WorldWideScience

Sample records for super alloys room

  1. Room temperature creep in metals and alloys

    Energy Technology Data Exchange (ETDEWEB)

    Deibler, Lisa Anne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Materials Characterization and Performance

    2014-09-01

    Time dependent deformation in the form of creep and stress relaxation is not often considered a factor when designing structural alloy parts for use at room temperature. However, creep and stress relaxation do occur at room temperature (0.09-0.21 Tm for alloys in this report) in structural alloys. This report will summarize the available literature on room temperature creep, present creep data collected on various structural alloys, and finally compare the acquired data to equations used in the literature to model creep behavior. Based on evidence from the literature and fitting of various equations, the mechanism which causes room temperature creep is found to include dislocation generation as well as exhaustion.

  2. Study on surface defects in milling Inconel 718 super alloy

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Liu; Chengzu, Ren; Guofeng, Wang; Yinwei, Yang; Lu, Zhang [Tianjin University, Tianjin (China)

    2015-04-15

    Nickel-based alloys have been extensively used as critical components in aerospace industry, especially in the key section of aero engine. In general, these sections are manufactured by milling process because most of them have complex forms. However, surface defects appear frequently in milling due to periodic impact force, which leads to the deterioration of the fatigue life. We conducted milling experiments under different cutting conditions and found that four kinds of defects, i.e., tear, cavity, build up edge (BUE) and groove, commonly appear on the machined surface. Based on the observed results, the morphology and generation regime of these defects are analyzed and the carbide particle cracking is discussed to explain the appearance of the nickel alloy defects. To study the effect of the cutting parameters on the severity of these surface defects, two qualitative indicators, which are named as average number of the defects per field and average area ratio of the defects per field, are presented and the influence laws are summarized based on the results correspondingly. This study is helpful for understanding the generation mechanism of the surface defects during milling process of nickel based super alloy.

  3. Selective laser melting of Inconel super alloy-a review

    Science.gov (United States)

    Karia, M. C.; Popat, M. A.; Sangani, K. B.

    2017-07-01

    Additive manufacturing is a relatively young technology that uses the principle of layer by layer addition of material in solid, liquid or powder form to develop a component or product. The quality of additive manufactured part is one of the challenges to be addressed. Researchers are continuously working at various levels of additive manufacturing technologies. One of the significant powder bed processes for met als is Selective Laser Melting (SLM). Laser based processes are finding more attention of researchers and industrial world. The potential of this technique is yet to be fully explored. Due to very high strength and creep resistance Inconel is extensively used nickel based super alloy for manufacturing components for aerospace, automobile and nuclear industries. Due to law content of Aluminum and Titanium, it exhibits good fabricability too. Therefore the alloy is ideally suitable for selective laser melting to manufacture intricate components with high strength requirements. The selection of suitable process for manufacturing for a specific component depends on geometrical complexity, production quantity, and cost and required strength. There are numerous researchers working on various aspects like metallurgical and micro structural investigations and mechanical properties, geometrical accuracy, effects of process parameters and its optimization and mathematical modeling etc. The present paper represents a comprehensive overview of selective laser melting process for Inconel group of alloys.

  4. Comparison of Super-Hydrophobicity and Corrosion Resistance of Micro-Nano Structured Nickel and Nickel- Cobalt Alloy Coatings on Copper Substrate

    Directory of Open Access Journals (Sweden)

    S. Khorsand

    2016-03-01

    Full Text Available Super-hydrophobic nickel and nickel-cobalt alloy coatings with micro-nano structure were successfully electrodeposited on copper substrates with one and two steps electrodeposition. Surface morphology, wettability and corrosion  resistance were characterized by scanning electron microscopy, water contact angle measurements, electrochemical impedanc spectroscopy (EIS and potentiodynamic polarization curves. The results showed that the wettability of the micro-nano Ni and Ni-Co films varied from super-hydrophilicity to super-hydrophobicity by exposure of the surface to air at room temperature. The corrosion results revealed the positive effect of hydrophobicity on corrosion resistance of Ni coating (~10 times and Ni-Co coating (~100 times in comparison with their fresh coatings. The results showed that super-hydrophobic nickel coating had higher corrosion resistance than super-hydrophobic nickel-cobalt coating.

  5. Experimental Study on Machining Shape Hole of Ni-based Super-heat-resistant Alloy

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Inconel 718 and Waspaloy, Nickel-based super-heat-resistant alloy, are high-strength, thermal-resistant and corrosion-resistant alloy that are widely used in parts of gas turbines and airplane engines. Due to their extremely tough and thermal-resistant nature, they are well known as materials that are difficult to cut. Shape holes on a disc of an aircraft engine, made of Ni-based super-heat-resistant alloy, are required with good surface integrity and geometric accuracy. This kind of shape hole is produced ...

  6. EFFECT OF CUTTING PARAMETERS ON SUPER ALLOY IN TURNING OPERATION UNDER DRY CONDITION

    Directory of Open Access Journals (Sweden)

    P.Marimuthu

    2014-12-01

    Full Text Available Ni-base super alloys are widely used in several industrial sectors, like petrochemical and power generation due to their high performance in aggressive environments. Inconel625 is primarily a Ni–Cr– Mo alloy used in different applications for its strength, excellent fabric ability and outstanding corrosion resistance. Machining of super alloy has been found to be a challenging task it has attracted considerable research. So, it is essential to know the cutting parameters for effective machining of super alloys. The present work focuses on finding the optimal cutting parameters for turning Inconel625 to achieve minimum surface roughness (SR, tool wear (TW and maximum material removal rate (MRR in CNC turning under dry conditions using TiAlN coated cutting tool. Single response optimization is performed by Taguchi method and multi response optimization is performed by desirability function analysis.

  7. Ordered iron aluminide alloys having an improved room-temperature ductility and method thereof

    Science.gov (United States)

    Sikka, Vinod K.

    1992-01-01

    A process is disclosed for improving the room temperature ductility and strength of iron aluminide intermetallic alloys. The process involves thermomechanically working an iron aluminide alloy by means which produce an elongated grain structure. The worked alloy is then heated at a temperature in the range of about 650.degree. C. to about 800.degree. C. to produce a B2-type crystal structure. The alloy is rapidly cooled in a moisture free atmosphere to retain the B2-type crystal structure at room temperature, thus providing an alloy having improved room temperature ductility and strength.

  8. Hydrogen permeation in iron and nickel alloys around room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Otsuka, T., E-mail: t-otsuka@nucl.kyushu-u.ac.jp; Shinohara, M.; Horinouchi, H.; Tanabe, T.

    2013-11-15

    Hydrogen permeation and diffusion coefficients in alloys of iron (Fe) and nickel (Ni) with the Ni content of 5, 9, and 20 at.% and a crystal structure of α/α′ phase have been examined around room temperature (RT) using a tritium-tracer hydrogen-permeation experiment. Hydrogen permeation coefficients around RT agree well with values extrapolated from literature data obtained at higher temperatures for the respective alloys. On the other hand, apparent hydrogen diffusion coefficients determined using the time-lag method are several orders of magnitude smaller than extrapolated from the literature data. This could be caused by surface blocking and/or barrier effects due to surface oxide and/or other impurities. Initially, hydrogen permeation is suppressed by the existence of the surface oxide. It appears that hydrogen, mostly at the upstream side or even at the downstream side, can reduce and remove the surface oxides so that normal hydrogen steady-state permeation can occur without surface blocking or barrier effects. Thus, true hydrogen diffusion coefficients for respective Fe–Ni alloys during steady-state permeation must be much larger than those estimated from the time-lag method.

  9. Microstructures and constituents of super-high strength aluminum alloy ingots made through LFEC process

    Directory of Open Access Journals (Sweden)

    WANG Shuang

    2007-11-01

    Full Text Available Ingots of a new super-high strength Al-Zn-Mg-Cu-Zr alloy were produced respectively by low frequency electromagnetic casting (LFEC and by conventional direct chill (DC casting process. Microstructure and constituents of the ingots were studied. The results indicated that the LFEC process significantly refines microstructure and constituents of the alloy, and to some extent, decreases the area (or volume fraction of constituents and eutectic structure precipitated at grain boundaries. But, no difference in the type of constituents was observed between LFEC and DC ingots. The results also showed LFEC process can improve the as-cast mechanical properties.

  10. Fabrication of super-hydrophobic surfaces on aluminum alloy substrates by RF-sputtered polytetrafluoroethylene coatings

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2014-03-01

    Full Text Available In this work, we present a method of fabricating super-hydrophobic surface on aluminum alloy substrate. The etching of aluminum surfaces has been performed using Beck's dislocation etchant for different time to create micrometer-sized irregular steps. An optimised etching time of 50 s is found to be essential before polytetrafluoroethylene (PTFE coating, to obtain a highest water contact angle of 165±2° with a lowest contact angle hysteresis as low as 5±2°. The presence of patterned microstructure as revealed by scanning electron microscopy (SEM together with the low surface energy ultrathin RF-sputtered PTFE films renders the aluminum alloy surfaces highly super-hydrophobic.

  11. Temperature Effect on the Optical Emission Intensity in Laser Induced Breakdown Spectroscopy of Super Alloys

    Science.gov (United States)

    Darbani, S. M. R.; Ghezelbash, M.; Majd, A. E.; Soltanolkotabi, M.; Saghafifar, H.

    2014-12-01

    In this paper, the influence of heating and cooling samples on the optical emission spectra and plasma parameters of laser-induced breakdown spectroscopy for Titanium 64, Inconel 718 super alloys, and Aluminum 6061 alloy is investigated. Samples are uniformly heated up to approximately 200°C and cooled down to -78°C by an external heater and liquid nitrogen, respectively. Variations of plasma parameters like electron temperature and electron density with sample temperature are determined by using Boltzmann plot and Stark broadening methods, respectively. Heating the samples improves LIBS signal strength and broadens the width of the spectrum. On the other hand, cooling alloys causes fluctuations in the LIBS signal and decrease it to some extent, and some of the spectral peaks diminish. In addition, our results show that electron temperature and electron density depend on the sample temperature variations.

  12. Nickel super alloy INCONEL 713LC - structural characteristics after heat treatment

    Directory of Open Access Journals (Sweden)

    A. Hernas

    2007-06-01

    Full Text Available Purpose: Nickel super alloy’s products are mainly using for construction parts of jet engines, gas turbines and turbo-blowers.Design/methodology/approach: Super alloy was commercially produced and was investigated by using the light microscopy (OLYMPUS IX 71 and local chemical microanalysis and by the scanning electron microscopy (JEOL JSM 50AFindings: We found a mode of optimum heat treatment. On the basis of obtained results it is possible to recommend a following regime of heat treatment: heating and dwell at the temperature exceeding 1240 °C (min. 1260 °C, so that precipitates at the grain boundaries dissolve completely, with subsequent slow cooling down to the temperature of approx. 940-950 °C, so that there occurs intensive intra-granular precipitation of intermetallic phase γ’.Research limitations/implications: The experiment was limited by occurrence a void in cast alloys.Practical implications: Nickel super alloy’s products are mainly using for construction parts of jet engines, gas turbines and turbo-blowers.Originality/value: Mode of optimum heat treatment was proposed. On the basis of obtained results it is possible to recommend the most suitable heat treatment, which produce intensive intra-granular precipitation of inter-metallic phase γ’. It was received a new know-how in this field.

  13. Iron-aluminum alloys having high room-temperature and method for making same

    Science.gov (United States)

    Sikka, V.K.; McKamey, C.G.

    1993-08-24

    A wrought and annealed iron-aluminum alloy is described consisting essentially of 8 to 9.5% aluminum, an effective amount of chromium sufficient to promote resistance to aqueous corrosion of the alloy, and an alloying constituent selected from the group of elements consisting of an effective amount of molybdenum sufficient to promote solution hardening of the alloy and resistance of the alloy to pitting when exposed to solutions containing chloride, up to about 0.05% carbon with up to about 0.5% of a carbide former which combines with the carbon to form carbides for controlling grain growth at elevated temperatures, and mixtures thereof, and the balance iron, wherein said alloy has a single disordered [alpha] phase crystal structure, is substantially non-susceptible to hydrogen embrittlement, and has a room-temperature ductility of greater than 20%.

  14. Fabrication of self-healing super-hydrophobic surfaces on aluminium alloy substrates

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2015-04-01

    Full Text Available We present a method to fabricate a super-hydrophobic surface with a self-healing ability on an aluminium alloy substrate. The coatings are obtained by combining a two-step process (first, the substrate is immersed in a solution of HCl, HF and H2O, and then in boiling water and succeeding surface fluorination with a solution of poly(vinylidene-fluoride-co-hexafluoropropylene and a fluoroalkyl silane. The morphological features and chemical composition were studied by scanning electron micrometry and energy-dispersive X-ray spectroscopy. The prepared super-hydrophobic aluminium surfaces showed hierarchical structures forming pores, petals and particles with a contact angle of 161° and a sliding angle of 3°.

  15. Comparison of measured and calculated thermophysical properties of nickel super-alloys

    Directory of Open Access Journals (Sweden)

    A. Kalup

    2016-07-01

    Full Text Available Three real grades of nickel super-alloys (IN 713LC, IN 738LC and IN 792-5A were investigated and values of temperatures of phase transformations and latent heats of melting were obtained. All investigated quantities are very important for thermodynamic and kinetic modelling. Moreover, these data are also valuable for a lot of software used for technological processes modelling. Experimental values were obtained using Differential Thermal Analysis (DTA measurements. Calculations were performed using Thermo-Calc 3.1 software with the use of three different databases (SSOL5, TTNI8 and TCNI6. Comparison and discussion of experimental and calculated data was performed.

  16. Laser-Aided Direct Writing of Nickel-Based Single-Crystal Super Alloy (N5)

    Science.gov (United States)

    Wang, Yichen; Choi, Jeongyoung; Mazumder, Jyoti

    2016-12-01

    This communication reports direct writing of René N5 nickel-based Super alloy. N5 powder was deposited on (100) single-crystal substrate of René N5, for epitaxial growth, using laser and induction heating with a specially designed closed-loop thermal control system. A thin wall (1 mm width) of René N5 single crystal of 22.1 mm (including 3 mm SX substrate) in height was successfully deposited within 100 layers. SEM and EBSD characterized the single-crystal nature of the deposit.

  17. Super High Strength Aluminum Alloy Processed by Mechanical Alloying and Hot Extrusion

    Science.gov (United States)

    Zheng, Ruixiao; Yang, Han; Wang, Zengjie; Wen, Shizhen; Liu, Tong; Ma, Chaoli

    Nanostructure strengthened aluminum alloy was prepared by powder metallurgic technology. The rapid solidification Al-Cu-Mg alloy powder was used in this study. To obtain nanostructure, the commercial powder was intensely milled under certain ball milling conditions. The milled powder was compacted first by cold isostatic pressing (CIP) at a compressive pressure of 300MPa, and then extruded at selected temperature for several times to obtain near full density material. Microstructure and mechanical properties of the extruded alloy were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and mechanical tests. It is revealed that the compressive strength of extruded alloy is higher than 800MPa. The strengthening mechanism associated with the nanostructure is discussed.

  18. Tensile and elastic properties of deformed heterogeneous aluminum alloys at room and elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Eskin, D.G. (A.A. Baikov Institute of Metallurgy, Russian Academy of Sciences, 49, Leninskii prosp., Moscow 117334 (Russian Federation)); Toropova, L.S. (A.A. Baikov Institute of Metallurgy, Russian Academy of Sciences, 49, Leninskii prosp., Moscow 117334 (Russian Federation))

    1994-06-15

    In this study we investigated the tensile and elastic properties of deformed binary Al-Ni, Al-Fe, and Al-Cu alloys containing 10-25 vol.% of second phase. Sheets and rods of the alloys exhibit an increase in Young''s modulus of 15%-25%, and tensile properties at room and elevated temperatures comparable with those of conventional medium-strength wrought aluminum alloys. The elastic moduli of the phases were estimated. ((orig.)). Letter-to-the-editor

  19. Strengthening mechanisms of indirect-extruded Mg–Sn based alloys at room temperature

    Directory of Open Access Journals (Sweden)

    Wei Li Cheng

    2014-12-01

    Full Text Available The strength of a material is dependent on how dislocations in its crystal lattice can be easily propagated. These dislocations create stress fields within the material depending on their intrinsic character. Generally, the following strengthening mechanisms are relevant in wrought magnesium materials tested at room temperature: fine-grain strengthening, precipitate strengthening and solid solution strengthening as well as texture strengthening. The indirect-extruded Mg–8Sn (T8 and Mg–8Sn–1Al–1Zn (TAZ811 alloys present superior tensile properties compared to the commercial AZ31 alloy extruded in the same condition. The contributions to the strengthen of Mg–Sn based alloys made by four strengthening mechanisms were calculated quantitatively based on the microstructure characteristics, physical characteristics, thermomechanical analysis and interactions of alloying elements using AZ31 alloy as benchmark.

  20. Mechanical Properties of Discontinuous Precipitated Al-Zn Alloys after Drawing at Room and Cryogenic Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Soo; Lee, Jehyun [Changwon National University, Changwon (Korea, Republic of); Han, Seung Zeon; Ahn, Jee Hyuk [Korea Institute of Materials Science, Changwon (Korea, Republic of); Lim, Sung Hwan [Kangwon National University, Chuncheon (Korea, Republic of); Kim, Kwang Ho [Pusan National University, Pusan (Korea, Republic of); Kim, Sang sik [Gyeongsang National University, Jinju (Korea, Republic of)

    2017-02-15

    In order to study the effect of microstructural change on the tensile properties of discontinuous precipitated Al-Zn binary alloy, four different Al-Zn alloys(25, 30, 35, 45 wt%Zn) were aged at 160 ℃ for different aging times(0, 5, 15, 30, 60, 120, 360 min) after being solution treated at 400 ℃, and successively drawn at room and cryogenic temperatures(-197 ℃). Discontinuous precipitation was formed during aging in the Al matrix(which contained more than 30 wt%Zn) in Al alloys containing more than 30 wt%Zn. The tensile strength of continuous precipitated Al-35Zn alloy decreased with increasing drawing ratio, however, the tensile strength of discontinuous precipitated Al-35Zn alloy increased with further drawing. The strength and ductility combination, 350 MPa-36%was achieved by drawning discontinuous precipitated Al-Zn alloy at room temperature. The discontinuous precipitated Al-Zn alloy drawn at cryogenic temperature showed a higher value of tensile strength, over 500 MPa, although ductility decreased.

  1. Super-High Temperature Alloys and Composites from NbW-Cr Systems

    Energy Technology Data Exchange (ETDEWEB)

    Shailendra Varma

    2008-12-31

    Nickel base superalloys must be replaced if the demand for the materials continues to rise for applications beyond 1000{sup o}C which is the upper limit for such alloys at this time. There are non-metallic materials available for such high temperature applications but they all present processing difficulties because of the lack of ductility. Metallic systems can present a chance to find materials with adequate room temperature ductility. Obviously the system must contain elements with high melting points. Nb has been chosen by many investigators which has a potential of being considered as a candidate if alloyed properly. This research is exploring the Nb-W-Cr system for the possible choice of alloys to be used as a high temperature material.

  2. Fabrication of nanocrystalline alloys Cu–Cr–Mo super satured solid solution by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, C., E-mail: claudio.aguilar@usm.cl [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Guzmán, D. [Departamento de Ingeniería en Metalurgia, Facultad de Ingeniería, Universidad de Atacama y Centro Regional de Investigación y Desarrollo Sustentable de Atacama (CRIDESAT), Av. Copayapu 485, Copiapó (Chile); Castro, F.; Martínez, V.; Cuevas, F. de las [Centro de Estudios e Investigaciones Técnicas de Gipuzkoa, Paseo de Manuel Lardizábal, N° 15, 20018 San Sebastián (Spain); Lascano, S. [Departamento de Ingeniería Mecánica, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Muthiah, T. [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile)

    2014-08-01

    This work discusses the extension of solid solubility of Cr and Mo in Cu processed by mechanical alloying. Three alloys processed, Cu–5Cr–5Mo, Cu–10Cr–10Mo and Cu–15Cr–15Mo (weight%) using a SPEX mill. Gibbs free energy of mixing values 10, 15 and 20 kJ mol{sup −1} were calculated for these three alloys respectively by using the Miedema's model. The crystallite size decreases and dislocation density increases when the milling time increases, so Gibbs free energy storage in powders increases by the presence of crystalline defects. The energy produced by crystallite boundaries and strain dislocations were estimated and compared with Gibbs free energy of mixing values. The energy storage values by the presence of crystalline defects were higher than Gibbs free energy of mixing at 120 h for Cu–5Cr–5Mo, 130 h for Cu–10Cr–10Mo and 150 h for Cu–15Cr–15Mo. During milling, crystalline defects are produced that increases the Gibbs free energy storage and thus the Gibbs free energy curves are moved upwards and hence the solubility limit changes. Therefore, the three alloys form solid solutions after these milling time, which are supported with the XRD results. - Highlights: • Extension of solid solution Cr and Mo in Cu achieved by mechanical alloying. • X-ray characterization of Cu–Cr–Mo system processed by mechanical alloying. • Thermodynamics analysis of formation of solid solution of the Cu–Cr–Mo system.

  3. Giant magnetocaloric effect near room temperature in the off-stoichiometric Mn-Co-Ge alloy

    Science.gov (United States)

    Sharma, V. K.; Manekar, M. A.; Srivastava, Himanshu; Roy, S. B.

    2016-12-01

    We report a giant magnetocaloric effect near room temperature in an off-stoichiometric Mn-Co-Ge alloy, across the magnetostructural transition. The isothermal entropy change accompanying this transition has a peak value of nearly 40 J kg-1 K-1 near 297 K for a field excursion of 70 kOe, and a refrigerant capacity of 270 J kg-1 with the hot end at 302.5 K and cold end at 293.5 K. We also present an experimental protocol to avoid spurious peaks in the magnetocaloric effect across a sharp first order magnetostructural transition, not confined to Mn-Co-Ge alone, where metastability during the transition could influence the measured magnetization and thus the estimated entropy change. The estimated entropy change in the present off-stoichiometric Mn-Co-Ge alloy is possibly the highest reported value near room temperature in undoped Mn-Co-Ge alloys and underlines the potential of the alloy for technological applications in room temperature magnetic refrigeration.

  4. Deformation of a super-elastic NiTiNb alloy with controllable stress hysteresis

    Energy Technology Data Exchange (ETDEWEB)

    Cai, S.; Schaffer, J. E.; Ren, Y.; Wang, L.

    2016-06-27

    Room temperature deformation of a Ni46.7Ti42.8Nb10.5 alloy was studied by in-situ synchrotron X-ray diffraction. Compared to binary NiTi alloy, the Nb dissolved in the matrix significantly increased the onset stress for Stress-Induced Martensite Transformation (SIMT). The secondary phase, effectively a Nb-nanowire dispersion in a NiTi-Nb matrix, increased the elastic stiffness of the bulk material, reduced the strain anisotropy in austenite families by loading sharing during SIMT, and increased the stress hysteresis by resisting reverse phase transformation during unloading. The stress hysteresis can be controlled over a wide range by changing the heat treatment temperature through its influences on the residual stress-strain state of the Nb-nanowire dispersion.

  5. Optimization of the WEDM Parameters on Machining Incoloy800 Super alloy with Multiple Quality Characteristics

    Directory of Open Access Journals (Sweden)

    Muthu Kumar V

    2010-06-01

    Full Text Available The present work demonstrates optimization of Wire Electrical Discharge Machining process parameters of Incoloy800 super alloy with multiple performance characteristics such as Material Removal Rate (MRR, surface roughness and Kerf based on the Grey–Taguchi Method. The process parameters considered in this research work are Gap Voltage, Pulse On-time, Pulse Off-time and Wire Feed. Taguchi’s L9 Orthogonal Array was used to conduct experiments. Optimal levels of process parameters were identified using Grey Relational Analysis and the relatively significant parameters were determined by Analysis of Variance. The variation of output responses with process parameters were mathematically modelled by using non-linear regression analysismethod and the models were checked for their adequacy. Result of confirmation experiments shows that the established mathematical models can predict the output responses with reasonable accuracy.

  6. Determination of thermophysical and structural properties of nickel super-alloy

    Directory of Open Access Journals (Sweden)

    S. Zlá

    2015-10-01

    Full Text Available In this work the differential thermal analysis (DTA was selected for the study of 718Plus super-alloy. Particular attention was paid to determination of the phase transformation temperatures (liquidus, γ´ precipitation temperature, etc.. Almost at all temperatures of samples an undercooling was observed. Shifting of almost all temperatures was observed in the heating/cooling mode towards higher values with an increasing rate of heating, lower values with the increasing cooling rate. On the basis of DTA and structural analysis it may be stated that development of phase transformations will probably correspond to the following scheme: melting → γ phase; melting → γ + MC (NbC, TiC; melting + MC → γ + Laves + σ; γ → γ´ (γ´´.

  7. Room temperature synthesis of Ni-based alloy nanoparticles by radiolysis.

    Energy Technology Data Exchange (ETDEWEB)

    Nenoff, Tina Maria; Berry, Donald T.; Lu, Ping; Leung, Kevin; Provencio, Paula Polyak; Stumpf, Roland Rudolph; Huang, Jian Yu; Zhang, Zhenyuan

    2009-09-01

    Room temperature radiolysis, density functional theory, and various nanoscale characterization methods were used to synthesize and fully describe Ni-based alloy nanoparticles (NPs) that were synthesized at room temperature. These complementary methods provide a strong basis in understanding and describing metastable phase regimes of alloy NPs whose reaction formation is determined by kinetic rather than thermodynamic reaction processes. Four series of NPs, (Ag-Ni, Pd-Ni, Co-Ni, and W-Ni) were analyzed and characterized by a variety of methods, including UV-vis, TEM/HRTEM, HAADF-STEM and EFTEM mapping. In the first focus of research, AgNi and PdNi were studied. Different ratios of Ag{sub x}- Ni{sub 1-x} alloy NPs and Pd{sub 0.5}- Ni{sub 0.5} alloy NP were prepared using a high dose rate from gamma irradiation. Images from high-angle annular dark-field (HAADF) show that the Ag-Ni NPs are not core-shell structure but are homogeneous alloys in composition. Energy filtered transmission electron microscopy (EFTEM) maps show the homogeneity of the metals in each alloy NP. Of particular interest are the normally immiscible Ag-Ni NPs. All evidence confirmed that homogeneous Ag-Ni and Pd-Ni alloy NPs presented here were successfully synthesized by high dose rate radiolytic methodology. A mechanism is provided to explain the homogeneous formation of the alloy NPs. Furthermore, studies of Pd-Ni NPs by in situ TEM (with heated stage) shows the ability to sinter these NPs at temperatures below 800 C. In the second set of work, CoNi and WNi superalloy NPs were attempted at 50/50 concentration ratios using high dose rates from gamma irradiation. Preliminary results on synthesis and characterization have been completed and are presented. As with the earlier alloy NPs, no evidence of core-shell NP formation occurs. Microscopy results seem to indicate alloying occurred with the CoNi alloys. However, there appears to be incomplete reduction of the Na{sub 2}WO{sub 4} to form the W

  8. The relationship between the super plasticity of laser welding joint of titanium alloy and hydrogen treatment

    Science.gov (United States)

    Cao, Zean; Cheng, Donghai; Jiang, Xunyan; Hu, Dean; Chen, Yiping

    2017-06-01

    The superplastic deformation uniformity of laser welded joint of TC4 titanium alloy is improved by hydrogen treatment. The non-uniform deformation coefficient K was introduced to quantification ally characterize the non-uniform deformation. The results show when the content of hydrogen exceeds 0.29%, the super plasticity of the titanium alloy welded plate decreases with the increase of the hydrogen content. The decrease of the shrinkage of the base material is larger than that of the weld section with the increase of hydrogen content. The K can be used to describe the non-uniform deformation of the weld and the base material during the superplastic deformation of laser welded joint of the TC4. The K value increases with increaseing hydrogen content, increaseing deformation temperature and decreaseing strain rate. The K value reaches the maximum of 0.84 with hydrogen content of 1.299%, deformation temperature of 920 °C, strain rate of 10-4S-1.

  9. Kinetics and Microstructural Investigation of High-Temperature Oxidation of IN-738LC Super Alloy

    Science.gov (United States)

    Hamidi, S.; Rahimipour, M. R.; Eshraghi, M. J.; Hadavi, S. M. M.; Esfahani, H.

    2017-02-01

    The present study was carried out to investigate the kinetics and the surface chemistry of the oxide layers formed on the IN-738LC super alloy during high-temperature oxidation at 950 °C in air from 1 to 260 h. Oxidation kinetics were studied by mass gain measurement. The oxide layers were characterized by field emission scanning electron microscope, elemental distribution map, energy-dispersive spectroscopy as well as x-ray diffractometry (XRD). The oxidation kinetics followed the parabolic law. The XRD analysis revealed that the oxide scale contained mainly NiO, Ni (Cr, Al)2O4, Al2O3, TiO2 and Cr2O3. The oxide structure, from the top surface down to the substrate, was clarified by elemental map distribution studies as Ni-Ti oxides, Cr-Ti oxides, Cr2O3 oxide band, Ni-Co-Cr-W oxide and finally a blocky Al2O3 region. The oxidation scales were composed of three distinct layers of the outer and mid layers enriched by TiO2 and Cr2O3, NiCr2O4 oxide, respectively, and the innermost layer was composed of Al2O3 and matrix alloy. The depleted gamma prime layer was formed under the oxidation scales due to the impoverishment of Al and Ti which were induced by the formation of Al2O3 and TiO2.

  10. Facile synthesis of monodisperse thermally immiscible Ag–Ni alloy nanoparticles at room temperature

    Indian Academy of Sciences (India)

    S Tabatabaei; S K Sadrnezhaad

    2014-10-01

    Ag and Ni are immiscible, mainly due to their large lattice mismatch. This paper reports on their nanoscale formation of solid solution at room temperature by simple reduction reactions which lead to the amorphous Ag–Ni alloy nanoparticles (ANPs) with mono-disperse distribution. Microscopic and spectroscopic studies confirmed dependence of the alloy composition on size of nanoparticles. In the presence of different ligands such as sodium citrate, polyvinyl alcohol and potassium carbonate a mixture of silver oxide and Ag–Ni ANPs was achieved. Stoichiometry of the Ag–Ni ANPs was also found to be strongly dependent on ligands of the reduction reaction and further study shows without any ligand 100% Ag–Ni ANPs was observed in the system. Using Tetrakis hydroxymethyl phosphonium chloride resulted in construction of near-uniform ANPs in the easily controllable conditions of the present alloying procedure. Nanoparticles having up to 65% Ni were observed for the first time in this research.

  11. Room temperature deformation of in-situ grown quasicrystals embedded in Al-based cast alloy

    Directory of Open Access Journals (Sweden)

    Boštjan Markoli

    2013-12-01

    Full Text Available An Al-based cast alloy containing Mn, Be and Cu has been chosen to investigate the room temperature deformation behavior of QC particles embedded in Al-matrix. Using LOM, SEM (equipped with EDS, conventional TEM with SAED and controlled tensile and compression tests, the deformation response of AlMn2Be2Cu2 cast alloy at room temperature has been examined. Alloy consisted of Al-based matrix, primary particles and eutectic icosahedral quasicrystalline (QC i-phase and traces of Θ-Al2Cu and Al10Mn3. Tensile and compression specimens were used for evaluation of mechanical response and behavior of QC i-phase articles embedded in Al-cast alloy. It has been established that embedded QC i-phase particles undergo plastic deformation along with the Al-based matrix even under severe deformation and have the response resembling that of the metallic materials by formation of typical cup-and-cone feature prior to failure. So, we can conclude that QC i-phase has the ability to undergo plastic deformation along with the Al-matrix to greater extent contrary to e.g. intermetallics such as Θ-Al2Cu for instance.

  12. Structural transformations and tribological properties of amorphous alloys upon wear at room and cryogenic temperatures

    Science.gov (United States)

    Korshunov, L. G.; Chernenko, N. L.; Goikhenberg, Yu. N.

    2009-09-01

    The abrasive wear resistance of the Fe64Co30Si3B3, Co86.5Cr4Si7B2.5, Fe73.5Nb3Cu1Si13.5B9, and Fe82.6Nb5Cu3Si8B1.4 commercial amorphous alloys (ribbon 0.03 mm thick and 12 mm wide) has been investigated under the conditions of abrasive and adhesive wear upon sliding friction. The character of fracture of the surface and structural transformations that occur in these materials upon wear have been studied by the metallographic and electron-microscopic methods. It has been shown that at room and cryogenic (-196°C) temperatures of tests the abrasive wear resistance of the amorphous alloys is two-three times lower than that of tool steels Kh12M and U8. A comparatively small abrasive wear resistance of the amorphous alloys is explained by local softening of these materials in the process of wear. Under the conditions of adhesive wear of like friction pairs at room temperature in air and argon, the amorphous alloys are characterized by the rate of wear that is smaller approximately by an order of magnitude than in steels 12Kh13 and 12Kh18N9. It has been established that upon wear the deformed surface layer of the alloys under study retains a predominantly amorphous state but in local sections of this layer nanocrystalline structures that consist of crystals of bcc and fcc phases and borides are formed. The possible effects of this partial crystallization on the microhardness, friction coefficient, and wear resistance of these alloys have been considered.

  13. DIMENSIONAL INSTABILITY OF LD31 Al ALLOY WELDMENTS AT ROOM TEMPERATURE AND AFTER THERMAL CYCLES

    Institute of Scientific and Technical Information of China (English)

    X.S. Liu; H.Y. Fang; W.L. Xu; X.T. Tian; X.D. Sun

    2004-01-01

    The unstable dimensional distortion of LD31 aluminum alloy weldments at room temperature and after thermal cycles was studied by use of light interference and CMM(three-coordinate measuring machines). At the same time, distortion mechanism was analyzed from the viewpoint of mechanics and microstructure. Experimental results show that there exists obvious difference of unstable dimensional distortion between LD31 welded specimens under two conditions mentioned above. Under room temperature, dimensional variation of welded specimens will decrease gradually and finally tends to be stable during 200h after welding. The relative elongation of welded specimen is 3.0×10-5; After thermal cycles, distortion of welded specimen is much larger than that at room temperature. After 11 thermal cycles, the dimension will tend to be stable. Dimensional unstable distortion of weldments mainly results from temperature condition, microstructure variation and relaxation of welding residual stress.

  14. Dimensional instability of LF21 aluminum alloy weldments at room temperature and after thermal cycles

    Institute of Scientific and Technical Information of China (English)

    刘雪松; 田锡唐; 徐文立

    2002-01-01

    The unstable dimensional distortion of LF21 aluminum alloy weldments at room temperature and after thermal cycles was studied by use of light interference and CMM. At the same time, distortion mechanism was analyzed from the viewpoint of mechanics and microstructure. Experimental results show that there exists obvious difference of unstable dimensional distortion between LF21 welded specimens under two conditions mentioned above. Under room temperature, dimensional variation of welded specimens will decrease gradually and finally tends to be stable during 130 h after welding. The relative elongation of welded specimen is 4.2×10-5. After thermal cycles, distortion of welded specimen is much larger than that at room temperature. After 11 thermal cycles, the dimension will tend to be stable. Dimensional unstable distortion of weldments mainly results from temperature condition, microstructure variation and relaxation of welding residual stress.

  15. Effects of minor Si on microstructures and room temperature fracture toughness of niobium solid solution alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Bin, E-mail: kongbin@buaa.edu.cn; Jia, Lina, E-mail: jialina@buaa.edu.cn; Su, Linfen, E-mail: sulinfen@mse.buaa.edu.cn; Guan, Kai, E-mail: guankai@mse.buaa.edu.cn; Weng, Junfei, E-mail: wengjf@mse.buaa.edu.cn; Zhang, Hu, E-mail: zhanghu@buaa.edu.cn

    2015-07-15

    Controlling the elements content in the niobium solid solution (Nb{sub SS}) is significant for the better comprehensive performance of Nb-silicide-based alloys. In this paper, the effects of minor Si on the microstructures and room temperature fracture toughness of Nb–(0/0.5/1/2)Si–27.63Ti–12.92Cr–2.07Al–1.12Hf (at%, unless stated otherwise) solid solution alloys were investigated. The alloys were processed by vacuum arc-casting (AC), and then heat treated (HT) at 1425 °C for 10 h. In HT alloys, Nb{sub SS} grains are refined gradually with the increase of Si content. Meanwhile, the volume fraction of Cr{sub 2}Nb and silicides phases precipitates increases. The fracture toughness of HT alloys decreases at first but then increases in the range of 0 to 2% Si, because it is a combinatorial process of positive and negative effects caused by the addition of Si. The refinement of Nb{sub SS} grains displays positive effect on fracture toughness, while the increase of solid solubility of Si in Nb{sub SS} and brittle Cr{sub 2}Nb and Nb-silicides precipitate phases display negative effect.

  16. Investigation of low stress rupture properties in Inconel-718 super alloy

    Science.gov (United States)

    Zaman, T.; Farooque, M.; Rizvi, S. A.; Salam, I.; Waseem, M.

    2016-08-01

    Inconel-718 is a Ni-Cr-Fe based super alloy. It is widely utilized in aircraft gas turbines, nuclear power systems, space vehicles and medical applications. Aim of the present study is to evaluate the effect of Ti and Nb content on high temperature stress rupture properties of Inconel718. OM, SEM and TEM were utilized for characterization of microstructure. Inconel718 is unique in that it forms large number of phases due to its composition and variety of heat treatments. γ"+ γ' precipitates and the effect of annealing on these precipitates have been studied using TEM. The main hardening phase was identified as metastable Ni3Nb (γ"). Other phases identified after annealing were secondary carbides (NbC) and stable acicular 5 phase. Effect of γ", 5, primary carbides and NbC on creep behavior was observed using OM and SEM. Higher Ti content(1.25 wt. %) resulted in poor creep properties due to large concentrations of primary carbides (TiC) at grain boundaries.

  17. Optimization of EDM Process Parameters on Titanium Super Alloys Based on the Grey Relational Analysis

    Directory of Open Access Journals (Sweden)

    J. Laxman, Dr. K. Guru Raj

    2014-05-01

    Full Text Available Electrical discharge machining (EDM is a unconventional machining process for the machining of complex shapes and hard materials that are difficult of machining by conventional machining process. In this paper deals with the optimization of EDM process parameters using the grey relational analysis (GRA based on an orthogonal array for the multi response process. The experiments are conducted on Titanium super alloys with copper electrode based on the Taguchi design of experiments L27 orthogonal array by choosing various parameters such as peak current, pulse on time, pulse off time and tool lift time for EDM process to obtain multiple process responses namely Metal removal rate (MRR and Tool Wear Rate (TWR. The combination of Taguchi method with GRA enables to determine the optimal parameters for multiple response process. Gray relational analysis is used to obtain a performance index called gray relational grade to optimize the EDM process with higher MRR and lower TWR and it is clearly found that the performance of the EDM has greatly increased by optimizing the responses the influence of individual machining parameters also investigated by using analysis of variance for the grey relational grade.

  18. Development of a rotor alloy for advanced ultra super critical turbine power generation system

    Energy Technology Data Exchange (ETDEWEB)

    Miyashita, Shigekazu; Yamada, Masayuki; Suga, Takeo; Imai, Kiyoshi; Nemoto, Kuniyoshi; Yoshioka, Youmei [Toshiba Corporation, Yokohama (Japan)

    2008-07-01

    A Ni-based superalloy ''TOS1X'', for the rotor material of the 700 class advanced ultra super critical (A-USC) turbine power generation system was developed. TOS1X is an alloy that is improved in the creep rupture strength of Inconel trademark 617 maintaining both forgeability and weldability. The 7 t weight model rotor made of TOS1X was manufactured by double melt process, vacuum induction melting and electro slag remelting, and forging. During forging process, forging cracks and any other abnormalities were not detected on the ingots. The metallurgical and the mechanical properties in this rotor were investigated. Macro and micro structure observation, and some mechanical tests were conducted. According to the metallurgical structure investigation, there was no remarkable segregation in whole area and the forging effect was reached in the center part of the rotor ingot. The results of tensile test and creep rupture test proved that proof stress and tensile stress of the TOS1X are higher than those of Inconel trademark 617 and creep rupture strength of TOS1X is much superior than that of Inconel trademark 617. (orig.)

  19. Large room-temperature rotating magnetocaloric effect in NdCo4Al polycrystalline alloy

    Science.gov (United States)

    Hu, Y.; Hu, Q. B.; Wang, C. C.; Cao, Q. Q.; Gao, W. L.; Wang, D. H.; Du, Y. W.

    2017-01-01

    The magnetic refrigeration based on rotating magnetocaloric effect (MCE) is promising to build a simplified magnetic cooling system. Until now, most magnetic refrigerants for rotating MCE are single crystal and work at low temperature, which hinder the development of this refrigeration technology. In present paper, we report a large room-temperature rotating MCE in a magnetic-field-aligned NdCo4Al polycrystalline alloy. A large rotating magnetic entropy change of 1.3 J kg-1 K-1 under 10 kOe and a broad operating temperature window of 52 K are achieved. The origin of large rotating MCE in NdCo4Al polycrystalline alloy and its advantages for rotating magnetic refrigeration are discussed.

  20. Room temperature creep-fatigue response of selected copper alloys for high heat flux applications

    DEFF Research Database (Denmark)

    Li, M.; Singh, B.N.; Stubbins, J.F.

    2004-01-01

    Two copper alloys, dispersion-strengthened CuAl25 and precipitation-hardened CuCrZr, were examined under fatigue and fatigue with hold time loading conditions. Tests were carried out at room temperature and hold times were imposed at maximum tensile and maximum compressive strains. It was found...... times. The influence of hold times on fatigue life in the low cycle fatigue, short life regime (i.e., at high strain amplitudes) was minimal. When hold time effects were observed, fatigue lives were reduced with hold times as short as two seconds. Appreciable stress relaxation was observed during...... the hold period at all applied strain levels in both tension and compression. In all cases, stresses relaxed quickly within the first few seconds of the hold period and much more gradually thereafter. The CuAl25 alloy showed a larger effect of hold time on reduction of high cycle fatigue life than did...

  1. Room-temperature amorphous alloy field-effect transistor exhibiting particle and wave electronic transport

    Energy Technology Data Exchange (ETDEWEB)

    Fukuhara, M., E-mail: fukuhara@niche.tohoku.ac.jp [New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579 (Japan); Kawarada, H. [Research and Development Center, Waseda University, Tokyo 162-0041 (Japan)

    2015-02-28

    The realization of room-temperature macroscopic field effect transistors (FETs) will lead to new epoch-making possibilities for electronic applications. The I{sub d}-V{sub g} characteristics of the millimeter-sized aluminum-oxide amorphous alloy (Ni{sub 0.36}Nb{sub 0.24}Zr{sub 0.40}){sub 90}H{sub 10} FETs were measured at a gate-drain bias voltage of 0–60 μV in nonmagnetic conditions and under a magnetic fields at room temperature. Application of dc voltages to the gate electrode resulted in the transistor exhibiting one-electron Coulomb oscillation with a period of 0.28 mV, Fabry-Perot interference with a period of 2.35 μV under nonmagnetic conditions, and a Fano effect with a period of 0.26 mV for Vg and 0.2 T under a magnetic field. The realization of a low-energy controllable device made from millimeter-sized Ni-Nb-Zr-H amorphous alloy throws new light on cluster electronics.

  2. Room temperature lasing in GeSn alloys: A path to CMOS-compatible infrared lasers

    Science.gov (United States)

    Li, Zairui; Zhao, Yun; Gallagher, James; Menéndez, José; Kouvetakis, John; Agha, Imad; Mathews, Jay

    The semiconductor industry has been pushing silicon photonics development for many years, resulting in the realization of many CMOS-compatible optoelectronic devices. However, one challenge that has not been overcome is the development of Si-based lasers. Recently, GeSn alloys grown on Si have shown much promise in the field of infrared optoelectronics. These alloy films are compatible with CMOS processing, have band gaps in the infrared, and the band structure of GeSn can be tuned via Sn concentration to induce direct band gap emission. In this work, we report on room temperature lasing in optically-pumped waveguides fabricated from GeSn films grown epitaxially on Si(100) substrates. The waveguides were defined using standard UV photolithography and dry-etched in a Cl plasma. The end facets were mirror polished, and Al was deposited on one facet to enhance cavity quality. The waveguides were optically-pumped using a 976nm wavelength solid-state laser, and the corresponding emission was measured. The dependence of the emission power on the pump power shows a clear transition between spontaneous and stimulated emission, thereby demonstrating room temperature lasing.

  3. Control of an innovative super-capacitor-powered shape-memory-alloy actuated accumulator for blowout preventer

    Science.gov (United States)

    Chen, Jian; Li, Peng; Song, Gangbing; Ren, Zhang

    2017-01-01

    The design of a super-capacitor-powered shape-memory-alloy (SMA) actuated accumulator for blowout preventer (BOP) presented in this paper featured several advantages over conventional hydraulic accumulators including instant large current drive, quick system response and elimination of need for the pressure conduits. However, the mechanical design introduced two challenges, the nonlinear nature of SMA actuators and the varying voltage provided by a super capacitor, for control system design. A cerebellar model articulation controller (CMAC) feedforward plus PID controller was developed with the aim of compensation for these adverse effects. Experiments were conducted on a scaled down model and experimental results show that precision control can be achieved with the proposed configurations and algorithms.

  4. Study on super-elasticity of new β-type titanium alloys without Ni%新型无镍β型钛合金超弹性的研究

    Institute of Scientific and Technical Information of China (English)

    李强; 朱胜利; 崔振铎; 杨贤金

    2011-01-01

    采用钛合金d电子理论设计超弹性钛合金。采用水冷铜坩埚电弧熔炼的方法制备铸锭,经均匀化、冷轧和退火处理后,使用XRD和TEM分析退火后合金相组成,使用U型法测试超弹性。结果表明,Ti-24Nb-4Zr合金经800℃退火后具有优良的超弹性,U型法测试加载3.76%应变在卸载后可以完全回复。Sn具有强烈降低Ms点的作用,使得Ti-24Nb-2Zr-2Sn合金获得稳定的室温β相。300℃退火生成的ω相能够避免塑性变形过早发生,提高Ti-24Nb-2Zr合金的超弹性。但其同样阻碍β相的应力诱发马氏体转变,使得Ti-24Nb-4Zr合金经300℃退火获得的超弹性低于800℃退火获得的结果。%Titanium alloys with super-elasticity were designed by d-electron alloy design theory.Ti-Nb-Zr and Ti-Nb-Zr-Sn alloy ingots were arc-melted in a water-sealed copper crucible.Then,the ingots were homogenized,cold rolled and finally annealed.Phase constitution of the annealed alloys was analyzed by utilizing X-ray diffraction(XRD) scanning electron microscopy(SEM) and transmission electron microscopy(TEM).The super-elasticity of the alloys was measured by U bending tests.Ti-24Nb-4Zr alloy show,excellent super-elasticity that fully recovery is obtained in U bending test with applied strain of 3.76%.The addition of Sn can strongly reduce Ms temperature,so that stable β phase is obtained at room temperature in Ti-24Nb-2Zr-2Sn alloy.The ω phase,which forms during annealing at 300 ℃,can restrain plastic deformation occurring,thus super-elasticity of Ti-24Nb-2Zr alloy increases.Meanwhile,it hinders stress-induced martensite transformation.This effect causes that Ti-24Nb-4Zr alloy annealed at 300 ℃ shows lower super-elasticity than the alloy after annealing at 800 ℃.

  5. 瞬态热冲击环境下超硬铝合金7A04的力学性能%MECHANICAL PROPERTIES OF SUPER-HIGH STRENGTH Al ALLOY 7A04 AT TRANSIENT HEATING

    Institute of Scientific and Technical Information of China (English)

    吴大方; 潘兵; 王岳武; 赵寿根; 杨洪源; 黄良

    2011-01-01

    使用瞬态气动热实验模拟系统对超硬铝合金7A04在不同瞬态高温热冲击条件下的力学性能进行了气动热模拟和热载联合实验研究,得到7A04在热、力学环境共同作用下的高温强度极限和承载时间等重要表征参数.实验结果表明:超硬铝合金7A04在短时热冲击环境下的强度极限比航空材料手册中长时间恒温下测量的强度极限有明显提高,这为航空航天材料和结构在短时高速热冲击环境下承载能力的提升和结构优化设计提供了可靠依据.%Super-hard aluminum alloy 7A04 (Al-Zn-Mg-Cu), whose ultimate strength is higher than that of duralumin, belongs to a class of aluminum alloys with highest ultimate strength tested at room temperature. As it can be utilized as structural material of various heating components such as rocket liquid storage tank and missile wing, super-hard aluminum alloy 7A04 has been widely used in the field of aerospace engineering. However, the ultimate strength and other token mechanical parame ters of aluminum alloy 7A04 at transient high-temperature heating environment are still unclear to us, as these key mechanical parameters are lacking in existing strength design handbook. Experimental characterization of these critical parameters of aluminum alloy 7A04 is undoubtedly meaningful to the reliability estimation, life prediction and security design of the high-speed flight vehicle. In this paper, by combining transient aerodynamic heating simulation system and material testing machine, the high-temperature ultimate strength, loading time and other mechanical properties of super-hard aluminum alloy 7A04 under different transient heating temperature and loading conditions were inves tigated Experimental results revealed that the ultimate strength and loading capability of aluminum alloy 7A04 subjected to transient thermal heating were much higher than those tested in a long-time stable high-temperature environment. The

  6. Evolution of undissolved phases in high-zinc content super-high strength aluminum alloy during ageing

    Institute of Scientific and Technical Information of China (English)

    张坤; 刘志义; 叶呈武; 许晓嫦; 郑青春

    2004-01-01

    The evolution of undissolved phases in the high-zinc content super-high strength aluminum alloy during ageing was investigated by means of SEM and EIS. The results show that undissolved phases of Cu-rich M(AlZnMgCu) exist in the silver-free alloy at solid-solution state. With increasing the ageing time, the precipitation of agehardening precipitates MgZn2 stimulates Zn atoms within the undissolved phases to diffuse into the matrix, and thus the Cu content in the M(AlZnMgCu) phase increases relatively. For the silver-bearing alloy, small addition of Ag promotes the formation of Ag-rich M(A1ZnMgCuAg) undissolved phases and deteriorates mechanical properties of the alloy. At the early stage of ageing, Ag content within the M(AlZnMgCuAg) phases greatly decreases due to rapid diffusing of Ag atoms into the matrix and the co-clustering of Ag and Mg atoms. As the ageing time prolonging, the precipitation of MgZn2 results in the decrease of Zn content in the undissolved phases, and the relative increase of Ag and Mg contents.

  7. Fabrication of GaInPSb quaternary alloy nanowires and its room temperature electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yadan; Ma, Liang; Li, Dan; Yang, Yankun; Wan, Qiang [Hunan University, School of Physics and Electronics, Changsha, Hunan (China); Liu, Ruping [Beijing Institute of Graphic Communication, Beijing (China); Dai, Guozhang [Central South University, School of Physics and Electronics, Changsha, Hunan (China)

    2017-01-15

    GaInPSb quaternary alloy nanowires were first synthesized via a simple chemical vapor deposition method. The synthesized nanowires' length can reach up to 20 μm and diameter ranging from 50 to 100 nm. Raman measurements and high-resolution transmission electron microscopy image illustrate that the as-grown nanowires have a high crystallinity. Room temperature near-infrared photodetector based on as-prepared GaInPSb nanowires was also built for the first time. It shows a good contact with the electrode, and the device has a strong light response to light illumination. This novel near-infrared photodetector may find promising applications in integrated infrared photodetection, information communication, and processing. (orig.)

  8. Effect of Yttrium Addition on Microstructures and Room Temperature Tensile Properties of Ti-47Al Alloy

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The microstructures and room temperature tensile properties of a series of Ti-47Al-xY (χ = 0%, 0.1%,0.3 %, 0.5 %, 0.7 % and 1.0 % (atom fraction) ) were investigated systemically. Results show that both the grain size and lamellar spacing decrease remarkably with the increase of Y content. When the content of Y is greater than 0.1%,most of the Y elements accumulate along the grain boundaries and some fine particles are uniformly dispersed within the grains in the form of YAl2 compound because of the low solubility and segregation of Y in TiAl alloys. Grain-boundary segregation of Y element is more prominent with the increase of Y addition. Good tensile properties are obtained when Y addition ranges from 0.3 % to 0.5 %. The refinement of grain and lamellar structures and dispersion of YAl2 within the grains contribute to the improvement of tensile properties. On the other hand, for high Y-added alloys (over 0.5 % Y), tensile properties are obviously deteriorated due to brittle cleavage fracture of the coarse YAl2 network.

  9. Electrodeposition of aluminum and aluminum-magnesium alloys at room temperature

    Institute of Scientific and Technical Information of China (English)

    阚洪敏; 祝跚珊; 张宁; 王晓阳

    2015-01-01

    Electrodeposition of aluminum from benzene-tetrahydrofuran−AlCl3−LiAlH4 was studied at room temperature. Galvanostatic electrolysis was used to investigate the effect of various parameters on deposit morphology and crystal size, including current density, temperature, molar ratio of benzene/tetrahydrofuran and stirring speed. The deposit microstructure was adjusted by changing the parameters, and the optimum operating conditions were determined. Dense, bright and adherent aluminum coatings were obtained over a wide range of current densities (10−25 mA/cm2), molar ratio of benzene and tetrahydrofuran (4:1 to 7:8) and stirring speeds (200−500 r/min). Smaller grain sizes and well-adhered deposits were obtained at lower temperatures. Aluminum-magnesium alloys could potentially be used as hydrogen storage materials. A novel method for Al−Mg deposition was proposed by using pure Mg anodes in the organic solvents system benzene-tetrahydrofuran−AlCl3−LiAlH4. XRD shows that the aluminum−magnesium alloys are mainly Al3Mg2 and Al12Mg17.

  10. The effect of martensite plasticity on the cyclic deformation of super-elastic NiTi shape memory alloy

    Science.gov (United States)

    Song, Di; Kang, Guozheng; Kan, Qianhua; Yu, Chao; Zhang, Chuanzeng

    2014-01-01

    Based on stress-controlled cyclic tension-unloading experiments with different peak stresses, the effect of martensite plasticity on the cyclic deformation of super-elastic NiTi shape memory alloy micro-tubes is investigated and discussed. The experimental results show that the reverse transformation from the induced martensite phase to the austenite phase is gradually restricted by the plastic deformation of the induced martensite phase caused by an applied peak stress that is sufficiently high (higher than 900 MPa), and the extent of such restriction increases with further increasing the peak stress. The residual and peak strains of super-elastic NiTi shape memory alloy accumulate progressively, i.e., transformation ratchetting occurs during the cyclic tension-unloading with peak stresses from 600 to 900 MPa, and the transformation ratchetting strain increases with the increase of the peak stress. When the peak stress is higher than 900 MPa, the peak strain becomes almost unchanged, but the residual strain accumulates and the dissipation energy per cycle decreases very quickly with the increasing number of cycles due to the restricted reverse transformation by the martensite plasticity. Furthermore, a quantitative relationship between the applied stress and the stabilized residual strain is obtained to reasonably predict the evolution of the peak strain and the residual strain.

  11. Room-temperature sliding wear properties of laser melt deposited Cr13Ni5Si2/γalloy

    Institute of Scientific and Technical Information of China (English)

    FANG Yanli; WANG Huaming

    2007-01-01

    A wear-resistant alloy consisting of Cr13Ni5Si2 ternary silicide dendrites and the interdendritic nickel-base solid solution (γ) was designed and fabricated by the laser melting/continuous deposition (LMCD) process.The wear resistance of Cr13Ni5Si2/γalloy was evaluated on an MM-200 block-on-wheel dry sliding wear tester at room temperature. Results indicate that the Cr13Ni5Si2/γ alloy has excellent wear resistance and extremely low load-sensitivity of wear under dry sliding wear test conditions due to the high toughness and the high strength,as well as the transferred cover-layer on the worn surface of the alloy.

  12. Effect of Machining Parameters on Surface Integrity in Machining Nimonic C-263 Super Alloy Using Whisker-Reinforced Ceramic Insert

    Science.gov (United States)

    Ezilarasan, C.; Senthil kumar, V. S.; Velayudham, A.

    2013-06-01

    Whisker-reinforced ceramic inserts were used to conduct turning trials on nimonic C-263 super alloy to study the effect of different combinations of cutting parameters on surface integrity (roughness, microhardness, and residual stress) by employing energy dispersive spectroscopy, scanning electron microscopy, x-ray diffraction, and Vicker's microhardness test. Abrasion, adhesion and diffusion were found to be the main tool wear mechanisms in turning nimonic C-263 alloy. Based on characterization of surface roughness, a combination of 190 m/min cutting speed and 0.102 mm/rev feed rate was found to be the critical condition for turning nimonic C-263 alloy. Microhardness varied between 550 and 690 HV at the feed rates of 0.102-0.143 mm/rev for a cutting speed of 250 m/min after 9 min of turning. A tensile residual stress of 725-850 MPa on the machined surface was recorded at the preceding combination of cutting parameters. Cutting speed and cutting time had a dominant effect on the magnitude of the residual stress. No evidence of thermal relaxation and reduction in the degree of work hardening was noted during machining at high cutting speed.

  13. Particle Size of Gamma Prime as a Result of Vacuum Heat Treatment of INCONEL 738 Super Alloy

    Science.gov (United States)

    Guzman, I.; Granda, E.; Mendez, R.; Lopez, G.; Acevedo, J.; Gonzalez, D.

    2013-04-01

    In this paper, the influence of the cooling rate and cooling media after a standard solution heat treatment on the size and distribution of the gamma prime phase (γ') in the nickel-based super alloy INCONEL 738 in over-aged conditions is described. The volume fraction of the gamma prime depends on the chemical composition of the alloy, the solution treatment temperature and the cooling rate; in over-aged alloys (i.e., with more than 25,000 h of service) the volume fraction of γ' is about 78.8%. However, it has been demonstrated that in order to maintain excellent creep strength a volume fraction of at least 60% or lower is required. In this work the volume fraction was optimized between 40 and 55% by means of a standard solution heat treatment at 1120 °C using different cooling gases. A γ' volume fraction of 54.8% was obtained by using argon as the cooling medium at a cooling rate of 87 °C/min, producing a precipitate of partial distribution of primary and secondary γ'. Better results were obtained in a nitrogen atmosphere at a cooling rate of 287 °C/min, leading to a volume fraction of 40% and obtaining a total re-precipitation of primary and secondary γ'.

  14. Corrosion behaviour of super-hydrophobic electrodeposited nickel-cobalt alloy film

    Science.gov (United States)

    Khorsand, S.; Raeissi, K.; Ashrafizadeh, F.; Arenas, M. A.; Conde, A.

    2016-02-01

    Hierarchical super-hydrophobic Ni-Co film with enhanced corrosion resistance was fabricated on a copper substrate by one-step electrodeposition process. The contact angle and water repellence properties of the Ni-Co film were measured to determine its wettability. The Ni-Co film exhibited excellent super-hydrophobic properties with a static water contact angle of 158° and a sliding angle of ≤5°. The corrosion performance of the super-hydrophobic surface (SHS) was investigated by electrochemical potentiodynamic measurements and electrochemical impedance spectroscopy in NaCl solution (3.5 wt.%). Moreover, to study the long-term stability of the super-hydrophobic film, SHS samples were immersed into NaCl solution and their corrosion behaviour was investigated by the electrochemical impedance spectroscopy. Additionally, the changes of surface wettability were also monitored over the whole immersion time up to 11 days. Experimental results indicated that super-hydrophobic samples had much more corrosion resistance in comparison with freshly prepared samples or the bare substrate.

  15. Microstructure evolution and room temperature deformation of a directionally solidified Nb-Si-Ti-Cr-Al-Hf-Y alloy

    Directory of Open Access Journals (Sweden)

    Wang Bin

    2013-11-01

    Full Text Available An Nb-14Si-22Ti-4Cr-2Al-2Hf-0.15Y(at.% alloy was prepared by directional solidification (DS with liquid metal cooling, and the withdrawal rates selected were 1.2, 6, and 18 mm·min-1, respectively. The Influence of withdrawal rate and heat treatment on the microstructural evolution, fracture toughness and tensile strength at room temperature were investigated. Results show that the directionally solidified microstructure is composed of primary (Nb, Xss dendrites and (Nb, Xss/α-(Nb, X5Si3 eutectic cells aligning with the growth direction. The formation of bulk Nb3Si is suppressed. With an increase in withdrawal rate, the dendrite arm spacing of (Nb, Xss decreases, and the (Nb, Xss/α-(Nb, X5Si3 eutectic cells become finer and distribute homogeneously. Directional solidification can significantly improve the room temperature fracture toughness, especially the alloy with a withdrawal rate of 6 mm·min-1; its average value reaches 14.1 MPa·m0.5, about 34% higher than that of the alloy without directional solidification. The withdrawal rate has obvious effect on tensile strength, and the tensile strength is improved from 200 MPa to 429 MPa as the withdrawal rate increases from 1.2 mm·min-1 to 1.8 mm·min-1. After heat treatment, the primary (Nb, Xss branches become coarser; both the room temperature fracture toughness and tensile strength of the alloys solidified at 1.2 and 6 mm·min-1 are somewhat lower than the corresponding values of the alloy without heat treatment, while they are higher than the corresponding values of the alloy without heat treatment when solidified at 18 mm·min-1.

