WorldWideScience

Sample records for sunspots active regions

  1. In-depth survey of sunspot and active region catalogs

    Science.gov (United States)

    Lefèvre, Laure; Clette, Frédéric; Baranyi, Tunde

    2011-08-01

    When consulting detailed photospheric catalogs for solar activity studies spanning long time intervals, solar physicists face multiple limitations in the existing catalogs: finite or fragmented time coverage, limited time overlap between catalogs and even more importantly, a mismatch in contents and conventions. In view of a study of new sunspot-based activity indices, we have conducted a comprehensive survey of existing catalogs. In a first approach, we illustrate how the information from parallel catalogs can be merged to form a much more comprehensive record of sunspot groups. For this, we use the unique Debrecen Photoheliographic Data (DPD), which is already a composite of several ground observatories and SOHO data, and the USAF/Mount Wilson catalog from the Solar Optical Observing Network (SOON). We also describe our semi-interactive cross-identification method, which was needed to match the non-overlapping solar active region nomenclature, the most critical and subtle step when working with multiple catalogs. This effort, focused here first on the last two solar cycles, should lead to a better central database collecting all available sunspot group parameters to address future solar cycle studies beyond the traditional sunspot index time series Ri.

  2. Area and Flux Distributions of Active Regions, Sunspot Groups, and Sunspots: A Multi-Database Study

    CERN Document Server

    Muñoz-Jaramillo, Andrés; Windmueller, John C; Amouzou, Ernest C; Longcope, Dana W; Tlatov, Andrey G; Nagovitsyn, Yury A; Pevtsov, Alexei A; Chapman, Gary A; Cookson, Angela M; Yeates, Anthony R; Watson, Fraser T; Balmaceda, Laura A; DeLuca, Edward E; Martens, Petrus C H

    2014-01-01

    In this work we take advantage of eleven different sunspot group, sunspot, and active region databases to characterize the area and flux distributions of photospheric magnetic structures. We find that, when taken separately, different databases are better fitted by different distributions (as has been reported previously in the literature). However, we find that all our databases can be reconciled by the simple application of a proportionality constant, and that, in reality, different databases are sampling different parts of a composite distribution. This composite distribution is made up by linear combination of Weibull and log-normal distributions -- where a pure Weibull (log-normal) characterizes the distribution of structures with fluxes below (above) $10^{21}$Mx ($10^{22}$Mx). Additionally, we demonstrate that the Weibull distribution shows the expected linear behaviour of a power-law distribution (when extended into smaller fluxes), making our results compatible with the results of Parnell et al.\\ (200...

  3. On the Role of Rotating Sunspots in the Activity of Solar Active Region NOAA 11158

    CERN Document Server

    Vemareddy, P; Maurya, R A

    2012-01-01

    We study the role of rotating sunspots in relation to the evolution of various physical parameters characterizing the non-potentiality of the active region NOAA 11158 and its eruptive events using the magnetic field data from the Helioseismic and Magnetic Imager (HMI) and multi-wavelength observations from the Atmospheric Imaging Assembly (AIA) on board Solar Dynamics Observatory (SDO). From the evolutionary study of HMI intensity and AIA channels, it is observed that the AR consists of two major rotating sunspots one connected to flare-prone region and another with CME. The constructed space-time intensity maps reveal that the sunspots exhibited peak rotation rates coinciding with the occurrence of the major eruptive events. Further, temporal profiles of twist parameters, viz., average shear angle, $\\alpha_{\\rm av}$, $\\alpha_{\\rm best}$, derived from HMI vector magnetograms and the rate of helicity injection, obtained from the horizontal flux motions of HMI line-of-sight magnetograms, corresponded well with ...

  4. Sunspot Rotation as a Driver of Major Solar Eruptions in NOAA Active Region 12158

    CERN Document Server

    Vemareddy, P; Ravindra, B

    2016-01-01

    We studied the developing conditions of sigmoid structure under the influence of magnetic non-potential characteristics of a rotating sunspot in the active region (AR) 12158. Vector magnetic field measurements from Helioseismic Magnetic Imager and coronal EUV observations from Atmospheric Imaging Assembly reveal that the erupting inverse-S sigmoid had roots in the location of the rotating sunspot. Sunspot rotates at a rate of 0-5deg/h with increasing trend in the first half followed by a decrease. Time evolution of many non-potential parameters had a well correspondence with the sunspot rotation. The evolution of the AR magnetic structure is approximated by a time series of force free equilibria. The NLFFF magnetic structure around the sunspot manifests the observed sigmoid structure. Field lines from the sunspot periphery constitute the body of the sigmoid and those from interior overly the sigmoid similar to a fluxrope structure. While the sunspot is being rotating, two major CME eruptions occurred in the A...

  5. Sunspot Rotation as a Driver of Major Solar Eruptions in the NOAA Active Region 12158

    Science.gov (United States)

    Vemareddy, P.; Cheng, X.; Ravindra, B.

    2016-09-01

    We studied the development conditions of sigmoid structure under the influence of the magnetic non-potential characteristics of a rotating sunspot in the active region (AR) 12158. Vector magnetic field measurements from the Helioseismic Magnetic Imager and coronal EUV observations from the Atmospheric Imaging Assembly reveal that the erupting inverse-S sigmoid had roots at the location of the rotating sunspot. The sunspot rotates at a rate of 0°-5° h-1 with increasing trend in the first half followed by a decrease. The time evolution of many non-potential parameters had a good correspondence with the sunspot rotation. The evolution of the AR magnetic structure is approximated by a time series of force-free equilibria. The non-linear force-free field magnetic structure around the sunspot manifests the observed sigmoid structure. Field lines from the sunspot periphery constitute the body of the sigmoid and those from the interior overlie the sigmoid, similar to a flux rope structure. While the sunspot was rotating, two major coronal mass ejection eruptions occurred in the AR. During the first (second) event, the coronal current concentrations were enhanced (degraded), consistent with the photospheric net vertical current; however, magnetic energy was released during both cases. The analysis results suggest that the magnetic connections of the sigmoid are driven by the slow motion of sunspot rotation, which transforms to a highly twisted flux rope structure in a dynamical scenario. Exceeding the critical twist in the flux rope probably leads to the loss of equilibrium, thus triggering the onset of the two eruptions.

  6. ON THE ROLE OF ROTATING SUNSPOTS IN THE ACTIVITY OF SOLAR ACTIVE REGION NOAA 11158

    Energy Technology Data Exchange (ETDEWEB)

    Vemareddy, P.; Ambastha, A. [Udaipur Solar Observatory, Physical Research Laboratory, Udaipur-313001 (India); Maurya, R. A., E-mail: vema@prl.res.in, E-mail: ambastha@prl.res.in, E-mail: ramajor@astro.snu.ac.kr [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of)

    2012-12-10

    We study the role of rotating sunspots in relation to the evolution of various physical parameters characterizing the non-potentiality of the active region (AR) NOAA 11158 and its eruptive events using the magnetic field data from the Helioseismic and Magnetic Imager (HMI) and multi-wavelength observations from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory. From the evolutionary study of HMI intensity and AIA channels, it is observed that the AR consists of two major rotating sunspots, one connected to a flare-prone region and another with coronal mass ejection (CME). The constructed space-time intensity maps reveal that the sunspots exhibited peak rotation rates coinciding with the occurrence of major eruptive events. Further, temporal profiles of twist parameters, namely, average shear angle, {alpha}{sub av}, {alpha}{sub best}, derived from HMI vector magnetograms, and the rate of helicity injection, obtained from the horizontal flux motions of HMI line-of-sight magnetograms, correspond well with the rotational profile of the sunspot in the CME-prone region, giving predominant evidence of rotational motion causing magnetic non-potentiality. Moreover, the mean value of free energy from the virial theorem calculated at the photospheric level shows a clear step-down decrease at the onset time of the flares revealing unambiguous evidence of energy release intermittently that is stored by flux emergence and/or motions in pre-flare phases. Additionally, distribution of helicity injection is homogeneous in the CME-prone region while in the flare-prone region it is not and often changes sign. This study provides a clear picture that both proper and rotational motions of the observed fluxes played significant roles in enhancing the magnetic non-potentiality of the AR by injecting helicity, twisting the magnetic fields and thereby increasing the free energy, leading to favorable conditions for the observed transient activity.

  7. Image patch analysis of sunspots and active regions. I. Intrinsic dimension and correlation analysis

    CERN Document Server

    Moon, Kevin R; Delouille, Veronique; De Visscher, Ruben; Watson, Fraser; Hero, Alfred O

    2015-01-01

    Complexity of an active region is related to its flare-productivity. Mount Wilson or McIntosh sunspot classifications measure such complexity but in a categorical way, and may therefore not use all the information present in the observations. Moreover, such categorical schemes hinder a systematic study of an active region's evolution for example. We propose fine-scale quantitative descriptors for an active region's complexity and relate them to the Mount Wilson classification. We analyze the local correlation structure within continuum and magnetogram data, as well as the cross-correlation between continuum and magnetogram data. We compute the intrinsic dimension, partial correlation, and canonical correlation analysis (CCA) of image patches of continuum and magnetogram active region images taken from the SOHO-MDI instrument. We use masks of sunspots derived from continuum as well as larger masks of magnetic active regions derived from the magnetogram to analyze separately the core part of an active region fr...

  8. Image patch analysis of sunspots and active regions. I. Intrinsic dimension and correlation analysis

    Science.gov (United States)

    Moon, Kevin R.; Li, Jimmy J.; Delouille, Véronique; De Visscher, Ruben; Watson, Fraser; Hero, Alfred O.

    2016-01-01

    Context. The flare productivity of an active region is observed to be related to its spatial complexity. Mount Wilson or McIntosh sunspot classifications measure such complexity but in a categorical way, and may therefore not use all the information present in the observations. Moreover, such categorical schemes hinder a systematic study of an active region's evolution for example. Aims: We propose fine-scale quantitative descriptors for an active region's complexity and relate them to the Mount Wilson classification. We analyze the local correlation structure within continuum and magnetogram data, as well as the cross-correlation between continuum and magnetogram data. Methods: We compute the intrinsic dimension, partial correlation, and canonical correlation analysis (CCA) of image patches of continuum and magnetogram active region images taken from the SOHO-MDI instrument. We use masks of sunspots derived from continuum as well as larger masks of magnetic active regions derived from magnetogram to analyze separately the core part of an active region from its surrounding part. Results: We find relationships between the complexity of an active region as measured by its Mount Wilson classification and the intrinsic dimension of its image patches. Partial correlation patterns exhibit approximately a third-order Markov structure. CCA reveals different patterns of correlation between continuum and magnetogram within the sunspots and in the region surrounding the sunspots. Conclusions: Intrinsic dimension has the potential to distinguish simple from complex active regions. These results also pave the way for patch-based dictionary learning with a view toward automatic clustering of active regions.

  9. δ-SUNSPOT FORMATION IN SIMULATION OF ACTIVE-REGION-SCALE FLUX EMERGENCE

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Fang; Fan, Yuhong [High Altitude Observatory, National Center for Atmospheric Research, 3090 Center Green Drive, Boulder, CO 80301 (United States)

    2015-06-10

    δ-sunspots, with highly complex magnetic structures, are very productive in energetic eruptive events, such as X-class flares and homologous eruptions. We here study the formation of such complex magnetic structures by numerical simulations of magnetic flux emergence from the convection zone into the corona in an active-region-scale domain. In our simulation, two pairs of bipolar sunspots form on the surface, originating from two buoyant segments of a single subsurface twisted flux rope, following the approach of Toriumi et al. Expansion and rotation of the emerging fields in the two bipoles drive the two opposite polarities into each other with apparent rotating motion, producing a compact δ-sunspot with a sharp polarity inversion line. The formation of the δ-sunspot in such a realistic-scale domain produces emerging patterns similar to those formed in observations, e.g., the inverted polarity against Hale's law, the curvilinear motion of the spot, and strong transverse field with highly sheared magnetic and velocity fields at the polarity inversion line (PIL). Strong current builds up at the PIL, giving rise to reconnection, which produces a complex coronal magnetic connectivity with non-potential fields in the δ-spot overlaid by more relaxed fields connecting the two polarities at the two ends.

  10. Formation of δ-Sunspot in Simulations of Active-Region-Scale Flux Emergence

    Science.gov (United States)

    Fang, Fang; Fan, Yuhong

    2015-04-01

    δ-sunspots, with highly complex magnetic structures, are very productive in energetic eruptive events, such as X-class flares and homologous eruptions. We here study the formation of such complex magnetic structures by numerical simulations of magnetic flux emergence from the convection zone into the corona in an active-region-scale domain. In our simulation, two pairs of bipolar sunspots form on the surface, originating from two buoyant segments of a single subsurface twisted flux rope. Expansion and rotation of the emerging fields in the two bipoles drive the two opposite polarities into each other with apparent rotating motion, producing a compact δ-sunspot with a sharp polarity inversion line. The formation of the δ-sunspot in such a realistic-scale domain produces emerging pattherns similar to those formed in observations, e.g. the inverted polarity against Hale’s law, the curvilinear motion of the spot, strong transverse field with highly sheared magnetic and velocity fields at the PIL. Strong current builds up at the PIL, giving rise to reconnection, which produces a complex coronal magnetic connectivity with non-potential fields in the -spot overlaid by more relaxed fields connecting the two polarities at the two ends.

  11. $\\delta$-Sunspot Formation in Simulation of Active-Region-Scale Flux Emergence

    CERN Document Server

    Fang, Fang

    2015-01-01

    $\\delta$-sunspots, with highly complex magnetic structures, are very productive in energetic eruptive events, such as X-class flares and homologous eruptions. We here study the formation of such complex magnetic structures by numerical simulations of magnetic flux emergence from the convection zone into the corona in an active-region-scale domain. In our simulation, two pairs of bipolar sunspots form on the surface, originating from two buoyant segments of a single subsurface twisted flux rope, following the approach of Toriumi et al. (2014). Expansion and rotation of the emerging fields in the two bipoles drive the two opposite polarities into each other with apparent rotating motion, producing a compact $\\delta$-sunspot with a sharp polarity inversion line. The formation of the $\\delta$-sunspot in such a realistic-scale domain produces emerging patterns similar to those formed in observations, e.g. the inverted polarity against Hale's law, the curvilinear motion of the spot, strong transverse field with hig...

  12. Solar transition region above sunspots

    CERN Document Server

    Tian, H; Teriaca, L; Landi, E; Marsch, E

    2009-01-01

    We study the TR properties above sunspots and the surrounding plage regions, by analyzing several sunspot spectra obtained by SUMER in March 1999 and November 2006. We compare the SUMER spectra observed in the umbra, penumbra, plage, and sunspot plume regions. The Lyman line profiles averaged in each region are presented. For the sunspot observed in 2006, the electron densities, DEM, and filling factors of the TR plasma in the four regions are also investigated. The self-reversals of the Lyman line profiles are almost absent in umbral regions at different locations (heliocentric angle up to $49^\\circ$) on the solar disk. In the sunspot plume, the Lyman lines are also not reversed, whilst the lower Lyman line profiles observed in the plage region are obviously reversed. The TR densities of the umbra and plume are similar and one order of magnitude lower than those of the plage and penumbra. The DEM curve of the sunspot plume exhibits a peak centered around $\\log(T/\\rm{K})\\sim5.45$, which exceeds the DEM of oth...

  13. The formation of an inverse S-shaped active-region filament driven by sunspot motion and magnetic reconnection

    CERN Document Server

    Yan, X L; Guo, Q L; Xue, Z K; Wang, J C; Yang, L H

    2016-01-01

    We present a detailed study of the formation of an inverse S-shaped filament prior to its eruption in active region NOAA 11884 from October 31 to November 2, 2013. In the initial stage, clockwise rotation of a small positive sunspot around the main negative trailing sunspot formed a curved filament. Then the small sunspot cancelled with negative magnetic flux to create a longer active-region filament with an inverse S-shape. At the cancellation site a brightening was observed in UV and EUV images and bright material was transferred to the filament. Later the filament erupted after cancellation of two opposite polarities under the upper part of the filament. Nonlinear force-free field (NLFFF) extrapolation of vector photospheric fields suggests that the filament may have a twisted structure, but this cannot be confirmed from the current observations.

  14. MHD simulations of formation and eruption of a magnetic flux rope in an active region with a delta-sunspot

    Science.gov (United States)

    Yokoyama, Takaaki; Oi, Yoshiaki; Toriumi, Shin

    2017-08-01

    Active regions holding a delta-sunspot are known to produce the largest class of solar flares. How, where, and when such large flares occur above a delta-sunspot are still under debate. For studying this, 3D MHD simulations of the emergence of a subsurface flux tube at two locations in a simulation box modeling the convection zone to the corona were conducted. We found that a flux rope is formed as a consequence of magnetic reconnection of two bipolar loops and sunspot rotation caused by the twist of the subsurface flux tube. Moreover, the flux rope stops ascending when the initial background is not magnetized, whereas it rises up to the upper boundary when a reconnection favorably oriented pre-existing field is introduced to the initial background.

  15. SMALL-SCALE AND GLOBAL DYNAMOS AND THE AREA AND FLUX DISTRIBUTIONS OF ACTIVE REGIONS, SUNSPOT GROUPS, AND SUNSPOTS: A MULTI-DATABASE STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz-Jaramillo, Andrés; Windmueller, John C.; Amouzou, Ernest C.; Longcope, Dana W. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Senkpeil, Ryan R. [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); Tlatov, Andrey G. [Kislovodsk Mountain Astronomical Station of the Pulkovo Observatory, Kislovodsk 357700 (Russian Federation); Nagovitsyn, Yury A. [Pulkovo Astronomical Observatory, Russian Academy of Sciences, St. Petersburg 196140 (Russian Federation); Pevtsov, Alexei A. [National Solar Observatory, Sunspot, NM 88349 (United States); Chapman, Gary A.; Cookson, Angela M. [San Fernando Observatory, Department of Physics and Astronomy, California State University Northridge, Northridge, CA 91330 (United States); Yeates, Anthony R. [Department of Mathematical Sciences, Durham University, South Road, Durham DH1 3LE (United Kingdom); Watson, Fraser T. [National Solar Observatory, Tucson, AZ 85719 (United States); Balmaceda, Laura A. [Institute for Astronomical, Terrestrial and Space Sciences (ICATE-CONICET), San Juan (Argentina); DeLuca, Edward E. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Martens, Petrus C. H., E-mail: munoz@solar.physics.montana.edu [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States)

    2015-02-10

    In this work, we take advantage of 11 different sunspot group, sunspot, and active region databases to characterize the area and flux distributions of photospheric magnetic structures. We find that, when taken separately, different databases are better fitted by different distributions (as has been reported previously in the literature). However, we find that all our databases can be reconciled by the simple application of a proportionality constant, and that, in reality, different databases are sampling different parts of a composite distribution. This composite distribution is made up by linear combination of Weibull and log-normal distributions—where a pure Weibull (log-normal) characterizes the distribution of structures with fluxes below (above) 10{sup 21}Mx (10{sup 22}Mx). Additionally, we demonstrate that the Weibull distribution shows the expected linear behavior of a power-law distribution (when extended to smaller fluxes), making our results compatible with the results of Parnell et al. We propose that this is evidence of two separate mechanisms giving rise to visible structures on the photosphere: one directly connected to the global component of the dynamo (and the generation of bipolar active regions), and the other with the small-scale component of the dynamo (and the fragmentation of magnetic structures due to their interaction with turbulent convection)

  16. Image patch analysis of sunspots and active regions. II. Clustering via dictionary learning

    CERN Document Server

    Moon, Kevin R; Li, Jimmy J; De Visscher, Ruben; Watson, Fraser; Hero, Alfred O

    2015-01-01

    Separating active regions that are quiet from potentially eruptive ones is a key issue in Space Weather applications. Traditional classification schemes such as Mount Wilson and McIntosh have been effective in relating an active region large scale magnetic configuration to its ability to produce eruptive events. However, their qualitative nature prevents systematic studies of an active region's evolution for example. We introduce a new clustering of active regions that is based on the local geometry observed in Line of Sight magnetogram and continuum images. We use a reduced-dimension representation of an active region that is obtained by factoring (i.e. applying dictionary learning to) the corresponding data matrix comprised of local image patches. Two factorizations can be compared via the definition of appropriate metrics on the resulting factors. The distances obtained from these metrics are then used to cluster the active regions. We find that these metrics result in natural clusterings of active regions...

