNS scheme is presented and a class of super extension of the Lax hierarchy and super non-linear Schroedinger equation are found. O(N) extension and the Baecklund transformations of the above super equations are also considered. (author)

  20. Conceptual Design of the Cryogenic System for the High-luminosity Upgrade of the Large Hadron Collider (LHC)

    Science.gov (United States)

    Brodzinski, K.; Claudet, S.; Ferlin, G.; Tavian, L.; Wagner, U.; Van Weelderen, R.

    The discovery of a Higgs boson at CERN in 2012 is the start of a major program of work to measure this particle's properties with the highest possible precision for testing the validity of the Standard Model and to search for further new physics at the energy frontier. The LHC is in a unique position to pursue this program. Europe's top priority is the exploitation of the full potential of the LHC, including the high-luminosity upgrade of the machine and detectors with an objective to collect ten times more data than in the initial design, by around 2030. To reach this objective, the LHC cryogenic system must be upgraded to withstand higher beam current and higher luminosity at top energy while keeping the same operation availability by improving the collimation system and the protection of electronics sensitive to radiation. This paper will present the conceptual design of the cryogenic system upgrade with recent updates in performance requirements, the corresponding layout and architecture of the system as well as the main technical challenges which have to be met in the coming years.

  1. Final focus systems for linear colliders

    International Nuclear Information System (INIS)

    Erickson, R.A.

    1987-11-01

    The final focus system of a linear collider must perform two primary functions, it must focus the two opposing beams so that their transverse dimensions at the interaction point are small enough to yield acceptable luminosity, and it must steer the beams together to maintain collisions. In addition, the final focus system must transport the outgoing beams to a location where they can be recycled or safely dumped. Elementary optical considerations for linear collider final focus systems are discussed, followed by chromatic aberrations. The design of the final focus system of the SLAC Linear Collider (SLC) is described. Tuning and diagnostics and steering to collision are discussed. Most of the examples illustrating the concepts covered are drawn from the SLC, but the principles and conclusions are said to be generally applicable to other linear collider designs as well. 26 refs., 17 figs

  2. Parameters of the SLAC Next Linear Collider

    International Nuclear Information System (INIS)

    Raubenheimer, T.; Adolphsen, C.; Burke, D.

    1995-05-01

    In this paper, the authors present the parameters and layout of the Next Linear Collider (NLC). The NLC is the SLAC design of a future linear collider using X-band RF technology in the main linacs. The collider would have an initial center-of-mass energy of 0.5 TeV which would be upgraded to 1 TeV and then 1.5 TeV in two stages. The design luminosity is > 5 x 10 33 cm -2 sec -1 at 0.5 TeV and > 10 34 cm -2 sec -1 at 1.0 and 1.5 TeV. They briefly describe the components of the collider and the proposed energy upgrade scenario

  3. Magnet R and D for future colliders

    International Nuclear Information System (INIS)

    Sabbi, Gian Luca

    2001-01-01

    High-energy colliders complementing and expanding the physics reach of LHC are presently under study in the United States, Europe and Japan. The magnet system is a major cost driver for hadron colliders at the energy frontier, and critical to the successful operation of muon colliders. Under most scenarios, magnet design as well as vacuum and cryogenic systems are complicated by high radiation loads. Magnet R and D programs are underway worldwide to take advantage of new developments in superconducting materials, achieve higher efficiency and simplify fabrication while preserving accelerator-class field quality. A review of recent progress in magnet technology for future colliders is presented, with emphasis on the most innovative design concepts and fabrication techniques

  4. Perspectives on large Linear Colliders

    International Nuclear Information System (INIS)

    Richter, B.

    1987-01-01

    The accelerator community now generally agrees that the Linear Collider is the most cost-effective technology for reaching much higher energies in the center-of-mass than can be attained in the largest of the e + e - storage rings, LEP. Indeed, even as the first linear collider, the SLC at SLAC, is getting ready to begin operations groups, at SLAC, Novosibirsk, CERN and KEK are doing R and D and conceptual design studies on a next generation machine in the 1 TeV energy region. In this perspectives talk I do not want to restrict my comments to any particular design, and so I will talk about a high-energy machine as the NLC, which is shorthand for the Next Linear Collider, and taken to mean a machine with a center-of-mass energy someplace in the 0.5 to 2 TeV energy range with sufficient luminosity to carry out a meaningful experimental program. I want to discuss three main items with you. The first is the interrelation of energy and luminosity requirements. These two items impose severe constraints on the accelerator builder. Next, I will give an introduction to linear collider design, concentrating on what goes on at the collision point, for still another constraint comes here from the beam-beam interaction which further restricts the choices available to the accelerator builder.Then, I want to give my impressions of the state of the technology available for building these kinds of machines within the next decade