  16. Investigation on the formation of Cu-Fe nano crystalline super-saturated solid solution developed by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Mojtahedi, M., E-mail: m.mojtahedi@gmail.com [School of Materials Science and Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114 (Iran, Islamic Republic of); Goodarzi, M.; Aboutalebi, M.R. [School of Materials Science and Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114 (Iran, Islamic Republic of); Ghaffari, M. [Department of Electrical and Electronics Engineering, UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800 (Turkey); Soleimanian, V. [Department of Physics, Faculty of Science, Shahrekord University, P.O. Box 115, Shahrekord (Iran, Islamic Republic of)

    2013-02-15

    Highlights: Black-Right-Pointing-Pointer The deformation of the mechanically alloyed Cu-Fe powder is anisotropic. Black-Right-Pointing-Pointer The Rietveld method is more proper and results in smaller crystallite size than the Scherer and Williamson-Hall methods. Black-Right-Pointing-Pointer A dual phase super saturated solid solution achieved after 96 h of milling of the mixtures with 30, 50 and 70 wt.% of Iron. Black-Right-Pointing-Pointer A final proportion of approximately 85% FCC and 15% BCC structure obtained in all of the applied compositions. - Abstract: In this study, the formation of super saturated solid solution in the binary Cu-Fe system was investigated. Three powder blends with 30, 50 and 70 wt.% of Fe were milled for different times to 96 h. The variations of lattice parameter and inter-planar spacing were calculated and analyzed using X-ray diffraction analysis (XDA). The anisotropy of lattice deformation in the FCC phase was studied and the obtained results were compared to milled pure Cu powder. Furthermore, crystallite size was calculated using Scherer formula in comparison with Rietveld full profile refinement method. Considering the previous studies about the formation of non-equilibrium FCC and BCC phases, the phase evolution has been discussed and the proportion of each phase was calculated using Rietveld refinement method. Supplementary studies on the evolution of microstructure and formation of solid solution were carried out using high resolution transmission electron microscopy (HRTEM). Finally, high angle annular dark field (HAADF) imaging was utilized to find out the level of homogeneity in the resulting phases. While true alloying takes place in each phase, the final structure consists of both FCC and BCC nano-crystallites.

  17. Nanowire networks and hollow nanospheres of Ag-Au bimetallic alloys at room temperature

    Science.gov (United States)

    Britto Hurtado, R.; Cortez-Valadez, M.; Arizpe-Chávez, H.; Flores-Lopez, N. S.; Álvarez, Ramón A. B.; Flores-Acosta, M.

    2017-03-01

    Due to their physicochemical properties, metallic nanoalloys have potential applications in biomedicine, electrocatalysis and electrochemical sensors, among many other fields. New alternative procedures have emerged in order to reduce production costs and the use of toxic substances. In this study we present a novel low-toxicity synthesis method for the fabrication of nanowire networks (NWNs) and Ag-Au hollow nanospheres. The synthesis process is performed at room temperature without any sophisticated equipment, such as special cameras or furnaces, etc. Transmission electron microscopy showed that the NWNs contain random alloys with a diameter of between 10-13 nm. The radius for the hollow nanospheres is approximately located between 70-130 nm. The absorption bands in the UV-vis spectrum associated with the surface plasmon in Ag-Au bimetallic nanoparticles are highlighted at 385 nm for the NWNs and 643 nm for the hollow nanospheres. The study was performed with low-toxicity substances, such as rongalite, ascorbic acid and sucrose, and showed high efficiency for the fabrication of these types of nanostructures, as well as good stability for long periods of time.

  18. Room temperature magnetocaloric effect in Ni-Mn-In-Cr ferromagnetic shape memory alloy thin films

    Science.gov (United States)

    Akkera, Harish Sharma; Singh, Inderdeep; Kaur, Davinder

    2017-02-01

    The influence of Cr substitution for In on the martensitic phase transformation and magnetocaloric effect (MCE) has been investigated in Ni-Mn-Cr-In ferromagnetic shape memory alloy (FSMA) thin films fabricated by magnetron sputtering. Temperature dependent magnetization (M-T) measurements demonstrated that the martensitic transformation temperatures (TM) monotonously increase with the increase of Cr content due to change in valence electron concentration (e/a) and cell volume. From the study of isothermal magnetization curves (M-H), magnetocaloric effect around the martensitic transformation has been investigated in these FSMA thin films. The magnetic entropy change ∆SM of 7.0 mJ/cm3-K was observed in Ni51.1Mn34.9In9.5Cr4.5 film at 302 K in an applied field of 2 T. Further, the refrigerant capacity (RC) was also calculated for all the films in an applied field of 2 T. These findings indicate that the Cr doped Ni-Mn-In FSMA thin films are potential candidates for room temperature micro-length-scale magnetic refrigeration applications.

  19. Preparing Fe5C2 Intermetallic Compound by Mechanical Alloying Method at Room Temperature and Normal Pressure

    Institute of Scientific and Technical Information of China (English)

    何正明; 钟敏建; 沈伟星; 张正明

    2003-01-01

    Single phase Fe5C2 intermetallic compound was prepared by mechanical alloying method. The phase and crystal structure of sample were analyzed with X-ray differaction spectrum. The decomposing temperature of the Fe5C2 compound is 596.4℃ determined by the DSC curve. It is further shown that the size of nanometer crystal grain is an important condition for carrying out the solid state reaction at room temperature and normal pressure.

  20. Super-plasticity of Zr64.80Cu14.85Ni10.35Al10 bulk metallic glass at room temperature

    Institute of Scientific and Technical Information of China (English)

    TAO PingJun; YANG YuanZheng; BAI XiaoJun; XIE ZhiWei; CHEN XianCao; DONG ZhenJiang; Wen JianGuo

    2008-01-01

    Generally, bulk metallic glasses (BMGs) exhibit a very limited plastic deformation under a compression load at room temperature, often less than 2% before fracturing. In this letter, through an appropriate choice of BMGs' composition, an amorphous rod of Zr64.80Cu14.85Ni10.35Al10 with a diameter of 2 mm was prepared by using copper mold suction casting. X-ray diffraction and differential scanning calorimetry were utilized to determine its structure and thermal stability, and the uniaxial compression test was adopted to study its plastic deformation behavior at room temperature simultaneously. The results showed that the glass transition temperature and onset temperature of the exothermic reaction of the amorphous rod were 646 and 750 K, respectively, and its micro-hardness was 594.7 Hv. During com-pression, when the engineering strain and engineering stress arrived at 9.05% and 1732 MPa, respec-tively, i.e., the true strain and true stress reached 9.42% and 1560 MPa, respectively, the amorphous rod started to yield. After yielding, with the increase of load, the strain increased and the glass rod ulti-mately were compressed into flake-like form. Although the maximum engineering strain was larger than 70%, i.e., the maximum true strain exceeded by 120%, the amorphous specimen was not fractured, indicating that it has super-plasticity at room temperature. Through the appropriate choice of compo-sition and optimization of the technological process, flexible BMG with super-plasticity at room tem-perature could be produced.

  1. Mathematical modeling and analysis of WEDM machining parameters of nickel-based super alloy using response surface methodology

    Indian Academy of Sciences (India)

    M P GARG; ANISH KUMAR; C K SAHU

    2017-06-01

    Inconel 625 is one of the most versatile nickel-based super alloy used in the aerospace, automobile, chemical processing, oil refining, marine, waste treatment, pulp and paper, and power industries. Wire electrical discharge machining (WEDM) is the process considered in the present text for machining of Inconel 625 as it can provide an effective solution for machining ultra-hard, high-strength and temperature-resistant materials and alloys, overcoming the constraints of the conventional processes. The present work is mainly focused on the analysis and optimization of the WEDM process parameters of Inconel 625. The four machining parameters, that is, pulse on time, pulse off time, spark gap voltage and wire feed have been varied to investigate their effects onthree output responses, such as cutting speed, gap current, and surface roughness. Response surface methodology was used to develop the experimental models. The parametric analysis-based results revealed that pulse on time and pulse off time were significant, spark gap voltage is the least significant, and wire feed as a single factor is insignificant. Multi-objective optimization technique was employed using desirability approach to obtain theoptimal parameters setting. Furthermore, surface topography in terms of machining parameters revealed that pulse on time and pulse off time significantly deteriorate the surface of the machined samples, which produce thedeeper, wider overlapping craters and globules of debris.

  2. Room-temperature Fast Synthesis of Composition-adjustable Pt–Pd Alloy Sub-10-nm Nanoparticle Networks with Improved Electrocatalytic Activities

    National Research Council Canada - National Science Library

    Hou, Shuangxia; Xu, You; Liu, Yang; Xu, Rui; Zhang, Bin

    2012-01-01

    Pt–Pd alloy nanoparticle networks (Pt–Pd NN) with adjustable composition have been fast synthesized through a one-step room-temperature coreduction method in a water/ethylene glycol (EG) system...

  3. Alloy

    Science.gov (United States)

    Cabeza, Sandra; Garcés, Gerardo; Pérez, Pablo; Adeva, Paloma

    2014-07-01

    The Mg98.5Gd1Zn0.5 alloy produced by a powder metallurgy route was studied and compared with the same alloy produced by extrusion of ingots. Atomized powders were cold compacted and extruded at 623 K and 673 K (350 °C and 400 °C). The microstructure of extruded materials was characterized by α-Mg grains, and Mg3Gd and 14H-LPSO particles located at grain boundaries. Grain size decreased from 6.8 μm in the extruded ingot, down to 1.6 μm for powders extruded at 623 K (350 °C). Grain refinement resulted in an increase in mechanical properties at room and high temperatures. Moreover, at high temperatures the PM alloy showed superplasticity at high strain rates, with elongations to failure up to 700 pct.

  4. The effect of grain refinement on the room-temperature ductility of as-cast Fe{sub 3}Al-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, S.; Andleigh, V.K.; McKamey, C.G. [Oak Ridge National Lab., TN (United States)

    1995-08-01

    Fe{sub 3}Al-based alloys exhibit poor room-temperature ductility in the as-cast condition. In this study, the effect of grain refinement of the as-cast alloy on room-temperature ductility was investigated. Small melts of Fe-28 at. % Al-5 at. % Cr were inoculated with various alloying additions and cast into a 50- x 30- x 30-mm graphite mold. The resulting ingots were examined metallographically for evidence of grain refinement, and three-point bend tests were conducted on samples to assess the effect on room-temperature ductility. Ductility was assumed to correlate with the strain corresponding to the maximum stress obtained in the bend test. The results showed that titanium was extremely effective in grain refinement, although it severely embrittled the alloy in contents exceeding 1%. Boron additions strengthened the alloy significantly, while carbon additions reduced both the strength and ductility. The best ductility was found in an alloy containing titanium, boron, and carbon. In order to verify the results of the grain refinement study, vacuum-induction melts of selected compositions were prepared and cast into a larger 25- x 150- x 100-mm graphite mold. Tensile specimens were machined from the ingots, and specimens were tested at room temperature. The results of the tensile tests agreed with the results of the grain refinement study; in addition, the addition of molybdenum was found to significantly increase room-temperature tensile ductility over that of the base alloy.

  5. Synthesis and formation mechanism of Ag-Ni alloy nanoparticles at room temperature

    Science.gov (United States)

    Yan, Shi; Sun, Dongbai; Tan, Yuanyuan; Xing, Xueqing; Yu, Hongying; Wu, Zhonghua

    2016-11-01

    Ag-Ni nanoparticles were prepared with a chemical reduction method in the presence of polyvinylpyrrolidone (PVP) used as a stabilizing agent. During the synthesis of Ag-Ni nanoparticles, silver nitrate was used as the Ag+ source while nickel sulfate hexahydrate was used as Ni2+ source. Mixed solutions of Ag+ source and Ni2+ source were used as the precursors and sodium borohydride was used as the reducing agent. Five ratios of Ag+/Ni2+ (9:1, 3:1, 1:1, 1:3, and 1:9) suspensions were prepared in the corresponding precursors. Ag-Ni alloy nanoparticles were obtained with this method at room temperature. Scanning electronic microscope (SEM), energy dispersive spectrum (EDS), high resolution transmission electron microscope (HRTEM) were used to characterize the morphology, composition and crystal structure of the nanoparticles. The crystal structure was also investigated with X-ray diffraction (XRD). In all five Ag/Ni ratios, two kinds of particle structures were observed that are single crystal structure and five-fold twinned structure respectively. Free energy of nanoparticles with different crystal structures were calculated at each Ag/Ni ratio. Calculated results revealed that, with identical volume, free energy of single crystal particle is lower than multi-twinned particle and the difference becomes smaller with the increase of particle size; increase of Ni content will lead the increase of free energy for both structures. Formation of different crystal structures are decided by the structure of the original nuclei at the very early stage of the reduction process.

  6. Enhanced coercivity of HCP Co–Pt alloy thin films on a glass substrate at room temperature for patterned media

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.S. [Department of Chemical Engineering and Materials Science, Yuan-Ze University, Chung-Li 32003, Taiwan (China); Sun, An-Cheng, E-mail: acsun@saturn.yzu.edu.tw [Department of Chemical Engineering and Materials Science, Yuan-Ze University, Chung-Li 32003, Taiwan (China); Lee, H.Y. [National Synchrotron Radiation Research Center (NSRRC), Hsinchu 300, Taiwan (China); Department of Applied Science, National Hsinchu University of Education, Hsinchu 300, Taiwan (China); Lu, Hsi-Chuan; Wang, Sea-Fue [Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan (China); Sharma, Puneet [School of Physics and Materials Science, Thapar University, Patiala (India)

    2015-10-01

    High coercivity (H{sub c}) Co-rich type Co–Pt alloy thin films with a columnar grain structure were deposited at room temperature (RT) by magnetron sputtering. Films with a thickness (t) of up to 10 nm had a FCC structure and exhibited soft magnetic properties. When t>25 nm, the magnetic anisotropy changed from in-plane to isotropic. H{sub c} was also enhanced with increasing t and found to be maximum at t=50 nm. The in-plane and out-of-plane H{sub c} of the film was 2.2 and 2.7 kOe, respectively. Further increasing t led to a slight decrease in H{sub c}. Microstructure and phase structure studies revealed columnar Co–Pt grains with a uniform lateral size grown on a 7 nm initial layer. Films with t>25 nm showed a HCP phase, due to the internal stress and volume effect. The microstructural details responsible for the enhanced RT magnetic properties of the HCP Co–Pt alloy thin films were investigated by TEM. - Highlights: • Deposited Co–Pt alloy thin films on glass substrate at room temperature. • High out-of-plane coercivity of Co-rich type Co–Pt thin film at thinner thickness. • Columnar structure contributed out-of-plane coercivity.

  7. Effect of prior creep at 1365 K on the room temperature tensile properties of several oxide dispersion strengthened alloys

    Science.gov (United States)

    Whittenberger, J. D.

    1977-01-01

    An experimental study was conducted to determine whether oxide dispersion-strengthened (ODS) Ni-base alloys in wrought bar form are subject to creep degradation effects similar to those found in thin-gage sheet. The bar products evaluated included ODS-Ni, ODS-NiCr, and advanced ODS-NiCrAl types; the alloys included microstructures ranging from an essentially perfect single crystal to a structure consisting of very small elongated grains. Tensile test specimens were exposed to creep at various stress levels at 1365 K and then tensile tested at room temperature. Low residual tensile properties, change in fracture mode, appearance of dispersoid free bands, grain boundary cavitation, and/or internal oxidation are interpreted as creep degradation effects. The amount of degradation depends on creep strain, and degradation appears to be due to diffusional creep which produces dispersoid free bands around grain boundaries acting as vacancy sources.

  8. Determination of emissivity coefficient of heat-resistant super alloys and cemented carbide

    Directory of Open Access Journals (Sweden)

    Kieruj Piotr

    2016-12-01

    Full Text Available This paper presents the analysis of emissivity engineering materials according to temperature. Experiment is concerned on difficult to machine materials, which may be turned with laser assisting. Cylindrical samples made of nickel-based alloys Inconel 625, Inconel 718, Waspaloy and tungsten-carbides based on cobalt matrix were analyzed. The samples’ temperature in contact method was compared to the temperature measured by non-contact pyrometers. Based on this relative, the value of the emissivity coefficient was adjusted to the right indication of pyrometers.

  9. Determination of emissivity coefficient of heat-resistant super alloys and cemented carbide

    Science.gov (United States)

    Kieruj, Piotr; Przestacki, Damian; Chwalczuk, Tadeusz

    2016-12-01

    This paper presents the analysis of emissivity engineering materials according to temperature. Experiment is concerned on difficult to machine materials, which may be turned with laser assisting. Cylindrical samples made of nickel-based alloys Inconel 625, Inconel 718, Waspaloy and tungsten-carbides based on cobalt matrix were analyzed. The samples' temperature in contact method was compared to the temperature measured by non-contact pyrometers. Based on this relative, the value of the emissivity coefficient was adjusted to the right indication of pyrometers.

  10. Identification of low cycle fatigue parameters of high strength low-alloy (HSLA steel at room temperature

    Directory of Open Access Journals (Sweden)

    S. Bulatović

    2014-10-01

    Full Text Available Low cycle fatigue test was performed in ambient atmosphere at room temperature. Cycle loading of material, in case of High strength low-alloy steel, entails modifications of its properties and in this paper is therefore shown behavior of fatigue life using low cycle fatigue parameters. More precisely, crack initiation life of tested specimens was computed using theory of Coffin-Manson relation during the fatigue loading. The geometry of the stabilized hysteresis loop of welded joint HSLA steel, marked as Nionikral 70, is also analyzed. This stabilized hysteresis loop is very important for determination of materials properties.

  11. FRAUD/SABOTAGE Killing Nuclear-Reactors Need Modeling!!!: ``Super'' alloys GENERIC ENDEMIC Wigner's-Disease/.../IN-stability: Ethics? SHMETHICS!!!

    Science.gov (United States)

    O'Grady, Joseph; Bument, Arlden; Siegel, Edward

    2011-03-01

    Carbides solid-state chemistry domination of old/new nuclear-reactors/spent-fuel-casks/refineries/jet/missile/rocket-engines is austenitic/FCC Ni/Fe-based (so miscalled)"super"alloys(182/82;Hastelloy-X,600,304/304L-SSs,...690!!!) GENERIC ENDEMIC EXTANT detrimental(synonyms): Wigner's-disease(WD) [J.Appl.Phys.17,857 (46)]/Ostwald-ripening/spinodal-decomposition/overageing-embrittlement/thermal-leading-to-mechanical(TLTM)-INstability: Mayo[Google: fLeaksCouldKill > ; - Siegel [ J . Mag . Mag . Mtls . 7 , 312 (78) = atflickr . comsearchonGiant - Magnotoresistance [Fert" [PRL(1988)]-"Gruenberg"[PRL(1989)] 2007-Nobel]necessitating NRC inspections on 40+25=65 Westin"KL"ouse PWRs(12/2006)]-Lai [Met.Trans.AIME, 9A,827(78)]-Sabol-Stickler[Phys.Stat.Sol.(70)]-Ashpahani[ Intl.Conf. Hydrogen in Metals, Paris(1977]-Russell [Prog.Mtls.Sci.(1983)]-Pollard [last UCS rept.(9/1995)]-Lofaro [BNL/DOE/NRC Repts.]-Pringle [ Nuclear-Power:From Physics to Politics(1979)]-Hoffman [animatedsoftware.com], what DOE/NRC MISlabels as "butt-welds" "stress-corrosion cracking" endpoint's ROOT-CAUSE ULTIMATE-ORIGIN is WD overageing-embrittlement caused brittle-fracture cracking from early/ongoing AEC/DOE-n"u"tional-la"v"atories sabotage!!!

  12. FRAUD/SABOTAGE Killing Nuclear-Reactors!!! ``Super"alloys GENERIC ENDEMIC Wigner's-Disease IN-stability!!!

    Science.gov (United States)

    Asphahani, Aziz; Siegel, Sidney; Siegel, Edward

    2010-03-01

    Siegel [[J.Mag.Mag.Mtls.7,312(78); PSS(a)11,45(72); Semis.& Insuls.5(79)] (at: ORNL, ANS, Westin``KL"ouse, PSEG, IAEA, ABB) warning of old/new nuclear-reactors/spent-fuel-casks/refineries/ jet/missile/rocket-engines austenitic/FCC Ni/Fe-based (so MIS- called)``super"alloys(182/82;Hastelloy-X; 600;304/304L-SSs; 690 !!!) GENERIC ENDEMIC EXTANT detrimental(synonyms): Wigner's- diseas(WD)[J.Appl.Phys.17,857(46)]; Ostwald-ripening; spinodal- decomposition; overageing-embrittlement; thermomechanical- INstability: Mayo[Google: ``If Leaks Could Kill"; at flickr.com search on ``Giant-Magnotoresistance"; find: [Siegel<<<``Fert"(88) 2007-Nobel/Wolf/Japan-prizes]necessitating NRC inspections on 40+25=65 Westin``KL"ouse PWRs(12/06)]; Lai[Met.Trans.AIME,9A,827 (78)]-Sabol-Stickler[PSS(70)]; Ashpahani[Intl.Conf. H in Metals (77)]; Russell[Prog. Mtls.Sci.(83)]; Pollard[last UCS rept. (9/95)]; Lofaro[BNL/DOE/NRC Repts.]; Pringle[Nuclear-Power:From Physics to Politics(79)]; Hoffman[animatedsoftware.com],...what DOE/NRC MISlabels as ``butt-welds" ``stress-corrosion cracking" endpoint's ROOT-CAUSE ULTIMATE-ORIGIN is WD overageing-embrit- tlement caused brittle-fracture cracking from early/ongoing AEC/DOE-n``u''tional-la``v''atories sabotage!!!

  13. Deformation of twins in a magnesium alloy under tension at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X., E-mail: wang1747@purdue.edu [Department of Mechanical Engineering and Technology, Purdue University, West Lafayette, IN 47907 (United States); Department of Metals and Materials Engineering, McGill University, Montreal, QC H3A 2B2 (Canada); Jiang, L. [Department of Metals and Materials Engineering, McGill University, Montreal, QC H3A 2B2 (Canada); Luo, A. [Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210 (United States); Song, J.; Liu, Z.; Yin, F.; Han, Q. [Department of Mechanical Engineering and Technology, Purdue University, West Lafayette, IN 47907 (United States); Yue, S.; Jonas, J.J. [Department of Metals and Materials Engineering, McGill University, Montreal, QC H3A 2B2 (Canada)

    2014-05-01

    Highlights: • Necking and cracking of twins in an Mg alloy is observed. • Slip along the double twin boundaries is observed. • Their effects on hardening/softening are discussed. • The importance of deformation of twins themselves on the deformation of Mg alloys is pointed out the first time. - Abstract: Twinning of a polycrystalline Mg–3Al–0Mn alloy at a uniaxial tensile strain rate of 0.001 s{sup −1} to a total strain of 0.02 was studied by transmission electron microscope. The deformation of twins, necking and cracking, was observed. Meanwhile the interception of twins resulted in double twinning and slip along the double twin boundaries. Their effects are discussed in view of work hardening/softening of magnesium alloys.

  14. The Crystal Structure at Room Temperature of Six Cast Heat-Resisting Alloys

    Science.gov (United States)

    Rosenbaum, Burt M.

    1947-01-01

    The crystal structures of alloys 61, X-40,X-50, 422-19, 6059, and Vitallium, derived from x-ray diffraction, are discussed. The alloys have been, or are being considered for use in gas turbine applications. The predominant phase was a solid solution of the face centered cubic type of the principal constituent elements.The lattice parameters were found to be between 3.5525 and 3.5662.

  15. A simplified way for the urgent treatment of somatic pain in patients admitted to the emergency room: the SUPER algorithm.

    Science.gov (United States)

    Franceschi, Francesco; Marsiliani, Davide; Alesi, Andrea; Mancini, Maria Grazia; Ojetti, Veronica; Candelli, Marcello; Gabrielli, Maurizio; D'Aurizio, Gabriella; Gilardi, Emanuele; Adducci, Enrica; Proietti, Rodolfo; Buccelletti, Francesco

    2015-12-01

    Somatic pain is one of the most frequent symptoms reported by patients presenting to the emergency department (ED), but, in spite of this, it is very often underestimated and under-treated. Moreover, pain-killers prescriptions are usually related to the medical examination, leading to a delay in its administration, thus worsening the patient's quality of life. With our study, we want to define and validate a systematic and homogeneous approach to analgesic drugs administration, testing a new therapeutic algorithm in terms of earliness, safety, and efficacy. 442 consecutive patients who accessed our ED for any kind of somatic pain were enrolled, and then randomly divided into two groups: group A follow the normal process of access to pain-control drugs, and group B follow our SUPER algorithm for early administration of drugs to relieve pain directly from triage. We excluded from the study, patients with abdominal pain referred to the surgeon, patients with headache, recent history of trauma, history of drug allergies, and life-threatening conditions or lack of cooperation. Drugs used in the study were those available in our ED, such as paracetamol, paracetamol/codeine, ketorolac-tromethamine, and tramadol-hydrochloride. Pain level, risk factors, indication, and contraindication of each drug were taken into account in our SUPER algorithm for a rapid and safe administration of it. The Verbal Numeric Scale (VNS) and the Visual Analog Scale (VAS) were used to verify the patient's health and perception of it. Only 59 patient from group A (27.1 %) received analgesic therapy (at the time of the medical examination) compared to 181 patients (100 %) of group B (p pain-control therapy directly from triage is safe and effective, and significantly improves patients perceptions of their own health.

  16. A model for correlating 4. 2-K performance with room-temperature mechanical characteristics in superconducting test dipole magnets for the Superconducting Super Collider (SSC)

    Energy Technology Data Exchange (ETDEWEB)

    Ige, O.O.; Lyon, R.H.; Iwasa, Y. (Francis Bitter National Magnet Laboratory Plasma Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States))

    1992-03-15

    The longitudinal attenuation of impact-generated pulses in ten superconducting dipole magnets was measured at room temperature. A lumped-parameter model was constructed for the collared dipole. Using the method of nonlinear least-squares, the model was used to estimate the internal damping in the main components of the dipoles and the coupling resistances between the components: collars, inner, and outer coils. A positive correlation was found between the collar-inner coil coupling resistance and the 4.2-K performance of the magnets: the higher the coupling resistance, the fewer the number of quenches required to reach design operating current. There was virtually no correlation between any of the other internal or coupling resistances and 4.2-K performance. These observations are explained in terms of frictional slip of the inner coil against the collars causing premature quenches. The magnets are more susceptible to quenches at the collar-inner coil interface than at the collar-outer coil interface because the inner coil is subject to higher fields and forces. The experiment is potentially useful as a technique for screening high-performance superconducting magnets such as Superconducting Super Collider (SSC) dipoles at room temperature.

  17. Excess Ni-doping induced enhanced room temperature magneto-functionality in Ni-Mn-Sn based shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Pramanick, S.; Giri, S.; Majumdar, S., E-mail: sspsm2@iacs.res.in [Department of Solid State Physics, Indian Association for the Cultivation of Science, 2A and B Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032 (India); Chatterjee, S. [UGC-DAE Consortium for Scientific Research, Kolkata Centre, Sector III, LB-8, Salt Lake, Kolkata 700 098 (India)

    2014-09-15

    Present work reports on the observation of large magnetoresistance (∼−30% at 80 kOe) and magnetocaloric effect (∼12 J·kg{sup −1}·K{sup −1} for 0–50 kOe) near room temperature (∼290 K) on the Ni-excess ferromagnetic shape memory alloy Ni{sub 2.04}Mn{sub 1.4}Sn{sub 0.56}. The sample can be thought of being derived from the parent Ni{sub 2}Mn{sub 1.4}Sn{sub 0.6} alloy, where excess Ni was doped at the expense of Sn. Such Ni doping enhances the martensitic transition temperature and for the Ni{sub 2.04}Mn{sub 1.4}Sn{sub 0.56} it is found to be optimum (288 K). The doped alloy shows enhanced magneto-functional properties as well as reduced saturation magnetization as compared to the undoped counterpart at low temperature. A probable increment of antiferromagnetic correlation between Mn-atoms on Ni substitution can be accounted for the enhanced magneto-functional properties as well as reduction in saturation moment.

  18. Forming of a super plastic sheet metal made of MgAZ31 alloy

    Science.gov (United States)

    Zaid, Adnan I. O.; Al-Matari, Mustafa A. A.; Nazzal, M. A. H.

    2016-08-01

    Metal forming industries are constantly looking for advanced innovation, economical and energy efficient techniques. Superplastic forming has a great potential to be one of those advanced forming methods. It is a near net shape forming process which uses a unique type of materials where elongation exceeds 200% during a controlled forming conditions, e.g. temperature, pressure, and strain rate. Most of superplastic materials are formed by gas technique at elevated temperature. The main objectives of the research work in this paper were: to study the effects of the forming schemes on the forming time and thickness distribution of the formed and device a method to improve the forming part thickness and its uniformity distribution and the forming time. In this paper, a hydraulic and heating system were designed and manufactured to facilitate the experimental investigation. The superplastic magnesium alloy AZ31, Mg AZ31, was formed at 350°C with different strain rates to investigate the effect of the forming pressure profiles on the thickness uniformity of the superplastic formed part. The pressure profiles were generated based on Dutta and Mukherjee analytical approach. Finally, a variable strain rate method is modified to improve the uniformity of the thickness distribution of the formed part and reduce the forming time; which is a major limitation of superplastic forming.

  19. Online monitoring of thermo-cycles and its correlation with microstructure in laser cladding of nickel based super alloy

    Science.gov (United States)

    Muvvala, Gopinath; Patra Karmakar, Debapriya; Nath, Ashish Kumar

    2017-01-01

    Laser cladding, basically a weld deposition technique, is finding applications in many areas including surface coatings, refurbishment of worn out components and generation of functionally graded components owing to its various advantages over conventional methods like TIG, PTA etc. One of the essential requirements to adopt this technique in industrial manufacturing is to fulfil the increasing demand on product quality which could be controlled through online process monitoring and correlating the signals with the mechanical and metallurgical properties. Rapid thermo-cycle i.e. the fast heating and cooling rates involved in this process affect above properties of the deposited layer to a great extent. Therefore, the current study aims to monitor the thermo-cycles online, understand its variation with process parameters and its effect on different quality aspects of the clad layer, like microstructure, elemental segregations and mechanical properties. The effect of process parameters on clad track geometry is also studied which helps in their judicious selection to deposit a predefined thickness of coating. In this study Inconel 718, a nickel based super alloy is used as a clad material and AISI 304 austenitic steel as a substrate material. The thermo-cycles during the cladding process were recorded using a single spot monochromatic pyrometer. The heating and cooling rates were estimated from the recorded thermo-cycles and its effects on microstructures were characterised using SEM and XRD analyses. Slow thermo-cycles resulted in severe elemental segregations favouring Laves phase formation and increased γ matrix size which is found to be detrimental to the mechanical properties. Slow cooling also resulted in termination of epitaxial growth, forming equiaxed grains near the surface, which is not preferred for single crystal growth. Heat treatment is carried out and the effect of slow cooling and the increased γ matrix size on dissolution of segregated elements in

  20. Mechanical Behavior of AZ31B Mg Alloy Sheets under Monotonic and Cyclic Loadings at Room and Moderately Elevated Temperatures

    Directory of Open Access Journals (Sweden)

    Ngoc-Trung Nguyen

    2014-02-01

    Full Text Available Large-strain monotonic and cyclic loading tests of AZ31B magnesium alloy sheets were performed with a newly developed testing system, at different temperatures, ranging from room temperature to 250 °C. Behaviors showing significant twinning during initial in-plane compression and untwinning in subsequent tension at and slightly above room temperature were recorded. Strong yielding asymmetry and nonlinear hardening behavior were also revealed. Considerable Bauschinger effects, transient behavior, and variable permanent softening responses were observed near room temperature, but these were reduced and almost disappeared as the temperature increased. Different stress–strain responses were inherent to the activation of twinning at lower temperatures and non-basal slip systems at elevated temperatures. A critical temperature was identified to account for the transition between the twinning-dominant and slip-dominant deformation mechanisms. Accordingly, below the transition point, stress–strain curves of cyclic loading tests exhibited concave-up shapes for compression or compression following tension, and an unusual S-shape for tension following compression. This unusual shape disappeared when the temperature was above the transition point. Shrinkage of the elastic range and variation in Young’s modulus due to plastic strain deformation during stress reversals were also observed. The texture-induced anisotropy of both the elastic and plastic behaviors was characterized experimentally.

  1. Slip-activated surface creep with room-temperature super-elongation in metallic nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Li; Sansoz, Frederic; He, Yang; Wang, Chongmin; Zhang, Ze; Mao, Scott X.

    2016-11-28

    Atom diffusion assisted by surfaces or interfaces (e.g. Coble creep) has been known to be the origin of large creep rates and superplastic softening in nanosized crystals at low temperature. By contrast, source-limited crystal slip in defect-free nanostructures engenders important strengths, but also premature plastic instability and low ductility. Here, using in-situ transmission electron microscopy, we report a slip-activated surface creep mechanism that suppresses the tendency towards plastic instability without compromising the strength, resulting in ultra-large room-temperature plasticity in face-centered-cubic silver nanocrystals. This phenomenon is shown experimentally and theoretically to prevail over a material-dependent range of diameters where surface dislocation nucleation becomes a stimulus to diffusional creep. This work provides new fundamental insight into coupled diffusive-displacive deformation mechanisms maximizing ductility and strength simultaneously in nanoscale materials.

  2. AlPO4-C Composite Coating on Ni-based Super Alloy Substrates for High Emissivity Applications : Experimentation on Dip Coating and Spray Coating

    OpenAIRE

    Subir Roy; S. Rangaswamy Reddy; Sindhuja, P; Dipak Das; V.V. Bhauprasad

    2016-01-01

    High emissivity coating was developed on Ni-based super alloy substrates by dip coating and spray coating technique using a chemical precursor sol. The coating material was characterised thoroughly by XRD, SEM, TEM and XPS analyses. Characterisation results showed the presence of nano carbon in the AlPO4 matrix which imparted high emissivity to the coating. Emissivity of the coating varied from 0.6 to 0.9 in the wave length range : 2 µm - 25 µm depending on the thickness of the multilayered c...

  3. Effect of low-frequency electromagnetic field on the as-cast microstructure of a new super high strength aluminum alloy by horizontal continuous casting

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The super high strength aluminum alloy ingots with 100 mm in diameter were cast by the process of low-frequency electromagnetic horizontal continuous casting (LFEHC) and the effect of electromagnetic field on the as-cast microstructure was studied. Results show that microstructure of the sample prepared by the LFEHC process was greatly refined. Microstructures at the border and the center of the ingots were fine, uniform and rosette-shaped.Electromagnetic frequency plays a key role in microstructure refining. Fine and uniform microstructures can be obtained with optimal electromagnetic frequency. In this experiment, under a frequency of 30 Hz the microstructure was the finest and the most uniform.

  4. Metallurgical investigation of defects in super alloy 718 mill forms intended for aeroengine applications; Metallurgische Schadensanalyse an Halbzeugen aus der Superlegierung 718 fuer Triebwerksapplikationen

    Energy Technology Data Exchange (ETDEWEB)

    Gopala Krishna, V.; Srinivas, M. [Defence Metallurgical Research Lab., Hyderabad (India); Janakiram, G.D. [Utah State Univ., Logan, UT (United States); Murty, C.H.V.S.; Venugopal Reddy. A. [Regional Center for Military Airworthiness (Materials), Hyderabad (India)

    2008-10-15

    Super alloy 718 finds extensive utilization, particularly in aero engine industry, due to its excellent strength, low cycle fatigue and creep resistance. The alloy was manufactured using vacuum induction melting followed by vacuum arc remelting techniques. The electrodes, after thermo-mechanical processing to hot rolled square bar and flat forms, were ultrasonically inspected prior to machining of aeroengine compressor blades. During machining, crack-like defects were noticed. Visual / Stereo microscopic examination revealed that the defect was along the length of airfoil and was located at mid airfoil width. The defects were filled with dark gray colored debris. Fractographic examination of the crack facets revealed flaky gray region containing number of cracks and bright region with dimpled rupture features covered with debris. Analysis of the debris indicated the presence of oxygen in addition to the elements present in the material, suggesting that the debris is essentially an oxide. These features were correlated with processing histories and defect morphologies. (orig.)

  5. Characteristics and experimental evaluation of super-heat-resisting Nb-based and Mo-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Morinaga, Masahiko; Furui, Mitsuaki; Noda, Kenji; Oda, Masaaki [Nagoya Univ. (Japan). School of Engineering

    1997-03-01

    Nb-based and Mo-based alloys have been investigated in order to develop the frontiers of materials technique which will be utilized in the environment of high-temperature liquid alkali metals. In this study, both mechanical properties and corrosion resistance to liquid Li were evaluated for two designed Mo-based alloys, Mo-15Re-0.1Zr and Mo-15Re-0.1Zr-0.1Ti. In addition, a series of corrosion test was performed with provisionally designed Nb-based alloys, Nb-(1-4)Hf. High-temperature tensile properties: The designed Mo-based alloys were found to have more excellent high-temperature tensile properties, compared to the commercial TZM alloy. High-temperature creep properties: The designed Mo-based alloys were superior in the high-temperature creep properties to other solid solution hardening Mo-based alloys. Workability: The designed Mo-based alloys exhibited an excellent workability, irrespective of the Ti addition. Corrosion resistance to liquid Li: The Nb-1Hf alloy was chosen as a promising alloy of having the highest corrosion resistance among the Nb-based alloys. Also, the Mo-15Re-0.1Zr-0.1Ti alloy was superior to Mo-15Re-0.1Zr alloy, in view of the corrosion resistance to liquid Li. (J.P.N.)

  6. Cooperative grain boundary sliding at room temperature of a Zn-20.2%Al-1.8%Cu superplastic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Andrade, J.D. [Dept. de Materiales, Univ. Autonoma Metropolitana Unidad Azcapotzalco (Mexico); Mendoza-Allende, A.; Montemayor-Aldrete, J.A. [Inst. de Fisica, Univ. Nacional Autonoma de Mexico (Mexico); Torres-Villasenor, G. [Inst. de Investigacion en Materiales, Univ. Nacional Autonoma de Mexico (Mexico)

    2001-07-01

    By applying a new technique [1-2] which provides a mesoscopic coordinate system inscribed on the surface of a tensile specimen, with 371 {mu}m gage length for a Zn-20.2%Al-1.8%Cu superplastic alloy deformed at room temperature it is possible to show that: Deformation of the sample it is homogeneous at macroscopic level, but inhomogeneous at mesoscopical level. The inhomogeneity is ascribed to the sliding of grain blocks. For 28.5% of deformation the distribution function for the block sizes is described by: N(x) = 1.37 x{sup 3}exp(-3x/12.2 {mu}m), where, N(x) is the number of blocks of size x, inside an area of about 172 x 244 ({mu}m){sup 2}. (orig.)

  7. An AES Study of Initial Oxidation of Ce-La Alloy at Room Temperature and Low Oxygen Pressure

    Institute of Scientific and Technical Information of China (English)

    Yang Jiangrong; Wang Xiaolin; Xiao Hong; Zhou Wei; Jiang Chunli; Lu Lei

    2004-01-01

    Auger Electron Spectroscopy was used to characterize the initial stages of the oxidation of Ce-5% La alloy in an oxygen atmosphere at low pressure( ~ 10-6 Pa) and room temperature after the surface is cleaned by Ar+ ion bombardment.It is shown that exposure of clean cerium to oxygen causes the appearance and development of three new Auger peaks at 97,662 and 676 eV, which steadily grow during oxidation of cerium.Upon oxygen dose less than 20 L,a semi-protective layer of oxide forms on the surface of cerium and its growth follows a logarithmic relationship.With further exposure of oxygen, the oxide film grown in the previous stage becomes thicker and the uptake of oxygen reaches saturation at oxygen exposure of 25 L,and the oxide film mainly consists of Ce2O3.

  8. Room-temperature electron spin amplifier based on Ga(In)NAs alloys.

    Science.gov (United States)

    Puttisong, Yuttapoom; Buyanova, Irina A; Ptak, Aaron J; Tu, Charles W; Geelhaar, Lutz; Riechert, Henning; Chen, Weimin M

    2013-02-06

    The first experimental demonstration of a spin amplifier at room temperature is presented. An efficient, defect-enabled spin amplifier based on a non-magnetic semiconductor, Ga(In)NAs, is proposed and demonstrated, with a large spin gain (up to 2700% at zero field) for conduction electrons and a high cut-off frequency of up to 1 GHz.

  9. Room-Temperature Optical Tunability and Inhomogeneous Broadening in 2D-Layered Organic-Inorganic Perovskite Pseudobinary Alloys.

    Science.gov (United States)

    Lanty, Gaëtan; Jemli, Khaoula; Wei, Yi; Leymarie, Joël; Even, Jacky; Lauret, Jean-Sébastien; Deleporte, Emmanuelle

    2014-11-20

    We focus here our attention on a particular family of 2D-layered and 3D hybrid perovskite molecular crystals, the mixed perovskites (C6H5-C2H4-NH3)2PbZ4(1-x)Y4x and (CH3-NH3)PbZ3(1-x)Y3x, where Z and Y are halogen ions such as I, Br, and Cl. Studying experimentally the disorder-induced effects on the optical properties of the 2D mixed layered materials, we demonstrate that they can be considered as pseudobinary alloys, exactly like Ga1-xAlxAs, Cd1-xHgxTe inorganic semiconductors, or previously reported 3D mixed hybrid perovskite compounds. 2D-layered and 3D hybrid perovskites afford similar continuous optical tunability at room temperature. Our theoretical analysis allows one to describe the influence of alloying on the excitonic properties of 2D-layered perovskite molecular crystals. This model is further refined by considering different Bohr radii for pure compounds. This study confirms that despite a large binding energy of several 100 meV, the 2D excitons present a Wannier character rather than a Frenkel character. The small inhomogeneous broadening previously reported in 3D hybrid compounds at low temperature is similarly consistent with the Wannier character of free excitons.

  10. Enhanced coercivity of HCP Co-Pt alloy thin films on a glass substrate at room temperature for patterned media

    Science.gov (United States)

    Chen, Y. S.; Sun, An-Cheng; Lee, H. Y.; Lu, Hsi-Chuan; Wang, Sea-Fue; Sharma, Puneet

    2015-10-01

    High coercivity (Hc) Co-rich type Co-Pt alloy thin films with a columnar grain structure were deposited at room temperature (RT) by magnetron sputtering. Films with a thickness (t) of up to 10 nm had a FCC structure and exhibited soft magnetic properties. When t>25 nm, the magnetic anisotropy changed from in-plane to isotropic. Hc was also enhanced with increasing t and found to be maximum at t=50 nm. The in-plane and out-of-plane Hc of the film was 2.2 and 2.7 kOe, respectively. Further increasing t led to a slight decrease in Hc. Microstructure and phase structure studies revealed columnar Co-Pt grains with a uniform lateral size grown on a 7 nm initial layer. Films with t>25 nm showed a HCP phase, due to the internal stress and volume effect. The microstructural details responsible for the enhanced RT magnetic properties of the HCP Co-Pt alloy thin films were investigated by TEM.

  11. Giant tunnel magnetoresistance at room temperature using Co{sub 2}Fe(SiAl) full Heusler alloy electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Inomata, Koichiro [National Institute for Materials Science, Tsukuba (Japan); Tohoku University, Sendai (Japan); CREST-JST, Saitama (Japan); Ikeda, Naomichi [Tohoku University, Sendai (Japan); CREST-JST, Saitama (Japan); Tezuka, Nobuki [Tohoku University, Sendai (Japan)

    2007-07-01

    Half-metallic ferromagnets (HMFs) are a key material for spintronics, which have a band gap at the Fermi level (EF) for one spin direction and thus exhibit 100% spin polarization at the EF. Full Heusler alloys, in particular, are promising as a half metal, because a number of which have been predicted to be HMFs and have a high Curie temperature. Here we report the giant TMR observation at room temperature (RT) for the MTJ using Co{sub 2}Fe(Si,Al) (CFSA) electrodes. We first investigate the structure of the sputtered CFSA films on a Cr-buffered MgO(001) substrate in an ultrahigh vacuum by post annealing at various temperatures. Next we fabricate the epitaxially grown spin-valve type MTJs on a Cr-buffered MgO(001) substrate with Co{sub 2}FeSi{sub 0.5}Al{sub 0.5} full-Heusler alloys for top and bottom electrodes and an MgO barrier with different thicknesses. The bottom CFAS film is post-annealed at 673 K after the deposition at RT, followed by the deposition of the other films at RT. The junctions are the annealed at various temperatures, and then microfabricated into 100 mm{sup 2} using the electron beam lithography and Ar ion milling. We have successfully grown the highly ordered CFSA full-Heusler films for top and bottom electrodes. As a result we have attained the giant TMR over 200% at RT.

  12. Microstructure characterization and room temperature deformation of a rapidly solidified NiAl-based eutectic alloy containing trace Dy

    Science.gov (United States)

    Li, Hutian; Guo, Jianting; Huai, Kaiwen; Ye, Hengqiang

    2006-04-01

    The microstructure and room temperature compressive deformation behavior of a rapidly solidified NiAl-Cr(Mo)-Dy eutectic alloy fabricated by water-cooled copper mold method were studied by a combination of SEM, EDS and compressive tests. The morphology stability after hot isostatic pressing (HIP) treatment was evaluated. Rapid solidification resulted in a shift in the coupled zone for the eutectic growth towards the Cr(Mo) phase, indicating a hypoeutectic composition, hence increasing the volume fraction of primary dendritic NiAl. Meanwhile, significantly refined microstructure and lamellar/rod-like Cr(Mo) transition were observed due to trace rare earth (RE) element Dy addition and rapid solidification effects. Compared with the results in literature [H.E. Cline, J.L. Walter, Metall. Trans. 1(1970)2907-2917; P. Ferrandini, W.W. Batista, R. Caram, J. Alloys Comp. 381(2004)91-98], an interesting phenomenon, viz., NiAl halos around the primary Cr(Mo) dendrites in solidified NiAl-Cr(Mo) hypereutectic alloy, was not observed in this study. This difference was interpreted in terms of their different reciprocal nucleation ability. In addition, it was proposed that the localized destabilization of morphology after HIP treatment is closely related to the presence of primary NiAl dendrites. The improved mechanical properties can be attributed to the synergistic effects of rapid solidification and Dy addition, which included refined microstructure, suppression of the crack development along eutectic grain boundaries, enhancement of density of geometrically necessary dislocations located at NiAl/Cr(Mo) interfaces and the Cr solubility extension in NiAl.

  13. An experimental investigation of innovative bridge columns with engineered cementitious composites and Cu-Al-Mn super-elastic alloys

    Science.gov (United States)

    Hosseini, F.; Gencturk, B.; Lahpour, S.; Ibague Gil, D.

    2015-08-01

    Recent strong earthquakes have shown that reinforced concrete (RC) bridge columns constructed using conventional materials and techniques suffer from major damage and permanent deformations. The yielding of the longitudinal reinforcement as the main source of energy absorption, and cracking and spalling of concrete results in a dysfunctional bridge structure that does not support the post-disaster recovery efforts. This paper investigates the use of engineered cementitious composites (ECCs) and Cu-Al-Mn super-elastic alloys (SEAs) to improve the performance of bridge columns under seismic loads. A new column design is proposed, which is composed of a pre-fabricated ECC tube that encompasses the longitudinal and transverse steel reinforcement (rebar). The rebar in the plastic hinge region of the cantilever columns was totally or partially replaced with Cu-Al-Mn SEA bars. The tube was filled with conventional concrete after it was placed inside the rebar cage of the foundation. ECC exhibits superior tensile ductility, bonding with steel, energy absorption and shear resistance, in addition to lower permeability and reduced crack widths compared to conventional concrete. Cu-Al-Mn SEA bars are capable of recovering large inelastic deformations exceeding 12% strain. The proposed approach capitalizes on the deformability of ECC with reduced damage, and the energy absorption capacity of Cu-Al-Mn SEA bars without permanent deformation. A total of six column specimens were constructed and tested under simulated seismic loading. The number of rebars replaced with Cu-Al-Mn SEA bars, ECC mixture design, and the ratio of the concrete core area to total column cross-sectional area were the variables investigated in the test program. A comparison of the results indicated that the proposed concept with no Cu-Al-Mn SEA bars provides higher lateral strength, similar energy absorption and reduced damage compared to conventional RC columns; however, similar to a conventional column, it

  14. Radiation effects on microstructure and hardness of a titanium aluminide alloy irradiated by helium ions at room and elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Tao, E-mail: tao@ansto.gov.au [Institute of Materials Engineering, Australian Nuclear Science & Technology Organisation, Locked Bag 2001, Kirrawee DC, Sydney, NSW 2232 (Australia); Zhu, Hanliang [Institute of Materials Engineering, Australian Nuclear Science & Technology Organisation, Locked Bag 2001, Kirrawee DC, Sydney, NSW 2232 (Australia); Ionescu, Mihail [Institute for Environment Research, Australian Nuclear Science & Technology Organisation, Locked Bag 2001, Kirrawee DC, Sydney, NSW 2232 (Australia); Dayal, Pranesh; Davis, Joel; Carr, David; Harrison, Robert; Edwards, Lyndon [Institute of Materials Engineering, Australian Nuclear Science & Technology Organisation, Locked Bag 2001, Kirrawee DC, Sydney, NSW 2232 (Australia)

    2015-04-15

    A 45XD TiAl alloy possessing a lamellar microstructure was irradiated using 5 MeV helium ions to a fluence of 5 × 10{sup 21} ion m{sup −2} (5000 appm) with a dose of about 1 dpa (displacements per atom). A uniform helium ion stopping damage region about 17 μm deep from the target surface was achieved by applying an energy degrading wheel. Radiation damage defects including helium-vacancy clusters and small helium bubbles were found in the microstructure of the samples irradiated at room temperature. With increasing irradiation temperature to 300 °C and 500 °C helium bubbles were clearly observed in both the α{sub 2} and γ phases of the irradiated microstructure. By means of nanoindentation significant irradiation hardening was measured. For the samples irradiated at room temperature the hardness increased from 5.6 GPa to 8.5 GPa and the irradiation-hardening effect reduced to approximately 8.0 GPa for the samples irradiated at 300 °C and 500 °C.

  15. Room Temperature Ferromagnetic, Anisotropic, Germanium Rich FeGe(001 Alloys

    Directory of Open Access Journals (Sweden)

    Cristian M. Teodorescu

    2013-02-01

    Full Text Available Ferromagnetic FexGe1−x with x = 2%–9% are obtained by Fe deposition onto Ge(001 at high temperatures (500 °C. Low energy electron diffraction (LEED investigation evidenced the preservation of the (1 × 1 surface structure of Ge(001 with Fe deposition. X-ray photoelectron spectroscopy (XPS at Ge 3d and Fe 2p core levels evidenced strong Fe diffusion into the Ge substrate and formation of Ge-rich compounds, from FeGe3 to approximately FeGe2, depending on the amount of Fe deposited. Room temperature magneto-optical Kerr effect (MOKE evidenced ferromagnetic ordering at room temperature, with about 0.1 Bohr magnetons per Fe atom, and also a clear uniaxial magnetic anisotropy with the in-plane  easy magnetization axis. This compound is a good candidate for promising applications in the field of semiconductor spintronics.

  16. Stress-Strain Compression of AA6082-T6 Aluminum Alloy at Room Temperature

    Directory of Open Access Journals (Sweden)

    Alexandre da Silva Scari

    2014-01-01

    Full Text Available Short cylindrical specimens made of AA6082-T6 aluminum alloy were studied experimentally (compression tests, analytically (normalized Cockcroft-Latham criteria—nCL, and numerically (finite element analysis—FEA. The mechanical properties were determined with the stress-strain curves by the Hollomon equation. The elastic modulus obtained experimentally differs from the real value, as expected, and it is also explained. Finite element (FE analysis was carried out with satisfactory correlation to the experimental results, as it differs about 1,5% from the damage analysis by the nCL concerning the experimental data obtained by compression tests.

  17. Deformation mechanisms in Mg alloys and the challenge of extending room-temperature plasticity

    Science.gov (United States)

    Barnett, M. R.; Stanford, N.; Cizek, P.; Beer, A.; Xuebin, Z.; Keshavarz, Z.

    2009-08-01

    Magnesium alloys show promise for application in formed components where weight saving is an advantage. In most instances forming is carried out at elevated temperatures. However, there are considerable gains to be had if forming can be carried out under ambient conditions. The present article outlines some of the difficulties that lie in the way of achieving this objective. The underlying metallurgical characteristics of the issues are considered and means for overcoming them are discussed. It is concluded that a combination of microstructure and texture control remains a promising strategy.

  18. Simulation of Ni-Based Super-Alloy and Optimizing of Its Mechanical Properties in a Near-Shaped Turbine Blade Part

    Directory of Open Access Journals (Sweden)

    Mohammd Reza Alizadeh

    2015-01-01

    Full Text Available This paper presents simulation of a Ni-based super-alloy during filling of a near-shaped turbine blade part to optimize its mechanical properties. Since geometrical shape of the airfoil is so complicated, a simple near-shaped part was made by plexiglass to water modeling. Condition and parameters of water modeling were obtained from the Procast software simulation. The flow pattern of the transparent systems, recorded by a high speed video camera, was analyzed. Air bubble amounts were quantitatively measured by an image analysis software. Quantified results were used to compare two systems in terms of ability to prevent bubble formation and entrainment. Both water modeling and computer simulating methods indicated that highest turbulences in bottom- and top-poured systems form in first initially pouring times. According to the water modeling results amount of bubble values was 40 and 18 percent for top-poured and bottom-poured systems, respectively. Then the Ni-base super-alloy IN939 is poured by investment casting in bottom- and top-poured systems and compared with each other. The results stated that bottom-poured system had higher mechanical properties compared to top-poured one. Ultimate tensile strength for the former was 820 MPa while for the part which was cast by bottom-poured system it was 850 MPa.

  19. 镍钴高温合金废料湿法冶金回收%Hydrometallurgical Recovery of Waste Ni- Co Super- Alloys

    Institute of Scientific and Technical Information of China (English)

    孟晗琪; 马光; 吴贤; 王靖坤

    2012-01-01

    The super - alloy scrap contained large amounted of nickel and cobalt. How to make these to be renewable resources became a hot topic. Because of the low recovery rate, poor product quality, high production cost and environmental pollution for pyrometallurgy, hydrometallurgical process to deal with the nickel and cobalt waste took more and more attentions. The hydrometallurgical recovery technology of super - alloy scrap was briefly described, including the leaching processing technology, and nickel- cobalt separation and recovery technology.%由于高温合金废料中含有大量的镍、钴资源,如何使这些资源再生成为当今的热点话题。由于传统火法处理都存在金属回收率低、产品质量较差、生产成本高、环境污染大等缺点,因此用湿法冶金处理镍钴废料日益受到重视。本文简单介绍了高温合金废料的湿法冶金回收技术,包括合金废料的浸出处理技术和镍钴分离回收技术。

  20. Determination and Fabrication of New Shield Super Alloys Materials for Nuclear Reactor Safety by Experiments and Cern-Fluka Monte Carlo Simulation Code, Geant4 and WinXCom

    Science.gov (United States)

    Aygun, Bünyamin; Korkut, Turgay; Karabulut, Abdulhalik

    2016-05-01

    Despite the possibility of depletion of fossil fuels increasing energy needs the use of radiation tends to increase. Recently the security-focused debate about planned nuclear power plants still continues. The objective of this thesis is to prevent the radiation spread from nuclear reactors into the environment. In order to do this, we produced higher performanced of new shielding materials which are high radiation holders in reactors operation. Some additives used in new shielding materials; some of iron (Fe), rhenium (Re), nickel (Ni), chromium (Cr), boron (B), copper (Cu), tungsten (W), tantalum (Ta), boron carbide (B4C). The results of this experiments indicated that these materials are good shields against gamma and neutrons. The powder metallurgy technique was used to produce new shielding materials. CERN - FLUKA Geant4 Monte Carlo simulation code and WinXCom were used for determination of the percentages of high temperature resistant and high-level fast neutron and gamma shielding materials participated components. Super alloys was produced and then the experimental fast neutron dose equivalent measurements and gamma radiation absorpsion of the new shielding materials were carried out. The produced products to be used safely reactors not only in nuclear medicine, in the treatment room, for the storage of nuclear waste, nuclear research laboratories, against cosmic radiation in space vehicles and has the qualities.

  1. Low cycle fatigue behaviour of Ti–6Al–5Zr–0.5Mo–0.25Si alloy at room temperature

    Indian Academy of Sciences (India)

    Anil Kumar Nag; K V U Praveen; Vakil Singh

    2006-06-01

    Low cycle fatigue (LCF) behaviour of the near titanium alloy, Ti–6Al–5Zr–0.5Mo–0.25Si (LT26A), was investigated in the ( + ) as well as treated conditions at room temperature. LCF tests were carried out under total strain controlled mode in the range of t/2: from ± 0.60% to ± 1.40%. The alloy shows cyclic softening in both the conditions. Also it exhibits dual slope Coffin–Manson (C–M) relationship in both the treated conditions.

  2. Low Cycle Fatigue behavior of SMAW welded Alloy28 superaustenitic stainless steel at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kchaou, Y., E-mail: yacinekchaou@yahoo.fr [Institut Pprime, Département Physique et Mécanique des Matériaux, UPR 3346 CNRS ISAE-ENSMA Université de Poitiers, Téléport 2, 1, avenue Clément Ader, BP 40109, F – 86961 Futuroscope Chasseneuil Cedex (France); Laboratoire de Génie des Matériaux et Environnement (LGME), ENIS, BPW 1173, Sfax (Tunisia); Pelosin, V.; Hénaff, G. [Institut Pprime, Département Physique et Mécanique des Matériaux, UPR 3346 CNRS ISAE-ENSMA Université de Poitiers, Téléport 2, 1, avenue Clément Ader, BP 40109, F – 86961 Futuroscope Chasseneuil Cedex (France); Haddar, N.; Elleuch, K. [Laboratoire de Génie des Matériaux et Environnement (LGME), ENIS, BPW 1173, Sfax (Tunisia)

    2016-01-10

    This paper focused on the study of Low Cycle Fatigue of welded joints of superaustenitic (Alloy28) stainless steels. Chemical composition and microstructure investigation of Base Metal (BM) and Weld Metal (WM) were identified. The results showed that both of composition is fully austenitic with a dendritic microstructure in the WM. Low cycle fatigue tests at different strain levels were performed on Base Metal (BM) and Welded Joint (WJ) specimens with a strain ratio R{sub ε}=−1. The results indicated that the fatigue life of welded joints is lower than the base metal. This is mainly due to the low ductility of the Welded Metal (WM) and the presence of welding defects. Simultaneously, Scanning Electron Microscope (SEM) observations of fractured specimens show that WJ have brittle behavior compared to BM with the presence of several welding defects especially in the crack initiation site. An estimation of the crack growth rate during LCF tests of BM and WJ was performed using distance between striations. The results showed that the crack initiation stage is shorter in the case of WJ compared to BM because of the presence of welding defects in WJ specimens.

  3. The effect of room temperature pre-ageing on tensile and electrical properties of thermomechanically treated Al-Mg-Si alloy

    Directory of Open Access Journals (Sweden)

    Martinova Z.

    2002-01-01

    Full Text Available A commercial Al - 0.62%Mg - 0.57%Si was thermomechanically treated (TMT. The TMT process included solution treatment, room temperature preageing, drawing (e=95% and final ageing. The experimental data were proceeded statistically and mathematical models were derived for the alloy properties such as tensile strength, electrical conductivity and elongation of the wires during TMT. The models are used to find out the area of compromise optimal combination of the alloy properties. Higher final ageing temperature and time are required to design a TMT process for production of a long-term pre-aged wires. The influence of the room temperature preageing on the precipitation process during TMT is discussed.