  17. Detection of Emerging Sunspot Regions in the Solar Interior

    Science.gov (United States)

    Ilonidis, Stathis; Zhao, Junwei; Kosovichev, Alexander

    2011-08-01

    Sunspots are regions where strong magnetic fields emerge from the solar interior and where major eruptive events occur. These energetic events can cause power outages, interrupt telecommunication and navigation services, and pose hazards to astronauts. We detected subsurface signatures of emerging sunspot regions before they appeared on the solar disc. Strong acoustic travel-time anomalies of an order of 12 to 16 seconds were detected as deep as 65,000 kilometers. These anomalies were associated with magnetic structures that emerged with an average speed of 0.3 to 0.6 kilometer per second and caused high peaks in the photospheric magnetic flux rate 1 to 2 days after the detection of the anomalies. Thus, synoptic imaging of subsurface magnetic activity may allow anticipation of large sunspot regions before they become visible, improving space weather forecast.

  18. An alternative measure of solar activity from detailed sunspot datasets

    CERN Document Server

    Muraközy, Judit; Ludmány, András

    2016-01-01

    The sunspot number is analyzed by using detailed sunspot data, including aspects of observability, sunspot sizes, and proper identification of sunspot groups as discrete entities of the solar activity. The tests show that besides the subjective factors there are also objective causes of the ambiguities in the series of sunspot numbers. To introduce an alternative activity measure the physical meaning of the sunspot number has to be reconsidered. It contains two components whose numbers are governed by different physical mechanisms, this is one source of the ambiguity. This article suggests an activity index, which is the amount of emerged magnetic flux. The only long-term proxy measure is the detailed sunspot area dataset with proper calibration to the magnetic flux amount. The Debrecen sunspot databases provide an appropriate source for the establishment of the suggested activity index.

  19. IRIS Observation of a Sunspot and the Surrounding Plage Region

    Science.gov (United States)

    TIAN, H.; DeLuca, E. E.; Mcintosh, S. W.; Reeves, K. K.; McKillop, S.; Weber, M.; Saar, S.; Golub, L.; Testa, P.

    2013-12-01

    NASA's IRIS mission is providing high-cadence and high-resolution observations of the solar transition region and chromosphere. We present preliminary results from IRIS observation of a sunspot and the surrounding plage region. The major findings in this observation can be summarized as following: (1) The slit jaw images in the filters of 1400Å and 1330Å reveal the presence of many rapidly evolving fibril-like structures in the transition region for the first time. These thin and long structures mainly reside in the plage region. They could be strands of low-lying cool transition region loops or the transition region counterpart of chromospheric spicules. (2) The C II and Mg II line profiles are almost Gaussian in the sunspot umbra and clearly exhibit a deep reversal at the line center in the plage region, suggesting a greatly reduced opacity in the sunspot atmosphere. (3) Bidirectional jets are frequently occurring mainly in the plage region immediately outside the sunspot throughout the observation. Triple or double Gaussian fit to the line profiles of Si IV suggests a velocity as high as 100 km/s. These velocity values are of the same order of the Alfven speed in the transition region. (4)Three-minute oscillation is clearly present in the sunspot umbra. The oscillation is identified in not only the slit jaw images of 2796Å, 1400Å and 1330Å, but also in spectra of the bright Mg II, C II and Si IV lines. Strong non-linearity is clearly seen in the intensity and Doppler shift oscillations. Interestingly, the obvious increase of the line width only occurs at the times of largest blue shift. The correlated change of the intensity and Doppler shift suggests an upward propagating magneto-acoustic shock wave.

  20. What causes geomagnetic activity during sunspot minimum

    CERN Document Server

    Kirov, Boian; Georgieva, Katya; Obridko, Vladimir

    2014-01-01

    The average geomagnetic activity during sunspot minimum has been continuously decreasing in the last four cycles. The geomagnetic activity is caused by both interplanetary disturbances - coronal mass ejections and high speed solar wind streams, and the background solar wind over which these disturbances ride. We show that the geomagnetic activity in cycle minimum does not depend on the number and parameters of coronal mass ejections or high speed solar wind streams, but on the background solar wind. The background solar wind has two components: slower and faster. The source of the slower component is the heliospheric current sheet, and of the faster one the polar coronal holes. It is supposed that the geomagnetic activity in cycle minimum is determined by the thickness of the heliospheric current sheet which is related to the portions of time the Earth spends in slow and in fast solar wind. We demonstrate that it is also determined by the parameters of these two components of the background solar wind which v...

  1. COMPARISON OF CHAOTIC AND FRACTAL PROPERTIES OF POLAR FACULAE WITH SUNSPOT ACTIVITY

    Energy Technology Data Exchange (ETDEWEB)

    Deng, L. H.; Xiang, Y. Y.; Dun, G. T. [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650216 (China); Li, B., E-mail: wooden@escience.cn [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, School of Space Science and Physics, Shandong University at Weihai, Weihai 264209 (China)

    2016-01-15

    The solar magnetic activity is governed by a complex dynamo mechanism and exhibits a nonlinear dissipation behavior in nature. The chaotic and fractal properties of solar time series are of great importance to understanding the solar dynamo actions, especially with regard to the nonlinear dynamo theories. In the present work, several nonlinear analysis approaches are proposed to investigate the nonlinear dynamical behavior of the polar faculae and sunspot activity for the time interval from 1951 August to 1998 December. The following prominent results are found: (1) both the high- and the low-latitude solar activity are governed by a three-dimensional chaotic attractor, and the chaotic behavior of polar faculae is the most complex, followed by that of the sunspot areas, and then the sunspot numbers; (2) both the high- and low-latitude solar activity exhibit a high degree of persistent behavior, and their fractal nature is due to such long-range correlation; (3) the solar magnetic activity cycle is predictable in nature, but the high-accuracy prediction should only be done for short- to mid-term due to its intrinsically dynamical complexity. With the help of the Babcock–Leighton dynamo model, we suggest that the nonlinear coupling of the polar magnetic fields with strong active-region fields exhibits a complex manner, causing the statistical similarities and differences between the polar faculae and the sunspot-related indicators.

  2. Comparison of Chaotic and Fractal Properties of Polar Faculae with Sunspot Activity

    Science.gov (United States)

    Deng, L. H.; Li, B.; Xiang, Y. Y.; Dun, G. T.

    2016-01-01

    The solar magnetic activity is governed by a complex dynamo mechanism and exhibits a nonlinear dissipation behavior in nature. The chaotic and fractal properties of solar time series are of great importance to understanding the solar dynamo actions, especially with regard to the nonlinear dynamo theories. In the present work, several nonlinear analysis approaches are proposed to investigate the nonlinear dynamical behavior of the polar faculae and sunspot activity for the time interval from 1951 August to 1998 December. The following prominent results are found: (1) both the high- and the low-latitude solar activity are governed by a three-dimensional chaotic attractor, and the chaotic behavior of polar faculae is the most complex, followed by that of the sunspot areas, and then the sunspot numbers; (2) both the high- and low-latitude solar activity exhibit a high degree of persistent behavior, and their fractal nature is due to such long-range correlation; (3) the solar magnetic activity cycle is predictable in nature, but the high-accuracy prediction should only be done for short- to mid-term due to its intrinsically dynamical complexity. With the help of the Babcock-Leighton dynamo model, we suggest that the nonlinear coupling of the polar magnetic fields with strong active-region fields exhibits a complex manner, causing the statistical similarities and differences between the polar faculae and the sunspot-related indicators.

  3. Narrow-line-width UV Bursts in the Transition Region above Sunspots Observed by IRIS

    Science.gov (United States)

    Hou, Zhenyong; Huang, Zhenghua; Xia, Lidong; Li, Bo; Madjarska, Maria S.; Fu, Hui; Mou, Chaozhou; Xie, Haixia

    2016-10-01

    Various small-scale structures abound in the solar atmosphere above active regions, playing an important role in the dynamics and evolution therein. We report on a new class of small-scale transition region structures in active regions, characterized by strong emissions but extremely narrow Si iv line profiles as found in observations taken with the Interface Region Imaging Spectrograph (IRIS). Tentatively named as narrow-line-width UV bursts (NUBs), these structures are located above sunspots and comprise one or multiple compact bright cores at sub-arcsecond scales. We found six NUBs in two data sets (a raster and a sit-and-stare data set). Among these, four events are short-lived with a duration of ∼10 minutes, while two last for more than 36 minutes. All NUBs have Doppler shifts of 15–18 km s‑1, while the NUB found in sit-and-stare data possesses an additional component at ∼50 km s‑1 found only in the C ii and Mg ii lines. Given that these events are found to play a role in the local dynamics, it is important to further investigate the physical mechanisms that generate these phenomena and their role in the mass transport in sunspots.

  4. The mutual attraction of magnetic knots. [solar hydromagnetic instability in sunspot regions

    Science.gov (United States)

    Parker, E. N.

    1978-01-01

    It is observed that the magnetic knots associated with active regions on the sun have an attraction for each other during the formative period of the active regions, when new magnetic flux is coming to the surface. The attraction disappears when new flux ceases to rise through the surface. Then the magnetic spots and knots tend to come apart, leading to disintegration of the sunspots previously formed. The dissolution of the fields is to be expected, as a consequence of the magnetic repulsion of knots of like polarity and as a consequence of the hydromagnetic exchange instability. The purpose of this paper is to show that the mutual attraction of knots during the formative stages of a sunspot region may be understood as the mutual hydrodynamic attraction of the rising flux tubes. Two rising tubes attract each other, as a consequence of the wake of the leading tube when one is moving behind the other, and as a consequence of the Bernoulli effect when rising side by side.

  5. Dynamics in Sunspot Umbra as Seen in New Solar Telescope and Interface Region Imaging Spectrograph Data

    CERN Document Server

    Yurchyshyn, Vasyl; Kilcik, Ali

    2014-01-01

    We analyse sunspot oscillations using Interface Region Imaging Spectrograph (IRIS) slit-jaw and spectral data and narrow-band chromospheric images from the New Solar Telescope (NST) for the main sunspot in NOAA AR 11836. We report that the difference between the shock arrival times as measured the Mg II k 2796.35\\AA\\ and Si IV 1393.76\\AA\\ line formation levels changes during the observed period and peak-to-peak delays may range from 40~s to zero. The intensity of chromospheric shocks also displays a long term (about 20~min) variations. NST's high spatial resolution \\ha\\ data allowed us to conclude that in this sunspot umbral flashes (UFs) appeared in the form of narrow bright lanes stretched along the light bridges and around clusters of umbral bright points. Time series also suggested that UFs preferred to appear on the sunspot-center side of light bridges, which may indicate the existence of a compact sub-photospheric driver of sunspot oscillations. The sunspot's umbra as seen in the IRIS chromospheric and ...

  6. DIAS effective sunspot number as an indicator of the ionospheric activity level over Europe

    National Research Council Canada - National Science Library

    Tsagouri, Ioanna; Zolesi, Bruno; Cander, Ljiljana R; Belehaki, Anna

    2010-01-01

    DIAS (European Digital Upper Atmosphere Server) effective sunspot number — R12eff was recently introduced as a proxy of the ionospheric conditions over Europe for regional ionospheric mapping purposes...

  7. Tilt Angle and Footpoint Separation of Small and Large Bipolar Sunspot Regions Observed with HMI

    Science.gov (United States)

    McClintock, B. H.; Norton, A. A.

    2016-02-01

    We investigate bipolar sunspot regions and how tilt angle and footpoint separation vary during emergence and decay. The Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory collects data at a higher cadence than historical records and allows for a detailed analysis of regions over their lifetimes. We sample the umbral tilt angle, footpoint separation, and umbral area of 235 bipolar sunspot regions in Helioseismic and Magnetic Imager—Debrecen Data with an hourly cadence. We use the time when the umbral area peaks as time zero to distinguish between the emergence and decay periods of each region and we limit our analysis of tilt and separation behavior over time to within ±96 hr of time zero. Tilt angle evolution is distinctly different for regions with small (≈30 MSH), midsize (≈50 MSH), and large (≈110 MSH) maximum umbral areas, with 45 and 90 MSH being useful divisions for separating the groups. At the peak umbral area, we determine median tilt angles for small (7.°6), midsize (5.°9), and large (9.°3) regions. Within ±48 hr of the time of peak umbral area, large regions steadily increase in tilt angle, midsize regions are nearly constant, and small regions show evidence of negative tilt during emergence. A period of growth in footpoint separation occurs over a 72-hr period for all of the regions from roughly 40 to 70 Mm. The smallest bipoles (Jaramillo et al. (2015) results that the sunspots appear to be two distinct populations.

  8. Narrow-line-width UV bursts in the transition region above Sunspots observed by IRIS

    CERN Document Server

    Hou, Zhenyong; Xia, Lidong; Li, Bo; Madjarska, Maria S; Fu, Hui; Mou, Chaozhou; Xie, Haixia

    2016-01-01

    Various small-scale structures abound in the solar atmosphere above active regions, playing an important role in the dynamics and evolution therein. We report on a new class of small-scale transition region structures in active regions, characterized by strong emissions but extremely narrow Si IV line profiles as found in observations taken with the Interface Region Imaging Spectrograph (IRIS). Tentatively named as Narrow-line-width UV bursts (NUBs), these structures are located above sunspots and comprise of one or multiple compact bright cores at sub-arcsecond scales. We found six NUBs in two datasets (a raster and a sit-and-stare dataset). Among these, four events are short-living with a duration of $\\sim$10 mins while two last for more than 36 mins. All NUBs have Doppler shifts of 15--18 km/s, while the NUB found in sit-and-stare data possesses an additional component at $\\sim$50 km/s found only in the C II and Mg II lines. Given that these events are found to play a role in the local dynamics, it is impo...

  9. Relationship between geomagnetic classes’ activity phases and their occurrence during the sunspot cycle

    Directory of Open Access Journals (Sweden)

    Frédéric Ouattara

    2009-06-01

    Full Text Available Four well known geomagnetic classes of activity such as quiet days activity, fluctuating activity, recurrent activity
    and shock activity time occurrences have been determined not only by using time profile of sunspot number
    Rz but also by using aa index values.
    We show that recurrent wind stream activity and fluctuating activity occur in opposite phase and slow solar wind
    activity during minimum phase and shock activity at the maximum phase.
    It emerges from this study that fluctuating activity precedes the sunspot cycle by π/2 and the latter also precedes
    recurrent activity by π/2. Thus in the majority the activities do not happen at random; the sunspot cycle starts
    with quiet days activity, continues with fluctuating activity and during its maximum phase arrives shock activity.
    The descending phase is characterized by the manifestation of recurrent wind stream activity.

  10. TILT ANGLE AND FOOTPOINT SEPARATION OF SMALL AND LARGE BIPOLAR SUNSPOT REGIONS OBSERVED WITH HMI

    Energy Technology Data Exchange (ETDEWEB)

    McClintock, B. H. [University of Southern Queensland, Toowoomba, 4350 (Australia); Norton, A. A., E-mail: u1049686@umail.usq.edu.au, E-mail: aanorton@stanford.edu [HEPL, Stanford University, Palo Alto, CA 94305 (United States)

    2016-02-10

    We investigate bipolar sunspot regions and how tilt angle and footpoint separation vary during emergence and decay. The Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory collects data at a higher cadence than historical records and allows for a detailed analysis of regions over their lifetimes. We sample the umbral tilt angle, footpoint separation, and umbral area of 235 bipolar sunspot regions in Helioseismic and Magnetic Imager—Debrecen Data with an hourly cadence. We use the time when the umbral area peaks as time zero to distinguish between the emergence and decay periods of each region and we limit our analysis of tilt and separation behavior over time to within ±96 hr of time zero. Tilt angle evolution is distinctly different for regions with small (≈30 MSH), midsize (≈50 MSH), and large (≈110 MSH) maximum umbral areas, with 45 and 90 MSH being useful divisions for separating the groups. At the peak umbral area, we determine median tilt angles for small (7.°6), midsize (5.°9), and large (9.°3) regions. Within ±48 hr of the time of peak umbral area, large regions steadily increase in tilt angle, midsize regions are nearly constant, and small regions show evidence of negative tilt during emergence. A period of growth in footpoint separation occurs over a 72-hr period for all of the regions from roughly 40 to 70 Mm. The smallest bipoles (<9 MSH) are outliers in that they do not obey Joy's law and have a much smaller footpoint separation. We confirm the Muñoz-Jaramillo et al. results that the sunspots appear to be two distinct populations.

  11. Theoretical modeling of propagation of magneto-acoustic waves in magnetic regions below sunspots

    CERN Document Server

    Khomenko, E; Collados, M; Parchevsky, K; Olshevsky, V

    2008-01-01

    We use 2D numerical simulations and eikonal approximation to study properties of magneto-acoustic gravity waves traveling below the solar surface through the magnetic structure of sunspots. We consider a series of magnetostatic models of sunspots of different magnetic field strengths, from the deep interior to the chromosphere. The purpose of these studies is to quantify the effect of the magnetic field on local helioseismology measurements. Waves are excited by a sub-photospheric source located in the region beta slightly larger than 1. Time-distance diagrams and travel times are calculated for various frequency intervals and compared to the non-magnetic case. The results confirm that the observed time-distance helioseismology signals in sunspot regions correspond to fast MHD waves. The slow MHD waves form a distinctly different pattern in the time-distance diagram, which has not been detected in observations. The numerical results are in good agreement with the solution in the short-wavelength (eikonal) app...

  12. Tilt Angle and Footpoint Separation of Small and Large Bipolar Sunspot Regions Observed with HMI

    CERN Document Server

    McClintock, Bruce H

    2016-01-01

    We investigate bipolar sunspot regions and how tilt angle and footpoint separation vary during emergence and decay. The Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory collects data at a higher cadence than historical records and allows for a detailed analysis of regions over their lifetimes. We sample the umbral tilt angle, footpoint separation, and umbral area of 235 bipolar sunspot regions in Helioseismic and Magnetic Imager - Debrecen Data (HMIDD) with an hourly cadence. We use the time when the umbral area peaks as time zero to distinguish between the emergence and decay periods of each region and we limit our analysis of tilt and separation behavior over time to within +/-96 hours of time zero. Tilt angle evolution is distinctly different for regions with small (~30 MSH), midsize (~50 MSH), and large (~110 MSH) maximum umbral areas, with 45 and 90 MSH being useful divisions in separating the groups. At the peak umbral area, we determine median tilt angles for small (7.6 degrees),...

  13. Relationships between solar activity and climate change. [sunspot cycle effects on lower atmosphere

    Science.gov (United States)

    Roberts, W. O.

    1974-01-01

    Recurrent droughts are related to the double sunspot cycle. It is suggested that high solar activity generally increases meridional circulations and blocking patterns at high and intermediate latitudes, especially in winter. This effect is related to the sudden formation of cirrus clouds during strong geomagnetic activity that originates in the solar corpuscular emission.

