WorldWideScience

Sample records for suny environmental science

  1. Centralized automated cataloging of health science materials in the MLC/SUNY/OCLC shared cataloging service.

    Science.gov (United States)

    Raper, J E

    1977-04-01

    Since February 1976, The Medical Library Center of New York, with the assistance of the SUNY/OCLC Network, has offered, on a subscription basis, a centralized automated cataloging service to health science libraries in the greater metropolitan New York area. By using workforms and prints of OCLC record (amended by the subscribing participants), technical services personnel at the center have fed cataloging data, via a CRT terminal, into the OCLC system, which provides (1) catalog cards, received in computer filing order; (2) book card, spine, and pocket labels; (3) accessions lists; and (4) data for eventual production of book catalogs and union catalogs. The experience of the center in the development, implementation, operation, and budgeting of its shared cataloging service is discussed.

  2. Waste to Energy at SUNY Cobleskill

    Science.gov (United States)

    2011-05-10

    GASIFICATION Ash ENERGYWaste T ~ 800oC Partial Combustion O/C ~1/3 • Energy Production • Reduced Fuel Usage for transportation • Increased Energy...Environmental Science and Technology at SUNY Cobleskill. CEST MISSION • Reduce society’s dependency on fossil fuels. • Research conversion of biomass ...on chamber temperature) • Syngas • Char • Steam • Syngas clean up outputs • Hydrogen • Carbon Monoxide • Ash  Nitrogen  Sulfate  Precipitates 22

  3. DOE Closeout Report from SUNY Albany High Energy Physics to Department of Energy Office of Science.

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Jesse [SUNY Albany; Jain, Vivek

    2014-08-15

    A report from the SUNY Albany Particle Physics Group summarizing our activities on the ATLAS experiment at the Large Hadron Collider. We summarize our work: on data analysis projects, on efforts to improve detector performance, and on service work to the experiment.

  4. Environmental sciences

    NARCIS (Netherlands)

    Kwa, C.; Wright, J.D.

    2015-01-01

    The environmental sciences are engaged in a remarkable effort of interdisciplinary cooperation and integration. Some long-running international scientific programs, notably the World Climate Research Programme and the International Geosphere-Biosphere Programme, play an important role therein. The

  5. Environmental sciences

    NARCIS (Netherlands)

    Kwa, C.; Wright, J.D.

    2015-01-01

    The environmental sciences are engaged in a remarkable effort of interdisciplinary cooperation and integration. Some long-running international scientific programs, notably the World Climate Research Programme and the International Geosphere-Biosphere Programme, play an important role therein. The o

  6. Environmental sciences

    NARCIS (Netherlands)

    Kwa, C.; Wright, J.D.

    2015-01-01

    The environmental sciences are engaged in a remarkable effort of interdisciplinary cooperation and integration. Some long-running international scientific programs, notably the World Climate Research Programme and the International Geosphere-Biosphere Programme, play an important role therein. The o

  7. The influence of high school academics on freshman college mathematics and science courses at SUNY Oswego

    Science.gov (United States)

    Hayali, Tolga

    This study examined the relationship between 2011 freshman college mathematics and science grades and freshman students' high school academics and demographic data, exploring the factors that contribute to the success of first-year STEM majoring freshman students at State University of New York at Oswego. The variables were Gender, Race, SES, School Size, Parent with College Education, High School Grade Point Average (HSGPA), Transfer Credit, SAT Composite Score, and New York State Regents Exam results, based on data from 237 freshman students entering college immediately following high school. The findings show HSGPA as a significant predictor of success in freshman College Mathematics and Sciences, Transfer Credit as a significant predictor in College Mathematics and College Chemistry, SES as a significant predictor in College Biology and College Chemistry, Parent with College Education as a significant predictor in College Biology and New York State Chemistry Regents Exam as a significant predictor in College Chemistry. Based on these findings, guidance counselors, science educators, and education institutions can develop a framework to determine which measurements are meaningful and advise students to focus on excellent performance in the Chemistry Regents Exams, take more college courses during high school, and maintain a high grade point average.

  8. Life sciences and environmental sciences

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    The DOE laboratories play a unique role in bringing multidisciplinary talents -- in biology, physics, chemistry, computer sciences, and engineering -- to bear on major problems in the life and environmental sciences. Specifically, the laboratories utilize these talents to fulfill OHER`s mission of exploring and mitigating the health and environmental effects of energy use, and of developing health and medical applications of nuclear energy-related phenomena. At Lawrence Berkeley Laboratory (LBL) support of this mission is evident across the spectrum of OHER-sponsored research, especially in the broad areas of genomics, structural biology, basic cell and molecular biology, carcinogenesis, energy and environment, applications to biotechnology, and molecular, nuclear and radiation medicine. These research areas are briefly described.

  9. Life sciences and environmental sciences

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    The DOE laboratories play a unique role in bringing multidisciplinary talents -- in biology, physics, chemistry, computer sciences, and engineering -- to bear on major problems in the life and environmental sciences. Specifically, the laboratories utilize these talents to fulfill OHER's mission of exploring and mitigating the health and environmental effects of energy use, and of developing health and medical applications of nuclear energy-related phenomena. At Lawrence Berkeley Laboratory (LBL) support of this mission is evident across the spectrum of OHER-sponsored research, especially in the broad areas of genomics, structural biology, basic cell and molecular biology, carcinogenesis, energy and environment, applications to biotechnology, and molecular, nuclear and radiation medicine. These research areas are briefly described.

  10. Environmental Health Science

    Science.gov (United States)

    Sherman, Alan; Smith, Robert

    1975-01-01

    Describes an environmental health science technology curriculum designed to provide technicians in the areas of air, water and wastewater analyses, treatment plant operators, public health enforcement officers, and pollution inspectors. (GS)

  11. Center for Environmental Health Sciences

    Data.gov (United States)

    Federal Laboratory Consortium — The primary research objective of the Center for Environmental Health Sciences (CEHS) at the University of Montana is to advance knowledge of environmental impacts...

  12. Environmental science and technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    The Program on Environmental Science and Technology developed at the Chemical and Environmental Technology Center comprehends environmental chemistry (water, soil and atmospheric chemistry), clean technologies (desulfurization of diesel and oil, biodegradable polymers and structural modification of polymers, recycling, pyrolysis of dangerous chemicals by molten salt technology), nanotechnology (magnetic nanoparticles, dendrimers, nano biomarkers, catalysts) and chemical characterization of nuclear fuel and nuclear fuel cycle waste (chemical and isotopic characterization). The Chemical and Environmental Technology Center was established in 1995, as an evolution of the former Department of Chemistry Engineering (1970). The program on environment science and technology was structured as consequence of the continuous growth of environmental activities on areas related to nuclear programs of IPEN. Moreover, it was an answer to the society concerning the climate changes and biodiversity preservation. All activities of research and development, services, supervision of graduate and under graduated students and courses performance at the center were related to the development, improvement and establishment of new technologies. The highlights of this period (2011 - 2013) were: - Development and use of modern analytical technology for the characterization of persistent pollutants and endocrine disrupters (metals, PAHA’s, PCBs, Pesticides, hormones, surfactants, plasticizer and human pharmaceuticals) in order to evaluate water quality and/or sediments; - Atmospheric chemistry and greenhouse gases: Evaluating an estimation of surface trace gas fluxes from aircraft measurements above the Amazon; - Cooperation with SABESP (Water and Sewage Company) and CETESB (State Environment Agency) in program for the development of public policies; - Studies and development in biodegradable polymers, polyolefins and advanced methods for polymer and rubber recycling and re-use; - Studies

  13. African Journals Online: Environmental Sciences

    African Journals Online (AJOL)

    Items 1 - 28 of 28 ... ... all the field of Chemistry (pure science, agriculture, environmental science, ... The journal is published twice a year. ... Other websites associated with this journal: http://biotechsocietynigeria.org/index.php/journals/11-current.

  14. Environmental Science Projects. LC Science Tracer Bullet.

    Science.gov (United States)

    Carter, Constance, Comp.

    This bibliography cites sources to assist middle, junior, and senior high school students and teachers in planning, preparing, and executing science fair projects in the environmental sciences. In addition, a few books with experiments suitable for elementary grade students are included. The listing includes: (1) 5 introductory texts; (2) 31…

  15. SUNY beamline facilities at the National Synchrotron Light Source (Final Report)

    Energy Technology Data Exchange (ETDEWEB)

    Coppens, Philip

    2003-06-22

    The DOE sponsored SUNY synchrotron project has involved close cooperation among faculty at several SUNY campuses. A large number of students and postdoctoral associates have participated in its operation which was centered at the X3 beamline of the National Synchrotron Light Source at Brookhaven National Laboratory. Four stations with capabilities for Small Angle Scattering, Single Crystal and Powder and Surface diffraction and EXAFS were designed and operated with capability to perform experiments at very low as well as elevated temperatures and under high vacuum. A large amount of cutting-edge science was performed at the facility, which in addition provided excellent training for students and postdoctoral scientists in the field.

  16. Toxicogenomics in Environmental Science.

    Science.gov (United States)

    Brinke, Alexandra; Buchinger, Sebastian

    This chapter reviews the current knowledge and recent progress in the field of environmental, aquatic ecotoxicogenomics with a focus on transcriptomic methods. In ecotoxicogenomics the omics technologies are applied for the detection and assessment of adverse effects in the environment, and thus are to be distinguished from omics used in human toxicology [Snape et al., Aquat Toxicol 67:143-154, 2004]. Transcriptomic methods in ecotoxicology are applied to gain a mechanistic understanding of toxic effects on organisms or populations, and thus aim to bridge the gap between cause and effect. A worthwhile effect-based interpretation of stressor induced changes on the transcriptome is based on the principle of phenotypic-anchoring [Paules, Environ Health Perspect 111:A338-A339, 2003]. Thereby, changes on the transcriptomic level can only be identified as effects if they are clearly linked to a specific stressor-induced effect on the macroscopic level. By integrating those macroscopic and transcriptomic effects, conclusions on the effect-inducing type of the stressor can be drawn. Stressor-specific effects on the transcriptomic level can be identified as stressor-specific induced pathways, transcriptomic patterns, or stressors-specific genetic biomarkers. In this chapter, examples of the combined application of macroscopic and transcriptional effects for the identification of environmental stressors, such as aquatic pollutants, are given and discussed. By means of these examples, challenges on the way to a standardized application of transcriptomics in ecotoxicology are discussed. This is also done against the background of the application of transcriptomic methods in environmental regulation such as the EU regulation Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH).

  17. Emotions in teaching environmental science

    Science.gov (United States)

    Quigley, Cassie

    2016-09-01

    This op-ed article examines the emotional impact of teaching environmental science and considers how certain emotions can broaden viewpoints and other emotions narrow them. Specifically, it investigates how the topic of climate change became an emotional debate in a science classroom because of religious beliefs. Through reflective practice and examination of positionality, the author explored how certain teaching practices of pre-service science teachers created a productive space and other practices closed down the conversations. This article is framed with theories that explore both divergent and shared viewpoints.

  18. Order Theory in Environmental Sciences

    DEFF Research Database (Denmark)

    Sørensen, P. B.; Brüggemann, R.; Lerche, D. B.

    This is the proceeding from the fifth workshop in Order Theory in Environ-mental Science. In this workshop series the concept of Partial Order Theory is development in relation to application and the use is tested based on specific problems. The Partial Order Theory will have a potential use...

  19. Career Paths in Environmental Sciences

    Science.gov (United States)

    Career paths, current and future, in the environmental sciences will be discussed, based on experiences and observations during the author's 40 + years in the field. An emphasis will be placed on the need for integrated, transdisciplinary systems thinking approaches toward achie...

  20. Environmental Management Science Program Workshop

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-07-01

    This program summary book is a compendium of project summaries submitted by principal investigators in the Environmental Management Science Program and Environmental Management/Energy Research Pilot Collaborative Research Program (Wolf-Broido Program). These summaries provide information about the most recent project activities and accomplishments. All projects will be represented at the workshop poster sessions, so you will have an opportunity to meet with the researchers. The projects will be presented in the same order at the poster session as they are presented in this summary book. Detailed questions about an individual project may be directed to the investigators involved.

  1. SUNY Youth Internship Program: A Summary Review.

    Science.gov (United States)

    Winter, Gene M.; Fadale, LaVerna M.

    A Youth Internship Program (YIP) has been developed at seven community colleges of the State University of New York (SUNY) to improve the employability potential of unemployed, out-of-school, economically disadvantaged youth between 16 and 21 years of age. Components of the seven programs examined differ, but all address six main activities:…

  2. The SUNY Oneonta Second Life Music Project

    Science.gov (United States)

    Greenberg, James; Nepkie, Janet; Pence, Harry E.

    2009-01-01

    Do online virtual worlds represent a viable learning environment for higher education? Many Second Life classes resemble their real life equivalents, but some faculty are exploring the potential of virtual worlds for less-traditional teaching. This article describes one such effort, the SUNY Oneonta Music Project, in which faculty and students…

  3. National Institute of Environmental Health Sciences

    Science.gov (United States)

    ... Home Page Brochures & Fact Sheets Environmental Health Topics Science Education Kids Environment | Kids Health Research Home Page At NIEHS ... Health & Education Brochures & Fact Sheets Environmental Health Topics Science Education Kids Environment | Kids Health Research Home Research At NIEHS ...

  4. Environmental science-policy interactions

    DEFF Research Database (Denmark)

    Kamelarczyk, Kewin Bach Friis

    on the environment is indispensable in environmental policy making, significant human and financial resources are being allocated to activities that are able to generate the required scientific knowledge. However, for many involved in such activities, the question arises: when do policy makers actually listen......In response to a history of contended and ineffective policy initiatives aimed at arresting environmental problems, scientific knowledge is increasingly called for to inform decision makers in their design of better policy solutions. Based on the rationale that scientific knowledge...... in future REDD+ design and implementation. To curtail potential negative consequences of the identified mode of science-policy interaction in Zambia, the study concludes by making a number of proposals. The proposals are generic in nature and may be found relevant in environmental policy processes outside...

  5. Order Theory in Environmental Sciences

    DEFF Research Database (Denmark)

    Sørensen, P. B.; Brüggemann, R.; Lerche, D. B.

    This is the proceeding from the fifth workshop in Order Theory in Environ-mental Science. In this workshop series the concept of Partial Order Theory is development in relation to application and the use is tested based on specific problems. The Partial Order Theory will have a potential use...... in cases where more than one criterion is included in a prioritisation problem both in relation to decision support and in relation to data-mining and interpretation. Espe-cially the problems where a high degree of complexity results in considerable uncertainty are good candidates for application...

  6. Social Science Collaboration with Environmental Health.

    Science.gov (United States)

    Hoover, Elizabeth; Renauld, Mia; Edelstein, Michael R; Brown, Phil

    2015-11-01

    Social science research has been central in documenting and analyzing community discovery of environmental exposure and consequential processes. Collaboration with environmental health science through team projects has advanced and improved our understanding of environmental health and justice. We sought to identify diverse methods and topics in which social scientists have expanded environmental health understandings at multiple levels, to examine how transdisciplinary environmental health research fosters better science, and to learn how these partnerships have been able to flourish because of the support from National Institute of Environmental Health Sciences (NIEHS). We analyzed various types of social science research to investigate how social science contributes to environmental health. We also examined NIEHS programs that foster social science. In addition, we developed a case study of a community-based participation research project in Akwesasne in order to demonstrate how social science has enhanced environmental health science. Social science has informed environmental health science through ethnographic studies of contaminated communities, analysis of spatial distribution of environmental injustice, psychological experience of contamination, social construction of risk and risk perception, and social impacts of disasters. Social science-environmental health team science has altered the way scientists traditionally explore exposure by pressing for cumulative exposure approaches and providing research data for policy applications. A transdisciplinary approach for environmental health practice has emerged that engages the social sciences to paint a full picture of the consequences of contamination so that policy makers, regulators, public health officials, and other stakeholders can better ameliorate impacts and prevent future exposure. Hoover E, Renauld M, Edelstein MR, Brown P. 2015. Social science collaboration with environmental health. Environ Health

  7. Water Pollution, Environmental Science Curriculum Guide Supplement.

    Science.gov (United States)

    McKenna, Harold J.

    This curriculum guide is a 40-day unit plan on water pollution developed, in part, from the National Science Foundation Environmental Science Institutes' Ninth Grade Environmental Science Curriculum Guide. This unit contains teacher lesson plans, suggested teacher and student modules, case studies, and activities to be developed by teachers…

  8. Water Pollution, Environmental Science Curriculum Guide Supplement.

    Science.gov (United States)

    McKenna, Harold J.

    This curriculum guide is a 40-day unit plan on water pollution developed, in part, from the National Science Foundation Environmental Science Institutes' Ninth Grade Environmental Science Curriculum Guide. This unit contains teacher lesson plans, suggested teacher and student modules, case studies, and activities to be developed by teachers…

  9. Activity and Action: Bridging Environmental Sciences and Environmental Education

    Science.gov (United States)

    Tal, Tali; Abramovitch, Anat

    2013-01-01

    The main goal of this study was to examine the Environmental Workshop unit taught to Environmental Sciences majors in the high schools in Israel and learn if, and in what ways, this unit could become a model for environmental education throughout the high school curriculum. We studied the special characteristics of the Environmental Workshop (EW)…

  10. Activity and Action: Bridging Environmental Sciences and Environmental Education

    Science.gov (United States)

    Tal, Tali; Abramovitch, Anat

    2013-01-01

    The main goal of this study was to examine the Environmental Workshop unit taught to Environmental Sciences majors in the high schools in Israel and learn if, and in what ways, this unit could become a model for environmental education throughout the high school curriculum. We studied the special characteristics of the Environmental Workshop (EW)…

  11. Environmental Education: New Era for Science Education.

    Science.gov (United States)

    Taskin, Ozgur

    This paper presents the history of environmental education with regard to major issues, theories, and goals; environmental education in science education curriculum; and inquiry-based approaches. An example for environmental education curriculum content and an example inquiry laboratory for environmental education are included. (KHR)

  12. Environmental Science: High-School Science Fair Experiments.

    Science.gov (United States)

    Dashefsky, H. Steven

    This book contains 23 suggestions for experiments involving environmental science that can be used to create a science fair project. Aimed at grades 10-12, a wide range of environmental topics is covered. These topics include soil ecosystems, aquatic ecosystems, applied ecology, global warming and the greenhouse effect, deforestation and…

  13. Environmental Science for All? Considering Environmental Science for Inclusion in the High School Core Curriculum

    Science.gov (United States)

    Edelson, Daniel C.

    2007-01-01

    With the dramatic growth of environmental science as an elective in high schools over the last decade, educators have the opportunity to realistically consider the possibility of incorporating environmental science into the core high school curriculum. Environmental science has several characteristics that make it a candidate for the core…

  14. 75 FR 65365 - National Institute of Environmental Health Sciences;

    Science.gov (United States)

    2010-10-22

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: Environmental Health Sciences Review Committee; Research Career... applications. Place: Nat. Inst. of Environmental Health Sciences, Building 101, Rodbell Auditorium, 111 T. W...

  15. Environmental Management Science Program Workshop. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-07-01

    The Department of Energy Office of Environmental Management (EM), in partnership with the Office of Energy Research (ER), designed, developed, and implemented the Environmental Management Science Program as a basic research effort to fund the scientific and engineering understanding required to solve the most challenging technical problems facing the government's largest, most complex environmental cleanup program. The intent of the Environmental Management Science Program is to: (1) Provide scientific knowledge that will revolutionize technologies and cleanup approaches to significantly reduce future costs, schedules, and risks. (2) Bridge the gap between broad fundamental research that has wide-ranging applications such as that performed in the Department's Office of Energy Research and needs-driven applied technology development that is conducted in Environmental Management's Office of Science and Technology. (3) Focus the nation's science infrastructure on critical Department of Energy environmental problems. In an effort to share information regarding basic research efforts being funded by the Environmental Management Science Program and the Environmental Management/Energy Research Pilot Collaborative Research Program (Wolf-Broido Program), this CD includes summaries for each project. These project summaries, available in portable document format (PDF), were prepared in the spring of 1998 by the principal investigators and provide information about their most recent project activities and accomplishments.

  16. Translational Environmental Science and Technology (TEST)

    African Journals Online (AJOL)

    TUOYO

    care is associated with the concept of ecosystem health, where discoveries and ... microcosms are translated into practices and policies for environmental remediation ... which typically emphasizes social studies of science and policy analysis.

  17. Accelerate synthesis in ecology and environmental sciences

    Science.gov (United States)

    Synthesis of diverse knowledge is a central part of all sciences, but especially those such as ecology and environmental sciences which draw information from many disciplines. Research and education in ecology are intrinsically synthetic, and synthesis is increasingly needed to find solutions for en...

  18. Convergence between science and environmental education

    NARCIS (Netherlands)

    Wals, A.E.J.; Brody, M.; Dillon, J.; Stevenson, R.B.

    2014-01-01

    Urgent issues such as climate change, food scarcity, malnutrition, and loss of biodiversity are highly complex and contested in both science and society (1). To address them, environmental educators and science educators seek to engage people in what are commonly referred to as sustainability challe

  19. On Science, Ecology and Environmentalism

    Science.gov (United States)

    Tulloch, Lynley

    2013-01-01

    Using ecological science as a backdrop for this discussion, the author applies Michel Foucault's historical genealogical strategy to an analysis of the processes through which sustainable development (SD) gained hegemonic acceptance in the West. She analyses some of the ideological mutations that have seen SD emerge from an environmentalist…

  20. On Science, Ecology and Environmentalism

    Science.gov (United States)

    Tulloch, Lynley

    2013-01-01

    Using ecological science as a backdrop for this discussion, the author applies Michel Foucault's historical genealogical strategy to an analysis of the processes through which sustainable development (SD) gained hegemonic acceptance in the West. She analyses some of the ideological mutations that have seen SD emerge from an environmentalist…

  1. Aviation environmental technology and science

    Institute of Scientific and Technical Information of China (English)

    Zhang Yanzhong

    2008-01-01

    Expatiating on the impact of aviation on the environment and aviation environmental protection projects are ex- pounded, and analyzing on the atmosphere pollution and effects on the aviation noise of aircraft discharge. Researching the approach to control aircraft exhaust pollution and noise pollution, and proposing the technology and management measures to reduce air pollution.

  2. The Effect of Environmental Science Projects on Students' Environmental Knowledge and Science Attitudes

    Science.gov (United States)

    Al-Balushi, Sulaiman M.; Al-Aamri, Shamsa S.

    2014-01-01

    The current study explores the effectiveness of involving students in environmental science projects for their environmental knowledge and attitudes towards science. The study design is a quasi-experimental pre-post control group design. The sample was 62 11th-grade female students studying at a public school in Oman. The sample was divided into…

  3. The Effect of Environmental Science Projects on Students' Environmental Knowledge and Science Attitudes

    Science.gov (United States)

    Al-Balushi, Sulaiman M.; Al-Aamri, Shamsa S.

    2014-01-01

    The current study explores the effectiveness of involving students in environmental science projects for their environmental knowledge and attitudes towards science. The study design is a quasi-experimental pre-post control group design. The sample was 62 11th-grade female students studying at a public school in Oman. The sample was divided into…

  4. The Effect of Environmental Science Projects on Students' Environmental Knowledge and Science Attitudes

    Science.gov (United States)

    Al-Balushi, Sulaiman M.; Al-Aamri, Shamsa S.

    2014-01-01

    The current study explores the effectiveness of involving students in environmental science projects for their environmental knowledge and attitudes towards science. The study design is a quasi-experimental pre-post control group design. The sample was 62 11th-grade female students studying at a public school in Oman. The sample was divided into…

  5. Environmental science-policy interactions

    DEFF Research Database (Denmark)

    Kamelarczyk, Kewin Bach Friis

    In response to a history of contended and ineffective policy initiatives aimed at arresting environmental problems, scientific knowledge is increasingly called for to inform decision makers in their design of better policy solutions. Based on the rationale that scientific knowledge on the environ......In response to a history of contended and ineffective policy initiatives aimed at arresting environmental problems, scientific knowledge is increasingly called for to inform decision makers in their design of better policy solutions. Based on the rationale that scientific knowledge...... on the environment is indispensable in environmental policy making, significant human and financial resources are being allocated to activities that are able to generate the required scientific knowledge. However, for many involved in such activities, the question arises: when do policy makers actually listen...... by an epistemic community, which in a current situation of weak and contradictory empirical evidence is able to sustain a deforestation discourse centered on high forest loss and neo-Malthusian causal explanations. The third paper examines how knowing about deforestation is closely linked to issues of framing...

  6. A Science Data Gateway for Environmental Management

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Deborah, A; Faybishenko, Boris; Freedman, Vicky, L; Krishnan, Harinarayan; Kushner, Gary; Lansing, Carina; Porter, Ellen; Romosan, Alexandru; Shoshani, Arie; Wainwright, Haruko; Weidmer, Arthur; Wu, Kesheng

    2015-10-12

    Science data gateways are effective in providing complex science data collections to the world-wide user communities. In this paper we describe a gateway for the Advanced Simulation Capability for Environmental Management (ASCEM) framework. Built on top of established web service technologies, the ASCEM data gateway is specifically designed for environmental modeling applications. Its key distinguishing features include: (1) handling of complex spatiotemporal data, (2) offering a variety of selective data access mechanisms, (3) providing state of the art plotting and visualization of spatiotemporal data records, and (4) integrating seamlessly with a distributed workflow system using a RESTful interface. ASCEM project scientists have been using this data gateway since 2011.

  7. Critical materialism: science, technology, and environmental sustainability.

    Science.gov (United States)

    York, Richard; Clark, Brett

    2010-01-01

    There are widely divergent views on how science and technology are connected to environmental problems. A view commonly held among natural scientists and policy makers is that environmental problems are primarily technical problems that can be solved via the development and implementation of technological innovations. This technologically optimistic view tends to ignore power relationships in society and the political-economic order that drives environmental degradation. An opposed view, common among postmodernist and poststructuralist scholars, is that the emergence of the scientific worldview is one of the fundamental causes of human oppression. This postmodernist view rejects scientific epistemology and often is associated with an anti-realist stance, which ultimately serves to deny the reality of environmental problems, thus (unintentionally) abetting right-wing efforts to scuttle environmental protection. We argue that both the technologically optimistic and the postmodernist views are misguided, and both undermine our ability to address environmental crises. We advocate the adoption of a critical materialist stance, which recognizes the importance of natural science for helping us to understand the world while also recognizing the social embeddedness of the scientific establishment and the need to challenge the manipulation of science by the elite.

  8. Transformative environmental governance | Science Inventory ...

    Science.gov (United States)

    Transformative governance is an approach to environmental governance that has the capacity to respond to, manage, and trigger regime shifts in coupled social-ecological systems (SESs) at multiple scales. The goal of transformative governance is to actively shift degraded SESs to alternative, more desirable, or more functional regimes by altering the structures and processes that define the system. Transformative governance is rooted in ecological theories to explain cross-scale dynamics in complex systems, as well as social theories of change, innovation, and technological transformation. Similar to adaptive governance, transformative governance involves a broad set of governance components, but requires additional capacity to foster new social-ecological regimes including increased risk tolerance, significant systemic investment, and restructured economies and power relations. Transformative governance has the potential to actively respond to regime shifts triggered by climate change, and thus future research should focus on identifying system drivers and leading indicators associated with social-ecological thresholds. Transformative governance has the potential to actively respond to regime shifts triggered by climate change, and thus future research should focus on identifying system drivers and leading indicators associated with social-ecological thresholds.

  9. Environmental Molecular Sciences Laboratory 2004 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    White, Julia C.

    2005-04-17

    This 2004 Annual Report describes the research and accomplishments of staff and users of the W.R. Wiley Environmental Molecular Sciences Laboratory (EMSL), located in Richland, Washington. EMSL is a multidisciplinary, national scientific user facility and research organization, operated by Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy's Office of Biological and Environmental Research. The resources and opportunities within the facility are an outgrowth of the U.S. Department of Energy's (DOE) commitment to fundamental research for understanding and resolving environmental and other critical scientific issues.

  10. Journal of Applied Sciences and Environmental Management

    African Journals Online (AJOL)

    Journal of Applied Sciences and Environmental Management. ... Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives ... In addition, studies relating to food, water, and other consumer products, papers on ... Effect of different processing methods on nutritional composition of Leucaena ...

  11. Science Theatre as dissemination of environmental awareness

    DEFF Research Database (Denmark)

    Chemi, Tatiana; Kastberg, Peter

    2015-01-01

    A community project with the intention of developing specific communication on environmental issues for children age 3-7 allies with a theatre artist and storyteller. The result is a meeting between science and theatre. Theatre, with its borderline praxis between entertainment and reflection offe...

  12. Environmental Social Sciences: Methods and Research Design

    OpenAIRE

    Jeremy Spoon

    2012-01-01

    Review of Environmental Social Sciences: Methods and Research Design. Ismael Vaccaro, Eric Alden Smith, and Shankar Aswani, eds. 2010. Cambridge University Press, Cambridge. Pp. 396, 41 b/w illustrations, 20 tables. US$49.99 (paperback). ISBN 9780521125710.

  13. Ecosystem Services in Environmental Science Literacy

    Science.gov (United States)

    Ruppert, John Robert

    2015-01-01

    Human beings depend on a set of benefits that emerge from functioning ecosystems, termed Ecosystem Services (ES), and make decisions in everyday life that affect these ES. Recent advancements in science have led to an increasingly sophisticated understanding of ES and how they can be used to inform environmental decision-making. Following suit, US…

  14. Ecosystem Services in Environmental Science Literacy

    Science.gov (United States)

    Ruppert, John Robert

    2015-01-01

    Human beings depend on a set of benefits that emerge from functioning ecosystems, termed Ecosystem Services (ES), and make decisions in everyday life that affect these ES. Recent advancements in science have led to an increasingly sophisticated understanding of ES and how they can be used to inform environmental decision-making. Following suit, US…

  15. Environmental Science: 49 Science Fair Projects. Science Fair Projects Series.

    Science.gov (United States)

    Bonnet, Robert L.; Keen, G. Daniel

    This book contains 49 science fair projects designed for 6th to 9th grade students. Projects are organized by the topics of soil, ecology (projects in habitat and life cycles), pests and controls (projects in weeds and insects), recycling (projects in resources and conservation), waste products (projects in decomposition), microscopic organisms,…

  16. USGS Environmental health science strategy: providing environmental health science for a changing world: public review release

    Science.gov (United States)

    Bright, Patricia R.; Buxton, Herbert T.; Balistrieri, Laurie S.; Barber, Larry B.; Chapelle, Francis H.; Cross, Paul C.; Krabbenhoft, David P.; Plumlee, Geoffrey S.; Sleeman, Jonathan M.; Tillitt, Donald E.; Toccalino, Patricia L.; Winton, James R.

    2012-01-01

    America has an abundance of natural resources. We have bountiful clean water, fertile soil, and unrivaled national parks, wildlife refuges, and public lands. These resources enrich our lives and preserve our health and wellbeing. These resources have been maintained because of our history of respect for their value and an enduring commitment to their vigilant protection. Awareness of the social, economic, and personal value of the health of our environment is increasing. The emergence of environmentally driven diseases caused by environmental exposure to contaminants and pathogens is a growing concern worldwide. New health threats and patterns of established threats are affected by both natural and anthropogenic changes to the environment. Human activities are key drivers of emerging (new and re-emerging) health threats. Societal demands for land and natural resources, a better quality of life, improved economic prosperity, and the environmental impacts associated with these demands will continue to increase. Natural earth processes, climate trends, and related climatic events will add to the environmental impact of human activities. These environmental drivers will influence exposure to disease agents, including viral, bacterial, prion, and fungal pathogens, parasites, natural earth materials, toxins and other biogenic compounds, and synthetic chemicals and substances. The U.S. Geological Survey (USGS) defines environmental health science broadly as the interdisciplinary study of relations among the quality of the physical environment, the health of the living environment, and human health. The interactions among these three spheres are driven by human activities, ecological processes, and natural earth processes; the interactions affect exposure to contaminants and pathogens and the severity of environmentally driven diseases in animals and people. This definition provides USGS with a framework for synthesizing natural science information from across the Bureau

  17. Evolution of a Graduate Environmental Science Program

    Directory of Open Access Journals (Sweden)

    Will Focht

    2009-01-01

    Full Text Available Problem statement: Environmental science programs vary widely in their curricula and pedagogical approaches. In part, this is due to the lack of a unified agreement on field identity. However, program differences are also the product of variable program histories. Approach: This essay described the founding and subsequent history of the Environmental Science Graduate Program at Oklahoma State University, its oldest and largest interdisciplinary program. An evaluation of this history was conducted to discern what lessons could be learned that may prove valuable to the establishment and operation of interdisciplinary programs elsewhere. Results: The 31-year history of OSU’s environmental science graduate program can be described as occurring in six evolutionary stages-from the circumstances that created the opportunity for its establishment as a program located in the graduate college, through slow growth, rapid expansion and maturation, uncertainty and institutional change, retrenchment and revitalization, and finally, relocation within the college of arts and sciences. Each new stage was triggered primarily by decisions of university administration and to a lesser extent by a change in program leadership. Conclusion: The lessons learned from our analysis of this history suggests that the success of interdisciplinary programs hinges on energetic, dedicated and risk-taking program directors; political and financial support from higher administration; support of affiliated faculty; cooperation with, or at least tolerance from, traditional departments; and creation of a sense of community and shared purpose among faculty, students, alumni, employers and donors.

  18. 1998 Environmental Management Science Program Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-03-01

    The Environmental Management Science Program (EMSP) is a collaborative partnership between the DOE Office of Environmental Management (EM), Office of Science (DOE-SC), and the Idaho Operations Office (DOE-ID) to sponsor basic environmental and waste management related research. Results are expected to lead to reduction of the costs, schedule, and risks associated with cleaning up the nation's nuclear complex. The EMSP research portfolio addresses the most challenging technical problems of the EM program related to high level waste, spent nuclear fuel, mixed waste, nuclear materials, remedial action, decontamination and decommissioning, and health, ecology, or risk. The EMSP was established in response to a mandate from Congress in the fiscal year 1996 Energy and Water Development Appropriations Act. Congress directed the Department to ''provide sufficient attention and resources to longer-term basic science research which needs to be done to ultimately reduce cleanup costs, develop a program that takes advantage of laboratory and university expertise, and seek new and innovative cleanup methods to replace current conventional approaches which are often costly and ineffective''. This mandate followed similar recommendations from the Galvin Commission to the Secretary of Energy Advisory Board. The EMSP also responds to needs identified by National Academy of Sciences experts, regulators, citizen advisory groups, and other stakeholders.

  19. Science Theatre as dissemination of environmental awareness

    DEFF Research Database (Denmark)

    Chemi, Tatiana; Kastberg, Peter

    2015-01-01

    A community project with the intention of developing specific communication on environmental issues for children age 3-7 allies with a theatre artist and storyteller. The result is a meeting between science and theatre. Theatre, with its borderline praxis between entertainment and reflection......) to discuss its clear learning potentials in light of Science Theatre’s specific dramaturgical tools and historical tradition. We maintain that, by means of aesthetic appeal, theatre might be again one of the survival tools human beings need to bridge their lives into the centuries to come....

  20. Biomedical and Environmental Sciences INFORMATION FOR AUTHORS

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Biomedical and Environmental Sciences, an international journal with emphasis on scientific findings in China, publishes articles dealing with biologic and toxic effects of environmental pollutants on man and other forms of life. The effects may be measured with pharmacological, biochemical, pathological, and immunological techniques. The journal also publishes reports dealing with the entry, transport, and fate of natural and anthropogenic chemicals in the biosphere, and their impact on human health and well-being.Papers describing biochemical, pharmacological, pathological, toxicological and immunological studies of pharmaceuticals (biotechnological products) are also welcome.

  1. National Institute of Environmental Health Sciences Kids' Pages

    Science.gov (United States)

    ... about what scientists at the National Institute of Environmental Health Sciences are doing to make sure you have a ... about what scientists at the National Institute of Environmental Health Sciences are doing to make sure you have a ...

  2. Earth and environmental sciences annual report 1998

    Energy Technology Data Exchange (ETDEWEB)

    Younker, L

    1999-05-18

    Lawrence Livermore National Laboratory (LLNL) provides broad-based, integrated scientific and engineering capabilities to address some of the nation's top national security and environmental priorities. National security priorities are to ensure the safety and reliability of the U.S. nuclear weapons stockpile and to counter the spread of weapons of mass destruction; environmental priorities are to keep our environment healthy for the long term and to assess the consequences of environmental change. The Earth and Environmental Sciences (E&ES) Directorate at LLNL pursues applied and basic research across many disciplines to advance the technologies needed to address these national concerns. Our current work focuses on: Storage and ultimate disposition of U.S. spent reactor fuel and other nuclear materials; Assessment of the current global climate and simulation of future changes caused by humans or nature; Development of broadly applicable technologies for environmental remediation and risk reduction; Tools to support U.S. goals for verifying the international Comprehensive Nuclear-Test-Ban Treaty; subcritical tests for stockpile stewardship; Real-time assessments of the health and environmental consequences of atmospheric releases of radioactive or other hazardous materials; and Basic science research that investigates fundamental physical and chemical properties of interest to these applied research programs. For each of these areas we present an overview in this report, followed by an article featuring one project in that area. Then we delineate E&ES's resources, including workforce, facilities, and funding. Finally, we list the publications by and the awards and patents received by E&ES personnel during 1998.

  3. USGS Environmental health science strategy: providing environmental health science for a changing world: public review release

    Science.gov (United States)

    Bright, Patricia R.; Buxton, Herbert T.; Balistrieri, Laurie S.; Barber, Larry B.; Chapelle, Francis H.; Cross, Paul C.; Krabbenhoft, David P.; Plumlee, Geoffrey S.; Sleeman, Jonathan M.; Tillitt, Donald E.; Toccalino, Patricia L.; Winton, James R.

    2012-01-01

    America has an abundance of natural resources. We have bountiful clean water, fertile soil, and unrivaled national parks, wildlife refuges, and public lands. These resources enrich our lives and preserve our health and wellbeing. These resources have been maintained because of our history of respect for their value and an enduring commitment to their vigilant protection. Awareness of the social, economic, and personal value of the health of our environment is increasing. The emergence of environmentally driven diseases caused by environmental exposure to contaminants and pathogens is a growing concern worldwide. New health threats and patterns of established threats are affected by both natural and anthropogenic changes to the environment. Human activities are key drivers of emerging (new and re-emerging) health threats. Societal demands for land and natural resources, a better quality of life, improved economic prosperity, and the environmental impacts associated with these demands will continue to increase. Natural earth processes, climate trends, and related climatic events will add to the environmental impact of human activities. These environmental drivers will influence exposure to disease agents, including viral, bacterial, prion, and fungal pathogens, parasites, natural earth materials, toxins and other biogenic compounds, and synthetic chemicals and substances. The U.S. Geological Survey (USGS) defines environmental health science broadly as the interdisciplinary study of relations among the quality of the physical environment, the health of the living environment, and human health. The interactions among these three spheres are driven by human activities, ecological processes, and natural earth processes; the interactions affect exposure to contaminants and pathogens and the severity of environmentally driven diseases in animals and people. This definition provides USGS with a framework for synthesizing natural science information from across the Bureau

  4. 15 CFR 950.6 - Environmental Science Information Center (ESIC).