  4. Room temperature ferromagnetism down to 10 nanometer Ni–Fe–Mo alloy films

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Mitali, E-mail: akm@bose.res.in [Department of Materials Science, S.N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake City, Kolkata 700098 (India); Majumdar, A.K. [Department of Materials Science, S.N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake City, Kolkata 700098 (India); Ramakrishna Mission Vivekananda University, PO Belur Math, Howrah 711202 (India); Rai, S.; Tiwari, Pragya; Lodha, G.S. [Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Banerjee, A. [UGC-DAE Consortium for Scientific Research, Khandwa Road, Indore 452017 (India); Nair, K.G.M [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu 603102 (India); Sarkar, Jayanta [Low Temperature Laboratory, Aalto University, P.O. Box 15100, FI-00076 AALTO (Finland); Choudhary, R.J.; Phase, D.M. [UGC-DAE Consortium for Scientific Research, Khandwa Road, Indore 452017 (India)

    2013-10-31

    Magnetic behavior of a few pulsed laser deposited soft ferromagnetic thin films of Ni–Fe–Mo alloys of different thickness on sapphire single crystals is interpreted on the basis of their structural characteristics. Highly textured thin films have high void density due to island-like growth. X-ray reflectivity (XRR) of the thin films indicate that instead of a uniform density there are effectively three layers with density gradient across the thickness, which is further supported by atomic force microscopy and cross-sectional scanning electron microscopy. Rutherford backscattering spectroscopy and energy dispersive spectrum measurements reveal that the composition in the films is not too far from that of the bulk target with a trend of enhanced Fe yield in the films. The structural disorder strongly affected the magnetic property of the films resulting in much higher values of the Curie temperature T{sub C} and coercive field H{sub C} than those of the bulk targets. Bifurcations of low-field zero-field-cooled and field-cooled magnetization reflect the disorder-induced anisotropy in the thin films. The spin wave stiffness constants D are higher than their bulk counterparts which are supportive of the enhanced Fe yield in the films. The saturation magnetization, M calculated from measurements in field transverse to the films strongly supports the thickness found from XRR. Finally, even the 10 nm thin films have sizable M and H{sub C} and T{sub C} > 300 K, making them good candidates for magnetic applications. Overall, the magnetic behavior and the structural characteristics have reasonably complemented each other. - Highlights: • Correlated structural and magnetic properties of pulsed laser grown Ni–Fe–Mo films • Film thickness from scanning microscopy agrees with X-ray reflectivity analysis. • Experiments reveal that targets and the films have somewhat similar compositions. • Low-field M(T) shows spin-glass-like features in all films in contrast to

  5. Temperature field in the hot-top during casting a new super-high strength Al-Zn-Mg-Cu alloy by low frequency electromagnetic process

    Directory of Open Access Journals (Sweden)

    Yubo ZUO

    2005-08-01

    Full Text Available The billets of a new super-high strength Al-Zn-Mg-Cu alloy in 200 mm diameter were produced by the processed of low frequency electromagnetic casting (LFEC and conventional direct chill(DCcasting, respectively. The effects of low frequency electromagnetic field on temperature field of the melt in the hot-top were investigated by temperature thermocouples into the casting during the processes. The results show that during LFEC process the temperature field in the melt applying the hot-top is very uniform, which is helpful to reduce the difference of thermal gradients between the surface and the center, and then to reduce the thermal stress and to eliminate casting crack.

  6. Temperature field in the hot-top during casting a new super-high strength Al-Zn-Mg-Cu alloy by low frequency electromagnetic process

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The billets of a new super-high strength Al-Zn-Mg-Cu alloy in 200mm diameter were produced by the processes of low frequency electromagnetic casting (LFEC) and conventional direct chill (DC) casting, respectively. The effects of low frequency electromagnetic field on temperature field of the melt in the hot-top were investigated by temperature measurement method. Temperature curves were measured from the surface to the center of the billets by locating type K thermocouples into the casting during the processes. The results show that during LFEC process the temperature field in the melt applying the hot-top is very uniform, which is helpful to reduce the difference of thermal gradients between the surface and the center, and then to reduce the thermal stress and to eliminate casting crack.

  7. Experimental determination of TRIP-parameter K for mild- and high-strength low-alloy steels and a super martensitic filler material.

    Science.gov (United States)

    Neubert, Sebastian; Pittner, Andreas; Rethmeier, Michael

    2016-01-01

    A combined experimental numerical approach is applied to determine the transformation induced plasticity (TRIP)-parameter K for different strength low-alloy steels of grade S355J2+N and S960QL as well as the super martensitic filler CN13-4-IG containing 13 wt% chromium and 4 wt% nickel. The thermo-physical analyses were conducted using a Gleeble (®) 3500 facility. The thermal histories of the specimens to be tested were extracted from corresponding simulations of a real gas metal arc weldment. In contrast to common TRIP-experiments which are based on complex specimens a simple flat specimen was utilized together with an engineering evaluation method. The evaluation method was validated with literature values for the TRIP-parameter. It could be shown that the proposed approach enables a correct description of the TRIP behavior.

  8. Observation on the transformation domains of super-elastic NiTi shape memory alloy and their evolutions during cyclic loading

    Science.gov (United States)

    Xie, Xi; Kan, Qianhua; Kang, Guozheng; Li, Jian; Qiu, Bo; Yu, Chao

    2016-04-01

    The strain field of a super-elastic NiTi shape memory alloy (SMA) and its variation during uniaxial cyclic tension-unloading were observed by a non-contact digital image correlation method, and then the transformation domains and their evolutions were indirectly investigated and discussed. It is seen that the super-elastic NiTi (SMA) exhibits a remarkable localized deformation and the transformation domains evolve periodically with the repeated cyclic tension-unloading within the first several cycles. However, the evolutions of transformation domains at the stage of stable cyclic transformation depend on applied peak stress: when the peak stress is low, no obvious transformation band is observed and the strain field is nearly uniform; when the peak stress is large enough, obvious transformation bands occur due to the residual martensite caused by the prevention of enriched dislocations to the reverse transformation from induced martensite to austenite. Temperature variations measured by an infrared thermal imaging method further verifies the formation and evolution of transformation domains.

  9. Cryogenic strength improvement by utilizing room-temperature deformation twinning in a partially recrystallized VCrMnFeCoNi high-entropy alloy.

    Science.gov (United States)

    Jo, Y H; Jung, S; Choi, W M; Sohn, S S; Kim, H S; Lee, B J; Kim, N J; Lee, S

    2017-06-12

    The excellent cryogenic tensile properties of the CrMnFeCoNi alloy are generally caused by deformation twinning, which is difficult to achieve at room temperature because of insufficient stress for twinning. Here, we induced twinning at room temperature to improve the cryogenic tensile properties of the CrMnFeCoNi alloy. Considering grain size effects on the critical stress for twinning, twins were readily formed in the coarse microstructure by cold rolling without grain refinement by hot rolling. These twins were retained by partial recrystallization and played an important role in improving strength, allowing yield strengths approaching 1 GPa. The persistent elongation up to 46% as well as the tensile strength of 1.3 GPa are attributed to additional twinning in both recrystallized and non-recrystallization regions. Our results demonstrate that non-recrystallized grains, which are generally avoided in conventional alloys because of their deleterious effect on ductility, can be useful in achieving high-strength high-entropy alloys.

  10. Microstructure and Room Temperature Properties of a High-Entropy TaNbHfZrTi Alloy (Postprint)

    Science.gov (United States)

    2014-04-01

    Vickers microhardness are  = 9.94 g/cm3 and Hv = 3826 MPa. The alloy has high compression yield strength (0 2 = 929 MPa) and ductility (ε > 50%). The...the BCC crystal structure, density, , Vickers microhardness, Hv, and yield strength, 0.2, of the pure metals and the studied alloy. Metal Ta Nb Hf...agreement with the random (disordered) distribution of the alloying elements in the BCC lattice of the alloy. The RT yield strength and Vickers microhardness

  11. Siegel FIRST EXPERIMENTAL DISCOVERY of Granular-Giant-Magnetoresistance (G-GMR) DiagnosES/ED Wigner's-Disease/.../Spinodal-Decomposition in ``Super''Alloys Generic Endemic Extant in: Nuclear-Reactors/ Petrochemical-Plants/Jet/ Missile-Engines/...

    Science.gov (United States)

    Hoffman, Ace; Wigner-Weinberg, Eugene-Alvin; Siegel, Edward Carl-Ludwig Sidney; ORNL/Wigner/Weinberg/Siegel/Hollifeld/Yu/... Collaboration; ANL/Fermi/Wigner/Arrott/Weeks/Bader/Freeman/Sinha/Palazlotti/Nichols/Petersen/Rosner/Zimmer/... Collaboration; BNL/Chudahri/Damask/Dienes/Emery/Goldberg/Bak//Bari/Lofaro/... Collaboration; LLNL-LANL/Hecker/Tatro/Meara/Isbell/Wilkins/YFreund/Yudof/Dynes/Yang/... Collaboration; WestinKLouse/EPRI/PSEG/IAEA/ABB/Rickover/Nine/Carter/Starr/Stern/Hamilton/Richards/Lawes/OGrady/Izzo Collaboration

    2013-03-01

    Siegel[APS Shock-Physics Mtg., Chicago(11)] carbides solid-state chemistry[PSS (a)11,45(72); Semis. & Insuls. 5: 39,47,62 (79)], following: Weinberg-Siegel-Loretto-Hargraves-Savage-Westwood-Seitz-Overhauser-..., FIRST EXPERIMENTAL DISCOVERY of G-GMR[JMMM 7, 312(78); Google: ``If LEAKS Could KILL Ana Mayo''] identifIED/IES GENERIC ENDEMIC EXTANT domination of old/new (so mis-called) ``super''alloys': nuclear-reactors/spent-fuel-casks/refineries/jet/missile/rocket-engines in austenitic/FCC Ni/Fe/Co-based (so mis-called) ''super''alloys (182/82; Hastelloy-X,600,304/304L-Stainless-Steels,...,690!!!) GENERIC ENDEMIC EXTANT detrimental(synonyms!!!): THERMAL: Wigner's-disease(WD physics) [J.Appl.Phys.17,857(46)]/ Ostwald-ripening

  12. Second Phases in Fe-25Cr-35Ni Based Super Alloy%Fe-25Cr-35Ni系合金中的第二相,

    Institute of Scientific and Technical Information of China (English)

    郭景锋; 徐仁根; 晁代义; 邵文柱; 崔约贤

    2012-01-01

    采用光学显微镜和扫描电子显微镜以及能谱仪研究了Fe-25Cr-35Ni系合金中的第二相种类和分布。结果表明:Fe-25Cr-35Ni系合金中的第二相主要有3种,即富铌相、氮化物相和碳化物相;其中,富铌相主要沿晶界分布,并且富铌相之间存在成分差异;氮化物相主要为TiN,一般与富铌相共生,其分布主要与氮化物偏析有关;碳化物相数量较多,分布较广泛,晶内、晶界、孪晶界和孪晶内均有分布,经高温固溶处理后可固溶到奥氏体基体中。%The second phases and their distribution in Fe-25Cr-35Ni based super alloy were investigated through optical microscope, scanning electron microscope and energy diffraction spectrum. The results show that there are mainly three kinds of second phases in Fe-25Cr-35Ni based super alloy and they are Nb-rich phase, nitride phase and carbide phase. The Nb-rich phases mainly distribute along the grain ground, and there is chemical compositions difference between the Nb-rich phases. The nitride phases mainly are TiN and generally intergrow with the Nb-rich phases, and their distributing relates to the segregation of nitride. The carbide phases amount is more and they distribute in the grains, grain boundaries, twins and twin boundaries. And the carbide phases could be dissolved into the base metal after high temperature solution treatment.

  13. An Experiment to Explain Depth of Cut Notch Wear of Ceramic Tools in Ni- based Super-alloy Machining

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Inconel 718, a high temperature alloy, is extensive ly used in aircraft, gas engines and nuclear-power plants. It is generally known that the life of ceramic cutting tools in machining Inconel 718 is often restric ted by depth-of-cut (DOC) notch wear. In view of the number of various factors involved and the variety of tool materi als and cutting conditions available, the analysis of the DOC notch wear is very difficult. According to previous work concerning the DOC notch wear of ceramics tools, some A...

  14. New method for making super-plastic glasses

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ It was a long-cherished dream for materials scientists to find a nearly ideal metallic alloy with high strength and super-plasticity concurrently as a super-material both extremely strong and exceptionally hard for human use.

  15. FRAUD/SABOTAGE Killing Nuclear-Reactors Need Modeling!!!: "Super"alloys GENERIC ENDEMIC Wigner's-Disease/.../IN-stability: Ethics? SHMETHICS!!!

    Science.gov (United States)

    Asphahani, Aziz; Siegel, Sidney; Siegel, Edward

    2010-03-01

    Carbides solid-state chemistry domination of old/new nuclear- reactors/spent-fuel-casks/refineries/jet/missile/rocket-engines in austenitic/FCC Ni/Fe-based(so miscalled)``super"alloys(182/82; Hastelloy-X,600,304/304L-SSs,...,690!!!) GENERIC ENDEMIC EXTANT detrimental(synonyms): Wigner's-diseas(WD)[J.Appl.Phys.17,857 (1946)]/Ostwald-ripening/spinodal-decomposition/overageing- embrittlement/thermal-leading-to-mechanical(TLTM)-INstability: Mayo[Google:``If Leaks Could Kill"; at flickr.com search on ``Giant-Magnotoresistance"; find: Siegel[J.Mag.Mag.Mtls.7,312 (1978)]<<<``Fert"-"Gruenberg"(1988/89)2007-physics Nobel/Wolf/ Japan-prizes]necessitating NRC-inspections of 40+25 = 65 Westin- ``KLouse PWRs(12/2006)]-Lai[Met.Trans.AIME,9A,827(1978)]-Sabol- Stickler[Phys.Stat.Sol.(1970)]-Ashpahani[Intl.Conf. H in Metals, Paris(1977]-Russell[Prog.Mtls.Sci.(1983)]-Pollard[last UCS rept. (9/1995)]-Lofaro[BNL/DOE/NRC Repts.]-Pringle[Nuclear-Power:From Physics to Politics(1979)]-Hoffman[animatedsoftware.com], what DOE/NRC MISlabels as ``butt-welds" ``stress-corrosion cracking" endpoint's ROOT-CAUSE ULTIMATE-ORIGIN is WD overageing-embritt- lement caused brittle-fracture cracking from early/ongoing AEC/ DOE-n"u"tional-la"v"atories sabotage!!!

  16. Improved Osteoblast and Chondrocyte Adhesion and Viability by Surface-Modified Ti6Al4V Alloy with Anodized TiO2 Nanotubes Using a Super-Oxidative Solution

    Directory of Open Access Journals (Sweden)

    Ernesto Beltrán-Partida

    2015-03-01

    Full Text Available Titanium (Ti and its alloys are amongst the most commonly-used biomaterials in orthopedic and dental applications. The Ti-aluminum-vanadium alloy (Ti6Al4V is widely used as a biomaterial for these applications by virtue of its favorable properties, such as high tensile strength, good biocompatibility and excellent corrosion resistance. TiO2 nanotube (NTs layers formed by anodization on Ti6Al4V alloy have been shown to improve osteoblast adhesion and function when compared to non-anodized material. In his study, NTs were grown on a Ti6Al4V alloy by anodic oxidation for 5 min using a super-oxidative aqueous solution, and their in vitro biocompatibility was investigated in pig periosteal osteoblasts and cartilage chondrocytes. Scanning electron microscopy (SEM, energy dispersion X-ray analysis (EDX and atomic force microscopy (AFM were used to characterize the materials. Cell morphology was analyzed by SEM and AFM. Cell viability was examined by fluorescence microscopy. Cell adhesion was evaluated by nuclei staining and cell number quantification by fluorescence microscopy. The average diameter of the NTs was 80 nm. The results demonstrate improved cell adhesion and viability at Day 1 and Day 3 of cell growth on the nanostructured material as compared to the non-anodized alloy. In conclusion, this study evidences the suitability of NTs grown on Ti6Al4V alloy using a super-oxidative water and a short anodization process to enhance the adhesion and viability of osteoblasts and chondrocytes. The results warrant further investigation for its use as medical implant materials.

  17. Enhanced magnetocaloric properties and critical behavior of (Fe0.72Cr0.28)3Al alloys for near room temperature cooling

    Science.gov (United States)

    Sharma, V.; Maheshwar Repaka, D. V.; Chaudhary, V.; Ramanujan, R. V.

    2017-04-01

    Magnetic cooling is an environmentally friendly, energy efficient, thermal management technology relying on high performance magnetocaloric materials (MCM). Current research has focused on low cost, corrosion resistant, rare earth (RE) free MCMs. We report the structural and magnetocaloric properties of novel, low cost, RE free, iron based (Fe0.72Cr0.28)3Al alloys. The arc melted buttons and melt spun ribbons possessed the L21 crystal structure and B2 crystal structure, respectively. A notable enhancement of 33% in isothermal entropy change (-ΔS m) and 25% increase in relative cooling power (RCP) for the ribbons compared to the buttons can be attributed to higher structural disorder in the Fe-Cr and Fe-Al sub-lattices of the B2 structure. The critical behavior was investigated using modified Arrott plots, the Kouvel-Fisher plot and the critical isotherm technique; the critical exponents were found to correspond to the short-range order 3D Heisenberg model. The field and temperature dependent magnetization curves of (Fe0.72Cr0.28)3Al alloys revealed their soft magnetic nature with negligible hysteresis. Thus, these alloys possess promising performance attributes for near room temperature magnetic cooling applications.

  18. Effects of the Growth Rate on Microstructures and Room Temperature Mechanical Properties of Directionally Solidified Mg-5.2Zn Alloy

    Science.gov (United States)

    Liu, Shaojun; Yang, Guangyu; Xiao, Lei; Luo, Shifeng; Jie, Wanqi

    2016-06-01

    Effects of the growth rate on the microstructures and room temperature mechanical properties of Mg-5.2Zn alloy were investigated using Bridgman method at a constant temperature gradient 30 K/mm with different growth rates (v = 10 ~ 100 μm/s). The microstructure of directionally solidified Mg-5.2Zn alloy is composed of dendrite primary α(Mg) phase and interdendritic α(Mg) + Mg7Zn3 eutectic, which agrees well with the predicted microstructure using Scheil model. The morphology of the primary α(Mg) phase transforms from cellular, to cellular-dendritic, and then to dendritic with the increase of growth rate from 10 μm/s to 100 μm/s. According to the Kurz-Fisher model, the approximate criterion growth rate for cellular/dendrite transition is determined to be about 12.7 μm/s, which just lies in the experimental result interval. Using non-linear fitting analysis, λ 1 (the primary dendrite arm spacing) and λ 2 (secondary dendrite arm spacing) were found to be dependent on v (growth rate) in the form of λ 1 = 8.6964 × 10-6 v -0.23983, λ 2 = 1.7703 × 10-6 v -0.34161, which is in good agreement with the calculated values by the Trivedi model and Kattamis-Flemings model, respectively. Furthermore, tensile test shows that the directional solidified experimental Mg-5.2Zn alloy shows higher strength than the non-directional solidified alloy under the same cooling rate. The dendritic structure shows higher strength than the cellular structure due to the fact that brittle interdendrite eutectic was refined in dendritic structures.

  19. Procédé de nitruration d'un alliage de titane superélastique pour des applications biomédicales Nitriding process of a superelastic titanium alloy for biomedical applications

    Directory of Open Access Journals (Sweden)

    Bedouin Yvan

    2013-11-01

    Full Text Available Dans le cadre de ce travail, nous avons mis au point un protocole de nitruration appliqué à un alliage Ti-Nb de type beta, biocompatible et qui présente des propriétés de superélasticité. Cet alliage a ainsi subi un traitement de nitruration en phase gazeuse suivi d'un traitement de recristallisation en phase beta et d'une trempe dans l'eau. Avec ce protocole, l'alliage est nitruré en surface et sa caractéristique superélastique est maintenue. Cet ensemble de propriétés mécaniques peut s'avérer très intéressante pour différentes applications biomédicales. Within the framework of this work, we developed a nitriding process on biocompatible Ti-Nb based beta-type alloy which presents superelastic property. This alloy underwent a nitriding treatment, which was followed by a recrystallization in the beta phase domain before quenching in water. With this protocol, the alloy is thus hardened by the presence of the nitride on the surface while its superelastic characteristic is maintained. This whole of mechanical properties can be very interesting for various biomedical applications.

  20. Study on Measuring Methods for Martensitic Transformation Temperature of Nb-containing Super-Invar Alloy%含Nb超低膨胀合金马氏体相变温度测量方法的研究

    Institute of Scientific and Technical Information of China (English)

    蔡波; 于一鹏; 张敬霖; 卢凤双; 张建生; 张建福

    2012-01-01

    本文利用DSC(差示扫描量热仪)、热膨胀法、共振法研究稀土Ce对超低膨胀合金马氏体相变温度的影响,并对3种方法测试结果加以比较.研究发现,3种相变温度测试方法所得出的实验规律一致,即添加适量Ce,能降低超低膨胀合金的马氏体相变温度,有助于提高超低膨胀合金的低温组织稳定性.热膨胀法和共振法所测得结果较为接近,两者的测试结果较DSC法所测得的结果更准确.%The influence of cerium on the martensitic transformation temperature of Super-Invar alloy was investigated by DSC, thermal dilation method and resonance method. It is found that the experimental laws are identical with results by the three methods of martensitic transformation temperature measuring. The additon of appropriate cerium will decrease the martensitic transformation temperature of Super-Invar alloy and increase the cryogenic structure stability of Super-Invar alloy. The results obtained by thermal dilation method and resonance method are similar. The Ms temperature obtained by thermal dilation method and the resonance method is more reliable than DSC results.

  1. Results of an interlaboratory fatigue test program conducted on alloy 800H at room and elevated temperatures

    Science.gov (United States)

    Ellis, J. R.

    1987-01-01

    The experimental approach adopted for low cycle fatigue tests of alloy 800H involved the use of electrohydraulic test systems, hour glass geometry specimens, diametral extensometers, and axial strain computers. Attempts to identify possible problem areas were complicated by the lack of reliable data for the heat of Alloy 800H under investigation. The method adopted was to generate definitive test data in an Interlaboratory Fatigue Test Program. The laboratories participating in the program were Argonne National Laboratory, Battelle Columbus, Mar-Test, and NASA Lewis. Fatigue tests were conducted on both solid and turbular specimens at temperatures of 20, 593, and 760 C and strain ranges of 2.0, 1.0, and 0.5 percent. The subject test method can, under certain circumstances, produce fatigue data which are serious in error. This approach subsequently was abandoned at General Atomic Company in favor of parallel gage length specimens and axial extensometers.

  2. Annealing behavior and shape memory effect in NiTi alloy processed by equal-channel angular pressing at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Shahmir, Hamed, E-mail: h.shahmir@ut.ac.ir [School of Metallurgy and Materials, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Nili-Ahmadabadi, Mahmoud [School of Metallurgy and Materials, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Wang, Chuan Ting [Departments of Aerospace & Mechanical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089-1453 (United States); School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Jung, Jai Myun; Kim, Hyoung Seop [Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang (Korea, Republic of); Langdon, Terence G. [Departments of Aerospace & Mechanical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089-1453 (United States); Materials Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ (United Kingdom)

    2015-04-01

    A martensitic NiTi shape memory alloy was processed successfully by equal-channel angular pressing (ECAP) for one pass at room temperature using a core–sheath billet design. The annealing behavior and shape memory effect of the ECAP specimens were studied followed by post-deformation annealing (PDA) at 673 K for various times. The recrystallization and structural evolution during annealing were investigated by differential scanning calorimetry, dilatometry, X-ray diffraction, transmission electron microscopy and microhardness measurements. The results indicate that the shape memory effect improves by PDA after ECAP processing. Annealing for 10 min gives a good shape memory effect which leads to a maximum in recoverable strain of 6.9 pct upon heating where this is more than a 25 pct improvement compared with the initial state.

  3. Nucleation of cracks from shear-induced cavities in an {alpha}/{beta} titanium alloy in fatigue, room-temperature creep and dwell-fatigue

    Energy Technology Data Exchange (ETDEWEB)

    Lefranc, P. [LMPM, UMR CNRS 6617, ENSMA, 86961 Futuroscope, Chasseneuil Cedex (France); LMS, UMR CNRS 7649, Ecole Polytechnique, 91128 Palaiseau Cedex (France); SNECMA Groupe SAFRAN, 77550 Moissy Cramayel (France); Doquet, V. [LMS, UMR CNRS 7649, Ecole Polytechnique, 91128 Palaiseau Cedex (France)], E-mail: doquet@lms.polytechnique.fr; Gerland, M.; Sarrazin-Baudoux, C. [LMPM, UMR CNRS 6617, ENSMA, 86961 Futuroscope, Chasseneuil Cedex (France)

    2008-10-15

    In titanium alloys, dwell periods during room-temperature stress-controlled fatigue tests are responsible for substantial reductions in lifetime compared to pure fatigue loading. The mechanisms of such a creep-fatigue interaction have been investigated for alloy Ti-6242. Scanning and transmission electron microscopy observations revealed crack initiation by coalescence of shear-induced cavities nucleated at {alpha}/{beta} interfaces in large colonies of {alpha} laths nearly parallel to the loading axis. The density and average size of cavities were larger in dwell-fatigue and creep than in fatigue. A qualitative micromechanical model of cavity nucleation based on discrete dislocation dynamics was developed. The number of cycles for cavity nucleation was computed as a function of the applied stress range. A finite threshold, dependent on the size of {alpha} laths colonies with similar orientation, was found. The simulations predict earlier cavity nucleation in creep or dwell-fatigue than in pure fatigue, which is consistent with the performed experiments.

  4. Effect of solution pH on the electrochemical polarization and stress corrosion cracking of Alloy 690 in 5 M NaCl at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.Y. [Department of Materials Science and Engineering, National Tsing Hua University, 101, Sec. 2, Kuang Fu Road, Hsinchu 300, Taiwan (China); Chou, L.B. [Department of Materials Science and Engineering, National Tsing Hua University, 101, Sec. 2, Kuang Fu Road, Hsinchu 300, Taiwan (China); Shih, H.C. [Department of Materials Science and Engineering, National Tsing Hua University, 101, Sec. 2, Kuang Fu Road, Hsinchu 300, Taiwan (China)]. E-mail: hcshih@mse.nthu.edu.tw

    2005-04-15

    The effect of solution pH on the electrochemical polarization and stress corrosion cracking behaviors of the nickel-based Alloy 690 were investigated in this paper. An experimental, potential-pH diagram was constructed for Alloy 690 in a concentrated (5 M) sodium chloride (NaCl) solution at room temperature ({approx}25 deg. C), using a cyclic polarization method. The domains of immunity, general corrosion, passivation, and pitting in 5 M NaCl solutions were defined. At pH >4, the passive region subdivided into areas of perfect passivation, imperfect passivation, and pitting. After anodic polarization, the surface of each specimen was carefully examined metallographically. Pitting corrosion was observed over the entire pH range investigated (0.3-8.52) but general corrosion predominated at lower pH values (<3). On the other hand, the mechanical properties, such as ultimate tensile strength (UTS), fracture strain (FS) and the reduction in area (RA) measured by the slow strain rate test (SSRT), decreased significantly at pH <3. The SSRT results are consistent with fractography and side-view observations of the tested specimens by scanning electron microscopy (SEM)

  5. Localized Corrosion Behavior of 6% Mo Super Austenitic & 316L Stainless Steels in Low pH 3% NaCl Solution

    Institute of Scientific and Technical Information of China (English)

    M.M.A.Gad; H.G.Salem; A.M. Nasreldin; H.Sabry; A.A.El-Sayed

    2005-01-01

    Electrochemical techniques were applied to study the crevice corrosion resistance of two types of stainless steel alloys namely, conventional 316L and 6% Mo super austenitic in acidified 3% NaCl solution at room temperature.Potentiodynamic results showed that 6% Mo alloy possessed a remarkable resistance to crevice corrosion compared with 316L alloy when they are tested in the same solution. The breakdown potential at which passivity broke down for 316L alloy was 0.00 mV (SCE). The corresponding value for 6% Mo alloy could not reach up to the potential value of 700 mV (SCE). 316L alloy suffered extremely from crevice corrosion at room temperature (about 25℃), which indicates that the critical crevice corrosion temperature, below which crevice corrosion does not occur, was lower than the test temperature. For 6% Mo alloy, the critical crevice corrosion temperature was higher than the testing temperature. Electrochemical parameters indicated that 6% Mo alloy exhibited higher crevice corrosion resistance than 316L alloy.

  6. Method to increase fatigue limits under high temperature stress of castings made of nickel-based super alloys from monocrystals or with columnar structure. Verfahren zur Erhoehung der Dauerfestigkeit bei Hochtemperaturbeanspruchung von als Einkristall oder mit saeulenfoermigem Gefuege hergestellten Gussteilen aus Superlegierungen auf Nickelbasis

    Energy Technology Data Exchange (ETDEWEB)

    Gell, M.L.; Leverant, G.R.

    1977-04-21

    Castings manufactured as monocrystals or of columnar structure exhibit increased endurance limits under high-temperature stress if the nickel super alloy with alternating amounts of Cr, Al, Ti, Nb, Co, Mo, Ta, W, B, Zr contains less than 0.01 wt.% C. This has the effect of suppressing the formation of a separate metal monocarbide phase. In conventional Ni-super alloys cracks are present in the monocarbide structure following annealing and these have been chown to extend further during fatigue tests.

  7. Mechanical properties and constitutive behaviors of as-cast 7050 aluminum alloy from room temperature to above the solidus temperature

    Institute of Scientific and Technical Information of China (English)

    Qing-ling Bai; Hong-xiang Li; Qiang Du; Ji-shan Zhang; Lin-zhong Zhuang

    2016-01-01

    The mechanical properties and constitutive behaviors of as-cast AA7050 in both the solid and semi-solid states were determined using the on-cooling and in situ solidification approaches, respectively. The results show that the strength in the solid state tends to increase with decreasing temperature. The strain rate plays an important role in the stress–strain behaviors at higher temperatures, whereas the influ-ence becomes less pronounced and irregular when the temperature is less than 250°C. The experimental data were fitted to the extended Ludwik equation, which is suitable to describe the mechanical behavior of the materials in the as-cast state. In the semi-solid state, both the strength and ductility of the alloy are high near the solidus temperature and decrease drastically with decreasing solid fraction. As the solid fraction is less than 0.97, the maximum strength only slightly decreases, whereas the post-peak ductility begins to increase. The experimental data were fitted to the modified creep law, which is used to describe the mechanical behavior of semi-solid materials, to determine the equivalent parameter f GBWL, i.e., the fraction of grain boundaries covered by liquid phase.

  8. Effect of Cold Rolling and Heat Treatment on the Mechanical Properties of GH4169 Alloy Sheet at Room Temperature

    Directory of Open Access Journals (Sweden)

    Shi-Hong Zhang

    2015-12-01

    Full Text Available The mechanical properties of GH4169 alloy sheet after cold rolling (at 0%, 10%, 30%, 50% and 70% and solid solution were investigated. The textures and Taylor factors were characterized using electron backscattering diffraction (EBSD. The fractions of δ phase were measured by X-ray diffraction. The contributions of δ phase, grain size, texture, and work hardening on the mechanical properties were also discussed. The results showed increases in the yield strength (YS (0.2% as well as the ultimate tensile strength (UTS of GH4169 superalloy sheet after cold rolling, when rolling reduction was increased. In contrast, following solid solution treatment, YS and UTS were increased then subsequently decreased. The changes of yield strength of GH4169 superalloy were attributed to the texture and work hardening, followed by the grain refinement and precipitation of δ phase. When the rolling reduction was below 30%, the influence of δ phase was greater than grain refinement and when the rolling reduction was larger than 50%, the controversial results occur. The precipitation of δ phase promoted the improvement of yield strength, the relationship between the fraction of δ phase and improved yield strength satisfactory fit to the following equation: σδ = 15.9Wδ + 59.7.

  9. Copper nanowall array grown on bulk Fe-Co-Ni alloy substrate at room temperature as lithium-ion battery current collector

    Energy Technology Data Exchange (ETDEWEB)

    Hu Yingying, E-mail: yyhu@phy.ccnu.edu.cn; Liu Jinping; Ding Ruimin; Wang Kai; Jiang Jian; Ji Xiaoxu; Li Yuanyuan; Huang Xintang, E-mail: xthuang@phy.ccnu.edu.c

    2010-09-30

    Large-scale copper nanowall array on the bulk Fe-Co-Ni alloy substrate has been prepared in aqueous solution at room temperature via an electroless deposition method. The thickness of the nanowalls is about 15 nm. A possible growth mechanism of the nanowalls was proposed. The effects of reaction temperature, reaction time and the amount of critical agent (Fe{sup 3+}) on the morphology and crystalline phase of the nanowalls were investigated. Furthermore, the electrochemical performance of Sn film supported on the as-prepared copper nanowalls current collector is enhanced in comparison with that on the commercial copper foil when used as anode for Li-ion batteries with the operating voltage window of 0.01-2.0 V (vs. Li). After 20 cycles, the discharge capacity of Sn-Cu nanowalls anode still remained 365.9 mAh g{sup -1}, that is, 40% retention of the reversible capacity, while the initial charge capacity of Sn film cast on commercial Cu foil was 590 mAh g{sup -1}, dropping rapidly to 260 mAh g{sup -1} only after 10 cycles.

  10. Application of Ni-Ti base shape memory and super-elastic alloys; Ni-Ti kikeijo kioku oyobi chodansei gokin no jitsuyoka jokyo

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Y. [Furukawa Electric Co. Ltd., Yokahama (Japan). Yakahama R and D Laboratories

    1998-12-20

    The thermal hysteresis Hs of Ni-Ti binary alloy was between 20K and 40K. Those values had no problem when the alloy was used as a one-way element, but were too large for the use of the alloy as a reversible two-way actuator. Hs decreased to 10 - 15K by copper addition, and shape memory effect due to R (Rhombohedral) phase transformation was found later which decreased Hs by a large margin. Hs became as small as about 2K with the repetition life of more than 1 million times, and Hs became 100K by utilizing micro-dispersion of niobium. Applications of Ni-Ti binary alloy, Ni-Ti-Cu alloy, R phase alloy, and Ni-Ti-Nb alloy were discussed. Superelasticity was put to practical use in such a surprising field as the core grid for the brassiere, and used also for medical corsets. The field of spectacles rim is a treasure-house for the application of superelasticity. Applications also to antennas for portable telephones and orthodontic wire are successful. 30 refs., 21 figs., 1 tab.

  11. Damping performance of Cu-Zn-Al shape memory alloys in engineering structures

    Institute of Scientific and Technical Information of China (English)

    司乃潮; 孙克庆; 孙少纯; 刘海霞

    2004-01-01

    The stress strain curves of two CuZnAl shape memory alloys which have the martensitic transformation temperatures of 50 ℃ and -10 ℃ respectively, were measured by using electronic material tester after treated by different heat-treatment conditions. The results show that the area enclosed by hysteresis loop of the CuZnAl shape memory alloy in martensitic state is much larger than that of the alloy in austenitic state with super-elasticity at room temperature. Therefore, the former has better vibration attenuation effect. After being oil-quenched, waterquenched, and step-quenched, the CuZnAl alloy takes on more stable shape memory effect, better super-plasticity and superelasticity (pseudoelasticity). A CuZnAl shape memory alloy damper was designed, produced and installed to a 2-layer frame structure. In addition, the vibration experiments were made by dynamic data collecting analysis meter. The velocity of vibration attenuation of frame structure with CuZnAl shape memory alloy damper is much faster than that without it. And with the help of CuZnAl shape memory alloy damper, the attenuation period reduces to 1/10 of the original.

  12. Super Special Codes using Super Matrices

    CERN Document Server

    Kandasamy, W B Vasantha; Ilanthenral, K

    2010-01-01

    The new classes of super special codes are constructed in this book using the specially constructed super special vector spaces. These codes mainly use the super matrices. These codes can be realized as a special type of concatenated codes. This book has four chapters. In chapter one basic properties of codes and super matrices are given. A new type of super special vector space is constructed in chapter two of this book. Three new classes of super special codes namely, super special row code, super special column code and super special codes are introduced in chapter three. Applications of these codes are given in the final chapter.

  13. Effect of strain on ferrite transformation from super-cooled austenite in Fe-0. 5%C alloy. Fe-0. 5%C gokin no karei osutenaito/feraito hentai ni oyobosu kako no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Matsuura, K.; Ito, Y.; Narita, T. (Hokkaido Univ., Sapporo (Japan). Faculty of Engineering)

    1993-08-01

    During the cooling of a steel, when austenite is applied by strain, the temperature of ferrite transformation would increase accompanied with decrease of its given temperature and increase of strain. In this study, the isothermal transformation behaviour from austenite to ferrite applied by strain in the super-cooled state was investigated, effect of strain on size of ferrite particles and increase of volume rate during transformation were explained by using the velocity theory. That is, concerning to the alloy of two-elemental system Fe-0.51%C cooled at 0.3[degree]C/s and applied by strain at 710[degree]C, at which austenite was super-cooled by 55[degree]C, its isothermal transformation behaviour was investigated. As a result, the following conclusions were obtained. Time required for the transformation remarkably decreased and the size of ferrite particles became ultra-fine subjected to strain. The nucleation rate of ferrite particles remarkably increased with increasing strain. 14 refs., 11 figs., 1 tab.

  14. Giant-Magnetoresistance(GMR) Siegel KEY FIRST Experimental Discovery Decade-Earlier PRE-``Fert"-``Gruenberg" in Nuc"el"ar ``Super"alloys: Science?;``SEANCE!!!; Ethics?; SHMETHICS!!!

    Science.gov (United States)

    Hoffman, R.; Siegel, E.

    2010-03-01

    (So MIScalled) ``Fert"-``Grunberg"[PRL(1988;1989)] GMR 2007 physics Nobel/Wolf/Japan-Prizes VS. decade-earlier(1973-1977) KEY FIRST Siegel at:Westin"kl"ouse/PSEG/IAEA/ABB[google:``Martin Ebner"(94-04) in financial media]/Vattenfall/Wallenbergs/nuc"el"ar-DoE Labs[at flickr.com, search on ``Giant- Magnotoresistance''; find: Intl.Conf.Mag.Alloys & Oxides(ICMAO), Haifa(Aug./1977); J.Mag.Mag.Mtls,(JMMM)7,312(1978)``unavailable: not yet scanned''/modified(last R(H) GMR Figs(7;8) deleted!!!) on JMMM/Reed-Elsevier website until 7/29/08 conveniently one- half-year after last (Nobel)award(12/2007); conveniently effectively deleted!!!; google: ``If Leaks Could Kill''; many APS/MRS Mtgs(1970s)experimental discovery in (so MIScalled) ``super''alloys [182/82, Hastelloy-X, 600, 690(!!!), Stainless-Steels: ANY/ALL!!!] generic endemic Wigner's[JAP,17,857(1946)]- disease/Ostwald-ripening/spinodal-decomposition/overageing- embrittlement/ thermo-mechanical-INstability!

  15. Super Factories

    Indian Academy of Sciences (India)

    D G Hitlin

    2006-11-01

    Heavy-flavor physics, in particular and physics results from the factories, currently provides strong constraints on models of physics beyond the Standard Model. A new generation of colliders, Super Factories, with 50 to 100 times the luminosity of existing colliders, can, in a dialog with LHC and ILC, provide unique clarification of new physics phenomena seen at those machines.

  16. Corrosion behavior of Haynes {sup registered} 230 {sup registered} nickel-based super-alloys for integrated coal gasification combined cycle syngas plants. A plant exposure study

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sungkyu; Lee, Jieun; Kang, Suk-Hwan; Lee, Seung-Jong; Yun, Yongseung [Institute for Advanced Engineering (IAE), Gyeonggi-do (Korea, Republic of). Plant Engineering Center; Kim, Min Jung [Sungkyunkwan Univ, Gyeonggi-do (Korea, Republic of). Advanced Materials Technology Research Center

    2015-07-01

    The corrosion behavior of commercially available Haynes {sup registered} 230 {sup registered} nickel-based alloy samples was investigated by exposure to coal-gasifying integrated coal gasification combined cycle pilot plant facilities affiliated with the Institute for Advanced Engineering (2.005 MPa and 160-300 C). The morphological and microstructural analyses of the exposed samples were conducted using scanning electron microscopy and energy-dispersive X-ray spectroscopy analysis on the external surface of the recovered corrosion test samples to obtain information of the corrosion scale. These analyses based on the pre- and post-exposure corrosion test samples combined with thermodynamic Ellingham-Pourbaix stability diagrams provided preliminary insight into the mechanism of the observed corrosion behavior prevailing in the piping materials that connected the particulate removal unit and water scrubber of the integrated coal gasification combined cycle pilot plant. Uniform material wastage was observed after 46 hours of operation, and a preliminary corrosion mechanism was suggested: the observed material waste and corrosion behavior of the Haynes {sup registered} 230 {sup registered} nickel-based alloy samples cut off from the coal syngas integrated coal gasification combined cycle plant were explained by the formation of discontinuous (complex) oxide phases and subsequent chlorine-induced active oxidation under the predominantly reducing environment encountered. This contribution continues the already published studies of the Fe-Ni-Cr-Co alloy Haynes {sup registered} 556 {sup registered}.

  17. Microstructure, Compression Property and Shape Memory Effect of Equiatomic TaRu High Temperature Shape Memory Alloy

    Institute of Scientific and Technical Information of China (English)

    Xin GAO; Yufeng ZHENG; Wei CAI; Su ZHANG; Liancheng ZHAO

    2004-01-01

    The microstructure, phase transformation, compression property and strain recovery characteristics of equiatomic TaRu super high temperature shape memory alloy have been studied by optical microscope, XRD, DTA, compression tests and TEM observations. When cooling the alloy specimen from high temperature to the room temperature,β(parent phase)→β′(interphase) →β"(martensite) two-step phase transformations occur. The microstructure at room temperature show regularly arranged band morphology, with the monoclinic crystal structure. The twinning relationship between the martensite bands is determined to be (101) of Type I. Reorientation and coalescence of the martensite bands inside the variant happened during compression at room temperature. The β′→β reversible transformation contributes mainly the shape memory effect, with the maximum completely recovery strain of 2%.

  18. The Super Patalan Numbers

    OpenAIRE

    Richardson, Thomas M.

    2014-01-01

    We introduce the super Patalan numbers, a generalization of the super Catalan numbers in the sense of Gessel, and prove a number of properties analagous to those of the super Catalan numbers. The super Patalan numbers generalize the super Catalan numbers similarly to how the Patalan numbers generalize the Catalan numbers.

  19. Effect of Y2O3 contents on oxidation resistance at 1150 °C and mechanical properties at room temperature of ODS Ni-20Cr-5Al alloy

    Science.gov (United States)

    Sun, Duanjun; Liang, Chunyuan; Shang, Jinlong; Yin, Jihui; Song, Yaru; Li, Weizhou; Liang, Tianquan; Zhang, Xiuhai

    2016-11-01

    Ni-20Cr-5Al alloy with Y2O3 addition (i.e., 0, 0.2, 0.4, 0.6, 0.8, 1.0, 3.0 and 5.0 wt%) are used to prepare oxide dispersion strengthening (ODS) Ni-based superalloy by powder metallurgy technology. The effect of Y2O3 particles on oxidation resistance at 1150 °C and mechanical properties at room temperature of Ni-20Cr-5Al alloy was investigated. The results show that the oxidation resistance of alloys is improved when the content of Y2O3 is under 0.6 wt%. The oxidation resistance of alloys decreased obviously when the content of Y2O3 is over 0.8 wt%. It is due to the small amount of Y2O3 is conducive to form stable oxide scale, and improves the adhesion of oxide scale and matrix. While Y2O3 content is too high, it is easier to result in segregation of Y2O3, which create defects in matrix and decrease exfoliation resistance of oxide scale. Continuous and compact Al2O3 oxide scale can effectively protect matrix. The relative density of alloys can be significantly increased with Y2O3 addition which is 0.2-0.6 wt%, it's speculated that distribution of Y2O3 in matrix is benefit to promote rearrangement and densification of grains during process of sintering. While Y2O3 content is more than 0.8 wt%, Y2O3 will hinder viscous flow and reduce relative density due to its strong thermal stability.

  20. Effect of Si on solidification and microstructure of K40S super alloy%Si对K40S合金凝固过程及显微组织的影响

    Institute of Scientific and Technical Information of China (English)

    杨富民; 姜文辉; 孙晓峰; 康煜平; 管恒荣

    2000-01-01

    研究了Si对K40S合金凝固过程及显微组织的影响.结果表明,随着Si含量的升高,K40S合金凝固时界面生长由枝晶生长转向明显的内生生长; Si元素主要在枝晶间或晶界偏析,但当Si含量升高到一定程度后,枝晶内的浓度逐渐升高而达到显著水平;Si元素对合金中Cr、Ni、W等元素的分布有影响,进而影响碳化物的形成.%The effect of Si on the solidification and microstructure of K40S superalloy was studied. It is shown that, with the increase of Si addition, interface grows by way of endogeneous growth instead of dendritic interface growth during the alloy solidification. Si can not only segregate in interdendritic or intergranular zones greatly, but also dissolve into the matrix noticeably. Si has great effect on the distributions of Cr、 Ni、 Win K40S superal loy, inflmencing the formation of carbide.

  1. 高合金钢过饱和固体渗碳的计算机模拟%Computer Simulation of Super-saturated Solid Carburization of High Alloy Steels

    Institute of Scientific and Technical Information of China (English)

    叶健松; 匡琦; 戚正风

    2001-01-01

    The process of super-saturated carburization of high alloy steels was discussed,and the corresponding mathematical model was presented.The carbon profile of carburized layer for 3Cr13 and Cr10 with solid carburization is simulated by computer.The simulation result is basically agreement with the experimental one.This testifies that the mathematical model and method are feasible.%本文讨论了高合金钢过饱和渗碳过程,提出了计算高合金钢固体渗碳的碳浓度分布的数学模型,以此模型对3Cr13和Cr10固体渗碳的碳浓度分布进行了计算机模拟。模拟结果与相应的实验结果基本吻合,表明了本文的数学模型及方法是可行的。

  2. Super plastic forming of the Cd-17.4 Zn alloy; Conformado superplastico de la aleacion Cd-17.4 Zn

    Energy Technology Data Exchange (ETDEWEB)

    Llanes Briceno, J. A.; Torres Villasenor, G. [Instituto de Investigaciones en Materiales, UNAM, Mexico, D.F. (Mexico)

    2000-06-01

    In the present work the necessary steps to carry on the superplastic forming of the Cd-17.4 Zn alloy are defined. The use of either atmospheric pressure or gas pressure as forming tools is analyzed. The optimum values of the variables involved (temperature, maximum strain and sensitivity index) are determined while a method for the characterization of future superplastic alloys is set forth. The experimental characterization of the superplastic forming is achieved with free bulging of circular membranes of 12, 16, 24, 32 and 40 mm in diameter and with three different membrane thicknesses (0.4, 0.6 and 0.8 mm). [Spanish] Se definen los pasos necesarios para el conformado superplastico de la aleacion Cd-17.4Zn. Se comparan la presion atmosferica y el gas a presion como herramientas de conformado. Se determinan los valores optimos de las variables involucradas (temperatura, deformacion maxima e indice de sensibilidad) y se plantea una metodologia para la caracterizacion de futuras aleaciones superplasticas. El conformado superplastico se caracteriza experimentalmente mediante el inflado libre de membranas circulares de 12, 16, 24, 32 y 40 mm de diametro y tres diferentes espesores (0.4, 0.6 y 0.8 mm).

  3. Hypoxia Room

    Data.gov (United States)

    Federal Laboratory Consortium — The Hypoxia Room is a 8x8x8 ft. clear vinyl plastic and aluminum frame construction enclosure located within USAREIM laboratory 028. The Hypoxia Room (manufactured...

  4. Hypoxia Room

    Data.gov (United States)

    Federal Laboratory Consortium — The Hypoxia Room is a 8x8x8 ft. clear vinyl plastic and aluminum frame construction enclosure located within USAREIM laboratory 028. The Hypoxia Room (manufactured...

  5. Room-Temperature and High-Temperature Tensile Mechanical Properties of TA15 Titanium Alloy and TiB Whisker-Reinforced TA15 Matrix Composites Fabricated by Vacuum Hot-Pressing Sintering

    Directory of Open Access Journals (Sweden)

    Yangju Feng

    2017-04-01

    Full Text Available In this paper, the microstructure, the room-temperature and high-temperature tensile mechanical properties of monolithic TA15 alloy and TiB whisker-reinforced TA15 titanium matrix composites (TiBw/TA15 fabricated by vacuum hot-pressing sintering were investigated. The microstructure results showed that there were no obvious differences in the microstructure between monolithic TA15 alloy and TiBw/TA15 composites, except whether or not the grain boundaries contained TiBw. After sintering, the matrix microstructure presented a typical Widmanstätten structure and the size of primary β grain was consistent with the size of spherical TA15 titanium metallic powders. This result demonstrated that TiBw was not the only factor limiting grain coarsening of the primary β grain. Moreover, the grain coarsening of α colonies was obvious, and high-angle grain boundaries (HAGBs were distributed within the primary β grain. In addition, TiBw played an important role in the microstructure evolution. In the composites, TiBw were randomly distributed in the matrix and surrounded by a large number of low-angle grain boundaries (LAGBs. Globularization of α phase occurred prior, near the TiBw region, because TiBw provided the nucleation site for the equiaxed α phase. The room-temperature and high-temperature tensile results showed that TiBw distributed at the primary β grain boundaries can strengthen the grain boundary, but reduce the connectivity of the matrix. Therefore, compared to the monolithic TA15 alloy fabricated by the same process, the tensile strength of the composites increased, and the tensile elongation decreased. Moreover, with the addition of TiBw, the fracture mechanism was changed to a mixture of brittle fracture and ductile failure (composites from ductile failure (monolithic TA15 alloy. The fracture surfaces of TiBw/TA15 composites were the grain boundaries of the primary β grain where the majority of TiB whiskers distributed, i.e., the

  6. Fatigue and fracture properties of a super-austenitic stainless steel at 295 K and 4 K

    Science.gov (United States)

    McRae, D. M.; Walsh, R. P.; Dalder, E. N. C.; Litherland, S.; Trosen, M.; Kuhlmann, D. J.

    2014-01-01

    The tie plate structure for the ITER Central Solenoid (CS) is required to have high strength and good fatigue and fracture behavior at both room temperature and 4 K. A super-austenitic stainless steel - UNS 20910, commonly referred to by its trade name, Nitronic 50 (N50) - has been chosen for consideration to fulfill this task, due to its good room temperature and cryogenic yield strengths and weldability. Although N50 is often considered for cryogenic applications, little published data exists at 4 K. Here, a full series of tests have been conducted at 295 K and 4 K, and static tensile properties of four forgings of commercially-available N50 are reported along with fatigue life, fatigue crack growth rate (FCGR), and fracture toughness data. This study makes a significant contribution to the cryogenic mechanical properties database of high strength, paramagnetic alloys with potential for superconducting magnet applications.

  7. Giant and reversible room-temperature elastocaloric effect in a single-crystalline Ni-Fe-Ga magnetic shape memory alloy

    OpenAIRE

    Yang Li; Dewei Zhao; Jian Liu

    2016-01-01

    Good mechanical properties and large adiabatic temperature change render Heusler-type Ni2FeGa-based magnetic shape memory alloys as a promising candidate material for solid-state mechanical cooling application at ambient conditions. Superelastic behavior and associated elastocaloric effect strongly reply on deformation conditions (e.g. applied strain rate and strain level) of stress-induced martensitic transformations. With the aim of developing high-performance elastic cooling materials, in ...

  8. Room Acoustics

    Science.gov (United States)

    Kuttruff, Heinrich; Mommertz, Eckard

    The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.

  9. Magnetic hysterysis evolution of Ni-Al alloy with Fe and Mn substitution by vacuum arc melting to produce the room temperature magnetocaloric effect material

    Energy Technology Data Exchange (ETDEWEB)

    Notonegoro, Hamdan Akbar [PPS Materials Science, FMIPA-Universitas Indonesia, Depok 16424 (Indonesia); Mechanical Engineering Dept., FT-Universitas Sultan Ageng Tirtayasa, Cilegon 42435 (Indonesia); Kurniawan, Budhy; Manaf, Azwar, E-mail: azwar@sci.ui.ac.id [PPS Materials Science, FMIPA-Universitas Indonesia, Depok 16424 (Indonesia); Setiawan, Jan [Center for Nuclear Fuel Tecnology-Badan Tenaga Atom Nasional, Tangerang Selatan 15310 (Indonesia)

    2016-06-17

    The development of magnetocaloric effect (MCE) material is done in order to reduce the damage of the ozone layer caused by the chlorofluorocarbons (CFCs) emitted into the air. The research dealing with synthesis of magnetocaloric materials based of Ni-Al Heusler Alloy structure and by varying substitution some atoms of Ni with Fe and Al with Mn on Ni-Al Heusler Alloy structure to become Ni{sub 44}Fe{sub 6}Mn{sub 32}Al{sub 18}. Vacuum Arc Melting (VAM) equipment is used to form the alloys on vacuum condition and by flowing argon gas atmosphere and then followed by annealing process for 72 hours. X-Ray Diffraction (XRD) reveals that crystallite structure of material is observed. We define that Ni{sub 44}Fe{sub 6} as X{sub 2}, Mn{sub 25} as Y, and Al{sub 18}Mn{sub 7} as Z. Based on the XRD result, we observed that the general formula X{sub 2}YZ is not changed. The PERMAGRAF measurement revealed that there exists of magnetic hysterysis. The hysterysis show that the magnetic structures of the system undego evolution from diamagnetic to soft ferromagnetic material which all of the compound have the same crystallite structure. This evolution indicated that the change in the composition has led to changes the magnetic composition. Mn is the major element that gives strong magnetic properties to the sample. When Mn partially replaced position of Al, the sample became dominant to be influenced to improve their magnetic properties. In addition, substitution a part of Ni by Fe in the composition reveals a pinning of the domain walls in the sample.

  10. Giant and reversible room-temperature elastocaloric effect in a single-crystalline Ni-Fe-Ga magnetic shape memory alloy

    Science.gov (United States)

    Li, Yang; Zhao, Dewei; Liu, Jian

    2016-05-01

    Good mechanical properties and large adiabatic temperature change render Heusler-type Ni2FeGa-based magnetic shape memory alloys as a promising candidate material for solid-state mechanical cooling application at ambient conditions. Superelastic behavior and associated elastocaloric effect strongly reply on deformation conditions (e.g. applied strain rate and strain level) of stress-induced martensitic transformations. With the aim of developing high-performance elastic cooling materials, in this work, we have carried out a systematic study on a Ni54Fe19Ga27 [420]-oriented single crystal by exploring the interaction between dynamic deformation parameters and thermal response. A giant and reversible adiabatic temperature change of ±7.5 K triggered by a low stress of 30 MPa was achieved. Such a high specific cooling performance thus offers the great advantage for the small scale solid-state mechanical cooling applications. Besides, a significant temporary residual strain effect has been observed at high strain rate, which is unfavorable for reversible elastocaloric effect but can be overcome by reducing stress hysteresis, and/or by elevating initial environmental temperature. The established criterion for the desirable reversible elastocaloric properties goes beyond the present system, and can be applicable for other shape memory alloys used for elastic cooling techniques.

  11. Giant and reversible room-temperature elastocaloric effect in a single-crystalline Ni-Fe-Ga magnetic shape memory alloy.

    Science.gov (United States)

    Li, Yang; Zhao, Dewei; Liu, Jian

    2016-05-03

    Good mechanical properties and large adiabatic temperature change render Heusler-type Ni2FeGa-based magnetic shape memory alloys as a promising candidate material for solid-state mechanical cooling application at ambient conditions. Superelastic behavior and associated elastocaloric effect strongly reply on deformation conditions (e.g. applied strain rate and strain level) of stress-induced martensitic transformations. With the aim of developing high-performance elastic cooling materials, in this work, we have carried out a systematic study on a Ni54Fe19Ga27 [420]-oriented single crystal by exploring the interaction between dynamic deformation parameters and thermal response. A giant and reversible adiabatic temperature change of ±7.5 K triggered by a low stress of 30 MPa was achieved. Such a high specific cooling performance thus offers the great advantage for the small scale solid-state mechanical cooling applications. Besides, a significant temporary residual strain effect has been observed at high strain rate, which is unfavorable for reversible elastocaloric effect but can be overcome by reducing stress hysteresis, and/or by elevating initial environmental temperature. The established criterion for the desirable reversible elastocaloric properties goes beyond the present system, and can be applicable for other shape memory alloys used for elastic cooling techniques.

  12. Giant and reversible room-temperature elastocaloric effect in a single-crystalline Ni-Fe-Ga magnetic shape memory alloy

    Science.gov (United States)

    Li, Yang; Zhao, Dewei; Liu, Jian

    2016-01-01

    Good mechanical properties and large adiabatic temperature change render Heusler-type Ni2FeGa-based magnetic shape memory alloys as a promising candidate material for solid-state mechanical cooling application at ambient conditions. Superelastic behavior and associated elastocaloric effect strongly reply on deformation conditions (e.g. applied strain rate and strain level) of stress-induced martensitic transformations. With the aim of developing high-performance elastic cooling materials, in this work, we have carried out a systematic study on a Ni54Fe19Ga27 [420]-oriented single crystal by exploring the interaction between dynamic deformation parameters and thermal response. A giant and reversible adiabatic temperature change of ±7.5 K triggered by a low stress of 30 MPa was achieved. Such a high specific cooling performance thus offers the great advantage for the small scale solid-state mechanical cooling applications. Besides, a significant temporary residual strain effect has been observed at high strain rate, which is unfavorable for reversible elastocaloric effect but can be overcome by reducing stress hysteresis, and/or by elevating initial environmental temperature. The established criterion for the desirable reversible elastocaloric properties goes beyond the present system, and can be applicable for other shape memory alloys used for elastic cooling techniques. PMID:27138030

  13. Effect of the strain-induced melt activation (SIMA) process on the tensile properties of a new developed super high strength aluminum alloy modified by Al-5Ti-1B grain refiner

    Energy Technology Data Exchange (ETDEWEB)

    Haghparast, Amin [School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Nourimotlagh, Masoud [Young Researchers Club, Dareshahr Branch, Islamic Azad university (Iran, Islamic Republic of); Alipour, Mohammad, E-mail: Alipourmo@ut.ac.ir [School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2012-09-15

    In this study, the effect of Al-5Ti-1B grain refiners and modified strain-induced melt activation process on an Al-Zn-Mg-Cu alloy was studied. The optimum level of Ti was found to be 0.1 wt.%. The specimens subjected to deformation ratio of 40% (at 300 Degree-Sign C) and various heat treatment times (10-40 min) and temperature (550-600 Degree-Sign C) regimes were characterized in this study. Reheating condition to obtain a fine globular microstructure was optimized. Microstructural examinations were conducted by optical and scanning electron microscopy coupled with an energy dispersive spectrometry. The optimum temperature and time in strain-induced melt activation process are 575 Degree-Sign C and 20 min, respectively. T6 heat treatment including quenching to room temperature and aging at 120 Degree-Sign C for 24 h was employed to reach to the maximum strength. Significant improvements in mechanical properties were obtained with the addition of grain refiner combined with T6 heat treatment. After the T6 heat treatment, the average tensile strength increased from 283 MPa to 587 and 332 MPa to 617 for samples refined with 2 wt.% Al-5Ti-1B before and after strain-induced melt activation process and extrusion process, respectively. Ultimate strength of Ti-refined specimens without SIMA process has a lower value than globular microstructure specimens after SIMA and extrusion process. - Highlights: Black-Right-Pointing-Pointer The effect of Al-5Ti-1B on the aluminum alloy produced by SIMA process was studied. Black-Right-Pointing-Pointer Al-5Ti-1B is an effective in reducing the grain and reagent fine microstructure. Black-Right-Pointing-Pointer Reheating condition to obtain a fine globular microstructure was optimized. Black-Right-Pointing-Pointer The optimum temperature and time in SIMA process are 575 Degree-Sign C and 20 min respectively. Black-Right-Pointing-Pointer UTS of globular structure specimens have a more value than Ti-refined specimens.

  14. Electroless Plating and Magnetic Properties of Tb-Fe-Co-B Alloy at Room Temperature%室温化学镀Tb-F e-C o-B合金的制备及磁性能研究

    Institute of Scientific and Technical Information of China (English)

    赵美峰; 刘影; 王建朝; 胡博; 陆军; 黄严

    2014-01-01

    The Tb-Fe-Co-B thin films were prepared through a non-aqueous electroless plating method at room temperature.The structures and magnetic properties of Sm-Fe-Ni-B alloys were characterized using SEM,EDS,XRD and VSM analyses.The results indicated that the coating was smooth.The density, deposition rate were improved with 3 g/L of Tb solution.An amorphous of Fe-Co-B was changed with a microcrystalline state of Tb-Fe-Co-B.The saturation magnetization rate and coercivity were enhanced in the meantime.In addition,the structure could be changed to produce a greater effect on the magnetic al-loy at 600 ℃.%本文采用非水室温化学镀的方法制备了Tb-Fe-Co-B合金薄膜,并利用SEM、EDS、XRD和VSM分析了稀土Tb对镀层形貌、成分、结构和磁性能的影响。结果表明:稀土Tb的添加量在3 g/L时,镀层更趋于平整致密,镀速明显提高,而镀层结构并未有明显转变;但对镀层的饱和磁化率和矫顽力均有所提高。此外,通过600℃热处理可改变镀层的结构从而对合金的磁性产生较大的影响。

  15. 在室温和常压下用机械合金化方法制备Fe5C2金属间化合物%Preparing Fe5C2 Intermetallic Compound by Mechanical Alloying Method at Room Temperature and Normal Pressure

    Institute of Scientific and Technical Information of China (English)

    何正明; 钟敏建; 沈伟星; 张正明

    2003-01-01

    Single phase Fe5C2 intermetallic compound was prepared by mechanical alloying method. The phase and crystal structure of sample were analyzed with X-ray differaction spectrum. The decomposing temperature of the Fe5C2 compound is 596.4℃ determined by the DSC curve. It is further shown that the size of nanometer crystal grain is an important condition for carrying out the solid state reaction at room temperature and normal pressure.