  14. Creating a sunspot database at the Solar Observatory of Ica National University in Perú

    Science.gov (United States)

    Martínez-Meneses, Lurdes

    2012-07-01

    We describe the database and the method used to analyze the sunspot data recorded at the Solar Observatory of the University of Ica in Peru. The parameters that are measured include the relative sunspot number (R), the sunspot area, their positions on the disk, and an estimate of the constant (k) included in R. Sunspots in the database are classified following the Zurich Classification System. From these observations, the active region area, the sunspot rotation speed, and other active regions properties can be estimated.

  15. Are secular correlations between sunspots, geomagnetic activity, and global temperature significant?

    Science.gov (United States)

    Love, J.J.; Mursula, K.; Tsai, V.C.; Perkins, D.M.

    2011-01-01

    Recent studies have led to speculation that solar-terrestrial interaction, measured by sunspot number and geomagnetic activity, has played an important role in global temperature change over the past century or so. We treat this possibility as an hypothesis for testing. We examine the statistical significance of cross-correlations between sunspot number, geomagnetic activity, and global surface temperature for the years 1868-2008, solar cycles 11-23. The data contain substantial autocorrelation and nonstationarity, properties that are incompatible with standard measures of cross-correlational significance, but which can be largely removed by averaging over solar cycles and first-difference detrending. Treated data show an expected statistically- significant correlation between sunspot number and geomagnetic activity, Pearson p correlations between global temperature and sunspot number (geomagnetic activity) are not significant, p = 0.9954, (p = 0.8171). In other words, straightforward analysis does not support widely-cited suggestions that these data record a prominent role for solar-terrestrial interaction in global climate change. With respect to the sunspot-number, geomagnetic-activity, and global-temperature data, three alternative hypotheses remain difficult to reject: (1) the role of solar-terrestrial interaction in recent climate change is contained wholly in long-term trends and not in any shorter-term secular variation, or, (2) an anthropogenic signal is hiding correlation between solar-terrestrial variables and global temperature, or, (3) the null hypothesis, recent climate change has not been influenced by solar-terrestrial interaction. ?? 2011 by the American Geophysical Union.

  16. Deciphering Solar Magnetic Activity I: On The Relationship Between The Sunspot Cycle And The Evolution Of Small Magnetic Features

    CERN Document Server

    McIntosh, Scott W; Leamon, Robert J; Davey, Alisdair R; Howe, Rachel; Krista, Larisza D; Malanushenko, Anna V; Cirtain, Jonathan W; Gurman, Joseph B; Thompson, Michael J

    2014-01-01

    Sunspots are a canonical marker of the Sun's internal magnetic field which flips polarity every ~22-years. The principal variation of sunspots, an ~11-year variation in number, modulates the amount of magnetic field that pierces the solar surface and drives significant variations in our Star's radiative, particulate and eruptive output over that period. This paper presents observations from the Solar and Heliospheric Observatory and Solar Dynamics Observatory indicating that the 11-year sunspot variation is intrinsically tied it to the spatio-temporal overlap of the activity bands belonging to the 22-year magnetic activity cycle. Using a systematic analysis of ubiquitous coronal brightpoints, and the magnetic scale on which they appear to form, we show that the landmarks of sunspot cycle 23 can be explained by considering the evolution and interaction of the overlapping activity bands of the longer scale variability.

  17. Deciphering solar magnetic activity. I. On the relationship between the sunspot cycle and the evolution of small magnetic features

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, Scott W.; Wang, Xin; Markel, Robert S.; Thompson, Michael J. [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307 (United States); Leamon, Robert J.; Malanushenko, Anna V. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Davey, Alisdair R. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Howe, Rachel [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT (United Kingdom); Krista, Larisza D. [Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80205 (United States); Cirtain, Jonathan W. [Marshall Space Flight Center, Code ZP13, Huntsville, AL 35812 (United States); Gurman, Joseph B.; Pesnell, William D., E-mail: mscott@ucar.edu [Solar Physics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2014-09-01

    Sunspots are a canonical marker of the Sun's internal magnetic field which flips polarity every ∼22 yr. The principal variation of sunspots, an ∼11 yr variation, modulates the amount of the magnetic field that pierces the solar surface and drives significant variations in our star's radiative, particulate, and eruptive output over that period. This paper presents observations from the Solar and Heliospheric Observatory and Solar Dynamics Observatory indicating that the 11 yr sunspot variation is intrinsically tied to the spatio-temporal overlap of the activity bands belonging to the 22 yr magnetic activity cycle. Using a systematic analysis of ubiquitous coronal brightpoints and the magnetic scale on which they appear to form, we show that the landmarks of sunspot cycle 23 can be explained by considering the evolution and interaction of the overlapping activity bands of the longer-scale variability.

  18. Characteristics of latitude distribution of sunspots and their links to solar activity in pre-Greenwich data

    CERN Document Server

    Ivanov, V G

    2016-01-01

    We study and compare characteristics of sunspot group latitude distribution in two catalogs: the extended Greenwich (1874--2014) and Schwabe ones (1825--1867). We demonstrate that both datasets reveal similar links between latitude and amplitude characteristics of the 11-year cycle: the latitude dispersion correlates with the current activity and the mean latitude of sunspots in the cycle's maximum is proportional to its amplitude, It agrees with conclusions that we made in previous papers for the Greenwich catalog. We show that the latitude properties of sunspot distribution are much more stable against loss of observational data than traditional amplitude indices of activity. Therefore, the found links can be used for estimates of quality of observations and independent normalizing of activity levels in a gappy pre-Greenwich data. We demonstrate it using the Schwabe catalog as an example. In addition, we show that the first part of the Schwabe data probably contains errors in determination of sunspot latitu...

  19. TRANSITION-REGION/CORONAL SIGNATURES AND MAGNETIC SETTING OF SUNSPOT PENUMBRAL JETS: HINODE (SOT/FG), Hi-C, AND SDO/AIA OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Sanjiv K.; Moore, Ronald L.; Winebarger, Amy R. [NASA Marshall Space Flight Center, Mail Code ZP 13, Huntsville, AL 35812 (United States); Alpert, Shane E., E-mail: sanjiv.k.tiwari@nasa.gov [Department of Physics and Astronomy, Rice University, Houston, TX 77005 (United States)

    2016-01-10

    Penumbral microjets (PJs) are transient narrow bright features in the chromosphere of sunspot penumbrae, first characterized by Katsukawa et al. using the Ca ii H-line filter on Hinode's Solar Optical Telescope (SOT). It was proposed that the PJs form as a result of reconnection between two magnetic components of penumbrae (spines and interspines), and that they could contribute to the transition region (TR) and coronal heating above sunspot penumbrae. We propose a modified picture of formation of PJs based on recent results on the internal structure of sunspot penumbral filaments. Using data of a sunspot from Hinode/SOT, High Resolution Coronal Imager, and different passbands of the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory, we examine whether PJs have signatures in the TR and corona. We find hardly any discernible signature of normal PJs in any AIA passbands, except for a few of them showing up in the 1600 Å images. However, we discovered exceptionally stronger jets with similar lifetimes but bigger sizes (up to 600 km wide) occurring repeatedly in a few locations in the penumbra, where evidence of patches of opposite-polarity fields in the tails of some penumbral filaments is seen in Stokes-V images. These tail PJs do display signatures in the TR. Whether they have any coronal-temperature plasma is unclear. We infer that none of the PJs, including the tail PJs, directly heat the corona in active regions significantly, but any penumbral jet might drive some coronal heating indirectly via the generation of Alfvén waves and/or braiding of the coronal field.

  20. Variability of sunspot cycle QBO and total ozone over high altitude western Himalayan regions

    Science.gov (United States)

    Ningombam, Shantikumar Singh

    2011-10-01

    Long-term trend of total column ozone at high altitude region in Ladakh is studied, using a total ozone mapping spectrometer and an ozone monitoring instrument during 1979-2008. In the region, total ozone exhibits seasonality with maximum in spring and minimum in autumn. The decreasing trend of total ozone was found as -2.51±0.45% per decade with 95% confidence level in the region. Ozone deficiency in the Ladakh region is strongest (-33.9 DU at Hanle) in May and weakest (-11.5 DU at Hanle) in January-February. In the study, the solar maximum in 1990 is in phase with ozone maximum, while ozone variation lags in phase with the 1980 and 2000 solar maxima. However, a significant correlation between total ozone and sunspot number is achieved in the westerly phase of quasi-biennial oscillation during spring season. Decreasing trend of ozone in the region is correlating well with the cooling rate in the lower stratosphere.

  1. Acoustic absorption by sunspots

    Science.gov (United States)

    Braun, D. C.; Labonte, B. J.; Duvall, T. L., Jr.

    1987-01-01

    The paper presents the initial results of a series of observations designed to probe the nature of sunspots by detecting their influence on high-degree p-mode oscillations in the surrounding photosphere. The analysis decomposes the observed oscillations into radially propagating waves described by Hankel functions in a cylindrical coordinate system centered on the sunspot. From measurements of the differences in power between waves traveling outward and inward, it is demonstrated that sunspots appear to absorb as much as 50 percent of the incoming acoustic waves. It is found that for all three sunspots observed, the amount of absorption increases linearly with horizontal wavenumber. The effect is present in p-mode oscillations with wavelengths both significantly larger and smaller than the diameter of the sunspot umbrae. Actual absorption of acoustic energy of the magnitude observed may produce measurable decreases in the power and lifetimes of high-degree p-mode oscillations during periods of high solar activity.

  2. North-south asymmetry in small and large sunspot group activity and violation of even-odd solar cycle rule

    Science.gov (United States)

    Javaraiah, J.

    2016-07-01

    According to Gnevyshev-Ohl (G-O) rule an odd-numbered cycle is stronger than its preceding even-numbered cycle. In the modern time the cycle pair (22, 23) violated this rule. By using the combined Greenwich Photoheliographic Results (GPR) and Solar Optical Observing Network (SOON) sunspot group data during the period 1874-2015, and Debrecen Photoheliographic Data (DPD) of sunspot groups during the period 1974-2015, here we have found that the solar cycle pair (22, 23) violated the G-O rule because, besides during cycle 23 a large deficiency of small sunspot groups in both the northern and the southern hemispheres, during cycle 22 a large abundance of small sunspot groups in the southern hemisphere. In the case of large and small sunspot groups the cycle pair (22, 23) violated the G-O rule in the northern and southern hemispheres, respectively, suggesting the north-south asymmetry in solar activity has a significant contribution in the violation of G-O rule. The amplitude of solar cycle 24 is smaller than that of solar cycle 23. However, Coronal Mass Ejections (CMEs) rate in the rising phases of the cycles 23 and 24 are almost same (even slightly large in cycle 24). From both the SOON and the DPD sunspot group data here we have also found that on the average the ratio of the number (counts) of large sunspot groups to the number of small sunspot groups is larger in the rising phase of cycle 24 than that in the corresponding phase of cycle 23. We suggest this could be a potential reason for the aforesaid discrepancy in the CME rates during the rising phases of cycles 23 and 24. These results have significant implication on solar cycle mechanism.

  3. DETECTION OF SUPERSONIC DOWNFLOWS AND ASSOCIATED HEATING EVENTS IN THE TRANSITION REGION ABOVE SUNSPOTS

    Energy Technology Data Exchange (ETDEWEB)

    Kleint, L.; Martínez-Sykora, J. [Bay Area Environmental Research Institute, 625 2nd Street, Ste. 209, Petaluma, CA (United States); Antolin, P. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Tian, H.; Testa, P.; Reeves, K. K.; McKillop, S.; Saar, S.; Golub, L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Judge, P. [High Altitude Observatory/NCAR, P.O. Box 3000, Boulder, CO 80307 (United States); De Pontieu, B.; Wuelser, J. P.; Boerner, P.; Hurlburt, N.; Lemen, J.; Tarbell, T. D.; Title, A. [Lockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover St., Org. ADBS, Bldg. 252, Palo Alto, CA 94304 (United States); Carlsson, M.; Hansteen, V. [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, NO-0315 Oslo (Norway); Jaeggli, S., E-mail: lucia.kleint@fhnw.ch [Department of Physics, Montana State University, Bozeman, P.O. Box 173840, Bozeman, MT 59717 (United States); and others

    2014-07-10

    Interface Region Imaging Spectrograph data allow us to study the solar transition region (TR) with an unprecedented spatial resolution of 0.''33. On 2013 August 30, we observed bursts of high Doppler shifts suggesting strong supersonic downflows of up to 200 km s{sup –1} and weaker, slightly slower upflows in the spectral lines Mg II h and k, C II 1336, Si IV 1394 Å, and 1403 Å, that are correlated with brightenings in the slitjaw images (SJIs). The bursty behavior lasts throughout the 2 hr observation, with average burst durations of about 20 s. The locations of these short-lived events appear to be the umbral and penumbral footpoints of EUV loops. Fast apparent downflows are observed along these loops in the SJIs and in the Atmospheric Imaging Assembly, suggesting that the loops are thermally unstable. We interpret the observations as cool material falling from coronal heights, and especially coronal rain produced along the thermally unstable loops, which leads to an increase of intensity at the loop footpoints, probably indicating an increase of density and temperature in the TR. The rain speeds are on the higher end of previously reported speeds for this phenomenon, and possibly higher than the free-fall velocity along the loops. On other observing days, similar bright dots are sometimes aligned into ribbons, resembling small flare ribbons. These observations provide a first insight into small-scale heating events in sunspots in the TR.

  4. Magnetic Tension of Sunspot Fine Structures

    CERN Document Server

    Venkatakrishnan, P

    2010-01-01

    The equilibrium structure of sunspots depends critically on its magnetic topology and is dominated by magnetic forces. Tension force is one component of the Lorentz force which balances the gradient of magnetic pressure in force-free configurations. We employ the tension term of the Lorentz force to clarify the structure of sunspot features like penumbral filaments, umbral light bridges and outer penumbral fine structures. We compute vertical component of tension term of Lorentz force over two active regions namely NOAA AR 10933 and NOAA AR 10930 observed on 05 January 2007 and 12 December 2006 respectively. The former is a simple while latter is a complex active region with highly sheared polarity inversion line (PIL). The vector magnetograms used are obtained from Hinode(SOT/SP). We find an inhomogeneous distribution of tension with both positive and negative signs in various features of the sunspots. The existence of positive tension at locations of lower field strength and higher inclination is compatible...

  5. Unusual Stokes V profiles during flaring activity of a delta sunspot

    Science.gov (United States)

    Fischer, C. E.; Keller, C. U.; Snik, F.; Fletcher, L.; Socas-Navarro, H.

    2012-11-01

    Aims: We analyze a set of full Stokes profile observations of the flaring active region NOAA 10808. The region was recorded with the Vector-Spectromagnetograph of the Synoptic Optical Long-term Investigations of the Sun facility. The active region produced several successive X-class flares between 19:00 UT and 24:00 UT on September 13, 2005 and we aim to quantify transient and permanent changes in the magnetic field and velocity field during one of the flares, which has been fully captured. Methods: The Stokes profiles were inverted using the height-dependent inversion code LILIA to analyze magnetic field vector changes at the flaring site. We report multilobed asymmetric Stokes V profiles found in the δ-sunspot umbra. We fit the asymmetric Stokes V profiles assuming an atmosphere consisting of two components (SIR inversions) to interpret the profile shape. The results are put in context with Michelson Doppler Imager (MDI) magnetograms and reconstructed X-ray images from the Reuven Ramaty High Energy Solar Spectroscopic Imager. Results: We obtain the magnetic field vector and find signs of restructuring of the photospheric magnetic field during the flare close to the polarity inversion line at the flaring site. At two locations in the umbra we encounter strong fields (~3 kG), as inferred from the Stokes I profiles, which, however, exhibit a low polarization signal. During the flare we observe in addition asymmetric Stokes V profiles at one of these sites. The asymmetric Stokes V profiles appear co-spatial and co-temporal with a strong apparent polarity reversal observed in MDI-magnetograms and a chromospheric hard X-ray source. The two-component atmosphere fits of the asymmetric Stokes profiles result in line-of-sight velocity differences in the range of ~12 km s-1 to 14 km s-1 between the two components in the photosphere. Another possibility is that local atmospheric heating is causing the observed asymmetric Stokes V profile shape. In either case our analysis

  6. North-south asymmetry in small and large sunspot group activity and violation of even-odd solar cycle rule

    CERN Document Server

    Javaraiah, J

    2016-01-01

    According to Gnevyshev-Ohl (G-O) rule an odd-numbered cycle is stronger than its preceding even-numbered cycle. In the modern time the cycle pair (22, 23) violated this rule. By using the combined Greenwich Photoheliographic Results (GPR) and Solar Optical Observing Network (SOON) sunspot group data during the period 1874-2015, and Debrecen Photoheliographic Data (DPD) of sunspot groups during the period 1974-2015, here we have found that the solar cycle pair (22, 23) violated the G-O rule because, besides during cycle 23 a large deficiency of small sunspot groups in both the northern and the southern hemispheres, during cycle 22 a large abundance of small sunspot groups in the southern hemisphere. In the case of large and small sunspot groups the cycle pair (22, 23) violated the G-O rule in the northern and southern hemispheres, respectively, suggesting the north-south asymmetry in solar activity has a significant contribution in the violation of G-O rule. The amplitude of solar cycle 24 is smaller than that...

  7. EUV Sunspot Plumes Observed with SOHO

    CERN Document Server

    Maltby, P; Brekke, P; Haugan, S V H; Kjeldseth-Moe, O; Wikstøl, O; Rimmele, T R; Wikstøl, O

    1998-01-01

    Bright EUV sunspot plumes have been observed in five out of nine sunspot regions with the Coronal Diagnostic Spectrometer -- CDS on SOHO. In the other four regions the brightest line emissions may appear inside the sunspot but are mainly concentrated in small regions outside the sunspot areas. These results are in contrast to those obtained during the Solar Maximum Mission, but are compatible with the Skylab mission results. The present observations show that sunspot plumes are formed in the upper part of the transition region, occur both in magnetic unipolar-- and bipolar regions, and may extend from the umbra into the penumbra.

  8. Revisiting the Sunspot Number

    CERN Document Server

    Clette, Frédéric; Vaquero, José M; Cliver, Edward W

    2014-01-01

    Our knowledge of the long-term evolution of solar activity and of its primary modulation, the 11-year cycle, largely depends on a single direct observational record: the visual sunspot counts that retrace the last 4 centuries, since the invention of the astronomical telescope. Currently, this activity index is available in two main forms: the International Sunspot Number initiated by R. Wolf in 1849 and the Group Number constructed more recently by Hoyt and Schatten (1998a,b). Unfortunately, those two series do not match by various aspects, inducing confusions and contradictions when used in crucial contemporary studies of the solar dynamo or of the solar forcing on the Earth climate. Recently, new efforts have been undertaken to diagnose and correct flaws and biases affecting both sunspot series, in the framework of a series of dedicated Sunspot Number Workshops. Here, we present a global overview of our current understanding of the sunspot number calibration. While the early part of the sunspot record befor...

  9. A New Calibrated Sunspot Group Series Since 1749: Statistics of Active Day Fractions

    CERN Document Server

    Usoskin, I G; Lockwood, M; Mursula, K; Owens, M; Solanki, S K

    2015-01-01

    Although the sunspot-number series have existed since the mid-19th century, they are still the subject of intense debate, with the largest uncertainty being related to the "calibration" of the visual acuity of individual observers in the past. Daisy-chain regression methods are applied to inter-calibrate the observers which may lead to significant bias and error accumulation. Here we present a novel method to calibrate the visual acuity of the key observers to the reference data set of Royal Greenwich Observatory sunspot groups for the period 1900-1976, using the statistics of the active-day fraction. For each observer we independently evaluate their observational thresholds [S_S] defined such that the observer is assumed to miss all of the groups with an area smaller than S_S and report all the groups larger than S_S. Next, using a Monte-Carlo method we construct, from the reference data set, a correction matrix for each observer. The correction matrices are significantly non-linear and cannot be approximate...