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Environmental Science Information... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE ENVIRONMENTAL DATA AND INFORMATION § 950.6 Environmental Science... awareness services. Periodically provides announcements of titles of newly published NOAA scientific and...

  5. Teaching the Ethical Aspects of Environmental Science

    Science.gov (United States)

    Palinkas, C. M.

    2014-12-01

    Environmental and societal issues are often inherently linked, especially in coastal and estuarine environments, and science and social values must often be balanced in ecosystem management and decision-making. A new seminar course has been developed for the Marine Estuarine and Environmental Science (MEES) graduate program, an inter-institutional program within the University System of Maryland, to examine these issues. This 1-credit course, offered for the first time in Spring 2015, takes a complex systems perspective on major environmental and societal challenges to examine these linked issues in a variety of contexts. After a brief introduction to the emerging field of "geoethics," students develop a list of issues to examine throughout the seminar. Example topics could include fracking, offshore wind technology, dam removal, and iron fertilization, among others. A case-study approach is taken, with each class meeting focusing on one issue. For each case study, students are asked to 1) identify relevant scientific principles and major knowledge gaps, 2) predict potential outcomes, 3) identify stakeholders and likely viewpoints, and 4) construct communication plans to disseminate findings to these stakeholders. At the end of the semester, students give a brief presentation of the ethical aspects of their own research topics.

  6. BEST: Bilingual environmental science training: Kindergarten level

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This booklet is one of a series of bilingual guides to environmental-science learning activities for students to do at home. Lesson objectives, materials required, procedure, vocabulary, and subjects integrated into the lesson are described in English for each lesson. A bilingual glossary, alphabetized by English entries, with Spanish equivalents in both English and Spanish, follows the lesson descriptions, and is itself followed by a bibliography of English-language references. This booklet includes descriptions of six lessons covering the senses of touch and sight, the sense of smell, how to distinguish living and non-living things, cell structures, the skeletal system, and the significance of food groups. 8 figs.

  7. Journal of Applied Sciences and Environmental Management - Vol 7 ...

    African Journals Online (AJOL)

    Journal of Applied Sciences and Environmental Management. ... Assessing the Economic and Environmental Prospects of Stand-By Solar Powered Systems in Nigeria · EMAIL FREE FULL TEXT EMAIL FREE FULL ... Current Issue Atom logo

  8. Journal of Applied Sciences and Environmental Management - Vol 9 ...

    African Journals Online (AJOL)

    Journal of Applied Sciences and Environmental Management. ... Caladium bicolor and wild Dioscorea dumetorum starches as dual purpose polymer additive ... The interface between architecture and agriculture in Nigeria: an environmental ...

  9. Actuarial Science.

    Science.gov (United States)

    Warren, Bette

    1982-01-01

    Details are provided of a program on actuarial training developed at the State University of New York (SUNY) at Binghamton through the Department of Mathematical Sciences. An outline of its operation, including a few statistics on students in the program, is included. (MP)

  10. Actuarial Science.

    Science.gov (United States)

    Warren, Bette

    1982-01-01

    Details are provided of a program on actuarial training developed at the State University of New York (SUNY) at Binghamton through the Department of Mathematical Sciences. An outline of its operation, including a few statistics on students in the program, is included. (MP)

  11. 76 FR 26311 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2011-05-06

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis... Manpower Development in the Environmental Health Sciences; 93.113, Biological Response to Environmental...

  12. 76 FR 79201 - National Institute of Environmental Health Sciences; Notice of Meeting

    Science.gov (United States)

    2011-12-21

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... Research and Training, Nat. Inst. of Environmental Health Sciences, National Institutes of Health, 615... the Environmental Health Sciences; 93.113, Biological Response to Environmental Health Hazards;...

  13. Uncovering Students' Environmental Identity: An Exploration of Activities in an Environmental Science Course

    Science.gov (United States)

    Blatt, Erica

    2014-01-01

    This study at a public high school in the Northeastern United States explores how students' environmental identities are affected by various activities in an Environmental Science course. Data was collected as part of an ethnographic study involving an Environmental Science teacher and her tenth-twelfth grade students. The results focus on…

  14. Uncovering Students' Environmental Identity: An Exploration of Activities in an Environmental Science Course

    Science.gov (United States)

    Blatt, Erica

    2014-01-01

    This study at a public high school in the Northeastern United States explores how students' environmental identities are affected by various activities in an Environmental Science course. Data was collected as part of an ethnographic study involving an Environmental Science teacher and her tenth-twelfth grade students. The results focus on…

  15. Uncovering Students' Environmental Identity: An Exploration of Activities in an Environmental Science Course

    Science.gov (United States)

    Blatt, Erica

    2014-01-01

    This study at a public high school in the Northeastern United States explores how students' environmental identities are affected by various activities in an Environmental Science course. Data was collected as part of an ethnographic study involving an Environmental Science teacher and her tenth-twelfth grade students. The results focus on…

  16. Evaluation of Students' Energy Conception in Environmental Science

    Science.gov (United States)

    Park, Mihwa; Johnson, Joseph A.

    2016-01-01

    While significant research has been conducted on students' conceptions of energy, alternative conceptions of energy have not been actively explored in the area of environmental science. The purpose of this study is to examine students' alternative conceptions in the environmental science discipline through the analysis of responses of first year…

  17. Social Science-Environmental Health Collaborations: An Exciting New Direction.

    Science.gov (United States)

    Matz, Jacob; Brown, Phil; Brody, Julia

    2016-08-22

    The Social Science-Environmental Health Collaborations Conference in May 2016 was a unique gathering of scholars from the social sciences and environmental health sciences, government agency professionals, community organizers and activists, and students. Conference participants described the research and practice of environmental public health as done through a transdisciplinary lens and with a community-based participatory research/community-engaged research model. NIEHS' role in supporting such work has helped create a growing number of social and environmental health scientists who cross boundaries as they work with each other and with community-based organizations.

  18. ETHICS AND JUSTICE IN ENVIRONMENTAL SCIENCE AND ENGINEERING

    Science.gov (United States)

    Science and engineering are built on trust. C.P. Snow's famous quote, "the only ethical principle which has made science possible is that the truth shall be told all the time" underscores the importance of honesty in science. Environmental scientists must do work that is useful...

  19. ETHICS AND JUSTICE IN ENVIRONMENTAL SCIENCE AND ENGINEERING

    Science.gov (United States)

    Science and engineering are built on trust. C.P. Snow's famous quote, "the only ethical principle which has made science possible is that the truth shall be told all the time" underscores the importance of honesty in science. Environmental scientists must do work that is useful...

  20. Citizen science can improve conservation science, natural resource management, and environmental protection

    Science.gov (United States)

    McKinley, Duncan C.; Miller-Rushing, Abe J.; Ballard, Heidi L.; Bonney, Rick; Brown, Hutch; Cook-Patton, Susan; Evans, Daniel M.; French, Rebecca A.; Parrish, Julia; Phillips, Tina B.; Ryan, Sean F.; Shanley, Lea A.; Shirk, Jennifer L.; Stepenuck, Kristine F.; Weltzin, Jake F.; Wiggins, Andrea; Boyle, Owen D.; Briggs, Russell D.; Chapin, Stuart F.; Hewitt, David A.; Preuss, Peter W.; Soukup, Michael A.

    2017-01-01

    Citizen science has advanced science for hundreds of years, contributed to many peer-reviewed articles, and informed land management decisions and policies across the United States. Over the last 10 years, citizen science has grown immensely in the United States and many other countries. Here, we show how citizen science is a powerful tool for tackling many of the challenges faced in the field of conservation biology. We describe the two interwoven paths by which citizen science can improve conservation efforts, natural resource management, and environmental protection. The first path includes building scientific knowledge, while the other path involves informing policy and encouraging public action. We explore how citizen science is currently used and describe the investments needed to create a citizen science program. We find that:Citizen science already contributes substantially to many domains of science, including conservation, natural resource, and environmental science. Citizen science informs natural resource management, environmental protection, and policymaking and fosters public input and engagement.Many types of projects can benefit from citizen science, but one must be careful to match the needs for science and public involvement with the right type of citizen science project and the right method of public participation.Citizen science is a rigorous process of scientific discovery, indistinguishable from conventional science apart from the participation of volunteers. When properly designed, carried out, and evaluated, citizen science can provide sound science, efficiently generate high-quality data, and help solve problems.

  1. 77 FR 61771 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2012-10-11

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: Environmental Health Sciences Review Committee. Date: November 15... Institute of Environmental Health Sciences, Building 101, Rodbell Auditorium, 111 T. W. Alexander...

  2. 76 FR 27653 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2011-05-12

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis... Review Branch, Division of Extramural Research and Training, Nat. Institute Environmental Health Sciences...

  3. 77 FR 12602 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2012-03-01

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis... and evaluate grant applications. Place: Nat. Inst. of Environmental Health Sciences, Building 101...

  4. 76 FR 52672 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2011-08-23

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis.... Agenda: To review and evaluate contract proposals. Place: Nat. Inst. of Environmental Health Sciences...

  5. 75 FR 65364 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2010-10-22

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis.... Agenda: To review and evaluate grant applications. Place: Nat. Inst. of Environmental Health Sciences...

  6. 77 FR 40076 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2012-07-06

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis... Branch, Division of Extramural Research and Training, Nat. Institute of Environmental Health Sciences, P...

  7. 75 FR 27562 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2010-05-17

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis..., Scientific Review Officer, Nat. Institute of Environmental Health Sciences, Office of Program Operations...

  8. 77 FR 6569 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2012-02-08

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences, Special Emphasis... Branch, Division of Extramural Research and Training, National Institute of Environmental Health Sciences...

  9. 76 FR 63311 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2011-10-12

    ... Health National Institute of Environmental Health Sciences; Notice of Closed Meetings Pursuant to section... Committee: National Institute of Environmental Health Sciences Special Emphasis Panel, Review of Worker... Review Administrator, Nat. Institute of Environmental Health Sciences, Office of Program Operations...

  10. 77 FR 22793 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2012-04-17

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis... Branch, Division of Extramural Research and Training, Nat. Institute of Environmental Health Sciences, P...

  11. 76 FR 5184 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2011-01-28

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis.... Agenda: To review and evaluate grant applications. Place: Nat. Inst. of Environmental Health Sciences...

  12. 76 FR 62077 - Submission for OBM Review; Comment Request; New Proposed Collection, Environmental Science...

    Science.gov (United States)

    2011-10-06

    ... Collection, Environmental Science Formative Research Methodology Studies for the National Children's Study... Collection: Title: Environmental Science Formative Research Methodology Studies for the National Children's... environmental science professional organizations and practitioners, and schools and child care organizations...

  13. 78 FR 32672 - National Institute of Environmental Health Sciences (NIEHS); Notice of Meeting

    Science.gov (United States)

    2013-05-31

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences (NIEHS... that the National Institute of Environmental Health Sciences (NIEHS) Division of Extramural Research... Division. Organizing Institute: National Institute of Environmental Health Sciences. Dates and Times: June...

  14. 78 FR 59042 - National Institute of Environmental Health Sciences; Notice of Meeting

    Science.gov (United States)

    2013-09-25

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... and projects conducted by the NATIONAL INSTITUTE OF ENVIRONMENTAL HEALTH SCIENCES, including... Environmental Health Sciences, Building 101, Rodbell Auditorium, 111 T. W. Alexander Drive, Research...

  15. 77 FR 9673 - National Institute of Environmental Health Sciences; Notice of Meeting

    Science.gov (United States)

    2012-02-17

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... and projects conducted by the National Institute of Environmental Health Sciences, including... Environmental Health Sciences, Building 101, Rodbell Auditorium, 111 T. W. Alexander Drive, Research...

  16. 77 FR 5261 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2012-02-02

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis..., Nat. Institute of Environmental Health Sciences, Office of Program Operations, Scientific...

  17. 76 FR 77239 - National Institute of Environmental Health Sciences; Notice of Meeting

    Science.gov (United States)

    2011-12-12

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... Institute of Environmental Health Sciences, Building 101, Rodbell Auditorium, 111 T. W. Alexander Drive... Research and Training, Nat. Inst. of Environmental Health Sciences, National Institutes of Health,...

  18. 76 FR 57065 - National Institute of Environmental Health Sciences; Notice of Meeting

    Science.gov (United States)

    2011-09-15

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... and projects conducted by the National Institute of Environmental Health Sciences, including.... Place: Nat. Inst. of Environmental Health Sciences, Building 101, Rodbell Auditorium, 111 T....

  19. 78 FR 26643 - National Institute of Environmental Health Sciences; Notice of Meeting

    Science.gov (United States)

    2013-05-07

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... and projects conducted by the NATIONAL INSTITUTE OF ENVIRONMENTAL HEALTH SCIENCES, including... Biomarker-Based Epidemiology Group. Place: Nat. Inst. of Environmental Health Sciences, Building...

  20. 75 FR 57280 - National Institute of Environmental Health Sciences; Notice of Meeting

    Science.gov (United States)

    2010-09-20

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... and projects conducted by the NATIONAL INSTITUTE OF ENVIRONMENTAL HEALTH SCIENCES, including... Toxicology. Place: Nat. Inst. of Environmental Health Sciences, Building 101, Rodbell Auditorium, 111 T....

  1. 75 FR 55805 - National Institute of Environmental Health Sciences; Notice of Meeting

    Science.gov (United States)

    2010-09-14

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... Director, Division of Extramural Research and Training, National Institute of Environmental Health Sciences... Health Sciences; 93.113, Biological Response to Environmental Health Hazards; 93.114,...

  2. 78 FR 18997 - National Institute of Environmental Health Sciences; Notice of Meeting

    Science.gov (United States)

    2013-03-28

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... and projects conducted by the National Institute of Environmental Health Sciences, including..., Neuropharmacology and Human Metabolism Groups. Place: Nat. Inst. of Environmental Health Sciences, Building...

  3. 75 FR 35076 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2010-06-21

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis... Branch, Division of Extramural Research and Training, Nat. Institute of Environmental Health Sciences,...

  4. 75 FR 7487 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2010-02-19

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis... Inst. of Environmental Health Sciences, Office of Program Operations, Scientific Review Branch,...

  5. 77 FR 61613 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2012-10-10

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis... Branch, Division of Extramural Research and Training, Nat. Institute Environmental Health Sciences, P....

  6. 76 FR 50234 - National Institute of Environmental Health Sciences Notice of Meetings

    Science.gov (United States)

    2011-08-12

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences Notice... and Training (DERT), Nat. Inst. of Environmental Health Sciences, National Institutes of Health, 615... and Training (DERT), Nat. Inst. of Environmental Health Sciences, National Institutes of Health,...

  7. 77 FR 21788 - National Institute of Environmental Health Sciences Notice of Meeting

    Science.gov (United States)

    2012-04-11

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences Notice...., Director, Division of Extramural Research and Training, Nat. Inst. of Environmental Health Sciences... Manpower Development in the Environmental Health Sciences; 93.113, Biological Response to...

  8. 78 FR 42968 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2013-07-18

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis... review and evaluate grant applications. Place: Nat. Inst. of Environmental Health Sciences, Building...

  9. 77 FR 26300 - National Institute of Environmental Health Sciences; Notice of Meeting

    Science.gov (United States)

    2012-05-03

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... and projects conducted by the National Institute of Environmental Health Sciences, including.... Inst. of Environmental Health Sciences, Building 101, Rodbell Auditorium, 111 T. W. Alexander...

  10. 77 FR 33472 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2012-06-06

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis... Administrator, Nat. Institute of Environmental Health Sciences, Office of Program Operations, Scientific...

  11. 77 FR 16844 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2012-03-22

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis... . Name of Committee: National Institute of Environmental Health Sciences Special Emphasis Panel;...

  12. 78 FR 7794 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2013-02-04

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis... Sciences; 93.113, Biological Response to Environmental Health Hazards; 93.114, Applied...

  13. 78 FR 26793 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2013-05-08

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis... review and evaluate grant applications. Place: Nat. Inst. of Environmental Health Sciences,...

  14. Environmental Molecular Sciences Laboratory Annual Report: Fiscal Year 2006

    Energy Technology Data Exchange (ETDEWEB)

    Foster, Nancy S.; Showalter, Mary Ann

    2007-03-23

    This report describes the activities and research performed at the Environmental Molecular Sciences Laboratory, a Department of Energy national scientific user facility at Pacific Northwest National Laboratory, during Fiscal Year 2006.

  15. Journal of Applied Sciences and Environmental Management - Vol 7 ...

    African Journals Online (AJOL)

    Journal of Applied Sciences and Environmental Management. ... Bioremediation of a Crude Oil Polluted Tropical Mangrove Environment · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL ... Current Issue Atom logo

  16. African Journal of Environmental Science and Technology - Vol 4 ...

    African Journals Online (AJOL)

    African Journal of Environmental Science and Technology - Vol 4, No 11 (2010) ... Leaves of roadside plants as bioindicator of traffic related lead pollution during different ... Quality assessment of drinking water in Temeke District (part II): ...

  17. Journal of Applied Sciences and Environmental Management - Vol ...

    African Journals Online (AJOL)

    Journal of Applied Sciences and Environmental Management. ... Assessment of Anthropogenic Activities on Water Quality of Benin River · EMAIL FREE ... Tree Leaves as Bioindicator of Heavy Metal Pollution in Mechanic Village, Ogun State.

  18. Panarchy use in environmental science for risk and resilience ...

    Science.gov (United States)

    Environmental sciences have an important role in informing sustainable management of built environments by providing insights about the drivers and potentially negative impacts of global environmental change. Here, we discuss panarchy theory, a multi-scale hierarchical concept that accounts for the dynamism of complex socio-ecological systems, especially for those systems with strong cross-scale feedbacks. The idea of panarchy underlies much of system resilience, focusing on how systems respond to known and unknown threats. Panarchy theory can provide a framework for qualitative and quantitative research and application in the environmental sciences, which can in turn inform the ongoing efforts in socio-technical resilience thinking and adaptive and transformative approaches to management. The environmental sciences strive for understanding, mitigating and reversing the negative impacts of global environmental change, including chemical pollution, to maintain sustainability options for the future, and therefore play an important role for informing management.

  19. Scope: The Environmental Voice of World Science

    Science.gov (United States)

    Munn, R. E.; Cain, Melinda

    1977-01-01

    SCOPE is an international group that studies the effects of human activities on the environment and serves as a source of advice on environmental problems. Presently, SCOPE is involved with seven major projects that include biogeochemical cycles, ecotoxicology, and environmental monitoring. The structure and components of SCOPE are also discussed.…

  20. Using Environmental Science as a Motivational Tool to Teach Physics to Non-Science Majors

    Science.gov (United States)

    Busch, Hauke C.

    2010-01-01

    A traditional physical science course was transformed into an environmental physical science course to teach physics to non-science majors. The objective of the new course was to improve the learning of basic physics principles by applying them to current issues of interest. A new curriculum was developed with new labs, homework assignments,…

  1. Using Environmental Science as a Motivational Tool to Teach Physics to Non-Science Majors

    Science.gov (United States)

    Busch, Hauke C.

    2010-01-01

    A traditional physical science course was transformed into an environmental physical science course to teach physics to non-science majors. The objective of the new course was to improve the learning of basic physics principles by applying them to current issues of interest. A new curriculum was developed with new labs, homework assignments,…

  2. Environmental sciences division: Environmental regulatory update table July 1988

    Energy Technology Data Exchange (ETDEWEB)

    Langston, M.E.; Nikbakht, A.; Salk, M.S.

    1988-08-01

    The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

  3. Composable Data Processing in Environmental Science - A Process View

    NARCIS (Netherlands)

    Wombacher, A.

    2008-01-01

    Data processing in environmental science is essential for doing science. The heterogeneity of data sources, data processing operations and infrastructures results in a lot of manual data and process integration work done by each scientist individually. This is very inefficient and time consuming. Th

  4. Composable Data Processing in Environmental Science - A Process View

    NARCIS (Netherlands)

    Wombacher, Andreas

    Data processing in environmental science is essential for doing science. The heterogeneity of data sources, data processing operations and infrastructures results in a lot of manual data and process integration work done by each scientist individually. This is very inefficient and time consuming.

  5. Choosing and Using Images in Environmental Science Education

    Science.gov (United States)

    Muthersbaugh, Debbie Smick

    2012-01-01

    Although using images for teaching has been a common practice in science classrooms (Gordon & Pea, 1995) understanding the purpose or how to choose images has not typically been intentional. For this dissertation three separate studies relating to choosing and using images are prepared with environmental science in mind. Each of the studies…

  6. Choosing and Using Images in Environmental Science Education

    Science.gov (United States)

    Muthersbaugh, Debbie Smick

    2012-01-01

    Although using images for teaching has been a common practice in science classrooms (Gordon & Pea, 1995) understanding the purpose or how to choose images has not typically been intentional. For this dissertation three separate studies relating to choosing and using images are prepared with environmental science in mind. Each of the studies…

  7. The pivotal role of the social sciences in environmental health sciences research.

    Science.gov (United States)

    Finn, Symma; Collman, Gwen

    2016-09-06

    Environmental health sciences research seeks to elucidate environmental factors that put human health at risk. A primary aim is to develop strategies to prevent or reduce exposures and disease occurrence. Given this primary focus on prevention, environmental health sciences research focuses on the populations most at risk such as communities of color and/or low socioeconomic status. The National Institute of Environmental Health Sciences research programs incorporate the principles of Community-Based Participatory Research to study health disparities. These programs promote community engagement, culturally appropriate communications with a variety of stakeholders, and consideration of the social determinants of health that interact with environmental factors to increase risk. Multidisciplinary research teams that include social and behavioral scientists are essential to conduct this type of research. This article outlines the history of social and behavioral research funding at National Institute of Environmental Health Sciences and offers examples of National Institute of Environmental Health Sciences-funded projects that exemplify the value of social science to the environmental health sciences.

  8. Human/Nature Discourse in Environmental Science Education Resources

    Science.gov (United States)

    Chambers, Joan M.

    2008-01-01

    It is argued that the view of nature and the relationship between human beings and nature that each of us holds impacts our decisions, actions, and notions of environmental responsibility and consciousness. In this study, I investigate the discursive patterns of selected environmental science classroom resources produced by three disparate…

  9. Journal of Applied Sciences and Environmental Management ...

    African Journals Online (AJOL)

    In addition, studies relating to food, water, and other consumer products, papers ... Furthermore, new areas such as safety evaluation of petroleum exploration, ... and inter-relationship between environmental contamination and toxicology are ...

  10. Validation of the NSRDB-SUNY global horizontal irradiance in California

    Energy Technology Data Exchange (ETDEWEB)

    Nottrott, Anders; Kleissl, Jan [Mechanical and Aerospace Engineering, University of California, San Diego (United States)

    2010-10-15

    Satellite derived global horizontal solar irradiance (GHI) from the SUNY modeled dataset in the National Solar Radiation Database (NSRDB) was compared to measurements from 27 weather stations in California during the years 1998-2005. The statistics of spatial and temporal differences between the two datasets were analyzed and related to meteorological phenomena. Overall mean bias errors (MBE) of the NSRDB-SUNY indicated a GHI overprediction of 5%, which is smaller than the sensor accuracy of ground stations. However, at coastal sites, year-round systematic positive MBEs in the NSRDB-SUNY data up to 18% were observed and monthly MBEs increased up to 54% in the summer months during the morning. These differences were explained by a tendency for the NSRDB-SUNY model to overestimate GHI under cloudy conditions at the coast during summer mornings. A persistent positive evening MBE which was independent of site location and cloudiness occurred at all stations and was explained by an error in the time-shifting method applied in the NSRDB-SUNY. A correction method was derived for these two errors to improve the accuracy of the NSRDB-SUNY data in California. (author)

  11. Publications in biomedical and environmental sciences programs, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Pfuderer, H.A.; Moody, J.B.

    1981-07-01

    This bibliography contains 690 references to articles in journals, books, and reports published in the subject area of biomedical and environmental sciences during 1980. There are 529 references to articles published in journals and books and 161 references to reports. Staff members in the Biomedical and Environmental Sciences divisions have other publications not included in this bibliography; for example, theses, book reviews, abstracts published in journals or symposia proceedings, pending journal publications and reports such as monthly and bimonthly progress reports, contractor reports, and reports for internal distribution. This document is sorted by the division, and then alphabetically by author. The sorting by divisions separates the references by subject area in a simple way. The divisions represented in the order that they appear in the bibliography are Analytical Chemistry, Biology, Chemical Technology, Information R and D, Health and Safety Research, Energy, Environmental Sciences, and Computer Sciences.

  12. Environmental Sciences Division annual progress report for period ending September 30, 1982. Environmental Sciences Division Publication No. 2090. [Lead abstract

    Energy Technology Data Exchange (ETDEWEB)

    1983-04-01

    Separate abstracts were prepared for 12 of the 14 sections of the Environmental Sciences Division annual progress report. The other 2 sections deal with educational activities. The programs discussed deal with advanced fuel energy, toxic substances, environmental impacts of various energy technologies, biomass, low-level radioactive waste management, the global carbon cycle, and aquatic and terrestrial ecology. (KRM)

  13. Environmental Science Education at Sinte Gleska University

    Science.gov (United States)

    Burns, D.

    2004-12-01

    At Sinte Gleska University, basically we face two problems 1. The lack of natural resources/environmental education instructors and students. 2. High turnover in the drinking water (and waste water / environmental monitoring) jobs. As soon as people are trained, they typically leave for better paying jobs elsewhere. To overcome these In addition to regular teaching we conduct several workshops year around on environmental issues ranging from tree plantation, preserving water resources, sustainable agriculture and natural therapy (ayurvedic treatment- the Lakota way of treating illness) etc. We offer workshops about the negative impacts brought about by the development and use of hydropower, fossil fuel and nuclear energy (but include topics like reclamation of land after mining). Not only does the harvest and consumption of these energy forms devastate the land and its plants, animals, water and air, but the mental, spiritual, and physical health and culture of Native peoples suffer as well. In contrast, wind power offers an environmentally friendly source of energy that also can provide a source of income to reservations.

  14. The Relationship between Environmental Moral Reasoning and Environmental Attitudes of Pre-Service Science Teachers

    Directory of Open Access Journals (Sweden)

    Busra TUNCAY

    2011-01-01

    Full Text Available The aim of the present study was to investigate the relationship between environmental moral reasoning patterns and environmental attitudes of 120 pre-service science teachers. Content analysis was carried out on participants’ written statements regarding theirconcerns about the presented environmental problems and the statements were labeled as ecocentric, anthropocentric, and non-environmental according to their meanings. Then, descriptive and inferential analyses were conducted on the calculated frequencies of each moral consideration category and participants’ responses to Environmental Attitudes Scale. The results revealed a significant positive correlation between ecocentric moral reasoning and environmental attitudes, whereas there was not a statistically significant relationship between neither of anthropocentric nor non-environmental moral reasoning and environmental attitudes. Findings of the study support the argument that an environmental ethic, which extends moral consideration beyond human beings to the nature as a whole, is necessary to overcome many of the environmental problems.

  15. Science during crisis: the application of social science during major environmental crises

    Science.gov (United States)

    Machlis, Gary; Ludwig, Kris; Manfredo, Michael J.; Vaske, Jerry J.; Rechkemmer, Andreas; Duke, Esther

    2014-01-01

    Historical and contemporary experience suggests that science plays an increasingly critical role in governmental and institutional responses to major environmental crises. Recent examples include major western wildfires (2009), the Deepwater Horizon oil spill (2010), the Fukushima nuclear accident (2011), and Hurricane Sandy (2012). The application of science during such crises has several distinctive characteristics, as well as essential requirements if it is to be useful to decision makers. these include scope conditions that include coupled natural/human systems, clear statement of uncertainties and limitations, description of cascading consequences, accurate sense of place, estimates of magnitude of impacts, identification of beneficiaries and those adversely affected, clarity and conciseness, compelling visualization and presentation, capacity to speak "truth to power", and direct access to decision makers. In this chapter, we explore the role and significance of science – including all relevant disciplines and focusing attention on the social sciences – in responding to major environmental crises. We explore several important questions: How is science during crisis distinctive? What social science is most useful during crises? What distinctive characteristics are necessary for social science to make meaningful contributions to emergency response and recovery? How might the social sciences be integrated into the strategic science needed to respond to future crises? The authors, both members of the Department of the Interior's innovative Strategic Sciences Group, describe broad principles of engagement as well as specific examples drawn from history, contemporary efforts (such as during the Deepwater Horizon oil spill), and predictions of environmental crises still to be confronted.

  16. 76 FR 13197 - National Institute of Environmental Health Sciences Strategic Planning

    Science.gov (United States)

    2011-03-10

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences... Sciences (NIEHS), Department of Health and Human Services (HHS). ACTION: Request for comments and.... Linda S. Birnbaum, Director, National Institute of Environmental Health Sciences and National...

  17. Do natural science experiments influence public attitudes towards environmental problems?

    Energy Technology Data Exchange (ETDEWEB)

    Wallner, A.; Hunziker, M.; Kienast, F. [Swiss Federal Research Institute WSL, Birmensdorf (Switzerland)

    2003-10-01

    We investigated the significance of risk assessment studies in the public discussion on CO{sub 2} emissions. Politicians and representatives from the public were interviewed by using the social-science technique of qualitative in-depth interviews. Three different types of attitudes towards natural science were found among politicians. Depending on which attitude a politician holds, risk assessment studies can have an impact on his/her readiness to support environmental policy measures. Regarding lay people, key factors affecting the acceptance of environmental policy measures are knowledge of environmental problems, their impacts on ecosystems or human health as well as direct personal perception of those impacts. Since direct perception is not always possible in everyday life, natural science experiments might be a means for successfully mediating this lacking perception. (author)

  18. Making the Connection between Environmental Science and Decision Making

    Science.gov (United States)

    Woodhouse, C. A.; Crimmins, M.; Ferguson, D. B.; Garfin, G. M.; Scott, C. A.

    2011-12-01

    As society is confronted with population growth, limited resources, and the impacts of climate variability and change, it is vital that institutions of higher education promote the development of professionals who can work with decision-makers to incorporate scientific information into environmental planning and management. Skills for the communication of science are essential, but equally important is the ability to understand decision-making contexts and engage with resource managers and policy makers. It is increasingly being recognized that people who understand the linkages between science and decision making are crucial if science is to better support planning and policy. A new graduate-level seminar, "Making the Connection between Environmental Science and Decision Making," is a core course for a new post-baccalaureate certificate program, Connecting Environmental Science and Decision Making at the University of Arizona. The goal of the course is to provide students with a basic understanding of the dynamics between scientists and decision makers that result in scientific information being incorporated into environmental planning, policy, and management decisions. Through readings from the environmental and social sciences, policy, and planning literature, the course explores concepts including scientific information supply and demand, boundary organizations, co-production of knowledge, platforms for engagement, and knowledge networks. Visiting speakers help students understand some of the challenges of incorporating scientific information into planning and decision making within institutional and political contexts. The course also includes practical aspects of two-way communication via written, oral, and graphical presentations as well as through the interview process to facilitate the transfer of scientific information to decision makers as well as to broader audiences. We aspire to help students develop techniques that improve communication and

  19. Social Cognitive Predictors of Interest in Environmental Science: Recommendations for Environmental Educators

    Science.gov (United States)

    Quimby, Julie L.; Seyala, Nazar D.; Wolfson, Jane L.

    2007-01-01

    The authors examined the influence of social cognitive variables on students' interest in environmental science careers and investigated differences between White and ethnic minority students on several career-related variables. The sample consisted of 161 undergraduate science majors (124 White students, 37 ethnic minority students). Results of…

  20. Educator Preparedness to Teach Environmental Science in Secondary Schools

    Science.gov (United States)

    Guillory, Linus Joseph, Jr.

    2012-01-01

    This study assesses the environmental proficiency of Texas life science educators certified from 2003 to 2011 by analyzing their TExES 138 8-12 exam results in domains V and VI. The sample consisted of all the individuals that took and passed the TExES 138 life science 8-12 exam. During this period, approximately 41% of the individuals who took…

  1. Quantitative Reasoning Learning Progressions for Environmental Science: Developing a Framework

    OpenAIRE

    Robert L. Mayes; Franziska Peterson; Rachel Bonilla

    2013-01-01

    Quantitative reasoning is a complex concept with many definitions and a diverse account in the literature. The purpose of this article is to establish a working definition of quantitative reasoning within the context of science, construct a quantitative reasoning framework, and summarize research on key components in that framework. Context underlies all quantitative reasoning; for this review, environmental science serves as the context.In the framework, we identify four components of quanti...

  2. Educator Preparedness to Teach Environmental Science in Secondary Schools

    Science.gov (United States)

    Guillory, Linus Joseph, Jr.

    2012-01-01

    This study assesses the environmental proficiency of Texas life science educators certified from 2003 to 2011 by analyzing their TExES 138 8-12 exam results in domains V and VI. The sample consisted of all the individuals that took and passed the TExES 138 life science 8-12 exam. During this period, approximately 41% of the individuals who took…

  3. 76 FR 59147 - National Institute of Environmental Health Sciences Notice of Meetings

    Science.gov (United States)

    2011-09-23

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences Notice..., Director, Division of Extramural Research and Training, National Institute of Environmental Health Sciences..., Director, Division of Extramural Research and Training, National Institute of Environmental Health...

  4. 78 FR 59944 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2013-09-30

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis... Branch, Division of Extramural Research and Training, National Institute of Environmental Health...

  5. 78 FR 64221 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2013-10-28

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. ] Name of Committee: National Institute of Environmental Health Sciences Special Emphasis...: To review and evaluate grant applications. Place: National Institute of Environmental Health...

  6. 76 FR 19378 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2011-04-07

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis...: To review and evaluate grant applications. Place: Nat. Inst. of Environmental Health...

  7. 75 FR 44273 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2010-07-28

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis.... Agenda: To review and evaluate grant applications. Place: Nat. Inst. of Environmental Health...

  8. 77 FR 60448 - National Institute of Environmental Health Sciences Notice of Meeting

    Science.gov (United States)

    2012-10-03

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences Notice... and projects conducted by the National Institute of Environmental Health Sciences, including...:50 a.m. Agenda: Scientific Presentations Place: National Institute of Environmental Health...

  9. Exploring Environmental Identity and Behavioral Change in an Environmental Science Course

    Science.gov (United States)

    Blatt, Erica N.

    2013-01-01

    This ethnographic study at a public high school in the Northeastern United States investigates the process of change in students' environmental identity and proenvironmental behaviors during an Environmental Science course. The study explores how sociocultural factors, such as students' background, social interactions, and classroom structures,…

  10. Exploring Environmental Identity and Behavioral Change in an Environmental Science Course

    Science.gov (United States)

    Blatt, Erica N.

    2013-01-01

    This ethnographic study at a public high school in the Northeastern United States investigates the process of change in students' environmental identity and proenvironmental behaviors during an Environmental Science course. The study explores how sociocultural factors, such as students' background, social interactions, and classroom structures,…

  11. Application of neutron activation tracer sediment technique on environmental science

    Institute of Scientific and Technical Information of China (English)

    YinYi; ZhongWei-Ni; 等

    1997-01-01

    Field and laboratory inverstigations were carried out to study the transport and dispersion law of polluted sediments near wastewater outlet using neutron activation tracer technique.The direction of transport and dispersion of polluted sediments,dispersion amount in different directions,sedimentary region of polluted sediment and evaluation of polluted risk are given.This provided a new test method for the study of environmental science and added a new forecasted content for the evaluation of environmental influence.

  12. GENESIS: GPS Environmental and Earth Science Information System

    Science.gov (United States)

    Hajj, George

    1999-01-01

    This presentation reviews the GPS ENvironmental and Earth Science Information System (GENESIS). The objectives of GENESIS are outlined (1) Data Archiving, searching and distribution for science data products derived from Space borne TurboRogue Space Receivers for GPS science and other ground based GPS receivers, (2) Data browsing using integrated visualization tools, (3) Interactive web/java-based data search and retrieval, (4) Data subscription service, (5) Data migration from existing GPS archived data, (6) On-line help and documentation, and (7) participation in the WP-ESIP federation. The presentation reviews the products and services of Genesis, and the technology behind the system.

  13. 1992 Environmental Summer Science Camp Program evaluation. The International Environmental Institute of Westinghouse Hanford Company

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    This report describes the 1992 Westinghouse Hanford Company/US Department of Energy Environmental Summer Science Camp. The objective of the ``camp`` was to motivate sixth and seventh graders to pursue studies in math, science, and the environment. This objective was accomplished through hands-on fun activities while studying the present and future challenges facing our environment. The camp was funded through Technical Task Plan, 424203, from the US Department of Energy-Headquarters, Office of Environmental Restoration and Waste Management, Technology Development,to Westinghouse Hanford Company`s International Environmental Institute, Education and Internship Performance Group.

  14. Environmental Science Misconceptions--Resolution of an Anomaly.

    Science.gov (United States)

    Groves, Fred H.; Pugh, Ava F.

    This document reports on research on the ability of a short-term intervention to substantially increase elementary pre-service teacher knowledge of major environmental science issues. The study was conducted each semester over seven years. Student understanding of such issues as global warming, ozone depletion, and local groundwater problems was…

  15. Environmentalism and Science: Politics and the Pursuit of Knowledge.

    Science.gov (United States)

    Rycroft, Robert W.

    1991-01-01

    Examination of the relationship between environmentalists and scientists concludes that environmentalism has had little impact on science. Topics discussed include the degree to which scientific research has become more applied; efforts to integrate and coordinate research projects; the synthesis of scientific information for policy purposes; and…

  16. Reforming an Undergraduate Environmental Science Course for Nonscience Majors

    Science.gov (United States)

    Kazempour, Mahsa; Amirshokoohi, Aidin

    2013-01-01

    This article discusses the key components of a reform-based introductory undergraduate environmental science course for nonscience majors and elementary teacher candidates as well as the impact of such components on the participants. The main goals for the course were to actively engage the students in their learning and, in doing so, to enhance…

  17. Stationary Engineering, Environmental Control, Refrigeration. Science Manual I.

    Science.gov (United States)

    Steingress, Frederick M.; And Others

    The student materials present lessons about occupations related to environmental control, stationary engineering, and refrigeration. Included are 18 units organized by objective, information, reference, procedure, and assignment. Each lesson involves concrete trade experience where science is applied. Unit titles are: safety and housekeeping,…

  18. Hierarchical modelling for the environmental sciences statistical methods and applications

    CERN Document Server

    Clark, James S

    2006-01-01

    New statistical tools are changing the way in which scientists analyze and interpret data and models. Hierarchical Bayes and Markov Chain Monte Carlo methods for analysis provide a consistent framework for inference and prediction where information is heterogeneous and uncertain, processes are complicated, and responses depend on scale. Nowhere are these methods more promising than in the environmental sciences.

  19. Matrices to Revise Crop, Soil, and Environmental Sciences Undergraduate Curricula

    Science.gov (United States)

    Savin, Mary C.; Longer, David; Miller, David M.