  5. Physics goals of the next linear collider

    Energy Technology Data Exchange (ETDEWEB)

    Kuhlman, S. [Argonne National Lab., IL (United States); Marciano, W.J. [Brookhaven National Lab., Upton, NY (United States); Gunion, J. F. [California Univ., Davis, CA (United States)] [and others; NLC ZDR Design Group; NLC Physics Working Group

    1996-05-01

    We present the prospects for the next generation of high-energy physics experiments with electron-positron colliding beams. This report summarizes the current status of the design and technological basis of a linear collider of center of mass energy 500 GeV-1.5 TeV, and the opportunities for high-energy physics experiments that this machine is expected to open. 132 refs., 54 figs., 14 tabs.

  6. Physics goals of the next linear collider

    International Nuclear Information System (INIS)

    Kuhlman, S.; Marciano, W.J.; Gunion, J. F.

    1996-05-01

    We present the prospects for the next generation of high-energy physics experiments with electron-positron colliding beams. This report summarizes the current status of the design and technological basis of a linear collider of center of mass energy 500 GeV-1.5 TeV, and the opportunities for high-energy physics experiments that this machine is expected to open. 132 refs., 54 figs., 14 tabs

  7. EUROv Super Beam Studies

    International Nuclear Information System (INIS)

    Dracos, Marcos

    2011-01-01

    Neutrino Super Beams use conventional techniques to significantly increase the neutrino beam intensity compared to the present neutrino facilities. An essential part of these facilities is an intense proton driver producing a beam power higher than a MW. The protons hit a target able to accept the high proton beam intensity. The produced charged particles are focused by a system of magnetic horns towards the experiment detectors. The main challenge of these projects is to deal with the high beam intensity for many years. New high power neutrino facilities could be build at CERN profiting from an eventual construction of a high power proton driver. The European FP7 Design Study EUROv, among other neutrino beams, studies this Super Beam possibility. This paper will give the latest developments in this direction.

  8. Super-insulation

    International Nuclear Information System (INIS)

    Gerold, J.

    1985-01-01

    The invention concerns super-insulation, which also acts as spacing between two pressurized surfaces, where the crossing bars in at least two layers are provided, with interposed foil. The super-insulation is designed so that it can take compression forces and limits thermal radiation and thermal conduction sufficiently, where the total density of heat flow is usually limited to a few watts per m 2 . The solution to the problem is characterized by the fact that the bars per layer are parallel and from layer to layer they are at an angle to each other and the crossover positions of the bars of different layers are at fixed places and so form contact columns. The basic idea is that bars crossing over each other to support compression forces are used so that contact columns are formed, which are compressed to a certain extent by the load. (orig./PW) [de

  9. Conventional power sources for colliders

    International Nuclear Information System (INIS)

    Allen, M.A.

    1987-07-01

    At SLAC we are developing high peak-power klystrons to explore the limits of use of conventional power sources in future linear colliders. In an experimental tube we have achieved 150 MW at 1 μsec pulse width at 2856 MHz. In production tubes for SLAC Linear Collider (SLC) we routinely achieve 67 MW at 3.5 μsec pulse width and 180 pps. Over 200 of the klystrons are in routine operation in SLC. An experimental klystron at 8.568 GHz is presently under construction with a design objective of 30 MW at 1 μsec. A program is starting on the relativistic klystron whose performance will be analyzed in the exploration of the limits of klystrons at very short pulse widths

  10. Measurement of the magnetically-induced QED birefringence of the vacuum and an improved search for laboratory axions: Technical report. Project definition study of the use of assets and facilities of the Superconducting Super Collider Laboratory

    International Nuclear Information System (INIS)

    Lee, S.A.; Fairbank, W.M. Jr.; Toki, W.H.; Kraushaar, P.F. Jr.; Jaffery, T.S.