  16. Calculus super review

    CERN Document Server

    2012-01-01

    Get all you need to know with Super Reviews! Each Super Review is packed with in-depth, student-friendly topic reviews that fully explain everything about the subject. The Calculus I Super Review includes a review of functions, limits, basic derivatives, the definite integral, combinations, and permutations. Take the Super Review quizzes to see how much you've learned - and where you need more study. Makes an excellent study aid and textbook companion. Great for self-study!DETAILS- From cover to cover, each in-depth topic review is easy-to-follow and easy-to-grasp - Perfect when preparing for

  17. Algebra & trigonometry super review

    CERN Document Server

    2012-01-01

    Get all you need to know with Super Reviews! Each Super Review is packed with in-depth, student-friendly topic reviews that fully explain everything about the subject. The Algebra and Trigonometry Super Review includes sets and set operations, number systems and fundamental algebraic laws and operations, exponents and radicals, polynomials and rational expressions, equations, linear equations and systems of linear equations, inequalities, relations and functions, quadratic equations, equations of higher order, ratios, proportions, and variations. Take the Super Review quizzes to see how much y

  18. SHMUTZ & PROTON-DIAMANT H + Irradiated/Written-Hyper/Super-conductivity(HC/SC) Precognizance/Early Experiments Connections: Wet-Graphite Room-Tc & Actualized MgB2 High-Tc: Connection to Mechanical Bulk-Moduli/Hardness: Diamond Hydrocarbon-Filaments, Disorder, Nano-Powders:C,Bi,TiB2,TiC

    Science.gov (United States)

    Wunderman, Irwin; Siegel, Edward Carl-Ludwig; Lewis, Thomas; Young, Frederic; Smith, Adolph; Dresschhoff-Zeller, Gieselle

    2013-03-01

    SHMUTZ: ``wet-graphite''Scheike-....[Adv.Mtls.(7/16/12)]hyper/super-SCHMUTZ-conductor(S!!!) = ``wet''(?)-``graphite''(?) = ``graphene''(?) = water(?) = hydrogen(?) =ultra-heavy proton-bands(???) = ...(???) claimed room/high-Tc/high-Jc superconductOR ``p''-``wave''/ BAND(!!!) superconductIVITY and actualized/ instantiated MgB2 high-Tc superconductors and their BCS- superconductivity: Tc Siegel[ICMAO(77);JMMM 7,190(78)] connection to SiegelJ.Nonxline-Sol.40,453(80)] disorder/amorphous-superconductivity in nano-powders mechanical bulk/shear(?)-moduli/hardness: proton-irradiated diamond, powders TiB2, TiC,{Siegel[Semis. & Insuls.5:39,47, 62 (79)])-...``VS''/concommitance with Siegel[Phys.Stat.Sol.(a)11,45(72)]-Dempsey [Phil.Mag. 8,86,285(63)]-Overhauser-(Little!!!)-Seitz-Smith-Zeller-Dreschoff-Antonoff-Young-...proton-``irradiated''/ implanted/ thermalized-in-(optimal: BOTH heat-capacity/heat-sink & insulator/maximal dielectric-constant) diamond: ``VS'' ``hambergite-borate-mineral transformable to Overhauser optimal-high-Tc-LiBD2 in Overhauser-(NW-periodic-table)-Land: CO2/CH4-ETERNAL-sequestration by-product: WATER!!!: physics lessons from

  19. Super Tomboy Style

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Sparked by Super Girl, the androgynous look is in among Chinese youth On September 8, this year's top six contestants on the Super Girl television show, a singing contest for young women, stepped into the spotlight. Nearly none of them had long black hair or wore evening gowns, traditionally associated with beauty in China. Rather, they

  20. Improved Osteoblast and Chondrocyte Adhesion and Viability by Surface-Modified Ti6Al4V Alloy with Anodized TiO2 Nanotubes Using a Super-Oxidative Solution

    OpenAIRE

    Ernesto Beltrán-Partida; Aldo Moreno-Ulloa; Benjamín Valdez-Salas; Cristina Velasquillo; Monica Carrillo; Alan Escamilla; Ernesto Valdez; Francisco Villarreal

    2015-01-01

    Titanium (Ti) and its alloys are amongst the most commonly-used biomaterials in orthopedic and dental applications. The Ti-aluminum-vanadium alloy (Ti6Al4V) is widely used as a biomaterial for these applications by virtue of its favorable properties, such as high tensile strength, good biocompatibility and excellent corrosion resistance. TiO2 nanotube (NTs) layers formed by anodization on Ti6Al4V alloy have been shown to improve osteoblast adhesion and function when compared to non-anodized m...

  1. Ultrahigh temperature intermetallic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Brady, M.P.; Zhu, J.H.; Liu, C.T.; Tortorelli, P.F.; Wright, J.L.; Carmichael, C.A.; Walker, L.R. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

    1997-12-01

    A new family of Cr-Cr{sub 2}X based alloys with fabricability, mechanical properties, and oxidation resistance superior to previously developed Cr-Cr{sub 2}Nb and Cr-Cr{sub 2}Zr based alloys has been identified. The new alloys can be arc-melted/cast without cracking, and exhibit excellent room temperature and high-temperature tensile strengths. Preliminary evaluation of oxidation behavior at 1100 C in air indicates that the new Cr-Cr{sub 2}X based alloys form an adherent chromia-based scale. Under similar conditions, Cr-Cr{sub 2}Nb and Cr-Cr{sub 2}Zr based alloys suffer from extensive scale spallation.

  2. Surface exploration of a room-temperature ionic liquid-chitin composite film decorated with electrochemically deposited PdFeNi trimetallic alloy nanoparticles by pattern recognition: an elegant approach to developing a novel biotin biosensor.

    Science.gov (United States)

    Gholivand, Mohammad-Bagher; Jalalvand, Ali R; Goicoechea, Hector C; Paimard, Giti; Skov, Thomas

    2015-01-01

    In this study, a novel biosensing system for the determination of biotin (BTN) based on electrodeposition of palladium-iron-nickel (PdFeNi) trimetallic alloy nanoparticles (NPs) onto a glassy carbon electrode (GCE) modified with a room-temperature ionic liquid (RTIL)-chitin (Ch) composite film (PdFeNi/ChRTIL/GCE) is established. NPs have a wide range of applications in science and technology and their sizes are often measured using transmission electron microscopy (TEM) or X-ray diffraction. Here, we used a pattern recognition method (digital image processing, DIP) for measuring particle size distributions (PSDs) from scanning electron microscopic (SEM) images in the presence of an uneven background. Different depositions were performed by varying the number of cyclic potential scans (N) during electroreduction step. It was observed that the physicochemical properties of the deposits were correlated to the performance of the PdFeNi/ChRTIL/GCE with respect to BTN assay. The best results were obtained for eight electrodeposition cyclic scans, where small-sized particles (19.54 ± 6.27 nm) with high density (682 particles µm(-2)) were obtained. Under optimized conditions, a linear range from 2.0 to 44.0 × 10(-9) mol L(-1) and a limit of detection (LOD) of 0.6 × 10(-9) mol L(-1) were obtained. The PdFeNi/ChRTIL nanocomposite showed excellent compatibility, enhanced electron transfer kinetics, large electroactive surface area, and was highly sensitive, selective, and stable toward BTN determination. Finally, the PdFeNi/ChRTIL/GCE was satisfactorily applied to the determination of BTN in infant milk powder, liver, and egg yolk samples.

  3. Nonlinear Super Integrable Couplings of Super Classical-Boussinesq Hierarchy

    Directory of Open Access Journals (Sweden)

    Xiuzhi Xing

    2014-01-01

    Full Text Available Nonlinear integrable couplings of super classical-Boussinesq hierarchy based upon an enlarged matrix Lie super algebra were constructed. Then, its super Hamiltonian structures were established by using super trace identity. As its reduction, nonlinear integrable couplings of the classical integrable hierarchy were obtained.

  4. Super-resolution

    DEFF Research Database (Denmark)

    Nasrollahi, Kamal; Moeslund, Thomas B.

    2014-01-01

    Super-resolution, the process of obtaining one or more high-resolution images from one or more low-resolution observations, has been a very attractive research topic over the last two decades. It has found practical applications in many real world problems in different fields, from satellite...... the contributions of different authors to the basic concepts of each group. Furthermore, common issues in super-resolution algorithms, such as imaging models and registration algorithms, optimization of the cost functions employed, dealing with color information, improvement factors, assessment of super...

  5. Shape Memory Alloys

    Directory of Open Access Journals (Sweden)

    Deexith Reddy

    2016-07-01

    Full Text Available Shape memory alloys (SMAs are metals that "remember" their original shapes. SMAs are useful for such things as actuators which are materials that "change shape, stiffness, position, natural frequency, and other mechanical characteristics in response to temperature or electromagnetic fields" The potential uses for SMAs especially as actuators have broadened the spectrum of many scientific fields. The study of the history and development of SMAs can provide an insight into a material involved in cutting-edge technology. The diverse applications for these metals have made them increasingly important and visible to the world. This paper presents the working of shape memory alloys , the phenomenon of super-elasticity and applications of these alloys.

  6. Fabrication and Anti-Corrosion Property of In situ Self-Assembled Super-Hydrophobic Films on Aluminum Alloys%铝合金表面原位自组装超疏水膜层的制备及耐蚀性能

    Institute of Scientific and Technical Information of China (English)

    李松梅; 周思卓; 刘建华

    2009-01-01

    In situ rough structures on an aluminum alloy were formed by anodic oxidation method. After siloxane serf-assembly on the rough structures, super-hydrophobic and serf-cleaning films were fabricated. The static contact angle of the super-hydrophobic surface with a water drop was 157.5°±2.0° at its maximum and the contact angle hysteresis was less than 3°. The influence of anodic oxidation current density, the water content of the siloxane solution,and self-assembly time on film formation were studied by Fourier transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDS), atomic force microscopy (AFM) and contact angle measurements. Optimum parameters to fabricate the super-hydrophobic surface were obtained. FE SEM and AFM results indicated that microstructures were obtained by anodic oxidation and nanostructures were obtained by the disorder of serf-assembly film. Stable super-hydrophobic surfaces were produced by the cooperation of micro/nano-stmctures and the low surface free energy of the siloxane films. The electrochemical measurement (potentiodynamic polarization) indicated that the anti-corrosion property of the aluminum alloy was greatly improved by the in situ super-hydrophobic film.%采用阳极氧化法在铝合金表面原位构造粗糙结构,经表面自组装硅氧烷后得到超疏水自清洁表面,与水滴的接触角最大可达157.5°±2.0°,接触角滞后小于3°.通过傅立叶变换红外(FT-IR)光谱分析仪、场发射扫描电子显微镜(FE-SEM)、能谱仪(EDS)、原子力显微镜(AFM)和接触角测试对阳极氧化电流密度、硅氧烷溶液中水的含量和自组装时间等参数进行了分析,并得到制备超疏水自清洁表面的最优工艺参数.FE-SEM及AFM的测试结果表明,由自组装硅氧烷膜层的无序性形成的纳米结构和阳极氧化构造的微米级粗糙结构与硅氧烷膜层的低表面能的协同作用构成了稳

  7. NETL Super Computer

    Data.gov (United States)

    Federal Laboratory Consortium — The NETL Super Computer was designed for performing engineering calculations that apply to fossil energy research. It is one of the world’s larger supercomputers,...

  8. Super-resolution

    DEFF Research Database (Denmark)

    Nasrollahi, Kamal; Moeslund, Thomas B.

    2014-01-01

    and aerial imaging to medical image processing, to facial image analysis, text image analysis, sign and number plates reading, and biometrics recognition, to name a few. This has resulted in many research papers, each developing a new super-resolution algorithm for a specific purpose. The current......Super-resolution, the process of obtaining one or more high-resolution images from one or more low-resolution observations, has been a very attractive research topic over the last two decades. It has found practical applications in many real world problems in different fields, from satellite...... the contributions of different authors to the basic concepts of each group. Furthermore, common issues in super-resolution algorithms, such as imaging models and registration algorithms, optimization of the cost functions employed, dealing with color information, improvement factors, assessment of super...

  9. Super-Kamiokande

    Science.gov (United States)

    Magro, Lluís Martí

    2016-06-01

    The Super-Kamiokande experiment performs a large variety of studies, many of them in the neutrino sector. The archetypes are atmospheric neutrino (recently awarded with the Nobel prize for Mr. T. Kajita) and the solar neutrinos analyses. In these proceedings we report our latest results and present updates to indirect dark matter searches, our solar neutrino analysis and discuss the future upgrade of Super-Kamiokande by loading gadolinium into our ultra-pure water.

  10. The Super Girl Effect

    Institute of Scientific and Technical Information of China (English)

    WANG PEI

    2006-01-01

    @@ In recent years, Changsha,the capital city of Hunan Province, has become famous across China for its innovative TV channel, in particular the cultural phenomenon of the Super Girl talent show. And as far as culture goes, Hunan TV is merely a reflection of a renaissance happening in the city. Animation, music halls, drama festivals and a famous book market are just some of the city's cultural sectors that are benefiting from the fame and notoriety of the Super Girl show.

  11. The formation of super-rings

    CERN Document Server

    Tenorio-Tagle, G

    1980-01-01

    The author has calculated the collision of a small neutral cloud (surface density approximately 10/sup 19/ cm/sup -2/) with a constant density galactic disk. Through the collision, a large amount of energy is deposited in a small volume of the galaxy, resulting in a supersonic expansion of very hot (10/sup 6/-10/sup 7/K) gas into the Galaxy and out of the galactic disk. The expansion generates a large cavity (a super-ring) with physical characteristics (diameter, velocity of expansion, etc.) in agreement with the observations, and a large volume of hot low-density gas with properties similar to those of the observed coronal gas. (31 refs).

  12. Nonlinear Super Integrable Couplings of Super Dirac Hierarchy and Its Super Hamiltonian Structures

    Institute of Scientific and Technical Information of China (English)

    尤福财

    2012-01-01

    We construct nonlinear super integrable couplings of the super integrable Dirac hierarchy based on an enlarged matrix Lie superalgebra. Then its super Hamiltonian structure is furnished by super trace identity. As its reduction, we gain the nonlinear integrable couplings of the classical integrable Dirac hierarchy.

  13. Deforming super Riemann surfaces with gravitinos and super Schottky groups

    Energy Technology Data Exchange (ETDEWEB)

    Playle, Sam [Dipartimento di Fisica, Università di Torino and INFN, Sezione di Torino,Via P. Giuria 1, I-10125 Torino (Italy)

    2016-12-12

    The (super) Schottky uniformization of compact (super) Riemann surfaces is briefly reviewed. Deformations of super Riemann surface by gravitinos and Beltrami parameters are recast in terms of super Schottky group cohomology. It is checked that the super Schottky group formula for the period matrix of a non-split surface matches its expression in terms of a gravitino and Beltrami parameter on a split surface. The relationship between (super) Schottky groups and the construction of surfaces by gluing pairs of punctures is discussed in an appendix.

  14. Application and development of super-hard tools in machining of aluminum alloy piston%超硬刀具在铝合金活塞加工中的应用与发展

    Institute of Scientific and Technical Information of China (English)

    张宝国

    2011-01-01

    超硬刀具是实现高效高速加工的关键,介绍了超硬刀具的性能特点,回顾了超硬刀具在活塞加工中的应用推广情况,分析了超硬刀具在活塞加工中存在的各种问题及其原因,对超硬刀具在活塞加工的前景进行了展望,并对超硬刀具的应用推广提出了建议.%Super-hard cutting tool is the key for efficient high-speed machining. This paper describes the performance characteristics of superhard cutting tool, recalls application process of the superhard cutting tool in machining of the piston, analyzes the processing of superhard cutting tool in the piston and various problems, predicts superhard cutting tool processing in the prospect of the piston. The suggestions of super hard tools application promoting were put forward.

  15. Raspberry Pi super cluster

    CERN Document Server

    Dennis, Andrew K

    2013-01-01

    This book follows a step-by-step, tutorial-based approach which will teach you how to develop your own super cluster using Raspberry Pi computers quickly and efficiently.Raspberry Pi Super Cluster is an introductory guide for those interested in experimenting with parallel computing at home. Aimed at Raspberry Pi enthusiasts, this book is a primer for getting your first cluster up and running.Basic knowledge of C or Java would be helpful but no prior knowledge of parallel computing is necessary.

  16. SuperQuant

    DEFF Research Database (Denmark)

    Gorshkov, Vladimir; Verano-Braga, Thiago; Kjeldsen, Frank

    2015-01-01

    SuperQuant is a quantitative proteomics data processing approach that uses complementary fragment ions to identify multiple co-isolated peptides in tandem mass spectra allowing for their quantification. This approach can be applied to any shotgun proteomics data set acquired with high mass accura...... of the same proteins were close to the values typical for other precursor ion-based quantification methods. The raw data is deposited to ProteomeXchange (PXD001907). The developed node is available for testing at https://github.com/caetera/SuperQuantNode....

  17. "Super Roman Pots"

    CERN Multimedia

    CERN PhotoLab

    1975-01-01

    Remotely controlled re-entrant vacuum vessels, with very thin (0.17 mm) central windows, that will be installed in each downstream arm of intersection I-8. Detectors for a coming physics experiment, placed inside these "Super Roman Pots", can be moved very close to the circulating ISR beams.

  18. A Super Roman Pot

    CERN Multimedia

    1975-01-01

    Remotely controlled re-entrant vacuum vessels, with very thin (0.17 mm) central windows, that were installed in each downstream arm of the ISR intersection I-8. Detectors placed inside these Super Roman Pots could be moved very close to the circulating ISR beams. (See Annual Report 1974 p. 110.)

  19. Experimental demonstration of light capsule embracing super-sized darkness inside via super-anti-resolution

    CERN Document Server

    Wan, Chao; Han, Tiancheng; Leong, Eunice; Ding, Weiqiang; Yeo, Tat-Soon; Yu, Xia; Teng, Jinghua; Lei, Dang Yuan; Maier, Stefan A; Lukyanchuk, Boris; Zhang, Shuang; Qiu, Cheng-Wei

    2013-01-01

    Ijon Tichy lamp allows to focus the macroscopic perfect 3D darkness surrounded by all light in the shined room. The object staying in the darkness is similar to staying in an empty light capsule because light just bypasses it. Its functionality of bending light macroscopically is fascinating, similar in some sense to the transformation-based cloaking effect. Here, we theoretically and experimentally demonstrate a binary-optical system exhibiting super-anti-resolution (SAR), in which electromagnetic energy flux avoids and bends smoothly around a nearly perfect darkness region. SAR remains an unexplored topic hitherto, in contrast to the super-resolution for realizing high spatial resolution. This novel scheme replies on smearing out the PSF perfectly and thus poses less stringent limitations upon the object size and position since the created nearly-perfect dark (zero-field) area reach 10 orders of magnitude larger than square of wavelength in size. Conceptually, it represents a novel implementation of Ijon Ti...

  20. Thermally activated martensite formation in ferrous alloys

    DEFF Research Database (Denmark)

    Villa, Matteo; Somers, Marcel A. J.

    2017-01-01

    Magnetometry was applied to investigate the formation of α/α´martensite in 13ferrous alloys during immersion in boiling nitrogen and during re-heating to room temperature at controlled heating rates in the range 0.0083-0.83 K s-1. Data showsthat in 3 of the alloys, those that form {5 5 7}γ...

  1. High toughness-high strength iron alloy

    Science.gov (United States)

    Stephens, J. R.; Witzke, W. R. (Inventor)

    1980-01-01

    An iron alloy is provided which exhibits strength and toughness characteristics at cryogenic temperatures. The alloy consists essentially of about 10 to 16 percent by weight nickel, about 0.1 to 1.0 percent by weight aluminum, and 0 to about 3 percent by weight copper, with the balance being essentially iron. The iron alloy is produced by a process which includes cold rolling at room temperature and subsequent heat treatment.

  2. Hybrid bandgap engineering for super-hetero-epitaxial semiconductor materials, and products thereof

    Science.gov (United States)

    Park, Yeonjoon (Inventor); Choi, Sang H. (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2012-01-01

    "Super-hetero-epitaxial" combinations comprise epitaxial growth of one material on a different material with different crystal structure. Compatible crystal structures may be identified using a "Tri-Unity" system. New bandgap engineering diagrams are provided for each class of combination, based on determination of hybrid lattice constants for the constituent materials in accordance with lattice-matching equations. Using known bandgap figures for previously tested materials, new materials with lattice constants that match desired substrates and have the desired bandgap properties may be formulated by reference to the diagrams and lattice matching equations. In one embodiment, this analysis makes it possible to formulate new super-hetero-epitaxial semiconductor systems, such as systems based on group IV alloys on c-plane LaF.sub.3; group IV alloys on c-plane langasite; Group III-V alloys on c-plane langasite; and group II-VI alloys on c-plane sapphire.

  3. SuperSegger

    DEFF Research Database (Denmark)

    Stylianidou, Stella; Brennan, Connor; Nissen, Silas B

    2016-01-01

    -colonies with many cells, facilitating the analysis of cell-cycle dynamics in bacteria as well as cell-contact mediated phenomena. This package has a range of built-in capabilities for characterizing bacterial cells, including the identification of cell division events, mother, daughter, and neighboring cells......Many quantitative cell biology questions require fast yet reliable automated image segmentation to identify and link cells from frame-to-frame, and characterize the cell morphology and fluorescence. We present SuperSegger, an automated MATLAB-based image processing package well......-suited to quantitative analysis of high-throughput live-cell fluorescence microscopy of bacterial cells. SuperSegger incorporates machine-learning algorithms to optimize cellular boundaries and automated error resolution to reliably link cells from frame-to-frame. Unlike existing packages, it can reliably segment micro...

  4. Locker Room Talk.

    Science.gov (United States)

    Fickes, Michael

    1999-01-01

    Examines the trends in college and university sports and recreation center locker rooms as envisioned by a specialist. Features of the modern locker room and the different levels of locker room design are explained. Final comments discuss whether college and university facility managers are inclined to move to high-end locker rooms. (GR)

  5. NASA Super Pressure Balloon

    Science.gov (United States)

    Fairbrother, Debbie

    2017-01-01

    NASA is in the process of qualifying the mid-size Super Pressure Balloon (SPB) to provide constant density altitude flight for science investigations at polar and mid-latitudes. The status of the development of the 18.8 million cubic foot SPB capable of carrying one-tone of science to 110,000 feet, will be given. In addition, the operating considerations such as launch sites, flight safety considerations, and recovery will be discussed.

  6. Super-diversité

    NARCIS (Netherlands)

    Crul, M.R.J.; Schneider, J.; Lelie, F.

    2013-01-01

    Le concept de super-diversité, en cernant les conditions d'un scénario 'avenir optimiste, offre un nouvel éclairage au débat sur l'intégration. Nous sommes à la croisée des chemins. Cette étude comparative internationale montre qu'un avenir souriant se profile dans les villes qui donnent des chances

  7. Performing the Super Instrument

    DEFF Research Database (Denmark)

    Kallionpaa, Maria

    2016-01-01

    The genre of contemporary classical music has seen significant innovation and research related to new super, hyper, and hybrid instruments, which opens up a vast palette of expressive potential. An increasing number of composers, performers, instrument designers, engineers, and computer programmers...... provides the performer extensive virtuoso capabilities in terms of instrumental range, harmony, timbre, or spatial, textural, acoustic, technical, or technological qualities. The discussion will be illustrated by a composition case study involving augmented musical instrument electromagnetic resonator...

  8. Performing the Super Instrument

    DEFF Research Database (Denmark)

    Kallionpaa, Maria

    2016-01-01

    provides the performer extensive virtuoso capabilities in terms of instrumental range, harmony, timbre, or spatial, textural, acoustic, technical, or technological qualities. The discussion will be illustrated by a composition case study involving augmented musical instrument electromagnetic resonator......The genre of contemporary classical music has seen significant innovation and research related to new super, hyper, and hybrid instruments, which opens up a vast palette of expressive potential. An increasing number of composers, performers, instrument designers, engineers, and computer programmers...

  9. Pitting Corrosion of Super Duplex Stainless Steel - Effect of Isothermal Heat Treament

    OpenAIRE

    Lauritsen, Christian Rene

    2016-01-01

    Super duplex stainless steels (SDSS), with a chromium content of 25 wt$\\%$, contain a duplex structure which consists of ferrite and austenite, and have a pitting resistance equivalent number (PREN) equal or higher than 40. SDSS are affected by the alloying elements, microstructure and fabrication processes. The high degree of alloying elements in SDSS can lead to formation of intermetallic precipitates and secondary phases during heat treatments. Detrimental phases, such as sigma ($\\sigma$) ...

  10. Characterising Super-Earths

    Directory of Open Access Journals (Sweden)

    Valencia D.

    2011-02-01

    Full Text Available The era of Super-Earths has formally begun with the detection of transiting low-mass exoplanets CoRoT-7b and GJ 1214b. In the path of characterising super-Earths, the first step is to infer their composition. While the discovery data for CoRoT-7b, in combination with the high atmospheric mass loss rate inferred from the high insolation, suggested that it was a rocky planet, the new proposed mass values have widened the possibilities. The combined mass range 1−10 M⊕ allows for a volatile-rich (and requires it if the mass is less than 4 M⊕ , an Earth-like or a super-Mercury-like composition. In contrast, the radius of GJ 1214b is too large to admit a solid composition, thus it necessarily to have a substantial gas layer. Some evidence suggests that within this gas layer H/He is a small but non-negligible component. These two planets are the first of many transiting low-mass exoplanets expected to be detected and they exemplify the limitations faced when inferring composition, which come from the degenerate character of the problem and the large error bars in the data.

  11. Super Fuzzy Matrices and Super Fuzzy Models for Social Scientists

    CERN Document Server

    Kandasamy, W B Vasantha; Amal, K

    2008-01-01

    This book introduces the concept of fuzzy super matrices and operations on them. This book will be highly useful to social scientists who wish to work with multi-expert models. Super fuzzy models using Fuzzy Cognitive Maps, Fuzzy Relational Maps, Bidirectional Associative Memories and Fuzzy Associative Memories are defined here. The authors introduce 13 multi-expert models using the notion of fuzzy supermatrices. These models are described with illustrative examples. This book has three chapters. In the first chaper, the basic concepts about super matrices and fuzzy super matrices are recalled. Chapter two introduces the notion of fuzzy super matrices adn their properties. The final chapter introduces many super fuzzy multi expert models.

  12. Super-quantum curves from super-eigenvalue models

    CERN Document Server

    Ciosmak, Paweł; Manabe, Masahide; Sułkowski, Piotr

    2016-01-01

    In modern mathematical and theoretical physics various generalizations, in particular supersymmetric or quantum, of Riemann surfaces and complex algebraic curves play a prominent role. We show that such supersymmetric and quantum generalizations can be combined together, and construct supersymmetric quantum curves, or super-quantum curves for short. Our analysis is conducted in the formalism of super-eigenvalue models: we introduce $\\beta$-deformed version of those models, and derive differential equations for associated $\\alpha/\\beta$-deformed super-matrix integrals. We show that for a given model there exists an infinite number of such differential equations, which we identify as super-quantum curves, and which are in one-to-one correspondence with, and have the structure of, super-Virasoro singular vectors. We discuss potential applications of super-quantum curves and prospects of other generalizations.

  13. Super-quantum curves from super-eigenvalue models

    Science.gov (United States)

    Ciosmak, Paweł; Hadasz, Leszek; Manabe, Masahide; Sułkowski, Piotr

    2016-10-01

    In modern mathematical and theoretical physics various generalizations, in particular supersymmetric or quantum, of Riemann surfaces and complex algebraic curves play a prominent role. We show that such supersymmetric and quantum generalizations can be combined together, and construct supersymmetric quantum curves, or super-quantum curves for short. Our analysis is conducted in the formalism of super-eigenvalue models: we introduce β-deformed version of those models, and derive differential equations for associated α/ β-deformed super-matrix integrals. We show that for a given model there exists an infinite number of such differential equations, which we identify as super-quantum curves, and which are in one-to-one correspondence with, and have the structure of, super-Virasoro singular vectors. We discuss potential applications of super-quantum curves and prospects of other generalizations.

  14. Super-quantum curves from super-eigenvalue models

    Energy Technology Data Exchange (ETDEWEB)

    Ciosmak, Paweł [Faculty of Mathematics, Informatics and Mechanics, University of Warsaw,ul. Banacha 2, 02-097 Warsaw (Poland); Hadasz, Leszek [M. Smoluchowski Institute of Physics, Jagiellonian University,ul. Łojasiewicza 11, 30-348 Kraków (Poland); Manabe, Masahide [Faculty of Physics, University of Warsaw,ul. Pasteura 5, 02-093 Warsaw (Poland); Sułkowski, Piotr [Faculty of Physics, University of Warsaw,ul. Pasteura 5, 02-093 Warsaw (Poland); Walter Burke Institute for Theoretical Physics, California Institute of Technology,1200 E. California Blvd, Pasadena, CA 91125 (United States)

    2016-10-10

    In modern mathematical and theoretical physics various generalizations, in particular supersymmetric or quantum, of Riemann surfaces and complex algebraic curves play a prominent role. We show that such supersymmetric and quantum generalizations can be combined together, and construct supersymmetric quantum curves, or super-quantum curves for short. Our analysis is conducted in the formalism of super-eigenvalue models: we introduce β-deformed version of those models, and derive differential equations for associated α/β-deformed super-matrix integrals. We show that for a given model there exists an infinite number of such differential equations, which we identify as super-quantum curves, and which are in one-to-one correspondence with, and have the structure of, super-Virasoro singular vectors. We discuss potential applications of super-quantum curves and prospects of other generalizations.

  15. Microstructure and room temperature mechanical properties of NiAl-Cr(Mo)-(Hf,Dy) hypoeutectic alloy prepared by injection casting%喷铸工艺制备NiAl-Cr(Mo)-(Hf,Dy)亚共晶合金的组织及室温力学性能

    Institute of Scientific and Technical Information of China (English)

    盛立远; 杨芳; 奚廷斐; 郑玉峰; 郭建亭

    2013-01-01

    采用普通重力铸造和喷铸制备NiAl-Cr(Mo)-(Hf,Dy)亚共晶合金,研究两种工艺制备的合金的微观组织和室温力学性能.结果表明,Hf和Dy元素的添加导致Ni2AlHf Heusler相和Ni5Dy相在NiAl/Cr(Mo)相界面析出.喷铸工艺促使部分Ni2A1Hf Heusler和Ni5Dy相分别转变为Hf固溶体和Dy固溶体相,层片间距得到细化,共晶胞的面积比以及均匀分布的Ni2AlHf、Ni5Dy、Hf固溶体和Dy固溶体相增加.对比普通铸造合金,喷铸合金的室温性能得到明显提高.%The NiAl-Cr(Mo)-(Hf,Dy) hypoeutectic alloys were prepared by conventional casting and injection casting techniques respectively,and their microstructure and room temperature mechanical properties were investigated.The results reveal that with the addition of Hf and Dy,the Ni2AlHf Heusler phase and Ni5Dy phase form along the NiAl/Cr(Mo) phase boundaries in intercellular region.By the injection casting method,some Ni2AlHf Heusler phase and NisDy phase transform into Hf and Dy solid solutions,respectively.Moreover,the microstructure of the alloy gets good optimization,which can be characterized by the fine interlamellar spacing,high proportion of eutectic cell area and homogeneously distributed fine Ni2AlHf,Ni5Dy,Hf solid solution and Dy solid solutions.Compared with conventional-cast alloy,the room temperature mechanical properties of injection-cast alloy are improved obviously.

  16. Microstructurally Controlled Mechanical Properties of Al-Mg-Si Alloys for Warm Forming Applications

    NARCIS (Netherlands)

    Ghosh, M.

    2011-01-01

    Owing to their light weight and excellent corrosion resistance the use of aluminium alloys in automotive industries is increasing progressively. However, aluminium alloys remain mainly handicapped by poor room temperature formability compared to steel. Increasing temperature during forming, but stil

  17. Aeronautical requirements for Inconel 718 alloy

    Science.gov (United States)

    Elefterie, C. F.; Guragata, C.; Bran, D.; Ghiban, B.

    2017-06-01

    The project goal is to present the requirements imposed by aviation components made from super alloys based on Nickel. A significant portion of fasteners, locking lugs, blade retainers and inserts are manufactured from Alloy 718. The thesis describes environmental factors (corrosion), conditions of external aggression (salt air, intense heat, heavy industrial pollution, high condensation, high pressure), mechanical characteristics (tensile strength, yield strength and fatigue resistance) and loadings (tensions, compression loads) that must be satisfied simultaneously by Ni-based super alloy, compared to other classes of aviation alloys (as egg. Titanium alloys, Aluminum alloys). For this alloy the requirements are strength durability, damage tolerance, fail safety and so on. The corrosion can be an issue, but the fatigue under high-magnitude cyclic tensile loading it’s what limits the lifetime of the airframe. Also, the excellent malleability and weldability characteristics of the 718 system make the material physical properties tolerant of manufacturing processes. These characteristics additionally continue to provide new opportunities for advanced manufacturing methods.

  18. High temperature strain of metals and alloys. Physical fundamentals

    Energy Technology Data Exchange (ETDEWEB)

    Levitin, V. [National Technical Univ., Zaporozhye (Ukraine)

    2006-07-01

    The author shows how new in-situ X-ray investigations and transmission electron microscope studies lead to novel explanations of high-temperature deformation and creep in pure metals, solid solutions and super alloys. This approach is the first to find unequivocal and quantitative expressions for the macroscopic deformation rate by means of three groups of parameters: substructural characteristics, physical material constants and external conditions. Creep strength of the studied uptodate single crystal super alloys is greatly increased over conventional polycrystalline super alloys. The contents of this book include: macroscopic characteristics of strain at high temperatures; experimental equipment and technique of in situ X-ray investigations; experimental data and structural parameters in deformed metals; sub-boundaries as dislocation sources and obstacles; the physical mechanism of creep and the quantitative structural model; simulation of the parameters evolution; system of differential equations; high-temperature deformation of industrial super alloys; single crystals of super alloys; effect of composition, orientation and temperature on properties; and creep of some refractory metals.

  19. An Alternate to Cobalt-Base Hardfacing Alloys

    Science.gov (United States)

    Hickl, Anthony J.

    1980-03-01

    The price of cobalt has risen dramatically in the last few years, and supply has often been uncertain. The most popular hardfacing alloys contain substantial amounts of cobalt, and have thus been especially affected by these factors. The present study has developed a new hardfacing alloy, HAYNES Alloy No. 716, with lower cobalt content, to replace the most popular alloy, HAYNES STELLITE Alloy No. 6 which is cobalt based. The alloy design which led to the development of the new alloy is discussed, and properties are compared with Alloy No. 6. Hardness at room temperature and elevated temperatures, weldability, and corrosion and abrasion resistance of the new alloy compare favorably with Alloy No. 6.

  20. Super insulating aerogel glazing

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Jensen, Karsten Ingerslev; Kristiansen, Finn Harken

    2004-01-01

    Monolithic silica aerogel offers the possibility of combining super insulation and high solar energy transmittance, which has been the background for a previous and a current EU project on research and development of monolithic silica aerogel as transparent insulation in windows. Generally, windows...... form the weakest part of the thermal envelope with respect to heat loss coefficient, but on the other hand also play an important role for passive solar energy utilisation. For window orientations other than south, the net energy balance will be close to or below zero. However, the properties...

  1. Super insulating aerogel glazing

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Jensen, Karsten Ingerslev; Kristiansen, Finn Harken

    2005-01-01

    This paper describes the application results of a previous and current EU-project on super insulating glazing based on monolithic silica aerogel. Prototypes measuring approx. 55´55 cm2 have been made with 15 mm evacuated aerogel between two layers of low-iron glass. Anti-reflective treatment...... of the glass and a heat-treatment of the aerogel increases the visible quality and the solar energy transmittance. A low-conductive rim seal solution with the required vacuum barrier properties has been developed along with a reliable assembly and evacuation process. The prototypes have a centre heat loss...

  2. Super-heptazethrene

    KAUST Repository

    Zeng, Wangdong

    2016-05-30

    The challenging synthesis of a laterally extended heptazethrene molecule, the super-heptazethrene derivative SHZ-CF3, is reported. This molecule was prepared using a strategy involving a multiple selective intramolecular Friedel–Crafts alkylation followed by oxidative dehydrogenation. Compound SHZ-CF3 exhibits an open-shell singlet diradical ground state with a much larger diradical character compared with the heptazethrene derivatives. An intermediate dibenzo-terrylene SHZ-2H was also obtained during the synthesis. This study provides a new synthetic method to access large-size quinoidal polycyclic hydrocarbons with unique physical properties.

  3. 真空感应冶炼700℃超超临界锅炉合金时炉衬对碳脱氧反应的影响%Effect of Furnace Lining on Carbon Deoxidization Reaction in the Vacuum Induction Melting Process of a Kind of Super-Alloy for 700 ℃ Ultra-Supercritical Boilers

    Institute of Scientific and Technical Information of China (English)

    王岩; 曾莉; 李亮; 李阳

    2013-01-01

    Using thermodynamic calculation methods, by chemical analysis in the refining end and ingot, combined with the initial composition of the charge and use of, the effect of furnace lining on carbon deoxidization reaction in the vacuum induction melting process of one kind of super-alloy for 700 ℃ ultra-supercritical boilers were researched. The results show that: under our experimental conditions, the effect of using A12O3 crucible on carbon deoxidization reaction can be neglected, and ultra pure melting can be achieved; inferred by the calculation results, the original charge contains a small amount of Al, play a useful role to prevent C and Al2 O3 crucible reaction, and inhibition of oxygen aeration in the liquid metal.%采用热力学计算的方法,在精炼末期及铸锭取样化学分析,结合炉料的初始成分,对真空感应冶炼一种700℃超超临界锅炉镍基高温合金材料时,炉衬对碳脱氧反应的影响进行研究,结果表明:在本试验条件下,Al2O3坩埚对碳脱氧反应的影响可忽略不计,可以实现超纯冶炼;由计算结果推断,原始炉料中含有少量的铝,对防止碳与Al2O3坩埚反应,抑制金属液增氧起到有益作用.

  4. Locker Room Design Trends.

    Science.gov (United States)

    Wiens, Janet

    2001-01-01

    Examines how today's college and university athletic locker rooms have become sophisticated recruiting tools that rival many professional facilities. Locker room design and location and their level of furniture, finishes, and equipment are discussed as is the trend for more environmentally friendly locker rooms. (GR)

  5. Locker Room Design Trends.

    Science.gov (United States)

    Wiens, Janet

    2001-01-01

    Examines how today's college and university athletic locker rooms have become sophisticated recruiting tools that rival many professional facilities. Locker room design and location and their level of furniture, finishes, and equipment are discussed as is the trend for more environmentally friendly locker rooms. (GR)

  6. Quantitative super-resolution microscopy

    NARCIS (Netherlands)

    Harkes, Rolf

    2016-01-01

    Super-Resolution Microscopy is an optical fluorescence technique. In this thesis we focus on single molecule super-resolution, where the position of single molecules is determined. Typically these molecules can be localized with a 10 to 30nm precision. This technique is applied in four different s

  7. Alloy design for intrinsically ductile refractory high-entropy alloys

    Science.gov (United States)

    Sheikh, Saad; Shafeie, Samrand; Hu, Qiang; Ahlström, Johan; Persson, Christer; Veselý, Jaroslav; Zýka, Jiří; Klement, Uta; Guo, Sheng

    2016-10-01

    Refractory high-entropy alloys (RHEAs), comprising group IV (Ti, Zr, Hf), V (V, Nb, Ta), and VI (Cr, Mo, W) refractory elements, can be potentially new generation high-temperature materials. However, most existing RHEAs lack room-temperature ductility, similar to conventional refractory metals and alloys. Here, we propose an alloy design strategy to intrinsically ductilize RHEAs based on the electron theory and more specifically to decrease the number of valence electrons through controlled alloying. A new ductile RHEA, Hf0.5Nb0.5Ta0.5Ti1.5Zr, was developed as a proof of concept, with a fracture stress of close to 1 GPa and an elongation of near 20%. The findings here will shed light on the development of ductile RHEAs for ultrahigh-temperature applications in aerospace and power-generation industries.

  8. Initial cytotoxicity of novel titanium alloys.

    Science.gov (United States)

    Koike, M; Lockwood, P E; Wataha, J C; Okabe, T

    2007-11-01

    We assessed the biological response to several novel titanium alloys that have promising physical properties for biomedical applications. Four commercial titanium alloys [Super-TIX(R) 800, Super-TIX(R) 51AF, TIMETAL(R) 21SRx, and Ti-6Al-4V (ASTM grade 5)] and three experimental titanium alloys [Ti-13Cr-3Cu, Ti-1.5Si and Ti-1.5Si-5Cu] were tested. Specimens (n = 6; 5.0 x 5.0 x 3.0 mm(3)) were cast in a centrifugal casting machine using a MgO-based investment and polished to 600 grit, removing 250 mum from each surface. Commercially pure titanium (CP Ti: ASTM grade 2) and Teflon (polytetrafluoroethylene) were used as positive controls. The specimens were cleaned and disinfected, and then each cleaned specimen was placed in direct contact with Balb/c 3T3 fibroblasts for 72 h. The cytotoxicity [succinic dehydrogenase (SDH) activity] of the extracts was assessed using the MTT method. Cytotoxicity of the metals tested was not statistically different compared to the CP Ti and Teflon controls (p > 0.05). These novel titanium alloys pose cytotoxic risks no greater than many other commonly used alloys, including commercially pure titanium. The promising short-term biocompatibility of these Ti alloys is probably due to their excellent corrosion resistance under static conditions, even in biological environments.

  9. Effect of rolling temperature on microstructure and mechanical properties of 6063 Al alloy

    Energy Technology Data Exchange (ETDEWEB)

    Panigrahi, S.K. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee 247667 (India); Jayaganthan, R. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee 247667 (India)], E-mail: rjayafmt@iitr.ernet.in

    2008-09-25

    Aluminium alloy (6063) was severely rolled upto 92% thickness reduction at liquid nitrogen temperature and room temperature to study the effect of rolling temperature on its mechanical properties and microstructural characteristics by using tensile tests and SEM/electron back scattered diffraction (EBSD), transmission electron microscope (TEM), DSC, X-ray diffraction (XRD) as compared to room temperature rolled (RTR) material with the same deformation strain. An improved strength (257 MPa) of cryorolled 6063 Al alloy was observed as compared to the room temperature rolled alloy (232 MPa). The improved strength of cryorolled alloy is due to the accumulation of higher dislocation density than the room temperature rolled material. The tensile properties of cryorolled alloy and the alloy subjected to different annealing treatments were measured. The cryorolled alloy subjected to annealing treatment at 300 deg. C for 5 min exhibits an ultrafine-grained (UFG) microstructure with improved tensile strength and ductility.

  10. Super insulating aerogel glazing

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Jensen, Karsten Ingerslev; Kristiansen, Finn Harken

    2004-01-01

    Monolithic silica aerogel offers the possibility of combining super insulation and high solar energy transmittance, which has been the background for a previous and a current EU project on research and development of monolithic silica aerogel as transparent insulation in windows. Generally, windows...... form the weakest part of the thermal envelope with respect to heat loss coefficient, but on the other hand also play an important role for passive solar energy utilisation. For window orientations other than south, the net energy balance will be close to or below zero. However, the properties...... of aerogel glazing will allow for a positive net energy gain even for north facing vertical windows in a Danish climate during the heating season. This means that high quality daylight can be obtained even with additional energy gain. On behalf of the partners of the two EU projects, results related...

  11. Leading research on super metal. 2. Aluminium materials; Super metal no sendo kenkyu. 2. Ogata sozai (aluminium kei)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Aluminum materials were surveyed to improve aluminum materials drastically so as to play an important role as prospective materials in response to the changing social environment. Aluminum materials have become the following metal materials to iron materials due to their light weight, durability, and profitability. Based on their merits and demerits, it was made clear how the aluminum materials contribute to the future resource saving, energy saving, and global environmental protection. Review was made on the two research and development themes which contribute to the creation of super metals. Hence, the themes proposed are focused on the creation of new aluminum mill products with ultra fine grain structure using very low temperature processing and on the creation of super-formability aluminum alloy sheets by advanced texture control using processing which can enhance the shearing stress. Results of the research and development are expected to provide wide applicability for other metals, ceramics, and polymers. 433 refs., 315 figs., 56 tabs.

  12. Xinjiang Girl World Super Model

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Leading Chinese model Yue Mei won thetitle of World Super Model at the ’98 WorldSuper Model Competition held in FranceSeptember 6 - 17. Yue, a university studentfrom the Xinjiang Uygur AutonomousRegion, had won the top title at ’98 ChinaSuper Model Competition held in Beijingone month earier.After that, she underwentone month’s professional modeling trainingwith the New Silk Road ModelingManagement Company before setting off forthe world competition. In France, Yueimpressed the judges with her strikingfeatures, and display of oriental elegance and

  13. Benchmarking of Proton Transport in Super Monte Carlo Simulation Program

    Science.gov (United States)

    Wang, Yongfeng; Li, Gui; Song, Jing; Zheng, Huaqing; Sun, Guangyao; Hao, Lijuan; Wu, Yican

    2014-06-01

    reactions for proton. Some other hadronic models are also being developed now. The benchmarking of proton transport in SuperMC has been performed according to Accelerator Driven subcritical System (ADS) benchmark data and model released by IAEA from IAEA's Cooperation Research Plan (CRP). The incident proton energy is 1.0 GeV. The neutron flux and energy deposition were calculated. The results simulated using SupeMC and FLUKA are in agreement within the statistical uncertainty inherent in the Monte Carlo method. The proton transport in SuperMC has also been applied in China Lead-Alloy cooled Reactor (CLEAR), which is designed by FDS Team for the calculation of spallation reaction in the target.

  14. SuperB Progress Reports Accelerator

    CERN Document Server

    Biagini, Maria Enrica; Boscolo, M; Buonomo, B; Demma, T; Drago, A; Esposito, M; Guiducci, S; Mazzitelli, G; Pellegrino, L; Preger, M A; Raimondi, P; Ricci, R; Rotundo, U; Sanelli, C; Serio, M; Stella, A; Tomassini, S; Zobov, M; Bertsche, K; Brachman, A; Cai, Y; Chao, A; Chesnut, R; Donald, M.H; Field, C; Fisher, A; Kharakh, D; Krasnykh, A; Moffeit, K; Nosochkov, Y; Pivi, M; Seeman, J; Sullivan, M.K; Weathersby, S; Weidemann, A; Weisend, J; Wienands, U; Wittmer, W; Woods, M; Yocky, G; Bogomiagkov, A; Koop, I; Levichev, E; Nikitin, S; Okunev, I; Piminov, P; Sinyatkin, S; Shatilov, D; Vobly, P; Bosi, F; Liuzzo, S; Paoloni, E; Bonis, J; Chehab, R; Le Meur, G; Lepercq, P; Letellier-Cohen, F; Mercier, B; Poirier, F; Prevost, C; Rimbault, C; Touze, F; Variola, A; Bolzon, B; Brunetti, L; Jeremie, A; Baylac, M; Bourrion, O; De Conto, J M; Gomez, Y; Meot, F; Monseu, N; Tourres, D; Vescovi, C; Chanci, A; Napoly, O; Barber, D P; Bettoni, S; Quatraro, D

    2010-01-01

    This report details the present status of the Accelerator design for the SuperB Project. It is one of four separate progress reports that, taken collectively, describe progress made on the SuperB Project since the publication of the SuperB Conceptual Design Report in 2007 and the Proceedings of SuperB Workshop VI in Valencia in 2008.

  15. SuperB Progress Report: Detector

    Energy Technology Data Exchange (ETDEWEB)

    Grauges, E.; /Barcelona U., ECM; Donvito, G.; Spinoso, V.; /INFN, Bari /Bari U.; Manghisoni, M.; Re, V.; Traversi, G.; /INFN, Pavia /Bergamo U., Ingengneria Dept.; Eigen, G.; Fehlker, D.; Helleve, L.; /Bergen U.; Carbone, A.; Di Sipio, R.; Gabrielli, A.; Galli, D.; Giorgi, F.; Marconi, U.; Perazzini, S.; Sbarra, C.; Vagnoni, V.; Valentinetti, S.; Villa, M.; Zoccoli, A.; /INFN, Bologna /Bologna U. /Caltech /Carleton U. /Cincinnati U. /INFN, CNAF /INFN, Ferrara /Ferrara U. /UC, Irvine /Taras Shevchenko U. /Orsay, LAL /LBL, Berkeley /UC, Berkeley /Frascati /INFN, Legnaro /Orsay, IPN /Maryland U. /McGill U. /INFN, Milan /Milan U. /INFN, Naples /Naples U. /Novosibirsk, IYF /INFN, Padua /Padua U. /INFN, Pavia /Pavia U. /INFN, Perugia /Perugia U. /INFN, Perugia /Caltech /INFN, Pisa /Pisa U. /Pisa, Scuola Normale Superiore /PNL, Richland /Queen Mary, U. of London /Rutherford /INFN, Rome /Rome U. /INFN, Rome2 /Rome U.,Tor Vergata /INFN, Rome3 /Rome III U. /SLAC /Tel Aviv U. /INFN, Turin /Turin U. /INFN, Padua /Trento U. /INFN, Trieste /Trieste U. /TRIUMF /British Columbia U. /Montreal U. /Victoria U.

    2012-02-14

    This report describes the present status of the detector design for SuperB. It is one of four separate progress reports that, taken collectively, describe progress made on the SuperB Project since the publication of the SuperB Conceptual Design Report in 2007 and the Proceedings of SuperB Workshop VI in Valencia in 2008.

  16. Electrochemical properties of TiV-based hydrogen storage alloys

    Institute of Scientific and Technical Information of China (English)

    朱云峰; 李锐; 高明霞; 刘永锋; 潘洪革; 王启东

    2003-01-01

    The electrochemical properties of the super-stoichiometric TiV-based hydrogen storage electrode alloys(Ti0.8Zr0.2)(V0.533Mn0.107Cr0.16Ni0.2)x(x=2, 3, 4, 5, 6) were studied. It is found by XRD analysis that all the al-loys mainly consist of a C14 Laves phase with hexagonal structure and a V-based solid solution phase with BCCstructure. The lattice parameters and the unit cell volumes of the two phases decrease with increasing x. The cyclelife, the linear polarization, the anode polarization and the electrochemical impedance spectra of the alloy electrodeswere investigated systematically. The overall electrochemical properties of the alloy electrode are found improvedgreatly as the result of super-stoichiometry and get to the best when x= 5.

  17. Health Physics counting room

    CERN Multimedia

    1970-01-01

    The Health Physics counting room, where the quantity of induced radioactivity in materials is determined. This information is used to evaluate possible radiation hazards from the material investigated.

  18. Recent research and development in titanium alloys for biomedical applications and healthcare goods

    Directory of Open Access Journals (Sweden)

    Mitsuo Niinomi

    2003-01-01

    Full Text Available Nb, Ta and Zr are the favorable non-toxic alloying elements for titanium alloys for biomedical applications. Low rigidity titanium alloys composed of non-toxic elements are getting much attention. The advantage of low rigidity titanium alloy for the healing of bone fracture and the remodeling of bone is successfully proved by fracture model made in tibia of rabbit. Ni-free super elastic and shape memory titanium alloys for biomedical applications are energetically developed. Titanium alloys for not only implants, but also dental products like crowns, dentures, etc. are also getting much attention in dentistry. Development of investment materials suitable for titanium alloys with high melting point is desired in dental precision castings. Bioactive surface modifications of titanium alloys for biomedical applications are very important for achieving further developed biocompatibility. Low cost titanium alloys for healthcare goods, like general wheel chairs, etc. has been recently proposed.

  19. What's So Super about Superfoods?

    Science.gov (United States)

    ... with meals. The Skinny on Common Super Foods Salmon is a fatty fish that’s low in saturated ... soy nuts are high in polyunsaturated fat, fiber, vitamins and minerals but low in saturated fat. They ...

  20. Super Ministries,Better Administration

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Chinese lawmakers on March 15th endorsed a State Counci l proposal for institutional overhaul of the tentral government,which involves the establishment of"super ministries"concerning energy,transport,industry and environmental protection.

  1. Alloy 718 for Oilfield Applications

    Science.gov (United States)

    deBarbadillo, John J.; Mannan, Sarwan K.

    2012-02-01

    Alloy 718 (UNS N07718) was developed for use in aircraft gas turbine engines, but its unique combination of room-temperature strength and aqueous corrosion resistance made it a candidate for oilfield fasteners, valves, drill tools, and completion equipment. As well environments became more severe, stress corrosion and hydrogen embrittlement failures in production equipment drove the evolution of the composition and microstructure that distinguish today's oilfield-grade 718 from aerospace grades. This paper reviews the development of the grade and its applications and describes some of its unique characteristics, testing, and manufacturing methods as well as newer alloys designed for high-pressure high-temperature (HPHT) conditions.

  2. What are super-enhancers?

    Science.gov (United States)

    Pott, Sebastian; Lieb, Jason D

    2015-01-01

    The term 'super-enhancer' has been used to describe groups of putative enhancers in close genomic proximity with unusually high levels of Mediator binding, as measured by chromatin immunoprecipitation and sequencing (ChIP-seq). Here we review the identification and composition of super-enhancers, describe links between super-enhancers, gene regulation and disease, and discuss the functional significance of enhancer clustering. We also provide our perspective regarding the proposition that super-enhancers are a regulatory entity conceptually distinct from what was known before the introduction of the term. Our opinion is that there is not yet strong evidence that super-enhancers are a novel paradigm in gene regulation and that use of the term in this context is not currently justified. However, the term likely identifies strong enhancers that exhibit behaviors consistent with previous models and concepts of transcriptional regulation. In this respect, the super-enhancer definition is useful in identifying regulatory elements likely to control genes important for cell type specification.

  3. B218 Weld Filler Wire Characterization for Al-Li Alloy 2195

    Science.gov (United States)

    Bjorkman, Gerry; Russell, Carolyn

    2000-01-01

    NASA Marshall Space Flight Center, Lockheed Martin Space Systems- Michoud Operations, and McCook Metals have developed an aluminum-copper weld filler wire for fusion welding aluminum lithium alloy 2195. The aluminum-copper based weld filler wire has been identified as B218, a McCook Metals designation. B218 is the result of six years of weld filler wire development funded by NASA, Lockheed Martin, and McCook Metals. The filler wire chemistry was developed to produce enhanced 2195 weld and repair weld mechanical properties over the 4043 aluminum-silicon weld filler wire, which is currently used to weld 2195 on the Super Lightweight External Tank for the NASA Space Shuttle Program. An initial characterization was performed consisting of a repair weld evaluation using B218 and 4043 weld filler wires. The testing involved room temperature and cryogenic repair weld tensile testing along with fracture toughness testing. From the testing, B218 weld filler wire produce enhanced repair weld tensile strength, ductility, and fracture properties over 4043. B218 weld filler wire has proved to be a superior weld filler wire for welding aluminum lithium alloy 2195 over 4043.

  4. Computing elastic anisotropy to discover gum-metal-like structural alloys

    Science.gov (United States)

    Winter, I. S.; de Jong, M.; Asta, M.; Chrzan, D. C.

    2017-08-01

    The computer aided discovery of structural alloys is a burgeoning but still challenging area of research. A primary challenge in the field is to identify computable screening parameters that embody key structural alloy properties. Here, an elastic anisotropy parameter that captures a material's susceptibility to solute solution strengthening is identified. The parameter has many applications in the discovery and optimization of structural materials. As a first example, the parameter is used to identify alloys that might display the super elasticity, super strength, and high ductility of the class of TiNb alloys known as gum metals. In addition, it is noted that the parameter can be used to screen candidate alloys for shape memory response, and potentially aid in the optimization of the mechanical properties of high-entropy alloys.

  5. Holography based super resolution

    Science.gov (United States)

    Hussain, Anwar; Mudassar, Asloob A.

    2012-05-01

    This paper describes the simulation of a simple technique of superresolution based on holographic imaging in spectral domain. The input beam assembly containing 25 optical fibers with different orientations and positions is placed to illuminate the object in the 4f optical system. The position and orientation of each fiber is calculated with respect to the central fiber in the array. The positions and orientations of the fibers are related to the shift of object spectrum at aperture plane. During the imaging process each fiber is operated once in the whole procedure to illuminate the input object transparency which gives shift to the object spectrum in the spectral domain. This shift of the spectrum is equal to the integral multiple of the pass band aperture width. During the operation of single fiber (ON-state) all other fibers are in OFF-state at that time. The hologram recorded by each fiber at the CCD plane is stored in computer memory. At the end of illumination process total 25 holograms are recorded by the whole fiber array and by applying some post processing and specific algorithm single super resolved image is obtained. The superresolved image is five times better than the band-limited image. The work is demonstrated using computer simulation only.

  6. Cr{sub 2}Nb-based alloy development

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.T.; Tortorelli, P.F.; Horton, J.A. [Oak Ridge National Lab., TN (United States)] [and others

    1996-08-01

    Alloys of Cr-Cr{sub 2}Nb with exceptionally high strength at 1200{degrees}C have been developed. However, these compositions suffer from limited ductility and toughness at room temperature. Despite improvements from processing modifications, as-fabricated defects still limit room temperature mechanical behavior. In contrast, an alloy system with only a small mismatch of the coefficients of thermal expansion of the two phases, Cr-Cr{sub 2}Zr, showed good fabricability. However, these alloys are weaker than Cr-Cr{sub 2}Nb compositions at high temperatures and have poor oxidation resistance. Silicide coatings can provide high-temperature oxidation and sulfidation protection of these alloys. Improvements in room temperature mechanical properties of Laves-phase-strengthened alloys will rely on further development based on increasing the ductility of the matrix phase by impurity control and compositional modifications.

  7. Unlocking the Locker Room.

    Science.gov (United States)

    St. Clair, Dean

    1996-01-01

    Discusses locker-room design standards and common challenges when complying with the Americans with Disabilities Act. Accessibility and safety considerations for shower, toilet, and locker areas are addressed, as are entrance vestibules, drying and grooming areas, and private dressing rooms. (GR)

  8. Operating room manager game

    NARCIS (Netherlands)

    Hans, Erwin W.; Nieberg, Tim

    2007-01-01

    The operating room (OR) department of a hospital forms the heart of the organization, where the single largest cost is incurred. This document presents and reports on the “Operating Room Manager Game,” developed to give insight into managing a large hospital's OR department at various levels of cont

  9. Virtual Seminar Room

    DEFF Research Database (Denmark)

    Forchhammer, Søren Otto; Fosgerau, Anders; Hansen, Peter Søren Kirk

    1999-01-01

    The initial design considerations and research goals for an ATM network based virtual seminar room with 5 sites are presented.......The initial design considerations and research goals for an ATM network based virtual seminar room with 5 sites are presented....

  10. Our Urban Living Room

    DEFF Research Database (Denmark)

    Hjortshøj, Rasmus

    2016-01-01

    the boundaries between private and public space become fluid. Based on specific Cobe projects, Our Urban Living Room tells stories about the architectural development of Copenhagen, while exploring the progression of the Danish Capital - from an industrial city into an urban living room, known as one...

  11. 室温压缩AZ91镁合金显微组织及β-Mg17Al12相析出动力学%Microstructure and Precipitation Kinetics of β-Mg17Al12 Phase in AZ91 Alloy Compressed at Room Temperature

    Institute of Scientific and Technical Information of China (English)

    杨林; 黄婷; 林立; 刘正

    2012-01-01

    Microstructure and precipitation kinetics of β-Mg17Al12 phase after aging treatment in AZ91 alloy, which was fabricated with raw magnesium by direct smelting and compressed at room tempera-ture, were investigated. The results showed that lots of twinning would emerge as a result of com-pression at room temperature, serving as nucleation substrate for β-Mg17 Al12 phase precipitation. The β-Mg17Al12 phase precipitated preferentially at grain and twinning boundaries. Phase precipitation and growth were frequently observed at the intersection between twinning and original grain, or among various twinning; certain orientation relationships were also discovered among the β-Mg17 Al12 phase precipitated in twinning and the crMg matrix. The amount of β-Mg17Ali2 phase increased with gradu-ally aging time, whereas the required time for a definite amount of precipitates decreased with increas-ing temperature. The activation energy for β-Mg17 Al12 phase precipitation in AZ91 alloy was calculated to be 23. 8-37. 9kJ/mol using the JMAK equation, in accordance with experimental data.%对常温压缩粗镁直接熔炼AZ91镁合金时效处理后的组织及β-Mg17Al12相析出动力学进行研究.结果表明:AZ91镁合金在常温压缩过程中出现大量的孪晶,为β-Mg17Al12相的析出提供了大量的形核基底;时效时β-Mg17 Al12相优先在晶界、孪晶界析出,尤其易在孪晶与晶界、孪晶交接处析出并长大,且孪晶内析出的β-Mg17Al12相与α-Mg基体保持一定的位向关系;时效时间越长,析出的β-Mg17Al12相越多,温度越高,析出定量β-Mg17Al12相所需时间越短;结合实验数据,由JMAK方程计算得到AZ91镁合金析出β-Mg17Al12相激活能为23.8~37.9kJ/mol.

  12. The Virtual Dressing Room

    DEFF Research Database (Denmark)

    Holte, Michael Boelstoft; Gao, Yi; Petersson, Eva

    2015-01-01

    This paper presents the design and evaluation of a usability and user experience test of a virtual dressing room. First, we motivate and introduce our recent developed prototype of a virtual dressing room. Next, we present the research and test design grounded in related usability and user experi...... experience studies. We give a description of the experimental setup and the execution of the designed usability and user experience test. To this end, we report interesting results and discuss the results with respect to user-centered design and development of a virtual dressing room....

  13. Transformer room fire tests

    Science.gov (United States)

    Fustich, C. D.