    2005-01-01

    Undergraduate curricula for natural resource and agronomic programs have been introduced and revised during the past several decades with a desire to stay current with emerging issues and technologies relevant to constituents. For the past decade, the Department of Crop, Soil, and Environmental Sciences (CSES) faculty at the University of Arkansas…

  20. Quantitative Reasoning in Environmental Science: A Learning Progression

    Science.gov (United States)

    Mayes, Robert Lee; Forrester, Jennifer Harris; Christus, Jennifer Schuttlefield; Peterson, Franziska Isabel; Bonilla, Rachel; Yestness, Nissa

    2014-01-01

    The ability of middle and high school students to reason quantitatively within the context of environmental science was investigated. A quantitative reasoning (QR) learning progression was created with three progress variables: quantification act, quantitative interpretation, and quantitative modeling. An iterative research design was used as it…

  1. Reforming an Undergraduate Environmental Science Course for Nonscience Majors

    Science.gov (United States)

    Kazempour, Mahsa; Amirshokoohi, Aidin

    2013-01-01

    This article discusses the key components of a reform-based introductory undergraduate environmental science course for nonscience majors and elementary teacher candidates as well as the impact of such components on the participants. The main goals for the course were to actively engage the students in their learning and, in doing so, to enhance…

  2. Quantitative Reasoning in Environmental Science: A Learning Progression

    Science.gov (United States)

    Mayes, Robert Lee; Forrester, Jennifer Harris; Christus, Jennifer Schuttlefield; Peterson, Franziska Isabel; Bonilla, Rachel; Yestness, Nissa

    2014-01-01

    The ability of middle and high school students to reason quantitatively within the context of environmental science was investigated. A quantitative reasoning (QR) learning progression was created with three progress variables: quantification act, quantitative interpretation, and quantitative modeling. An iterative research design was used as it…

  3. Environmental engineers receive top science paper award for investigative work

    OpenAIRE

    Nystrom, Lynn A.

    2010-01-01

    Marc Edwards and Simoni Triantafyllidou of Virginia Tech's College of Engineering, along with colleague Dr. Dana Best of Children's National Medical Center, published a 2009 article in "Environmental Science and Technology" (ES&T) that demonstrated a major increase in childhood lead poisoning of Washington, D.C., children during the 2001-04 lead-in-water crisis.

  4. Children's Environmental Identity and the Elementary Science Classroom

    Science.gov (United States)

    Tugurian, Linda P.; Carrier, Sarah J.

    2017-01-01

    This qualitative research explores children's environmental identity by describing how fifth grade children view their relationship with the natural world alongside their experience of elementary school science. Qualitative analysis of in-depth interviews with 17 grade 5 children was supported with a survey that included responses to open-ended…

  5. French environmental labs may get 'big science' funds

    CERN Multimedia

    2000-01-01

    France is considering expanding its network of enviromental laboratories to study the long term impacts of environmental change. It has been suggested that this could be funded using the 'big science' budget usually used for facilities such as particle accelerators (2 para).

  6. A Science Night of Fun!

    Science.gov (United States)

    Rommel-Esham, Katie; Castellitto, Andrea

    2003-01-01

    Describes a science learning program sponsored by the State University of New York College (SUNY) at Geneseo which brings together elementary students, parents, and university students and faculty for an evening of fun, meaningful science experiments, demonstrations, and activities. Includes sample activities. (KHR)

  7. A Framework for Inclusion and Diversity in Environmental Citizen Science

    Directory of Open Access Journals (Sweden)

    Jillian Mochnick

    2015-08-01

    Full Text Available Review of: Citizen Science: Public Participation in Environmental Research; Janis L. Dickinson and Rick Bonney; (2015. Comstock Publishing Associates, Ithaca, NY. 304 pages.  A review of the new book "Citizen Scienece: Public Participation in Environmental Research" by Janis L. Dickinson, Professor of Natural Resources at Cornell University and Arthur A. Allen Director of Citizen Science at the Cornell Lab of Ornithology, and Rick Bonney, Director of Program Development and Evaluation at the Cornell Lab of Ornithology. These authors amongst many contributors provide the theory, framework, and practice to citizen science projects. This text provides resources to disseminate projects with diverse goals to engage the general public in the scientific process and to study the natural world.

  8. Using Environmental Science as a Motivational Tool to Teach Physics to Non-science Majors

    Science.gov (United States)

    Busch, Hauke C.

    2010-12-01

    A traditional physical science course was transformed into an environmental physical science course to teach physics to non-science majors. The objective of the new course was to improve the learning of basic physics principles by applying them to current issues of interest. A new curriculum was developed with new labs, homework assignments, worksheets, and interactive classroom learning techniques such as Peer Instruction (PI) and SCALE-UP.2 It was found that the new course showed an increase in students' class participation, attendance, and overall interest, with most rating their science experience as very positive.

  9. Environmental Sciences Division: Summaries of research in FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    This document describes the Fiscal Year 1996 activities and products of the Environmental Sciences Division, Office of Biological and Environmental Research, Office of Energy Research. The report is organized into four main sections. The introduction identifies the basic program structure, describes the programs of the Environmental Sciences Division, and provides the level of effort for each program area. The research areas and project descriptions section gives program contact information, and provides descriptions of individual research projects including: three-year funding history, research objective and approach used in each project, and results to date. Appendixes provide postal and e-mail addresses for principal investigators and define acronyms used in the text. The indexes provide indexes of principal investigators, research institutions, and keywords for easy reference. Research projects are related to climatic change and remedial action.

  10. 75 FR 45133 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2010-08-02

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis... Development in the Environmental Health Sciences; 93.113, Biological Response to Environmental Health Hazards...

  11. Challenges for Data Archival Centers in Evolving Environmental Sciences

    Science.gov (United States)

    Wei, Y.; Cook, R. B.; Gu, L.; Santhana Vannan, S. K.; Beaty, T.

    2015-12-01

    Environmental science has entered into a big data era as enormous data about the Earth environment are continuously collected through field and airborne missions, remote sensing observations, model simulations, sensor networks, etc. An open-access and open-management data infrastructure for data-intensive science is a major grand challenge in global environmental research (BERAC, 2010). Such an infrastructure, as exemplified in EOSDIS, GEOSS, and NSF EarthCube, will provide a complete lifecycle of environmental data and ensures that data will smoothly flow among different phases of collection, preservation, integration, and analysis. Data archival centers, as the data integration units closest to data providers, serve as the source power to compile and integrate heterogeneous environmental data into this global infrastructure. This presentation discusses the interoperability challenges and practices of geosciences from the aspect of data archival centers, based on the operational experiences of the NASA-sponsored Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC) and related environmental data management activities. Specifically, we will discuss the challenges to 1) encourage and help scientists to more actively share data with the broader scientific community, so that valuable environmental data, especially those dark data collected by individual scientists in small independent projects, can be shared and integrated into the infrastructure to tackle big science questions; 2) curate heterogeneous multi-disciplinary data, focusing on the key aspects of identification, format, metadata, data quality, and semantics to make them ready to be plugged into a global data infrastructure. We will highlight data curation practices at the ORNL DAAC for global campaigns such as BOREAS, LBA, SAFARI 2000; and 3) enhance the capabilities to more effectively and efficiently expose and deliver "big" environmental data to broad range of users and systems

  12. Publications in biomedical and environmental sciences programs, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Moody, J.B. (comp.)

    1982-07-01

    This bibliography contains 698 references to articles in journals, books, and reports published in the subject area of biomedical and environmental sciences during 1981. There are 520 references to articles published in journals and books and 178 references to reports. Staff members in the Biomedical and Environmental Sciences divisions have other publications not included in this bibliography; for example, theses, book reviews, abstracts published in journals or symposia proceedings, pending journal publications and reports such as monthly, bimonthly, and quarterly progress reports, contractor reports, and reports for internal distribution. This document is sorted by the division, and then alphabetically by author. The sorting by divisions separates the references by subject area in a simple way. The divisions represented in the order that they appear in the bibliography are Analytical Chemistry, Biology, Chemical Technology, Information R and D, Health and Safety Research, Instrumentation and Controls, Computer Sciences, Energy, Engineering Technology, Solid State, Central Management, Operations, and Environmental Sciences. Indexes are provided by author, title, and journal reference.

  13. Opportunities for web-based indicators in environmental sciences.

    Directory of Open Access Journals (Sweden)

    Sergio Malcevschi

    Full Text Available This paper proposes a set of web-based indicators for quantifying and ranking the relevance of terms related to key-issues in Ecology and Sustainability Science. Search engines that operate in different contexts (e.g. global, social, scientific are considered as web information carriers (WICs and are able to analyse; (i relevance on different levels: global web, individual/personal sphere, on-line news, and culture/science; (ii time trends of relevance; (iii relevance of keywords for environmental governance. For the purposes of this study, several indicators and specific indices (relational indices and dynamic indices were applied to a test-set of 24 keywords. Outputs consistently show that traditional study topics in environmental sciences such as water and air have remained the most quantitatively relevant keywords, while interest in systemic issues (i.e. ecosystem and landscape has grown over the last 20 years. Nowadays, the relevance of new concepts such as resilience and ecosystem services is increasing, but the actual ability of these concepts to influence environmental governance needs to be further studied and understood. The proposed approach, which is based on intuitive and easily replicable procedures, can support the decision-making processes related to environmental governance.

  14. The age of citizen science: Stimulating future environmental research

    Science.gov (United States)

    Burgess, S. N.

    2010-12-01

    Public awareness of the state of the ocean is growing with issues such as climate change, over-harvesting, marine pollution, coral bleaching, ocean acidification and sea level rise appearing regularly in popular media outlets. Society is also placing greater value on the range of ecosystem services the ocean provides. This increased consciousness of environmental change due to a combination of anthropogenic activities and impacts from climate change offers scientists the opportunity of engaging citizens in environmental research. The term citizen science refers to scientific research carried out by citizens and led by professionals, which involves large scale data collection whilst simultaneously engaging and educating those who participate. Most projects that engage citizen scientists have been specifically designed to provide an educational benefit to the volunteer and benefit the scientific inquiry by collecting extensive data sets over large geographical areas. Engaging the public in environmental science is not a new concept and successful projects (such as the Audobon Christmas Bird Count and Earthwatch) have been running for several decades resulting in hundreds of thousands of people conducting long-term field research in partnership with scientists based at universities worldwide. The realm of citizen science projects is continually expanding, with public engagement options ranging from science online; to backyard afternoon studies; to fully immersive experiential learning projects running for weeks at a time. Some organisations, such as Earthwatch also work in partnership with private industry; giving scientists access to more funding opportunities than those avenues traditionally available. These scientist -industry partnerships provide mutual benefits as the results of research projects in environments such as coastal ecosystems feed directly back into business risk strategies; for example mitigating shoreline erosion, storm surges, over fishing and

  15. Web portal on environmental sciences "ATMOS''

    Directory of Open Access Journals (Sweden)

    E. P. Gordov

    2006-01-01

    Full Text Available The developed under INTAS grant web portal ATMOS (http://atmos.iao.ru and http://atmos.scert.ru makes available to the international research community, environmental managers, and the interested public, a bilingual information source for the domain of Atmospheric Physics and Chemistry, and the related application domain of air quality assessment and management. It offers access to integrated thematic information, experimental data, analytical tools and models, case studies, and related information and educational resources compiled, structured, and edited by the partners into a coherent and consistent thematic information resource. While offering the usual components of a thematic site such as link collections, user group registration, discussion forum, news section etc., the site is distinguished by its scientific information services and tools: on-line models and analytical tools, and data collections and case studies together with tutorial material. The portal is organized as a set of interrelated scientific sites, which addressed basic branches of Atmospheric Sciences and Climate Modeling as well as the applied domains of Air Quality Assessment and Management, Modeling, and Environmental Impact Assessment. Each scientific site is open for external access information-computational system realized by means of Internet technologies. The main basic science topics are devoted to Atmospheric Chemistry, Atmospheric Spectroscopy and Radiation, Atmospheric Aerosols, Atmospheric Dynamics and Atmospheric Models, including climate models. The portal ATMOS reflects current tendency of Environmental Sciences transformation into exact (quantitative sciences and is quite effective example of modern Information Technologies and Environmental Sciences integration. It makes the portal both an auxiliary instrument to support interdisciplinary projects of regional environment and extensive educational resource in this important domain.

  16. AUGMENTED CITIZEN SCIENCE FOR ENVIRONMENTAL MONITORING AND EDUCATION

    Directory of Open Access Journals (Sweden)

    B. Albers

    2017-09-01

    Full Text Available Environmental monitoring and ecological studies detect and visualize changes of the environment over time. Some agencies are committed to document the development of conservation and status of geotopes and geosites, which is time-consuming and cost-intensive. Citizen science and crowd sourcing are modern approaches to collect data and at the same time to raise user awareness for environmental changes. Citizen scientists can take photographs of point of interests (POI with smartphones and the PAN App, which is presented in this article. The user is navigated to a specific point and is then guided with an augmented reality approach to take a photo in a specific direction. The collected photographs are processed to time-lapse videos to visualize environmental changes. Users and experts in environmental agencies can use this data for long-term documentation.

  17. Augmented Citizen Science for Environmental Monitoring and Education

    Science.gov (United States)

    Albers, B.; de Lange, N.; Xu, S.

    2017-09-01

    Environmental monitoring and ecological studies detect and visualize changes of the environment over time. Some agencies are committed to document the development of conservation and status of geotopes and geosites, which is time-consuming and cost-intensive. Citizen science and crowd sourcing are modern approaches to collect data and at the same time to raise user awareness for environmental changes. Citizen scientists can take photographs of point of interests (POI) with smartphones and the PAN App, which is presented in this article. The user is navigated to a specific point and is then guided with an augmented reality approach to take a photo in a specific direction. The collected photographs are processed to time-lapse videos to visualize environmental changes. Users and experts in environmental agencies can use this data for long-term documentation.

  18. Environmental Influences in the Sixth Science Run of LIGO

    Science.gov (United States)

    Effler, Anamaria; LIGO Scientific Collaboration; Virgo Collaboration

    2011-04-01

    The LIGO gravitational wave detectors at the Hanford and Livingston Observatories are very sensitive to environmental effects, stationary or transient, which are a subtle and important source of noise and false positives. We present seismic, acoustic and magnetic influences in the sixth LIGO science run and explain some of the coupling mechanisms. The methods are general enough to be employed in the future, and will be used to measure the environmental influence in the more sensitive Advanced LIGO detectors currently being installed. This work was partially supported by the NSF grant PHY-0905184.

  19. The diversity and evolution of ecological and environmental citizen science.

    Science.gov (United States)

    Pocock, Michael J O; Tweddle, John C; Savage, Joanna; Robinson, Lucy D; Roy, Helen E

    2017-01-01

    Citizen science-the involvement of volunteers in data collection, analysis and interpretation-simultaneously supports research and public engagement with science, and its profile is rapidly rising. Citizen science represents a diverse range of approaches, but until now this diversity has not been quantitatively explored. We conducted a systematic internet search and discovered 509 environmental and ecological citizen science projects. We scored each project for 32 attributes based on publicly obtainable information and used multiple factor analysis to summarise this variation to assess citizen science approaches. We found that projects varied according to their methodological approach from 'mass participation' (e.g. easy participation by anyone anywhere) to 'systematic monitoring' (e.g. trained volunteers repeatedly sampling at specific locations). They also varied in complexity from approaches that are 'simple' to those that are 'elaborate' (e.g. provide lots of support to gather rich, detailed datasets). There was a separate cluster of entirely computer-based projects but, in general, we found that the range of citizen science projects in ecology and the environment showed continuous variation and cannot be neatly categorised into distinct types of activity. While the diversity of projects begun in each time period (pre 1990, 1990-99, 2000-09 and 2010-13) has not increased, we found that projects tended to have become increasingly different from each other as time progressed (possibly due to changing opportunities, including technological innovation). Most projects were still active so consequently we found that the overall diversity of active projects (available for participation) increased as time progressed. Overall, understanding the landscape of citizen science in ecology and the environment (and its change over time) is valuable because it informs the comparative evaluation of the 'success' of different citizen science approaches. Comparative evaluation

  20. Non-parametric versus parametric methods in environmental sciences

    Directory of Open Access Journals (Sweden)

    Muhammad Riaz

    2016-01-01

    Full Text Available This current report intends to highlight the importance of considering background assumptions required for the analysis of real datasets in different disciplines. We will provide comparative discussion of parametric methods (that depends on distributional assumptions (like normality relative to non-parametric methods (that are free from many distributional assumptions. We have chosen a real dataset from environmental sciences (one of the application areas. The findings may be extended to the other disciplines following the same spirit.

  1. Evaluating environmental education, citizen science, and stewardship through naturalist programs.

    Science.gov (United States)

    Merenlender, Adina M; Crall, Alycia W; Drill, Sabrina; Prysby, Michelle; Ballard, Heidi

    2016-12-01

    Amateur naturalists have played an important role in the study and conservation of nature since the 17th century. Today, naturalist groups make important contributions to bridge the gap between conservation science and practice around the world. We examined data from 2 regional naturalist programs to understand participant motivations, barriers, and perspectives as well as the actions they take to advance science, stewardship, and community engagement. These programs provide certification-based natural history and conservation science training for adults that is followed by volunteer service in citizen science, education, and stewardship. Studies in California and Virginia include quantitative and qualitative evaluation data collected through pre- and postcourse surveys, interviews, and long-term tracking of volunteer hours. Motivations of participants focused on learning about the local environment and plants and animals, connecting with nature, becoming certified, and spending time with people who have similar interests. Over half the participants surveyed were over 50 years old, two-thirds were women, and a majority reported household incomes of over $50,000 (60% in California, 85% in Virginia), and citizen science. The primary barrier was lack of time due to the need to work and focus on career advancement. Survey data revealed that participants' ecological knowledge, scientific skills, and belief in their ability to address environmental issues increased after training. Documented conservation actions taken by the participants include invasive plant management, habitat restoration, and cleanups of natural areas and streams. Long-term data from Virginia on volunteer hours dedicated to environmental citizen science show an increase from 14% in 2007 to 32% in 2014. In general, participants in the naturalist programs we examined increased their content knowledge about ecosystems, had greater confidence in conserving them, and continued to engage as citizen

  2. Interdisciplinary Environmental-health Science Throughout Disaster Lifecycles

    Science.gov (United States)

    Plumlee, G. S.; Morman, S. A.; Hoefen, T. M.

    2014-12-01

    Potential human health effects from exposures to hazardous disaster materials and environmental contamination are common concerns following disasters. Using several examples from US Geological Survey environmental disaster responses (e.g., 2001 World Trade Center, mine tailings spills, 2005 Hurricane Katrina, 2007-2013 wildfires, 2011 Gulf oil spill, 2012 Hurricane Sandy, 2013 Colorado floods) and disaster scenarios (2011 ARkStorm, 2013 SAFRR tsunami) this presentation will illustrate the role for collaborative earth, environmental, and health science throughout disaster lifecycles. Pre-disaster environmental baseline measurements are needed to help understand environmental influences on pre-disaster health baselines, and to constrain the magnitude of a disaster's impacts. During and following disasters, there is a need for interdisciplinary rapid-response and longer-term assessments that: sample and characterize the physical, chemical, and microbial makeup of complex materials generated by the disasters; fingerprint material sources; monitor, map, and model dispersal and evolution of disaster materials in the environment; help understand how the materials are modified by environmental processes; and, identify key characteristics and processes that influence the exposures and toxicity of disaster materials to humans and the living environment. This information helps emergency responders, public health experts, and cleanup managers: 1) identify short- and long-term exposures to disaster materials that may affect health; 2) prioritize areas for cleanup; and 3) develop appropriate disposal solutions or restoration uses for disaster materials. By integrating lessons learned from past disasters with geospatial information on vulnerable sources of natural or anthropogenic contaminants, the environmental health implications of looming disasters or disaster scenarios can be better anticipated, which helps enhance preparedness and resilience. Understanding economic costs of

  3. Environmental Literacy for All Students: Evaluation of Environmental Science Courses Developed for a New Core Curriculum.

    Science.gov (United States)

    Battles, Denise A.; Franks, Melvin E.; Morrison-Shetlar, Alison I.; Orvis, Jessica N.; Rich, Fredrick J.; Deal, Tony J.

    2003-01-01

    Describes a course developed for undergraduate students that includes an environmental science lecture and laboratory section. Focuses on the laboratory section as the critical component with activities that are real-world related, hands-on, problem solving-based, and use cooperative learning approaches. (Contains 12 references.) (Author/YDS)

  4. Delivering Global Environmental Change Science Through Documentary Film

    Science.gov (United States)

    Dodgson, K.; Byrne, J. M.; Graham, J. R.

    2010-12-01

    Communicating authentic science to society presents a significant challenge to researchers. This challenge stems from unfortunate misrepresentation and misunderstanding in the mainstream media, particularly in relation to science on global environmental change. This has resulted in a lower level of confidence and interest amongst audiences in regards to global environmental change and anthropogenic climate change discussions. This project describes a new form of documentary film that aspires to break this trend and increase audiences’ interest, reinvigorating discussion about global environmental change. The documentary film adopts a form that marries traditional scientific presentation with the high entertainment value of narrative storytelling. This format maintains the authenticity of the scientific message and ensures audience engagement throughout the entire presentation due to the fact that a sense of equality and intimacy between the audience and the scientists is achieved. The film features interviews with scientists studying global environmental change and opens with a comparison of authentic scientific information and the mainstream media’s presentation, and subsequent public opinion. This enables an analysis of the growing disconnect between society and the scientific community. Topics investigated include: Arctic ice melt, coastal zone hypoxia, tropical cyclones and acidification. Upon completion of the film, public and private screenings with predetermined audience demographics will be conducted using a short, standardized survey to gain feedback regarding the audience’s overall review of the presentation. In addition to the poster, this presentation features an extended trailer for the documentary film.

  5. Science Teachers' and Senior Secondary Schools Students' Perceptions of Earth and Environmental Science Topics

    Science.gov (United States)

    Dawson, Vaille; Carson, Katherine

    2013-01-01

    This article presents an evaluation of a new upper secondary Earth and Environmental Science (EES) course in Western Australia. Twenty-seven EES teachers were interviewed and 243 students were surveyed about the degree of difficulty, relevance and interest of EES topics in the course. The impact of the course on students' views about EES topics…

  6. Science Teachers' and Senior Secondary Schools Students' Perceptions of Earth and Environmental Science Topics

    Science.gov (United States)

    Dawson, Vaille; Carson, Katherine

    2013-01-01

    This article presents an evaluation of a new upper secondary Earth and Environmental Science (EES) course in Western Australia. Twenty-seven EES teachers were interviewed and 243 students were surveyed about the degree of difficulty, relevance and interest of EES topics in the course. The impact of the course on students' views about EES topics…

  7. National Institute of Environmental Health Sciences: 50 Years of Advancing Science and Improving Lung Health.

    Science.gov (United States)

    Antony, Veena B; Redlich, Carrie A; Pinkerton, Kent E; Balmes, John; Harkema, Jack R

    2016-11-15

    The American Thoracic Society celebrates the 50th anniversary of the National Institute of Environmental Health Sciences (NIEHS). The NIEHS has had enormous impact through its focus on research, training, and translational science on lung health. It has been an advocate for clean air both in the United States and across the world. The cutting-edge science funded by the NIEHS has led to major discoveries that have broadened our understanding of the pathogenesis and treatment for lung disease. Importantly, the NIEHS has developed and fostered mechanisms that require cross-cutting science across the spectrum of areas of inquiry, bringing together environmental and social scientists with clinicians to bring their expertise on specific areas of investigation. The intramural program of the NIEHS nurtures cutting-edge science, and the extramural program encourages investigator-initiated research while at the same time providing broader direction through important initiatives. Under the umbrella of the NIEHS and guided by Dr. Linda Birnbaum, the director of the NIEHS, important collaborative programs, such as the Superfund Program and the National Toxicology Program, work to discover mechanisms to protect from environmental toxins. The American Thoracic Society has overlapping goals with the NIEHS, and the strategic plans of both august bodies converge to synergize on population lung health. These bonds must be tightened and highlighted as we work toward our common goals.

  8. 78 FR 8156 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2013-02-05

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... of personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special.... Institute of Environmental Health Sciences, P.O. Box 12233, MD EC-30, Research Triangle Park, NC 27709,...

  9. 78 FR 14312 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2013-03-05

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis.... Institute of Environmental Health Sciences, P.O. Box 12233, MD EC-30/Room 3171, Research Triangle Park,...

  10. 76 FR 29772 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2011-05-23

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis... Environmental Health Sciences, P. O. Box 12233, MD EC-30, Research Triangle Park, NC 27709, (919) 541-1307, bass...

  11. 76 FR 8751 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2011-02-15

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis... Extramural ] Research and Training, Nat. Institute Environmental Health Sciences, P.O. Box 12233, MD EC-30...

  12. 76 FR 62080 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2011-10-06

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: Environmental Health Sciences Review Committee. Date: November 9, 2011...'l Institute of Environmental Health Sciences, P.O. Box 12233, MD EC-30, Research Triangle Park, NC...

  13. 76 FR 21387 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2011-04-15

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis... and Training, Nat. Institute of Environmental Health Science, P.O. Box 12233, MD EC-30/Room 3170 B...

  14. 75 FR 61765 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2010-10-06

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. ] Name of Committee: National Institute of Environmental Health Sciences Special Emphasis.... Institute of Environmental Health Sciences, Office of Program Operations, Scientific Review Branch, P.O. Box...

  15. 75 FR 68367 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2010-11-05

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis.... Institute of Environmental Health Science, P.O. Box 12233, MD EC-30/Room 3170 B, Research Triangle Park, NC...

  16. 78 FR 39739 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2013-07-02

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: Environmental Health Sciences Review Committee. Date: July 24-26, 2013... Institute of Environmental Health Sciences, P.O. Box 12233, MD EC-30, Research Triangle Park, NC 27709, (919...

  17. 75 FR 10293 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2010-03-05

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory.... Institute Environmental Health Sciences, P. O. Box 12233, MD EC-30, Research Triangle Park, NC 27709, (919... Health Sciences; 93.113, Biological Response to Environmental Health Hazards; 93.114, Applied...

  18. 75 FR 55807 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2010-09-14

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis...-Tilotta, PhD, Scientific Review Officer, Nat. Institute of Environmental Health Sciences, Office of...

  19. 76 FR 7572 - National Institute of Environmental Health Sciences; Notice of Meetings

    Science.gov (United States)

    2011-02-10

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice..., Director, Division of Extramural Research and Training, National Institute of Environmental Health Sciences... Environmental Health Sciences, 615 Davis Dr., KEY615/3112, Research Triangle Park, NC 27709, (919) 541-4980...

  20. 75 FR 2876 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2010-01-19

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis... Environmental Health Sciences, P.O. Box 12233, MD EC-30, Research Triangle Park, NC 27709, (919) 541- 0752...

  1. 77 FR 30019 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2012-05-21

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis... Research and Training, Nat. Institute of Environmental Health Science, P.O. Box 12233, MD EC-30/Room 3170 B...

  2. 76 FR 46308 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2011-08-02

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: Environmental Health Sciences Review Committee. Date: August 23-25...'l Institute of Environmental Health Sciences, P.O. Box 12233, MD EC-30, Research Triangle Park, NC...

  3. 76 FR 58521 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2011-09-21

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis... Environmental Health Science, P. O. Box 12233, MD EC-30/Room 3170 B, Research Triangle Park, NC 27709, (919) 541...

  4. 76 FR 38666 - Food and Drug Administration (FDA) and Marine Environmental Sciences Consortium/Dauphin Island...

    Science.gov (United States)

    2011-07-01

    ... Nutrition (CFSAN) and the Marine Environmental Sciences Consortium/Dauphin Island Sea Lab (DISL). The goal... Marine Environmental Science Consortium-Dauphin Island Sea Lab (DISL) will greatly contribute to FDA's... Objectives FDA Gulf Coast Seafood Laboratory (GCSL) and the Marine Environmental Science Consortium of the...

  5. 76 FR 13650 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2011-03-14

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis... Environmental Health Sciences, P.O. Box 12233, MD EC-30/Room 3171, Research Triangle Park, NC 27709, (919) 541...

  6. 75 FR 82033 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2010-12-29

    ... National Institute of Environmental Health Sciences; Notice of Closed Meetings Pursuant to section 10(d) of... Institute of Environmental Health Sciences Special Emphasis Panel. Application of ``Omics'' Technologies in.... Institute of Environmental Health Sciences, P.O. Box 12233, MD EC-30, Research Triangle Park, NC 27709. (919...

  7. 75 FR 21339 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2010-04-23

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis.... Institute of Environmental Health Sciences, P.O. Box 12233, MD EC-30/Room 3171, Research Triangle Park, NC...

  8. 76 FR 7574 - National Institute of Environmental Health Sciences; Notice of Meetings

    Science.gov (United States)

    2011-02-10

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... Extramural Research and Training, National Institute of Environmental Health Sciences, 615 Davis Dr., KEY615...: Interagency Breast Cancer and Environmental Research Coordinating Committee (IBCERC) State of the Science...

  9. 76 FR 7225 - National Institute of Environmental Health Sciences; Notice of Meetings

    Science.gov (United States)

    2011-02-09

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice..., National Institute of Environmental Health Sciences, 615 Davis Dr., KEY615/3112, Research Triangle Park, NC..., National Institute of Environmental Health Sciences, 615 Davis Dr., KEY615/3112, Research Triangle Park, NC...

  10. 75 FR 34147 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2010-06-16

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis... Extramural Research and Training, Nat. Institute Environmental Health Sciences, P.O. Box 12233, MD EC-30...

  11. 75 FR 78719 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2010-12-16

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis... Environmental Health Sciences, Office of Program Operations, Scientific Review Branch, P.O. Box 12233 MD EC-30...

  12. 77 FR 37423 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2012-06-21

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis..., Division of Extramural Research and Training, Nat. Institute of Environmental Health Sciences, P.O. Box...

  13. 78 FR 64511 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2013-10-29

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: Environmental Health Sciences Review Committee. Date: November 14... Institute of Environmental Health Sciences, Rall Building 101, Conference Room B, 111 T.W. Alexander...

  14. 76 FR 31620 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2011-06-01

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis..., Division of Extramural Research and Training, National Institute of Environmental Health Sciences, P.O....

  15. 78 FR 56902 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2013-09-16

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis... Research and Education; 93.894, Resources and Manpower Development in the Environmental Health Sciences;...

  16. 78 FR 25754 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2013-05-02

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special ] Emphasis.... Institute of Environmental Health Science, P.O. Box 12233, MD EC-30/Room 3170 B, Research Triangle Park,...

  17. 75 FR 41505 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2010-07-16

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: Environmental Health Sciences Review Committee. Date: August 10-12... Environmental Health Sciences, Building 101, Rodbell Auditorium, 111 T. W. Alexander Drive, Conference Rooms...

  18. 78 FR 27410 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2013-05-10

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis... Research and Education; 93.894, Resources and Manpower Development in the Environmental Health Sciences;...

  19. 75 FR 8976 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2010-02-26

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis... Extramural Research and Training, Nat. Institute of Environmental Health Science, P. O. Box 12233, MD...

  20. 76 FR 6146 - National Institute of Environmental Health Sciences; Notice of Meeting

    Science.gov (United States)

    2011-02-03

    ... Institute of Environmental Health Sciences; Notice of Meeting Pursuant to section 10(d) of the Federal... Advisory Environmental Health Sciences. The meeting will be open to the public as indicated below, with... Committee: National Advisory Environmental Health Sciences Council. Date: February 16-17, 2011....

  1. 78 FR 35637 - National Institute of Environmental Health Sciences; Amended Notice of Meeting

    Science.gov (United States)

    2013-06-13

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences... Environmental Health Sciences Special Emphasis Panel, July 15, 2013, 8:00 a.m. to July 15, 2013, 5:00 p.m., National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, Research Triangle Park,...

  2. 76 FR 72715 - National Institute of Environmental Health Sciences; Notice of Meeting

    Science.gov (United States)

    2011-11-25

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... Institutes of Health, Nat. Inst. of Environmental Health Sciences, 615 Davis Dr., KEY615/3112, Research... and Education; 93.894, Resources and Manpower Development in the Environmental Health Sciences;...

  3. 76 FR 67748 - National Institute of Environmental Health Sciences; Notice of Meeting

    Science.gov (United States)

    2011-11-02

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... Environmental Health Sciences, National Institutes of Health, 615 Davis Dr., KEY615/3112, Research Triangle Park... and Education; 93.894, Resources and Manpower Development in the Environmental Health Sciences;...

  4. 78 FR 51734 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2013-08-21

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis... Research and Education; 93.894, Resources and Manpower Development in the Environmental Health Sciences;...

  5. 77 FR 66853 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2012-11-07

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis Panel Career Grants in the Environmental Health Sciences. Date: November 29-30, 2012 Time: 8:00 a.m....

  6. 76 FR 11500 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2011-03-02

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis... Environmental Health Sciences, Office of Program Operations, Scientific Review Branch, P.O. Box 12233 MD...

  7. 78 FR 13358 - National Institute of Environmental Health Sciences Notice of Closed Meetings

    Science.gov (United States)

    2013-02-27

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis... Training, Nat. Institute Environmental Health Sciences, P.O. Box 12233, MD EC-30, Research Triangle...

  8. 77 FR 4572 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2012-01-30

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis... of Extramural Research and Training, Nat. Institute of Environmental Health Science, P.O. Box...

  9. 77 FR 3480 - National Institute of Environmental Health Sciences Notice of Meeting

    Science.gov (United States)

    2012-01-24

    ... Institute of Environmental Health Sciences Notice of Meeting Pursuant to section 10(d) of the Federal... Advisory Environmental Health Sciences Council. The meeting will be open to the public as indicated below... Environmental Health Sciences Council. Date: February 15-16, 2012. Time: February 15, 2012, 8:30 a.m. to 2...

  10. 75 FR 32797 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2010-06-09

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis... Extramural Research and Training, Nat. Institute of Environmental Health Sciences, P.O. Box 12233, MD...

  11. 75 FR 41506 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2010-07-16

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis... of Extramural Research and Training, Nat. Institute of Environmental Health Sciences, P.O. Box...

  12. 78 FR 14562 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2013-03-06

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis... Environmental Health Sciences, Office of Program Operations, Scientific Review Branch, P.O. Box 12233,...

  13. 76 FR 46823 - National Institute of Environmental Health Sciences; Notice of Meeting

    Science.gov (United States)

    2011-08-03

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice....), notice is hereby given of a meeting of the National Advisory Environmental Health Sciences Council. The... of Committee: National Advisory Environmental Health Sciences Council. Date: September 1-2,...

  14. 77 FR 60445 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2012-10-03

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis... Institute of Environmental Health Science, P.O. Box 12233, MD EC-30/Room 3170 B, Research Triangle Park,...

  15. 77 FR 43849 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2012-07-26

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: Environmental Health Sciences Review Committee. Date: August 22-23... Training, Nat'l Institute of Environmental Health Sciences, P.O. Box 12233, MD EC-30, Research...

  16. 76 FR 4925 - National Institute of Environmental Health Sciences; Notice of Meeting

    Science.gov (United States)

    2011-01-27

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... the meeting will be provided. In Person: National Institute of Environmental Health Sciences, Keystone... Research and Education; 93.894, Resources and Manpower Development in the Environmental Health Sciences;...

  17. 76 FR 10040 - National Institute of Environmental Health Sciences; Notice of Meeting

    Science.gov (United States)

    2011-02-23

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... and projects conducted by the National Institute of Environmental Health Sciences, including... Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709....

  18. 76 FR 35225 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2011-06-16

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis... Research and Training, Nat. Institute Environmental Health Sciences, P.O. Box 12233, MD EC-30,...

  19. A Reconstructed Vision of Environmental Science Literacy: The Case of Qatar

    Science.gov (United States)

    Khishfe, Rola

    2014-01-01

    The purpose of this study was twofold: (a) develop a conceptual framework for environmental science literacy; and consequently (b) examine the potential of science standards/curricula to prepare environmentally literate citizens. The framework comprised four pillars: science content knowledge, scientific inquiry, nature of science (NOS), and…

  20. A Reconstructed Vision of Environmental Science Literacy: The Case of Qatar

    Science.gov (United States)

    Khishfe, Rola

    2014-01-01

    The purpose of this study was twofold: (a) develop a conceptual framework for environmental science literacy; and consequently (b) examine the potential of science standards/curricula to prepare environmentally literate citizens. The framework comprised four pillars: science content knowledge, scientific inquiry, nature of science (NOS), and…

  1. Toward A Competency-Based Teacher Education Program in Foreign Languages at SUNY/Buffalo.

    Science.gov (United States)

    Papalia, Anthony

    SUNY/Buffalo's competency-based teacher education program in foreign languages emphasizes: (1) a field-centered program, (2) a multi-institutional pattern of organizations, (3) feedback to students regarding their progress, (4) preservice/inservice continuum. The competencies required of foreign language teachers include: a practical command of…

  2. Reference Data Layers for Earth and Environmental Science: History, Frameworks, Science Needs, Approaches, and New Technologies

    Science.gov (United States)

    Lenhardt, W. C.

    2015-12-01

    Global Mapping Project, Web-enabled Landsat Data (WELD), International Satellite Land Surface Climatology Project (ISLSCP), hydrology, solid earth dynamics, sedimentary geology, climate modeling, integrated assessments and so on all have needs for or have worked to develop consistently integrated data layers for Earth and environmental science. This paper will present an overview of an abstract notion of data layers of this types, what we are referring to as reference data layers for Earth and environmental science, highlight some historical examples, and delve into new approaches. The concept of reference data layers in this context combines data availability, cyberinfrastructure and data science, as well as domain science drivers. We argue that current advances in cyberinfrastructure such as iPython notebooks and integrated science processing environments such as iPlant's Discovery Environment coupled with vast arrays of new data sources warrant another look at the how to create, maintain, and provide reference data layers. The goal is to provide a context for understanding science needs for reference data layers to conduct their research. In addition, to the topics described above this presentation will also outline some of the challenges to and present some ideas for new approaches to addressing these needs. Promoting the idea of reference data layers is relevant to a number of existing related activities such as EarthCube, RDA, ESIP, the nascent NSF Regional Big Data Innovation Hubs and others.

  3. Environmental Sciences Laboratory dedication, February 26-27, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Auerbach, S.I.; Millemann, N.T. (eds.)

    1980-09-01

    The dedication of the new Environmental Sciences Laboratory coincided with the 25th year of the establishment of the science of ecology at Oak Ridge National Laboratory. That quarter century witnessed the evolution of ecology from an obscure, backwater discipline of biology to a broadly used, everyday household word. The transition reflected broad and basic changes in our social and cultural view of the world. This was brought about as a result of the awareness developed in our society of the importance of the environment, coupled with efforts of ecologists and other environmental scientists who identified, clarified, and formulated the issues and challenges of environmental protection for both the lay public and the scientific community. In many respects, the activities in ecology at ORNL were a microcosm of the broader social scene; the particular problems of the environment associated with atomic energy needed to be defined in scientific terms and articulated in both the specific and general sense for a larger audience which was unfamiliar with the field and somewhat alien to its concepts and philosophy. The success of this effort is reflected in the existence of the new Environmental Sciences Laboratory. This dedication volume brings together the thoughts and reflections of many of these scientists whose efforts contributed in a unique and individualistic fashion not only to ORNL but also to the national identification of ecology and its importance to the achievement of our national goals. Their remarks and presentations are not only a pleasant and personally gratifying recapitulation of the past and of ORNL's contributions to ecology but also portend some of the challenges to ecology in the future.

  4. Science and Mathematics Teacher Candidates' Environmental Knowledge, Awareness, Behavior and Attitudes

    Science.gov (United States)

    Yumusak, Ahmet; Sargin, Seyid Ahmet; Baltaci, Furkan; Kelani, Raphael R.