  10. On sunspots

    CERN Document Server

    Galilei, Galileo; Reeves, Eileen; Helden, Albert van

    2010-01-01

    Galileo's telescopic discoveries, and especially his observation of sunspots, caused great debate in an age when the heavens were thought to be perfect and unchanging. Christoph Scheiner, a Jesuit mathematician, argued that sunspots were planets or moons crossing in front of the Sun. Galileo, on the other hand, countered that the spots were on or near the surface of the Sun itself, and he supported his position with a series of meticulous observations and mathematical demonstrations that eventually convinced even his rival.  On Sunspots collects the correspondenc

  11. The sunspot cycle and ``auroral'' F layer irregularities

    Science.gov (United States)

    Aarons, J.; Kersley, L.; Rodger, A. S.

    The use of the word ``aurora'' for many different observations at high latitudes has limited the concepts involved; this is particularly true for F region irregularities. Observations setting the position of the auroral oval (Starkov and Fel'dshtein, 1970) were made using primarily the 555.7-nm green line, which is emitted predominantly at E layer heights. These observations have shown that the change in position of the auroral oval for low values of Kp as a function of sunspot cycle is of the order of 1° to 2° between sunspot maximum and sunspot minimum. However, irregularities in the F region show much larger solar cycle variations in the locations of the equatorward boundary, typically 10°. A review of scintillation data indicates that at a given auroral latitude, the scintillation activity increases with sunspot number. In addition, for a constant scintillation intensity, the equatorward boundary moves to lower latitudes as sunspot maximum is approached. We review existing spread F studies and show that for quiet geomagnetic conductions, there is lower occurrence during years of low sunspot numbers than during years of high sunspot numbers. However, the spread F index, related to Δ f/f0F2, is higher during years of low sunspot number than during years of high sunspot number. We demonstrate that this apparent dichotomy can be reconciled by using a new method of normalizing the spread F index by the maximum electron concentration of the F layer. We briefly discuss the possible explanations for the observed solar cycle variations of irregularity occurrence in terms of the absolute values and gradients of electron concentration and the E region conductivity.

  12. Cross Recurrence Plots Analysis of the North-South Sunspot Activities

    Science.gov (United States)

    Ponyavin, Dmitri I.; Zolotova, Nadejda V.

    A new technique of nonlinear interrelations between time series developed by Marwan & Kurths, (2002) has been applied to the sunspot data. By using this tools we have investigated synchronization and phase difference in annual sunspot areas -- time series available for Northern and Southern Hemispheres of the Sun.

  13. High-resolution Observations of the Shock Wave Behavior for Sunspot Oscillations with the Interface Region Imaging Spectrograph

    Science.gov (United States)

    Tian, H.; DeLuca, E.; Reeves, K. K.; McKillop, S.; De Pontieu, B.; Martínez-Sykora, J.; Carlsson, M.; Hansteen, V.; Kleint, L.; Cheung, M.; Golub, L.; Saar, S.; Testa, P.; Weber, M.; Lemen, J.; Title, A.; Boerner, P.; Hurlburt, N.; Tarbell, T. D.; Wuelser, J. P.; Kankelborg, C.; Jaeggli, S.; McIntosh, S. W.

    2014-05-01

    We present the first results of sunspot oscillations from observations by the Interface Region Imaging Spectrograph. The strongly nonlinear oscillation is identified in both the slit-jaw images and the spectra of several emission lines formed in the transition region and chromosphere. We first apply a single Gaussian fit to the profiles of the Mg II 2796.35 Å, C II 1335.71 Å, and Si IV 1393.76 Å lines in the sunspot. The intensity change is ~30%. The Doppler shift oscillation reveals a sawtooth pattern with an amplitude of ~10 km s-1 in Si IV. The Si IV oscillation lags those of C II and Mg II by ~3 and ~12 s, respectively. The line width suddenly increases as the Doppler shift changes from redshift to blueshift. However, we demonstrate that this increase is caused by the superposition of two emission components. We then perform detailed analysis of the line profiles at a few selected locations on the slit. The temporal evolution of the line core is dominated by the following behavior: a rapid excursion to the blue side, accompanied by an intensity increase, followed by a linear decrease of the velocity to the red side. The maximum intensity slightly lags the maximum blueshift in Si IV, whereas the intensity enhancement slightly precedes the maximum blueshift in Mg II. We find a positive correlation between the maximum velocity and deceleration, a result that is consistent with numerical simulations of upward propagating magnetoacoustic shock waves.

  14. High-resolution observations of the shock wave behavior for sunspot oscillations with the interface region imaging spectrograph

    Energy Technology Data Exchange (ETDEWEB)

    Tian, H.; DeLuca, E.; Reeves, K. K.; McKillop, S.; Golub, L.; Saar, S.; Testa, P.; Weber, M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); De Pontieu, B.; Martínez-Sykora, J.; Kleint, L.; Cheung, M.; Lemen, J.; Title, A.; Boerner, P.; Hurlburt, N.; Tarbell, T. D.; Wuelser, J. P. [Lockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover Street, Org. ADBS, Bldg. 252, Palo Alto, CA 94304 (United States); Carlsson, M.; Hansteen, V., E-mail: hui.tian@cfa.harvard.edu [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, NO-0315 Oslo (Norway); and others

    2014-05-10

    We present the first results of sunspot oscillations from observations by the Interface Region Imaging Spectrograph. The strongly nonlinear oscillation is identified in both the slit-jaw images and the spectra of several emission lines formed in the transition region and chromosphere. We first apply a single Gaussian fit to the profiles of the Mg II 2796.35 Å, C II 1335.71 Å, and Si IV 1393.76 Å lines in the sunspot. The intensity change is ∼30%. The Doppler shift oscillation reveals a sawtooth pattern with an amplitude of ∼10 km s{sup –1} in Si IV. The Si IV oscillation lags those of C II and Mg II by ∼6 and ∼25 s, respectively. The line width suddenly increases as the Doppler shift changes from redshift to blueshift. However, we demonstrate that this increase is caused by the superposition of two emission components. We then perform detailed analysis of the line profiles at a few selected locations on the slit. The temporal evolution of the line core is dominated by the following behavior: a rapid excursion to the blue side, accompanied by an intensity increase, followed by a linear decrease of the velocity to the red side. The maximum intensity slightly lags the maximum blueshift in Si IV, whereas the intensity enhancement slightly precedes the maximum blueshift in Mg II. We find a positive correlation between the maximum velocity and deceleration, a result that is consistent with numerical simulations of upward propagating magnetoacoustic shock waves.

  15. On the Relationship Between Sunspot Structure and Magnetic Field Changes Associated with Solar Flares

    Science.gov (United States)

    Song, Y. L.; Zhang, M.

    2016-08-01

    Many previous studies have shown that magnetic fields and sunspot structures present rapid and irreversible changes associated with solar flares. In this paper, we first use five X-class flares observed by Solar Dynamics Observatory/Helioseismic and Magnetic Imager to show that not only do magnetic fields and sunspot structures show rapid, irreversible changes, but also that these changes are closely related both spatially and temporally. The magnitudes of the correlation coefficients between the temporal variations of the horizontal magnetic field and sunspot intensity are all larger than 0.90, with a maximum value of 0.99 and an average value of 0.96. Then, using four active regions during quiescent periods, three observed and one simulated, we show that in sunspot penumbra regions there also exists a close correlation between sunspot intensity and horizontal magnetic field strength in addition to the well-known correlation between sunspot intensity and the normal magnetic field strength. By connecting these two observational phenomena, we show that the sunspot structure change and magnetic field change are two facets of the same phenomena of solar flares; one change might be induced by the change of the other due to a linear correlation between sunspot intensity and magnetic field strength out of a local force balance.

  16. Sunspots, Starspots, and Elemental Abundances

    Science.gov (United States)

    Doschek, George A.; Warren, Harry P.

    2017-08-01

    The composition of plasma in solar and stellar atmospheres is not fixed, but varies from feature to feature. These variations are organized by the First Ionization Potential (FIP) of the element. Solar measurements often indicate that low FIP elements (10 eV, such as C, N, O, Ar, He) compared to abundances in the photosphere. Stellar observations have also shown similar enrichments. An inverse FIP effect, where the low FIP elements are depleted, has been observed in stellar coronae of stars believed to have large starspots in their photospheres. The abundances are important for determining radiative loss rates in models, tracing the origin of the slow solar wind, and for understanding wave propagation in the chromosphere and corona. Recently, inverse FIP effects have been discovered in the Sun (Doschek, Warren, & Feldman 2015, ApJ, 808, L7) from spectra obtained by the Extreme-ultraviolet Imaging Spectrometer (EIS) on the Hinode spacecraft. The inverse FIP regions seem always to be near sunspots and cover only a very small area (characteristic length = a few arcseconds). However, in pursuing the search for inverse FIP regions, we have found that in some sunspot groups the coronal abundance at a temperature of 3-4 MK can be near photospheric over much larger areas of the sun near the sunspots (e.g., 6,000 arcsec2). Also, sometimes the abundances at 3-4 MK are in between coronal and photospheric values. This can occur in small areas of an active region. It is predicted (Laming 2015, Sol. Phys., 12, 2) that the FIP effect should be highly variable in the corona. Several examples of coronal abundance variations are presented. Our work indicates that a comprehensive re-investigation of solar abundances is highly desirable. This work is supported by a NASA Hinode grant.

  17. On the relation between activity-related frequency shifts and the sunspot distribution over the solar cycle 23

    CERN Document Server

    Santos, A R G; Avelino, P P; Chaplin, W J; Campante, T L

    2016-01-01

    The activity-related variations in the solar acoustic frequencies have been known for 30 years. However, the importance of the different contributions is still not well established. With this in mind, we developed an empirical model to estimate the spot-induced frequency shifts, which takes into account the sunspot properties, such as area and latitude. The comparison between the model frequency shifts obtained from the daily sunspot records and those observed suggests that the contribution from a stochastic component to the total frequency shifts is about 30%. The remaining 70% is related to a global, long-term variation. We also propose a new observable to investigate the short- and mid-term variations of the frequency shifts, which is insensitive to the long-term variations contained in the data. On the shortest time scales the variations in the frequency shifts are strongly correlated with the variations in the total area covered by sunspots. However, a significant loss of correlation is still found, whic...

  18. The causality between the rapid rotation of a sunspot and an X3.4 flare

    Institute of Scientific and Technical Information of China (English)

    Xiao-Li Yan; Zhong-Quan Qu; Cheng-Lin Xu; Zhi-Ke Xue; De-Fang Kong

    2009-01-01

    Using multi-wavelength data of Hinode, the rapid rotation of a sunspot in ac-tive region NOAA 10930 is studied in detail. We found extraordinary counterclockwise rotation of the sunspot with positive polarity before an X3.4 flare. From a series of vector magnetograms, it is found that magnetic force lines are highly sheared along the neu-tral line accompanying the sunspot rotation. Furthermore, it is also found that sheared loops and an inverse S-shaped magnetic loop in the corona formed gradually after the sunspot rotation. The X3.4 flare can be reasonably regarded as a result of this movement. A detailed analysis provides evidence that sunspot rotation leads to magnetic field linestwisting in the photosphere. The twist is then transported into the corona and triggers flares.

  19. Sunspot Group Development in High Resolution

    CERN Document Server

    Muraközy, J; Ludmány, A

    2014-01-01

    The Solar and Heliospheric Obseratory/Michelson Doppler Imager--Debrecen Data (SDD) sunspot catalogue provides an opportunity to study the details and development of sunspot groups on a large statistical sample. The SDD data allow, in particular, the differential study of the leading and following parts with a temporal resolution of 1.5 hours. In this study, we analyse the equilibrium distance of sunspot groups as well as the evolution of this distance over the lifetime of the groups and the shifts in longitude associated with these groups. We also study the asymmetry between the compactness of the leading and following parts, as well as the time-profiles for the development of the area of sunspot groups. A logarithmic relationship has been found between the total area and the distance of leading-following parts of active regions (ARs) at the time of their maximum area. In the developing phase the leading part moves forward; this is more noticeable in larger ARs. The leading part has a higher growth rate than...

  20. Pre-Flare Dynamics of Sunspot Groups

    CERN Document Server

    Korsos, M B; Ludmany, A

    2014-01-01

    Several papers provide evidences that the most probable sites of flare onset are the regions of high horizontal magnetic field gradients in solar active regions. Besides the localization of flare producing areas the present work intends to reveal the characteristic temporal variations in these regions prior to flares. This study uses sunspot data instead of magnetograms, it follows the behaviour of a suitable defined proxy measure representing the horizontal magnetic field gradient. The source of the data is the SDD (SOHO/MDI-Debrecen Data) sunspot catalogue. The most promising pre-flare signatures are the following properties of the gradient variation: i) steep increase, ii) high maximum, iii) significant fluctuation and iv) a gradual decrease between the maximum and the flare onset which can be related to the "pull mode" of the current layer. These properties may yield a tool for the assessment of flare probability and intensity within the next 8-10 hours.

  1. Pre-flare dynamics of sunspot groups

    Energy Technology Data Exchange (ETDEWEB)

    Korsós, M. B.; Baranyi, T.; Ludmány, A., E-mail: korsos.marianna@csfk.mta.hu, E-mail: baranyi.tunde@csfk.mta.hu, E-mail: ludmany.andras@csfk.mta.hu [Heliophysical Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, 4010 Debrecen, P.O. Box 30 (Hungary)

    2014-07-10

    Several papers provide evidence that the most probable sites of flare onset are the regions of high horizontal magnetic field gradients in solar active regions. Besides the localization of flare-producing areas, this work intends to reveal the characteristic temporal variations in these regions prior to flares. This study uses sunspot data instead of magnetograms and follows the behavior of a suitable defined proxy measure representing the horizontal magnetic field gradient. The source of the data is the SDD (SOHO/MDI-Debrecen Data) sunspot catalog. The most promising pre-flare signatures are the following properties of gradient variation: (1) steep increase, (2) high maximum, (3) significant fluctuation, and (4) a gradual decrease between the maximum and the flare onset that can be related to the 'pull mode' of the current layer. These properties may yield a tool for the assessment of flare probability and intensity within the following 8-10 hr.

  2. Transition-Region/Coronal Signatures and Magnetic Setting of Sunspot Penumbral Jets: {\\it Hinode} (SOT/FG), Hi-C and {\\it SDO}/AIA Observations

    CERN Document Server

    Tiwari, Sanjiv K; Winebarger, Amy R; Alpert, Shane E

    2015-01-01

    Penumbral microjets (PJs) are transient narrow bright features in the chromosphere of sunspot penumbrae, first characterized by Katsukawa et al (2007) using the \\CaII\\ H-line filter on {\\it Hinode}'s Solar Optical Telescope (SOT). It was proposed that the PJs form as a result of reconnection between two magnetic components of penumbra (spines and interspines), and that they could contribute to the transition region (TR) and coronal heating above sunspot penumbrae. We propose a modified picture of formation of PJs based on recent results on internal structure of sunspot penumbral filaments. Using data of a sunspot from {\\it Hinode}/SOT, High Resolution Coronal Imager, and different passbands of the Atmospheric Imaging Assembly (AIA) onboard the {\\it Solar Dynamics Observatory}, we examine whether PJs have signatures in the TR and corona. We find hardly any discernible signature of normal PJs in any AIA passbands, except a few of them showing up in the 1600 \\AA\\ images. However, we discovered exceptionally stro...

  3. Numerical simulations of the subsurface structure of sunspots

    Science.gov (United States)

    Rempel, M.; Cheung, M.; Birch, A. C.; Braun, D. C.

    2011-12-01

    Knowledge of the subsurface magnetic field and flow structure of sunspots is essential for understanding the processes involved in their formation, dynamic evolution and decay. Information on the subsurface structure can be obtained by either direct numerical modeling or helioseismic inversions. Numerical simulations have reached only in recent years the point at which entire sunspots or even active regions can be modeled including all relevant physical processes such as 3D radiative transfer and a realistic equation of state. We present in this talk results from a series of different models: from simulations of individual sunspots (with and without penumbrae) in differently sized computational domains to simulations of the active region formation process (flux emergence). It is found in all models that the subsurface magnetic field fragments on an intermediate scale (larger than the scale of sunspot fine structure such as umbral dots); most of these fragmentations become visible as light bridges or flux separation events in the photosphere. The subsurface field strength is found to be in the 5-10 kG range. The simulated sunspots are surrounded by large scale flows, the most dominant and robust flow component is a deep reaching outflow with an amplitude reaching about 50% of the convective RMS velocity at the respective depth. The simulated sunspots show helioseismic signatures (frequency dependent travel time shifts) similar to those in observed sunspots. On the other hand it is clear from the simulations that these signatures originate in the upper most 2-3 Mm of the convection zone, since only there substantial perturbations of the wave speed are present. The contributions from deeper layers are insignificant, in particular a direct comparison between an 8 Mm and 16 Mm deep simulation leads to indiscernible helioseismic differences. The National Center for Atmospheric Research is sponsored by the National Science Foundation. This work is in part supported

  4. Study of sunspot group morphological variations leading to flaring events

    CERN Document Server

    Korsos, M B; Ludmany, A

    2014-01-01

    It is widely assumed that the most probable sites of flare occurrences are the locations of high horizontal magnetic field gradients in the active regions. Instead of magnetograms the present work checks this assumption by using sunspot data, the targeted phenomenon is the pre-flare behaviour of the strong horizontal gradients of the magnetic field at the location of the flare. The empirical basis of the work is the SDD (SOHO/MDI-Debrecen sunspot Data) sunspot catalogue. Case studies of two active regions and five X-flares have been carried out to find possible candidates for pre-flare signatures. It has been found that the following properties of the temporal variations of horizontal magnetic field gradient are promising for flare forecast: the speed of its growth, its maximal value, its decrease after the maximum until the flare and the rate of its fluctuation.

  5. Three-dimensional structure of a sunspot light bridge

    CERN Document Server

    Felipe, T; Khomenko, E; Kuckein, C; Ramos, A Asensio; Balthasar, H; Berkefeld, T; Denker, C; Feller, A; Franz, M; Hofmann, A; Kiess, C; Lagg, A; Nicklas, H; Suárez, D Orozco; Yabar, A Pastor; Rezaei, R; Schlichenmaier, R; Schmidt, D; Schmidt, W; Sigwarth, M; Sobotka, M; Solanki, S K; Soltau, D; Staude, J; Strassmeier, K G; Volkmer, R; von der Lühe, O; Waldmann, T

    2016-01-01

    Active regions are the most prominent manifestations of solar magnetic fields; their generation and dissipation are fundamental problems in solar physics. Light bridges are commonly present during sunspot decay, but a comprehensive picture of their role in the removal of photospheric magnetic field is still missing. We study the three dimensional configuration of a sunspot and in particular its light bridge during one of the last stages of its decay. We present the magnetic and thermodynamical stratification inferred from full Stokes inversions of the photospheric Si I 10827 \\AA\\ and Ca I 10839 \\AA\\ lines obtained with the GREGOR Infrared Spectrograph of the GREGOR telescope at Observatorio del Teide, Tenerife, Spain. The analysis is complemented by a study of continuum images covering the disk passage of the active region, which are provided by the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory. The sunspot shows a light bridge with penumbral continuum intensity that separates the c...

