WorldWideScience

Sample records for super collider beam

  1. Calibration beams at the SSC (Superconducting Super Collider)

    Energy Technology Data Exchange (ETDEWEB)

    Autin, A.; Edwards, H. (Superconducting Super Collider Lab., Dallas, TX (USA)); Bensinger, J.R. (Superconducting Super Collider Lab., Dallas, TX (USA) Brandeis Univ., Waltham, MA (USA)); Baller, B.; Browning, F.; Coleman, R.; Cooper, J.; Cossairt, D.; Kula, L.; Malensek, A.; Stefanski, R.; Stutte, L. (Fermi National Accelerator Lab., Batavia, IL (USA))

    1989-04-30

    This paper discusses the following topics on the Superconducting Super Collider: beam specification at calibration halls; high energy booster options with tunnels to surface; switchyard; six beams with high and low power options; switchyard optics for both high and low energy transport; secondary beams; wide band beams; radiation shielding; tagging system; and test and calibration halls.

  2. The Superconducting Super Collider: A status report

    Energy Technology Data Exchange (ETDEWEB)

    Schwitters, R.F.

    1993-04-01

    The design of the Superconducting Super Collider (SSC) is briefly reviewed, including its key machine parameters. The scientific objectives are twofold: (1) investigation of high-mass, low-rate, rare phenomena beyond the standard model; and (2) investigation of processes within the domain of the standard model. Machine luminosity, a key parameter, is a function of beam brightness and current, and it must be preserved through the injector chain. Features of the various injectors are discussed. The superconducting magnet system is reviewed in terms of model magnet performance, including the highly successful Accelerator System String Test Various magnet design modifications are noted, reflecting minor changes in the collider arcs and improved installation procedures. The paper concludes with construction scenarios and priority issues for ensuring the earliest collider commissioning.

  3. Impact of high energy high intensity proton beams on targets: Case studies for Super Proton Synchrotron and Large Hadron Collider

    CERN Document Server

    Tahir, N A; Shutov, A; Schmidt, R; Piriz, A R

    2012-01-01

    The Large Hadron Collider (LHC) is designed to collide two proton beams with unprecedented particle energy of 7 TeV. Each beam comprises 2808 bunches and the separation between two neighboring bunches is 25 ns. The energy stored in each beam is 362 MJ, sufficient to melt 500 kg copper. Safety of operation is very important when working with such powerful beams. An accidental release of even a very small fraction of the beam energy can result in severe damage to the equipment. The machine protection system is essential to handle all types of possible accidental hazards; however, it is important to know about possible consequences of failures. One of the critical failure scenarios is when the entire beam is lost at a single point. In this paper we present detailed numerical simulations of the full impact of one LHC beam on a cylindrical solid carbon target. First, the energy deposition by the protons is calculated with the FLUKA code and this energy deposition is used in the BIG2 code to study the corresponding...

  4. Beam-loss induced pressure rise of Large Hadron Collider collimator materials irradiated with 158 GeV/u $In^{49+}$ ions at the CERN Super Proton Synchrotron

    CERN Document Server

    Mahner, Edgar; Hansen, Jan; Page, Eric; Vincke, H

    2004-01-01

    During heavy ion operation, large pressure rises, up to a few orders of magnitude, were observed at CERN, GSI, and BNL. The dynamic pressure rises were triggered by lost beam ions that impacted onto the vacuum chamber walls and desorbed about 10/sup 4/ to 10/sup 7/ molecules per ion. The deterioration of the dynamic vacuum conditions can enhance charge-exchange beam losses and can lead to beam instabilities or even to beam abortion triggered by vacuum interlocks. Consequently, a dedicated measurement of heavy-ion induced molecular desorption in the GeV/u energy range is important for Large Hadron Collider (LHC) ion operation. In 2003, a desorption experiment was installed at the super proton synchrotron to measure the beam-loss induced pressure rise of potential LHC collimator materials. Samples of bare graphite, sputter coated (Cu, TiZrV) graphite, and 316 LN (low carbon with nitrogen) stainless steel were irradiated under grazing angle with 158 GeV/u indium ions. After a description of the new experimental ...

  5. Beam-loss induced pressure rise of Large Hadron Collider collimator materials irradiated with 158 GeV/u In49+ ions at the CERN Super Proton Synchrotron

    Science.gov (United States)

    Mahner, E.; Efthymiopoulos, I.; Hansen, J.; Page, E.; Vincke, H.

    2004-10-01

    During heavy ion operation, large pressure rises, up to a few orders of magnitude, were observed at CERN, GSI, and BNL. The dynamic pressure rises were triggered by lost beam ions that impacted onto the vacuum chamber walls and desorbed about 104 to 107 molecules per ion. The deterioration of the dynamic vacuum conditions can enhance charge-exchange beam losses and can lead to beam instabilities or even to beam abortion triggered by vacuum interlocks. Consequently, a dedicated measurement of heavy-ion induced molecular desorption in the GeV/u energy range is important for Large Hadron Collider (LHC) ion operation. In 2003, a desorption experiment was installed at the Super Proton Synchrotron to measure the beam-loss induced pressure rise of potential LHC collimator materials. Samples of bare graphite, sputter coated (Cu, TiZrV) graphite, and 316LN (low carbon with nitrogen) stainless steel were irradiated under grazing angle with 158 GeV/u indium ions. After a description of the new experimental setup, the results of the pressure rise measurements are presented, and the derived desorption yields are compared with data from other experiments.

  6. Electron lenses for super-colliders

    CERN Document Server

    Shiltsev, Vladimir D

    2016-01-01

    This book provides a comprehensive overview of the operating principles and technology of electron lenses in supercolliders.  Electron lenses are a novel instrument for high energy particle accelerators, particularly for the energy-frontier superconducting hadron colliders, including the Tevatron, RHIC, LHC and future very large hadron colliders.  After reviewing the issues surrounding beam dynamics in supercolliders, the book offers an introduction to the electron lens method and its application.  Further chapters describe the technology behind the electron lenses which have recently been proposed, built and employed for compensation of beam-beam effects and for collimation of high-energy high-intensity beams, for compensation of space-charge effects and several other applications in accelerators. The book will be an invaluable resource for those involved in the design, construction and operation of the next generation of hadron colliders.

  7. Beam-beam issues in asymmetric colliders

    Energy Technology Data Exchange (ETDEWEB)

    Furman, M.A.

    1992-07-01

    We discuss generic beam-beam issues for proposed asymmetric e{sup +}- e{sup -} colliders. We illustrate the issues by choosing, as examples, the proposals by Cornell University (CESR-B), KEK, and SLAC/LBL/LLNL (PEP-II).

  8. Optical data transmission at the superconducting super collider

    Energy Technology Data Exchange (ETDEWEB)

    Leskovar, B. [Lawrence Berkeley Lab., CA (United States)

    1989-04-01

    Digital and analog data transmissions via fiber optics for the Superconducting Super Collider have been investigated. The state of the art of optical transmitters, low loss fiber waveguides, receivers and associated electronics components are reviewed and summarized. Emphasis is placed on the effects of the radiation environment on the performance of an optical data transmission system components. Also, the performance of candidate components of the wide band digital and analog transmission systems intended for deployment in the Superconducting Super Collider Detector is discussed.

  9. Coherent bremsstrahlung at colliding beams

    Energy Technology Data Exchange (ETDEWEB)

    Ginzburg, I.F. (Inst. of Mathematics, Novosibirsk (Russia)); Kotkin, G.L.; Serbo, V.G. (Novosibirsk State Univ. (Russia)); Polityko, S.I. (Irkutsk State Univ. (Russia))

    1992-07-30

    We consider a new type of radiation at colliders with short bunches - coherent bremsstrahlung (CBS). CBS can be treated as radiation of the first bunch particles caused by the collective electromagnetic field of the short second bunch. A general method for the calculation of this CBS is presented. The number of CBS photons per single collision is dN{sub {gamma}}{approx equal}N{sub 0}dE{sub {gamma}}/E{sub {gamma}} in the energy range E{sub {gamma}}colliders VEPP-4M, BEPC, CESR, TRISTAN the quantity N{sub 0}{approx equal}10{sup 8} and E{sub c}{approx equal}1-100 keV. Unusual properties of CBS and the possibility of using CBS for measuring the beam parameters are discussed. (orig.).

  10. Recent SuperB Design Choices Improve Next-Generation e e___ B-Factory Collider

    Energy Technology Data Exchange (ETDEWEB)

    Wittmer, W.; Bertsche, K.; Chao, A.; Novokhatski, A.; Nosochkov, Y.; Seeman, J.; Sullivan, M.K.; Wienands, U.; /SLAC; Bogomyagkov, A.V.; Levichev, E.; Nikitin, S.; Piminov, P.; Shatilov, D.; Sinyatkin, S.; Vobly, P.; Okunev, I.N.; /Novosibirsk, IYF; Bolzon, B.; Brunetti, L.; Jeremie, A.; /Annecy, LAPP; Biagini, M.E.; Boni, R.; /Frascati /INFN, Pisa /Pisa U. /INFN, Genoa /Genoa U. /CERN /Orsay, LAL /Saclay

    2011-08-19

    The SuperB international team continues to optimize the design of an electron-positron collider, which will allow the enhanced study of the origins of flavor physics. The project combines the best features of a linear collider (high single-collision luminosity) and a storage-ring collider (high repetition rate), bringing together all accelerator physics aspects to make a very high luminosity of 10{sup 36} cm{sup -2} sec{sup -1}. This asymmetric-energy collider with a polarized electron beam will produce hundreds of millions of B-mesons at the {Upsilon}(4S) resonance. The present design is based on extremely low emittance beams colliding at a large Piwinski angle to allow very low {beta}*{sub y} without the need for ultra short bunches. Use of crab-waist sextupoles will enhance the luminosity, suppressing dangerous resonances and allowing for a higher beam-beam parameter. The project has flexible beam parameters, improved dynamic aperture, and spin-rotators in the Low Energy Ring for longitudinal polarization of the electron beam at the Interaction Point. Optimized for best colliding-beam performance, the facility may also provide high-brightness photon beams for synchrotron radiation applications.

  11. Beam-loss induced pressure rise of Large Hadron Collider collimator materials irradiated with 158  GeV/u In^{49+} ions at the CERN Super Proton Synchrotron

    Directory of Open Access Journals (Sweden)

    E. Mahner

    2004-10-01

    Full Text Available During heavy ion operation, large pressure rises, up to a few orders of magnitude, were observed at CERN, GSI, and BNL. The dynamic pressure rises were triggered by lost beam ions that impacted onto the vacuum chamber walls and desorbed about 10^{4} to 10^{7} molecules per ion. The deterioration of the dynamic vacuum conditions can enhance charge-exchange beam losses and can lead to beam instabilities or even to beam abortion triggered by vacuum interlocks. Consequently, a dedicated measurement of heavy-ion induced molecular desorption in the GeV/u energy range is important for Large Hadron Collider (LHC ion operation. In 2003, a desorption experiment was installed at the Super Proton Synchrotron to measure the beam-loss induced pressure rise of potential LHC collimator materials. Samples of bare graphite, sputter coated (Cu, TiZrV graphite, and 316 LN (low carbon with nitrogen stainless steel were irradiated under grazing angle with 158  GeV/u indium ions. After a description of the new experimental setup, the results of the pressure rise measurements are presented, and the derived desorption yields are compared with data from other experiments.

  12. Technology and materials for the Superconducting Super Collider (SSC) project

    Energy Technology Data Exchange (ETDEWEB)

    Shintomi, Takakazu; Ishimaru, Hajime; Unno, Yoshinobu; Arai, Yasuo; Watase, Yoshiyuki; Amako, Katsuya; Kondo, Takahiko (National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan))

    1992-08-01

    The Superconducting Super Collider (SSC) is the accelerator for the research on elementary particle physics, of which the construction was already begun in Texas, USA. Two proton rings comprising about 10,000 superconducting magnets are installed in an underground tunnel with the circumferential length of 87 km, and the proton-proton collision of superhigh energy is realized. This accelerator becomes the largest machine that mankind makes. In this report, among the high-tech and materials used for the SSC, superconducting magnets, super-high vacuum beam pipes, silicon semiconductor detector, the use of VLSI and superhigh density mounting and high speed, large quantity data processing system are taken up, and the outline of those is described. The SSC was planned for the elucidation of Higg's theory. The incidence accelerator group is composed of a linear accelerator and three booster synchrotrons. The particles generated by proton-proton collision are measured, and the discovery of new particles and the study on high energy physical phenomena are carried out. The construction of the accelerator and experimental equipment is carried out by international cooperation. (K.I.).

  13. Beam dynamics issues for linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, R.D.

    1987-09-01

    In this paper we discuss various beam dynamics issues for linear colliders. The emphasis is to explore beam dynamics effects which lead to an effective dilution of the emittance of the beam and thus to a loss of luminosity. These considerations lead to various tolerances which are evaluated for a particular parameter set.

  14. Collider and Detector Protection at Beam Accidents

    Science.gov (United States)

    Rakhno, I. L.; Mokhov, N. V.; Drozhdin, A. I.

    2003-12-01

    Dealing with beam loss due to abort kicker prefire is considered for hadron colliders. The prefires occured at Tevatron (Fermilab) during Run I and Run II are analyzed and a protection system implemented is described. The effect of accidental beam loss in the Large Hadron Collider (LHC) at CERN on machine and detector components is studied via realistic Monte Carlo calculations. The simulations show that beam loss at an unsynchronized beam abort would result in severe heating of conventional and superconducting magnets and possible damage to the collider detector elements. A proposed set of collimators would reduce energy deposition effects to acceptable levels. Special attention is paid to reducing peak temperature rise within the septum magnet and minimizing quench region length downstream of the LHC beam abort straight section.

  15. SuperB: Next-Generation e+e− B-factory Collider

    CERN Document Server

    Novokhatski, A; Chao, A; Nosochkov, Y; Seeman, J T; Sullivan, M K; Wienands, J T; Wittmer, W; Baylac, M A; Bourrion, O; Monseu, N; Vescovi, C; Bettoni, S; Biagini, M E; Boni, R; Boscolo, M; Demma, T; Drago, A; Esposito, M; Guiducci, S; Preger, M A; Raimondi, P; Tomassini, S; Zobov, M; Bogomyagkov, A V; Nikitin, S A; Piminov, P A; Shatilov, D N; Sinyatkin, S V; Vobly, P; Bolzon, B; Brunetti, L; Jeremie, A; A. Chancé; Fabbricatore, P; Farinon, S; Musenich, R; Liuzzo, S M; Paoloni, E; Okunev, I N; Poirier, F; Rimbault, C; Variola, A

    2011-01-01

    The SuperB international team continues to optimize the design of an electron-positron collider, which will allow the enhanced study of the origins of flavor physics. The project combines the best features of a linear collider (high single-collision luminosity) and a storage-ring collider (high repetition rate), bringing together all accelerator physics aspects to make a very high luminosity of 1036 cm-2 s-1. This asymmetric-energy collider with a polarized electron beam will produce hundreds of millions of B-mesons at the Y(4S) resonance. The present design is based on extremely low emittance beams colliding at a large Piwinski angle to allow very low ßy* without the need for ultra short bunches. Use of crab-waist sextupoles will enhance the luminosity, suppressing dangerous resonances and allowing for a higher beam-beam parameter. The project has flexible beam parameters, improved dynamic aperture, and spin-rotators in the Low Energy Ring for longitudinal polarization of the electron beam at the Interactio...

  16. Computer protection plan for the Superconducing Super Collider Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, S.

    1992-04-15

    The purpose of this document is to describe the current unclassified computer security program practices, Policies and procedures for the Superconducting Super Collider Laboratory (SSCL). This document includes or references all related policies and procedures currently implemented throughout the SSCL. The document includes security practices which are planned when the facility is fully operational.

  17. Photon collider beam simulation with CAIN

    Indian Academy of Sciences (India)

    Aleksander Filip Żarnecki

    2007-11-01

    The CAIN simulation program was used to study the outgoing beam profile for the photon collider at ILC. The main aim of the analysis was to verify the feasibility of the photon linear collider running with 20 mrad electron beam crossing angle. The main problem is the distorted electron beam, which has to be removed from the interaction region. It is shown that with a new design of the final dipole, it should be possible to avoid large energy losses at the face of the magnet.

  18. Beam instrumentation for the Tevatron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Ronald S.; Jansson, Andreas; Shiltsev, Vladimir; /Fermilab

    2009-10-01

    The Tevatron in Collider Run II (2001-present) is operating with six times more bunches and many times higher beam intensities and luminosities than in Run I (1992-1995). Beam diagnostics were crucial for the machine start-up and the never-ending luminosity upgrade campaign. We present the overall picture of the Tevatron diagnostics development for Run II, outline machine needs for new instrumentation, present several notable examples that led to Tevatron performance improvements, and discuss the lessons for future colliders.

  19. Probing LINEAR Collider Final Focus Systems in SuperKEKB

    CERN Document Server

    Thrane, Paul Conrad Vaagen

    2017-01-01

    A challenge for future linear collider final focus systems is the large chromaticity produced by the final quadrupoles. SuperKEKB will be correcting high levels of chromaticity using the traditional scheme which has been also proposed for the CLIC FFS. We present early simulation results indicating that lowering β*у in the SuperKEKB Low Energy Ring might be possible given on-axis injection and low bunch current, opening the possibility of testing chromaticity correction beyond FFTB level, similar to ILC and approaching that of CLIC. CLIC – Note – 1077

  20. Audit of controls over Superconducting Super Collider Laboratory subcontractor expenditures

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-22

    In January 1989 the Department of Energy contracted with Universities Research Association, Inc. to design, construct, manage, operate, and maintain the Superconducting Super Collider Laboratory. Through Fiscal Year 1992, costs for subcontractor goods and services accounted for about 75 percent of the Superconducting Super Collider Laboratory expenditures. The Office of Inspector General evaluated the adequacy of controls in place to ensure that subcontractor costs were reasonable, as required by the contract. The following conclusions were drawn from the audit. The Superconducting Super Collider Laboratory did not consistently exercise prudent business judgment in making subcontractor expenditures. As a result, $60 million in expenditures already made and $128 million planned with commercial subcontractors were, in the authors opinion, unnecessary, excessive, or represented uncontrolled growth. The audit also found inadequate justifications, accountability, and cost controls over $143 million in expenditures made and $47 million planned with other Department of Energy laboratories. Improvements were needed in subcontract administration and internal controls, including appropriate audit coverage of the subcontracts. In addition, Department of Energy guidance concerning procurement actions between the laboratories needed to be established.

  1. Two-Beam Linear Colliders - Special Issues

    CERN Document Server

    Corsini, Roberto

    2010-01-01

    The path towards a multi-TeV e+e- linear collider proposed by the CLIC study is based on the Two-Beam Acceleration (TBA) scheme. Such a scheme is promising in term of efficiency, reliability and cost. The rationale behind the two-beam scheme is discussed in the paper, together with the special issues related to this technology and the R&D needed to demonstrate its feasibility.

  2. Colliding beam physics at Fermilab: interaction regions, beam storage, antiproton cooling, production, and colliding

    Energy Technology Data Exchange (ETDEWEB)

    Walker, J.K. (ed.)

    1977-01-01

    The purpose of the colliding beams experment department at Fermilab was to bring about collisions of the stored beams in the energy doubler/saver and main ring, and construct experimental areas with appropriate detectors. To explore the feasibility of using the main ring as a storage device, several studies were carried out to investigate beam growth, loss, and the backgrounds in detectors at possible intersection regions. This range of developments constituted the major topics at the 1977 Summer Study reported here. Emphasis in part one is on interaction regions, beam storage, antiproton cooling, production, and colliding. 40 papers from this part are included in the data base. (GHT)

  3. Optical trapping with Super-Gaussian beams

    CSIR Research Space (South Africa)

    McLaren, M

    2013-04-01

    Full Text Available We outline the possibility of optical trapping and tweezing with Super-Gaussian beam profiles. We show that the trapping strength can be tuned continuously by adjusting the order of a Super-Gaussian beam, approaching that of a perfect Gaussian...

  4. Beam-beam observations in the Relativistic Heavy Ion Collider

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Y. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Fischer, W. [Brookhaven National Laboratory (BNL), Upton, NY (United States); White, S. [Brookhaven National Laboratory (BNL), Upton, NY (United States)

    2015-06-24

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory has been operating since 2000. Over the past decade, thanks to the continuously increased bunch intensity and reduced β*s at the interaction points, the maximum peak luminosity in the polarized proton operation has been increased by more than two orders of magnitude. In this article, we first present the beam-beam observations in the previous RHIC polarized proton runs. Then we analyze the mechanisms for the beam loss and emittance growth in the presence of beam-beam interaction. The operational challenges and limitations imposed by beam-beam interaction and their remedies are also presented. In the end, we briefly introduce head-on beam-beam compensation with electron lenses in RHIC.

  5. Control Surveys for Underground Construction of the Superconducting Super Collider

    Energy Technology Data Exchange (ETDEWEB)

    Greening, W.J.Trevor; Robinson, Gregory L.; /Measurment Science Inc.; Robbins, Jeffrey S.; Ruland, Robert E.; /SLAC

    2005-08-16

    Particular care had to be taken in the design and implementation of the geodetic control systems for the Superconducting Super Collider (SSC) due to stringent accuracy requirements, the demanding tunneling schedule, long duration and large size of the construction effort of the project. The surveying requirements and the design and implementation of the surface and underground control scheme for the precise location of facilities which include approximately 120 km of bored tunnel are discussed. The methodology used for the densification of the surface control networks, the technique used for the transfer of horizontal and vertical control into the underground facilities, and the control traverse scheme employed in the tunnels is described.

  6. SSC (Superconducting Super Collider) dipole coil production tooling

    Energy Technology Data Exchange (ETDEWEB)

    Carson, J.A.; Barczak, E.J.; Bossert, R.C.; Brandt, J.S.; Smith, G.A.

    1989-03-01

    Superconducting Super Collider dipole coils must be produced to high precision to ensure uniform prestress and even conductor distribution within the collared coil assembly. Tooling is being prepared at Fermilab for the production of high precision 1M and 16.6M SSC dipole coils suitable for mass production. The design and construction methods builds on the Tevatron tooling and production experience. Details of the design and construction methods and measured coil uniformity of 1M coils will be presented. 4 refs., 10 figs.

  7. Control Surveys for Underground Construction of the Superconducting Super Collider

    Energy Technology Data Exchange (ETDEWEB)

    Greening, W.J.Trevor; Robinson, Gregory L.; /Measurment Science Inc.; Robbins, Jeffrey S.; Ruland, Robert E.; /SLAC

    2005-08-16

    Particular care had to be taken in the design and implementation of the geodetic control systems for the Superconducting Super Collider (SSC) due to stringent accuracy requirements, the demanding tunneling schedule, long duration and large size of the construction effort of the project. The surveying requirements and the design and implementation of the surface and underground control scheme for the precise location of facilities which include approximately 120 km of bored tunnel are discussed. The methodology used for the densification of the surface control networks, the technique used for the transfer of horizontal and vertical control into the underground facilities, and the control traverse scheme employed in the tunnels is described.

  8. Longitudinal Beam Stability in the SUPER B-FACTORY

    Energy Technology Data Exchange (ETDEWEB)

    Novokhatski, A.; /SLAC; Zobov, M.; /Frascati

    2009-07-06

    We give an overview of wake fields and impedances in a proposed Super B project, which is based on extremely low emittance beams colliding at a large angle with a crab waist transformation. Understanding the effects that wake fields have on the beam is critical for a successful machine operation. We use our combined experience from the operation of the SLAC B-factory and DA{Phi}NE {Phi}-factory to eliminate strong HOM sources and minimize the chamber impedance in the Super B design. Based on a detailed study of the wake fields in this design we have developed a quasi-Green's function for the entire ring that is used to study bunch lengthening and beam stability. In particular, we check the stability threshold using numerical solutions of the Fokker-Plank equation. We also make a comparison of numerical simulations with the bunch lengthening data in the B- factory.

  9. Beam loss mechanisms in relativistic heavy-ion colliders

    CERN Document Server

    Bruce, Roderik; Gilardoni, S; Wallén, E

    2009-01-01

    The Large Hadron Collider (LHC), the largest particle accelerator ever built, is presently under commissioning at the European Organization for Nuclear Research (CERN). It will collide beams of protons, and later Pb82+ ions, at ultrarelativistic energies. Because of its unprecedented energy, the operation of the LHC with heavy ions will present beam physics challenges not encountered in previous colliders. Beam loss processes that are harmless in the presently largest operational heavy-ion collider, the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory, risk to cause quenches of superconducting magnets in the LHC. Interactions between colliding beams of ultrarelativistic heavy ions, or between beam ions and collimators, give rise to nuclear fragmentation. The resulting isotopes could have a charge-to-mass ratio different from the main beam and therefore follow dispersive orbits until they are lost. Depending on the machine conditions and the ion species, these losses could occur in loca...

  10. Preliminary report on the design of the Superconducting Super Collider

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1986-01-01

    While a rather detailed Conceptual Design Report will be available in April, an Superconducting Super Collider (SSC) it is appropriate to give a preview, now that the primary parameters for the Conceptual Design Report have been put down. In this preview the leading two chapters give the historical and scientific-technical background for the SSC and deal at somelength with the physics issues to be explored by the SSC. A third chapter reviews briefly the engineering and accelerator physics foundations for the developing SSC design, while the fourth lists the primary design parameters and describes the overall design. The fifth chapter describes briefly the principal engineering systems that will appear in the Conceptual Design Report, including the rather extensive injector system required. A sixth and final chapter outlines the beginnings of a ``construction plan`` put together for the purposes of exploring practical schedules and defining the critical design, development and planning paths for the overall facility and its major sub-systems.

  11. Short sample testing facility for the Superconducting Super Collider

    Energy Technology Data Exchange (ETDEWEB)

    Zbasnik, J.; Scanlan, R.; Taylor, C.; Peters, C.; Pope, W.; Royet, J. (Lawrence Berkeley Lab., CA (USA))

    1989-06-01

    In this paper we present the system requirements of the apparatus measuring the short sample critical current of the cable for the Superconducting Super Collider (SSC), and the current status of our development work. Key features of the system presented here are: a sample holder which clamps the samples sufficiently well such that no training quenches are required to perform critical current measurements and another which may allow for faster sample mounting; voltage tap boards using a printed-circuit technique which eliminates the necessity of soldering wires for the voltage measurements; a 1-m ling, 5-cm-bore dipole magnet with close-in iron designed to produce 7.5 T with a 6000 A excitation current; and an air-lock system that allows repeated sample changes without the magnet chamber being contaminated with air and other impurities. 7 refs., 6 figs.

  12. Laser cooling of electron beams for linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Telnov, V.

    1996-10-01

    A novel method of electron beam cooling is considered which can be used for linear colliders. The electron beam is cooled during collision with focused powerful laser pulse. With reasonable laser parameters (laser flash energy about 10 J) one can decrease transverse beam emittances by a factor about 10 per one stage. The ultimate transverse emittances are much below that given by other methods. Depolarization of a beam during the cooling is about 5--15% for one stage. This method is especially useful for photon colliders and open new possibilities for e{sup +}e{sup {minus}} colliders and x-ray FEL based on high energy linacs.

  13. Superconducting Super Collider: A step in the 21st century

    Science.gov (United States)

    McAshan, M.

    1991-08-01

    The development of superconducting materials and the development of helium temperature refrigeration technology have both been propelled by their wide application in large-scale scientific research. The development of materials and technology for the Tevatron proton storage ring at Fermi National Accelerator Laboratory, Batavia, IL USA, in the decade of the seventies provided the basis in the decade of the eighties, for example, for the use of superconducting helium-cooled whole-body magnets for magnetic resonance imaging in medical diagnosis. In the decade of the nineties a number of particle accelerators for high energy physics will be constructed in national and international laboratories around the world. These devices will employ superconductivity on an ambitious scale, and their operation will require more than double the amount of helium refrigeration capacity now installed worldwide. This large increase in the use of helium refrigeration will have a significant effect on the technology and on the industry that produces it. The largest of these accelerator projects is the Superconducting Super Collider (SSC) now under construction at a new laboratory near Dallas, TX USA. This report discusses the development of this cryogenic system for the SSC magnets.

  14. Transverse beams stability studies at the Large Hadron Collider

    CERN Document Server

    Buffat, Xavier; Pieloni, Tatiana

    2015-01-30

    A charged particle beam travelling at the speed of light produces large electromagnetic wake fields which, through interactions with its surroundings, act back on the particles in the beam. This coupled system may become unstable, resulting in a deterioration of the beam quality. Such effects play a major role in most existing storage rings, as they limit the maximum performance achievable. In a collider, the presence of a second beam significantly changes the dynamics, as the electromagnetic interactions of the two beams on each other are usually very strong and may, also, limit the collider performances. This thesis treats the coherent stability of the two beams in a circular collider, including the effects of the electromagnetic wake fields and of the beam-beam interactions, with particular emphasis on CERN's Large Hadron Collider. As opposed to other colliders, this machine features a large number of bunches per beam each experiencing multiple long-range and head-on beam-beam interactions. Existing models...

  15. High energy accelerator and colliding beam user group

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    This report discusses the following topics: OPAL experiment at LEP; D{phi} experiment at Fermilab; deep inelastic muon interactions at TEV II; CYGNUS experiment; final results from {nu}{sub e}{sup {minus}e} elastic scattering; physics with CLEO detector at CESR; results from JADE at PETRA; rare kaon-decay experiment at BNL; search for top quark; and super conducting super collider activities.

  16. The SPL-based Neutrino Super Beam

    CERN Document Server

    Baussan, E; Bobeth, C; Bouquerel, E; Caretta, O; Cupial, P; Davenne, T; Densham, C; Dracos, M; Fitton, M; Gaudiot, G; Kozien, M; Lacny, L; Lepers, B; Longhin, A; Loveridge, P; Osswald, F; Poussot, P; Rooney, M; Skoczen, B; Szybinski, B; Ustrzycka, A; Vassilopoulos, N; Wilcox, D; Wroblewski, A; Wurtz, J; Zeter, V; Zito, M

    2012-01-01

    The EUROnu Super Beam work package has studied a neutrino beam based on SPL at CERN and aimed at MEMPHYS, a large water Cherenkov detector, proposed for the Laboratoire Souterrain de Modane (Fr\\'ejus tunnel, France), with a baseline of 130 km. The aim of this proposed experiment is to study the CP violation in the neutrino sector. In the study reported here, we have developed the conceptual design of the neutrino beam, especially the target and the magnetic focusing device. Indeed, this beam present several unprecedented challenges, like the high primary proton beam power (4 MW), the high repetition rate (50 Hz) and the low energy of the protons (4.5 GeV). The design is completed by a study of all the main component of the system, starting from the transport system to guide the beam to the target up to the beam dump.

  17. Colliders

    CERN Document Server

    Chou, Weiren

    2014-01-01

    The idea of colliding two particle beams to fully exploit the energy of accelerated particles was first proposed by Rolf Wideröe, who in 1943 applied for a patent on the collider concept and was awarded the patent in 1953. The first three colliders — AdA in Italy, CBX in the US, and VEP-1 in the then Soviet Union — came to operation about 50 years ago in the mid-1960s. A number of other colliders followed. Over the past decades, colliders defined the energy frontier in particle physics. Different types of colliers — proton–proton, proton–antiproton, electron–positron, electron–proton, electron-ion and ion-ion colliders — have played complementary roles in fully mapping out the constituents and forces in the Standard Model (SM). We are now at a point where all predicted SM constituents of matter and forces have been found, and all the latest ones were found at colliders. Colliders also play a critical role in advancing beam physics, accelerator research and technology development. It is timel...

  18. SSC [Superconducting Super Collider] Project: Technical Training for the Future of Texas. Navarro College/Dallas Community College District. Final Report for Year One.

    Science.gov (United States)

    Orsak, Charles; McGlohen, Patti J.

    The Superconducting Super Collider Laboratory (SSCL) is a national lab for research on the fundamental forces and constituents of the universe. A major part of the research will involve an oval ring 54 miles in circumference through which superconducting magnets will steer two beams of protons in opposite directions. In response to the…

  19. Beam dump experiment at future electron–positron colliders

    Directory of Open Access Journals (Sweden)

    Shinya Kanemura

    2015-12-01

    Full Text Available We propose a new beam dump experiment at future colliders with electron (e− and positron (e+ beams, BDee, which will provide a new possibility to search for hidden particles, like hidden photon. If a particle detector is installed behind the beam dump, it can detect the signal of in-flight decay of the hidden particles produced by the scatterings of e± beams off materials for dumping. We show that, compared to past experiments, BDee (in particular BDee at e+e− linear collider significantly enlarges the parameter region where the signal of the hidden particle can be discovered.

  20. Intense ion-beam dynamics in the NICA collider

    Science.gov (United States)

    Kozlov, O. S.; Meshkov, I. N.; Sidorin, A. O.; Trubnikov, G. V.

    2016-12-01

    The problems of intense ion-beam dynamics in the developed and optimized optical structure of the NICA collider are considered. Conditions for beam collisions and obtaining the required parameters of luminosity in the operation energy range are discussed. The restriction on collider luminosity is related to effects of the domination of the space charge and intrabeam scattering. Applying methods of cooling, electron and stochastic ones, will permit one to suppress these effects and reach design luminosity. The work also deals with systems of magnetic field correction and problems of calculating the dynamic aperture of the collider.

  1. Plans for Neutrino Super Beams in Europe

    CERN Document Server

    Dracos, Marcos

    2010-01-01

    Neutrino Super Beams use conventional techniques to increase the neutrino beam intensity compared to the present neutrino facilities. The first part of these facilities consists of an intense proton driver producing a beam higher than a MW power. The protons hit a target able to afford the high proton beam intensity. The produced charged particles are focused by a system of magnetic horns towards the experiment detectors. The main challenge of these projects is to produce elements able to resist to the high beam intensity for many years. New high power neutrino facilities could be build at CERN profiting from the LHC upgrades. For this reason, the initial design of these upgrades has to include the possibility to go to high power facilities.

  2. Beam-size effect and particle losses at Super$B$ factory developed in Italy

    CERN Document Server

    Kotkin, G L

    2009-01-01

    In the colliders, the macroscopically large impact parameters give a substantial contribution to the standard cross section of the $e^+ e^- \\to e^+ e^- \\gamma$ process. These impact parameters may be much larger than the transverse sizes of the colliding bunches. It means that the standard cross section of this process has to be substantially modified. In the present paper such a beam-size effect is calculated for bremsstrahlung at Super$B$ factory developed in Italy. We find out that this effect reduces beam losses due to bremsstrahlung by about 40%.

  3. Colliding. gamma. e- and. gamma gamma. -beams on the basis of electron-positron linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Ginzburg, I.F.; Kotkin, G.L.; Serbo, V.G.; Tel' nov, V.I.

    1983-08-01

    Main properties of the ..gamma..e and ..gamma gamma.. collisions are discussed in some detail with application to the generation of colliding ..gamma..e and ..gamma gamma.. beams basing on the designed linear accelerators with colliding e/sup +/e/sup -/ beams, VLEEP and SLC, as it was proposed in a previous work. Intensive ..gamma.. beams with the energy 50 GeV would be produced from scattering of the laser light focused to the electron beams of the accelerators. Laser radiation is focused to the electron beam in the conversion region at a distance of about 10 cm from the place of collision. After scattering on electrons high-energy photons move practically along the electron primary trajectories and are focused in the collision region. The electrons are deflected from the collision region by means of approximately 1 T magnetic field. Then the produced ..gamma..-beam collides with an electron beam or a similar ..gamma..-beam. In the case when the maximum luminosity (L) is attained, the luminosity distribution in the invariant mass of the ..gamma..e or ..gamma gamma.. systems is wide. A monochromatization of the collisions up to the level of 5-10% is possible. That will entail a decrease in the luminosity, the procedure is most effective if one uses the electrons and the laser photons with opposite helicities. Examples of physically interesting problems to be investigated with the proposed ..gamma..e and ..gamma gamma.. beams are suggested.

  4. Report of the group on beam-beam effects in circular colliders

    Energy Technology Data Exchange (ETDEWEB)

    Furman, M.A.

    1991-05-01

    We present a summary of the discussions and conclusions of the working group on beam-beam effects for circular colliders. This group was part of the larger beam-beam dynamics group at the 7th ICFA Workshop on Beam Dynamics, on the subject Beam-Beam and Beam-Radiation Interactions,'' held at UCLA, May 13--16, 1991. 15 refs.

  5. Beam-Beam Scans Within a Linear Collider Bunch-Train Crossing

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S.R.; /SLAC

    2006-02-22

    Beam-beam deflection scans provide important beam diagnostics at the interaction point of a linear collider. Beam properties such as spot sizes, alignment, and waists are measured by sweeping one beam across the other. Proposed linear colliders use trains of bunches; if beam-beam scans can be done within the time of a bunch-train crossing rather than integrating over the bunch train, the acquisition rate of diagnostic information can be increased and the sensitivity of the scan to pulse-to-pulse jitter and slow drifts reduced. The existence of intra-train deflection feedback provides most of the hardware needed to implement intra-train beam-beam scans for diagnostic purposes. A conceptual design is presented for such beam-beam scans at the Next Linear Collider (NLC).

  6. N=4 Super-Yang-Mills Theory, QCD and Collider Physics

    CERN Document Server

    Bern, Z; Kosower, D A

    2004-01-01

    We review how (dimensionally regulated) scattering amplitudes in N=4 super-Yang-Mills theory provide a useful testing ground for perturbative QCD calculations relevant to collider physics, as well as another avenue for investigating the AdS/CFT correspondence. We describe the iterative relation for two-loop scattering amplitudes in N=4 super-Yang-Mills theory found in C. Anastasiou et al., Phys. Rev. Lett. 91:251602 (2003), and discuss recent progress toward extending it to three loops.

  7. Simulation of Head-on Beam-Beam Limitations in Future High Energy Colliders

    CERN Document Server

    Buffat, Xavier; Florio, Adrien; Pieloni, Tatiana; Tambasco, Claudia

    2016-01-01

    The Future Circular Hadron Collider (FCC-hh) project calls for studies in a new regime of beam-beam interactions. While the emittance damping due to synchrotron radiation is still slower than in past or existing lepton colliders, it is significantly larger than in other hadron colliders. The slow reduction of the emittance is profitable for higher luminosity in term of transverse beam size at the interaction points and also to mitigate long-range beam-beam effects, potentially allowing for a reduction of the crossing angle between the beams during the operation. In such conditions, the strength of head-on beam-beam interactions increases, potentially limiting the beam brightness. 4D weak-strong and strong-strong simulations are performed in order to assess these limitations.

  8. The International Linear Collider beam dumps

    OpenAIRE

    Appleby, R.; Keller, L; Markiewicz, T.; Seryi, A.; Sugahara, R.; Walz, D.

    2006-01-01

    The ILC beam dumps are a key part of the accelerator design. At Snowmass 2005, the current status of the beam dump designs were reviewed, and the options for the overall dump layout considered. This paper describes the available dump options for the baseline and the alternatives and considers issues for the dumps that require resolution.

  9. Contracting practices for the underground construction of the Superconducting Super Collider

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    This report was prepared by a specially appointed committee under the auspices of the National Academy of Sciences/National Research Council to address contracting and associated management issues essential to the successful execution of underground construction for the Superconducting Super Collider.

  10. Data acquisition and online processing requirements for experimentation at the Superconducting Super Collider

    Energy Technology Data Exchange (ETDEWEB)

    Lankford, A.J.; Barsotti, E.; Gaines, I.

    1989-07-01

    Differences in scale between data acquisition and online processing requirements for detectors at the Superconducting Super Collider and systems for existing large detectors will require new architectures and technological advances in these systems. Emerging technologies will be employed for data transfer, processing, and recording. 9 refs., 3 figs.

  11. Beam physics in future electron hadron colliders

    CERN Document Server

    Valloni, A; Klein, M; Schulte, D; Zimmermann, F

    2013-01-01

    High-energy electron-hadron collisions could support a rich research programme in particle and nuclear physics. Several future projects are being proposed around the world, in particular eRHIC at BNL, MEIC at TJNAF in the US, and LHeC at CERN in Europe. This paper will highlight some of the accelerator physics issues, and describe related technical developments and challenges for these machines. In particular, optics design and beam dynamics studies are discussed, including longitudinal phase space manipulation, coherent synchrotron radiation, beam-beam kink instability, ion effects, as well as mitigation measures for beam break up and for space-charge induced emittance growth, all of which could limit the machine performance. Finally, first steps are presented towards an LHeC R&D facility, which should investigate relevant beam-physics processes.

  12. Beam-size effect and particle losses at SuperB factory developed in Italy

    Energy Technology Data Exchange (ETDEWEB)

    Kotkin, G L; Serbo, V G [Novosibirsk State University, 630090, Novosibirsk, Pirogova st., 2 (Russian Federation)], E-mail: serbo@math.nsc.ru

    2009-06-15

    In the colliders, the macroscopically large impact parameters give a substantial contribution to the standard cross section of the e{sup +}e{sup -}{yields} e{sup +}e{sup -}{gamma} process. These impact parameters may be much larger than the transverse sizes of the colliding bunches. It means that the standard cross section of this process has to be substantially modified. In the present paper such a beam-size effect is calculated for bremsstrahlung at SuperB factory developed in Italy. We find out that this effect reduces beam losses due to bremsstrahlung by about 40%. We perform a critical comparison of our result with that presented in the Conceptual Design Report of the Italian SuperB factory.

  13. A concept of the photon collider beam dump

    CERN Document Server

    Shekhtman, L I

    2014-01-01

    Photon beams at photon colliders are very narrow, powerful (10--15 MW) and cannot be spread by fast magnets (because photons are neutral). No material can withstand such energy density. For the ILC-based photon collider, we suggest using a 150 m long, pressurized (P ~ 4 atm) argon gas target in front of a water absorber which solves the overheating and mechanical stress problems. The neutron background at the interaction point is estimated and additionally suppressed using a 20 m long hydrogen gas target in front of the argon.

  14. Colliding beam physics at Fermilab: detector considerations, general topics

    Energy Technology Data Exchange (ETDEWEB)

    Walker, J.K. (ed.)

    1977-01-01

    The purpose of the Colliding Beams Experiment Department at Fermilab was to bring about collisions of the stored beams in the energy Doubler/Saver and Main Ring, and construct experimental areas with appropriate detectors. To explore the feasibility of using the Main Ring as a storage device, several studies were carried out to investigate beam growth, loss, and the backgrounds in detectors at possible intersection regions. This range of developments constituted the major topics at the 1977 Summer Study reported here. Emphasis in part two is on detector considerations and general topics. 22 papers from this part are included in the data base. (GHT)

  15. Dielectric Collimators for Linear Collider Beam Delivery System

    CERN Document Server

    Kanareykin, A; Baturin, S; Tomás, R

    2011-01-01

    The current status of ILC and CLIC concepts require additional research on wakefield reduction in the collimator sections. New materials and new geometries have been considered recently*. Dielectric collimators for the CLIC Beam Delivery System have been discussed with a view to minimize the BDS collimation wakefields**. Dielectric collimator concepts for the linear collider are presented in this paper; cylindrical and planar collimators for the CLIC parameters have been considered, and simulations to minimize the beam impedance have been performed. The prototype collimator system is planned to be fabricated and experimentally tested at Facilities for Accelerator Science and Experimental Test Beams (FACET) at SLAC.

  16. Approaches to Beam Stabilization in X-Band Linear Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Frisch, Josef; Hendrickson, Linda; Himel, Thomas; Markiewicz, Thomas; Raubenheimer, Tor; Seryi, Andrei; /SLAC; Burrow, Philip; Molloy, Stephen; White, Glen; /Queen Mary U.

    2006-09-05

    In order to stabilize the beams at the interaction point, the X-band linear collider proposes to use a combination of techniques: inter-train and intra-train beam-beam feedback, passive vibration isolation, and active vibration stabilization based on either accelerometers or laser interferometers. These systems operate in a technologically redundant fashion: simulations indicate that if one technique proves unusable in the final machine, the others will still support adequate luminosity. Experiments underway for all of these technologies have already demonstrated adequate performance.

  17. Final Report - The Decline and Fall of the Superconducting Super Collider

    Energy Technology Data Exchange (ETDEWEB)

    RIORDAN, MICHAEL

    2011-11-29

    In October 1993 the US Congress terminated the Superconducting Super Collider — at the time the largest pure-science project ever attempted, with a total cost estimated to exceed $10 billion. It was a stunning loss for the US highenergy physics community, which until that moment had perched for decades at the pinnacle of American science. Ever since 1993, this once-dominant scientific community has been in gradual decline. With the 2010 startup of research on the CERN Large Hadron Collider and the 2011 shutdown of the Fermilab Tevatron, world leadership in elementary-particle physics has crossed the Atlantic and returned to Europe.

  18. Shielding optimization studies for the detector systems of the Superconducting Super Collider

    Energy Technology Data Exchange (ETDEWEB)

    Slater, C.O.; Lillie, R.A.; Gabriel, T.A.

    1994-09-01

    Preliminary shielding optimization studies for the Superconducting Super Collider`s Solenoidal Detector Collaboration detector system were performed at the Oak Ridge National Laboratory in 1993. The objective of the study was to reduce the neutron and gamma-ray fluxes leaving the shield to a level that resulted in insignificant effects on the functionality of the detector system. Steel and two types of concrete were considered as components of the shield, and the shield was optimized according to thickness, weight, and cost. Significant differences in the thicknesses, weights, and costs were noted for the three optimization parameters. Results from the study are presented.

  19. Beam Induced Hydrodynamic Tunneling in the Future Circular Collider Components

    CERN Document Server

    AUTHOR|(CDS)2083092; Burkart, Florian; Schmidt, Rudiger; Shutov, A; Wollmann, Daniel; Piriz, A

    2016-01-01

    A future circular collider (FCC) has been proposed as a post-Large Hadron Collider accelerator, to explore particle physics in unprecedented energy ranges. The FCC is a circular collider in a tunnel with a circumference of 80–100 km. The FCC study puts an emphasis on proton-proton high-energy and electron-positron high-intensity frontier machines. A proton-electron interaction scenario is also examined. According to the nominal FCC parameters, each of the 50 TeV proton beams will carry an amount of 8.5 GJ energy that is equivalent to the kinetic energy of an Airbus A380 (560 t) at a typical speed of 850  km/h . Safety of operation with such extremely energetic beams is an important issue, as off-nominal beam loss can cause serious damage to the accelerator and detector components with a severe impact on the accelerator environment. In order to estimate the consequences of an accident with the full beam accidently deflected into equipment, we have carried out numerical simulations of interaction of a FCC...

  20. Obtaining slow beam spills at the SSC collider

    Energy Technology Data Exchange (ETDEWEB)

    Ritson, D.

    1993-08-01

    There is substantial interest in providing slow-spill external proton beams in parallel with ``interaction running`` at the 20 TeV SSC collider. The proposal is to cause a flux of particles to impinge on a target consisting of a bent crystal extraction channel. Additionally, a slow spill onto a conventional internal target could be used as a source of secondary beams for physics or test purposes and might also be used for B-physics as proposed for HERA. The ``natural`` beam loss rates from elastic and diffractive beam gas scattering and IP collisions are not sufficient to provide suitably intense external proton beams. To prevent loss of luminosity, the rf excitation is non-linear and preferentially blows up the halo of the beam. The ``target`` is to be located at a region of high dispersion forcing particles at the edge of the momentum space onto the target. T. Lohse in this workshop has described a proposed internal target to be used at HERA that will not employ rf excitation but will use the finite loss rates observed at the HERA machine. The Hera losses are caused by a variety of sources in addition to beam gas scattering or IP interactions. Initially, the beam lifetime at HERA was too short to obtain satisfactory integrated luminosities. Subsequently, through careful attention to detail, the beam lifetime was increased to > 20 hours. Even with these changes, present loss rates provide the required intensity onto an internal target. The Tevatron and SPS proton anti-proton colliders have had similar experiences with their investigations of loss rates and also find that beam lifetimes may be substantially shorter than expected solely from beam gas and IP interactions. This paper proposes deliberately introducing controlled errors li

  1. FIRST BEAM TESTS OF THE MUON COLLIDER TARGET TEST BEAM LINE AT THE AGS.

    Energy Technology Data Exchange (ETDEWEB)

    BROWN,K.A.; GASSNER,D.; GLENN,J.W.; PRIGL,R.; SIMOS,N.; SCADUTO,J.; TSOUPAS,N.

    2001-06-18

    In this report we will describe the muon collider target test beam line which operates off one branch of the AGS switchyard. The muon collider target test facility is designed to allow a prototype muon collider target system to be developed and studied. The beam requirements for the facility are ambitious but feasible. The system is designed to accept bunched beams of intensities up to 1.6 x 10{sup 13} 24 GeV protons in a single bunch. The target specifications require beam spot sizes on the order of 1 mm, 1 sigma rms at the maximum intensity. We will describe the optics design, the instrumentation, and the shielding design. Results from the commissioning of the beam line will be shown.

  2. Beam Induced Hydrodynamic Tunneling in the Future Circular Collider Components

    Science.gov (United States)

    Tahir, N. A.; Burkart, F.; Schmidt, R.; Shutov, A.; Wollmann, D.; Piriz, A. R.

    2016-08-01

    A future circular collider (FCC) has been proposed as a post-Large Hadron Collider accelerator, to explore particle physics in unprecedented energy ranges. The FCC is a circular collider in a tunnel with a circumference of 80-100 km. The FCC study puts an emphasis on proton-proton high-energy and electron-positron high-intensity frontier machines. A proton-electron interaction scenario is also examined. According to the nominal FCC parameters, each of the 50 TeV proton beams will carry an amount of 8.5 GJ energy that is equivalent to the kinetic energy of an Airbus A380 (560 t) at a typical speed of 850 km /h . Safety of operation with such extremely energetic beams is an important issue, as off-nominal beam loss can cause serious damage to the accelerator and detector components with a severe impact on the accelerator environment. In order to estimate the consequences of an accident with the full beam accidently deflected into equipment, we have carried out numerical simulations of interaction of a FCC beam with a solid copper target using an energy-deposition code (fluka) and a 2D hydrodynamic code (big2) iteratively. These simulations show that, although the penetration length of a single FCC proton and its shower in solid copper is about 1.5 m, the full FCC beam will penetrate up to about 350 m into the target because of the "hydrodynamic tunneling." These simulations also show that a significant part of the target is converted into high-energy-density matter. We also discuss this interesting aspect of this study.

  3. Design of beam optics for the Future Circular Collider e+e- -collider rings

    CERN Document Server

    Oide, K.; Aumon, S.; Benedikt, M.; Blondel, A.; Bogomyagkov, A.; Boscolo, M.; Burkhardt, H.; Cai, Y.; Doblhammer, A.; Haerer, B.; Holzer, B.; Jowett, J.M.; Koop, I.; Koratzinos, M.; Levichev, E.; Medina, L.; Ohmi, K.; Papaphilippou, Y.; Piminov, P.; Shatilov, D.; Sinyatkin, S.; Sullivan, M.; Wenninger, J.; Wienands, U.; Zhou, D.; Zimmermann, F.; CERN. Geneva. ATS Department

    2016-01-01

    A beam optics scheme has been designed for the Future Circular Collider-e+e- (FCC-ee). The main characteristics of the design are: beam energy 45 to 175 GeV, 100 km circumference with two interaction points (IPs) per ring, horizontal crossing angle of 30 mrad at the IP and the crab-waist scheme [1] with local chromaticity correction. The crab-waist scheme is implemented within the local chromaticity correction system without additional sextupoles, by reducing the strength of one of the two sextupoles for vertical chromatic correction at each side of the IP. So-called "tapering" of the magnets is applied, which scales all fields of the magnets according to the local beam energy to compensate for the effect of synchrotron radiation (SR) loss along the ring. An asymmetric layout near the interaction region reduces the critical energy of SR photons on the incoming side of the IP to values below 100 keV, while matching the geometry to the beam line of the FCC proton collider (FCC-hh) [2] as closely as possible. Su...

  4. Intense beams at the micron level for the Next Linear Collider

    Energy Technology Data Exchange (ETDEWEB)

    Seeman, J.T.

    1991-08-01

    High brightness beams with sub-micron dimensions are needed to produce a high luminosity for electron-positron collisions in the Next Linear Collider (NLC). To generate these small beam sizes, a large number of issues dealing with intense beams have to be resolved. Over the past few years many have been successfully addressed but most need experimental verification. Some of these issues are beam dynamics, emittance control, instrumentation, collimation, and beam-beam interactions. Recently, the Stanford Linear Collider (SLC) has proven the viability of linear collider technology and is an excellent test facility for future linear collider studies.

  5. Design of beam optics for the future circular collider e+e- collider rings

    Science.gov (United States)

    Oide, K.; Aiba, M.; Aumon, S.; Benedikt, M.; Blondel, A.; Bogomyagkov, A.; Boscolo, M.; Burkhardt, H.; Cai, Y.; Doblhammer, A.; Haerer, B.; Holzer, B.; Jowett, J. M.; Koop, I.; Koratzinos, M.; Levichev, E.; Medina, L.; Ohmi, K.; Papaphilippou, Y.; Piminov, P.; Shatilov, D.; Sinyatkin, S.; Sullivan, M.; Wenninger, J.; Wienands, U.; Zhou, D.; Zimmermann, F.

    2016-11-01

    A beam optics scheme has been designed for the future circular collider-e+e- (FCC-ee). The main characteristics of the design are: beam energy 45 to 175 GeV, 100 km circumference with two interaction points (IPs) per ring, horizontal crossing angle of 30 mrad at the IP and the crab-waist scheme [P. Raimondi, D. Shatilov, and M. Zobov, arXiv:physics/0702033; P. Raimondi, M. Zobov, and D. Shatilov, in Proceedings of the 22nd Particle Accelerator Conference, PAC-2007, Albuquerque, NM (IEEE, New York, 2007), p. TUPAN037.] with local chromaticity correction. The crab-waist scheme is implemented within the local chromaticity correction system without additional sextupoles, by reducing the strength of one of the two sextupoles for vertical chromatic correction at each side of the IP. So-called "tapering" of the magnets is applied, which scales all fields of the magnets according to the local beam energy to compensate for the effect of synchrotron radiation (SR) loss along the ring. An asymmetric layout near the interaction region reduces the critical energy of SR photons on the incoming side of the IP to values below 100 keV, while matching the geometry to the beam line of the FCC proton collider (FCC-hh) [A. Chancé et al., Proceedings of IPAC'16, 9-13 May 2016, Busan, Korea, TUPMW020 (2016).] as closely as possible. Sufficient transverse/longitudinal dynamic aperture (DA) has been obtained, including major dynamical effects, to assure an adequate beam lifetime in the presence of beamstrahlung and top-up injection. In particular, a momentum acceptance larger than ±2 % has been obtained, which is better than the momentum acceptance of typical collider rings by about a factor of 2. The effects of the detector solenoids including their compensation elements are taken into account as well as synchrotron radiation in all magnets. The optics presented in this paper is a step toward a full conceptual design for the collider. A number of issues have been identified for further

  6. Beam Optics for FCC-ee Collider Ring

    CERN Document Server

    Oide, Katsunobu; Aumon, S; Benedikt, M; Blondel, A; Bogomyagkov, A V; Boscolo, M; Burkhardt, H; Cai, Y; Doblhammer, A; Haerer, B; Holzer, B; Koop, I; Koratzinos, M; Jowett, John M; Levichev, E B; Medina, L; Ohmi, K; Papaphilippou, Y; Piminov, P A; Shatilov, D N; Sinyatkin, S V; Sullivan, M; Wenninger, J; Wienands, U; Zhou, D; Zimmermann, F

    2017-01-01

    A beam optics scheme has been designed [ 1 ] for the Future Circular Collider- e + e − (FCC-ee). The main characteristics of the design are: beam energy 45 to 175 GeV, 100 km circumference with two interaction points (IPs) per ring, horizontal crossing angle of 30 mrad at the IP and the crab-waist scheme [ 2 ] with local chromaticity correction. The crab-waist scheme is implemented within the local chromaticity correction system without additional sextupoles, by reducing the strength of one of the two sextupoles for vertical chromatic correction at each side of the IP. So- called “tapering" of the magnets is applied, which scales all fields of the magnets according to the local beam energy to compensate for the effect of synchrotron radiation (SR) loss along the ring. An asymmetric layout near the interaction region reduces the critical energy of SR photons on the incoming side of the IP to values below 100 keV, while matching the geometry to the beam line of the FCC proton collider (FCC-hh) [ 3 ] as clos...

  7. Beam Trajectory control of the future Compact LInear Collider beam

    CERN Document Server

    Balik, G; Bolzon, B; Brunetti, L; Caron, B; Deleglise, G; Jeremie, A; Le Breton, R; Lottin, J; Pacquet, L

    2011-01-01

    The future Compact LInear Collider (CLIC) currently under design at CERN (European Organization for Nuclear Research) would create high-energy particle collisions between electrons and positrons, and provide a tool for scientists to address many of the most compelling questions about the fundamental nature of matter, energy, space and time. In accelerating structure, it is well-established that vibrations generated by the ground motion constitute the main limiting factors for reaching the luminosity of 10^34 cm-2s-1. Several methods have been proposed to counteract this phenomena and active vibration controls based on the integration of mechatronic systems into the machine structure is probably one of the most promising. This paper studies the strategy of the vibration suppression. Active vibration control methods, such as optimized parameter of a numerical compensator, adaptive algorithm with real time control are investigated and implemented in the simulation layout. The requirement couldn’t be achieved w...

  8. Simulations on pair creation from beam-beam interaction in linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Chen, P.; Tauchi, T. (Stanford Linear Accelerator Center, Menlo Park, CA (USA)); Yokoya, K. (National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan))

    1991-05-01

    It has been recognized that e{sup +}e{sup {minus}} pair creation during the collision of intense beams in linear colliders will cause potential background problems for high energy experiments. Detailed knowledge of the angular-momentum spectrum of these low energy pairs is essential to the design of the interaction region. In this paper, we modify the computer code ABEL (Analysis of Beam-beam Effects in Linear colliders) to include the pair creation processes, using the equivalent photon approximation. Special care has been taken on the non-local nature of the virtual photon exchanges. The simulation results are then compared with known analytic formulas, and applied to the next generation colliders such as JLC. 10 refs., 2 figs.

  9. Beam parametr measurements for the SLAC linear collider

    Energy Technology Data Exchange (ETDEWEB)

    Clendenin, J.E.; Blocker, C.; Breidenbach, M.

    1981-01-01

    A stable, closely-controlled, high-intensity, single-bunch beam will be required for the SLAC Linear Collider. The characteristics of short-pulse, low-intensity beams in the SLAC linac have been studied. A new, high-intensity thermionic gun, subharmonic buncher and S-band buncher/accelerator section were installed recently at SLAC. With these components, up to 10/sup 11/ electrons in a single S-band bunch are available for injection into the linac. the first 100-m accelerator sector has been modified to allow control of short-pulse beams by a model-driven computer program. Additional instrumentation, including a computerized energy analyzer and emittance monitor have been added at the end of the 100-m sector. The beam intensity, energy spectrum, emittance, charge distribution and the effect of wake fields in the first accelerator sector have been measured. The new source and beam control system are described and the most recent results of the beam parameter measurements are discussed.

  10. Tuning of the Compact Linear Collider Beam Delivery System

    CERN Document Server

    Garcia, H; Inntjore Levinsen, Y; Latina, A; Tomas, R; Snuverink, J

    2014-01-01

    Tuning the Compact Linear Collider (CLIC) BeamDelivery System (BDS), and in particular the Final Focus (FF), is a challenging task. In simulations without misalignments, the goal is to reach 120%o f the nominal luminosity target, in order to allow for 10% loss due to static imperfections, and another 10% loss from dynamic imperfections. Various approaches have been considered to correct the magnet misalignments, including 1-1 correction, Dispersion Free Steering (DFS), and several minimization methods utilizing multipole movers. In this paper we report on the recent advancements towards a feasible tuning approach that reaches the required luminosity target.

  11. Beam-size or MD-effect at colliders and correlations of particles in a beam

    CERN Document Server

    Kotkin, G L

    2003-01-01

    For several processes at colliding beams, macroscopically large impact parameters give an essential contribution to the standard cross section. These impact parameters may be much larger than the transverse sizes of the colliding bunches. In that case, the standard calculations have to be essentially modify. The corresponding formulae for such a beam-size effect were given twenty years ago without taking into account correlations of particle coordinates in the beams. In the present paper we derive formulae which necessary to take into account quantitatively the effect of particle correlations in the spectrum of bremsstrahlung as well as in pair production. Besides, we consider critically recent papers of Baier and Katkov [Phys. Rev. D {\\bf 66}, 053009 (2002) and hep-ph/0305304] in which it was calculated a new additional ``subtraction term'' related to the coherent contribution into beam-size effect. We show that this result is groundless and point out the origin of the mistake.