    2016-01-01

    The purpose of this study was to measure science and mathematics teacher candidates' environmental knowledge level, awareness, behavior and environmental attitudes. Four instruments comprising Environmental Sensitivity Scale, environmental Behavior Scale, Environmental Attitudes Scale and Environmental Knowledge Test were administered to a total…

  5. Role of social science in global environmental change: case of urbanisation

    CSIR Research Space (South Africa)

    Njiro, E

    2006-02-01

    Full Text Available the role of social scientists in global environmental change by examining urbanisation and other environmental changes as suggested in the science plan of the International Human Dimensions Programme on Global Environmental Change (IHDP 2005)...

  6. Building a Collaboratory in Environmental and Molecular Science

    Energy Technology Data Exchange (ETDEWEB)

    Kouzes, R.T.; Myers, J.D.; Devaney, D.M.; Dunning, T.H.; Wise, J.A.

    1994-03-01

    A Collaboratory is a meta-laboratory that spans multiple geographical areas with collaborators interacting via electronic means. Collaboratories are designed to enable close ties between scientists in a given research area, promote collaborations involving scientists in diverse areas, accelerate the development and dissemination of basic knowledge, and minimize the time-lag between discovery and application. PNL is developing the concept of an Environmental and Molecular Sciences Collaboratory (EMSC) as a natural evolution of the EMSL project. The goal of the EMSC is to increase the efficiency of research and reduce the time required to implement new environmental remediation and preservation technologies. The EMSC will leverage the resources (intellectual and physical) of the EMSL by making them more accessible to remote collaborators as well as by making the resources of remote sites available to local researchers. It will provide a common set of computer hardware and software tools to support remote collaboration, a key step in establishing a collaborative culture for scientists in the theoretical, computational, and experimental molecular sciences across the nation. In short, the EMSC will establish and support an `electronic community of scientists researching and developing innovative environmental preservation and restoration technologies.

  7. Environmental Sciences Division Groundwater Program Office. Annual report, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-30

    This first edition of the Martin Marietta Energy Systems, Inc., (Energy Systems) Groundwater Program Annual Report summarizes the work carried out by the Energy Systems GWPO for fiscal year (FY) 1993. This introductory section describes the GWPO`s staffing, organization, and funding sources. The GWPO is responsible for coordination and oversight for all components of the groundwater program at the three Oak Ridge facilities [ORNL, the Oak Ridge Y-12 Plant, and the Oak Ridge K-25 Site], and the PGDP and PORTS, respectively. Several years ago, Energy systems senior management recognized that the manner in which groundwater activities were conducted at the five facilities could result in unnecessary duplication of effort, inadequate technical input to decisions related to groundwater issues, and could create a perception within the regulatory agencies of a confusing and inconsistent approach to groundwater issues at the different facilities. Extensive interactions among management from Environmental Compliance, Environmental Restoration (ER), Environmental Sciences Division, Environmental Safety and Health, and the five facilities ultimately led to development of a net technical umbrella organization for groundwater. On April 25, 1991, the GWPO was authorized to be set up within ORNL thereby establishing a central coordinating office that would develop a consistent technical and administrative direction for the groundwater programs of all facilities and result in compliance with all relevant U.S. Environmental Protection Agency (EPA) regulations such as RCRA and Comprehensive Environmental Restoration, Compensation and Liability Act (CERCLA) as well as U.S. Department of Energy (DOE) regulations and orders. For example, DOE Order 5400.1, issued on November 9, 1988, called for each DOE facility to develop an environmental monitoring program for all media (e.g., air, surface water, and groundwater).

  8. ISEES: an institute for sustainable software to accelerate environmental science

    Science.gov (United States)

    Jones, M. B.; Schildhauer, M.; Fox, P. A.

    2013-12-01

    Software is essential to the full science lifecycle, spanning data acquisition, processing, quality assessment, data integration, analysis, modeling, and visualization. Software runs our meteorological sensor systems, our data loggers, and our ocean gliders. Every aspect of science is impacted by, and improved by, software. Scientific advances ranging from modeling climate change to the sequencing of the human genome have been rendered possible in the last few decades due to the massive improvements in the capabilities of computers to process data through software. This pivotal role of software in science is broadly acknowledged, while simultaneously being systematically undervalued through minimal investments in maintenance and innovation. As a community, we need to embrace the creation, use, and maintenance of software within science, and address problems such as code complexity, openness,reproducibility, and accessibility. We also need to fully develop new skills and practices in software engineering as a core competency in our earth science disciplines, starting with undergraduate and graduate education and extending into university and agency professional positions. The Institute for Sustainable Earth and Environmental Software (ISEES) is being envisioned as a community-driven activity that can facilitate and galvanize activites around scientific software in an analogous way to synthesis centers such as NCEAS and NESCent that have stimulated massive advances in ecology and evolution. We will describe the results of six workshops (Science Drivers, Software Lifecycles, Software Components, Workforce Development and Training, Sustainability and Governance, and Community Engagement) that have been held in 2013 to envision such an institute. We will present community recommendations from these workshops and our strategic vision for how ISEES will address the technical issues in the software lifecycle, sustainability of the whole software ecosystem, and the critical

  9. A Mentoring Program in Environmental Science for Underrepresented Groups

    Science.gov (United States)

    Stevens, L.; Rizzo, D. M.

    2009-12-01

    We developed a four-year program, combining educational and career support and research activities, to recruit and retain students from underrepresented groups in environmental sciences. Specifically, the program: ○ Assigns each student a faculty or graduate student mentor with whom the student conducts research activities. ○ Includes a weekly group meeting for team building and to review professional development and academic topics, such as time management and research ethics. ○ Requires students to make multiple formal presentations of their research proposals and results. ○ Provides scholarships and stipends for both the academic year and to engage students in summer research. The program seeks to achieve several goals including: ● Enhance academic performance. ● Encourage continued study in environmental science. ● Facilitate students completing their studies at UVM. ● Increase students’ interest in pursuing science careers. ● Create a more welcoming academic environment. To assess progress toward achievement of these goals, we conducted individual structured interviews with participating undergraduate students, graduate students, and faculty members at two points in time. First, interviews were conducted in the fall of 2007 after two years, and again in spring 2009, after four years. An independent research consultant, Dr. Livingston, conducted the interviews. In 2009, over the course of three days, the interviews included three graduate student and two faculty mentors, and six of the seven undergraduate students. Of the six students, three were juniors and three were graduating seniors. Results of the 2009 interviews echoed those of 2007. Both students and their mentors are quite satisfied with the program. The student presentations, weekly meetings, mentoring relationships, and summer research experiences all get high ratings from program participants. Students give high praise to their mentors and the program directors for providing

  10. Environmental GeoSciences Lectures and Transversal Public Workshops

    Science.gov (United States)

    Redondo, J. M.; Redondo, A.; Babiano, A.

    2010-05-01

    Co/organized by the Campus Universitari de la Mediterrania, which is a consortium between the City hall of Vilanova i la Geltru, The Universitat Politecnica de Catalunya and the Generalitat. A series of high level workshops and summer schools have been used to prepare specific, hands on science and scientific, divulgation material aimed at different types of public. Some of the most attractive topics in geosciences, prepared by well established scientists in collaboration with primary and secondary school teachers are used to stimulate science and environmental topics in the clasroom. A collection of CDs with lectures, videos and experimental visual results cover a wide range of topics such as: Cloud shape analysis, Cetacean Acoustics, Turbulence, Soil percolation, Dynamic Oceanograpy, Oil Pollution, Solar Physics, Rainbows and colour, Snail shell structure, etc.. Some of the most popular themes are chosen, studied and presented by the diferent aged pupils from local schools.

  11. Data processing guide for the Environmental Sciences Division

    Energy Technology Data Exchange (ETDEWEB)

    Strand, R. H.; Olson, R. J.; Kumar, K. D.; Tharp, M. L.; Watts, J. A.; Griffith, N. A.; Anderson, R. M.

    1977-08-01

    The data processing guide provides information on the availability and use of computer facilities for Environmental Sciences Division (ESD) personnel. This guide addresses recent data processing developments in ESD, little-known capabilities for handling data and using programs, and illustrates the mechanics of these developments and capabilities. Some of the specific developments are: storing data or source code on tape or disk for insertion into a computer job stream, creating a DECSYSTEM10 file from punched paper tape, data storage and input using a computer terminal with cassette tapes, and generation of microfiche output.

  12. SUstaiNability: a science communication website on environmental research

    Science.gov (United States)

    Gravina, Teresita; Rutigliano, Flora Angela

    2015-04-01

    Environmental news mainly reach not specialist people by mass media, which generally focuses on fascinating or catastrophic events without reporting scientific data. Otherwise, scientific data on environment are published in peer-reviewed journals with specific language, so they could be not understandable to common people. In the last decade, Internet spread made easier to divulge environmental information. This allows everyone (scientist or not) to publish information without revision. In fact, World Wide Web includes many scientific sites with different levels of confidence. Within Italian scientific websites, there are those of University and Research Centre, but they mainly contain didactic and bureaucratic information, generally lacking in research news, or reporting them in peer-reviewed format. University and Research Centre should have an important role to divulge certified information, but news should be adapted to a general audience without scientific skills, in order to help population to gain knowledge on environmental issues and to develop responsible behavior. Therefore, an attractive website (www.sunability.unina2.it) has been created in order to divulge research products of Environmental, Biological and Pharmaceutical Sciences and Technologies Department (DiSTABiF) of Second University of Naples-SUN (Campania, Southern Italy). This website contains divulgation articles derived from peer-reviewed publications of DiSTABiF researchers and concerning studies on environmental, nutrition, and health issues, closely related topics. Environmental studies mainly referred to Caserta district (Southern Italy), where DiSTABiF is located. Divulgation articles have been shared by main social networks (Facebook: sunability, Twitter: @SUNability) and accesses have been monitored for 28 days in order to obtain demographic and geographic information about users and visualization number of both DiSTABiF website and social network pages. Demographic and geographic

  13. Overview of Mars Science Laboratory (MSL) Environmental Program

    Science.gov (United States)

    Forgave, John C.; Man, Kin F.; Hoffman, Alan R.

    2006-01-01

    This viewgraph presentation is an overview of the Mars Science Laboratory (MSL) program. The engineering objectives of the program are to create a Mobile Science Laboratory capable of one Mars Year surface operational lifetime (670 Martian sols = 687 Earth days). It will be able to land and operation over wide range of latitudes, altitudes and seasons It must have controlled propulsive landing and demonstrate improved landing precision via guided entry The general science objectives are to perform science that will focus on Mars habitability, perform next generation analytical laboratory science investigations, perform remote sensing/contact investigations and carry a suite of environmental monitoring instruments. Specific scientific objectives of the MSL are: (1) Characterization of geological features, contributing to deciphering geological history and the processes that have modified rocks and regolith, including the role of water. (2) Determination of the mineralogy and chemical composition (including an inventory of elements such as C, H, N, O, P, S, etc. known to be building blocks for life) of surface and near-surface materials. (3) Determination of energy sources that could be used to sustain biological processes. (4) Characterization of organic compounds and potential biomarkers in representative regolith, rocks, and ices. (5) Determination the stable isotopic and noble gas composition of the present-day bulk atmosphere. (6) Identification potential bio-signatures (chemical, textural, isotopic) in rocks and regolith. (7) Characterization of the broad spectrum of surface radiation, including galactic cosmic radiation, solar proton events, and secondary neutrons. (8) Characterization of the local environment, including basic meteorology, the state and cycling of water and C02, and the near-surface distribution of hydrogen. Several views of the planned MSL and the rover are shown. The MSL environmental program is to: (1) Ensure the flight hardware design is

  14. Earth and Environmental Sciences 1999 Annual Report Meeting National Needs

    Energy Technology Data Exchange (ETDEWEB)

    Yonker, L.; Dannevik, B.

    2000-07-21

    Lawrence Livermore National Laboratory's Earth and Environmental Sciences 1999 Annual Report covers the following topics: (1) Nuclear Materials--Modeling Thermohydrologic Processes at the Proposed Yucca Mountain Nuclear-Waste Repository; Dose Assessments and Resettlement Support on Rongelap Atoll in the Marshall Islands. (2) Climate, Carbon, and Energy--Incorporating Surprise into Models of Global Climate Change: A Simple Climate Demonstrator Model; (3) Environmental Risk Reduction--The NASA Global Modeling Initiative: Analyzing the Atmospheric Impacts of Supersonic Aircraft; (4) National Security--Atmospheric Release Assessment Programs; and (5) Cross-Cutting Technologies/Capabilities--Advances in Technology at the Center for Accelerator Mass Spectrometry; Experimental Geophysics: Investigating Material Properties at Extreme Conditions.

  15. Teaching Environmental Health Science for Informed Citizenship in the Science Classroom and Afterschool Clubs.

    Science.gov (United States)

    Keselman, Alla; Levin, Daniel M; Hundal, Savreen; Kramer, Judy F; Matzkin, Karen; Dutcher, Gale

    2012-08-01

    In the era of growing concerns about human-induced climate change and sustainable development, it is important for the schools to prepare students for meaningful engagement with environmental policies that will determine the future of our society. To do this, educators need to face a number of challenges. These include deciding on the science knowledge and skills needed for informed citizenship, identifying teaching practices for fostering such knowledge and skills, and finding ways to implement new practices into the tightly packed existing curriculum. This paper describes two collaborative efforts between the U.S. National Library of Medicine (NLM) and University of Maryland College of Education that attempt to meet these challenges. The focus of both projects is on helping students develop information seeking and evaluation and argumentation skills, and applying them to complex socio-scientific issues that have bearing on students' daily lives. The first effort involves co-designing an afterschool environmental health club curriculum with an interdisciplinary team of middle school teachers. The second effort is the development and implementation of a week-long school drinking water quality debate activity in a high school environmental science classroom. Both projects center on Tox Town, an NLM web resource that introduces students to environmental health issues in everyday environments. The paper describes successes and challenges of environmental health curriculum development, including teachers' and researchers' perception of contextual constraints in the club and classroom setting, tensions inherent in co-design, and students' experience with socio-scientific argumentation.

  16. Crafting Disaster Risk Science: Environmental and geographical science sans frontières

    Directory of Open Access Journals (Sweden)

    Ailsa Holloway

    2009-11-01

    Full Text Available In keeping with the University of Cape Town’s commitment to social responsiveness (http://www.socialresponsiveness.uct.ac.za/, this article traces the process that underpinned the development and introduction of a postgraduate programme in Disaster Risk Science (DRS. It foregrounds the programme’s conceptualisation within the Department of Environmental and Geographical Science (EGS at the University of Cape Town (UCT, with particular emphasis on examining how disciplinary and theoretical coherence was balanced with cross-disciplinary application and social responsiveness. The article begins by describing the contextual conditions external to UCT’s formal teaching and learning environment that provided the necessary impetus for the new programme. It also traces the iterative relationship between context and curriculum that occurred over the period 1998–2008. This engagement was facilitated and mediated by the Disaster Mitigation for Sustainable Livelihoods Programme (DiMP, an interfacing research and advocacy unit, located within UCT’s Department of Environmental and Geographical Science. An explanation of subsequent content and sequencing of the postgraduate curriculum then follow. They illustrate the programme’s articulation with South Africa’s newly promulgated disaster management legislation, as well as its relevance and rigour in relation to the complex risk environment of South Africa’s Western Cape. The article specifically applies a transdisciplinary lens to the new programmme, in which Disaster Risk Science is conceptualized as a Mode 2 knowledge, but one that draws theoretically and methodologically on environmental and geographical science as its foundation or Mode 1 domain. It concludes by examining the DRS programme’s positive contributions both to scholarship and local risk management practices as well as the obstacles that constrained the new programme and continue to challenge its institutional sustainability.

  17. Publications in biomedical and environmental sciences programs, 1982

    Energy Technology Data Exchange (ETDEWEB)

    Moody, J.B. (comp.)

    1983-04-01

    This bibliography contains 725 references to articles in journals, books, and reports published in the subject area of biomedical and environmental sciences during 1982. There are 553 references to articles published in journals and books and 172 references to reports. The citations appear once ordered by the first author's division or by the performing division. Staff members in the Biomedical and Environmental Sciences divisions have other publications not included in this bibliography; for example, theses, book reviews, abstracts published in journals or symposia proceedings, pending journal publications and reports such as monthly, bimonthly, and quarterly progress reports, contractor reports, and reports for internal distribution. This document is sorted by the division, and then alphabetically by author. The sorting by divisions separates the references by subject area in a simple way. The divisions are represented alphabetically. Indexes are provided by author, title, and journal reference. Reprints of articles referenced in this bibliography can be obtained from the author or the author's division.

  18. Investing in citizen science can improve natural resource management and environmental protection

    Science.gov (United States)

    McKinley, Duncan C.; Miller-Rushing, Abraham J.; Ballard, Heidi L.; Bonney, Rick; Brown, Hutch; Evans, Daniel M.; French, Rebecca A.; Parrish, Julia K.; Phillips, Tina B.; Ryan, Sean F.; Shanley, Lea A.; Shirk, Jennifer L.; Stepenuck, Kristine F.; Weltzin, Jake F.; Wiggins, Andrea; Boyle, Owen D.; Briggs, Russell D.; Chapin, Stuart F.; Hewitt, David A.; Preuss, Peter W.; Soukup, Michael A.

    2015-01-01

    Citizen science has made substantive contributions to science for hundreds of years. More recently, it has contributed to many articles in peer-reviewed scientific journals and has influenced natural resource management and environmental protection decisions and policies across the nation. Over the last 10 years, citizen science—participation by the public in a scientific project—has seen explosive growth in the United States, particularly in ecology, the environmental sciences, and related fields of inquiry. In this report, we explore the current use of citizen science in natural resource and environmental science and decision making in the United States and describe the investments organizations might make to benefit from citizen science.

  19. The role of metadata in managing large environmental science datasets. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Melton, R.B.; DeVaney, D.M. [eds.] [Pacific Northwest Lab., Richland, WA (United States); French, J. C. [Univ. of Virginia, (United States)

    1995-06-01

    The purpose of this workshop was to bring together computer science researchers and environmental sciences data management practitioners to consider the role of metadata in managing large environmental sciences datasets. The objectives included: establishing a common definition of metadata; identifying categories of metadata; defining problems in managing metadata; and defining problems related to linking metadata with primary data.

  20. 76 FR 62424 - National Institute of Environmental Health Sciences; Amended Notice of Meeting

    Science.gov (United States)

    2011-10-07

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences... Cancer and Environmental Research Coordinating Committee's State of Science Subcommittee meeting... State of Science Subcommittee meeting to 2 p.m. to 4 p.m. The meeting is open to the public. Dated...

  1. Developing Preservice Science Teachers' Self-Determined Motivation toward Environment through Environmental Activities

    Science.gov (United States)

    Karaarslan, Guliz; Sungur, Semra; Ertepinar, Hamide

    2014-01-01

    The aim of this study was to develop pre-service science teachers' self-determined motivation toward environment before, after and five months following the environmental course activities guided by self-determination theory. The sample of the study was 33 pre-service science teachers who participated in an environmental science course. This…

  2. 77 FR 74198 - National Institute Environmental Health Sciences Notice of Meeting

    Science.gov (United States)

    2012-12-13

    ... HUMAN SERVICES National Institutes of Health National Institute Environmental Health Sciences Notice of....), notice is hereby given of a meeting of the National Advisory Environmental Health Sciences Council. The... Health Sciences Council. Date: February 20, 2013. Open: 8:30 a.m. to 4:35 p.m. Agenda: Discussion...

  3. 75 FR 49500 - National Institute of Environmental Health Sciences; Notice of Meeting

    Science.gov (United States)

    2010-08-13

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice....), notice is hereby given of a meeting of the National Advisory Environmental Health Sciences Council. The... Health Sciences Council. Date: September 1-2, 2010. Open: September 1, 2010, 8:30 a.m. to 5 p.m....

  4. 78 FR 18359 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2013-03-26

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis... Health Sciences, P.O. Box 12233, MD EC-30, Research Triangle Park, NC 27709, (919) 541-0752,...

  5. 78 FR 48695 - National Institute of Environmental Health Sciences; Notice of Meeting

    Science.gov (United States)

    2013-08-09

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice....), notice is hereby given of a meeting of the National Advisory Environmental Health Sciences Council. The... Health Sciences Council. Date: September 10, 2013. Open: 8:30 a.m. to 3:15 p.m. Agenda: Discussion...

  6. 76 FR 50235 - National Institute of Environmental Health Sciences; Notice of Meetings

    Science.gov (United States)

    2011-08-12

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice..., Director, Division of Extramural Research and Training (DERT), Nat. Inst. of Environmental Health Sciences... Health Sciences, National Institutes of Health, 615 Davis Dr., KEY615/3112, Research Triangle Park,...

  7. 76 FR 71046 - National Institute of Environmental Health Sciences; Notice of Meeting

    Science.gov (United States)

    2011-11-16

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... Sciences, National Institutes of Health, 615 Davis Dr., KEY615/3112, Research Triangle Park, NC 27709, (919....894, Resources and Manpower Development in the Environmental Health Sciences; 93.113,...

  8. 75 FR 3474 - National Institute of Environmental Health Sciences; Notice of Meeting

    Science.gov (United States)

    2010-01-21

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice....), notice is hereby given of a meeting of the National Advisory Environmental Health Sciences Council. The... Health Sciences Council. Date: February 18-19, 2010. Open: February 18, 2010, 8:30 a.m. to 5 p.m....

  9. 76 FR 80954 - National Institute of Environmental Health Sciences; Notice of Meeting

    Science.gov (United States)

    2011-12-27

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice.../ . Place: Nat. Inst. of Environmental Health Sciences, Building 101, Rodbell Auditorium, 111 T. W... Sciences, National Institutes of Health, 615 Davis Dr., KEY615/3112, Research Triangle Park, NC 27709,...

  10. 77 FR 73667 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2012-12-11

    ... Institute of Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the... Environmental Health Sciences Special Emphasis Panel; Studies to Evaluate Early Life Exposure. Date: January 17... Health Sciences, P.O. Box 12233, MD EC-30, Research Triangle Park, NC 27709, (919) 541- 0752,...

  11. 77 FR 18252 - National Institute of Environmental Health Sciences; Notice of Meeting

    Science.gov (United States)

    2012-03-27

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice....), notice is hereby given of a meeting of the National Advisory Environmental Health Sciences Council. The... Health Sciences Council. Date: May 22-23, 2012. Open: May 22, 2012, 8:30 a.m. to 5 p.m....

  12. 77 FR 48164 - National Institute Environmental Health Sciences; Notice of Meeting

    Science.gov (United States)

    2012-08-13

    ... HUMAN SERVICES National Institutes of Health National Institute Environmental Health Sciences; Notice of....), notice is hereby given of a meeting of the National Advisory Environmental Health Sciences Council. The... Health Sciences Council. Date: September 11, 2012. Time: 8:30 a.m. to 12:00 p.m. Agenda: Discussion...

  13. 78 FR 20931 - National Institute of Environmental Health Sciences; Notice of Meeting

    Science.gov (United States)

    2013-04-08

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice....), notice is hereby given of a meeting of the National Advisory Environmental Health Sciences Council. The... Health Sciences Council. Date: May 14-15, 2013. ] Open: May 14, 2013, 8:30 a.m. to 5:00 p.m....

  14. 76 FR 5594 - National Institute of Environmental Health Sciences; Notice of Meeting

    Science.gov (United States)

    2011-02-01

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice....), notice is hereby given of a meeting of the National Advisory Environmental Health Sciences Council. The... Health Sciences Council. Date: February 16-17, 2011. Open: February 16, 2011, 8:30 a.m. to 2:45...

  15. The Views of the Classroom Teacher Candidates Related to the Environmental Science Course and the Environmental Sensibility

    Science.gov (United States)

    Yenice, Nilgun; Saracaloglu, A. Seda; Karacaoglu, O. Cem

    2008-01-01

    This research has been performed to determine the effects of the "Environmental Science Course" within the curriculum of Classroom Teacher Program in Education Faculty on the environmental sensibilities of the students, and the ideas of the students related to the effectiveness of their environmental education. The research has been…

  16. The Views of the Classroom Teacher Candidates Related to the Environmental Science Course and the Environmental Sensibility

    Science.gov (United States)

    Yenice, Nilgun; Saracaloglu, A. Seda; Karacaoglu, O. Cem

    2008-01-01

    This research has been performed to determine the effects of the "Environmental Science Course" within the curriculum of Classroom Teacher Program in Education Faculty on the environmental sensibilities of the students, and the ideas of the students related to the effectiveness of their environmental education. The research has been performed on…

  17. The Views of the Classroom Teacher Candidates Related to the Environmental Science Course and the Environmental Sensibility

    Science.gov (United States)

    Yenice, Nilgun; Saracaloglu, A. Seda; Karacaoglu, O. Cem

    2008-01-01

    This research has been performed to determine the effects of the "Environmental Science Course" within the curriculum of Classroom Teacher Program in Education Faculty on the environmental sensibilities of the students, and the ideas of the students related to the effectiveness of their environmental education. The research has been…

  18. The Development of New User Research Capabilities in Environmental Molecular Science: Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    Felmy, Andrew R.; Baer, Donald R.; Fredrickson, Jim K.; Gephart, Roy E.; Rosso, Kevin M.

    2006-10-31

    On August 1, and 2, 2006, 104 scientists representing 40 institutions including 24 Universities and 5 National Laboratories gathered at the W.R. Wiley Environmental Molecular Sciences Laboratory, a National scientific user facility, to outline important science challenges for the next decade and identify major capabilities needed to pursue advanced research in the environmental molecular sciences. EMSL’s four science themes served as the framework for the workshop. The four science themes are 1) Biological Interactions and Interfaces, 2) Geochemistry/Biogeochemistry and Surface Science, 3) Atmospheric Aerosol Chemistry, and 4) Science of Interfacial Phenomena.

  19. Using Earth System Science as Basis for Sustainability Education in an Undergraduate Environmental Science Program

    Science.gov (United States)

    Sinton, C. W.

    2012-12-01

    Undergraduate programs in Environmental Science (ES) have progressively grown over the past decades. One of the many challenges of providing an effective curriculum is deciding what content and which skills are included in such a wide ranging field. Certainly geoscience needs to be included as part of the content but how is this best executed? More precisely, what should ES majors know about how the earth, oceans, and atmosphere work? One possible approach is to include existing undergraduate geology or atmospheric science courses as part of the required core, but this has potential pitfalls. For example, courses may be geared toward general education requirements or may be designed more for geology majors. A better solution is to offer a course or set of courses that are specifically tailored for ES majors. I propose that Earth System Science (ESS) is an excellent approach as it incorporates the earth as a whole system and can be taught within the context of environmental sustainability. My approach to ESS is to focus on the movement/cycles of matter (e.g., carbon, calcium, nitrogen) and energy. By referring back to this focus throughout the semester, students are provided with a structure to begin to make sense of a complex problem. In support of this, lab exercises provide practice in collecting and analyzing data using a variety resources.

  20. Service-Learning in the Environmental Sciences for Teaching Sustainability Science

    Science.gov (United States)

    Truebe, S.; Strong, A. L.

    2016-12-01

    Understanding and developing effective strategies for the use of community-engaged learning (service-learning) approaches in the environmental geosciences is an important research need in curricular and pedagogical innovation for sustainability. In 2015, we designed and implemented a new community-engaged learning practicum course through the Earth Systems Program in the School of Earth, Energy and Environmental Sciences at Stanford University focused on regional open space management and land stewardship. Undergraduate and graduate students partnered with three different regional land trust and environmental stewardship organizations to conduct quarter-long research projects ranging from remote sensing studies of historical land use, to fire ecology, to ranchland management, to volunteer retention strategies. Throughout the course, students reflected on the decision-making processes and stewardship actions of the organizations. Two iterations of the course were run in Winter and Fall 2015. Using coded and analyzed pre- and post-course student surveys from the two course iterations, we evaluate undergraduate and graduate student learning outcomes and changes in perceptions and understanding of sustainability science. We find that engagement with community partners to conduct research projects on a wide variety of aspects of open space management, land management, and environmental stewardship (1) increased an understanding of trade-offs inherent in sustainability and resource management and (2) altered student perceptions of the role of scientific information and research in environmental management and decision-making. Furthermore, students initially conceived of open space as purely ecological/biophysical, but by the end of the course, (3) their understanding was of open space as a coupled human/ecological system. This shift is crucial for student development as sustainability scientists.

  1. BEST: Bilingual environmental science training: Grades 1--2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This booklet is one of a series of bilingual guides to environmental-science learning activities for students to do at home. Lesson objectives, materials required, procedure, vocabulary, and subjects integrated into the lesson are described in English for each lesson. A bilingual glossary, alphabetized by English entries, with Spanish equivalents and definitions in both English and Spanish, follows the lesson descriptions, and is itself followed by a bibliography of English-language references. This booklet includes descriptions of ten lessons covering surface tension in water, the life cycle of plants, the protective function of the skeletal system, functions and behavior of the circulatory system and how to measure its activities, structure and functions of the digestive system, simple food chains, how that many foods come from different plant parts, importance of a good diet, distinguishing living and non-living things, and the benefits of composting. 8 figs.

  2. Compartmentalization in environmental science and the perversion of multiple thresholds

    Energy Technology Data Exchange (ETDEWEB)

    Burkart, W. [Institute of Radiation Hygiene of the Federal Office for Radiation Protection, Ingolstaedter Landstr. 1, D 85716 Oberschleissheim, Muenchen (Germany)

    2000-04-17

    Nature and living organisms are separated into compartments. The self-assembly of phospholipid micelles was as fundamental to the emergence of life and evolution as the formation of DNA precursors and their self-replication. Also, modern science owes much of its success to the study of single compartments, the dissection of complex structures and event chains into smaller study objects which can be manipulated with a set of more and more sophisticated equipment. However, in environmental science, these insights are obtained at a price: firstly, it is difficult to recognize, let alone to take into account what is lost during fragmentation and dissection; and secondly, artificial compartments such as scientific disciplines become self-sustaining, leading to new and unnecessary boundaries, subtly framing scientific culture and impeding progress in holistic understanding. The long-standing but fruitless quest to define dose-effect relationships and thresholds for single toxic agents in our environment is a central part of the problem. Debating single-agent toxicity in splendid isolation is deeply flawed in view of a modern world where people are exposed to low levels of a multitude of genotoxic and non-genotoxic agents. Its potential danger lies in the unwarranted postulation of separate thresholds for agents with similar action. A unifying concept involving toxicology and radiation biology is needed for a full mechanistic assessment of environmental health risks. The threat of synergism may be less than expected, but this may also hold for the safety margin commonly thought to be a consequence of linear no-threshold dose-effect relationship assumptions.

  3. Compartmentalization in environmental science and the perversion of multiple thresholds.

    Science.gov (United States)

    Burkart, W

    2000-04-17

    Nature and living organisms are separated into compartments. The self-assembly of phospholipid micelles was as fundamental to the emergence of life and evolution as the formation of DNA precursors and their self-replication. Also, modern science owes much of its success to the study of single compartments, the dissection of complex structures and event chains into smaller study objects which can be manipulated with a set of more and more sophisticated equipment. However, in environmental science, these insights are obtained at a price: firstly, it is difficult to recognize, let alone to take into account what is lost during fragmentation and dissection; and secondly, artificial compartments such as scientific disciplines become self-sustaining, leading to new and unnecessary boundaries, subtly framing scientific culture and impeding progress in holistic understanding. The long-standing but fruitless quest to define dose-effect relationships and thresholds for single toxic agents in our environment is a central part of the problem. Debating single-agent toxicity in splendid isolation is deeply flawed in view of a modern world where people are exposed to low levels of a multitude of genotoxic and non-genotoxic agents. Its potential danger lies in the unwarranted postulation of separate thresholds for agents with similar action. A unifying concept involving toxicology and radiation biology is needed for a full mechanistic assessment of environmental health risks. The threat of synergism may be less than expected, but this may also hold for the safety margin commonly thought to be a consequence of linear no-threshold dose-effect relationship assumptions.

  4. Schools In Board - Bridging Arctic Research And Environmental Science Education

    Science.gov (United States)

    Barber, D. G.; Barber, L.

    2008-12-01

    Schools on Board (www.arcticnet.ulaval.ca) was created in 2002 to address the outreach objectives of a network of Canadian scientists conducting research in the High Arctic. The program was piloted with great success with the 2004 research program called the Canadian Arctic Shelf Study (CASES). Since then, the S/B program continues as an integral outreach program of the Canadian Network of Centres of Excellence (NCE) known as ArcticNet. The primary objective of the program is to bridge Arctic climate change research with science and environmental education in the public school system. It is a vehicle for scientists and graduate students to share their research program with high schools and the general public. The program encourages schools to include Arctic Sciences into their science programs by linking Arctic research to existing curriculum, providing resources and opportunities to send high school students and teachers into the Arctic to participate in a science expedition on board the Canadian research icebreaker CCGS Amundsen. The field program is an adventure into Arctic research that exposes students and teachers to the objectives and methods of numerous science teams representing a number of research disciplines and institutions from across Canada and beyond. Face-to-face interactions with scientists of all levels (masters, PhD's, researchers, CRC chairs), hands-on experiences in the field and in the labs, and access to state-of-the-art scientific instrumentation, combine to create a powerful learning environment. In addition to hands-on research activities the program introduces participants to many aspects of Canada's North, including local knowledge related to climate change, culture, history, and politics - within the educational program on the ship and the planned visits to Northern communities. During International Polar Year (IPY) Schools on Board collaborated with international researchers and northern agencies from 11 countries to offer one

  5. 75 FR 80048 - Science Advisory Board Staff Office; Notification of a Public Meeting of the Environmental...

    Science.gov (United States)

    2010-12-21

    ... Environmental Economics Advisory Committee (EEAC) Augmented for Mortality Risk Valuation will hold a public... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY Science Advisory Board Staff Office; Notification of a Public Meeting of the...

  6. Computer science handbook. Vol. 13.3. Environmental computer science. Computer science methods for environmental protection and environmental research; Handbuch der Informatik. Bd. 13.3. Umweltinformatik. Informatikmethoden fuer Umweltschutz und Umweltforschung

    Energy Technology Data Exchange (ETDEWEB)

    Page, B. [ed.] [Hamburg Univ. (Germany). Fachbereich 18 - Informatik; Hilty, L.M. [ed.] [Hamburg Univ. (Germany). Fachbereich 18 - Informatik

    1994-12-31

    Environmental computer science is a new partial discipline of applied computer science, which makes use of methods and techniques of information processing in environmental protection. Thanks to the inter-disciplinary nature of environmental problems, computer science acts as a mediator between numerous disciplines and institutions in this sector. The handbook reflects the broad spectrum of state-of-the art environmental computer science. The following important subjects are dealt with: Environmental databases and information systems, environmental monitoring, modelling and simulation, visualization of environmental data and knowledge-based systems in the environmental sector. (orig.) [Deutsch] Umweltinformatik ist eine neue Teildisziplin der Angewandten Informatik, die Methoden und Techniken der Informationsverarbeitung fuer den Umweltschutz entwickelt und einsetzt. Durch den fachuebergreifenden Charakter der Umweltprobleme faellt der Informatik hier eine Vermittlerrolle zwischen zahlreichen Disziplinen und Institutionen zu. Dieses Handbuch stellt das breite Spektrum der Umweltinformatik auf dem aktuellen Stand der Forschung dar. Wichtige Themen sind Umweltdatenbanken und -informationssysteme, Umweltmonitoring, Modellbildung und Simulation, Visualisierung von Umweltdaten und wissensbasierte Systeme im Umweltbereich. (orig.)

  7. Arsenic and Environmental Health: State of the Science and ...

    Science.gov (United States)

    Background: Exposure to inorganic and organic arsenic compounds is a major public health problem that affects hundreds of millions of people worldwide. Exposure to arsenic is associated with cancer and noncancer effects in nearly every organ in the body, and evidence is mounting for health effects at lower levels of arsenic exposure than previously thought. Building from a tremendous knowledge base with > 1,000 scientific papers published annually with “arsenic” in the title, the question becomes, what questions would best drive future research directions? Objectives: The objective is to discuss emerging issues in arsenic research and identify data gaps across disciplines. Methods: The National Institutes of Health’s National Institute of Environmental Health Sciences Superfund Research Program convened a workshop to identify emerging issues and research needs to address the multi-faceted challenges related to arsenic and environmental health. This review summarizes information captured during the workshop. Discussion: More information about aggregate exposure to arsenic is needed, including the amount and forms of arsenic found in foods. New strategies for mitigating arsenic exposures and related health effects range from engineered filtering systems to phytogenetics and nutritional interventions. Furthermore, integration of omics data with mechanistic and epidemiological data is a key step toward the goal of linking biomarkers of exposure and suscepti

  8. Environmental Sciences Division Toxicology Laboratory standard operating procedures

    Energy Technology Data Exchange (ETDEWEB)

    Kszos, L.A.; Stewart, A.J.; Wicker, L.F.; Logsdon, G.M.

    1989-09-01

    This document was developed to provide the personnel working in the Environmental Sciences Division's Toxicology Laboratory with documented methods for conducting toxicity tests. The document consists of two parts. The first part includes the standard operating procedures (SOPs) that are used by the laboratory in conducting toxicity tests. The second part includes reference procedures from the US Environmental Protection Agency document entitled Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms, upon which the Toxicology Laboratory's SOPs are based. Five of the SOPs include procedures for preparing Ceriodaphnia survival and reproduction test. These SOPs include procedures for preparing Ceriodaphnia food (SOP-3), maintaining Ceriodaphnia cultures (SOP-4), conducting the toxicity test (SOP-13), analyzing the test data (SOP-13), and conducting a Ceriodaphnia reference test (SOP-15). Five additional SOPs relate specifically to the fathead minnow (Pimephales promelas) larval survival and growth test: methods for preparing fathead minnow larvae food (SOP-5), maintaining fathead minnow cultures (SOP-6), conducting the toxicity test (SOP-9), analyzing the test data (SOP-12), and conducting a fathead minnow reference test (DOP-14). The six remaining SOPs describe methods that are used with either or both tests: preparation of control/dilution water (SOP-1), washing of glassware (SOP-2), collection and handling of samples (SOP-7), preparation of samples (SOP-8), performance of chemical analyses (SOP-11), and data logging and care of technical notebooks (SOP-16).

  9. BEST: Bilingual environmental science training: Grades 5--6

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This booklet is one of a series of bilingual guides to environmental-science learning activities for students to do at home. Lesson objectives, materials required, procedure, vocabulary, and subjects integrated into the lesson are described in English. A bilingual glossary, alphabetized by English entries, with Spanish equivalents and definitions in both English and Spanish, follows the lesson descriptions, and is itself followed by a bibliography of English-language references. This booklet includes descriptions of ten lessons that cover the following topics: safe and unsafe conditions for chemical combinations; growth rates and environmental needs of plants; photosynthesis and effects of ozone-layer depletion; the circulatory system, the importance of exercise to the heart, and selected circulatory diseases; the nervous system; specific nutritional values of the different food groups; significance of including, reducing, or eliminating certain foods for a healthy diet; effects of some common chemicals on plant growth and animal life; plants` and animals` natural habitats; and dangers of non-biodegradable garbage.