  6. On Magnetic Activity Band Overlap, Interaction, and the Formation of Complex Solar Active Regions

    CERN Document Server

    McIntosh, Scott W

    2014-01-01

    Recent work has revealed an phenomenological picture of the how the $\\sim$11-year sunspot cycle of Sun arises. The production and destruction of sunspots is a consequence of the latitudinal-temporal overlap and interaction of the toroidal magnetic flux systems that belong to the 22-year magnetic activity cycle and are rooted deep in the Sun's convective interior. We present a conceptually simple extension of this work, presenting a hypothesis on how complex active regions can form as a direct consequence of the intra- and extra-hemispheric interaction taking place in the solar interior. Furthermore, during specific portions of the sunspot cycle we anticipate that those complex active regions may be particular susceptible to profoundly catastrophic breakdown---producing flares and coronal mass ejections of most severe magnitude.

  7. Dynamics of Subarcsecond Bright Dots in the Transition Region above Sunspots and Their Relation to Penumbral Micro-jets

    Science.gov (United States)

    Samanta, Tanmoy; Tian, Hui; Banerjee, Dipankar; Schanche, Nicole

    2017-02-01

    Recent high-resolution observations have revealed that subarcsecond bright dots (BDs) with sub-minute lifetimes appear ubiquitously in the transition region (TR) above sunspot penumbra. The presence of penumbral micro-jets (PMJs) in the chromosphere was previously reported. It was proposed that both the PMJs and BDs are formed due to a magnetic reconnection process and may play an important role in heating of the penumbra. Using simultaneous observations of the chromosphere from the Solar Optical Telescope (SOT) on board Hinode and observations of the TR from the Interface Region Imaging Spectrograph, we study the dynamics of BDs and their relation to PMJs. We find two types of BDs, one that is related to PMJs, and another that does not show any visible dynamics in the SOT Ca ii H images. From a statistical analysis we show that these two types have different properties. The BDs that are related to PMJs always appear at the top of the PMJs, the vast majority of which show inward motion and originate before the generation of the PMJs. These results may indicate that the reconnection occurs at the lower coronal/TR height and initiates PMJs at the chromosphere. This formation mechanism is in contrast with the formation of PMJs by reconnection in the (upper) photosphere between differently inclined fields.

  8. RE-EXAMINING SUNSPOT TILT ANGLE TO INCLUDE ANTI-HALE STATISTICS

    Energy Technology Data Exchange (ETDEWEB)

    McClintock, B. H. [University of Southern Queensland, Toowoomba, 4350 (Australia); Norton, A. A. [HEPL, Stanford University, Palo Alto, CA 94305 (United States); Li, J., E-mail: u1049686@umail.usq.edu.au, E-mail: aanorton@stanford.edu, E-mail: jli@igpp.ucla.edu [Department of Earth, Planetary, and Space Sciences, University of California at Los Angeles, Los Angeles, CA 90095 (United States)

    2014-12-20

    Sunspot groups and bipolar magnetic regions (BMRs) serve as an observational diagnostic of the solar cycle. We use Debrecen Photohelographic Data (DPD) from 1974-2014 that determined sunspot tilt angles from daily white light observations, and data provided by Li and Ulrich that determined sunspot magnetic tilt angle using Mount Wilson magnetograms from 1974-2012. The magnetograms allowed for BMR tilt angles that were anti-Hale in configuration, so tilt values ranged from 0 to 360° rather than the more common ±90°. We explore the visual representation of magnetic tilt angles on a traditional butterfly diagram by plotting the mean area-weighted latitude of umbral activity in each bipolar sunspot group, including tilt information. The large scatter of tilt angles over the course of a single cycle and hemisphere prevents Joy's law from being visually identified in the tilt-butterfly diagram without further binning. The average latitude of anti-Hale regions does not differ from the average latitude of all regions in both hemispheres. The distribution of anti-Hale sunspot tilt angles are broadly distributed between 0 and 360° with a weak preference for east-west alignment 180° from their expected Joy's law angle. The anti-Hale sunspots display a log-normal size distribution similar to that of all sunspots, indicating no preferred size for anti-Hale sunspots. We report that 8.4% ± 0.8% of all bipolar sunspot regions are misclassified as Hale in traditional catalogs. This percentage is slightly higher for groups within 5° of the equator due to the misalignment of the magnetic and heliographic equators.

  9. The Twist Limit for Bipolar Active Regions

    Science.gov (United States)

    Moore, Ron; Falconer, David; Gary, Allen

    2008-01-01

    We present new evidence that further supports the standard idea that active regions are emerged magnetic-flux-rope omega loops. When the axial magnetic twist of a cylindrical flux rope exceeds a critical amount, the flux rope becomes unstable to kinking, and the excess axial twist is converted into writhe twist by the kinking. This suggests that, if active regions are emerged omega loops, then (1) no active region should have magnetic twist much above the limit set by kinking, (2) active regions having twist near the limit should often arise from kinked omega loops, and (3) since active regions having large delta sunspots are outstandingly twisted, these arise from kinked omega loops and should have twist near the limit for kinking. From each of 36 vector magnetograms of bipolar active regions, we have measured (1) the total flux of the vertical field above 100 G, (2) the area covered by this flux, and (3) the net electric current that arches over the polarity inversion line. These three quantities yield an estimate of the axial magnetic twist in a simple model cylindrical flux rope that corresponds to the top of the active region s hypothetical omega loop prior to emergence. In all 36 cases, the estimated twist is below the critical limit for kinking. The 11 most twisted active regions (1) have estimated twist within a factor of approx.3 of the limit, and (2) include all of our 6 active regions having large delta sunspots. Thus, our observed twist limit for bipolar active regions is in good accord with active regions being emerged omega loops.

  10. Sunspot Numbers from ISOON: A Ten-Year Data Analysis

    CERN Document Server

    Balasubramaniam, K S

    2016-01-01

    Sunspot numbers are important tracers of historical solar activity. They are important in the prediction of oncoming solar maximum, in the design of lifetimes of space assets, and in assessing the extent of solar-radiation impact on the space environment. Sunspot numbers were obtained visually from sunspot drawings. The availability of digital images from the US Air Force Improved Solar Optical Observing Network (ISOON) prototype telescope concurrent to observer-dependent sunspot numbers recorded at the National Solar Observatory (NSO) has provided a basis for comparing sunspot numbers determined from the two methods. We compare sunspot numbers from visual and digital methods observed nearly simultaneously. The advantages of digital imagery are illustrated.

  11. On the relationship between sunspot structure and magnetic field changes associated with solar flares

    CERN Document Server

    Song, Yongliang

    2016-01-01

    Many previous studies have shown that magnetic fields as well as sunspot structures present rapid and irreversible changes associated with solar flares. In this paper we first use five X-class flares observed by SDO/HMI to show that not only the magnetic fields and sunspot structures do show rapid, irreversible changes but also these changes are closely related, both spatially and temporally. The magnitudes of the correlation coefficients between the temporal variations of horizontal magnetic field and sunspot intensity are all larger than 0.90, with a maximum value of 0.99 and an average value of 0.96. Then using four active regions in quiescent times, three observed and one simulated, we show that in sunspot penumbra regions there also exists a close correlation between sunspot intensity and horizontal magnetic field strength, in addition to the well-known one between sunspot intensity and normal magnetic field strength. Connecting these two observational phenomena, we show that the sunspot structure change...

  12. Prediction of ionospheric scintillation using neural network over East African region during ascending phase of sunspot cycle 24

    Science.gov (United States)

    Taabu, S. D.; D'ujanga, F. M.; Ssenyonga, T.

    2016-04-01

    VHF and GPS-SCINDA receivers located both at Nairobi (36.8°E, 1.3°S) in Kenya and at Kampala (32.57°E, 0.335°N) in Uganda were used to investigate ionospheric scintillation and forecast scintillations of a few hundred meter-scale irregularities associated with equatorial ionospheric irregularities for the period 2011 and 2012. VHF scintillations was characterized by long duration of activity and slow fading that lasted till early morning hours (05:00 LT). Furthermore, different percentage occurrence of scintillations in some months were observed, but found that weak scintillation (0.2 sunspot number. The enhancement of pre-midnight scintillations during magnetically disturbed and quiet periods was also observed and found to be seasonal and local time dependent. An attempt was made to develop a model of percentage occurrence of scintillations for the ascending phase of solar cycle 24 using neural network and the modeled data for the occurrence of scintillations was found to match well with original data.

  13. Width of Sunspot Generating Zone and Reconstruction of Butterfly Diagram

    CERN Document Server

    Ivanov, V G; 10.1007/s11207-010-9665-6

    2010-01-01

    Based on the extended Greenwich-NOAA/USAF catalogue of sunspot groups it is demonstrated that the parameters describing the latitudinal width of the sunspot generating zone (SGZ) are closely related to the current level of solar activity, and the growth of the activity leads to the expansion of SGZ. The ratio of the sunspot number to the width of SGZ shows saturation at a certain level of the sunspot number, and above this level the increase of the activity takes place mostly due to the expansion of SGZ. It is shown that the mean latitudes of sunspots can be reconstructed from the amplitudes of solar activity. Using the obtained relations and the group sunspot numbers by Hoyt and Schatten (1998), the latitude distribution of sunspot groups ("the Maunder butterfly diagram") for the 18th and the first half of the 19th centuries is reconstructed and compared with historical sunspot observations.

  14. Are the sunspots really vanishing?

    Directory of Open Access Journals (Sweden)

    Clette Frédéric

    2012-06-01

    Full Text Available Context: The elapsed solar cycle (23 ended with an exceptionally long period of low activity and with unprecedented low levels for various series of solar irradiance and particle flux measurements. This unpredicted evolution of solar activity raised multiple questions about a future decline of the solar cycles and launched a quest for precursor signs of this possible deep solar transition over the last decade. Aim: We present here a review and overall interpretation of most current diagnostics of solar cycle 23, including the recent disagreements that appeared among solar reference indices and standard solar-based geo-indices, the indication of a changed pattern of internal torsional waves (helioseismology or the announced fading and magnetic weakening of sunspots. Methods: Based on a statistical analysis of detailed sunspot properties over the last 24 years, we complete the picture with new evidence of a strong global deficit of the smallest sunspots starting around 2000, in order to answer the question: are all sunspots about to disappear? Results: This global scale-dependent change in sunspot properties is confirmed to be real and not due to uncontrolled biases in some of the indices. It can also explain the recent discrepancies between solar indices by their different sensitivities to small and weak magnetic elements (small spots. The International Sunspot Index Ri, based on unweighted sunspot counts, proved to be particularly sensitive to this particular small-scale solar evolution. Conclusions: Our results and interpretation show the necessity to look backwards in time, more than 80 years ago. Indeed, the Sun seems to be actually returning to a past and hardly explored activity regime ending before the 1955–1995 Grand Maximum, which probably biased our current space-age view of solar activity.

  15. Commentary on the Liquid Metallic Hydrogen Model of the Sun: Insight Relative to Coronal Holes, Sunspots, and Solar Activity

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2013-04-01

    Full Text Available While mankind will always remain unable to sample the interior of the Sun, the presence of sunspots and coronal holes can provide clues as to its subsurface structure. Insight relative to the solar body can also be gained by recognizing that the Sun must exist in the condensed state and support a discrete lattice structure, as required for the production of its continuous spectrum. In this regard, the layered liquid metallic hydrogen lattice advanced as a condensed model of the Sun (Robitaille P.M. Liquid Metallic Hydrogen: A Building Block for the Liquid Sun. Progr. Phys ., 2011, v. 3, 60–74; Robitaille P.M. Liquid Metallic Hydrogen II: A Critical Assessment of Current and Primordial Helium Levels in Sun. Progr. Phys ., 2013, v. 2, 35–47; Robitaille J.C. and Robitaille P.M. Liquid Metallic Hydrogen III. Intercalation and Lattice Exclusion Versus Gravitational Settling and Their Consequences Relative to Internal Structure, Surface Activity, and Solar Winds in the Sun. Progr. Phys ., 2013, v. 2, in press provides the ability to add structure to the solar interior. This constitutes a significant advantage over the gaseous solar models. In fact, a layered liquid metallic hydrogen lattice and the associated intercalation of non-hydrogen elements can help to account for the position of sunspots and coronal holes. At the same time, this model provides a greater understanding of the mechanisms which drive solar winds and activity.

  16. Comparison of sunspot properties in cycles 23 and 24

    Science.gov (United States)

    Rezaei, Reza; Schmidt, Wolfgang; Beck, Christian

    Sunspots form by coalescence of small-scale magnetic elements and pores in magnetic flux emergence areas. By observing recently formed sunspots just after their initial growth and before substantial decay, one samples a magnetic signal which has been least disturbed by granulation. Properties of the emergence events have a direct impact on the results. Failed active regions, e.g. the ones which cannot form a sunspot, are a clear example: in several cases, they would harbor enough magnetic flux to form a small sunspot but fail to do so. Another way to evaluate secular variations of flux emergence events is to quantify long-term trends of sunspot properties. The 11-year solar magnetic activity cycle has been known for centuries. During this time the activity level changed dramatically from the Maunder minimum (1650-1700) to the Modern maximum in mid 20-th century. The extended minimum of the last solar cycle alerted solar physicist about possible long-term variation in the solar magnetic activity. While some argue that the Sun was unusually active in mid 20-th century, others find it unusually inactive now. This caused speculations whether the solar activity cycle is overlaid with a long-term decline that may lead to another grand minimum in the near future. Some extrapolations predicted that there will be no sunspots in the next cycle. Detailed observations of sunspot properties were performed only in the last few cycles. Such spectropolarimetric observations enable us to accurately derive the magnetic field strengths of spots and their physical properties. We present measurements of sunspot intensity, area, and magnetic field strength and compare the present cycle 24 with the previous one. We analyze a sample of about 400 sunspots observed from 1999 until 2014 with the Tenerife Infrared Polarimeter at the German Vacuum Tower Telescope as well as with the Facility Infrared Spectropolarimeter of the Dunn Solar Telescope of the NSO. The magnetic field strength is

  17. Fully Automated Sunspot Detection and Classification Using SDO HMI Imagery in MATLAB

    Science.gov (United States)

    2014-03-27

    The features of a sunspot and other local sunspots considered part of a group are assigned a classification, defined by the solar astrophysics ...processing. In the second stage, elementary image processing techniques are used to condition the data. The third stage involves the detection of...active regions and coronal holes on euv images, arXiv preprint arXiv:1208.1483, 2012. Foukal, P. V., Solar astrophysics , Wiley-VCH, 2008. Gonzalez, R

  18. 70 years of Sunspot Observations at Kanzelh\\"ohe Observatory: systematic study of parameters affecting the derivation of the relative sunspot number

    CERN Document Server

    Pötzi, Werner; Temmer, Manuela; Baumgartner, Dietmar; Freislich, Heinrich; Strutzmann, Heinz

    2015-01-01

    Kanzelh\\"ohe Observatory (KSO) was founded during World War II by the "Deutsche Luftwaffe" (German Airforces) as one station of a network of observatories, which should provide information on solar activity in order to better assess the actual conditions of the Earth's ionosphere in terms of radio wave propagation. The solar observations began in 1943 with photographs of the photosphere, drawings of sunspots, plage regions and faculae, as well as patrol observations of the solar corona. At the beginning all data was sent to Freiburg (Germany). After WWII international cooperation was established and the data was sent to Zurich, Paris, Moscow and Greenwich. Relative sunspot numbers are derived since 1944. The agreement between relative sunspot numbers derived at KSO and the new International Sunspot Number (ISN) \\citep{SIDC} lies within $\\sim10\\%$. However, revisiting the historical data, we also find periods with larger deviations. The reasons for the deviations were twofold: (1) On the one hand a major instr...

  19. Automatic Detection of Magnetic delta in Sunspot Groups

    CERN Document Server

    Padinhatteeri, Sreejith; Bloomfield, D Shaun; Gallagher, Peter T

    2015-01-01

    Large and magnetically complex sunspot groups are known to be associated with flares. To date, the Mount Wilson scheme has been used to classify sunspot groups based on their morphological and magnetic properties. The most flare prolific class, the delta sunspot-group, is characterised by opposite polarity umbrae within a common penumbra, separated by less than 2 degrees. In this article, we present a new system, called the Solar Monitor Active Region Tracker - Delta Finder (SMART-DF), that can be used to automatically detect and classify magnetic deltas in near-realtime. Using continuum images and magnetograms from the Helioseismic and Magnetic Imager (HMI) onboard NASA's Solar Dynamics Observatory (SDO), we first estimate distances between opposite polarity umbrae. Opposite polarity pairs having distances of less that 2 degrees are then identified, and if these pairs are found to share a common penumbra, they are identified as a magnetic delta configuration. The algorithm was compared to manual delta detect...

  20. Tests of Sunspot Number Sequences: 4. Discontinuities Around 1946 in Various Sunspot Number and Sunspot-Group-Number Reconstructions

    Science.gov (United States)

    Lockwood, M.; Owens, M. J.; Barnard, L.

    2016-11-01

    We use five test data series to search for, and quantify, putative discontinuities around 1946 in five different annual-mean sunspot-number or sunspot-group-number data sequences. The data series tested are the original and new versions of the Wolf/Zürich/International sunspot number composite [R_{{ISNv1}} and R_{{ISNv2}}] (respectively Clette et al. in Adv. Space Res. 40, 919, 2007 and Clette et al. in The Solar Activity Cycle 35, Springer, New York, 2015); the corrected version of R ISNv1 proposed by Lockwood, Owens, and Barnard ( J. Geophys. Res. 119, 5193, 2014a) [R C]; the new "backbone" group-number composite proposed by Svalgaard and Schatten ( Solar Phys. 291, 2016) [R_{{BB}}]; and the new group-number composite derived by Usoskin et al. ( Solar Phys. 291, 2016) [R_{{UEA}}]. The test data series used are the group-number [NG] and total sunspot area [A G] from the Royal Observatory, Greenwich/Royal Greenwich Observatory (RGO) photoheliographic data; the Ca K index from the recent re-analysis of Mount Wilson Observatory (MWO) spectroheliograms in the Calcium ii K ion line; the sunspot-group-number from the MWO sunspot drawings [N_{{MWO}}]; and the dayside ionospheric F2-region critical frequencies measured by the Slough ionosonde [foF2]. These test data all vary in close association with sunspot numbers, in some cases non-linearly. The tests are carried out using both the before-and-after fit-residual comparison method and the correlation method of Lockwood, Owens, and Barnard, applied to annual mean data for intervals iterated to minimise errors and to eliminate uncertainties associated with the precise date of the putative discontinuity. It is not assumed that the correction required is by a constant factor, nor even linear in sunspot number. It is shown that a non-linear correction is required by RC, R_{BB}, and R_{{ISNv1}}, but not by R_{{ISNv2}} or R_{{UEA}}. The five test datasets give very similar results in all cases. By multiplying the probability

  1. Does Building a Relative Sunspot Number Make Sense? A Qualified 'Yes'

    CERN Document Server

    Svalgaard, Leif

    2015-01-01

    Recent research has demonstrated that the number of sunspots per group ('active region') has been decreasing over the last two or three solar cycles and that the classical Relative Sunspot Number (SSN) no longer is a good representation of solar magnetic activity such as revealed by e.g. the F10.7 cm microwave flux. The SSN is derived under the assumption that the number of spots per group is constant (in fact, nominally equal to 10). When this is no longer the case (the ratio is approaching 5, only half of its nominal value) the question arises how to construct a sunspot number series that takes that into account. We propose to harmonize the SSN with the sunspot Group Count that has been shown to follow F10.7 very well, but also to include the day-to-day variations of the spot count in order to preserve both long-term and short-term variability.