    1994-01-01

    The Colorado State Collaboration has studied the feasibility of a high sensitivity QED birefringence/axion search measurement. The objective of this work is to measure, for the first time, the birefringence induced in the vacuum on a light beam travelling in a powerful magnetic field. The same experimental setup also allows a highly sensitive search for axion or axion-like particles. The experiment would combined custom-designed optical heterodyne interferometry with a string of six SSC prototype superconducting dipole magnets at the N-15 site of the SSC Laboratory. With these powerful laser tools, sensitivity advances of 10 7 to 10 9 over previous optical experiments will be possible. The proposed experiment will be able to measure the QED light-by-light scattering effect with a 0.5% accuracy. The increased sensitivity for the axion-two photon interaction will result in a bound on this process rivaling the results based on astrophysical arguments. In the technical report the authors address the scientific significance of these experiments and examine the limiting technical parameters which control their feasibility. The proposed optical/electronic scheme is presented in the context of a background of the known and projected systematic problems which will confront any serious attempt to make such measurements

  11. Linear collider: a preview

    Energy Technology Data Exchange (ETDEWEB)

    Wiedemann, H.

    1981-11-01

    Since no linear colliders have been built yet it is difficult to know at what energy the linear cost scaling of linear colliders drops below the quadratic scaling of storage rings. There is, however, no doubt that a linear collider facility for a center of mass energy above say 500 GeV is significantly cheaper than an equivalent storage ring. In order to make the linear collider principle feasible at very high energies a number of problems have to be solved. There are two kinds of problems: one which is related to the feasibility of the principle and the other kind of problems is associated with minimizing the cost of constructing and operating such a facility. This lecture series describes the problems and possible solutions. Since the real test of a principle requires the construction of a prototype I will in the last chapter describe the SLC project at the Stanford Linear Accelerator Center.

  12. FERMILAB: Preparing to collide

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Against the background of stringent Environment, Safety and Health (ES&H) regulations mandated by the US Department of Energy for all national Labs, Fermilab prepared to mount the next major Tevatron proton-antiproton collider run

  13. Linear collider: a preview

    International Nuclear Information System (INIS)

    Wiedemann, H.

    1981-11-01

    Since no linear colliders have been built yet it is difficult to know at what energy the linear cost scaling of linear colliders drops below the quadratic scaling of storage rings. There is, however, no doubt that a linear collider facility for a center of mass energy above say 500 GeV is significantly cheaper than an equivalent storage ring. In order to make the linear collider principle feasible at very high energies a number of problems have to be solved. There are two kinds of problems: one which is related to the feasibility of the principle and the other kind of problems is associated with minimizing the cost of constructing and operating such a facility. This lecture series describes the problems and possible solutions. Since the real test of a principle requires the construction of a prototype I will in the last chapter describe the SLC project at the Stanford Linear Accelerator Center

  14. Design of China Leading Energy Efficiency Program (LEP) for equipment and appliances and comparative study of international experience on super-efficient products

    Science.gov (United States)

    Liang, Xiuying; Zhu, Chunyan

    2017-11-01

    With rising global emphasizes on climate change and sustainable development, how to accelerate the transformation of energy efficiency has become an important question. Designing and implementing energy-efficiency policies for super-efficient products represents an important direction to achieve breakthroughs in the field of energy conservation. On December 31, 2014, China’s National Development and Reform Commission (NDRC) jointly six other ministerial agencies launched China Leading Energy Efficiency Program (LEP), which identifies top efficiency models for selected product categories. LEP sets the highest energy efficiency benchmark. Design of LEP took into consideration of how to best motivate manufacturers to accelerate technical innovation, promote high efficiency products. This paper explains core elements of LEP, such as objectives, selection criteria, implementation method and supportive policies. It also proposes recommendations to further improve LEP through international policy comparison with Japan’s Top Runner Program, U.S. Energy Star Most Efficient, and SEAD Global Efficiency Medal.