  10. Reconstructing recent environmental change in the Carpathian Basin; advocating an interdisciplinary approach for 2020 environmental science

    Directory of Open Access Journals (Sweden)

    Simon HUTCHINSON

    2012-10-01

    Full Text Available An interdisciplinary approach to environmental science is particularly important in the field of palaeoenvironmental research. Indeed, while the majority of such studies employ a range of proxies in their investigation, the more innovative studies tend to truly cross discipline boundaries. The investigation of depositional environments (e.g., lake sediments and mires as archives of environmental history has a long tradition in the Carpathian region. However, glacial lakes across the region have also been described as under-investigated despite their potential for palaeolimnological study (Buczko et al. 2009. Studies have also largely focused on relatively early (Late Glacial and Early Holocene environmental change.  Nevertheless, there is an increasing interest in the reconstruction of more human-driven impacts on the environment and events in the very recent past on a century to decade timescale e.g., post Industrial Revolution and following political change from the mid 1940s and in the late 1980s. Furthermore, efforts have are also being made to inform the debate about future climate and environmental changes linking palaeoenvironmental records to predictive computer modelling.

  11. 77 FR 45604 - Notification of Two Public Teleconferences of the Science Advisory Board; Environmental Economics...

    Science.gov (United States)

    2012-08-01

    ... Teleconferences of the Science Advisory Board; Environmental Economics Advisory Committee AGENCY: Environmental... Board (SAB) Staff Office announces two public teleconferences of the SAB Environmental Economics... (FACA), as amended, 5 U.S.C., App., notice is hereby given that the SAB Environmental Economics...

  12. Bringing Up Girls in Science (BUGS): The Effectiveness of an Afterschool Environmental Science Program for Increasing Female Students' Interest in Science Careers

    Science.gov (United States)

    Tyler-Wood, Tandra; Ellison, Amber; Lim, Okyoung; Periathiruvadi, Sita

    2012-01-01

    Bringing Up Girls in Science (BUGS) was an afterschool program for 4th and 5th grade girls that provided authentic learning experiences in environmental science as well as valuable female mentoring opportunities in an effort to increase participants' academic achievement in science. BUGS participants demonstrated significantly greater amounts of…

  13. Integrating Climate Change Science and Sustainability in Environmental Science, Sociology, Philosophy and Business Courses.

    Science.gov (United States)

    Boudrias, M. A.; Cantzler, J.; Croom, S.; Huston, C.; Woods, M.

    2015-12-01

    Courses on sustainability can be taught from multiple perspectives with some focused on specific areas (environmental, socio-cultural, economic, ethics) and others taking a more integrated approach across areas of sustainability and academic disciplines. In conjunction with the Climate Change Education Program efforts to enhance climate change literacy with innovative approaches, resources and communication strategies developed by Climate Education Partners were used in two distinct ways to integrate climate change science and impacts into undergraduate and graduate level courses. At the graduate level, the first lecture in the MBA program in Sustainable Supply Chain Management is entirely dedicated to climate change science, local and global impacts and discussions about key messages to communicate to the business community. Basic science concepts are integrated with discussions about mitigation and adaptation focused on business leaders. The concepts learned are then applied to the semester-long business plan project for the students. At the undergraduate level, a new model of comprehensive integration across disciplines was implemented in Spring 2015 across three courses on Sustainability each with a specific lens: Natural Science, Sociology and Philosophy. All three courses used climate change as the 'big picture' framing concept and had similar learning objectives creating a framework where lens-specific topics, focusing on depth in a discipline, were balanced with integrated exercises across disciplines providing breadth and possibilities for integration. The comprehensive integration project was the creation of the climate action plan for the university with each team focused on key areas of action (water, energy, transportation, etc.) and each team built with at least one member from each class ensuring a natural science, sociological and philosophical perspective. The final project was presented orally to all three classes and an integrated paper included

  14. The impact of environmental education on sixth-grade students' science achievement

    Science.gov (United States)

    Clavijo, Katherine Gillespie

    This study investigated the relationship between student involvement in environmental education (EE) and science achievement. The performance of students engaged in fifth and sixth grade classrooms identified as incorporating environmental education into science instruction was compared to that of students from similar classrooms that use traditional science instruction. Data from 4655 sixth grade students were analyzed using hierarchical multiple regression model to determine if environmental education improves prediction of science achievement beyond that afforded by differences in socioeconomic status and previous science achievement. The results indicated that environmental education, when integrated into science instruction, does not improve prediction of CTBS science scores beyond that afforded by differences in previous achievement in science and socioeconomic status. Previous achievement and socioeconomic status were the only two variables that predicted CTBS science subtest scores. The variable previous achievement (Score on fourth grade KIRIS test) explained 27.6% of the variance in CTBS test scores. The variable socioeconomic status (participation in free and reduced lunch program) explained 7.1% of the variance in CTBS science test scores. Participation in a fifth, sixth or both grades environmental education classroom did not add to the prediction of CTBS scores. This study illustrates that environmental education, while not correlated with high science achievement, does not correlate with low science achievement. Environmental education research may benefit from similar studies, which utilize alternative forms of student assessment. This study has implications for researchers interested in examining the impact of environmental education on science achievement, as it provides evidence for the importance of including background characteristics, such as socioeconomic status and previous achievement, in research models. This study provides an example of

  15. Effects of Science Interest and Environmental Responsibility on Science Aspiration and Achievement: Gender Differences and Cultural Supports

    Science.gov (United States)

    Chiu, Mei-Shiu

    2010-01-01

    The aim of the present study is twofold: (1) to investigate gender differences in the effects of science interest and environmental responsibility on science aspiration and achievement and (2) to explore the relations between cultural supports (macroeconomic and gender equality) and both boys' and girls' tendencies to integrate the aforementioned…

  16. Effects of Science Interest and Environmental Responsibility on Science Aspiration and Achievement: Gender Differences and Cultural Supports

    Science.gov (United States)

    Chiu, Mei-Shiu

    2010-01-01

    The aim of the present study is twofold: (1) to investigate gender differences in the effects of science interest and environmental responsibility on science aspiration and achievement and (2) to explore the relations between cultural supports (macroeconomic and gender equality) and both boys' and girls' tendencies to integrate the aforementioned…

  17. Influence of an Intensive, Field-Based Life Science Course on Preservice Teachers' Self-Efficacy for Environmental Science Teaching

    Science.gov (United States)

    Trauth-Nare, Amy

    2015-01-01

    Personal and professional experiences influence teachers' perceptions of their ability to implement environmental science curricula and to positively impact students' learning. The purpose of this study was twofold: to determine what influence, if any, an intensive field-based life science course and service learning had on preservice teachers'…

  18. Science, Technology and the Environment: The Views of Urban Children and Implications for Science and Environmental Education in Korea

    Science.gov (United States)

    Kim, Mijung

    2011-01-01

    With science and technology playing profound roles in mediating human relationships with the environment, a key question concerns which expectations and views of science and technology have emerged and prevail in visions of the social and environmental development of contemporary societies. This study engages this question through examining…

  19. Influence of an Intensive, Field-Based Life Science Course on Preservice Teachers' Self-Efficacy for Environmental Science Teaching

    Science.gov (United States)

    Trauth-Nare, Amy

    2015-01-01

    Personal and professional experiences influence teachers' perceptions of their ability to implement environmental science curricula and to positively impact students' learning. The purpose of this study was twofold: to determine what influence, if any, an intensive field-based life science course and service learning had on preservice teachers'…

  20. From Yeast to Hair Dryers: Effective Activities for Teaching Environmental Sciences.

    Science.gov (United States)

    Nolan, Kathleen A.

    2001-01-01

    Reports on four experiments and/or activities that were used to stimulate student interest in environmental science. Makes the case that varying classroom activities in the environmental science classroom makes the teaching and learning experience more alive and vital to both instructor and student. (Author/MM)

  1. Exploring Mars and Beyond: Science Fiction a Resource for Environmental Education.

    Science.gov (United States)

    Miller, Ryder W.

    The purpose of this article is to show how traditional science fiction, an empowering literature of social criticism, can be used by environmental educators to reach the traditional goals of environmental education. The sub-genres of science fiction are discussed along with ways in which they can be used to reach certain goals of environmental…

  2. The Value of Conceptual Models in Coping with Complexity and Interdisciplinarity in Environmental Sciences Education

    Science.gov (United States)

    Fortuin, Karen P. J.; van Koppen, C. S. A.; Leemans, Rik

    2011-01-01

    Conceptual models are useful for facing the challenges of environmental sciences curriculum and course developers and students. These challenges are inherent to the interdisciplinary and problem-oriented character of environmental sciences curricula. In this article, we review the merits of conceptual models in facing these challenges. These…

  3. Bringing the Tools of Big Science to Bear on Local Environmental Challenges

    Science.gov (United States)

    Bronson, Scott; Jones, Keith W.; Brown, Maria

    2013-01-01

    We describe an interactive collaborative environmental education project that makes advanced laboratory facilities at Brookhaven National Laboratory accessible for one-year or multi-year science projects for the high school level. Cyber-enabled Environmental Science (CEES) utilizes web conferencing software to bring multi-disciplinary,…

  4. A Module-Based Environmental Science Course for Teaching Ecology to Non-Majors

    Science.gov (United States)

    Smith, Geoffrey R.

    2010-01-01

    Using module-based courses has been suggested to improve undergraduate science courses. A course based around a series of modules focused on major environmental issues might be an effective way to teach non-science majors about ecology and ecology's role in helping to solve environmental problems. I have used such a module-based environmental…

  5. The Value of Conceptual Models in Coping with Complexity and Interdisciplinarity in Environmental Sciences Education

    Science.gov (United States)

    Fortuin, Karen P. J.; van Koppen, C. S. A.; Leemans, Rik

    2011-01-01

    Conceptual models are useful for facing the challenges of environmental sciences curriculum and course developers and students. These challenges are inherent to the interdisciplinary and problem-oriented character of environmental sciences curricula. In this article, we review the merits of conceptual models in facing these challenges. These…

  6. 78 FR 32259 - National Institute of Environmental Health Sciences; Amended Notice of Meeting

    Science.gov (United States)

    2013-05-29

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences... Environmental Health Sciences Special Emphasis Panel, July 15, 2013, 8:00 a.m. to July 15, 2013, 5:00 p.m...

  7. Beyond Contradiction: Exploring the Work of Secondary Science Teachers as They Embed Environmental Education in Curricula

    Science.gov (United States)

    Steele, Astrid

    2011-01-01

    Traditional secondary science education draws on markedly different pedagogies than those made use of in contemporary environmental education, therefore, embedding environmental education within secondary science curriculum presents both epistemological and practical difficulties for teachers. This ethnographic study examines the work of six…

  8. 78 FR 47715 - National Institute of Environmental Health Sciences; Amended Notice of Meeting

    Science.gov (United States)

    2013-08-06

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Amended Notice of Meeting Notice is hereby given of a change in the meeting of the Environmental Health Sciences Review Committee, July 24, 2013, 08:00 a.m. to July 26, 2013, 02:00 p.m., Double Tree by Hilton...

  9. 78 FR 64516 - National Institute of Environmental Health Sciences; Amended Notice of Meeting

    Science.gov (United States)

    2013-10-29

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences... Environmental Health Sciences Special Emphasis Panel, October 10, 2013, 12:30 p.m. to October 10, 2013, 5:00...

  10. 78 FR 29374 - National Institute of Environmental Health Sciences Amended; Notice of Meeting

    Science.gov (United States)

    2013-05-20

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences Amended... Environmental Health Sciences Special Emphasis Panel, June 6, 2013, 08:00 a.m. to June 6, 2013, 05:00...

  11. Investigation of Environmental Topics in the Science and Technology Curriculum and Textbooks in Terms of Environmental Ethics and Aesthetics

    Science.gov (United States)

    Lacin Simsek, Canan

    2011-01-01

    In order to solve environmental problems, it is thought that education should be connected with values. For this reason, it is emphasized that environmental issues should be integrated with ethical and aesthetic values. In this study, 6th, 7th and 8th grade science and technology curriculum and textbooks were investigated to find out how much…

  12. Environmental Science and Technology Department annual report 1996

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, A.; Gissel Nielsen, G.; Gundersen, V.; Nielsen, O.J.; Oestergaard, H.; Aarkrog, A. [eds.

    1997-02-01

    The Environmental Science and Technology Department aspires to develop new ideas and methods for industrial and agricultural production through basic and applied research thus exerting less stress and strain on the environment. The Department endeavours to develop a competent scientific basis for future production technology and management methods in industrial and agricultural production. The research approach in the Department is mainly experimental. Selected departmental research activities during 1996 are introduced and reviewed in seven chapters: 1. Introduction, 2. Atmospheric Chemistry and Air Pollution, 3. Gene Technology and Population Biology, 4. Plant Nutrition and Nutrient Cycling, 5. Trace Analysis and Reduction of Pollution in the Geosphere, 6. Ecology, and 7. Other Activities. The Department`s contribution to national and international collaborative research programmes are presented together with information about the use of its large experimental facilities. Information about the Department`s contribution to education and training are included in the report along with lists of publications, publications in press, lectures and poster presentations at international meetings. The names of the scientific and technical staff members, visiting scientists, Postdoctoral fellows, Ph.D students and M.Sc. students are also listed. (au) 15 tabs., 63 ills., 207 refs.

  13. BEST: Bilingual environmental science training, Grades 3--4

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This booklet is one of a series of bilingual guides to environmental-science learning activities for students to do at home. Lesson objectives, materials required, procedure, vocabulary, and subjects integrated into the lesson are described in English for each lesson. A bilingual glossary, alphabetized by English entries, with Spanish equivalents and definitions in both English and Spanish, follows the lesson descriptions, and is itself followed by a bibliography of English-language references with annotations in English. This booklet includes descriptions of ten lessons that cover the following topics: the identification of primary and secondary colors in the environment; recognizing the basic food tastes; the variety of colors that can be made by crushing plant parts; the variety of animal life present in common soil; animal tracks; evidence of plant and animal life in the local environment; recycling, reducing, and composting as alternative means of garbage disposal; waste associated with packaging; paper- recycling principles; and how organic waste can be composted into usable soil. 2 figs.

  14. Environmental Science and Technology Department annual report 1994

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, A.; Gissel Nielsen, G.; Gundersen, V.; Nielsen, O.J.; Oestergaard, H.; Aarkrog, A. [eds.

    1995-02-01

    The Environmental Science and Technology Department engage in research to improve the scientific basis for new methods in industrial and agricultural production. Through basic and applied research in chemistry, biology and ecology the department aspires to develop methods and technology for the future industrial and agricultural production exerting less stress and strain on the environment. The research approach in the department is predominantly experimental. The research activities are organized in five research programmes and supported by three special facility units. In this annual report the main research activities during 1993 are introduced and reviewed in eight chapters. Chapter 1. Introduction. The five research programmes are covered in chapter 2-7: 2. Atmospheric Chemistry and Air Pollution, 3. Gene Technology and Population Biology, 4. Plant Nutrition and Mineral Cycling, 5. Trace Analysis and reduction of Pollution in the Geosphere, 6. Ecology, 7. Other Research Activities. The three special activity units in chapter 8. Special Facilities. The department`s contribution to national and international collaborative research projects and programmes is presented in addition to information about large research and development facilities used and managed by the department. The department`s educational and training activites are included in the annual report along with lists of publications, publications in press, lectures and poster presentations at international meetings. Names of the scientific and technical staff members, visiting scientists, post. doctoral fellows, Ph.D. students and M.Sc. students are also listed. (au) (9 tabs., 43 ills., 167 refs.).

  15. Broad Collaboration to Improve Biological Sciences Students' Writing and Research Skills

    Science.gov (United States)

    Brancato, Lisa; Chan, Tina; Contento, Anthony

    2016-01-01

    At the State University of New York at Oswego (SUNY Oswego), a faculty member and advisement coordinator, both of the biological sciences department, and the biological sciences librarian have worked together since 2013 to present a workshop called Writing for the Biological Sciences. Offered once per semester, the workshop is sponsored by the…

  16. Defining criteria for good environmental journalism and testing their applicability: An environmental news review as a first step to more evidence based environmental science reporting.

    Science.gov (United States)

    Rögener, Wiebke; Wormer, Holger

    2017-05-01

    While the quality of environmental science journalism has been the subject of much debate, a widely accepted benchmark to assess the quality of coverage of environmental topics is missing so far. Therefore, we have developed a set of defined criteria of environmental reporting. This instrument and its applicability are tested in a newly established monitoring project for the assessment of pieces on environmental issues, which refer to scientific sources and therefore can be regarded as a special field of science journalism. The quality is assessed in a kind of journalistic peer review. We describe the systematic development of criteria, which might also be a model procedure for other fields of science reporting. Furthermore, we present results from the monitoring of 50 environmental reports in German media. According to these preliminary data, the lack of context and the deficient elucidation of the evidence pose major problems in environmental reporting.

  17. Trends in the Use of Supplementary Materials in Environmental Science Journals

    Science.gov (United States)

    Kenyon, Jeremy; Sprague, Nancy R.

    2014-01-01

    Our research examined the use of supplementary materials in six environmental science disciplines: atmospheric sciences, biology, fisheries, forestry, geology, and plant sciences. Ten key journals were selected from each of these disciplines and the number of supplementary materials, such as data files or videos, in each issue was noted over a…

  18. Trends in the Use of Supplementary Materials in Environmental Science Journals

    Science.gov (United States)

    Kenyon, Jeremy; Sprague, Nancy R.

    2014-01-01

    Our research examined the use of supplementary materials in six environmental science disciplines: atmospheric sciences, biology, fisheries, forestry, geology, and plant sciences. Ten key journals were selected from each of these disciplines and the number of supplementary materials, such as data files or videos, in each issue was noted over a…

  19. Online Higher Education in the Natural Sciences

    Science.gov (United States)

    Pearson, Karen; Liddicoat, Joseph

    2013-04-01

    Online courses in higher education allow traditional and non-traditional students to complete course work in all disciplines with great flexibility. Courses in the Natural Sciences are no exception because the online environment allows students to collapse time and space; to access a course anywhere; to get immediate feedback, tutoring and coaching; and to receive real-time interaction between themselves and the instructor. This presentation will highlight successful examples of course content from the areas of astronomy, environmental, and earth and physical sciences. Content examples will focus on helping students use their 'environment' as part of the laboratory experience in courses traditionally thought of as lecture and laboratory courses. These examples will include real and virtual field trips, use of multimedia content, collaboration between students and faculty to design and conduct experiments and field work, and modifications to traditional lecture methods for the online environment. Dr. Karen Pearson former director of Online-Learning and Academic Technologies and Professor Science and Mathematics at the Fashion Institute of Technology (SUNY) and Dr. Joseph Liddicoat will focus on how courses in the Natural Sciences can be delivered in the online environment while maintaining high academic standards and not losing the "hands" on experience students need while completing a laboratory science course as part of a liberal arts curriculum.

  20. R. M. Harrison and S. J. De Mora: Introductory Chemistry for the Environmental Sciences [book review

    OpenAIRE

    2000-01-01

    Harrison and De Mora have revised the first edition of their book, Introductory Chemistry for the Environmental Sciences, which has an intended reading audience of college or university undergraduates who are studying or majoring in the environmental sciences, environmental chemistry, or ecology. Their intent is to present the basic concepts of chemistry within the context of the thermodynamic universe known at ‘the environment'.

  1. Environmental Sciences Division annual progress report for period ending September 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Van Hook, R. I.; Hildebrand, S. G.; Gehrs, C. W.; Sharples, F. E.; Shriner, D. S.; Stow, S. H.; Cushman, J. H.; Kanciruk, P.

    1993-04-01

    This progress report summarizes the research and development activities conducted in the Environmental Sciences Division of Oak Ridge National Laboratory during fiscal year (FY) 1992, which which extended from October 1, 1991, through September 30, 1992. This report is structured to provide descriptions of current activities and accomplishments in each of the division`s major organizational units. Section activities are described in the Earth and Atmospheric sciences, ecosystem studies, Environmental analysis, environmental biotechnology, and division operations.

  2. Environmental Sciences Division annual progress report for period ending September 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Van Hook, R. I.; Hildebrand, S. G.; Gehrs, C. W.; Sharples, F. E.; Shriner, D. S.; Stow, S. H.; Cushman, J. H.; Kanciruk, P.

    1993-04-01

    This progress report summarizes the research and development activities conducted in the Environmental Sciences Division of Oak Ridge National Laboratory during fiscal year (FY) 1992, which which extended from October 1, 1991, through September 30, 1992. This report is structured to provide descriptions of current activities and accomplishments in each of the division's major organizational units. Section activities are described in the Earth and Atmospheric sciences, ecosystem studies, Environmental analysis, environmental biotechnology, and division operations.

  3. 77 FR 17475 - Notification of Public Teleconferences of the Science Advisory Board; Environmental Economics...

    Science.gov (United States)

    2012-03-26

    ... AGENCY Notification of Public Teleconferences of the Science Advisory Board; Environmental Economics... of the SAB Environmental Economics Advisory Committee to conduct a review of EPA's Draft White Paper...., notice is hereby given that the SAB Environmental Economics Advisory Committee (EEAC) will hold a...

  4. An Investigation of the Goals for an Environmental Science Course: Teacher and Student Perspectives

    Science.gov (United States)

    Blatt, Erica N.

    2015-01-01

    This investigation uses an ethnographic case study approach to explore the benefits and challenges of including a variety of goals within a high school Environmental Science curriculum. The study focuses on environmental education (EE) goals established by the Belgrade Charter (1975), including developing students' environmental awareness and…

  5. An Investigation of the Goals for an Environmental Science Course: Teacher and Student Perspectives

    Science.gov (United States)

    Blatt, Erica N.

    2015-01-01

    This investigation uses an ethnographic case study approach to explore the benefits and challenges of including a variety of goals within a high school Environmental Science curriculum. The study focuses on environmental education (EE) goals established by the Belgrade Charter (1975), including developing students' environmental awareness and…

  6. Teaching Science or Cultivating Values? Conservation NGOs and Environmental Education in Costa Rica

    Science.gov (United States)

    Blum, Nicole

    2009-01-01

    A key ongoing debate in environmental education practice and its research relates to the content and goals of environmental education programmes. Specifically, there is a long history of debate between advocates of educational perspectives that emphasise the teaching of science concepts and those that seek to more actively link environmental and…

  7. Using Blogs to Improve Elementary School Students' Environmental Literacy in Science Class

    Science.gov (United States)

    Saltan, Fatih; Divarci, Omer Faruk

    2017-01-01

    The purpose of this study is to examine the effects of blog activities on elementary students' environmental literacy in science class. The relationships between students' environmental literacy levels, their parents' interest in environmental activities and the frequency of outdoor activities they do have also been also examined. Pre-test…

  8. Teaching Environmental Soil Science to Students older than 55

    Science.gov (United States)

    Cerdà, Artemi; Civera, Cristina; Giménez-Morera, Antonio; Burguet, María

    2014-05-01

    The life expectancy growth is a general trend for the world population, which translates into an increase of people older than 55 years in Western societies. This entails to the rise of health problems as well as large investments in healthcare. In general, we are spectators Y tambe voldria saber si ens pots fer una asse of how a large group of citizens have a new life after retirement. The XXI century societies are facing the problem of the need of a healthy population, even after retirement. There is a need in developing new strategies to allow those citizens to improve their knowledge of the environmental changes. The research in Soil Science and related disciplines is the strategy we are using on the Geograns program to inform the students (older than 55) about the changes the Earth and the Soil System are suffering. And this should be done in a healthy and active teaching environment. The NAUGRAN program is being developed by the University of Valencia for more than 10 years and shows the advances on education for senior students. Within this program, Geograns is bringing the environmentalist ideas to the students. This is a difficult task as those students were born in a society were nature was created to be exploited and not to be conserved (e.g. Green Revolution, agricultural transformations of the 60's in Spain). This is the reason why the University of Valencia developed at the end of the 90's a program to teach students older than 55. This paper shows the advances on new strategies developed during 2013 with a group of these senior students. The main strategy was to take the students to visit the nature and to explain the functioning of the Earth and Soil System. Those visits were organized with the collaboration of scientist, environmentalist, farmers and technicians; and the guiding thread was trekking. This mix showed our students different views and sides of the same phenomena (e.g. tillage operations, soil erosion problems, water quantity and

  9. Western Mineral and Environmental Resources Science Center--providing comprehensive earth science for complex societal issues

    Science.gov (United States)

    Frank, David G.; Wallace, Alan R.; Schneider, Jill L.

    2010-01-01

    Minerals in the environment and products manufactured from mineral materials are all around us and we use and come into contact with them every day. They impact our way of life and the health of all that lives. Minerals are critical to the Nation's economy and knowing where future mineral resources will come from is important for sustaining the Nation's economy and national security. The U.S. Geological Survey (USGS) Mineral Resources Program (MRP) provides scientific information for objective resource assessments and unbiased research results on mineral resource potential, production and consumption statistics, as well as environmental consequences of mining. The MRP conducts this research to provide information needed for land planners and decisionmakers about where mineral commodities are known and suspected in the earth's crust and about the environmental consequences of extracting those commodities. As part of the MRP scientists of the Western Mineral and Environmental Resources Science Center (WMERSC or 'Center' herein) coordinate the development of national, geologic, geochemical, geophysical, and mineral-resource databases and the migration of existing databases to standard models and formats that are available to both internal and external users. The unique expertise developed by Center scientists over many decades in response to mineral-resource-related issues is now in great demand to support applications such as public health research and remediation of environmental hazards that result from mining and mining-related activities. Western Mineral and Environmental Resources Science Center Results of WMERSC research provide timely and unbiased analyses of minerals and inorganic materials to (1) improve stewardship of public lands and resources; (2) support national and international economic and security policies; (3) sustain prosperity and improve our quality of life; and (4) protect and improve public health, safety, and environmental quality. The MRP

  10. A confluence of traditions: Examining teacher practice in the merging of secondary science and environmental education

    Science.gov (United States)

    Astrid, Steele

    Embedding environmental education within secondary science curriculum presents both philosophical and practical difficulties for teachers. This ethnographic/narrative study, with its methodology grounded in eco-feminism and realism/constructivism, examines the work of six secondary science teachers as they engage in an action research project focused on merging environmental education in their science lessons. Over the course of several months the teachers examine and discuss their views and their professional development related to the project. In the place of definitive conclusions, eight propositions relating the work of secondary science teachers to environmental education, form the basis for a discussion of the implications of the study. The implications are particularly relevant to secondary schools in Ontario, Canada, where the embedding of environmental education in science studies has been mandated.

  11. Molecular Structure Laboratory. Fourier Transform Nuclear Magnetic Resonance (FTNMR) Spectrometer and Ancillary Instrumentation at SUNY Geneseo

    Energy Technology Data Exchange (ETDEWEB)

    Geiger, David K [State Univ. of New York (SUNY), Geneseo, NY (United States)

    2015-12-31

    An Agilent 400-MR nuclear magnetic resonance (NMR) spectrometer and ancillary equipment were purchased, which are being used for molecular structure elucidation.  The instrumentation is housed in a pre-existing facility designed specifically for its use. This instrument package is being used to expand the research and educational efforts of the faculty and students at SUNY-Geneseo and is made available to neighboring educational institutions and business concerns.  Funds were also used for training of College personnel, maintenance of the instrumentation, and installation of the equipment.

  12. Symposium on Integrating the Science of Environmental Justice into Decision-Making at the Environmental Protection Agency: An Overview

    Science.gov (United States)

    Payne-Sturges, Devon; Garcia, Lisa; Lee, Charles; Zenick, Hal; Grevatt, Peter; Sanders, William H.; Case, Heather; Dankwa-Mullan, Irene

    2011-01-01

    In March 2010, the Environmental Protection Agency (EPA) collaborated with government and nongovernmental organizations to host a groundbreaking symposium, “Strengthening Environmental Justice Research and Decision Making: A Symposium on the Science of Disproportionate Environmental Health Impacts.” The symposium provided a forum for discourse on the state of scientific knowledge about factors identified by EPA that may contribute to higher burdens of environmental exposure or risk in racial/ethnic minorities and low-income populations. Also featured were discussions on how environmental justice considerations may be integrated into EPA's analytical and decision-making frameworks and on research needs for advancing the integration of environmental justice into environmental policymaking. We summarize key discussions and conclusions from the symposium and briefly introduce the articles in this issue. PMID:22028456

  13. Integrating Social Science, Environmental Science, and Engineering to Understand Vulnerability and Resilience to Environmental Hazards in the Bengal Delta

    Science.gov (United States)

    Gilligan, J. M.; Ackerly, B.; Goodbred, S. L.

    2013-12-01

    the delta. Assessing the impacts of climate change and other environmental stresses on delta populations and designing effective responses will require understanding interactions between the physical and human environments at multiple scales. As part of a multidisciplinary research project drawing on sedimentology, hydrology, remote-sensing, engineering, political science, sociology, psychology, and anthropology we are studying the interactions of human and natural systems in coastal Bangladesh to understand conditions that contribute to vulnerability and resilience at both the household and the community level. Building on Elinor Ostrom's socioecological systems approach, we have developed a theoretical framework for studying vulnerability and resilience when coupled human-natural systems are subject to significant changes and exogenous forcings. We will report on this framework using examples of successful and unsuccessful interventions to manage or mitigate exposure to environmental hazards, and we will also report on progress toward using our framework to identify and understand factors that contribute to the success or failure of such projects.

  14. An ethnographic investigation of the process of change in students' environmental identity and pro-environmental behavior in an Environmental Science course

    Science.gov (United States)

    Blatt, Erica N.

    In recent years, the Environmental Science course has become increasingly integrated into the high school curriculum as a component of the core curriculum, an AP course, or as an elective (Edelson, 2007); however, little research has been conducted to evaluate the course's effectiveness in developing students' understanding of their relationship with the environment (Zelezny, 1999). Therefore, this ethnographic study at a public high school in the Northeastern United States focuses on the teacher's goals for the Environmental Science course, how students respond to the enactment of these objectives during activities in the classroom, and how the class impacts students' views of their relationship with the environment and their pro-environmental behavior. A sociocultural approach is utilized to explore how students' environmental identities, their interactions with the course content, as well as their social interactions affect their experiences in the Environmental Science classroom. The study's conceptual framework is based upon Kempton and Holland's (2003) stages of environmental identity development, as well as symbolic interactionist theories of emotion. The participants in this study are an Environmental Science teacher and the 10-12th grade students (N=17) in her semester-long elective, "Environmental Science." The researcher collected data for a period of six months during the spring semester of 2009, attending class on a daily basis. Data was collected through participant observation, videotaping, interviews, cogenerative dialogues, and various surveys. The objectives for the Environmental Science course explored in this research include the role of science content knowledge and critical thinking as students are exposed to new environmental information; developing students' emotional connection with environmental issues; influencing students' environmental behavior; and empowering students to feel that they can make a difference through their own actions

  15. Development and validation of the ACSI : measuring students' science attitudes, pro-environmental behaviour, climate change attitudes and knowledge

    NARCIS (Netherlands)

    Dijkstra, E. M.; Goedhart, M. J.

    2012-01-01

    This article describes the development and validation of the Attitudes towards Climate Change and Science Instrument. This 63-item questionnaire measures students' pro-environmental behaviour, their climate change knowledge and their attitudes towards school science, societal implications of science

  16. Environmental Sciences Division. Annual progress report for period ending September 30, 1980. [Lead abstract

    Energy Technology Data Exchange (ETDEWEB)

    Auerbach, S.I.; Reichle, D.E.

    1981-03-01

    Research conducted in the Environmental Sciences Division for the Fiscal Year 1980 included studies carried out in the following Division programs and sections: (1) Advanced Fossil Energy Program, (2) Nuclear Program, (3) Environmental Impact Program, (4) Ecosystem Studies Program, (5) Low-Level Waste Research and Development Program, (6) National Low-Level Waste Program, (7) Aquatic Ecology Section, (8) Environmental Resources Section, (9) Earth Sciences Section, and (10) Terrestrial Ecology Section. In addition, Educational Activities and the dedication of the Oak Ridge National Environmental Research Park are reported. Separate abstracts were prepared for the 10 sections of this report.

  17. Elementary Students' Retention of Environmental Science Knowledge: Connected Science Instruction versus Direct Instruction

    Science.gov (United States)

    Upadhyay, Bhaskar; DeFranco, Cristina

    2008-01-01

    This study compares 3rd-grade elementary students' gain and retention of science vocabulary over time in two different classes--"connected science instruction" versus "direct instruction." Data analysis yielded that students who received connected science instruction showed less gain in science knowledge in the short term compared to students who…

  18. Alternatives in the Second-Year Language Courses: A Report for the Departments of Foreign Languages at SUNY/Buffalo.

    Science.gov (United States)

    Papalia, Anthony; And Others

    A series of discussions among members of the language departments at SUNY/Buffalo was held to examine ways of improving language teaching methodology in the college, particularly at the second-year level. The suggestions resulting from these meetings are offered as a practical response to the decreased enrollment in language courses. The…

  19. Earth and environmental science in the 1980's: Part 1: Environmental data systems, supercomputer facilities and networks

    Science.gov (United States)

    1986-01-01

    Overview descriptions of on-line environmental data systems, supercomputer facilities, and networks are presented. Each description addresses the concepts of content, capability, and user access relevant to the point of view of potential utilization by the Earth and environmental science community. The information on similar systems or facilities is presented in parallel fashion to encourage and facilitate intercomparison. In addition, summary sheets are given for each description, and a summary table precedes each section.

  20. Environmental Empowerment - the role of Co-operation between Civil Society, Universities and Science Shops

    DEFF Research Database (Denmark)

    Brodersen, Søsser; Jørgensen, Michael Søgaard; Hansen, Anne Grethe

    2006-01-01

    . Increasing internationalisation of the environmental agenda has contributed to this as well as a general acceptance of environmental considerations in industry policy and strategy. However, with departure point in three different Science Shop projects, the article proposes that Science Shops are still......The University based Science Shops were established in the 1970s in the Netherlands, and in Denmark and other countries in the 1980s and 1990s. The aim was to give civil society organisations access to scientific knowledge and to empower citizen participation regarding environmental and social...... improvements. It has recently been suggested that the role of Science Shops should change as a consequence of the stated increasing professionalisation of the Non Governmental Organisations and Civil Society Organisations, and of industry’s increasing interest in introducing environmental management measures...

  1. About Region 3's Laboratory and Field Services at EPA's Environmental Science Center

    Science.gov (United States)

    Mission & contact information for EPA Region 3's Laboratory and Field Services located at EPA's Environmental Science Center: the Office of Analytical Services and Quality Assurance & Field Inspection Program

  2. Excel 2016 for environmental sciences statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J; Horton, Howard F

    2016-01-01

    This book is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical environmental science problems. If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you. Excel is an effective learning tool for quantitative analyses in environmental science courses. Its powerful computational ability and graphical functions make learning statistics much easier than in years past. However, Excel 2016 for Environmental Science Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and managers how to apply Excel 2016 to statistical techniques necessary in their courses and work. Each chapter explains statistical formulas and directs the reader to use Excel commands to solve specific, easy-to-understand environmental science problems. Practice problems are provided at the end of each chapte...

  3. influence of early literacy parental involvement on science ...

    African Journals Online (AJOL)

    User

    Influence of early literacy on science achievement of Junior Secondary School students was examined in this ... were highly involved in their children's early literacy acquisition; parental involvement in literacy ... Curriculum Studies and Instructional Technology Department, Faculty of education. ..... Albany,. NY: Suny Press.

  4. Outreach to Science Faculty and Students through Research Exhibitions

    Science.gov (United States)

    Chan, Tina; Hebblethwaite, Chris

    2014-01-01

    Penfield Library at the State University of New York at Oswego (SUNY Oswego) has a gallery exhibit space near the front entrance that is used to showcase student-faculty research and art class projects. This article features the library's outreach efforts to science faculty and students through research exhibitions. The library held an exhibition…

  5. Integrating writing into an introductory environmental science curriculum: Perspectives from biology and physics

    Science.gov (United States)

    Selkin, P. A.; Cline, E. T.; Beaufort, A.

    2008-12-01

    In the University of Washington, Tacoma's Environmental Science program, we are implementing a curriculum-wide, scaffolded strategy to teach scientific writing. Writing in an introductory science course is a powerful means to make students feel part of the scientific community, an important goal in our environmental science curriculum. Writing is already an important component of the UW Tacoma environmental science program at the upper levels: our approach is designed to prepare students for the writing-intensive junior- and senior-level seminars. The approach is currently being tested in introductory biology and physics before it is incorporated in the rest of the introductory environmental science curriculum. The centerpiece of our approach is a set of research and writing assignments woven throughout the biology and physics course sequences. The assignments progress in their degree of complexity and freedom through the sequence of introductory science courses. Each assignment is supported by a number of worksheets and short written exercises designed to teach writing and critical thought skills. The worksheets are focused on skills identified both by research in science writing and the instructors' experience with student writing. Students see the assignments as a way to personalize their understanding of basic science concepts, and to think critically about ideas that interest them. We find that these assignments provide a good way to assess student comprehension of some of the more difficult ideas in the basic sciences, as well as a means to engage students with the challenging concepts of introductory science courses. Our experience designing these courses can inform efforts to integrate writing throughout a geoscience or environmental science curriculum, as opposed to on a course-by-course basis.

  6. A centralized information management system for environmental science and technology

    Energy Technology Data Exchange (ETDEWEB)

    Namboodiri, K. [Martin Marietta Technical Services, Inc., Bay City, MI (United States)

    1995-12-31

    During the past few decades there have been several serious initiatives focusing on the applications of computational technology towards understanding the diverse fields of environmental research such as environmental monitoring, pollution prevention, and hazardous chemical mitigation. Recently, due to the widespread application of high performance computer technology and the renewed interest of the industrial community in environmental protection, we are witnessing an era of environmental information explosion. In light of these large-scale computer-driven developments, the author identifies a highly desirable initiative for this field, which is solely devoted to a centralized environmental database and information management system. This talk will focus on some design aspects of such an information management system.

  7. 76 FR 38189 - New Proposed Collection; Comment Request; Environmental Science Formative Research Methodology...

    Science.gov (United States)

    2011-06-29

    ... Science Formative Research Methodology Studies for the National Children's Study SUMMARY: In compliance... Collection Title: Environmental Science Formative Research Methodology Studies for the National Children's... requirements of the Children's Health Act, the results of formative research will be used to maximize...

  8. 76 FR 23603 - New Proposed Collection; Comment Request; Environmental Science Formative Research Methodology...

    Science.gov (United States)

    2011-04-27

    ... Science Formative Research Methodology Studies for the National Children's Study SUMMARY: In compliance.... Proposed Collection Title: Environmental Science Formative Research Methodology Studies for the National... fulfill the requirements of the Children's Health Act, the results of formative research will be used...

  9. Fieldwork, Co-Teaching and Co-Generative Dialogue in Lower Secondary School Environmental Science

    Science.gov (United States)

    Rahmawati, Yuli; Koul, Rekha

    2016-01-01

    This article reports one of the case studies in a 3-year longitudinal study in environmental science education. This case explores the process of teaching about ecosystems through co-teaching and co-generative dialogue in a Year-9 science classroom in Western Australia. Combining with co-teaching and co-generative dialogue aimed at transforming…

  10. Anthropogenic Climate Change in Undergraduate Marine and Environmental Science Programs in the United States

    Science.gov (United States)

    Vlietstra, Lucy S.; Mrakovcich, Karina L.; Futch, Victoria C.; Stutzman, Brooke S.