  12. Review of linear collider beam-beam interaction

    Energy Technology Data Exchange (ETDEWEB)

    Chen, P.

    1989-01-01

    Three major effects from the interaction of e/sup +/e/sup /minus// beams---disruption, beamstrahlung, and electron-positron pair creation---are reviewed. For the disruption effects we discuss the luminosity enhancement factor, the maximum and rms disruption angles, and the ''kink instability''. All the results are obtained from computer simulations. Scaling laws for the numerical results and theoretical explanations of the computer acquired phenomena are offered wherever possible. For the beamstrahlung effects we concentrate only on the final electron energy spectrum resulting from multiple photon radiation process, and the deflection angle associated with low energy particles. For the effects from electron-positron pair creation, both coherent and incoherent processes of beamstrahlung pair creation are discussed. In addition to the estimation on total number of such pairs, we also look into the energy spectrum and the deflection angle. 17 refs., 23 figs., 1 tab.

  13. Design of beam optics for the future circular collider e$^+$e$^−$ collider rings

    CERN Document Server

    Oide, Katsunobu

    2016-01-01

    A beam optics scheme has been designed for the future circular collider-e$^+$e$^−$ (FCC-ee). The main characteristics of the design are: beam energy 45 to 175 GeV, 100 km circumference with two interaction points (IPs) per ring, horizontal crossing angle of 30 mrad at the IP and the crab-waist scheme [P. Raimondi, D. Shatilov, and M. Zobov, arXiv:physics/0702033; P. Raimondi, M. Zobov, and D. Shatilov, in Proceedings of the 22nd Particle Accelerator Conference, PAC-2007, Albuquerque, NM (IEEE, New York, 2007), p. TUPAN037.] with local chromaticity correction. The crab-waist scheme is implemented within the local chromaticity correction system without additional sextupoles, by reducing the strength of one of the two sextupoles for vertical chromatic correction at each side of the IP. So-called “tapering” of the magnets is applied, which scales all fields of the magnets according to the local beam energy to compensate for the effect of synchrotron radiation (SR) loss along the ring. An asymmetric layout n...

  14. COLLIDE

    CERN Multimedia

    2017-01-01

    Howie Day, Collide, Based on the original parody "Collide" by USLHC, inspired by the original song "Collide" written by Howie Day and Kevin Griffin. Re-record Produced by Mike Denneen Engineered by Patrick DiCenso -Vocals, Guitars, Keyboards- Howie Day -Guitar Patrick DiCenso -Bass- Ed Valuskas -Drums- Dave Brophy

  15. Preliminary design of the beam screen cooling for the Future Circular Collider of hadron beams

    CERN Document Server

    Kotnig, C

    2015-01-01

    Following recommendations of the recent update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. This study considers an option for a very high energy (100 TeV) hadron-hadron collider located in a quasi-circular underground tunnel having a circumference of 80 to 100 km. The synchrotron radiation emitted by the high-energy hadron beam increases by more than two orders of magnitude compared to the LHC. To reduce the entropic load on the superconducting magnets' refrigeration system, beam screens are indispensable to extract the heat load at a higher temperature level. After illustrating the decisive constraints of the beam screen's refrigeration design, this paper presents a preliminary design of the length of a continuous cooling loop comparing helium and neon, for different cooling channel geometries with emphasis on the cooling length limitations and the exergetic efficiency.

  16. Enhanced creation of high energy particles in colliding laser beams

    CERN Document Server

    Kuchiev, Michael

    2015-01-01

    The creation of particles by two colliding strong laser beams is considered. It is found that the electron-positron pairs created in the laser field via the Schwinger mechanism may recollide after one or several oscillations in the field. Their collision can take place at high energy, which the pair gains from the field. As a result, high energy gamma quanta can be created by inelastic scattering or annihilation of the pair. Moreover, heavy particles such as muon pairs may also be created via the annihilation $e^+ + e^-\\rightarrow \\mu^+ + \\mu^- $. The probability of $e^-e^+$ collision is greatly enhanced due to a strong alignment of the electron and positron momenta with the electric field. The found muon creation rate exponentially exceeds the rate predicted by the direct Schwinger mechanism for muons, while the photon creation rate exponentially exceeds photon emission due to the fermion oscillation.

  17. Tunnel visions the rise and fall of the Superconducting Super Collider

    CERN Document Server

    Riordan, Michael; Kolb, Adrienne W

    2015-01-01

    Starting in the 1950s, US physicists dominated the search for elementary particles; aided by the association of this research with national security, they held this position for decades. In an effort to maintain their hegemony and track down the elusive Higgs boson, they convinced President Reagan and Congress to support construction of the multibillion-dollar Superconducting Super Collider project in Texas-the largest basic-science project ever attempted. But after the Cold War ended and the estimated SSC cost surpassed ten billion dollars, Congress terminated the project in October 1993. Drawing on extensive archival research, contemporaneous press accounts, and over one hundred interviews with scientists, engineers, government officials, and others involved, Tunnel Visions tells the riveting story of the aborted SSC project. The authors examine the complex, interrelated causes for its demise, including problems of large-project management, continuing cost overruns, and lack of foreign contributions. In doi...

  18. THE CASE FOR A SUPER NEUTRINO BEAM.

    Energy Technology Data Exchange (ETDEWEB)

    DIWAN,M.

    2004-06-01

    In this paper I will discuss how an intense beam of high energy neutrinos produced with conventional technology could be used to further our understanding of neutrino masses and mixings. I will describe the possibility of building such a beam at existing US laboratories. Such a project couples naturally to a large (> 100 kT) multipurpose detector in a new deep underground laboratory. I will discuss the requirements for such a detector. Since the number of sites for both an accelerator laboratory and a deep laboratory are limited, I will discuss how the choice of baseline affects the physics sensitivities, the practical issues of beam construction, and event rates.

  19. A Bridge Too Far: The Demise of the Superconducting Super Collider, 1989-1993

    Science.gov (United States)

    Riordan, Michael

    2015-04-01

    In October 1993 the US Congress terminated the Superconducting Super Collider -- at over 10 billion the largest and costliest basic-science project ever attempted. It was a disastrous loss for the nation's once-dominant high-energy physics community, which has been slowly declining since then. With the 2012 discovery of the Higgs boson at CERN's Large Hadron Collider, Europe has assumed world leadership in this field. A combination of fiscal austerity, continuing SSC cost overruns, intense Congressional scrutiny, lack of major foreign contributions, waning Presidential support, and the widespread public perception of mismanagement led to the project's demise nearly five years after it had begun. Its termination occurred against the political backdrop of changing scientific needs as US science policy shifted to a post-Cold War footing during the early 1990s. And the growing cost of the SSC inevitably exerted undue pressure upon other worthy research, thus weakening its support in Congress and the broader scientific community. As underscored by the Higgs boson discovery, at a mass substantially below that of the top quark, the SSC did not need to collide protons at 40 TeV in order to attain its premier physics goal. The selection of this design energy was governed more by politics than by physics, given that Europeans could build the LHC by eventually installing superconducting magnets in the LEP tunnel under construction in the mid-1980s. In hindsight, there were good alternative projects the US high-energy physics community could have pursued that did not involve building a gargantuan, multibillion-dollar machine at a green-field site in Texas. Research supported by the National Science Foundation, Department of Energy, and the Richard Lounsbery Foundation.

  20. Super-radiance in a prebunched beam free electron maser

    CERN Document Server

    Arbel, M; Pinhasi, Y; Lurie, Y; Tecimer, M; Abramovich, A; Kleinman, H; Yakover, I M; Gover, A

    2000-01-01

    It is well known that electrons passing through a magnetic undulator emit partially coherent radiation: 'Undulator Synchrotron Radiation'. Radiation from electrons, entering the undulator at random, adds incoherently. If the electron beam is periodically modulated (bunched) to pulses shorter than the radiation wavelength, electrons radiate in phase with each other, resulting in super-radiant emission at the bunching frequency. Introduction of a signal at the input of the prebunched beam FEL, results in stimulated super-radiant emission. The interaction between the electromagnetic wave and a synchronous modulated e-beam results in amplification of the signal wave in addition to the spontaneous super-radiant emission. We demonstrated and measured the super-radiant emission in a wide band of frequencies from 3.15 to 5.5 GHz using the mini-FEM of Tel-Aviv University, wherein pre-bunching at the radiation frequency is accomplished with the aid of a traveling-wave prebuncher. The measured upper synchronous frequenc...

  1. Simulation of laser-Compton cooling of electron beams for future linear colliders

    Directory of Open Access Journals (Sweden)

    T. Ohgaki

    2001-11-01

    Full Text Available We study a method of laser-Compton cooling of electron beams for future linear colliders. Using a Monte Carlo code, we evaluate the effects of the laser-electron interaction for transverse cooling. The optics with and without chromatic correction for the cooling are examined. The laser-Compton cooling for Japan Linear Collider/Next Linear Collider at E_{0}=2 GeV is considered.

  2. Beam dynamics in the final focus section of the future linear collider

    CERN Document Server

    AUTHOR|(SzGeCERN)739431; TOMAS, Rogelio

    The exploration of new physics in the ``Tera electron-Volt''~(TeV) scale with precision measurements requires lepton colliders providing high luminosities to obtain enough statistics for the particle interaction analysis. In order to achieve design luminosity values, linear colliders feature nanometer beam spot sizes at the Interaction~Point~(IP).\\par In addition to several effects affecting the luminosity, three main issues to achieve the beam size demagnification in the Final Focus Section (FFS) of the accelerator are the chromaticity correction, the synchrotron radiation effects and the correction of the lattice errors.\\par This thesis considers two important aspects for linear colliders: push the limits of linear colliders design, in particular the chromaticity correction and the radiation effects at 3~TeV, and the instrumentation and experimental work on beam stabilization in a test facility.\\par The current linear collider projects, CLIC~\\cite{CLICdes} and ILC~\\cite{ILCdes}, have lattices designed using...

  3. The program in muon and neutrino physics: Superbeams, cold muon beams, neutrino factory and the muon collider

    Energy Technology Data Exchange (ETDEWEB)

    R. Raja et al.

    2001-08-08

    The concept of a Muon Collider was first proposed by Budker [10] and by Skrinsky [11] in the 60s and early 70s. However, there was little substance to the concept until the idea of ionization cooling was developed by Skrinsky and Parkhomchuk [12]. The ionization cooling approach was expanded by Neufer [13] and then by Palmer [14], whose work led to the formation of the Neutrino Factory and Muon Collider Collaboration (MC) [3] in 1995. The concept of a neutrino source based on a pion storage ring was originally considered by Koshkarev [18]. However, the intensity of the muons created within the ring from pion decay was too low to provide a useful neutrino source. The Muon Collider concept provided a way to produce a very intense muon source. The physics potential of neutrino beams produced by muon storage rings was investigated by Geer in 1997 at a Fermilab workshop [19, 20] where it became evident that the neutrino beams produced by muon storage rings needed for the muon collider were exciting on their own merit. The neutrino factory concept quickly captured the imagination of the particle physics community, driven in large part by the exciting atmospheric neutrino deficit results from the SuperKamiokande experiment. As a result, the MC realized that a Neutrino Factory could be an important first step toward a Muon Collider and the physics that could be addressed by a Neutrino Factory was interesting in its own right. With this in mind, the MC has shifted its primary emphasis toward the issues relevant to a Neutrino Factory. There is also considerable international activity on Neutrino Factories, with international conferences held at Lyon in 1999, Monterey in 2000 [21], Tsukuba in 2001 [22], and another planned for London in 2002.

  4. Probing anomalous Higgs couplings at an collider using unpolarised beams

    Indian Academy of Sciences (India)

    Debajyoti Choudhury; Mamta

    2007-11-01

    We examine the sensitivity of colliders (based on + - linear colliders of c.m. energy 500 GeV) to the anomalous couplings of the Higgs to -boson via the process - → . This has the advantage over + - collider in being able to dissociate vertex from . We are able to construct several dynamical variables which may be used to constrain the various couplings in the vertex.

  5. Once Again about Beam-Size or MD-Effect at Colliding Beams

    CERN Document Server

    Kotkin, G L

    2002-01-01

    For several processes at colliding beams, macroscopically large impact parameters give an essential contribution to the standard cross section. These impact parameters may be much larger than the transverse sizes of the colliding bunches. In that case, the standard calculations have to be essentially modify. The corresponding formulae were given twenty years ago. In recent paper of Baier and Katkov [17] it was claimed that the previous results about bremsstrahlung spectrum have to be revised and an additional subtraction related to the coherent contribution has to be done. This additional term has been calculated with the result that it may be essential for the performed and future experiments. In the present paper we analyze in detail the coherent and incoherent contributions in the conditions, considered in paper [17]. In contract to above claims, we found out that under these conditions the coherent contribution is completely negligible and, therefore, there is no need to revise the previous results.

  6. Plans for super-beams in Japan

    CERN Document Server

    Hasegawa, Takuya

    2010-01-01

    In Japan, as the first experiment utilizes J-PARC (Japan Proton Accelerator Research Complex) neutrino facility, T2K (Tokai to Kamioka Long Baseline Neutrino Experiment) starts operation. T2K is supposed to give critical information, which guides the future direction of the neutrino physics. Possible new generation discovery experiment based on T2K outcome is discussed. Especially, description of J-PARC neutrino beam upgrade plan and discussion on far detector options to maximize potential of the research are focused. European participation and CERN commitment on Japanese accelerator based neutrino experiment is also reported.

  7. Beam-size effect at colliders and correlations of particles in a beam

    Directory of Open Access Journals (Sweden)

    G. L. Kotkin

    2004-10-01

    Full Text Available For several processes at colliding beams, macroscopically large impact parameters give an essential contribution to the standard cross section. These impact parameters may be much larger than the transverse sizes of the colliding bunches. In that case, the standard calculations have to be essentially modified. The corresponding formulas for such a beam-size effect were given 20 years ago without taking into account correlations of particle coordinates in the beams. In the present paper we derive formulas necessary to take into account quantitatively the effect of particle correlations in the spectrum of bremsstrahlung as well as in pair production. Our results are quite different from those obtained in recent papers [V. N. Baier and V. M. Katkov, Phys. Rev. D 66, 053009 (2002PRVDAQ0556-282110.1103/PhysRevD.66.053009; V. N. Baier and V. M. Katkov, hep-ph/0305304.]. We point out the origin of this difference.

  8. 3D calculations of the Superconducting Super Collider (SSC) 3 Tesla magnet

    Energy Technology Data Exchange (ETDEWEB)

    Lari, R.J.

    1984-01-01

    A 20 TeV Superconducting Super Collider (SSC) proton accelerator is being proposed by the High Energy Physics Community. One proposal would consist of a ring of magnets 164 km in circumference with a field strength of 3 Tesla and would cost 2.7 billion dollars. The magnet consists of stacked steel laminations with superconducting coils. The desired field uniformity is obtained for all fields from 0.2 to 3 Tesla by using three (or more) different pole shapes. These three different laminations are stacked in the order 1-2-3-1-2-3-... creating a truly three dimensional geometry. A three laminated stack 1-2-3 with periodic boundary conditions at 1 and 3 was assigned about 5000 finite elements per lamination and solved using the computer program TOSCA. To check the TOSCA results, the field of each of the three different shaped laminations was calculated separately using periodic boundary conditions and compared to the two dimensional field calculations using TRIM. This was done for a constant permeability of 2000 and using the B-H table for fully annealed 1010 steel. The difference of the field calculations in the region of interest was always less than +-.2%

  9. High Energy Accelerator and Colliding Beam User Group

    Energy Technology Data Exchange (ETDEWEB)

    Snow, G.A.; Skuja, A.

    1992-05-01

    This report discusses research in the following areas: the study of e{sup +}e{sup {minus}} interactions; Hadron collider physics at Fermilab; fixed target physics and particle physics of general interest; and, the solenoidal detector collaboration at SSCL.

  10. High Energy Accelerator and Colliding Beam User Group

    Energy Technology Data Exchange (ETDEWEB)

    Snow, G.A.; Skuja, A.

    1992-05-01

    This report discusses research in the following areas: the study of e{sup +}e{sup {minus}} interactions; Hadron collider physics at Fermilab; fixed target physics and particle physics of general interest; and, the solenoidal detector collaboration at SSCL.

  11. Disbursement of $65 million to the State of Texas for construction of a Regional Medical Technology Center at the former Superconducting Super Collider Site, Waxahachie, Texas

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    As part of a settlement agreement between the US DOE and the State of Texas, DOE proposes to transfer $65 million of federal funds to the Texas National Research Laboratory Commission (TNLRC) for construction of the Regional Medical Technology Center (RMTC) to be located in Ellis County, Texas. The RMTC would be a state-of-the-art medical facility for proton cancer therapy, operated by the State of Texas in conjunction with the University of Texas Southwestern Medical Center. The RMTC would use the linear accelerator assets of the recently terminated DOE Superconducting Super Collider Project to accelerate protons to high energies for the treatment of cancer patients. The current design provides for treatment areas, examination rooms, support laboratories, diagnostic imaging equipment, and office space as well as the accelerators (linac and synchrotron) and beam steering and shaping components. The potential environmental consequences of the proposed action are expected to be minor.

  12. Straw man 900-1000 GeV crystal extraction test beam for Fermilab collider operation

    Energy Technology Data Exchange (ETDEWEB)

    Carrigan, R.A. Jr.

    1996-10-01

    A design for a 900-1000 GeV, 100 khz parasitic test beam for use during collider operations has been developed. The beam makes use of two bent crystals, one for extraction and the other one for redirecting the beam in to the present Switchyard beam system. The beam requires only a few modifications in the A0 area and largely uses existing devices. It should be straight-forward to modify one or two beam lines in the fixed target experimental areas to work above 800 GeV. Possibilities for improvements to the design,to operate at higher fluxes are discussed.

  13. Beam-Based Nonlinear Optics Corrections in Colliders

    CERN Document Server

    Pilat, Fulvia Caterina; Malitsky, Nikolay; Ptitsyn, Vadim

    2005-01-01

    A method has been developed to measure and correct operationally the non-linear effects of the final focusing magnets in colliders, which gives access to the effects of multi-pole errors by applying closed orbit bumps, and analyzing the resulting tune and orbit shifts. This technique has been tested and used during 3 years of RHIC (the Relativistic Heavy Ion Collider at BNL) operations. I will discuss here the theoretical basis of the method, the experimental set-up, the correction results, the present understanding of the machine model, the potential and limitations of the method itself as compared with other non linear correction techniques.

  14. Report on the program of 4 K irradiation of insulating materials for the Superconducting Super Collider

    Energy Technology Data Exchange (ETDEWEB)

    Spindel, A.

    1993-07-01

    This report is intended to serve as an aid to material selection. The results reported herein are the product of a careful investigation and can be used with confidence in their validity. The selection of materials based on this data, however, is not the responsibility of the author. This report will not approve or disapprove any specific material for use in the Super Collider. The author of this report does not assume any design responsibility or responsibility for material selection for any application. It is, therefore, very important that those with design responsibility use this report wisely. For this reason, the following informational guide to the material selection process has been provided. There are several issues to take into account when evaluating a material for radiation resistance. It is very important that the design criteria and operating loads for the application be known. For many applications the actual loading, and therefore required properties, are unknown. Certain materials have empirically been used successfully in a similar application and those materials have often been selected on that basis. Both percent degradation and the magnitude of the actual properties after irradiation need to be considered. Consider the scenario where two materials are being compared that both have acceptable properties after exposure to 10{sup 9} rads. It is preferable to choose the material with less degradation because degradation tends to be a threshold phenomena with properties declining rapidly with dose after a certain threshold dose. The properties of the initially strong material, therefore, will be extremely sensitive to dose in that dose range and slight magnet-to-magnet differences in dose may, depending on the application, lead to performance variations.

  15. ATF2 for Final Focus Test Beam for Future Linear Colliders

    Science.gov (United States)

    Kuroda, S.; ATF2 Collaboration

    2016-04-01

    In future linear colliders, extremely small beam size is required at collision point for high luminosity. For example, it is of order of nanometer in ILC(International Linear Collider). ATF2 is a project at ATF(Accelerator Test Facility) in KEK which demonstrates performance of final focus system experimentally. ATF2 beam line is a prototype of ILC final focus system where the local chromaticity correction scheme is adopted. The optics is basically the same and the natural chromaticity, too. Thus the tolerance of magnet alignment and field error is similar for both of the beam lines. We report here observation of small beam size of about 45nm there. We also report plan for smaller beam size with higher beam intensity.

  16. Probing space-time structure of new physics with polarized beams at the international linear collider

    Indian Academy of Sciences (India)

    B Ananthanarayan

    2007-11-01

    At the international linear collider large beam polarization of both the electron and positron beams will enhance the signature of physics due to interactions that are beyond the standard model. Here we review our recently obtained results on a general model-independent method of determining for an arbitary one-particle inclusive state the space-time structure of such new physics through the beam polarization dependence and angular distribution of the final state particle.

  17. Physical mechanism of the linear beam-size effect at colliders

    Energy Technology Data Exchange (ETDEWEB)

    Melnikov, K. [Institut fuer Physik, THEP, Johannes Gutenberg Universitaet, Staudinger weg 7, D 55099 Mainz (Germany); Kotkin, G.L.; Serbo, V.G. [Novosibirsk State University, 630090, Novosibirsk (Russia)

    1996-09-01

    We present a qualitative but precise description of the linear beam-size effect predicted for the processes in which unstable but long-living particles collide with each other. We derive a physically pronounced equation for the event rate which proves that the linear beam-size effect corresponds to the scattering of one beam of particles on the decay products of the other. We compare this linear beam-size effect with the known logarithmic beam-size effect measured in the experiments on a single bremsstrahlung at Novosibirsk{close_quote}s VEPP-4 and DESY HERA. {copyright} {ital 1996 The American Physical Society.}

  18. Physical mechanism of the linear beam-size effect at colliders

    CERN Document Server

    Melnikov, K; Serbo, V G

    1996-01-01

    We present qualitative but precise description of the linear beam-size effect predicted for the processes in which unstable but long--living particles collide with each other. We derive physically pronounced equation for the events rate which proves that the linear beam-size effect corresponds to the scattering of one beam of particles on the decay products of the other. We compare this linear beam-size effect with the known logarithmic beam-size effect measured in the experiments on a single bremsstrahlung at VEPP-4 and HERA.

  19. Beam Test of a High Pressure Cavity for a Muon Collider

    Energy Technology Data Exchange (ETDEWEB)

    Chung, M.; Jansson, A.; Moretti, A.; Tollestrup, A.; Yonehara, K.; /Fermilab; Kurup, A.; /Imperial Coll., London

    2010-05-01

    To demonstrate the feasibility of a high pressure RF cavity for use in the cooling channel of a muon collider, an experimental setup that utilizes 400-MeV Fermilab linac proton beam has been developed. In this paper, we describe the beam diagnostics and the collimator system for the experiment, and report the initial results of the beam commissioning. The transient response of the cavity to the beam is measured by the electric and magnetic pickup probes, and the beam-gas interaction is monitored by the optical diagnostic system composed of a spectrometer and two PMTs.

  20. Identification and Classification of Beam Loss Patterns in the Large Hadron Collider

    CERN Document Server

    Panagiotis, Theodoropoulos; Valentino, Gianluca; Redaelli, Stefano; Herbster, Mark

    The Large Hadron Collider, is the largest particle accelerator ever built, achieving record beam energy and beam intensity. Beam losses are unavoidable and can risk the safety of accelerator’s components. Beam loss maps are used to validate the collimation system, designed to protect the accelerator against beam losses. The complexity of this system requires well defined inspection methods and well defined case studies that ensure normal operation and efficient performance evaluation. In this work, enhancements are proposed to the existing validation methods with extensions towards automating the inspection mechanisms, introducing pattern recognition and statistical learning methods.

  1. Simulation study of electron cloud induced instabilities and emittance growth for the CERN Large Hadron Collider proton beam

    Directory of Open Access Journals (Sweden)

    E. Benedetto

    2005-12-01

    Full Text Available The electron cloud may cause transverse single-bunch instabilities of proton beams such as those in the Large Hadron Collider (LHC and the CERN Super Proton Synchrotron (SPS. We simulate these instabilities and the consequent emittance growth with the code HEADTAIL, which models the turn-by-turn interaction between the cloud and the beam. Recently some new features were added to the code, in particular, electric conducting boundary conditions at the chamber wall, transverse feedback, and variable beta functions. The sensitivity to several numerical parameters has been studied by varying the number of interaction points between the bunch and the cloud, the phase advance between them, and the number of macroparticles used to represent the protons and the electrons. We present simulation results for both LHC at injection and SPS with LHC-type beam, for different electron-cloud density levels, chromaticities, and bunch intensities. Two regimes with qualitatively different emittance growth are observed: above the threshold of the transverse mode-coupling (TMC type of instability there is a rapid blowup of the beam, while below this threshold a slow, long-term, emittance growth remains. The rise time of the TMC instability caused by the electron cloud is compared with results obtained using an equivalent broadband resonator impedance model, demonstrating reasonable agreement.

  2. Beam trajectory control of the future Compact Linear Collider

    OpenAIRE

    Balik, G.; Badel, A.; Bolzon, B; Brunetti, L.; Caron, B.; Deleglise, G.; Jérémie, A.; Le Breton, R.; Lottin, J.; Pacquet, L.

    2011-01-01

    International audience; The future Compact LInear Collider (CLIC) currently under design at CERN (European Organization for Nuclear Research) would create high-energy particle collisions between electrons and positrons, and provide a tool for scientists to address many of the most compelling questions about the fundamental nature of matter, energy, space and time. In accelerating structure, it is well-established that vibrations generated by the ground motion constitute the main limiting fact...

  3. Tests of the FONT3 Linear Collider Intra-Train Beam Feedback System at the ATF

    CERN Document Server

    Burrows, P N; Clarke, Christine; Frisch, Josef; Hartin, Anthony F; Kalinin, Alexander; Khah, H; Markiewicz, Thomas W; McCormick, Douglas; Molloy, Stephen; Perry, Colin; Ross, Marc; Smith, Stephen; Smith, Tonee; White, Glen

    2005-01-01

    We report preliminary results of beam tests of the FONT3 Linear Collider intra-train position feedback system prototype at the Accelerator Test Facility at KEK. The feedback system incorporates a novel beam position monitor (BPM) processor with a latency below 5 nanoseconds, and a kicker driver amplifier with similar low latency. The 56 nanosecond-long bunchtrain in the ATF extraction line was used to test the prototype with delay-loop feedback operation. The achieved latency represents a demonstration of intra-train feedback on timescales relevant even for the CLIC Linear Collider design.

  4. Tests of the FONT3 Linear Collider Intra-Train Beam Feedback System at the ATF

    Energy Technology Data Exchange (ETDEWEB)

    Burrows, P.N.; Christian, G.; Clarke, C.; Hartin, A.; Dabiri Khah, H.; Molloy, S.; White, G.R.; /Queen Mary, U. of London; Frisch, J.C.; Markiewicz, T.W.; McCormick, D.J.; Ross, M.C.; Smith, S.; Smith, T.J.; /SLAC; Kalinin, A.; /Daresbury; Perry, C.; /Oxford Instruments

    2006-03-14

    We report preliminary results of beam tests of the FONT3 Linear Collider intra-train position feedback system prototype at the Accelerator Test Facility at KEK. The feedback system incorporates a novel beam position monitor (BPM) processor with a latency below 5 nanoseconds, and a kicker driver amplifier with similar low latency. The 56 nanosecond-long bunchtrain in the ATF extraction line was used to test the prototype BPM processor. The achieved latency will allow a demonstration of intra-train feedback on timescales relevant even for the CLIC Linear Collider design.

  5. Expanded studies of linear collider final focus systems at the Final Focus Test Beam

    Energy Technology Data Exchange (ETDEWEB)

    Tenenbaum, P.G.

    1995-12-01

    In order to meet their luminosity goals, linear colliders operating in the center-of-mass energy range from 3,50 to 1,500 GeV will need to deliver beams which are as small as a few Manometers tall, with x:y aspect ratios as large as 100. The Final Focus Test Beam (FFTB) is a prototype for the final focus demanded by these colliders: its purpose is to provide demagnification equivalent to those in the future linear collider, which corresponds to a focused spot size in the FFTB of 1.7 microns (horizontal) by 60 manometers (vertical). In order to achieve the desired spot sizes, the FFTB beam optics must be tuned to eliminate aberrations and other errors, and to ensure that the optics conform to the desired final conditions and the measured initial conditions of the beam. Using a combination of incoming-beam diagnostics. beam-based local diagnostics, and global tuning algorithms, the FFTB beam size has been reduced to a stable final size of 1.7 microns by 70 manometers. In addition, the chromatic properties of the FFTB have been studied using two techniques and found to be acceptable. Descriptions of the hardware and techniques used in these studies are presented, along with results and suggestions for future research.

  6. High Energy Colliding Beams; What Is Their Future?

    CERN Document Server

    Richter, Burton

    2014-01-01

    The success of the first few years of LHC operations at CERN, and the expectation of more to come as the LHC performance improves, are already leading to discussions of what should be next for both proton-proton and electron-positron colliders. In this discussion I see too much theoretical desperation caused by the so far unsuccessful hunt for what is beyond the Standard Model, and too little of the necessary interaction of the accelerator, experimenter, and theory communities necessary for a scientific and engineering success. Here, I give my impressions of the problem, its possible solution, and what is needed to have both a scientifically productive and financially viable future.

  7. Physics at a future Neutrino Factory and super-beam facility

    NARCIS (Netherlands)

    Bandyopadhyay, A.; Choubey, S.; Gandhi, R.; Goswami, S.; Roberts, B. L.; Bouchez, J.; Antoniadis, I.; Ellis, J.; Giudice, G. F.; Schwetz, T.; Umasankar, S.; Karagiorgi, G.; Aguilar-Arevalo, A.; Conrad, J. M.; Shaevitz, M. H.; Pascoli, S.; Geer, S.; Campagne, J. E.; Rolinec, M.; Blondel, A.; Campanelli, M.; Kopp, J.; Lindner, M.; Peltoniemi, J.; Dornan, P. J.; Long, K.; Matsushita, T.; Rogers, C.; Uchida, Y.; Dracos, M.; Whisnant, K.; Casper, D.; Chen, Mu-Chun; Popov, B.; Aysto, J.; Marfatia, D.; Okada, Y.; Sugiyama, H.; Jungmann, K.; Lesgourgues, J.; Zisman, M.; Tortola, M. A.; Friedland, A.; Davidson, S.; Antusch, S.; Biggio, C.; Donini, A.; Fernandez-Martinez, E.; Gavela, B.; Maltoni, M.; Lopez-Pavon, J.; Rigolin, S.; Mondal, N.; Palladino, V.; Filthaut, F.; Albright, C.; de Gouvea, A.; Kuno, Y.; Nagashima, Y.; Mezzetto, M.; Lola, S.; Langacker, P.; Baldini, A.; Nunokawa, H.; Meloni, D.; Diaz, M.; King, S. F.; Zuber, K.; Akeroyd, A. G.; Grossman, Y.; Farzan, Y.; Tobe, K.; Aoki, Mayumi; Murayama, H.; Kitazawa, N.; Yasuda, O.; Petcov, S.; Romanino, A.; Chimenti, P.; Vacchi, A.; Smirnov, A. Yu; Couce, E.; Gomez-Cadenas, J. J.; Hernandez, P.; Sorel, M.; Valle, J. W. F.; Harrison, P. F.; Lunardini, C.; Nelson, J. K.; Barger, V.; Everett, L.; Huber, P.; Winter, W.; Fetscher, W.; van der Schaaf, A.

    2009-01-01

    The conclusions of the Physics Working Group of the International Scoping Study of a future Neutrino Factory and super-beam facility (the ISS) are presented. The ISS was carried out by the international community between NuFact05, (the 7th International Workshop on Neutrino Factories and Super-beams

  8. Investigation of beam self-polarization in the future e+e− circular collider

    CERN Document Server

    AUTHOR|(CDS)2075800

    2016-01-01

    The use of resonant depolarization has been suggested for precise beam energy measurements (better than 100 keV) in the eþe− Future Circular Collider (FCC-eþe−) for Z and WW physics at 45 and 80 GeV beam energy respectively. Longitudinal beam polarization would benefit the Z peak physics program; however it is not essential and therefore it will be not investigated here. In this paper the possibility of selfpolarized leptons is considered. Preliminary results of simulations in presence of quadrupole misalignments and beam position monitors (BPMs) errors for a simplified FCC-eþe− ring are presented.

  9. Proceedings of the 2. International Linear Collider Test-beam workshop - LCTW'09

    Energy Technology Data Exchange (ETDEWEB)

    Wormser, G.; Poeschl, R.; Takeshi, M.; Yu, J.; Hauptman, J.; Jeans, D.; Velthuis, J.; Repond, J.; Stanitzki, M.; Chefdeville, M.; Pauletta, G.; Hauptman, J.; Kulis, S.; Charpy, A.; Rivera, R.; Turchetti, M.; Vos, M.; Dehmelt, K.; Settles, R.; Decotigny, D.; Killenberg, M.; Haas, D.; Gaede, F.; Graf, N.; Wing, M.; Gaede, F.; Karstensen, S.; Meyners, N.; Hast, C.; Vrba, V.; Takeshita, T.; Kawagoe, K.; Linssen, L.; Ramberg, E.; Demarteau, M.; Fisk, H.E.; Savoy-Navarro, A.; Videau, H.; Boudry, V.; Hauptman, J.; Lipton, R.; Nelson, T.

    2009-07-01

    At this workshop detector and simulation experts have described and discussed the necessary ILC (International Linear Collider) detector research and development program in view of its need for test beams. This workshop has provided an opportunity to evaluate the capabilities and shortcomings of existing facilities in the context of planned test beam activities. This document gathers together the slides of the presentations. The presentations have been classified into 4 topics: -) plans of sub-detectors - calorimetry, silicon and gaseous tracking, -) data acquisition, -) test beam facilities, and -) resources and infrastructure for future test beams

  10. Investigation of beam self-polarization in the future e$^+$e$^−$ circular collider

    CERN Document Server

    Gianfelice-Wendt, Eliana

    2016-01-01

    The use of resonant depolarization has been suggested for precise beam energy measurements (better than 100 keV) in the e$^+$e$^−$ Future Circular Collider (FCC-e$^+$e$^−$) for $Z$ and $WW$ physics at 45 and 80 GeV beam energy respectively. Longitudinal beam polarization would benefit the $Z$ peak physics program; however it is not essential and therefore it will be not investigated here. In this paper the possibility of self-polarized leptons is considered. Preliminary results of simulations in presence of quadrupole misalignments and beam position monitors (BPMs) errors for a simplified FCC-e$^+$e$^−$ ring are presented.

  11. Experience with High-Intensity Beam Scraping and Tail Population at the Large Hadron Collider

    CERN Document Server

    Redaelli, S; Burkart, F; Bruce, R; Mirarchi, D; Salvachua, B; Valentino, G; Wollmann, D

    2013-01-01

    The population of beam tails at the Large Hadron Collider (LHC) is a source of concern for the operation at higher beam energies and intensities when even small fractions of the beam could represent a potential danger is case of slow or fast losses, e.g. caused by orbit transients or by collimator movements. Different studies have been performed using the technique of collimator scans to probe the beam tail population in different conditions. The experience accumulated during the operation at 3.5 TeV and 4 TeV is reviewed.

  12. Beam dynamics aspects of crab cavities in the CERN Large Hadron Collider

    CERN Document Server

    Sun, Y P; Barranco, J; Tomás, R; Weiler, T; Zimmermann, F; Calaga, R; Morita, A

    2009-01-01

    Modern colliders bring into collision a large number of bunches to achieve a high luminosity. The long-range beam-beam effects arising from parasitic encounters at such colliders are mitigated by introducing a crossing angle. Under these conditions, crab cavities (CC) can be used to restore effective head-on collisions and thereby to increase the geometric luminosity. Such crab cavities have been proposed for both linear and circular colliders. The crab cavities are rf cavities operated in a transverse dipole mode, which imparts on the beam particles a transverse kick that varies with the longitudinal position along the bunch. The use of crab cavities in the Large Hadron Collider (LHC) may not only raise the luminosity, but it could also complicate the beam dynamics, e.g., crab cavities might not only cancel synchrobetatron resonances excited by the crossing angle but they could also excite new ones, they could reduce the dynamic aperture for off-momentum particles, they could influence the aperture and orbit...

  13. Operation of the CDF silicon vertex detector with colliding beams at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Bedeschi, F.; Bolognesi, V.; Dell' Agnello, S.; Galeotti, S.; Grieco, G.; Mariotti, M.; Menzione, A.; Punzi, G.; Raffaelli, F.; Ristori, L.; Tartarelli, F.; Turini, N.; Wenzel, H.; Zetti, F. (INFN, University and Scuola Normale Superiore of Pisa, Pisa, Italy, I-56100 (Italy)); Bailey, M.W.; Garfinkel, A.F.; Kruse, M.C.; Shaw, N.M. (Purdue University, West Lafayette, Indiana 47907 (United States)); Carithers, W.C.; Ely, R.; Haber, C.; Holland, S.; Kleinfelder, S.; Merrick, T.; Schneider, O.; Wester, W.; Wong, M.; Yao, W. (Lawrence Berkeley Laboratory, Berkeley, California 94720 (United States)); Carter, H.; Flaugher, B.; Nelson, C.; Segler, S.; Shaw, T.; Tkaczyk, S.; Turner, K.; Wesson, T.R. (Fermi National Accelerator Laboratory, Batavia, Illinois 60510 (United States)); Barnett, B.; Boswell, C.; Skarha, J.; Snider, F.D.; Spies, A.; Tseng, J.; Vejcik, S. (The John Hopkins University, Baltimore, Maryland 21218 (United States)); Amidei, D.; Derwent, P.F.; Song, T.Y.; Dunn, A. (Univer

    1992-02-05

    In this paper we briefly describe the main features of the CDF Silicon Vertex Detector (SVX) and discuss its performance during actual colliding beam operation at the Fermilab Tevatron. Details on [ital S]/[ital N] ratio, alignment, resolution, and efficiency are given.

  14. Operation of the CDF Silicon Vertex Detector with colliding beams at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Bedeschi, F.; Bolognesi, V.; Dell' Agnello, S.; Galeotti, S.; Grieco, G.; Mariotti, M.; Menzione, A.; Punzi, G.; Raffaelli, F.; Ristori, L.; Tartarelli, F.; Turini, N.; Wenzel, H.; Zetti, F. (Scuola Normale Superiore, Pisa (Italy)); Bailey, M.W.; Garfinkel, A.F.; Kruse, M.C.; Shaw, N.M. (Purdue Univ., Lafayette, IN (United States)); Carithers, W.C.; Ely, R.; Haber, C.; Holland, S.; Kleinfelder, S.; Merrick, T.; Schneide

    1992-10-01

    In this paper we briefly describe the main features of the CDF Silicon Vertex Detector (SVX) and discuss its performance during actual colliding beam operation at the Fermilab Tevatron. Details on S/N ratio, alignment, resolution and efficiency are given.

  15. Beam-induced energy deposition issues in the Very Large Hadron Collider

    CERN Document Server

    Mokhov, N V; Foster, G W

    2001-01-01

    Energy deposition issues are extremely important in the Very Large Hadron Collider (VLHC) with huge energy stored in its 20 TeV (Stage-1) and 87.5 TeV (Stage-2) beams. The status of the VLHC design on these topics, and possible solutions of the problems are discussed. Protective measures are determined based on the operational and accidental beam loss limits for the prompt radiation dose at the surface, residual radiation dose, ground water activation, accelerator components radiation damage and quench stability. The beam abort and beam collimation systems are designed to protect accelerator from accidental and operational beam losses, IP region quadrupoles from irradiation by the products of beam-beam collisions, and to reduce the accelerator-induced backgrounds in the detectors. (7 refs).

  16. Orbital parameters of proton and deuteron beams in the NICA collider with solenoid Siberian snakes

    Science.gov (United States)

    Kovalenko, A. D.; Butenko, A. V.; Kekelidze, V. D.; Mikhaylov, V. A.; Kondratenko, M. A.; Kondratenko, A. M.; Filatov, Yu N.

    2016-02-01

    Two solenoid Siberian snakes are required to obtain ion polarization in the “spin transparency” mode of the NICA collider. The field integrals of the solenoid snakes for protons and deuterons at maximum momentum of 13.5 GeV/c are equal to 2×50 T·m and 2×160 T·m respectively. The snakes introduce strong betatron oscillation coupling. The calculations of orbital parameters of proton and deuteron beams in NICA collider with solenoid snakes are presented.

  17. Production of high-energy colliding. gamma gamma. and. gamma. e beams with a high luminosity at VLEPP accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Ginzburg, I.F.; Kotkin, G.L.; Serbo, V.G.; Tel' nov, V.I.

    1981-11-05

    Colliding ..gamma gamma.. and ..gamma..e beams with an energy and luminosity of the same order of magnitude as for e/sup +/e/sup -/ beams can be produced by scattering a laser light at the accelerators with colliding e/sup +/e/sup -/ beams with an energy > or approx. =100 GeV. Such accelerators are currently in the design stage.

  18. Colliding ionization injection in a beam driven plasma accelerator

    CERN Document Server

    Wan, Y; Li, F; Wu, Y P; Hua, J F; Pai, C -H; Lu, W; Joshi, C; Mori, W B; Gu, Y Q

    2015-01-01

    The proposal of generating high quality electron bunches via ionization injection triggered by an counter propagating laser pulse inside a beam driven plasma wake is examined via two-dimensional particle-in-cell simulations. It is shown that electron bunches obtained using this technique can have extremely small slice energy spread, because each slice is mainly composed of electrons ionized at the same time. Another remarkable advantage is that the injection distance is changeable. A bunch with normalized emittance of 3.3 nm, slice energy spread of 15 keV and brightness of 7.2 A m$^{-2}$ rad$^{-2}$ is obtained with an optimal injection length which is achieved by adjusting the launch time of the drive beam or by changing the laser focal position. This makes the scheme a promising approach to generate high quality electron bunches for the fifth generation light source.

  19. Conceptual design of hollow electron lenses for beam halo control in the Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Stancari, Giulio [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Previtali, Valentina [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Valishev, Alexander [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Bruce, Roderik [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Redaelli, Stefano [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Rossi, Adriana [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Salvachua Ferrando, Belen [European Organization for Nuclear Research (CERN), Geneva (Switzerland)

    2014-06-26

    Collimation with hollow electron beams is a technique for halo control in high-power hadron beams. It is based on an electron beam (possibly pulsed or modulated in intensity) guided by strong axial magnetic fields which overlaps with the circulating beam in a short section of the ring. The concept was tested experimentally at the Fermilab Tevatron collider using a hollow electron gun installed in one of the Tevatron electron lenses. We are proposing a conceptual design for applying this technique to the Large Hadron Collider at CERN. A prototype hollow electron gun for the LHC was built and tested. The expected performance of the hollow electron beam collimator was based on Tevatron experiments and on numerical tracking simulations. Halo removal rates and enhancements of halo diffusivity were estimated as a function of beam and lattice parameters. Proton beam core lifetimes and emittance growth rates were checked to ensure that undesired effects were suppressed. Hardware specifications were based on the Tevatron devices and on preliminary engineering integration studies in the LHC machine. Required resources and a possible timeline were also outlined, together with a brief discussion of alternative halo-removal schemes and of other possible uses of electron lenses to improve the performance of the LHC.

  20. Optics measurement and correction during beam acceleration in the Relativistic Heavy Ion Collider

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Marusic, A. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2014-09-09

    To minimize operational complexities, setup of collisions in high energy circular colliders typically involves acceleration with near constant β-functions followed by application of strong focusing quadrupoles at the interaction points (IPs) for the final beta-squeeze. At the Relativistic Heavy Ion Collider (RHIC) beam acceleration and optics squeeze are performed simultaneously. In the past, beam optics correction at RHIC has taken place at injection and at final energy with some interpolation of corrections into the acceleration cycle. Recent measurements of the beam optics during acceleration and squeeze have evidenced significant beta-beats which if corrected could minimize undesirable emittance dilutions and maximize the spin polarization of polarized proton beams by avoidance of higher-order multipole fields sampled by particles within the bunch. In this report the methodology now operational at RHIC for beam optics corrections during acceleration with simultaneous beta-squeeze will be presented together with measurements which conclusively demonstrate the superior beam control. As a valuable by-product, the corrections have minimized the beta-beat at the profile monitors so reducing the dominant error in and providing more precise measurements of the evolution of the beam emittances during acceleration.

  1. Conceptual design of hollow electron lenses for beam halo control in the Large Hadron Collider

    CERN Document Server

    Stancari, Giulio; Valishev, Alexander; Bruce, Roderik; Redaelli, Stefano; Rossi, Adriana; Ferrando, Belen Salvachua; Salvachua Ferrando, B

    2014-01-01

    Collimation with hollow electron beams is a technique for halo control in high-power hadron beams. It is based on an electron beam (possibly pulsed or modulated in intensity) guided by strong axial magnetic fields which overlaps with the circulating beam in a short section of the ring. The concept was tested experimentally at the Fermilab Tevatron collider using a hollow electron gun installed in one of the Tevatron electron lenses. Within the US LHC Accelerator Research Program (LARP) and the European FP7 HiLumi LHC Design Study, we are proposing a conceptual design for applying this technique to the Large Hadron Collider at CERN. A prototype hollow electron gun for the LHC was built and tested. The expected performance of the hollow electron beam collimator was based on Tevatron experiments and on numerical tracking simulations. Halo removal rates and enhancements of halo diffusivity were estimated as a function of beam and lattice parameters. Proton beam core lifetimes and emittance growth rates were check...

  2. Beam dynamics of the interaction region solenoid in a linear collider due to a crossing angle

    Directory of Open Access Journals (Sweden)

    P. Tenenbaum

    2003-06-01

    Full Text Available Future linear colliders may require a nonzero crossing angle between the two beams at the interaction point (IP. This requirement in turn implies that the beams will pass through the strong interaction region solenoid with an angle, and thus that the component of the solenoidal field perpendicular to the beam trajectory is nonzero. The interaction of the beam and the solenoidal field in the presence of a crossing angle will cause optical effects not observed for beams passing through the solenoid on axis; these effects include dispersion, deflection of the beam, and synchrotron radiation effects. For a purely solenoidal field, the optical effects which are relevant to luminosity exactly cancel at the IP when the influence of the solenoid’s fringe field is taken into account. Beam size growth due to synchrotron radiation in the solenoid is proportional to the fifth power of the product of the solenoidal field, the length of the solenoid, and the crossing angle. Examples based on proposed linear collider detector solenoid configurations are presented.

  3. Relativistic-Klystron two-beam accelerator as a power source for future linear colliders

    Science.gov (United States)

    Lidia, S. M.; Anderson, D. E.; Eylon, S.; Henestroza, E.; Houck, T. L.; Westenskow, G. A.; Vanecek, D. L.; Yu, S. S.

    1999-05-01

    The technical challenge for making two-beam accelerators into realizable power sources for high-energy colliders lies in the creation of the drive beam and in its propagation over long distances through multiple extraction sections. This year we have been constructing a 1.2-kA, 1-MeV, induction gun for a prototype relativistic klystron two-beam accelerator (RK-TBA). The electron source will be a 8.9 cm diameter, thermionic, flat-surface cathode with a maximum shroud field stress of approximately 165 kV/cm. Additional design parameters for the injector include a pulse length of over 150-ns flat top (1% energy variation), and a normalized edge emittance of less than 300 pi-mm-mr. The prototype accelerator will be used to study, physics, engineering, and costing issues involved in the application of the RK-TBA concept to linear colliders. We have also been studying optimization parameters, such as frequency, for the application of the RK-TBA concept to multi-TeV linear colliders. As an rf power source the RK-TBA scales favorably up to frequencies around 35 GHz. An overview of this work with details of the design and performance of the prototype injector, beam line, and diagnostics will be presented.

  4. An upgraded experiment of X-ray photon-photon elastic scattering with a Laue-case beam collider

    CERN Document Server

    Yamaji, T; Yamazaki, T; Namba, T; Asai, S; Kobayashi, T; Tamasaku, K; Tanaka, Y; Inubushi, Y; Sawada, K; Yabashi, M; Ishikawa, T

    2016-01-01

    The new result of a photon-photon scattering experiment in the X-ray region is reported. An X-ray beam collider is used to divide and collide X-ray beams from an X-ray Free Electron Laser, SACLA. The sensitivity of the experiment is enhanced by an upgraded X-ray beam collider and improvement of the SACLA beam quality. The intensity of the colliding photon beams increased significantly, giving an integrated luminosity of (1.24 \\pm 0.08) \\times 10^{28} m^{-2}. No signal of scattered X rays was observed. The obtained 95% C.L. limit on the QED cross section is 1.9 \\times 10^{-27} m^2 at \\omega_{cms}=6.5 keV, which is more stringent by around three orders of magnitude than our previous result.

  5. Failure Studies at the Compact Linear Collider: Main Linac and Beam Delivery System

    CERN Document Server

    Maidana, C O; Jonker, M

    2012-01-01

    The proposed Compact Linear Collider (CLIC) is based on a two-beam acceleration scheme. The energy of two high-intensity, low-energy drive beams is extracted and transferred to two low-intensity, high-energy main beams. The CERN Technology Department - Machine protection and electrical integrity group has the mission to develop and maintain the systems to protect machine components from damage caused by ill controlled conditions. Various failure scenarios were studied and the potential damage these failures could cause to the machine structures was estimated. In this paper, first results of the beam response to kick induced failures in the main LINAC and in the beam delivery system (BDS) sections are presented together with possible collimator damage scenarios.

  6. Simulations and measurements of beam loss patterns at the CERN Large Hadron Collider

    CERN Document Server

    Bruce, R; Boccone, V; Bracco, C; Brugger, M; Cauchi, M; Cerutti, F; Deboy, D; Ferrari, A; Lari, L; Marsili, A; Mereghetti, A; Mirarchi, D; Quaranta, E; Redaelli, S; Robert-Demolaize, G; Rossi, A; Salvachua, B; Skordis, E; Tambasco, C; Valentino, G; Weiler, T; Vlachoudis, V; Wollmann, D

    2014-01-01

    The CERN Large Hadron Collider (LHC) is designed to collide proton beams of unprecedented energy, in order to extend the frontiers of high-energy particle physics. During the first very successful running period in 2010--2013, the LHC was routinely storing protons at 3.5--4 TeV with a total beam energy of up to 146 MJ, and even higher stored energies are foreseen in the future. This puts extraordinary demands on the control of beam losses. An un-controlled loss of even a tiny fraction of the beam could cause a superconducting magnet to undergo a transition into a normal-conducting state, or in the worst case cause material damage. Hence a multi-stage collimation system has been installed in order to safely intercept high-amplitude beam protons before they are lost elsewhere. To guarantee adequate protection from the collimators, a detailed theoretical understanding is needed. This article presents results of numerical simulations of the distribution of beam losses around the LHC that have leaked out of the co...

  7. Precise and fast beam energy measurement at the international linear collider

    Energy Technology Data Exchange (ETDEWEB)

    Viti, Michele

    2010-02-15

    The international Linear Collider (ILC) is an electron-positron collider with a center-of-mass energy between 200 and 500 GeV and a peak luminosity of 2 . 10{sup 34} cm{sup -2}s{sup -1}. For the physics program at this machine, an excellent bunch-by-bunch control of the beam energy is mandatory. Several techniques are foreseen to be implemented at the ILC in order to achieve this request. Energy spectrometers upstream and downstream of the electron/positron interaction point were proposed and the present default option for the upstream spectrometer is a beam position monitor based (BPM-based) spectrometer. In 2006/2007, a prototype of such a device was commissioned at the End Station A beam line at the Stanford Linear Accelerator Center (SLAC) in order to study performance and reliability. In addition, a novel method based on laser Compton backscattering has been proposed, since as proved at the Large Electron-Positron Collider (LEP) and the Stanford Linear Collider (SLC), complementary methods are necessary to cross-check the results of the BPM-based spectrometer. In this thesis, an overview of the experiment at End Station A is given, with emphasis on the performance of the magnets in the chicane and first energy resolution estimations. Also, the novel Compton backscattering method is discussed in details and found to be very promising. It has the potential to bring the beam energy resolution well below the requirement of {delta}E{sub b}/E{sub b}=10{sup -4}. (orig.)

  8. Vertical Beam Size Measurement by Streak Camera under Colliding and Single Beam Conditions in KEKB

    CERN Document Server

    Ikeda, Hitomi; Fukuma, Hitoshi; Funakoshi, Yoshihiro; Hiramatsu, Shigenori; Mitsuhashi, Toshiyuki; Ohmi, Kazuhito; Uehara, Sadaharu

    2005-01-01

    Beam behavior of KEKB was studied by measurement of the beam size using a streak camera. Effect of the electron-cloud and the parasitic collision on the vertical beam size was examined in beam collision. We intentionally injected a test bunch of positrons after 2 rf buckets of a bunch to enhance the electron cloud effect and changed electron beam conditions to see the beam-beam effect. The beam size was also measured with a single positron beam and compared with that during collision. The result of the measurement is reported in this paper.

  9. Progress on optimization of the nonlinear beam dynamics in the MEIC collider rings

    Energy Technology Data Exchange (ETDEWEB)

    Nosochkov, Y. M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Cai, Y. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Sullivan, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Wang, M-H [SLAC National Accelerator Lab., Menlo Park, CA (United States); Wienands, U. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Morozov, V. S. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Derbenev, Ya. S. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Lin, F. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Pilat, F. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Zhang, Y. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2015-07-13

    One of the key design features of the Medium-energy Electron-Ion Collider (MEIC) proposed by Jefferson Lab is a small beta function at the interaction point (IP) allowing one to achieve a high luminosity of up to 1034 cm-2s-1. The required strong beam focusing unavoidably causes large chromatic effects such as chromatic tune spread and beam smear at the IP, which need to be compensated. This paper reports recent progress in our development of a chromaticity correction scheme for the ion ring including optimization of dynamic aperture and momentum acceptance.

  10. Progress on Optimization of the Nonlinear Beam Dynamics in the MEIC Collider Rings

    Energy Technology Data Exchange (ETDEWEB)

    Morozov, Vasiliy S. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Derbenev, Yaroslav S. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Lin, Fanglei [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Pilat, Fulvia [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Zhang, Yuhong [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Cai, Y. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Nosochkov, Y. M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Sullivan, Michael [SLAC National Accelerator Lab., Menlo Park, CA (United States); Wang, M.-H. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Wienands, Uli [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-09-01

    One of the key design features of the Medium-energy Electron-Ion Collider (MEIC) proposed by Jefferson Lab is a small beta function at the interaction point (IP) allowing one to achieve a high luminosity of up to 1034 cm-2s-1. The required strong beam focusing unavoidably causes large chromatic effects such as chromatic tune spread and beam smear at the IP, which need to be compensated. This paper reports recent progress in our development of a chromaticity correction scheme for the ion ring including optimization of dynamic aperture and momentum acceptance.

  11. Development of a CVD diamond Beam Condition Monitor for CMS at the Large Hadron Collider

    CERN Document Server

    Fernández-Hernando, L; Gray, R; Ilgner, C; MacPherson, A; Oh, A; Pritchard, T; Stone, R; Worm, S

    2005-01-01

    The CERN Large Hadron Collider (LHC) will store 2808 bunches per colliding beam, with each bunch consisting of 1011 protons at an energy of 7 TeV. If there is a failure in an element of the accelerator, the resulting beam losses could cause damage not only to the machine but also to the experiments. A Beam Condition Monitor (BCM) is foreseen to monitor fast increments of particle fluxes near the interaction point and, if necessary, to generate an abort signal to the LHC accelerator control to dump the beams. The system is being developed initially for the CMS experiment but it is sufficiently general to find potential applications elsewhere. Due to its high radiation hardness, CVD diamond was chosen for investigation as the BCM sensor. Various samples of CVD diamond have been characterized extensively with both a 90Sr source and in high-intensity test beams in order to assess the capabilities of such sensors and to study whether this detector technology is suitable for a BCM system. A selection of results fro...

  12. Beam Collimation and Machine-Detector Interface at the International Linear Collider

    CERN Document Server

    Mokhov, Nikolai V; Kostin, Mikhail A

    2005-01-01

    Synchrotron radiation, spray from the dumps and extraction lines, beam-gas and beam halo interactions with collimators and other components in the ILC beam delivery system create fluxes of muons and other secondaries which can exceed the tolerable levels at a detector by a few orders of magnitude. It is shown that with a multi-stage collimation system, magnetized iron spoilers which fill the tunnel and a set of masks in the detector, one can hopefully meet the design goals. Results of modeling with the STRUCT and MARS15 codes of beam loss and energy deposition effects are presented in this paper. We concentrate on collimation system and mask design and optimization, short- and long-term survivability of the critical components (spoilers, absorbers, magnets, separators, dumps), dynamic heat loads and radiation levels in magnets and other components, machine-related backgrounds and damage in collider detectors, and environmental aspects (prompt dose, ground-water and air activation).

  13. Development of a beam condition monitor for use in experiments at the CERN Large Hadron Collider using synthetic diamond

    CERN Document Server

    Fernández-Hernando, L; Ilgner, C; MacPherson, A; Oh, A; Pernegger, H; Pritchard, T; Stone, R; Worm, S

    2004-01-01

    The CERN Large Hadron Collider (LHC) will collide two counter rotating proton beams, each with a store energy about 350MJ; enough to melt 550kg of copper. If there is failure in an element of the accelerator, the resulting beam losses could cause damage not only to the machine but also to the experiments. A Beam Condition Monitor (BCM) is foreseen to monitor last increments of particle flux near the interaction point and if necessary, to generate an abort signal to the LHC accelerator control, to dump the beams. Due to its radiation hardness and minimal services requirements, synthetic CVD diamond is being considered as BCM sensor option. (12 refs).

  14. THE AGS-BASED SUPER NEUTRINO BEAM FACILITY CONCEPTUAL DESIGN REPORT

    Energy Technology Data Exchange (ETDEWEB)

    WENG,W.T.; DIWAN,M.; RAPARIA,D.

    2004-10-08

    After more than 40 years of operation, the AGS is still at the heart of the Brookhaven hadron accelerator complex. This system of accelerators presently comprises a 200 MeV linac for the pre-acceleration of high intensity and polarized protons, two Tandem Van der Graaffs for the pre-acceleration of heavy ion beams, a versatile Booster that allows for efficient injection of all three types of beams into the AGS and, most recently, the two RHIC collider rings that produce high luminosity heavy ion and polarized proton collisions. For several years now, the AGS has held the world intensity record with more than 7 x 10{sup 13} protons accelerated in a single pulse. The requirements for the proton beam for the super neutrino beam are summarized and a schematic of the upgraded AGS is shown. Since the present number of protons per fill is already close to the required number, the upgrade is based on increasing the repetition rate and reducing beam losses (to avoid excessive shielding requirements and to maintain activation of the machine components at workable level). It is also important to preserve all the present capabilities of the AGS, in particular its role as injector to RHIC. The AGS Booster was built not only to allow the injection of any species of heavy ion into the AGS but to allow a fourfold increase of the AGS intensity. It is one-quarter the circumference of the AGS with the same aperture. However, the accumulation of four Booster loads in the AGS takes about 0.6 s, and is therefore not well suited for high average beam power operation. To minimize the injection time to about 1 ms, a 1.2 GeV linac will be used instead. This linac consists of the existing warm linac of 200 MeV and a new superconducting linac of 1.0 GeV. The multi-turn H{sup -} injection from a source of 30 mA and 720 {micro}s pulse width is sufficient to accumulate 9 x 10{sup 13} particle per pulse in the AGS[10]. The minimum ramp time of the AGS to full energy is presently 0.5 s; this must

  15. The generation and acceleration of low emittance flat beams for future linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Raubenheimer, T.O.

    1991-11-01

    Many future linear collider designs call for electron and positron beams with normalized rms horizontal and vertical emittances of {gamma}{epsilon}{sub x} = 3{times}10{sup {minus}6} m-rad and {gamma}{epsilon}{sub y} = 3{times}10{sup {minus}8} m-rad; these are a factor of 10 to 100 below those observed in the Stanford Linear Collider. In this dissertation, we examine the feasibility of achieving beams with these very small vertical emittances. We examine the limitations encountered during both the generation and the subsequent acceleration of such low emittance beams. We consider collective limitations, such as wakefields, space charge effects, scattering processes, and ion trapping; and also how intensity limitations, such as anomalous dispersion, betatron coupling, and pulse-to-pulse beam jitter. In general, the minimum emittance in both the generation and the acceleration stages is limited by the transverse misalignments of the accelerator components. We describe a few techniques of correcting the effect of these errors, thereby easing the alignment tolerances by over an order of magnitude. Finally, we also calculate ``fundamental`` limitations on the minimum vertical emittance; these do not constrain the current designs but may prove important in the future.