    1980-03-01

    A series of transformer room fire tests are reported to demonstate the shock hazard present when automatic sprinklers operate over energized electrical equipment. Fire protection was provided by standard 0.5 inch pendent automatic sprinklers temperature rated at 135 F and installed to give approximately 150 sq ft per head coverage. A 480 v dry transformer was used in the room to provide a three phase, four wire distribution system. It is shown that the induced currents in the test room during the various tests are relatively small and pose no appreciable personnel shock hazard.

  14. Room Acoustical Fields

    CERN Document Server

    Mechel, Fridolin

    2013-01-01

    This book presents the theory of room acoustical fields and revises the Mirror Source Methods for practical computational use, emphasizing the wave character of acoustical fields.  The presented higher methods include the concepts of “Mirror Point Sources” and “Corner sources which allow for an excellent approximation of complex room geometries and even equipped rooms. In contrast to classical description, this book extends the theory of sound fields describing them by their complex sound pressure and the particle velocity. This approach enables accurate descriptions of interference and absorption phenomena.

  15. RILIS laser room

    CERN Multimedia

    2016-01-01

    Footage of the RILIS laser room at ISOLDE. The Resonance Ionization Laser Ion Source (RILIS) is a chemically selective ion source which relies on resonant excitation of atomic transitions using tunable laser radiation. This video shows you the laser table with the different lenses and optics as well as an overview of the RILIS laser setup. It also shows laser light with different colors and operation by the RILIS laser experts. The last part of the video shows you the laser path from the RILIS laser room into the ISOLDE GPS separator room where it enters the GPS separator magnet.

  16. RILIS laser room HD

    CERN Multimedia

    2016-01-01

    Footage of the RILIS laser room at ISOLDE. The Resonance Ionization Laser Ion Source (RILIS) is a chemically selective ion source which relies on resonant excitation of atomic transitions using tunable laser radiation. This video shows you the laser table with the different lenses and optics as well as an overview of the RILIS laser setup. It also shows laser light with different colors and operation by the RILIS laser experts. The last part of the video shows you the laser path from the RILIS laser room into the ISOLDE GPS separator room where it enters the GPS separator magnet.

  17. Electrically tuned super-capacitors

    CERN Document Server

    Chowdhury, Tazima S

    2015-01-01

    Fast charging and discharging of large amounts of electrical energy make super-capacitors ideal for short-term energy storage [1-5]. In its simplest form, the super-capacitor is an electrolytic capacitor made of an anode and a cathode immersed in an electrolyte. As for an ordinary capacitor, minimizing the charge separation distance and increasing the electrode area increase capacitance. In super-capacitors, charge separation is of nano-meter scale at each of the electrode interface (the Helmholtz double layer). Making the electrodes porous increases their effective surface area [6-8]. A separating layer between the anode and the cathode electrodes is used to minimize unintentional electrical discharge (Figure 1). Here we show how to increase the capacitance of super-capacitors by more than 45 percent when modifying the otherwise passive separator layer into an active diode-like structure. Active control of super-capacitors may increase their efficiency during charge and discharge cycles. Controlling ion flow...

  18. Quantization of super Teichmueller spaces

    Energy Technology Data Exchange (ETDEWEB)

    Aghaei, Nezhla

    2016-08-15

    The quantization of the Teichmueller spaces of Riemann surfaces has found important applications to conformal field theory and N=2 supersymmetric gauge theories. We construct a quantization of the Teichmueller spaces of super Riemann surfaces, using coordinates associated to the ideal triangulations of super Riemann surfaces. A new feature is the non-trivial dependence on the choice of a spin structure which can be encoded combinatorially in a certain refinement of the ideal triangulation. We construct a projective unitary representation of the groupoid of changes of refined ideal triangulations. Therefore, we demonstrate that the dependence of the resulting quantum theory on the choice of a triangulation is inessential. In the quantum Teichmueller theory, it was observed that the key object defining the Teichmueller theory has a close relation to the representation theory of the Borel half of U{sub q}(sl(2)). In our research we observed that the role of U{sub q}(sl(2)) is taken by quantum superalgebra U{sub q}(osp(1 vertical stroke 2)). A Borel half of U{sub q}(osp(1 vertical stroke 2)) is the super quantum plane. The canonical element of the Heisenberg double of the quantum super plane is evaluated in certain infinite dimensional representations on L{sup 2}(R) x C{sup 1} {sup vertical} {sup stroke} {sup 1} and compared to the flip operator from the Teichmueller theory of super Riemann surfaces.

  19. Current assisted superplastic forming of titanium alloy

    Directory of Open Access Journals (Sweden)

    Wang Guofeng

    2015-01-01

    Full Text Available Current assisted superplastic forming combines electric heating technology and superplastic forming technology, and can overcome some shortcomings of traditional superplastic forming effectively, such as slow heating rate, large energy loss, low production efficiency, etc. Since formability of titanium alloy at room temperature is poor, current assisted superplastic forming is suitable for titanium alloy. This paper mainly introduces the application of current assisted superplastic forming in the field of titanium alloy, including forming technology of double-hemisphere structure and bellows.

  20. Predicting Acoustics in Class Rooms

    DEFF Research Database (Denmark)

    Christensen, Claus Lynge; Rindel, Jens Holger

    2005-01-01

    Typical class rooms have fairly simple geometries, even so room acoustics in this type of room is difficult to predict using today's room acoustic computer modeling software. The reasons why acoustics of class rooms are harder to predict than acoustics of complicated concert halls might...

  1. Super-Virasoro anomaly, super-Weyl anomaly and the super-Liouville action for 2D supergravity

    CERN Document Server

    Fujiwara, T; Suzuki, T; Fujiwara, Takanori; Igarashi, Hiroshi; Suzuki, Tadao

    1996-01-01

    The relation between super-Virasoro anomaly and super-Weyl anomaly in N=1 NSR superstring coupled with 2D supergravity is investigated from canonical theoretical view point. The WZW action canceling the super-Virasoro anomaly is explicitly constructed. It is super-Weyl invariant but nonlocal functional of 2D supergravity. The nonlocality can be remedied by the super-Liouvlle action, which in turn recovers the super-Weyl anomaly. The final gravitational effective action turns out to be local but noncovariant super-Liouville action, describing the dynamical behavior of the super-Liouville fields. The BRST invariance of this approach is examined in the superconformal gauge and in the light-cone gauge.

  2. Carpenter in White Room

    Science.gov (United States)

    1962-01-01

    Inside Hangar S at the White Room Facility at Cape Canaveral, Florida, Mercury astronaut M. Scott Carpenter examines the honeycomb protective material on the main pressure bulkhead (heat shield) of his Mercury capsule nicknamed 'Aurora 7.'

  3. The Super-Kamiokande Experiment

    CERN Document Server

    Walter, C W

    2008-01-01

    Super-Kamiokande is a 50 kiloton water Cherenkov detector located at the Kamioka Observatory of the Institute for Cosmic Ray Research, University of Tokyo. It was designed to study neutrino oscillations and carry out searches for the decay of the nucleon. The Super-Kamiokande experiment began in 1996 and in the ensuing decade of running has produced extremely important results in the fields of atmospheric and solar neutrino oscillations, along with setting stringent limits on the decay of the nucleon and the existence of dark matter and astrophysical sources of neutrinos. Perhaps most crucially, Super-Kamiokande for the first time definitively showed that neutrinos have mass and undergo flavor oscillations. This chapter will summarize the published scientific output of the experiment with a particular emphasis on the atmospheric neutrino results.

  4. Microsphere Super-resolution Imaging

    CERN Document Server

    Wang, Zengbo

    2015-01-01

    Recently, it was discovered that microsphere can generate super-resolution focusing beyond diffraction limit. This has led to the development of an exciting super-resolution imaging technique -microsphere nanoscopy- that features a record resolution of 50 nm under white lights. Different samples have been directly imaged in high resolution and real time without labelling, including both non-biological (nano devices, structures and materials) and biological (subcellular details, viruses) samples. This chapter reviews the technique, which covers its background, fundamentals, experiments, mechanisms as well as the future outlook.

  5. Interactive Super Mario Bros Evolution

    DEFF Research Database (Denmark)

    Sørensen, Patrikk D.; Olsen, Jeppeh M.; Risi, Sebastian

    2016-01-01

    to encourage the evolution of desired behaviors. In this paper, we show how casual users can create controllers for \\emph{Super Mario Bros} through an interactive evolutionary computation (IEC) approach, without prior domain or programming knowledge. By iteratively selecting Super Mario behaviors from a set...... of candidates, users are able to guide evolution towards a variety of different behaviors, which would be difficult with an automated approach. Additionally, the user-evolved controllers perform similarly well as controllers evolved with a traditional fitness-based approach when comparing distance traveled...

  6. Quantisation of super Teichmueller theory

    Energy Technology Data Exchange (ETDEWEB)

    Aghaei, Nezhla [DESY Hamburg (Germany). Theory Group; Hamburg Univ. (Germany). Dept. of Mathematics; Pawelkiewicz, Michal; Techner, Joerg [DESY Hamburg (Germany). Theory Group

    2015-12-15

    We construct a quantisation of the Teichmueller spaces of super Riemann surfaces using coordinates associated to ideal triangulations of super Riemann surfaces. A new feature is the non-trivial dependence on the choice of a spin structure which can be encoded combinatorially in a certain refinement of the ideal triangulation. By constructing a projective unitary representation of the groupoid of changes of refined ideal triangulations we demonstrate that the dependence of the resulting quantum theory on the choice of a triangulation is inessential.

  7. Quantisation of super Teichmueller theory

    CERN Document Server

    Aghaei, Nezhla; Teschner, Joerg

    2015-01-01

    We construct a quantisation of the Teichmueller spaces of super Riemann surfaces using coordinates associated to ideal triangulations of super Riemann surfaces. A new feature is the non-trivial dependence on the choice of a spin structure which can be encoded combinatorially in a certain refinement of the ideal triangulation. By constructing a projective unitary representation of the groupoid of changes of refined ideal triangulations we demonstrate that the dependence of the resulting quantum theory on the choice of a triangulation is inessential.

  8. Aluminum alloy

    Science.gov (United States)

    Blackburn, Linda B. (Inventor); Starke, Edgar A., Jr. (Inventor)

    1989-01-01

    This invention relates to aluminum alloys, particularly to aluminum-copper-lithium alloys containing at least about 0.1 percent by weight of indium as an essential component, which are suitable for applications in aircraft and aerospace vehicles. At least about 0.1 percent by weight of indium is added as an essential component to an alloy which precipitates a T1 phase (Al2CuLi). This addition enhances the nucleation of the precipitate T1 phase, producing a microstructure which provides excellent strength as indicated by Rockwell hardness values and confirmed by standard tensile tests.

  9. The construction of orthodox super rpp semigroups

    Institute of Scientific and Technical Information of China (English)

    HE Yong; GUO Yuqi; Kar Ping Shum

    2004-01-01

    We define orthodox super rpp semigroups and study their semilattice decompositions. Standard representation theorem of orthodox super rpp semigroups whose subband of idempotents is in the varieties of bands described by an identity with at most three variables are obtained.

  10. Super-resolution Phase Tomography

    KAUST Repository

    Depeursinge, Christian

    2013-04-21

    Digital Holographic Microscopy (DHM) yields reconstructed complex wavefields. It allows synthesizing the aperture of a virtual microscope up to 2π, offering super-resolution phase images. Live images of micro-organisms and neurons with resolution less than 100 nm are presented.

  11. Super Rice Breeding in China

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@I. Demand for super high yield rice in China   Rice is one of the main staple food in China. The performance of rice sector in production and yield had been very impressive in the last four decades. However, rice production and yield has stagnated since 1990.

  12. Super Girls Still Center Stage

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The TV singing contest continues to draw a devoted audience, but will its impact on Chinese culture fall away like a shooting star? Ask any teenage girl in China to name the finalists of last year's Super Girl show and chances are she will instantly come up with the three big names.She'll probable

  13. Analysis of Forensic Super Timelines

    Science.gov (United States)

    2012-06-14

    BIB .1  vii List of Figures Figure Page...Hacker disconnects from User’s system  User clicks off Screen Saver  User closes Solitaire program  User logs off system BIB .1...analysis- tapestry_33836. BIB .2 Guðjónsson, K. (2010). Mastering the super timeline with log2timeline. SANS Gold Paper accepted June 29,2010

  14. Birth room images

    DEFF Research Database (Denmark)

    Bowden, Calida; Sheehan, Athena; Foureur, Maralyn Jean

    2016-01-01

    Objective: this study examined images of birth rooms in developed countries to analyse the messages and visual discourse being communicated through images. Design: a small qualitative study using Kress and van Leeuwen's (2006) social semiotic theoretical framework for image analysis, a form...... of discourse analysis. Setting/participants: forty images of birth rooms were collected in 2013 from Google Images, Flickr, Wikimedia Commons and midwifery colleagues. The images were from obstetric units, alongside and freestanding midwifery units located in developed countries (Australia, Canada, Europe, New...

  15. Microstructure and properties of modified and conventional 718 alloys

    Institute of Scientific and Technical Information of China (English)

    LIU Fang; SUN Wen-ru; DU Jin-hui; DONG Jian-xin; GUO Shou-ren; YANG Hong-cai; HU Zhuang-qi

    2006-01-01

    Continuing the effort to redesign IN718 alloy in order to provide microstructural and mechanical stability beyond 650 ℃, IN718 alloy was modified by increasing the Al, P and B contents, and the microstructure and mechanical properties of the modified alloy were compared with those of the conventional alloy by SEM and TEM. The precipitation of the grain boundaries of the two alloys is different. The Cr-rich phase, Laves phase and α-Cr phase are easily observed in the modified alloy. The γ″ and γ′ phases in the modified alloy are precipitated in a "compact form". The tensile strengths of the modified alloy at room temperature and 680 ℃ are obviously higher than those of the conventional one. The impact energy of the modified alloy is only about half of that of the conventional alloy. Ageing at 680 ℃ up to 1 000 h lowers the tensile properties and impact energy of both the conventional and modified 718 alloys, except increasing the ductility at 680 ℃. It is concluded that the modified alloy is more stable than the conventional one.

  16. Low-aluminum content iron-aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.; Goodwin, G.M.; Alexander, D.J. [and others

    1995-06-01

    The low-aluminum-content iron-aluminum program deals with the development of a Fe-Al alloy with aluminum content such as a produce the minimum environmental effect at room temperature. The FAPY is an Fe-16 at. % Al-based alloy developed at the Oak Ridge National Laboratory as the highest aluminum-containing alloy with essentially no environmental effect. The chemical composition for FAPY in weight percent is: aluminum = 8.46, chromium = 5.50, zirconium = 0.20, carbon = 0.03, molybdenum = 2.00, yttrium = 0.10 and iron = 83.71. The ignots of the alloy can be hot worked by extrusion, forging, and rolling processes. The hot-worked cast structure can be cold worked with intermediate anneals at 800{degrees}C. Typical room-temperature ductility of the fine-grained wrought structure is 20 to 25% for this alloy. In contrast to the wrought structure, the cast ductility at room temperature is approximately 1% with a transition temperature of approximately 100 to 150{degrees}C, above which ductility values exceed 20%. The alloy has been melted and processed into bar, sheet, and foil. The alloy has also been cast into slabs, step-blocks of varying thicknesses, and shapes. The purpose of this section is to describe the welding response of cast slabs of three different thicknesses of FAPY alloy. Tensile, creep, and Charpy-impact data of the welded plates are also presented.

  17. Electrical Resistance Alloys and Low-Expansion Alloys

    DEFF Research Database (Denmark)

    Kjer, Torben

    1996-01-01

    The article gives an overview of electrical resistance alloys and alloys with low thermal expansion. The electrical resistance alloys comprise resistance alloys, heating alloys and thermostat alloys. The low expansion alloys comprise alloys with very low expansion coefficients, alloys with very low...

  18. Non-alloyed Ni3Al based alloys – preparation and evaluation of mechanical properties

    Directory of Open Access Journals (Sweden)

    J. Malcharcziková

    2013-07-01

    Full Text Available The paper reports on the fabrication and mechanical properties of Ni3Al based alloy, which represents the most frequently used basic composition of nickel based intermetallic alloys for high temperature applications. The structure of the alloy was controlled through directional solidification. The samples had a multi-phase microstructure. The directionally solidified specimens were subjected to tensile tests with concurrent measurement of acoustic emission (AE. The specimens exhibited considerable room temperature ductility before fracture. During tensile testing an intensive AE was observed.

  19. Super-translations and super-rotations at the horizon

    CERN Document Server

    Donnay, Laura; Gonzalez, Hernan A; Pino, Miguel

    2015-01-01

    We show that the asymptotic symmetries close to non-extremal black hole horizons are generated by an extension of super-translations. This group is generated by a semi-direct sum of Virasoro and abelian currents. The charges associated to the asymptotic Killing symmetries satisfy the same algebra. When considering the special case of the stationary black hole, the zero mode charges correspond to the angular momentum and the entropy at the horizon.

  20. Softening phenomenon during compression test in nanograined aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ko, S.H.; Jang, J.M.; Lee, W. [Korea Inst. of Industrial Technology, ChonAn (Korea)

    2005-07-01

    Al-Mg and Al-Mg-Cu alloys are known well to reveal superplasticity in tension at high temperatures. In this study, deformation behaviors of those alloys nanograined were investigated under compression test at room temperature. During plastic deformation softening phenomena occurred obviously in nanograined Al-1.5wt%Mg and Al-0.7wt%Mg-1.0wt%Cu alloys while slight strain hardening appeared in nanograined pure Al. These results suggest that the softening strongly depends on composition of alloys. The softening takes place over strain rate range from 10{sup -4} up to 10{sup -1}. (orig.)

  1. Locker-Room Talk.

    Science.gov (United States)

    Lowe, Jason; Noyes, Brad

    1999-01-01

    Explains how proper athletic facility locker-room design can save time and money. Design factors that address who will be using the facility are discussed as are user requirements, such as preparation areas, total storage area per user, grooming area, and security areas. Final comments address maintenance and operations issues. (GR)

  2. Local control room

    CERN Multimedia

    CERN PhotoLab

    1972-01-01

    Local control room in the ejection building : all electronics pertaining to proton distribution and concomitants such as beam gymnastics and diagnostics at high energies will eventually be gathered here. Shown is the first of two rows of fast ejection electronic racks. It includes only what is necessary for operation.

  3. Room for caring

    DEFF Research Database (Denmark)

    Timmermann, Connie; Uhrenfeldt, Lisbeth; Birkelund, Regner

    2015-01-01

    ) Experiencing inner peace and an escape from negative thoughts, (ii) Experiencing a positive mood and hope and (iii) Experiencing good memories. Conclusion Our findings highlight aesthetic sensory impressions in the form of nature sights and natural light in the patient room as a powerful source of well...

  4. Making room for volunteers

    DEFF Research Database (Denmark)

    Nielsen, Rasmus Kleis

    2012-01-01

    that is singleminded in its instrumental pursuit of victory can thus be less effective than one that is more accommodating- a campaign that makes room for volunteers by accepting that, unlike staffers, they come to politics with a different perspective and conception of what is and ought to be going on....

  5. Technology Equipment Rooms.

    Science.gov (United States)

    Day, C. William

    2001-01-01

    Examines telecommunications equipment room design features that allow for growth and can accommodate numerous equipment replacements and upgrades with minimal service disruption and with minimal cost. Considerations involving the central hub, power and lighting needs, air conditioning, and fire protection are discussed. (GR)

  6. PS Control Room

    CERN Multimedia

    CERN PhotoLab

    1963-01-01

    The good old PS Control Room, all manual. For each parameter, a knob or a button to control it; for each, a light or meter or oscilloscope to monitor it; carefully written pages serve as the data bank; phones and intercom for communication. D.Dekkers is at the microphone, M.Valvini sits in front.

  7. Parametric Room Acoustic Workflows

    DEFF Research Database (Denmark)

    Parigi, Dario; Svidt, Kjeld; Molin, Erik

    2017-01-01

    The paper investigates and assesses different room acoustics software and the opportunities they offer to engage in parametric acoustics workflow and to influence architectural designs. The first step consists in the testing and benchmarking of different tools on the basis of accuracy, speed and ...

  8. Air Distribution in Rooms

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    The research on air distribution in rooms is often done as full-size investigations, scale-model investigations or by Computational Fluid Dynamics (CFD). New activities have taken place within all three areas and this paper draws comparisons between the different methods. The outcome of the l...

  9. Recent development of melting process and criteria for jet engine alloys. Saikin no jet engine yo gokin no criteria to yosei gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Degawa, T. (The University of British Columbia, (Canada))

    1991-09-20

    Super-alloys and Ti alloy were taken up as key materials for jet engines to describe their design criteria and the current state in destruction mechanical approaches. Also, as a solution to improving the material reliability, the clean alloy melting technique was touched upon as to its current state. Changes in high-temperature creep life and tenacity in the super-alloys (directions in the improvement efforts) are shown. In the recent movements in the clean melting technique, attentions are drawn on the ingot melting method using a cold hearth as an excellent method. Discussions were given on sizes of defects in the materials that affect dynamic destruction of rotating bodies such as turbines, and the relations are shown between the initial permissible defect size and the yield stress in various types of super-alloys. 31 refs., 11 figs., 3 tabs.

  10. 伦敦SuperDesign展

    Institute of Scientific and Technical Information of China (English)

    柚子

    2011-01-01

    近日,英国伦敦Super Design展在伦敦Wakefield大街的The Dairy展厅如期举行。本次展览展出了来自包括知名设计师和新兴设计师的特别定制的工作室作品:到如今已经是第五个年头的伦敦Super Deslgn展,力图强发展,展出形式别出心裁、独树一帜,从一个崭新.活跃的角度集展示当代艺术。

  11. Super-stable Poissonian structures

    Science.gov (United States)

    Eliazar, Iddo

    2012-10-01

    In this paper we characterize classes of Poisson processes whose statistical structures are super-stable. We consider a flow generated by a one-dimensional ordinary differential equation, and an ensemble of particles ‘surfing’ the flow. The particles start from random initial positions, and are propagated along the flow by stochastic ‘wave processes’ with general statistics and general cross correlations. Setting the initial positions to be Poisson processes, we characterize the classes of Poisson processes that render the particles’ positions—at all times, and invariantly with respect to the wave processes—statistically identical to their initial positions. These Poisson processes are termed ‘super-stable’ and facilitate the generalization of the notion of stationary distributions far beyond the realm of Markov dynamics.

  12. Super-Kamiokande atmospheric neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Moriyama, S. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Higashi Mozumi, Hida city, Gifu prefecture (Japan)

    2005-08-15

    Results on atmospheric neutrino analysis at Super-Kamiokande I is presented. The whole data set of atmospheric neutrino sample in Super-Kamiokande I is consistently explained with an assumption of pure {nu}{sub {mu}}-{nu}{sub {tau}} oscillations. The allowed range of parameters is 1.5x10{sup -3}<{delta}m{sup 2}<3.4x10{sup -3} eV{sup 2} and sin{sup 2}2{theta}>0.92 at 90% C.L. In the oscillation analysis, we improved the treatment of systematic errors so that they can be considered as independent. This makes possible to find which systematic errors have larger effect on the analysis results. Some sensitivity studies under several assumptions of improvements in systematic errors are presented.

  13. The Era of Super Capitalism

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The world has entered the "super capitalism" era when one third of its economic activities are controlled by less than 3 percent of global financial capital. This year,a global economic recession,triggered by the U.S. subprime mortgage crisis,seems unavoidable. To tackle international financial problems,Tao Dong,Chief Economist for Asia at Credit Suisse First Boston in Hong Kong,shared his insights with China Business Journal. Excerpts follow.

  14. BEWARE OF...SUPER GLUES!!

    CERN Multimedia

    2006-01-01

    What happened? A number of accidents have occurred with the use of 'Super Glues'. Some individuals have suffered injuries - severe irritation, or skin bonded together - through getting glue on their face and in their eyes. What are the hazards associated with glues? 'Super Glues' (i.e. cyanoacrylates): Are harmful if swallowed and are chemical irritants to the eyes, respiratory system and skin. Present the risk of polymerization (hardening) leading to skin damage. Be careful ! 'Super Glues' can bond to skin and eyes in seconds. Note: Other glues, resins and hardeners are also chemicals and as such can cause serious damage to the skin, eyes, respiratory or digestive tract. (For example: some components can be toxic, harmful, corrosive, sensitizing agents, etc.). How to prevent accidents in the future? Read the Material Safety Data Sheet (MSDS) for all of the glues you work with. Check the label on the container to find out which of the materials you work with are hazardous. Wear the right Per...

  15. Super-Eccentric Migrating Jupiters

    CERN Document Server

    Socrates, Aristotle; Dong, Subo; Tremaine, Scott

    2011-01-01

    An important class of formation theories for hot Jupiters involves the excitation of extreme orbital eccentricity (e=0.99 or even larger) followed by tidal dissipation at periastron passage that eventually circularizes the planetary orbit at a period less than 10 days. In a steady state, this mechanism requires the existence of a significant population of super-eccentric (e>0.9) migrating Jupiters with long orbital periods and periastron distances of only a few stellar radii. For these super-eccentric planets, the periastron is fixed due to conservation of orbital angular momentum and the energy dissipated per orbit is constant, implying that the rate of change in semi-major axis a is \\dot a \\propto a^0.5 and consequently the number distribution satisfies dN/dlog a\\propto a^0.5. If this formation process produces most hot Jupiters, Kepler should detect several super-eccentric migrating progenitors of hot Jupiters, allowing for a test of high-eccentricity migration scenarios.

  16. SUPER-ECCENTRIC MIGRATING JUPITERS

    Energy Technology Data Exchange (ETDEWEB)

    Socrates, Aristotle; Katz, Boaz; Dong Subo; Tremaine, Scott [Institute for Advanced Study, Princeton, NJ 08540 (United States)

    2012-05-10

    An important class of formation theories for hot Jupiters involves the excitation of extreme orbital eccentricity (e = 0.99 or even larger) followed by tidal dissipation at periastron passage that eventually circularizes the planetary orbit at a period less than 10 days. In a steady state, this mechanism requires the existence of a significant population of super-eccentric (e > 0.9) migrating Jupiters with long orbital periods and periastron distances of only a few stellar radii. For these super-eccentric planets, the periastron is fixed due to conservation of orbital angular momentum and the energy dissipated per orbit is constant, implying that the rate of change in semi-major axis a is a-dot {proportional_to}a{sup 1/2} and consequently the number distribution satisfies dN/d log a{proportional_to}a{sup 1/2}. If this formation process produces most hot Jupiters, Kepler should detect several super-eccentric migrating progenitors of hot Jupiters, allowing for a test of high-eccentricity migration scenarios.

  17. Strengthening and Toughening Design and Development of Mg-Rare Earth Alloys

    Directory of Open Access Journals (Sweden)

    ZENG Xiaoqin

    2017-01-01

    Full Text Available Magnesium alloys are the lightest structural alloys developed so far and have a great potential for lightweight applications, ranging from portable electronic devices to automobile parts. Comparing to Mg alloys containing no rare earth (RE, Mg-RE alloys attracted more and more attentions due to the higher strengths at both room temperature and elevated temperature. Strengthening methods for Mg alloys with high RE contents and low RE contents were introduced respectively in this paper. For Mg alloys with high RE contents, precipitates of β' lying in the triangular prismatic plates can impede dislocation slip effectively to enhance the strength of the alloy. For Mg alloys with low RE contents, the microstructure containing nano grains in the surface layer and twinning in the center can be obtained by surface mechanical attrition treatment. Thus the Mg alloy can be strengthened by both refinement strengthening of nano grains and twinning strengthening of RE segregated twin boundaries.

  18. Method to increase the toughness of aluminum-lithium alloys at cryogenic temperatures

    Science.gov (United States)

    Sankaran, Krishnan K. (Inventor); Sova, Brian J. (Inventor); Babel, Henry W. (Inventor)

    2006-01-01

    A method to increase the toughness of the aluminum-lithium alloy C458 and similar alloys at cryogenic temperatures above their room temperature toughness is provided. Increasing the cryogenic toughness of the aluminum-lithium alloy C458 allows the use of alloy C458 for cryogenic tanks, for example for launch vehicles in the aerospace industry. A two-step aging treatment for alloy C458 is provided. A specific set of times and temperatures to age the aluminum-lithium alloy C458 to T8 temper is disclosed that results in a higher toughness at cryogenic temperatures compared to room temperature. The disclosed two-step aging treatment for alloy 458 can be easily practiced in the manufacturing process, does not involve impractical heating rates or durations, and does not degrade other material properties.

  19. Microstructure and properties of 2618-Ti heat resistant aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    王建华; 易丹青; 王斌

    2003-01-01

    The mechanical properties of alloy 2618 with 0.5%(mass fraction) titanium and its microstructures in different states such as as-cast and quenching-aging were investigated. Titanium was added into the alloy with Al-5%Ti master alloy that was extruded severely. Al3Ti particles in the microstructure of cast alloy 2618-Ti are very small because those of master alloy are also small. When titanium is used as an alloying element, it does not affect the morphology of Al9FeNi phase in cast alloy, but decreases the grain size of as-cast alloy remarkably. The grain size of quenching-aging alloy 2618 decreases apparently due to the existence of a great deal of dispersive Al3Ti particles. Adding 0.5%Ti has no effect on the room temperature tensile properties of alloy 2618, but apparently increases the elevated temperature instantaneous tensile properties and that of the alloy which is exposed at 250 ℃ for 100 h.

  20. Room for improvement

    DEFF Research Database (Denmark)

    Storvang, Pia; Dalby, Mette Strømgaard

    2015-01-01

    This paper develops the notion of a project war room as an innovation practice in companies. We argue that the consistent use of a project war room, in which customer and user research serves as a background for design work, improve the quality of product innovation. We describe our experiences...... from a project with four Danish medium-sized manufacturing companies aiming to become more competitive in the European export market. In the project, one challenge was how to convey results from customer interviews and user studies from the researcher team (which in all instances included a company...... manager) to the development team in each company. We chose to collaboratively build a ‘war room’ in each of the companies to make sense of research materials and establish design principles for products that would better align with customer needs....

  1. Parametric Room Acoustic Workflows

    DEFF Research Database (Denmark)

    Parigi, Dario; Svidt, Kjeld; Molin, Erik

    2017-01-01

    The paper investigates and assesses different room acoustics software and the opportunities they offer to engage in parametric acoustics workflow and to influence architectural designs. The first step consists in the testing and benchmarking of different tools on the basis of accuracy, speed...... and interoperability with Grasshopper 3d. The focus will be placed to the benchmarking of three different acoustic analysis tools based on raytracing. To compare the accuracy and speed of the acoustic evaluation across different tools, a homogeneous set of acoustic parameters is chosen. The room acoustics parameters...... included in the set are reverberation time (EDT, RT30), clarity (C50), loudness (G), and definition (D50). Scenarios are discussed for determining at different design stages the most suitable acoustic tool. Those scenarios are characterized, by the use of less accurate but fast evaluation tools to be used...

  2. Virtual Fitting Rooms

    OpenAIRE

    Becerra Rodríguez, Carlos Alfredo

    2016-01-01

    In the last decade a considerable number of efforts have been devoted into developing Virtual Fitting Rooms (VFR) due to the great popularity of Virtual Reality (VR) and Augmented Reality (AR) in the fashion design industry. The existence of new technologies such as Kinect, powerful web cameras and smartphones permit us to examine new ways to try on clothes without doing it physically in a store center. This research is primarily dedicated to review some important aspects about...

  3. [Virtual room of gastroenterology].

    Science.gov (United States)

    Spinelli, Osvaldo Mateo; Fittipaldi, Mónica Elsa; Henderson, Eduardo; Krabshuis, Justus Hendrik

    2010-12-01

    The amount of published information and its continuing growth can no longer be managed by an individual searcher. One of today's great challenges for the academic researcher and clinician is to find a relevant scientific article using bibliographic search strategies. We aimed to design and build a Virtual Room of Gastroenterology (VRG) generating real-time automated search strategies and producing bibliographic and full text search results. These results update and complement with the latest evidence the Clinical Guideline Program of the World Gastroenterology Organisation. The HTML driven interface provides a series of pre-formulated MeSH based search strategies for each Aula. For each topic between 10 and 20 specific terms, qualifiers and subheadings are identified. The functionality of the VRG is based on the PubMed's characteristic that allows a search strategy to be captured as a web address. The VRG is available in Spanish and English, and the access is free. There are 28 rooms currently available. All together these rooms provide an advanced bibliographic access using more than 900 pre-programmed MeSH driven strategies. In a further very recent development some of the topics of VRG now allow cascade based searches. These searches look at resource sensitive options and possible ethnic difference per topic. The VRG allows significant reductions in time required to design and carry out complex bibliographic searches in the areas of gastroenterology, hepatology and endoscopy. The system updates automatically in real-time thus ensuring the currency of the results.

  4. Mechanical properties of orthodontic wires made of super engineering plastic.

    Science.gov (United States)

    Maekawa, Minami; Kanno, Zuisei; Wada, Takahiro; Hongo, Toshio; Doi, Hisashi; Hanawa, Takao; Ono, Takashi; Uo, Motohiro

    2015-01-01

    Most orthodontic equipment is fabricated from alloys such as stainless steel, Co-Cr and Ni-Ti because of their excellent elastic properties. In recent years, increasing esthetic demands, metal allergy and interference of metals with magnetic resonance imaging have driven the development of non-metallic orthodontic materials. In this study, we assessed the feasibility of using three super engineering plastics (PEEK, PES and PVDF) as orthodontic wires. PES and PVDF demonstrated excellent esthetics, although PEEK showed the highest bending strength and creep resistance. PEEK and PVDF showed quite low water absorption. Because of recent developments in coloration of PEEK, we conclude that PEEK has many advantageous properties that make it a suitable candidate for use as an esthetic metal-free orthodontic wire.

  5. Ferromagnetism of Fe86Mn14-yCuy alloys

    Science.gov (United States)

    França, F.; Paduani, C.; Krause, J. C.; Ardisson, J. D.; Yoshida, M. I.; Schaf, J.

    2007-01-01

    The magnetic properties of disordered Fe86Mn14-yCuy alloys were investigated with several experimental techniques. The results of X-ray diffraction showed that these alloys are single phase with the A2 (BCC) structure. These are ferromagnetic alloys at room temperature, and the Curie temperature decreases with the increase of the Cu content. An abrupt loss of magnetization was observed below TC at a temperature which increases with the reduction of the Mn content in the alloys. The addition of manganese enhances the solubility of copper in iron matrix and retains the BCC structure in iron-rich alloys. The behavior of the magnetization with temperature and its composition dependence indicate that an antiferromagnetic coupling is expected between the Fe and Mn atoms. The magnetic moments of both Fe and Mn atoms are expected to vary strongly with composition in these alloys.

  6. Cast iron-base alloy for cylinder/regenerator housing

    Science.gov (United States)

    Witter, Stewart L.; Simmons, Harold E.; Woulds, Michael J.

    1985-01-01

    NASACC-1 is a castable iron-base alloy designed to replace the costly and strategic cobalt-base X-40 alloy used in the automotive Stirling engine cylinder/generator housing. Over 40 alloy compositions were evaluated using investment cast test bars for stress-rupture testing. Also, hydrogen compatibility and oxygen corrosion resistance tests were used to determine the optimal alloy. NASACC-1 alloy was characterized using elevated and room temperature tensile, creep-rupture, low cycle fatigue, heat capacity, specific heat, and thermal expansion testing. Furthermore, phase analysis was performed on samples with several heat treated conditions. The properties are very encouraging. NASACC-1 alloy shows stress-rupture and low cycle fatigue properties equivalent to X-40. The oxidation resistance surpassed the program goal while maintaining acceptable resistance to hydrogen exposure. The welding, brazing, and casting characteristics are excellent. Finally, the cost of NASACC-1 is significantly lower than that of X-40.

  7. Watching the Birth of Super Star Clusters

    CERN Document Server

    Turner, J L; Turner, Jean L.; Beck, Sara C.

    2003-01-01

    Subarcsecond infrared and radio observations yield important information about the formation of super star clusters from their surrounding gas. We discuss the general properties of ionized and molecular gas near young, forming SSCs, as illustrated by the prototypical young forming super star cluster nebula in the dwarf galaxy, NGC 5253. This super star cluster appears to have a gravitationally bound nebula. The lack of molecular gas suggests a very high star formation efficiency, consistent with the formation of a large, bound star cluster.

  8. High-strength iron aluminide alloys

    Energy Technology Data Exchange (ETDEWEB)

    McKamey, C.G.; Marrero-Santos, Y.; Maziasz, P.J.

    1995-06-01

    Past studies have shown that binary Fe{sub 3}Al possesses low creep-rupture strength compared to many other alloys, with creep-rupture lives of less than 5 h being reported for tests conducted at 593{degrees}C and 207 MPa. The combination of poor creep resistance and low room-temperature tensile density due to a susceptibility to environmentally-induced dynamic hydrogen embrittlement has limited use of these alloys for structural applications, despite their excellent corrosion properties. Improvements in room temperature tensile ductility have been realized mainly through alloying effects, changes in thermomechanical processing to control microstructure, and by control of the specimen`s surface condition. Ductilities of 10-20% and tensile yield strengths as high as 500 MPa have been reported. In terms of creep-rupture strength, small additions of Mo, Nb, and Zr have produced significant improvements, but at the expense of weldability and room-temperature tensile ductility. Recently an alloy containing these additions, designated FA-180, was shown to exhibit a creep-rupture life of over 2000 h after a heat treatment of 1 h at 1150{degrees}C. This study presents the results of creep-rupture tests at various test temperatures and stresses and discusses the results as part of our effort to understand the strengthening mechanisms involved with heat treatment at 1150{degrees}C.

  9. Two-Component Super AKNS Equations and Their Finite-Dimensional Integrable Super Hamiltonian System

    OpenAIRE

    Jing Yu; Jingwei Han

    2014-01-01

    Starting from a matrix Lie superalgebra, two-component super AKNS system is constructed. By making use of monononlinearization technique of Lax pairs, we find that the obtained two-component super AKNS system is a finite-dimensional integrable super Hamiltonian system. And its Lax representation and $r$ -matrix are also given in this paper.

  10. Two-Component Super AKNS Equations and Their Finite-Dimensional Integrable Super Hamiltonian System

    Directory of Open Access Journals (Sweden)

    Jing Yu

    2014-01-01

    Full Text Available Starting from a matrix Lie superalgebra, two-component super AKNS system is constructed. By making use of monononlinearization technique of Lax pairs, we find that the obtained two-component super AKNS system is a finite-dimensional integrable super Hamiltonian system. And its Lax representation and r-matrix are also given in this paper.

  11. Bond strength of binary titanium alloys to porcelain.

    Science.gov (United States)

    Yoda, M; Konno, T; Takada, Y; Iijima, K; Griggs, J; Okuno, O; Kimura, K; Okabe, T

    2001-06-01

    The purpose of this study was to investigate the bond strength between porcelain and experimental cast titanium alloys. Eleven binary titanium alloys were examined: Ti-Cr (15, 20, 25 wt%), Ti-Pd (15, 20, 25 wt%), Ti-Ag (10, 15, 20 wt%), and Ti-Cu (5, 10 wt%). As controls, the bond strengths for commercially pure titanium (KS-50, Kobelco, Japan) and a high noble gold alloy (KIK, Ishifuku, Japan) were also examined. Castings were made using a centrifugal casting unit (Ticast Super R, Selec Co., Japan). Commercial porcelain for titanium (TITAN, Noritake, Japan) was applied to cast specimens. The bond strengths were evaluated using a three-point bend test according to ISO 9693. Since the elastic modulus value is needed to evaluate the bond strength, the modulus was measured for each alloy using a three-point bend test. Results were analyzed using one-way ANOVA/S-N-K test (alpha = 0.05). Although the elastic moduli of the Ti-Pd alloys were significantly lower than those of other alloys (p = 0.0001), there was a significant difference in bond strength only between the Ti-25Pd and Ti-15Ag alloys (p = 0.009). The strengths determined for all the experimental alloys ranged from 29.4 to 37.2MPa, which are above the minimum value required by the ISO specification (25 MPa).

  12. Development of new metallic alloys for biomedical applications.

    Science.gov (United States)

    Niinomi, Mitsuo; Nakai, Masaaki; Hieda, Junko

    2012-11-01

    New low modulus β-type titanium alloys for biomedical applications are still currently being developed. Strong and enduring β-type titanium alloy with a low Young's modulus are being investigated. A low modulus has been proved to be effective in inhibiting bone atrophy, leading to good bone remodeling in a bone fracture model in the rabbit tibia. Very recently β-type titanium alloys with a self-tunable modulus have been proposed for the construction of removable implants. Nickel-free low modulus β-type titanium alloys showing shape memory and super elastic behavior are also currently being developed. Nickel-free stainless steel and cobalt-chromium alloys for biomedical applications are receiving attention as well. Newly developed zirconium-based alloys for biomedical applications are proving very interesting. Magnesium-based or iron-based biodegradable biomaterials are under development. Further, tantalum, and niobium and its alloys are being investigated for biomedical applications. The development of new metallic alloys for biomedical applications is described in this paper.

  13. The effect of σ-phase precipitation at 800°C on the corrosion resistance in sea-water of a high alloyed duplex stainless steel

    NARCIS (Netherlands)

    Wilms, M.E.; Gadgil, V.J.; Krougman, J.M.; Ijsseling, F.P.

    1994-01-01

    Super-duplex stainless steels are recently developed high alloyed stainless steels that combine good mechanical properties with excellent corrosion resistance. Because of a high content of chromium and molybdenum, these alloys are susceptible to σ-phase precipitation during short exposure to

  14. Highlights from Super-Kamiokande

    Science.gov (United States)

    Okumura, Kimihiro

    2016-11-01

    Recent results from Super-Kamiokande experiment are reviewed in this paper; Neutrino mass hierarchy and CP violation in the lepton sector are investigated via νμ → νe oscillation of the atmospheric neutrinos. The event rate, correlation with solar activity, energy spectrum of the solar neutrinos are measured via electron elastic scattering interactions. Neutrino emission from the WIMP annihilation at the center of the Sun are searched in the GeV energy regions. New project, SK-Gd project, to enhance anti-neutrino identification capability, has been approved inside the collaboration group.

  15. Highlights from Super-Kamiokande

    Directory of Open Access Journals (Sweden)

    Okumura Kimihiro

    2016-01-01

    Full Text Available Recent results from Super-Kamiokande experiment are reviewed in this paper; Neutrino mass hierarchy and CP violation in the lepton sector are investigated via νμ → νe oscillation of the atmospheric neutrinos. The event rate, correlation with solar activity, energy spectrum of the solar neutrinos are measured via electron elastic scattering interactions. Neutrino emission from the WIMP annihilation at the center of the Sun are searched in the GeV energy regions. New project, SK-Gd project, to enhance anti-neutrino identification capability, has been approved inside the collaboration group.

  16. On The Living Room

    Directory of Open Access Journals (Sweden)

    Thomas Richards

    2013-03-01

    Full Text Available This text discusses the work The Living Room, directed by the author, and reflects on its meanings and functions. The article confronts problems performance raises in relation to contemporary social life, bringing forward the isolation of life today and the possibilities performance offers to fight it. We problematise the crisis experienced by the author and the consequent creation of the work as a mobile performative device in relation to the staging space. Finally, the work questions the forms of interaction and type of participation possible in performance.

  17. Materials Properties Database for Selection of High-Temperature Alloys and Concepts of Alloy Design for SOFC Applications

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Z Gary; Paxton, Dean M.; Weil, K. Scott; Stevenson, Jeffry W.; Singh, Prabhakar

    2002-11-24

    To serve as an interconnect / gas separator in an SOFC stack, an alloy should demonstrate the ability to provide (i) bulk and surface stability against oxidation and corrosion during prolonged exposure to the fuel cell environment, (ii) thermal expansion compatibility with the other stack components, (iii) chemical compatibility with adjacent stack components, (iv) high electrical conductivity of the surface reaction products, (v) mechanical reliability and durability at cell exposure conditions, (vii) good manufacturability, processability and fabricability, and (viii) cost effectiveness. As the first step of this approach, a composition and property database was compiled for high temperature alloys in order to assist in determining which alloys offer the most promise for SOFC interconnect applications in terms of oxidation and corrosion resistance. The high temperature alloys of interest included Ni-, Fe-, Co-base superal

  18. Predicting Acoustics in Class Rooms

    DEFF Research Database (Denmark)

    Christensen, Claus Lynge; Rindel, Jens Holger

    2005-01-01

    Typical class rooms have fairly simple geometries, even so room acoustics in this type of room is difficult to predict using today's room acoustic computer modeling software. The reasons why acoustics of class rooms are harder to predict than acoustics of complicated concert halls might...... coefficients that are used in order to describe surface scattering (roughness of material) as well as scattering of reflected sound caused by limited surface size (diffraction). A method which combines scattering caused by diffraction due to surface dimensions, angle of incidence and incident path length...

  19. Broadband room temperature strong coupling between quantum dots and metamaterials.

    Science.gov (United States)

    Indukuri, Chaitanya; Yadav, Ravindra Kumar; Basu, J K

    2017-08-17

    Herein, we report the first demonstration of room temperature enhanced light-matter coupling in the visible regime for metamaterials using cooperative coupled quasi two dimensional quantum dot assemblies located at precise distances from the hyperbolic metamaterial (HMM) templates. The non-monotonic variation of the magnitude of strong coupling, manifested in terms of strong splitting of the photoluminescence of quantum dots, can be explained in terms of enhanced LDOS near the surface of such metamaterials as well as the plasmon mediated super-radiance of closely spaced quantum dots (QDs). Our methodology of enhancing broadband, room temperature, light-matter coupling in the visible regime for metamaterials opens up new possibilities of utilising these materials for a wide range of applications including QD based thresholdless nanolasers and novel metamaterial based integrated photonic devices.

  20. Microstructural evolution and magnetic properties of ultrafine solute-atom particles formed in a Cu75-Ni20-Fe5 alloy on isothermal annealing

    Science.gov (United States)

    Kim, Jun-Seop; Takeda, Mahoto; Bae, Dong-Sik

    2016-12-01

    Microstructural features strongly affect magnetism in nano-granular magnetic materials. In the present work we have investigated the relationship between the magnetic properties and the self-organized microstructure formed in a Cu75-Ni20-Fe5 alloy comprising ferromagnetic elements and copper atoms. High resolution transmission electron microscopy (HRTEM) observations showed that on isothermal annealing at 873 K, nano-scale solute (Fe,Ni)-rich clusters initially formed with a random distribution in the Cu-rich matrix. Superconducting quantum interference device (SQUID) measurements revealed that these ultrafine solute clusters exhibited super-spinglass and superparamagnetic states. On further isothermal annealing the precipitates evolved to cubic or rectangular ferromagnetic particles and aligned along the directions of the copper-rich matrix. Electron energy-band calculations based on the first-principle Korringa-Kohn-Rostocker (KKR) method were also implemented to investigate both the electronic structure and the magnetic properties of the alloy. Inputting compositions obtained experimentally by scanning transmission electron microscopy-electron dispersive X-ray spectroscopy (STEM-EDS) analysis, the KKR calculation confirmed that ferromagnetic precipitates (of moment 1.07μB per atom) formed after annealing for 2 × 104 min. Magneto-thermogravimetric (MTG) analysis determined with high sensitivity the Curie temperatures and magnetic susceptibility above room temperature of samples containing nano-scale ferromagnetic particles.

  1. Advanced powder metallurgy aluminum alloys via rapid solidification technology

    Science.gov (United States)

    Ray, R.

    1984-01-01

    Aluminum alloys containing 10 to 11.5 wt. pct. of iron and 1.5 to 3 wt. pct. of chromium using the technique of rapid solidification powder metallurgy were studied. Alloys were prepared as thin ribbons (.002 inch thick) rapidly solidified at uniform rate of 10(6) C/second by the melt spinning process. The melt spun ribbons were pulverized into powders (-60 to 400 mesh) by a rotating hammer mill. The powders were consolidated by hot extrusion at a high reduction ratio of 50:1. The powder extrusion temperature was varied to determine the range of desirable processing conditions necessary to yield useful properties. Powders and consolidated alloys were characterized by SEM and optical metallography. The consolidated alloys were evaluated for (1) thermal stability, (2) tensile properties in the range, room temperature to 450 F, and (3) notch toughness in the range, room temperature to 450 F.

  2. Elastic Modulus Measurement of ORNL ATF FeCrAl Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Zachary T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-10-01

    Elastic modulus and Poisson’s ratio for a number of wrought FeCrAl alloys, intended for accident tolerant fuel cladding application, are determined via resonant ultrasonic spectroscopy. The results are reported as a function of temperature from room temperature to 850°C. The wrought alloys were in the fully annealed and unirradiated state. The elastic modulus for the wrought FeCrAl alloys is at least twice that of Zr-based alloys over the temperature range of this study. The Poisson’s ratio of the alloys was 0.28 on average and increased very slightly with increasing temperature.

  3. Tensile properties of aluminized V-5Cr-5Ti alloy after exposure in air environment

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Soppet, W.K. [Argonne National Lab., IL (United States)

    1997-08-01

    The objectives of this task are to (a) develop procedures to modify surface regions of V-Cr-Ti alloys in order to minimize oxygen uptake by the alloys when exposed to environments that contain oxygen, (b) evaluate the oxygen uptake of the surface-modified V-Cr-Ti alloys as a function of temperature an oxygen partial pressure in the exposure environment, (c) characterize the microstructures of oxide scales and oxygen trapped at the grain boundaries of the substrate alloys, and (d) evaluate the influence of oxygen uptake on the tensile properties of the modified alloys at room and elevated temperatures.

  4. Effect of oxidation on tensile behavior of V-5Cr-5Ti alloy

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Soppet, W.K. [Argonne National Lab., Chicago, IL (United States)

    1995-04-01

    The objectives of this task are to (a) evaluate the oxygen uptake behavior of V-5Cr-5Ti alloy as a function of temperature and oxygen partial pressure in the exposure environment, (b) examine the microstructural characteristics of oxide scales and oxygen entrapped at the grain boundaries in the substrate alloy, (c) evaluate the influence of oxygen uptake on the tensile properties of the alloy at room and elevated temperatures, (d) evaluate oxidation kinetics of the alloy with the aluminum-enriched surface layers, and (e) determine the effect of oxygen uptake on tensile behavior of the alloy.

  5. Hydrogen Storage Properties of Ti1.2Fe+xCa Hydrogen Storage Alloys

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The hydrogen storage properties of Ti1.2Fe+xCa (x=1%, 3% and 5% in mass fraction) alloys was investigated. Results show that the modified alloys can be activated without any thermal treatment at room temperature due to the addition of Ca and excess Ti in the alloys. Hydrogen storage properties of these modified alloys vary with Ca amount and reaction temperature. In addition, the influence mechanism of the addition of Ca and excessive Ti on the activation behavior and hydrogen storage capacity of the alloys was discussed.

  6. Fatigue Characteristics of Selected Light Metal Alloys

    Directory of Open Access Journals (Sweden)

    Cieśla M.

    2016-03-01

    Full Text Available The paper addresses results of fatigue testing of light metal alloys used in the automotive as well as aerospace and aviation industries, among others. The material subject to testing comprised hot-worked rods made of the AZ31 alloy, the Ti-6Al-4V two-phase titanium alloy and the 2017A (T451 aluminium alloy. Both low- and high-cycle fatigue tests were conducted at room temperature on the cycle asymmetry ratio of R=-1. The low-cycle fatigue tests were performed using the MTS-810 machine on two levels of total strain, i.e.Δεc= 1.0% and 1.2%. The high-cycle fatigue tests, on the other hand, were performed using a machine from VEB Werkstoffprufmaschinen-Leipzig under conditions of rotary bending. Based on the results thus obtained, one could develop fatigue life characteristics of the materials examined (expressed as the number of cycles until failure of sample Nf as well as characteristics of cyclic material strain σa=f(N under the conditions of low-cycle fatigue testing. The Ti-6Al-4V titanium alloy was found to be characterised by the highest value of fatigue life Nf, both in lowand high-cycle tests. The lowest fatigue life, on the other hand, was established for the aluminium alloys examined. Under the high-cycle fatigue tests, the life of the 2017A aluminium and the AZ31 magnesium alloy studied was determined by the value of stress amplitude σa. With the stress exceeding 150 MPa, it was the aluminium alloy which displayed higher fatigue life, whereas the magnesium alloy proved better on lower stress.

  7. Superplastic Forming and Diffusion Bonding of Titanium Alloys

    Directory of Open Access Journals (Sweden)

    A. K. Ghosh

    1986-04-01

    Full Text Available New and advanced fabrication methods for titanium components are emerging today to replace age-old fabrication processes and reduce component cost. Superplastic forming and diffusion bonding are two such advanced fabrication technologies which when applied individually or in combination can provide significant cost and weight benefits and a rather broad manufacturing technology base. This paper briefly reviews the state of understanding of the science and technology of super plastic forming of titanium alloys, and their diffusion bonding capability. Emphasis has been placed on the metallurgy of superplastic flow in two phase titanium alloys, the microstructural and external factors which influence this behaviour.

  8. Optical trapping with Super-Gaussian beams

    CSIR Research Space (South Africa)

    McLaren, M

    2013-04-01

    Full Text Available We outline the possibility of optical trapping and tweezing with Super-Gaussian beam profiles. We show that the trapping strength can be tuned continuously by adjusting the order of a Super-Gaussian beam, approaching that of a perfect Gaussian...

  9. Tetrahedral Units: For Dodecahedral Super-Structures

    CERN Document Server

    Ortiz, Y; Liebman, J F

    2016-01-01

    Different novel organic-chemical possibilities for tetrahedral building units are considered, with attention to their utility in constructing different super-structures. As a representative construction we consider the use of sets of 20 such identical tetrahedral units to form a super-dodecahedron.

  10. dbSUPER: a database of super-enhancers in mouse and human genome.

    Science.gov (United States)

    Khan, Aziz; Zhang, Xuegong

    2016-01-04

    Super-enhancers are clusters of transcriptional enhancers that drive cell-type-specific gene expression and are crucial to cell identity. Many disease-associated sequence variations are enriched in super-enhancer regions of disease-relevant cell types. Thus, super-enhancers can be used as potential biomarkers for disease diagnosis and therapeutics. Current studies have identified super-enhancers in more than 100 cell types and demonstrated their functional importance. However, a centralized resource to integrate all these findings is not currently available. We developed dbSUPER (http://bioinfo.au.tsinghua.edu.cn/dbsuper/), the first integrated and interactive database of super-enhancers, with the primary goal of providing a resource for assistance in further studies related to transcriptional control of cell identity and disease. dbSUPER provides a responsive and user-friendly web interface to facilitate efficient and comprehensive search and browsing. The data can be easily sent to Galaxy instances, GREAT and Cistrome web-servers for downstream analysis, and can also be visualized in the UCSC genome browser where custom tracks can be added automatically. The data can be downloaded and exported in variety of formats. Furthermore, dbSUPER lists genes associated with super-enhancers and also links to external databases such as GeneCards, UniProt and Entrez. dbSUPER also provides an overlap analysis tool to annotate user-defined regions. We believe dbSUPER is a valuable resource for the biology and genetic research communities.

  11. Deformation behavior and microstructural evolution of nanocrystalline aluminum alloys and composites

    Science.gov (United States)

    Ahn, Byungmin

    Nanocrystalline or ultrafine-grained Al alloys are often produced by severe plastic deformation methods and exhibit remarkably enhanced strength and hardness compared to conventional coarse-grained materials, resulting in great potential for structural applications. To achieve nanocrystalline structure, grains were refined by cryomilling (mechanical milling at cryogenic temperature) pre-alloyed powders. Cryomilling provides capability for rapid grain refinement and synthesis of commercial quantities (30-40 kg). The cryomilled powder was primarily consolidated by hot or cold isostatic pressing in general. Secondary consolidation was achieved by extrusion or forging. Alternatively, quasi-isostatic forging was applied either as an initial consolidation or as a further deformation step. To improve insufficient ductility and toughness of nanocrystalline materials, an intelligent design with microstructural modification was introduced by generation of multiple size scales. A bimodal grain structure consisting of nanocrystalline grains and inclusions of coarse-grained material was produced by consolidation of blended powders. The resulting materials exhibited enhanced ductility compared to 100% nanocrystalline materials, with only moderate decreases in strength. A similar process was used to produce hybrid trimodal microstructures comprised of regions of nanocrystalline and coarse grains, as well as hard ceramic particles, providing super-high compressive strength. For cryomilled nanocrystalline Al alloys, effects of degassing temperature were investigated in terms of microstructural evolution. Higher degassing temperatures resulted in higher density and lower hydrogen content, which can reduce loss of toughness in consolidated materials. Different consolidation methods were compared with regard to the relation between the microstructures and mechanical properties. Quasi-isostatic forging led to greater and more isotropic fracture toughness, compared with other processing

  12. INFLUENCE OF ALLOY COMPOSITION ON WORK HARDENING BEHAVIOR OF ZIRCONIUM-BASED ALLOYS

    Directory of Open Access Journals (Sweden)

    HYUN-GIL KIM

    2013-08-01

    Full Text Available Three types of zirconium base alloy were evaluated to study how their work hardening behavior is affected by alloy composition. Repeated-tensile tests (5% elongation at each test were performed at room temperature at a strain rate of 1.7 × 10−3 s−1 for the alloys, which were initially controlled for their microstructure and texture. After considering the yield strength and work hardening exponent (n variations, it was found that the work hardening behavior of the zirconium base alloys was affected more by the Nb content than the Sn content. The facture mode during the repeated tensile test was followed by the slip deformation of the zirconium structure from the texture and microstructural analysis.

  13. Fatigue behavior of copper and selected copper alloys for high heat flux applications

    Energy Technology Data Exchange (ETDEWEB)

    Leedy, K.D.; Stubbins, J.F.; Singh, B.N.; Garner, F.A.

    1996-04-01

    The room temperature fatigue behavior of standard and subsize specimens was examined for five copper alloys: OFHC Cu, two CuNiBe alloys, a CuCrZr alloy, and a Cu-Al{sub 2}O{sub 3} alloy. Fatigue tests were run in strain control to failure. In addition to establishing failure lives, the stress amplitudes were monitored as a function of numbers of accrued cycles. The results indicate that the alloys with high initial yield strengths provide the best fatigue response over the range of failure lives examined in the present study: N{sub f} = 10{sup 3} to 10{sup 6}. In fact, the fatigue performance of the best alloys is dominated by the elastic portion of the strain range, as would be expected from the correlation of performance with yield properties. The alumina strengthened alloy and the two CuNiBe alloys show the best overall performance of the group examined here.

  14. Understanding the shape-memory alloys used in orthodontics.

    Science.gov (United States)

    Fernandes, Daniel J; Peres, Rafael V; Mendes, Alvaro M; Elias, Carlos N

    2011-01-01

    Nickel-titanium (NiTi) shape-memory alloys (SMAs) have been used in the manufacture of orthodontic wires due to their shape memory properties, super-elasticity, high ductility, and resistance to corrosion. SMAs have greater strength and lower modulus of elasticity when compared with stainless steel alloys. The pseudoelastic behavior of NiTi wires means that on unloading they return to their original shape by delivering light continuous forces over a wider range of deformation which is claimed to allow dental displacements. The aim of this paper is to discuss the physical, metallurgical, and mechanical properties of NiTi used in Orthodontics in order to analyze the shape memory properties, super-elasticity, and thermomechanical characteristics of SMA.

  15. Understanding the Shape-Memory Alloys Used in Orthodontics

    Science.gov (United States)

    Fernandes, Daniel J.; Peres, Rafael V.; Mendes, Alvaro M.; Elias, Carlos N.

    2011-01-01

    Nickel-titanium (NiTi) shape-memory alloys (SMAs) have been used in the manufacture of orthodontic wires due to their shape memory properties, super-elasticity, high ductility, and resistance to corrosion. SMAs have greater strength and lower modulus of elasticity when compared with stainless steel alloys. The pseudoelastic behavior of NiTi wires means that on unloading they return to their original shape by delivering light continuous forces over a wider range of deformation which is claimed to allow dental displacements. The aim of this paper is to discuss the physical, metallurgical, and mechanical properties of NiTi used in Orthodontics in order to analyze the shape memory properties, super-elasticity, and thermomechanical characteristics of SMA. PMID:21991455

  16. Ending Aging in Super Glassy Polymer Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Lau, CH; Nguyen, PT; Hill, MR; Thornton, AW; Konstas, K; Doherty, CM; Mulder, RJ; Bourgeois, L; Liu, ACY; Sprouster, DJ; Sullivan, JP; Bastow, TJ; Hill, AJ; Gin, DL; Noble, RD

    2014-04-16

    Aging in super glassy polymers such as poly(trimethylsilylpropyne) (PTMSP), poly(4-methyl-2-pentyne) (PMP), and polymers with intrinsic microporosity (PIM-1) reduces gas permeabilities and limits their application as gas-separation membranes. While super glassy polymers are initially very porous, and ultra-permeable, they quickly pack into a denser phase becoming less porous and permeable. This age-old problem has been solved by adding an ultraporous additive that maintains the low density, porous, initial stage of super glassy polymers through absorbing a portion of the polymer chains within its pores thereby holding the chains in their open position. This result is the first time that aging in super glassy polymers is inhibited whilst maintaining enhanced CO2 permeability for one year and improving CO2/N-2 selectivity. This approach could allow super glassy polymers to be revisited for commercial application in gas separations.