    2016-01-01

    To develop a context for program-level design decisions pertaining to anthropogenic climate change, the authors studied the prevalence of courses focused on human-induced climate change in undergraduate marine science and environmental science degree programs in the United States. Of the 86 institutions and 125 programs the authors examined, 37%…

  11. Fieldwork, Co-Teaching and Co-Generative Dialogue in Lower Secondary School Environmental Science

    Science.gov (United States)

    Rahmawati, Yuli; Koul, Rekha

    2016-01-01

    This article reports one of the case studies in a 3-year longitudinal study in environmental science education. This case explores the process of teaching about ecosystems through co-teaching and co-generative dialogue in a Year-9 science classroom in Western Australia. Combining with co-teaching and co-generative dialogue aimed at transforming…

  12. Science Teachers' and Senior Secondary Schools Students' Perceptions of Earth and Environmental Science Topics

    Science.gov (United States)

    Dawson, Vaille; Carson, Katherine

    2013-01-01

    This article presents an evaluation of a new upper secondary Earth and Environmental Science (EES) course in Western Australia. Twenty-seven EES teachers were interviewed and 243 students were surveyed about the degree of difficulty, relevance and interest of EES topics in the course. The impact of the course on students' views about EES…

  13. Environmental Sciences Division annual progress report for period ending September 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Auerbach, S.I.; Reichle, D.E.

    1982-04-01

    Research programs from the following sections and programs are summarized: aquatic ecology, environmental resources, earth sciences, terrestrial ecology, advanced fossil energy program, toxic substances program, environmental impacts program, biomass, low-level waste research and development program, US DOE low-level waste management program, and waste isolation program.

  14. Literacy and Arts-Integrated Science Lessons Engage Urban Elementary Students in Exploring Environmental Issues

    Science.gov (United States)

    Gray, P.; Elser, C. F.; Klein, J. L.; Rule, A. C.

    2016-01-01

    This descriptive case study examined student attitudes, writing skills and content knowledge of urban fourth and fifth graders (6 males, 9 female) during a six-week literacy, thinking skill, and art-integrated environmental science unit. Pre- and post-test questions were used to address knowledge of environmental problems and student environmental…

  15. Secondary School Students' Interests, Attitudes and Values Concerning School Science Related to Environmental Issues in Finland

    Science.gov (United States)

    Uitto, Anna; Juuti, Kalle; Lavonen, Jari; Byman, Reijo; Meisalo, Veijo

    2011-01-01

    This paper explores the relationship between students' interests in environmental issues, attitudes to environmental responsibility and biocentric values in school science education. The factors were investigated within the framework of three moderators: gender, school and residential area of the school. The survey was carried out using the…

  16. The Power of One: The Impact of Family and Consumer Sciences Education on Environmental Sustainability

    Science.gov (United States)

    Thompson, Nancy E.

    2010-01-01

    The issues related to environmental sustainability can be overwhelming. It is difficult to imagine that actions of one person could make a difference. This article addresses that perception and illustrates the impact of one person, a family and consumer sciences educator, on the lives of others and on environmental resources. Making a difference…

  17. Gifted & Green: Sustainability/Environmental Science Investigations That Promote Gifted Children's Learning

    Science.gov (United States)

    Schroth, Stephen T.; Helfer, Jason A.

    2017-01-01

    Environmental studies provide an ideal opportunity for gifted children of any age to build critical and creative-thinking skills while also building skills in science, technology, engineering, and mathematics (STEM) areas. Exploring issues related to sustainability and environmental concerns permits gifted learners to identify problems, develop…

  18. Geomicrobial ecotoxicology as a new subject in environmental sciences is proposed.

    Science.gov (United States)

    Gu, Ji-Dong; Wang, Yanxin

    2014-12-01

    Environmental sciences is an interdisciplinary subject and current development allows investigation of environmental issues from physical, chemical, geological, biological and toxicological approaches. Based on such development, geomicrobial ecotoxicology or microbial ecotoxicology is proposed to advance the information gathering on ecosystem processes and function because microorganisms are numerous and fundamental to the cycling of nutrients and energy flow.

  19. Secondary School Students' Interests, Attitudes and Values Concerning School Science Related to Environmental Issues in Finland

    Science.gov (United States)

    Uitto, Anna; Juuti, Kalle; Lavonen, Jari; Byman, Reijo; Meisalo, Veijo

    2011-01-01

    This paper explores the relationship between students' interests in environmental issues, attitudes to environmental responsibility and biocentric values in school science education. The factors were investigated within the framework of three moderators: gender, school and residential area of the school. The survey was carried out using the…

  20. Synthesis for the Interdisciplinary Environmental Sciences: Integrating Systems Approaches and Service Learning

    Science.gov (United States)

    Simon, Gregory L.; Wee, Bryan Shao-Chang; Chin, Anne; Tindle, Amy Depierre; Guth, Dan; Mason, Hillary

    2013-01-01

    As our understanding of complex environmental issues increases, institutions of higher education are evolving to develop new learning models that emphasize synthesis across disciplines, concepts, data, and methodologies. To this end, we argue for the implementation of environmental science education at the intersection of systems theory and…

  1. Advanced Technologies and Data Management Practices in Environmental Science: Lessons from Academia

    Science.gov (United States)

    Hernandez, Rebecca R.; Mayernik, Matthew S.; Murphy-Mariscal, Michelle L.; Allen, Michael F.

    2012-01-01

    Environmental scientists are increasing their capitalization on advancements in technology, computation, and data management. However, the extent of that capitalization is unknown. We analyzed the survey responses of 434 graduate students to evaluate the understanding and use of such advances in the environmental sciences. Two-thirds of the…

  2. Youth Environmental Science Outreach in the Mushkegowuk Territory of Subarctic Ontario, Canada

    Science.gov (United States)

    Karagatzides, Jim D.; Kozlovic, Daniel R.; De Iuliis, Gerry; Liberda, Eric N.; General, Zachariah; Liedtke, Jeff; McCarthy, Daniel D.; Gomez, Natalya; Metatawabin, Daniel; Tsuji, Leonard J. S.

    2011-01-01

    We connected youth of the Mushkegowuk Territory (specifically Fort Albany First Nation) with environmental science and technology mentors in an outreach program contextualized to subarctic Ontario that addressed some of the environmental concerns identified by members of Fort Albany First Nation. Most activities were community-based centering on…

  3. Heuristic principles to teach and learn boundary crossing skills in environmental science education

    NARCIS (Netherlands)

    Fortuin, K.P.J.

    2015-01-01

    Since the 1970s academic environmental science curricula have emerged all over the world addressing a wide range of topics and using knowledge from various disciplines. These curricula aim to deliver graduates with competencies to study, understand and address complex environmental problems. Complex

  4. Gifted & Green: Sustainability/Environmental Science Investigations That Promote Gifted Children's Learning

    Science.gov (United States)

    Schroth, Stephen T.; Helfer, Jason A.

    2017-01-01

    Environmental studies provide an ideal opportunity for gifted children of any age to build critical and creative-thinking skills while also building skills in science, technology, engineering, and mathematics (STEM) areas. Exploring issues related to sustainability and environmental concerns permits gifted learners to identify problems, develop…

  5. Heuristic principles to teach and learn boundary crossing skills in environmental science education

    NARCIS (Netherlands)

    Fortuin, K.P.J.

    2015-01-01

    Since the 1970s academic environmental science curricula have emerged all over the world addressing a wide range of topics and using knowledge from various disciplines. These curricula aim to deliver graduates with competencies to study, understand and address complex environmental problems. Complex

  6. The Power of One: The Impact of Family and Consumer Sciences Education on Environmental Sustainability

    Science.gov (United States)

    Thompson, Nancy E.

    2010-01-01

    The issues related to environmental sustainability can be overwhelming. It is difficult to imagine that actions of one person could make a difference. This article addresses that perception and illustrates the impact of one person, a family and consumer sciences educator, on the lives of others and on environmental resources. Making a difference…

  7. The Integration of Environmental Education in Science Materials by Using "MOTORIC" Learning Model

    Science.gov (United States)

    Sukarjita, I. Wayan; Ardi, Muhammad; Rachman, Abdul; Supu, Amiruddin; Dirawan, Gufran Darma

    2015-01-01

    The research of the integration of Environmental Education in science subject matter by application of "MOTORIC" Learning models has carried out on Junior High School Kupang Nusa Tenggara Timur Indonesia. "MOTORIC" learning model is an Environmental Education (EE) learning model that collaborate three learning approach i.e.…

  8. Synthesis for the Interdisciplinary Environmental Sciences: Integrating Systems Approaches and Service Learning

    Science.gov (United States)

    Simon, Gregory L.; Wee, Bryan Shao-Chang; Chin, Anne; Tindle, Amy Depierre; Guth, Dan; Mason, Hillary

    2013-01-01

    As our understanding of complex environmental issues increases, institutions of higher education are evolving to develop new learning models that emphasize synthesis across disciplines, concepts, data, and methodologies. To this end, we argue for the implementation of environmental science education at the intersection of systems theory and…

  9. Youth Environmental Science Outreach in the Mushkegowuk Territory of Subarctic Ontario, Canada

    Science.gov (United States)

    Karagatzides, Jim D.; Kozlovic, Daniel R.; De Iuliis, Gerry; Liberda, Eric N.; General, Zachariah; Liedtke, Jeff; McCarthy, Daniel D.; Gomez, Natalya; Metatawabin, Daniel; Tsuji, Leonard J. S.

    2011-01-01

    We connected youth of the Mushkegowuk Territory (specifically Fort Albany First Nation) with environmental science and technology mentors in an outreach program contextualized to subarctic Ontario that addressed some of the environmental concerns identified by members of Fort Albany First Nation. Most activities were community-based centering on…

  10. 76 FR 62422 - National Institute of Environmental Health Sciences; Cancellation of Meeting

    Science.gov (United States)

    2011-10-07

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences... Environmental Research Coordinating Committee, October 12, 2011, 1 p.m. to 3 p.m., NIEHS/National Institutes of...

  11. Advanced Technologies and Data Management Practices in Environmental Science: Lessons from Academia

    Science.gov (United States)

    Hernandez, Rebecca R.; Mayernik, Matthew S.; Murphy-Mariscal, Michelle L.; Allen, Michael F.

    2012-01-01

    Environmental scientists are increasing their capitalization on advancements in technology, computation, and data management. However, the extent of that capitalization is unknown. We analyzed the survey responses of 434 graduate students to evaluate the understanding and use of such advances in the environmental sciences. Two-thirds of the…

  12. Empirical studies on environmental education in Germany: Contributions by the institute for science education

    Science.gov (United States)

    Dempsey, Rachael; Gresele, Christiane; Bögeholz, Susanne; Martens, Thomas; Mayer, Jürgen; Rode, Horst; Rost, Jürgen

    1998-06-01

    The Institute for Science Education (IPN) in Kiel, Germany, has a long tradition in environmental education research, material and instruction development, and teacher education. This paper presents its research program on “Factors of Environmental Activity” consisting, at present, of three empirical research studies. These projects share a common theoretical model, the Integrated Action Model, describing the environmental action generating process. Study 1 evaluates the validity of this model; Study 2 applies it to evaluate the effects of school environmental instruction; Study 3 applies it to evaluate the effects of nature experience. As this research pertains to Germany, a description of the school system and institutionalisation of environmental instruction is included.

  13. Applied Science Division annual report, Environmental Research Program FY 1983

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, E.J.; Novakov, T.

    1984-05-01

    The primary concern of the Environmental Research Program is the understanding of pollutant formation, transport, and transformation and the impacts of pollutants on the environment. These impacts include global, regional, and local effects on the atmosphere and hydrosphere, and on certain aspects of human health. This multidisciplinary research program includes fundamental and applied research in physics, chemistry, engineering, and biology, as well as research on the development of advanced methods of measurement and analysis. During FY 1983, research concentrated on atmospheric physics and chemistry, applied physics and laser spectroscopy, combustion theory and phenomena, environmental effects of oil shale processing, freshwater ecology and acid precipitation, trace element analysis for the investigation of present and historical environmental impacts, and a continuing survey of instrumentation for environmental monitoring.

  14. Citizen science can improve conservation science, natural resource management, and environmental protection

    Science.gov (United States)

    Citizen science has advanced science for hundreds of years, contributed to many peer-reviewed articles, and informed land management decisions and policies across the United States. Over the last 10 years, citizen science has grown immensely in the United States and many other countries. Here, we sh...

  15. Environmental Sciences Division: Summaries of research in FY 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This report focuses on research in global change, as well as environmental remediation. Global change research investigates the following: distribution and balance of radiative heat energy; identification of the sources and sinks of greenhouse gases; and prediction of changes in the climate and concomitant ecological effects. Environmental remediation develops the basic understanding needed to remediate soils, sediments, and ground water that have undergone radioactive and chemical contamination.

  16. Leaving the classroom: a didactic framework for education in environmental sciences

    Science.gov (United States)

    Dopico, Eduardo; Garcia-Vazquez, Eva

    2011-06-01

    In Continuous Education curricula in Spain, the programs on sciences of the environment are aimed toward understandings of sustainability. Teaching practice rarely leaves the classroom for outdoor field studies. At the same time, teaching practice is generally focused on examples of how human activities are harmful for ecosystems. From a pedagogic point of view, it is less effective to teach environmental science with negative examples such as catastrophe, tragedy, and crisis. Rather, teaching environmental sciences and sustainable development might be focused on positive human-environment relationships, which is both important for the further development of students and educators. Within rural settings, there are many such examples of positive relationships that can be emphasized and integrated into the curriculum. In this article, we propose teaching environmental sciences through immersion in rural cultural life. We discuss how fieldwork serves as a learning methodology. When students are engaged through research with traditional cultural practices of environmental management, which is a part of the real and traditional culture of a region, they better understand how positive pedagogy instead of pedagogy structured around how not-to-do examples, can be used to stimulate the interactions between humans and the environment with their students. In this way, cultural goods serve as teaching resources in science and environmental education. What we present is authentic cases where adults involved in a course of Continuous Education explore `environmentally-friendly' practices of traditional agriculture in Asturias (north of Spain), employing methodologies of cultural studies.

  17. SimRiver: Environmental Modeling Software for the Science Classroom

    Science.gov (United States)

    Hoffer, Jeannette; Mayama, Shigeki; Lingle, Kristin; Conroy, Kathryn; Julius, Matthew

    2011-01-01

    While students may acknowledge the impact that land use and development have on our environment, they do not necessarily understand the relationship between human activities and ecosystem responses. Therefore, the nature of the relationships leaves the science teacher to most often present information in a purely narrative form without any…

  18. Key Concepts of Environmental Sustainability in Family and Consumer Sciences

    Science.gov (United States)

    Thompson, Nancy E.; Harden, Amy J.; Clauss, Barbara; Fox, Wanda S.; Wild, Peggy

    2012-01-01

    It is the vision of the American Association of Family & Consumer Sciences to be "recognized as the driving force in bringing people together to improve the lives of individuals, families, and communities" (AAFCS, 2010). Because of this focus on individuals and families and its well-established presence in American schools, family and consumer…

  19. Key Concepts of Environmental Sustainability in Family and Consumer Sciences

    Science.gov (United States)

    Thompson, Nancy E.; Harden, Amy J.; Clauss, Barbara; Fox, Wanda S.; Wild, Peggy

    2012-01-01

    It is the vision of the American Association of Family & Consumer Sciences to be "recognized as the driving force in bringing people together to improve the lives of individuals, families, and communities" (AAFCS, 2010). Because of this focus on individuals and families and its well-established presence in American schools, family and consumer…

  20. Learning and teaching for an ecological sense of place: Toward environmental/science education praxis

    Science.gov (United States)

    Hug, J. William

    1998-09-01

    This research presents a teaching model designed to enable learners to construct a highly developed ecological perspective and sense of place. The contextually-based research process draws upon scientific and indigenous knowledge from multiple data sources including: autobiographical experiences, environmental literature, science and environmental education research, historical approaches to environmental education, and phenomenological accounts from research participants. Data were analyzed using the theoretical frameworks of qualitative research, hermeneutic phenomenology, heuristics, and constructivism. The resulting model synthesizes and incorporates key educational philosophies and practices from: nature study, resident outdoor education, organized camping, conservation education, environmental education, earth education, outdoor recreation, sustainability, bio-regionalism, deep ecology, ecological and environmental literacy, science and technology in society, and adventure/challenge/experiential education. The model's four components--environmental knowledge, practicing responsible environmental behaviors, community-focused involvement, and direct experience in outdoor settings--contribute in a synergistic way to the development of ecological perspective and a sense of place. The model was honed through experiential use in an environmental science methods course for elementary and secondary prospective science teachers. The instructor/researcher employed individualized instruction, community-based learning, service learning, and the modeling of reflective teaching principles in pursuit of the model's goals. The resulting pedagogical knowledge extends the model's usefulness to such formal and non-formal educational contexts as: elementary/secondary classrooms, nature centers, museums, youth groups, and community organizations. This research has implications for the fields of education, geography, recreation/leisure studies, science teaching, and environmental

  1. Probing the Natural World, Volume 3A, Environmental Science, Crusty Problems, and Why You're You.

    Science.gov (United States)

    Florida State Univ., Tallahassee. Dept. of Science Education.

    This volume is the first of a three volume, one year program for use in junior high school, and consists of these three units: Environmental Science, Crusty Problems (earth science), and Why You're You (heredity). The environmental science unit is composed of chapters relating to these subjects: the black death (plague); energy, food chain, and…

  2. Probing the Natural World, Volume 3A, Environmental Science, Crusty Problems, and Why You're You.

    Science.gov (United States)

    Florida State Univ., Tallahassee. Dept. of Science Education.

    This volume is the first of a three volume, one year program for use in junior high school, and consists of these three units: Environmental Science, Crusty Problems (earth science), and Why You're You (heredity). The environmental science unit is composed of chapters relating to these subjects: the black death (plague); energy, food chain, and…

  3. National conference on environmental remediation science and technology: Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    This conference was held September 8--10, 1998 in Greensboro, North Carolina. The purpose of this conference was to provide a multidisciplinary forum for exchange of state-of-the-art information on methods and site characterization technologies for environmental monitoring and remedial action planning of hazardous materials. This report contains the abstracts of sixty-one papers presented at the conference.

  4. Literature and Science: An Interdisciplinary Approach to Environmental Studies.

    Science.gov (United States)

    Abrams, Kathleen S.

    1979-01-01

    Using wilderness themes from such diverse authors as Henry Thoreau, Joseph Wood Krutch, and Kurt Vonnegut, and the train-as-technology metaphor from Ray Bradbury and Robert Frost, the author describes a unique team-teaching curriculum that interweaves the literary and laboratory aspects of environmental concerns. (Editor)

  5. Scale and scaling in agronomy and environmental sciences

    Science.gov (United States)

    Scale is of paramount importance in environmental studies, engineering, and design. The unique course covers the following topics: scale and scaling, methods and theories, scaling in soils and other porous media, scaling in plants and crops; scaling in landscapes and watersheds, and scaling in agro...

  6. Coral reef environmental science: truth versus the Cassandra syndrome

    Science.gov (United States)

    Grigg, Richard W.

    1992-12-01

    In 1970, coral reef science was warned that the crown-of-thorns starfish, Acanthaster planci, might cause the extinction of scleractinian corals in the Pacific Ocean. Now, 20 years later we can fortunately say that this alarm was almost certainly too severe. Many reefs were devastated by the starfish, but none are extinct, none have disappeared and many are in various stages of recovery. But now in the 1990's a new alarm is being sounded. This time the concern is over widespread destruction of coral reefs by elevated surface temperatures. Once again a few scientists have issued a dire warning that these events may represent a harbinger of ocean warming caused by the Greenhouse Effect. Has not Acanthaster taught coral reef science a lesson? The debate is far from over but this time the mood in general is not one of over-reaction. This time the Cassandras will be tested by the truth of careful experimentation, long-term monitoring and objective interpretation. Coral reef science appears to have come of age.

  7. Evaluating the Motivations, Knowledge, and Efficacy of Participants in Environmental Health Citizen Science Projects

    Science.gov (United States)

    Sandhaus, Shana

    Environmental research is increasingly using citizen scientists in many aspects of projects, such as data collection and question design. To date, only a limited number of co-created citizen science projects where community members are involved in most or all steps of the scientific process have been completed, and few comparing community engagement methods and efficacy and learning outcomes across demo- and geographic data. This study compares two citizen science programs, evaluating what motivates citizen scientists to participate in environmental health research and whether participation affects scientific knowledge and environmental behavior and efficacy. Participants in the Gardenroots: A Citizen Science Garden Project completed sample collection training and submitted soil, water, vegetable, and dust samples for analysis and received their environmental monitoring results. In the Facilitating Community Action to Address Climate Change and Build Resiliency in Southern Metropolitan Tucson project, Spanish speaking community members of South Tucson underwent training in climate change and environmental quality and sample collection, and worked with families in the South Tucson community, collecting soil and water samples and providing environmental health education. For both projects, participants completed a pre- and post-survey with a variety of qualitative and quantitative questions. These survey instruments were used to evaluate differences in environmental self-efficacy and motivations. In addition, select Gardenroots participants were involved in focus groups and semi-structured interviews to understand and gauge changes in knowledge and to further explore changes in motivation and self-efficacy. The participants were primarily internally motivated and saw increases in both efficacy and knowledge as a result of participation in the program. This information is critical to moving citizen science efforts forward and determining whether such projects: 1) co

  8. Integrated problem-based learning in the neuroscience curriculum – the SUNY Downstate experience

    Directory of Open Access Journals (Sweden)

    Trappler Brian

    2006-09-01

    Full Text Available Abstract Background This paper reports the author's initial experience as Block Director in converting a Conventional Curriculum into a problem-based learning model (PBL for teaching Psychopathology. As part of a wide initiative in curriculum reform, Psychopathology, which was a six-week course in the second-year medical school curriculum, became integrated into a combined Neuroscience block. The study compares curriculum conversion at State University of New York (SUNY, Downstate, with the experiences at other medical centres that have instituted similar curricula reform. Methods Student satisfaction with the Conventional and PBL components of the Neuroscience curriculum was compared using questionnaires and formal discussions between faculty and a body of elected students. The PBL experience in Psychopathology was also compared with that of the rest of the Neuroscience Block, which used large student groups and expert facilitators, while the Psychopathology track was limited to small groups using mentors differing widely in levels of expertise. Results Students appeared to indicate a preference toward conventional lectures and large PBL groups using expert facilitators in contrast to small group mentors who were not experts. Small PBL groups with expert mentors in the Psychopathology track were also rated favorably. Conclusion The study reviews the advantages and pitfalls of the PBL system when applied to a Neuroscience curriculum on early career development. At SUNY, conversion from a Conventional model to a PBL model diverged from that proposed by Howard S. Barrows where student groups define the learning objectives and problem-solving strategies. In our model, the learning objectives were faculty-driven. The critical issue for the students appeared to be the level of faculty expertise rather than group size. Expert mentors were rated more favorably by students in fulfilling the philosophical objectives of PBL. The author, by citing the

  9. The Environmental Virtual Observatory: A New Vision for Catchment Science

    Science.gov (United States)

    Gurney, R.; Emmett, B.; McDonald, A.; Blair, G.; Buytaert, W.; Freer, J. E.; Haygarth, P.; Rees, G.; Tetzlaff, D.; EVO Science Team

    2011-12-01

    Environmental scientists need to make predictions that are increasingly cross-disciplinary, bringing together observations and models in both physical and biological systems, and visualising the results. Observations can be from multiple platforms, and there are often many competing models that could be used. At the same time, catchment managers and policy makers face a challenging future trying to ensure a wide range of ecosystem and hydrological services are delivered from increasingly constrained budgets whilst complying with a range of regulation requirements. There is also a greater requirement for transparency and access to data and making regulatory decision making processes visible to the public. The Environmental Virtual Observatory Pilot project (EVOp) is a new initiative from the UK Natural Environment Research Council (NERC) designed to explore new tools and approaches to support these challenges. The long term vision of the Environmental Virtual Observatory is to: - Make environmental data more visible and accessible to a wide range of scientists and potential users including for public good applications; - Provide tools to facilitate the integrated analysis of data to give greater access to added knowledge and expert analysis and to visualisation of the results; - Develop new, added-value knowledge from public and private sector data assets to help tackle environmental challenges. The EVO will exploit cloud computing to give a shared working space for data, models and analysis tools; in this two year pilot project we will develop five local and national exemplars to demonstrate and test the opportunities and constraints from such an approach. The question-based exemplars being developed are focused on (i) management options for flooding and diffuse pollution at local and national scales, (ii) approaches for transferring hydrological models for both flooding and drought from data rich to data poor areas and (iii) defining the uncertainty bounds of

  10. New Trends in Natural Hazards and Global Environmental Change Science Communication and Engagement

    Science.gov (United States)

    Kontar, Y. Y.

    2013-05-01

    Nowadays perhaps just as puzzling as the biggest issues at the core of Earth science is the nature of communicating Natural Hazards and Global Environmental Change Science and its relationship to the climate change and food security. During my presentation I will examine the processes of communication necessary in bridging the gap between natural hazards and global environmental change knowledge and public opinion and policy. This contribution is based on the previous research conducted in the fields of science and society; and it will demonstrate some of the most proactive and prescriptive approaches to engaging in communication with the public, the media, and policy makers about the importance of natural hazards and global environmental change science in everyday life. The preliminary research emphasizes communication principles and practices within an up-to-the-minute context of new natural hazards global environmental change issues, new technologies, and a new focus on resiliency. This presentation will benefit chiefly natural hazards and environmental professionals, researchers, educators, and policy makers interested in the fields of natural hazards, global environmental and climate change and food security.

  11. Environmental Science and Research Foundation. Annual technical report, April 11, 1994--December 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, T.D.; Morris, R.C.; Markham, O.D. [eds.

    1995-06-01

    This Annual Technical Report describes work conducted for the Department of Energy, Idaho Operations Office, by the Environmental Science and Research Foundation (Foundation) for work under contract DE-AC07-94ID13268. The Foundation began, on April 11, 1994, to conduct environmental surveillance near to and distant from the Idaho National Engineering Laboratory, provide environmental public relations and education related to INEL natural resource issues, and conduct ecological and radioecological research benefiting major DOE-ID programs including Waste Management, Environmental Restoration, Spent Nuclear Fuels, and Infrastructure.

  12. Student Empowerment in an Environmental Science Classroom: Toward a Framework for Social Justice Science Education

    Science.gov (United States)

    Dimick, Alexandra Schindel

    2012-01-01

    Social justice education is undertheorized in science education. Given the wide range of goals and purposes proposed within both social justice education and social justice science education scholarship, these fields require reconciliation. In this paper, I suggest a student empowerment framework for conceptualizing teaching and learning social…

  13. Student Empowerment in an Environmental Science Classroom: Toward a Framework for Social Justice Science Education

    Science.gov (United States)

    Dimick, Alexandra Schindel

    2012-01-01

    Social justice education is undertheorized in science education. Given the wide range of goals and purposes proposed within both social justice education and social justice science education scholarship, these fields require reconciliation. In this paper, I suggest a student empowerment framework for conceptualizing teaching and learning social…

  14. Setting a new syllabus: environmental health science in the classroom.

    Science.gov (United States)

    Brown, Valerie J

    2004-10-01

    Environmental health is a subject that has only relatively recently become prominent in the social consciousness. Even as its significance becomes known, finding ways to integrate the subject into education for primary and secondary students is difficult because of federal testing requirements under the No Child Left Behind Act of 2001 and other demands placed on teachers. A number of efforts are under way, however, to provide teachers with resources to help them bring environment health into their classrooms.

  15. U.S. Geological Survey environmental health science strategy: providing environmental health science for a changing world

    Science.gov (United States)

    Bright, Patricia R.; Buxton, Herbert T.; Balistrieri, Laurie S.; Barber, Larry B.; Chapelle, Francis H.; Cross, Paul C.; Krabbenhoft, David P.; Plumlee, Geoffrey S.; Sleeman, Jonathan M.; Tillitt, Donald E.; Toccalino, Patricia L.; Winton, James R.

    2013-01-01

    America has an abundance of natural resources. We have bountiful clean water, fertile soil, and unrivaled national parks, wildlife refuges, and public lands. These resources enrich our lives and preserve our health and wellbeing. These resources have been maintained because of our history of respect for their value and an enduring commitment to their vigilant protection. Awareness of the social, economic, and personal value of the health of our environment is increasing. The emergence of environmentally driven diseases caused by exposure to contaminants and pathogens is a growing concern worldwide. New health threats and patterns of established threats are affected by both natural and anthropogenic changes to the environment. Human activities are key drivers of emerging (new and re-emerging) health threats. Societal demands for land and natural resources, quality of life, and economic prosperity lead to environmental change. Natural earth processes, climate trends, and related climatic events will compound the environmental impact of human activities. These environmental drivers will influence exposure to disease agents, including viral, bacterial, prion, and fungal pathogens, parasites, synthetic chemicals and substances, natural earth materials, toxins, and other biogenic compounds.

  16. Can Pollution Problems Be Effectively Solved by Environmental Science and Technology? An Analysis of Critical Limitations

    Energy Technology Data Exchange (ETDEWEB)

    Huesemann, Michael H.(BATTELLE (PACIFIC NW LAB))

    2000-12-01

    It is currently believed that science and technology can provide effective solutions to most, if not all, environmental problems facing western industrial societies. The validity of this optimistic assumption is highly questionable for at least three reasons: First, current mechanistic, reductionist science is inherently incapable of providing the complete and accurate information which is required to successfully address environmental problems. Second, both the conservation of mass principle and the second law of thermodynamics dictate that most remediation technologies - while successful in solving specific pollution problems - cause unavoidable negative environmental impacts elsewhere or in the future. Third, it is intrinsically impossible to design industrial processes that have no negative environmental impacts. This follows not only from the entropy law but also from the fact that any generation of energy is impossible without negative environmental consequences. It can therefore be concluded that science and technology have only very limited potential in solving current and future environmental problems. Consequently, it will be necessary to address the root cause of environmental deterioration, namely the prevailing materialistic values that are the main driving force for both overpopulation and overconsumption. The long-term protection of the environment is therefore not primarily a technical problem but rather a social and moral problem that can only be solved by drastically reducing the strong influence of materialistic values.

  17. Keeping science in environmental regulations: the role of the animal scientist.

    Science.gov (United States)

    Powers, W J

    2003-04-01

    Environmental issues continue to be one of the biggest challenges faced by livestock producers. Whereas issues of the past have focused on manure nutrient impacts on water quality with some regulatory activity addressing odors, emerging issues are more diverse. To address emerging air quality issues, such as ammonia emissions, antibiotic transfer, human health impacts of emissions from animal agriculture, and estrogens in the environment, scientists with expertise in physiology, genetics, animal management, and nutrition will need to be enlisted. The objectives of this review are to highlight some of the prominent environmental regulatory activity that has occurred nationally in the past few years, to outline some of the emerging environmental issues, and to move members of the animal science profession toward thinking about what they can contribute toward addressing these issues. Animal scientists are uniquely qualified to engage in environmental research, education, and policymaking because of our comprehensive understanding of the complexity of whole-farm management and the interactions between animal management and manure management. Animal science departments have the opportunity to train students to be leaders in addressing environmental issues related to animal production, provided departments incorporate environmental education into curricula. Animal scientists can contribute greatly to the many areas of research that address emerging and current environmental issues, helping to ensure that policy is science-based and mitigation strategies are feasible.

  18. Does environmental economics produce aeroplanes without engines? On the need for an environmental social science

    NARCIS (Netherlands)

    Folmer, Henk; Johansson-Stenman, Olof

    2011-01-01

    In this paper we first critically review conventional environmental economics. We conclude that the standard theory offers too narrow a perspective for many real world problems and that many theories are not empirically tested. Consequently, environmental economics is at risk of producing aeroplanes

  19. Ocean FEST and TECH: Inspiring Hawaii's Students to Pursue Ocean, Earth and Environmental Science Careers

    Science.gov (United States)

    Bruno, B. C.; Wren, J. L.; Ayau, J. F.

    2013-12-01

    Ocean TECH (Technology Expands Career Horizons) is a new initiative funded by NSF/GeoEd to stimulate interest in ocean, earth and environmental science careers - and the college majors that lead to such careers - among Hawaii's underrepresented students in grades 6-14. The Ocean TECH project features hands-on ocean science and technology and interactions with career professionals. Ocean TECH builds upon Ocean FEST (Families Exploring Science Together), a previous NSF/OEDG project aimed at teaching fun hands-on science in culturally and locally relevant ways to Hawaii's elementary school students and their families. Ocean FEST was rigorously evaluated (including cognitive pre-testing developed in partnership with external evaluators) and shown to be successful both in teaching science content and changing attitudes toward ocean, earth and environmental science careers. Over the course of the four-year grant, Ocean FEST reached 20,99 students and adults, including 636 classroom teachers and other volunteers who assisted with program delivery, most of whom were from underrepresented groups. For more info on Ocean FEST: http://oceanfest.soest.hawaii.edu/ Ocean TECH events have various formats, but common themes include: (1) Using technology as a hook to engage students in ocean, earth and environmental science. (2) Bringing middle school through community college students to college campuses, where they engage in hands-on science activities and learn about college majors. (3) Drawing direct links between the students' hands-on science activities and the research currently occurring at the UH Manoa's School of Ocean and Earth Science and Technology (SOEST), such as C-MORE and HOT research. (4) Respecting and valuing students' local knowledge and experiences. (5) Explicitly showing, through concrete examples, how becoming an ocean, earth or environmental scientist addresses would beneit Hawaii (6) Having graduate students from diverse backgrounds serve as instructors and

  20. Trends in environmental science using microscopic X-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Fittschen, Ursula Elisabeth Adriane, E-mail: ursula.fittschen@chemie.uni-hamburg.de [Department of Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany); Falkenberg, Gerald [Deutsches Elektronen-Synchrotron, Notkestr. 85, 22603 Hamburg (Germany)

    2011-08-15

    Microscopic X-ray fluorescence (micro-XRF) is a versatile tool in environmental analysis. We review work done in this field from 2008 to 2010 and highlight new aspects. Overall, there is a strong trend to combine fluorescence data with other data like diffraction or absorption spectroscopy. Also, the use of laboratory based instrumentation has become wide spread as more commercial instruments are available. At laboratories and synchrotron sites the trend towards higher spatial resolution is still persistent hitting sub micrometer values in case of synchrotron set ups.

  1. A study of assessment indicators for environmental sustainable development of science parks in Taiwan.

    Science.gov (United States)

    Chen, Han-Shen; Chien, Li-Hsien; Hsieh, Tsuifang

    2013-08-01

    This study adopted the ecological footprint calculation structure to calculate the ecological footprints of the three major science parks in Taiwan from 2008 to 2010. The result shows that the ecological footprints of the Hsinchu Science Park, the Central Taiwan Science Park, and the Southern Taiwan Science Park were about 3.964, 2.970, and 4.165 ha per capita. The ecological footprint (EF) of the Central Taiwan Science Park was the lowest, meaning that the influence of the daily operations in the Central Taiwan Science Park on the environment was rather low. Secondly, the population density was relatively high, and the EF was not the highest of the Hsinchu Science Park, meaning that, while consuming ecological resources, the environmental management done was effective. In addition, the population density in Southern Taiwan Science Park is 82.8 units, lower than that of Hsinchu Science Park, but its ecological footprint per capita is 0.201 units, higher than Hsinchu, implying its indicator management has space for improvement. According to the analysis result above, in the science parks, the percentages of high-energy-consuming industries were rather high. It was necessary to encourage development of green industries with low energy consumption and low pollution through industry transformation.

  2. Providing science-based solutions to environmental challenges

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The various research efforts supported by the Environmental Research Advisory Council (ERAC) are briefly reviewed in this document. The studies were peer-reviewed, performed by scientists from academia, government and consultants. The list included in this document is comprised of ERAC projects currently being funded, as well as those that were completed in 2002. The projects were divided into three distinct categories: air, soil and groundwater, and ecological projects. Two projects came under the umbrella of air projects, namely flaring performance, and neuro behavioural effects of hydrogen sulphide on humans. In the soil and groundwater category, there were five projects: (1) environmentally-acceptable endpoints for residual petroleum hydrocarbons in soil, (2) framework foundation for tier 2 soil contact cleanup standards for petroleum hydrocarbons (PHC)-contaminated sites, (3) remediation of hydrocarbon-contaminated sites by monitored natural attenuation, (4) parkland natural region inventory and Geographical Information System (GIS) mapping, and (5) plant uptake of process chemicals and petroleum hydrocarbons. The ecological projects category discussed three projects: caribou range recovery project, ecology and management of crested wheat grass invasion in northern mixed prairie, and foothills model forest grizzly bear study.

  3. Thinking/acting locally/globally: Western science and environmental education in a global knowledge economy

    Science.gov (United States)

    Gough, Noel

    2002-11-01

    This paper critically appraises a number of approaches to 'thinking globally' in environmental education, with particular reference to popular assumptions about the universal applicability of Western science. Although the transnational character of many environmental issues demands that we 'think globally', I argue that the contribution of Western science to understanding and resolving environmental problems might be enhanced by seeing it as one among many local knowledge traditions. The production of a 'global knowledge economy' in/for environmental education can then be understood as creating transnational 'spaces' in which local knowledge traditions can be performed together, rather than as creating a 'common market' in which representations of local knowledge must be translated into (or exchanged for) the terms of a universal discourse.

  4. Nanoparticles: synthesis and applications in life science and environmental technology

    Science.gov (United States)

    Luong Nguyen, Hoang; Nguyen, Hoang Nam; Hai Nguyen, Hoang; Quynh Luu, Manh; Hieu Nguyen, Minh

    2015-03-01

    This work focuses on the synthesis, functionalization, and application of gold and silver nanoparticles, magnetic nanoparticles Fe3O4, combination of 4-ATP-coated silver nanoparticles and Fe3O4 nanoparticles. The synthesis methods such as chemical reduction, seeding, coprecipitation,and inverse microemulsion will be outlined. Silica- and amino-coated nanoparticles are suitable for several applications in biomedicine and the environment. The applications of the prepared nanoparticles for early detection of breast cancer cells, basal cell carcinoma, antibacterial test, arsenic removal from water, Herpes DNA separation, CD4+ cell separation and isolation of DNA of Hepatitis virus type B (HBV) and Epstein-Barr virus (EBV) are discussed. Finally, some promising perspectives will be pointed out. Invited talk at the 7th International Workshop on Advanced Materials Science and Nanotechnology IWAMSN2014, 2-6 November, 2014, Ha Long, Vietnam.

  5. The relationship between environmental advocacy, values, and science: a survey of ecological scientists' attitudes.

    Science.gov (United States)

    Reiners, Derek S; Reiners, William A; Lockwood, Jeffrey A

    2013-07-01

    This article reports the results ofa survey of 1215 nonstudent Ecological Society of America (ESA) members. The results pertain to three series of questions designed to assess ecologists' engagement in various advocacy activities, as well as attitudes on the relationship between environmental advocacy, values, and science. We also analyzed the effects of age, gender, and employment categories on responses. While many findings are reported, we highlight six here. First, ecologists in our sample do not report particularly high levels of engagement in advocacy activities. Second, ecologists are not an ideologically unified group. Indeed, there are cases of significant disagreement among ecologists regarding advocacy, values, and science. Third, despite some disagreement, ecologists generally believe that values consistent with environmental advocacy are more consonant with ecological pursuits than values based on environmental skepticism. Fourth, compared to males, female ecologists tend to be more supportive of advocacy and less convinced that environmentally oriented values perturb the pursuit of science. Fifth, somewhat paradoxically, ecologists in higher age brackets indicate higher engagement in advocacy activities as well as a higher desire for scientific objectivity. Sixth, compared to ecologists in other employment categories, those in government prefer a greater separation between science and the influences of environmental advocacy and values.