  16. The generation and acceleration of low emittance flat beams for future linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Raubenheimer, T.O.

    1991-11-01

    Many future linear collider designs call for electron and positron beams with normalized rms horizontal and vertical emittances of {gamma}{epsilon}{sub x} = 3{times}10{sup {minus}6} m-rad and {gamma}{epsilon}{sub y} = 3{times}10{sup {minus}8} m-rad; these are a factor of 10 to 100 below those observed in the Stanford Linear Collider. In this dissertation, we examine the feasibility of achieving beams with these very small vertical emittances. We examine the limitations encountered during both the generation and the subsequent acceleration of such low emittance beams. We consider collective limitations, such as wakefields, space charge effects, scattering processes, and ion trapping; and also how intensity limitations, such as anomalous dispersion, betatron coupling, and pulse-to-pulse beam jitter. In general, the minimum emittance in both the generation and the acceleration stages is limited by the transverse misalignments of the accelerator components. We describe a few techniques of correcting the effect of these errors, thereby easing the alignment tolerances by over an order of magnitude. Finally, we also calculate fundamental'' limitations on the minimum vertical emittance; these do not constrain the current designs but may prove important in the future.

  17. Simulations and measurements of beam loss patterns at the CERN Large Hadron Collider

    Science.gov (United States)

    Bruce, R.; Assmann, R. W.; Boccone, V.; Bracco, C.; Brugger, M.; Cauchi, M.; Cerutti, F.; Deboy, D.; Ferrari, A.; Lari, L.; Marsili, A.; Mereghetti, A.; Mirarchi, D.; Quaranta, E.; Redaelli, S.; Robert-Demolaize, G.; Rossi, A.; Salvachua, B.; Skordis, E.; Tambasco, C.; Valentino, G.; Weiler, T.; Vlachoudis, V.; Wollmann, D.

    2014-08-01

    The CERN Large Hadron Collider (LHC) is designed to collide proton beams of unprecedented energy, in order to extend the frontiers of high-energy particle physics. During the first very successful running period in 2010-2013, the LHC was routinely storing protons at 3.5-4 TeV with a total beam energy of up to 146 MJ, and even higher stored energies are foreseen in the future. This puts extraordinary demands on the control of beam losses. An uncontrolled loss of even a tiny fraction of the beam could cause a superconducting magnet to undergo a transition into a normal-conducting state, or in the worst case cause material damage. Hence a multistage collimation system has been installed in order to safely intercept high-amplitude beam protons before they are lost elsewhere. To guarantee adequate protection from the collimators, a detailed theoretical understanding is needed. This article presents results of numerical simulations of the distribution of beam losses around the LHC that have leaked out of the collimation system. The studies include tracking of protons through the fields of more than 5000 magnets in the 27 km LHC ring over hundreds of revolutions, and Monte Carlo simulations of particle-matter interactions both in collimators and machine elements being hit by escaping particles. The simulation results agree typically within a factor 2 with measurements of beam loss distributions from the previous LHC run. Considering the complex simulation, which must account for a very large number of unknown imperfections, and in view of the total losses around the ring spanning over 7 orders of magnitude, we consider this an excellent agreement. Our results give confidence in the simulation tools, which are used also for the design of future accelerators.

  18. Analytical estimation of the beam-beam interaction limited dynamic apertures and lifetimes in e{sup +}e{sup -} circular colliders

    Energy Technology Data Exchange (ETDEWEB)

    Gao, J

    2000-12-01

    Physically speaking, the delta function like beam-beam nonlinear forces at interaction points (IPs) act as a sum of delta function nonlinear multipoles. By applying the general theory established in ref. [1], in this paper we investigate analytically the beam-beam interaction limited dynamic apertures and the corresponding beam lifetimes for both the round and the flat beams. Relations between the beam-beam limited beam lifetimes and the beam-beam tune shifts are established, which show clearly why experimentally one has always a maximum beam-beam tune shift, {zeta}{sub y,max}, around 0.045 for e{sup +}e{sup -} circular colliders, and why one can use round beams to double this value approximately. Comparisons with some machine parameters are given. Finally, we discuss the mechanism of the luminosity reduction due to a definite collision crossing angle. (author)

  19. Low emittance design of the electron gun and the focusing channel of the Compact Linear Collider drive beam

    Science.gov (United States)

    Dayyani Kelisani, M.; Doebert, S.; Aslaninejad, M.

    2017-04-01

    For the Compact Linear Collider project at CERN, the power for the main linacs is extracted from a drive beam generated from a high current electron source. The design of the electron source and its subsequent focusing channel has a great impact on the beam dynamic considerations of the drive beam. We report the design of a thermionic electron source and the subsequent focusing channels with the goal of production of a high quality beam with a very small emittance.

  20. Reliability of Beam Loss Monitors System for the Large Hadron Collider

    CERN Document Server

    Guaglio, Gianluca; Santoni, C

    2004-01-01

    The employment of superconducting magnets, in the high energies colliders, opens challenging failure scenarios and brings new criticalities for the whole system protection. For the LHC beam loss protection system, the failure rate and the availability requirements have been evaluated using the Safety Integrity Level (SIL) approach. A downtime cost evaluation is used as input for the SIL approach. The most critical systems, which contribute to the final SIL value, are the dump system, the interlock system, the beam loss monitors system and the energy monitor system. The Beam Loss Monitors System (BLMS) is critical for short and intense particles losses, while at medium and higher loss time it is assisted by other systems, such as the quench protection system and the cryogenic system. For BLMS, hardware and software have been evaluated in detail. The reliability input figures have been collected using historical data from the SPS, using temperature and radiation damage experimental data as well as using standar...

  1. Design study of primary ion provider for relativistic heavy ion collider electron beam ion source.

    Science.gov (United States)

    Kondo, K; Kanesue, T; Tamura, J; Okamura, M

    2010-02-01

    Brookhaven National Laboratory has developed the new preinjector system, electron beam ion source (EBIS) for relativistic heavy ion collider (RHIC) and National Aeronautics and Space Administration Space Radiation Laboratory. Design of primary ion provider is an essential problem since it is required to supply beams with different ion species to multiple users simultaneously. The laser ion source with a defocused laser can provide a low charge state and low emittance ion beam, and is a candidate for the primary ion source for RHIC-EBIS. We show a suitable design with appropriate drift length and solenoid, which helps to keep sufficient total charge number with longer pulse length. The whole design of primary ion source, as well as optics arrangement, solid targets configuration and heating about target, is presented.

  2. Propagation dynamics of super-Gaussian beams in fractional Schrödinger equation: from linear to nonlinear regimes.

    Science.gov (United States)

    Zhang, Lifu; Li, Chuxin; Zhong, Haizhe; Xu, Changwen; Lei, Dajun; Li, Ying; Fan, Dianyuan

    2016-06-27

    We have investigated the propagation dynamics of super-Gaussian optical beams in fractional Schrödinger equation. We have identified the difference between the propagation dynamics of super-Gaussian beams and that of Gaussian beams. We show that, the linear propagation dynamics of the super-Gaussian beams with order m > 1 undergo an initial compression phase before they split into two sub-beams. The sub-beams with saddle shape separate each other and their interval increases linearly with propagation distance. In the nonlinear regime, the super-Gaussian beams evolve to become a single soliton, breathing soliton or soliton pair depending on the order of super-Gaussian beams, nonlinearity, as well as the Lévy index. In two dimensions, the linear evolution of super-Gaussian beams is similar to that for one dimension case, but the initial compression of the input super-Gaussian beams and the diffraction of the splitting beams are much stronger than that for one dimension case. While the nonlinear propagation of the super-Gaussian beams becomes much more unstable compared with that for the case of one dimension. Our results show the nonlinear effects can be tuned by varying the Lévy index in the fractional Schrödinger equation for a fixed input power.

  3. A silicon strip module for the ATLAS inner detector upgrade in the super LHC collider

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Sevilla, S., E-mail: Sergio.Gonzalez.Sevilla@cern.ch [DPNC, University of Geneva, CH 1211 Geneva 4 (Switzerland); Barbier, G. [DPNC, University of Geneva, CH 1211 Geneva 4 (Switzerland); Anghinolfi, F. [European Organization for Nuclear Research, CERN CH-1211, Geneva 23 (Switzerland); Cadoux, F.; Clark, A. [DPNC, University of Geneva, CH 1211 Geneva 4 (Switzerland); Dabrowski, W.; Dwuznik, M. [AGH University of Sceince and Technology, Faculty of Physics and Applied Computer Science, Krakow (Poland); Ferrere, D. [DPNC, University of Geneva, CH 1211 Geneva 4 (Switzerland); Garcia, C. [IFIC, Instituto de Fisica Corpuscular (CSIC-Universitat de Valencia), Edificio Investigacion Paterna, Apartado 22085 46071 Valencia (Spain); Ikegami, Y. [KEK, High Energy Accelerator Research Organization, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan); Hara, K. [University of Tsukuba, School of Pure and Applied Sciences, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571 (Japan); Jakobs, K. [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Kaplon, J. [European Organization for Nuclear Research, CERN CH-1211, Geneva 23 (Switzerland); Koriki, T. [KEK, High Energy Accelerator Research Organization, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan); Lacasta, C. [IFIC, Instituto de Fisica Corpuscular (CSIC-Universitat de Valencia), Edificio Investigacion Paterna, Apartado 22085 46071 Valencia (Spain); La Marra, D. [DPNC, University of Geneva, CH 1211 Geneva 4 (Switzerland); Marti i Garcia, S. [IFIC, Instituto de Fisica Corpuscular (CSIC-Universitat de Valencia), Edificio Investigacion Paterna, Apartado 22085 46071 Valencia (Spain); Parzefall, U. [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Pohl, M. [DPNC, University of Geneva, CH 1211 Geneva 4 (Switzerland); Terada, S. [KEK, High Energy Accelerator Research Organization, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan)

    2011-04-21

    The ATLAS detector is a general purpose experiment designed to fully exploit the discovery potential of the Large Hadron Collider (LHC) at a nominal luminosity of 10{sup 34} cm{sup -2} s{sup -1}. It is expected that after several years of successful data-taking, the LHC physics program will be extended by increasing the peak luminosity by one order of magnitude. For ATLAS, an upgrade scenario will imply the complete replacement of the Inner Detector (ID), since the current tracker will not provide the required performance due to cumulated radiation damage and a dramatic increase in the detector occupancy. In this paper, a proposal of a double-sided silicon micro-strip module for the short-strip region of the future ATLAS ID is presented. The expected thermal performance based upon detailed FEA simulations is discussed. First electrical results from a prototype version of the next generation readout front-end chips are also shown.

  4. Thermomechanical assessment of the effects of a jaw-beam angle during beam impact on Large Hadron Collider collimators

    Science.gov (United States)

    Cauchi, Marija; Assmann, R. W.; Bertarelli, A.; Carra, F.; Lari, L.; Rossi, A.; Mollicone, P.; Sammut, N.

    2015-02-01

    The correct functioning of a collimation system is crucial to safely and successfully operate high-energy particle accelerators, such as the Large Hadron Collider (LHC). However, the requirements to handle high-intensity beams can be demanding, and accident scenarios must be well studied in order to assess if the collimator design is robust against possible error scenarios. One of the catastrophic, though not very probable, accident scenarios identified within the LHC is an asynchronous beam dump. In this case, one (or more) of the 15 precharged kicker circuits fires out of time with the abort gap, spraying beam pulses onto LHC machine elements before the machine protection system can fire the remaining kicker circuits and bring the beam to the dump. If a proton bunch directly hits a collimator during such an event, severe beam-induced damage such as magnet quenches and other equipment damage might result, with consequent downtime for the machine. This study investigates a number of newly defined jaw error cases, which include angular misalignment errors of the collimator jaw. A numerical finite element method approach is presented in order to precisely evaluate the thermomechanical response of tertiary collimators to beam impact. We identify the most critical and interesting cases, and show that a tilt of the jaw can actually mitigate the effect of an asynchronous dump on the collimators. Relevant collimator damage limits are taken into account, with the aim to identify optimal operational conditions for the LHC.

  5. The beam energy feedback system for Beijing electron positron collider II linac.

    Science.gov (United States)

    Wang, S; Iqbal, M; Chi, Y; Liu, R; Huang, X

    2017-03-01

    A beam-energy feedback system has been developed for the injection linac to meet the beam quality needed for the Beijing electron positron collider II storage ring. This paper describes the implementation and commissioning of this system in detail. The system consists of an energy measurement unit, application software, and an actuator unit. A non-intersecting beam energy monitor was developed to allow real-time online energy adjustment. The beam energy adjustment is achieved by adjusting the output microwave phase of the RF power source station. The phase control mechanism has also been modified, and a new control method taking the return difference of the phase shifter into account is used to improve the system's performance. This system achieves the design aim and can adjust the beam center energy with a rate of 2 Hz. With the energy feedback system, the stability of the injection rate is better; the fluctuation range is reduced from 20 mA/min to 10 mA/min, while the stability of the beam center energy is maintained within ±0.1%.

  6. Very High Energy Electron-positron Colliding Beams for the Study of the Weak Interactions

    CERN Document Server

    Richter, B

    1976-01-01

    We consider the design of very high energy electron-positron colliding-beam storage rings for use primarily as a tool for investigating the weak interactions. These devices appear to be a very powerful tool for determining the properties of these interactions. Experimental possibilities are described, a cost minimization technique is developed, and a model machine is designed to operate at centre-of-mass energies of up to 200 GeV. Costs are discussed, and problems delineated that must be solved before such a machine can be finally designed.

  7. Technical design of a detector to be operated at the Superconducting Super Collider

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This report discusses the following topics on the Soleoidal Detector Collaboration: Summary and overview of the detector; physics and detector requirements; central tracking system; superconducting magnet; calorimetry; muon system; electronics; online computing; offline computing; safety; experimental facilities; installation; test and calibration beam plan; and cost and schedule summary.

  8. A silicon strip module for the ATLAS inner detector upgrade in the super LHC collider

    CERN Document Server

    Gonzalez-Sevilla, S; Parzefall, U; Clark, A; Ikegami, Y; Hara, K; Garcia, C; Jakobs, K; Dwuznik, M; Terada, S; Barbier, G; Koriki, T; Lacasta, C; Unno, Y; Anghinolfi, F; Cadoux, F; Garcia, S M I; Ferrere, D; La Marra, D; Pohl, M; Dabrowski, W; Kaplon, J

    2011-01-01

    The ATLAS detector is a general purpose experiment designed to fully exploit the discovery potential of the Large Hadron Collider (LHC) at a nominal luminosity of 10(34)cm(-2)s(-1). It is expected that after several years of successful data-taking, the LHC physics program will be extended by increasing the peak luminosity by one order of magnitude. For ATLAS, an upgrade scenario will imply the complete replacement of the Inner Detector (ID), since the current tracker will not provide the required performance due to cumulated radiation damage and a dramatic increase in the detector occupancy. In this paper, a proposal of a double-sided silicon micro-strip module for the short-strip region of the future ATLAS ID is presented. The expected thermal performance based upon detailed FEA simulations is discussed. First electrical results from a prototype version of the next generation readout front-end chips are also shown. (C) 2010 Elsevier B.V. All rights reserved.

  9. Coherent beam-beam effects observation and mitigation at the RHIC collider

    Energy Technology Data Exchange (ETDEWEB)

    White S.; Fischer, W.; Luo, Y.

    2012-05-20

    In polarized proton operation in RHIC coherent beam-beam modes are routinely observed with beam transfer function measurements in the vertical plane. With the existence of coherent modes a larger space is required in the tune diagram than without them and stable conditions can be compromised for operation with high intensity beams as foreseen for future luminosity upgrades. We report on experiments and simulations carried out to understand the existence of coherent modes in the vertical plane and their absence in the horizontal plane, and investigate possible mitigation strategies.

  10. A blanket design, apparatus, and fabrication techniques for the mass production of multilayer insulation blankets for the Superconducting Super Collider

    Energy Technology Data Exchange (ETDEWEB)

    Gonczy, J.D.; Boroski, W.N.; Niemann, R.C.; Otavka, J.G.; Ruschman, M.K.; Schoo, C.J.

    1989-09-01

    The multilayer insulation (MLI) system for the Superconducting Super Collider (SSC) consists of full cryostat length assemblies of aluminized polyester film fabricated in the form of blankets and installed as blankets to the 4.5K cold mass and the 20K and 80K thermal radiation shields. Approximately 40,000 MLI blankets will be required in the 10,000 cryogenic devices comprising the SSC accelerator. Each blanket is nearly 17 meters long and 1.8 meters wide. This paper reports the blanket design, an apparatus, and the fabrication method used to mass produce pre-fabricated MLI blankets. Incorporated in the blanket design are techniques which automate quality control during installation of the MLI blankets in the SSC cryostat. The apparatus and blanket fabrication method insure consistency in the mass produced blankets by providing positive control of the dimensional parameters which contribute to the thermal performance of the MLI blanket. By virtue of the fabrication process, the MLI blankets have inherent features of dimensional stability three-dimensional uniformity, controlled layer density, layer-to-layer registration, interlayer cleanliness, and interlayer material to accommodate thermal contraction differences. 11 refs., 6 figs., 1 tab.

  11. Review of project definition studies of possible on-site uses of superconducting super collider assets and facilities. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    This document reports on the results of a peer review and evaluation of studies made of potential uses of assets from the terminated Superconducting Super Collider (SSC) project. These project definition studies focused on nine areas of use of major assets and facilities at the SSC site near Waxahachie, Texas. The studies were undertaken as part of the effort to maximize the value of the investment made in the SSC and were supported by two sets of grants, one to the Texas National Research Laboratory Commission (TNRLC) and the second to various universities and other institutions for studies of ideas raised by a public call for expressions of interest. The Settlement Agreement, recently signed by the Department of Energy (DOE) and TNRLC, provides for a division of SSC property. As part of the goal of maximizing the value of the SSC investment, the findings contained in this report are thus addressed to officials in both the Department and TNRLC. In addition, this review had several other goals: to provide constructive feedback to those doing the studies; to judge the benefits and feasibility (including funding prospects) of the projects studied; and to help worthy projects become reality by matching projects with possible funding sources.

  12. Review of project definition studies of possible on-site uses of superconducting super collider assets and facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    This document reports on the results of a peer review and evaluation of studies made of potential uses of assets from the terminated Superconducting Super Collider (SSC) project. These project definition studies focused on nine areas of use of major assets and facilities at the SSC site near Waxahachie, Texas. The studies were undertaken as part of the effort to maximize the value of the investment made in the SSC and were supported by two sets of grants, one to the Texas National Research Laboratory Commission (TNRLC) and the second to various universities and other institutions for studies of ideas raised by a public call for expressions of interest. The Settlement Agreement, recently signed by the Department of Energy (DOE) and TNRLC, provides for a division of SSC property. As part of the goal of maximizing the value of the SSC investment, the findings contained in this report are thus addressed to officials in both the Department and TNRLC. In addition, this review had several other goals: to provide constructive feedback to those doing the studies; to judge the benefits and feasibility (including funding prospects) of the projects studied; and to help worthy projects become reality by matching projects with possible funding sources.

  13. Reliability of Beam Loss Monitor Systems for the Large Hadron Collider

    CERN Document Server

    Guaglio, Gianluca; Santoni, C

    2005-01-01

    The increase of beam energy and beam intensity, together with the use of super conducting magnets, opens new failure scenarios and brings new criticalities for the whole accelerator protection system. For the LHC beam loss protection system, the failure rate and the availability requirements have been evaluated using the Safety Integrity Level (SIL) approach. A downtime cost evaluation is used as input for the SIL approach. The most critical systems, which contribute to the final SIL value, are the dump system, the interlock system, the beam loss monitors system, and the energy monitor system. The Beam Loss Monitors System (BLMS) is critical for short and intense particles losses at 7 TeV and assisted by the Fast Beam Current Decay Monitors at 450 GeV. At medium and higher loss time it is assisted by other systems, such as the quench protection system and the cryogenic system. For BLMS, hardware and software have been evaluated in detail. The reliability input figures have been collected using historical data...

  14. Realization of beam polarization at the linear collider and its application to EW processes

    Energy Technology Data Exchange (ETDEWEB)

    Franco-Sollova, F.

    2006-07-15

    The use of beam polarization at the future ILC e{sup +}e{sup -} linear collider will benefit the physics program significantly. This thesis explores three aspects of beam polarization: the application of beam polarization to the study of electroweak processes, the precise measurement of the beam polarization, and finally, the production of polarized positrons at a test beam experiment. In the first part of the thesis the importance of beam polarization at the future ILC is exhibited: the benefits of employing transverse beam polarization (in both beams) for the measurement of triple gauge boson couplings (TGCs) in the W-pair production process are studied. The sensitivity to anomalous TGC values is compared for the cases of transverse and longitudinal beam polarization at a center of mass energy of 500 GeV. Due to the suppressed contribution of the t-channel {nu} exchange, the sensitivity is higher for longitudinal polarization. For some physics analyses the usual polarimetry techniques do not provide the required accuracy for the measurement of the beam polarization (around 0.25% with Compton polarimetry). The second part of the thesis deals with a complementary method to measure the beam polarization employing physics data acquired with two polarization modes. The process of single-W production is chosen due to its high cross section. The expected precision for 500 fb{sup -1} and W{yields}{mu}{nu} decays only, is {delta}P{sub e{sup -}}/P{sub e{sup -}}=0.26% and {delta}P{sub e{sup +}}/P{sub e{sup +}}=0.33%, which can be further improved by employing additional W-decay channels. The first results of an attempt to produce polarized positrons at the E-166 experiment are shown in the last part of the thesis. The E-166 experiment, located at the Final Focus Test Beam at SLAC's LINAC employs a helical undulator to induce the emission of circularly polarized gamma rays by the beam electrons. These gamma rays are converted into longitudinally polarized electron

  15. A Beam Driven Plasma-Wakefield Linear Collider: From Higgs Factory to Multi-TeV

    CERN Document Server

    Adli, Erik; Gessner, Spencer J; Hogan, Mark J; Raubenheimer, Tor; An, Weiming; Joshi, Chan; Mori, Warren

    2013-01-01

    Plasma wakefield acceleration (PWFA) holds much promise for advancing the energy frontier because it can potentially provide a 1000-fold or more increase in acceleration gradient with excellent power efficiency in respect with standard technologies. Most of the advances in beam-driven plasma wakefield acceleration were obtained by a UCLA/USC/SLAC collaboration working at the SLAC FFTB[ ]. These experiments have shown that plasmas can accelerate and focus both electron and positron high energy beams, and an accelerating gradient in excess of 50 GeV/m can be sustained in an 85 cm-long plasma. The FFTB experiments were essentially proof-of-principle experiments that showed the great potential of plasma accelerators. The FACET[ ] test facility at SLAC will in the period 2012-2016 further study several issues that are directly related to the applicability of PWFA to a high-energy collider, in particular two-beam acceleration where the witness beam experiences high beam loading (required for high efficiency), small...

  16. Beam Delivery System Dogleg Design and Integration for the International Linear Collider

    CERN Document Server

    Jones, J

    2010-01-01

    It is proposed to investigate the option of moving the positron source to the end of the main linac as a part of the central integration in the International Linear Collider(ILC) project. The positron source incorporates an undulator at the end of the main linac and the photons generated in the undulator are transported to the target, located at a distance of around 400 m. The dogleg design has been optimised to provide the required transverse offset at the location of the target and to give minimum emittance growth at 500 GeV. The design of the dogleg, the layout changes and the tolerances on beam tuning as a result of locating this dogleg in the beginning of the beam delivery system (BDS) are presented.

  17. The Radiological Situation in the Beam-Cleaning Sections of the CERN Large Hadron Collider (LHC)

    CERN Document Server

    Brugger, Markus; Stevenson, Graham

    2003-01-01

    This thesis contributes to radiological assessments of the design and operation of the Large Hadron Collider currently under construction at CERN. In particular, the scope of this thesis is to examine the beam cleaning insertions - two of the main loss regions of the LHC where beam particles which would otherwise cause unwanted losses at different places of the machine are purposely intercepted. Two critical issues with regard to the protection of personnel and environment are studied: remanent dose rates due to induced radioactivity and airborne radioactivity. Although a detailed estimate of remanent dose rates is important for an optimization of later maintenance interventions only very limited information on remanent dose rates to be expected around the collimators was available so far. This thesis is an attempt to extend the knowledge considerably, especially by applying a new calculational method. Since this new approach is used for the first time in the design of the LHC a careful benchmarking with expe...

  18. ISABELLE: a 400 x 400 GeV proton--proton colliding beam facility

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    A conceptual design report is presented for the construction of an Intersecting Storage Accelerator, ISABELLE, to be located at Brookhaven National Laboratory. At this major research facility beams of protons with energies up to 400 GeV will be collided in six experimental areas. At each area particle physicists will install detector apparatus to study the interaction and reaction products for such very high energy collisions. The proposal results from several years of study and development work on such a facility. Topics discussed include: (1) introduction and summary of the proposal; (2) physics at ISABELLE (including physics objectives and typical experiments and detectors); description of ISABELLE (overview; magnetic ring structure and lattice characteristics; performance; beam transfer, stacking, and acceleration; magnet system; refrigeration system; vacuum system; power supplies, instrumentation, and control system; physical plant and experimental halls; and operation and safety); and (3) cost estimate and schedule.

  19. Particle manipulation beyond the diffraction limit using structured super-oscillating light beams

    CERN Document Server

    Singh, Brijesh Kumar; Roichman, Yael; Arie, Ady

    2016-01-01

    The diffraction limited resolution of light focused by a lens was derived in 1873 by Ernst Abbe. Later in 1952, a method to reach sub-diffraction light spots was proposed by modulating the wavefront of the focused beam. In a related development, super-oscillating functions, i.e. band limited functions that locally oscillate faster than their highest Fourier component, were introduced and experimentally applied for super-resolution microscopy. Up till now, only simple Gaussian-like sub-diffraction spots were used. Here we show that the amplitude and phase profile of these sub-diffraction spots can be arbitrarily controlled. In particular we utilize Hermite-Gauss, Laguerre-Gauss and Airy functions to structure super-oscillating beams with sub-diffraction lobes. These structured beams are then used for high resolution trapping and manipulation of nanometer-sized particles. The trapping potential provides unprecedented localization accuracy and stiffness, significantly exceeding those provided by standard diffrac...

  20. Final implementation, commissioning, and performance of embedded collimator beam position monitors in the Large Hadron Collider

    Directory of Open Access Journals (Sweden)

    Gianluca Valentino

    2017-08-01

    Full Text Available During Long Shutdown 1, 18 Large Hadron Collider (LHC collimators were replaced with a new design, in which beam position monitor (BPM pick-up buttons are embedded in the collimator jaws. The BPMs provide a direct measurement of the beam orbit at the collimators, and therefore can be used to align the collimators more quickly than using the standard technique which relies on feedback from beam losses. Online orbit measurements also allow for reducing operational margins in the collimation hierarchy placed specifically to cater for unknown orbit drifts, therefore decreasing the β^{*} and increasing the luminosity reach of the LHC. In this paper, the results from the commissioning of the embedded BPMs in the LHC are presented. The data acquisition and control software architectures are reviewed. A comparison with the standard alignment technique is provided, together with a fill-to-fill analysis of the measured orbit in different machine modes, which will also be used to determine suitable beam interlocks for a tighter collimation hierarchy.

  1. Final implementation, commissioning, and performance of embedded collimator beam position monitors in the Large Hadron Collider

    Science.gov (United States)

    Valentino, Gianluca; Baud, Guillaume; Bruce, Roderik; Gasior, Marek; Mereghetti, Alessio; Mirarchi, Daniele; Olexa, Jakub; Redaelli, Stefano; Salvachua, Belen; Valloni, Alessandra; Wenninger, Jorg

    2017-08-01

    During Long Shutdown 1, 18 Large Hadron Collider (LHC) collimators were replaced with a new design, in which beam position monitor (BPM) pick-up buttons are embedded in the collimator jaws. The BPMs provide a direct measurement of the beam orbit at the collimators, and therefore can be used to align the collimators more quickly than using the standard technique which relies on feedback from beam losses. Online orbit measurements also allow for reducing operational margins in the collimation hierarchy placed specifically to cater for unknown orbit drifts, therefore decreasing the β* and increasing the luminosity reach of the LHC. In this paper, the results from the commissioning of the embedded BPMs in the LHC are presented. The data acquisition and control software architectures are reviewed. A comparison with the standard alignment technique is provided, together with a fill-to-fill analysis of the measured orbit in different machine modes, which will also be used to determine suitable beam interlocks for a tighter collimation hierarchy.

  2. Reliability of the Beam Loss Monitors System for the Large Hadron Collider at CERN

    CERN Document Server

    Guaglio, G; Santoni, C

    2005-01-01

    The energy stored in the Large Hadron Collider is unprecedented. The impact of the beam particles can cause severe damage on the superconductive magnets, resulting in significant downtime for repairing. The Beam Loss Monitors System (BLMS) detects the secondary particles shower of the lost beam particles and initiates the extraction of the beam before any serious damage to the equipment can occur. This thesis defines the BLMS specifications in term of reliability. The main goal is the design of a system minimizing both the probability to not detect a dangerous loss and the number of false alarms generated. The reliability theory and techniques utilized are described. The prediction of the hazard rates, the testing procedures, the Failure Modes Effects and Criticalities Analysis and the Fault Tree Analysis have been used to provide an estimation of the probability to damage a magnet, of the number of false alarms and of the number of generated warnings. The weakest components in the BLMS have been pointed out....

  3. Measurement of nonlinear observables in the Large Hadron Collider using kicked beams

    Science.gov (United States)

    Maclean, E. H.; Tomás, R.; Schmidt, F.; Persson, T. H. B.

    2014-08-01

    The nonlinear dynamics of a circular accelerator such as the Large Hadron Collider (LHC) may significantly impact its performance. As the LHC progresses to more challenging regimes of operation it is to be expected that the nonlinear single particle dynamics in the transverse planes will play an increasing role in limiting the reach of the accelerator. As such it is vital that the nonlinear sources are well understood. The nonlinear fields of a circular accelerator may be probed through measurement of the amplitude detuning: the variation of tune with single particle emittance. This quantity may be assessed experimentally by exciting the beam to large amplitudes with kicks, and obtaining the tunes and actions from turn-by-turn data at Beam Position Monitors. The large amplitude excitations inherent to such a measurement also facilitate measurement of the dynamic aperture from an analysis of beam losses following the kicks. In 2012 these measurements were performed on the LHC Beam 2 at injection energy (450 GeV) with the nominal magnetic configuration. Nonlinear coupling was also observed. A second set of measurements were performed following the application of corrections for b4 and b5 errors. Analysis of the experimental results, and a comparison to simulation are presented herein.

  4. Numerical study of super-resolved optical microscopy with partly staggered beams

    Science.gov (United States)

    He, Jinping; Wang, Nan; Kobayashi, Takayoshi

    2016-12-01

    The resolving power of optical microscopy involving two or even more beams, such as pump-probe microscopy and nonlinear optical microscopy, can be enhanced both laterally and longitudinally with partly staggered beams. A numerical study of the new super-resolution imaging technology is performed with vector diffraction theory. The influence of polarization is discussed. A resolving power of sub-100 nm and sub-300 nm in the lateral and longitudinal directions, respectively, is achievable.

  5. Development of a Beam-Beam Simulation Code for e+e- Colliders

    CERN Document Server

    Zhang, Yuan

    2005-01-01

    BEPC will be upgraded into BEPCII, and the luminosity will be about 100 times higher. We developed a three dimensional strong-strong PIC code to study the beam-beam effects in BEPCII. The transportation through the arc is the same as that in Hirata's weak-strong code. The beam-beam force is computed directly by solving the Poisson equation using the FACR method, and the boundary potential is computed by circular convolution. The finite bunch length effect is included by longitudinal slices. An interpolation scheme is used to reduce the required slice number in simulations. The standard message passing interface (MPI) is used to parallelize the code. The computing time increases linearly with (n+1), where n is the slice number. The calculated luminosity of BEPCII at the design operating point is less than the design value. The best area in the tune space is near (0.505,0.57) according to the survey, where the degradation of luminosity can be improved.

  6. Physics at a future Neutrino Factory and super-beam facility

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, A; Choubey, S; Gandhi, R; Goswami, S [Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211 019 (India); Roberts, B L [Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, MA 02215 (United States); Bouchez, J [Service de Physique des Particules, CEA-Saclay, F-91191 Gif-sur-Yvette Cedex (France); Antoniadis, I; Ellis, J; Giudice, G F; Schwetz, T [Department of Physics, CERN Theory Division, 1211 Geneva 23 (Switzerland); Umasankar, S [Institute of Mathematical Sciences, Taramani, C.I.T. Campus, Chennai 600113 (India); Karagiorgi, G; Aguilar-Arevalo, A; Conrad, J M; Shaevitz, M H [Department of Physics, Columbia University, New York, NY 10027 (United States); Pascoli, S [Department of Physics, University of Durham, Ogen Center for Fundamental Physics, South Road, Durham, DH1 3LE (United Kingdom); Geer, S [Fermilab, Batavia, IL 60510-0500 (United States); Campagne, J E [LAL, Universite Paris-Sud 11, Batiment 200, F-91898 Orsay cedex (France); Rolinec, M [Physik-Department T30d, Technische Universitaet Muenchen, James-Franck-Strasse, 85748 Garching (Germany); Blondel, A [Departement de Physique Nucleaire et Corpusculaire (DPNC), Universite de Geneve, Geneve (Switzerland)] (and others)

    2009-10-15

    The conclusions of the Physics Working Group of the International Scoping Study of a future Neutrino Factory and super-beam facility (the ISS) are presented. The ISS was carried out by the international community between NuFact05, (the 7th International Workshop on Neutrino Factories and Super-beams, Laboratori Nazionali di Frascati, Rome, 21-26 June 2005) and NuFact06 (Ivine, CA, 24-30 August 2006). The physics case for an extensive experimental programme to understand the properties of the neutrino is presented and the role of high-precision measurements of neutrino oscillations within this programme is discussed in detail. The performance of second-generation super-beam experiments, beta-beam facilities and the Neutrino Factory are evaluated and a quantitative comparison of the discovery potential of the three classes of facility is presented. High-precision studies of the properties of the muon are complementary to the study of neutrino oscillations. The Neutrino Factory has the potential to provide extremely intense muon beams and the physics potential of such beams is discussed in the final section of the report.

  7. Spin transport and polarimetry in the beam delivery system of the international linear collider

    Energy Technology Data Exchange (ETDEWEB)

    Beckmann, M.; Vauth, A.; Vormwald, B. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Hamburg Univ. (Germany). Inst. fuer Experimentalphysik; List, J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2014-05-15

    Polarised electron and positron beams are key ingredients to the physics programme of future linear colliders. Due to the chiral nature of weak interactions in the Standard Model - and possibly beyond - the knowledge of the luminosity-weighted average beam polarisation at the e{sup +}e{sup -} interaction point is of similar importance as the knowledge of the luminosity and has to be controlled to permille-level precision in order to fully exploit the physics potential. The current concept to reach this challenging goal combines measurements from Laser-Compton polarimeters before and after the interaction point with measurements at the interaction point. A key element for this enterprise is the understanding of spin-transport effects between the polarimeters and the interaction point as well as collision effects. We show that without collisions, the polarimeters can be cross-calibrated to 0.1 %, and we discuss in detail the impact of collision effects and beam parameters on the polarisation value relevant for the interpretation of the e{sup +}e{sup -} collision data.

  8. Coherent bremsstrahlung and a new possibility to monitor collisions of beams at colliders

    Energy Technology Data Exchange (ETDEWEB)

    Kotkin, G.L. [Novosibirskij Gosudarstvennyj Univ. (Russian Federation); Serbo, V.G. [Novosibirskij Gosudarstvennyj Univ. (Russian Federation)

    1996-09-21

    We consider the coherent bremsstrahlung (CBS) at colliders with short bunches. CBS is radiation of particles of one bunch in the collective electromagnetic field of the oncoming bunch. It seems that CBS can be a potential tool for fast control over collisions and for measuring beam parameters. The bunch length {sigma}{sub z} can be found from the critical energy of the CBS spectrum E{sub c}{proportional_to}1/{sigma}{sub z}; the transverse bunch size {sigma} {sub perpendicular} {sub to} is related to the photon rate dN{sub {gamma}}{proportional_to}1/{sigma} {sub perpendicular} {sub to} {sup 2}. A specific dependence of dN{sub {gamma}} on the impact parameter between the beams allows for a fast control over the beam displacement. We present the main characteristics of CBS calculated for B and {phi} factories, LHC (in the p-p and Pb-Pb modes), RHIC, VEPP-2M and VEPP-4M. (orig.).

  9. Dual branch high voltage pulse generator for the beam extraction of the Large Hadron Collider

    CERN Document Server

    Bonthond, J; Ducimetière, L; Jansson, U; Vossenberg, Eugène B

    2002-01-01

    The LHC beam extraction kicker system, MKD, is composed of 15 fast kicker magnets per beam to extract the particles in one turn from the collider and to dispose them, after dilution, on an external absorber. Each magnet is powered by a separate pulse generator. The original single branch generator consisted of a discharge capacitor in series with a solid state closing switch left bracket 1 right bracket operating at 30 kV. In combination with a parallel freewheel diode stack this generator produced a current pulse of 2.7 mus rise time, 18.5 kA amplitude and about 1.8 ms fall time, of which only about 90 mus are needed to dump the beam. The freewheel diode circuit is equipped with a flat top current droop compensation network, consisting of a low voltage, low stray inductance, high current discharge capacitor. Extensive reliability studies have meanwhile suggested to further increase the operational safety of this crucial system by equipping each generator with two parallel branches. This paper presents the re...

  10. Spin Transport and Polarimetry in the Beam Delivery System of the International Linear Collider

    CERN Document Server

    Beckmann, Moritz; Vauth, Annika; Vormwald, Benedikt

    2014-01-01

    Polarised electron and positron beams are key ingredients to the physics programme of future linear colliders. Due to the chiral nature of weak interactions in the Standard Model - and possibly beyond - the knowledge of the luminosity-weighted average beam polarisation at the $e^+e^-$ interaction point is of similar importance as the knowledge of the luminosity and has to be controlled to permille-level precision in order to fully exploit the physics potential. The current concept to reach this challenging goal combines measurements from Laser-Compton polarimeters before and after the interaction point with measurements at the interaction point. A key element for this enterprise is the understanding of spin-transport effects between the polarimeters and the interaction point as well as collision effects. We show that without collisions, the polarimeters can be cross-calibrated to 0.1 %, and we discuss in detail the impact of collision effects and beam parameters on the polarisation value relevant for the inte...

  11. Unique heavy lepton signature at $e^+e^-$ linear collider with polarized beams

    CERN Document Server

    Moortgat-Pick, G; Pankov, A A; Tsytrinov, A V

    2013-01-01

    We explore the effects of neutrino and electron mixing with exotic heavy leptons in the process e^+e^-\\to W^+W^- within E_6 models. We examine the possibility of uniquely distinguishing and identifying such effects of heavy neutral lepton exchange from Z-Z' mixing within the same class of models and also from analogous ones due to competitor models with anomalous trilinear gauge couplings (AGC) that can lead to very similar experimental signatures at the e^+e^- International Linear Collider (ILC) for \\sqrt{s}=350, 500 GeV and 1 TeV. Such clear identification of the model is possible by using a certain double polarization asymmetry. The availability of both beams being polarized plays a crucial role in identifying such exotic-lepton admixture. In addition, the sensitivity of the ILC for probing exotic-lepton admixture is substantially enhanced when the polarization of the produced W^\\pm bosons is considered.

  12. Radiation reaction induced spiral attractors in ultra-intense colliding laser beams

    CERN Document Server

    Gong, Z; Shou, Y R; Qiao, B; Chen, C E; Xu, F R; He, X T; Yan, X Q

    2016-01-01

    The radiation reaction effects on electron dynamics in counter-propagating circularly polarized laser beams are investigated through the linearization theorem and the results are in great agreement with numeric solutions. For the first time, the properties of fixed points in electron phase-space were analyzed with linear stability theory, showing that center nodes will become attractors if the classical radiation reaction is considered. Electron dynamics are significantly affected by the properties of the fixed points and the electron phase-space densities are found to be increasing exponentially near the attractors. The density growth rates are derived theoretically and further verified by particle-in-cell simulations, which can be detected in experiments to explore the effects of radiation reaction qualitatively. The attractor can also facilitate to realize a series of nanometer-scaled flying electron slices via adjusting the colliding laser frequencies.

  13. Effective fermion-Higgs interactions at an e+e- collider with polarized beams

    Science.gov (United States)

    Huitu, Katri; Rao, Kumar; Rindani, Saurabh D.; Sharma, Pankaj

    2016-10-01

    We consider the possibility of new physics giving rise to effective interactions of the form e+e- Hf f bar , where f represents a charged lepton ℓ or a (light) quark q, and H the recently discovered Higgs boson. Such vertices would give contributions beyond the standard model to the Higgs production processes e+e- → Hℓ+ℓ- and e+e- → Hq q bar at a future e+e- collider. We write the most general form for these vertices allowed by Lorentz symmetry. Assuming that such interactions contribute in addition to the standard model production processes, where the final-state fermion pair comes from the decay of the Z boson, we obtain the differential cross section for the processes e+e- → Hℓ+ℓ- and e+e- → Hq q bar to linear order in the effective interactions. We propose several observables with differing CP and T properties which, if measured, can be used to constrain the couplings occurring in interaction vertices. We derive possible limits on these couplings that may be obtained at a collider with centre-of-mass energy of 500 GeV and an integrated luminosity of 500 fb-1. We also carry out the analysis assuming that both the electron and positron beams can be longitudinally polarized, and find that the sensitivity to the couplings can be improved by a factor of 2-4 by a specific choice of the signs of the polarizations of both the electron and positron beams for the same integrated luminosity.

  14. Effective fermion–Higgs interactions at an e+e− collider with polarized beams

    Directory of Open Access Journals (Sweden)

    Katri Huitu

    2016-10-01

    Full Text Available We consider the possibility of new physics giving rise to effective interactions of the form e+e−Hff¯, where f represents a charged lepton ℓ or a (light quark q, and H the recently discovered Higgs boson. Such vertices would give contributions beyond the standard model to the Higgs production processes e+e−→Hℓ+ℓ− and e+e−→Hqq¯ at a future e+e− collider. We write the most general form for these vertices allowed by Lorentz symmetry. Assuming that such interactions contribute in addition to the standard model production processes, where the final-state fermion pair comes from the decay of the Z boson, we obtain the differential cross section for the processes e+e−→Hℓ+ℓ− and e+e−→Hqq¯ to linear order in the effective interactions. We propose several observables with differing CP and T properties which, if measured, can be used to constrain the couplings occurring in interaction vertices. We derive possible limits on these couplings that may be obtained at a collider with centre-of-mass energy of 500 GeV and an integrated luminosity of 500 fb−1. We also carry out the analysis assuming that both the electron and positron beams can be longitudinally polarized, and find that the sensitivity to the couplings can be improved by a factor of 2–4 by a specific choice of the signs of the polarizations of both the electron and positron beams for the same integrated luminosity.

  15. Wsup(+-) boson production at the e/sup +/e/sup -/,. gamma. e and. gamma gamma. colliding beams

    Energy Technology Data Exchange (ETDEWEB)

    Ginzburg, I.F.; Kotkin, G.L.; Panfil, S.L.; Serbo, V.G.

    1983-11-21

    Wsup(+-) boson production in e/sup +/e/sup -/->W/sup +/W/sup -/, ..gamma..e->W/sup +/W/sup -/, ..gamma..e->W, ..gamma gamma..->W/sup +/W/sup -/ reactions at the e/sup +/e/sup -/, ..gamma..e and ..gamma gamma.. colliding beams is considered. What physical information can be extracted from such experiments, including those with polarized beams, is discussed. Conditions of observation, are considered together with the background problems.

  16. Large-charge quasimonoenergetic electron beams produced by off-axis colliding laser pulses in underdense plasma

    Science.gov (United States)

    Deng, Z. G.; Zhang, Z. M.; Zhang, B.; He, S. K.; Teng, J.; Hong, W.; Dong, K. G.; Wu, Y. C.; Zhu, B.; Gu, Y. Q.

    2017-02-01

    Electrons can be efficiently injected into a plasma wave by colliding two counterpropagating laser pulses in a laser wakefield acceleration. However, the generation of a high-quality electron beam with a large charge is difficult in the traditional on-axis colliding scheme due to the growth of the electron beam duration coming from the increase of the beam charge. To solve this problem, we propose an off-axis colliding scheme, in which the collision point is away from the axis of the driver pulse. We show that the electrons injected from the off-axis region are highly concentered on the tail of the bubble even for a large trapped charge, thus feeling almost the same accelerating field. As a result, quasimonoenergetic electron beams with a large charge can be produced. The validity of this scheme is confirmed by both the particle-in-cell simulations and the Hamiltonian model. Furthermore, it is shown that a Laguerre-Gauss (LG) laser can be adopted as the injection pulse to realize the off-axis colliding injection in three dimensions symmetrically, which may be useful in simplifying the technical layout of the real experiment setup.

  17. One of the most striking pictures of a vacuum chamber where the proton beams collide in the ISR

    CERN Multimedia

    CERN PhotoLab

    1973-01-01

    The Intersecting Storage Rings (ISR), the world’s first proton-proton collider, started up in 1971, and later provided the first proton-antiproton collisions and the first collisions of beams of heavier ions (alpha particles).

  18. Design of Super-resolution Filters with a Gaussian Beam in Optical Data Storage Systems

    Institute of Scientific and Technical Information of China (English)

    WANG Sha-Sha; ZHAO Xiao-Feng; LI Cheng-Fang; RUAN Hao

    2008-01-01

    @@ Super-resolution filters based on a Ganssian beam are proposed to reduce the focusing spot in optical data storage systems.Both of amplitude filters and pure-phase filters are designed respectively to gain the desired intensity distributions.Their performances are analysed and compared with those based on plane wave in detail.The energy utilizations are presented.The simulation results show that our designed super-resolution filters are favourable for use in optical data storage systems in terms of performance and energy utilization.

  19. Beam-induced radiation in the compact muon solenoid tracker at the Large Hadron Collider

    Indian Academy of Sciences (India)

    A P Singh; P C Bhat; N V Mokhov; S Beri

    2010-05-01

    The intense radiation environment at the Large Hadron Collider, CERN at a design energy of $\\sqrt{s} = 14$ TeV and a luminosity of 1034 cm−2S−1 poses unprecedented challenges for safe operation and performance quality of the silicon tracker detectors in the CMS and ATLAS experiments. The silicon trackers are crucial for the physics at the LHC experiments, and the inner layers, being situated only a few centimeters from the interaction point, are most vulnerable to beam-induced radiation. We have recently carried out extensive Monte Carlo simulation studies using MARS program to estimate particle fluxes and radiation dose in the CMS silicon pixel and strip trackers from proton–proton collisions at $\\sqrt{s} = 14$ TeV and from machine-induced background such as beam–gas interactions and beam halo. We will present results on radiation dose, particle fluxes and spectra from these studies and discuss implications for radiation damage and performance of the CMS silicon tracker detectors.

  20. Large Hadron Collider at CERN: Beams Generating High-Energy-Density Matter

    CERN Document Server

    Tahir, N A; Shutov, A; Lomonosov, IV; Piriz, A R; Hoffmann, D H H; Deutsch, C; Fortov, V E

    2009-01-01

    This paper presents numerical simulations that have been carried out to study the thermodynamic and hydrodynamic response of a solid copper cylindrical target that is facially irradiated along the axis by one of the two Large Hadron Collider (LHC) 7 TeV/c proton beams. The energy deposition by protons in solid copper has been calculated using an established particle interaction and Monte Carlo code, FLUKA, which is capable of simulating all components of the particle cascades in matter, up to multi-TeV energies. This data has been used as input to a sophisticated two--dimensional hydrodynamic computer code, BIG2 that has been employed to study this problem. The prime purpose of these investigations was to assess the damage caused to the equipment if the entire LHC beam is lost at a single place. The FLUKA calculations show that the energy of protons will be deposited in solid copper within about 1~m assuming constant material parameters. Nevertheless, our hydrodynamic simulations have shown that the energy de...

  1. High intensity uranium beams from the superHILAC and the bevatron: final report

    Energy Technology Data Exchange (ETDEWEB)

    1982-03-01

    The two injectors formerly used at the SuperHILAC were a 750-kV air-insulated Cockcroft-Walton (EVE) and a 2.5-MV pressurized HV multiplier (ADAM). The EVE injector can deliver adequate intensities of ions up to mass 40 (argon). The ADAM injector can accelerate ions with lower charge-to-mass ratios, and they can produce beams of heavier ions. The intensity of these beams decreases as the mass number increases, with the lowest practical intensity being achieved with lead beams. Experience with the two existing injectors provided substantial help in defining the general requirements for a new injector which would provide ample beams above mass 40. The requirements for acceptance by the first tank of the SuperHILAC are a particle velocity ..beta.. = 0.0154 (corresponding to an energy of 113 keV/amu) and a charge-to-mass ratio of 0.046 or larger. Present ion source performance dictates an air-insulated Cockcroft-Walton as a pre-accelerator because of its easy accessibility and its good overall reliability. The low charge state ions then receive further acceleration and, if necessary, subsequent stripping to the required charge state before injection into the SuperHILAC. A low-beta linac of the Widereoe type has been built to perform this acceleration. The injector system described consists of a Cockcroft-Walton pre-injector, injection beam lines and isotope analysis, a low-velocity linear accelerator, and SuperHILAC control center modifications.

  2. Effects of R-Parity Violating Supersymmetry in Top Pair Production at Linear Colliders with Polarized Beams

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In the minimal supersymmetric standard model with R-parity violation, the lepton number violating top quark interactions can contribute to the top pair production at a linear collider via tree-level u-channel squark exchange diagrams. We calculate such contributions and find that in the allowed range of these R-violating couplings, the top pair production rate as well as the top quark polarization and the forward-backward asymmetry can be significantly altered.By comparing the unpolarized beams with the polarized beams, we find that the polarized beams are more powerful in probing such new physics.

  3. Beam losses from ultra-peripheral nuclear collisions between Pb ions in the Large Hadron Collider and their alleviation

    Energy Technology Data Exchange (ETDEWEB)

    Bruce, R.; /CERN; Bocian, D.; /Fermilab /CERN; Gilardoni, S.; Jowett, J.M.; /CERN

    2009-08-01

    Electromagnetic interactions between colliding heavy ions at the Large Hadron Collider (LHC) at CERN will give rise to localized beam losses that may quench superconducting magnets, apart from contributing significantly to the luminosity decay. To quantify their impact on the operation of the collider, we have used a three-step simulation approach, which consists of optical tracking, a Monte-Carlo shower simulation and a thermal network model of the heat flow inside a magnet. We present simulation results for the case of {sup 208}Pb{sup 82+} ion operation in the LHC, with focus on the alice interaction region, and show that the expected heat load during nominal {sup 208}Pb{sup 82+} operation is 40% above the quench level. This limits the maximum achievable luminosity. Furthermore, we discuss methods of monitoring the losses and possible ways to alleviate their effect.

  4. Positron source investigation by using CLIC drive beam for Linac-LHC based e{sup +}p collider

    Energy Technology Data Exchange (ETDEWEB)

    Arikan, Ertan [Department of Physics, Faculty of Art and Sciences, Nigde University, Nigde (Turkey); Aksakal, Huesnue, E-mail: aksakal@cern.ch [Department of Physics, Faculty of Art and Sciences, Nigde University, Nigde (Turkey)

    2012-08-11

    Three different methods which are alternately conventional, Compton backscattering and Undulator based methods employed for the production of positrons. The positrons to be used for e{sup +}p collisions in a Linac-LHC (Large Hadron Collider) based collider have been studied. The number of produced positrons as a function of drive beam energy and optimum target thickness has been determined. Three different targets have been used as a source investigation which are W{sub 75}-Ir{sub 25}, W{sub 75}-Ta{sub 25}, and W{sub 75}-Re{sub 25} for three methods. Estimated number of the positrons has been performed with FLUKA simulation code. Then, these produced positrons are used for following Adiabatic matching device (AMD) and capture efficiency is determined. Then e{sup +}p collider luminosity corresponding to the methods mentioned above have been calculated by CAIN code.

  5. The CLIC RF power source a novel scheme of two-beam acceleration for electron-positron linear colliders

    CERN Document Server

    Braun, Hans Heinrich; D'Amico, Tommaso Eric; Delahaye, Jean Pierre; Guignard, Gilbert; Johnson, C D; Millich, Antonio; Pearce, Peter; Riche, A J; Rinolfi, Louis; Ruth, Ronald D; Schulte, Daniel; Thorndahl, Lars; Valentini, M; Wilson, Ian H; Wuensch, Walter; CERN. Geneva

    1998-01-01

    We discuss a new approach to two-beam acceleration. The energy for RF production is initially stored in a long-pulse electron beam which is efficiently accelerated to about 1.2 GeV by a fully loaded conventional, low-frequency (approx. 1 GHz) linac. The beam pulse length is twice the length of the high-gradient linac. Segments of this long pulse beam are compressed using combiner rings to create a sequence of higher peak power drive-beams with gaps between. This train of drive beams is distributed from the end of the linac in the opposite direction to the main beam down a common transport line so that each drive beam can power a section of the main linac. After a 180-degree turn, each high-current, low-energy drive beam is decelerated in low-impedance decelerator structures, and the resulting power is used to accelerate the low-current, high-energy beam in the main linac. The method discussed here seems relatively inexpensive, is very flexible, and can be used to accelerate beams for linear colliders over the...

  6. Large Hadron Collider at CERN: Beams generating high-energy-density matter.

    Science.gov (United States)

    Tahir, N A; Schmidt, R; Shutov, A; Lomonosov, I V; Piriz, A R; Hoffmann, D H H; Deutsch, C; Fortov, V E

    2009-04-01

    This paper presents numerical simulations that have been carried out to study the thermodynamic and hydrodynamic responses of a solid copper cylindrical target that is facially irradiated along the axis by one of the two Large Hadron Collider (LHC) 7 TeV/ c proton beams. The energy deposition by protons in solid copper has been calculated using an established particle interaction and Monte Carlo code, FLUKA, which is capable of simulating all components of the particle cascades in matter, up to multi-TeV energies. These data have been used as input to a sophisticated two-dimensional hydrodynamic computer code BIG2 that has been employed to study this problem. The prime purpose of these investigations was to assess the damage caused to the equipment if the entire LHC beam is lost at a single place. The FLUKA calculations show that the energy of protons will be deposited in solid copper within about 1 m assuming constant material parameters. Nevertheless, our hydrodynamic simulations have shown that the energy deposition region will extend to a length of about 35 m over the beam duration. This is due to the fact that first few tens of bunches deposit sufficient energy that leads to high pressure that generates an outgoing radial shock wave. Shock propagation leads to continuous reduction in the density at the target center that allows the protons delivered in subsequent bunches to penetrate deeper and deeper into the target. This phenomenon has also been seen in case of heavy-ion heated targets [N. A. Tahir, A. Kozyreva, P. Spiller, D. H. H. Hoffmann, and A. Shutov, Phys. Rev. E 63, 036407 (2001)]. This effect needs to be considered in the design of a sacrificial beam stopper. These simulations have also shown that the target is severely damaged and is converted into a huge sample of high-energy density (HED) matter. In fact, the inner part of the target is transformed into a strongly coupled plasma with fairly uniform physical conditions. This work, therefore, has

  7. DEVELOPMENT OF A FAST MICRON-RESOLUTION BEAM POSITION MONITOR SIGNAL PROCESSOR FOR LINEAR COLLIDER BEAMBASED FEEDBACK SYSTEMS

    CERN Document Server

    Apsimon, R; Clarke, C; Constance, B; Dabiri Khah, H; Hartin, T; Perry, C; Resta Lopez, J; Swinson, C; Christian, G B; Kalinin, A

    2009-01-01

    We present the design of a prototype fast beam position monitor (BPM) signal processor for use in inter-bunch beam-based feedbacks for linear colliders and electron linacs. We describe the FONT4 intra-train beam-based digital position feedback system prototype deployed at the Accelerator test facility (ATF) extraction line at KEK, Japan. The system incorporates a fast analogue beam position monitor front-end signal processor, a digital feedback board, and a fast kicker-driver amplifier. The total feedback system latency is less than 150ns, of which less than 10ns is used for the BPM processor. We report preliminary results of beam tests using electron bunches separated by c. 150ns. Position resolution of order 1 micron was obtained.

  8. ISABELLE: a proton-proton colliding beam facility. [Proposal for the construction of ISABELLE

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-04-01

    A proposal is presented for the construction of an Intersecting Storage Accelerator, ISABELLE, to be located at Brookhaven National Laboratory. At this major research facility, colliding beams of protons will be produced and studied by particle physicists. This proposal combines the interests of these particle physicists in exploring a new energy regime with the challenge of building a new research instrument. The proposal results from several years of considering such devices in parallel with extensive developmental work. The proposal is divided into several major parts. Following an introduction is an overall summary of the proposal covering its highlights. Part II contains a thorough discussion of the physics objectives that can be addressed by the storage ring. It begins with an explanation of current theoretical concepts that occupy the curiosity of high energy physicists. Then follows a brief discussion of possible experiments that might be assembled at the interaction regions to test these concepts. The third part of the proposal goes into the details of the design of the intersecting storage accelerators. It begins with a description of the entire facility and the design of the magnet ring structure. The processes of proton beam accumulation and acceleration are thoroughly described. The discussion then turns to the design of the components and subsystems for the accelerator. The accelerator elements are described followed by a description of the physical plant. The cost estimate and time scales are displayed in Part IV. Here the estimate has been based on the experience gained from working with the prototype units at the laboratory. The appendices are an important part of the proposal. The parameter list for the 200 x 200 GeV ISABELLE is carefully documented. An example of a possible research program can be found in an appendix. The performance of prototype units is documented in one of the appendices.

  9. Recent Innovations in Muon Beam Cooling and Prospects for Muon Colliders

    CERN Document Server

    Johnson, Rolland P; Ankenbrandt, Charles; Barzi, Emanuela; Beard, Kevin; Bogacz, S A; Del Frate, Licia; Derbenev, Yaroslav S; Gonin, Ivan V; Hanlet, Pierrick M; Hartline, Robert; Kaplan, Daniel; Kuchnir, Moyses; Moretti, Alfred; Neuffer, David V; Paul, Kevin; Popovic, Milorad; Roberts, Thomas; Romanov, Gennady; Turrioni, Daniele; Yarba, Victor; Yonehara, Katsuya

    2005-01-01

    A six-dimensional(6D)cooling channel based on helical magnets surrounding RF cavities filled with dense hydrogen gas* is used to achieve the small transverse emittances demanded by a high-luminosity muon collider. This helical cooling channel**(HCC) has solenoidal, helical dipole, and helical quadrupole magnetic fields to generate emittance exchange. Simulations verify the analytic predictions and have shown a 6D emittance reduction of over 3 orders of magnitude in a 100 m HCC segment. Using three such sequential HCC segments, where the RF frequencies are increased and transverse dimensions reduced as the beams become cooler, implies a 6D emittance reduction of almost six orders of magnitude. After this, two new post-cooling ideas can be employed to reduce transverse emittances to one or two mm-mr, which allows high luminosity with fewer muons than previously imagined. In this report we discuss the status of and the plans for the HCC simulation and engineering efforts. We also describe the new post-cooling id...

  10. Unique heavy lepton signature at e{sup +}e{sup -} linear collider with polarized beams

    Energy Technology Data Exchange (ETDEWEB)

    Moortgat-Pick, G. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Osland, P. [Univ. Bergen (Norway). Dept. of Physics and Technology; Pankov, A.A.; Tsytrinov, A.V. [Technical Univ. Gomel (Belarus). Abdus Salam ICTP Affliated Centre

    2013-03-15

    We explore the effects of neutrino and electron mixing with exotic heavy leptons in the process e{sup +}e{sup -}{yields}W{sup +}W{sup -} within E{sub 6} models. We examine the possibility of uniquely distinguishing and identifying such effects of heavy neutral lepton exchange from Z-Z' mixing within the same class of models and also from analogous ones due to competitor models with anomalous trilinear gauge couplings (AGC) that can lead to very similar experimental signatures at the e{sup +}e{sup -} International Linear Collider (ILC) for {radical}(s)=350, 500 GeV and 1 TeV. Such clear identification of the model is possible by using a certain double polarization asymmetry. The availability of both beams being polarized plays a crucial role in identifying such exotic-lepton admixture. In addition, the sensitivity of the ILC for probing exotic-lepton admixture is substantially enhanced when the polarization of the produced W{sup {+-}} bosons is considered.