  17. Electrical resistivity of V-Cr-Ti alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J.; Gubbi, A.N.; Eatherly, W.S. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    Room temperature electrical resistivity measurements have been performed on vanadium alloys containing 3-6%Cr and 3-6%Ti in order to evaluate the microstructural stability of these alloys. A nonlinear dependence on Cr and Ti concentration was observed, which suggests that either short range ordering or solute precipitation (perhaps in concert with interstitial solute clustering) has occurred in V-6Cr-6Ti.

  18. Room to Groove?

    DEFF Research Database (Denmark)

    Seabrooke, Leonard

    . As long as they stay within the parameters of legitimate financial practice to signal institutional isomorphism, the `groove', creditors may well allow borrowers room for change in self-determined ways. This paper maps out the historical and conceptual terrain concerning civilizing ideas about...... the legitimacy of financial practices within global capital markets, and investigates relationships between Western `civilizers' and Emerging Market Economies during the last two periods of financial globalization, the late-nineteenth/ early-twentieth centuries and the late-twentieth century.......The use of a `standard of civilization', a preferred form of socio-political organization, in global capital markets presents both constraints and opportunities for creditors and borrowers. When imposed, civilizing standards may change how a borrower would prefer to conduct their affairs. Creditors...

  19. Hydrogen and sliding at alpha/beta interfaces of titanium alloys

    Science.gov (United States)

    Margolin, Harold

    1990-01-01

    Emerging evidence that the sliding between alpha and beta interfaces reported in both Ti-Mn alloys and the Ti-4.5Al-5Mo-1.5Cr ('Corona 5') alloy at room temperature is associated with hydrogen suggests that this may be a general problem contributing to Ti alloys' room-temperature creep. The present evaluation of experimental data indicates that while the hydrogen is concentrated at the Ti-Mn alloys' beta phase, no hydride formation at the alpha/beta interfaces has been reported for either the Ti-Mn alloys or Corona 5. If a hydrogen flux is needed, sliding at the alpha-beta interfaces should be a function of total hydrogen content in the alloy.

  20. Thermal conductivity of Cu–4.5 Ti alloy

    Indian Academy of Sciences (India)

    S Nagarjuna

    2004-02-01

    The thermal conductivity (TC) of peak aged Cu–4.5 wt% Ti alloy was measured at different temperatures and studied its variation with temperature. It was found that TC increased with increasing temperature. Phonon and electronic components of thermal conductivity were computed from the results. The alloy exhibits an electronic thermal conductivity of 46.45 W/m.K at room temperature. The phonon thermal conductivity decreased with increasing temperature from 17.6 at 0 K to 1.75 W/m.K at 298 K, which agrees with literature that the phonon component of thermal conductivity is insignificant at room temperature.

  1. Warm deep-drawing and post drawing analysis of two Al-Mg-Si alloys

    NARCIS (Netherlands)

    Ghosh, M.; Miroux, A.; Werkhoven, R.J.; Bolt, P.J.; Kestens, L.A.I.

    2014-01-01

    The increasing use of aluminium alloys in light weight structural applications is restricted mainly due to their lower room temperature formability compared to steels. Forming at higher temperature is seen as a promising solution to this problem. In the present investigation two Al-Mg-Si alloys (EN

  2. Warm deep-drawing and post drawing analysis of two Al-Mg-Si alloys

    NARCIS (Netherlands)

    Ghosh, M.; Miroux, A.; Werkhoven, R.J.; Bolt, P.J.; Kestens, L.A.I.

    2014-01-01

    The increasing use of aluminium alloys in light weight structural applications is restricted mainly due to their lower room temperature formability compared to steels. Forming at higher temperature is seen as a promising solution to this problem. In the present investigation two Al-Mg-Si alloys (EN

  3. Advanced powder metallurgy aluminum alloys via rapid solidification technology, phase 2

    Science.gov (United States)

    Ray, Ranjan; Jha, Sunil C.

    1987-01-01

    Marko's rapid solidification technology was applied to processing high strength aluminum alloys. Four classes of alloys, namely, Al-Li based (class 1), 2124 type (class 2), high temperature Al-Fe-Mo (class 3), and PM X7091 type (class 4) alloy, were produced as melt-spun ribbons. The ribbons were pulverized, cold compacted, hot-degassed, and consolidated through single or double stage extrusion. The mechanical properties of all four classes of alloys were measured at room and elevated temperatures and their microstructures were investigated optically and through electron microscopy. The microstructure of class 1 Al-Li-Mg alloy was predominantly unrecrystallized due to Zr addition. Yield strengths to the order of 50 Ksi were obtained, but tensile elongation in most cases remained below 2 percent. The class 2 alloys were modified composition of 2124 aluminum alloy, through addition of 0.6 weight percent Zr and 1 weight percent Ni. Nickel addition gave rise to a fine dispersion of intermetallic particles resisting coarsening during elevated temperature exposure. The class 2 alloy showed good combination of tensile strength and ductility and retained high strength after 1000 hour exposure at 177 C. The class 3 Al-Fe-Mo alloy showed high strength and good ductility both at room and high temperatures. The yield and tensile strength of class 4 alloy exceeded those of the commercial 7075 aluminum alloy.

  4. Impact properties of zinc die cast alloys

    Energy Technology Data Exchange (ETDEWEB)

    Schrems, Karol K.; Dogan, Omer N.; Manahan, M.P. (MPM Technologies, Inc.); Goodwin, F.E. (ILZRO)

    2005-01-01

    Alloys 3, 5, AcuZinc 5, and ZA-8 were tested at five temperatures between -40 C and room temperature to determine impact properties. Izod impact energy data was obtained in accordance with ASTM D256. Unlike ASTM E23, these samples were tested with a milled notch in order to compare with plastic samples. In addition, flexural data was obtained for design use.

  5. Parametrized dielectric functions of amorphous GeSn alloys

    Science.gov (United States)

    D'Costa, Vijay Richard; Wang, Wei; Schmidt, Daniel; Yeo, Yee-Chia

    2015-09-01

    We obtained the complex dielectric function of amorphous Ge1-xSnx (0 ≤ x ≤ 0.07) alloys using spectroscopic ellipsometry from 0.4 to 4.5 eV. Amorphous GeSn films were formed by room-temperature implantation of phosphorus into crystalline GeSn alloys grown by molecular beam epitaxy. The optical response of amorphous GeSn alloys is similar to amorphous Ge and can be parametrized using a Kramers-Kronig consistent Cody-Lorentz dispersion model. The parametric model was extended to account for the dielectric functions of amorphous Ge0.75Sn0.25 and Ge0.50Sn0.50 alloys from literature. The compositional dependence of band gap energy Eg and parameters associated with the Lorentzian oscillator have been determined. The behavior of these parameters with varying x can be understood in terms of the alloying effect of Sn on Ge.

  6. The Formablity of AZ31B Magnesium Alloy Sheet

    Institute of Scientific and Technical Information of China (English)

    WANG Lingyun; LU Zhiwen; ZHAO Yazhong; QIU Xiaogang

    2006-01-01

    The forming limit diagrams(FLD)of AZ31B magnesium alloy sheet were tested by means of the electro etching grid method based on the forming experiment of magnesium alloy sheet carried out with a BCS-30D sheet forming testing machine and the strain testing analysis made with an advanced ASAME automatic strain measuring system. Experiments show that, at room temperature, the mechanical properties and deep drawing performance of AZ31B cold-rolled magnesium alloy sheet were so poor that it failed to test the forming limit diagrams without an ideal forming and processing capacity, while the hot-rolled magnesium alloy sheet was of a little better plasticity and forming performance after testing its forming limit diagrams. It can be concluded that the testing of the forming limit curves (FLC)offers the theoretical foundation for the drawing of the deep drawing and forming process of magnesium alloy sheet.

  7. Development Program for Natural Aging Aluminum Casting Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Geoffrey K. Sigworth

    2004-05-14

    A number of 7xx aluminum casting alloys are based on the ternary Al-Zn-Mg system. These alloys age naturally to high strength at room temperature. A high temperature solution and aging treatment is not required. Consequently, these alloys have the potential to deliver properties nearly equivalent to conventional A356-T6 (Al-Si-Mg) castings, with a significant cost saving. An energy savings is also possible. In spite of these advantages, the 7xx casting alloys are seldom used, primarily because of their reputation for poor castibility. This paper describes the results obtained in a DOE-funded research study of these alloys, which is part of the DOE-OIT ''Cast Metals Industries of the Future'' Program. Suggestions for possible commercial use are also given.

  8. High-strength iron aluminide alloys

    Energy Technology Data Exchange (ETDEWEB)

    McKamey, C.G.; Maziasz, P.J.

    1996-06-01

    Past studies have shown that binary Fe{sub 3}Al possesses low creep-rupture strength compared to many other alloys, with creep-rupture lives of less than 5 h being reported for tests conducted at 593{degrees}C and 207 MPa. The combination of poor creep resistance and low room-temperature tensile ductility due to a susceptibility to environmentally-induced dynamic hydrogen embrittlement has limited use of these alloys for structural applications despite their excellent corrosion properties. With regard to the ductility problem, alloy development efforts have produced significant improvements, with ductilities of 10-20% and tensile yield strengths as high as 500 MPa being reported. Likewise, initial improvements in creep resistance have been realized through small additions of Mo, Nb, and Zr.

  9. SuperB Progress Report for Physics

    Energy Technology Data Exchange (ETDEWEB)

    O' Leary, B.; /Aachen, Tech. Hochsch.; Matias, J.; Ramon, M.; /Barcelona, IFAE; Pous, E.; /Barcelona U.; De Fazio, F.; Palano, A.; /INFN, Bari; Eigen, G.; /Bergen U.; Asgeirsson, D.; /British Columbia U.; Cheng, C.H.; Chivukula, A.; Echenard, B.; Hitlin, D.G.; Porter, F.; Rakitin, A.; /Caltech; Heinemeyer, S.; /Cantabria Inst. of Phys.; McElrath, B.; /CERN; Andreassen, R.; Meadows, B.; Sokoloff, M.; /Cincinnati U.; Blanke, M.; /Cornell U., Phys. Dept.; Lesiak, T.; /Cracow, INP /DESY /Zurich, ETH /INFN, Ferrara /Frascati /INFN, Genoa /Glasgow U. /Indiana U. /Mainz U., Inst. Phys. /Karlsruhe, Inst. Technol. /KEK, Tsukuba /LBL, Berkeley /UC, Berkeley /Lisbon, IST /Ljubljana U. /Madrid, Autonoma U. /Maryland U. /MIT /INFN, Milan /McGill U. /Munich, Tech. U. /Notre Dame U. /PNL, Richland /INFN, Padua /Paris U., VI-VII /Orsay, LAL /Orsay, LPT /INFN, Pavia /INFN, Perugia /INFN, Pisa /Queen Mary, U. of London /Regensburg U. /Republica U., Montevideo /Frascati /INFN, Rome /INFN, Rome /INFN, Rome /Rutherford /Sassari U. /Siegen U. /SLAC /Southern Methodist U. /Tel Aviv U. /Tohoku U. /INFN, Turin /INFN, Trieste /Uppsala U. /Valencia U., IFIC /Victoria U. /Wayne State U. /Wisconsin U., Madison

    2012-02-14

    SuperB is a high luminosity e{sup +}e{sup -} collider that will be able to indirectly probe new physics at energy scales far beyond the reach of any man made accelerator planned or in existence. Just as detailed understanding of the Standard Model of particle physics was developed from stringent constraints imposed by flavour changing processes between quarks, the detailed structure of any new physics is severely constrained by flavour processes. In order to elucidate this structure it is necessary to perform a number of complementary studies of a set of golden channels. With these measurements in hand, the pattern of deviations from the Standard Model behavior can be used as a test of the structure of new physics. If new physics is found at the LHC, then the many golden measurements from SuperB will help decode the subtle nature of the new physics. However if no new particles are found at the LHC, SuperB will be able to search for new physics at energy scales up to 10-100 TeV. In either scenario, flavour physics measurements that can be made at SuperB play a pivotal role in understanding the nature of physics beyond the Standard Model. Examples for using the interplay between measurements to discriminate New Physics models are discussed in this document. SuperB is a Super Flavour Factory, in addition to studying large samples of B{sub u,d,s}, D and {tau} decays, SuperB has a broad physics programme that includes spectroscopy both in terms of the Standard Model and exotica, and precision measurements of sin{sup 2} {theta}{sub W}. In addition to performing CP violation measurements at the {Upsilon}(4S) and {phi}(3770), SuperB will test CPT in these systems, and lepton universality in a number of different processes. The multitude of rare decay measurements possible at SuperB can be used to constrain scenarios of physics beyond the Standard Model. In terms of other precision tests of the Standard Model, this experiment will be able to perform precision over

  10. The superB silicon vertex tracker

    Energy Technology Data Exchange (ETDEWEB)

    Rizzo, G., E-mail: giuliana.rizzo@pi.infn.i [INFN-Pisa and Universita di Pisa (Italy); Avanzini, C.; Batignani, G.; Bettarini, S.; Bosi, F.; Calderini, G.; Ceccanti, M.; Cenci, R.; Cervelli, A.; Crescioli, F.; Dell' Orso, M.; Forti, F.; Giannetti, P.; Giorgi, M.A. [INFN-Pisa and Universita di Pisa (Italy); Lusiani, A. [Scuola Normale Superiore and INFN-Pisa (Italy); Gregucci, S.; Mammini, P.; Marchiori, G.; Massa, M.; Morsani, F. [INFN-Pisa and Universita di Pisa (Italy)

    2010-05-21

    The SuperB asymmetric e{sup +}-e{sup -} collider has been designed to deliver a luminosity greater than 10{sup 36}cm{sup -2}s{sup -1} with moderate beam currents. Comparing to current B-Factories, the reduced center of mass boost of the SuperB machine requires improved vertex resolution to allow precision measurements sensitive to New Physics. We present the conceptual design of the silicon vertex tracker (SVT) for the SuperB detector with the present status of the R and D on the different options under study for its innermost Layer0.

  11. Electrochemical hydrogen storage properties of La0.95Mg2.05Ni9 alloy prepared by mechanical alloying

    Institute of Scientific and Technical Information of China (English)

    蒙冕武; 刘心宇; 成钧; 周怀营

    2004-01-01

    The structure, microstructure, thermal stability and hydriding characteristics of amorphous La0.95-Mg2.05 Ni9 have been investigated with differential thermal analysis, X-ray diffraction, scanning electron microscopy and battery test. It is found that the increase in mechanical alloying time leads to enhancement in thermal stabilities of amorphous La0. 95 Mg2.05 Ni9 alloy. The amorphous alloy has good charge/discharge ability at room temperature (430 mA · h · g-1 ), but the discharge capacity decreases seriously during cycling tests due to the crystallization of amorphous and oxidization of magnesium on the particle surface in alkaline aqueous solution.

  12. STUDY ON MORPHOLOGY OF CHROMIUM IN CHILLED Cu-0.14%-2.0%Cr ALLOYS

    Institute of Scientific and Technical Information of China (English)

    H.W.Yang; Z.K.Fan

    2004-01-01

    The morphology of chromium in chilled Cu-Cr alloys with 0.14%-2.0% Cr has been studied. The results showed that eutectic Cr phase takes a fibrous shape, and pre-eutectic Cr is dendritic in the studied chilled Cu-Cr alloy. During solute treatment of the eutectic and super-eutectic Cu-Cr alloys, only part of chromium particles dissolved in copper phase,some fiber and dendritic chromium still remained. Forging before solute treatment can reduce the size of primary Cr particles, which benefits the aging structure.

  13. More room for ISOLDE

    CERN Multimedia

    2005-01-01

    To meet the needs of the new ISOLDE experiments, a new extension has been added to the facility's Building 170. The new extension to Building 170. Moving around the ISOLDE hall was almost like an obstacle course until now. The facility's Building 170 simply didn't have an inch to spare and the ISOLDE team's need to set up new experiments, whose installation could have created difficulties from the safety point of view, only exacerbated the problem. "We had ambitious plans to develop new experiments but no room for them", says Mats Lindroos, ISOLDE's technical coordinator. The only solution was to extend the existing building". This was how a new building saw the light of day. Measuring 24 metres long, 20 metres wide and 12 metres high, it is an extension to the existing Building 170 and should be ready for use this year. The new structure makes use of the existing infrastructure, with part of the end wall of Building 170 being kept as a support for steel platforms. The top of this wall had to be cut away ...

  14. N=2 Super - $W_{3}$ Algebra and N=2 Super Boussinesq Equations

    CERN Document Server

    Ivanov, E; Malik, R P

    1995-01-01

    We study classical $N=2$ super-$W_3$ algebra and its interplay with $N=2$ supersymmetric extensions of the Boussinesq equation in the framework of the nonlinear realization method and the inverse Higgs - covariant reduction approach. These techniques have been previously applied by us in the bosonic $W_3$ case to give a new geometric interpretation of the Boussinesq hierarchy. Here we deduce the most general $N=2$ super Boussinesq equation and two kinds of the modified $N=2$ super Boussinesq equations, as well as the super Miura maps relating these systems to each other, by applying the covariant reduction to certain coset manifolds of linear $N=2$ super-$W_3^{\\infty}$ symmetry associated with $N=2$ super-$W_3$. We discuss the integrability properties of the equations obtained and their correspondence with the formulation based on the notion of the second hamiltonian structure.

  15. Madness in Sartre's "The Room"

    NARCIS (Netherlands)

    Jongeneel, E.C.S.

    2009-01-01

    In "The Room," part of his short story collection, The Wall (1938), Jean-Paul Sartre investigates madness as an alternative way of bourgeois life and thus takes a stand in the contemporary debate on the existential status of mental illness. "The Room" is a case-study of a "limit situation," as well

  16. Madness in Sartre's "The Room"

    NARCIS (Netherlands)

    Jongeneel, E.C.S.

    2009-01-01

    In "The Room," part of his short story collection, The Wall (1938), Jean-Paul Sartre investigates madness as an alternative way of bourgeois life and thus takes a stand in the contemporary debate on the existential status of mental illness. "The Room" is a case-study of a "limit situation," as well

  17. Room temperature magnesium electrorefining by using non-aqueous electrolyte

    Science.gov (United States)

    Park, Jesik; Jung, Yeojin; Kusumah, Priyandi; Dilasari, Bonita; Ku, Heesuk; Kim, Hansu; Kwon, Kyungjung; Lee, Churl Kyoung

    2016-09-01

    The increasing usage of magnesium inevitably leads to a fast increase in magnesium scrap, and magnesium recycling appears extremely beneficial for cost reduction, preservation of natural resources and protection of the environment. Magnesium refining for the recovery of high purity magnesium from metal scrap alloy (AZ31B composed of magnesium, aluminum, zinc, manganese and copper) at room temperature is investigated with a non-aqueous electrolyte (tetrahydrofuran with ethyl magnesium bromide). A high purity (99.999%) of electrorefined magneisum with a smooth and dense surface is obtained after potentiostatic electrolysis with an applied voltage of 2 V. The selective dissolution of magnesium from magnesium alloy is possible by applying an adequate potential considering the tolerable impurity level in electrorefined magnesium and processing time. The purity estimation method suggested in this study can be useful in evaluating the maximum content of impurity elements.

  18. Repeat-PPM Super-Symbol Synchronization

    Science.gov (United States)

    Connelly, J.

    2016-11-01

    To attain a wider range of data rates in pulse position modulation (PPM) schemes with constrained pulse durations, the sender can repeat a PPM symbol multiple times, forming a super-symbol. In addition to the slot and symbol synchronization typically required for PPM, the receiver must also properly align the noisy super-symbols. We present a low-complexity approximation of the maximum-likelihood method for performing super-symbol synchronization without use of synchronization sequences. We provide simulation results demonstrating performance advantage when PPM symbols are spread by a pseudo-noise sequence, as opposed to simply repeating. Additionally, the results suggest that this super-symbol synchronization technique requires signal levels below those required for reliable communication. This validates that the PPM spreading approach proposed to CCSDS can work properly as part of the overall scheme.

  19. Axial Super-resolution Evanescent Wave Tomography

    CERN Document Server

    Pendharker, Sarang; Newman, Ward; Ogg, Stephen; Nazemifard, Neda; Jacob, Zubin

    2016-01-01

    Optical tomographic reconstruction of a 3D nanoscale specimen is hindered by the axial diffraction limit, which is 2-3 times worse than the focal plane resolution. We propose and experimentally demonstrate an axial super-resolution evanescent wave tomography (AxSET) method that enables the use of regular evanescent wave microscopes like Total Internal Reflection Fluorescence Microscope (TIRF) beyond surface imaging, and achieve tomographic reconstruction with axial super-resolution. Our proposed method based on Fourier reconstruction achieves axial super-resolution by extracting information from multiple sets of three-dimensional fluorescence images when the sample is illuminated by an evanescent wave. We propose a procedure to extract super-resolution features from the incremental penetration of an evanescent wave and support our theory by 1D (along the optical axis) and 3D simulations. We validate our claims by experimentally demonstrating tomographic reconstruction of microtubules in HeLa cells with an axi...

  20. Disinfection of titanium dioxide nanotubes using super-oxidized water decrease bacterial viability without disrupting osteoblast behavior

    Energy Technology Data Exchange (ETDEWEB)

    Beltrán-Partida, Ernesto [Department of Biomaterials, Dental Materials and Tissue Engineering, Faculty of Dentistry Mexicali, Autonomous University of Baja California, Av. Zotoluca and Chinampas St., 21040 Mexicali, Baja California (Mexico); Department of Corrosion and Materials, Engineering Institute, Autonomous University of Baja California, Blvd. Benito Juarez and Normal St., 21280 Mexicali, Baja California (Mexico); Valdez-Salas, Benjamín, E-mail: benval@uabc.edu.mx [Department of Corrosion and Materials, Engineering Institute, Autonomous University of Baja California, Blvd. Benito Juarez and Normal St., 21280 Mexicali, Baja California (Mexico); Escamilla, Alan; Curiel, Mario [Department of Corrosion and Materials, Engineering Institute, Autonomous University of Baja California, Blvd. Benito Juarez and Normal St., 21280 Mexicali, Baja California (Mexico); Valdez-Salas, Ernesto [Ixchel Medical Centre, Av. Bravo y Obregón, 21000 Mexicali, Baja California (Mexico); Nedev, Nicola [Department of Corrosion and Materials, Engineering Institute, Autonomous University of Baja California, Blvd. Benito Juarez and Normal St., 21280 Mexicali, Baja California (Mexico); Bastidas, Jose M. [National Centre for Metallurgical Research, CSIC, Av. Gregorio del Amo 8, 28040 Madrid (Spain)

    2016-03-01

    Amorphous titanium dioxide (TiO{sub 2}) nanotubes (NTs) on Ti6Al4V alloy were synthesized by anodization using a commercially available super-oxidized water (SOW). The NT surfaces were sterilized by ultraviolet (UV) irradiation and disinfected using SOW. The adhesion and cellular morphology of pig periosteal osteoblast (PPO) cells and the behavior of Staphylococcus aureus (S. aureus) cultured on the sterilized and disinfected surfaces were investigated. A non-anodized Ti6Al4V disc sterilized by UV irradiation (without SOW) was used as control. The results of this study reveal that the adhesion, morphology and filopodia development of PPO cells in NTs are dramatically improved, suggesting that SOW cleaning may not disrupt the benefits obtained by NTs. Significantly decreased bacterial viability in NTs after cleaning with SOW and comparing with non-cleaned NTs was seen. The results suggest that UV and SOW could be a recommendable method for implant sterilization and disinfection without altering osteoblast behavior while decreasing bacterial viability. - Highlights: • The effect of super-oxidized water cleaning was studied on Ti6Al4V nanotubes. • Super oxidized-water cleaning caused a decline in S. aureus viability. • Osteoblast behavior was not disrupted after super-oxidized water disinfection. • Super-oxidized water is suggested as a cleaning protocol for TiO{sub 2} nanotubes.

  1. Investigation of Martensite Formation in Fe Based Alloys During Heating From Boiling Nitrogen Temperature

    DEFF Research Database (Denmark)

    Villa, Matteo; Christiansen, Thomas L.; Hansen, Mikkel F.

    2015-01-01

    he austenite-to-martensite transformation at temperatures below room temperature was investigated in situ by magnetometry in Fe-N, Fe-Cr-C and Fe-Cr-Ni based alloys. After quenching to room temperature, samples were immersed in boiling nitrogen and martensite formation was followed during subsequ...

  2. Mirror-enhanced super-resolution microscopy

    OpenAIRE

    2016-01-01

    Axial excitation confinement beyond the diffraction limit is crucial to the development of next-generation, super-resolution microscopy. STimulated Emission Depletion (STED) nanoscopy offers lateral super-resolution using a donut-beam depletion, but its axial resolution is still over 500 nm. Total internal reflection fluorescence microscopy is widely used for single-molecule localization, but its ability to detect molecules is limited to within the evanescent field of ~ 100 nm from the cell a...

  3. SuperHILAC Upgrade Project

    Energy Technology Data Exchange (ETDEWEB)

    Feinberg, B.; Brown, I.G.

    1986-06-01

    A high current MEtal Vapor Vacuum Arc (MEVVA) ion source is to be installed in the third injector (Abel) at the SuperHILAC, representing the first accelerator use of this novel ion source. The MEVVA source has produced over 1 A of uranium in all charge states, with typically more than 100 electrical mA (emA) of U/sup 5 +/. A substantial fraction of this high current, heavy ion beam must be successfully transported to the entrance of the Wideroe linac to approach the 10 emA space-charge output limit of the Wideroe. Calculations show that up to 50 emA of U/sup 5 +/ can be transported through the present high voltage column. A bouncer will be added to the Cockcroft-Walton supply to handle the increased beam current. The Low Energy Beam Transport line vacuum will be improved to reduce charge exchange, and the phase matching between the 23 MHz Wideroe and the 70 MHz Alvarez linacs will be improved by the addition of two 70 HMz bunchers. The installation of the MEVVA source along with the modifications described above are expected to result in a five-fold increase in beam delivered to Bevatron experiments, increasing the extracted uranium beam to 5 x 10/sup 7/ ions/pulse.

  4. Super-B Project Overview

    Energy Technology Data Exchange (ETDEWEB)

    Biagini, M.E.; Boni, R.; Boscolo, M.; Demma, T.; Drago, A.; Guiducci, S.; Raimondi, P.; Tomassini, S.; Zobov, M.; /Frascati; Bertsche, K.; Donald, M.; Nosochkov, Y.; Novokhatski, A.; Seeman, J.; Sullivan, M.; Yocky, G.; Wienands, U.; Wittmer, W.; /SLAC; Koop, I.; Levichev, E.; Nikitin, S.; /Novosibirsk, IYF /KEK, Tsukuba /Pisa U. /CERN

    2010-08-26

    The SuperB project aims at the construction of an asymmetric very high luminosity B-Factory on the Frascati/Tor Vergata (Italy) area, providing a uniquely sensitive probe of New Physics in the flavour sector of the Standard Model. The luminosity goal of 10{sup 36} cm{sup -2} s{sup -1} can be reached with a new collision scheme with 'large Piwinski angle' (LPA) and the use of 'crab waist sextupoles' (CW). A LPA&CW Interaction Region (IR) has been successfully tested at the DA{Phi}NE {Phi}-Factory at LNF-Frascati in 2008. The LPA&CW scheme, together with very low {beta}*, will allow for operation with relatively low beam currents and reasonable bunch length, comparable to those of PEP-II and KEKB. In the High Energy Ring (HER), two spin rotators will bring longitudinally polarized beams into collision at the IP. The lattice has been designed with a very low intrinsic emittance and is quite compact, less than 2 km long. The tight focusing requires the final doublet quadrupoles to be very close to the IP and very compact. A Conceptual Design Report was published in March 2007, and beam dynamics and collective effects R&D studies are in progress in order to publish a Technical Design Report by the end of 2010.

  5. SUPER-B LATTICE STUDIES

    Energy Technology Data Exchange (ETDEWEB)

    Biagini, M.E.; Raimondi, P.; /Frascati; Piminov, P.; Sinyatkin, S.; /Novosibirsk, IYF; Nosochkov, Y.; Wittmer, W.; /SLAC

    2010-08-25

    The SuperB asymmetric e{sup +}e{sup -} collider is designed for 10{sup 36} cm{sup -2} s{sup -1} luminosity and beam energies of 6.7 and 4.18 GeV for e{sup +} and e{sup -} respectively. The High and Low Energy Rings (HER and LER) have one Interaction Point (IP) with 66 mrad crossing angle. The 1258 m rings fit to the INFN-LNF site at Frascati. The ring emittance is minimized for the high luminosity. The Final Focus (FF) chromaticity correction is optimized for maximum transverse acceptance and energy bandwidth. Included Crab Waist sextupoles suppress betatron resonances induced in the collisions with a large Piwinski angle. The LER Spin Rotator sections provide longitudinally polarized electron beam at the IP. The lattice is flexible for tuning the machine parameters and compatible with reusing the PEP-II magnets, RF cavities and other components. Details of the lattice design are presented.

  6. Studies of the Super VELO

    CERN Document Server

    AUTHOR|(CDS)2156302

    2016-01-01

    The Super VELO is the Run 5 upgrade of the VeloPix detector of the LHCb experiment. Its most challenging task is to cope with a luminosity increase of the factor 10. This study examines the potential physics performance of a detector based on the VeloPix design at high luminosity conditions. It is found that an unmodified VeloPix detector shows poor performance when exposed to 10x design luminosity, most gravely high ghost rates of 40 %. When applying basic assumptions about material changes such as cutting the silicon thickness by half and removing the RF foil, the ghost rate drops by 20 %. When using thin silicon and re-optimizing the tracking algorithm, the ghost rate can even be reduced by 60 %. Applying the additional modification of a pixel area size four times smaller, the ghost rate drops by 88 % and the IP resolution improves. Finally, in a dream scenario with thin silicon, smaller pixels and no RF foil, big gains in resolution and a ghost rate of less than 4 % can be achieved.

  7. Nanostructural hierarchy increases the strength of aluminium alloys.

    Science.gov (United States)

    Liddicoat, Peter V; Liao, Xiao-Zhou; Zhao, Yonghao; Zhu, Yuntian; Murashkin, Maxim Y; Lavernia, Enrique J; Valiev, Ruslan Z; Ringer, Simon P

    2010-09-07

    Increasing the strength of metallic alloys while maintaining formability is an interesting challenge for enabling new generations of lightweight structures and technologies. In this paper, we engineer aluminium alloys to contain a hierarchy of nanostructures and possess mechanical properties that expand known performance boundaries-an aerospace-grade 7075 alloy exhibits a yield strength and uniform elongation approaching 1 GPa and 5%, respectively. The nanostructural architecture was observed using novel high-resolution microscopy techniques and comprises a solid solution, free of precipitation, featuring (i) a high density of dislocations, (ii) subnanometre intragranular solute clusters, (iii) two geometries of nanometre-scale intergranular solute structures and (iv) grain sizes tens of nanometres in diameter. Our results demonstrate that this novel architecture offers a design pathway towards a new generation of super-strong materials with new regimes of property-performance space.

  8. An evaluation of the transition temperature range of super-elastic orthodontic NiTi springs using differential scanning calorimetry.

    Science.gov (United States)

    Barwart, O; Rollinger, J M; Burger, A

    1999-10-01

    Differential scanning calorimetry (DSC) was used to determine the transition temperature ranges (TTR) of four types of super-elastic orthodontic nickel-titanium coil springs (Sentalloy). A knowledge of the TTR provides information on the temperature at which a NiTi wire or spring can assume superelastic properties and when this quality disappears. The spring types in this study can be distinguished from each other by their characteristic TTR during cooling and heating. For each tested spring type a characteristic TTR during heating (austenite transformation) and cooling (martensite transformation) was evaluated. The hysteresis of the transition temperature, found between cooling and heating, was 3.4-5.2 K. Depending on the spring type the austenite transformation started (As) at 9.7-17.1 degrees C and finished (Af) at 29.2-37 degrees C. The martensite transformation starting temperature (Ms) was evaluated at 32.6-25.4 degrees C, while Mf (martensite transformation finishing temperature) was 12.7-6.5 degrees C. The results show that the springs become super-elastic when the temperature increases and As is reached. They undergo a loss of super-elastic properties and a rapid decrease in force delivery when they are cooled to Mf. For the tested springs, Mf and As were found to be below room temperature. Thus, at room temperature and some degrees lower, all the tested springs exert super-elastic properties. For orthodontic treatment this means the maintenance of super-elastic behaviour, even when mouth temperature decreases to about room temperature as can occur, for example, during meals.

  9. Translating VDM to Alloy

    DEFF Research Database (Denmark)

    Lausdahl, Kenneth

    2013-01-01

    . Traditionally, theorem provers are used to prove that specifications are correct but this process is highly dependent on expert users. Alternatively, model finding has proved to be useful for validation of specifications. The Alloy Analyzer is an automated model finder for checking and visualising Alloy...... specifications. However, to take advantage of the automated analysis of Alloy, the model-oriented VDM specifications must be translated into a constraint-based Alloy specifications. We describe how a sub- set of VDM can be translated into Alloy and how assertions can be expressed in VDM and checked by the Alloy...

  10. Sub- and super-luminal light propagation using a Rydberg state

    CERN Document Server

    Bharti, Vineet

    2016-01-01

    We present a theoretical study to investigate sub- and super-luminal light propagation in a rubidium atomic system consisting of a Rydberg state by using density matrix formalism. The analysis is performed in a 4-level vee+ladder system interacting with a weak probe, and strong control and switching fields. The dispersion and absorption profiles are shown for stationary atoms as well as for moving atoms by carrying out Doppler averaging at room temperature. We also present the group index variation with control Rabi frequency and observe that a transparent medium can be switched from sub- to super-luminal propagation in the presence of switching field. Finally, the transient response of the medium is discussed, which shows that the considered 4-level scheme has potential applications in absorptive optical switching.

  11. Super-stable ultrafine beta-tungsten nanocrystals with metastable phase and related magnetism.

    Science.gov (United States)

    Xiao, J; Liu, P; Liang, Y; Li, H B; Yang, G W

    2013-02-07

    Ultrafine tungsten nanocrystals (average size of 3 nm) with a metastable phase (beta-tungsten with A15 structure, β-W) have been prepared by laser ablation of tungsten in liquid nitrogen. The as-prepared metastable nanocrystals exhibited super-stablity, and can keep the same metastable structure over a period of 6 months at room temperature. This super-stability is attributed to the nanosized confinement effect of ultrafine nanocrystals. The magnetism measurements showed that the β-W nanocrystals have weak ferromagnetic properties at 2 K, which may arise from surface defects and unpaired electrons on the surface of the ultrafine nanocrystals. These findings provided useful information for the application of ultrafine β-W nanocrystals in microelectronics and spintronics.

  12. In the LEAR control room

    CERN Multimedia

    1983-01-01

    View into the control room of the Low Energy Antiproton Ring (LEAR). Edgar Asseo (sitting) and Dieter Möhl and Georges Carron reflecting upon some beam dynamics (or hardware?) problem. Vassilis Agoritsas, in the background, leaning over a plan or a keyboard. LEAR in its early years (1982 to about 1990) was run from this local control room in building 363 close to the end of the PS South Hall, where the ring was installed. Later-on the operation was surveyed from the PS main control room.

  13. Electron beam induced oxidation of Al–Mg alloy surfaces

    NARCIS (Netherlands)

    Palasantzas, G.; Agterveld, D.T.L. van; Hosson, J.Th.M. De

    2002-01-01

    Electron beam currents of a few nanoamperes, currently used in nanometer scale scanning Auger/electron microscopy, induces severe oxidation of Al–Mg alloy surfaces at room temperature. Auger peak-to-peak oxygen curves for Al–Mg surfaces support the hypothesis that the electron beam creates

  14. Electron beam induced oxidation of Al–Mg alloy surfaces

    NARCIS (Netherlands)

    Palasantzas, G.; Agterveld, D.T.L. van; Hosson, J.Th.M. De

    2002-01-01

    Electron beam currents of a few nanoamperes, currently used in nanometer scale scanning Auger/electron microscopy, induces severe oxidation of Al–Mg alloy surfaces at room temperature. Auger peak-to-peak oxygen curves for Al–Mg surfaces support the hypothesis that the electron beam creates additiona

  15. Rheocasting techniques applied to intermetallic TiAl alloys and composites

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, K.; Kinoshita, Y. [Ministry of Int. Trade and Ind., Tsukuba, Ibaraki (Japan). Mech. Eng. Lab.

    1997-12-01

    An investigation was made on the homogenization of microstructures and improvement of mechanical properties in intermetallic TiAl binary, ternary and quaternary alloys and their composites produced by the rheocasting in which the solidifying alloy was vigorously agitated at rotation speeds of 15-70 s{sup -1} (900-4200 rpm) by a stirring rod immersed in the alloy in an argon gas atmosphere. In the microstructures of rheocast Ti-44 at.%Al alloy, such a lamellar structure in the alloy cast without stirring was disappeared completely and an extremely refined microstructure was formed. The crystal grain size of the rheocast Ti-44 at.%Al alloy was 2 {mu}m. The room temperature elongation of rheocast Ti-44%Al alloy exceeded 3%. The tensile strength of the alloy rheocast at 70 s{sup -1} and was 538 MPa at 1173 K and 439 MPa at 1273 K, respectively. Zirconium-rich lamellar grains and titanium-rich and carbon-rich precipitates, which were formed in the lamellar grains in a rheocast Ti-44 at%Al-5 vol.%ZrC alloy composite, were increased in a rheocast Ti-44%Al-10%ZrC alloy composite. Titanium-rich and carbon-rich precipitates, which were formed in the lamellar grains in a rheocast Ti-44%Al-10%TiC alloy composite, were increased in a rheocast Ti-46%Al-10%TiC alloy composite, and were decreased in a rheocast Ti-49%Al-10%TiC alloy composite. The elongation at room temperature and the tensile strength at 1373 K were 4% and 280 MPa, respectively, in a Ti-44 at.%Al-10 vol.%ZrC alloy composite. (orig.) 16 refs.

  16. Flow stress analysis and constitutive equation of super-strength TB8 titanium alloy during high temperature plastic deformation%超高强TB8钛合金高温塑性变形流变应力分析与本构方程

    Institute of Scientific and Technical Information of China (English)

    杨满足; 张建国; 贾安涛; 王泓; 刘竞艳

    2015-01-01

    Hot compression tests of the titanium alloy were performed on Gleeble-3000 thermal simulator at the temperature range from 800 ℃to 950 ℃and at the strain rate range from 10 -3 s-1 to 1 s-1 .The flow stress was studied and the flow stress constitutive equation considering the effect of true strain was established for TB8 titanium alloy during high temperature plastic compression.The results show that the flow stress of TB8 titanium alloy decreases with decreasing of strain rate and increasing of deformation temperature.The flow stress curves obtained from experiments at the strain rate below 0.1 s-1 are typical of the recrystallization rheological curves. The hot deformation activation energy Q and the other material parameters are strain-dependent.It is proved that the model reflects the real deformation feature of TB8 alloy comparing with experimental results.%在Gleeble-3000热模拟试验机上进行等温恒速率热压试验(变形温度800~950℃,应变速率0.001~1.0 s-1),研究了TB8合金的高温塑性变形流变应力变化规律,建立了一个包含应变量的本构方程。结果表明,流变应力随变形温度的升高和应变速率的降低而减小;当·ε≤0.1 s-1时,TB8合金高温热压流变曲线为动态再结晶型流变曲线;热变形激活能Q、材料常数n、α、及lnA 均与变形量有关;所建立的本构关系能较好的反应TB8合金高温低应变速率下的流变特征。

  17. 32 CFR 518.9 - Reading room.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 3 2010-07-01 2010-07-01 true Reading room. 518.9 Section 518.9 National... RELATIONS THE FREEDOM OF INFORMATION ACT PROGRAM FOIA Reading Rooms § 518.9 Reading room. (a) Reading room... the records described, DA may elect to place other records in their reading room, and also make...

  18. Welding and mechanical properties of cast FAPY (Fe-16 at. % Al-based) alloy slabs

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.; Goodwin, G.M.; Alexander, D.J.; Howell, C.R.

    1995-08-01

    The low-aluminum-content iron-aluminum program deals with the development of a Fe-Al alloy with aluminum content such as a produce the minimum environmental effect at room temperature. The FAPY is an Fe-16 at. % Al-based alloy developed at the Oak Ridge National Laboratory as the highest aluminum-containing alloy with essentially no environmental effect. The chemical composition for FAPY in weight percent is: aluminum = 8.46, chromium = 5.50, zirconium = 0.20, carbon = 0.03, molybdenum = 2.00, yttrium = 0.10, and iron = 83.71. The cast ingots of the alloy can be hot worked by extrusion, forging, and rolling processes. The hot- worked cast structure can be cold worked with intermediate anneals at 800{degrees}C. Typical room-temperature ductility of the fine-grained wrought structure is 20 to 25% for this alloy. In contrast to the wrought structure, the cast ductility at room temperature is approximately 1% with a transition temperature of approximately 100 to 150{degrees}C, above which ductility values exceed 20%. The alloy has been melted and processed into bar, sheet, and foil. The alloy has also been cast into slabs, step-blocks of varying thicknesses, and shapes. The purpose of this section is to describe the welding response of cast slabs of three different thicknesses of FAPY alloy. Tensile, creep, and Charpy-impact data of the welded plates are also presented.

  19. Influence of hot extrusion on microstructure and mechanical properties of AZ31 magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    WANG Ling; TIAN Su-gui; MENG Fan-lai; DU Hong-qiang

    2006-01-01

    Extrusion treatment is a common method to refine the grain size and improve the mechanical properties of metal material. The influence of hot extrusion on microstructure and mechanical properties of AZ31 magnesium alloy was investigated. The results show that the mechanical properties of AZ31 alloy are obviously improved by extrusion treatment. The ultimate tensile strength (UTS) of AZ31 alloy at room temperature is measured to be 222 MPa, and is enhanced to 265.8 MPa after extrusion at 420℃. The yield tensile strength (YTS) of AZ31 alloy at room temperature is measured to be 84 MPa, and is enhanced to 201 MPa after extrusion at 420℃. The effective improvements on mechanical properties result from the formation of the finer grains during extrusion and the finer particles precipitated by age treatment. The features of the microstructure evolution during hot extruded of AZ31 alloy are dislocation slipping on the matrix and occurrence of the dynamic recrystallization.

  20. Self-similar field dependent curves for a Heusler alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ovichi, Maryam, E-mail: movichi@gwmail.gwu.edu [Department of Electrical and Computer Engineering, The George Washington University, Washington, DC (United States); ElBidweihy, Hatem; Ghahremani, Mohammadreza; Della Torre, Edward; Bennett, Lawrence H. [Department of Electrical and Computer Engineering, The George Washington University, Washington, DC (United States); Johnson, Francis; Zou, Min [GE Global Research, Niskayuna, NY 12309 (United States)

    2014-02-15

    Heusler alloys feature both regular and inverse magnetocaloric effects (MCE) near room temperature as they undergo two different transitions. A temperature scaling methodology to obtain self-similar field dependent curves for materials exhibiting one first-order transition has been previously presented. In this paper, this methodology is modified and extended to obtain self-similar curves for a Ni{sub 51}Mn{sub 32.8}In{sub 16.8} Heusler alloy undergoing two transitions near room temperature. Using this method, the collapsed curve reflects the cluster compositions in the mixed-state regions. The results of characterizing the dual transitions of Heusler alloys and establishing a new model will allow the data to be better analyzed and thus more easily predicted.

  1. Super-multiplex vibrational imaging

    Science.gov (United States)

    Wei, Lu; Chen, Zhixing; Shi, Lixue; Long, Rong; Anzalone, Andrew V.; Zhang, Luyuan; Hu, Fanghao; Yuste, Rafael; Cornish, Virginia W.; Min, Wei

    2017-04-01

    potential of this 24-colour (super-multiplex) optical imaging approach for elucidating intricate interactions in complex biological systems.

  2. CDRH FOIA Electronic Reading Room

    Data.gov (United States)

    U.S. Department of Health & Human Services — The CDRH FOIA electronic reading room contains frequently requested information via the Freedom of Information Act from the Center for Devices and Radiological Health.

  3. What's New in Locker Rooms?

    Science.gov (United States)

    Rittner-Heir, Robbin M.

    2001-01-01

    Discusses athletic facility design and renovation issues that exist because of increasing numbers of female athletes. Outlines renovation issues such as locker room facilities, space for sports equipment, and additional athletic fields. (GR)

  4. Computations of Ultrasonic Parameters in Zr−Sn Alloys

    Directory of Open Access Journals (Sweden)

    Pramod Kumar Yadawa

    2011-01-01

    Full Text Available The ultrasonic properties like ultrasonic attenuation, sound velocity in the hexagonal Zr100−Sn alloys have been studied along unique axis at room temperature. The second- and third-order elastic constants (SOEC & TOEC have been calculated for these alloys using Lennard-Jones potential. The velocities and 1 have minima and maxima, respectively, at 45° with unique axis of the crystal, while 2 increases with the angle from unique axis. The inconsistent behaviour of angle-dependent velocities is associated to the action of second-order elastic constants. Debye average sound velocities of these alloys are increasing with the angle and has maximum at 55° with unique axis at room temperature. Hence, when a sound wave travels at 55° with unique axis of these alloys, then the average sound velocity is found to be maximum. The mechanical and ultrasonic properties of these alloys will be better than pure Zr and Sn due to their high SOEC and ultrasonic velocity and low ultrasonic attenuation. The comparison of calculated ultrasonic parameters with available theoretical/experimental physical parameters gives information about classification of these alloys.

  5. Effect of neodymium on the as-extruded ZK20 magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    赵亚忠; 潘复生; 彭建; 王维青; 罗素琴

    2010-01-01

    The effect of Nd addition on the microstructure and mechanical properties of ZK20 magnesium alloy was investigated by room tensile test, optical microscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM) in order to develop a magnesium alloy with higher ductility. Results showed that the crystal grains of as-extruded ZK20+0.5%Nd magnesium alloy were effectively refined, and the alloy exhibited higher strength and ductility, with the UTS of 237 MPa and the elongation of 32.8%, increasing by 5...

  6. Alloy Fabrication Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — At NETL’s Alloy Fabrication Facility in Albany, OR, researchers conduct DOE research projects to produce new alloys suited to a variety of applications, from gas...

  7. Turbine Blade Alloy

    Science.gov (United States)

    MacKay, Rebecca

    2001-01-01

    The High Speed Research Airfoil Alloy Program developed a fourth-generation alloy with up to an +85 F increase in creep rupture capability over current production airfoil alloys. Since improved strength is typically obtained when the limits of microstructural stability are exceeded slightly, it is not surprising that this alloy has a tendency to exhibit microstructural instabilities after high temperature exposures. This presentation will discuss recent results obtained on coated fourth-generation alloys for subsonic turbine blade applications under the NASA Ultra-Efficient Engine Technology (UEET) Program. Progress made in reducing microstructural instabilities in these alloys will be presented. In addition, plans will be presented for advanced alloy development and for computational modeling, which will aid future alloy development efforts.

  8. Fabricating high performance tungsten alloys through zirconium micro-alloying and nano-sized yttria dispersion strengthening

    Science.gov (United States)

    Liu, R.; Xie, Z. M.; Hao, T.; Zhou, Y.; Wang, X. P.; Fang, Q. F.; Liu, C. S.

    2014-08-01

    Pure W, W-0.2wt%Zr (WZ), and W-0.2wt%Zr-1.0wt%Y2O3 (WZY) with a relative density of above 97% were fabricated by spark-plasma-sintering method. The tensile tests indicated that the WZ and WZY alloys exhibited a DBTT between 400 and 500 °C, about 200 °C lower than pure W. The ultimate tensile strength of WZY alloy at 700 °C is 534 MPa, which is 81% and 58% higher than those of WZ alloy (295 MPa) and pure W (337 MPa), respectively. The grain size of WZY alloy is about 3.2 μm, smaller than that of WZ alloy and pure W. Besides, at room temperature the fracture strength and hardness of the WZY alloy is higher than that of pure W. The improved mechanical property of the WZY alloy was suggested to be originated from the enhanced grain boundaries cohesion by Zr micro-alloying and nano-sized yttria dispersion strengthening.

  9. Axial super-resolution evanescent wave tomography.

    Science.gov (United States)

    Pendharker, Sarang; Shende, Swapnali; Newman, Ward; Ogg, Stephen; Nazemifard, Neda; Jacob, Zubin

    2016-12-01

    Optical tomographic reconstruction of a three-dimensional (3D) nanoscale specimen is hindered by the axial diffraction limit, which is 2-3 times worse than the focal plane resolution. We propose and experimentally demonstrate an axial super-resolution evanescent wave tomography method that enables the use of regular evanescent wave microscopes like the total internal reflection fluorescence microscope beyond surface imaging and achieve a tomographic reconstruction with axial super-resolution. Our proposed method based on Fourier reconstruction achieves axial super-resolution by extracting information from multiple sets of 3D fluorescence images when the sample is illuminated by an evanescent wave. We propose a procedure to extract super-resolution features from the incremental penetration of an evanescent wave and support our theory by one-dimensional (along the optical axis) and 3D simulations. We validate our claims by experimentally demonstrating tomographic reconstruction of microtubules in HeLa cells with an axial resolution of ∼130  nm. Our method does not require any additional optical components or sample preparation. The proposed method can be combined with focal plane super-resolution techniques like stochastic optical reconstruction microscopy and can also be adapted for THz and microwave near-field tomography.

  10. Axial super-resolution evanescent wave tomography

    Science.gov (United States)

    Pendharker, Sarang; Shende, Swapnali; Newman, Ward; Ogg, Stephen; Nazemifard, Neda; Jacob, Zubin

    2016-12-01

    Optical tomographic reconstruction of a 3D nanoscale specimen is hindered by the axial diffraction limit, which is 2-3 times worse than the focal plane resolution. We propose and experimentally demonstrate an axial super-resolution evanescent wave tomography (AxSET) method that enables the use of regular evanescent wave microscopes like Total Internal Reflection Fluorescence Microscope (TIRF) beyond surface imaging, and achieve tomographic reconstruction with axial super-resolution. Our proposed method based on Fourier reconstruction achieves axial super-resolution by extracting information from multiple sets of three-dimensional fluorescence images when the sample is illuminated by an evanescent wave. We propose a procedure to extract super-resolution features from the incremental penetration of an evanescent wave and support our theory by 1D (along the optical axis) and 3D simulations. We validate our claims by experimentally demonstrating tomographic reconstruction of microtubules in HeLa cells with an axial resolution of $\\sim$130 nm. Our method does not require any additional optical components or sample preparation. The proposed method can be combined with focal plane super-resolution techniques like STORM and can also be adapted for THz and microwave near-field tomography.

  11. Mechanical Properties of the TiAl IRIS Alloy

    Science.gov (United States)

    Voisin, Thomas; Monchoux, Jean-Philippe; Thomas, Marc; Deshayes, Christophe; Couret, Alain

    2016-12-01

    This paper presents a study of the mechanical properties at room and high temperature of the boron and tungsten containing IRIS alloy (Ti-48Al-2W-0.08B at. pct). This alloy was densified by Spark Plasma Sintering (SPS). The resultant microstructure consists of small lamellar colonies surrounded by γ regions containing B2 precipitates. Tensile tests are performed from room temperature to 1273 K (1000 °C). Creep properties are determined at 973 K (700 °C)/300 MPa, 1023 K (750 °C)/120 MPa, and 1023 K (750 °C)/200 MPa. The tensile strength and the creep resistance at high temperature are found to be very high compared to the data reported in the current literature while a plastic elongation of 1.6 pct is preserved at room temperature. A grain size dependence of both ductility and strength is highlighted at room temperature. The deformation mechanisms are studied by post-mortem analyses on deformed samples and by in situ straining experiments, both performed in a transmission electron microscope. In particular, a low mobility of non-screw segments of dislocations at room temperature and the activation of a mixed-climb mechanism during creep have been identified. The mechanical properties of this IRIS alloy processed by SPS are compared to those of other TiAl alloys developed for high-temperature structural applications as well as to those of similar tungsten containing alloys obtained by more conventional processing techniques. Finally, the relationships between mechanical properties and microstructural features together with the elementary deformation mechanisms are discussed.

  12. F-Alloy: An Alloy Based Model Transformation Language

    OpenAIRE

    Gammaitoni, Loïc; Kelsen, Pierre

    2015-01-01

    Model transformations are one of the core artifacts of a model-driven engineering approach. The relational logic language Alloy has been used in the past to verify properties of model transformations. In this paper we introduce the concept of functional Alloy modules. In essence a functional Alloy module can be viewed as an Alloy module representing a model transformation. We describe a sublanguage of Alloy called F-Alloy that allows the specification of functional Alloy modules. Module...

  13. PLUTONIUM-THORIUM ALLOYS

    Science.gov (United States)

    Schonfeld, F.W.

    1959-09-15

    New plutonium-base binary alloys useful as liquid reactor fuel are described. The alloys consist of 50 to 98 at.% thorium with the remainder plutonium. The stated advantages of these alloys over unalloyed plutonium for reactor fuel use are easy fabrication, phase stability, and the accompanying advantuge of providing a means for converting Th/sup 232/ into U/sup 233/.

  14. A sourcebook of titanium alloy superconductivity

    CERN Document Server

    Collings, E W

    1983-01-01

    In less than two decades the concept of supercon­ In every field of science there are one or two ductivity has been transformed from a laboratory individuals whose dedication, combined with an innate curiosity to usable large-scale applications. In the understanding, permits them to be able to grasp, late 1960's the concept of filamentary stabilization condense, and explain to the rest of us what that released the usefulness of zero resistance into the field is all about. For the field of titanium alloy marketplace, and the economic forces that drive tech­ superconductivity, such an individual is Ted Collings. nology soon focused on niobium-titanium alloys. They His background as a metallurgist has perhaps given him are ductile and thus fabricable into practical super­ a distinct advantage in understanding superconduc­ conducting wires that have the critical currents and tivity in titanium alloys because the optimization of fields necessary for large-scale devices. More than superconducting parameters in ...

  15. Stability and structure of nanowires grown from silver, copper and their alloys by laser ablation into superfluid helium.

    Science.gov (United States)

    Gordon, Eugene; Karabulin, Alexander; Matyushenko, Vladimir; Sizov, Vyacheslav; Khodos, Igor

    2014-12-14

    Nanowires with 5 nm diameter made of silver, copper, and their alloys were grown in superfluid helium. The silver nanowires being heated to 300 K disintegrated into individual clusters. In contrast, copper nanowires were stable at room temperature, and nanowires made of alloys were also stable despite their low melting temperature.

  16. Simulation of flanking transmission in super-light structures for airborne and impact sound

    DEFF Research Database (Denmark)

    Christensen, Jacob Ellehauge; Hertz, Kristian Dahl; Brunskog, Jonas

    2012-01-01

    Super-light structures are an invention based on combining lightweight concrete with normal concrete for better structural performance and lighter structures. The overall principle is based on load carrying arches of a normal concrete stabilised and protected from fire by a light-aggregate concrete....... In the flanking transmission analysis the influence of a large array of different flanking walls, structural connection details, room size and floor constructions, all typical or desirable for common multi-storey residential constructions, have been investigated. The results form a basis for guidelines on how...

  17. Stochastic seismic response of building with super-elastic damper

    Science.gov (United States)

    Gur, Sourav; Mishra, Sudib Kumar; Roy, Koushik

    2016-05-01

    Hysteretic yield dampers are widely employed for seismic vibration control of buildings. An improved version of such damper has been proposed recently by exploiting the superelastic force-deformation characteristics of the Shape-Memory-Alloy (SMA). Although a number of studies have illustrated the performance of such damper, precise estimate of the optimal parameters and performances, along with the comparison with the conventional yield damper is lacking. Presently, the optimal parameters for the superelastic damper are proposed by conducting systematic design optimization, in which, the stochastic response serves as the objective function, evaluated through nonlinear random vibration analysis. These optimal parameters can be employed to establish an initial design for the SMA-damper. Further, a comparison among the optimal responses is also presented in order to assess the improvement that can be achieved by the superelastic damper over the yield damper. The consistency of the improvements is also checked by considering the anticipated variation in the system parameters as well as seismic loading condition. In spite of the improved performance of super-elastic damper, the available variant of SMA(s) is quite expensive to limit their applicability. However, recently developed ferrous SMA are expected to offer even superior performance along with improved cost effectiveness, that can be studied through a life cycle cost analysis in future work.

  18. First commissioning of the SuperKEKB vacuum system

    Science.gov (United States)

    Suetsugu, Y.; Shibata, K.; Ishibashi, T.; Kanazawa, K.; Shirai, M.; Terui, S.; Hisamatsu, H.

    2016-12-01

    The first (Phase-1) commissioning of SuperKEKB, an asymmetric-energy electron-positron collider at KEK, began in February 2016, after more than five years of upgradation work on KEKB and successfully ended in June 2016. A major task of the Phase-1 commissioning was the vacuum scrubbing of new beam pipes in anticipation of a sufficiently long beam lifetime and low background noise in the next commissioning, prior to which a new particle detector will be installed. The pressure rise per unit beam current decreased steadily with increasing beam dose, as expected. Another important task was to check the stabilities of various new vacuum components at high beam currents of approximately 1 A. The temperature increases of the bellows chambers, gate valves, connection flanges, and so on were less than several degrees at 1 A, and no serious problems were found. The effectiveness of the antechambers and TiN coating in suppressing the electron-cloud effect (ECE) in the positron ring was also confirmed. However, the ECE in the Al-alloy bellows chambers was observed where TiN had not been coated. The use of permanent magnets to create an axial magnetic field of approximately 100 G successfully suppressed this effect. Pressure bursts accompanying beam losses were also frequently observed in the positron ring. This phenomenon is still under investigation, but it is likely caused by collisions between the circulating beams and dust particles, especially in the dipole magnet beam pipes.

  19. Assessing resolution in super-resolution imaging.

    Science.gov (United States)

    Demmerle, Justin; Wegel, Eva; Schermelleh, Lothar; Dobbie, Ian M

    2015-10-15

    Resolution is a central concept in all imaging fields, and particularly in optical microscopy, but it can be easily misinterpreted. The mathematical definition of optical resolution was codified by Abbe, and practically defined by the Rayleigh Criterion in the late 19th century. The limit of conventional resolution was also achieved in this period, and it was thought that fundamental constraints of physics prevented further increases in resolution. With the recent development of a range of super-resolution techniques, it is necessary to revisit the concept of optical resolution. Fundamental differences in super-resolution modalities mean that resolution is not a directly transferrable metric between techniques. This article considers the issues in resolution raised by these new technologies, and presents approaches for comparing resolution between different super-resolution methods.

  20. Architectural Engineering to Super-Light Structures

    DEFF Research Database (Denmark)

    Castberg, Niels Andreas

    with architectural engineering as a starting point. The thesis is based on a two stringed hypothesis: Architectural engineering gives rise to better architecture and Super-Light Structures support and enables a static, challenging architecture. The aim of the thesis is to clarify architectural engineering's impact...... on the work process between architects and engineers in the design development. Using architectural engineering, Super-Light Structures are examined in an architectural context, and it is explained how digital tools can support architectural engineering and design of Super-Light Structures. The experiences...... to be subjects of examination for this thesis. The research results show that architectural engineering has a significant impact on a design process. The projects illustrate that simple explanations, underpinned by visualisations of the challenges between shape versus structure, often creates a shared...

  1. Breeding Super-Earths and Birthing Super-Puffs in Transitional Disks

    CERN Document Server

    Lee, Eve J

    2015-01-01

    The riddle posed by super-Earths (1-4$R_\\oplus$, 2-20$M_\\oplus$) is that they are not Jupiters: their core masses are large enough to trigger runaway gas accretion, yet somehow super-Earths accreted atmospheres that weigh only a few percent of their total mass. We show that this puzzle is solved if super-Earths formed late, as the last vestiges of their parent gas disks were about to clear. This scenario would seem to present fine-tuning problems, but we show that there are none. Ambient gas densities can span many (up to 9) orders of magnitude, and super-Earths can still robustly emerge after $\\sim$0.1-1 Myr with percent-by-weight atmospheres. Super-Earth cores are naturally bred in gas-poor environments where gas dynamical friction has weakened sufficiently to allow constituent protocores to merge. So little gas is present at the time of core assembly that cores hardly migrate by disk torques: formation of super-Earths can be in situ. The picture --- that close-in super-Earths form in a gas-poor (but not ga...

  2. Tensile properties of V-Cr-Ti alloys after exposure in oxygen-containing environments

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Soppet, W.K. [Argonne National Lab., IL (United States)

    1998-03-01

    A systematic study was conducted to evaluate the oxidation kinetics of V-4Cr-4Ti (44 alloy) and V-5Cr-5Ti alloys (55 alloy) and to establish the role of oxygen ingress on the tensile behavior of the alloys at room temperature and at 500 C. The oxidation rate of the 44 alloy is slightly higher than that of the 55 alloy. The oxidation process followed parabolic kinetics. Maximum engineering stress for 55 alloy increased with an increase in oxidation time at 500 C. The maximum stress values for 55 alloy were higher at room temperature than ta 500 C for the same oxidation treatment. Maximum engineering stresses for 44 alloy were substantially lower than those for 55 alloy in the same oxidation {approx}500 h exposure in air at 500 C; the same values were 4.8 and 6.1%, respectively, at 500 C after {approx}2060 h oxidation in air at 500 C. Maximum engineering stress for 44 alloy at room temperature was 421.6--440.6 MPa after {approx}250 h exposure at 500 C in environments with a pO{sub 2} range of 1 {times} 10{sup {minus}6} to 760 torr. The corresponding uniform and total elongation values were 11--14.4% and 14.5--21.7%, respectively. Measurements of crack depths in various specimens showed that depth is independent of pO{sub 2} in the preexposure environment and was of 70--95 {micro}m after 250--275 h exposure at 500 C.