  2. Hurricanes in the Gulf of Mexico and the Caribbean Sea and their relationship with sunspots

    Science.gov (United States)

    Rojo-Garibaldi, Berenice; Salas-de-León, David Alberto; Sánchez, Norma Leticia; Monreal-Gómez, María Adela

    2016-10-01

    We present the results of a time series analysis of hurricanes and sunspots occurring from 1749 to 2010. Exploratory analysis shows that the total number of hurricanes is declining. This decline is related to an increase in sunspot activity. Spectral analysis shows a relationship between hurricane oscillation periods and sunspot activity. Several sunspot cycles were identified from the time series analysis.

  3. The Effect of Sunspot Weighting

    Science.gov (United States)

    Svalgaard, Leif; Cagnotti, Marco; Cortesi, Sergio

    2017-02-01

    Although W. Brunner began to weight sunspot counts (from 1926), using a method whereby larger spots were counted more than once, he compensated for the weighting by not counting enough smaller spots in order to maintain the same reduction factor (0.6) as was used by his predecessor A. Wolfer to reduce the count to R. Wolf's original scale, so that the weighting did not have any effect on the scale of the sunspot number. In 1947, M. Waldmeier formalized the weighting (on a scale from 1 to 5) of the sunspot count made at Zurich and its auxiliary station Locarno. This explicit counting method, when followed, inflates the relative sunspot number over that which corresponds to the scale set by Wolfer (and matched by Brunner). Recounting some 60,000 sunspots on drawings from the reference station Locarno shows that the number of sunspots reported was "over counted" by {≈} 44 % on average, leading to an inflation (measured by an effective weight factor) in excess of 1.2 for high solar activity. In a double-blind parallel counting by the Locarno observer M. Cagnotti, we determined that Svalgaard's count closely matches that of Cagnotti, allowing us to determine from direct observation the daily weight factor for spots since 2003 (and sporadically before). The effective total inflation turns out to have two sources: a major one (15 - 18 %) caused by weighting of spots, and a minor source (4 - 5 %) caused by the introduction of the Zürich classification of sunspot groups which increases the group count by 7 - 8 % and the relative sunspot number by about half that. We find that a simple empirical equation (depending on the activity level) fits the observed factors well, and use that fit to estimate the weighting inflation factor for each month back to the introduction of effective inflation in 1947 and thus to be able to correct for the over-counts and to reduce sunspot counting to the Wolfer method in use from 1894 onwards.

  4. A new solar signal: Average maximum sunspot magnetic fields independent of activity cycle

    CERN Document Server

    Livingston, William

    2016-01-01

    Over the past five years, 2010-2015, we have observed, in the near infrared (IR), the maximum magnetic field strengths for 4145 sunspot umbrae. Herein we distinguish field strengths from field flux. (Most solar magnetographs measure flux). Maximum field strength in umbrae is co-spatial with the position of umbral minimum brightness (Norton and Gilman, 2004). We measure field strength by the Zeeman splitting of the Fe 15648.5 A spectral line. We show that in the IR no cycle dependence on average maximum field strength (2050 G) has been found +/- 20 Gauss. A similar analysis of 17,450 spots observed by the Helioseismic and Magnetic Imager onboard the Solar Dynamics Observatory reveal the same cycle independence +/- 0.18 G., or a variance of 0.01%. This is found not to change over the ongoing 2010-2015 minimum to maximum cycle. Conclude the average maximum umbral fields on the Sun are constant with time.

  5. Deciphering Solar Magnetic Activity I: On The Relationship Between The Sunspot Cycle And The Evolution Of Small Magnetic Features

    OpenAIRE

    McIntosh, Scott W.; Wang, Xin; Leamon, Robert J.; Howe, Rachel; Krista, Larisza D.; Malanushenko, Anna V.; Cirtain, Jonathan W.; Gurman, Joseph B.; Thompson, Michael J

    2014-01-01

    Sunspots are a canonical marker of the Sun's internal magnetic field which flips polarity every ~22-years. The principal variation of sunspots, an ~11-year variation in number, modulates the amount of magnetic field that pierces the solar surface and drives significant variations in our Star's radiative, particulate and eruptive output over that period. This paper presents observations from the Solar and Heliospheric Observatory and Solar Dynamics Observatory indicating that the 11-year sunsp...

  6. Fuzzy statistic and comprehensive evaluating study for activity characterization of the active region

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this paper, the theory and method of the fuzzy mathematics areused to probe the connection between the activity of the active region and characterizat ion of the sunspot groups, to build the subordinating function according to the rela tionship between them and to evaluate comprehensively the activity of the active region on t he solar disk. The precise prediction of activity of the active regions has been obta ined by data reduction and analysis. The predicting accuracy is higher th an 95% . Forecast results indicate that the method of the fuzzy comprehensive evaluatio n is a good one for the solar activity prediction.

  7. A solar eruption driven by rapid sunspot rotation

    CERN Document Server

    Ruan, Guiping; Wang, Shuo; Zhang, Hongqi; Li, Gang; Jing, Ju; Su, Jiangtao; Li, Xing; Xu, Haiqing; Du, Guohui; Wang, Haimin

    2014-01-01

    We present the observation of a major solar eruption that is associated with fast sunspot rotation. The event includes a sigmoidal filament eruption, a coronal mass ejection, and a GOES X2.1 flare from NOAA active region 11283. The filament and some overlying arcades were partially rooted in a sunspot. The sunspot rotated at $\\sim$10$^\\circ$ per hour rate during a period of 6 hours prior to the eruption. In this period, the filament was found to rise gradually along with the sunspot rotation. Based on the HMI observation, for an area along the polarity inversion line underneath the filament, we found gradual pre-eruption decreases of both the mean strength of the photospheric horizontal field ($B_h$) and the mean inclination angle between the vector magnetic field and the local radial (or vertical) direction. These observations are consistent with the pre-eruption gradual rising of the filament-associated magnetic structure. In addition, according to the Non-Linear Force-Free-Field reconstruction of the coron...

  8. The Effect of Sunspot Weighting

    CERN Document Server

    Svalgaard, Leif; Cortesi, Sergio

    2015-01-01

    Waldmeier in 1947 introduced a weighting (on a scale from 1 to 5) of the sunspot count made at Zurich and its auxiliary station Locarno, whereby larger spots were counted more than once. This counting method inflates the relative sunspot number over that which corresponds to the scale set by Wolfer and Brunner. Svalgaard re-counted some 60,000 sunspots on drawings from the reference station Locarno and determined that the number of sunspots reported were 'over counted' by 44% on average, leading to an inflation (measured by a weight factor) in excess of 1.2 for high solar activity. In a double-blind parallel counting by the Locarno observer Cagnotti, we determined that Svalgaard's count closely matches that of Cagnotti's, allowing us to determine the daily weight factor since 2003 (and sporadically before). We find that a simple empirical equation fits the observed weight factors well, and use that fit to estimate the weight factor for each month back to the introduction of weighting in 1947 and thus to be ab...

  9. Dependence of the Sunspot-group Size on the Level of Solar Activity and its Influence on the Calibration of Solar Observers

    CERN Document Server

    Usoskin, I G; Chatzistergos, T

    2016-01-01

    The distribution of the sunspot group size (area) and its dependence on the level of solar activity is studied. It is shown that the fraction of small groups is not constant but decreases with the level of solar activity so that high solar activity is largely defined by big groups. We study the possible influence of solar activity on the ability of a realistic observer to see and report the daily number of sunspot groups. It is shown that the relation between the number of sunspot groups as seen by different observers with different observational acuity thresholds is strongly non-linear and cannot be approximated by the traditionally used linear scaling ($k-$factors). The observational acuity threshold [$A_{\\rm th}$] is considered to quantify the quality of each observer, instead of the traditional relative $k-$factor. A nonlinear $c-$factor based on $A_{\\rm th}$ is proposed, which can be used to correct each observer to the reference conditions. The method is tested on a pair of principal solar observers, Wo...

  10. Active Region Oscillations: Results from SOHO JOP 097

    Science.gov (United States)

    O'Shea, E.; Fleck, B.; Muglach, K.; Sütterlin, P.

    2001-05-01

    We present here an analysis of data obtained in a sunspot region, using the Coronal Diagnostic Spectrometer (CDS) on SOHO. These data were obtained in the context of the Joint Observing Program (JOP) 97 which, together with CDS, included the Michelson Doppler Imaging (MDI) instrument on SOHO, the TRACE satellite and various ground based observatories, e.g. the DOT on La Palma. Using the lines of Fe XVI 335, Mg IX 368, He I 584, O III 599, Mg X 624 and O V 624 of CDS time series data were obtained in the pore and plage regions of sunspots associated with active regions AR 9166, 9166 and 9169 between September 19-29 2000. In addition to the time series datasets we also obtained 240 arcsec x 240 arcsec raster images of the sunspot regions examined. Using different time series analysis techniques we analyse the different periods of oscillation found in time series datasets and present the results here. This research is part of the European Solar Magnetometry Network supported by the EC through the TMR programme.

  11. Evolution and Flare Activity of Delta-Sunspots in Cycle 23

    CERN Document Server

    Takizawa, Kan

    2015-01-01

    The emergence and magnetic evolution of solar active regions (ARs) of beta-gamma-delta type, which are known to be highly flare-productive, were studied with the SOHO/MDI data in Cycle 23. We selected 31 ARs that can be observed from their birth phase, as unbiased samples for our study. From the analysis of the magnetic topology (twist and writhe), we obtained the following results. i) Emerging beta-gamma-delta ARs can be classified into three topological types as "quasi-beta", "writhed" and "top-to-top". ii) Among them, the "writhed" and "top-to-top" types tend to show high flare activity. iii) As the signs of twist and writhe agree with each other in most cases of the "writhed" type (12 cases out of 13), we propose a magnetic model in which the emerging flux regions in a beta-gamma-delta AR are not separated but united as a single structure below the solar surface. iv) Almost all the "writhed"-type ARs have downward knotted structures in the mid portion of the magnetic flux tube. This, we believe, is the es...

  12. SOHO reveals how sunspots take a stranglehold on the Sun

    Science.gov (United States)

    2001-11-01

    what order the contestants arrive at the finish. Here the runners are packets of sound waves, and the obstacles are local variations in temperature, magnetic fields and gas flows beneath the Sun's surface. "We needed better mathematical tricks," comments Duvall. "So we put together ideas from classical and quantum physics, and also from a recent advance in seismology on the Earth." In an earlier application of solar tomography, the team examined in detail the ante-natal events for an important group of sunspots born on 12 January 1998. They found sound waves beginning to travel faster and faster through the region where sunspots were about to form. Less than half a day elapsed between signs of unusual magnetic activity in the Sun's interior and the appearance of the dark spots on a previously unblemished surface. "Sunspots form when intense magnetic fields break through the visible surface," says Alexander Kosovichev of Stanford. "We could see the magnetic field shooting upwards like a fountain, faster than we expected." Even late on the previous day there was little hint of anything afoot, either at the surface or in the interior. By midnight (Universal Time) a region of strong magnetic field had risen from a depth of 18 000 kilometres and was already half way to the surface, travelling at 4500 km/hr. Sound speeds were increasing above the perturbed zone. By 8:00 a.m. an intense, rope-like magnetic field was in possession of a column of gas 20 000 kilometres wide and reaching almost to the visible surface. In the uppermost layer beneath the surface, the magnetic rope divided itself into strands that made the individual sunspots of the group. Under a large, well-established sunspot, in June 1998, the sound waves revealed a persistent column of hot, magnetised gas rising from deep in the interior. At a depth of 4000 kilometres it spread fingers towards neighbouring parts of the surface where it sustained some smaller sunspots. The magnetic column was not connected to

  13. 70 Years of Sunspot Observations at the Kanzelhöhe Observatory: Systematic Study of Parameters Affecting the Derivation of the Relative Sunspot Number

    Science.gov (United States)

    Pötzi, Werner; Veronig, Astrid M.; Temmer, Manuela; Baumgartner, Dietmar J.; Freislich, Heinrich; Strutzmann, Heinz

    2016-11-01

    The Kanzelhöhe Observatory (KSO) was founded during World War II by the Deutsche Luftwaffe (German Airforce) as one station of a network of observatories that were set up to provide information on solar activity in order to better assess the actual conditions of the Earth's ionosphere in terms of radio-wave propagation. Solar observations began in 1943 with photographs of the photosphere and drawings of sunspots, plage regions, and faculae, as well as patrol observations of the solar corona. At the beginning, all data were sent to Freiburg (Germany). After WW II, international cooperation was established and the data were sent to Zurich, Paris, Moscow, and Greenwich. Relative sunspot numbers have been derived since 1944. The agreement between relative sunspot numbers derived at KSO and the new International Sunspot Number (ISN) (SILSO World Data Center in International Sunspot Number Monthly Bulletin and online catalogue, 1945 - 2015) lies within {≈} 10 %. However, revisiting the historical data, we also find periods with larger deviations. The reasons for the deviations were twofold: On the one hand, a major instrumental change took place during which the instrument was relocated and modified. On the other hand, a period of frequent replacements of personnel caused significant deviations; this clearly shows the importance of experienced observers. In the long term, the instrumental improvements led to better image quality. Additionally, we find a long-term trend towards better seeing conditions that began in 2000.

  14. 70 Years of Sunspot Observations at the Kanzelhöhe Observatory: Systematic Study of Parameters Affecting the Derivation of the Relative Sunspot Number

    Science.gov (United States)

    Pötzi, Werner; Veronig, Astrid M.; Temmer, Manuela; Baumgartner, Dietmar J.; Freislich, Heinrich; Strutzmann, Heinz

    2016-03-01

    The Kanzelhöhe Observatory (KSO) was founded during World War II by the Deutsche Luftwaffe (German Airforce) as one station of a network of observatories that were set up to provide information on solar activity in order to better assess the actual conditions of the Earth's ionosphere in terms of radio-wave propagation. Solar observations began in 1943 with photographs of the photosphere and drawings of sunspots, plage regions, and faculae, as well as patrol observations of the solar corona. At the beginning, all data were sent to Freiburg (Germany). After WW II, international cooperation was established and the data were sent to Zurich, Paris, Moscow, and Greenwich. Relative sunspot numbers have been derived since 1944. The agreement between relative sunspot numbers derived at KSO and the new International Sunspot Number (ISN) (SILSO World Data Center in International Sunspot Number Monthly Bulletin and online catalogue, 1945 - 2015) lies within {≈} 10 %. However, revisiting the historical data, we also find periods with larger deviations. The reasons for the deviations were twofold: On the one hand, a major instrumental change took place during which the instrument was relocated and modified. On the other hand, a period of frequent replacements of personnel caused significant deviations; this clearly shows the importance of experienced observers. In the long term, the instrumental improvements led to better image quality. Additionally, we find a long-term trend towards better seeing conditions that began in 2000.

  15. Chromospheric seismology above sunspot umbrae

    CERN Document Server

    Snow, B; Regnier, S

    2015-01-01

    The acoustic resonator is an important model for explaining the three-minute oscillations in the chromosphere above sunspot umbrae. The steep temperature gradients at the photosphere and transition region provide the cavity for the acoustic resonator, which allows waves to be both partially transmitted and partially reflected. In this paper, a new method of estimating the size and temperature profile of the chromospheric cavity above a sunspot umbra is developed. The magnetic field above umbrae is modelled numerically in 1.5D with slow magnetoacoustic wave trains travelling along magnetic fieldlines. Resonances are driven by applying the random noise of three different colours---white, pink and brown---as small velocity perturbations to the upper convection zone. Energy escapes the resonating cavity and generates wave trains moving into the corona. Line of sight (LOS) integration is also performed to determine the observable spectra through SDO/AIA. The numerical results show that the gradient of the coronal ...

  16. Kink waves in an active region dynamic fibril

    CERN Document Server

    Pietarila, A; Hirzberger, J; Solanki, S K

    2011-01-01

    We present high spatial and temporal resolution Ca II 8542 observations of a kink wave in an on-disk chromospheric active region fibril. The properties of the wave are similar to those observed in off-limb spicules. From the observed phase and period of the wave we determine a lower limit for the field strength in the chromospheric active region fibril located at the edge of a sunspot to be a few hundred Gauss. We find indications that the event was triggered by a small-scale reconnection event higher up in the atmosphere.

  17. Kink Waves in an Active Region Dynamic Fibril

    Science.gov (United States)

    Pietarila, A.; Aznar Cuadrado, R.; Hirzberger, J.; Solanki, S. K.

    2011-10-01

    We present high spatial and temporal resolution Ca II 8542 Å observations of a kink wave in an on-disk chromospheric active region fibril. The properties of the wave are similar to those observed in off-limb spicules. From the observed phase and period of the wave we determine a lower limit for the field strength in the chromospheric active region fibril located at the edge of a sunspot to be a few hundred gauss. We find indications that the event was triggered by a small-scale reconnection event higher up in the atmosphere.

  18. Modelling repeatedly flaring delta-sunspots

    CERN Document Server

    Chatterjee, Piyali; Carlsson, Mats

    2016-01-01

    Active regions (AR) appearing on the surface of the Sun are classified into $\\alpha$, $\\beta$, $\\gamma$, and $\\delta$ by the rules of the Mount Wilson Observatory, California on the basis of their topological complexity. Amongst these, the $\\delta$-sunspots are known to be super-active and produce the most X-ray flares. Here, we present results from a simulation of the Sun by mimicking the upper layers and the corona, but starting at a more primitive stage than any earlier treatment. We find that this initial state consisting of only a thin sub-photospheric magnetic sheet breaks into multiple flux-tubes which evolve into a colliding-merging system of spots of opposite polarity upon surface emergence, similar to those often seen on the Sun. The simulation goes on to produce many exotic $\\delta$-sunspot associated phenomena: repeated flaring in the range of typical solar flare energy release and ejective helical flux ropes with embedded cool-dense plasma filaments resembling solar coronal mass ejections.

  19. Wavelet-analysis of series of observations of relative sunspot numbers. The dependence of the periods of cyclic activity on the time at different time scales

    CERN Document Server

    Borisov, A A; Bruevich, V V; Rozgacheva, I K; Shimanovskaya, E V

    2015-01-01

    We applied the method of continuous wavelet-transform to high-quality time-frequency analysis to the sets of observations of relative sunspot numbers. Wavelet analysis of these data reveals the following pattern: at the same time there are several activity cycles whose periods vary widely from the quasi biennial up to the centennial period. These relatively low-frequency periodic variations of the solar activity gradually change the values of periods of different cycles in time. This phenomenon can be observed in every cycle of activity.

  20. Magnetic Properties of Solar Active Regions that Govern Large Solar Flares and Eruptions

    Science.gov (United States)

    Toriumi, Shin; Schrijver, Carolus J.; Harra, Louise; Hudson, Hugh S.; Nagashima, Kaori

    2017-08-01

    Strong flares and CMEs are often produced from active regions (ARs). In order to better understand the magnetic properties and evolutions of such ARs, we conducted statistical investigations on the SDO/HMI and AIA data of all flare events with GOES levels >M5.0 within 45 deg from the disk center for 6 years from May 2010 (from the beginning to the declining phase of solar cycle 24). Out of the total of 51 flares from 29 ARs, more than 80% have delta-sunspots and about 15% violate Hale’s polarity rule. We obtained several key findings including (1) the flare duration is linearly proportional to the separation of the flare ribbons (i.e., scale of reconnecting magnetic fields) and (2) CME-eruptive events have smaller sunspot areas. Depending on the magnetic properties, flaring ARs can be categorized into several groups, such as spot-spot, in which a highly-sheared polarity inversion line is formed between two large sunspots, and spot-satellite, where a newly-emerging flux next to a mature sunspot triggers a compact flare event. These results point to the possibility that magnetic structures of the ARs determine the characteristics of flares and CMEs. In the presentation, we will also show new results from the systematic flux emergence simulations of delta-sunspot formation and discuss the evolution processes of flaring ARs.