  6. Advancing Environmental Flow Science: Developing Frameworks for Altered Landscapes and Integrating Efforts Across Disciplines

    Science.gov (United States)

    Brewer, Shannon K.; McManamay, Ryan A.; Miller, Andrew D.; Mollenhauer, Robert; Worthington, Thomas A.; Arsuffi, Tom

    2016-08-01

    Environmental flows represent a legal mechanism to balance existing and future water uses and sustain non-use values. Here, we identify current challenges, provide examples where they are important, and suggest research advances that would benefit environmental flow science. Specifically, environmental flow science would benefit by (1) developing approaches to address streamflow needs in highly modified landscapes where historic flows do not provide reasonable comparisons, (2) integrating water quality needs where interactions are apparent with quantity but not necessarily the proximate factor of the ecological degradation, especially as frequency and magnitudes of inflows to bays and estuaries, (3) providing a better understanding of the ecological needs of native species to offset the often unintended consequences of benefiting non-native species or their impact on flows, (4) improving our understanding of the non-use economic value to balance consumptive economic values, and (5) increasing our understanding of the stakeholder socioeconomic spatial distribution of attitudes and perceptions across the landscape. Environmental flow science is still an emerging interdisciplinary field and by integrating socioeconomic disciplines and developing new frameworks to accommodate our altered landscapes, we should help advance environmental flow science and likely increase successful implementation of flow standards.

  7. Advancing Environmental Flow Science: Developing Frameworks for Altered Landscapes and Integrating Efforts Across Disciplines.

    Science.gov (United States)

    Brewer, Shannon K; McManamay, Ryan A; Miller, Andrew D; Mollenhauer, Robert; Worthington, Thomas A; Arsuffi, Tom

    2016-08-01

    Environmental flows represent a legal mechanism to balance existing and future water uses and sustain non-use values. Here, we identify current challenges, provide examples where they are important, and suggest research advances that would benefit environmental flow science. Specifically, environmental flow science would benefit by (1) developing approaches to address streamflow needs in highly modified landscapes where historic flows do not provide reasonable comparisons, (2) integrating water quality needs where interactions are apparent with quantity but not necessarily the proximate factor of the ecological degradation, especially as frequency and magnitudes of inflows to bays and estuaries, (3) providing a better understanding of the ecological needs of native species to offset the often unintended consequences of benefiting non-native species or their impact on flows, (4) improving our understanding of the non-use economic value to balance consumptive economic values, and (5) increasing our understanding of the stakeholder socioeconomic spatial distribution of attitudes and perceptions across the landscape. Environmental flow science is still an emerging interdisciplinary field and by integrating socioeconomic disciplines and developing new frameworks to accommodate our altered landscapes, we should help advance environmental flow science and likely increase successful implementation of flow standards.

  8. Environmental Science and Research Foundation annual technical report: Calendar year 1996

    Energy Technology Data Exchange (ETDEWEB)

    Morris, R.C.; Blew, R.D. [eds.

    1997-07-01

    This Annual Technical Report describes work conducted for the Department of Energy, Idaho Operations Office (DOE-ID), by the Environmental Science and Research Foundation (Foundation). The Foundation`s mission to DOE-ID provides support in several key areas. The authors conduct an environmental monitoring and surveillance program over an area covering much of the upper Snake River Plain, and provide environmental education and support services related to Idaho National Engineering and Environmental Laboratory (INEEL) natural resource issues. Also, the Foundation, with its University Affiliates, conducts ecological and radioecological research in the Idaho National Environmental Research Park. This research benefits major DOE-ID programs including Waste Management, Environmental Restoration, Spent Nuclear Fuels, and Land Management Issues. The major accomplishments of the Foundation and its University Affiliates during the calendar year 1996 are discussed.

  9. Environmental Science and Research Foundation, Inc. annual technical report: Calendar year 1997

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, R.D.; Warren, R.W. [eds.

    1998-05-01

    This Annual Technical Report describes work conducted for the Department of Energy, Idaho Operations Office (DOE-ID), by the Environmental Science and Research Foundation (Foundation). The Foundation`s mission to DOE-ID provides support in several key areas. The Foundation conducts an environmental monitoring and surveillance program over an area covering much of the upper Snake River Plain, and provides environmental education and support services related to Idaho National Engineering and Environmental Laboratory (INEEL) natural resource issues. Also, the Foundation, with its University Affiliates, conducts ecological and radioecological research on the Idaho National Environmental Research Park. This research benefits major DOE-ID programs including Waste Management, Environmental Restoration, Spent Nuclear Fuels, and Land Management Issues. Summaries are included of the individual research projects.

  10. Improving Environmental Literacy through GO3 Citizen Science Project

    Science.gov (United States)

    Wilkening, B.

    2011-12-01

    In the Global Ozone (GO3) Project students measure ground-level ozone on a continuous basis and upload their results to a global network used by atmospheric scientists and schools. Students learn important concepts such as chemical measurement methods; instrumentation; calibration; data acquisition using computers; data quality; statistics; data analysis and graphing; posting of data to the web; the chemistry of air pollution; stratospheric ozone depletion and global climate change. Students collaborate with researchers and other students globally in the GO3 network. Wilson K-8 School is located in a suburban area in Pima County, Arizona. Throughout the year we receive high ozone alert days. Prior to joining the GO3 project, my students were unaware of air pollution alerts, risks and causes. In the past when Pima County issued alerts to the school, they were posted on signs around the school. No explanation was provided to the students and the signs were often left up for days. This discounted the potential health effects of the situation, resulting in the alerts effectively being ignored. The GO3 project is transforming both my students and our school community. Now my students are: Performing science research Utilizing technology and increasing their skills Collaborating in a responsible manner on the global GO3 social network Communicating their work to the community Issuing their own ozone alerts to their school Advocating for actions that will improve air quality My students participation in this citizen science project is creating a more cognizant and active community in regards to air pollution.

  11. More than a Museum: Natural History is Relevant in 21st Century Environmental Science

    Science.gov (United States)

    Hernandez, R. R.; Murphy-Mariscal, M. L.; Barrows, C. W.

    2015-12-01

    In the Anthropocene, the relevancy of natural history in environmental science is challenged and marginalized today more than ever. We tested the hypothesis that natural history is relevant to the fields of environmental science and ecology by assessing the values, needs, and decisions related to natural history of graduate students and environmental science professionals across 31 universities and various employers, respectively, in California. Graduate students surveyed (93.3%) agreed that natural history was relevant to science, approximately 70% believed it "essential" for conducting field-based research; however, 54.2% felt inadequately trained to teach a natural history course and would benefit from additional training in natural history (> 80%). Of the 185 professionals surveyed, all felt that natural history was relevant to science and "essential" or "desirable" in their vocation (93%). Our results indicate a disconnect between the value and relevancy of natural history in 21st century ecological science and opportunities for gaining those skills and knowledge through education and training.

  12. Environmental Science and Engineering Merit Badges: An Exploratory Case Study of a Non-Formal Science Education Program and the U.S. Scientific and Engineering Practices

    Science.gov (United States)

    Vick, Matthew E.; Garvey, Michael P.

    2016-01-01

    The Boy Scouts of America's Environmental Science and Engineering merit badges are two of their over 120 merit badges offered as a part of a non-formal educational program to U.S. boys. The Scientific and Engineering Practices of the U.S. Next Generation Science Standards provide a vision of science education that includes integrating eight…

  13. Studies on time series applications in environmental sciences

    CERN Document Server

    Bărbulescu, Alina

    2016-01-01

    Time series analysis and modelling represent a large study field, implying the approach from the perspective of the time and frequency, with applications in different domains. Modelling hydro-meteorological time series is difficult due to the characteristics of these series, as long range dependence, spatial dependence, the correlation with other series. Continuous spatial data plays an important role in planning, risk assessment and decision making in environmental management. In this context, in this book we present various statistical tests and modelling techniques used for time series analysis, as well as applications to hydro-meteorological series from Dobrogea, a region situated in the south-eastern part of Romania, less studied till now. Part of the results are accompanied by their R code. .

  14. Active learning in forensic science using Brownfield Action in a traditional or hybrid course in earth, environmental, or engineering sciences

    Science.gov (United States)

    Bower, P.; Liddicoat (2), J.

    2009-04-01

    Brownfield Action (BA - http://www.brownfieldaction.org) is a web-based, interactive, three-dimensional digital space and learning simulation in which students form geotechnical consulting companies and work collaboratively to explore and solve problems in environmental forensics. BA is being used in the United States at 10 colleges and universities in earth, environmental, or engineering sciences undergraduate and graduate courses. As a semester-long activity or done in modular form for specific topics, BA encourages active learning that requires attention to detail, intuition, and positive interaction between peers that results in Phase 1 and Phase 2 Environmental Site Assessments. Besides use in higher education courses, BA also can be adapted for instruction to local, state, and federal governmental employees, and employees in industry where brownfields need to be investigated or require remediation.

  15. Observatories, think tanks, and community models in the hydrologic and environmental sciences: How does it affect me?

    Science.gov (United States)

    Torgersen, Thomas

    2006-06-01

    Multiple issues in hydrologic and environmental sciences are now squarely in the public focus and require both government and scientific study. Two facts also emerge: (1) The new approach being touted publicly for advancing the hydrologic and environmental sciences is the establishment of community-operated "big science" (observatories, think tanks, community models, and data repositories). (2) There have been important changes in the business of science over the last 20 years that make it important for the hydrologic and environmental sciences to demonstrate the "value" of public investment in hydrological and environmental science. Given that community-operated big science (observatories, think tanks, community models, and data repositories) could become operational, I argue that such big science should not mean a reduction in the importance of single-investigator science. Rather, specific linkages between the large-scale, team-built, community-operated big science and the single investigator should provide context data, observatory data, and systems models for a continuing stream of hypotheses by discipline-based, specialized research and a strong rationale for continued, single-PI ("discovery-based") research. I also argue that big science can be managed to provide a better means of demonstrating the value of public investment in the hydrologic and environmental sciences. Decisions regarding policy will still be political, but big science could provide an integration of the best scientific understanding as a guide for the best policy.

  16. Interactive Higher Education Instruction to Advance STEM Instruction in the Environmental Sciences - the Brownfield Action Model

    Science.gov (United States)

    Liddicoat, J. C.; Bower, P.

    2015-12-01

    The U.S. Environmental Protection Agency estimates that presently there are over half a million brownfields in the United States, but this number only includes sites for which an Environmental Site Assessment has been conducted. The actual number of brownfields is certainly in the millions and constitutes one of the major environmental issues confronting all communities today. Taught in part or entirely online for more than 15 years in environmental science, engineering, and hydrology courses at over a dozen colleges, universities, and high schools in the United States, Brownfield Action (BA) is an interactive, web-based simulation that combines scientific expertise, constructivist education philosophy, and multimedia to advance the teaching of environmental science (Bower et al., 2011, 2014; Liddicoat and Bower, 2015). In the online simulation and classroom, students form geotechnical consulting companies with a peer chosen at random to solve a problem in environmental forensics. The BA model contains interdisciplinary scientific and social information that are integrated within a digital learning environment that encourages students to construct their knowledge as they learn by doing. As such, the approach improves the depth and coherence of students understanding of the course material. Like real-world environmental consultants and professionals, students are required to develop and apply expertise from a wide range of fields, including environmental science and engineering as well as journalism, medicine, public health, law, civics, economics, and business management. The overall objective is for students to gain an unprecedented appreciation of the complexity, ambiguity, and risk involved in any environmental issue, and to acquire STEM knowledge that can be used constructively when confronted with such an issue.

  17. Preservice Teachers' Perspectives on 'Appropriate' K-8 Climate Change and Environmental Science Topics

    Science.gov (United States)

    Ford, D. J.

    2013-12-01

    With the release of the Next Generation Science Standards (NRC, 2013), climate change and related environmental sciences will now receive greater emphasis within science curricula at all grade levels. In grades K-8, preparation in foundational content (e.g., weather and climate, natural resources, and human impacts on the environment) and the nature of scientific inquiry will set the groundwork for later learning of climate change in upper middle and high school. These rigorous standards increase pressure on elementary and middle school teachers to possess strong science content knowledge, as well as experience supporting children to develop scientific ideas through the practices of science. It also requires a set of beliefs - about children and the science that is appropriate for them - that is compatible with the goals set out in the standards. Elementary teachers in particular, who often have minimal preparation in the earth sciences (NSF, 2007), and entrenched beliefs about how particular topics ought to be taught (Holt- Reynolds, 1992; Pajares, 1992), including climate change (Bryce & Day, 2013; Lambert & Bleicher, 2013), may face unique challenges in adjusting to the new standards. If teachers hold beliefs about climate change as controversial, for example, they may not consider it an appropriate topic for children, despite its inclusion in the standards. On the other hand, those who see a role for children in efforts to mitigate human impacts on the environment may be more enthusiastic about the new standards. We report on a survey of preservice K-8 teachers' beliefs about the earth and environmental science topics that they consider to be appropriate and inappropriate for children in grades K-3, 4-5, and 6-8. Participants were surveyed on a variety of standards-based topics using terminology that signals publicly and scientifically neutral (e.g. weather, ecosystems) to overtly controversial (evolution, global warming) science. Results from pilot data

  18. The Center for Environmental Kinetics Analysis: an NSF- and DOE-funded Environmental Molecular Science Institute (EMSI) at Penn State

    Energy Technology Data Exchange (ETDEWEB)

    S. L. Brantley; William D. Burgos; Brian A. Dempsey; Peter J. Heaney; James D. Kubicki; Peter C. Lichtner; Bruce E. Logan; Carmen E. Martinez; Karl T. Mueller; Kwadwo A. Osseo-Asare; Ming Tien; Carl I. Steefel, Glenn A. Waychunas; and John M. Zachara

    2007-04-19

    Physicochemical and microbiological processes taking place at environmental interfaces influence natural processes as well as the transport and fate of environmental contaminants, the remediation of toxic chemicals, and the sequestration of anthropogenic CO2. A team of scientists and engineers has been assembled to develop and apply new experimental and computational techniques to expand our knowledge of environmental kinetics. We are also training a cohort of talented and diverse students to work on these complex problems at multiple length scales and to compile and synthesize the kinetic data. Development of the human resources capable of translating molecular-scale information into parameters that are applicable in real world, field-scale problems of environmental kinetics is a major and relatively unique objective of the Institute's efforts. The EMSI team is a partnership among 10 faculty at The Pennsylvania State University (funded by the National Science Foundation Divisions of Chemistry and Earth Sciences), one faculty member at Juniata College, one faculty member at the University of Florida, and four researchers drawn from Los Alamos National Laboratory, Pacific Northwest National Laboratory, and Lawrence Berkeley National Laboratory (funded by the Department of Energy Division of Environmental Remediation Sciences). Interactions among the applied and academic scientists drives research approaches aimed toward solving important problems of national interest. The Institute is organized into three interest groups (IGs) focusing on the processes of dissolution (DIG), precipitation (PIG), and microbial reactions at surfaces (BIG). Some of the research activity from each IG is highlighted to the right. The IGs interact with each other as each interest group studies reactions across the molecular, microscopic, mesoscopic and, in most cases, field scales. For example, abiotic dissolution and precipitation reactions of Fe oxides as studied in the Dissolution

  19. Science implementation of Forecast Mekong for food and environmental security

    Science.gov (United States)

    Turnipseed, D. Phil

    2012-01-01

    Forecast Mekong is a significant international thrust under the Delta Research and Global Observation Network (DRAGON) of the U.S. Geological Survey (USGS) and was launched in 2009 by the U.S. Department of State and the Foreign Ministers of Cambodia, Laos, Thailand, and Vietnam under U.S. Department of State Secretary Hillary R. Clinton's Lower Mekong Initiative to enhance U.S. engagement with countries of the Lower Mekong River Basin in the areas of environment, health, education, and infrastructure. Since 2009, the USGS has worked closely with the U.S. Department of State; personnel from Cambodia, Laos, Thailand, and Vietnam; nongovernmental organizations; and academia to collect and use research and data from the Lower Mekong River Basin to provide hands-on results that will help decisionmakers in future planning and design for restoration, conservation, and management efforts in the Lower Mekong River Basin. In 2012 Forecast Mekong is highlighting the increasing cooperation between the United States and Lower Mekong River Basin countries in the areas of food and environmental security. Under the DRAGON, Forecast Mekong continues work in interactive data integration, modeling, and visualization system by initiating three-dimensional bathymetry and river flow data along with a pilot study of fish distribution, population, and migratory patterns in the Lower Mekong River Basin. When fully developed by the USGS, in partnership with local governments and universities throughout the Mekong River region, Forecast Mekong will provide valuable planning tools to visualize the consequences of climate change and river management.

  20. Radiocarbon application in environmental science and archaeology in Croatia

    Energy Technology Data Exchange (ETDEWEB)

    Krajcar Bronic, I., E-mail: krajcar@irb.h [Radiocarbon Laboratory, Department of Experimental Physics, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb (Croatia); Obelic, B.; Horvatincic, N.; Baresic, J.; Sironic, A. [Radiocarbon Laboratory, Department of Experimental Physics, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb (Croatia); Minichreiter, K. [Institute of Archaeology, Ulica grada Vukovara 68, 10000 Zagreb (Croatia)

    2010-07-21

    Radiocarbon is a cosmogenic radioisotope equally distributed throughout the troposphere and biosphere. This fact enables its most common application-radiocarbon dating. Natural equilibrium of radiocarbon has been disturbed by diverse anthropogenic activities during the last {approx}150 years, enabling also the use of {sup 14}C in various environmental applications. Here we present three types of studies by using {sup 14}C that were performed in the Zagreb Radiocarbon Laboratory. {sup 14}C in atmospheric CO{sub 2} has been monitored at several sites with various anthropogenic influences and the difference between the clean-air sites, the industrial city and the vicinity of a nuclear power plant has been established. {sup 14}C has been applied in geochronology of karst areas, especially in dating of tufa, speleothems and lake sediments, as well as in studies of geochemical carbon cycle. {sup 14}C has been used in various archaeological studies, among which the dating of the early Neolithic settlements in Croatia is presented. In these studies {sup 14}C was measured by radiometric techniques, i.e., by gas proportional counting and more recently by liquid scintillation counting (LSC). Two sample preparation techniques for LSC measurement were used: benzene synthesis for archaeological dating and other applications that require better precision, and direct absorption of CO{sub 2} for monitoring purposes. The presented results show that various studies by using {sup 14}C can be successfully performed by the LSC technique, providing a large enough sample (>1 g of carbon).

  1. Environmental Sciences Division annual progress report for period ending September 30, 1983

    Energy Technology Data Exchange (ETDEWEB)

    1984-04-01

    This annual report summarizes activities in the Aquatic Ecology, Earth Sciences, Environmental Analyses, and Terrestrial Ecology sections, as well as in the Fossil Energy, Biomass, Low-Level Waste Research and Management, and Global Carbon Cycle Programs. Separate abstracts have been prepared for each section. (ACR)

  2. Inquiry Learning of High School Students through a Problem-Based Environmental Health Science Curriculum

    Science.gov (United States)

    Kang, Nam-Hwa; DeChenne, Sue Ellen; Smith, Grant

    2012-01-01

    The purpose of this study was to examine the degree to which high school students improved their inquiry capabilities in relation to scientific literacy through their experience of a problem-based environmental health science curriculum. The two inquiry capabilities studied were scientific questioning and approaches to inquiry into their own…

  3. The Use of Photographs to Portray Urban Ecosystems in Six Introductory Environmental Science Textbooks

    Science.gov (United States)

    Sullivan, John P.

    2008-01-01

    This study examined how photographs in six introductory environmental science texts portrayed the urban environments in which most U.S. students lived. All photographs from all texts were coded to determine whether they depicted urban areas. The urban photographs were then coded to determine what they communicated about the urban environment. The…

  4. Incorporating Chemical Information Instruction and Environmental Science into the First-Year Organic Chemistry Laboratory

    Science.gov (United States)

    Landolt, R. G.

    2006-01-01

    The chemical information instruction and environmental science which is incorporated into a first-year organic chemistry laboratory is presented. The students are charged with devised search strategies, conducting online searches and limiting the project scope to ocean systems. The laboratory serves to provide for search strategy development…

  5. Engaging Underrepresented Group Youth in Environmental Science Research Activities: Catalyst for Change

    Science.gov (United States)

    Cuff, K.; Cannady, M.; Dorph, R.; Rodriguez, V. A.; Romero, V.

    2016-12-01

    The UC Berkeley East Bay Academy for Young Scientists (EBAYS) program provides youth from non-dominant communities in the East San Francisco Bay Area with unique opportunities to develop deeper understanding of environmental science content, as well as fundamental scientific practice skills. A key component of EBAYS programming is collaborative research projects that generate information useful in addressing critical environmental issues. This important component also provides opportunities for youth to present results of their investigations to other community members and to the scientific community at large. Inclusion of the environmental science research component is intended to help address the following program goals: A) increasing appreciation for the value of scientific practices as a tool for addressing important community-based issues; B) helping raise community awareness of important issues; C) sparking interest in other forms of community activism; D) increasing understanding of key science concepts; and E) generating valuable environmental quality data. In an effort to assess the degree to which EBAYS programming accomplishes these goals, as well as to evaluate its capacity to be effectively replicated on a broader scale, EBAYS staff has engaged in an investigation of associated learning and youth development outcomes. In this regard a research strategy has been developed that includes the use of assessment tools that will help foster a deeper understanding of the ways in which EBAYS programming increases the extent to which participants value the application of science, affects their overall occupational trajectory, and inspires them to consider careers in STEM.

  6. Comparison of Journal Citation Reports and Scopus Impact Factors for Ecology and Environmental Sciences Journals

    Science.gov (United States)

    Gray, Edward; Hodkinson, Sarah Z.

    2008-01-01

    Impact factors for journals listed under the subject categories "ecology" and "environmental sciences" in the Journal Citation Reports database were calculated using citation data from the Scopus database. The journals were then ranked by their Scopus impact factor and compared to the ranked lists of the same journals derived from Journal…

  7. Biomedical and environmental sciences programs at the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Richmond, C.R.; Johnson, C.A.

    1988-02-01

    This progress report summarizes the research and development activities conducted in the Biomedical and Environmental Sciences Programs of Oak Ridge National Laboratory. The report is structured to provide descriptions of current activities and accomplishments in each of the major organizational units. Following the accounts of research programs, is a list of publications and awards to its members. 6 figs., 14 tabs.

  8. Synchrotron x-ray sources and new opportunities in the soil and environmental sciences

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, D. (Purdue Univ., Lafayette, IN (USA)); Anderson, S. (Michigan State Univ., East Lansing, MI (USA)); Mattigod, S. (Pacific Northwest Lab., Richland, WA (USA))

    1990-07-01

    This report contains the following papers: characteristics of the advanced photon source and comparison with existing synchrotron facilities; x-ray absorption spectroscopy: EXAFS and XANES -- A versatile tool to study the atomic and electronic structure of materials; applications of x-ray spectroscopy and anomalous scattering experiments in the soil and environmental sciences; X-ray fluorescence microprobe and microtomography.

  9. The Development of Environmental Awareness through School Science: Problems and Possibilities

    Science.gov (United States)

    Hadzigeorgiou, Yannis; Skoumios, Michael

    2013-01-01

    This paper focuses upon the problem of raising environmental awareness in the context of school science. By focusing, as it does, on the relationship between the self and the natural environment, the paper discusses the difficulties that exist, such as the students' involvement with the natural world, as their object of study, the empirical…

  10. Environmental Empowerment - the role of Co-operation between Civil Society, Universities and Science Shops

    DEFF Research Database (Denmark)

    Brodersen, Søsser Grith Kragh; Jørgensen, Michael Søgaard; Hansen, Anne Grethe

    2006-01-01

    The University based Science Shops were established in the 1970s in the Netherlands, and in Denmark and other countries in the 1980s and 1990s. The aim was to give civil society organisations access to scientific knowledge and to empower citizen participation regarding environmental and social...

  11. What Disengages Doctoral Students in the Biological and Environmental Sciences from Their Doctoral Studies?

    Science.gov (United States)

    Virtanen, V.; Taina, J.; Pyhältö, K.

    2017-01-01

    This study explored the causes of student disengagement from their doctoral studies in the biological and environmental sciences. The data came from interviews of 40 doctoral students (male = 15, female = 25) and underwent qualitative analysis for content. Our results showed that doctoral studies provide multiple contexts for disengagement, such…

  12. Comparison of Journal Citation Reports and Scopus Impact Factors for Ecology and Environmental Sciences Journals

    Science.gov (United States)

    Gray, Edward; Hodkinson, Sarah Z.

    2008-01-01

    Impact factors for journals listed under the subject categories "ecology" and "environmental sciences" in the Journal Citation Reports database were calculated using citation data from the Scopus database. The journals were then ranked by their Scopus impact factor and compared to the ranked lists of the same journals derived from Journal…

  13. ENVIRONMENTAL RESEARCH AND EDUCATION PROGRAMS: LETS GET HONEST ABOUT SCIENCE, POLICY, AND ADVOCACY

    Science.gov (United States)

    Those of us who are involved in undergraduate education should change the current situation where many, arguably most, students graduating from environmental programs have a limited appreciation of the proper role of science in ecological policy deliberations. To be fair, perhap...

  14. Excel 2010 for environmental sciences statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J; Horton, Howard F

    2015-01-01

    This is the first book to show the capabilities of Microsoft Excel to teach environmental sciences statistics effectively.  It is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical environmental sciences problems.  If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you.  Excel, a widely available computer program for students and managers, is also an effective teaching and learning tool for quantitative analyses in environmental science courses.  Its powerful computational ability and graphical functions make learning statistics much easier than in years past.  However, Excel 2010 for Environmental Sciences Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and managers how to apply Excel to statistical techniques necessary in their courses and work. Eac...

  15. Assessing Earth and Environmental Science Enrollment Trends in Texas Public High Schools

    Science.gov (United States)

    Sanders, Joan G.

    2012-01-01

    Scope and Method of Study: This study assesses the status of Earth and environmental sciences education in Texas Public High Schools by analyzing enrollment proportions of 11th and 12th grade students in 607 Independent School Districts (ISD) for the 2010-2011 academic school year using a quantitative, non-experimental alpha research design. This…

  16. Integrating ICTs into the Environmental Science Primary School Classroom in Chegutu District, Zimbabwe: Problems and Solutions

    Science.gov (United States)

    Shadreck, Mandina

    2015-01-01

    This study investigated primary school teachers' perceptions of the barriers and challenges preventing them from integrating ICTs in the environmental science classroom. The study adopted a qualitative research approach that is in line with the phenomenological perspective as it sought to acquire knowledge through understanding the direct…

  17. Expanding the Conversation: Further Explorations into Indigenous Environmental Science Education Theory, Research, and Practice

    Science.gov (United States)

    Lowan, Greg

    2012-01-01

    Indigenous environmental science education is a diverse, dynamic, and rapidly expanding field of research, theory, and practice. This article highlights, challenges, and expands upon key areas of discussion presented by Mack et al. (Cult Stud Sci Educ 7, "2012") as part of the forum on their article "Effective Practices for Creating…

  18. Expanding the Conversation: Further Explorations into Indigenous Environmental Science Education Theory, Research, and Practice

    Science.gov (United States)

    Lowan, Greg

    2012-01-01

    Indigenous environmental science education is a diverse, dynamic, and rapidly expanding field of research, theory, and practice. This article highlights, challenges, and expands upon key areas of discussion presented by Mack et al. (Cult Stud Sci Educ 7, "2012") as part of the forum on their article "Effective Practices for Creating Transformative…

  19. Post-normal science in practice at the Netherlands Environmental Assessment Agency

    NARCIS (Netherlands)

    Petersen, A.C.; Cath, A.; Hage, Maria; Kunseler, E.M.; van der Sluijs, J.P.

    2011-01-01

    About a decade ago, the Netherlands Environmental Assessment Agency (PBL) unwittingly embarked on a transition from a technocratic model of science advising to the paradigm of ‘‘post-normal science’’ (PNS). In response to a scandal around uncertainty management in 1999, a Guidance for ‘‘Uncertainty

  20. 78 FR 17219 - National Institute of Environmental Health Sciences; Notice of Closed Meeting Pursuant to section...

    Science.gov (United States)

    2013-03-20

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... Training; 93.143, NIEHS Superfund Hazardous Substances--Basic Research and Education; 93.894, Resources and...) Dated: March 14, 2013. Carolyn Baum, Program Analyst, Office of Federal Advisory Committee Policy...

  1. Science Education for Environmental Sustainability: A Case Study of the Palouse Watershed

    Science.gov (United States)

    Lyman, Samson E.

    2009-01-01

    This study uses case study and qualitative content analysis methodologies to answer the question: What is the relationship between Washington State's k-12 science education standards and the environmental sustainability needs of the Palouse River Watershed? After defining the Palouse Watershed's attributes, the author presents a land use history…

  2. Towards a Framework for Analysing Interactions between Social Science and Environmental Policy

    Science.gov (United States)

    Parry, Sarah; Murphy, Joseph

    2013-01-01

    Interactions between social science and environmental policy have become increasingly important over the past 25 years. There has, however, been little analysis of the roles that social scientists adopt and the contributions they make. In this paper we begin the process, offering tentative answers to two key questions: in relation to environmental…

  3. Science Education for Environmental Sustainability: A Case Study of the Palouse Watershed

    Science.gov (United States)

    Lyman, Samson E.

    2009-01-01

    This study uses case study and qualitative content analysis methodologies to answer the question: What is the relationship between Washington State's k-12 science education standards and the environmental sustainability needs of the Palouse River Watershed? After defining the Palouse Watershed's attributes, the author presents a land use history…

  4. A Citizen-Science Study Documents Environmental Exposures and Asthma Prevalence in Two Communities

    Science.gov (United States)

    A citizen-science study was conducted in two low-income, flood-prone communities in Atlanta, Georgia, in order to document environmental exposures and the prevalence of occupant asthma. Teams consisting of a public-health graduate student and a resident from one of the two commun...

  5. Validating Performance Level Descriptors (PLDs) for the AP® Environmental Science Exam

    Science.gov (United States)

    Reshetar, Rosemary; Kaliski, Pamela; Chajewski, Michael; Lionberger, Karen

    2012-01-01

    This presentation summarizes a pilot study conducted after the May 2011 administration of the AP Environmental Science Exam. The study used analytical methods based on scaled anchoring as input to a Performance Level Descriptor validation process that solicited systematic input from subject matter experts.

  6. Assessing Earth and Environmental Science Enrollment Trends in Texas Public High Schools

    Science.gov (United States)

    Sanders, Joan G.

    2012-01-01

    Scope and Method of Study: This study assesses the status of Earth and environmental sciences education in Texas Public High Schools by analyzing enrollment proportions of 11th and 12th grade students in 607 Independent School Districts (ISD) for the 2010-2011 academic school year using a quantitative, non-experimental alpha research design. This…

  7. What Disengages Doctoral Students in the Biological and Environmental Sciences from Their Doctoral Studies?

    Science.gov (United States)

    Virtanen, V.; Taina, J.; Pyhältö, K.

    2017-01-01

    This study explored the causes of student disengagement from their doctoral studies in the biological and environmental sciences. The data came from interviews of 40 doctoral students (male = 15, female = 25) and underwent qualitative analysis for content. Our results showed that doctoral studies provide multiple contexts for disengagement, such…

  8. Expanding the Conversation: Further Explorations into Indigenous Environmental Science Education Theory, Research, and Practice

    Science.gov (United States)

    Lowan, Greg

    2012-01-01

    Indigenous environmental science education is a diverse, dynamic, and rapidly expanding field of research, theory, and practice. This article highlights, challenges, and expands upon key areas of discussion presented by Mack et al. (Cult Stud Sci Educ 7, "2012") as part of the forum on their article "Effective Practices for Creating…

  9. Including Indigenous Knowledges and Pedagogies in Science-Based Environmental Education Programs

    Science.gov (United States)

    Sutherland, Dawn; Swayze, Natalie

    2012-01-01

    In exploring ways to respectfully include Indigenous Knowledges and pedagogies within environmental education programs, the challenge is to ensure strategies used will meaningfully support learning while reflecting local cultural traditions, languages, beliefs, and perspectives. In this paper, key components for science-based environmental…

  10. Global Environmental Change: The Contribution of Social Science Research To Policy in the UK.

    Science.gov (United States)

    Redclift, Michael R.

    1995-01-01

    This paper describes ways in which the principle of enhanced sustainability might become a point of reference in social science research, considered as a dimension of all social and economic behavior. Discusses some of the lessons learned from the Global Environmental Change program and considers the relationship between this work and…

  11. Post-normal science in practice at the Netherlands Environmental Assessment Agency

    NARCIS (Netherlands)

    Petersen, A.C.; Cath, A.; Hage, Maria; Kunseler, E.M.; van der Sluijs, J.P.

    2011-01-01

    About a decade ago, the Netherlands Environmental Assessment Agency (PBL) unwittingly embarked on a transition from a technocratic model of science advising to the paradigm of ‘‘post-normal science’’ (PNS). In response to a scandal around uncertainty management in 1999, a Guidance for ‘‘Uncertainty

  12. 76 FR 30734 - National Institute of Environmental Health Sciences; Amended Notice of Meetings

    Science.gov (United States)

    2011-05-26

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences..., 12 p.m. to 2:30 p.m., NIEHS/National Institutes of Health, Building 4401, East Campus, 79...

  13. Semantic Similarity Computation and Concept Mapping in Earth and Environmental Science

    Science.gov (United States)

    Zheng, J.; Ma, X.; Fox, P. A.

    2013-12-01

    Ontologies have been widely adopted and used by Earth and Environmental Science community to capture and represent knowledge in the domain. One of the major problem that prevent us to combine and reuse these ontologies to solve more interesting problems is semantic heterogeneity problem, for example, same vocabularies from different ontologies may refer to different concept; or different terms from different ontologies may have same meaning. In this proposed work, we will address the problem by (1) developing a semantic similarity computation model to compute similarity among the concepts in Earth and Environmental Science; (2) based on the computation model, we will implement concept mapping tool that creates alignment for concepts that are semantically the same; (3) we will demonstrate the effectiveness of the tool using GCMD and CLEAN vocabularies and other earth science related ontologies.

  14. Eutrophication of Lake Wingra: A Chemistry-Based Environmental Science Module

    Science.gov (United States)

    Howe, Ann C.; Cizmas, Leslie; Bereman, Robert

    1999-07-01

    The paper describes the development and field test of a curriculum module for introductory chemistry by an interinstitutional, interdisciplinary team representing the disciplines of chemistry, biology, political science, environmental management and computer visualization. The module was designed to show that a serious and common worldwide environmental problem, the eutrophication of freshwater lakes, is directly related to the chemical reactions of phosphates. The module, which includes a student manual, an instructor's manual, and a computer visualization component, is based on a case study of Lake Wingra in Madison, Wisconsin. The module was field tested at two sites, after which 80% of students gave it a high overall rating. Attitude questionnaires administered before and after the unit was taught showed that students increased their interest in environmental problems, increased their understanding of the complexity of the problems, and had a higher level of personal commitment to address environmental problems. With changes in emphasis the module is suitable for use in other courses, including economics, biological science, and environmental science.

  15. Influence of an Intensive, Field-Based Life Science Course on Preservice Teachers' Self-Efficacy for Environmental Science Teaching

    Science.gov (United States)

    Trauth-Nare, Amy

    2015-08-01

    Personal and professional experiences influence teachers' perceptions of their ability to implement environmental science curricula and to positively impact students' learning. The purpose of this study was twofold: to determine what influence, if any, an intensive field-based life science course and service learning had on preservice teachers' self-efficacy for teaching about the environment and to determine which aspects of the combined field-based course/service learning preservice teachers perceived as effective for enhancing their self-efficacy. Data were collected from class documents and written teaching reflections of 38 middle-level preservice teachers. Some participants ( n = 18) also completed the Environmental Education Efficacy Belief Instrument at the beginning and end of the semester. Both qualitative and quantitative data analyses indicated a significant increase in PSTs' personal efficacies for environmental teaching, t(17) = 4.50, p = .000, d = 1.30, 95 % CI (.33, .90), but not outcome expectancy, t(17) = 1.15, p = .268, d = .220, 95 % CI (-.06, .20). Preservice teachers reported three aspects of the course as important for enhancing their self-efficacies: learning about ecological concepts through place-based issues, service learning with K-5 students and EE curriculum development. Data from this study extend prior work by indicating that practical experiences with students were not the sole factor in shaping PSTs' self-efficacy; learning ecological concepts and theories in field-based activities grounded in the local landscape also influenced PSTs' self-efficacy.

  16. Multi-criteria decision analysis in environmental sciences: ten years of applications and trends.

    Science.gov (United States)

    Huang, Ivy B; Keisler, Jeffrey; Linkov, Igor

    2011-09-01

    Decision-making in environmental projects requires consideration of trade-offs between socio-political, environmental, and economic impacts and is often complicated by various stakeholder views. Multi-criteria decision analysis (MCDA) emerged as a formal methodology to face available technical information and stakeholder values to support decisions in many fields and can be especially valuable in environmental decision making. This study reviews environmental applications of MCDA. Over 300 papers published between 2000 and 2009 reporting MCDA applications in the environmental field were identified through a series of queries in the Web of Science database. The papers were classified by their environmental application area, decision or intervention type. In addition, the papers were also classified by the MCDA methods used in the analysis (analytic hierarchy process, multi-attribute utility theory, and outranking). The results suggest that there is a significant growth in environmental applications of MCDA over the last decade across all environmental application areas. Multiple MCDA tools have been successfully used for environmental applications. Even though the use of the specific methods and tools varies in different application areas and geographic regions, our review of a few papers where several methods were used in parallel with the same problem indicates that recommended course of action does not vary significantly with the method applied. Published by Elsevier B.V.

  17. Environmental Sciences Division annual progress report for period ending September 30, 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-04-01

    The Environmental Sciences Division (ESD) of Oak Ridge National Laboratory (ORNL) conducts research on the environmental aspects of existing and emerging energy systems and applies this information to ensure that technology development and energy use are consistent with national environmental health and safety goals. Offering an interdisciplinary resource of staff and facilities to address complex environmental problems, the division is currently providing technical leadership for major environmental issues of national concern: (1) acidic deposition and related environmental effects, (2) effects of increasing concentrations of atmospheric CO{sub 2} and the resulting climatic changes to ecosystems and natural and physical resources, (3) hazardous chemical and radioactive waste disposal and remediation research and development, and (4) development of commercial biomass energy production systems. This progress report outlines ESD's accomplishments in these and other areas in FY 1990. Individual reports are processed separately for the data bases in the following areas: ecosystem studies; environmental analyses; environmental toxicology; geosciences; technical and administrative support; biofuels feedstock development program; carbon dioxide information analysis and research program; and environmental waste program.