  3. Early solute clustering in an AlZnMg alloy

    Energy Technology Data Exchange (ETDEWEB)

    Dupasquier, A.; Iglesias, M.M. [Dipt. di Fisica, Politecnico di Milano, Milano (Italy); Ist. Nazionale di Fisica della Materia (Italy); Ferragut, R. [Dipt. di Fisica, Politecnico di Milano, Milano (Italy); Ist. Nazionale di Fisica della Materia (Italy); IFIMAT, UNCentro and CICPBA, Tandil (Argentina); Macchi, C.E.; Somoza, A. [IFIMAT, UNCentro and CICPBA, Tandil (Argentina); Massazza, M.; Riontino, G. [Ist. Nazionale di Fisica della Materia (Italy); Dipt. di Chimica IFM, Univ. di Torino, Torino (Italy); Mengucci, P. [Ist. Nazionale di Fisica della Materia (Italy); Dipt. di Fisica e Ingegneria dei Materiali e del Territorio, Univ. Politecnica delle Marche, Ancona (Italy)

    2004-07-01

    Within the framework of an extended investigation programme addressing the development of methods for enhancing the quality of aluminium alloys, decomposition processes were studied for a laboratory system having the same main alloying elements of the commercial alloy 7020 (Al, 2.1 at. % Zn, 1.5 at % Mg). Positron annihilation spectroscopy (PAS), microhardness measurements, DSC, SAXS and TEM were combined to observe the evolution of this alloy at 150 C and at room temperature (RT) after a solution treatment at 480 C; in the RT case, also after preliminary ageing at 150 C. The results show: a) presence of vacancy rich clusters (VRC) formed during quenching; b) early formation of GP(I) zones at RT; c) changing chemical composition of GP(I) zones during RT ageing; d) rapid dissolution of GP(I) at 150 C and incipient loss of coherency after 1 hour; e) recovery of GP(I) at RT after interrupted ageing at 150 C. (orig.)

  4. Oxidation, carburization and/or sulfidation resistant iron aluminide alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier S.; Hajaligol, Mohammad R.; Lilly, Jr., A. Clifton

    2003-08-19

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or Zro.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B. .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

  5. Tungsten-nickel-cobalt alloy and method of producing same

    Science.gov (United States)

    Dickinson, James M.; Riley, Robert E.

    1977-03-15

    An improved tungsten alloy having a tungsten content of approximately 95 weight percent, a nickel content of about 3 weight percent, and the balance being cobalt of about 2 weight percent is described. A method for producing said tungsten-nickel-cobalt alloy is further described and comprises (a) coating the tungsten particles with a nickel-cobalt alloy, (b) pressing the coated particles into a compact shape, (c) heating said compact in hydrogen to a temperature in the range of 1400.degree. C and holding at this elevated temperature for a period of about 2 hours, (d) increasing this elevated temperature to about 1500.degree. C and holding for 1 hour at this temperature, (e) cooling to about 1200.degree. C and replacing the hydrogen atmosphere with an inert argon atmosphere while maintaining this elevated temperature for a period of about 1/2 hour, and (f) cooling the resulting alloy to room temperature in this argon atmosphere.

  6. High strength alloys

    Science.gov (United States)

    Maziasz, Phillip James; Shingledecker, John Paul; Santella, Michael Leonard; Schneibel, Joachim Hugo; Sikka, Vinod Kumar; Vinegar, Harold J.; John, Randy Carl; Kim, Dong Sub

    2012-06-05

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tublar that is at least partially made from a material containing at least one of the metal alloys.

  7. High strength alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maziasz, Phillip James [Oak Ridge, TN; Shingledecker, John Paul [Knoxville, TN; Santella, Michael Leonard [Knoxville, TN; Schneibel, Joachim Hugo [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Vinegar, Harold J [Bellaire, TX; John, Randy Carl [Houston, TX; Kim, Dong Sub [Sugar Land, TX

    2010-08-31

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tubular that is at least partially made from a material containing at least one of the metal alloys.

  8. KML Super Overlay to WMS Translator

    Science.gov (United States)

    Plesea, Lucian

    2007-01-01

    This translator is a server-based application that automatically generates KML super overlay configuration files required by Google Earth for map data access via the Open Geospatial Consortium WMS (Web Map Service) standard. The translator uses a set of URL parameters that mirror the WMS parameters as much as possible, and it also can generate a super overlay subdivision of any given area that is only loaded when needed, enabling very large areas of coverage at very high resolutions. It can make almost any dataset available as a WMS service visible and usable in any KML application, without the need to reformat the data.

  9. Super-resolution optical microscopy: multiple choices.

    Science.gov (United States)

    Huang, Bo

    2010-02-01

    The recent invention of super-resolution optical microscopy enables the visualization of fine features in biological samples with unprecedented clarity. It creates numerous opportunities in biology because vast amount of previously obscured subcellular processes now can be directly observed. Rapid development in this field in the past two years offers many imaging modalities that address different needs but they also complicates the choice of the 'perfect' method for answering a specific question. Here I will briefly describe the principles of super-resolution optical microscopy techniques and then focus on comparing their characteristics in various aspects of practical applications.

  10. Super resolution of images and video

    CERN Document Server

    Katsaggelos, Aggelos K

    2007-01-01

    This book focuses on the super resolution of images and video. The authors' use of the term super resolution (SR) is used to describe the process of obtaining a high resolution (HR) image, or a sequence of HR images, from a set of low resolution (LR) observations. This process has also been referred to in the literature as resolution enhancement (RE). SR has been applied primarily to spatial and temporal RE, but also to hyperspectral image enhancement. This book concentrates on motion based spatial RE, although the authors also describe motion free and hyperspectral image SR problems. Also exa

  11. Super-Laplacians and their symmetries

    Science.gov (United States)

    Howe, P. S.; Lindström, U.

    2017-05-01

    A super-Laplacian is a set of differential operators in superspace whose highestdimensional component is given by the spacetime Laplacian. Symmetries of super-Laplacians are given by linear differential operators of arbitrary finite degree and are determined by superconformal Killing tensors. We investigate these in flat superspaces. The differential operators determining the symmetries give rise to algebras which can be identified in many cases with the tensor algebras of the relevant superconformal Lie algebras modulo certain ideals. They have applications to Higher Spin theories.

  12. Biocompatibility of dental alloys

    Energy Technology Data Exchange (ETDEWEB)

    Braemer, W. [Heraeus Kulzer GmbH and Co. KG, Hanau (Germany)

    2001-10-01

    Modern dental alloys have been used for 50 years to produce prosthetic dental restorations. Generally, the crowns and frames of a prosthesis are prepared in dental alloys, and then veneered by feldspar ceramics or composites. In use, the alloys are exposed to the corrosive influence of saliva and bacteria. Metallic dental materials can be classified as precious and non-precious alloys. Precious alloys consist of gold, platinum, and small amounts of non-precious components such as copper, tin, or zinc. The non-precious alloys are based on either nickel or cobalt, alloyed with chrome, molybdenum, manganese, etc. Titanium is used as Grade 2 quality for dental purposes. As well as the dental casting alloys, high purity electroplated gold (99.8 wt.-%) is used in dental technology. This review discusses the corrosion behavior of metallic dental materials with saliva in ''in vitro'' tests and the influence of alloy components on bacteria (Lactobacillus casei and Streptococcus mutans). The test results show that alloys with high gold content, cobalt-based alloys, titanium, and electroplated gold are suitable for use as dental materials. (orig.)

  13. Creep Resistant Zinc Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Frank E. Goodwin

    2002-12-31

    This report covers the development of Hot Chamber Die Castable Zinc Alloys with High Creep Strengths. This project commenced in 2000, with the primary objective of developing a hot chamber zinc die-casting alloy, capable of satisfactory service at 140 C. The core objectives of the development program were to: (1) fill in missing alloy data areas and develop a more complete empirical model of the influence of alloy composition on creep strength and other selected properties, and (2) based on the results from this model, examine promising alloy composition areas, for further development and for meeting the property combination targets, with the view to designing an optimized alloy composition. The target properties identified by ILZRO for an improved creep resistant zinc die-casting alloy were identified as follows: (1) temperature capability of 1470 C; (2) creep stress of 31 MPa (4500 psi); (3) exposure time of 1000 hours; and (4) maximum creep elongation under these conditions of 1%. The project was broadly divided into three tasks: (1) Task 1--General and Modeling, covering Experimental design of a first batch of alloys, alloy preparation and characterization. (2) Task 2--Refinement and Optimization, covering Experimental design of a second batch of alloys. (3) Task 3--Creep Testing and Technology transfer, covering the finalization of testing and the transfer of technology to the Zinc industry should have at least one improved alloy result from this work.

  14. Creep Resistant Zinc Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Frank E. Goodwin

    2002-12-31

    This report covers the development of Hot Chamber Die Castable Zinc Alloys with High Creep Strengths. This project commenced in 2000, with the primary objective of developing a hot chamber zinc die-casting alloy, capable of satisfactory service at 140 C. The core objectives of the development program were to: (1) fill in missing alloy data areas and develop a more complete empirical model of the influence of alloy composition on creep strength and other selected properties, and (2) based on the results from this model, examine promising alloy composition areas, for further development and for meeting the property combination targets, with the view to designing an optimized alloy composition. The target properties identified by ILZRO for an improved creep resistant zinc die-casting alloy were identified as follows: (1) temperature capability of 1470 C; (2) creep stress of 31 MPa (4500 psi); (3) exposure time of 1000 hours; and (4) maximum creep elongation under these conditions of 1%. The project was broadly divided into three tasks: (1) Task 1--General and Modeling, covering Experimental design of a first batch of alloys, alloy preparation and characterization. (2) Task 2--Refinement and Optimization, covering Experimental design of a second batch of alloys. (3) Task 3--Creep Testing and Technology transfer, covering the finalization of testing and the transfer of technology to the Zinc industry should have at least one improved alloy result from this work.

  15. Second invariant for two-dimensional classical super systems

    Indian Academy of Sciences (India)

    S C Mishra; Roshan Lal; Veena Mishra

    2003-10-01

    Construction of superpotentials for two-dimensional classical super systems (for ≥ 2) is carried out. Some interesting potentials have been studied in their super form and also their integrability.

  16. Microstructure Formation in Strip-Cast RE-Fe-B Alloys for Magnets

    Science.gov (United States)

    Yamamoto, Kazuhiko; Matsuura, Masashi; Sugimoto, Satoshi

    2017-07-01

    During the manufacturing of sintered NdFeB magnets, it is well known that the microstructure of the starting alloy has a strong influence on the processing and the magnetic properties of the product. In this study, we clarify the microstructure formation in strip-cast rare earth (R)-Fe-B alloys used to produce magnets. The microstructure of the alloy surface in contact with the cooling roll and its cross-section were observed using laser microscopy, field emission electron microprobe analysis, and transmission electron microscopy. The orientations of crystal grains were determined by X-ray diffraction and electron backscatter diffraction analyses. Petal-shaped structures were found to cover the alloy surface in contact with the cooling roll, each consisting of a central nucleation region and radially grown Nd2Fe14B dendritic structures. The nucleation region, consisting of a "disc" and "predendrites", occurs in the super-cooled region of the contact area between the cooling roll and melt. In the disc region, spherical Nd2Fe14B particles in the thickness direction increase in volume. These discs and predendrites observed in the super-cooled area negatively influence the magnetic orientation and sinterability in the produced magnets. Therefore, it is important to avoid excessive super-cooling to obtain optimum magnetic properties.

  17. An integrable generalization of the super AKNS hierarchy and its bi-Hamiltonian formulation

    Science.gov (United States)

    Yu, Jing; Ma, Wen-Xiu; Han, Jingwei; Chen, Shouting

    2017-02-01

    Based on a Lie super-algebra B(0, 1), an integrable generalization of the super AKNS iso-spectral problem is introduced and its corresponding generalized super AKNS hierarchy is generated. By making use of the super-trace identity (or the super variational identity), the resulting super soliton hierarchy can be put into a super bi-Hamiltonian form. A generalized super AKNS soliton hierarchy with self-consistent sources is also presented.

  18. Explosive Super-eruptions: Problems and Prejudices

    Science.gov (United States)

    Self, S.

    2010-12-01

    A super-eruption is defined as one with a magma yield > 10^15 kg (magnitude (M) 8). The term has mainly been applied to large-scale, caldera and ignimbrite-forming explosive eruptions, but it can be applied to all eruptions that released > 10^15 kg of magma. For effusive volcanism, evidence suggests that individual eruptions of this size ( > ~ 370 km^3 of typical basalt or > 450 km^3 of rhyolite flood lava) arise only during periods of LIP formation. The super-eruption concept raises interesting questions about genesis and storage of magmas that feed these vast events. Deposits of major explosive eruptions are Plinian fallout, ignimbrite sheets, and co-ignimbrite ash fall. Based on earlier suggestions and evidence, widespread outflow ignimbrite (O), co-ignimbrite ash (A), and inter-caldera ignimbrite (I) are all major components of the total super-eruption deposit and may tend towards being subequal. In super-eruption deposits, the reported volume of vent-derived Plinian eruption column fallout is often a minor component of the total volume, yet in several cases (Oruanui, Taupo, 26 ka ago, M 8.1; Bishop Tuff, 760 ka, M 8.2; Bandelier (Otowi) Tuff, 1.6 Ma, M8) it is now recognized that vent-derived columns persisted for most of the eruption. Thus, distally, the ash-fall derived from co-ignimbrite ash clouds may be mixed with contemporaneous fallout from a vertical column. Some major ignimbrites have no reported associated Plinian deposit; the huge Young Toba Tuff (YTT, 74 ka, M 8.8) is a significant example. However, the very widespread Toba ash-fall deposit constitutes ~ 40 % of the total mass of magma erupted and is presumed to be co-ignimbrite. Timing of the onset of column collapse probably controls whether a recognizable Plinian deposit is laid down. All super-eruptions probably produce extensive fallout deposits, and this is generally of vent-derived and pyroclastic-flow-derived origin. Establishing the relationships between large-scale ignimbrites and their

  19. On super edge-graceful trees of diameter four

    CERN Document Server

    Krop, E; Raridan, C

    2011-01-01

    In "On the super edge graceful trees of even orders," Chung, Lee, Gao, and Schaffer posed the following problem: Characterize trees of diameter 4 which are super edge-graceful. In this paper, we provide super edge-graceful labelings for all caterpillars and even size lobsters of diameter 4 which permit such labelings. We also provide super edge-graceful labelings for several families of odd size lobsters of diameter 4.

  20. On the mechanical properties of TiNb based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Y. [SIMAP-CNRS, Institut Polytechnique de Grenoble, BP 75, St. Martin d’Hères 38402 (France); Georgarakis, K. [WPI Advanced Institute for Materials Research, Tohoku University, Sendai (Japan); SIMAP-CNRS, Institut Polytechnique de Grenoble, BP 75, St. Martin d’Hères 38402 (France); Yokoyama, Y. [WPI Advanced Institute for Materials Research, Tohoku University, Sendai (Japan); Yavari, A.R., E-mail: euronano@minatec.inpg.fr [SIMAP-CNRS, Institut Polytechnique de Grenoble, BP 75, St. Martin d’Hères 38402 (France)

    2013-09-15

    Highlights: •Systematic study of compressive behaviors of TiNb based alloys in different states. •Comparison between X-ray diffraction results in reflection and transmission mode. •High melting temperature TiNb based alloys were fabricated by copper mold casting. •Textures of studied alloys are analyzed through synchrotron radiation data. -- Abstract: A series of TiNb(Sn) alloys were synthesized by copper mold suction casting and subjected to different heat treatments (furnace cooling or water quenching). The microstructure, thermal and mechanical properties of the as-cast and heat treated samples were investigated. For the Ti–8.34 at.% Nb alloy, the as-cast and water quenched samples possess martensitic α′′ phase at room temperature and compression tests of these samples show occurrence of shape memory effect. For β phase Ti–25.57 at.% Nb alloys, stress-induced martensitic transformation was found during compression in the as-cast and water quenched samples. For the ternary Ti–25.05 at.%Nb–2.04 at.%Sn alloy, conventional linear elastic behavior was observed. It is shown that the addition of Sn increases the stability of the β phase. The Young’s moduli of these alloys were also measured by ultrasonic measurements. Water-quenched Ti–25.57 at.%Nb alloy was found to exhibit the lowest Young’s modulus value. Sn addition has small impact on the Young’s moduli of the TiNb alloys.

  1. Role of multi-microalloying by rare earth elements in ductilization of magnesium alloys

    Directory of Open Access Journals (Sweden)

    Yuanding Huang

    2014-03-01

    Full Text Available The present work investigates the influences of microalloying with rare earths on the mechanical properties of magnesium alloys. The amount of each rare earth element is controlled below 0.4 wt.% in order not to increase the cost of alloy largely. The synergic effects from the multi-microalloying with rare earths on the mechanical properties are explored. The obtained results show that the as-cast magnesium alloys multi-microalloying with rare earths possesses a quite high ductility with a tensile strain up to 25–30% at room temperature. Moreover, these alloys exhibit much better corrosion resistance than AZ31 alloy. The preliminary in situ neutron diffractions on the deformation of these alloys indicate that the multi-microalloying with rare earths seems to be beneficial for the activation of more slip systems. The deformation becomes more homogeneous and the resultant textures after deformation are weakened.

  2. Peculiarities of structure-stressed state of phases in heat resisting nickel alloys

    Energy Technology Data Exchange (ETDEWEB)

    Samojlov, A.I.; Ignatova, I.A.; Razumovskij, I.M.; Kozlova, V.S.; Dodonova, L.P.

    Temperature change of periods (asub(..gamma..) and asub(..gamma..') of crystal lattices of phases in the temperature range 293-1173 K in three differently alloyed heat-resisting nickel alloys is determined. The measurements are made in vacuum approximately 10/sup -4/ mm Hg. Discrepancy between crystal iattice periods ..gamma..- and ..gamma..'-phase in three industrial heat-resisting alloys of ZhS type at the temperatures 293, 973, 1173 K and interphase strains in them at room temperature are determined. The degree of intrinsic plastic strain of matrix of the above-mentioned alloys, caused by interphase strains, is determined. Correlation of the alloy properties with the level of intrinsic plastic is shown. Mechanisms of the effect of structurally-strained state of alloys on their properties are discussed.

  3. Tribological behaviour of conventional Al–Sn and equivalent Al–Pb alloys under lubrication

    Indian Academy of Sciences (India)

    J P Pathak; S Mohan

    2003-04-01

    Two compositions of conventional aluminium base alloys were selected and equal amounts of tin and lead as a soft phase were incorporated separately. Impeller mixing and chill casting technique were employed for the preparation of the alloys. Mechanical properties of as cast alloys were evaluated at room temperature. Frictional behaviour of the alloys was studied in detail under lubrication while creating different frictional states by imposing 5–60 kg of normal load on the bearing (bush) mating surface. It was found that aluminium tin and leaded aluminium alloys slightly differ in mechanical properties. Frictional states created during sliding against steel shaft (hardness 55–60 Rc) under oil lubrication were not much different. Leaded aluminium alloy bushes show marginally lower friction than the conventional ones.

  4. Ferromagnetism of Fe{sub 86}Mn{sub 14-y}Cu{sub y} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Franca, F. [DF-UDESC, Joinville, CEP 89223-100, SC (Brazil); Paduani, C. [DF-UFSC, Florianopolis, CEP 88040-900, SC (Brazil)]. E-mail: paduani@fisica.ufsc.br; Krause, J.C. [DCET-URI, Santo Angelo, CEP 98802-470, RS (Brazil); Ardisson, J.D. [CDTN, Belo Horizonte, CEP 30123-970, MG (Brazil); Yoshida, M.I. [DQ-ICEX-UFMG, Belo Horizonte, CEP 31270-901, MG (Brazil); Schaf, J. [IF-UFRGS, Porto Alegre, CEP 91501-970, RS (Brazil)

    2007-01-01

    The magnetic properties of disordered Fe{sub 86}Mn{sub 14-y}Cu{sub y} alloys were investigated with several experimental techniques. The results of X-ray diffraction showed that these alloys are single phase with the A2 (BCC) structure. These are ferromagnetic alloys at room temperature, and the Curie temperature decreases with the increase of the Cu content. An abrupt loss of magnetization was observed below T{sub C} at a temperature which increases with the reduction of the Mn content in the alloys. The addition of manganese enhances the solubility of copper in iron matrix and retains the BCC structure in iron-rich alloys. The behavior of the magnetization with temperature and its composition dependence indicate that an antiferromagnetic coupling is expected between the Fe and Mn atoms. The magnetic moments of both Fe and Mn atoms are expected to vary strongly with composition in these alloys.

  5. Increasing strength and conductivity of Cu alloy through abnormal plastic deformation of an intermetallic compound

    Science.gov (United States)

    Han, Seung Zeon; Lim, Sung Hwan; Kim, Sangshik; Lee, Jehyun; Goto, Masahiro; Kim, Hyung Giun; Han, Byungchan; Kim, Kwang Ho

    2016-08-01

    The precipitation strengthening of Cu alloys inevitably accompanies lowering of their electric conductivity and ductility. We produced bulk Cu alloys arrayed with nanofibers of stiff intermetallic compound through a precipitation mechanism using conventional casting and heat treatment processes. We then successfully elongated these arrays of nanofibers in the bulk Cu alloys to 400% of original length without breakage at room temperature using conventional rolling process. By inducing such an one-directional array of nanofibers of intermetallic compound from the uniform distribution of fine precipitates in the bulk Cu alloys, the trade-off between strength and conductivity and between strength and ductility could be significantly reduced. We observed a simultaneous increase in electrical conductivity by 1.3 times and also tensile strength by 1.3 times in this Cu alloy bulk compared to the conventional Cu alloys.

  6. Shape memory alloys: metallurgy, biocompatibility, and biomechanics for neurosurgical applications.

    Science.gov (United States)

    Hoh, Daniel J; Hoh, Brian L; Amar, Arun P; Wang, Michael Y

    2009-05-01

    SHAPE MEMORY ALLOYS possess distinct dynamic properties with particular applications in neurosurgery. Because of their unique physical characteristics, these materials are finding increasing application where resiliency, conformation, and actuation are needed. Nitinol, the most frequently manufactured shape memory alloy, responds to thermal and mechanical stimuli with remarkable mechanical properties such as shape memory effect, super-elasticity, and high damping capacity. Nitinol has found particular use in the biomedical community because of its excellent fatigue resistance and biocompatibility, with special interest in neurosurgical applications. The properties of nitinol and its diffusionless phase transformations contribute to these unique mechanical capabilities. The features of nitinol, particularly its shape memory effect, super-elasticity, damping capacity, as well as its biocompatibility and biomechanics are discussed herein. Current and future applications of nitinol and other shape memory alloys in endovascular, spinal, and minimally invasive neurosurgery are introduced. An understanding of the metallurgic properties of nitinol provides a foundation for further exploration of its use in neurosurgical implant design.

  7. Properties and medical applications of shape memory alloys.

    Science.gov (United States)

    Tarniţă, Daniela; Tarniţă, D N; Bîzdoacă, N; Mîndrilă, I; Vasilescu, Mirela

    2009-01-01

    One of the most known intelligent material is nitinol, which offers many functional advantages over conventional implantable alloys. Applications of SMA to the biomedical field have been successful because of their functional qualities, enhancing both the possibility and the execution of less invasive surgeries. The biocompatibility of these alloys is one of their most important features. Different applications exploit the shape memory effect (one-way or two-way) and the super elasticity, so that they can be employed in orthopedic and cardiovascular applications, as well as in the manufacture of new surgical tools. Therefore, one can say that smart materials, especially SMA, are becoming noticeable in the biomedical field. Super elastic NiTi has become a material of strategic importance as it allows to overcome a wide range of technical and design issues relating to the miniaturization of medical devices and the increasing trend for less invasive and therefore less traumatic procedures. This paper will consider just why the main properties of shape memory alloys hold so many opportunities for medical devices and will review a selection of current applications.

  8. Mitigation of Corrosion on Magnesium Alloy by Predesigned Surface Corrosion

    Science.gov (United States)

    Zhang, Xuming; Wu, Guosong; Peng, Xiang; Li, Limin; Feng, Hongqing; Gao, Biao; Huo, Kaifu; Chu, Paul K.

    2015-11-01

    Rapid corrosion of magnesium alloys is undesirable in structural and biomedical applications and a general way to control corrosion is to form a surface barrier layer isolating the bulk materials from the external environment. Herein, based on the insights gained from the anticorrosion behavior of corrosion products, a special way to mitigate aqueous corrosion is described. The concept is based on pre-corrosion by a hydrothermal treatment of Al-enriched Mg alloys in water. A uniform surface composed of an inner compact layer and top Mg-Al layered double hydroxide (LDH) microsheet is produced on a large area using a one-step process and excellent corrosion resistance is achieved in saline solutions. Moreover, inspired by the super-hydrophobic phenomenon in nature such as the lotus leaves effect, the orientation of the top microsheet layer is tailored by adjusting the hydrothermal temperature, time, and pH to produce a water-repellent surface after modification with fluorinated silane. As a result of the trapped air pockets in the microstructure, the super-hydrophobic surface with the Cassie state shows better corrosion resistance in the immersion tests. The results reveal an economical and environmentally friendly means to control and use the pre-corrosion products on magnesium alloys.

  9. The structure of the super-W∞(λ) algebra

    NARCIS (Netherlands)

    Bergshoeff, E.; Wit, B. de; Vasiliev, M.

    1991-01-01

    We give a comprehensive treatment of the super-W∞(λ) algebra, an extension of the super-Virasoro algebra that contains generators of spin s ≥ ½. The parameter λ defines the embedding of the Virasoro subalgebra. We describe how to obtain the super-W∞(λ) algebra from the associative algebra of

  10. Super ready: how a regional approach to Super Bowl EMS paid off.

    Science.gov (United States)

    Clancy, Terry; Cortacans, Henry P

    2014-07-01

    The Super Bowl and its associated activities represent one of the largest special events in the world. Super Bowl XLVIII was geographically unique because the NFL's and Super Bowl Host Committee's activities, venues and events encompassed two states and fell across numerous jurisdictions within six counties (Bergen, Hudson, Morris, Essex, Middlesex, and Manhattan).This Super Bowl was the first to do this. EMS was one of the largest operational components during this event. Last and most important, it is the people and relationships that make any planning initiative and event a success. Sit down and have a cup a coffee with your colleagues, partners and neighbors in and out of state to discuss your planning initiatives. Do it early-it will make your efforts less painful should an event of this magnitude come to a city near you!

  11. 39 CFR 3004.12 - Reading room.

    Science.gov (United States)

    2010-07-01

    ... 39 Postal Service 1 2010-07-01 2010-07-01 false Reading room. 3004.12 Section 3004.12 Postal... Reading room. (a) The Commission maintains a public reading room at its offices (901 New York Avenue, NW., Suite 200, Washington, DC 20268-0001) and an electronic reading room at http://www.prc.gov. The...

  12. 32 CFR 296.6 - Reading room.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Reading room. 296.6 Section 296.6 National... Reading room. (a) The NRO shall provide a reading room equipped with hard copy and electronic records as required in the “Electronic Freedom of Information Act Amendments of 1996”. The NRO Reading Room is...

  13. Acoustic Design of Super-light Structures

    DEFF Research Database (Denmark)

    Christensen, Jacob Ellehauge; Hertz, Kristian Dahl; Brunskog, Jonas

    aggregate (leca) along with a newly developed technology called pearl-chain reinforcement, which is a system for post-tensioning. Here, it is shown how to combine these technologies within a precast super-light slab element, while honoring the requirements of a holistic design. Acoustic experiments...

  14. Folded shapes with Super-Light Structures

    DEFF Research Database (Denmark)

    Castberg, Niels Andreas; Hertz, Kristian Dahl

    2012-01-01

    The use of folded shapes in structures has become more common, but it still costs problems because of construction issues and bending moments. The present paper deals with how the newly patented structural concept Super-Light structures (SLS) can be used to create folded shapes. SLS gives lighter...

  15. Single Image Super Resolution via Sparse Reconstruction

    NARCIS (Netherlands)

    Kruithof, M.C.; Eekeren, A.W.M. van; Dijk, J.; Schutte, K.

    2012-01-01

    High resolution sensors are required for recognition purposes. Low resolution sensors, however, are still widely used. Software can be used to increase the resolution of such sensors. One way of increasing the resolution of the images produced is using multi-frame super resolution algorithms. Limita

  16. Conformal anomaly of super Wilson loop

    Energy Technology Data Exchange (ETDEWEB)

    Belitsky, A.V., E-mail: andrei.belitsky@asu.edu [Department of Physics, Arizona State University, Tempe, AZ 85287-1504 (United States)

    2012-09-11

    Classically supersymmetric Wilson loop on a null polygonal contour possesses all symmetries required to match it onto non-MHV amplitudes in maximally supersymmetric Yang-Mills theory. However, to define it quantum mechanically, one is forced to regularize it since perturbative loop diagrams are not well defined due to presence of ultraviolet divergences stemming from integration in the vicinity of the cusps. A regularization that is adopted by practitioners by allowing one to use spinor helicity formalism, on the one hand, and systematically go to higher orders of perturbation theory is based on a version of dimensional regularization, known as Four-Dimensional Helicity scheme. Recently it was demonstrated that its use for the super Wilson loop at one loop breaks both conformal symmetry and Poincare supersymmetry. Presently, we exhibit the origin for these effects and demonstrate how one can undo this breaking. The phenomenon is alike the one emerging in renormalization group mixing of conformal operators in conformal theories when one uses dimensional regularization. The rotation matrix to the diagonal basis is found by means of computing the anomaly in the Ward identity for the conformal boost. Presently, we apply this ideology to the super Wilson loop. We compute the one-loop conformal anomaly for the super Wilson loop and find that the anomaly depends on its Grassmann coordinates. By subtracting this anomalous contribution from the super Wilson loop we restore its interpretation as a dual description for reduced non-MHV amplitudes which are expressed in terms of superconformal invariants.

  17. Super-Kamiokande worth full restoration

    CERN Multimedia

    Mishima, I

    2002-01-01

    While prospects are good that the SuperKamiokande facility will be partially repaired after an accident last November, the government has yet to confirm whether it will spend the estimated 2.5 billion yen needed for a full-scale restoration (1 page).

  18. Structural optimization of super-repellent surfaces

    DEFF Research Database (Denmark)

    Cavalli, Andrea; Bøggild, Peter; Okkels, Fridolin

    2013-01-01

    Micro-patterning is an effective way to achieve surfaces with extreme liquid repellency. This technique does not rely on chemical coatings and is therefore a promising concept for application in food processing and bio-compatibile coatings. This super-repellent behaviour is obtained by suspending...

  19. Facile preparation of super durable superhydrophobic materials.

    Science.gov (United States)

    Wu, Lei; Zhang, Junping; Li, Bucheng; Fan, Ling; Li, Lingxiao; Wang, Aiqin

    2014-10-15

    The low stability, complicated and expensive fabrication procedures seriously hinder practical applications of superhydrophobic materials. Here we report an extremely simple method for preparing super durable superhydrophobic materials, e.g., textiles and sponges, by dip coating in fluoropolymers (FPs). The morphology, surface chemical composition, mechanical, chemical and environmental stabilities of the superhydrophobic textiles were investigated. The results show how simple the preparation of super durable superhydrophobic textiles can be! The superhydrophobic textiles outperform their natural counterparts and most of the state-of-the-art synthetic superhydrophobic materials in stability. The intensive mechanical abrasion, long time immersion in various liquids and repeated washing have no obvious influence on the superhydrophobicity. Water drops are spherical in shape on the samples and could easily roll off after these harsh stability tests. In addition, this simple dip coating approach is applicable to various synthetic and natural textiles and can be easily scaled up. Furthermore, the results prove that a two-tier roughness is helpful but not essential with regard to the creation of super durable superhydrophobic textiles. The combination of microscale roughness of textiles and materials with very low surface tension is enough to form super durable superhydrophobic textiles. According to the same procedure, superhydrophobic polyurethane sponges can be prepared, which show high oil absorbency, oil/water separation efficiency and stability. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Pavement behaviour under the super single tyre

    CSIR Research Space (South Africa)

    Viljoen, AW

    1982-06-01

    Full Text Available Pavement behaviour under the super single tyre (SST) was investigated and compared with that under a conventional dual tyre (CDT). Contact areas and contact pressures over a range of loading conditions were measured and compared. Two approaches were...

  1. Typhoon effects on super-tall buildings

    Science.gov (United States)

    Li, Q. S.; Xiao, Y. Q.; Wu, J. R.; Fu, J. Y.; Li, Z. N.

    2008-06-01

    Full-scale measurement is considered to be the most reliable method for evaluating wind effects on buildings and structures. This paper presents selected results of wind characteristics and structural responses measured from four super-tall buildings, The Center (350 m high, 79 floors) in Hong Kong, Di Wang Tower (384 m high, 78 floors) in Shenzhen, CITIC Plaza Tower (391 m high, 80 floors) in Guangzhou and Jin Mao Building (421 m high, 88 floors) in Shanghai, during the passages of three typhoons. The field data such as wind speed, wind direction and acceleration responses, etc., were continuously measured from the super-tall buildings during the typhoons. Detailed analysis of the field data was conducted to investigate the characteristics of typhoon-generated wind and wind-induced vibrations of these super-tall buildings under typhoon conditions. The dynamic characteristics of the tall buildings were determined from the field measurements and comparisons with those calculated from the finite element (FE) models of the structures were made. Furthermore, the full-scale measurements were compared with wind tunnel results to evaluate the accuracy of the model test results and the adequacy of the techniques used in the wind tunnel tests. The results presented in this paper are expected to be of considerable interest and of use to researchers and professionals involved in designing super-tall buildings.

  2. Searching for Frozen Super Earth via Microlensing

    Science.gov (United States)

    Batista, V.; Beaulieu, J. P.; Cassan, A.; Coutures, C.; Donatowicz, J.; Fouqué, P.; Kubas, D.; Marquette, J. B.

    2009-04-01

    Microlensing planet hunt is a unique method to probe efficiently for frozen Super Earth orbiting the most common stars of our galaxy. It is nicely complementing the parameter space probed by very high accuracy radial velocity measurements and future space based detections of low mass transiting planets. In order to maximize the planet catch, the microlensing community is engaged in a total cooperation among the different groups (OGLE, MicroFUN, MOA, PLANET/RoboNET) by making the real time data available, and mutual informing/reporting about modeling efforts. Eight planets have been published so far by combinations of the different groups, 4 Jovian analogues, one Neptune and two Super Earth. Given the microlensing detection efficiency, it suggests that these Neptunes/Super Earths may be quite common. Using networks of dedicated 1-2m class telescopes, the microlensing community has entered a new phase of planet discoveries, and will be able to provide constraints on the abundance of frozen Super-Earths in the near future. Statistics about Mars to Earth mass planets, extending to the habitable zone will be achieved with space based wide field imagers (EUCLID) at the horizon 2017.

  3. Folded shapes with Super-Light Structures

    DEFF Research Database (Denmark)

    Castberg, Niels Andreas; Hertz, Kristian Dahl

    2012-01-01

    The use of folded shapes in structures has become more common, but it still costs problems because of construction issues and bending moments. The present paper deals with how the newly patented structural concept Super-Light structures (SLS) can be used to create folded shapes. SLS gives lighter...

  4. Advantages of super-light structures

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl

    2009-01-01

    Super-light structures with pearl-chain reinforcement is a new revolutionary technology that opens possibilities of building load-bearing structures much cheaper and with several other advantages compared to traditional constructions of concrete and steel. Some benefits are: 1 Half price or less. 2...

  5. Super-resolution near field imaging device

    DEFF Research Database (Denmark)

    2014-01-01

    Super-resolution imaging device comprising at least a first and a second elongated coupling element, each having a first transverse dimension at a first end and a second transverse dimension at a second end and being adapted for guiding light between their respective first and second ends, each...

  6. BREEDING SUPER-EARTHS AND BIRTHING SUPER-PUFFS IN TRANSITIONAL DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eve J.; Chiang, Eugene, E-mail: evelee@berkeley.edu, E-mail: echiang@astro.berkeley.edu [Department of Astronomy, University of California Berkeley, Berkeley, CA 94720-3411 (United States)

    2016-02-01

    The riddle posed by super-Earths (1–4R{sub ⊕}, 2–20M{sub ⊕}) is that they are not Jupiters: their core masses are large enough to trigger runaway gas accretion, yet somehow super-Earths accreted atmospheres that weigh only a few percent of their total mass. We show that this puzzle is solved if super-Earths formed late, as the last vestiges of their parent gas disks were about to clear. This scenario would seem to present fine-tuning problems, but we show that there are none. Ambient gas densities can span many (in one case up to 9) orders of magnitude, and super-Earths can still robustly emerge after ∼0.1–1 Myr with percent-by-weight atmospheres. Super-Earth cores are naturally bred in gas-poor environments where gas dynamical friction has weakened sufficiently to allow constituent protocores to gravitationally stir one another and merge. So little gas is present at the time of core assembly that cores hardly migrate by disk torques: formation of super-Earths can be in situ. The basic picture—that close-in super-Earths form in a gas-poor (but not gas-empty) inner disk, fed continuously by gas that bleeds inward from a more massive outer disk—recalls the largely evacuated but still accreting inner cavities of transitional protoplanetary disks. We also address the inverse problem presented by super-puffs: an uncommon class of short-period planets seemingly too voluminous for their small masses (4–10R{sub ⊕}, 2–6M{sub ⊕}). Super-puffs most easily acquire their thick atmospheres as dust-free, rapidly cooling worlds outside ∼1 AU where nebular gas is colder, less dense, and therefore less opaque. Unlike super-Earths, which can form in situ, super-puffs probably migrated in to their current orbits; they are expected to form the outer links of mean-motion resonant chains, and to exhibit greater water content. We close by confronting observations and itemizing remaining questions.

  7. Powder metallurgy of turbine disc alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ingesten, N.G. (Dep. of Engineering Metals)

    1981-03-01

    The first part embraced a study of carbide precipitated in IN 100 and astrology powders. The powder was heat treated at temperatures between 950/sup 0/C and 1150/sup 0/C. After aging at 950-1100/sup 0/C the MC-carbides formed during atomization were replaced by M/sub 23/C/sub 6/-carbides. After 1150/sup 0/C treatments the MC carbides were present again. Precipitation comparable with that obtained in HIP:ed specimens was not observed at free particle surfaces. However, powder particles which had agglomerated during atomization often exhibited considerable precipitation at contiguous surfaces. Obviously, contact between the particles must occur if coarse precipitation at particle surfaces is to develop. Reduced PPB-precipitation was obtained by pre-heat- treatment of powder before compaction. It is suggested that the carbon otherwise available for PPB-precipitation forms carbides in the interior of the powder particles. The aim of the second part was to ..gamma..-strengthen a Co-based super-alloy (Co-15Cr-3Mo-5Ti). Here the Ti-addition gives a coherent and ordered ..gamma..-phase Co/sub 3/Ti. However, upon ageing the alloy is unstable in order to increase the stability modifications of the alloy were prepared by: leaving out the Mo-content, adding 10 % Ni and by decreasing the Ti-content to 4.2 %. In addition, the effect of enhanced grain size and of deformation was investigated. Significant reduction of the transformation rate was only obtained by decresing the Ti-content while deformation of the alloy greatly increased the transformation rate.(author).

  8. SuperB A High-Luminosity Asymmetric $e^+ e^-$ Super Flavour Factory : Conceptual Design Report

    CERN Document Server

    Bona, M.; Grauges Pous, E.; Colangelo, P.; De Fazio, F.; Palano, A.; Manghisoni, M.; Re, V.; Traversi, G.; Eigen, G.; Venturini, M.; Soni, N.; Bruschi, M.; De Castro, S.; Faccioli, P.; Gabrieli, A.; Giacobbe, B.; Semprini Cesare, N.; Spighi, R.; Villa, M.; Zoccoli, A.; Hearty, C.; McKenna, J.; Soni, A.; Khan, A.; Barniakov, A.Y.; Barniakov, M.Y.; Blinov, V.E.; Druzhinin, V.P.; Golubev, V.B.; Kononov, S.A.; Koop, I.A.; Kravchenko, E.A.; Levichev, E.B.; Nikitin, S.A.; Onuchin, A.P.; Piminov, P.A.; Serednyakov, S.I.; Shatilov, D.N.; Skovpen, Y.I.; Solodov, E.A.; Cheng, C.H.; Echenard, B.; Fang, F.; Hitlin, D.J.; Porter, F.C.; Asner, D.M.; Pham, T.N.; Fleischer, R.; Giudice, G.F.; Hurth, T.; Mangano, M.; Mancinelli, G.; Meadows, B.T.; Schwartz, A.J.; Sokoloff, M.D.; Soffer, A.; Beard, C.D.; Haas, T.; Mankel, R.; Hiller, G.; Ball, P.; Pappagallo, M.; Pennington, M.R.; Gradl, W.; Playfer, S.; Abada, A.; Becirevic, D.; Descotes-Genon, S.; Pene, O.; Andreotti, D.; Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabresi, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Prencipe, E.; Santoro, V.; Stancari, G.; Anulli, F.; Baldini-Ferroli, R.; Biagini, M.E.; Boscolo, M.; Calcaterra, A.; Drago, A.; Finocchiaro, G.; Guiducci, S.; Isidori, G.; Pacetti, S.; Patteri, P.; Peruzzi, I.M.; Piccolo, M.; Preger, M.A.; Raimondi, P.; Rama, M.; Vaccarezza, C.; Zallo, A.; Zobov, M.; De Sangro, R.; Buzzo, A.; Lo Vetere, M.; Macri, M.; Monge, M.R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.; Matias, J.; Panduro Vazquez, W.; Borzumati, F.; Eyges, V.; Prell, S.A.; Pedlar, T.K.; Korpar, S.; Pestonik, R.; Staric, M.; Neubert, M.; Denig, A.G.; Nierste, U.; Agoh, T.; Ohmi, K.; Ohnishi, Y.; Fry, J.R.; Touramanis, C.; Wolski, A.; Golob, B.; Krizan, P.; Flaecher, H.; Bevan, A.J.; Di Lodovico, F.; George, K.A.; Barlow, R.; Lafferty, G.; Jawahery, A.; Roberts, D.A.; Simi, G.; Patel, P.M.; Robertson, S.H.; Lazzaro, A.; Palombo, F.; Kaidalov, A.; Buras, A.J.; Tarantino, C.; Buchalla, G.; Sanda, A.I.; D'Ambrosio, G.; Ricciardi, G.; Bigi, I.; Jessop, C.P.; Losecco, J.M.; Honscheid, K.; Arnaud, N.; Chehab, R.; Fedala, Y.; Polci, F.; Roudeau, P.; Sordini, V.; Soskov, V.; Stocchi, A.; Variola, A.; Vivoli, A.; Wormser, G.; Zomer, F.; Bertolin, A.; Brugnera, R.; Gagliardi, N.; Gaz, A.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Bonneaud, G.R.; Lombardo, V.; Calderini, G.; Ratti, L.; Speziali, V.; Biasini, M.; Covarelli, R.; Manoni, E.; Servoli, L.; Angelini, C.; Batignani, G.; Bettarini, S.; Bosi, F.; Carpinelli, M.; Cenci, R.; Cervelli, A.; Dell'Orso, M.; Forti, F.; Giannetti, P.; Giorgi, M.; Lusiani, A.; Marchiori, G.; Massa, M.; Mazur, M.A.; Morsani, F.; Neri, N.; Paoloni, E.; Raffaelli, F.; Rizzo, G.; Walsh, J.; Braun, V.; Lenz, A.; Adams, G.S.; Danko, I.Z.; Baracchini, E.; Bellini, F.; Cavoto, G.; D'Orazio, A.; Del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Gaspero, Mario; Jackson, P.; Martinelli, G.; Mazzoni, M.A.; Morganti, Silvio; Piredda, G.; Renga, F.; Silvestrini, L.; Voena, C.; Catani, L.; Di Ciaccio, A.; Messi, R.; Santovetti, E.; Satta, A.; Ciuchini, M.; Lubicz, V.; Wilson, F.F.; Godang, R.; Chen, X.; Liu, H.; Park, W.; Purohit, M.; Trivedi, A.; White, R.M.; Wilson, J.R.; Allen, M.T.; Aston, D.; Bartoldus, R.; Brodsky, S.J.; Cai, Y.; Coleman, J.; Convery, M.R.; DeBarger, S.; Dingfelder, J.C.; Dubois-Felsmann, G.P.; Ecklund, S.; Fisher, A.S.; Haller, G.; Heifets, S.A.; Kaminski, J.; Kelsey, M.H.; Kocian, M.L.; Leith, D.W.G.S.; Li, N.; Luitz, S.; Luth, V.; MacFarlane, D.; Messner, R.; Muller, D.R.; Nosochkov, Y.; Novokhatski, A.; Pivi, M.; Ratcliff, B.N.; Roodman, A.; Schwiening, J.; Seeman, J.; Snyder, A.; Sullivan, M.; Va'Vra, J.; Wienands, U.; Wisniewski, W.; Stoeck, H.; Cheng, H.Y.; Li, H.N.; Keum, Y.Y.; Gronau, M.; Grossman, Y.; Bianchi, F.; Gamba, D.; Gambino, P.; Marchetto, F.; Menichetti, Ezio A.; Mussa, R.; Pelliccioni, M.; Dalla Betta, G.F.; Bomben, M.; Bosisio, L.; Cartaro, C.; Lanceri, L.; Vitale, L.; Azzolini, V.; Bernabeu, J.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D.A.; Oyanguren, A.; Paradisi, P.; Pich, A.; Sanchis-Lozano, M.A.; Kowalewski, Robert V.; Roney, J.M.; Back, J.J.; Gershon, T.J.; Harrison, P.F.; Latham, T.E.; Mohanty, G.B.; Petrov, A.A.; Pierini, M.; INFN

    2007-01-01

    The physics objectives of SuperB, an asymmetric electron-positron collider with a luminosity above 10^36/cm^2/s are described, together with the conceptual design of a novel low emittance design that achieves this performance with wallplug power comparable to that of the current B Factories, and an upgraded detector capable of doing the physics in the SuperB environment.

  9. Properties of Super-Poisson Processes and Super-Random Walks with Spatially Dependent Branching Rates

    Institute of Scientific and Technical Information of China (English)

    Yan Xia REN

    2008-01-01

    The global supports of super-Poisson processes and super-random walks with a branching mechanism ψ(z)=z2 and constant branching rate are known to be noncompact. It turns out that, for any spatially dependent branching rate, this property remains true. However, the asymptotic extinction property for these two kinds of superprocesses depends on the decay rate of the branching-rate function at infinity.

  10. Thermal conductance modeling and characterization of the SuperCDMS-SNOLAB sub-Kelvin cryogenic system

    Energy Technology Data Exchange (ETDEWEB)

    Dhuley, R. C. [Fermilab; Hollister, M. I. [Fermilab; Ruschman, M. K. [Fermilab; Martin, L. D. [Fermilab; Schmitt, R. L. [Fermilab; Tatkowski, Tatkowski,G.L. [Fermilab; Bauer, D. a. [Fermilab; Lukens, P. T. [Fermilab

    2017-09-13

    The detectors of the Super Cryogenic Dark Matter Search experiment at SNOLAB (SuperCDMS SNOLAB) will operate in a seven-layered cryostat with thermal stages between room temperature and the base temperature of 15 mK. The inner three layers of the cryostat, which are to be nominally maintained at 1 K, 250 mK, and 15 mK, will be cooled by a dilution refrigerator via conduction through long copper stems. Bolted and mechanically pressed contacts, at and cylindrical, as well as exible straps are the essential stem components that will facilitate assembly/dismantling of the cryostat. These will also allow for thermal contractions/movements during cooldown of the sub-Kelvin system. To ensure that these components and their contacts meet their design thermal conductance, prototypes were fabricated and cryogenically tested. The present paper gives an overview of the SuperCDMS SNOLAB sub-Kelvin architecture and its conductance requirements. Results from the conductance measurements tests and from sub-Kelvin thermal modeling are discussed.

  11. A generalized super AKNS hierarchy associated with Lie superalgebra sl(2|1) and its super bi-Hamiltonian structure

    Science.gov (United States)

    Han, Jingwei; Yu, Jing

    2017-03-01

    Starting from a 3 × 3 matrix-valued spectral problem associated with a Lie superalgebra sl(2|1), a generalized super Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy is derived. The resulting super AKNS hierarchy has a super bi-Hamiltonian structure by the supertrace identity.

  12. Super SI燃烧方式试验研究%Super SI Combustion Mode

    Institute of Scientific and Technical Information of China (English)

    沈义涛; 吕世亮; 尹琪; 杨嘉林; 高卫民

    2011-01-01

    The super spark ignition (Super SI) combustion mode, which was the ignition combustion of lean mixture at the temperature of close spontaneous combustion, was researched and its combustion characteristic and feasibility were analyzed.The results indicate that the increase of intake temperature can reduce the cyclic variation of Pmi obviously, shorten the combustion duration and extend the lean limit of SI combustion under the condition of lean mixture. Accordingly, Super SI combustion has the advantages of high thermal efficiency and controllable combustion process.%研究了Super Spark Ignition(Super SI)燃烧方式,即稀薄混合气在近自燃温度状态下点燃燃烧,分析了这种燃烧方式的可行性和燃烧特性.研究结果表明,混合气稀薄时提高发动机的进气温度可显著降低平均指示压力(pmi)的循环波动,缩短燃烧持续期,拓展点燃燃烧的稀薄极限;Super SI燃烧方式具有热效率高、燃烧过程可控的优点.

  13. The 2015 super-resolution microscopy roadmap

    Science.gov (United States)

    Hell, Stefan W.; Sahl, Steffen J.; Bates, Mark; Zhuang, Xiaowei; Heintzmann, Rainer; Booth, Martin J.; Bewersdorf, Joerg; Shtengel, Gleb; Hess, Harald; Tinnefeld, Philip; Honigmann, Alf; Jakobs, Stefan; Testa, Ilaria; Cognet, Laurent; Lounis, Brahim; Ewers, Helge; Davis, Simon J.; Eggeling, Christian; Klenerman, David; Willig, Katrin I.; Vicidomini, Giuseppe; Castello, Marco; Diaspro, Alberto; Cordes, Thorben

    2015-11-01

    Far-field optical microscopy using focused light is an important tool in a number of scientific disciplines including chemical, (bio)physical and biomedical research, particularly with respect to the study of living cells and organisms. Unfortunately, the applicability of the optical microscope is limited, since the diffraction of light imposes limitations on the spatial resolution of the image. Consequently the details of, for example, cellular protein distributions, can be visualized only to a certain extent. Fortunately, recent years have witnessed the development of ‘super-resolution’ far-field optical microscopy (nanoscopy) techniques such as stimulated emission depletion (STED), ground state depletion (GSD), reversible saturated optical (fluorescence) transitions (RESOLFT), photoactivation localization microscopy (PALM), stochastic optical reconstruction microscopy (STORM), structured illumination microscopy (SIM) or saturated structured illumination microscopy (SSIM), all in one way or another addressing the problem of the limited spatial resolution of far-field optical microscopy. While SIM achieves a two-fold improvement in spatial resolution compared to conventional optical microscopy, STED, RESOLFT, PALM/STORM, or SSIM have all gone beyond, pushing the limits of optical image resolution to the nanometer scale. Consequently, all super-resolution techniques open new avenues of biomedical research. Because the field is so young, the potential capabilities of different super-resolution microscopy approaches have yet to be fully explored, and uncertainties remain when considering the best choice of methodology. Thus, even for experts, the road to the future is sometimes shrouded in mist. The super-resolution optical microscopy roadmap of Journal of Physics D: Applied Physics addresses this need for clarity. It provides guidance to the outstanding questions through a collection of short review articles from experts in the field, giving a thorough

  14. Locker Rooms: The Durable Design.

    Science.gov (United States)

    Viklund, Roy; Coons, John

    1997-01-01

    Offers advice on heavy-use locker-room design that provides easier maintenance and vandal resistance. Design features and materials used for flooring, ceilings, and walls are addressed as are built-in systems and equipment, toilet and shower fixtures and partitions, lockers, and mechanical and electrical systems. (GR)

  15. ISOLDE target zone control room

    CERN Multimedia

    2016-01-01

    Operating the ISOLDE target handling robots from the dedicated control room in building 197. Monitors showing the movements of the robots (GPS in this case) in the target zone. The footage shows the actual operation by the operator as well as the different equipment such as camera electronics, camera motor controls, camera monitors and Kuka robot controls touch panel.

  16. Room-Maid in Hotel

    Science.gov (United States)

    Hotel and Catering Industry Training Board, Wembley (England).

    This syllabus is intended for the use of training personnel in drawing up training programs for room-maids in hotels. Its main objective is to produce fully trained maids, thereby maintaining and raising standards. The syllabus is divided into three sections: Introducing to Housekeeping, Basic Tasks Performed by the Majority of Housekeeping…

  17. New Radiation Protection training room

    CERN Multimedia

    HSE Unit

    2013-01-01

    From now on, the theory and practical components of the Radiation Protection training, developed by the RP Group and offered by the HSE Unit’s Safety Training team to people working in a Controlled Radiation Area, will take place in a dedicated teaching room, designed specifically for this kind of training.   The new room is in the Safety Training Centre on the Prévessin site and has been open since 16 October. It has an adjoining workshop that, like the room itself, can accommodate up to 12 people. It is also equipped with an interactive board as well as instruments and detectors to test for ionising radiation. This room is located near the recently inaugurated LHC tunnel mock-up where practical training exercises can be carried out in conditions almost identical to those in the real tunnel. To consult the safety training catalogue and/or sign up for Radiation Protection training, please go to: https://cta.cern.ch For further information, please contact the Safety Trainin...

  18. Thermal plumes in ventilated rooms

    DEFF Research Database (Denmark)

    Kofoed, Peter; Nielsen, Peter V.

    1990-01-01

    The design of a displacement ventilation system involves determination of the flow rate in the thermal plumes. The flow rate in the plumes and the vertical temperature gradient influence each other, and they are influenced by many factors. This paper shows some descriptions of these effects. Free...... to be the only possible approach to obtain the volume flow in: thermal plumes in ventilated rooms....

  19. Room 101: The Social SAC

    Directory of Open Access Journals (Sweden)

    Michael Allhouse

    2014-09-01

    Full Text Available This column looks at the SAC at the University of Bradford (UoB, which is commonly known as Room 101. The column looks at how Room 101 has reacted to the problem of reduced usage as a result of the cancellation of foreign language courses at the UoB, social media making online communication between learners easier, and the availability of online resources which have reduced the perceived importance of SAC resources (such as books and CDs. Room 101 has adopted a materials-light, people-focussed approach which has led to increased usage. Other solutions were tried and are detailed in this instalment, with examples from the literature. Room 101’s approach has centred on facilitated social learning opportunities and a friendly, student-led atmosphere, with many students working in the Centre. This instalment is the first of three; the following instalments will look at research conducted into student and staff thoughts on the current state of SACs in UK Higher Education.

  20. Role of alloying additions on the properties of Cu–Al–Mn shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, Rupa, E-mail: rupadasgupta@ampri.res.in; Jain, Ashish Kumar; Kumar, Pravir; Hussain, Shahadat; Pandey, Abhishek

    2015-01-25

    Highlights: • Cu based SMAs with high transition temperature could be made using LM route. • The properties depend on alloying composition. • Property characterisation establishes feasibility of making SMAs. - Abstract: The effect of alloying seven different elements [Zn, Si, Fe, Ni, Mg, Cr and Ti] on the microstructure, hardness, phase precipitation and transformation temperature in a Cu–12.5Al–5Mn alloy with a view to possible improvements as a result of these additions is the focus of the reported study. The base alloy has been chosen keeping in mind its ability to exhibit shape memory properties and improved ductility over other Cu-based SMAs. The objective was to ascertain changes or improvements attained due to the individual tertiary additions. The samples were prepared through liquid metallurgy route using pure copper, aluminum, manganese and the respective quaternary alloying elements in right quantities to weigh 1000 g of the alloy in total and were melted together. Samples from the cast alloys were subject to homogenisation treatment at 200 °C for 2 h in a muffle furnace and furnace cooled. Samples from the homogenised alloys were heated and held for 2 h at 920 °C followed by ice quenching to obtain the desired martensitic structure for shape memory behaviour. The alloys in the cast, homogenised and quenched conditions were metallographically polished to observe the martensitic phase formation mainly in quenched samples which is a pre requisite for exhibiting shape memory properties in these alloys. X-ray Diffraction studies were carried out on the cast and quenched samples using Cu Kα target; and the phases identified indicate martensitic phase precipitation; however in some cases the precipitation is incomplete. Differential Scanning Calorimetric [DSC] studies were carried out on quenched samples from room temperature to 600 °C maintaining a constant rate of 10 °C/min. Results indicate clear transformation peaks in all the samples which

  1. An Optimisation Approach for Room Acoustics Design

    DEFF Research Database (Denmark)

    Holm-Jørgensen, Kristian; Kirkegaard, Poul Henning; Andersen, Lars

    2005-01-01

    This paper discuss on a conceptual level the value of optimisation techniques in architectural acoustics room design from a practical point of view. It is chosen to optimise one objective room acoustics design criterium estimated from the sound field inside the room. The sound field is modeled...... using the boundary element method where absorption is incorporated. An example is given where the geometry of a room is defined by four design modes. The room geometry is optimised to get a uniform sound pressure....

  2. PREPARATION AND SWELLING PROPERTIES OF SUPER-ABSORBENT POLYMER

    Institute of Scientific and Technical Information of China (English)

    LIU Mingzhu; CHENG Rongshi; WU Jingjia

    1996-01-01

    A super-absorbent polymer is prepared by graft polymerizing acrylamide (AM) onto potato starch using ceric ammonium nitrate (CAN) and N, N'-methylene-bis-acrylamide (bisAM) as an initiator and cross-linking agent respectively, and then subjecting the potato starch- poly(acrylamide)(PAM) graft copolymer (SPAM) to alkaline saponification. The water absorbency (WA) of the sample is nearly 5000 g H2O/g for dry sample in 24 h at room temperature and is far larger than that of reported in the literature[1]. The variables affecting the WA were investigated and optimized, they were: concentrations of potato starch, AM, CAN and bisAM were 26.3 g/L, 1.14 mol/L, 10.3 mmol/L and 0.53 mmol/L, respectively. The amount of sodium hydroxide was 15 g and the temperatures of graft copolymerization and saponification reactions were 60℃ and 95℃. The time of graft copolymerization and saponification reactions was 2 h, respectively.

  3. Investigation of Microstructure in Solid State Welded Al-Cu-Li alloy

    Directory of Open Access Journals (Sweden)

    No Kookil

    2016-01-01

    Full Text Available Al-Li alloys have been extensively used in aerospace vehicle structure since the presence of lithium increases the modulus and reduce the density of the alloy. Especially the third generation Al-Cu-Li alloy shows enhanced fracture toughness at cryogenic temperatures so that the alloy has been used on the fuel tank of space launchers, like Super Lightweight External Tank of the Space Shuttle. Since the commercial size of the plate cannot accommodate the large tank size of the launcher, joining several pieces is required. However, lithium is highly reactive and its compounds can decompose with heat from conventional fusion welding and form different types of gases which result in formation of defects. In this study, the microstructure change is investigated after solid state welding process to join the Al-Cu-Li sheets with optical and transmission electron microscopic analysis of precipitates.

  4. Environmentally Assisted Cracking of Commercial Ni-Cr-Mo Alloys - A Review

    Energy Technology Data Exchange (ETDEWEB)

    Rebak, R B

    2004-11-09

    Nickel-Chromium-Molybdenum alloys (Ni-Cr-Mo) are highly resistant to general corrosion, localized corrosion and environmentally assisted cracking (EAC). Cr acts as a beneficial element under oxidizing acidic conditions and Mo under reducing conditions. All three elements (Ni, Cr and Mo) act synergistically to provide resistance to EAC in environments such as hot concentrated chloride solutions. Ni-Cr-Mo alloys may suffer EAC in environments such as hot caustic solutions, hot wet hydrofluoric acid (HF) solutions and in super critical water oxidation (SCWO) applications. Not all the Ni-Cr-Mo alloys have the same susceptibility to cracking in the mentioned environments. Most of the available data regarding EAC is for the oldest Ni-Cr-Mo alloys such as N10276 and N06625.

  5. The Solution Construction of Heterotic Super-Liouville Model

    Institute of Scientific and Technical Information of China (English)

    YANG Zhan-Ying; ZHEN Yi

    2001-01-01

    We investigate the heterotic super-Liouville model on the base of the basic Lie super-algebra Osp(1|2).Using the super extension of Leznov-Saveliev analysis and Drinfeld Sokolov linear system, we construct the explicit solution of the heterotic super-Liouville system in component form. We also show that the solutions are local and periodic by calculating the exchange relation of the solution. Finally starting from the action of heterotic super-Liou ville model, we obtain the conserved current and conserved charge which possessed the BR ST properties.