  1. Numerical simulations of sunspot rotation driven by magnetic flux emergence

    OpenAIRE

    Sturrock, Zoe

    2017-01-01

    Magnetic flux continually emerges from the Sun, rising through the solar interior, emerging at the photosphere in the form of sunspots and expanding into the atmosphere. Observations of sunspot rotations have been reported for over a century and are often accompanied by solar eruptions and flaring activity. In this thesis, we present 3D numerical simulations of the emergence of twisted flux tubes from the uppermost layers of the solar interior, examining the rotational movements of sunspots i...

  2. Magnetic Helicity Injection in Solar Active Regions

    Institute of Scientific and Technical Information of China (English)

    Hong-Qi Zhang

    2006-01-01

    We present the evolution of magnetic field and its relationship with magnetic (current) helicity in solar active regions from a series of photospheric vector magnetograms obtained by Huairou Solar Observing Station, longitudinal magnetograms by MDI of SOHO and white light images of TRACE. The photospheric current helicity density is a quantity reflecting the local twisted magnetic field and is related to the remaining magnetic helicity in the photosphere, even if the mean current helicity density brings the general chiral property in a layer of solar active regions. As new magnetic flux emerges in active regions, changes of photospheric current helicity density with the injection of magnetic helicity into the corona from the subatmosphere can be detected, including changes in sign caused by the injection of magnetic helicity of opposite sign. Because the injection rate of magnetic helicity and photospheric current helicity density have different means in the solar atmosphere,the injected magnetic helicity is probably not proportional to the current helicity density remaining in the photosphere. The evidence is that rotation of sunspots does not synchronize exactly with the twist of photospheric transverse magnetic field in some active regions (such as, delta active regions). They represent different aspects of magnetic chirality. A combined analysis of the observational magnetic helicity parameters actually provides a relative complete picture of magnetic helicity and its transfer in the solar atmosphere.

  3. Quasi periodic oscillations of solar active regions in connection with their flare activity - NoRH observations

    CERN Document Server

    Abramov-Maximov, Vladimir E; Shibasaki, Kiyoto

    2011-01-01

    The sunspot-associated sources at the frequency of 17 GHz give information on plasma parameters in the regions of magnetic field about B=2000 G at the level of the chromosphere-corona transition region. The observations of short period (from 1 to 10 minutes) oscillations in sunspots reflect propagation of magnetohydrodynamic (MHD) waves in the magnetic flux tubes of the sunspots. We investigate the oscillation parameters in active regions in connection with their flare activity. We confirm the existence of a link between the oscillation spectrum and flare activity. We find differences in the oscillations between pre-flare and post-flare phases. In particular, we demonstrate a case of powerful three-minute oscillations that start just before the burst. This event is similar to the cases of the precursors investigated by Sych, R. et al. (Astron. Astrophys., vol.505, p.791, 2009). We also found well-defined eight-minute oscillations of microwave emission from sunspot. We interpret our observations in terms of a ...

  4. A Statistical Study of Rapid Sunspot Structure Change Associated with Flares

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We reported recently some rapid changes of sunspot structure in white-light (WL) associated with major flares. We extend the study to smaller events and present here results of a statistical study of this phenomenon. In total, we investigate 403 events from 1998 May 9 to 2004 July 17, including 40 X-class, 174 M-class, and 189 C-class flares. By monitoring the structure of the flaring active regions using the WL observations from the Transition Region and Coronal Explorer (TRACE), we find that segments in the outer sunspot structure decayed rapidly right after many flares; and that, on the other hand, the central part of sunspots near the flare-associated magnetic neutral line became darkened. These rapid and permanent changes are evidenced in the time profiles of WL mean intensity and are not likely resulted from the flare emissions. Our study further shows that the outer sunspot structure decay as well as the central structure darkening are more likely to be detected hi larger solar flares. For X-class flares, over 40% events show distinct sunspot structure change. For M- and C-class flares, this percentage drops to 17% and 10%, respectively. The results of this statistical study support our previously proposed reconnection picture, i.e., the flare-related magnetic fields evolve from a highly inclined to a more vertical configuration.

  5. Sunspots during the Maunder Minimum from Machina Coelestis by Hevelius

    CERN Document Server

    Carrasco, V M S; Vaquero, J M

    2015-01-01

    We revisited the sunspot observations published by Johannes Hevelius in his book Machina Coelestis (1679) corresponding to the period 1653-1675 (just in the middle of the Maunder Minimum). We show detailed translations of the original Latin texts describing the sunspot records and provide the general context of these sunspot observations. From this source only, we present an estimate of the annual values of the Group Sunspot Number based only on the records that explicitly inform about the presence or absence of sunspots. Although we obtain very low values of the Group Sunspot Number, in accordance with a grand minimum of solar activity, these values are significantly higher in general than the values provided by Hoyt and Schatten (1998) for the same period.

  6. Sunspot Numbers from ISOON: A Ten-Year Data Analysis

    Science.gov (United States)

    Balasubramaniam, K. S.; Henry, T. W.

    2016-11-01

    Sunspot numbers are important tracers of historical solar activity. They are important in predicting the oncoming solar maximum, in the design of lifetimes of space assets, and in assessing the extent of solar-radiation impact on the space environment. Historically, sunspot numbers have been obtained visually from sunspot drawings. The availability of digital images from the US Air Force Improved Solar Optical Observing Network (ISOON) prototype telescope concurrent to observer-dependent sunspot numbers recorded at the National Solar Observatory (NSO) has provided a basis for comparing sunspot numbers determined from the two methods. We compare sunspot numbers from visual and digital methods observed nearly simultaneously. The advantages of digital imagery are illustrated.

  7. MHD waves in sunspots

    CERN Document Server

    Sych, Robert

    2015-01-01

    The review addresses the spatial frequency morphology of sources of sunspot oscillations and waves, including their localization, size, oscillation periods, height localization with the mechanism of cut-off frequency that forms the observed emission variability. Dynamic of sunspot wave processes, provides the information about the structure of wave fronts and their time variations, investigates the oscillation frequency transformation depending on the wave energy is shown. The initializing solar flares caused by trigger agents like magnetoacoustic waves, accelerated particle beams, and shocks are discussed. Special attention is paid to the relation between the flare reconnection periodic initialization and the dynamics of sunspot slow magnetoacoustic waves. A short review of theoretical models of sunspot oscillations is provided.

  8. Anomalous flows in a sunspot penumbra

    CERN Document Server

    Louis, Rohan E; Mathew, Shibu K; Venkatakrishnan, P

    2014-01-01

    High-resolution spectropolarimetric observations of active region NOAA 11271 were obtained with the spectro-polarimeter on board Hinode to analyze the properties of an anomalous flow in the photosphere in a sunspot penumbra. We detect a blue-shifted feature that appeared on the limb-side penumbra of a sunspot and that was present intermittently during the next two hours. It exhibited a maximum blue-shift of 1.6 km/s, an area of 5.2 arcsec^2, and an uninterrupted lifetime of 1 hr. The blue-shifted feature, when present, lies parallel to red-shifts. Both blue and red shifts flank a highly inclined/horizontal magnetic structure that is radially oriented in the penumbra. The low-cadence SP maps reveal changes in size, radial position in the penumbra and line-of-sight velocity of the blue-shifted feature, from one scan to the other. There was an increase of nearly 500 G in the field strength and a marginal reduction in the field inclination of about 10 deg with the onset of the blue-shifts. In the chromosphere, in...

  9. A wavelet analysis of the relationship between Loess Plateau erosion and sunspots

    NARCIS (Netherlands)

    Gao, P.; Geissen, V.; Temme, A.J.A.M.; Ritsema, C.J.; Mu, X.; Wang, F.

    2014-01-01

    The Chinese Loess Plateau is one of the most rapidly eroding regions in the world. The purpose of this study is to find out to which extent soil erosion on the Loess Plateau is driven by sunspot activity. We analyzed the relation between annual sediment discharge (from 1919 to 2010) from the Loess P

  10. Displacement of large-scale open solar magnetic fields from the zone of active longitudes and the heliospheric storm of November 3-10, 2004: 2. "Explosion" of singularity and dynamics of sunspot formation and energy release

    Science.gov (United States)

    Ivanov, K. G.

    2010-12-01

    A more detailed scenario of one stage (August-November 2004) of the quasibiennial MHD process "Origination ... and dissipation of the four-sector structure of the solar magnetic field" during the decline phase of cycle 23 has been constructed. It has been indicated that the following working hypothesis on the propagation of an MHD disturbance westward (in the direction of solar rotation) and eastward (toward the zone of active longitudes) with the displacement of the large-scale open solar magnetic field (LOSMF) from this zone can be constructed based on LOSMF model representations and data on sunspot formation, flares, active filaments, and coronal ejections as well as on the estimated contribution of sporadic energy release to the flare luminosity and kinetic energy of ejections: (1) The "explosion" of the LOSMF singularity and the formation in the explosion zone of an anemone active region (AR), which produced the satellite sunspot formation that continued west and east of the "anemone," represented a powerful and energy-intensive source of MHD processes at this stage. (2) This resulted in the origination of two "governing" large-scale MHD processes, which regulated various usual manifestations of solar activity: the fast LOSMF along the neutral line in the solar atmosphere, strongly affecting the zone of active longitudes, and the slow LOSMF in the outer layers of the convection zone. The fronts of these processes were identified by powerful (about 1031 erg) coronal ejections. (3) The collision of a wave reflected from the zone of active longitudes with the eastern front of the hydromagnetic impulse of the convection zone resulted in an increase in LOSMF magnetic fluxes, origination of an active sector boundary in the zone of active longitudes, shear-convergent motions, and generation and destabilization of the flare-productive AR 10696 responsible for the heliospheric storm of November 3-10, 2004.

  11. The role of post-sunset vertical drifts at the equator in predicting the onset of VHF scintillations during high and low sunspot activity years

    Directory of Open Access Journals (Sweden)

    S. Tulasi Ram

    2006-07-01

    Full Text Available The day-to-day variability in the occurrence of ionospheric scintillations, which are of serious concern in the trans-ionospheric communications, makes their prediction still a challenging problem. This paper reports on a systematic study in quantitatively identifying the precursors responsible, such as pre-reversal E×B drift velocity, geo-magnetic activity index (Kp and the Equatorial Ionization Anomaly (EIA gradient, for the onset of VHF scintillations over a low-latitude station, Waltair (20° N dip, during high (2001 and low (2004 sunspot activity years. The percentage of occurrences of VHF scintillations over Waltair show a good correlation with the monthly mean post-sunset vertical drift velocities at the equator, during both the high and low sunspot activity years. During the days on which intense (>10 dB scintillations occur, the ionization anomaly gradient (dN/dL, measured from ionosonde data of an equatorial (Trivandrum, 0.9° N dip and an off-equatorial station (Waltair, 20° N dip shows an enhancement in the gradient prior to the onset of the scintillations. However, this enhancement is not seen on days when the scintillations are weak (<10 dB or absent. The day-to-day post sunset enhancement in the E×B drift is found to decrease with increasing Kp-index and this decrease is more prominent in the equinoxes, less in winter and insignificant in the summer months. On a day-to-day basis, it is found that the value of the upward drift velocity at the equator should be ≥30 m/s for the onset of strong scintillations over Waltair for magnetically quiet days with average Kp≤2 (6 h prior to the local sunset during the high sunspot year, 2001. This threshold value of the upward drift reduces to 20 m/s with the decrease in the sunspot activity during 2004. Further, these conditions for the onset of intense scintillations is well defined in equinoxes, less in

  12. Flows in Sunspot Plumes Detected with SOHO

    CERN Document Server

    Brynildsen, N; Brekke, P; Fredvik, T; Haugan, S V H; Kjeldseth-Moe, O; Wikstøl, O

    1998-01-01

    Bright EUV sunspot plumes have been observed in eight out of eleven different sunspot regions with the Coronal Diagnostic Spectrometer -- CDS on SOHO. From wavelength shifts we derive the line-of-sight velocity, relative to the average velocity in the rastered area, 120 arcsec x 120 arcsec. In sunspot plumes we find that the motion is directed away from the observer and increases with increasing line formation temperature, reaches a maximum between 15 and 41 km~s$^{-1}$ close to log T $\\approx$ 5.5, then decreases abruptly. The flow field in the corona is not well correlated with the flow in the transition region and we discuss briefly the implication of this finding.

  13. Investigation of a Sunspot Complex by Helioseismology

    CERN Document Server

    Kosovichev, A G

    2011-01-01

    Sunspot regions often form complexes of activity that may live for several solar rotations, and represent a major component of the Sun's magnetic activity. It had been suggested that the close appearance of active regions in space and time might be related to common subsurface roots, or "nests" of activity. EUV images show that the active regions are magnetically connected in the corona, but subsurface connections have not been established. We investigate the subsurface structure and dynamics of a large complex of activity, NOAA 10987-10989, observed during the SOHO/MDI Dynamics run in March-April 2008, which was a part of the Whole Heliospheric Interval (WHI) campaign. The active regions in this complex appeared in a narrow latitudinal range, probably representing a subsurface toroidal flux tube. We use the MDI full-disk Dopplergrams to measure perturbations of travel times of acoustic waves traveling to various depths by using time-distance helioseismology, and obtain sound-speed and flow maps by inversion ...

  14. Response of Extreme Precipitation to Solar Activity and El Nino Events in Typical Regions of the Loess Plateau

    Directory of Open Access Journals (Sweden)

    H. J. Li

    2017-01-01

    Full Text Available Extreme climatic oscillation has been the subject of global attention. The purpose of this study is to explore the response of extreme precipitation to solar activity and El Nino events in typical regions of the Loess Plateau—a case study in the Yan’an area. The precipitation data was from nine weather stations in Yan’an and the sunspot number and the Southern Oscillation Index (SOI were from 1951 to 2015. The results show that maximum precipitation occurred mainly at the peak sunspot number or 2a near it and the sunspot number minimum and valley values were not significantly correlated. The results of Morlet wavelet showed that a 41-year period of precipitation was the most obvious within the 64-year scale. Similarly, sunspot number showed a 16-year periodic variability. Correlation analyses of the 16-year and 41-year scales demonstrated that the relationships between precipitation and sunspot number were close. In addition, extreme precipitation often occurred in the year following El Nino events. According to 10-year moving average curves, precipitation generally showed a downward trend when SOI was negative. The results indicate that solar activity and El Nino events had significant impacts on precipitation in typical regions of the Loess Plateau.

  15. Sunspot latitudes during the Maunder Minimum: a machine-readable catalogue from previous studies

    OpenAIRE

    J. M. Vaquero; Nogales, J. M.; Sánchez-Bajo, F.

    2015-01-01

    The Maunder Minimum (1645-1715 approximately) was a period of very low solar activity and a strong hemispheric asymmetry, with most of sunspots in the southern hemisphere. In this paper, two data sets of sunspot latitudes during the Maunder minimum have been recovered for the international scientific community. The first data set is constituted by latitudes of sunspots appearing in the catalogue published by Gustav Sp\\"orer nearly 130 years ago. The second data set is based on the sunspot lat...

  16. On the insignificance of Herschel's sunspot correlation

    Science.gov (United States)

    Love, Jeffrey J.

    2013-01-01

    We examine William Herschel's hypothesis that solar-cycle variation of the Sun's irradiance has a modulating effect on the Earth's climate and that this is, specifically, manifested as an anticorrelation between sunspot number and the market price of wheat. Since Herschel first proposed his hypothesis in 1801, it has been regarded with both interest and skepticism. Recently, reports have been published that either support Herschel's hypothesis or rely on its validity. As a test of Herschel's hypothesis, we seek to reject a null hypothesis of a statistically random correlation between historical sunspot numbers, wheat prices in London and the United States, and wheat farm yields in the United States. We employ binary-correlation, Pearson-correlation, and frequency-domain methods. We test our methods using a historical geomagnetic activity index, well known to be causally correlated with sunspot number. As expected, the measured correlation between sunspot number and geomagnetic activity would be an unlikely realization of random data; the correlation is “statistically significant.” On the other hand, measured correlations between sunspot number and wheat price and wheat yield data would be very likely realizations of random data; these correlations are “insignificant.” Therefore, Herschel's hypothesis must be regarded with skepticism. We compare and contrast our results with those of other researchers. We discuss procedures for evaluating hypotheses that are formulated from historical data.

  17. Helioseismic Observations of the Structure and Dynamics of a Rotating Sunspot Beneath the Solar Surface

    Science.gov (United States)

    Zhao, Junwei; Kosovichev, Alexander G.

    2003-01-01

    Time-distance helioseismology is applied to study the subphotospheric structures and dynamics of an unusually fast-rotating sunspot observed by the Michelson Doppler Imager on bead SOH0 in 2000 August. The subsurface sound speed structures and velocity fields are obtained for the sunspot region at different depths from 0 to 12 Mm. By comparing the subsurface sound speed variations with the surface magnetic field, we find evidence for structural twists beneath the visible surface of this active region, which may indicate that magnetic twists often seen at the photosphere also exist beneath the photosphere. We also report on the observation of subsurface horizontal vortical flows that extend to a depth of 5 Mm around this rotating sunspot and present evidence that opposite vortical flows may exist below 9 Mm. It is suggested that the vortical flows around this active region may build up a significant amount of magnetic helicity and energy to power solar eruptions. Monte Carlo simulation has been performed to estimate the error propagation, and in addition the sunspot umbra is masked to test the reliability of our inversion results. On the basis of the three-dimensional velocity fields obtained from the time-distance helioseismology inversions, we estimate the subsurface kinetic helicity at different depths for the first time and conclude that it is comparable to the current helicity estimated from vector magnetograms.

  18. PRECURSOR OF SUNSPOT PENUMBRAL FORMATION DISCOVERED WITH HINODE SOLAR OPTICAL TELESCOPE OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Toshifumi [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo, Sagamihara, Kanagawa 252-5210 (Japan); Ichimoto, Kiyoshi [Kwasan and Hida Observatories, Kyoto University, Kamitakara-cho, Takayama, Gifu 506-1314 (Japan); Suematsu, Yoshinori, E-mail: shimizu.toshifumi@isas.jaxa.jp [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan)

    2012-03-10

    We present observations of a precursory signature that would be helpful for understanding the formation process of sunspot penumbrae. The Hinode Solar Optical Telescope successfully captured the entire evolution of a sunspot from the pore to a large well-developed sunspot with penumbra in an emerging flux region appearing in NOAA Active Region 11039. We found an annular zone (width 3''-5'') surrounding the umbra (pore) in Ca II H images before the penumbra formed around the umbra. The penumbra developed as if to fill the annular zone. The annular zone shows weak magnetogram signals, meaning less magnetic flux or highly inclined fields there. Pre-existing ambient magnetic field islands were distributed at the outer edge of the annular zone and did not come into the zone. There are no strong systematic flow patterns in the zone, but we occasionally observed small magnetic flux patches streaming out. The observations indicate that the annular zone is different from the sunspot moat flow region and that it represents the structure in the chromosphere. We conclude that the annular zone reflects the formation of a magnetic canopy overlying the region surrounding the umbra at the chromospheric level, long before the formation of the penumbra at the photospheric level. The magnetic field structure in the chromosphere needs to be considered in the formation process of the penumbrae.