  11. The Large Hadron Collider and the Super Proton Synchrotron at CERN as Tools to Generate Warm Dense Matter and Non–Ideal Plasmas

    CERN Document Server

    Tahir, N A; Shutov, A; Lomonosov, I V; Gryaznov, V; Piriz, A R; Deutsch, C; Fortov, V E

    2011-01-01

    The largest accelerator in the world, the Large Hadron Collider (LHC) at CERN, has entered into commission- ing phase. It is expected that when this impressive machine will become fully operational, it will generate two counter rotating 7 TeV/c proton beams that will be made to collide, leading to an unprecedented luminosity of 1034 cm−2s−1. Total energy stored in each LHC beam is about 362 MJ, sufficient to melt 500 kg copper. Safety of operation is a very critical issue when working with such extremely powerful beams. It is important to know the consequences of an accidental release of the beam energy in order to design protection system for the equipment. For this purpose we have carried out extensive numerical simulations of the interaction of one full LHC beam with copper and graphite targets which are materials of practical importance. Our calculations have shown that the LHC protons will penetrate up to about 35 m in solid copper and 10 m in solid graphite. A very interesting outcome of this work i...

  12. The Large Hadron Collider and the Super Proton Synchrotron at CERN as Tools to Generate Warm Dense Matter and Non-Ideal Plasmas

    CERN Document Server

    Tahir, N A; Deutsch, C; Gryaznov, V; Lomonosov, I V; Shutov, A; Piriz, A R; Fortov, V E; Geissel, H; Redmer, R

    2011-01-01

    The largest accelerator in the world, the Large Hadron Collider (LHC) at CERN, has entered into commissioning phase. It is expected that when this impressive machine will become fully operational, it will generate two counter rotating 7 TeV/c proton beams that will be made to collide, leading to an unprecedented luminosity of 10(34) cm(-2)s(-1). Total energy stored in each LHC beam is about 362 MJ, sufficient to melt 500 kg copper. Safety of operation is a very critical issue when working with such extremely powerful beams. It is important to know the consequences of an accidental release of the beam energy in order to design protection system for the equipment. For this purpose we have carried out extensive numerical simulations of the interaction of one full LHC beam with copper and graphite targets which are materials of practical importance. Our calculations have shown that the LHC protons will penetrate up to about 35 m in solid copper and 10 m in solid graphite. A very interesting outcome of this work i...

  13. Ion Colliders

    CERN Document Server

    Fischer, W

    2014-01-01

    High-energy ion colliders are large research tools in nuclear physics to study the Quark-Gluon-Plasma (QGP). The range of collision energy and high luminosity are important design and operational considerations. The experiments also expect flexibility with frequent changes in the collision energy, detector fields, and ion species. Ion species range from protons, including polarized protons in RHIC, to heavy nuclei like gold, lead and uranium. Asymmetric collision combinations (e.g. protons against heavy ions) are also essential. For the creation, acceleration, and storage of bright intense ion beams, limits are set by space charge, charge change, and intrabeam scattering effects, as well as beam losses due to a variety of other phenomena. Currently, there are two operating ion colliders, the Relativistic Heavy Ion Collider (RHIC) at BNL, and the Large Hadron Collider (LHC) at CERN.

  14. Super Factories

    Indian Academy of Sciences (India)

    D G Hitlin

    2006-11-01

    Heavy-flavor physics, in particular and physics results from the factories, currently provides strong constraints on models of physics beyond the Standard Model. A new generation of colliders, Super Factories, with 50 to 100 times the luminosity of existing colliders, can, in a dialog with LHC and ILC, provide unique clarification of new physics phenomena seen at those machines.

  15. Modelling of the Thermo-Mechanical Behavior of the Two-Beam Module for the Compact Linear Collider

    CERN Document Server

    Raatikainen, Riku; Österberg, K; Lehtovaara, A; Pajunen, S

    2011-01-01

    To fulfil the mechanical requirements set by the luminosity goals of the compact linear collider, the 2-m long two-beam modules, the shortest repetitive elements in the main linear accelerator, have to be controlled at micrometer level. At the same time these modules are exposed to high power dissipation that varies while the accelerator is ramped up to nominal power and when the mode of the accelerator operation is modified. These variations will give rise to inevitable temperature transients driving mechanical distortions in and between different module components. Therefore, the thermo-mechanical behaviour of the module is of a high importance. This thesis describes a finite element method model for the two-beam compact linear collider module. The components are described in detail compared to earlier models, which should result in a realistic description of the module. Due to the complexity of the modules, the modelling is divided into several phases from geometrical simplification and modification to the...

  16. Electromagnetic Design and Optimization of Directivity of Stripline Beam Position Monitors for the High Luminosity Large Hadron Collider

    CERN Document Server

    Draskovic, Drasko; Jones, Owain Rhodri; Lefèvre, Thibaut; Wendt, Manfred

    2015-01-01

    This paper presents the preliminary electromagnetic design of a stripline Beam Position Monitor (BPM) for the High Luminosity program of the Large Hadron Collider (HL-LHC) at CERN. The design is fitted into a new octagonal shielded Beam Screen for the low-beta triplets and is optimized for high directivity. It also includes internal Tungsten absorbers, required to reduce the energy deposition in the superconducting magnets. The achieved broadband directivity in wakefield solver simulations presents significant improvement over the directivity of the current stripline BPMs installed in the LHC.

  17. Colliding. gamma. e and. gamma gamma. beams from single-pass e/sup +/e/sup -/ accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Ginzburg, I.F.; Kotkin, G.L.; Serbo, V.G.; Tel' nov, V.I.

    1983-08-01

    A detailed discussion is given of the main characteristics of ..gamma..e and ..gamma gamma.. collisions in the scheme previously proposed by the authors for obtaining colliding ..gamma..e and ..gamma gamma.. beams on the basis of the planned linear accelerators with e/sup +/e/sup -/ colliding beams VLEPP and SLC. It is proposed to obtain intense ..gamma.. beams with energy ..omega..approx.E/sub e/> or =50 GeV by scattering of laser light focused onto the electron beams of these accelerators. In the case when the maximum luminosity is achieved, L/sub gammae/approx.L/sub e/e or L/sub gammagamma/approx.L/sub e/e, the distribution of the luminosity in the invariant mass of the ..gamma..e or ..gamma gamma.. system is broad. Monochromatization of the collisions to a level 5--10% is possible. It involves a decrease of luminosity and is most efficient for use of electrons and laser photons with helicities of opposite sign. Examples of interesting physics problems for the proposed ..gamma..e and ..gamma gamma.. beams are given.

  18. Role of net baryon density on rapidity width of identified particles from the lowest energies available at the CERN Super Proton Synchrotron to those at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider

    Science.gov (United States)

    Hussain, Nur; Bhattacharjee, Buddhadeb

    2017-08-01

    Widths of the rapidity distributions of various identified hadrons generated with the UrQMD-3.4 event generator at all the Super Proton Synchrotron (SPS) energies have been presented and compared with the existing experimental results. An increase in the width of the rapidity distribution of Λ could be seen with both Monte Carlo (MC) and experimental data for the studied energies. Using MC data, the study has been extended to Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC) energies. A similar jump, as observed in the plot of rapidity width versus rest mass at Alternating Gradient Synchrotron (AGS) and all SPS energies, persists even at RHIC and LHC energies, confirming its universal nature from AGS to the highest LHC energies. Such observation indicates that pair production may not be the only mechanism of particle production at the highest LHC energies. However, with MC data, the separate mass scaling for mesons and baryons is found to exist even at the top LHC energy.

  19. Advanced in situ metrology for x-ray beam shaping with super precision.

    Science.gov (United States)

    Wang, Hongchang; Sutter, John; Sawhney, Kawal

    2015-01-26

    We report a novel method for in situ metrology of an X-ray bimorph mirror by using the speckle scanning technique. Both the focusing beam and the "tophat" defocussed beam have been generated by optimizing the bimorph mirror in a single iteration. Importantly, we have demonstrated that the angular sensitivity for measuring the slope error of an optical surface can reach accuracy in the range of two nanoradians. When compared with conventional ex-situ metrology techniques, the method enables a substantial increase of around two orders of magnitude in the angular sensitivity and opens the way to a previously inaccessible region of slope error measurement. Such a super precision metrology technique will be beneficial for both the manufacture of polished mirrors and the optimization of beam shaping.

  20. COMPUTATION OF SUPER-CONVERGENT NODAL STRESSES OF TIMOSHENKO BEAM ELEMENTS BY EEP METHOD

    Institute of Scientific and Technical Information of China (English)

    王枚; 袁驷

    2004-01-01

    The newly proposed element energy projection (EEP) method has been applied to the computation of super-convergent nodal stresses of Timoshenko beam elements. General formulas based on element projection theorem were derived and illustrative numerical examples using two typical elements were given. Both the analysis and examples show that EEP method also works very well for the problems with vector function solutions. The EEP method gives super-convergent nodal stresses, which are well comparable to the nodal displacements in terms of both convergence rate and error magnitude. And in addition, it can overcome the "shear locking" difficulty for stresses even when the displacements are badly affected. This research paves the way for application of the EEP method to general onedimensional systems of ordinary differential equations.

  1. Strong terahertz generation by optical rectification of a super-Gaussian laser beam

    Science.gov (United States)

    Kumar, Subodh; Kishor Singh, Ram; Sharma, R. P.

    2016-06-01

    Terahertz (THz) generation by optical rectification of a laser beam having spatially super-Gaussian and temporally Gaussian intensity profile is investigated when it is propagating in a pre-formed rippled density plasma. The quasi-static ponderomotive force which is generated due to the variation in intensity of laser pulse leads to a nonlinear current density in the direction transverse to the direction of propagation which drives a radiation. The frequency of this radiation falls in the THz range if the pulse duration of the laser is chosen suitably. The density ripple provides the phase matching. The yield of generated THz has been compared when the phase matching is exact and when there is slight mismatch of phases. The variation in the intensity of the generated THz with the index of super-Gaussian pulse has also been studied.

  2. First Considerations on Beam Optics and Lattice Design for the Future Hadron-Hadron Collider FCC

    CERN Document Server

    Alemany Fernandez, R

    2014-01-01

    The present document explains the steps carried out in order to make the first design of the Future Hadron-Hadron Collider (FCC-hh) following the base line parameters that can be found in [1]. Two lattice layouts are presented, a ring collider with 12 arcs and 12 straight sections, four of them designed as interaction points, and a racetrack like collider with two arcs and two straight sections, each of them equipped with two interaction points. The lattice design presented in the paper is modular allowing the same modules be used for both layouts. The present document addresses as well the beta star reach at the interaction points.

  3. The superB silicon vertex tracker

    Energy Technology Data Exchange (ETDEWEB)

    Rizzo, G., E-mail: giuliana.rizzo@pi.infn.i [INFN-Pisa and Universita di Pisa (Italy); Avanzini, C.; Batignani, G.; Bettarini, S.; Bosi, F.; Calderini, G.; Ceccanti, M.; Cenci, R.; Cervelli, A.; Crescioli, F.; Dell' Orso, M.; Forti, F.; Giannetti, P.; Giorgi, M.A. [INFN-Pisa and Universita di Pisa (Italy); Lusiani, A. [Scuola Normale Superiore and INFN-Pisa (Italy); Gregucci, S.; Mammini, P.; Marchiori, G.; Massa, M.; Morsani, F. [INFN-Pisa and Universita di Pisa (Italy)

    2010-05-21

    The SuperB asymmetric e{sup +}-e{sup -} collider has been designed to deliver a luminosity greater than 10{sup 36}cm{sup -2}s{sup -1} with moderate beam currents. Comparing to current B-Factories, the reduced center of mass boost of the SuperB machine requires improved vertex resolution to allow precision measurements sensitive to New Physics. We present the conceptual design of the silicon vertex tracker (SVT) for the SuperB detector with the present status of the R and D on the different options under study for its innermost Layer0.

  4. Physics at a future Neutrino Factory and super-beam facility

    CERN Document Server

    Bandyopadhyay, A; Gandhi, R; Goswami, S; Roberts, B L; Bouchez, J; Antoniadis, I; Ellis, J; Giudice, G F; Schwetz, T; Umansankar, S; Karagiorgi, G; Aguilar-Arevalo, A; Conrad, J M; Shaevitz, M H; Pascoli, Silvia; Geer, S; Rolinec, M; Blondel, A; Campanelli, M; Kopp, J; Lindner, M; Peltoniemi, J; Dornan, P J; Long, K; Matsushita, T; Rogers, C; Uchida, Y; Dracos, M; Whisnant, K; Casper, D; Chen, Mu-Chun; Popov, B; Aysto, J; Marfatia, D; Okada, Y; Sugiyama, H; Jungmann, K; Lesgourgues, J; Murayama, France H; Zisman, M; Tortola, M A; Friedland, A; Antusch, S; Biggio, C; Donini, A; Fernandez-Martinez, E; Gavela, B; Maltoni, M; Lopez-Pavon, J; Rigolin, S; Mondal, N; Palladino, V; Filthaut, F; Albright, C; de Gouvea, A; Kuno, Y; Nagashima, Y; Mezzetoo, M; Lola, S; Langacker, P; Baldini, A; Nunokawa, H; Meloni, D; Diaz, M; King, S F; Zuber, K; Akeroyd, A G; Grossman, Y; Farzan, Y; Tobe, K; Aoki, Mayumi; Kitazawa, N; Yasuda, O; Petcov, S; Romanino, A; Chimenti, P; Vacchi, A; Smirnov, A Yu; Couce, Italy E; Gomez-Cadenas, J J; Hernandez, P; Sorel, M; Valle, J W F; Harrison, P F; Lundardini, C; Nelson, J K; Barger, V; Everett, L; Huber, P; Winter, W; Fetscher, W; van der Schaaf, A

    2009-01-01

    The conclusions of the Physics Working Group of the international scoping study of a future Neutrino Factory and super-beam facility (the ISS) are presented. The ISS was carried by the international community between NuFact05, (the 7th International Workshop on Neutrino Factories and Superbeams, Laboratori Nazionali di Frascati, Rome, June 21-26, 2005) and NuFact06 (Ivine, California, 24{30 August 2006). The physics case for an extensive experimental programme to understand the properties of the neutrino is presented and the role of high-precision measurements of neutrino oscillations within this programme is discussed in detail. The performance of second generation super-beam experiments, beta-beam facilities, and the Neutrino Factory are evaluated and a quantitative comparison of the discovery potential of the three classes of facility is presented. High-precision studies of the properties of the muon are complementary to the study of neutrino oscillations. The Neutrino Factory has the potential to provide ...

  5. High Energy Accelerator and Colliding Beam User Group. Progress report, March 1, 1992--October 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Snow, G.A.; Skuja, A.

    1992-05-01

    This report discusses research in the following areas: the study of e{sup +}e{sup {minus}} interactions; Hadron collider physics at Fermilab; fixed target physics and particle physics of general interest; and, the solenoidal detector collaboration at SSCL.

  6. High Energy Accelerator and Colliding Beam User Group. Progress report, March 1, 1992--October 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Snow, G.A.; Skuja, A.

    1992-05-01

    This report discusses research in the following areas: the study of e{sup +}e{sup {minus}} interactions; Hadron collider physics at Fermilab; fixed target physics and particle physics of general interest; and, the solenoidal detector collaboration at SSCL.

  7. Super-resolution deep imaging with hollow Bessel beam STED microscopy

    CERN Document Server

    Yu, Wentao; Dong, Dashan; Yang, Xusan; Xiao, Yunfeng; Gong, Qihuang; Xi, Peng; Shi, Kebin

    2015-01-01

    Stimulated emission depletion (STED) microscopy has become a powerful imaging and localized excitation method beating the diffraction barrier for improved lateral spatial resolution in cellular imaging, lithography, etc. Due to specimen-induced aberrations and scattering distortion, it has been a great challenge for STED to maintain consistent lateral resolution deeply inside the specimens. Here we report on a deep imaging STED microscopy by using Gaussian beam for excitation and hollow Bessel beam for depletion (GB-STED). The proposed scheme shows the improved imaging depth up to ~155{\\mu}m in solid agarose sample, ~115{\\mu}m in PDMS and ~100{\\mu}m in phantom of gray matter in brain tissue with consistent super resolution, while the standard STED microscopy shown a significantly reduced lateral resolution at the same imaging depth. The results indicate the excellent imaging penetration capability of GB-STED, making it a promising tool for deep 3D imaging optical nanoscopy and laser fabrication.

  8. Super-distant molecular hybridization of plant seeds by ion beam-mediated gene cluster

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The N beam-mediated distant molecular hybridization between Ginkgo biloba I and watermelon was studied. The results showed that the ester gene of Ginkgo biloba L was successfully expressed in two varieties of watermelon. 3-16 and SR2-14-2, in both of which the ester quantities were measured as 17.0756 μg/g and 45.9998 μg/g respectively. Meanwhile, superoxide dismutase (SOD) activity in leaves of the watennelon expressing ester gene was increased twofold as compared to that of the control, showing that ion beam could mediate distant and/or super-distant donor gene expression in the cells of a receptor. Furthermore, the molecular nechanism of distant hybridization was analyzed.

  9. New target solution for a muon collider or a muon-decay neutrino beam facility: The granular waterfall target

    Science.gov (United States)

    Cai, Han-Jie; Yang, Guanghui; Vassilopoulos, Nikos; Zhang, Sheng; Fu, Fen; Yuan, Ye; Yang, Lei

    2017-02-01

    A new target solution, the granular waterfall target, is proposed here for a muon collider or a muon-decay neutrino beam facility, especially for the moment which adopts a 15 MW continuous-wave (cw) superconducting linac. Compared to the mercury jet target, the granular waterfall target works by a much simpler mechanism which can operate with a much more powerful beam, which are indicated by the detailed investigations into the heat depositions and the evaluations of the temperature increases for different target concepts. By varying proton beam kinetic energy and the geometrical parameters of the waterfall target, an overall understanding of the figure of merit concerning muon production for this target concept as the target solutions of the long-baseline neutrino factory and the medium-baseline moment is obtained. With 8 GeV beam energy and the optimal geometrical parameters, the influence on muon yield by adopting different beam-target interaction parameters is explored. Studies and discussions of the design details concerning beam dumping are also presented.

  10. Numerical Simulations of Transverse Beam Diffusion Enhancement by the Use of Electron Lens in the Tevatron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Previtali, V.; Stancari, G.; Valishev, A.; /Fermilab; Shatilov, D.N.; /Novosibirsk, IYF

    2012-05-01

    Transverse beam diffusion for the Tevatron machine has been calculated using the Lifetrac code. The following effects were included: random noise (representing residual gas scattering, voltage noise in the accelerating cavities) lattice nonlinearities and beam-beam interactions. The time evolution of particle distributions with different initial amplitudes in Hamiltonian action has been simulated for 6 million turns, corresponding to a time of about 2 minutes. For each particle distribution, several cases have been considered: a single beam in storage ring mode, the collider case and the effects of a hollow electron beam collimator. The diffusion coefficient for some representative points in the amplitude space has been calculated by fitting the time evolution of delta-like particle distributions using the diffusion equation, for different machine conditions. The results confirm a strong efficiency of the electron lens as an halo diffusive enhancer, leading to diffusion coefficients which are at least a factor 10K higher than the values obtained for the collision case. This result is confirmed by the Frequency Map Analysis, which shows a clear intensification of resonance lines for particle amplitudes larger than the electron lens inner radius. If compared with past experiments, the simulations successfully reproduce the diffusion coefficients for the beam core, but still present a large discrepancy for halo particles, still under investigation.

  11. Verification of passive cooling techniques in the Super-FRS beam collimators

    Science.gov (United States)

    Douma, C. A.; Gellanki, J.; Najafi, M. A.; Moeini, H.; Kalantar-Nayestanaki, N.; Rigollet, C.; Kuiken, O. J.; Lindemulder, M. F.; Smit, H. A. J.; Timersma, H. J.

    2016-08-01

    The Super FRagment Separator (Super-FRS) at the FAIR facility will be the largest in-flight separator of heavy ions in the world. One of the essential steps in the separation procedure is to stop the unwanted ions with beam collimators. In one of the most common situations, the heavy ions are produced by a fission reaction of a primary 238U-beam (1.5 GeV/u) hitting a 12C target (2.5 g/cm2). In this situation, some of the produced ions are highly charged states of 238U. These ions can reach the collimators with energies of up to 1.3 GeV/u and a power of up to 500 W. Under these conditions, a cooling system is required to prevent damage to the collimators and to the corresponding electronics. Due to the highly radioactive environment, both the collimators and the cooling system must be suitable for robot handling. Therefore, an active cooling system is undesirable because of the increased possibility of malfunctioning and other complications. By using thermal simulations (performed with NX9 of Siemens PLM), the possibility of passive cooling is explored. The validity of these simulations is tested by independent comparison with other simulation programs and by experimental verification. The experimental verification is still under analysis, but preliminary results indicate that the explored passive cooling option provides sufficient temperature reduction.

  12. Characteristics of beam collision timing and position at the KEK B-factory

    Science.gov (United States)

    Kichimi, H.

    2010-11-01

    Using the Belle detector we study the characteristics of beam collisions at the KEKB 3.5 GeV e+ and 8 GeV e- asymmetric energy collider. We investigate the collision timing tIP and its z-coordinate along the beam axis zIP as a function of the position of the colliding bunch in a beam train. The various tIP and zIP behaviors observed by Belle are attributed to beam loading effects in the radio frequency cavities that accelerate the beams with a beam abort gap. We also discuss the prospects for the Super-KEKB collider.

  13. LHC - Large Hadon Collider Exhibition LEPFest 2000

    CERN Multimedia

    2000-01-01

    The Large Hadron Collider (LHC) will accelerate two proton beams to an energy corresponding to about 7,000 times their mass (7000 GeV). The collision of the two beams reproduces the conditions in the Universe when it was about 10 -1 2 sec old. Many innovative techniques - such as cooling with superfluid helium, the extensive use of high temperature superconducting cables, the two-in-one design for super-conducting dipole magnets, and new ultra-high vacuum technologies - had to be developed to make its construc-tion possible.

  14. Calculation of abort thresholds for the Beam Loss Monitoring System of the Large Hadron Collider at CERN

    CERN Document Server

    Nemcic, Martin; Dehning, Bernd

    The Beam Loss Monitoring (BLM) System is one of the most critical machine protection systems for the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN), Switzerland. Its main purpose is to protect the superconducting magnets from quenches and other equipment from damage by requesting a beam abort when the measured losses exceed any of the predefined threshold levels. The system consist of circa 4000 ionization chambers which are installed around the 27 kilometres ring (LHC). This study aims to choose a technical platform and produce a system that addresses all of the limitations with the current system that is used for the calculation of the LHC BLM abort threshold values. To achieve this, a comparison and benchmarking of the Java and .NET technical platforms is performed in order to establish the most suitable solution. To establish which technical platform is a successful replacement of the current abort threshold calculator, comparable prototype systems in Java and .NET we...

  15. Weak interactions with colliding lepton beams of energy (10/sup 2/-10 /sup 3/) GeV

    CERN Document Server

    Dolgov, A D; Zakharov, V I

    1971-01-01

    Weak V-A interaction of colliding lepton beams at high energies is considered. It is assumed that the weak coupling constant G is the only parameter inherent to weak leptonic interactions so that terms of higher order become appreciable at total energy 2E=s/sup 1/2/ of order G/sup -1/2/. It is shown that for colliding lepton antilepton beams of 2*250 GeV the contribution of weak interactions to the differential cross section of elastic scattering at angle theta approximately=90 degrees prevails over that of electromagnetic interactions. The estimate of the weak cross section is based on the calculation of the imaginary part of the amplitude which is uniquely determined in the second order in G. Phenomenological description of the real part of the amplitude in the same approximation introduces a single unknown parameter. Provided the validity of dispersion relations with two subtractions is granted this parameter is related to the integral of total cross sections of ll and ll weak interactions. Terms of the th...

  16. Lattice design and beam optics calculations for the new large-scale electron-positron collider FCC-ee

    CERN Document Server

    Haerer, Bastian; Prof. Dr. Schmidt, Ruediger; Dr. Holzer, Bernhard

    Following the recommendations of the European Strategy Group for High Energy Physics, CERN launched the Future Circular Collider Study (FCC) to investigate the feasibility of large-scale circular colliders for future high energy physics research. This thesis presents the considerations taken into account during the design process of the magnetic lattice in the arc sections of the electron-positron version FCC-ee. The machine is foreseen to operate at four different centre-of-mass energies in the range of 90 to 350 GeV. Different beam parameters need to be achieved for every energy, which requires a flexible lattice design in the arc sections. Therefore methods to tune the horizontal beam emittance without re-positioning machine components are implemented. In combination with damping and excitation wigglers a precise adjustment of the emittance can be achieved. A very first estimation of the vertical emittance arising from lattice imperfections is performed. Special emphasis is put on the optimisation of the ...

  17. Status of the Super-B factory Design

    Energy Technology Data Exchange (ETDEWEB)

    Wittmer, W.; /Michigan State U.; Bertsche, K.; Chao, A.; Novokhatski, A.; Nosochkov, Y.; Seeman, J.; Sullivan, M.K.; Wienands, U.; Weathersby, S.; /SLAC; Bogomyagkov, A.V.; Levichev, E.; Nikitin, S.; Piminov, P.; Shatilov, D.; Sinyatkin, S.; Vobly, P.; Okunev, I.N.; /Novosibirsk, IYF; Bolzon, B.; Brunetti, L.; Jeremie, A.; /Annecy, LAPP; Biagini, M.E.; /Frascati /INFN, Pisa /Pisa U. /INFN, Genoa /Genoa U. /CERN /Orsay, LAL /LPSC, Grenoble /Saclay

    2012-05-18

    The SuperB international team continues to optimize the design of an electron-positron collider, which will allow the enhanced study of the origins of flavor physics. The project combines the best features of a linear collider (high single-collision luminosity) and a storage-ring collider (high repetition rate), bringing together all accelerator physics aspects to make a very high luminosity of 10{sup 36} cm{sup -2} sec{sup -1}. This asymmetric-energy collider with a polarized electron beam will produce hundreds of millions of B-mesons at the Y(4S) resonance. The present design is based on extremely low emittance beams colliding at a large Piwinski angle to allow very low {beta}{sub y} without the need for ultra short bunches. Use of crab-waist sextupoles will enhance the luminosity, suppressing dangerous resonances and allowing for a higher beam-beam parameter. The project has flexible beam parameters, improved dynamic aperture, and spin-rotators in the Low Energy Ring for longitudinal polarization of the electron beam at the Interaction Point. Optimized for best colliding-beam performance, the facility may also provide high-brightness photon beams for synchrotron radiation applications.

  18. AGS SUPER NEUTRINO BEAM FACILITY ACCELERATOR AND TARGET SYSTEM DESIGN (NEUTRINO WORKING GROUP REPORT-II).

    Energy Technology Data Exchange (ETDEWEB)

    DIWAN,M.; MARCIANO,W.; WENG,W.; RAPARIA,D.

    2003-04-21

    This document describes the design of the accelerator and target systems for the AGS Super Neutrino Beam Facility. Under the direction of the Associate Laboratory Director Tom Kirk, BNL has established a Neutrino Working Group to explore the scientific case and facility requirements for a very long baseline neutrino experiment. Results of a study of the physics merit and detector performance was published in BNL-69395 in October 2002, where it was shown that a wide-band neutrino beam generated by a 1 MW proton beam from the AGS, coupled with a half megaton water Cerenkov detector located deep underground in the former Homestake mine in South Dakota would be able to measure the complete set of neutrino oscillation parameters: (1) precise determination of the oscillation parameters {Delta}m{sub 32}{sup 2} and sin{sup 2} 2{theta}{sub 32}; (2) detection of the oscillation of {nu}{sub {mu}}-{nu}{sub e} and measurement of sin{sup 2} 2{theta}{sub 13}; (3) measurement of {Delta}m{sub 21}{sup 2} sin 2{theta}{sub 12} in a {nu}{sub {mu}} {yields} {nu}{sub e} appearance mode, independent of the value of {theta}{sub 13}; (4) verification of matter enhancement and the sign of {Delta}m{sub 32}{sup 2}; and (5) determination of the CP-violation parameter {delta}{sub CP} in the neutrino sector. This report details the performance requirements and conceptual design of the accelerator and the target systems for the production of a neutrino beam by a 1.0 MW proton beam from the AGS. The major components of this facility include a new 1.2 GeV superconducting linac, ramping the AGS at 2.5 Hz, and the new target station for 1.0 MW beam. It also calls for moderate increase, about 30%, of the AGS intensity per pulse. Special care is taken to account for all sources of proton beam loss plus shielding and collimation of stray beam halo particles to ensure equipment reliability and personal safety. A preliminary cost estimate and schedule for the accelerator upgrade and target system are also

  19. A Novel Method and Error Analysis for Beam Optics Measurements and Corrections at the Large Hadron Collider

    CERN Document Server

    Langner, Andy Sven; Rossbach, Jörg; Tomás, Rogelio

    2017-02-17

    The Large Hadron Collider (LHC) is currently the world's largest particle accelerator with the highest center of mass energy in particle collision experiments. The control of the particle beam focusing is essential for the performance reach of such an accelerator. For the characterization of the focusing properties at the LHC, turn-by-turn beam position data is simultaneously recorded at numerous measurement devices (BPMs) along the accelerator, while an oscillation is excited on the beam. A novel analysis method for these measurements ($N$-BPM method) is developed here, which is based on a detailed analysis of systematic and statistical error sources and their correlations. It has been applied during the commissioning of the LHC for operation at an unprecedented energy of 6.5 TeV. In this process a stronger focusing than its design specifications has been achieved. This results in smaller transverse beam sizes at the collision points and allows for a higher rate of particle collisions. For the derivation of ...

  20. Wideband Precision Current Transformer for the Magnet Current of the Beam Extraction Kicker Magnet of the Large Hadron Collider

    CERN Document Server

    Gräwer, G

    2004-01-01

    The LHC beam extraction system is composed of 15 fast kicker magnets per beam to extract the particles in one turn of the collider and to safely dispose them on external absorbers. Each magnet is powered by a separate pulse generator. The generator produces a magnet current pulse with 3 us rise time, 20 kA amplitude and 1.8 ms fall time, of which 90 us are needed to dump the beam. The beam extraction system requires a high level of reliability. To detect any change in the magnet current characteristics, which might indicate a slow degradation of the pulse generator, a high precision wideband current transformer will be installed. For redundancy reasons, the results obtained with this device will be cross-checked with a Rogowski coil, installed adjacent to the transformer. A prototype transformer has been successfully tested at nominal current levels and showed satisfactory results compared with the output of a high frequency resistive coaxial shunt. The annular core of the ring type transformer is composed of...

  1. Birth of colliding beams in Europe, two photon studies at Adone

    CERN Document Server

    Bonolis, Luisa

    2015-01-01

    This article recalls the birth of the first electron-positron storage ring AdA, and the construction of the higher energy collider ADONE, where early photon-photon collisions were observed. The events which led the Austrian physicist Bruno Touschek to propose and construct AdA will be recalled, starting with early work on the Wideroe's betatron during World War II, up to the construction of ADONE, and the theoretical contribution to radiative corrections to electron-positron collisions.

  2. Probing Anomalous WW γ and WWZ Couplings with Polarized Electron Beam at the LHeC and FCC-Ep Collider

    CERN Document Server

    Turk Cakir, I; Tasci, A T; Cakir, O

    2016-01-01

    We study the anomalous WWγ and WWZ couplings by calculating total cross sections of two processes at the LHeC with electron beam energy Ee=140 GeV and the proton beam energy Ep=7 TeV, and at the FCC-ep collider with the polarized electron beam energy Ee=80 GeV and the proton beam energy Ep=50 TeV. At the LHeC with electron beam polarization, we obtain the results for the difference of upper and lower bounds as (0.975, 0.118) and (0.285, 0.009) for the anomalous (∆κγ, λγ) and (∆κz, λz) couplings, respectively. As for FCC-ep collider, these bounds are obtained as (1.101, 0.065) and (0.320, 0.002) at an integrated luminosity of Lint=100 fb-1.

  3. The impact of BeamCal performance at different international linear collider beam parameters and crossing angles on $\\tilde{}$ searches

    Indian Academy of Sciences (India)

    P Bambade; V Drugakov; W Lohmann

    2007-12-01

    The ILC accelerator parameters and detector concepts are still under discussion in the world-wide community. As will be shown, the performance of the BeamCal, the calorimeter in the very forward area of the ILC detector, is very sensitive to the beam parameter and crossing angle choices. We propose here BeamCal designs for small (0 or 2 mrad) and large (20 mrad) crossing angles and report about the veto performance study done. As an illustration, the influence of several proposed beam parameter sets and crossing angles on the signal-to-background ratio in the stau search is estimated for a particular realization of the supersymmetric model.

  4. Modeling colliding beams with an element by element representation of the storage ring guide field

    Directory of Open Access Journals (Sweden)

    D. L. Rubin

    2006-01-01

    Full Text Available A detailed model of the Cornell Electron Storage Ring (CESR guide field, including beam-beam interaction computed in the weak-strong regime, is the basis for a multiturn simulation of luminosity. The simulation reproduces the dependence of luminosity on bunch current that is measured in the storage ring, at both high-energy (5.3   GeV/beam and in the wiggler-dominated low energy (CESR-c configuration (1.9   GeV/beam. Dynamics are determined entirely by the physics of propagation through the individual guide field elements with no free parameters. Energy dependence of the compensation of the transverse coupling introduced by the experimental solenoid is found to significantly degrade specific luminosity. The simulation also indicates a strong dependence of limiting beam-beam tune shift parameter on the geometric mean of synchrotron tune and bunch length.

  5. A model for correlating 4. 2-K performance with room-temperature mechanical characteristics in superconducting test dipole magnets for the Superconducting Super Collider (SSC)

    Energy Technology Data Exchange (ETDEWEB)

    Ige, O.O.; Lyon, R.H.; Iwasa, Y. (Francis Bitter National Magnet Laboratory Plasma Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States))

    1992-03-15

    The longitudinal attenuation of impact-generated pulses in ten superconducting dipole magnets was measured at room temperature. A lumped-parameter model was constructed for the collared dipole. Using the method of nonlinear least-squares, the model was used to estimate the internal damping in the main components of the dipoles and the coupling resistances between the components: collars, inner, and outer coils. A positive correlation was found between the collar-inner coil coupling resistance and the 4.2-K performance of the magnets: the higher the coupling resistance, the fewer the number of quenches required to reach design operating current. There was virtually no correlation between any of the other internal or coupling resistances and 4.2-K performance. These observations are explained in terms of frictional slip of the inner coil against the collars causing premature quenches. The magnets are more susceptible to quenches at the collar-inner coil interface than at the collar-outer coil interface because the inner coil is subject to higher fields and forces. The experiment is potentially useful as a technique for screening high-performance superconducting magnets such as Superconducting Super Collider (SSC) dipoles at room temperature.

  6. Interaction of the CERN Large Hadron Collider (LHC) Beam with Carbon Collimators

    CERN Document Server

    Schmidt, R; Hoffmann, Dieter H H; Kadi, Y; Shutov, A; Piriz, AR

    2006-01-01

    The LHC will operate at an energy of 7 TeV with a luminosity of 1034cm-2s-1. This requires two beams, each with 2808 bunches. The energy stored in each beam of 362 MJ. In a previous paper the mechanisms causing equipment damage in case of a failure of the machine protection system was discussed, assuming that the entire beam is deflected into a copper target [1, 2]. Another failure scenario is the deflection of beam into carbon material. Carbon collimators and beam absorbers are installed in many locations around the LHC to diffuse or absorb beam losses. Since the collimator jaws are close to the beam, it is very likely that they are hit first when the beam is accidentally deflected. Here we present the results of two-dimensional hydrodynamic simulations of the heating of a solid carbon cylinder irradiated by the LHC beam with nominal parameters, carried out using the BIG-2 computer code [3] while the energy loss of the 7 TeV protons in carbon is calculated using the well known FLUKA code [4]. Our calculation...

  7. Beam instability studies for the SSC

    Energy Technology Data Exchange (ETDEWEB)

    Chou, W.

    1994-09-01

    Beam instability studies of the Superconducting Super Collider (SSC) during the period 1989--1993 are briefly reviewed in this paper. Various topics are covered: single bunch and multi-bunch, single beam and beam-beam, parasitic heating and active feedback, etc. Although the SSC will not be built, many of the results obtained from these studies remain as useful references to the accelerator community.

  8. KEKB Beam Collision Stability at the Picosecond Timing and Micron Position Resolution as observed with the Belle Detector

    CERN Document Server

    Kichimi, H; Uehara, S; Nakao, M; Akai, K; Ieiri, T; Tobiyama, M; Jones, M D; Peters, M W; Varner, G S; Browder, T E

    2010-01-01

    Using the Belle detector we study the characteristics of beam collisions at the KEKB 3.5 GeV $e^+$ on 8 GeV $e^-$ asymmetric energy collider. We investigate the collision timing {\\tip} and its $z$-coordinate along the beam axis {\\zip} as a function of the position of the colliding bunch in a beam train. The various {\\tip} and {\\zip} behaviors observed by Belle are attributed to beam loading effects in the radio frequency cavities that accelerate the beams with a beam abort gap. We report these results in detail and discuss the prospects for the SuperKEKB collider.

  9. KEKB beam collision stability at the picosecond timing and micron position resolution as observed with the Belle detector

    Science.gov (United States)

    Kichimi, H.; Trabelsi, K.; Uehara, S.; Nakao, M.; Akai, K.; Ieiri, T.; Tobiyama, M.; Jones, M. D.; Peters, M. W.; Varner, G. S.; Browder, T. E.

    2010-03-01

    Using the Belle detector we study the characteristics of beam collisions at the KEKB 3.5 GeV e+ on 8 GeV e- asymmetric energy collider. We investigate the collision timing tIP and its z-coordinate along the beam axis zIP as a function of the position of the colliding bunch in a beam train. The various tIP and zIP behaviors observed by Belle are attributed to beam loading effects in the radio frequency cavities that accelerate the beams with a beam abort gap. We report these results in detail and discuss the prospects for the SuperKEKB collider.

  10. Neutral technicolor pseudo Goldstone bosons production and QCD (quantum chromodynamics) background at the SSC (Superconducting Super Collider)

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Wang-Chuang.

    1990-09-21

    The production of the neutral technicolor pseudo Goldstone bosons, P{sup 0}{prime}and P{sub 8}{sup 0}{prime}, at large transverse momentum in pp collisions, pp {yields} g(q)P{sup 0}{prime} (P{sub 8}{sup 0}{prime})X has been investigated in reactions at a high energy collider such as the SSC. The major two-body and three-body decay modes in tree diagrams are investigated in detail. The t{bar t} decay channel would dominate both the decays of P{sup 0}{prime} and P{sub 8}{sup 0}{prime} if it is allowed. Otherwise, gg and 3g will be the dominant decay modes unless the mass of the P{sup 0}{prime} and P{sub 8}{sup 0}{prime} are below 40 GeV, where b{bar b} becomes dominant. According to the QCD backgrounds, which we have also investigated in detail in this work, the signal for t{bar t} is much larger than the background and will be the ideal signal for detecting these bosons. However, in the absence of the t{bar t} channel, the {tau}{bar {tau}} mode can be used to identify P{sup 0}{prime} up to m{sub P} = 300 GeV in the transverse momentum range P{sub {perpendicular}} {approx lt} 100 GeV. Similarly, the b{bar b} decay mode can serve us a signal to identify P{sub 8}{sup 0}{prime} up to m{sub P} = 300 GeV for P{sub {perpendicular}} between 500 and 700 GeV. Our results show that these high transverse momentum production processes are useful for the searching for the P{sub 8}{sup 0}{prime} at the SSC. 63 refs.

  11. STUDY OF THE BEAM INDUCED RADIATION IN THE CMS DETECTOR AT THE LARGE HADRON COLLIDER

    CERN Document Server

    Singh, Amandeep P; Mokhov, Nikolai; Beri, Suman Bala

    2009-01-01

    point, are most vulnerable to beam-induced radiation. We have recently carried out extensive monte carlo simulation studies using MARS program to estimate particle fluxes and radiation dose in the CMS silicon pixel and strip trackers from proton-proton collisions at $\\sqrt s $=14 TeV and from machine induced background such as beam-gas interactions and beam-halo. We will present results on radiation dose, particle fluxes and spectra from these studies and discuss implications for radiation damage and performance of the CMS silicon tracker detec...

  12. Transient beam-loading model and compensation in Compact Linear Collider main linac

    CERN Document Server

    Kononenko, O

    2011-01-01

    A new model to compensate for the transient beam loading in the CLIC main linac is developed. It takes into account the CLIC specific power generation scheme and the exact 3D geometry of the accelerating structure including couplers. A new method of calculating unloaded and loaded voltages during the transient is proposed and a dedicated optimization scheme of the rf pulse to compensate the transient beam-loading effect is presented. It is demonstrated that the 0.03% limit on the rms relative bunch-to-bunch energy spread in the main beam after acceleration can be reached. The optimization technique has been used to increase the rf to beam efficiency while preserving the CLIC requirements and to compensate for the energy spread caused by the Balakin-Novokhatski-Smirnov damping and transient process in the subharmonic buncher. Effects of charge jitters in the drive and main beams are studied. It is shown that within the 0.1% CLIC specification limit on the rms spread in beams charge the energy spread is not sig...

  13. Incompatibility of FRC `Self--Colliding Beams' with Classical Large Orbit Theory and Experiment

    Science.gov (United States)

    Maglich, Bogdan

    2012-03-01

    Rosenbluth^1: ``One key physics issue is the behavior of very large gyro radius systems, for which the usual thermal physics is inadequate.''- Rostoker^2 posited (1) 0.42 KeV d^+ FRC can achieve confinement^ τ =30 s observed^3 in self-colliding orbits (SCO) of 725 KeV d^+,^ stabilized by magnet focusing^4 and electrons^5 ; (2) FRC result ^6τ=2 x10-3 s is ``record long lived plasma state for advanced, aneutronic fuels ''; (3) non-intersecting collision-less orbits produce nuclear reactions. (i) Bz(r) of FRC is defocusing, field index n>0. From single particle orbit theory^7,8 destructive instability must occur with τ^ AIP CP 311, 292 (93); 9. J.App.Phys.46, 2915 (75); 10. NIM A346 322 (93); 11.NIM 144, 65 (77)

  14. Pseudo super-resolution for improved calcification characterization for cone beam breast CT (CBBCT)

    Science.gov (United States)

    Liu, Jiangkun; Ning, Ruola; Cai, Weixing

    2010-04-01

    Cone Beam Breast CT imaging (CBBCT) is a promising tool for diagnosis of breast tumors and calcifications. However, as the sizes of calcifications in early stages are very small, it is not easy to distinguish them from background tissues because of the relatively high noise level. Therefore, it is necessary to enhance the visualization of calcifications for accurate detection. In this work, the Papoulis-Gerchberg (PG) method was introduced and modified to improve calcification characterization. PG method is an iterative algorithm of signal extrapolation and has been demonstrated to be very effective in image restoration like super-resolution (SR) and inpainting. The projection images were zoomed by bicubic interpolation method, then the modified PG method were applied to improve the image quality. The reconstruction from processed projection images showed that this approach can effectively improve the image quality by improving the Modulation Transfer Function (MTF) with a limited increase in noise level. As a result, the detectability of calcifications was improved in CBBCT images.

  15. Beam losses from ultra-peripheral nuclear collisions between $^{208}$Pb$^{82+}$ ions in the Large Hadron Collider and their alleviation

    CERN Document Server

    Bruce, R; Jowett, J; Bocian, D; CERN. Geneva. BE Department

    2009-01-01

    Electromagnetic interactions between colliding heavy ions at the Large Hadron Collider (LHC) at CERN will give rise to localized beam losses that may quench superconducting magnets, apart from contributing significantly to the luminosity decay. To quantify their impact on the operation of the collider, we have used a three-step simulation approach, which consists of optical tracking, a Monte-Carlo shower simulation and a thermal network model of the heat flow inside a magnet. We present simulation results for the case of Pb ion operation in the LHC, with focus on the ALICE interaction region, and show that the expected heat load during nominal Pb operation is 40% above the quench level. This limits the maximum achievable luminosity. Furthermore, we discuss methods of monitoring the losses and possible ways to alleviate their effect.

  16. Beam Losses in the Extraction Line of a TeV E+ E- Linear Collider With a 20-Mrad Crossing Angle

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, A.; /Uppsala U.; Nosochkov, Y.; /SLAC

    2006-03-29

    In this paper, we perform a detailed study of the power losses along the postcollision extraction line of a TeV e+e- collider with a crossing angle of 20 mrad between the beams at the interaction point. Five cases are considered here: four luminosity configurations for ILC and one for CLIC. For all of them, the strong beam-beam effects at the interaction point lead to an emittance growth for the outgoing beams, as well as to the production of beamstrahlung photons and e+e- pairs. The power losses along the 20 mrad extraction line, which are due to energy deposition by a fraction of the disrupted beam, of the beamstrahlung photons and of the e+e- coherent pairs, were estimated in the case of ideal collisions, as well as with a vertical position or angular o set at the interaction point.

  17. An experiment of X-ray photon–photon elastic scattering with a Laue-case beam collider

    Directory of Open Access Journals (Sweden)

    T. Yamaji

    2016-12-01

    Full Text Available We report a search for photon–photon elastic scattering in vacuum in the X-ray region at an energy in the center of mass system of ωcms=6.5keV for which the QED cross section is σQED=2.5×10−47m2. An X-ray beam provided by the SACLA X-ray Free Electron Laser is split and the two beamlets are made to collide at right angle, with a total integrated luminosity of (1.24±0.08×1028m−2. No signal X rays from the elastic scattering that satisfy the correlation between energy and scattering angle were detected. We obtain a 95% C.L. upper limit for the scattering cross section of 1.9×10−27m2 at ωcms=6.5keV. The upper limit is the lowest upper limit obtained so far by keV experiments.

  18. Comparison of the Chromium Distribution in New Super Koropon Primer to 30 Year Old Super Koropon Using Focused Ion Beam/Scanning Electron Microscopy

    Science.gov (United States)

    Lomness, Janice K.; Calle, Luz Marina

    2006-01-01

    Super Koropon primer (MB0125-055) plays a significant role in the corrosion protection of areas throughout the Orbiter. Because the Shuttle Program relies so heavily upon the performance of the Koropon primer, it is necessary to fully understand all aspects of the behavior of the coating. One area where little understanding of the Koropon primer still exists is the level of risk associated with age related degradation. Recently, efforts were undertaken to better understand the age life of the Koropon primer and to gain some insight into the aging process of this coating. In that study, an aluminum access panel from the Orbiter Enterprise was used to investigate the performance of the old Koropon film. A control panel was also used to study the performance of new Koropon coating. Preliminary investigations into the performance of aged Super Koropon primer indicated a significant decrease in corrosion protection. This investigation serves as an example of how Focused Ion Beam/Scanning Microscopy can be used to characterize the changes that occur as coatings age.

  19. Proposal to negotiate extensions to four collaboration agreements for the design of key components of the beam-delivery and linac systems for the Compact Linear Collider (CLIC) for a duration of two years

    CERN Document Server

    2017-01-01

    Proposal to negotiate extensions to four collaboration agreements for the design of key components of the beam-delivery and linac systems for the Compact Linear Collider (CLIC) for a duration of two years

  20. Proposal to negotiate three collaboration agreements in the context of the Future Circular Collider Study (FCC) concerning the development of HTS coated tapes integrated into the beam screen for impedance mitigation

    CERN Document Server

    2016-01-01

    Proposal to negotiate three collaboration agreements in the context of the Future Circular Collider Study (FCC) concerning the development of HTS coated tapes integrated into the beam screen for impedance mitigation

  1. Generation of High Brightness Electron Beams via Ionization Induced Injection by Transverse Colliding Lasers in a Beam-Driven Plasma Wakefield Accelerator

    CERN Document Server

    Li, F; Xu, X L; Zhang, C J; Yan, L X; Du, Y C; Huang, W H; Cheng, H B; Tang, C X; Lu, W; Joshi, C; Mori, W B; Gu, Y Q

    2013-01-01

    The production of ultra-bright electron bunches using ionization injection triggered by two transversely colliding laser pulses inside a beam-driven plasma wake is examined via three-dimensional (3D) particle-in-cell (PIC) simulations. The relatively low intensity lasers are polarized along the wake axis and overlap with the wake for a very short time. The result is that the residual momentum of the ionized electrons in the transverse plane of the wake is much reduced and the injection is localized along the propagation axis of the wake. This minimizes both the initial 'thermal' emittance and the emittance growth due to transverse phase mixing. 3D PIC simulations show that ultra-short (around 8 fs) high-current (0.4 kA) electron bunches with a normalized emittance of 8.5 and 6 nm in the two planes respectively and a brightness greater than 1.7*10e19 A rad-2 m-2 can be obtained for realistic parameters.

  2. Colliding. gamma. e and. gamma gamma. beams based in single-pass e/sup +/e/sup -/ accelerators. Pt. 2. Polarization effects, monochromatization improvement

    Energy Technology Data Exchange (ETDEWEB)

    Ginzburg, I.F.; Kotkin, G.L.; Serbo, V.G.; Panfil, S.L.; Telnov, V.I.

    Polarization effects are considered in colliding ..gamma..e and ..gamma gamma.. beams, which are proposed to be obtained on the basis of linear e/sup +/e/sup -/ colliders (by backward Compton scattering of laser light on electron beams). It is shown that using electrons and laser photons with helicities lambda and Psub(c), such that lambdaPsub(c) < 0, essentially improves the monochromatization. The characteristic laser flash energy, A/sub 0/, which is necessary to obtain a conversion coefficient k proportional 1 with a definite degree of monochromatization, is considerably less (somestimes by one order of magnitude) in the case 2 lambdaPsub(c) = -1 in contrast to the case lambdaPsub(c) = 0. Simultaneously the luminosities Lsub(..gamma..e) and Lsub(..gamma gamma..) essentially increase. Formulae are obtained which allow one to extract the polarization information about ..gamma..e -> X and ..gamma gamma.. -> X reactions. Perculiarities connected with the specific scheme of the ..gamma.. beam preparation are discussed. Problems of the calibration of the ..gamma..e and ..gamma gamma.. collisions for the polarized beams are discussed.

  3. Time average neutralized migma: A colliding beam/plasma hybrid physical state as aneutronic energy source — A review

    Science.gov (United States)

    Maglich, Bogdan C.

    1988-08-01

    A D + beam of kinetic energy Ti = 0.7 MeV was stored in a "simple mirror" magnetic field as self-colliding orbits or migma and neutralized by ambient, oscillating electrons whose bounce frequencies were externally controlled. Space charge density was exceeded by an order of magnitude without instabilities. Three nondestructive diagnostic methods allowed measurements of ion orbit distribution, ion storage times, ion energy distribution, nuclear reaction rate, and reaction product spectrum. Migma formed a disc 20 cm in diameter and 0.5 cm thick. Its ion density was sharply peaked in the center; the ion-to-electron temperature ratio was TiTe ˜ 10 3; ion-electron temperature equilibrium was never reached. The volume average and central D + density were n = 3.2 × 10 9 cm -3 and nc = 3 × 10 10 cm -3 respectively, compared to the space charge limit density nsc = 4 × 10 8 cm -3. The energy confinement time was τc = 20-30 s, limited by the change exchange reactions with the residual gas in the vacuum (5 × 10 -9 Torr). The ion energy loss rate was 1.4 keV/s. None of the instabilities that were observed in mirrors at several orders of magnitude lower density occurred. The proton energy spectrum for dd + d → T + p + 4 MeV shows that dd collided at an average crossing angle of 160°. Evidence for exponential density buildup has also been observed. Relative to Migma III results and measured in terms of the product of ion energy E, density n, and confinement time τ, device performance was improved by a factor of 500. Using the central fast ion density, we obtained the triple product: Tnτ ≅ 4 × 10 14 keV s cm -3, which is greater than that of the best fusion devices. The luminosity (collision rate per unit cross section) was ˜ 10 29 cm -2s -1, with o.7 A ion current through the migma center. The stabilizing features of migma are: (1) large Larmor radius; (2) small canonical angular momentum; (3) short axial length z (disc shape); (4) nonadiabatic motions in r and z

  4. Cryogenic distribution for radioactive secondary beam fragment separator (Super-FRS) of FAIR

    CERN Document Server

    Xiang, Y; Kauschke, M; Moritz, G; Quack, H

    2009-01-01

    We present the flow schemes for the superconducting dipoles, the superconducting multiplets (quadrupoles, hexapoles, octupoles and steering dipoles) and the corresponding feedboxes of the Super-FRS in the FAIR project. The system layout of the helium distribution for the whole separator including the three branches of the Super-FRS and the experiment caves is discussed as well. Based on the maximum cooling capacity specified for the refrigerator, the cold-down time of the multiplets which are characteristic of large cold mass (up to 37 Tons for each) has been investigated. The issues as operation conditions, quench protection and safety relief are also discussed.

  5. Influence of the transverse dimensions of colliding beams on processes of bremsstrahlung and production of e/sup +/e/sup -/ pairs

    Energy Technology Data Exchange (ETDEWEB)

    Kotkin, G.L.; Polityko, S.I.; Serbo, V.G.

    1985-09-01

    For high energies of colliding e/sup +/e/sup -/, ep, and ..gamma..e beams in processes of bremsstrahlung and production of e/sup +/e/sup -/ pairs, an important role is played by impact parameters much greater than the transverse dimensions of the beams. This leads to a decrease of the number of observed events in comparison with the standard calculations. Exact formulas and a number of convenient approximate formulas are obtained for the number of events in an arbitrary reaction with allowance for the finite dimensions of the beams. Concrete calculations are given for production of e/sup +/e/sup -/ pairs.The deviations from the standard calculations for e/sup +/e/sup -/ collisions under the conditions of LEP, SLC, and VLEPP are 1, 4, and 15%, respectively, and for ..gamma..e collisions under the conditions of SLC and VLEPP they are 20 and 35%, respectively.

  6. Steady state response of functionally graded nano-beams resting on viscous foundation to super-harmonic

    Directory of Open Access Journals (Sweden)

    Sima Ziaee

    2016-09-01

    Full Text Available This article attempts to investigate the effects of small scale parameter on steady state response of functionally graded nano-beams resting on a viscous foundation to super-harmonic excitation. A simple power-law distribution is used to model the variation of material property graded in the thickness direction. The dimensionless partial differential equation of motion is derived by using Euler-Bernoulli beam theory, von-Karman geometric nonlinearity and Eringen’s nonlocal elasticity theory. Using multiple scale method, one can find the governing equations of steady state response of functionally graded nano-beams excited by distributed harmonic force. The small scale parameter (e0a is changed between 0 and 2 to investigate the effects of small scale on steady state response of excited functionally graded nano-beams due to lack of information. The study of the effects of small scale parameter on backbone curves shows that an increase in the small scale parameter often decreases the dimensionless peak response although the type of loading can change the relationship between small scale parameter and the dimensionless peak response.

  7. Beam Measurements of the Longitudinal impedance of the CERN Super Proton Synchrotron

    CERN Document Server

    AUTHOR|(CDS)2090034; Petrache, Costel

    One of the main challenges of future physics projects based on particle accelerators is the need for high intensity beams. However, collective effects are a major limitation which can deteriorate the beam quality or limit the maximum intensity due to losses. The CERN SPS, which is the last injector for the LHC, is currently unable to deliver the beams required for future projects due to longitudinal instabilities. The numerous devices in the machine (accelerating RF cavities, injection and extraction magnets, vacuum flanges. etc.) lead to variations in the geometry and material of the chamber through which the beam is travelling. The electromagnetic interaction within the beam (space charge) and of the beam with its environment are described by a coupling impedance which affects the motion of the particles and leads to instabilities for high beam intensities. Consequently, the critical impedance sources should be identified and solutions assessed. To have a reliable impedance model of an accelerator, the...

  8. SuperB Progress Report for Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Biagini, M.E.; Boni, R.; Boscolo, M.; Buonomo, B.; Demma, T.; Drago, A.; Esposito, M.; Guiducci, S.; Mazzitelli, G.; Pellegrino, L.; Preger, M.A.; Raimondi, P.; Ricci, R.; Rotundo, U.; Sanelli, C.; Serio, M.; Stella, A.; Tomassini, S.; Zobov, M.; /Frascati; Bertsche, K.; Brachman, A.; /SLAC /Novosibirsk, IYF /INFN, Pisa /Pisa U. /Orsay, LAL /Annecy, LAPP /LPSC, Grenoble /IRFU, SPP, Saclay /DESY /Cockroft Inst. Accel. Sci. Tech. /U. Liverpool /CERN

    2012-02-14

    This report details the progress made in by the SuperB Project in the area of the Collider since the publication of the SuperB Conceptual Design Report in 2007 and the Proceedings of SuperB Workshop VI in Valencia in 2008. With this document we propose a new electron positron colliding beam accelerator to be built in Italy to study flavor physics in the B-meson system at an energy of 10 GeV in the center-of-mass. This facility is called a high luminosity B-factory with a project name 'SuperB'. This project builds on a long history of successful e+e- colliders built around the world, as illustrated in Figure 1.1. The key advances in the design of this accelerator come from recent successes at the DAFNE collider at INFN in Frascati, Italy, at PEP-II at SLAC in California, USA, and at KEKB at KEK in Tsukuba Japan, and from new concepts in beam manipulation at the interaction region (IP) called 'crab waist'. This new collider comprises of two colliding beam rings, one at 4.2 GeV and one at 6.7 GeV, a common interaction region, a new injection system at full beam energies, and one of the two beams longitudinally polarized at the IP. Most of the new accelerator techniques needed for this collider have been achieved at other recently completed accelerators including the new PETRA-3 light source at DESY in Hamburg (Germany) and the upgraded DAFNE collider at the INFN laboratory at Frascati (Italy), or during design studies of CLIC or the International Linear Collider (ILC). The project is to be designed and constructed by a worldwide collaboration of accelerator and engineering staff along with ties to industry. To save significant construction costs, many components from the PEP-II collider at SLAC will be recycled and used in this new accelerator. The interaction region will be designed in collaboration with the particle physics detector to guarantee successful mutual use. The accelerator collaboration will consist of several groups at present

  9. Influence of the transverse beam sizes on the ep -> ep. gamma. cross section at the HERA and a FUTURE CERN electron-proton collider

    Energy Technology Data Exchange (ETDEWEB)

    Kotkin, G.L.; Polityko, S.I.; Serbo, V.G.; Schiller, A.

    1988-06-01

    In the process ep -> ep..gamma.., proposed for luminosity measurements at HERA, impact parameters occur which are larger than the transverse beam sizes in the ep-colliders in HERA and a CERN option (LHC+LEP). This decreases the number of observed photons compared to the standard QED calculation. The difference is larger than 10% at photon energies E/sub ..gamma../ < 0.4E/sub e/ for the CERN option and E/sub ..gamma../ < 0.01E/sub e/ for HERA. (orig.)

  10. Preliminary design report of a relativistic-Klystron two-beam-accelerator based power source for a 1 TeV center-of-mass next linear collider

    Energy Technology Data Exchange (ETDEWEB)

    Yu, S.; Goffeney, N.; Henestroza, E. [Lawrence Berkeley Lab., CA (United States)] [and others

    1995-02-22

    A preliminary point design for an 11.4 GHz power source for a 1 TeV center-of-mass Next Linear Collider (NLC) based on the Relativistic-Klystron Two-Beam-Accelerator (RK-TBA) concept is presented. The present report is the result of a joint LBL-LLNL systems study. consisting of three major thrust areas: physics, engineering, and costing. The new RK-TBA point design, together with our findings in each of these areas, are reported.

  11. A collision timing monitor for SuperKEKB

    Science.gov (United States)

    Di Carlo, S.; Messina, F.

    2017-10-01

    The analysis of beamstrahlung radiation, emitted from a beam of charged particles due to the electromagnetic interaction with a second beam of charged particles, provides a diagnostic tool that can be used to monitor beam-beam collisions in a e+e- storage ring. In this paper we show that the beamstrahlung time profile is related to the timing of the collisions and the length of the beams, and how its measurement can be used to monitor and optimize collisions at the interaction point of the SuperKEKB collider. The method has a unique passive monitor capability, since it allows to monitor the timing of the collision without disturbing (scanning) the beam-beam timing, which needs to be measured to unprecedented accuracy at SuperKEKB. To measure the time dependence of beamstrahlung, we describe a method based on nonlinear frequency mixing in a nonlinear crystal of beamstrahlung radiation with photons from a pulsed laser. We demonstrate that the method allows to measure and optimize the relative timing and length of the colliding bunches with 3% accuracy.