  6. Catalyst Alloys Processing

    Science.gov (United States)

    Tan, Xincai

    2014-10-01

    Catalysts are one of the key materials used for diamond formation at high pressures. Several such catalyst products have been developed and applied in China and around the world. The catalyst alloy most widely used in China is Ni70Mn25Co5 developed at Changsha Research Institute of Mining and Metallurgy. In this article, detailed techniques for manufacturing such a typical catalyst alloy will be reviewed. The characteristics of the alloy will be described. Detailed processing of the alloy will be presented, including remelting and casting, hot rolling, annealing, surface treatment, cold rolling, blanking, finishing, packaging, and waste treatment. An example use of the catalyst alloy will also be given. Industrial experience shows that for the catalyst alloy products, a vacuum induction remelt furnace can be used for remelting, a metal mold can be used for casting, hot and cold rolling can be used for forming, and acid pickling can be used for metal surface cleaning.

  7. Enhancement of Impact Toughness by Delamination Fracture in a Low-Alloy High-Strength Steel with Al Alloying

    Science.gov (United States)

    Sun, Junjie; Jiang, Tao; Liu, Hongji; Guo, Shengwu; Liu, Yongning

    2016-09-01

    The effect of delamination toughening of martensitic steel was investigated both at room and low temperatures [253 K and 233 K (-20 °C and -40 °C)]. Two low-alloy martensitic steels with and without Al alloying were both prepared. Layered structure with white band and black matrix was observed in Al alloyed steel, while a homogeneous microstructure was displayed in the steel without Al. Both steels achieved high strength (tensile strength over 1600 MPa) and good ductility (elongation over 11 pct), but they displayed stark contrasts on impact fracture mode and Charpy impact energy. Delamination fracture occurred in Al alloyed steel and the impact energies were significantly increased both at room temperature (from 75 to 138 J, i.e., nearly improved up to 2 times) and low temperatures [from 47.9 to 71.3 J at 233 K (-40 °C)] compared with the one without Al. Alloying with Al promotes the segregation of Cr, Mn, Si and C elements to form a network structure, which is martensite with higher carbon content and higher hardness than that of the matrix. And this network structure evolved into a band structure during the hot rolling process. The difference of yield stress between the band structure and the matrix gives rise to a delamination fracture during the impact test, which increases the toughness greatly.

  8. Enhancement of Impact Toughness by Delamination Fracture in a Low-Alloy High-Strength Steel with Al Alloying

    Science.gov (United States)

    Sun, Junjie; Jiang, Tao; Liu, Hongji; Guo, Shengwu; Liu, Yongning

    2016-12-01

    The effect of delamination toughening of martensitic steel was investigated both at room and low temperatures [253 K and 233 K (-20 °C and -40 °C)]. Two low-alloy martensitic steels with and without Al alloying were both prepared. Layered structure with white band and black matrix was observed in Al alloyed steel, while a homogeneous microstructure was displayed in the steel without Al. Both steels achieved high strength (tensile strength over 1600 MPa) and good ductility (elongation over 11 pct), but they displayed stark contrasts on impact fracture mode and Charpy impact energy. Delamination fracture occurred in Al alloyed steel and the impact energies were significantly increased both at room temperature (from 75 to 138 J, i.e., nearly improved up to 2 times) and low temperatures [from 47.9 to 71.3 J at 233 K (-40 °C)] compared with the one without Al. Alloying with Al promotes the segregation of Cr, Mn, Si and C elements to form a network structure, which is martensite with higher carbon content and higher hardness than that of the matrix. And this network structure evolved into a band structure during the hot rolling process. The difference of yield stress between the band structure and the matrix gives rise to a delamination fracture during the impact test, which increases the toughness greatly.

  9. Magneto-caloric effect of a Gd50Co50 amorphous alloy near the freezing point of water

    Directory of Open Access Journals (Sweden)

    L. Xia

    2015-09-01

    Full Text Available In the present work, we report the magneto-caloric effect (MCE of a binary Gd50Co50 amorphous alloy near the freezing temperature of water. The Curie temperature of Gd50Co50 amorphous ribbons is about 267.5 K, which is very close to room temperature. The peak value of the magnetic entropy change (-ΔSmpeak and the resulting adiabatic temperature rise (ΔTad. of the Gd50Co50 amorphous ribbons is much higher than that of any other amorphous alloys previously reported with a Tc near room temperature. On the other hand, although the -ΔSmpeak of Gd50Co50 amorphous ribbons is not as high as those of crystalline alloys near room temperature, its refrigeration capacity (RC is still much larger than the RC values of these crystalline alloys. The binary Gd50Co50 amorphous alloy provides a basic alloy for developing high performance multi-component amorphous alloys near room temperature.

  10. Characteristics of a multicomponent Nb-Ti-Al alloy via industrial-scale practice

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.; Loria, E.A. [Reference Metals Co., Inc., Bridgeville, PA (United States)

    1997-05-01

    Within the spectrum of advanced intermetallic materials, an alloy containing 44Nb-35Ti-6Al-5Cr-8V-1W-0.5Mo-0.3Hf (at. %) was investigated in the industrial-scale produced condition. The alloy was tensile tested in air from room temperature to 1,000 C and in vacuum at 750 and 850 C. Results of this study have shown that the alloy can be commercially produced and has adequate ductility for its secondary processing even at an oxygen level of 1,160 wppm. The alloy has room temperature ductility of 16% and superplastic elongation of 244% at 1,000 C. This alloy shows low intermediate temperature (600--850 C) ductility when tested in air. The vacuum testing revealed that the low ductility is associated within oxygen embrittlement phenomenon. It is expected that such an embrittlement can be taken care of by an oxidation resistant coating. The alloy also possesses superior strength to similar alloys in this class. Results of this investigation suggest a strong potential for consideration of this alloy to exceed the useful temperature range of nickel-base superalloys.

  11. Alloying effects on mechanical and metallurgical properties of NiAl

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.T.; Horton, J.A.; Lee, E.H.; George, E.P.

    1993-06-01

    Alloying effects were investigated in near-stoichiometric NiAl for improving its mechanical and metallurgical properties. Ternary additions of 19 elements at levels up to 10 at. % were added to NiAl; among them, molybdenum is found to be most effective in improving the room-temperature ductility and high-temperature strength. Alloying with 1.0 {plus_minus} 0.6% molybdenum almost doubles the room-temperature tensile ductility of NiAl and triples its yield strength at 1000C. The creep properties of molybdenum-modified NiAl alloys can be dramatically improved by alloying with up to 1% of niobium or tantalum. Because of the low solubilities of molybdenum and niobium in NiAl, the beneficial effects mainly come from precipitation hardening. Fine and coarse precipitates are revealed by both transmission electron microscopy (TEM) and electron microprobe analyses. Molybdenum-containing alloys possess excellent oxidation resistance and can be fabricated into rod stock by hot extrusion at 900 to 1050C. This study of alloying effects provides a critical input for the alloy design of ductile and strong NiAl aluminide alloys for high-temperature structural applications.

  12. Solid State Joining of Dissimilar Titanium Alloys

    Science.gov (United States)

    Morton, Todd W.

    Solid state joining of titanium via friction stir welding and diffusion bonding have emerged as enablers of efficient monolithic structural designs by the eliminations fasteners for the aerospace industry. As design complexity and service demands increase, the need for joints of dissimilar alloys has emerged. Complex thermomechanical conditions in friction stir weld joints and high temperature deformation behavior differences between alloys used in dissimilar joints gives rise to a highly variable flow pattern within a stir zone. Experiments performed welding Ti-6Al-4V to beta21S show that mechanical intermixing of the two alloys is the primary mechanism for the generation of the localized chemistry and microstructure, the magnitude of which can be directly related to pin rotation and travel speed weld parameters. Mechanical mixing of the two alloys is heavily influenced by strain rate softening phenomena, and can be used to manipulate weld nugget structure by switching which alloy is subjected to the advancing side of the pin. Turbulent mixing of a weld nugget and a significant reduction in defects and weld forces are observed when the beta21S is put on the advancing side of the weld where higher strain rates are present. Chemical diffusion driven by the heat of weld parameters is characterized using energy dispersive x-ray spectroscopy (EDS) and is shown to be a secondary process responsible for generating short-range chemical gradients that lead to a gradient of alpha particle structures. Diffusion calculations are inconsistent with an assumption of steady-state diffusion and show that material interfaces in the weld nugget evolve through the break-down of turbulent interface features generated by material flows. A high degree of recrystallization is seen throughout the welds, with unique, hybrid chemistry grains that are generated at material interfaces in the weld nugget that help to unify the crystal structure of dissimilar alloys. The degree of

  13. Mechanical Properties and Microstructure of AZ31 Magnesium Alloy Tubes

    Science.gov (United States)

    Luo, Alan A.; Sachdev, Anil K.

    Magnesium alloys are increasingly being used in automotive industry for weight reduction and fuel economy improvement. Extruded tubular sections provide further opportunities in mass-efficient designs of automotive structural and interior applications. In this paper, microstructural evaluation indicates that twinning is the predominant deformation mechanism for magnesium alloys at room and moderate temperatures. Dynamic recrystallization is observed at temperatures as low as 150°C, leading to the formation of fine grains as a "necklace" at prior grain boundaries. These new grains cause strain localization and instability due to a loss in strain hardening, and result in failure by cavitation.

  14. Adsorption interaction between Al-5% Pb alloy and water

    Science.gov (United States)

    Ryabina, A. V.; Shevchenko, V. G.

    2016-10-01

    The adsorption and structural features of Al-5% Pb alloy powder before and after reacting with water are analyzed. Results from studying the morphology and phase composition of the oxidation products are presented, and the specific surface area and porosity of the powders are calculated. It is shown experimentally that water treatment of Al-5% Pb alloy powder even at room temperature leads to the formation of new phases and affects the powder's morphology. It is established that a major role in the properties of the watertreated powders is played by nanopores that form between crystallites on a particle's surface during waterinduced oxidation and subsequent thermal dehydration.

  15. PLUTONIUM-ZIRCONIUM ALLOYS

    Science.gov (United States)

    Schonfeld, F.W.; Waber, J.T.

    1960-08-30

    A series of nuclear reactor fuel alloys consisting of from about 5 to about 50 at.% zirconium (or higher zirconium alloys such as Zircaloy), balance plutonium, and having the structural composition of a plutonium are described. Zirconium is a satisfactory diluent because it alloys readily with plutonium and has desirable nuclear properties. Additional advantages are corrosion resistance, excellent fabrication propenties, an isotropie structure, and initial softness.

  16. Low temperature study of micrometric powder of melted Fe{sub 50}Mn{sub 10}Al{sub 40} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zamora, Ligia E. [Departamento de Fisica, Universidad del Valle, A. A. 25360 Cali (Colombia); Perez Alcazar, G.A., E-mail: gpgeperez@gmail.com [Departamento de Fisica, Universidad del Valle, A. A. 25360 Cali (Colombia); Tabares, J.A. [Departamento de Fisica, Universidad del Valle, A. A. 25360 Cali (Colombia); Romero, J.J. [Instituto de Ceramica y Vidrio, CSIC, C/Kelsen 5, 28049 Madrid (Spain); Martinez, A. [Instituto de Magnetismo Aplicado, P.O. Box 155, Las Rozas, 28230 Madrid (Spain); Gonzalez, J.M. [Unidad Asociada ICMM-IMA, c/Sor Juana Ines de la Cruz 3, 28049 Madrid (Spain); Palomares, F.J. [Instituto de Ciencia de Materiales de Madrid, CSIC, C/Sor Juana Ines de la Cruz, 28049 Cantoblanco, Madrid (Spain); Marco, J.F. [Instituto de Quimica-Fisica Rocasolano, CSIC, c/Serrano 119, 28006 Madrid (Spain)

    2012-06-15

    Melted Fe{sub 50}Mn{sub 10}Al{sub 40} alloy powder with particle size less than 40 {mu}m was characterized at room temperature by XRD, SEM and XPS; and at low temperatures by Moessbauer spectrometry, ac susceptibility, and magnetization analysis. The results show that the sample is BCC ferromagnetic but with a big contribution of paramagnetic sites, and presents super-paramagnetic and re-entrant spin-glass phases with critical temperatures of 265 and 35 K, respectively. The presence of the different phases detected is due to the disordered character of the sample and the competitive magnetic interactions. The obtained values of the saturation magnetization and the coercive field as a function of temperature present a behavior which indicates a ferromagnetic phase. However, the behavior of the FC curve and that of the coercive field as a function of temperature suggest that the dipolar magnetic interaction between particles contributes to the internal magnetic field in the same way as was reported for nanoparticulate powders.

  17. The vascular hybrid room--operating room of the future.

    Science.gov (United States)

    Hudorović, Narcis; Rogan, Suncica Andreja; Lovricević, Ivo; Zovak, Mario; Schmidt, Sasa

    2010-09-01

    The last two decades have seen a paradigm shift in the treatment of vascular related diseases from once traditional open surgical repairs to the entire vascular tree being amenable to percutaneous interventions. Neither the classic operating room nor the conventional angiography suite is optimal for both open surgery and endovascular procedures. Important issues for the vascular hybrid operating room include quality of the imaging equipment, radiation burden, ease of use of the equipment, need for specially trained personnel, ergonomics, ability to perform both open and percutaneous procedures, sterile environments, as well as quality and efficiency of patient care. The most important feature of working in a dedicated hybrid vascular suite should be the ability to attain best treatment of vascular patients. Whether the interventional radiologist or the vascular surgeon uses the facilities is of less importance. Establishment of an endovascular operating room suite has the benefit of a sterile environment, and the possibility of performing hybrid procedures and conversions when necessary. Moreover, angiography immediately before treatment gives contemporary anatomical information, and after treatment provides quality control. Consequently, better quality and service can be provided to the individual patient. These changes in the treatment of vascular disease require that a new type of vascular specialist, named 'vascular hybrid surgeon', trained to perform both endovascular and open surgical procedures in this highly complex patient group.

  18. NICKEL-BASE ALLOY

    Science.gov (United States)

    Inouye, H.; Manly, W.D.; Roche, T.K.

    1960-01-19

    A nickel-base alloy was developed which is particularly useful for the containment of molten fluoride salts in reactors. The alloy is resistant to both salt corrosion and oxidation and may be used at temperatures as high as 1800 deg F. Basically, the alloy consists of 15 to 22 wt.% molybdenum, a small amount of carbon, and 6 to 8 wt.% chromium, the balance being nickel. Up to 4 wt.% of tungsten, tantalum, vanadium, or niobium may be added to strengthen the alloy.

  19. Study of Fatigue and Fracture Behavior of Cr-Based Alloys and Intermetallic Materials

    Energy Technology Data Exchange (ETDEWEB)

    He, YH

    2001-01-31

    The microhardness, and tensile and fracture-toughness properties of drop-cast and directionally-solidified Cr-9.25 at.% (atomic percent) Ta alloys have been investigated. Directional solidification was found to soften the alloy, which could be related to the development of equilibrium and aligned microstructures. It was observed that the tensile properties of the Cr-Ta alloys at room and elevated temperatures could be improved by obtaining aligned microstructures. The directionally-solidified alloy also showed increased fracture toughness at room temperature. This trend is mainly associated with crack deflection and the formation of shear ribs in the samples with aligned microstructures. The sample with better-aligned lamellar exhibits greater fracture toughness.

  20. Preparation of semi-solid billet of magnesium alloy and its thixoforming

    Institute of Scientific and Technical Information of China (English)

    JIANG Ju-fu; LUO Shou-jing

    2007-01-01

    Preparation of semi-solid billet of magnesium alloy and thixoforming was investigated by applying equal channel angular extrusion to magnesium alloy. The results show that mechanical properties of AZ91D alloy at room temperature, such as yield strength(YS), ultimate tensile strength(UTS) and elongation, are enhanced greatly by four-pass equal channel angular extrusion(ECAE) at 573 K and microstructure of AZ91D alloy is refined to the average grain size of 20 μm. Through using ECAE as strain induced step in SIMA and completing melt activated step by semi-solid isothermal treatment, semi-solid billet with fine spheroidal grains of 25 μm can be prepared successfully. Compared with common SIMA, thixoformed satellite angle frame components using semi-solid billet prepared by new SIMA have higher mechanical properties at room temperature and high temperature of 373 K.

  1. Microstructures and Crackling Noise of AlxNbTiMoV High Entropy Alloys

    Directory of Open Access Journals (Sweden)

    Shu Ying Chen

    2014-02-01

    Full Text Available A series of high entropy alloys (HEAs, AlxNbTiMoV, was produced by a vacuum arc-melting method. Their microstructures and compressive mechanical behavior at room temperature were investigated. It has been found that a single solid-solution phase with a body-centered cubic (BCC crystal structure forms in these alloys. Among these alloys, Al0.5NbTiMoV reaches the highest yield strength (1,625 MPa, which should be attributed to the considerable solid-solution strengthening behavior. Furthermore, serration and crackling noises near the yielding point was observed in the NbTiMoV alloy, which represents the first such reported phenomenon at room temperature in HEAs.

  2. Determination of elastic modulus in nickel alloy from ultrasonic measurements

    Indian Academy of Sciences (India)

    Nikhat Parveen; G V S Murthy

    2011-04-01

    Elastic constants relate technological, structural and safety aspects to various materials phenomena and to their fundamental interatomic forces. Hence, they are of fundamental importance in almost all engineering applications. Thus its determination is of utmost importance. The aim of the present investigation is to study the behaviour of elastic constants and the variation on heat treatment in a nickel base super alloy Nimonic 263 by ultrasonic velocity measurements. From the present study it is evident that the elastic moduli of the material are very sensitive to any minor compositional changes, resulting due to the formation of intermetallic phases on heat treatment and can be effectively monitored by ultrasonic.

  3. Space Brightness Evaluation for a Daylit Room

    Directory of Open Access Journals (Sweden)

    Takashi Maruyama

    2011-05-01

    Full Text Available One of the most important problems for lighting design is how to reduce an electric energy. One way to solve this problem is use of daylight, but little is known how to perceive a brightness of a room illuminated by daylight come in through a window and artificial light. Although the horizontal illuminance increases because of daylight, we would not perceive the room as bright as brightness estimated by the illuminance. The purpose of this study is to measure the space brightness for daylit room and to propose a evaluation method. The experiment was conducted with a couple of miniature office rooms, standard room and test room. Test room has several types of windows and standard room has no window. Subject was asked to evaluate the brightness of the test room relative to the standard room with method of magnitude estimation. It was found that brightness of daylit room did not increase simply with horizontal illuminance. Subject perceived a daylit room darker than a room illuminated only by the artificial light even if horizontal illuminance of these room was same. The effect of daylight on space brightness would vary with the window size and intensity of daylight or artificial light.

  4. Nanostructure Changes in Iron-Carbon Alloys as a Result of Impulse Deformation Wave Action

    Directory of Open Access Journals (Sweden)

    A.V. Kirichek

    2013-12-01

    Full Text Available The paper discusses possibilities and conditions needed to obtain a super small grain and nanocrystal structures by means of deformation shock waves that are displaced in relation to each other in time and space. Investigations demonstrated that with shock wave loading plastic deformation can spread over a bigger material volume as compared with other hardening methods and can be classified as an intensive plastic deformation method and as a gradient hardening method that are both applied to homogeneous metals and alloys to obtain micro- and nanocrystal structures characterized by improved mechanical properties. Deformation shock wave hardening used to create super small grain and nanocrystal structures in metal alloys is able to facilitate a wider introduction of nanostructured materials into industry.

  5. Modelling room temperature ionic liquids.

    Science.gov (United States)

    Bhargava, B L; Balasubramanian, Sundaram; Klein, Michael L

    2008-08-07

    Room temperature ionic liquids (IL) composed of organic cations and inorganic anions are already being utilized for wide-ranging applications in chemistry. Complementary to experiments, computational modelling has provided reliable details into the nature of their interactions. The intra- and intermolecular structures, dynamic and transport behaviour and morphologies of these novel liquids have also been explored using simulations. The current status of molecular modelling studies is presented along with the prognosis for future work in this area.

  6. Corrosion resistance and long-term durability of super-hydrophobic nickel film prepared by electrodeposition process

    Energy Technology Data Exchange (ETDEWEB)

    Khorsand, S., E-mail: s.khorsand@ma.iut.ac.ir; Raeissi, K., E-mail: k_raeissi@cc.iut.ac.ir; Ashrafizadeh, F., E-mail: ashrafif@cc.iut.ac.ir

    2014-06-01

    A super-hydrophobic nickel film with micro-nano structure was successfully fabricated by electrodeposition process. By controlling electrodeposition parameters and considering different storage times for the coatings in air, various nickel films with different wettability were fabricated. Surface morphology of nickel films was examined by means of scanning electron microscopy (SEM). The results showed that the micro-nano nickel film was well-crystallized and exhibited pine cone-like microstructure with nano-cone arrays randomly dispersed on each micro-protrusion. The wettability of the micro-nano nickel film varied from super-hydrophilicity (water contact angle 5.3°) to super-hydrophobicity (water contact angle 155.7°) by exposing the surface in air at room temperature. The corrosion resistance of the super-hydrophobic film was estimated by electrochemical impedance spectroscopy (EIS) and Tafel polarization measurements. The potentiodynamic curves revealed that the corrosion rate of superhydrophobic surface was only 0.16% of the bare copper substrate. Moreover, EIS measurements and appropriate equivalent circuit models revealed that the corrosion resistance of nickel films considerably improved with an increase in the hydrophobicity. The superhydrophobic surface also exhibited an excellent long-term durability in neutral 3.5 wt.% NaCl solution.

  7. Torsional and axial damping properties of the AZ31B-F magnesium alloy

    Science.gov (United States)

    Anes, V.; Lage, Y. E.; Vieira, M.; Maia, N. M. M.; Freitas, M.; Reis, L.

    2016-10-01

    Damping properties for the AZ31B-F magnesium alloy were evaluated for pure axial and pure shear loading conditions at room temperature. Hysteretic damping results were measured through stress-strain controlled tests. Moreover, the magnesium alloy viscous damping was measured with frequency response functions and free vibration decay, both results were obtained by experiments. The axial and shear damping ratio (ASDR) has been identified and described, specifically for free vibration conditions.

  8. Development and Application of a Theory of Plastic Deformation of Cemented Alloys

    Science.gov (United States)

    1961-03-23

    found widespread applications in the carbide tool industry, in bearings, and in some structural parts . In spite of -’.:e high strengths of alloys such...thermal stresses do play a part in the behavior of such cemented alloys, but there has been no simple correlation between these stresses and mechanical...using transverse rupture bars. Mont of the room-temperature measurements were performed on a 1Hounsfield Tensometer using a three-point loading device

  9. Effect of Melt Quenching on Martensite Transformation in Fe-Ni Alloy

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The main features of martensite transformation in melt-quenched Fe-31.4% Ni alloy on cooling below room temperature have been studied. It is found that the ribbon 50~60 μm thick, prepared by spinning technique, is a natural composite in which isothermal and surface martensite are not formed, while athermal martensite forms at lower temperature, all factors being the same, as compared to the alloy of the same composition and grain size, prepared by recrystallization.

  10. Technological aspects regarding machining the titanium alloys by means of incremental forming

    Directory of Open Access Journals (Sweden)

    Bologa Octavian

    2017-01-01

    Full Text Available Titanium alloys are materials with reduced formability, due to their low plasticity. However, today there are high demands regarding their use in the automotive industry and in bio-medical industry, for prosthetic devices. This paper presents some technological aspects regarding the machinability of titanium alloys by means of incremental forming. The research presented in this paper aimed to demonstrate that the parts made from these materials could be machined at room temperature, in certain technological conditions.

  11. Acoustic and NMR investigations of melting and crystallization of indium-gallium alloys in pores of synthetic opal matrices

    Science.gov (United States)

    Pirozerskii, A. L.; Charnaya, E. V.; Lee, M. K.; Chang, L. J.; Nedbai, A. I.; Kumzerov, Yu. A.; Fokin, A. V.; Samoilovich, M. I.; Lebedeva, E. L.; Bugaev, A. S.

    2016-05-01

    The paper presents the results of studying the crystallization and melting processes of Ga-In eutectic alloys, which are embedded in opal matrices, using acoustic and NMR methods. The indium concentrations in the alloys were 4, 6, 9, and 15 at %. Measurements were performed upon cooling from room temperature to complete crystallization of the alloys and subsequent heating. It is revealed how the size effects and alloy composition influence the formation of phases with α- and β-Ga structures and on changes in the melting-temperature ranges. A difference was observed between the results obtained using acoustic and NMR methods, which was attributed to different temperature measurement conditions.

  12. 'How To' Clean Room Video

    Science.gov (United States)

    McCarty, Kaley Corinne

    2013-01-01

    One of the projects that I am completing this summer is a Launch Services Program intern 'How to' set up a clean room informational video. The purpose of this video is to go along with a clean room kit that can be checked out by employees at the Kennedy Space Center and to be taken to classrooms to help educate students and intrigue them about NASA. The video will include 'how to' set up and operate a clean room at NASA. This is a group project so we will be acting as a team and contributing our own input and ideas. We will include various activities for children in classrooms to complete, while learning and having fun. Activities that we will explain and film include: helping children understand the proper way to wear a bunny suit, a brief background on cleanrooms, and the importance of maintaining the cleanliness of a space craft. This project will be shown to LSP management and co-workers; we will be presenting the video once it is completed.

  13. Polariton condensates at room temperature

    Science.gov (United States)

    Guillet, Thierry; Brimont, Christelle

    2016-10-01

    We review the recent developments of the polariton physics in microcavities featuring the exciton-photon strong coupling at room temperature, and leading to the achievement of room-temperature polariton condensates. Such cavities embed active layers with robust excitons that present a large binding energy and a large oscillator strength, i.e. wide bandgap inorganic or organic semiconductors, or organic molecules. These various systems are compared, in terms of figures of merit and of common features related to their strong oscillator strength. The various demonstrations of polariton laser are compared, as well as their condensation phase diagrams. The room-temperature operation indeed allows a detailed investigation of the thermodynamic and out-of-equilibrium regimes of the condensation process. The crucial role of the spatial dynamics of the condensate formation is discussed, as well as the debated issue of the mechanism of stimulated relaxation from the reservoir to the condensate under non-resonant excitation. Finally the prospects of polariton devices are presented.

  14. SuperTools Test and Evaluation Plan

    Energy Technology Data Exchange (ETDEWEB)

    Mannos, Tom J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Mixed Signal ASIC Design

    2017-01-01

    Superconducting electronics (SCE) represents a potential path to efficient exascale computing for HPC and data center applications, but SCE-based circuit design lags far behind its CMOS equivalent. IARPA’s ongoing C3 program and its developing SuperTools program aim to jumpstart SCE R&D with the near-term goal of producing a high-speed, low-energy, 64-bit RISC processor using Josephson Junction based logic cells. SuperTools performers will develop software tools for efficient SCE design and accurate simulation and characterization of JJ-based circuits, which include the RSFQ, RQL, and AQFP logic families. T&E teams from NIST, MIT Lincoln Lab, Berkeley Lab, and Sandia National Labs will evaluate the tools and fabricate test circuits to compare with simulated results. The five-year, three-phase program includes 48 performer deliverables, three annual technical exchange meetings, and annual site visits.

  15. Italian super-eruption larger than thought

    Science.gov (United States)

    Schultz, Colin

    2012-07-01

    Recent research suggested that the super-eruption of the Campi Flegrei caldera volcano in southern Italy about 40,000 years ago may have played a part in wiping out, or forcing the migration of, the Neanderthal and modern human populations in the eastern Mediterranean regions that were covered in ash. Now a new modeling study by Costa et al. suggests that this eruption may have been even larger than previously thought. This Campi Flegrei eruption produced a widespread ash layer known as Campanian Ignimbrite (CI). Using ash thickness measurements collected at 115 sites and a three-dimensional ash dispersal model, the researchers found that the CI super-eruption would have spread 250-300 cubic kilometers of ash across a 3.7-million-square kilometer region—2 to 3 times previous ash volume estimates.

  16. Optical super-resolution microscopy in neurobiology.

    Science.gov (United States)

    Sigrist, Stephan J; Sabatini, Bernardo L

    2012-02-01

    Understanding the highly plastic nature of neurons requires the dynamic visualization of their molecular and cellular organization in a native context. However, due to the limited resolution of standard light microscopy, many of the structural specializations of neurons cannot be resolved. A recent revolution in light microscopy has given rise to several super-resolution light microscopy methods yielding 2-10-fold higher resolution than conventional microscopy. We here describe the principles behind these techniques as well as their application to the analysis of the molecular architecture of the synapse. Furthermore, we discuss the potential for continued development of super-resolution microscopy as necessary for live imaging of neuronal structure and function in the brain.

  17. Super-resolution microscopy: a comparative treatment.

    Science.gov (United States)

    Kasuboski, James M; Sigal, Yury J; Joens, Matthew S; Lillemeier, Bjorn F; Fitzpatrick, James A J

    2012-10-01

    One of the fundamental limitations of optical microscopy is that of diffraction, or in essence, how small a beam of light can be focused by using an optical lens system. This constraint, or barrier if you will, was theoretically described by Ernst Abbe in 1873 and is roughly equal to half the wavelength of light used to probe the system. Many structures, particularly those within cells, are much smaller than this limit and thus are difficult to visualize. Over the last two decades, a new field of super-resolution imaging has been created and been developed into a broad range of techniques that allow routine imaging beyond the far-field diffraction limit of light. In this unit we outline the basic principles of the various super-resolution imaging modalities, paying particular attention to the technical considerations for biological imaging. Furthermore, we discuss their various applications in the imaging of both fixed and live biological samples.

  18. (Super-)renormalizably dressed black holes

    CERN Document Server

    Ayón-Beato, Eloy; Méndez-Zavaleta, Julio A

    2015-01-01

    Black holes supported by self-interacting conformal scalar fields can be considered as renormalizably dressed since the conformal potential is nothing but the top power-counting renormalizable self-interaction in the relevant dimension. On the other hand, potentials defined by powers which are lower than the conformal one are also phenomenologically relevant since they are in fact super-renormalizable. In this work we provide a new map that allows to build black holes dressed with all the (super-)renormalizable contributions starting from known conformal seeds. We explicitly construct several new examples of these solutions in dimensions $D=3$ and $D=4$, including not only stationary configurations but also time-dependent ones.

  19. Super/subradiant second harmonic generation

    Science.gov (United States)

    Koganov, Gennady A.; Shuker, Reuben

    2017-04-01

    A scheme for active second harmonics generation is suggested. The system comprises N three-level atoms in ladder configuration, situated into a resonant cavity. The system generates the field whose frequency is twice the frequency of the pumping laser, and the field phase is locked to the phase of the pumping field. It is found that the system can lase in either superradiant or subradiant regime, depending on the number of atoms N. When N passes some critical value the transition from the super to subradiance occurs in a phase-transition-like manner. Stability study of the steady state supports this conclusion. For experimental realization of the super/subradiant second harmonics generation we propose semiconductor quantum well structures, superconducting quantum circuits, and evanescently coupled waveguides in which equally spaced levels relevant to this study exist.

  20. Pulsating stars in SuperWASP

    Directory of Open Access Journals (Sweden)

    Holdsworth Daniel L.

    2017-01-01

    Full Text Available SuperWASP is one of the largest ground-based surveys for transiting exoplanets. To date, it has observed over 31 million stars. Such an extensive database of time resolved photometry holds the potential for extensive searches of stellar variability, and provide solid candidates for the upcoming TESS mission. Previous work by e.g. [15], [5], [12] has shown that the WASP archive provides a wealth of pulsationally variable stars. In this talk I will provide an overview of the SuperWASP project, present some of the published results from the survey, and some of the on-going work to identify key targets for the TESS mission.

  1. Robust super-resolution without regularization

    Energy Technology Data Exchange (ETDEWEB)

    Pham, T Q [Canon Information Systems Research Australia, 1 Thomas Holt drive, North Ryde, NSW 2113 (Australia); Vliet, L J v [Quantitative Imaging Group, Department of Imaging Science and Technology, Faculty of Applied Sciences, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands); Schutte, K [Electro-Optics Group, TNO Defence, Security and Safety, PO Box 96864, 2509 JG The Hague (Netherlands)

    2008-07-15

    Super-resolution restoration is the problem of restoring a high-resolution scene from multiple degraded low-resolution images under motion. Due to imaging blur and noise, this problem is ill-posed. Additional constraints such as smoothness of the solution (i.e. regularization) is often required to obtain a stable solution. While regularizing the cost function is a standard practice in image restoration, we propose a restoration algorithm that does not require this extra regularization term. The robustness of the algorithm is achieved by a robust error norm that does not response to intensity outliers. With the outliers suppressed, our solution behaves similarly to a maximum-likelihood solution under the presence of Gaussian noise. The effectiveness of our algorithm is demonstrated with super-resolution restoration of real infrared image sequences under severe aliasing and intensity outliers.

  2. Penrose Pixels for Super-Resolution.

    Science.gov (United States)

    Ben-Ezra, M; Lin, Zhouchen; Wilburn, Bennett; Zhang, Wei

    2011-07-01

    We present a novel approach to reconstruction-based super-resolution that uses aperiodic pixel tilings, such as a Penrose tiling or a biological retina, for improved performance. To this aim, we develop a new variant of the well-known error back projection super-resolution algorithm that makes use of the exact detector model in its back projection operator for better accuracy. Pixels in our model can vary in shape and size, and there may be gaps between adjacent pixels. The algorithm applies equally well to periodic or aperiodic pixel tilings. We present analysis and extensive tests using synthetic and real images to show that our approach using aperiodic layouts substantially outperforms existing reconstruction-based algorithms for regular pixel arrays. We close with a discussion of the feasibility of manufacturing CMOS or CCD chips with pixels arranged in Penrose tilings.

  3. Temporal super resolution using variational methods

    DEFF Research Database (Denmark)

    Keller, Sune Høgild; Lauze, Francois Bernard; Nielsen, Mads

    2010-01-01

    and intensities are calculated simultaneously in a multiresolution setting. A frame doubling version of our algorithm is implemented and in testing it, we focus on making the motion of high contrast edges to seem smooth and thus reestablish the illusion of motion pictures.......Temporal super resolution (TSR) is the ability to convert video from one frame rate to another and is as such a key functionality in modern video processing systems. A higher frame rate than what is recorded is desired for high frame rate displays, for super slow-motion, and for video/film format...... conversion (where also lower frame rates than recorded is sometimes required). We discuss and detail the requirements imposed by the human visual system (HVS) on TSR algorithms, of which the need for (apparent) fluid motion, also known as the phi-effect, is the principal one. This problem is typically...

  4. Effect of silver addition on the properties of nickel-titanium alloys for dental application.

    Science.gov (United States)

    Oh, Keun-Taek; Joo, Uk-Hyon; Park, Gee-Ho; Hwang, Chung-Ju; Kim, Kyoung-Nam

    2006-02-01

    Equiatomic and near-equiatomic nickel-titanium alloys exhibit a shape-memory effect and superelasticity. However, the properties of such alloys are extremely sensitive to the precise nickel-titanium ratio and the addition of alloying elements. High corrosion resistance is necessary for biomedical applications, especially orthodontic. The purpose of this study was to investigate the effect of silver addition to nickel-titanium alloys for dental and medical application. Arc melting, homogenization, hot rolling, and solution heat treatment were performed to prepare the nickel-titanium-silver (NiTi-Ag) specimens. The properties of the ternary NiTi-Ag alloys such as phase-transformation temperature, microstructure, microhardness, corrosion resistance, and cytotoxicity were investigated. The NiTi-Ag alloys showed low silver recovery rate for the cast alloy, due to silver's low evaporation temperature, and low silver solubility in nickel-titanium. Silver addition to nickel-titanium increased the transition temperature range to 100 degrees C and stabilized the martensitic phase (monoclinic structure) at room temperature, because the martensitic transformation starting temperature (Ms) was above room temperature. Martensitic and austenitic phases existed in X-ray diffraction patterns of solution-annealed NiTi-Ag alloys. The silver addition was considered to improve the corrosion resistance and form a stable passive film. Significantly, the mechanical properties of the silver-added alloys were dependent upon the amount of alloying addition. There was no toxicity in the NiTi-Ag alloys, as the response index showed none or mild levels.

  5. Effect of B and Cr on elastic strength and crystal structure of Ni{sub 3}Al alloys under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Raju, S.V., E-mail: sraju@fiu.edu [CeSMEC, Dept. of Mechanical Engr., Florida International University, Miami, FL 33172 (United States); Oni, A.A. [Department of Materials Science and Engr., North Carolina State University, Raleigh, NC 27695 (United States); Godwal, B.K. [Department of Earth and Planetary Sciences, University of California, Berkeley, CA 94720 (United States); Yan, J. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94730 (United States); Earth and Planetary Sciences Department, University of California, Santa Cruz, CA 95064 (United States); Drozd, V. [CeSMEC, Dept. of Mechanical Engr., Florida International University, Miami, FL 33172 (United States); Srinivasan, S. [Department of Materials Science and Engg., Iowa State University, Iowa, IA (United States); LeBeau, J.M. [Department of Materials Science and Engr., North Carolina State University, Raleigh, NC 27695 (United States); Rajan, K. [Department of Materials Science and Engg., Iowa State University, Iowa, IA (United States); Saxena, S.K. [CeSMEC, Dept. of Mechanical Engr., Florida International University, Miami, FL 33172 (United States)

    2015-01-15

    Highlights: • Ni{sub 3}Al, Ni{sub 3}Al:B and Ni-Al-Cr alloys were prepared by Bridgman-Stockburger technique. • Crystal structures confirmed by XRD and Electron microscopy studies. • Bulk modulus from XRD studies under pressure and Young’s modulus from nano-indentation were determined. • Combining the above results enabled shear modulus and Poisson’s ratio. • K/G ratio suggests that Ni{sub 3}Al doped with B (500 ppm) has the highest hardness with ductility. - Abstract: Samples of Ni{sub 3}Al, Ni{sub 3}Al:B and Ni–Al–Cr super alloys were prepared by directional solidification method and their effect of alloying with ternary elements on the mechanical properties was investigated. In-situ X-ray diffraction studies were carried out on undoped Ni{sub 3}Al, Ni{sub 3}Al:B with boron 500 ppm and Ni–Al–Cr with 7.5 at.% of chromium super alloys at high pressure using diamond anvil cell. The results indicate that micro-alloying with B forms γ′-phase (L1{sub 2} structure), similar to the pure Ni {sub 3}Al, while Ni–Al–Cr alloy consists of γ′ precipitates in a matrix of γ-phase (Ni-FCC structure). The crystal structure of all three alloys was stable up to 20 GPa. Micro alloying with boron increases bulk modulus of Ni{sub 3}Al by 8% whereas alloying with chromium has the opposite effect decreasing the modulus by 11% when compared to undoped alloy. Further, the elastic modulus and hardness of Ni{sub 3}Al, Ni{sub 3}Al:B and Ni–Al–Cr alloys were determined using the nano-indentation technique, in combination with compressibility data which enabled the estimation of shear modulus and Poisson’s ratio of these alloys.

  6. Super-pharm的生意经

    Institute of Scientific and Technical Information of China (English)

    韦少雯

    2006-01-01

    Super-pharm,这家可直译为“超级药店”的以色列最大的药品、化妆品及个人护理品零售企业,是由全球排名前几十位的亿万富翁、犹太人Murray Koffler创立的家族企业。

  7. Super Resolution Imaging Applied to Scientific Images

    Science.gov (United States)

    2007-05-01

    investigator, (3) development of Papoulis -Gerchberg method to implement the analytic continuation of spectral details, (4) exploration of contourlet and...off with noise present in the observation. In [30] we make use of Papoulis -Gerchberg algorithm of signal extrapolation to perform Image super...we have used a training database consisting of high resolution images. For Papoulis -Gerchberg method number of iterations and the filter used both

  8. The SuperNova Early Warning System

    OpenAIRE

    Scholberg, K.

    2008-01-01

    A core collapse in the Milky Way will produce an enormous burst of neutrinos in detectors world-wide. Such a burst has the potential to provide an early warning of a supernova's appearance. I will describe the nature of the signal, the sensitivity of current detectors, and SNEWS, the SuperNova Early Warning System, a network designed to alert astronomers as soon as possible after the detected neutrino signal.

  9. (Super-)renormalizably dressed black holes

    OpenAIRE

    Ayón-Beato, Eloy; Hassaïne, Mokhtar; Méndez-Zavaleta, Julio A.

    2015-01-01

    Black holes supported by self-interacting conformal scalar fields can be considered as renormalizably dressed since the conformal potential is nothing but the top power-counting renormalizable self-interaction in the relevant dimension. On the other hand, potentials defined by powers which are lower than the conformal one are also phenomenologically relevant since they are in fact super-renormalizable. In this work we provide a new map that allows to build black holes dressed with all the (su...

  10. Dating With Super Junior-M

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    担心情人节没人陪?还在幻想能与谁约会?2009年2月14日,梦想照进现实,SJ-M将在上海举办“情人Superman-Super Junior-M 2009上海歌会”,化身你的甜蜜情人,与你一起共度浪漫情人节。

  11. Super-Kamiokande - Present and Future

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Y. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Higashi-Mozumi, Kamioka-chou, Hida-city, Gifu 506-1205 (Japan)

    2004-12-15

    We summarize the latest results on the atmospheric and solar neutrinos from Super-Kamiokande. The atmospheric neutrino oscillation analyses with two flavors and with three flavor are discussed and the new results based on the L/E analysis are shown. New solar neutrino results based on the un-binned method is discussed. The current status of SK-II and the future prospects for SK neutrino oscillation experiment are summarized.

  12. The (Super)String Theories' Problems

    CERN Document Server

    Naboulsi, R

    2003-01-01

    (Super)String theories are theoretical ideas that go beyond the standard model of particle and high energy physics and show promise for unifying all forces in nature including the gravitational one. In this unification a prominent role is played by the duality symmetries which relate different theories. I present a review of these developements and discuss their problems and possible impact in low-energy physics. We explain and discuss some ideas concerning string field theories from noncommutative geometry.

  13. T-Duality from super Lie n-algebra cocycles for super p-branes

    CERN Document Server

    Fiorenza, Domenico; Schreiber, Urs

    2016-01-01

    We compute the $L_\\infty$-theoretic dimensional reduction of the F1/D$p$-brane super $L_\\infty$-cocycles with coefficients in rationalized twisted K-theory from the 10d type IIA and type IIB super Lie algebras down to 9d. We show that the two resulting coefficient $L_\\infty$-algebras are naturally related by an $L_\\infty$-isomorphism which we find to act on the super $p$-brane cocycles by the infinitesimal version of the rules of topological T-duality and inducing an isomorphism between $K^0$ and $K^1$, rationally. Moreover, we show that these $L_\\infty$-algebras are the homotopy quotients of the RR-charge coefficients by the "T-duality Lie 2-algebra". We find that the induced $L_\\infty$-extension is a gerby extension of a 9+(1+1) dimensional (i.e. "doubled") T-duality correspondence super-spacetime, which serves as a local model for T-folds. We observe that this still extends, via the D0-brane cocycle of its type IIA factor, to a 10+(1+1)-dimensional super Lie algebra. Finally we observe that this satisfies ...

  14. Evaluation of mechanical properties in stainless alloy ferritic with 5 % molybdenum; Avaliacao das propriedades mecanicas em ligas inoxidaveis ferriticas com 5% de molibdenio

    Energy Technology Data Exchange (ETDEWEB)

    Lima Filho, V.X.; Gomes, F.H.F.; Guimaraes, R.F.; Saboia, F.H.C.; Abreu, H.F.G. de [Instituto Federal de Educacao, Ciencia e Tecnologia do Ceara (IFCE). Campus Maracanau, CE (Brazil)], e-mail: venceslau@ifce.edu.br

    2010-07-01

    The deterioration of equipment in the oil industry is caused by high aggressiveness in processing the same. One solution to this problem would increase the content of molybdenum (Mo) alloys, since this improves the corrosion resistance. As the increase of Mo content causes changes in mechanical properties, we sought to evaluate the mechanical properties of alloys with 5% Mo and different levels of chromium (Cr). Were performed metallography and hardness measurement of the alloys in the annealed condition. Subsequent tests were performed tensile and Charpy-V, both at room temperature. The results showed that 2% difference in the content of Cr did not significantly alter the mechanical properties of alloys. The alloys studied had higher values in measured properties when compared to commercial ferritic alloys with similar percentages of Cr. The high content of Mo resulted in a brittle at room temperature but ductile at temperatures above 70 degree C. (author)

  15. SuperB Progress Reports - Physics

    CERN Document Server

    O'Leary, B.; Ramon, M.; Pous, E.; De Fazio, F.; Palano, A.; Eigen, G.; Asgeirsson, D.; Cheng, C.H.; Chivukula, A.; Echenard, B.; Hitlin, D.G.; Porter, F.; Rakitin, A.; Heinemeyer, S.; McElrath, B.; Andreassen, R.; Meadows, B.; Sokoloff, M.; Blanke, M.; Lesiak, T.; Shindou, T.; Ronga, F.; Baldini, W.; Bettoni, D.; Calabrese, R.; Cibinetto, G.; Luppi, E.; Rama, M.; Bossi, F.; Guido, E.; Patrignani, C.; Tosi, S.; Davies, C.; Lunghi, E.; Haisch, U.; Hurth, T.; Westhoff, S.; Crivellin, A.; Hofer, L.; Goto, T.; Brown, David Nathan; Branco, G.C.; Zupan, J.; Herrero, M.; Rodriguez-Sanchez, A.; Simi, G.; Tackmann, F.J.; Biassoni, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.; Lindemann, D.M.; Robertson, S.H.; Duling, B.; Gemmler, K.; Gorbahn, M.; Jager, S.; Paradisi, P.; Straub, D.M.; Bigi, I.; Asner, D.M.; Fast, J.E.; Kouzes, R.T.; Morandin, M.; Rotondo, M.; Ben-Haim, E.; Arnaud, N.; Burmistrov, L.; Kou, E.; Perez, A.; Stocchi, A.; Viaud, B.; Domingo, F.; Piccinini, F.; Manoni, E.; Batignani, G.; Cervelli, A.; Forti, F.; Giorgi, M.; Lusiani, A.; Oberhof, B.; Paoloni, E.; Neri, N.; Walsh, J.; Bevan, A.; Bona, M.; Walker, C.; Weiland, C.; Lenz, A.; Gonzalez-Sprinberg, G.; Faccini, R.; Renga, F.; Polosa, A.; Silvestrini, L.; Virto, J.; Ciuchini, M.; Lubicz, V.; Tarantino, C.; Wilson, F.F.; Carpinelli, M.; Huber, T.; Mannel, T.; Graham, M.; Ratcliff, B.N.; Santoro, V.; Sekula, S.; Shougaev, K.; Soffer, A.; Shimizu, Y.; Gambino, P.; Mussa, R.; Nardecchia, M.; Stal, O.; Bernabeu, J.; Botella, F.; Jung, M.; Lopez March, N.; Martinez Vidal, F.; Oyanguren, A.; Pich, A.; Lozano, M.A.Sanchis; Vidal, J.; Vives, O.; Banerjee, S.; Roney, J.M.; Petrov, A.A.; Flood, K.

    2010-01-01

    SuperB is a high luminosity e+e- collider that will be able to indirectly probe new physics at energy scales far beyond the reach of any man made accelerator planned or in existence. Just as detailed understanding of the Standard Model of particle physics was developed from stringent constraints imposed by flavour changing processes between quarks, the detailed structure of any new physics is severely constrained by flavour processes. In order to elucidate this structure it is necessary to perform a number of complementary studies of a set of golden channels. With these measurements in hand, the pattern of deviations from the Standard Model behavior can be used as a test of the structure of new physics. If new physics is found at the LHC, then the many golden measurements from SuperB will help decode the subtle nature of the new physics. However if no new particles are found at the LHC, SuperB will be able to search for new physics at energy scales up to 10-100 TeV. In either scenario, flavour physics measure...

  16. Super Marx Generator for Thermonuclear Ignition

    CERN Document Server

    Winterberg, Friedwardt

    2008-01-01

    In ongoing electric pulse power driven inertial confinement fusion experiments, Marx generators are connected in parallel with the target in the center of a ring of the Marx generators. There the currents, not the voltages add up. Instead of connecting a bank of Marx generator in parallel, one may connect them in series, adding up their voltages, not the currents. If, for example, fifty 20 MV Marx generators are connected in series, they would add up to a gigavolt. But to prevent breakdown, the adding up of the voltages in such a super-Marx generator must be fast. For this reason, it is proposed that each of the Marx generators charges up a fast discharge capacitor, with the thusly charged fast capacitors becoming the elements of a second stage super Marx generator. In a super Marx generator, the Marx generators also assume the role of the resistors in the original Marx circuit. With a voltage of 10^9 Volt and a discharge current of 10^7 Ampere, the generation of a 10^16 Watt GeV proton beam becomes possible,...

  17. The SuperNEMO tracking detector

    CERN Document Server

    Cascella, M

    2015-01-01

    The SuperNEMO detector will search for neutrinoless double beta decay at the Modane Underground Laboratory on the French-Italian border. This decay mode, if observed, would be proof that the neutrino is its own antiparticle, would constitute evidence for total lepton number violation, and could allow a measurement of the absolute neutrino mass. The SuperNEMO experiment is designed to reach a half-life sensitivity of $10^{26}$ years corresponding to an effective Majorana neutrino mass of $50-100~$meV. The SuperNEMO detector design allows complete topological reconstruction of the double beta decay event enabling excellent levels of background rejection. In the event of a discovery, such topological measurements will be vital in determining the nature of the lepton number violating process. This reconstruction will be performed by a gaseous tracking detector, consisting of 2034 drift cells per module operated in Geiger mode. The tracker of the Demonstrator Module is currently under construction in the UK. This ...

  18. SuperB Technical Design Report

    CERN Document Server

    Baszczyk, M; Kolodziej, J; Kucewicz, W; Sapor, M; Jeremie, A; Pous, E Grauges; Bruno, G E; De Robertis, G; Diacono, D; Donvito, G; Fusco, P; Gargano, F; Giordano, F; Loddo, F; Loparco, F; Maggi, G P; Manzari, V; Mazziotta, M N; Nappi, E; Palano, A; Santeramo, B; Sgura, I; Silvestris, L; Spinoso, V; Eigen, G; Zalieckas, J; Zhuo, Z; Jenkovszky, L; Balbi, G; Boldini, M; Bonacorsi, D; Cafaro, V; D'Antone, I; Dallavalle, G M; Di Sipio, R; Fabbri, F; Fabbri, L; Gabrielli, A; Galli, D; Giacomelli, P; Giordano, V; Giorgi, F M; Grandi, C; Lax, I; Meo, S Lo; Marconi, U; Montanari, A; Pellegrini, G; Piccinini, M; Rovelli, T; Cesari, N Semprini; Torromeo, G; Tosi, N; Travaglini, R; Vagnoni, V M; Valentinetti, S; Villa, M; Zoccoli, A; Caron, J -F; Hearty, C; Lu, P F -T; Mattison, T S; McKenna, J A; So, R Y -C; Barnyakov, M Yu; Blinov, V E; Botov, A A; Druzhinin, V P; Golubev, V B; Kononov, S A; Kravchenko, E A; Levichev, E B; Onuchin, A P; Serednyakov, S I; Shtol, D A; Skovpen, Y I; Solodov, E P; Cardini, A; Carpinelli, M; Chao, D S -T; Cheng, C H; Doll, D A; Echenard, B; Flood, K; Hanson, J; Hitlin, D G; Ongmongkolkul, P; Porter, F C; Zhu, R Y; Randazzo, N; Burelo, E De La Cruz; Zheng, Y; Campos, P; De Silva, M; Kathirgamaraju, A; Meadows, B; Pushpawela, B; Shi, Y; Sokoloff, M; Castro, G Lopez; Ciaschini, V; Franchini, P; Giacomini, F; Paolini, A; Polania, G A Calderon; Laczek, S; Romanowicz, P; Szybinski, B; Czuchry, M; Flis, L; Harezlak, D; Kocot, J; Radecki, M; Sterzel, M; Szepieniec, T; Szymocha, T; Wójcik, P; Andreotti, M; Baldini, W; Calabrese, R; Carassiti, V; Cibinetto, G; Ramusino, A Cotta; Evangelisti, F; Gianoli, A; Luppi, E; Malaguti, R; Manzali, M; Melchiorri, M; Munerato, M; Padoan, C; Santoro, V; Tomassetti, L; Beretta, M M; Biagini, M; Boscolo, M; Capitolo, E; de Sangro, R; Esposito, M; Felici, G; Finocchiaro, G; Gatta, M; Gatti, C; Guiducci, S; Lauciani, S; Patteri, P; Peruzzi, I; Piccolo, M; Raimondi, P; Rama, M; Sanelli, C; Tomassini, S; Fabbricatore, P; Delepine, D; Santos, M A Reyes; Chrzaszcz, M; Grzymkowski, R; Knap, P; Kotula, J; Lesiak, T; Ludwin, J; Michalowski, J; Pawlik, B; Rachwal, B; Stodulski, M; Wiechczynski, J; Witek, M; Zawiejski, L; Zdybal, M; Aushev, V Y; Ustynov, A; Arnaud, N; Bambade, P; Beigbeder, C; Bogard, F; Borsato, M; Breton, D; Brossard, J; Burmistrov, L; Charlet, D; Chaumat, V; Dadoun, O; Berni, M El; Maalmi, J; Puill, V; Rimbault, C; Stocchi, A; Tocut, V; Variola, A; Wallon, S; Wormser, G; Grancagnolo, F; Ben-Haim, E; Sitt, S; Baylac, M; Bourrion, O; Deconto, J -M; Martinez, Y Gomez; Monseu, N; Muraz, J -F; Real, J -S; Vescovi, C; Cenci, R; Jawahery, A; Roberts, D; Twedt, E W; Cheaib, R; Lindemann, D; Nderitu, S; Patel, P; Robertson, S H; Swersky, D; Warburton, A; Flores, E Cuautle; Sanchez, G Toledo; Biassoni, P; Bombelli, L; Citterio, M; Coelli, S; Fiorini, C; Liberali, V; Monti, M; Nasri, B; Neri, N; Palombo, F; Sabatini, F; Stabile, A; Berra, A; Giachero, A; Gotti, C; Lietti, D; Maino, M; Pessina, G; Prest, M; Martin, J -P; Simard, M; Starinski, N; Taras, P; Drutskoy, A; Makarychev, S; Nefediev, A V; Aloisio, A; Cavaliere, S; De Nardo, G; Della Pietra, M; Doria, A; Giordano, R; Ordine, A; Pardi, S; Russo, G; Sciacca, C; Bigi, I I; Jessop, C P; Wang, W; Bellato, M; Benettoni, M; Corvo, M; Crescente, A; Corso, F Dal; Dosselli, U; Fanin, C; Gianelle, A; Longo, S; Michelotto, M; Montecassiano, F; Morandin, M; Pengo, R; Posocco, M; Rotondo, M; Simi, G; Stroili, R; Gaioni, L; Manazza, A; Manghisoni, M; Ratti, L; Re, V; Traversi, G; Zucca, S; Bizzaglia, S; Bizzarri, M; Cecchi, C; Germani, S; Lebeau, M; Lubrano, P; Manoni, E; Papi, A; Rossi, A; Scolieri, G; Batignani, G; Bettarini, S; Casarosa, G; Cervelli, A; Fella, A; Forti, F; Giorgi, M; Lilli, L; Lusiani, A; Oberhof, B; Paladino, A; Pantaleo, F; Paoloni, E; Perez, A L Perez; Rizzo, G; Walsh, J; Téllez, A Fernández; Beck, G; Berman, M; Bevan, A; Gannaway, F; Inguglia, G; Martin, A J; Morris, J; Bocci, V; Capodiferro, M; Chiodi, G; Dafinei, I; Drenska, N V; Faccini, R; Ferroni, F; Gargiulo, C; Gauzzi, P; Luci, C; Lunadei, R; Martellotti, G; Pellegrino, F; Pettinacci, V; Pinci, D; Recchia, L; Ruggeri, D; Zullo, A; Camarri, P; Cardarelli, R; De Santis, C; Di Ciaccio, A; Di Felice, V; Di Palma, F; Di Simone, A; Marcelli, L; Messi, R; Moricciani, D; Sparvoli, R; Tammaro, S; Branchini, P; Budano, A; Bussino, S; Ciuchini, M; Nguyen, F; Passeri, A; Ruggieri, F; Spiriti, E; Wilson, F; Monzon, I Leon; Millan-Almaraz, J R; Podesta-Lerma, P L M; Aston, D; Dey, B; Fisher, A; Jackson, P D; Leith, D W G S; Luitz, S; MacFarlane, D; McCulloch, M; Metcalfe, S; Novokhatski, A; Osier, S; Prepost, R; Ratcliff, B; Seeman, J; Sullivan, M; Va'vra, J; Wienands, U; Wisniewski, W; Altschul, B D; Purohit, M V; Baudot, J; Ripp-Baudot, I; Cirrone, G A P; Cuttone, G; Bezshyyko, O; Dolinska, G; Soffer, A; Bianchi, F; De Mori, F; Filippi, A; Gamba, D; Marcello, S; Bomben, M; Bosisio, L; Cristaudo, P; Lanceri, L; Liberti, B; Rashevskaya, I; Stella, C; Vallazza, E S; Vitale, L; Auriemma, G; Satriano, C; Vidal, F Martinez; de Cos, J Mazorra; Oyanguren, A; Valls, P Ruiz; Beaulieu, A; Dejong, S; Franta, J; Lewczuk, M J; Roney, M; Sobie, R

    2013-01-01

    In this Technical Design Report (TDR) we describe the SuperB detector that was to be installed on the SuperB e+e- high luminosity collider. The SuperB asymmetric collider, which was to be constructed on the Tor Vergata campus near the INFN Frascati National Laboratory, was designed to operate both at the Upsilon(4S) center-of-mass energy with a luminosity of 10^{36} cm^{-2}s^{-1} and at the tau/charm production threshold with a luminosity of 10^{35} cm^{-2}s^{-1}. This high luminosity, producing a data sample about a factor 100 larger than present B Factories, would allow investigation of new physics effects in rare decays, CP Violation and Lepton Flavour Violation. This document details the detector design presented in the Conceptual Design Report (CDR) in 2007. The R&D and engineering studies performed to arrive at the full detector design are described, and an updated cost estimate is presented. A combination of a more realistic cost estimates and the unavailability of funds due of the global economic ...

  19. Predicting the occurrence of super-storms

    Directory of Open Access Journals (Sweden)

    N. Srivastava

    2005-11-01

    Full Text Available A comparative study of five super-storms (Dst<-300 nT of the current solar cycle after the launch of SoHO, to identify solar and interplanetary variables that influence the magnitude of resulting geomagnetic storms, is described. Amongst solar variables, the initial speed of a CME is considered the most reliable predictor of the strength of the associated geomagnetic storm because fast mass ejections are responsible for building up the ram pressure at the Earth's magnetosphere. However, although most of the super-storms studied were associated with high speed CMEs, the Dst index of the resulting geomagnetic storms varied between -300 to -472 nT. The most intense storm of 20 November 2003, (Dst ~ -472 nT had its source in a comparatively smaller active region and was associated with a relatively weaker, M-class flare while all other super-storms had their origins in large active regions and were associated with strong X-class flares. However, this superstorm did not show any associated extraordinary solar and interplanetary characteristics. The study also reveals the challenge in the reliable prediction of the magnitude of a geomagnetic storm from solar and interplanetary variables.

  20. Novel room temperature ferromagnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Amita

    2004-11-01

    Today's information world, bits of data are processed by semiconductor chips, and stored in the magnetic disk drives. But tomorrow's information technology may see magnetism (spin) and semiconductivity (charge) combined in one 'spintronic' device that exploits both charge and 'spin' to carry data (the best of two worlds). Spintronic devices such as spin valve transistors, spin light emitting diodes, non-volatile memory, logic devices, optical isolators and ultra-fast optical switches are some of the areas of interest for introducing the ferromagnetic properties at room temperature in a semiconductor to make it multifunctional. The potential advantages of such spintronic devices will be higher speed, greater efficiency, and better stability at a reduced power consumption. This Thesis contains two main topics: In-depth understanding of magnetism in Mn doped ZnO, and our search and identification of at least six new above room temperature ferromagnetic semiconductors. Both complex doped ZnO based new materials, as well as a number of nonoxides like phosphides, and sulfides suitably doped with Mn or Cu are shown to give rise to ferromagnetism above room temperature. Some of the highlights of this work are discovery of room temperature ferromagnetism in: (1) ZnO:Mn (paper in Nature Materials, Oct issue, 2003); (2) ZnO doped with Cu (containing no magnetic elements in it); (3) GaP doped with Cu (again containing no magnetic elements in it); (4) Enhancement of Magnetization by Cu co-doping in ZnO:Mn; (5) CdS doped with Mn, and a few others not reported in this thesis. We discuss in detail the first observation of ferromagnetism above room temperature in the form of powder, bulk pellets, in 2-3 mu-m thick transparent pulsed laser deposited films of the Mn (<4 at. percent) doped ZnO. High-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS) spectra recorded from 2 to 200nm areas showed homogeneous