  18. Advancing Environmental Health: A Ballroom Dance Between Human Health and Earth Sciences Research

    Science.gov (United States)

    Miller, A.

    2016-12-01

    The mission of the National Institute of Environmental Health Sciences (NIEHS) is to discover how the environment affects people in order to promote healthier lives. Translation of this mission into a meaningful reality entails extensive interdisciplinary interactions, expertise, and collaborations between the traditional health and earth sciences communities. Efforts to advance our understanding of adverse effects and illness associated with environmental factors requires not only a refined understanding of the biological mechanisms and pathways (e.g., inflammation, epigenetic changes, oxidative stress, mutagenesis, etc.) related to function and disease, but also the incredibly broad and complex environmental exposures and systems that influence these processes. Further complicating efforts to understand such interactions is the need to take into account individual susceptibility to disease across the human life span. While it is clear that environmental exposures can be readily linked to disease in individuals and to disproportionate health disparities in populations, the underlying risk factors for such findings are often elusive. Health and earth scientists have a long tradition of crossing their scientific divides to work together on a wide range of problems and issues, including disasters. Emergency situations, such as the environmental asbestos contamination in Libby, Montana, the Gulf Oil Spill, numerous chemical releases into air and water, wildfires, the World Trade Center Attack, and responses to Ebola, and now Zika, demand the collective expertise of the "environmental health sciences enterprise" to protect the public's health, facilitate recovery, and improve future preparedness. Furthermore, such high visibility efforts stand as a clear example of what human and earth sciences research can accomplish when transformative interdisciplinary approaches and a diverse well-trained cadre of scientists dance together on the ballroom floor.

  19. Relationship between Pre-School Preservice Teachers' Environmental Literacy and Science and Technology Literacy Self Efficacy Beliefs

    Science.gov (United States)

    Surmeli, Hikmet

    2013-01-01

    This study examined the relationship between preschool teachers' environmental literacy and their science and technology self efficacy beliefs. 120 preschool teachers from teacher education programme at one university participated in this study. Data were collected by using Environmental Literacy Scale and Science and Technology Literacy Self…

  20. Relationship between Pre-School Preservice Teachers' Environmental Literacy and Science and Technology Literacy Self Efficacy Beliefs

    Science.gov (United States)

    Surmeli, Hikmet

    2013-01-01

    This study examined the relationship between preschool teachers' environmental literacy and their science and technology self efficacy beliefs. 120 preschool teachers from teacher education programme at one university participated in this study. Data were collected by using Environmental Literacy Scale and Science and Technology Literacy Self…

  1. Relationship between Pre-School Preservice Teachers' Environmental Literacy and Science and Technology Literacy Self Efficacy Beliefs

    Science.gov (United States)

    Surmeli, Hikmet

    2013-01-01

    This study examined the relationship between preschool teachers' environmental literacy and their science and technology self efficacy beliefs. 120 preschool teachers from teacher education programme at one university participated in this study. Data were collected by using Environmental Literacy Scale and Science and Technology Literacy Self…

  2. Los Alamos Life Sciences Division's biomedical and environmental research programs. Progress report, January-December 1980

    Energy Technology Data Exchange (ETDEWEB)

    Holland, L.M.; Stafford, C.G.; Bolen, S.K. (comps.)

    1981-09-01

    Highlights of research progress accomplished in the Life Sciences Division during the year ending December 1980 are summarized. Reports from the following groups are included: Toxicology, Biophysics, Genetics; Environmental Pathology, Organic Chemistry, and Environmental Sciences. Individual abstracts have been prepared for 46 items for inclusion in the Energy Data Base. (RJC)

  3. The Woods Hole Partnership Education Program: Increasing Diversity in the Ocean and Environmental Sciences in One Influential Science Community

    Science.gov (United States)

    Jearld, A.

    2011-12-01

    To increase diversity in one influential science community, a consortium of public and private institutions created the Woods Hole Partnership Education Program, or PEP, in 2008. Participating institutions are the Marine Biological Laboratory, Northeast Fisheries Science Center of NOAA's Fisheries Service, Sea Education Association, U.S. Geological Survey, Woods Hole Oceanographic Institution, the Woods Hole Research Center, and University of Maryland Eastern Shore. Aimed at college juniors and seniors with some course work in marine and/or environmental sciences, PEP is a four-week course and a six-to-eight-week individual research project under the guidance of a research mentor. Forty-six students have participated to date. Investigators from the science institutions serve as course faculty and research mentors. We listened to experts regarding critical mass, mentoring, adequate support, network recruitment, and then built a program based on those features. Three years in we have a program that works and that has its own model for choosing applicants and for matching with mentors. We continue fine-tuning our match process, enhancing mentoring skills, preparing our students for a variety of lab cultures, and setting expectations high while remaining supportive. Our challenges now are to keep at it, using leverage instead of capacity to make a difference. Collaboration, not competition, is key since a rising tide floats all boats.

  4. Citizen science participation in research in the environmental sciences: key factors related to projects' success and longevity.

    Science.gov (United States)

    Cunha, Davi G F; Marques, Jonatas F; Resende, Juliana C DE; Falco, Patrícia B DE; Souza, Chrislaine M DE; Loiselle, Steven A

    2017-06-29

    The potential impacts of citizen science initiatives are increasing across the globe, albeit in an imbalanced manner. In general, there is a strong element of trial and error in most projects, and the comparison of best practices and project structure between different initiatives remains difficult. In Brazil, the participation of volunteers in environmental research is limited. Identifying the factors related to citizen science projects' success and longevity within a global perspective can contribute for consolidating such practices in the country. In this study, we explore past and present projects, including a case study in Brazil, to identify the spatial and temporal trends of citizen science programs as well as their best practices and challenges. We performed a bibliographic search using Google Scholar and considered results from 2005-2014. Although these results are subjective due to the Google Scholar's algorithm and ranking criteria, we highlighted factors to compare projects across geographical and disciplinary areas and identified key matches between project proponents and participants, project goals and local priorities, participant profiles and engagement, scientific methods and funding. This approach is a useful starting point for future citizen science projects, allowing for a systematic analysis of potential inconsistencies and shortcomings in this emerging field.

  5. Engaging academia to advance the science and practice of environmental public health tracking.

    Science.gov (United States)

    Strosnider, Heather; Zhou, Ying; Balluz, Lina; Qualters, Judith

    2014-10-01

    Public health agencies at the federal, state, and local level are responsible for implementing actions and policies that address health problems related to environmental hazards. These actions and policies can be informed by integrating or linking data on health, exposure, hazards, and population. The mission of the Centers for Disease Control and Prevention׳s National Environmental Public Health Tracking Program (Tracking Program) is to provide information from a nationwide network of integrated health, environmental hazard, and exposure data that drives actions to improve the health of communities. The Tracking Program and federal, state, and local partners collect, integrate, analyze, and disseminate data and information to inform environmental public health actions. However, many challenges exist regarding the availability and quality of data, the application of appropriate methods and tools to link data, and the state of the science needed to link and analyze health and environmental data. The Tracking Program has collaborated with academia to address key challenges in these areas. The collaboration has improved our understanding of the uses and limitations of available data and methods, expanded the use of existing data and methods, and increased our knowledge about the connections between health and environment. Valuable working relationships have been forged in this process, and together we have identified opportunities and improvements for future collaborations to further advance the science and practice of environmental public health tracking. Published by Elsevier Inc.

  6. Planning and implementing an honors degree in environmental science curricula: a case study from the University of Delaware, USA

    Science.gov (United States)

    Levia, Delphis

    2015-04-01

    Environmental degradation is undermining the sustainability of our planet. The multi-faceted nature of environmental stressors, which inherently couples human-environment interactions across space and time, necessitates that we train environmental scientists holistically within an interdisciplinary framework. Recruiting top-notch honors students to major in the environmental sciences is a critical step to ensure that we have the human capital to tackle complicated environmental problems successfully. Planning and implementing an honors degree is no trivial task. Based upon a recently completed and implemented set of programmatic revisions*, this poster showcases a successful example of an honors curriculum in environmental science to recruit and educate dynamic thinkers capable of improving the quality of our environment. The interdisciplinary environmental science program at the University of Delaware emphasizes the cross-cutting among earth's spheres through a core set of courses which employ a quantitative approach which is supplemented by several environmental policy courses. The core is coupled with six different thematic concentrations (students choose one) which permit the student to delve into a particular area of environmental science. The honors component of the degree consists of twelve additional credits. These credits are met through a specially designed introductory environmental course, a field experience requiring data collection, analysis, and write-up, a capstone course, and one other environmentally related course. The environmental sciences honors curriculum outlined in this poster may serve as a useful guide to others wishing to establish an honors program of their own in environmental science to recruit and prepare the next generation to mitigate environmental degradation. -------------- * Please note that the planning process for the environmental programs was and is the collective effort of many dedicated people. Current members of the

  7. Teachers' Perspectives of the New Western Australian Earth and Environmental Science Course: Lessons for the Australian Curriculum

    Science.gov (United States)

    Dawson, Vaille; Moore, Leah

    2011-01-01

    In 2007, a new upper secondary course, Earth and Environmental Science (EES) was introduced in Western Australia. The development and implementation of the course was supported by Earth Science Western Australia (ESWA), a consortium of universities, the CSIRO and other organisations. The role of ESWA is to support the teaching of earth science in…

  8. Teachers' Perspectives of the New Western Australian Earth and Environmental Science Course: Lessons for the Australian Curriculum

    Science.gov (United States)

    Dawson, Vaille; Moore, Leah

    2011-01-01

    In 2007, a new upper secondary course, Earth and Environmental Science (EES) was introduced in Western Australia. The development and implementation of the course was supported by Earth Science Western Australia (ESWA), a consortium of universities, the CSIRO and other organisations. The role of ESWA is to support the teaching of earth science in…

  9. Excel 2013 for environmental sciences statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J; Horton, Howard F

    2015-01-01

    This is the first book to show the capabilities of Microsoft Excel to teach environmentall sciences statistics effectively.  It is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical environmental science problems.  If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you.  Excel, a widely available computer program for students and managers, is also an effective teaching and learning tool for quantitative analyses in environmental science courses.  Its powerful computational ability and graphical functions make learning statistics much easier than in years past.  However, Excel 2013 for Environmental Sciences Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and managers how to apply Excel to statistical techniques necessary in their courses and work. Each chap...

  10. Dialogues between social and natural sciences: contribution to the debate on socio-environmental conflicts.

    Science.gov (United States)

    Milanez, Bruno

    2015-01-01

    In this article, I argue that attempting to solve real problems is a possible approach to bring social and natural sciences together, and suggest that - as Environmental Impact Assessment necessarily brings together social and environmental issues - this debate is a strong candidate for such a task. The argument is based on a general discussion about the possibilities and limitations of Environmental Impact Assessments, the social-environmental impacts of mining activities and three case studies. The analysis of the cases indicates possibilities and limitations of the dialogue between scientists from various areas - and of the collaboration with social movements and affected communities - in avoiding negative impacts of mining projects and, eventually, increasing their sustainability.

  11. Integrating international relations and environmental science course concepts through an interactive world politics simulation

    Science.gov (United States)

    Straub, K. H.; Kesgin, B.

    2012-12-01

    During the fall 2012 semester, students in two introductory courses at Susquehanna University - EENV:101 Environmental Science and POLI:131 World Affairs - will participate together in an online international relations simulation called Statecraft (www.statecraftsim.com). In this strategy game, students are divided into teams representing independent countries, and choose their government type (democracy, constitutional monarchy, communist totalitarian, or military dictatorship) and two country attributes (industrial, green, militaristic, pacifist, or scientific), which determine a set of rules by which that country must abide. Countries interact over issues such as resource distribution, war, pollution, immigration, and global climate change, and must also keep domestic political unrest to a minimum in order to succeed in the game. This simulation has typically been run in political science courses, as the goal is to allow students to experience the balancing act necessary to maintain control of global and domestic issues in a dynamic, diverse world. This semester, environmental science students will be integrated into the simulation, both as environmental advisers to each country and as independent actors representing groups such as Greenpeace, ExxonMobil, and UNEP. The goal in integrating the two courses in the simulation is for the students in each course to gain both 1) content knowledge of certain fundamental material in the other course, and 2) a more thorough, applied understanding of the integrated nature of the two subjects. Students will gain an appreciation for the multiple tradeoffs that decision-makers must face in the real world (economy, resources, pollution, health, defense, etc.). Environmental science students will link these concepts to the traditional course material through a "systems thinking" approach to sustainability. Political science students will face the challenges of global climate change and gain an understanding of the nature of

  12. Air, Ocean and Climate Monitoring Enhancing Undergraduate Training in the Physical, Environmental and Computer Sciences

    Science.gov (United States)

    Hope, W. W.; Johnson, L. P.; Obl, W.; Stewart, A.; Harris, W. C.; Craig, R. D.

    2000-01-01

    Faculty in the Department of Physical, Environmental and Computer Sciences strongly believe in the concept that undergraduate research and research-related activities must be integrated into the fabric of our undergraduate Science and Technology curricula. High level skills, such as problem solving, reasoning, collaboration and the ability to engage in research, are learned for advanced study in graduate school or for competing for well paying positions in the scientific community. One goal of our academic programs is to have a pipeline of research activities from high school to four year college, to graduate school, based on the GISS Institute on Climate and Planets model.

  13. Romanian - Swiss cooperative research programme "Environmental Science and Technology in Romania" (ESTROM)

    OpenAIRE

    PANIN, Nicolae; Giger, Walter

    2008-01-01

    The Romanian Ministry for Education, Research and Youth (MECT), the Swiss Agency for Development and Cooperation (SDC) and the Swiss National Science Foundation had launched in 2004 the Romanian-Swiss research programme known as “Environmental Science and Technology in Romania” (ESTROM). ESTROM was established as a pilot programme of scientific co-operation between Swiss Research and Education Units with similar ones from Romania in the fram...

  14. Synergetic Use of Crowdsourcing for Environmental Science Research, Applications and Education

    Science.gov (United States)

    Nair, U. S.; Thau, D.

    2015-12-01

    Environmental science research and applications often utilize information that is not readily available or routinely collected by government agencies. Whereas, the quality and quantity of environmental monitoring data is continually improving (e. g., spectral and spatial resolution of satellite imagery) contextual information needed to effectively utilize the data is sparse. Examples of such contextual information include ground truth data for land cover classification, presence/absence of species, prevalence of mosquito breeding sites and characteristics of urban land cover. Often, there are no agencies tasked with routine collection of such contextual information, which could be effectively collected through crowdsourcing. Crowdsourcing of such information, that is useful for environmental science research and applications, also provide opportunities for experiential learning at all levels of education. Appropriately designed crowdsourcing activity can be transform students from passive recipients of information to generators of knowledge. Multiple examples of synergistic use of crowdsourcing, developed by the Public Environmental Education and Research Apps (PEERA) group, at the University of Alabama in Huntsville will be presented. One example is crowdsourcing of land use and land cover (LULC) data using Open Data Kit (ODK) and associated analysis of satellite imagery using Google Earth Engine (GEE). Implementation of this activity as inquiry based learning exercise, for both middle school and for pre-service teachers will be discussed. Another example will detail the synergy between crowdsourcing for biodiversity mapping in southern India and environmental education. Other crowdsourcing activities that offer potential for synergy between research and public education will also be discussed.

  15. Environmental Sciences Division annual progress report for period ending September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This progress report summarizes the research and development activities conducted in the Environmental Sciences Division of Oak Ridge National Laboratory during the period October 1, 1990, through September 30, 1991. The report is structured to provide descriptions of current activities and accomplishments in each of the division`s major organizational units. Following the sections describing the organizational units is a section devoted to lists of information necessary to convey the scope of the work in the division. The Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) conducts environmental research and analyses associated with both energy technology development and the interactions between people and the environment. The division engages in basic and applied research for a diverse list of sponsors. While the US Department of Energy (DOE) is the primary sponsor ESD staff also perform research for other federal agencies, state agencies, and private industry. The division works collaboratively with federal agencies, universities, and private organizations in achieving its research objectives and hosts a large number of visiting investigators from these organizations. Given the diverse interdisciplinary specialization of its staff, ESD provides technical expertise on complex environmental problems and renders technical leadership for major environmental issues of national and local concern. This progress report highlights many of ESD`s accomplishment in these and other areas in FY 1991.

  16. Environmental Sciences Division annual progress report for period ending September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This progress report summarizes the research and development activities conducted in the Environmental Sciences Division of Oak Ridge National Laboratory during the period October 1, 1990, through September 30, 1991. The report is structured to provide descriptions of current activities and accomplishments in each of the division's major organizational units. Following the sections describing the organizational units is a section devoted to lists of information necessary to convey the scope of the work in the division. The Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) conducts environmental research and analyses associated with both energy technology development and the interactions between people and the environment. The division engages in basic and applied research for a diverse list of sponsors. While the US Department of Energy (DOE) is the primary sponsor ESD staff also perform research for other federal agencies, state agencies, and private industry. The division works collaboratively with federal agencies, universities, and private organizations in achieving its research objectives and hosts a large number of visiting investigators from these organizations. Given the diverse interdisciplinary specialization of its staff, ESD provides technical expertise on complex environmental problems and renders technical leadership for major environmental issues of national and local concern. This progress report highlights many of ESD's accomplishment in these and other areas in FY 1991.

  17. The emergence of land change science for global environmental change and sustainability

    DEFF Research Database (Denmark)

    Turner II, B.L.; Lambin, E.F.; Reenberg, Anette

    2007-01-01

      Land change science has emerged as a fundamental component of global environmental change and sustainability research.  This interdisciplinary field seeks to understand the dynamics of land-cover and land-use as a coupled human-environment system in order to address theory, concepts, models......, and applications relevant to environmental and societal problems, including the intersection of the two.  The major components and advances in land change are addressed: observation and monitoring; understanding the coupled system-causes, impacts, and consequences; modeling; and synthesis issues.  The six articles...

  18. Environmental Influences on the LIGO Gravitational Wave Detectors during the 6th Science Run

    CERN Document Server

    Effler, A; Frolov, V V; Gonzalez, G; Kawabe, K; Smith, J R; Birch, J; McCarthy, R

    2014-01-01

    We describe the influence of environmental noise on LIGO detectors in the sixth science run (S6), from July 2009 to October 2010. We show results from experimental investigations testing the coupling level and mechanisms for acoustic, electromagnetic/magnetic and seismic noise to the instruments. We argument the sensors' importance for vetoes of false positive detections, report estimates of the noise sources' contributions to the detector background, and discuss the ways in which environmental coupling should be reduced in the LIGO upgrade, Advanced LIGO.

  19. Isothermal Microcalorimetry: A Review of Applications in Soil and Environmental Sciences

    Institute of Scientific and Technical Information of China (English)

    RONG Xing-Min; HUANG Qiao-Yun; JIANG Dai-Hua; CAI Peng; LIANG Wei

    2007-01-01

    Isothermal microcMorimetry provides thermodynamic and kinetic information on various reactions and processes and is thereby a powerful tool to elucidate their mechanisms.Certain improvement in isothermal microcalorimetry with regard to the studies on soil and environmental sciences is briefly described.This review mainly focuses on the use of microcalorimetry in the determination of soil microbial activity,monitoring the toxicity and biodegradation of soil organic pollutants,the risk evaluation of metals and metalloids,the heat effect of ion exchange and adsorption in soil,and environmental researches.Promising prospects for the applications of the technique in the field are also discussed.

  20. The emergence of land change science for global environmental change and sustainability.

    Science.gov (United States)

    Turner, B L; Lambin, Eric F; Reenberg, Anette

    2007-12-26

    Land change science has emerged as a fundamental component of global environmental change and sustainability research. This interdisciplinary field seeks to understand the dynamics of land cover and land use as a coupled human-environment system to address theory, concepts, models, and applications relevant to environmental and societal problems, including the intersection of the two. The major components and advances in land change are addressed: observation and monitoring; understanding the coupled system-causes, impacts, and consequences; modeling; and synthesis issues. The six articles of the special feature are introduced and situated within these components of study.

  1. Online-BSEE (Online Bachelor of Science in Electrical Engineering): An Asynchronous Online Electrical Engineering Degree Program with Laboratory

    Science.gov (United States)

    Tang, Wendy; Westgate, Charles; Liu, Pao-Lo; Gouzman, Michael

    2014-01-01

    The Online Bachelor of Science in Electrical Engineering is a collaborative effort among three University Centers at SUNY (State University of New York), namely Stony Brook, Binghamton, and Buffalo. The program delivers the complete electrical engineering curriculum at the bachelor level to students online and asynchronously. Students, however,…

  2. Spatial Modelling Tools to Integrate Public Health and Environmental Science, Illustrated with Infectious Cryptosporidiosis.

    Science.gov (United States)

    Lal, Aparna

    2016-02-02

    Contemporary spatial modelling tools can help examine how environmental exposures such as climate and land use together with socio-economic factors sustain infectious disease transmission in humans. Spatial methods can account for interactions across global and local scales, geographic clustering and continuity of the exposure surface, key characteristics of many environmental influences. Using cryptosporidiosis as an example, this review illustrates how, in resource rich settings, spatial tools have been used to inform targeted intervention strategies and forecast future disease risk with scenarios of environmental change. When used in conjunction with molecular studies, they have helped determine location-specific infection sources and environmental transmission pathways. There is considerable scope for such methods to be used to identify data/infrastructure gaps and establish a baseline of disease burden in resource-limited settings. Spatial methods can help integrate public health and environmental science by identifying the linkages between the physical and socio-economic environment and health outcomes. Understanding the environmental and social context for disease spread is important for assessing the public health implications of projected environmental change.

  3. The Interactions of Conceptions of Teaching Science and Environmental Factors to Produce Praxis in Three Novice Teachers of Science

    Science.gov (United States)

    Park, Hyunju; Hewson, Peter W.; Lemberger, John; Marion, Robin D.

    2010-11-01

    One strategy for implementing learner-centered teaching is through the preparation of teachers and their induction into the profession. This article presents case studies of three secondary science teachers that follow them from their science teacher education program that advocated teaching for conceptual change as one approach to learner-centered teaching into their first years of teaching. The article’s purpose is to describe the teachers’ initial conceptions of teaching science carried over from their teacher preparation program, and how they integrated those conceptions with the environmental influences of their classrooms and schools to produce praxis. Data were collected from the participants in several different ways during the participants’ pre-service year and during their first year or two of teaching: Observation of the participants’ teaching; related interviews with participants; and their action research journals. As they approached the end of their first or second year of teaching, all three teachers demonstrated increased levels of confidence in their teaching competence, both in their classroom performance and their places in their departments and schools. None of them had, however, fully implemented conceptual change teaching approach that was the specific goal of their teacher preparation program.

  4. Students’ Digital Photography Behaviors during a Multiday Environmental Science Field Trip and Their Recollections of Photographed Science Content

    Directory of Open Access Journals (Sweden)

    Victor R. Lee

    2014-01-01

    Full Text Available Taking photographs to document the experiences of an educational field trip is becoming a common activity for teachers and students alike. Considering the regular creation of photographic artifacts, our goal in this paper is to explore students’ picture taking behavior and their recollections of science content associated with their photographs. In this study, we partnered with a class of fifth-grade students in the United States and provided each student with a digital camera to document their experiences during an environmental science field trip at a national park. We report the frequency of photography behaviors according to which activities were most often documented by the students and specifically that students tended to document more of their experiences when they were in outdoor, natural spaces rather than inside of visitor centers or museums. Also, through an analysis of students’ comments about the science content captured in their photographs we observe that students’ comments about photographs of the outdoors tended to show greater depth and complexity than those that were taken in indoor, museum-like spaces.

  5. Handbook of Coherent-Domain Optical Methods Biomedical Diagnostics, Environmental Monitoring, and Materials Science

    CERN Document Server

    2013-01-01

    This Handbook provides comprehensive coverage of laser and coherent-domain methods as applied to biomedicine, environmental monitoring, and materials science. Worldwide leaders in these fields describe the fundamentals of light interaction with random media and present an overview of basic research. The latest results on coherent and polarization properties of light scattered by random media, including tissues and blood, speckles formation in multiple scattering media, and other non-destructive interactions of coherent light with rough surfaces and tissues, allow the reader to understand the principles and applications of coherent diagnostic techniques. The expanded second edition has been thoroughly updated with particular emphasis on novel coherent-domain techniques and their applications in medicine and environmental science. Volume 1 describes state-of-the-art methods of coherent and polarization optical imaging, tomography and spectroscopy; diffusion wave spectroscopy; elastic, quasi-elastic and inelasti...

  6. Graduate student theses supported by DOE`s Environmental Sciences Division

    Energy Technology Data Exchange (ETDEWEB)

    Cushman, Robert M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Parra, Bobbi M. [Dept. of Energy, Germantown, MD (United States). Environmental Sciences Division; comps.

    1995-07-01

    This report provides complete bibliographic citations, abstracts, and keywords for 212 doctoral and master`s theses supported fully or partly by the U.S. Department of Energy`s Environmental Sciences Division (and its predecessors) in the following areas: Atmospheric Sciences; Marine Transport; Terrestrial Transport; Ecosystems Function and Response; Carbon, Climate, and Vegetation; Information; Computer Hardware, Advanced Mathematics, and Model Physics (CHAMMP); Atmospheric Radiation Measurement (ARM); Oceans; National Institute for Global Environmental Change (NIGEC); Unmanned Aerial Vehicles (UAV); Integrated Assessment; Graduate Fellowships for Global Change; and Quantitative Links. Information on the major professor, department, principal investigator, and program area is given for each abstract. Indexes are provided for major professor, university, principal investigator, program area, and keywords. This bibliography is also available in various machine-readable formats (ASCII text file, WordPerfect{reg_sign} files, and PAPYRUS{trademark} files).

  7. A comparison of 17 author-level bibliometric indicators for researchers in Astronomy, Environmental Science, Philosophy and Public Health in Web of Science and Google Scholar

    DEFF Research Database (Denmark)

    Wildgaard, Lorna Elizabeth

    2015-01-01

    were calculated for 512 researchers in Astronomy, Environmental Science, Philosophy and Public Health. Indicator scores and scholar rankings calculated in Web of Science (WoS) and Google Scholar (GS) were analyzed. The indexing policies of WoS and GS were found to have a direct effect on the amount...

  8. A historical review on the roles of science and politics in addressing global environmental issues

    Institute of Scientific and Technical Information of China (English)

    Peter USHER; Qian YE

    2009-01-01

    Based on a historical review of the so-called Ozone crisis in the late 1970s and global climate changes since the 1980s, this paper examines the role of sciences and policies in the international community in dealing with the global environmental issues. Lessons show that a multi-discipline, multi-organizational and multi-national UN agency which remains relevant, assisting rather than guiding the process of climate negotiations is important.

  9. Environmental Sciences Division. Annual progress report for period ending September 30, 1975

    Energy Technology Data Exchange (ETDEWEB)

    1976-08-01

    The energy crisis and creation of ERDA were dominant factors affecting the activities of the Environmental Sciences Division during the past year. Efforts primarily centered on coal conversion effluents, aquatic effects from power plants, terrestrial modeling of both radioactive and nonradioactive waste transport, mineral cycling, forest management, and information handling codes and techniques. A bibliography of publications, presentation, these, and other professional activities is included. (PCS)

  10. Environmental Molecular Sciences Laboratory Operations System: Version 4.0 - system requirements specification

    Energy Technology Data Exchange (ETDEWEB)

    Kashporenko, D.

    1996-07-01

    This document is intended to provide an operations standard for the Environmental Molecular Sciences Laboratory OPerations System (EMSL OPS). It is directed toward three primary audiences: (1) Environmental Molecular Sciences Laboratory (EMSL) facility and operations personnel; (2) laboratory line managers and staff; and (3) researchers, equipment operators, and laboratory users. It is also a statement of system requirements for software developers of EMSL OPS. The need for a finely tuned, superior research environment as provided by the US Department of Energy`s (DOE) Environmental Molecular Sciences Laboratory has never been greater. The abrupt end of the Cold War and the realignment of national priorities caused major US and competing overseas laboratories to reposition themselves in a highly competitive research marketplace. For a new laboratory such as the EMSL, this means coming into existence in a rapidly changing external environment. For any major laboratory, these changes create funding uncertainties and increasing global competition along with concomitant demands for higher standards of research product quality and innovation. While more laboratories are chasing fewer funding dollars, research ideas and proposals, especially for molecular-level research in the materials and biological sciences, are burgeoning. In such an economically constrained atmosphere, reduced costs, improved productivity, and strategic research project portfolio building become essential to establish and maintain any distinct competitive advantage. For EMSL, this environment and these demands require clear operational objectives, specific goals, and a well-crafted strategy. Specific goals will evolve and change with the evolution of the nature and definition of DOE`s environmental research needs. Hence, EMSL OPS is designed to facilitate migration of these changes with ease into every pertinent job function, creating a facile {open_quotes}learning organization.{close_quotes}

  11. Text Mining to inform construction of Earth and Environmental Science Ontologies

    Science.gov (United States)

    Schildhauer, M.; Adams, B.; Rebich Hespanha, S.

    2013-12-01

    There is a clear need for better semantic representation of Earth and environmental concepts, to facilitate more effective discovery and re-use of information resources relevant to scientists doing integrative research. In order to develop general-purpose Earth and environmental science ontologies, however, it is necessary to represent concepts and relationships that span usage across multiple disciplines and scientific specialties. Traditional knowledge modeling through ontologies utilizes expert knowledge but inevitably favors the particular perspectives of the ontology engineers, as well as the domain experts who interacted with them. This often leads to ontologies that lack robust coverage of synonymy, while also missing important relationships among concepts that can be extremely useful for working scientists to be aware of. In this presentation we will discuss methods we have developed that utilize statistical topic modeling on a large corpus of Earth and environmental science articles, to expand coverage and disclose relationships among concepts in the Earth sciences. For our work we collected a corpus of over 121,000 abstracts from many of the top Earth and environmental science journals. We performed latent Dirichlet allocation topic modeling on this corpus to discover a set of latent topics, which consist of terms that commonly co-occur in abstracts. We match terms in the topics to concept labels in existing ontologies to reveal gaps, and we examine which terms are commonly associated in natural language discourse, to identify relationships that are important to formally model in ontologies. Our text mining methodology uncovers significant gaps in the content of some popular existing ontologies, and we show how, through a workflow involving human interpretation of topic models, we can bootstrap ontologies to have much better coverage and richer semantics. Because we base our methods directly on what working scientists are communicating about their

  12. Biomedical and environmental sciences programs at the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Preston, E.L.; Getsi, J.A. (comps.)

    1982-07-01

    A major objective of the biomedical and environmental sciences (BES) research at the Oak Ridge National Laboratory (ORNL) is to provide information on environmental, health, and safety considerations that can be used in the formulation and implementation of energy technology decisions. Research is directed at securing information required for an understanding of both the short- and long-term consequences of the processes involved in new energy technologies. Investigation of the mechanisms responsible for biological and ecological damage caused by substances associated with energy production and of repair mechanisms is a necessary component of this research. The research is carried out by the staff of four divisions and one program: Biology Division, Environmental Sciences Division, Health and Safety Research Division, Information Division, and the Life Sciences Synthetic Fuels Program. Research programs underway in each of these divisions are discussed. Information on the following subjects is also included: interactions with universities; interactions with industry; technology transfer; recent accomplishments in the areas of program, publications, awards, and patents; and new initiatives. (JGB)

  13. Strategic science: new frameworks to bring scientific expertise to environmental disaster response

    Science.gov (United States)

    Stoepler, Teresa Michelle; Ludwig, Kristin A.

    2015-01-01

    Science is critical to society’s ability to prepare for, respond to, and recover from environmental crises. Natural and technological disasters such as disease outbreaks, volcanic eruptions, hurricanes, oil spills, and tsunamis require coordinated scientific expertise across a range of disciplines to shape effective policies and protocols. Five years after the Deepwater Horizon oil spill, new organizational frameworks have arisen for scientists and engineers to apply their expertise to disaster response and recovery in a variety of capacities. Here, we describe examples of these opportunities, including an exciting new collaboration between the Association for the Sciences of Limnology and Oceanography (ASLO) and the Department of the Interior’s (DOI) Strategic Sciences Group (SSG).

  14. Cultivating Sustainable and Authentic Service-Learning Partnerships in the Environmental Sciences

    Science.gov (United States)

    Ivanochko, Tara; Grain, Kari

    2017-04-01

    The two-term, community service-learning capstone course for Environmental Sciences at the University of British Columbia, Canada, aims to support both community and students using authentic science practice in service of the community. During the course development, we implemented a routine process for student and community feedback, instructor reflection and course revision. Drawing on data from 23 interviews and 9 focus groups collected over three years, findings from this study highlight ways that community partnerships can be sustained while students have an authentic science experience. Based on data collected from community partners, we highlight the key processes, challenges, successes, and practical considerations in the creation and sustainability of a scientifically robust service-learning course.

  15. Applying gene flow science to environmental policy needs: a boundary work perspective.

    Science.gov (United States)

    Ridley, Caroline E; Alexander, Laurie C

    2016-08-01

    One application of gene flow science is the policy arena. In this article, we describe two examples in which the topic of gene flow has entered into the U.S. national environmental policymaking process: regulation of genetically engineered crops and clarification of the jurisdictional scope of the Clean Water Act. We summarize both current scientific understanding and the legal context within which gene flow science has relevance. We also discuss the process by which scientific knowledge has been synthesized and communicated to decision-makers in these two contexts utilizing the concept of 'boundary work'. Boundary organizations, the work they engage in to bridge the worlds of science, policy, and practice, and the boundary objects they produce to translate scientific knowledge existed in both examples. However, the specific activities and attributes of the objects produced varied based on the needs of the decision-makers. We close with suggestions for how scientists can contribute to or engage in boundary work with policymakers.

  16. Fostering science literacy, environmental stewardship, and collaboration: Assessing a garden-based approach to teaching life science

    Science.gov (United States)

    Fisher-Maltese, Carley B.

    Recently, schools nationwide have expressed a renewed interest in school gardens (California School Garden Network, 2010), viewing them as innovative educational tools. Most of the scant studies on these settings investigate the health/nutritional impacts, environmental attitudes, or emotional dispositions of students. However, few studies examine the science learning potential of a school garden from an informal learning perspective. Those studies that do examine learning emphasize individual learning of traditional school content (math, science, etc.) (Blaire, 2009; Dirks & Orvis, 2005; Klemmer, Waliczek & Zajicek, 2005a & b; Smith & Mostenbocker, 2005). My study sought to demonstrate the value of school garden learning through a focus on measures of learning typically associated with traditional learning environments, as well as informal learning environments. Grounded in situated, experiential, and contextual model of learning theories, the purpose of this case study was to examine the impacts of a school garden program at a K-3 elementary school. Results from pre/post tests, pre/post surveys, interviews, recorded student conversations, and student work reveal a number of affordances, including science learning, cross-curricular lessons in an authentic setting, a sense of school community, and positive shifts in attitude toward nature and working collaboratively with other students. I also analyzed this garden-based unit as a type curriculum reform in one school in an effort to explore issues of implementing effective practices in schools. Facilitators and barriers to implementing a garden-based science curriculum at a K-3 elementary school are discussed. Participants reported a number of implementation processes necessary for success: leadership, vision, and material, human, and social resources. However, in spite of facilitators, teachers reported barriers to implementing the garden-based curriculum, specifically lack of time and content knowledge.

  17. Participation of Environmental Science Students in an Open Discussion "Riga - European Green Capital"

    Science.gov (United States)

    Dace, Elina; Berzina, Alise; Ozolina, Liga; Lorence, Ieva

    2010-01-01

    Starting from the year 2010, each year one European city is selected as the European Green Capital of the year. The award is granted to a city that has a consistent record of achieving high environmental standards, and is committed to ongoing and ambitious goals for further environmental improvement and sustainable development, as well as can act as a role model to inspire other cities and promote best practices to other European cities. Riga participated in the competition once, but did not fulfill the conditions, therefore an open discussion "Riga - European Green Capital" was organized by a nongovernmental organization "Association of Environmental Science Students". The aim of the discussion was to develop suggestions for the Riga city council on how to win the title "European Green Capital". Students of technical and engineering sciences were involved in the discussion to give their vision on what is needed for the city to comply with all the criteria of the competition. Thus, another aim of the discussion was to promote collaboration between students and the Riga city council in terms of environmental thinking. As a result of the discussion, a nine-page letter was prepared with recommendations to the Riga city mayor on how to develop the city in a sustainable manner and outlining benefits which could arise if the city of Riga got the title. However, the most important outcome of the discussion are the skills which students gained from the experience of presenting their ideas and discussing them with specialists of the specific field. This should help in further studies and work, as well as in individual professional development. The discussions were also a starting point for further collaboration between the Riga city council and students from the Association of Latvian Environmental Science Students.

  18. Pacific Northwest Laboratory annual report for 1993 to the DOE Office of Energy Research. Part 2: Environmental sciences

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    This 1993 Annual Report from Pacific Northwest Laboratory (PNL) to the US DOE describes research in environment and health conducted during fiscal year (FY) 1993. The report is divided into four parts, each in a separate volume. This part, Volume 2, covers Environmental Sciences. The research is directed toward developing a fundamental understanding of subsurface and terrestrial systems as a basis for both managing these critical resources and addressing environmental problems such as environmental restoration and global change. There are sections on Subsurface Science, Terrestrial Science, Technology Transfer, Interactions with Educational Institutions, and Laboratory Directed Research and Development.

  19. Learning Pathways in Environmental Science Education: The case of hazardous household items

    Science.gov (United States)

    Malandrakis, George N.

    2006-11-01

    The present study draws on environmental science education to explore aspects of children’s conceptual change regarding hazardous household items. Twelve children from a fifth-grade class attended a 30-h teaching module of environmentally oriented science activities aimed at assessing their awareness about the environmental and health hazards posed by several typical household products. In-depth interviews before, 2 weeks after, and 1 year after, the teaching intervention revealed that children followed three pathways of conceptual change ranging from the substantial alterations of their initial ideas to the qualitative enrichment of those ideas to the complete rejection of the new knowledge. Two components of the instructional intervention—the use of living organisms in classroom experiments, and group learning activities—along with the development of children’s situated metacognitive ideas facilitated their learning and increased the durability of the acquired knowledge. Additionally, sound indications concerning the situated nature and the social construction of the new knowledge were observed, as well as that in environmental education moral and value issues are closely related to knowledge.

  20. Applications of synchrotron-based X-ray techniques in environmental science

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Synchrotron-based X-ray techniques have been widely applied to the fields of environmental science due to their element-specific and nondestructive properties and unique spectral and spatial resolution advantages.The techniques are capable of in situ investigating chemical speciation,microstructure and mapping of elements in question at the molecular or nanometer scale,and thus provide direct evidence for reaction mechanisms for various environmental processes.In this contribution,the applications of three types of the techniques commonly used in the fields of environmental research are reviewed,namely X-ray absorption spectroscopy (XAS),X-ray fluorescence (XRF) spectroscopy and scanning transmission X-ray microscopy (STXM).In particular,the recent advances of the techniques in China are elaborated,and a selection of the applied examples are provided in the field of environmental science.Finally,the perspectives of synchrotron-based X-ray techniques are discussed.With their great progress and wide application,the techniques have revolutionized our understanding of significant geo-and bio-chemical processes.It is anticipatable that synchrotron-based X-ray techniques will continue to play a significant role in the fields and significant advances will be obtained in decades ahead.