  12. First beam test of a liquid Cherenkov detector prototype for a future TOF measurements at the Super-FRS

    Science.gov (United States)

    Kuzminchuk-Feuerstein, Natalia; Ferber, Nadine; Rozhkova, Elena; Kaufeld, Ingo; Voss, Bernd

    2017-09-01

    In order to separate and identify fragmentation products with the Super-Fragment Separator (SuperFRS) at FAIR a high resolving power detector system is required for position and Time-Of-Flight (TOF) measurements. The TOF detector is used to measure the velocity of the particles and hence, in conjunction with their momentum or energy, to determine their mass and hence their identity. Aiming to develop a system with a precision down to about 50 ps in time and resistant to a high radiation rate of relativistic heavy ions of up to 107 per spill (at the second focal plane), we have shown a conceptual design for a Cherenkov detector envisioned for the future TOF measurements employing Iodine Naphthalene (C10H7I) as a fluid radiator. The application of a liquid radiator allows the circulation of the active material and therefore to greatly reduce the effects of the degradation of the optical performance expected after exposure to the high ion rates at the Super-FRS. The prototype of a TOF-Cherenkov detector was designed, constructed and its key-properties have been investigated in measurements with heavy ions at CaveC at GSI. These measurements were performed with nickel ions at 300-1500 MeV/u and ion-beam intensities of up to 4 × 106 ions/spill of 8 s. As a first result a maximum detection efficiency of 70% and a timing resolution of 267 ps (σ) was achieved. We report the first attempt of time measurements with a Cherenkov detector based on a liquid radiator. Further optimization is required.

  13. Reliability of the beam loss monitors system for the large hadron collider at CERN; Fiabilite du systeme des moniteurs de pertes du faisceau pour le Large Hadron Collider au CERN

    Energy Technology Data Exchange (ETDEWEB)

    Guaglio, G

    2005-12-15

    The energy stored in the Large Hadron Collider is unprecedented. The impact of the beam particles can cause severe damage on the superconductive magnets, resulting in significant downtime for repairing. The Beam Loss Monitors System (BLMS) detects the secondary particles shower of the lost beam particles and initiates the extraction of the beam before any serious damage to the equipment can occur. This thesis defines the BLMS specifications in term of reliability. The main goal is the design of a system minimizing both the probability to not detect a dangerous loss and the number of false alarms generated. The reliability theory and techniques utilized are described. The prediction of the hazard rates, the testing procedures, the Failure Modes Effects and Criticalities Analysis and the Fault Tree Analysis have been used to provide an estimation of the probability to damage a magnet, of the number of false alarms and of the number of generated warnings. The weakest components in the BLMS have been pointed out. The reliability figures of the BLMS have been calculated using a commercial software package (Isograph.). The effect of the variation of the parameters on the obtained results has been evaluated with a sensitivity analysis. The reliability model has been extended by the results of radiation tests. Design improvements, like redundant optical transmission, have been implemented in an iterative process. The proposed system is compliant with the reliability requirements. The model uncertainties are given by the limited knowledge of the thresholds levels of the superconductive magnets and of the locations of the losses along the ring. The implemented model allows modifications of the system, following the measuring of the hazard rates during the LHC life. It can also provide reference numbers to other accelerators which will implement similar technologies. (author)

  14. Analysis of test-beam data with hybrid pixel detector prototypes for the Compact LInear Collider (CLIC) vertex detectors

    CERN Document Server

    Pequegnot, Anne-Laure

    2013-01-01

    The LHC is currently the most powerful accelerator in the world. This proton-proton collider is now stoppped to increase significantly its luminosity and energy, which would provide a larger discovery potential in 2014 and beyond. A high-energy $e^{+}e^{-}$ collider, such as CLIC, is an option to complement and to extend the LHC physics programme. Indeed, a lepton collider gives access to additional physics processes, beyond those observable at the LHC, and therefore provides new discovery potential. It can also provide complementary and/or more precise information about new physics uncovered at the LHC. Many essential features of a detector are required to deliver the full physics potential of this CLIC machine. In this present report, I present my work on the vertex detector R\\&D for this future linear collider, which aims at developping highly granular and ultra-thin position sensitive detection devices with very low power consumption and fast time-stamping capability. We tested here thin silicon pixel...

  15. Super-resolution nanofabrication with metal-ion doped hybrid material through an optical dual-beam approach

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Yaoyu; Li, Xiangping; Gu, Min, E-mail: mgu@swin.edu.au [Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122 (Australia)

    2014-12-29

    We apply an optical dual-beam approach to a metal-ion doped hybrid material to achieve nanofeatures beyond the optical diffraction limit. By spatially inhibiting the photoreduction and the photopolymerization, we realize a nano-line, consisting of polymer matrix and in-situ generated gold nanoparticles, with a lateral size of sub 100 nm, corresponding to a factor of 7 improvement compared to the diffraction limit. With the existence of gold nanoparticles, a plasmon enhanced super-resolution fabrication mechanism in the hybrid material is observed, which benefits in a further reduction in size of the fabricated feature. The demonstrated nanofeature in hybrid materials paves the way for realizing functional nanostructures.

  16. Free vibration of super-graphene carbon nanotube networks via a beam element based coarse-grained method

    Science.gov (United States)

    Gu, Ruifeng; Wang, Lifeng; He, Xiaoqiao

    2017-08-01

    A new beam element based coarse-grained model is developed to investigate efficiently the mechanical behavior of a large system of super-graphene carbon nanotube (SGCNT) networks with all boundaries clamped supported. The natural frequencies and mode shapes of the SGCNT networks made of single-walled carbon nanotubes (SWCNTs) with different diameters and lengths are obtained via the proposed coarse-grained model. The applicability of the coarse-grained model for the SGCNT networks is verified by comparison with the molecular structural mechanics model. The natural frequencies and associated mode shapes obtained via the coarse-grained model agree well with the results obtained from the molecular structural mechanics method, indicating that the coarse-grained model developed in this study can be applied for the dynamic prediction of the SGCNT networks.

  17. Beam-energy dependence of charge balance functions from Au + Au collisions at energies available at the BNL Relativistic Heavy Ion Collider

    Science.gov (United States)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Banerjee, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandin, A. V.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Cervantes, M. C.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, J. H.; Chen, H. F.; Cheng, J.; Cherney, M.; Christie, W.; Codrington, M. J. M.; Contin, G.; Crawford, H. J.; Cui, X.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Derradi de Souza, R.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Filip, P.; Fisyak, Y.; Flores, C. E.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A.; Hamed, A.; Han, L.-X.; Haque, R.; Harris, J. W.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, X.; Huang, H. Z.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikola, D. P.; Kisel, I.; Kisiel, A.; Klein, S. R.; Koetke, D. D.; Kollegger, T.; Kosarzewski, L. K.; Kotchenda, L.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, Z. M.; Li, X.; Li, W.; Li, Y.; Li, X.; Li, C.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, G. L.; Ma, R. M.; Ma, Y. G.; Magdy, N.; Mahapatra, D. P.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; Minaev, N. G.; Mioduszewski, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V.; Olvitt, D. L.; Page, B. S.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Poniatowska, K.; Porter, J.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandacz, A.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Simko, M.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solanki, D.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B. J.; Sun, X. M.; Sun, Z.; Sun, Y.; Sun, X.; Surrow, B.; Svirida, D. N.; Szelezniak, M. A.; Takahashi, J.; Tang, Z.; Tang, A. H.; Tarnowsky, T.; Tawfik, A. N.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Turnau, J.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasconcelos, G. M. S.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, J. S.; Wang, X. L.; Wang, Y.; Wang, H.; Wang, F.; Wang, G.; Webb, G.; Webb, J. C.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, N.; Xu, Z.; Xu, H.; Xu, Y.; Xu, Q. H.; Yan, W.; Yang, Y.; Yang, C.; Yang, Y.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, X. P.; Zhang, Z. P.; Zhang, J. B.; Zhang, J. L.; Zhang, Y.; Zhang, S.; Zhao, F.; Zhao, J.; Zhong, C.; Zhu, Y. H.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2016-08-01

    Balance functions have been measured in terms of relative pseudorapidity (Δ η ) for charged particle pairs at the BNL Relativistic Heavy Ion Collider from Au + Au collisions at √{sNN}=7.7 GeV to 200 GeV using the STAR detector. These results are compared with balance functions measured at the CERN Large Hadron Collider from Pb + Pb collisions at √{sNN}=2.76 TeV by the ALICE Collaboration. The width of the balance function decreases as the collisions become more central and as the beam energy is increased. In contrast, the widths of the balance functions calculated using shuffled events show little dependence on centrality or beam energy and are larger than the observed widths. Balance function widths calculated using events generated by UrQMD are wider than the measured widths in central collisions and show little centrality dependence. The measured widths of the balance functions in central collisions are consistent with the delayed hadronization of a deconfined quark gluon plasma (QGP). The narrowing of the balance function in central collisions at √{sNN}=7.7 GeV implies that a QGP is still being created at this relatively low energy.

  18. Enhancement of FEM radiation by prebunching of the e-beam (stimulated super-radiance)

    CERN Document Server

    Arbel, M; Kleinman, H; Yakover, I M; Abramovich, A; Pinhasi, Y; Luria, Y; Tecimer, M; Gover, A

    2001-01-01

    An electron beam (e-beam) prebunched at the synchronous FEM frequency and traversing through a waveguide, located coaxially with a magnetic undulator, emits coherent radiation at the bunching frequency. Introduction of both a premodulated e-beam and a radio-frequency (r.f.) signal at the same frequency at the input of the waveguide can lead to more efficient interaction, and thus more power can be extracted from the electron beam. In order to achieve this, the density modulation of the electron beam should be at an appropriate phase with respect to the r.f. signal. We report a first experimental demonstration of the influence of the phase difference between the r.f. input signal and the fundamental component of the density modulation of the e-beam on the radiated power in a Free-Electron Maser (FEM). Our experimental system allows control of the current density modulation, of the r.f. input power level, in the undulator region and of the phase between that r.f. input and the modulation of the e-beam. A compar...

  19. About compensation the electronic beam dynamic stratification influence in super-power relativistic Cherenkov oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Kurayev, Alexander A.; Rak, Alexey O.; Sinitsyn, Anatoly K., E-mail: kurayev@bsuir.by [Belarusian State University of Informatics and Radioelectronics, P. Brovka Str., Minsk (Belarus)

    2011-07-01

    On the basis of the exact nonlinear theory relativistic TWT and BWO on irregular hollow waveguides with cathode filters-modulators with the account as propagating, and beyond cut-off waves, with the account of losses in walls of a waveguide and inhomogeneity directing an electronic beam magnetostatic fields finds out influence of dynamic stratification influence on efficiency of the generator. Possibility of almost fill compensation the electronic beam dynamic stratification influence on efficiency by optimization of an electronic beam arrangement in inhomogeneous high frequency and magnetic fields and characteristics of the irregular corrugated waveguide is shown. (author)

  20. Super-resolution microscopy based on fluorescence emission difference of cylindrical vector beams

    Science.gov (United States)

    Rong, Zihao; Kuang, Cuifang; Fang, Yue; Zhao, Guangyuan; Xu, Yingke; Liu, Xu

    2015-11-01

    We propose a novel fluorescence emission difference microscopy (FED) system based on focusing cylindrical vector beams. In conventional FED, a Gaussian beam and a 0-2π vortex phase plate are used to generate solid and hollow spots. We focus radially polarized and azimuthally polarized cylindrical vector beams to obtain an expanded solid spot and a shrunken hollow spot, taking advantage of the optical properties of cylindrical vector beams to improve the conventional FED performance. Our novel method enhances FED performance because the hollow spot size determines the FED resolution and an expanded solid spot effectively reduces negative side-lobe emergence during image processing. We demonstrate improved performance theoretically and experimentally using an in-house built FED. Our FED achieved resolution of less than λ/4 in test images of 100 nm nanoparticles, better than the confocal image resolution by a factor of approximately 1/3. We also discuss detailed simulation analyses and FED imaging of biological cells.

  1. Development and Optimisation of the SPS and LHC beam diagnostics based on Synchrotron Radiation monitors

    CERN Document Server

    AUTHOR|(CDS)2081364; Roncarolo, Federico

    Measuring the beam transverse emittance is fundamental in every accelerator, in particular for colliders, where its precise determination is essential to maximize the luminosity and thus the performance of the colliding beams.
 Synchrotron Radiation (SR) is a versatile tool for non-destructive beam diagnostics, since its characteristics are closely related to those of the source beam. At CERN, being the only available diagnostics at high beam intensity and energy, SR monitors are exploited as the proton beam size monitor of the two higher energy machines, the Super Proton Synchrotron (SPS) and the Large Hadron Collider (LHC). The thesis work documented in this report focused on the design, development, characterization and optimization of these beam size monitors. Such studies were based on a comprehensive set of theoretical calculations, numerical simulations and experiments. A powerful simulation tool has been developed combining conventional softwares for SR simulation and optics design, thus allowing t...

  2. Final focus designs for crab waist colliders

    Science.gov (United States)

    Bogomyagkov, A.; Levichev, E.; Piminov, P.

    2016-12-01

    The crab waist collision scheme promises significant luminosity gain. The successful upgrade of the DA Φ NE collider proved the principle of crab waist collision and increased luminosity 3 times. Therefore, several new projects try to implement the scheme. The paper reviews interaction region designs with the crab waist collision scheme for already existent collider DA Φ NE and SuperKEKB, presently undergoing commissioning, for the projects of SuperB in Italy, CTau in Novosibirsk and FCC-ee at CERN.

  3. Measurement and interpretation of transverse beam instabilities in the CERN large hadron collider (LHC) and extrapolations to HL-LHC

    CERN Document Server

    AUTHOR|(CDS)2067185; Arduini, Gianluigi; Barranco Navarro, Laura; Buffat, Xavier; Carver, Lee Robert; Iadarola, Giovanni; Li, Kevin Shing Bruce; Pieloni, Tatiana; Romano, Annalisa; Rumolo, Giovanni; Salvant, Benoit; Schenk, Michael; Tambasco, Claudia; Biancacci, Nicolo

    2016-01-01

    Since the first transverse instability observed in 2010, many studies have been performed on both measurement and simulation sides and several lessons have been learned. In a machine like the LHC, not only all the mechanisms have to be understood separately, but the possible interplays between the different phenomena need to be analysed in detail, including the beam-coupling impedance (with in particular all the necessary collimators to protect the machine but also new equipment such as crab cavities for HL-LHC), linear and nonlinear chromaticity, Landau octupoles (and other intrinsic nonlinearities), transverse damper, space charge, beam-beam (long-range and head-on), electron cloud, linear coupling strength, tune separation between the transverse planes, tune split between the two beams, transverse beam separation between the two beams, etc. This paper reviews all the transverse beam instabilities observed and simulated so far, the mitigation measures which have been put in place, the remaining questions an...

  4. Laser Wire Scanner Compton Scattering Techniques for the Measurement of the Transverse Beam Size of Particle Beams at Future Linear Colliders

    CERN Document Server

    Agapov, I; Blair, G A; Bosser, J; Braun, H H; Bravin, E; Boorman, G; Boogert, S T; Carter, J; D'amico, E; Delerue, N; Howell, D F; Doebert, S; Driouichi, C; Frisch, J; Hutchins, K Honkavaaram S; Kamps, T; Lefevre, T; Lewin, H; Paris, T; Poirier, F; Price, M T; Maccaferi, R; Malton, S; Penn, G; Ross, I N; Ross, M; Schlarb, H; Schmueser, P; Schreiber, S; Sertore, D; Walker, N; Wendt, M; Wittenburg, K

    2014-01-01

    This archive summarizes a working paper and conference proceedings related to laser wire scanner development for the Future Linear Collider (FLC) in the years 2001 to 2006. In particular the design, setup and data taking for the laser wire experiments at PETRA II and CT2 are described. The material is focused on the activities undertaken by Royal Holloway University of London (RHUL).

  5. CLAWS. Beam background monitoring in the commissioning of SuperKEKB

    Energy Technology Data Exchange (ETDEWEB)

    Gabriel, Miroslav; Windel, Hendrik; Kolk, Naomi van der; Simon, Frank [Max Planck Institute for Physics (Germany)

    2016-07-01

    The background levels, in particular those originating from the continuous injection to maximize luminosity, are a concern for the inner vertex detector of Belle-II at the SuperKEKB accelerator. To better understand this background, and in particular its time dependence, dedicated measurements will be made during the commissioning phase of the accelerator, scheduled to begin in February 2016. One of the detectors for these measurements, CLAWS, is based on scintillators coupled to SiPMs which were originally developed for timing measurements of hadronic showers in the CALICE calorimeters. The data acquisition is based on digitizers with very deep buffers allowing the continuous recording of more than 1000 revolutions of the accelerator to provide a detailed analysis of the evolution of the background levels after injection. In this contribution, we present the overall CLAWS setup, the technical solutions adopted for the data acquisition and analysis, and discuss the performance of the detector elements.

  6. High power infrared super-Gaussian beams: generation, propagation and application

    CSIR Research Space (South Africa)

    Du Preez, NC

    2009-09-01

    Full Text Available In this paper researchers present the design of a CO2 laser resonator that produces as the stable transverse mode a super–Gaussian laser beam. The resonator makes use of an intra–cavity diffractive mirror and a flat output coupler, generating...

  7. Muon colliders

    Science.gov (United States)

    Palmer, R. B.; Sessler, A.; Skrinsky, A.; Tollestrup, A.; Baltz, A. J.; Chen, P.; Cheng, W.-H.; Cho, Y.; Courant, E.; Fernow, R. C.; Gallardo, J. C.; Garren, A.; Green, M.; Kahn, S.; Kirk, H.; Lee, Y. Y.; Mills, F.; Mokhov, N.; Morgan, G.; Neuffer, D.; Noble, R.; Norem, J.; Popovic, M.; Schachinger, L.; Silvestrov, G.; Summers, D.; Stumer, I.; Syphers, M.; Torun, Y.; Trbojevic, D.; Turner, W.; Van Ginneken, A.; Vsevolozhskaya, T.; Weggel, R.; Willen, E.; Winn, D.; Wurtele, J.

    1996-05-01

    Muon Colliders have unique technical and physics advantages and disadvantages when compared with both hadron and electron machines. They should thus be regarded as complementary. Parameters are given of 4 TeV and 0.5 TeV high luminosity μ+μ- colliders, and of a 0.5 TeV lower luminosity demonstration machine. We discuss the various systems in such muon colliders, starting from the proton accelerator needed to generate the muons and proceeding through muon cooling, acceleration and storage in a collider ring. Problems of detector background are also discussed.

  8. Muon colliders

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, R.B. [Brookhaven National Lab., Upton, NY (United States)]|[Stanford Linear Accelerator Center, Menlo Park, CA (United States); Sessler, A. [Lawrence Berkeley Lab., CA (United States); Skrinsky, A. [BINP, RU-630090 Novosibirsk (Russian Federation)] [and others

    1996-01-01

    Muon Colliders have unique technical and physics advantages and disadvantages when compared with both hadron and electron machines. They should thus be regarded as complementary. Parameters are given of 4 TeV and 0.5 TeV high luminosity {micro}{sup +}{micro}{sup {minus}}colliders, and of a 0.5 TeV lower luminosity demonstration machine. We discuss the various systems in such muon colliders, starting from the proton accelerator needed to generate the muons and proceeding through muon cooling, acceleration and storage in a collider ring. Problems of detector background are also discussed.

  9. Linear collider development at SLAC

    Energy Technology Data Exchange (ETDEWEB)

    Irwin, J.

    1993-08-01

    Linear collider R&D at SLAC comprises work on the present Stanford Linear Collider (SLC) and work toward the next linear collider (NLC). Recent SLC developments are summarized. NLC studies are divided into hardware-based and theoretical. We report on the status of the NLC Test Accelerator (NLCTA) and the final focus test beam (FFTB), describe plans for ASSET, an installation to measure accelerator structure wakefields, and mention IR design developments. Finally we review recent NLC theoretical studies, ending with the author`s view of next linear collider parameter sets.

  10. Optimization of the design of DC-DC converters for improving the electromagnetic compatibility with the Front-End electronic for the super Large Hadron Collider Trackers

    CERN Document Server

    Fuentes Rojas, Cristian Alejandro; Blanchot, G

    2011-01-01

    The upgrade of the Large Hadron Collider (LHC) experiments at CERN sets new challenges for the powering of the detectors. One of the powering schemes under study is based on DC-DC buck converters mounted on the front-end modules. The hard environmental conditions impose strict restrictions to the converters in terms of low volume, radiation and magnetic field tolerance. Furthermore, the noise emission of the switching converters must not affect the performance of the powered systems. A study of the sources and paths of noise of a synchronous buck converter has been made for identifying the critical parameters to reduce their emissions. As proof of principle, a converter was designed following the PCB layout considerations proposed and then used for powering a silicon strip module prototype for the ATLAS upgrade, in order to evaluate their compatibility.

  11. NEUTRINO SUPER BEAM FACILITY FOR A LONG BASELINE EXPERIMENT FROM BNL TO HOMESTAKE.

    Energy Technology Data Exchange (ETDEWEB)

    KAHN,S.

    2002-10-21

    An upgrade to the BNL Alternate Gradient Synchrotron (AGS) could produce a very intense proton source at a relatively low cost. Such a proton beam could be used to generate a conventional neutrino beam with a significant flux at large distances from the laboratory. This provides the possibility of a very long baseline neutrino experiment at the Homestake mine. The construction of this facility would allow a program of experiments to study many of the aspects of neutrino oscillations including CP violations. This study examines a 1 MW proton source at BNL and a large 1 megaton detector positioned at the Homestake Mine as the ultimate goal of a staged program to study neutrino oscillations.

  12. Optimizing integrated luminosity of future hadron colliders

    CERN Document Server

    AUTHOR|(CDS)2108454; Schulte, Daniel; Zimmermann, Frank

    2015-01-01

    The integrated luminosity, a key figure of merit for any particle-physics collider, is closely linked to the peak luminosity and to the beam lifetime. The instantaneous peak luminosity of a collider is constrained by a number of boundary conditions, such as the available beam current, the maximum beam-beam tune shift with acceptable beam stability and reasonable luminosity lifetime (i.e., the empirical “beam-beam limit”), or the event pileup in the physics detectors. The beam lifetime at high-luminosity hadron colliders is largely determined by particle burn off in the collisions. In future highest-energy circular colliders synchrotron radiation provides a natural damping mechanism, which can be exploited for maximizing the integrated luminosity. In this article, we derive analytical expressions describing the optimized integrated luminosity, the corresponding optimum store length, and the time evolution of relevant beam parameters, without or with radiation damping, while respecting a fixed maximum value...

  13. Study the effect of beam energy spread and detector resolution on the search for Higgs boson decays to invisible particles at a future e$^+$e$^-$ circular collider

    CERN Document Server

    Cerri, Olmo; Pierini, Maurizio; Podo, Alessandro; Rolandi, Gigi

    2016-01-01

    We study the expected sensitivity to measure the branching ratio of Higgs boson decays to invisible particles at a future circular \\epem collider (FCCee), considering an integrated luminosity of 3.5 ab$^{-1}$ at a center-of-mass energy $\\sqrt{s}=240$ GeV. The impact of the energy spread of the FCCee beam on the measurement is discussed. Two different detector concepts are considered: a detector corresponding to the CMS reconstruction performances and the expected design of the ILC detector. The minimum branching ratio for a $5\\sigma$ observation after 3.5ab$^{-1}$ of data taking is $1.7\\pm 0.1\\%(stat+syst) $ ($2.5\\pm 0.3\\%((stat+syst))$ ) for an ILC-like (CMS-like) detector concept. The branching ratio exclusion limit at 95\\% CL is $0.63 \\pm 0.22\\%((stat+syst))$ ($0.92\\pm0.32 \\%((stat+syst))$).

  14. Study the effect of beam energy spread and detector resolution on the search for Higgs boson decays to invisible particles at a future e$^+$e$^-$ circular collider

    CERN Document Server

    Cerri, Olmo; Pierini, Maurizio; Podo, Alessandro; Rolandi, Gigi

    2017-01-01

    We study the expected sensitivity to measure the branching ratio of Higgs boson decays to invisible particles at a future circular \\epem collider (FCCee), considering an integrated luminosity of 3.5 ab$^{-1}$ at a center-of-mass energy $\\sqrt{s}=240$ GeV. The impact of the energy spread of the FCCee beam on the measurement is discussed. Two different detector concepts are considered: a detector corresponding to the CMS reconstruction performances and the expected design of the ILC detector. The minimum branching ratio for a $5\\sigma$ observation after 3.5ab$^{-1}$ of data taking is $1.7\\pm 0.1\\%(stat+syst) $ ($2.5\\pm 0.3\\%((stat+syst))$ ) for an ILC-like (CMS-like) detector concept. The branching ratio exclusion limit at 95\\% CL is $0.63 \\pm 0.22\\%((stat+syst))$ ($0.92\\pm0.32 \\%((stat+syst))$).

  15. Challenges in future linear colliders

    CERN Document Server

    Chattopadhyay, S

    2002-01-01

    For decades, electron-positron colliders have been complementing proton-proton colliders. But the circular LEP, the largest e/sup -/e /sup +/ collider, represented an energy limit beyond which energy losses to synchrotron radiation necessitate moving to e/sup -/e/sup + / linear colliders (LCs), thereby raising new challenges for accelerator builders. Japanese-American, German, and European collaborations have presented options for the "Future Linear Collider " (FLC). Key accelerator issues for any FLC option are the achievement of high enough energy and luminosity. Damping rings, taking advantage of the phenomenon of synchrotron radiation, have been developed as the means for decreasing beam size, which is crucial for ensuring a sufficiently high rate of particle-particle collisions. Related challenges are alignment and stability in an environment where even minute ground motion can disrupt performance, and the ability to monitor beam size. The technical challenges exist within a wider context of socioeconomi...

  16. Electrostatic solitary waves in current layers: from Cluster observations during a super-substorm to beam experiments at the LAPD

    Directory of Open Access Journals (Sweden)

    J. S. Pickett

    2009-06-01

    Full Text Available Electrostatic Solitary Waves (ESWs have been observed by several spacecraft in the current layers of Earth's magnetosphere since 1982. ESWs are manifested as isolated pulses (one wave period in the high time resolution waveform data obtained on these spacecraft. They are thus nonlinear structures generated out of nonlinear instabilities and processes. We report the first observations of ESWs associated with the onset of a super-substorm that occurred on 24 August 2005 while the Cluster spacecraft were located in the magnetotail at around 18–19 RE and moving northward from the plasma sheet to the lobes. These ESWs were detected in the waveform data of the WBD plasma wave receiver on three of the Cluster spacecraft. The majority of the ESWs were detected about 5 min after the super-substorm onset during which time 1 the PEACE electron instrument detected significant field-aligned electron fluxes from a few 100 eV to 3.5 keV, 2 the EDI instrument detected bursts of field-aligned electron currents, 3 the FGM instrument detected substantial magnetic fluctuations and the presence of Alfvén waves, 4 the STAFF experiment detected broadband electric and magnetic waves, ion cyclotron waves and whistler mode waves, and 5 CIS detected nearly comparable densities of H+ and O+ ions and a large tailward H+ velocity. We compare the characteristics of the ESWs observed during this event to those created in the laboratory at the University of California-Los Angeles Plasma Device (LAPD with an electron beam. We find that the time durations of both space and LAPD ESWs are only slightly larger than the respective local electron plasma periods, indicating that electron, and not ion, dynamics are responsible for generation of the ESWs. We have discussed possible mechanisms for generating the ESWs in space, including the beam and kinetic Buneman type instabilities and the acoustic instabilities. Future studies will examine these mechanisms in

  17. Design of a 10**36 CM-2 S-1 Super-B Factory

    Energy Technology Data Exchange (ETDEWEB)

    Biagini, M.E.; Boni, R.; Boscolo, M.; Demma, T.; Drago, A.; Guiducci, S.; Raimondi, P.; Tomassini, S.; Zobov, M.; /Frascati; Bertsche, Kirk J.; Novokhatski, A.; Seeman, J.; Sullivan, M.; Wienands, U.; Wittmer, W.; /SLAC; Bettoni, S.; /CERN; Paoloni, E.; Marchiori, G.; /Pisa U.; Bogomyagkov, A.; Koop, I.; Levichev, E.; /Novosibirsk, IYF

    2011-10-24

    Parameters have been studied for a high luminosity e{sup +}e{sup -} collider operating at the Upsilon 4S that would deliver a luminosity of 1 to 4 x 10{sup 36}/cm{sup 2}/s. This collider, called a Super-B Factory, would use a combination of linear collider and storage ring techniques. In this scheme an electron beam and a positron beam are stored in low-emittance damping rings similar to those designed for a Linear Collider (LC) or the next generation light source. A LC style interaction region is included in the ring to produce sub-millimeter vertical beta functions at the collision point. A large crossing angle (+/- 24 mrad) is used at the collision point to allow beam separation. A crab-waist scheme is used to reduce the hourglass effect and restore peak luminosity. Beam currents of 1.8 A at 4 x 7 GeV in 1251 bunches can produce a luminosity of 10{sup 36}/cm{sup 2}/s with upgrade possibilities. Such a collider would produce an integrated luminosity of about 10,000 fb{sup -1} (10 ab{sup -1}) in a running year (10{sup 7} sec) at the {gamma}(4S) resonance. Further possibilities include having longitudinally polarized e- at the IR and operating at the J/Psi and Psi beam energies.

  18. Soft Fusion Energy Path: Isotope Production in Energy Subcritical/Economy Hypercritical D +D Colliding-Beam Mini Fusion Reactor `Exyder'

    Science.gov (United States)

    Hester, Tim; Maglich, Bogdan; Calsec Collaboration

    2015-03-01

    Bethe1 and Sakharov2 argued for soft fusion energy path via isotope production, substantiated by Manheimer3. - Copious T and 3He production4 , 5 from D(d, p) T and D(d, n) 3He reactions in 725 KeV D +D colliding beams was measured in weak-focusing Self-Collider6 , 7 radius 0.15 m, in B = 3.12 T, non-linearly stabilized by electron cloud oscillations8 to confinement time = 24 s. Simulations6 predict that by switching to strong focusing9, 10 deuterons 0.75 MeV each, generate 1 3He +1T +1p + 1n at total input energy cost 10.72 MeV. Economic value of T and 3He is 65 and 120 MeV/atom, respectively. We obtain economic gain 205MeV/10.72 MeV ~ 2,000% i.e. 3He production funds cost of T. If first wall is made of Thorium n's will breed 233U releasing 200 MeV/fission, at neutron cost 5.36 MeV versus 160 MeV in beam on target, resulting in no cost 3He production, valued 75K/g. 1. Physics Today, May 1979, p.44; 2. Memoirs, Vintage Books, (1992); 3. Phys. Today, May 2012 p. 12; 4. Phys. Rev. Lett. 54, 796 (1985); 5. Bull. APS, 57, No. 3 (2012); 6. Part. Acc.1, (1970); 7. ANEUTRONIC FUSION NIM A 271 1-167 (1988); 8. Phys. Rev. Lett. 70, 1818 (1993); 9. Part. Acc. 34, 13 (1990).

  19. Measurements of beam halo diffusion and population density in the Tevatron and in the Large Hadron Collider

    CERN Document Server

    Stancari, Giulio

    2014-01-01

    Halo dynamics influences global accelerator performance: beam lifetimes, emittance growth, dynamic aperture, and collimation efficiency. Halo monitoring and control are also critical for the operation of high-power machines. For instance, in the high-luminosity upgrade of the LHC, the energy stored in the beam tails may reach several megajoules. Fast losses can result in superconducting magnet quenches, magnet damage, or even collimator deformation. The need arises to measure the beam halo and to remove it at controllable rates. In the Tevatron and in the LHC, halo population densities and diffusivities were measured with collimator scans by observing the time evolution of losses following small inward or outward collimator steps, under different experimental conditions: with single beams and in collision, and, in the case of the Tevatron, with a hollow electron lens acting on a subset of bunches. After the LHC resumes operations, it is planned to compare measured diffusivities with the known strength of tran...

  20. Experimental observations of nonlinearly enhanced 2omega-UH electromagnetic radiation excited by steady-state colliding electron beams

    Science.gov (United States)

    Intrator, T.; Hershkowitz, N.; Chan, C.

    1984-01-01

    Counterstreaming large-diameter electron beams in a steady-state laboratory experiment are observed to generate transverse radiation at twice the upper-hybrid frequency (2omega-UH) with a quadrupole radiation pattern. The electromagnetic wave power density is nonlinearly enhanced over the power density obtained from a single beam-plasma system. Electromagnetic power density scales exponentially with beam energy and increases with ion mass. Weak turbulence theory can predict similar (but weaker) beam energy scaling but not the high power density, or the predominance of the 2omega-UH radiation peak over the omega-UH peak. Significant noise near the upper-hybrid and ion plasma frequencies is also measured, with normalized electrostatic wave energy density W(ES)/n(e)T(e) approximately 0.01.

  1. Optimizing integrated luminosity of future hadron colliders

    Directory of Open Access Journals (Sweden)

    Michael Benedikt

    2015-10-01

    Full Text Available The integrated luminosity, a key figure of merit for any particle-physics collider, is closely linked to the peak luminosity and to the beam lifetime. The instantaneous peak luminosity of a collider is constrained by a number of boundary conditions, such as the available beam current, the maximum beam-beam tune shift with acceptable beam stability and reasonable luminosity lifetime (i.e., the empirical “beam-beam limit”, or the event pileup in the physics detectors. The beam lifetime at high-luminosity hadron colliders is largely determined by particle burn off in the collisions. In future highest-energy circular colliders synchrotron radiation provides a natural damping mechanism, which can be exploited for maximizing the integrated luminosity. In this article, we derive analytical expressions describing the optimized integrated luminosity, the corresponding optimum store length, and the time evolution of relevant beam parameters, without or with radiation damping, while respecting a fixed maximum value for the total beam-beam tune shift or for the event pileup in the detector. Our results are illustrated by examples for the proton-proton luminosity of the existing Large Hadron Collider (LHC at its design parameters, of the High-Luminosity Large Hadron Collider (HL-LHC, and of the Future Circular Collider (FCC-hh.

  2. Wideband current transformers for the surveillance of the beam extraction kicker system of the Large Hadron Collider

    CERN Document Server

    Defrance, C; Ducimetière, L; Vossenberg, E

    2007-01-01

    The LHC beam dumping system must protect the LHC machine from damage by reliably and safely extracting and absorbing the circulating beams when requested. Two sets of 15 extraction kicker magnets form the main active part of this system. A separate high voltage pulse generator powers each magnet. Because of the high beam energy and the consequences which could result from significant beam loss due to a malfunctioning of the dump system the magnets and generators are continuously surveyed in order to generate a beam abort as soon as an internal fault is detected. Amongst these surveillance systems, wideband current transformers have been designed to detect any erratic start in one of the generators. Output power should be enough to directly re-trigger all the power trigger units of the remaining 14 generators. The current transformers were developed in collaboration with industry. To minimize losses, high-resistivity cobalt alloy was chosen for the cores. The annealing techniques originally developed for LEP b...

  3. Longitudinal beam dynamics in the Frascati DAΦNE e^{+}e^{-} collider with a passive third harmonic cavity in the lengthening regime

    Directory of Open Access Journals (Sweden)

    David Alesini

    2003-07-01

    Full Text Available A high-harmonic rf system is going to be installed in both rings of the DAΦNE Φ-Factory collider to improve the Touschek lifetime. The main goal of this paper is to study the impact of the 3rd harmonic cavity on beam dynamics making a special emphasis on the dynamics of a bunch train with a gap. The shift of the coherent synchrotron frequencies of the coupled-bunch modes has been estimated. In the following we investigated the effect of magnification of the synchrotron phase spread and beam spectrum variation due to the gap. Besides we simulated the bunch lengthening for different bunches along the unevenly filled train and evaluated the Touschek lifetime enhancement taking into account the obtained bunch distributions. Finally, the “cavity parking” option is discussed. It can be considered as a reliable backup procedure consisting of tuning the cavity away from the 3rd harmonic frequency and in between two revolution harmonics. It allows recovering, approximately, the same operating conditions as were before the harmonic cavity installation.

  4. Linear Collider Test Facility: Twiss Parameter Analysis at the IP/Post-IP Location of the ATF2 Beam Line

    Energy Technology Data Exchange (ETDEWEB)

    Bolzon, Benoit; /Annecy, LAPP; Jeremie, Andrea; /Annecy, LAPP; Bai, Sha; /Beijing, Inst. High Energy Phys.; Bambade, Philip; /KEK, Tsukuba; White, Glen; /SLAC

    2012-07-02

    At the first stage of the ATF2 beam tuning, vertical beam size is usually bigger than 3 {micro}m at the IP. Beam waist measurements using wire scanners and a laser wire are usually performed to check the initial matching of the beam through to the IP. These measurements are described in this paper for the optics currently used ({beta}{sub x} = 4cm and {beta}{sub y} = 1mm). Software implemented in the control room to automate these measurements with integrated analysis is also described. Measurements showed that {beta} functions and emittances were within errors of measurements when no rematching and coupling corrections were done. However, it was observed that the waist in the horizontal (X) and vertical (Y) plane was abnormally shifted and simulations were performed to try to understand these shifts. They also showed that multiknobs are needed in the current optics to correct simultaneously {alpha}{sub x}, {alpha}{sub y} and the horizontal dispersion (D{sub x}). Such multiknobs were found and their linearity and orthogonality were successfully checked using MAD optics code. The software for these multiknobs was implemented in the control room and waist scan measurements using the {alpha}{sub y} knob were successfully performed.

  5. Measurements of beam halo diffusion and population density in the Tevatron and in the Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Stancari, Giulio [Fermilab

    2015-03-01

    Halo dynamics influences global accelerator performance: beam lifetimes, emittance growth, dynamic aperture, and collimation efficiency. Halo monitoring and control are also critical for the operation of high-power machines. For instance, in the high-luminosity upgrade of the LHC, the energy stored in the beam tails may reach several megajoules. Fast losses can result in superconducting magnet quenches, magnet damage, or even collimator deformation. The need arises to measure the beam halo and to remove it at controllable rates. In the Tevatron and in the LHC, halo population densities and diffusivities were measured with collimator scans by observing the time evolution of losses following small inward or outward collimator steps, under different experimental conditions: with single beams and in collision, and, in the case of the Tevatron, with a hollow electron lens acting on a subset of bunches. After the LHC resumes operations, it is planned to compare measured diffusivities with the known strength of transverse damper excitations. New proposals for nondestructive halo population density measurements are also briefly discussed.

  6. PLASMA LENS FOR US BASED SUPER NEUTRINO BEAM AT EITHER FNAL OR BNL.

    Energy Technology Data Exchange (ETDEWEB)

    HERSHCOVITCH,A.; WENG, W.; DIWAN, M.; GALLARDO, J.; KIRK, H.; JOHNSON, B.; KAHN, S.; GARATE, E.; VAN DRIE, A.; ROSTOKER, N.

    2007-06-25

    The plasma lens concept is examined as an alternative to focusing horns and solenoids for a neutrino beam facility. The concept is based on a combined high-current lens/target configuration. Current is fed at an electrode located downstream from the beginning of the target where pion capturing is needed. The current is carried by plasma outside the target. A second plasma lens section, with an additional current feed, follows the target. The plasma is immersed in a relatively small solenoidal magnetic field to facilitate its current profile shaping to optimize pion capture. Simulations of the not yet fully optimized configuration yielded a 25% higher neutrino flux at a detector situated at 3 km from the target than the horn system for the entire energy spectrum and a factor of 2.47 higher flux for neutrinos with energy larger than 3 GeV. A major advantage of plasma lenses is in background reduction. In anti-neutrino operation, neutrino background is reduced by a factor of close to 3 for the whole spectrum, and for and for energy larger than 3 GeV, neutrino background is reduced by a factor of 3.6. Plasma lenses have additional advantages: larger axial currents, high signal purity: minimal neutrino background in anti-neutrino runs. The lens medium consists of plasma, consequently, particle absorption and scattering is negligible. Withstanding high mechanical and thermal stresses in a plasma is not an issue.

  7. The development of colliders

    Energy Technology Data Exchange (ETDEWEB)

    Sessler, A.M.

    1993-02-01

    Don Kerst, Gersh Budker, and Bruno Touschek were the individuals, and the motivating force, which brought about the development of colliders, while the laboratories at which it happened were Stanford, MURA, the Cambridge Electron Accelerator, Orsay, Frascati, CERN, and Novosibirsk. These laboratories supported, during many years, this rather speculative activity. Of course, many hundreds of physicists contributed to the development of colliders but the men who started it, set it in the right direction, and forcefully made it happen, were Don, Gersh, and Bruno. Don was instrumental in the development of proton-proton colliders, while Bruno and Gersh spearheaded the development of electron-positron colliders. In this brief review of the history, I will sketch the development of the concepts, the experiments, and the technological developments which made possible the development of colliders. It may look as if the emphasis is on theoretical concepts, but that is really not the case, for in this field -- the physics of beams -- the theory and experiment go hand in hand; theoretical understanding and advances are almost always motivated by the need to explain experimental results or the desire to construct better experimental devices.

  8. Multi-Bunch effect of resistive wall in the beam delivery system of the Compact Linear Collider

    CERN Document Server

    Mutzner, Raphael; Pieloni, Tatiana; Rivkin, Leonid

    2010-01-01

    Wake fields in the CLIC Beam Delivery System (BDS) can cause severe single or multi-bunch effects leading to luminosity loss. The main contributors in the BDS are geometric and resistive wall wake fields of the collimators and resistive wall wakes of the beam pipe. The present master thesis focuses only on the multi-bunch effects from resistive wall. Using particle tracking with wake fields through the BDS, we have established the aperture radius, above which the effect of the wake fields becomes negligible. Simulations were later extended to include a realistic aperture model along the BDS as well as the collimators. We examine the two cases of 3 TeV and 500 GeV in this work, for stainless steel and copper pipes.

  9. Investigation of induced radioactivity in the CERN Large Electron Positron collider for its decommissioning

    CERN Document Server

    Silari, Marco

    2004-01-01

    The future installation of the Large Hadron Collider in the tunnel formerly housing the Large Electron Positron collider (LEP) required the dismantling of the latter after 11-year operation. As required by the French legislation, an extensive theoretical study was conducted before decommissioning to establish the possible activation paths both in the accelerator and in the four experiments (L3, ALEPH, OPAL and DELPHI) installed around the ring. The aim was to define which areas may contain activated material and which ones would be completely free of activation. The four major sources of activation in LEP, i.e., distributed and localized beam losses, synchrotron radiation and the super-conducting RF cavities, were investigated. Conversion coefficients from unit lost beam power to induced specific activity were established for a number of materials. A similar study was conducted for the four experiments, evaluating the four potential sources of induced radioactivity, namely e**+e **- annihilation events, two-p...

  10. Muon Collider Progress: Accelerators

    CERN Document Server

    Zisman, Michael S

    2011-01-01

    A muon collider would be a powerful tool for exploring the energy-frontier with leptons, and would complement the studies now under way at the LHC. Such a device would offer several important benefits. Muons, like electrons, are point particles so the full center-of-mass energy is available for particle production. Moreover, on account of their higher mass, muons give rise to very little synchrotron radiation and produce very little beamstrahlung. The first feature permits the use of a circular collider that can make efficient use of the expensive rf system and whose footprint is compatible with an existing laboratory site. The second feature leads to a relatively narrow energy spread at the collision point. Designing an accelerator complex for a muon collider is a challenging task. Firstly, the muons are produced as a tertiary beam, so a high-power proton beam and a target that can withstand it are needed to provide the required luminosity of ~1 \\times 10^34 cm^-2s^-1. Secondly, the beam is initially produce...

  11. Steel Tape-wound Cut Cores as Magnet Yokes for the Beam Dump Kickers of the Large Hadron Collider

    CERN Document Server

    Mayer, M; Jansson, U; Fox, D

    2004-01-01

    Fast pulsed magnets, also called kickers, are used in particle accelerators for beam injection, extraction and similar applications. To excite these magnets, typically current pulses with rise and fall times in the range of 100 ns to 10 µs, with pulse duration of up to 100 µs and amplitudes in the order of kilo Amperes, are used. The short rise time imposes low inductance circuits and high voltage operation. The yokes are usually made out of ferrite, with reaches field saturation at about 0.5 T.

  12. Polarized Electrons for Linear Colliders

    CERN Document Server

    Clendenin, J E; Garwin, E L; Kirby, R E; Luh, D A; Maruyama, T; Prescott, C Y; Sheppard, J C; Turner, J; Prepost, R

    2005-01-01

    Future electron-positron linear colliders require a highly polarized electron beam with a pulse structure that depends primarily on whether the acceleration utilizes warm or superconducting rf structures. The International Linear Collider (ILC) will use cold structures for the main linac. It is shown that a dc-biased polarized photoelectron source such as successfully used for the SLC can meet the charge requirements for the ILC micropulse with a polarization approaching 90%.

  13. The SuperB factory, physics potential and project status

    Directory of Open Access Journals (Sweden)

    Wiechczynski Jaroslaw

    2012-12-01

    Full Text Available The SuperB project is an international enterprise aiming at the construction of the high-luminosity asymmetric beam energy electron-positron accelerator, which would be located in the area of Rome. It would exploit several novel features allowing to achieve an unprecedented luminosities and to collect almost a hundred times more data than the current generation of ”B factories”. As for the leptonic colliders, it will maintain a clean, low-background experimental environment that is crucial for numerous measurements on the field of high energy physics

  14. Energy matching of 1. 2 GeV positron beam to the SLC (Stanford Linear Collider) damping ring

    Energy Technology Data Exchange (ETDEWEB)

    Clendenin, J.E.; Helm, R.H.; Jobe, R.K.; Kulikov, A.; Sheppard, J.C.

    1989-08-01

    Positrons collected at the SLC positron source are transported over a 2-km path at 220 MeV to be reinjected into the linac for acceleration to 1.2 GeV, the energy of the emittance damping ring. Since the positron bunch length is a significant fraction of a cycle of the linac-accelerating RF, the energy spread at 1.2 GeV is considerably larger than the acceptance of the linac-to-ring (LTR) transport system. Making use of the large pathlength difference at the beginning of the LTR due to this energy spread, a standard SLAC 3-m accelerating section has been installed in the LTR to match the longitudinal phase space of the positron beam to the acceptance of the damping ring. The design of the matching system is described, and a comparison of operating results within simulations is presented. 5 refs., 4 figs., 1 tab.

  15. The Super-B Project Accelerator Status

    Energy Technology Data Exchange (ETDEWEB)

    Biagini, M.E.; Alesini, D.; Boni, R.; Boscolo, M.; Demma, T.; Drago, A.; Esposito, M.; Guiducci, S.; Marcellini, F.; Mazzitelli, G.; Preger, M.; Raimondi, P.; Sanelli, C.; Serio, M.; Stecchi, A.; Stella, A.; Tomassini, S.; Zobov, M.; /Frascati; Bertsche, K.; Brachmann, A.; Cai, Y.; /SLAC /Novosibirsk, IYF /Annecy, LAPP /LPSC, Grenoble /Orsay, LAL /Saclay /Pisa U. /CERN

    2011-08-17

    The SuperB project is an international effort aiming at building in Italy a very high luminosity e{sup +}e{sup -} (10{sup 36} cm{sup -2} sec{sup -1}) asymmetric collider at the Y(4S) energy in the CM. The accelerator design has been extensively studied and changed during the past year. The present design, based on the new collision scheme, with large Piwinski angle and the use of 'crab waist' sextupoles already successfully tested at the DA{Phi}NE {Phi}-Factory at LNF Frascati, provides larger flexibility, better dynamic aperture and spin manipulation sections in the Low Energy Ring (LER) for longitudinal polarization of the electron beam at the Interaction Point (IP). The Interaction Region (IR) has been further optimized in terms of apertures and reduced backgrounds in the detector. The injector complex design has been also updated. A summary of the project status will be presented in this paper. The SuperB collider can reach a peak luminosity of 10{sup 36} cm{sup -2} sec{sup -1} with beam currents and bunch lengths similar to those of the past and present e{sup +}e{sup -} Factories, through the use of smaller emittances and new scheme of crossing angle collision. The beams are stored in two rings at 6.7 GeV (HER) and 4.2 GeV (LER). Unique features of the project are the polarization of the electron beam in the LER and the possibility to decrease the energies for running at the {tau}/charm threshold. The option to reuse the PEP-II B-Factory (SLAC) hardware will allow reducing costs. The SuperB facility will require a big complex of civil infrastructure. The main construction, which will house the final part of the LINAC, the injection lines, the damping rings, and the storage rings, will be mainly underground. Two sites have been considered: the campus of Tor Vergata University near Frascati, and the INFN Frascati Laboratory. No decision has been made yet. A footprint of the possible SuperB layout on the LNF area is shown in Fig. 1.

  16. Measurements of the Surface Resistivity of a 99.99% Al/6063 Beam Pipe

    Science.gov (United States)

    Suetsugu, Yusuke; Ishimaru, Hajime

    1988-06-01

    The surface resistivity of a 99.99% Al/6063 beam pipe, which is proposed for vacuum chambers of the SSC (Superconducting Super Collider), was measured in the microwave frequency region at extremely low temperatures, near 10 K. The surface resistivity was found to be larger than that expected from the static resistivity, by a factor of 7, due to anomalous skin effects. Great attention should be paid in considering the beam impedance of the chamber at high frequencies.

  17. Study of the pulse power supply unit for the four-horn system of the CERN to Fréjus neutrino super beam

    CERN Document Server

    Baussan, E; Dracos, M; Gaudiot, G; Osswald, F; Poussot, P; Vassilopoulos, N; Wurtz, J; Zeter, V

    2013-01-01

    The power supply studies for the four-horn system for the CERN to Fréjus neutrino Super Beam oscillation experiment are discussed here. The power supply is being studied to meet the physics potential and the mega-watt (MW) power requirements of the proton driver of the Super Beam. A one-half sinusoid current waveform with a 350 kA maximum current and pulse length of 100 \\mu s at 50 Hz frequency is generated and distributed to four-horns. In order to provide the necessary current needed to focus the charged mesons producing the neutrino beam, a bench of capacitors is charged at 50 Hz frequency to a +12 kV reference voltage and then discharged through a large switch to each horn via a set of strip-lines at the same rate. A current recovery stage allows to invert rapidly the negative voltage of the capacitor after the discharging stage in order to recuperate large part of the injected energy and thus to limit the power consuption. The energy recovery efficiency of that system is very high at 97%. For feasibilit...

  18. Theoretical study of the effect of the size of a high-energy proton beam of the Large Hadron Collider on the formation and propagation of shock waves in copper irradiated by 450-GeV proton beams

    CERN Document Server

    Ryazanov, A I; Vasilyev, Ya S; Ferrari, A

    2014-01-01

    The interaction of 450GeV protons with copper, which is the material of the collimators of the Large Hadron Collider, has been theoretically studied. A theoretical model for the formation and propagation of shock waves has been proposed on the basis of the anal ysis of the energy released by a proton beam in the electronic subsystem of the material owing to the deceleration of secondary particles appearing in nuclear reactions induced by this beam on the electronic subsy stem of the material. The subsequent transfer of the energy from the excited electronic subsystem to the crystal lattice through the electron–phonon interaction has been described within the thermal spike model [I.M. Lifshitz, M.I. Kaganov, and L.V. Tanatarov, Sov. Phys. JETP 4 , 173 (1957); I.M. Lifshitz, M.I. Kaganov, and L.V. Tanatarov, At. Energ. 6 , 391 (1959); K. Yasui, Nucl. Instrum. Methods Phys. Res., Sect. B 90 , 409 (1994)]. The model of the formation of shock waves involves energy exchange processes between excited electronic an...

  19. Final focus designs for crab waist colliders

    CERN Document Server

    AUTHOR|(CDS)2084369; Levichev, Evgeny; Piminov, Pavel

    2016-01-01

    The crab waist collision scheme promises significant luminosity gain. The successful upgrade of the DA$\\Phi$NE collider proved the principle of crab waist collision and increased luminosity 3 times. Therefore, several new projects try to implement the scheme. The paper reviews interaction region designs with the crab waist collision scheme for already existent collider DA$\\Phi$NE and SuperKEKB, presently undergoing commissioning, for the projects of SuperB in Italy, CTau in Novosibirsk and FCC-ee at CERN.

  20. Interaction of Super Proton Synchrotron beam with solid copper target: Simulations of future experiments at HiRadMat facility at CERN

    CERN Document Server

    Tahir, N A; Brugger, M; Assmann, R; Shutov, A; Lomonosov, I V; Fortov, V E; Piriz, A R; Deutsch, C; Hoffmann, D H H

    2009-01-01

    In this paper we present numerical simulations of interaction of 450 GeV/c proton beam that is generated by Super Proton Synchrotron (SPS) at CERN, with a solid copper target. These simulations have been carried out using a two-dimensional hydrodynamic computer code, BIG2. This study has been done to assess the damage caused by these highly relativistic protons to equipment including collimators, absorbers and others in case of an uncontrolled accidental release of the beam. In fact a dedicated experimental facility named HiRadMat is under construction at CERN that will allow one to study these problems experimentally. The simulations presented in this paper will be very useful in designing these experiments and later to interpret the experimental results.

  1. CMS Hadron Endcap Calorimeter Upgrade Studies for Super-LHC

    CERN Document Server

    Bilki, Burak

    2010-01-01

    When the Large Hadron Collider approaches Super-LHC conditions above a luminosity of $10^{34} cm^{-2} s^{-1}$, the scintillator tiles of the CMS Hadron Endcap calorimeters will lose their efficiencies. As a radiation hard solution, the scintillator tiles are planned to be replaced by quartz plates. In order to improve the efficiency of the photodetection, various methods were investigated including radiation hard wavelength shifters, p-terphenyl or 4\\% gallium doped zinc oxide. We constructed a 20 layer calorimeter prototype with pTp coated plates of size 20 cm x 20 cm, and tested the hadronic and the electromagnetic capabilities at the CERN H2 beam-line. The beam tests revealed a substantial light collection increase with pTp or ZnO:Ga deposited quartz plates. Here we report on the current R\\&D for a viable endcap calorimeter solution for CMS with beam tests and radiation damage studies.

  2. CMS Hadron Endcap Calorimeter Upgrade Studies for Super-LHC

    Science.gov (United States)

    Bilki, Burak; CMS HCAL Collaboration

    2011-04-01

    When the Large Hadron Collider approaches Super-LHC conditions above a luminosity of 1034cm-2s-1, the scintillator tiles of the CMS Hadron Endcap calorimeters will lose their efficiencies. As a radiation hard solution, the scintillator tiles are planned to be replaced by quartz plates. In order to improve the efficiency of the photodetection, various methods were investigated including radiation hard wavelength shifters, p-terphenyl or 4% gallium doped zinc oxide. We constructed a 20 layer calorimeter prototype with pTp coated plates of size 20 cm × 20 cm, and tested the hadronic and the electromagnetic capabilities at the CERN H2 beam-line. The beam tests revealed a substantial light collection increase with pTp or ZnO:Ga deposited quartz plates. Here we report on the current R&D for a viable endcap calorimeter solution for CMS with beam tests and radiation damage studies.

  3. SUPER-B LATTICE STUDIES

    Energy Technology Data Exchange (ETDEWEB)

    Biagini, M.E.; Raimondi, P.; /Frascati; Piminov, P.; Sinyatkin, S.; /Novosibirsk, IYF; Nosochkov, Y.; Wittmer, W.; /SLAC

    2010-08-25

    The SuperB asymmetric e{sup +}e{sup -} collider is designed for 10{sup 36} cm{sup -2} s{sup -1} luminosity and beam energies of 6.7 and 4.18 GeV for e{sup +} and e{sup -} respectively. The High and Low Energy Rings (HER and LER) have one Interaction Point (IP) with 66 mrad crossing angle. The 1258 m rings fit to the INFN-LNF site at Frascati. The ring emittance is minimized for the high luminosity. The Final Focus (FF) chromaticity correction is optimized for maximum transverse acceptance and energy bandwidth. Included Crab Waist sextupoles suppress betatron resonances induced in the collisions with a large Piwinski angle. The LER Spin Rotator sections provide longitudinally polarized electron beam at the IP. The lattice is flexible for tuning the machine parameters and compatible with reusing the PEP-II magnets, RF cavities and other components. Details of the lattice design are presented.

  4. Feedback systems for linear colliders

    CERN Document Server

    Hendrickson, L; Himel, Thomas M; Minty, Michiko G; Phinney, N; Raimondi, Pantaleo; Raubenheimer, T O; Shoaee, H; Tenenbaum, P G

    1999-01-01

    Feedback systems are essential for stable operation of a linear collider, providing a cost-effective method for relaxing tight tolerances. In the Stanford Linear Collider (SLC), feedback controls beam parameters such as trajectory, energy, and intensity throughout the accelerator. A novel dithering optimization system which adjusts final focus parameters to maximize luminosity contributed to achieving record performance in the 1997-98 run. Performance limitations of the steering feedback have been investigated, and improvements have been made. For the Next Linear Collider (NLC), extensive feedback systems are planned as an intregal part of the design. Feedback requiremetns for JLC (the Japanese Linear Collider) are essentially identical to NLC; some of the TESLA requirements are similar but there are significant differences. For NLC, algorithms which incorporate improvements upon the SLC implementation are being prototyped. Specialized systems for the damping rings, rf and interaction point will operate at hi...

  5. SuperB: A High-Luminosity Asymmetric e+e- Super Flavor Factory

    Energy Technology Data Exchange (ETDEWEB)

    Bona, M.; /et al.

    2007-05-18

    We discuss herein the exciting physics program that can be accomplished with a very large sample of heavy quark and heavy lepton decays produced in the very clean environment of an e{sup +}e{sup -} collider; a program complementary to that of an experiment such as LHCb at a hadronic machine. It then presents the conceptual design of a new type of e{sup +}e{sup -} collider that produces a nearly two-order-of-magnitude increase in luminosity over the current generation of asymmetric B Factories. The key idea is the use of low emittance beams produced in an accelerator lattice derived from the ILC Damping Ring Design, together with a new collision region, again with roots in the ILC final focus design, but with important new concepts developed in this design effort. Remarkably, SuperB produces this very large improvement in luminosity with circulating currents and wallplug power similar to those of the current B Factories. There is clear synergy with ILC R&D; design efforts have already influenced one another, and many aspects of the ILC Damping Rings and Final Focus would be operationally tested at SuperB. Finally, the design of an appropriate detector, based on an upgrade of BABAR as an example, is discussed in some detail. A preliminary cost estimate is presented, as is an example construction timeline.

  6. Superconducting Super Collider Laboratory : tunnel boring

    CERN Multimedia

    SSC Media Production

    1999-01-01

    This film will take you down into the tunnel, show you the technology involved in boring the tunnel, and show what the SSC fmeans to the U.S. in terms of scientific discovery, innovative collaborations with industry and stimulating the job base nation-wide.

  7. Luminosity Limitations in Linear Colliders Based on Plasma Acceleration

    CERN Document Server

    Lebedev, Valeri; Nagaitsev, Sergei

    2016-01-01

    Particle acceleration in plasma creates a possibility of exceptionally high accelerating gradients and appears as a very attractive option for future linear electron-positron and/or photon-photon colliders. These high accelerating gradients were already demonstrated in a number of experiments. However, a linear collider requires exceptionally high beam brightness which still needs to be demonstrated. In this article we discuss major phenomena which limit the beam brightness of accelerated beam and, consequently, the collider luminosity.

  8. Polarized proton collider at RHIC

    Science.gov (United States)

    Alekseev, I.; Allgower, C.; Bai, M.; Batygin, Y.; Bozano, L.; Brown, K.; Bunce, G.; Cameron, P.; Courant, E.; Erin, S.; Escallier, J.; Fischer, W.; Gupta, R.; Hatanaka, K.; Huang, H.; Imai, K.; Ishihara, M.; Jain, A.; Lehrach, A.; Kanavets, V.; Katayama, T.; Kawaguchi, T.; Kelly, E.; Kurita, K.; Lee, S. Y.; Luccio, A.; MacKay, W. W.; Mahler, G.; Makdisi, Y.; Mariam, F.; McGahern, W.; Morgan, G.; Muratore, J.; Okamura, M.; Peggs, S.; Pilat, F.; Ptitsin, V.; Ratner, L.; Roser, T.; Saito, N.; Satoh, H.; Shatunov, Y.; Spinka, H.; Syphers, M.; Tepikian, S.; Tominaka, T.; Tsoupas, N.; Underwood, D.; Vasiliev, A.; Wanderer, P.; Willen, E.; Wu, H.; Yokosawa, A.; Zelenski, A. N.