  15. Near-Threshold Production of W±, Z0, and H0 at a Fixed-Target Experiment at the Future Ultrahigh-Energy Proton Colliders

    Directory of Open Access Journals (Sweden)

    J. P. Lansberg

    2015-01-01

    Full Text Available We outline the opportunities to study the production of the Standard Model bosons, W±, Z0, and H0, at “low” energies at fixed-target experiments based on possible future ultrahigh-energy proton colliders, that is, the High-Energy LHC, the Super proton-proton Collider, and the Future Circular Collider hadron-hadron. These can be indeed made in conjunction with the proposed future colliders designed to reach up to s=100 TeV by using bent crystals to extract part of the halo of the beam which would then impinge on a fixed target. Without disturbing the collider operation, this technique allows for the extraction of a substantial amount of particles in addition to serving for a beam-cleaning purpose. With this method, high-luminosity fixed-target studies at centre-of-mass energies above the W±, Z0, and H0 masses, s≃170–300 GeV, are possible. We also discuss the possibility offered by an internal gas target, which can also be used as luminosity monitor by studying the beam transverse shape.

  16. Dedicating Fermilab's Collider

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-01-15

    It was a bold move to have a fullscale dedication ceremony for the new proton-antiproton Collider at the Fermilab Tevatron on 13 October, two days before the first collisions were seen. However the particles dutifully behaved as required, and over the following weekend the Collider delivered its goods at a total energy of 1600 GeV, significantly boosting the world record for laboratory collisions.

  17. Superconducting linear colliders

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The advantages of superconducting radiofrequency (SRF) for particle accelerators have been demonstrated by successful operation of systems in the TRISTAN and LEP electron-positron collider rings respectively at the Japanese KEK Laboratory and at CERN. If performance continues to improve and costs can be lowered, this would open an attractive option for a high luminosity TeV (1000 GeV) linear collider

  18. FERMILAB: Collider detectors -2

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Last month's edition (April, page 12) included a status report on data collection and preliminary physics results from the 'newcomer' DO detector at Fermilab's Tevatron proton-antiproton collider. This time the spotlight falls in the Veteran' CDF detector, in action since 1985 and meanwhile significantly upgraded. Meanwhile the Tevatron collider continues to improve, with record collision rates

  19. The potential of pyrolysis technology in climate change mitigation - influence of process design and - parameters, simulated in SuperPro Designer software

    Energy Technology Data Exchange (ETDEWEB)

    Thomsen, T.; Hauggaard-Nielsen, H.; Bruun, E.W.; Ahrenfeldt, J.

    2011-01-15

    This report investigates whether or not it would be possible to produce carbon-negative energy from pyrolysis of wheat straw in a series of Danish agricultural scenarios. A combination of process simulation in SuperPro Designer software, correlations derived from literature studies and experimental work, and overall balance calculations has been applied in the process. The study deviates from other studies of pyrolysis and biochar production by the inclusion of substitution energy impact on the overall carbon-balance. Substitution energy is integrated to account for the gap between the energy production from the pyrolysis and the full energy potential of the biomass, quantified by complete conversion in either combustion or gasification systems. It was concluded that it is feasible to produce carbon-negative energy under a variation of different settings, but also that the negative carbon-balance is only robust for the slow pyrolysis scenario. The CO{sub 2} benefit of the most carbon-negative slow pyrolysis process is estimated to be around 10 % of the atmospheric carbon stored in the original biomass when natural gas is applied for energy substitution. This process avoids the emission of around 150-200 kg CO{sub 2}/ton wheat straw with substitution energy with a Denmark 2007 average carbon-intensity. This result is weighted against the net emissions of the carbon-'neutral' process of conventional combustion. This emission is in this report estimated to be around 50 - 150 kg CO{sub 2}/ton straw depending on scenario settings. The final results of the study have been compared to another study with convincing results. Results concluded that the primary force of the pyrolysis technology is the recalcitrant char product and not the pyrolysis oil. Based on this, the study suggests that despite the trend in commercial pyrolysis technology that focuses on fast pyrolysis processes with maximized bio-oil production, the twin challenge of climate mitigation and

  20. Test facilities for future linear colliders

    International Nuclear Information System (INIS)

    Ruth, R.D.

    1995-12-01

    During the past several years there has been a tremendous amount of progress on Linear Collider technology world wide. This research has led to the construction of the test facilities described in this report. Some of the facilities will be complete as early as the end of 1996, while others will be finishing up around the end 1997. Even now there are extensive tests ongoing for the enabling technologies for all of the test facilities. At the same time the Linear Collider designs are quite mature now and the SLC is providing the key experience base that can only come from a working collider. All this taken together indicates that the technology and accelerator physics will be ready for a future Linear Collider project to begin in the last half of the 1990s