    2003-03-01

    In addition to heavy ion collisions (RHIC Design Manual, Brookhaven National Laboratory), RHIC will also collide intense beams of polarized protons (I. Alekseev, et al., Design Manual Polarized Proton Collider at RHIC, Brookhaven National Laboratory, 1998 [2]), reaching transverse energies where the protons scatter as beams of polarized quarks and gluons. The study of high energy polarized protons beams has been a long term part of the program at BNL with the development of polarized beams in the Booster and AGS rings for fixed target experiments. We have extended this capability to the RHIC machine. In this paper we describe the design and methods for achieving collisions of both longitudinal and transverse polarized protons in RHIC at energies up to s=500 GeV.

  9. Beam Scraping in the SPS for LHC Injection Efficiency and Robustness Studies

    CERN Document Server

    Letnes, Paul/LPA; Myrheim, Jan

    2008-01-01

    The Large Hadron Collider (LHC) at CERN will be the world's most powerful accelerator when it is commissioned in fall 2008. Operation of the LHC will require injection of very high intensity beams. Fast transverse beam scrapers have been installed in the Super Proton Synchrotron (SPS) injector to detect and, if necessary, remove transverse beam tails. This will help to both diagnose and prevent beam quenches in the LHC. Scraping of a high intensity beam at top energy can potentially damage the scraper jaws. This has been studied with Monte Carlo simulations to find energy deposition and limits for hardware damage. Loss maps from scraping have been generated both with machine studies and tracking simulations. Time dependent Beam Loss Monitor (BLM) measurements have shown several interesting details about the beam. An analytical model of time dependent losses is compared with beam measurements and demonstrates that beam scraping can be used to estimate the beam size. Energy deposition simulations also give the ...

  10. The Super-B project accelerator status

    CERN Document Server

    Biagini, M.E.; Boni, R; Boscolo, M; Demma, T; Drago, A; Esposito, M; Guiducci, S; Marcellini, F; Mazzitelli, G; Preger, M; Raimondi, P; Sanelli, C; Serio, M; Stecchi, A; Stella, A; Tomassini, S; Zobov, M; Bertsche, K; Brachmann, A; Cai, Y; Chao, A; DeLira, A; Donald, M; Fisher, A; Kharakh, D; Krasnykh, A; Li, N; MacFarlane, D; Nosochkov, Y; Novokhatski, A; Pivi, M.; Seeman, J; Sullivan, M; Wienands, U; Weisend, J; Wittmer, W; Koop, I; Levichev, E; Nikitin, S; Piminov, P; Sinyatkin, S; Shatilov, D; Bolzon, B; Brunetti, L; Jeremie, A; Baylac, M; DeConto, J M; Gomez, Y; Meot, F; Monseu, N; Tourres, D; Bonis, J.; Chehab, R; Le Meur, G; Mercier, B; Poirier, F; Prevost, C; Rimbault, C; Touze, F; Variola, A; Chance, A; Napoly, O; Bosi, F; Liuzzo, S; Paoloni, E; Bettoni, S

    2010-01-01

    The SuperB project is an international effort aiming at building in Italy a very high luminosity e+e- (1036 cm-2 sec-1) asymmetric collider at the Y(4S) energy in the cm. The accelerator design has been extensively studied and changed during the past year. The present design, based on the new collision scheme, with large Piwinski angle and the use of “crab waist” sextupoles already successfully tested at the DANE -Factory at LNF Frascati, provides larger flexibility, better dynamic aperture and spin manipulation sections in the Low Energy Ring (LER) for longitudinal polarization of the electron beam at the Interaction Point (IP). The Interaction Region (IR) has been further optimized in terms of apertures and reduced backgrounds in the detector. The injector complex design has been also updated. A summary of the project status will be presented in this paper

  11. Collective accelerator for electron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, R.J.

    1985-05-13

    A recent concept for collective acceleration and focusing of a high energy electron bunch is discussed, in the context of its possible applicability to large linear colliders in the TeV range. The scheme can be considered to be a member of the general class of two-beam accelerators, where a high current, low voltage beam produces the acceleration fields for a trailing high energy bunch.

  12. Il Collisore LHC (Large Hadron Collider)

    CERN Multimedia

    Brianti, Giorgio

    2004-01-01

    In 2007, in a new Collider in the tunnel of 27km, collisions will be made between very powerful beams of protons and ions. The energies will be very high to try to catch the most tiny particle (1 page)

  13. ERL Based Electron-Ion Collider eRHIC

    CERN Document Server

    Litvinenko, Vladimir N; Bai, Mei; Beebe-Wang, Joanne; Ben-Zvi, Ilan; Blaskiewicz, Michael; Brennan, Joseph M; Calaga, Rama; Chang, Xiangyun; Deshpande, Abhay A; Farkhondeh, Manouchehr; Fedotov, Alexei V; Fischer, Wolfram; Kayran, Dmitry; Kewisch, Jorg; MacKay, William W; Montag, Christoph; Parker, Brett; Peggs, Steve; Ptitsyn, Vadim; Roser, Thomas; Ruggiero, Alessandro; Satogata, Todd; Surrow, Bernd; Tepikian, Steven; Trbojevic, Dejan; Yakimenko, Vitaly; Zhang, S Y

    2005-01-01

    We present the designs of a future polarized electron-hadron collider, eRHIC* based on a high current super-conducting energy-recovery linac (ERL) with energy of electrons up to 20 GeV. We plan to operate eRHIC in both dedicated (electron-hadrons only) and parallel(with the main hadron-hadron collisions) modes. The eRHIC has very large tunability range of c.m. energies while maintaining very high luminosity up to 1034 cm-2 s-1 per nucleon. Two of the most attractive features of this scheme are full spin transparency of the ERL at all operational energies and the capability to support up to four interaction points. We present two main layouts of the eRHIC, the expected beam and luminosity parameter, and discuss the potential limitation of its performance.

  14. Near-Threshold Production of W±, Z0, and H0 at a Fixed-Target Experiment at the Future Ultrahigh-Energy Proton Colliders

    Directory of Open Access Journals (Sweden)

    J. P. Lansberg

    2015-01-01

    Full Text Available We outline the opportunities to study the production of the Standard Model bosons, W±, Z0, and H0, at “low” energies at fixed-target experiments based on possible future ultrahigh-energy proton colliders, that is, the High-Energy LHC, the Super proton-proton Collider, and the Future Circular Collider hadron-hadron. These can be indeed made in conjunction with the proposed future colliders designed to reach up to s=100 TeV by using bent crystals to extract part of the halo of the beam which would then impinge on a fixed target. Without disturbing the collider operation, this technique allows for the extraction of a substantial amount of particles in addition to serving for a beam-cleaning purpose. With this method, high-luminosity fixed-target studies at centre-of-mass energies above the W±, Z0, and H0 masses, s≃170–300 GeV, are possible. We also discuss the possibility offered by an internal gas target, which can also be used as luminosity monitor by studying the beam transverse shape.

  15. First commissioning of the SuperKEKB vacuum system

    Science.gov (United States)

    Suetsugu, Y.; Shibata, K.; Ishibashi, T.; Kanazawa, K.; Shirai, M.; Terui, S.; Hisamatsu, H.

    2016-12-01

    The first (Phase-1) commissioning of SuperKEKB, an asymmetric-energy electron-positron collider at KEK, began in February 2016, after more than five years of upgradation work on KEKB and successfully ended in June 2016. A major task of the Phase-1 commissioning was the vacuum scrubbing of new beam pipes in anticipation of a sufficiently long beam lifetime and low background noise in the next commissioning, prior to which a new particle detector will be installed. The pressure rise per unit beam current decreased steadily with increasing beam dose, as expected. Another important task was to check the stabilities of various new vacuum components at high beam currents of approximately 1 A. The temperature increases of the bellows chambers, gate valves, connection flanges, and so on were less than several degrees at 1 A, and no serious problems were found. The effectiveness of the antechambers and TiN coating in suppressing the electron-cloud effect (ECE) in the positron ring was also confirmed. However, the ECE in the Al-alloy bellows chambers was observed where TiN had not been coated. The use of permanent magnets to create an axial magnetic field of approximately 100 G successfully suppressed this effect. Pressure bursts accompanying beam losses were also frequently observed in the positron ring. This phenomenon is still under investigation, but it is likely caused by collisions between the circulating beams and dust particles, especially in the dipole magnet beam pipes.

  16. Muon muon collider: Feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-18

    A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10{sup 35} cm{sup {minus}2} s{sup {minus}1}. The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice--the authors believe--to allow them to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potential and to evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring which has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design.

  17. Sixth international workshop on linear colliders. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Urakawa, Junji [ed.

    1995-08-01

    The sixth international workshop on linear colliders (LC95) was held by KEK at Tsukuba Center for Institute. In the workshop 8 parallel working group were organized: WG1 (beam sources and injection linacs), WG2 (damping rings and bunch compressors), WG3 (a: RF sources and structures, b: superconducting cavities, c: two beam accelerators), WG4 (beam dynamics in main linacs), WG5 (final focus and integration regions), WG6 (beam instrumentation), WG7 (overall parameters and construction techniques), WG8 (gamma-gamma collider and miscellaneous). This issue compiles materials which were used in the workshop. (J.P.N.).

  18. A Very Intense Neutrino Super Beam Experiment for Leptonic CP Violation Discovery based on the European Spallation Source Linac: A Snowmass 2013 White Paper

    CERN Document Server

    Baussan, E; Bogomilov, M.; Bouquerel, E.; Cederkäll, J.; Christiansen, P.; Coloma, P.; Cupial, P.; Danared, H.; Densham, C.; Dracos, M.; Ekelöf, T.; Eshraqi, M.; Fernandez Martinez, E.; Gaudiot, G.; Hall-Wilton, R.; Koutchouk, J.P.; Lindroos, M.; Matev, R.; McGinnis, D.; Mezzetto, M.; Miyamoto, R.; Mosca, L.; Ohlsson, T.; Öhman, H.; Osswald, F.; Peggs, S.; Poussot, P.; Ruber, R.; Tang, J.Y.; Tsenov, R.; Vankova-Kirilova, G.; Vassilopoulos, N.; Wildner, E.; Wurtz, J.

    2014-01-01

    Very intense neutrino beams and large neutrino detectors will be needed in order to enable the discovery of CP violation in the leptonic sector. We propose to use the proton linac of the European Spallation Source currently under construction in Lund, Sweden to deliver, in parallel with the spallation neutron production, a very intense, cost effective and high performance neutrino beam. The baseline program for the European Spallation Source linac is that it will be fully operational at 5 MW average power by 2022, producing 2 GeV 2.86 ms long proton pulses at a rate of 14 Hz. Our proposal is to upgrade the linac to 10 MW average power and 28 Hz, producing 14 pulses/s for neutron production and 14 pulses/s for neutrino production. Furthermore, because of the high current required in the pulsed neutrino horn, the length of the pulses used for neutrino production needs to be compressed to a few $\\mu$s with the aid of an accumulator ring. A long baseline experiment using this Super Beam and a megaton underground ...

  19. Studies of the Core Conditions of the Earth and Super-Earths Using Intense Ion Beams at FAIR

    Science.gov (United States)

    Tahir, N. A.; Lomonosov, I. V.; Borm, B.; Piriz, A. R.; Shutov, A.; Neumayer, P.; Bagnoud, V.; Piriz, S. A.

    2017-09-01

    Using detailed numerical simulations, we present the design of an experiment that will generate samples of iron under extreme conditions of density and pressure believed to exist in the interior of the Earth and interior of extrasolar Earth-like planets. In the proposed experiment design, an intense uranium beam is used to implode a multilayered cylindrical target that consists of a thin Fe cylinder enclosed in a thick massive W shell. Such intense uranium beams will be available at the heavy-ion synchrotron, SIS100, at the Facility for Antiprotons and Ion Research (FAIR), at Darmstadt, which is under construction and will become operational in the next few years. It is expected that the beam intensity will increase gradually over a couple of years to its maximum design value. Therefore, in our studies, we have considered a wide range of beam parameters, from the initial beam intensity (“Day One”) to the maximum specified value. It is also worth noting that two different focal spot geometries have been used. In one case, a circular focal spot with a Gaussian transverse intensity distribution is considered, whereas in the other case, an annular focal spot is used. With these two beam geometries, one can access different parts of the Fe phase diagram. For example, heating the sample with a circular focal spot generates a hot liquid state, while an annular focal spot can produce a highly compressed liquid or a highly compressed solid phase depending on the beam intensity.

  20. Final Cooling for a Muon Collider

    Energy Technology Data Exchange (ETDEWEB)

    Acosta Castillo, John Gabriel [Univ. of Mississippi, Oxford, MS (United States)

    2017-05-01

    To explore the new energy frontier, a new generation of particle accelerators is needed. Muon colliders are a promising alternative, if muon cooling can be made to work. Muons are 200 times heavier than electrons, so they produce less synchrotron radiation, and they behave like point particles. However, they have a short lifetime of 2.2 $\\mathrm{\\mu s}$ and the beam is more difficult to cool than an electron beam. The Muon Accelerator Program (MAP) was created to develop concepts and technologies required by a muon collider. An important effort has been made in the program to design and optimize a muon beam cooling system. The goal is to achieve the small beam emittance required by a muon collider. This work explores a final ionization cooling system using magnetic quadrupole lattices with a low enough $\\beta^{\\star} $ region to cool the beam to the required limit with available low Z absorbers.

  1. Final focus systems for linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, R.A.

    1987-11-01

    The final focus system of a linear collider must perform two primary functions, it must focus the two opposing beams so that their transverse dimensions at the interaction point are small enough to yield acceptable luminosity, and it must steer the beams together to maintain collisions. In addition, the final focus system must transport the outgoing beams to a location where they can be recycled or safely dumped. Elementary optical considerations for linear collider final focus systems are discussed, followed by chromatic aberrations. The design of the final focus system of the SLAC Linear Collider (SLC) is described. Tuning and diagnostics and steering to collision are discussed. Most of the examples illustrating the concepts covered are drawn from the SLC, but the principles and conclusions are said to be generally applicable to other linear collider designs as well. 26 refs., 17 figs. (LEW)

  2. Initial Performance Studies of a General-Purpose Detector for Multi-TeV Physics at a 100 TeV pp Collider

    Energy Technology Data Exchange (ETDEWEB)

    Chekanov, S. V. [Argonne; Beydler, M. [Argonne; Kotwal, A. V. [Fermilab; Gray, L. [Fermilab; Sen, S. [Duke U.; Tran, N. V. [Fermilab; Yu, S. -S. [Taiwan, Natl. Central U.; Zuzelski, J. [Michigan State U.

    2016-12-21

    This paper describes simulations of detector response to multi-TeV physics at the Future Circular Collider (FCC-hh) or Super proton-proton Collider (SppC) which aim to collide proton beams with a centre-of-mass energy of 100 TeV. The unprecedented energy regime of these future experiments imposes new requirements on detector technologies which can be studied using the detailed GEANT4 simulations presented in this paper. The initial performance of a detector designed for physics studies at the FCC-hh or SppC experiments is described with an emphasis on measurements of single particles up to 33 TeV in transverse momentum. The reconstruction of hadronic jets has also been studied in the transverse momentum range from 50 GeV to 26 TeV. The granularity requirements for calorimetry are investigated using the two-particle spatial resolution achieved for hadron showers.

  3. Large Hadron Collider The Discovery Machine

    CERN Multimedia

    2008-01-01

    The mammoth machine, after a nine-year construction period, is scheduled (touch wood) to begin producing its beams of particles later this year. The commissioning process is planned to proceed from one beam to two beams to colliding beams; from lower energies to the terascale; from weaker test intensities to stronger ones suitable for producing data at useful rates but more difficult to control.

  4. Muon Muon Collider: Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo, J.C.; Palmer, R.B.; /Brookhaven; Tollestrup, A.V.; /Fermilab; Sessler, A.M.; /LBL, Berkeley; Skrinsky, A.N.; /Novosibirsk, IYF; Ankenbrandt, C.; Geer, S.; Griffin, J.; Johnstone, C.; Lebrun, P.; McInturff, A.; Mills, Frederick E.; Mokhov, N.; Moretti, A.; Neuffer, D.; Ng, K.Y.; Noble, R.; Novitski, I.; Popovic, M.; Qian, C.; Van Ginneken, A. /Fermilab /Brookhaven /Wisconsin U., Madison /Tel Aviv U. /Indiana U. /UCLA /LBL, Berkeley /SLAC /Argonne /Sobolev IM, Novosibirsk /UC, Davis /Munich, Tech. U. /Virginia U. /KEK, Tsukuba /DESY /Novosibirsk, IYF /Jefferson Lab /Mississippi U. /SUNY, Stony Brook /MIT /Columbia U. /Fairfield U. /UC, Berkeley

    2012-04-05

    A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10{sup 35} cm{sup -2}s{sup -1}. The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice - we believe - to allow us to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potential and to evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring wich has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design. Muons because of their large mass compared to an electron, do not produce significant synchrotron radiation. As a result there is negligible beamstrahlung and high energy collisions are not limited by this phenomena. In addition, muons can be accelerated in circular devices which will be considerably smaller than two full-energy linacs as required in an e{sup +} - e{sup -} collider. A hadron collider would require a CM energy 5 to 10 times higher than 4 TeV to have an equivalent energy reach. Since the accelerator size is limited by the strength of bending magnets, the hadron collider for the same physics reach would have to be much larger than the muon collider. In addition, muon collisions should be cleaner than hadron collisions. There are many detailed particle

  5. The accuracy of using the spectral width boundary measured in off-meridional SuperDARN HF radar beams as a proxy for the open-closed field line boundary

    Science.gov (United States)

    Chisham, G.; Freeman, M. P.; Sotirelis, T.; Greenwald, R. A.

    2005-10-01

    Determining reliable proxies for the ionospheric signature of the open-closed field line boundary (OCB) is crucial for making accurate measurements of magnetic reconnection. This study compares the latitudes of spectral width boundaries (SWBs) measured by different beams of the Goose Bay radar of the Super Dual Auroral Radar Network (SuperDARN), with the latitudes of OCBs determined using the low-altitude Defense Meteorological Satellite Program (DMSP) spacecraft, in order to determine whether the accuracy of the SWB as a proxy for the ionospheric projection of the OCB depends on the line-of-sight direction of the radar beam. The latitudes of SWBs and OCBs were identified using automated algorithms applied to 5 years (1997 2001) of data measured in the 1000 1400 magnetic local time (MLT) range. Six different Goose Bay radar beams were used, ranging from those aligned in the geomagnetic meridional direction to those aligned in an almost zonal direction. The results show that the SWB is a good proxy for the OCB in near-meridionally-aligned beams but becomes progressively more unreliable for beams greater than 4 beams away from the meridional direction. We propose that SWBs are identified at latitudes lower than the OCB in the off-meridional beams due to the presence of high spectral width values that result from changes in the orientation of the beams with respect to the gradient in the large-scale ionospheric convection pattern. Keywords. Ionosphere (Instruments and techniques; Plasma convection) Magnetospheric physics (Magnetopause, cusp and boundary layers)

  6. SPS Beam Steering for LHC Extraction

    Energy Technology Data Exchange (ETDEWEB)

    Gianfelice-Wendt, Eliana [Fermilab; Bartosik, Hannes [CERN; Cornelis, Karel [CERN; Norderhaug Drøsdal, Lene [CERN; Goddard, Brennan [CERN; Kain, Verena [CERN; Meddahi, Malika [CERN; Papaphilippou, Yannis [CERN; Wenninger, Jorg [CERN

    2014-07-01

    The CERN Super Proton Synchrotron accelerates beams for the Large Hadron Collider to 450 GeV. In addition it produces beams for fixed target facilities which adds complexity to the SPS operation. During the run 2012-2013 drifts of the extracted beam trajectories have been observed and lengthy optimizations in the transfer lines were performed to reduce particle losses in the LHC. The observed trajectory drifts are consistent with the measured SPS orbit drifts at extraction. While extensive studies are going on to understand, and possibly suppress, the source of such SPS orbit drifts the feasibility of an automatic beam steering towards a “golden” orbit at the extraction septa, by means of the interlocked correctors, is also being investigated. The challenges and constraints related to the implementation of such a correction in the SPS are described. Simulation results are presented and a possible operational steering strategy is proposed.

  7. SPS Beam Steering for LHC Extraction

    CERN Document Server

    Gianfelice Wendt, E; Cornelis, K; Norderhaug Drosdal, L; Goddard, B; Kain, V; Meddahi, M; Papaphilippou, Y; Wenninger, J

    2014-01-01

    Beside producing beams for fixed target operation, the CERN Super Proton Synchrotron (SPS) accelerates beams for injection into the Large Hadron Collider (LHC). During the 2012-2013 run drifts of the extracted beam horizontal trajectories have been observed and lengthy optimizations in the transfer lines were performed to reduce particle losses. The observed trajectory drifts are consistent with the measured SPS orbit drifts at extraction. The feasibility of an automatic beam steering towards a “golden” orbit at the extraction septa, has been therefore investigated. The challenges and constraints related to the implementation of such a correction in the SPS are described. Simulation results are presented and a possible operational steering strategy is proposed. As the observed drift is mainly horizontal, the horizontal plane only will be considered.

  8. Performance of a superconducting magnet system operated in the Super Omega Muon beam line at J-PARC

    Energy Technology Data Exchange (ETDEWEB)

    Makida, Yasuhiro; Ikedo, Yutaka; Ogitsu, Toru; Shimomura, Koichiro; Miyake, Yasuhiro; Yoshida, Makoto; Adachi, Taihei; Kadono, Ryosuke; Kawamura, Naritoshi; Strasser, Patric; Koda, Akihiro; Fujimori, Hiroshi; Nishiyama, Kusuo; Ohhata, Hirokatsu; Okamura, Takahiro; Okada, Ryutaro [J-PARC, KEK, Shirakata 203-1, Tokai, Naka, Ibaraki (Japan); Orikasa, Tomofumi [Keihin Product Operations, Toshiba, Suehiro 2-4, Tsurumi, Yokohama (Japan)

    2014-01-29

    A superconducting magnet system, which is composed of an 8 m long solenoid for transportation and 12 short solenoids for focusing, has been developed for Muon Science Establishment facility of J-PARC. The transport solenoid is composed of a 6 m straight section connected to a 45 degree curved section at each end. Muons of various momenta and of both electric charges are transported through the solenoid inner bore with an effective diameter of 0.3 m, where 2 T magnetic field is induced. There are 12 focusing solenoids with an effective bore diameter of 0.6 m and a length of 0.35 m arranged on a straight line at suitable intervals. The maximum central field of each focusing solenoid is 0.66 T. All solenoid coils are cooled by GM cryocoolers through their own conductions. The magnet system has been installed into the beam line in the summer of 2012, and its performance has been checked. Beam commissioning has been carried out since October 2012. During beam operation, temperature rise over 6 K in the transport solenoid due to a nuclear heating from the muon production target is observed at beam intensity of about 300 kW.

  9. "Super Roman Pots"

    CERN Multimedia

    CERN PhotoLab

    1975-01-01

    Remotely controlled re-entrant vacuum vessels, with very thin (0.17 mm) central windows, that will be installed in each downstream arm of intersection I-8. Detectors for a coming physics experiment, placed inside these "Super Roman Pots", can be moved very close to the circulating ISR beams.

  10. A Super Roman Pot

    CERN Multimedia

    1975-01-01

    Remotely controlled re-entrant vacuum vessels, with very thin (0.17 mm) central windows, that were installed in each downstream arm of the ISR intersection I-8. Detectors placed inside these Super Roman Pots could be moved very close to the circulating ISR beams. (See Annual Report 1974 p. 110.)

  11. Crab Cavities for Linear Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Burt, G.; Ambattu, P.; Carter, R.; Dexter, A.; Tahir, I.; /Cockcroft Inst. Accel. Sci. Tech. /Lancaster U.; Beard, C.; Dykes, M.; Goudket, P.; Kalinin, A.; Ma, L.; McIntosh, P.; /Daresbury; Shulte, D.; /CERN; Jones, Roger M.; /Cockcroft Inst. Accel. Sci. Tech. /Manchester U.; Bellantoni, L.; Chase, B.; Church, M.; Khabouline, T.; Latina, A.; /Fermilab; Adolphsen, C.; Li, Z.; Seryi, Andrei; /SLAC

    2011-11-08

    Crab cavities have been proposed for a wide number of accelerators and interest in crab cavities has recently increased after the successful operation of a pair of crab cavities in KEK-B. In particular crab cavities are required for both the ILC and CLIC linear colliders for bunch alignment. Consideration of bunch structure and size constraints favour a 3.9 GHz superconducting, multi-cell cavity as the solution for ILC, whilst bunch structure and beam-loading considerations suggest an X-band copper travelling wave structure for CLIC. These two cavity solutions are very different in design but share complex design issues. Phase stabilisation, beam loading, wakefields and mode damping are fundamental issues for these crab cavities. Requirements and potential design solutions will be discussed for both colliders.

  12. Crab cavities for linear colliders

    CERN Document Server

    Burt, G; Carter, R; Dexter, A; Tahir, I; Beard, C; Dykes, M; Goudket, P; Kalinin, A; Ma, L; McIntosh, P; Shulte, D; Jones, Roger M; Bellantoni, L; Chase, B; Church, M; Khabouline, T; Latina, A; Adolphsen, C; Li, Z; Seryi, Andrei; Xiao, L

    2008-01-01

    Crab cavities have been proposed for a wide number of accelerators and interest in crab cavities has recently increased after the successful operation of a pair of crab cavities in KEK-B. In particular crab cavities are required for both the ILC and CLIC linear colliders for bunch alignment. Consideration of bunch structure and size constraints favour a 3.9 GHz superconducting, multi-cell cavity as the solution for ILC, whilst bunch structure and beam-loading considerations suggest an X-band copper travelling wave structure for CLIC. These two cavity solutions are very different in design but share complex design issues. Phase stabilisation, beam loading, wakefields and mode damping are fundamental issues for these crab cavities. Requirements and potential design solutions will be discussed for both colliders.

  13. Characterization of a nondestructive beam profile monitor using luminescent emission

    Directory of Open Access Journals (Sweden)

    A. Variola

    2007-12-01

    Full Text Available The LHC (large hadron collider [LHC study group: LHC. The large hadron collider conceptual design; CERN/AC/95-05] is the future p-p collider under construction at CERN, Geneva. Over a circumference of 26.7 km a set of cryogenic dipoles and rf cavities will store and accelerate proton and ion beams up to energies of the order of 7 TeV. Injection in LHC will be performed by the CERN complex of accelerators, starting from the source and passing through the linac, the four booster rings, the proton synchrotron (PS, and super proton synchrotron (SPS accelerators. One of the main constraints on LHC performance is emittance preservation along the whole chain of CERN accelerators. The accepted relative normalized emittance blowup after filamentation is ±7%. To monitor the beam and the emittance blowup process, a study of different prototypes of nonintercepting beam profile monitors has been performed. In this context a monitor using the luminescent emission of gases excited by ultrarelativistic protons (450 GeV was developed and tested in the SPS ring. The results of beam size measurements and their evolution as a function of the machine parameters are presented. The image quality and resolution attainable in the LHC case have been assessed. A first full characterization of the luminescence cross section, spectrum, decay time, and afterglow effect for an ultrarelativistic proton beam is provided. Some significant results are also provided for lead ion beams.

  14. Production, formation, and transport of high-brightness atomic hydrogen beam studies for the relativistic heavy ion collider polarized source upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Kolmogorov, A., E-mail: anton.kolmogorov@gmail.com; Stupishin, N. [Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation); Atoian, G.; Ritter, J.; Zelenski, A. [Brookhaven National Laboratory, Upton, New York 11973 (United States); Davydenko, V.; Ivanov, A. [Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation); Novosibirsk State University, Novosibirsk (Russian Federation)

    2014-02-15

    The RHIC polarized H{sup −} ion source had been successfully upgraded to higher intensity and polarization by using a very high brightness fast atomic beam source developed at BINP, Novosibirsk. In this source the proton beam is extracted by a four-grid multi-aperture ion optical system and neutralized in the H{sub 2} gas cell downstream from the grids. The proton beam is extracted from plasma emitter with a low transverse ion temperature of ∼0.2 eV which is formed by plasma jet expansion from the arc plasma generator. The multi-hole grids are spherically shaped to produce “geometrical” beam focusing. Proton beam formation and transport of atomic beam were experimentally studied at test bench.

  15. Tevatron instrumentation: boosting collider performance

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, Vladimir; Jansson, Andreas; Moore, Ronald; /Fermilab

    2006-05-01

    The Tevatron in Collider Run II (2001-present) is operating with six times more bunches, many times higher beam intensities and luminosities than in Run I (1992-1995). Beam diagnostics were crucial for the machine start-up and the never-ending luminosity upgrade campaign. We present the overall picture of the Tevatron diagnostics development for Run II, outline machine needs for new instrumentation, present several notable examples that led to Tevatron performance improvements, and discuss the lessons for the next big machines--LHC and ILC.

  16. Determination of Beam Intensity and Position in a Particle Accelerator

    CERN Document Server

    Kasprowicz, Grzegorz; Raich, Uli

    2011-10-04

    A subject of the thesis is conception, design, implementation, tests and deployment of new position measurement system of particle bunch in the CERN PS circular accelerator. The system is based on novel algorithms of particle position determination. The Proton Synchrotron accelerator (PS), installed at CERN†, although commissioned in 1959, still plays a central role in the production of beams for the Antiproton Decelerator, Super Proton Synchrotron, various experimental areas and for the Large Hadron Collider (LHC)‡. The PS produces beams of different types of particles, mainly protons, but also various species of ions. Almost all these particle beams pass through the PS. The quality of the beams delivered to the LHC has a direct impact on the effective luminosity, and therefore the performance of the instrumentation of the PS is of great importance. The old trajectory and orbit measurement system of the PS is dated back to 1988 and no longer fulfilled present day requirements. It used 40 beam posi...

  17. Determination of beam intensity and position in a particle accelerator

    CERN Document Server

    Kasprowicz, G

    2011-01-01

    A subject of the thesis is conception, design, implementation, tests and deployment of new position measurement system of particle bunch in the CERN PS circular accelerator. The system is based on novel algorithms of particle position determination. The Proton Synchrotron accelerator (PS), installed at CERN, although commissioned in 1959, still plays a central role in the production of beams for the Antiproton Decelerator, Super Proton Synchrotron, various experimental areas and for the Large Hadron Collider (LHC). The PS produces beams of different types of particles, mainly protons, but also various species of ions. Almost all these particle beams pass through the PS. The quality of the beams delivered to the LHC has a direct impact on the effective luminosity, and therefore the performance of the instrumentation of the PS is of great importance. The old trajectory and orbit measurement system of the PS is dated back to 1988 and no longer fulfilled present day requirements. It used 40 beam position monitors...

  18. Future colliders at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Tsesmelis, E. [CERN, Geneva (Switzerland)

    2010-07-15

    Following an outline of the Large Hadron Collider, this paper will analyze CERN's scientific plans for high-energy colliders for the years to come. The immediate plans include the upgrades to the Large Hadron Collider and its injectors. This may be followed by a linear electron-positron collider, the Compact Linear Collider. This paper describes the design of these future colliders at CERN, all of which have a unique value to add to experimental particle physics. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  19. Far Future Colliders and Required R&D Program

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, V.; /Fermilab

    2012-06-01

    Particle colliders for high energy physics have been in the forefront of scientific discoveries for more than half a century. The accelerator technology of the collider has progressed immensely, while the beam energy, luminosity, facility size and the cost have grown by several orders of magnitude. The method of colliding beams has not fully exhausted its potential but its pace of progress has greatly slowed down. In this paper we very briefly review the R&D toward near future colliders and make an attempt to look beyond the current horizon and outline the changes in the paradigm required for the next breakthroughs.

  20. Muon Muon Collider: Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo, J.C.; Palmer, R.B.; /Brookhaven; Tollestrup, A.V.; /Fermilab; Sessler, A.M.; /LBL, Berkeley; Skrinsky, A.N.; /Novosibirsk, IYF; Ankenbrandt, C.; Geer, S.; Griffin, J.; Johnstone, C.; Lebrun, P.; McInturff, A.; Mills, Frederick E.; Mokhov, N.; Moretti, A.; Neuffer, D.; Ng, K.Y.; Noble, R.; Novitski, I.; Popovic, M.; Qian, C.; Van Ginneken, A. /Fermilab /Brookhaven /Wisconsin U., Madison /Tel Aviv U. /Indiana U. /UCLA /LBL, Berkeley /SLAC /Argonne /Sobolev IM, Novosibirsk /UC, Davis /Munich, Tech. U. /Virginia U. /KEK, Tsukuba /DESY /Novosibirsk, IYF /Jefferson Lab /Mississippi U. /SUNY, Stony Brook /MIT /Columbia U. /Fairfield U. /UC, Berkeley

    2012-04-05

    A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10{sup 35} cm{sup -2}s{sup -1}. The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice - we believe - to allow us to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potential and to evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring wich has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design. Muons because of their large mass compared to an electron, do not produce significant synchrotron radiation. As a result there is negligible beamstrahlung and high energy collisions are not limited by this phenomena. In addition, muons can be accelerated in circular devices which will be considerably smaller than two full-energy linacs as required in an e{sup +} - e{sup -} collider. A hadron collider would require a CM energy 5 to 10 times higher than 4 TeV to have an equivalent energy reach. Since the accelerator size is limited by the strength of bending magnets, the hadron collider for the same physics reach would have to be much larger than the muon collider. In addition, muon collisions should be cleaner than hadron collisions. There are many detailed particle

  1. 1987 DOE review: First collider run operation

    Energy Technology Data Exchange (ETDEWEB)

    Childress, S.; Crawford, J.; Dugan, G.; Edwards, H.; Finley, D.A.; Fowler, W.B.; Harrison, M.; Holmes, S.; Makara, J.N.; Malamud, E.

    1987-05-01

    This review covers the operations of the first run of the 1.8 TeV superconducting super collider. The papers enclosed cover: PBAR source status, fixed target operation, Tevatron cryogenic reliability and capacity upgrade, Tevatron Energy upgrade progress and plans, status of the D0 low beta insertion, 1.8 K and 4.7 K refrigeration for low-..beta.. quadrupoles, progress and plans for the LINAC and booster, near term and long term and long term performance improvements.

  2. Crab Waist collision scheme: a novel approach for particle colliders

    CERN Document Server

    Zobov, Mikhail

    2016-01-01

    A new concept of nonlinear focusing of colliding bunches, called Crab Waist (CW)collision scheme, has been proposed at LNF INFN. It has been successfully tested at the Italian lepton collider DAFNE in operational conditions providing luminosity for two different experimental detectors, SIDDHARTA and KLOE-2. Considering a high efficiency of the scheme for increasing collision luminosity and its relative simplicity for implementation several new collider projects have been proposed and are under development at present. These are the SuperKEKB B-factory ready to start commissioning in 2016 in Japan, the SuperC-Tau factory proposed in Novosibirsk and entered in the short list of Russian mega-science projects, the new 100-km electron-positron Future Circular Collider (FCC-ee) under design study at CERN and some others. In this paper we describe the CW collision scheme, discuss its advantages and report principal results achieved at the electron-positron Phi-factory DAFNE.

  3. Status of the MEIC ion collider ring design

    Energy Technology Data Exchange (ETDEWEB)

    Morozov, Vasiliy [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Derbenev, Yaroslav [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Harwood, Leigh [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Hutton, Andrew [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Lin, Fanglei [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Pilat, Fulvia [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Zhang, Yuhong [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Cai, Yunhai [SLAC National Accelerator Lab., Menlo Park, CA (United States); Nosochkov, Y. M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Sullivan, Michael [SLAC National Accelerator Lab., Menlo Park, CA (United States); Wang, M.-H. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Wienands, Uli [SLAC National Accelerator Lab., Menlo Park, CA (United States); Gerity, James [Texas A & M Univ., College Station, TX (United States); Mann, Thomas [Texas A & M Univ., College Station, TX (United States); McIntyre, Peter [Texas A & M Univ., College Station, TX (United States); Pogue, Nathaniel [Texas A & M Univ., College Station, TX (United States); Sattarov, Akhdiyor [Texas A & M Univ., College Station, TX (United States)

    2015-09-01

    We present an update on the design of the ion collider ring of the Medium-energy Electron-Ion Collider (MEIC) proposed by Jefferson Lab. The design is based on the use of super-ferric magnets. It provides the necessary momentum range of 8 to 100 GeV/c for protons and ions, matches the electron collider ring design using PEP-II components, fits readily on the JLab site, offers a straightforward path for a future full-energy upgrade by replacing the magnets with higher-field ones in the same tunnel, and is more cost effective than using presently available current-dominated super-conducting magnets. We describe complete ion collider optics including an independently-designed modular detector region.

  4. Status of the MEIC ion collider ring design

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-07-14

    We present an update on the design of the ion collider ring of the Medium-energy Electron-Ion Collider (MEIC) proposed by Jefferson Lab. The design is based on the use of super-ferric magnets. It provides the necessary momentum range of 8 to 100 GeV/c for protons and ions, matches the electron collider ring design using PEP-II components, fits readily on the JLab site, offers a straightforward path for a future full-energy upgrade by replacing the magnets with higher-field ones in the same tunnel, and is more cost effective than using presently available current-dominated super-conducting magnets. We describe complete ion collider optics including an independently-designed modular detector region.

  5. Whither colliders after the Large Hadron Collider?

    Indian Academy of Sciences (India)

    Rolf-Dieter Heuer

    2012-11-01

    This paper presents options for high-energy colliders at the energy frontier for the years to come. The immediate plans include the exploitation of the LHC at its design luminosity and energy as well as upgrades to the LHC (luminosity and energy) and to its injectors. This may be complemented by a linear electron–positron collider, based on the technology being developed by the Compact Linear Collider and by the International Linear Collider, by a high-energy electron– proton machine, the LHeC, and/or by a muon collider. This contribution describes the various future directions, all of which have a unique value to add to experimental particle physics, and concludes by outlining the key messages for the way forward.

  6. A Test Facility for the International Linear Collider at SLAC End Station A, for Prototypes of Beam Delivery and IR Components

    CERN Document Server

    Woods, Mike; Arnold, Ray; Bailey, D; Barlow, Roger J; Beard, Carl D; Boogert, Stewart Takashi; Burrows, P N; Burton, D; Christian, Glenn B; Clarke, Christine; Cussans, D; Densham, C; Erickson, Roger; Frisch, Josef; Greenhalgh, J; Hartin, Anthony F; Hast, Carsten; Hildreth, Michael; Jackson, Frank; Kalinin, Alexander; Jobe, R Keith; Keller, Lewis; Kolomensky, Yury; Kourevlev, German Yu; Lyapin, A; Malton, Stephen; Markiewicz, Thomas W; Maruyama, Takashi; McCormick, Douglas; Mercer, Adam; Miller, David J; Molloy, Stephen; Nelson, Janice; Phinney, Nan; Raubenheimer, Tor O; Ross, Marc; Seryi, Andrei; Shales, N; Sinev, N; Slater, Mark; Smith, J; Smith, Stephen; Sopczak, A; Sugimoto, Y; Szalata, Zen M; Tenenbaum, P G; Thomson, Mark; Torrence, Eric; Tucker, R W; Walston, Sean; Ward, David; Watson, Nigel; Weiland, Thomas; White, Glen; Wing, Matthew; Woodley, Mark; Zagorodnov, Igor; Zimmermann, Frank

    2005-01-01

    The SLAC Linac can deliver damped bunches with ILC parameters for bunch charge and bunch length to End Station A. A 10Hz beam at 28.5 GeV energy can be delivered there, parasitic with PEP-II operation. We plan to use this facility to test prototype components of the Beam Delivery System and Interaction Region. We discuss our plans for this ILC Test Facility and preparations for carrying out experiments related to collimator wakefields and energy spectrometers. We also plan an interaction region mockup to investigate effects from backgrounds and beam-induced electromagnetic interference.

  7. RF pulse compression for future linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, P.B.

    1995-05-01

    Future (nonsuperconducting) linear colliders will require very high values of peak rf power per meter of accelerating structure. The role of rf pulse compression in producing this power is examined within the context of overall rf system design for three future colliders at energies of 1.0--1.5 TeV, 5 TeV and 25 TeV. In order keep the average AC input power and the length of the accelerator within reasonable limits, a collider in the 1.0--1.5 TeV energy range will probably be built at an x-band rf frequency, and will require a peak power on the order of 150--200 MW per meter of accelerating structure. A 5 TeV collider at 34 GHz with a reasonable length (35 km) and AC input power (225 MW) would require about 550 MW per meter of structure. Two-beam accelerators can achieve peak powers of this order by applying dc pulse compression techniques (induction linac modules) to produce the drive beam. Klystron-driven colliders achieve high peak power by a combination of dc pulse compression (modulators) and rf pulse compression, with about the same overall rf system efficiency (30--40%) as a two-beam collider. A high gain (6.8) three-stage binary pulse compression system with high efficiency (80%) is described, which (compared to a SLED-11 system) can be used to reduce the klystron peak power by about a factor of two, or alternately, to cut the number of klystrons in half for a 1.0--1.5 TeV x-band collider. For a 5 TeV klystron-driven collider, a high gain, high efficiency rf pulse compression system is essential.

  8. Reverse Emittance Exchange for Muon Colliders

    Energy Technology Data Exchange (ETDEWEB)

    V. Ivanov, A. Afanasev, C.M. Ankenbrandt, R.P. Johnson, G.M. Wang, S.A. Bogacz, Y.S. Derbenev

    2009-05-01

    Muon collider luminosity depends on the number of muons in the storage ring and on the transverse size of the beams in collision. Ionization cooling as it is currently envisioned will not cool the beam sizes sufficiently well to provide adequate luminosity without large muon intensities. Six-dimensional cooling schemes will reduce the longitudinal emittance of a muon beam so that smaller high frequency RF cavities can be used for later stages of cooling and for acceleration. However, the bunch length at collision energy is then shorter than needed to match the interaction region beta function. New ideas to shrink transverse beam dimensions by lengthening each bunch will help achieve high luminosity in muon colliders. Analytic expressions for the reverse emittance exchange mechanism were derived, including a new resonant method of beam focusing.

  9. Soviet Hadron Collider

    Science.gov (United States)

    Kotchetkov, Dmitri

    2017-01-01

    Rapid growth of the high energy physics program in the USSR during 1960s-1970s culminated with a decision to build the Accelerating and Storage Complex (UNK) to carry out fixed target and colliding beam experiments. The UNK was to have three rings. One ring was to be built with conventional magnets to accelerate protons up to the energy of 600 GeV. The other two rings were to be made from superconducting magnets, each ring was supposed to accelerate protons up to the energy of 3 TeV. The accelerating rings were to be placed in an underground tunnel with a circumference of 21 km. As a 3 x 3 TeV collider, the UNK would make proton-proton collisions with a luminosity of 4 x 1034 cm-1s-1. Institute for High Energy Physics in Protvino was a project leading institution and a site of the UNK. Accelerator and detector research and development studies were commenced in the second half of 1970s. State Committee for Utilization of Atomic Energy of the USSR approved the project in 1980, and the construction of the UNK started in 1983. Political turmoil in the Soviet Union during late 1980s and early 1990s resulted in disintegration of the USSR and subsequent collapse of the Russian economy. As a result of drastic reduction of funding for the UNK, in 1993 the project was restructured to be a 600 GeV fixed target accelerator only. While the ring tunnel and proton injection line were completed by 1995, and 70% of all magnets and associated accelerator equipment were fabricated, lack of Russian federal funding for high energy physics halted the project at the end of 1990s.

  10. Photon collider Higgs factories

    CERN Document Server

    Telnov, V I

    2014-01-01

    The discovery of the Higgs boson (and still nothing else) have triggered appearance of many proposals of Higgs factories for precision measurement of the Higgs properties. Among them there are several projects of photon colliders (PC) without e+e- in addition to PLC based on e+e- linear colliders ILC and CLIC. In this paper, following a brief discussion of Higgs factories physics program I give an overview of photon colliders based on linear colliders ILC and CLIC, and of the recently proposed photon-collider Higgs factories with no e+e- collision option based on recirculation linacs in ring tunnels.

  11. Hadron Colliders and Hadron Collider Physics Symposium

    Directory of Open Access Journals (Sweden)

    Denisov D.

    2013-05-01

    Full Text Available This article summarizes main developments of the hadron colliders and physics results obtained since their inception around forty years ago. The increase in the collision energy of over two orders of magnitude and even larger increases in luminosity provided experiments with unique data samples. Developments of full acceptance detectors, particle identification and analysis methods provided fundamental discoveries and ultra-precise measurements which culminated in the completion and in depth verification of the Standard Model. Hadron Collider Physics symposium provided opportunities for those working at hadron colliders to share results of their research since 1979 and helped greatly to develop the field of particle physics.

  12. Ultimate parameters of the photon collider at the international linear collider

    Indian Academy of Sciences (India)

    V I Telnov

    2007-12-01

    At linear colliders, the + - luminosity is limited by beam-collision effects, which determine the required emittances of beams in damping rings (DRs). In collisions at the photon collider, these effects are absent, and so smaller emittances are desirable. In the present damping ring designs, nominal DR parameters correspond to those required for + - collisions. In this note, I would like to stress once again that as soon as we plan the photon collider mode of ILC operation, the damping ring emittances are dictated by the photon collider requirements - namely, they should be as small as possible. This can be achieved by adding more wigglers to the DRs; the incremental cost is easily justified by a considerable potential improvement of the luminosity. No expert analysis exists as of now, but it seems realistic to obtain a factor five increase of the luminosity compared to the `nominal' DR design.

  13. Successive approximation algorithm for beam-position-monitor-based LHC collimator alignment

    Science.gov (United States)

    Valentino, Gianluca; Nosych, Andriy A.; Bruce, Roderik; Gasior, Marek; Mirarchi, Daniele; Redaelli, Stefano; Salvachua, Belen; Wollmann, Daniel

    2014-02-01

    Collimators with embedded beam position monitor (BPM) button electrodes will be installed in the Large Hadron Collider (LHC) during the current long shutdown period. For the subsequent operation, BPMs will allow the collimator jaws to be kept centered around the beam orbit. In this manner, a better beam cleaning efficiency and machine protection can be provided at unprecedented higher beam energies and intensities. A collimator alignment algorithm is proposed to center the jaws automatically around the beam. The algorithm is based on successive approximation and takes into account a correction of the nonlinear BPM sensitivity to beam displacement and an asymmetry of the electronic channels processing the BPM electrode signals. A software implementation was tested with a prototype collimator in the Super Proton Synchrotron. This paper presents results of the tests along with some considerations for eventual operation in the LHC.

  14. Advanced Concepts for Electron-Ion Collider

    Energy Technology Data Exchange (ETDEWEB)

    Yaroslav Derbenev

    2002-08-01

    A superconducting energy recovery linac (ERL) of 5 to 10 GeV was proposed earlier as an alternative to electron storage rings to deliver polarized electron beam for electron-ion collider (EIC). To enhance the utilization efficiency of electron beam from a polarized source, it is proposed to complement the ERL by circulator ring (CR) wherein the injected electrons undergo up to 100 revolutions colliding with the ion beam. In this way, electron injector and linac operate in pulsed current (beam energy recovery) regime of a relatively low average current, while the polarization is still easily delivered and preserved. To make it also easier delivering and manipulating the proton and light ion polarization, twisted (figure 8) synchrotrons are proposed for heavy particle booster and collider ring. Same type of beam orbit can be used then for electron circulator. Electron cooling (EC) of the ion beam is considered an inevitable component of high luminosity EIC (1033/s. cm2 or above). It is recognized that EC also gives a possibility to obtain very short ion bunches, that allows much stronger final focusing. At the same time, short bunches make feasible the crab crossing (and traveling focus for ion beam) at collision points, hence, allow maximizing the collision rate. As a result, one can anticipate the luminosity increase by one or two orders of magnitude.

  15. Radiation damage in the diamond based beam condition monitors of the CMS experiment at the Large Hadron Collider (LHC) at CERN

    CERN Document Server

    Guthoff, Moritz; Dabrowski, Anne; De Boer, Wim; Stickland, David; Lange, Wolfgang; Lohmann, Wolfgang

    2013-01-01

    The Beam Condition Monitor (BCM) of the CMS detector at the LHC is a protection device similar to the LHC Beam Loss Monitor system. While the electronics used is the same, poly-crystalline Chemical Vapor Deposition (pCVD) diamonds are used instead of ionization chambers as the BCM sensor material. The main purpose of the system is the protection of the silicon Pixel and Strip tracking detectors by inducing a beam dump, if the beam losses are too high in the CMS detector. By comparing the detector current with the instantaneous luminosity, the BCM detector ef fi ciency can be monitored. The number of radiation-induced defects in the diamond, reduces the charge collection distance, and hence lowers the signal. The number of these induced defects can be simulated using the FLUKA Monte Carlo simulation. The cross-section for creating defects increases with decreasing energies of the impinging particles. This explains, why diamond sensors mounted close to heavy calorimeters experience more radiation damage, becaus...

  16. Nonlinear Energy Collimation System for Linear Colliders

    CERN Document Server

    Resta-Lopez, Javier

    2011-01-01

    The post-linac energy collimation system of multi-TeV linear colliders is designed to fulfil an important function of protection of the Beam Delivery System (BDS) against miss-steered beams likely generated by failure modes in the main linac. For the case of the Compact Linear Collider (CLIC), the energy collimators are required to withstand the impact of a full bunch train in case of failure. This is a very challenging task, assuming the nominal CLIC beam parameters at 1.5 TeV beam energy. The increase of the transverse spot size at the collimators using nonlinear magnets is a potential solution to guarantee the survival of the collimators. In this paper we present an alternative nonlinear optics based on a skew sextupole pair for energy collimation. Performance simulation results are also presented.

  17. Muon Colliders and Neutrino Factories

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, Daniel M. [IIT, Chicago

    2015-05-29

    Muon colliders and neutrino factories are attractive options for future facilities aimed at achieving the highest lepton-antilepton collision energies and precision measurements of Higgs boson and neutrino mixing matrix parameters. The facility performance and cost depend on how well a beam of muons can be cooled. Recent progress in muon cooling design studies and prototype tests nourishes the hope that such facilities could be built starting in the coming decade. The status of the key technologies and their various demonstration experiments is summarized. Prospects "post-P5" are also discussed.

  18. Muon Colliders and Neutrino Factories

    CERN Document Server

    Kaplan, Daniel M

    2014-01-01

    Muon colliders and neutrino factories are attractive options for future facilities aimed at achieving the highest lepton-antilepton collision energies and precision measurements of Higgs boson and neutrino mixing matrix parameters. The facility performance and cost depend on how well a beam of muons can be cooled. Recent progress in muon cooling design studies and prototype tests nourishes the hope that such facilities could be built starting in the coming decade. The status of the key technologies and their various demonstration experiments is summarized. Prospects "post-P5" are also discussed.

  19. Testing supersymmetry at the next linear collider

    Energy Technology Data Exchange (ETDEWEB)

    Feng, J.L.

    1994-09-01

    If new particles are discovered, it will be important to determine if they are the supersymmetric partners of standard model bosons and fermions. Supersymmetry predicts relations among the couplings and masses of these particles. The authors discuss the prospects for testing these relations at a future e{sup +}e{sup {minus}} linear collider with measurements that exploit the availability of polarized beams.

  20. Dreams collide with reality for international experiment

    CERN Multimedia

    Cho, Adrian

    2007-01-01

    "Three weeks ago, an international team released a design and cost estimate for the International Linear Collider (ILC). American physicists want to build the ILC at Fermi National Accelerator Laboratory (Fermilab) in Batavia, Illinois, and researchers had hoped to break ground in 2012 and fire up the ILC's beams of electrons and positrons in 2019." (1 page)

  1. Halo formation from mismatched beam-beam interactions

    Energy Technology Data Exchange (ETDEWEB)

    Qiang, Ji

    2003-05-23

    In this paper, we report on the halo formation and emittance growth driven by a parametric resonance during mismatched beam-beam collisions. In the regime of the weak-strong beam-beam interaction, if two beams have the same machine tunes, on-axis head-on collisions between a mismatched strong beam and a weak beam will not cause the formation of halo. However, if the two beams collide with an initial offset, the beam-beam force from the mismatched strong beam can cause halo formation and emittance growth in the weak beam. Meanwhile, if two beams have different machine tunes, for opposite charged colliding beams, when the machine tune of the weak beam is smaller than that of strong beam, there is emittance growth in the weak beam. When the machine tune of the weak beam is larger than that of the strong beam, there is little emittance growth. In the regime of strong-strong beam-beam interaction, halo is formed in both beams even when the two beams collide head-on on the axis with equal machine tunes. This puts a strong requirement for a good beam match during the injection to colliders in order to avoid the emittance growth.

  2. Radiation damage in the diamond based beam condition monitors of the CMS experiment at the Large Hadron Collider (LHC) at CERN

    Science.gov (United States)

    Guthoff, Moritz; Afanaciev, Konstantin; Dabrowski, Anne; de Boer, Wim; Lange, Wolfgang; Lohmann, Wolfgang; Stickland, David

    2013-12-01

    The Beam Condition Monitor (BCM) of the CMS detector at the LHC is a protection device similar to the LHC Beam Loss Monitor system. While the electronics used is the same, poly-crystalline Chemical Vapor Deposition (pCVD) diamonds are used instead of ionization chambers as the BCM sensor material. The main purpose of the system is the protection of the silicon Pixel and Strip tracking detectors by inducing a beam dump, if the beam losses are too high in the CMS detector. By comparing the detector current with the instantaneous luminosity, the BCM detector efficiency can be monitored. The number of radiation-induced defects in the diamond, reduces the charge collection distance, and hence lowers the signal. The number of these induced defects can be simulated using the FLUKA Monte Carlo simulation. The cross-section for creating defects increases with decreasing energies of the impinging particles. This explains, why diamond sensors mounted close to heavy calorimeters experience more radiation damage, because of the high number of low energy neutrons in these regions. The signal decrease was stronger than expected from the number of simulated defects. Here polarization from trapped charge carriers in the defects is a likely candidate for explaining the difference, as suggested by Transient Current Technique (TCT) measurements. A single-crystalline (sCVD) diamond sensor shows a faster relative signal decrease than a pCVD sensor mounted at the same location. This is expected, since the relative increase in the number of defects is larger in sCVD than in pCVD sensors.

  3. SuperB A High-Luminosity Asymmetric $e^+ e^-$ Super Flavour Factory : Conceptual Design Report

    CERN Document Server

    Bona, M.; Grauges Pous, E.; Colangelo, P.; De Fazio, F.; Palano, A.; Manghisoni, M.; Re, V.; Traversi, G.; Eigen, G.; Venturini, M.; Soni, N.; Bruschi, M.; De Castro, S.; Faccioli, P.; Gabrieli, A.; Giacobbe, B.; Semprini Cesare, N.; Spighi, R.; Villa, M.; Zoccoli, A.; Hearty, C.; McKenna, J.; Soni, A.; Khan, A.; Barniakov, A.Y.; Barniakov, M.Y.; Blinov, V.E.; Druzhinin, V.P.; Golubev, V.B.; Kononov, S.A.; Koop, I.A.; Kravchenko, E.A.; Levichev, E.B.; Nikitin, S.A.; Onuchin, A.P.; Piminov, P.A.; Serednyakov, S.I.; Shatilov, D.N.; Skovpen, Y.I.; Solodov, E.A.; Cheng, C.H.; Echenard, B.; Fang, F.; Hitlin, D.J.; Porter, F.C.; Asner, D.M.; Pham, T.N.; Fleischer, R.; Giudice, G.F.; Hurth, T.; Mangano, M.; Mancinelli, G.; Meadows, B.T.; Schwartz, A.J.; Sokoloff, M.D.; Soffer, A.; Beard, C.D.; Haas, T.; Mankel, R.; Hiller, G.; Ball, P.; Pappagallo, M.; Pennington, M.R.; Gradl, W.; Playfer, S.; Abada, A.; Becirevic, D.; Descotes-Genon, S.; Pene, O.; Andreotti, D.; Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabresi, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Prencipe, E.; Santoro, V.; Stancari, G.; Anulli, F.; Baldini-Ferroli, R.; Biagini, M.E.; Boscolo, M.; Calcaterra, A.; Drago, A.; Finocchiaro, G.; Guiducci, S.; Isidori, G.; Pacetti, S.; Patteri, P.; Peruzzi, I.M.; Piccolo, M.; Preger, M.A.; Raimondi, P.; Rama, M.; Vaccarezza, C.; Zallo, A.; Zobov, M.; De Sangro, R.; Buzzo, A.; Lo Vetere, M.; Macri, M.; Monge, M.R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.; Matias, J.; Panduro Vazquez, W.; Borzumati, F.; Eyges, V.; Prell, S.A.; Pedlar, T.K.; Korpar, S.; Pestonik, R.; Staric, M.; Neubert, M.; Denig, A.G.; Nierste, U.; Agoh, T.; Ohmi, K.; Ohnishi, Y.; Fry, J.R.; Touramanis, C.; Wolski, A.; Golob, B.; Krizan, P.; Flaecher, H.; Bevan, A.J.; Di Lodovico, F.; George, K.A.; Barlow, R.; Lafferty, G.; Jawahery, A.; Roberts, D.A.; Simi, G.; Patel, P.M.; Robertson, S.H.; Lazzaro, A.; Palombo, F.; Kaidalov, A.; Buras, A.J.; Tarantino, C.; Buchalla, G.; Sanda, A.I.; D'Ambrosio, G.; Ricciardi, G.; Bigi, I.; Jessop, C.P.; Losecco, J.M.; Honscheid, K.; Arnaud, N.; Chehab, R.; Fedala, Y.; Polci, F.; Roudeau, P.; Sordini, V.; Soskov, V.; Stocchi, A.; Variola, A.; Vivoli, A.; Wormser, G.; Zomer, F.; Bertolin, A.; Brugnera, R.; Gagliardi, N.; Gaz, A.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Bonneaud, G.R.; Lombardo, V.; Calderini, G.; Ratti, L.; Speziali, V.; Biasini, M.; Covarelli, R.; Manoni, E.; Servoli, L.; Angelini, C.; Batignani, G.; Bettarini, S.; Bosi, F.; Carpinelli, M.; Cenci, R.; Cervelli, A.; Dell'Orso, M.; Forti, F.; Giannetti, P.; Giorgi, M.; Lusiani, A.; Marchiori, G.; Massa, M.; Mazur, M.A.; Morsani, F.; Neri, N.; Paoloni, E.; Raffaelli, F.; Rizzo, G.; Walsh, J.; Braun, V.; Lenz, A.; Adams, G.S.; Danko, I.Z.; Baracchini, E.; Bellini, F.; Cavoto, G.; D'Orazio, A.; Del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Gaspero, Mario; Jackson, P.; Martinelli, G.; Mazzoni, M.A.; Morganti, Silvio; Piredda, G.; Renga, F.; Silvestrini, L.; Voena, C.; Catani, L.; Di Ciaccio, A.; Messi, R.; Santovetti, E.; Satta, A.; Ciuchini, M.; Lubicz, V.; Wilson, F.F.; Godang, R.; Chen, X.; Liu, H.; Park, W.; Purohit, M.; Trivedi, A.; White, R.M.; Wilson, J.R.; Allen, M.T.; Aston, D.; Bartoldus, R.; Brodsky, S.J.; Cai, Y.; Coleman, J.; Convery, M.R.; DeBarger, S.; Dingfelder, J.C.; Dubois-Felsmann, G.P.; Ecklund, S.; Fisher, A.S.; Haller, G.; Heifets, S.A.; Kaminski, J.; Kelsey, M.H.; Kocian, M.L.; Leith, D.W.G.S.; Li, N.; Luitz, S.; Luth, V.; MacFarlane, D.; Messner, R.; Muller, D.R.; Nosochkov, Y.; Novokhatski, A.; Pivi, M.; Ratcliff, B.N.; Roodman, A.; Schwiening, J.; Seeman, J.; Snyder, A.; Sullivan, M.; Va'Vra, J.; Wienands, U.; Wisniewski, W.; Stoeck, H.; Cheng, H.Y.; Li, H.N.; Keum, Y.Y.; Gronau, M.; Grossman, Y.; Bianchi, F.; Gamba, D.; Gambino, P.; Marchetto, F.; Menichetti, Ezio A.; Mussa, R.; Pelliccioni, M.; Dalla Betta, G.F.; Bomben, M.; Bosisio, L.; Cartaro, C.; Lanceri, L.; Vitale, L.; Azzolini, V.; Bernabeu, J.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D.A.; Oyanguren, A.; Paradisi, P.; Pich, A.; Sanchis-Lozano, M.A.; Kowalewski, Robert V.; Roney, J.M.; Back, J.J.; Gershon, T.J.; Harrison, P.F.; Latham, T.E.; Mohanty, G.B.; Petrov, A.A.; Pierini, M.; INFN

    2007-01-01

    The physics objectives of SuperB, an asymmetric electron-positron collider with a luminosity above 10^36/cm^2/s are described, together with the conceptual design of a novel low emittance design that achieves this performance with wallplug power comparable to that of the current B Factories, and an upgraded detector capable of doing the physics in the SuperB environment.

  4. The development of colliders

    Energy Technology Data Exchange (ETDEWEB)

    Sessler, A.M.

    1997-03-01

    During the period of the 50`s and the 60`s colliders were developed. Prior to that time there were no colliders, and by 1965 a number of small devices had worked, good understanding had been achieved, and one could speculate, as Gersh Budker did, that in a few years 20% of high energy physics would come from colliders. His estimate was an under-estimate, for now essentially all of high energy physics comes from colliders. The author presents a brief review of that history: sketching the development of the concepts, the experiments, and the technological advances which made it all possible.

  5. Muon collider design

    Science.gov (United States)

    Palmer, R.; Sessler, A.; Skrinsky, A.; Tollestrup, A.; Baltz, A.; Caspi, S.; P., Chen; W-H., Cheng; Y., Cho; Cline, D.; Courant, E.; Fernow, R.; Gallardo, J.; Garren, A.; Gordon, H.; Green, M.; Gupta, R.; Hershcovitch, A.; Johnstone, C.; Kahn, S.; Kirk, H.; Kycia, T.; Y., Lee; Lissauer, D.; Luccio, A.; McInturff, A.; Mills, F.; Mokhov, N.; Morgan, G.; Neuffer, D.; K-Y., Ng; Noble, R.; Norem, J.; Norum, B.; Oide, K.; Parsa, Z.; Polychronakos, V.; Popovic, M.; Rehak, P.; Roser, T.; Rossmanith, R.; Scanlan, R.; Schachinger, L.; Silvestrov, G.; Stumer, I.; Summers, D.; Syphers, M.; Takahashi, H.; Torun, Y.; Trbojevic, D.; Turner, W.; van Ginneken, A.; Vsevolozhskaya, T.; Weggel, R.; Willen, E.; Willis, W.; Winn, D.; Wurtele, J.; Zhao, Y.

    1996-11-01

    Muon Colliders have unique technical and physics advantages and disadvantages when compared with both hadron and electron machines. They should thus be regarded as complementary. Parameters are given of 4 TeV and 0.5 TeV high luminosity \\mu^+ \\mu^- colliders, and of a 0.5 TeV lower luminosity demonstration machine. We discuss the various systems in such muon colliders, starting from the proton accelerator needed to generate the muons and proceeding through muon cooling, acceleration and storage in a collider ring. Detector background, polarization, and nonstandard operating conditions are discussed.

  6. Lepton Collider Operation With Constant Currents

    Energy Technology Data Exchange (ETDEWEB)

    Wienands, U.; /SLAC

    2006-02-22

    Electron-positron colliders have been operating in a top-up-and-coast fashion with a cycle time depending on the beam life time, typically one or more hours. Each top-up involves ramping detector systems in addition to the actual filling time. The loss in accumulated luminosity may be 20-50%. During the last year, both B-Factories have commissioned a continuous-injection mode of operation in which beam is injected without ramping the detector, thus raising luminosity integration by always operating at peak luminosity. Constant beam currents also reduce thermal drift and trips caused by change in beam loading. To achieve this level of operation, special efforts were made to reduce the injection losses and also to implement gating procedures in the detectors, minimizing dead time. Beam collimation can reduce injection noise but also cause an increase in background rates. A challenge can be determining beam lifetime, important to maintain tuning of the beams.

  7. Muon colliders, frictional cooling and universal extra dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Greenwald, Daniel E.

    2011-07-20

    A muon collider combines the advantages of proton-proton and electron-positron colliders, sidestepping many of their disadvantages, and has the potential to make discoveries and precision measurements at high energies. However, muons bring their own technical challenges, largely relating to their instability. We present a summary of the motivations and R and D efforts for a muon collider. We detail a scheme for preparing high-luminosity muon beams on timescales shorter than the muon lifetime, and an experiment to demonstrate aspects of this scheme at the Max Planck Institute for Physics. We also investigate the potentials to discover physics beyond the standard model at a muon collider. (orig.)

  8. Optical Diagnostic Of The Vepp-4m Collider

    CERN Document Server

    Meshkov, O I; Gurko, V F; Khilchenko, A D; Muchnoi, N Yu; Pahotin, Yu A; Selivanov, A N; Zhuravlev, A N; Zinin, E I; Zubarev, P V

    2004-01-01

    The upgraded optical diagnostic of the VEPP-4M collider is described. The system abilities are improved sufciently in comparing with [1]. Now the diagnostic supplies the data about electron/positron beam transversal and longitudinal size, shape and position. It is applied to study the electron beam "tails" and turn-to-turn beam profile dynamics. The system is used to tune of the beam pass-by from the VEPP-3 booster to the VEPP-4M collider and to measure of the synchrotron and betatron frequencies.

  9. Super Special Codes using Super Matrices

    CERN Document Server

    Kandasamy, W B Vasantha; Ilanthenral, K

    2010-01-01

    The new classes of super special codes are constructed in this book using the specially constructed super special vector spaces. These codes mainly use the super matrices. These codes can be realized as a special type of concatenated codes. This book has four chapters. In chapter one basic properties of codes and super matrices are given. A new type of super special vector space is constructed in chapter two of this book. Three new classes of super special codes namely, super special row code, super special column code and super special codes are introduced in chapter three. Applications of these codes are given in the final chapter.

  10. DIS prospects at the future muon collider facility

    Energy Technology Data Exchange (ETDEWEB)

    Yu, J., FERMI

    1998-07-01

    We discuss prospects of deep inelastic scattering physics capabilities at the future muon collider facility. In addition to {mu}{sup +}{mu}{sup -} collider itself, the facility provides other possibilities. Among the possibilities, we present muon-proton collider and neutrino fixed target programs at the muon collider facility. This {mu}-p collider program extends kinematic reach and luminosity by an order of magnitude, increasing the possibility of search for new exotic particles. Perhaps most intriguing DIS prospects come from utilizing high intensity neutrino beam resulting from continuous decays of muons in various sections of the muon collider facility. One of the most interesting findings is a precision measurement of electroweak mixing angle, sin{sup 2}{theta}{sub W}, which can be achieved to the precision equivalent to {delta}M{sub W}{approximately} 30MeV.

  11. Electron Lenses for the Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Stancari, Giulio [Fermilab; Valishev, Alexander [Fermilab; Bruce, Roderik [CERN; Redaelli, Stefano [CERN; Rossi, Adriana [CERN; Salvachua, Belen [CERN

    2014-07-01

    Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-by-bunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beam compensation, and for the demonstration of halo scraping with hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in RHIC at BNL. Within the US LHC Accelerator Research Program and the European HiLumi LHC Design Study, hollow electron beam collimation was studied as an option to complement the collimation system for the LHC upgrades. This project is moving towards a technical design in 2014, with the goal to build the devices in 2015-2017, after resuming LHC operations and re-assessing needs and requirements at 6.5 TeV. Because of their electric charge and the absence of materials close to the proton beam, electron lenses may also provide an alternative to wires for long-range beam-beam compensation in LHC luminosity upgrade scenarios with small crossing angles.

  12. Suppressing Electron Cloud in Future Linear Colliders

    CERN Document Server

    Pivi, M T F; Le Pimpec, Frederic; Raubenheimer, Tor O

    2005-01-01

    Any accelerator circulating positively charged beams can suffer from a build-up of an electron cloud in the beam pipe. The cloud develops through ionization of residual gases, synchrotron radiation and secondary electron emission and, when severe, can cause instability, emittance blow-up or loss of the circulating beam. The electron cloud is potentially a limiting effect for both the Large Hadron Collider (LHC) and the International Linear Collider (ILC). For the ILC positron damping ring, the development of the electron cloud must be suppressed. This paper presents the various effects of the electron cloud and evaluates their significance. It also discusses the state-of-the-art of the ongoing international R&D program to study potential remedies to reduce the secondary electron yield to acceptably low levels.

  13. Linearizing Intra-Train Beam-Beam Deflection Feedback

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S.R.; /SLAC

    2006-02-22

    Beam-beam deflection feedback acting within the crossing time of a single bunch train may be needed to keep linear collider beams colliding at high luminosity. In a short-pulse machine such as the Next Linear Collider (NLC) this feedback must converge quickly to be useful. The non-linear nature of beam-beam deflection vs. beam-beam offset in these machines precludes obtaining both rapid convergence and a stable steady-state lock to beam offsets with a linear feedback algorithm. We show that a simply realizable programmable non-linear amplifier in the feedback loop can linearize the feedback loop, approximately compensating the beam-beam deflection non-linearity. Performance of a prototype non-linear amplifier is shown. Improvement of convergence and stability of the beam-beam feedback loop is simulated.

  14. Exotic leptons at future linear colliders

    CERN Document Server

    Biondini, S

    2014-01-01

    Doubly charged excited leptons determine a possible signature for physics beyond the standard model at the present Large Hadron Collider. These exotic states are introduced in extended isospin multiplets and they can be treated either within gauge or contact effective interactions or a mixture of those. In this paper we study the production and the corresponding signatures of doubly charged leptons at the forthcoming linear colliders and we focus on the electron-electron beam setting. In the framework of gauge interactions, the interference between the $t$ and $u$ channel is evaluated that has been neglected so far. A pure leptonic final state is considered ($e^{-} \\, e^{-} \\rightarrow e^{-} \\, e^{-} \\, \

  15. Power Saving Optimization for Linear Collider Interaction Region Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Seryi, Andrei; /SLAC

    2009-10-30

    Optimization of Interaction Region parameters of a TeV energy scale linear collider has to take into account constraints defined by phenomena such as beam-beam focusing forces, beamstrahlung radiation, and hour-glass effect. With those constraints, achieving a desired luminosity of about 2E34 would require use of e{sup +}e{sup -} beams with about 10 MW average power. Application of the 'travelling focus' regime may allow the required beam power to be reduced by at least a factor of two, helping reduce the cost of the collider, while keeping the beamstrahlung energy loss reasonably low. The technique is illustrated for the 500 GeV CM parameters of the International Linear Collider. This technique may also in principle allow recycling the e{sup +}e{sup -} beams and/or recuperation of their energy.

  16. Characterization of a nondestructive beam profile monitor using luminescent emission

    CERN Document Server

    Variola, A; Ferioli, G

    2007-01-01

    The LHC (large hadron collider) [LHC study group: LHC. The large hadron collider conceptual design; CERN/AC/95-05] is the future p-p collider under construction at CERN, Geneva. Over a circumference of 26.7 km a set of cryogenic dipoles and rf cavities will store and accelerate proton and ion beams up to energies of the order of 7 TeV. Injection in LHC will be performed by the CERN complex of accelerators, starting from the source and passing through the linac, the four booster rings, the proton synchrotron (PS), and super proton synchrotron (SPS) accelerators. One of the main constraints on LHC performance is emittance preservation along the whole chain of CERN accelerators. The accepted relative normalized emittance blowup after filamentation is ±7%. To monitor the beam and the emittance blowup process, a study of different prototypes of nonintercepting beam profile monitors has been performed. In this context a monitor using the luminescent emission of gases excited by ultrarelativistic protons (450 GeV) ...

  17. The eRHIC Ring-Ring Collider Design

    CERN Document Server

    Wang, Fuhua; Beebe-Wang, Joanne; Deshpande, Abhay A; Farkhondeh, Manouchehr; Franklin, Wilbur; Graves, William; Litvinenko, Vladimir N; MacKay, William W; Milner, Richard; Montag, Christoph; Ozaki, Satoshi; Parker, Brett; Peggs, Steve; Ptitsyn, Vadim; Roser, Thomas; Tepikian, Steven; Trbojevic, Dejan; Tschalär, C; Wang, Dong; Zolfaghari, Abbasali; Zwart, Townsend; van der Laan, Jan

    2005-01-01

    The eRHIC ring-ring collider is the main design option of the future lepton-ion collider at Brookhaven National Laboratory. We report the revisions of the ring-ring collider design features to the baseline design presented in the eRHIC Zeroth Design Report (ZDR). These revisions have been made during the past year. They include changes of the interaction region which are required from the modifications in the design of the main detector. They also include changes in the lepton storage ring for high current operations as a result of better understandings of beam-beam interaction effects. The updated collider luminosity and beam parameters also take into account a more accurate picture of current and future operational aspects of RHIC.

  18. FCC Based Lepton-Hadron and Photon-Hadron Colliders: Luminosity and Physics

    CERN Document Server

    Acar, Y C; Beser, S; Karadeniz, H; Kaya, U; Oner, B B; Sultansoy, S

    2016-01-01

    Construction of future electron-positron colliders (or dedicated electron linac) and muon colliders (or dedicated muon ring) tangential to Future Circular Collider (FCC) will give opportunity to utilize highest energy proton and nucleus beams for lepton-hadron and photon-hadron collisions. Luminosity values of FCC based ep, \\mup, eA, \\muA, \\gammap and \\gammaA colliders are estimated. Multi-TeV center of mass energy ep colliders based on the FCC and linear colliders (LC) are considered in detail. Parameters of upgraded versions of the FCC proton beam are determined to optimize luminosity of electron-proton collisions keeping beam-beam effects in mind. Numerical calculations are performed using a currently being developed collision point simulator. It is shown that L_{ep}\\sim10^{32}\\,cm^{-2}s^{-1} can be achieved with LHeC-like upgrade of the FCC parameters.

  19. Towards future circular colliders

    Science.gov (United States)

    Benedikt, Michael; Zimmermann, Frank

    2016-09-01

    The Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) presently provides proton-proton collisions at a center-of-mass (c.m.) energy of 13 TeV. The LHC design was started more than 30 years ago, and its physics program will extend through the second half of the 2030's. The global Future Circular Collider (FCC) study is now preparing for a post-LHC project. The FCC study focuses on the design of a 100-TeV hadron collider (FCC-hh) in a new ˜100 km tunnel. It also includes the design of a high-luminosity electron-positron collider (FCCee) as a potential intermediate step, and a lepton-hadron collider option (FCC-he). The scope of the FCC study comprises accelerators, technology, infrastructure, detectors, physics, concepts for worldwide data services, international governance models, and implementation scenarios. Among the FCC core technologies figure 16-T dipole magnets, based on Nb3 S n superconductor, for the FCC-hh hadron collider, and a highly-efficient superconducting radiofrequency system for the FCC-ee lepton collider. Following the FCC concept, the Institute of High Energy Physics (IHEP) in Beijing has initiated a parallel design study for an e + e - Higgs factory in China (CEPC), which is to be succeeded by a high-energy hadron collider (SPPC). At present a tunnel circumference of 54 km and a hadron collider c.m. energy of about 70 TeV are being considered. After a brief look at the LHC, this article reports the motivation and the present status of the FCC study, some of the primary design challenges and R&D subjects, as well as the emerging global collaboration.

  20. Numerical Simulation of Beam-Beam Effects in the Proposed Electron-Ion Colider at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Balsa Terzic, Yuhong Zhang

    2010-05-01

    One key limiting factor to a collider luminosity is beam-beam interactions which usually can cause serious emittance growth of colliding beams and fast reduction of luminosity. Such nonlinear collective beam effect can be a very serious design challenge when the machine parameters are pushed into a new regime. In this paper, we present simulation studies of the beam-beam effect for a medium energy ring-ring electron-ion collider based on CEBAF.

  1. Implementation of depolarization due to beam-beam effects in the beam-beam interaction simulation tool GUINEA-PIG++

    Science.gov (United States)

    Rimbault, C.; Le Meur, G.; Blampuy, F.; Bambade, P.; Schulte, D.

    2009-12-01

    Depolarization is a new feature in the beam-beam simulation tool GUINEA-PIG++ (GP++). The results of this simulation are studied and compared with another beam-beam simulation tool, CAIN, considering different beam parameters for the International Linear Collider (ILC) with a centre-of-mass energy of 500 GeV.

  2. Neutrino Factory and Muon Collider Fellow

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Gail G. [Univ. of California, Riverside, CA (United States); Snopak, Pavel [Univ. of California, Riverside, CA (United States); Bao, Yu [Univ. of California, Riverside, CA (United States)

    2015-03-20

    Muons are fundamental particles like electrons but much more massive. Muon accelerators can provide physics opportunities similar to those of electron accelerators, but because of the larger mass muons lose less energy to radiation, allowing more compact facilities with lower operating costs. The way muon beams are produced makes them too large to fit into the vacuum chamber of a cost-effective accelerator, and the short muon lifetime means that the beams must be reduced in size rather quickly, without losing too many of the muons. This reduction in size is called "cooling." Ionization cooling is a new technique that can accomplish such cooling. Intense muon beams can then be accelerated and injected into a storage ring, where they can be used to produce neutrino beams through their decays or collided with muons of the opposite charge to produce a muon collider, similar to an electron-positron collider. We report on the research carried out at the University of California, Riverside, towards producing such muon accelerators, as part of the Muon Accelerator Program based at Fermilab. Since this research was carried out in a university environment, we were able to involve both undergraduate and graduate students.

  3. Linear collider: a preview

    Energy Technology Data Exchange (ETDEWEB)

    Wiedemann, H.

    1981-11-01

    Since no linear colliders have been built yet it is difficult to know at what energy the linear cost scaling of linear colliders drops below the quadratic scaling of storage rings. There is, however, no doubt that a linear collider facility for a center of mass energy above say 500 GeV is significantly cheaper than an equivalent storage ring. In order to make the linear collider principle feasible at very high energies a number of problems have to be solved. There are two kinds of problems: one which is related to the feasibility of the principle and the other kind of problems is associated with minimizing the cost of constructing and operating such a facility. This lecture series describes the problems and possible solutions. Since the real test of a principle requires the construction of a prototype I will in the last chapter describe the SLC project at the Stanford Linear Accelerator Center.

  4. Future Circular Colliders

    CERN Document Server

    AUTHOR|(CDS)2108454; Zimmermann, Frank

    2015-01-01

    In response to a request from the 2013 Update of the European Strategy for Particle Physics, the global Future Circular Collider (FCC) study is preparing the foundation for a next-generation large-scale accelerator infrastructure in the heart of Europe. The FCC study focuses on the design of a 100-TeV hadron collider (FCC-hh), to be accommodated in a new ∼100 km tunnel near Geneva. It also includes the design of a high-luminosity electron-positron collider (FCC-ee), which could be installed in the same tunnel as a potential intermediate step, and a lepton-hadron collider option (FCC-he). The scope of the FCC study comprises accelerators, technology, infrastructure, detectors, physics, concepts for worldwide data services, international governance models, and implementation scenarios. Among the FCC core technologies figure 16-T dipole magnets, based on Nb3Sn superconductor, for the FCC-hh hadron collider, and a highly efficient superconducting radiofrequency system for the FCC-ee lepton collider. The interna...

  5. Towards Future Circular Colliders

    CERN Document Server

    AUTHOR|(CDS)2108454; Zimmermann, Frank

    2016-01-01

    The Large Hadron Collider (LHC) at CERN presently provides proton-proton collisions at a centre-of-mass (c.m.) energy of 13 TeV. The LHC design was started more than 30 years ago, and its physics programme will extend through the second half of the 2030’s. The global Future Circular Collider (FCC) study is now preparing for a post-LHC project. The FCC study focuses on the design of a 100-TeV hadron collider (FCC-hh) in a new ∼100 km tunnel. It also includes the design of a high-luminosity electron-positron collider (FCC-ee) as a potential intermediate step, and a lepton-hadron collider option (FCC-he). The scope of the FCC study comprises accelerators, technology, infrastructure, detectors, physics, concepts for worldwide data services, international governance models, and implementation scenarios. Among the FCC core technologies figure 16-T dipole magnets, based on $Nb_3Sn$ superconductor, for the FCC-hh hadron collider, and a highly efficient superconducting radiofrequency system for the FCC-ee lepton c...

  6. Future Circular Colliders

    CERN Document Server

    AUTHOR|(CDS)2108454; Zimmermann, Frank

    2015-01-01

    In response to a request from the 2013 Update of the European Strategy for Particle Physics, the global Future Circular Collider (FCC) study is preparing the foundation for a next-generation large-scale accelerator infrastructure in the heart of Europe. The FCC study focuses on the design of a 100-TeV hadron collider (FCC-hh), to be accommodated in a new ∼100 km tunnel near Geneva. It also includes the design of a high-luminosity electron-positron collider (FCC-ee), which could be installed in the same tunnel as a potential intermediate step, and a lepton-hadron collider option (FCC-he). The scope of the FCC study comprises accelerators, technology, infrastructure, detector, physics, concepts for worldwide data services, international governance models, and implementation scenarios. Among the FCC core technologies figure 16-T dipole magnets, based on Nb3Sn superconductor, for the FCC-hh hadron collider, and a highly efficient superconducting radiofrequency system for the FCC-ee lepton collider. The internat...

  7. Measurement of the magnetically-induced QED birefringence of the vacuum and an improved search for laboratory axions: Technical report. Project definition study of the use of assets and facilities of the Superconducting Super Collider Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.A.; Fairbank, W.M. Jr.; Toki, W.H. [Colorado State Univ., Fort Collins, CO (United States). Dept. of Physics; Hall, J.L. [Univ. of Colorado, Boulder, CO (United States). Joint Inst. for Lab. Astrophysics]|[National Inst. of Standards and Technology, Boulder, CO (United States); Kraushaar, P.F. Jr.; Jaffery, T.S. [Superconducting Super Collider Lab., Waxahachie, TX (United States)

    1994-10-31

    The Colorado State Collaboration has studied the feasibility of a high sensitivity QED birefringence/axion search measurement. The objective of this work is to measure, for the first time, the birefringence induced in the vacuum on a light beam travelling in a powerful magnetic field. The same experimental setup also allows a highly sensitive search for axion or axion-like particles. The experiment would combined custom-designed optical heterodyne interferometry with a string of six SSC prototype superconducting dipole magnets at the N-15 site of the SSC Laboratory. With these powerful laser tools, sensitivity advances of 10{sup 7} to 10{sup 9} over previous optical experiments will be possible. The proposed experiment will be able to measure the QED light-by-light scattering effect with a 0.5% accuracy. The increased sensitivity for the axion-two photon interaction will result in a bound on this process rivaling the results based on astrophysical arguments. In the technical report the authors address the scientific significance of these experiments and examine the limiting technical parameters which control their feasibility. The proposed optical/electronic scheme is presented in the context of a background of the known and projected systematic problems which will confront any serious attempt to make such measurements.

  8. Large Hadron Collider momentum calibration and accuracy

    CERN Document Server

    AUTHOR|(CDS)2051266; Todesco, Ezio

    2017-01-01

    As a result of the excellent quality of the Large Hadron Collider (LHC) experimental detectors and the accurate calibration of the luminosity at the LHC, uncertainties on the LHC beam energy may contribute significantly to the measurement errors on certain observables unless the relative uncertainty is well below 1%. Direct measurements of the beam energy using the revolution frequency difference of proton and lead beams combined with the magnetic model errors are used to provide the energy uncertainty of the LHC beams. Above injection energy the relative uncertainty on the beam energy is determined to be ±0.1%. The energy values as reconstructed and distributed online to the LHC experiments do not require any correction above injection energy. At injection a correction of +0.31 GeV/c must be applied to the online energy values.

  9. Large Hadron Collider momentum calibration and accuracy

    Science.gov (United States)

    Todesco, E.; Wenninger, J.

    2017-08-01

    As a result of the excellent quality of the Large Hadron Collider (LHC) experimental detectors and the accurate calibration of the luminosity at the LHC, uncertainties on the LHC beam energy may contribute significantly to the measurement errors on certain observables unless the relative uncertainty is well below 1%. Direct measurements of the beam energy using the revolution frequency difference of proton and lead beams combined with the magnetic model errors are used to provide the energy uncertainty of the LHC beams. Above injection energy the relative uncertainty on the beam energy is determined to be ±0.1 %. The energy values as reconstructed and distributed online to the LHC experiments do not require any correction above injection energy. At injection a correction of +0.31 GeV /c must be applied to the online energy values.

  10. The beam dump tunnels

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    In these images workers are digging the tunnels that will be used to dump the counter-circulating beams. Travelling just a fraction under the speed of light, the beams at the LHC will each carry the energy of an aircraft carrier travelling at 12 knots. In order to dispose of these beams safely, a beam dump is used to extract the beam and diffuse it before it collides with a radiation shielded graphite target.

  11. Large Hadron Collider commissioning and first operation.

    Science.gov (United States)

    Myers, S

    2012-02-28

    A history of the commissioning and the very successful early operation of the Large Hadron Collider (LHC) is described. The accident that interrupted the first commissioning, its repair and the enhanced protection system put in place are fully described. The LHC beam commissioning and operational performance are reviewed for the period from 2010 to mid-2011. Preliminary plans for operation and future upgrades for the LHC are given for the short and medium term.

  12. HIGH-ENERGY PARTICLE COLLIDERS: PAST 20 YEARS, NEXT 20 YEARS, AND BEYOND

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, V.

    2013-09-25

    Particle colliders for high-energy physics have been in the forefront of scientific discoveries for more than half a century. The accelerator technology of the colliders has progressed immensely, while the beam energy, luminosity, facility size, and cost have grown by several orders of magnitude. The method of colliding beams has not fully exhausted its potential but has slowed down considerably in its progress. This paper briefly reviews the colliding beam method and the history of colliders, discusses the development of the method over the last two decades in detail, and examines near-term collider projects that are currently under development. The paper concludes with an attempt to look beyond the current horizon and to find what paradigm changes are necessary

  13. High-energy Particle Colliders: Past 20 Years, Next 20 Years, And Beyond

    CERN Document Server

    Shiltsev, V

    2014-01-01

    Particle colliders for high-energy physics have been in the forefront of scientific discoveries for more than half a century. The accelerator technology of the colliders has progressed immensely, while the beam energy, luminosity, facility size, and cost have grown by several orders of magnitude. The method of colliding beams has not fully exhausted its potential but has slowed down considerably in its progress. This paper briefly reviews the colliding beam method and the history of colliders, discusses the development of the method over the last two decades in detail, and examines near-term collider projects that are currently under development. The paper concludes with an attempt to look beyond the current horizon and to find what paradigm changes are necessary for breakthroughs in the field.

  14. The LHC as a Proton-Nucleus Collider

    CERN Document Server

    Carli, C

    2006-01-01

    Following its initial operation as a proton-proton (p-p) and heavy-ion (208Pb82+-208Pb82+) collider, the LHC is expected to operate as a p-Pb collider. Later it may collide protons with other lighter nuclei such as 40Ar18+ or 16O8+. We show how the existing proton and lead-ion injector chains may be efficiently operated in tandem to provide these hybrid collisions. The two-in-one magnet design of the LHC main rings imposes different revolution frequencies for the two beams in part of the magnetic cycle. We discuss and evaluate the consequences for beam dynamics and estimate the potential performance of the LHC as a proton-nucleus collider.

  15. Progress on the CLIC Linear Collider Study

    CERN Document Server

    Guignard, Gilbert

    2001-01-01

    The CLIC study aims at a multi-TeV, high luminosity e+e- linear collider design. Beam acceleration uses high frequency (30 GHz), normal conducting structures operating at high accelerating gradients, in order to reduce the length and, in consequence, the cost of the linac. The cost-effective RF power production scheme, based on the so-called Two-beam Acceleration method, enables electrons and positrons to be collided at energies ranging from ~ 0.1 TeV up to a maximum of 5 TeV, in stages. A road map has been drawn up to indicate the research and development necessary to demonstrate the technical feasibility of a 3 TeV centre-of-mass collider with a luminosity of 1035 cm-2s-1. Considerable progress has been made in meeting the challenges associated with the CLIC technology and the present paper briefly reviews some of them. In particular, the status is given of the studies on the CLIC high-gradient structures, the dynamic time-dependent effects, the stabilisation of the vibration and the beam delivery system. T...

  16. The International Linear Collider

    CERN Document Server

    Barish, Barry

    2013-01-01

    In this article, we describe the key features of the recently completed technical design for the International Linear Collider (ILC), a 200-500 GeV linear electron-positron collider (expandable to 1 TeV) that is based on 1.3 GHz superconducting radio-frequency (SCRF) technology. The machine parameters and detector characteristics have been chosen to complement the Large Hadron Collider physics, including the discovery of the Higgs boson, and to further exploit this new particle physics energy frontier with a precision instrument. The linear collider design is the result of nearly twenty years of R&D, resulting in a mature conceptual design for the ILC project that reflects an international consensus. We summarize the physics goals and capability of the ILC, the enabling R&D and resulting accelerator design, as well as the concepts for two complementary detectors. The ILC is technically ready to be proposed and built as a next generation lepton collider, perhaps to be built in stages beginning as a Hig...

  17. Polarization for the by-pass SLAC/PEP collider

    Energy Technology Data Exchange (ETDEWEB)

    Chao, A.W.

    1980-06-01

    It was suggested that one can collide the store e/sup +/ beam in PEP with the e/sup /minus// beam from SLAC to reach a center-of-mass energy higher than that achieved by the PEP colliding beams. Although the future of this PEP/SLAC collider is not yet certain, it is useful to first explore its physics possibilities. One possible version of the SLAC/PEP collider utilizes a by-pass at the interaction point; the stored beam is displaced vertically by a set of vertical bending magnets every time the linac beam arrives. One feature of this by-pass scheme that makes it attractive is that the amount of the vertical displacement of the by-pass can be chosen so that the spin polarization of the stored beam is made longitudinal at the point of interaction. In this note, we have studied the various depolarization effects of the stored e/sup +/ beam due to the perturbation of the by-pass magnets. 1 fig.

  18. Thin pixel development for the SuperB silicon vertex tracker

    Energy Technology Data Exchange (ETDEWEB)

    Rizzo, G., E-mail: giuliana.rizzo@pi.infn.it [INFN-Pisa and Universita di Pisa (Italy); Avanzini, C.; Batignani, G.; Bettarini, S.; Bosi, F.; Ceccanti, M.; Cenci, R.; Cervelli, A.; Crescioli, F.; Dell' Orso, M.; Forti, F.; Giannetti, P.; Giorgi, M.A. [INFN-Pisa and Universita di Pisa (Italy); Lusiani, A. [Scuola Normale Superiore and INFN-Pisa (Italy); Gregucci, S.; Mammini, P.; Marchiori, G.; Massa, M.; Morsani, F.; Neri, N. [INFN-Pisa and Universita di Pisa (Italy); and others

    2011-09-11

    The high luminosity SuperB asymmetric e{sup +}e{sup -} collider, to be built near the INFN National Frascati Laboratory in Italy, has been designed to deliver a luminosity greater than 10{sup 36} cm{sup -2} s{sup -1} with moderate beam currents and a reduced center of mass boost with respect to earlier B-Factories. An improved vertex resolution is required for precise time-dependent measurements and the SuperB Silicon Vertex Tracker will be equipped with an innermost layer of small radius (about 1.5 cm), resolution of 10-15{mu}m in both coordinates, low material budget (<1% X0), and able to withstand a background rate of several tens of MHz/cm{sup 2}. The ambitious goal of designing a thin pixel device with these stringent requirements is being pursued with specific R and D programs on different technologies: hybrid pixels, CMOS MAPS and pixel sensors developed with vertical integration technology. The latest results on the various pixel options for the SuperB SVT will be presented.

  19. Transverse cooling in the muon collider

    Energy Technology Data Exchange (ETDEWEB)

    Fernow, R.C.; Gallardo, J.C.; Kirk, H.G.; Palmer, R.B.

    1998-07-01

    Ionization cooling is the preferred method for reducing the emittance of muon beams in a muon collider. The method described here uses passive liquid hydrogen absorbers and rf acceleration in an alternating lattice of solenoids. The authors consider the basic principles of ionization cooling, indicating the reasons for selecting various parameters. Tracking simulations are used to make detailed examinations of effects on the beam, such as transmission losses, transverse cooling, bunch lengthening, and introduction of energy spread. The system reduces the overall 6-dimensional emittance to 44% of its initial value.

  20. NLC photon collider option progress and plans

    Energy Technology Data Exchange (ETDEWEB)

    Gronberg, J

    2000-08-31

    The idea of producing beams of high energy photons by Compton backscattering of laser photons was proposed over 20 years ago. At the time, producing the required laser pulses was not feasible. However, recent advances in high average power, diode pumped lasers appear to have solved this problem. The US Collaboration is now turning its attention to the engineering requirement of mating the laser and optics components with the accelerator structures in the confined space of the a colliding beam interaction region. The demonstration of a technically feasible interaction region design is planned for the Snowmass conference in 2001.

  1. The next linear collider damping ring lattices

    Energy Technology Data Exchange (ETDEWEB)

    Wolski, Andrzej; Corlett, John N.

    2001-06-20

    We report on the lattice design of the Next Linear Collider (NLC) damping rings. The damping rings are required to provide low emittance electron and positron bunch trains to the NLC linacs, at a rate of 120 Hz. We present an optical design, based on a theoretical minimum emittance (TME) lattice, to produce the required normalized extracted beam emittances gex = 3 mm-mrad and gey = 0.02 mm mrad. An assessment of dynamic aperture and non-linear effects is given. The positron pre-damping ring, required to reduce the emittance of the positron beam such that it may be accepted by a main damping ring, is also described.

  2. The Super Patalan Numbers

    OpenAIRE

    Richardson, Thomas M.

    2014-01-01

    We introduce the super Patalan numbers, a generalization of the super Catalan numbers in the sense of Gessel, and prove a number of properties analagous to those of the super Catalan numbers. The super Patalan numbers generalize the super Catalan numbers similarly to how the Patalan numbers generalize the Catalan numbers.

  3. COLLIDE Pro Helvetia Award

    CERN Document Server

    2016-01-01

    The COLLIDE Pro Helvetia Award is run in partnership with Pro Helvetia, giving the opportunity to Swiss artists to do research at CERN for three months.   From left to right: Laura Perrenoud, Marc Dubois and Simon de Diesbach. The photo shows their VR Project, +2199. Fragment.In are the winning artists of COLLIDE Pro Helvetia. They came to CERN for two months in 2015, and will now continue their last month in the laboratory. Fragment.In is a Swiss based interaction design studio. They create innovative projects, interactive installations, video and game design. Read more about COLLIDE here.

  4. Effect of CSR shielding in the compact linear collider

    CERN Document Server

    Esberg, J; Apsimon, R; Schulte, D

    2014-01-01

    The Drive Beam complex of the Compact Linear Collider must use short bunches with a large charge making beam transport susceptible to unwanted effects of Coherent Synchrotron Radiation emitted in the dipole magnets. We present the effects of transporting the beam within a limited aperture which decreases the magnitude of the CSR wake. The effect, known as CSR shielding, eases the design of key components of the facility.

  5. International linear collider reference design report

    Energy Technology Data Exchange (ETDEWEB)

    Aarons, G.

    2007-06-22

    The International Linear Collider will give physicists a new cosmic doorway to explore energy regimes beyond the reach of today's accelerators. A proposed electron-positron collider, the ILC will complement the Large Hadron Collider, a proton-proton collider at the European Center for Nuclear Research (CERN) in Geneva, Switzerland, together unlocking some of the deepest mysteries in the universe. With LHC discoveries pointing the way, the ILC -- a true precision machine -- will provide the missing pieces of the puzzle. Consisting of two linear accelerators that face each other, the ILC will hurl some 10 billion electrons and their anti-particles, positrons, toward each other at nearly the speed of light. Superconducting accelerator cavities operating at temperatures near absolute zero give the particles more and more energy until they smash in a blazing crossfire at the centre of the machine. Stretching approximately 35 kilometres in length, the beams collide 14,000 times every second at extremely high energies -- 500 billion-electron-volts (GeV). Each spectacular collision creates an array of new particles that could answer some of the most fundamental questions of all time. The current baseline design allows for an upgrade to a 50-kilometre, 1 trillion-electron-volt (TeV) machine during the second stage of the project. This reference design provides the first detailed technical snapshot of the proposed future electron-positron collider, defining in detail the technical parameters and components that make up each section of the 31-kilometer long accelerator. The report will guide the development of the worldwide R&D program, motivate international industrial studies and serve as the basis for the final engineering design needed to make an official project proposal later this decade.

  6. Collide@CERN Geneva

    CERN Document Server

    CERN. Geneva; Kieffer, Robert; Blas Temino, Diego; Bertolucci, Sergio; Mr. Decelière, Rudy; Mr. Hänni, Vincent

    2014-01-01

    CERN, the Republic and Canton of Geneva, and the City of Geneva are delighted to invite you to “Collide@CERN Geneva Music”. Come to the public lecture about collisions between music and particle physics by the third winners of Collide@CERN Geneva, Vincent Hänni & Rudy Decelière, and their scientific inspiration partners, Diego Blas and Robert Kieffer. The event marks the beginning of their residency at CERN, and will be held at the CERN Globe of Science and Innovation on 16 October 2014 at 19.00. Doors will open at 18.30.

  7. Muon collider design

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, R. [Brookhaven National Lab., Upton, NY (United States)]|[Stanford Linear Accelerator Center, Menlo Park, CA (United States); Sessler, A. [Lawrence Berkeley National Lab., CA (United States); Skrinsky, A. [AN SSSR, Novosibirsk (Russian Federation). Inst. Yadernoj Fiziki

    1996-03-01

    The possibility of muon colliders was introduced by Skrinsky et al., Neuffer, and others. More recently, several workshops and collaboration meetings have greatly increased the level of discussion. In this paper we present scenarios for 4 TeV and 0.5 TeV colliders based on an optimally designed proton source, and for a lower luminosity 0.5 TeV demonstration based on an upgraded version of the AGS. It is assumed that a demonstration version based on upgrades of the FERMILAB machines would also be possible. 53 refs., 25 figs., 8 tabs.

  8. Observations and open questions in beam-beam interactions

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Tanaji; /Fermilab

    2010-08-01

    The first of the hadron colliders, ISR, started operation in 1970. In the following years, the hadron colliders to follow were the SPS (started 1980), the Tevatron (started 1987 first as a fixed target machine), RHIC (started 2000) and most recently the LHC, which started in 2008. HERA was a hybrid that collided electrons and protons. All of these accelerators had or have their performance limited by the effects of the beam-beam interactions. That has also been true for the electron-positron colliders such as LEP, CESR, KEKB and PEPII. In this article I will discuss how the beam-beam limitations arose in some of these machines. The discussion will be focused on common themes that span the different colliders. I will mostly discuss the hadron colliders but sometimes discuss the lepton colliders where relevant. Only a handful of common accelerator physics topics are chosen here, the list is not meant to be exhaustive. A comparative review of beam-beam performance in the ISR, SPS and Tevatron (ca 1989) can be found in reference. Table 1 shows the relevant parameters of colliders (excluding the LHC), which have accelerated protons.

  9. Update on the MEIC electron collider ring design

    Energy Technology Data Exchange (ETDEWEB)

    Lin, F. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Derbenev, Ya. S. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Harwood, L. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Hutton, A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Morozov, V. S. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Pilat, F. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Zhang, Y. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Cai, Y. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Nosochkov, Y. M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Sullivan, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Wang, M-H [SLAC National Accelerator Lab., Menlo Park, CA (United States); Wienands, U. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-07-14

    The electron collider ring of the Medium-energy Electron-Ion Collider (MEIC) at Jefferson Lab is designed to accumulate and store a high-current polarized electron beam for collisions with an ion beam. We consider a design of the electron collider ring based on reusing PEPII components, such as magnets, power supplies, vacuum system, etc. This has the potential to significantly reduce the cost and engineering effort needed to bring the project to fruition. This paper reports on an electron ring optics design considering the balance of PEP-II hardware parameters (such as dipole sagitta, magnet field strengths and acceptable synchrotron radiation power) and electron beam quality in terms of equilibrium emittances.

  10. Update on the MEIC electron collider ring design

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Fangei [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Derbenev, Yaroslav S. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Harwood, Leigh [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Hutton, Andrew [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Morozov, Vasiliy [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Pilat, Fulvia [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Zhang, Yuhong [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Cai, Y. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Nosochkov, Y. M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Sullivan, Michael [SLAC National Accelerator Lab., Menlo Park, CA (United States); Wang, M.-H [SLAC National Accelerator Lab., Menlo Park, CA (United States); Wienands, Uli [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-09-01

    The electron collider ring of the Medium-energy Electron-Ion Collider (MEIC) at Jefferson Lab is designed to accumulate and store a high-current polarized electron beam for collisions with an ion beam. We consider a design of the electron collider ring based on reusing PEP-II components, such as magnets, power supplies, vacuum system, etc. This has the potential to significantly reduce the cost and engineering effort needed to bring the project to fruition. This paper reports on an electron ring optics design considering the balance of PEP-II hardware parameters (such as dipole sagitta, magnet field strengths and acceptable synchrotron radiation power) and electron beam quality in terms of equilibrium emittances.

  11. A Novel Collimation Method for Large Hadron Colliders

    CERN Document Server

    Zou, Ye; Tang, Jingyu

    2016-01-01

    This paper proposes a novel collimation method for large hadron colliders by arranging betatron and momentum collimation systems in the same insertion to improve the overall cleaning efficiency. The method has the potential of avoiding beam losses at the downstream dispersion suppression section following the conventional betatron collimation section, which is caused by those particles with single diffractive scattering at the collimators. Evident beam loss in arc sections should be avoided to protect the superconducting magnets from quenching, especially when the stored beam energy is up to hundreds of MJ level or even higher in modern proton-proton collider. Our studies show that it is beneficial to arrange the momentum collimation system just after the betatron collimation system so that it can clean the particles with lower momentum due to the single diffractive scattering in the betatron collimators. This method is being applied to the future proton-proton collider SPPC. Preliminary multi-particle simula...

  12. Quench tests at the Large Hadron Collider with collimation losses at 3.5 Z TeV

    CERN Document Server

    Redaelli, S; Bellodi, G; Brodzinski, K; Bruce, R; Burkart, F; Cauchi, M; Deboy, D; Dehning, B; Holzer, E B; Jowett, J M; Lari, L; Nebot del Busto, E; Pojer, M; Priebe, A; Rossi, A; Schmidt, R; Sapinski, M; Schaumann, M; Solfaroli Camollocci, M; Valentino, G; Versteegen, R; Wenninger, J; Wollmann, D; Zerlauth, M

    2013-01-01

    The Large Hadron Collider (LHC) has been operating since 2010 at 3.5 TeV and 4.0 TeV without experiencing quenches induced by losses from circulating beams. This situation might change at 7 TeV where the quench margins in the super-conducting magnets are reduced. The critical locations are the dispersion suppressors (DSs) at either side of the cleaning and experimental insertions, where dispersive losses are maximum. It is therefore crucial to understand the quench limits with beam loss distributions alike those occurring in standard operation. In order to address this aspect, quench tests were performed by inducing large beam losses on the primary collimators of the betatron cleaning insertion, for proton and lead ion beams of 3.5 Z TeV, to probe the quench limits of the DS magnets. Losses up to 500 kW were achieved without quenches. The measurement technique and the results obtained are presented, with observations of heat loads in the cryogenics system.

  13. Electron-positron Colliders from the $\\phi$ to the Z report

    CERN Document Server

    Zhao, Z; Burdman, G; Marciano, W; Hitlin, D; Mandelkern, M A; Soffer, A; Cassel, David G; Gibbons, L; Mönig, K; Butler, J; Kasper, P; Kutschke, R; MacKenzie, P B; Pordes, S; Ray, R; Sen, T; Bettoni, D; Calabrese, R; Bloise, C; Kaplan, D; Katayama, N; Okada, Y; Ohnishi, Y; Yamamoto, H; Gritsan, A; Dytman, S A; Lee, J; Shipsey, I; Maravin, Y; Decker, Franz Josef; Hiller, G; Kim, P; Leith, D W G S; Petrak, S; Robertson, S; Roodman, A; Seeman, J; Artuso, M; Stone, S; Lou, X; Luke, M; Johns, W

    2001-01-01

    We report on the status and plans of experiments now running or proposed for electron-positron colliders at energies between the $\\phi$ and the Z. The $e^{+}e^{-}$ B and charm factories we considered were PEP-II/BABAR, KEKB/Belle, superKEK, SuperBABAR, and CESR-c/CLEO-c. We reviewed the programs at the $\\phi$ factory at Frascati and the proposed PEP-N facility at Stanford Linear Accelerator Center. We studied the prospects for B physics with a dedicated linear collider Z factory, associated with the TESLA high energy linear collider. In all cases, we compared the physics reach of these facilities with that of alternative experiments at hadron colliders or fixed target facilities.

  14. Collider signatures of hylogenesis

    Science.gov (United States)

    Demidov, S. V.; Gorbunov, D. S.; Kirpichnikov, D. V.

    2015-02-01

    We consider collider signatures of the hylogenesis—a variant of the antibaryonic dark matter model. We obtain bounds on the model parameters from results of the first LHC run. Also we suggest several new channels relevant for probing the antibaryonic dark matter at LHC.

  15. Collider signatures of Hylogenesis

    CERN Document Server

    Demidov, S V; Kirpichnikov, D V

    2014-01-01

    We consider collider signatures of the hylogenesis --- a variant of antibaryonic dark matter model. We obtain bounds on the model parameters from results of the first LHC run. Also we suggest several new channels relevant for probing the antibaryonic dark matter at LHC.

  16. The Large Hadron Collider

    CERN Multimedia

    't Hooft, Gerardus; Llewellyn Smith, Christopher Hubert; Brüning, Oliver Sim; Collier, Paul; Stapnes, Steinar; Ellis, Jonathan Richard; Braun-Munzinger, Peter; Stachel, Johanna; Lederman, Leon Max

    2007-01-01

    Several articles about the LHC: The Making of the standard model; high-energy colliders and the rise of the standard model; How the LHC came to be; Building a behemoth; Detector challenges at the LHC; Beyond the standard model with the LHC; The quest for the quark-gluon plasma; The God particle et al. (42 pages

  17. Hadron collider physics

    Energy Technology Data Exchange (ETDEWEB)

    Pondrom, L.

    1991-10-03

    An introduction to the techniques of analysis of hadron collider events is presented in the context of the quark-parton model. Production and decay of W and Z intermediate vector bosons are used as examples. The structure of the Electroweak theory is outlined. Three simple FORTRAN programs are introduced, to illustrate Monte Carlo calculation techniques. 25 refs.

  18. The Large Hadron Collider

    CERN Multimedia

    Wright, Alison

    2007-01-01

    "We are on the threshold of a new era in particle-physics research. In 2008, the Large Hadron Collider (LHC) - the hightest-energy accelerator ever built - will come into operation at CERN, the European labortory that straddles the French-Swiss border near Geneva." (1/2 page)

  19. Toponium at hadronic colliders

    Energy Technology Data Exchange (ETDEWEB)

    Finjord, J. (Bern Univ. (Switzerland)); Girardi, G.; Sorba, P. (Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules); Mery, P. (European Organization for Nuclear Research, Geneva (Switzerland))

    1982-05-27

    We calculate hadronic toponium production by specific diagrams obeying colour conservation and charge conjugation. The resulting rates, though lower than those calculated using semi-local duality arguments are encouraging and may allow for toponium discovery at hadronic colliders currently in development.

  20. Tevatron's complex collider cousins

    CERN Multimedia

    Fischer, W

    2004-01-01

    Letter referring to Schwarzschild's story "Disappointing performance and tight budgets confront Fermilab with tough decisions" and contesting that the Tevatron is not the most complex accelerator operating. They use the examples of CERN's SPS collider, HERA at DESY and the RHIC at Brookhaven (1/4 page)

  1. When stars collide

    NARCIS (Netherlands)

    Glebbeek, E.; Pols, O.R.

    2007-01-01

    When two stars collide and merge they form a new star that can stand out against the background population in a star cluster as a blue straggler. In so called collision runaways many stars can merge and may form a very massive star that eventually forms an intermediate mass blackhole. We have perfor

  2. Challenges for highest energy circular colliders

    CERN Document Server

    Benedikt, M; Wenninger, J; Zimmermann, F

    2014-01-01

    A new tunnel of 80–100 km circumference could host a 100 TeV centre-of-mass energy-frontier proton collider (FCC-hh/VHE-LHC), with a circular lepton collider (FCCee/TLEP) as potential intermediate step, and a leptonhadron collider (FCC-he) as additional option. FCC-ee, operating at four different energies for precision physics of the Z, W, and Higgs boson and the top quark, represents a significant push in terms of technology and design parameters. Pertinent R&D efforts include the RF system, topup injection scheme, optics design for arcs and final focus, effects of beamstrahlung, beam polarization, energy calibration, and power consumption. FCC-hh faces other challenges, such as high-field magnet design, machine protection and effective handling of large synchrotron radiation power in a superconducting machine. All these issues are being addressed by a global FCC collaboration. A parallel design study in China prepares for a similar, but smaller collider, called CepC/SppC.

  3. Introductory Lectures on Collider Physics

    Science.gov (United States)

    Tait, Tim M. P.; Wang, Lian-Tao

    2013-12-01

    These are elementary lectures about collider physics. They are aimed at graduate students who have some background in computing Feynman diagrams and the Standard Model, but assume no particular sophistication with the physics of high energy colliders.

  4. Electron lenses for the large hadron collider

    CERN Document Server

    Stancari†, G; Bruce, R; Redaelli, S; Rossi, A; Salvachua Ferrando, B

    2014-01-01

    Electron lenses are pulsed, magnetically confined electron beamswhose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-bybunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beamcompensation, and for the demonstration of halo scrapingwith hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in RHIC at BNL. Within the US LHC Accelerator Research Program and the European HiLumi LHC Design Study, hollow electron beam collimation was studied as an option to complement the collimation system for the LHC upgrades. A conceptual design was recently completed, and the project is moving towards a technical design in 2014–2015 for construction in 2015–2017, if needed, after resuming LHC operations and re-assessing collimation needs and requirements at 6.5 TeV. Because of the...

  5. Beam-beam effects in the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, V.; Alexahin, Y.; Lebedev, V.; Lebrun, P.; Moore, R.S.; Sen, T.; Tollestrup, A.; Valishev, A.; Zhang, X.L.; /Fermilab

    2005-01-01

    The Tevatron in Collider Run II (2001-present) is operating with 6 times more bunches, many times higher beam intensities and luminosities than in Run I (1992-1995). Electromagnetic long-range and head-on interactions of high intensity proton and antiproton beams have been significant sources of beam loss and lifetime limitations. We present observations of the beam-beam phenomena in the Tevatron and results of relevant beam studies. We analyze the data and various methods employed in operations, predict the performance for planned luminosity upgrades, and discuss ways to improve it.

  6. Crab Waist collision scheme: a novel approach for particle colliders

    Science.gov (United States)

    Zobov, M.; DAΦNE Team

    2016-09-01

    A new concept of nonlinear focusing of colliding bunches, called Crab Waist (CW) collision scheme, has been proposed at LNF INFN. It has been successfully tested at the Italian lepton collider DAΦNE in operational conditions providing luminosity for two different experimental detectors, SIDDHARTA and KLOE-2. Considering a high efficiency of the scheme for increasing collision luminosity and its relative simplicity for implementation several new collider projects have been proposed and are under development at present. These are the SuperKEKB B-factory ready to start commissioning in 2016 in Japan, the SuperC-Tau factory proposed in Novosibirsk and entered in the short list of Russian mega-science projects, the new 100-km electron-positron Future Circular Collider (FCC-ee) under design study at CERN and some others. In this paper we describe the CW collision scheme, discuss its advantages and report principal results achieved at the electron-positron Φ-factory DAΦNE.

  7. High luminosity muon collider design

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, R.; Gallardo, J.

    1996-10-01

    Muon Colliders have unique technical and physics advantages and disadvantages when compared with both hadron and electron machines. They should be regarded as complementary. Parameters are given of 4 TeV high luminosity {mu}{sup +}{mu}{sup {minus}} collider, and of a 0.5 TeV lower luminosity demonstration machine. We discuss the various systems in such muon colliders.

  8. Workshop on Calorimetery for the Superconducting Super Collider

    Energy Technology Data Exchange (ETDEWEB)

    Mulholland, G.T.; /Fermilab

    1989-03-19

    The international workshop brought together 170 participants to further develop the SSC design and performance specifications of the LAr, Gas, Scintillation, Silicon, and Warm Liquid calorimeter technologies, and to develop the general topics of Requirements, Simulation, and Electronics. Progress was made across a broad front in all areas; at the feasibility level for some and In the fine structure for others. The meeting established areas of agreement, provided some general direction, and helped to quantify some differences at widely varying levels of detector technology development. The workshop helped to level the different understandings of the participants; increased the depth of the generalists and the breadth of the specialists. A high degree of group partitioning limited access to the detailed discussion within some detector groups. The communication was clearly necessary and rewarding, and seemed to meet or exceed the expectations of most participants. This report will deal with: the Liquid Argon detector and, to a lesser extent, the Requirements working groups, an update on uranIum material logistics, and a view of LAr calorimetry by others.

  9. Strain energy minimization in SSC (Superconducting Super Collider) magnet winding

    Energy Technology Data Exchange (ETDEWEB)

    Cook, J.M.

    1990-09-24

    Differential geometry provides a natural family of coordinate systems, the Frenet frame, in which to specify the geometric properties of magnet winding. By a modification of the Euler-Bernoulli thin rod model, the strain energy is defined with respect to this frame. Then it is minimized by a direct method from the calculus of variations. The mathematics, its implementation in a computer program, and some analysis of an SSC dipole by the program will be described. 16 refs.

  10. Elementary particle physics and the superconducting super collider.

    Science.gov (United States)

    Quigg, C; Schwitters, R F

    1986-03-28

    The present status and future prospects of elementary particle physics are reviewed, and some of the scientific questions that motivate the construction of a major new accelerator complex in the United States are summarized.

  11. Linear collider IR and final focus introduction

    Energy Technology Data Exchange (ETDEWEB)

    Irwin, J.; Burke, D.

    1991-09-01

    The Linear Collider subgroup of the Accelerator Physics working group concerned itself with all aspects of the Next Linear Collider (NLC) design from the end of the accelerating structure to and through the interaction region. Within this region are: (1) a collimation section, (2) muon protection (of the detector from the collimator), (3) final focus system, (4) interaction point physics, and (5) detector masking from synchrotron radiation and beam-beam pair production. These areas of study are indicated schematically in Fig. 1. The parameters for the Next Linear Collider are still in motion, but attention has settled on a handful of parameter sets. Energies under consideration vary from 0.5 to 1.5 TeV in the center of mass, and luminosities vary from 10{sup 33} to 10{sup 34} cm{sup {minus}2}s{sup {minus}1}. To be concrete we chose as a guide for our studies the parameter sets labeled F and G, Table 1 from Palmer. These cover large and small crossing angle cases and 0.4 m to 1.8 m of free length at the interaction point.

  12. Muon Collider Machine-Detector Interface

    Energy Technology Data Exchange (ETDEWEB)

    Mokhov, Nikolai V.; /Fermilab

    2011-08-01

    In order to realize the high physics potential of a Muon Collider (MC) a high luminosity of {mu}{sup +}{mu}{sup -}-collisions at the Interaction Point (IP) in the TeV range must be achieved ({approx}10{sup 34} cm{sup -2}s{sup -1}). To reach this goal, a number of demanding requirements on the collider optics and the IR hardware - arising from the short muon lifetime and from relatively large values of the transverse emittance and momentum spread in muon beams that can realistically be obtained with ionization cooling should be satisfied. These requirements are aggravated by limitations on the quadrupole gradients as well as by the necessity to protect superconducting magnets and collider detectors from muon decay products. The overall detector performance in this domain is strongly dependent on the background particle rates in various sub-detectors. The deleterious effects of the background and radiation environment produced by the beam in the ring are very important issues in the Interaction Region (IR), detector and Machine-Detector Interface (MDI) designs. This report is based on studies presented very recently.

  13. Mirror-enhanced super-resolution microscopy

    OpenAIRE

    2016-01-01

    Axial excitation confinement beyond the diffraction limit is crucial to the development of next-generation, super-resolution microscopy. STimulated Emission Depletion (STED) nanoscopy offers lateral super-resolution using a donut-beam depletion, but its axial resolution is still over 500 nm. Total internal reflection fluorescence microscopy is widely used for single-molecule localization, but its ability to detect molecules is limited to within the evanescent field of ~ 100 nm from the cell a...

  14. Design of Swinged Continuous Beam of Super-large Bridge Crossing Wuhan-Guangzhou High-speed Railway%跨武广特大桥转体连续梁设计

    Institute of Scientific and Technical Information of China (English)

    涂杨志

    2012-01-01

    Research purposes: The super-large bridge of the Wuhan-Xianning intercity railway is the bridge crossing the Wuhan-Guangzhou High-speed Railway, with main span of 48 + 80 + 48 m continuous beam structure. The construction method of grouting cantilever first and then grouting the swing body was conducted to the beam. In this paper, the introduction is given to the beam construction, including the beam structure, the beam construction method and erection by swing method. Research conclusions: The erection by swing method is a good way for construction of the bridge above-crossing the busy existing railway. This method has the features of money-saving, practice, safety, reliability, cutting the influence of the construction on traffic and reducing the construction risk, and has a wide applicable prospecting. The design and construction of the swinged continuous beam presented in this paper can provide the important reference to the similar works, especially to the bridge design for passenger dedicated line.%研究目的:跨武广特大桥是武咸城际铁路上跨武广客运专线一座特大桥,主跨采用(48 +80 +48)m连续梁结构,该梁采用先悬臂浇注,后转体的施工方法.本文从梁体构造、梁体施工方法、转体施工等方面对本桥连续梁进行介绍.研究结论:上跨繁忙既有线铁路施工,转体施工可谓一种较好方法选择,该方法经济实用、安全可靠、减少上跨桥梁施工对既有线的影响,降低风险,并有广阔的应用前景.本文为转体连续梁的设计与施工提供一实例,为今后同类型桥,特别是上跨客运专线的桥梁设计提供重要的参考价值.

  15. The CERN SPS proton–antiproton collider

    CERN Document Server

    Schmidt, Rudiger

    2016-01-01

    One of CERN's most ambitious and successful projects was the search for the intermediate bosons, W and Z [1]. The accelerator part of the project relied on a number of innovations in accelerator physics and technology. The invention of the method of stochastic cooling and the extension by many orders of magnitude beyond the initial proof of principle demonstration allowed the construction of the Antiproton Accumulator. Major modifications to the 26 GeV PS complex and the conversion of the 300 GeV SPS, which had just started up as an accelerator, to a collider were required. The SPS collider had to master the beam–beam effect far beyond limits reached before and had to function in a tight symbiosis with the UA1 and UA2 experiments.

  16. Luminosity Spectrum Reconstruction at Linear Colliders

    CERN Document Server

    Poss, Stéphane

    2014-01-01

    A good knowledge of the luminosity spectrum is mandatory for many measurements at future e+e- colliders. As the beam-parameters determining the luminosity spectrum cannot be measured precisely, the luminosity spectrum has to be measured through a gauge process with the detector. The measured distributions, used to reconstruct the spectrum, depend on Initial State Radiation, cross-section, and Final State Radiation. To extract the basic luminosity spectrum, a parametric model of the luminosity spectrum is created, in this case the spectrum at the 3 TeV Compact Linear Collider (CLIC). The model is used within a reweighting technique to extract the luminosity spectrum from measured Bhabha event observables, taking all relevant effects into account. The centre-of-mass energy spectrum is reconstructed within 5% over the full validity range of the model. The reconstructed spectrum does not result in a significant bias or systematic uncertainty in the exemplary physics benchmark process of smuon pair production.

  17. ERL-BASED LEPTON-HADRON COLLIDERS: eRHIC AND LHeC

    CERN Document Server

    Zimmermann, F

    2013-01-01

    Two hadron-ERL colliders are being proposed. The Large Hadron electron Collider (LHeC) plans to collide the high-energy protons and heavy ions in the Large Hadron Collider (LHC) at CERN with 60-GeV polarized electrons or positrons. The baseline scheme for this facility adds to the LHC a separate recirculating superconducting (SC) lepton linac with energy recovery, delivering a lepton current of 6.4mA. The electron-hadron collider project eRHIC aims to collide polarized (and unpolarized) electrons with a current of 50 (220) mA and energies in the range 5–30 GeV with a variety of hadron beams— heavy ions as well as polarized light ions— stored in the existing Relativistic Heavy Ion Collider (RHIC) at BNL. The eRHIC electron beam will be generated in an energy recovery linac (ERL) installed inside the RHIC tunnel.

  18. The Large Hadron Collider

    CERN Document Server

    Juettner Fernandes, Bonnie

    2014-01-01

    What really happened during the Big Bang? Why did matter form? Why do particles have mass? To answer these questions, scientists and engineers have worked together to build the largest and most powerful particle accelerator in the world: the Large Hadron Collider. Includes glossary, websites, and bibliography for further reading. Perfect for STEM connections. Aligns to the Common Core State Standards for Language Arts. Teachers' Notes available online.

  19. Accelerators, Colliders, and Snakes

    Science.gov (United States)

    Courant, Ernest D.

    2003-12-01

    The author traces his involvement in the evolution of particle accelerators over the past 50 years. He participated in building the first billion-volt accelerator, the Brookhaven Cosmotron, which led to the introduction of the "strong-focusing" method that has in turn led to the very large accelerators and colliders of the present day. The problems of acceleration of spin-polarized protons are also addressed, with discussions of depolarizing resonances and "Siberian snakes" as a technique for mitigating these resonances.

  20. Why Large Hadron Collider?

    Indian Academy of Sciences (India)

    D P Roy

    2011-05-01

    I discuss LHC physics in the historical perspective of the progress in particle physics. After a recap of the Standard Model (SM) of particle physics, I discuss the high energy colliders leading up to LHC and their role in the discovery of these SM particles. Then I discuss the two main physics issues of LHC, i.e. Higgs mechanism and supersymmetry. I briefly touch upon Higgs and SUSY searches at LHC along with their cosmological implications.

  1. Modulator considerations for beam chopping in the low energy beam transport at the SSC Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.; Pappas, G.

    1991-06-01

    Beam chopping in the low energy transport line at the Superconducting Super Collider Laboratory is accomplished using an electrostatic deflection system. LINAC requirements dictate the design of two modulators operating at 10 Hz with rise and fall times (as measured from approximately 10--99%) of {approximately}100 ns. Design of the first pulser, normally at 10 kV and pulsed to ground potential, utilizes a transformer-coupled diode-clamped solid state circuit to achieve the 2--35 {mu}s pulse width range required. The second pulser, which pulses from ground to approximately 7 kV, relies on a series vacuum tube circuit. The current designs, as well as recent test results and other circuit topologies considered, will be presented. 6 refs.

  2. Development of 3D beam-beam simulation for the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Stern, E.; Amundson, J.; Spentzouris, P.; Valishev, A.; /Fermilab; Qiang, J.; Ryne, R.; /LBL, Berkeley

    2007-06-01

    We present status of development of a 3D Beam-Beam simulation code for simulating the Fermilab Tevatron collider. The essential features of the code are 3D particle-in-cell Poisson solver for calculating the Beam-Beam electromagnetic interactions with additional modules for linear optics, machine impedance and chromaticity, and multiple bunch tracking. The simulations match synchrobetatron oscillations measured at the VEPP-2M collider. The impedance calculations show beam instability development consistent with analytic expressions.

  3. SuperB Progress Report for Physics

    Energy Technology Data Exchange (ETDEWEB)

    O' Leary, B.; /Aachen, Tech. Hochsch.; Matias, J.; Ramon, M.; /Barcelona, IFAE; Pous, E.; /Barcelona U.; De Fazio, F.; Palano, A.; /INFN, Bari; Eigen, G.; /Bergen U.; Asgeirsson, D.; /British Columbia U.; Cheng, C.H.; Chivukula, A.; Echenard, B.; Hitlin, D.G.; Porter, F.; Rakitin, A.; /Caltech; Heinemeyer, S.; /Cantabria Inst. of Phys.; McElrath, B.; /CERN; Andreassen, R.; Meadows, B.; Sokoloff, M.; /Cincinnati U.; Blanke, M.; /Cornell U., Phys. Dept.; Lesiak, T.; /Cracow, INP /DESY /Zurich, ETH /INFN, Ferrara /Frascati /INFN, Genoa /Glasgow U. /Indiana U. /Mainz U., Inst. Phys. /Karlsruhe, Inst. Technol. /KEK, Tsukuba /LBL, Berkeley /UC, Berkeley /Lisbon, IST /Ljubljana U. /Madrid, Autonoma U. /Maryland U. /MIT /INFN, Milan /McGill U. /Munich, Tech. U. /Notre Dame U. /PNL, Richland /INFN, Padua /Paris U., VI-VII /Orsay, LAL /Orsay, LPT /INFN, Pavia /INFN, Perugia /INFN, Pisa /Queen Mary, U. of London /Regensburg U. /Republica U., Montevideo /Frascati /INFN, Rome /INFN, Rome /INFN, Rome /Rutherford /Sassari U. /Siegen U. /SLAC /Southern Methodist U. /Tel Aviv U. /Tohoku U. /INFN, Turin /INFN, Trieste /Uppsala U. /Valencia U., IFIC /Victoria U. /Wayne State U. /Wisconsin U., Madison

    2012-02-14

    SuperB is a high luminosity e{sup +}e{sup -} collider that will be able to indirectly probe new physics at energy scales far beyond the reach of any man made accelerator planned or in existence. Just as detailed understanding of the Standard Model of particle physics was developed from stringent constraints imposed by flavour changing processes between quarks, the detailed structure of any new physics is severely constrained by flavour processes. In order to elucidate this structure it is necessary to perform a number of complementary studies of a set of golden channels. With these measurements in hand, the pattern of deviations from the Standard Model behavior can be used as a test of the structure of new physics. If new physics is found at the LHC, then the many golden measurements from SuperB will help decode the subtle nature of the new physics. However if no new particles are found at the LHC, SuperB will be able to search for new physics at energy scales up to 10-100 TeV. In either scenario, flavour physics measurements that can be made at SuperB play a pivotal role in understanding the nature of physics beyond the Standard Model. Examples for using the interplay between measurements to discriminate New Physics models are discussed in this document. SuperB is a Super Flavour Factory, in addition to studying large samples of B{sub u,d,s}, D and {tau} decays, SuperB has a broad physics programme that includes spectroscopy both in terms of the Standard Model and exotica, and precision measurements of sin{sup 2} {theta}{sub W}. In addition to performing CP violation measurements at the {Upsilon}(4S) and {phi}(3770), SuperB will test CPT in these systems, and lepton universality in a number of different processes. The multitude of rare decay measurements possible at SuperB can be used to constrain scenarios of physics beyond the Standard Model. In terms of other precision tests of the Standard Model, this experiment will be able to perform precision over

  4. SuperKEKB machine and Belle II detector status

    Energy Technology Data Exchange (ETDEWEB)

    Schwanda, C. [Institute of High Energy Physics, Austrian Academy of Sciences, Nikolsdorfergasse 18, 1050 Wien (Austria)

    2010-12-15

    The KEK Super B factory consists of the asymmetric energy e{sup +}e{sup -} collider SuperKEKB, operating at the energy of the Y(4S) resonance, and the Belle II detector, which will watch the products of the electron-positron collisons. This facility will be built by upgrading the present KEK B factory to allow both to minimize the construction costs and to resume data taking in the year 2014. The main goal of the new facility is to achieve an instantaneous luminosity of 8x10{sup 35}cm{sup -2}s{sup -1}, leading to a data set of about 50 ab{sup -1} around the year 2022. In this article, we briefly review the technical design of the SuperKEKB collider and the Belle II detector.

  5. Super climate for Vodafone Italia. Utilization of active chilled beams for a monument protected sanitation; Prima Klima fuer Vodafone Italia. Einsatz aktiver Kuehlbalken fuer ein denkmalgeschuetztes Sanierungsprojekt

    Energy Technology Data Exchange (ETDEWEB)

    Sefker, T.; Joneleit, R. [Trox GmbH, Neukirchen-Vluyn (Germany)

    2008-03-15

    Vodafone Italia moved as a new user into the former Olivetti headquarter (ICO) at the Italian Ivrea. A total sanitation was done of the outer envelope and facility management of the monument protected building. To secure a best possible comfort in the as call-center used open-plan offices and in the single bureaus the responsibles decided for an active chilled beam system with fresh air inlet and secondary air cooling. Chilled beams can save energy by delivering sensible cooling directly to spaces, decoupling maximum air delivery from the cooling load and reducing ventilation fan energy consumption; meet standard ventilation requirements with less ventilation airflow; has lower temperature lift and operates at higher efficiency; and reduces the need for energy-consuming reheat of cooled air. (GL)

  6. Study of beam-beam long range compensation with octupoles

    CERN Document Server

    Barranco Garcia, Javier; Buffat, Xavier; Tambasco, Claudia

    2017-01-01

    Long range beam-beam effects are responsible for particle losses and define fundamental operational parameters of colliders (i.e. crossing angles, intensities, emittances, ${\\beta}$${^∗}$). In this study we propose octuple magnets as a possible scheme to efficiently compensate long-range beam-beam interactions with a global correction scheme. The impact and improvements on the dynamic aperture of colliding beams together with estimates of the luminosity potentials are dis- cussed for the HL-LHC upgrade and extrapolations made for the FCC project.

  7. High-energy high-luminosity electron-ion collider eRHIC

    CERN Document Server

    Litvinenko, Vladimir N; Belomestnykh, Sergei; Ben-Zvi, Ilan; Blaskiewicz, Michael M; Calaga, Rama; Chang, Xiangyun; Fedotov, Alexei; Gassner, David; Hammons, Lee; Hahn, Harald; Hao, Yue; He, Ping; Jackson, William; Jain, Animesh; Johnson, Elliott C; Kayran, Dmitry; Kewisch, Jrg; Luo, Yun; Mahler, George; McIntyre, Gary; Meng, Wuzheng; Minty, Michiko; Parker, Brett; Pikin, Alexander; Pozdeyev, Eduard; Ptitsyn, Vadim; Rao, Triveni; Roser, Thomas; Skaritka, John; Sheehy, Brian; Tepikian, Steven; Than, Yatming; Trbojevic, Dejan; Tsentalovich, Evgeni; Tsoupas, Nicholaos; Tuozzolo, Joseph; Wang, Gang; Webb, Stephen; Wu, Qiong; Xu, Wencan; Zelenski, Anatoly

    2011-01-01

    In this paper, we describe a future electron-ion collider (EIC), based on the existing Relativistic Heavy Ion Collider (RHIC) hadron facility, with two intersecting superconducting rings, each 3.8 km in circumference. A new ERL accelerator, which provide 5-30 GeV electron beam, will ensure 10^33 to 10^34 cm^-2 s^-1 level luminosity.

  8. Scaling Laws for $e^+ e^-$ Linear Colliders

    CERN Document Server

    Delahaye, J P; Raubenheimer, T O; Wilson, Ian H

    1999-01-01

    Design studies of a future TeV e+e- Linear Collider (TLC) are presently being made by five major laboratories within the framework of a world-wide collaboration. A figure of merit is defined which enables an objective comparison of these different designs. This figure of merit is shown to depend only on a small number of parameters. General scaling laws for the main beam parameters and linac parameters are derived and prove to be very effective when used as guidelines to optimize the linear collider design. By adopting appropriate parameters for beam stability, the figure of merit becomes nearly independent of accelerating gradient and RF frequency of the accelerating structures. In spite of the strong dependence of the wake-fields with frequency, the single bunch emittance preservation during acceleration along the linac is also shown to be independent of the RF frequency when using equivalent trajectory correction schemes. In this situation, beam acceleration using high frequency structures becomes very adv...

  9. Symmetric Achromatic Low-Beta Collider Interaction Region Design Concept

    Energy Technology Data Exchange (ETDEWEB)

    Morozov, Vasiliy S. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Derbenev, Yaroslav S. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Lin, Fanglei [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Johnson, Rolland P. [Muons, Inc., Batavia, IL (United States)

    2013-01-01

    We present a new symmetry-based concept for an achromatic low-beta collider interaction region design. A specially-designed symmetric Chromaticity Compensation Block (CCB) induces an angle spread in the passing beam such that it cancels the chromatic kick of the final focusing quadrupoles. Two such CCB?s placed symmetrically around an interaction point allow simultaneous compensation of the 1st-order chromaticities and chromatic beam smear at the IP without inducing significant 2nd-order aberrations. We first develop an analytic description of this approach and explicitly formulate 2nd-order aberration compensation conditions at the interaction point. The concept is next applied to develop an interaction region design for the ion collider ring of an electron-ion collider. We numerically evaluate performance of the design in terms of momentum acceptance and dynamic aperture. The advantages of the new concept are illustrated by comparing it to the conventional distributed-sextupole chromaticity compensation scheme.

  10. Symmetric achromatic low-beta collider interaction region design concept

    CERN Document Server

    Morozov, V S; Lin, F; Johnson, R P

    2012-01-01

    We present a new symmetry-based concept for an achromatic low-beta collider interaction region design. A specially-designed symmetric Chromaticity Compensation Block (CCB) induces an angle spread in the passing beam such that it cancels the chromatic kick of the final focusing quadrupoles. Two such CCBs placed symmetrically around an interaction point allow simultaneous compensation of the 1st-order chromaticities and chromatic beam smear at the IP without inducing significant 2nd-order aberrations to the particle trajectory. We first develop an analytic description of this approach and explicitly formulate 2nd-order aberration compensation conditions at the interaction point. The concept is next applied to develop an interaction region design for the ion collider ring of an electron-ion collider. We numerically evaluate performance of the design in terms of momentum acceptance and dynamic aperture. The advantages of the new concept are illustrated by comparing it to the conventional distributed-sextupole chr...

  11. LEP : the Large Electron Positron Collider Conference MT17

    CERN Multimedia

    2001-01-01

    LEP was CERN's flagship research facility from 1989 until 2000 when it stepped aside to make way for installation of the Laboratory's next major accelerator, the Large Hadron Collider, LHC. With a circumference of 27 kilometres, LEP was the largest circular particle collider in the world. Inside its beam pipe, about 100 metres underground, bunches of electrons and positrons raced around in opposite directions as they were accelerated to almost the speed of light. In its first phase of operation, LEP was designed to collide electrons and positrons at an energy of around 100 GeV. After some seven years of accumulating data at this energy to study the Z particle - electrically neutral carrier of the weak interaction - everything was done to boost the energy of LEP's beams as high as possible.

  12. Chromaticity correction for a muon collider optics

    Energy Technology Data Exchange (ETDEWEB)

    Alexahin, Y.; Gianfelice-Wendt, E.; Kapin, V.; /Fermilab

    2011-03-01

    Muon Collider (MC) is a promising candidate for the next energy frontier machine. However, in order to obtain peak luminosity in the 10{sup 34} cm{sup 2}s{sup -1} range the collider lattice designmust satisfy a number of stringent requirements. In particular the expected large momentum spread of the muon beam and the very small {beta}* call for a careful correction of the chromatic effects. Here we present a particular solution for the interaction region (IR) optics whose distinctive feature is a three-sextupole local chromatic correction scheme. The scheme may be applied to other future machines where chromatic effects are expected to be large. The expected large muon energy spread requires the optics to be stable over a wide range of momenta whereas the required luminosity calls for {beta}* in the mm range. To avoid luminosity degradation due to hour-glass effect, the bunch length must be comparatively small. To keep the needed RF voltage within feasible limits the momentum compaction factor must be small over the wide range of momenta. A low {beta}* means high sensitivity to alignment and field errors of the Interaction Region (IR) quadrupoles and large chromatic effects which limit the momentum range of optics stability and require strong correction sextupoles, which eventually limit the Dynamic Aperture (DA). Finally, the ring circumference should be as small as possible, luminosity being inversely proportional to the collider length. A promising solution for a 1.5 TeV center of mass energy MC with {beta}* = 1 m in both planes has been proposed. This {beta}* value has been chosen as a compromise between luminosity and feasibility based on the magnet design and energy deposition considerations. The proposed solution for the IR optics together with a new flexible momentum compaction arc cell design allows to satisfy all requirements and is relatively insensitive to the beam-beam effect.

  13. Proceedings of the international workshop on next-generation linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Riordan, M. (ed.)

    1988-12-01

    This report contains papers on the next-generation of linear colliders. The particular areas of discussion are: parameters; beam dynamics and wakefields; damping rings and sources; rf power sources; accelerator structures; instrumentation; final focus; and review of beam-beam interaction.

  14. Successful Beam-Beam Tuneshift Compensation

    Energy Technology Data Exchange (ETDEWEB)

    Bishofberger, Kip Aaron [Univ. of California, Los Angeles, CA (United States)

    2005-01-01

    The performance of synchrotron colliders has been limited by the beam-beam limit, a maximum tuneshift that colliding bunches could sustain. Due to bunch-to-bunch tune variation and intra-bunch tune spread, larger tuneshifts produce severe emittance growth. Breaking through this constraint has been viewed as impossible for several decades. This dissertation introduces the physics of ultra-relativistic synchrotrons and low-energy electron beams, with emphasis placed on the limits of the Tevatron and the needs of a tuneshift-compensation device. A detailed analysis of the Tevatron Electron Lens (TEL) is given, comparing theoretical models to experimental data whenever possible. Finally, results of Tevatron operations with inclusion of the TEL are presented and analyzed. It is shown that the TEL provides a way to shatter the previously inescapable beam-beam limit.

  15. Accelerator physics in ERL based polarized electron ion collider

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Yue [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2015-05-03

    This talk will present the current accelerator physics challenges and solutions in designing ERL-based polarized electron-hadron colliders, and illustrate them with examples from eRHIC and LHeC designs. These challenges include multi-pass ERL design, highly HOM-damped SRF linacs, cost effective FFAG arcs, suppression of kink instability due to beam-beam effect, and control of ion accumulation and fast ion instabilities.

  16. A Moment Equation Approach to a Muon Collider Cooling Lattice

    Energy Technology Data Exchange (ETDEWEB)

    Celata, C.M.; Sessler, A.M.; Lee, P.B.; Shadwick, B.A.; Wurtele, J.S.

    1998-06-01

    Equations are derived which describe the evolution of the second order moments of the beam distribution function in the ionization cooling section of a muon collider. Ionization energy loss, multiple scattering, and magnetic fields have been included, but forces are linearized. A computer code using the equations agrees well with tracking calculations. The code is extremely fast, and can be used for preliminary design, where such issues as beam halo, which must be explored using a tracking code, are not the focus.

  17. Linear Collider Physics Resource Book Snowmass 2001

    Energy Technology Data Exchange (ETDEWEB)

    Ronan (Editor), M.T.

    2001-06-01

    The American particle physics community can look forward to a well-conceived and vital program of experimentation for the next ten years, using both colliders and fixed target beams to study a wide variety of pressing questions. Beyond 2010, these programs will be reaching the end of their expected lives. The CERN LHC will provide an experimental program of the first importance. But beyond the LHC, the American community needs a coherent plan. The Snowmass 2001 Workshop and the deliberations of the HEPAP subpanel offer a rare opportunity to engage the full community in planning our future for the next decade or more. A major accelerator project requires a decade from the beginning of an engineering design to the receipt of the first data. So it is now time to decide whether to begin a new accelerator project that will operate in the years soon after 2010. We believe that the world high-energy physics community needs such a project. With the great promise of discovery in physics at the next energy scale, and with the opportunity for the uncovering of profound insights, we cannot allow our field to contract to a single experimental program at a single laboratory in the world. We believe that an e{sup +}e{sup -} linear collider is an excellent choice for the next major project in high-energy physics. Applying experimental techniques very different from those used at hadron colliders, an e{sup +}e{sup -} linear collider will allow us to build on the discoveries made at the Tevatron and the LHC, and to add a level of precision and clarity that will be necessary to understand the physics of the next energy scale. It is not necessary to anticipate specific results from the hadron collider programs to argue for constructing an e{sup +}e{sup -} linear collider; in any scenario that is now discussed, physics will benefit from the new information that e{sup +}e{sup -} experiments can provide. This last point merits further emphasis. If a new accelerator could be designed and

  18. Rf power sources for linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Allen, M.A.; Callin, R.S.; Caryotakis, G.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Farkas, Z.D.; Fowkes, W.R.; Hoag, H.A.; Feinstein, J.; Ko, K.; Koontz, R.F.; Kroll, N.M.; Lavine, T.L.; Lee, T.G.; Loew, G.A.; Miller, R.H.; Nelson, E.M.; Ruth, R.D.; Vlieks, A.E.; Wang, J.W.; Wilson, P.B. (Stanford Linear Accelerator Center, Menlo Park, CA (USA)); Boyd, J.K.; Houk, T.; Ryne, R.D.; Westenskow, G.A.; Yu, S.S. (Lawrence Live

    1990-06-01

    The next generation of linear colliders requires peak power sources of over 200 MW per meter at frequencies above 10 GHz at pulse widths of less than 100 nsec. Several power sources are under active development, including a conventional klystron with rf pulse compression, a relativistic klystron (RK) and a crossed-field amplifier. Power from one of these has energized a 0.5 meter two- section High Gradient Accelerator (HGA) and accelerated a beam at over 80 MeV meter. Results of tests with these experimental devices are presented here.

  19. SLAC linear collider: the machine, the physics, and the future

    Energy Technology Data Exchange (ETDEWEB)

    Richter, B.

    1981-11-01

    The SLAC linear collider, in which beams of electrons and positrons are accelerated simultaneously, is described. Specifications of the proposed system are given, with calculated preditions of performance. New areas of research made possible by energies in the TeV range are discussed. (GHT)

  20. Towards a Small Emittance Design of the JLEIC Electron Collider Ring

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Fanglei [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Derbenev, Yaroslav [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Hutton, Andrew M. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Morozov, Vasiliy [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Pilat, Fulvia C. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Zhang, Yuhong [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-05-01

    The electron collider ring of the Jefferson Lab Electron-Ion Collider (JLEIC) is designed to provide an electron beam with a small beam size at the IP for collisions with an ion beam in order to reach a desired high luminosity. For a chosen beta-star at the IP, electron beam size is determined by the equilibrium emittance that can be obtained through a linear optics design. This paper briefly describes the baseline design of the electron collider ring reusing PEP-II components and considering their parameters (such as dipole sagitta, magnet field strengths and acceptable synchrotron radiation power) and reports a few approaches to reducing the equilibrium emittance in the electron collider ring.

  1. The Big Collider

    CERN Multimedia

    Barna-Alper Productions Inc. Toronto

    2005-01-01

    The Large Hadron Collider is a gigantic particle-smasher, designed to discover the origins of the universe. Awe-inspiring in vision and scope, it’s also the most expensive physics experiment in history with a price-tag of 4 billion dollars.Documentary series "Mega builders" : a fast-paced, character-driven show that focuses on the world’s biggest and most intriguing engineering challenges – the projects that are making history, and the people who are making it happen.

  2. Hadron-hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Month, M.; Weng, W.T.

    1983-06-21

    The objective is to investigate whether existing technology might be extrapolated to provide the conceptual framework for a major hadron-hadron collider facility for high energy physics experimentation for the remainder of this century. One contribution to this large effort is to formalize the methods and mathematical tools necessary. In this report, the main purpose is to introduce the student to basic design procedures. From these follow the fundamental characteristics of the facility: its performance capability, its size, and the nature and operating requirements on the accelerator components, and with this knowledge, we can determine the technology and resources needed to build the new facility.

  3. Muon colliders and neutrino factories

    Energy Technology Data Exchange (ETDEWEB)

    Geer, S.; /Fermilab

    2010-09-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture and accelerate {Omicron}(10{sup 21}) muons/year. This development prepares the way for a new type of neutrino source (Neutrino Factory) and a new type of very high energy lepton-antilepton collider (Muon Collider). This article reviews the motivation, design and R&D for Neutrino Factories and Muon Colliders.

  4. Muon colliders and neutrino factories

    CERN Document Server

    Geer, S

    2012-01-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture and accelerate O(1021) muons/year. This development prepares the way for a new type of neutrino source (Neutrino Factory) and a new type of very high energy lepton-antilepton collider (Muon Collider). This article reviews the motivation, design and R&D for Neutrino Factories and Muon Colliders.

  5. SuperB Technical Design Report

    CERN Document Server

    Baszczyk, M; Kolodziej, J; Kucewicz, W; Sapor, M; Jeremie, A; Pous, E Grauges; Bruno, G E; De Robertis, G; Diacono, D; Donvito, G; Fusco, P; Gargano, F; Giordano, F; Loddo, F; Loparco, F; Maggi, G P; Manzari, V; Mazziotta, M N; Nappi, E; Palano, A; Santeramo, B; Sgura, I; Silvestris, L; Spinoso, V; Eigen, G; Zalieckas, J; Zhuo, Z; Jenkovszky, L; Balbi, G; Boldini, M; Bonacorsi, D; Cafaro, V; D'Antone, I; Dallavalle, G M; Di Sipio, R; Fabbri, F; Fabbri, L; Gabrielli, A; Galli, D; Giacomelli, P; Giordano, V; Giorgi, F M; Grandi, C; Lax, I; Meo, S Lo; Marconi, U; Montanari, A; Pellegrini, G; Piccinini, M; Rovelli, T; Cesari, N Semprini; Torromeo, G; Tosi, N; Travaglini, R; Vagnoni, V M; Valentinetti, S; Villa, M; Zoccoli, A; Caron, J -F; Hearty, C; Lu, P F -T; Mattison, T S; McKenna, J A; So, R Y -C; Barnyakov, M Yu; Blinov, V E; Botov, A A; Druzhinin, V P; Golubev, V B; Kononov, S A; Kravchenko, E A; Levichev, E B; Onuchin, A P; Serednyakov, S I; Shtol, D A; Skovpen, Y I; Solodov, E P; Cardini, A; Carpinelli, M; Chao, D S -T; Cheng, C H; Doll, D A; Echenard, B; Flood, K; Hanson, J; Hitlin, D G; Ongmongkolkul, P; Porter, F C; Zhu, R Y; Randazzo, N; Burelo, E De La Cruz; Zheng, Y; Campos, P; De Silva, M; Kathirgamaraju, A; Meadows, B; Pushpawela, B; Shi, Y; Sokoloff, M; Castro, G Lopez; Ciaschini, V; Franchini, P; Giacomini, F; Paolini, A; Polania, G A Calderon; Laczek, S; Romanowicz, P; Szybinski, B; Czuchry, M; Flis, L; Harezlak, D; Kocot, J; Radecki, M; Sterzel, M; Szepieniec, T; Szymocha, T; Wójcik, P; Andreotti, M; Baldini, W; Calabrese, R; Carassiti, V; Cibinetto, G; Ramusino, A Cotta; Evangelisti, F; Gianoli, A; Luppi, E; Malaguti, R; Manzali, M; Melchiorri, M; Munerato, M; Padoan, C; Santoro, V; Tomassetti, L; Beretta, M M; Biagini, M; Boscolo, M; Capitolo, E; de Sangro, R; Esposito, M; Felici, G; Finocchiaro, G; Gatta, M; Gatti, C; Guiducci, S; Lauciani, S; Patteri, P; Peruzzi, I; Piccolo, M; Raimondi, P; Rama, M; Sanelli, C; Tomassini, S; Fabbricatore, P; Delepine, D; Santos, M A Reyes; Chrzaszcz, M; Grzymkowski, R; Knap, P; Kotula, J; Lesiak, T; Ludwin, J; Michalowski, J; Pawlik, B; Rachwal, B; Stodulski, M; Wiechczynski, J; Witek, M; Zawiejski, L; Zdybal, M; Aushev, V Y; Ustynov, A; Arnaud, N; Bambade, P; Beigbeder, C; Bogard, F; Borsato, M; Breton, D; Brossard, J; Burmistrov, L; Charlet, D; Chaumat, V; Dadoun, O; Berni, M El; Maalmi, J; Puill, V; Rimbault, C; Stocchi, A; Tocut, V; Variola, A; Wallon, S; Wormser, G; Grancagnolo, F; Ben-Haim, E; Sitt, S; Baylac, M; Bourrion, O; Deconto, J -M; Martinez, Y Gomez; Monseu, N; Muraz, J -F; Real, J -S; Vescovi, C; Cenci, R; Jawahery, A; Roberts, D; Twedt, E W; Cheaib, R; Lindemann, D; Nderitu, S; Patel, P; Robertson, S H; Swersky, D; Warburton, A; Flores, E Cuautle; Sanchez, G Toledo; Biassoni, P; Bombelli, L; Citterio, M; Coelli, S; Fiorini, C; Liberali, V; Monti, M; Nasri, B; Neri, N; Palombo, F; Sabatini, F; Stabile, A; Berra, A; Giachero, A; Gotti, C; Lietti, D; Maino, M; Pessina, G; Prest, M; Martin, J -P; Simard, M; Starinski, N; Taras, P; Drutskoy, A; Makarychev, S; Nefediev, A V; Aloisio, A; Cavaliere, S; De Nardo, G; Della Pietra, M; Doria, A; Giordano, R; Ordine, A; Pardi, S; Russo, G; Sciacca, C; Bigi, I I; Jessop, C P; Wang, W; Bellato, M; Benettoni, M; Corvo, M; Crescente, A; Corso, F Dal; Dosselli, U; Fanin, C; Gianelle, A; Longo, S; Michelotto, M; Montecassiano, F; Morandin, M; Pengo, R; Posocco, M; Rotondo, M; Simi, G; Stroili, R; Gaioni, L; Manazza, A; Manghisoni, M; Ratti, L; Re, V; Traversi, G; Zucca, S; Bizzaglia, S; Bizzarri, M; Cecchi, C; Germani, S; Lebeau, M; Lubrano, P; Manoni, E; Papi, A; Rossi, A; Scolieri, G; Batignani, G; Bettarini, S; Casarosa, G; Cervelli, A; Fella, A; Forti, F; Giorgi, M; Lilli, L; Lusiani, A; Oberhof, B; Paladino, A; Pantaleo, F; Paoloni, E; Perez, A L Perez; Rizzo, G; Walsh, J; Téllez, A Fernández; Beck, G; Berman, M; Bevan, A; Gannaway, F; Inguglia, G; Martin, A J; Morris, J; Bocci, V; Capodiferro, M; Chiodi, G; Dafinei, I; Drenska, N V; Faccini, R; Ferroni, F; Gargiulo, C; Gauzzi, P; Luci, C; Lunadei, R; Martellotti, G; Pellegrino, F; Pettinacci, V; Pinci, D; Recchia, L; Ruggeri, D; Zullo, A; Camarri, P; Cardarelli, R; De Santis, C; Di Ciaccio, A; Di Felice, V; Di Palma, F; Di Simone, A; Marcelli, L; Messi, R; Moricciani, D; Sparvoli, R; Tammaro, S; Branchini, P; Budano, A; Bussino, S; Ciuchini, M; Nguyen, F; Passeri, A; Ruggieri, F; Spiriti, E; Wilson, F; Monzon, I Leon; Millan-Almaraz, J R; Podesta-Lerma, P L M; Aston, D; Dey, B; Fisher, A; Jackson, P D; Leith, D W G S; Luitz, S; MacFarlane, D; McCulloch, M; Metcalfe, S; Novokhatski, A; Osier, S; Prepost, R; Ratcliff, B; Seeman, J; Sullivan, M; Va'vra, J; Wienands, U; Wisniewski, W; Altschul, B D; Purohit, M V; Baudot, J; Ripp-Baudot, I; Cirrone, G A P; Cuttone, G; Bezshyyko, O; Dolinska, G; Soffer, A; Bianchi, F; De Mori, F; Filippi, A; Gamba, D; Marcello, S; Bomben, M; Bosisio, L; Cristaudo, P; Lanceri, L; Liberti, B; Rashevskaya, I; Stella, C; Vallazza, E S; Vitale, L; Auriemma, G; Satriano, C; Vidal, F Martinez; de Cos, J Mazorra; Oyanguren, A; Valls, P Ruiz; Beaulieu, A; Dejong, S; Franta, J; Lewczuk, M J; Roney, M; Sobie, R

    2013-01-01

    In this Technical Design Report (TDR) we describe the SuperB detector that was to be installed on the SuperB e+e- high luminosity collider. The SuperB asymmetric collider, which was to be constructed on the Tor Vergata campus near the INFN Frascati National Laboratory, was designed to operate both at the Upsilon(4S) center-of-mass energy with a luminosity of 10^{36} cm^{-2}s^{-1} and at the tau/charm production threshold with a luminosity of 10^{35} cm^{-2}s^{-1}. This high luminosity, producing a data sample about a factor 100 larger than present B Factories, would allow investigation of new physics effects in rare decays, CP Violation and Lepton Flavour Violation. This document details the detector design presented in the Conceptual Design Report (CDR) in 2007. The R&D and engineering studies performed to arrive at the full detector design are described, and an updated cost estimate is presented. A combination of a more realistic cost estimates and the unavailability of funds due of the global economic ...

  6. Demise of Texas collider has made Europe's lab a magnet for scientists

    CERN Multimedia

    Siegfried, Tom

    2004-01-01

    Had U.S. politics and science meshed more favorably, physicists from around the world would now be flocking to Waxahachie. The defunct Superconducting Super Collider (SSC) should by now have been smashing atoms, but now Europe's top nuclear research lab offers a more picturesque world capital of physics that the prairie south of Dallas

  7. Searching for dark matter at colliders

    Science.gov (United States)

    Richard, Francois; Arcadi, Giorgio; Mambrini, Yann

    2015-04-01

    Dark Matter (DM) detection prospects at future colliders are reviewed under the assumption that DM particles are fermions of the Majorana or Dirac type. Although the discussion is quite general, one will keep in mind the recently proposed candidate based on an excess of energetic photons observed in the center of our Galaxy with the Fermi-LAT satellite. In the first part we will assume that DM interactions are mediated by vector bosons, or . In the case of -boson Direct Detection limits force only axial couplings with the DM. This solution can be naturally accommodated by Majorana DM but is disfavored by the GC excess. Viable scenarios can be instead found in the case of mediator. These scenarios can be tested at colliders through ISR events, . A sensitive background reduction can be achieved by using highly polarized beams. In the second part scalar particles, in particular Higgs particles, have been considered as mediators. The case of the SM Higgs mediator is excluded by limits on the invisible branching ratio of the Higgs. On the contrary particularly interesting is the case in which the DM interactions are mediated by the pseudoscalar state in two Higgs-doublet model scenarios. In this last case the main collider signature is.

  8. Seventh International Accelerator School for Linear Colliders

    CERN Document Server

    Organizers of the Seventh International Accelerator School for Linear Colliders

    2012-01-01

    We are pleased to announce the Seventh International Accelerator School for Linear Colliders. This school is a continuation of the series of schools which began six years ago.  The first school was held in 2006 in Sokendai, Japan, the second in 2007 in Erice, Italy, the third in 2008 in Oakbrook Hills, USA, the fourth in 2009 in Huairou, China, the fifth in 2010 in Villars-sur-Ollon, Switzerland, and the sixth in 2011 in Pacific Grove, USA.   The school is organized by the International Linear Collider (ILC) Global Design Effort (GDE), the Compact Linear Collider (CLIC) and the International Committee for Future Accelerators (ICFA) Beam Dynamics Panel. The school this year will take place at the Radisson Blu Hotel, Indore, India from November 27 to December 8, 2012. It is hosted by the Raja Ramanna Center for Advanced Technology (RRCAT) and sponsored by a number of funding agencies and institutions around the world including the U.S. Department of Energy (DOE), the U.S. National Science...

  9. Detector for a linear collider

    CERN Document Server

    Mnich, J

    2003-01-01

    The proposals under discussion for a new e^{+}e^{-} linear collider with centre-of-mass energies around 1 TeV include designs for large detectors with unprecedented performances in energy, momentum and position resolution. These very stringent requirements are dictated by the precision measurements aimed at this collider to complement the exploratory experiments at the Large Hadron Collider. Here a status report on detector R&D projects for the liner collider is given focused on the technologies under study for the vertex detector, the large tracking chamber and the calorimeters.

  10. Focusing Electron Beams at SLAC.

    Science.gov (United States)

    Taylor, Richard L.

    1993-01-01

    Describes the development of a set of magnets that focus high-energy electron and positron beams causing them to collide, annihilate each other, and generate new particles. Explains how dipoles bend the beam, how quadrupoles focus the beam, how the focal length is calculated, and the superconducting final focus. (MDH)

  11. 非匀幅光束在浮雕光栅中的传输特性%Propagation of TE Linear Polarized Super Gaussian Beams Through the Triangle Relief Grating

    Institute of Scientific and Technical Information of China (English)

    王朴; 张丽娟; 李建龙

    2011-01-01

    利用角谱表示和"逆规则"傅里叶模式理论,研究了非匀幅光束的典型代表TE线偏振高斯光束在亚波长三角形面型浮雕光栅体内的传输.数值分析表明浮雕层内不同透射深度处的光强分布随着透射深度的变化而变化.最后讨论了入射角、周期等光学参数对出射光强分布的影响.这些结论对高衍射效率亚波长光栅的制作和高功率激光光学元件设计等都具有现实意义.%Based on the angular spectrum representation and the "inverse rule" Fourier mode theory, the propagation of the super Gaussian beam through the sub-wavelength triangle relief grating is studied. Numerical calculation shows that the distribution of intensity in different penetration depths changes with the penetration depth in the relief layer. The article also discusses the effects of incident angle, period and other optical parameters on the distribution of the outgoing light intensity.

  12. Beam-beam simulation code BBSIM for particle accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung J.; Sen, Tanaji; /Fermilab

    2011-01-01

    A highly efficient, fully parallelized, six-dimensional tracking model for simulating interactions of colliding hadron beams in high energy ring colliders and simulating schemes for mitigating their effects is described. The model uses the weak-strong approximation for calculating the head-on interactions when the test beam has lower intensity than the other beam, a look-up table for the efficient calculation of long-range beam-beam forces, and a self-consistent Poisson solver when both beams have comparable intensities. A performance test of the model in a parallel environment is presented. The code is used to calculate beam emittance and beam loss in the Tevatron at Fermilab and compared with measurements. They also present results from the studies of stwo schemes proposed to compensate the beam-beam interactions: (a) the compensation of long-range interactions in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven and the Large Hadron Collider (LHC) at CERN with a current carrying wire, (b) the use of a low energy electron beam to compensate the head-on interactions in RHIC.

  13. Beam-beam simulation code BBSIM for particle accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung J.; Sen, Tanaji; /Fermilab

    2011-01-01

    A highly efficient, fully parallelized, six-dimensional tracking model for simulating interactions of colliding hadron beams in high energy ring colliders and simulating schemes for mitigating their effects is described. The model uses the weak-strong approximation for calculating the head-on interactions when the test beam has lower intensity than the other beam, a look-up table for the efficient calculation of long-range beam-beam forces, and a self-consistent Poisson solver when both beams have comparable intensities. A performance test of the model in a parallel environment is presented. The code is used to calculate beam emittance and beam loss in the Tevatron at Fermilab and compared with measurements. They also present results from the studies of stwo schemes proposed to compensate the beam-beam interactions: (a) the compensation of long-range interactions in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven and the Large Hadron Collider (LHC) at CERN with a current carrying wire, (b) the use of a low energy electron beam to compensate the head-on interactions in RHIC.

  14. Determination of Beam Intensity and Position in a Particle Accelerator

    CERN Document Server

    Kasprowicz, Grzegorz

    2010-01-01

    The Proton Synchrotron accelerator (PS), installed at CERN, although commissioned in 1959, still plays a central role in the production of beams for the Antiproton Decelerator, Super Proton Synchrotron, various experimental areas and for the Large Hadron Collider (LHC). The PS produces beams of different types of particles, mainly protons, but also various species of ions. Almost all these particle beams pass through the PS. The quality of the beams delivered to the LHC has a direct impact on the effective luminosity, and therefore the performance of the instrumentation of the PS is of great importance. The old trajec- tory and orbit measurement system of the PS dated back to 1988 and no longer fulfilled present day requirements. It used 40 beam position monitors (BPMs) and an analogue signal processing chain to acquire the trajectory of one single particle bunch out of many, over two consecutive turns at a maximum rate of once every 5ms. The BPMs were in good condition, however the electronics was aging and ...

  15. Lepton Collider Operation with Constant Currents

    CERN Document Server

    Wienands, Ulrich

    2005-01-01

    Traditionally, electron-positron colliders have been operating in a top-off-and-coast fashion with a cycle time depending on the beam life time, typically on the order of an hour. Each top-off involves ramping detector systems in addition to the actual filling time. The loss in accumulated luminosity is typically 20-50%. During the last year, both B-Factories have commissioned a continuous-injection mode of operation in which beam is injected without ramping the detector, thus raising luminosity integration by constant operation at peak luminosity. Constant beam currents reduce thermal drift and trips caused by change in beam loading. To achieve this level of operation, special efforts were made to reduce the injection losses and also to implement special gating procedures in the detectors, minimizing dead time. Bunch-injection control decides which bunch to inject into next while maintaining small charge variation between bunches. Beam collimation can reduce injection noise but also cause an increase in back...

  16. High energy particle colliders: past 20 years, next 20 years and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, Vladimir D.; /Fermilab

    2012-04-01

    Particle colliders for high energy physics have been in the forefront of scientific discoveries for more than half a century. The accelerator technology of the collider has progressed immensely, while the beam energy, luminosity, facility size and the cost have grown by several orders of magnitude. The method of colliding beams has not fully exhausted its potential but its pace of progress has greatly slowed down. In this paper we very briefly review the method and the history of colliders, discuss in detail the developments over the past two decades and the directions of the R and D toward near future colliders which are currently being explored. Finally, we make an attempt to look beyond the current horizon and outline the changes in the paradigm required for the next breakthroughs.

  17. High energy particle colliders: past 20 years, next 20 years and beyond

    CERN Document Server

    Shiltsev, Vladimir D

    2012-01-01

    Particle colliders for high energy physics have been in the forefront of scientific discoveries for more than half a century. The accelerator technology of the collider has progressed immensely, while the beam energy, luminosity, facility size and the cost have grown by several orders of magnitude. The method of colliding beams has not fully exhausted its potential but its pace of progress has greatly slowed down. In this paper we very briefly review the method and the history of colliders, discuss in detail the developments over the past two decades and the directions of the R&D toward near future colliders which are currently being explored. Finally, we make an attempt to look beyond the current horizon and outline the changes in the paradigm required for the next breakthroughs.

  18. High Energy Booster Options for a Future Circular Collider at CERN

    CERN Document Server

    Stoel, Linda; Bartmann, Wolfgang; Burkart, Florian; Goddard, Brennan; Herr, Werner; Kramer, Thomas; Milanese, Attilio; Rumolo, Giovanni; Shaposhnikova, Elena

    2016-01-01

    In case a Future Circular Collider for hadrons (FCC-hh) is constructed at CERN, the tunnels for SPS, LHC and the 100 km collider will be available to house a High Energy Booster (HEB). The different machine options cover a large technology range from an iron-dominated machine in the 100 km tunnel to a superconducting machine in the SPS tunnel. Using a modified LHC as reference, these options are compared with respect to their energy reach, magnet technology and filling time of the collider. Potential issues with beam transfer, reliability and beam stability are presented.

  19. Test of QCD at colliders

    CERN Document Server

    Shimizu, Shima; The ATLAS collaboration

    2016-01-01

    The ATLAS and CMS collaborations measure QCD processes in a wide kinematic range using proton--proton colliding data at the Large Hadron Collider (LHC). A variety of recent results is presented. The results provide validation of the current understanding of QCD, such as the proton structure and interactions and radiations of partons.

  20. Heavy Neutrinos at Future Colliders

    CERN Document Server

    Dev, P S Bhupal

    2016-01-01

    We discuss the current status and future prospects of heavy neutrino searches at the energy frontier, which might play an important role in vindicating the simplest seesaw paradigm as the new physics responsible for neutrino mass generation. After summarizing the current search limits and potential improvements at hadron colliders, we highlight the unparalleled sensitivities achievable in the clean environment of future lepton colliders.

  1. Alignment Challenges for a Future Linear Collider

    CERN Document Server

    Durand, H; Stern, G

    2013-01-01

    The preservation of ultra-low emittances in the main linac and Beam Delivery System area is one of the main challenges for linear colliders. This requires alignment tolerances never achieved before at that scale, down to the micrometre level. As a matter of fact, in the LHC, the goal for the smoothing of the components was to obtain a 1σ deviation with respect to a smooth curve of 0.15 mm over a 150 m long sliding window, while for the CLIC project for example, it corresponds to 10 μm over a sliding window of 200 m in the Beam Delivery System area. Two complementary strategies are being studied to fulfil these requirements: the development and validation of long range alignment systems over a few hundreds of metres and short range alignment systems over a few metres. The studies undertaken, with associated tests setups and the latest results will be detailed, as well as their application for the alignment of both CLIC and ILC colliders.

  2. Physics at the Large Hadron Collider

    CERN Document Server

    Mukhopadhyaya, Biswarup; Raychaudhari, Amitava

    2009-01-01

    In an epoch when particle physics is awaiting a major step forward, the Large Hydron Collider (LHC) at CERN, Geneva will soon be operational. It will collide a beam of high energy protons with another similar beam circulation in the same 27 km tunnel but in the opposite direction, resulting in the production of many elementary particles some never created in the laboratory before. It is widely expected that the LHC will discover the Higgs boson, the particle which supposedly lends masses to all other fundamental particles. In addition, the question as to whether there is some new law of physics at such high energy is likely to be answered through this experiment. The present volume contains a collection of articles written by international experts, both theoreticians and experimentalists, from India and abroad, which aims to acquaint a non-specialist with some basic issues related to the LHC. At the same time, it is expected to be a useful, rudimentary companion of introductory exposition and technical expert...

  3. Report of Snowmass 2001 working group E2: Electron - positron colliders from the phi to the Z

    Energy Technology Data Exchange (ETDEWEB)

    Zhen-guo Zhao et al.

    2002-12-23

    We report on the status and plans of experiments now running or proposed for electron-positron colliders at energies between the {phi} and the Z. The e{sup +}e{sup -}B and charm factories we considered were PEP-II/BABAR, KEKB/Belle, superKEK, SuperBABAR, and CESR-c/CLEO-c. We reviewed the programs at the {phi} factory at Frascati and the proposed PEP-N facility at Stanford Linear Accelerator Center. We studied the prospects for B physics with a dedicated linear collider Z factory, associated with the TESLA high energy linear collider. In all cases, we compared the physics reach of these facilities with that of alternative experiments at hadron colliders or fixed target facilities.

  4. Report of Snowmass 2001 working group E2: Electron - positron colliders from the phi to the Z

    Energy Technology Data Exchange (ETDEWEB)

    Zhen-guo Zhao et al.

    2002-12-23

    We report on the status and plans of experiments now running or proposed for electron-positron colliders at energies between the {phi} and the Z. The e{sup +}e{sup -}B and charm factories we considered were PEP-II/BABAR, KEKB/Belle, superKEK, SuperBABAR, and CESR-c/CLEO-c. We reviewed the programs at the {phi} factory at Frascati and the proposed PEP-N facility at Stanford Linear Accelerator Center. We studied the prospects for B physics with a dedicated linear collider Z factory, associated with the TESLA high energy linear collider. In all cases, we compared the physics reach of these facilities with that of alternative experiments at hadron colliders or fixed target facilities.

  5. CERN balances linear collider studies

    CERN Multimedia

    ILC Newsline

    2011-01-01

    The forces behind the two most mature proposals for a next-generation collider, the International Linear Collider (ILC) and the Compact Linear Collider (CLIC) study, have been steadily coming together, with scientists from both communities sharing ideas and information across the technology divide. In a support of cooperation between the two, CERN in Switzerland, where most CLIC research takes place, recently converted the project-specific position of CLIC Study Leader to the concept-based Linear Collider Study Leader.   The scientist who now holds this position, Steinar Stapnes, is charged with making the linear collider a viable option for CERN’s future, one that could include either CLIC or the ILC. The transition to more involve the ILC must be gradual, he said, and the redefinition of his post is a good start. Though not very much involved with superconducting radiofrequency (SRF) technology, where ILC researchers have made significant advances, CERN participates in many aspect...

  6. R&D for Collider Beauty Physics at the LHC

    CERN Multimedia

    2002-01-01

    We propose an R&D program for the development of a Beauty trigger and innovative elements of the associated spectrometer. The program builds on the success of the recent S$\\bar{p}$pS collider run of the P238 Collaboration, in which clean signals from beam-beam interactions were observed in a large silicon strip microvertex detector running 1.5~mm from the circulating beams. A continuing successful R&D program of the type proposed could ultimately lead to a collider experiment at the LHC to study CP-violation and rare B decays. \\\\ \\\\ We request a fixed target run during late 1992 in order to demonstrate the effectiveness of a heavy flavour trigger which uses real time digital calculations on silicon strip data, implemented with a data driven processor.

  7. Scanning Synchronization of Colliding Bunches for MEIC Project

    Energy Technology Data Exchange (ETDEWEB)

    Derbenev, Yaroslav S. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Popov, V. P. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Chernousov, Yu D. [Inst. of Chemical Kinetics and Combustion, Novosibirsk (Russian Federation); Kazakevich, G. M. [Euclid Techlabs LLC., Cleveland, OH (United States)

    2015-09-01

    Synchronization of colliding beams is one of the major issues of an electron-ion collider (EIC) design because of sensitivity of ion revolution frequency to beam energy. A conventional solution for this trouble is insertion of bent chicanes in the arcs space. In our report we consider a method to provide space coincidence of encountering bunches in the crab-crossing orbits Interaction Region (IR) while repetition rates of two beams do not coincide. The method utilizes pair of fast kickers realizing a bypass for the electron bunches as the way to equalize positions of the colliding bunches at the Interaction Point (IP). A dipole-mode warm or SRF cavities fed by the magnetron transmitters are used as fast kickers, allowing a broad-band phase and amplitude control. The proposed scanning synchronization method implies stabilization of luminosity at a maximum via a feedback loop. This synchronization method is evaluated as perspective for the Medium Energy Electron-Ion collider (MEIC) project of JLab with its very high bunch repetition rate.

  8. A Complete Scheme of Ionization Cooling for a Muon Collider

    CERN Document Server

    Palmer, Robert B; Fernow, Richard C; Gallardo, Juan Carlos; Kirk, Harold G; Alexahin, Yuri; Neuffer, David; Kahn, Stephen Alan; Summers, Don

    2007-01-01

    A complete scheme for production and cooling a muon beam for three specified muon colliders is presented. Parameters for these muon colliders are given. The scheme starts with the front end of a proposed neutrino factory that yields bunch trains of both muon signs. Emittance exchange cooling in slow helical lattices reduces the longitudinal emittance until it becomes possible to merge the trains into single bunches, one of each sign. Further cooling in all dimensions is applied to the single bunches in further slow helical lattices. Final transverse cooling to the required parameters is achieved in 50 T solenoids using high Tc superconductor at 4 K. Preliminary simulations of each element are presented.

  9. ISR effects for resonant Higgs production at future lepton colliders

    CERN Document Server

    Greco, Mario; Liu, Zhen

    2016-01-01

    We study the effects of the initial state radiation on the $s$-channel Higgs boson resonant production at $\\mu^+\\mu^-$ and $e^+e^-$ colliders by convoluting with the beam energy spread profile of the collider and the Breit-Wigner resonance profile of the signal. We assess their impact on both the Higgs signal and SM backgrounds for the leading decay channels $h\\rightarrow b\\bar b,\\ WW^*$. Our study improves the existing analyses of the proposed future resonant Higgs factories and provides further guidance for the accelerator designs with respect to the physical goals.

  10. ISR effects for resonant Higgs production at future lepton colliders

    Science.gov (United States)

    Greco, Mario; Han, Tao; Liu, Zhen

    2016-12-01

    We study the effects of the initial state radiation on the s-channel Higgs boson resonant production at μ+μ- and e+e- colliders by convoluting with the beam energy spread profile of the collider and the Breit-Wigner resonance profile of the signal. We assess their impact on both the Higgs signal and SM backgrounds for the leading decay channels h → b b bar , WW*. Our study improves the existing analyses of the proposed future resonant Higgs factories and provides further guidance for the accelerator designs with respect to the physical goals.

  11. Central Exclusive Particle Production at High Energy Hadron Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Albrow, M.G.; /Fermilab; Coughlin, T.D.; /University Coll. London; Forshaw, J.R.; /Manchester U.

    2010-06-01

    We review the subject of central exclusive particle production at high energy hadron colliders. In particular we consider reactions of the type A + B {yields} A + X + B, where X is a fully specified system of particles that is well separated in rapidity from the outgoing beam particles. We focus on the case where the colliding particles are strongly interacting and mainly they will be protons (or antiprotons) as at the ISR, Sp{bar p}S, Tevatron and LHC. The data are surveyed and placed within the context of theoretical developments.

  12. Novel final focus design for future linear colliders.

    Science.gov (United States)

    Raimondi, P; Seryi, A

    2001-04-23

    The length, complexity, and cost of the present final focus designs for linear colliders grow very quickly with the beam energy. In this Letter, a novel final focus system is presented and compared with the one proposed for the Next Linear Collider (NLC Zeroth-Order Design Report, edited by T. O. Raubenheimer, SLAC Report No. 474, 1996). This new design has fewer optical elements and is much shorter, nonetheless achieving better chromatic properties. Moreover, the new system is more suitable for operation over a larger energy range.

  13. Staging optics considerations for a plasma wakefield acceleration linear collider

    Energy Technology Data Exchange (ETDEWEB)

    Lindstrøm, C.A., E-mail: c.a.lindstrom@fys.uio.no [Department of Physics, University of Oslo, Oslo 0316 (Norway); SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Adli, E. [Department of Physics, University of Oslo, Oslo 0316 (Norway); SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Allen, J.M.; Delahaye, J.P.; Hogan, M.J. [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Joshi, C. [Department of Electrical Engineering, UCLA, Los Angeles, CA 90095 (United States); Muggli, P. [Max Planck Institute for Physics, 80805 Munich (Germany); Raubenheimer, T.O.; Yakimenko, V. [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States)

    2016-09-01

    Plasma wakefield acceleration offers acceleration gradients of several GeV/m, ideal for a next-generation linear collider. The beam optics requirements between plasma cells include injection and extraction of drive beams, matching the main beam beta functions into the next cell, canceling dispersion as well as constraining bunch lengthening and chromaticity. To maintain a high effective acceleration gradient, this must be accomplished in the shortest distance possible. A working example is presented, using novel methods to correct chromaticity, as well as scaling laws for a high energy regime.

  14. Novel Concepts for Optimization of the CERN Large Hadron Collider Injection Lines.

    CERN Document Server

    Fuchsberger, Kajetan; Wenninger, J

    2011-01-01

    The Large Hadron Collider (LHC) is presently the particle accelerator with the highest center of mass energy in the world and is for that reason the most promising instrument for particle physics discoveries in the near future. The transfer lines TI2 and TI8 which transfer the beam from the last pre-accelerator, the Super Proton Synchrotron (SPS), to the LHC are with a total length of about 6 km the longest ones in the world, which makes it necessary to do optics matching with high precision. Tests between 2004 and 2008 revealed several, previousely unpredicted, effects in these lines: An assymetry in betatron phase between the two transverse planes, a dispersion mismatch at the injection point from the transfer lines to the LHC and unexpectedly strong transverse coupling at the same location. In this thesis, we introduce the methods and tools that we developed to investigate these discrepancies. We describe the analysis of the available data, measurements of the transfer line optics and the calculation of op...

  15. Localized Beampipe Heating due to $e^{-}$ Capture and Nuclear Excitation in Heavy Ion Colliders

    CERN Document Server

    Klein, S R

    2001-01-01

    At heavy ion colliders, two major sources of beam loss are expected to be $e^+e^-$ production, where the $e^-$ is bound to one of the nuclei, and photonuclear excitation and decay via neutron emission. Both processes alter the ions charged to mass ratio by well defined amounts, creating beams of particles with altered magnetic rigidity. These beams will deposit their energy in a localized region of the accelerator, causing localized heating, The size of the target region depends on the collider optics. For medium and heavy ions, at design luminosity at the Large Hadron Collider, local heating may be more than an order of magnitude higher than expected. This could cause magnet quenches if the local cooling is inadequate. The altered-rigidity beams will also produce localized radiation damage. The beams could also be extracted and used for fixed target experiments.

  16. Scaling behavior of circular colliders dominated by synchrotron radiation

    Science.gov (United States)

    Talman, Richard

    2015-08-01

    The scaling formulas in this paper — many of which involve approximation — apply primarily to electron colliders like CEPC or FCC-ee. The more abstract “radiation dominated” phrase in the title is intended to encourage use of the formulas — though admittedly less precisely — to proton colliders like SPPC, for which synchrotron radiation begins to dominate the design in spite of the large proton mass. Optimizing a facility having an electron-positron Higgs factory, followed decades later by a p, p collider in the same tunnel, is a formidable task. The CEPC design study constitutes an initial “constrained parameter” collider design. Here the constrained parameters include tunnel circumference, cell lengths, phase advance per cell, etc. This approach is valuable, if the constrained parameters are self-consistent and close to optimal. Jumping directly to detailed design makes it possible to develop reliable, objective cost estimates on a rapid time scale. A scaling law formulation is intended to contribute to a “ground-up” stage in the design of future circular colliders. In this more abstract approach, scaling formulas can be used to investigate ways in which the design can be better optimized. Equally important, by solving the lattice matching equations in closed form, as contrasted with running computer programs such as MAD, one can obtain better intuition concerning the fundamental parametric dependencies. The ground-up approach is made especially appropriate by the seemingly impossible task of simultaneous optimization of tunnel circumference for both electrons and protons. The fact that both colliders will be radiation dominated actually simplifies the simultaneous optimization task. All GeV scale electron accelerators are “synchrotron radiation dominated”, meaning that all beam distributions evolve within a fraction of a second to an equilibrium state in which “heating” due to radiation fluctuations is canceled by the “cooling” in

  17. Transverse Diagnostics For High Energy Hadron Colliders

    CERN Document Server

    Castro Carballo, Maria Elena

    2007-01-01

    The Large Hadron Collider (LHC) is a circular synchrotron accelerator that will explore new Physics at the higher energies ever achieved, aiming to find the Higgs boson. The LHC is being built at CERN and by 2007 it will be ready to produce head-on collisions of protons at a centre-of-mass energy of 14 TeV. The employment of superconducting magnets for achieving high energies, the high luminosity required for physics, the limited dynamic aperture and the large energy stored in the beams will make the machine very challenging to operate, especially during the injection process and the energy ramp. Two particular problems will be a high sensitivity to beam losses and a relatively poor field quality requiring the use of many types of magnetic correction elements. This may lead to the inclusion of certain beam measurements in feedback loops, making special demands on the control system. The injection and acceleration of the LHC proton beams without particle losses and emittance blow up will require an accurate co...

  18. Unraveling supersymmetry at future colliders

    Indian Academy of Sciences (India)

    Xerxes Tata

    2004-02-01

    After a quick review of the current limits on sparticle masses, we outline the prospects for their discovery at future colliders. We then proceed to discuss how precision measurements of sparticle masses can provide information about how SM suprpartners acquire their masses. Finally, we examine how we can proceed to establish whether or not any new physics discovered in the future is supersymmetry, and describe how we might zero in on the framework of SUSY breaking. In this connection, we review sparticle mass measurements at future colliders, and point out that some capabilities of experiments at $e^{+}e^{-}$ linear colliders may have been over-stated in the literture.

  19. Physics at Future Hadron Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Rizzo, Thomas G.

    2002-08-07

    We discuss the physics opportunities and detector challenges at future hadron colliders. As guidelines for energies and luminosities we use the proposed luminosity and/or energy upgrade of the LHC (SLHC), and the Fermilab design of a Very Large Hadron Collider (VLHC). We illustrate the physics capabilities of future hadron colliders for a variety of new physics scenarios (supersymmetry, strong electroweak symmetry breaking, new gauge bosons, compositeness and extra dimensions). We also investigate the prospects of doing precision Higgs physics studies at such a machine, and list selected Standard Model physics rates.

  20. Hadron collider physics at UCR

    Energy Technology Data Exchange (ETDEWEB)

    Kernan, A.; Shen, B.C.

    1997-07-01

    This paper describes the research work in high energy physics by the group at the University of California, Riverside. Work has been divided between hadron collider physics and e{sup +}-e{sup {minus}} collider physics, and theoretical work. The hadron effort has been heavily involved in the startup activities of the D-Zero detector, commissioning and ongoing redesign. The lepton collider work has included work on TPC/2{gamma} at PEP and the OPAL detector at LEP, as well as efforts on hadron machines.