  19. Deciphering solar turbulence from sunspots records

    CERN Document Server

    Plunian, Franck; Stepanov, Rodion

    2009-01-01

    It is generally believed that sunspots are the emergent part of magnetic flux tubes in the solar interior. These tubes are created at the base of the convection zone and rise to the surface due to their magnetic buoyancy. The motion of plasma in the convection zone being highly turbulent, the surface manifestation of sunspots may retain the signature of this turbulence, including its intermittency. From direct observations of sunspots, and indirect observations of the concentration of cosmogenic isotopes $^{14}$C in tree rings or $^{10}$Be in polar ice, power spectral densities in frequency are plotted. Two different frequency scalings emerge, depending on whether the Sun is quiescent or active. %magnetic activity is maximum or minimum. From direct observations we can also calculate scaling exponents. These testify to a strong intermittency, comparable with that observed in the solar wind.

  20. Magnetic topology of a naked sunspot: Is it really naked?

    CERN Document Server

    Dalda, A Sainz; Tarbell, T D; 10.1088/2041-8205/746/1/L13

    2012-01-01

    The high spatial, temporal and spectral resolution achieved by Hinode instruments give much better understanding of the behavior of some elusive solar features, such as pores and naked sunspots. Their fast evolution and, in some cases, their small sizes have made their study difficult. The moving magnetic features, despite being more dynamic structures, have been studied during the last 40 years. They have been always associated with sunspots, especially with the penumbra. However, a recent observation of a naked sunspot (one with no penumbra) has shown MMF activity. The authors of this reported observation expressed their reservations about the explanation given to the bipolar MMF activity as an extension of the penumbral filaments into the moat. How can this type of MMFs exist when a penumbra does not? In this paper, we study the full magnetic and (horizontal) velocity topology of the same naked sunspot, showing how the existence of a magnetic field topology similar to that observed in sunspots can explain ...

  1. Wave phenomena in sunspots

    Science.gov (United States)

    Löhner-Böttcher, Johannes

    2016-03-01

    Context: The dynamic atmosphere of the Sun exhibits a wealth of magnetohydrodynamic (MHD) waves. In the presence of strong magnetic fields, most spectacular and powerful waves evolve in the sunspot atmosphere. Allover the sunspot area, continuously propagating waves generate strong oscillations in spectral intensity and velocity. The most prominent and fascinating phenomena are the 'umbral flashes' and 'running penumbral waves' as seen in the sunspot chromosphere. Their nature and relation have been under intense discussion in the last decades. Aims: Waves are suggested to propagate upward along the magnetic field lines of sunspots. An observational study is performed to prove or disprove the field-guided nature and coupling of the prevalent umbral and penumbral waves. Comprehensive spectroscopic observations at high resolution shall provide new insights into the wave characteristics and distribution across the sunspot atmosphere. Methods: Two prime sunspot observations were carried out with the Dunn Solar Telescope at the National Solar Observatory in New Mexico and with the Vacuum Tower Telescope at the Teide Observatory on Tenerife. The two-dimensional spectroscopic observations were performed with the interferometric spectrometers IBIS and TESOS. Multiple spectral lines are scanned co-temporally to sample the dynamics at the photospheric and chromospheric layers. The time series (1 - 2.5 h) taken at high spatial and temporal resolution are analyzed according to their evolution in spectral intensities and Doppler velocities. A wavelet analysis was used to obtain the wave power and dominating wave periods. A reconstruction of the magnetic field inclination based on sunspot oscillations was developed. Results and conclusions: Sunspot oscillations occur continuously in spectral intensity and velocity. The obtained wave characteristics of umbral flashes and running penumbral waves strongly support the scenario of slow-mode magnetoacoustic wave propagation along the

  2. Evidence of a planetary influence on solar activity: Phase coherence of the variation in sunspot area with the tidal effect of Mercury

    CERN Document Server

    Edmonds, Ian

    2015-01-01

    There have been numerous reports of quasiperiodicities in solar activity in the intermediate period range. However, no accepted explanation for the episodic occurrence of quasiperiodicities has emerged. This paper examines the possibility that the periodicities are associated with a Mercury Sun interaction of base period 88 days. To test this idea we band pass filter the 140 year long daily sunspot area data to obtain the 88 day period and 176 day sub harmonic period components of the data and compare the time variation of the components with the time variation of the orbital radius of Mercury, or more specifically with the time variation of the tidal effect of Mercury. We were able to show that, when successive episodes of the occurrence of the 88 day period component were discrete and not overlapping in time, the time variation of this component of sunspot area was either exactly in-phase or exactly in anti-phase with the time variation of tidal effect. A similar result was obtained for the 176 day period c...

  3. Deciphering solar turbulence from sunspots records

    Science.gov (United States)

    Plunian, F.; Sarson, G. R.; Stepanov, R.

    2009-11-01

    It is generally believed that sunspots are the emergent part of magnetic flux tubes in the solar interior. These tubes are created at the base of the convection zone and rise to the surface due to their magnetic buoyancy. The motion of plasma in the convection zone being highly turbulent, the surface manifestation of sunspots may retain the signature of this turbulence, including its intermittency. From direct observations of sunspots, and indirect observations of the concentration of cosmogenic isotopes 14C in tree rings or 10Be in polar ice, power spectral densities in frequency are plotted. Two different frequency scalings emerge, depending on whether the Sun is quiescent or active. From direct observations we can also calculate scaling exponents. These testify to a strong intermittency, comparable with that observed in the solar wind.

  4. Re-examining Sunspot Tilt Angle to Include Anti-Hale Statistics

    CERN Document Server

    McClintock, Bruce H; Li, Jing

    2014-01-01

    Sunspot groups and bipolar magnetic regions (BMRs) serve as an observational diagnostic of the solar cycle. We use Debrecen Photohelographic Data (DPD) from 1974-2014 that determined sunspot tilt angles from daily white light observations, and data provided by Li & Ulrich that determined sunspot magnetic tilt angle using Mount Wilson magnetograms from 1974-2012. The magnetograms allowed for BMR tilt angles that were anti-Hale in configuration, so tilt values ranged from 0 to 360{\\deg} rather than the more common $\\pm$ 90{\\deg}. We explore the visual representation of magnetic tilt angles on a traditional butterfly diagram by plotting the mean area-weighted latitude of umbral activity in each bipolar sunspot group, including tilt information. The large scatter of tilt angles over the course of a single cycle and hemisphere prevents Joy's law from being visually identified in the tilt-butterfly diagram without further binning. The average latitude of anti-Hale regions does not differ from the average latitu...

  5. Sunspot seismic halos generated by fast MHD wave refraction

    CERN Document Server

    Khomenko, E

    2009-01-01

    We suggest an explanation for the high-frequency power excess surrounding active regions known as seismic halos. The idea is based on numerical simulations of magneto-acoustic waves propagation in sunspots. We propose that such an excess can be caused by the additional energy injected by fast mode waves refracted in the higher atmosphere due to the rapid increase of the Alfven speed. Our model qualitatively explains the magnitude of the halo and allows to make some predictions of its behavior that can be checked in future observations.

  6. VizieR Online Data Catalog: Scheiner drawing sunspot areas and tilt angles (Arlt+, 2016)

    Science.gov (United States)

    Arlt, R.; Senthamizh Pavai, V.; Schmiel, C.; Spada, F.

    2016-09-01

    Christoph Scheiner and his collaborators observed the sunspots from 1611-1631 at five different locations of Rome in Italy, Ingolstadt in Germany, Douai (Duacum in Latin) in France, Freiburg im Breisgau, Germany and Vienna, Austria. However, most of his published drawings were made in Rome. These sunspot drawings are important because they can tell us how the solar activity declined to a very low-activity phase which lasted for nearly five decades. The three sources used for the sunspot data extraction are Scheiner (1630rour.book.....S, Rosa Ursina sive solis), Scheiner (1651ppsm.book.....S, Prodromus pro sole mobili et terra stabili contra Academicum Florentinum Galilaeum a Galilaeis), and Reeves & Van Helden (2010, On sunspots. Galileo Galilei and Christoph Scheiner (University of Chicago Press)). The suspot drawings show the sunspot groups traversing the solar disk in a single full-disk drawing. The positions and areas of the sunspots were measured using 13 circular cursor shapes with different diameters. Umbral areas for 8167 sunspots and tilt angles for 697 manually selected, supposedly bipolar groups were obtained from Scheiner's sunspot drawings. The database does not contain spotless days. There is, of course, no polarity information in the sunspot drawings, so the tilt angles are actually pseudo-tilt angles. Both an updated sunspot database and a tilt angle database may be available at http://www.aip.de/Members/rarlt/sunspots for further study. (2 data files).

  7. Records of sunspot and aurora activity during 581-959 CE in Chinese official histories concerning the periods of Suí, Táng, and the Five Dynasties and Ten Kingdoms

    Science.gov (United States)

    Tamazawa, Harufumi; Kawamura, Akito Davis; Hayakawa, Hisashi; Tsukamoto, Asuka; Isobe, Hiroaki; Ebihara, Yusuke

    2017-04-01

    Recent studies concerning radioisotopes in tree rings or ice cores suggest that extreme space weather events occurred during the pre-telescope age. Observational records of naked-eye sunspots and low-latitude auroras in historical documents during this age can provide useful information about past solar activity. In this paper, we present the results of a comprehensive survey of records of sunspots and auroras in Chinese official histories from the 6th century to the 10th century, in the period of Suí, Táng, the Five Dynasties and Ten Kingdoms. These official histories contain records of continuous observations with well-formatted reports conducted under the policy of the governments. A brief comparison of the frequency of observations of sunspots and auroras based on observations of radioisotopes as an indicator of solar activity during the corresponding periods is provided. Using our data, we surveyed and compiled the records of sunspots and auroras in historical documents from various locations and in several languages, and ultimately provide these as open data to the scientific community.

  8. Records of sunspot and aurora activity during 581-959 CE in Chinese official histories concerning the periods of Suí, Táng, and the Five Dynasties and Ten Kingdoms

    Science.gov (United States)

    Tamazawa, Harufumi; Kawamura, Akito Davis; Hayakawa, Hisashi; Tsukamoto, Asuka; Isobe, Hiroaki; Ebihara, Yusuke

    2017-02-01

    Recent studies concerning radioisotopes in tree rings or ice cores suggest that extreme space weather events occurred during the pre-telescope age. Observational records of naked-eye sunspots and low-latitude auroras in historical documents during this age can provide useful information about past solar activity. In this paper, we present the results of a comprehensive survey of records of sunspots and auroras in Chinese official histories from the 6th century to the 10th century, in the period of Suí, Táng, the Five Dynasties and Ten Kingdoms. These official histories contain records of continuous observations with well-formatted reports conducted under the policy of the governments. A brief comparison of the frequency of observations of sunspots and auroras based on observations of radioisotopes as an indicator of solar activity during the corresponding periods is provided. Using our data, we surveyed and compiled the records of sunspots and auroras in historical documents from various locations and in several languages, and ultimately provide these as open data to the scientific community.

  9. Magnetic Splitting of Molecular Lines in Sunspot

    Science.gov (United States)

    Berdyugina, S. V.; Frutiger, C.; Solanki, S. K.

    A study of molecular lines in sunspots is of particular interest because of their high temperature and pressure sensitivity. Many of them are also magnetically sensitive, but this was not yet widely investigated. With high-resolution, high signal-to-noise Fourier spectroscopy in four Stokes parameters now available, the use of molecular lines for studying the structure of sunspots brings real gains. One is the extension of spot models, including magnetic field, up to layers, where atomic lines suffer from NLTE effects but molecules can still be treated in the LTE approximation. Equally important is the fact that since molecular lines are extremely temperature sensitive they can be used to probe the thermal and magnetic structure of the coolest parts of sunspots. We present calculations of splitting and the Stokes parameters for a number of molecular lines in the visible and near-infrared regions. Our first selections are the green system of MgH A2Π-X2σ and the TiO triplet α, γ' and γ systems as the most studied band systems in the sunspot spectrum. The calculations involve different regimes of the molecular Zeeman effect, up to the complete Paschen-Back effect for individual lines. We look for molecular lines which can be used along with atomic lines to derive magnetic, thermal and dynamic properties of the umbra.

  10. Automatic Detection of Magnetic δ in Sunspot Groups

    Science.gov (United States)

    Padinhatteeri, Sreejith; Higgins, Paul A.; Bloomfield, D. Shaun; Gallagher, Peter T.

    2016-01-01

    Large and magnetically complex sunspot groups are known to be associated with flares. To date, the Mount Wilson scheme has been used to classify sunspot groups based on their morphological and magnetic properties. The most flare-prolific class, the δ sunspot group, is characterised by opposite-polarity umbrae within a common penumbra, separated by less than 2∘. In this article, we present a new system, called the Solar Monitor Active Region Tracker-Delta Finder (SMART-DF), which can be used to automatically detect and classify magnetic δs in near-realtime. Using continuum images and magnetograms from the Helioseismic and Magnetic Imager (HMI) onboard NASA's Solar Dynamics Observatory (SDO), we first estimate distances between opposite-polarity umbrae. Opposite-polarity pairs with distances of less that 2∘ are then identified, and if these pairs are found to share a common penumbra, they are identified as a magnetic δ configuration. The algorithm was compared to manual δ detections reported by the Space Weather Prediction Center (SWPC), operated by the National Oceanic and Atmospheric Administration (NOAA). SMART-DF detected 21 out of 23 active regions (ARs) that were marked as δ spots by NOAA during 2011 - 2012 (within {±} 60° longitude). SMART-DF in addition detected five ARs that were not announced as δ spots by NOAA. The near-realtime operation of SMART-DF resulted in many δs being identified in advance of NOAA's daily notification. SMART-DF will be integrated into SolarMonitor (www.solarmonitor.org) and the near-realtime information will be available to the public.

  11. Behaviour of oscillations in loop structures above active regions

    CERN Document Server

    Kolobov, D Y; Chelpanov, A A; Kochanov, A A; Anfinogentov, S A; Chupin, S A; Myshyakov, I I; Tomin, V E

    2015-01-01

    In this study we combine the multiwavelength ultraviolet -- optical (Solar Dynamics Observatory, SDO) and radio (Nobeyama Radioheliograph, NoRH) observations to get further insight into space-frequency distribution of oscillations at different atmospheric levels of the Sun. We processed the observational data on NOAA 11711 active region and found oscillations propagating from the photospheric level through the transition region upward into the corona. The power maps of low-frequency (1--2 mHz) oscillations reproduce well the fan-like coronal structures visible in the Fe ix 171A line. High frequency oscillations (5--7 mHz) propagate along the vertical magnetic field lines and concentrate inside small-scale elements in the umbra and at the umbra-penumbra boundary. We investigated the dependence of the dominant oscillation frequency upon the distance from the sunspot barycentre to estimate inclination of magnetic tubes in higher levels of sunspots where it cannot be measured directly, and found that this angle i...

  12. Nature's third cycle a story of sunspots

    CERN Document Server

    Choudhuri, Arnab Rai

    2015-01-01

    The cycle of day and night and the cycle of seasons are two familiar natural cycles around which many human activities are organized. But is there a third natural cycle of importance for us humans? On 13 March 1989, six million people in Canada went without electricity for many hours: a large explosion on the sun was discovered as the cause of this blackout. Such explosions occur above sunspots, dark features on the surface of the Sun that have been observed through telescopes since the time of Galileo. The number of sunspots has been found to wax and wane over a period of 11 years. Although this cycle was discovered less than two centuries ago, it is becoming increasingly important for us as human society becomes more dependent on technology. For nearly a century after its discovery, the cause of the sunspot cycle remained completely shrouded in mystery. The 1908 discovery of strong magnetic fields in sunspots made it clear that the 11-year cycle is the magnetic cycle of the sun. It is only during the last ...

  13. Comparative analysis of Debrecen sunspot catalogues

    Science.gov (United States)

    Győri, L.; Ludmány, A.; Baranyi, T.

    2017-02-01

    Sunspot area data are important for studying solar activity and its long-term variations. At the Debrecen Heliophysical Observatory, we compiled three sunspot catalogues: the Debrecen Photoheliographic Data (DPD), the SDO/HMI Debrecen Data (HMIDD) and the SOHO/MDI Debrecen Data. For comparison, we also compiled an additional sunspot catalogue, the Greenwich Photoheliographic Data, from the digitized Royal Greenwich Observatory images for 1974-76. By comparing these catalogues when they overlap in time, we can investigate how various factors influence the measured area of sunspots, and, in addition, we can derive area cross-calibration factors for these catalogues. The main findings are as follows. Poorer seeing increases the individual corrected spot areas and decreases the number of small spots. Interestingly, the net result of these two effects for the total corrected spot area is zero. DPD daily total corrected sunspot areas are 5 per cent smaller than the HMIDD ones. Revised DPD daily total corrected umbra areas are 9 per cent smaller than those of HMIDD. The Greenwich photoheliographic areas are only a few per cent smaller than DPD areas. A 0.2° difference between the north directions of the DPD and MDI images is found. This value is nearly the same as was found (0.22°) by us in a previous paper comparing HMI and MDI images. The area measurement practice (spots smaller than 10 mh were not directly measured but an area of 2 mh was assigned to each) of the Solar Observing Optical Network cannot explain the large area deficit of the Solar Observing Optical Network.

  14. Coordination failure caused by sunspots

    DEFF Research Database (Denmark)

    Beugnot, Julie; Gürgüç, Zeynep; Øvlisen, Frederik Roose

    2012-01-01

    In a coordination game with Pareto-ranked equilibria, we study whether a sunspot can lead to either coordination on an inferior equilibrium (mis-coordination) or to out-of equilibrium behavior (dis-coordination). While much of the literature searches for mechanisms to attain coordination...... on the efficient equilibrium, we consider sunspots as a potential reason for coordination failure. We conduct an experiment with a three player 2x2x2 game in which coordination on the efficient equilibrium is easy and should normally occur. In the control session, we find almost perfect coordination on the payoff......-dominant equilibrium, but in the sunspot treatment, dis-coordination is frequent. Sunspots lead to significant inefficiency, and we conclude that sunspots can indeed cause coordination failure....

  15. The Maximum Free Magnetic Energy Allowed in a Solar Active Region

    Science.gov (United States)

    Moore, Ronald L.; Falconer, David A.

    2009-01-01

    Two whole-active-region magnetic quantities that can be measured from a line-of-sight magnetogram are (sup L) WL(sub SG), a gauge of the total free energy in an active region's magnetic field, and sup L(sub theta), a measure of the active region's total magnetic flux. From these two quantities measured from 1865 SOHO/MDI magnetograms that tracked 44 sunspot active regions across the 0.5 R(sub Sun) central disk, together with each active region's observed production of CMEs, X flares, and M flares, Falconer et al (2009, ApJ, submitted) found that (1) active regions have a maximum attainable free magnetic energy that increases with the magnetic size (sup L) (sub theta) of the active region, (2) in (Log (sup L)WL(sub SG), Log(sup L) theta) space, CME/flare-productive active regions are concentrated in a straight-line main sequence along which the free magnetic energy is near its upper limit, and (3) X and M flares are restricted to large active regions. Here, from (a) these results, (b) the observation that even the greatest X flares produce at most only subtle changes in active region magnetograms, and (c) measurements from MSFC vector magnetograms and from MDI line-of-sight magnetograms showing that practically all sunspot active regions have nearly the same area-averaged magnetic field strength: =- theta/A approximately equal to 300 G, where theta is the active region's total photospheric flux of field stronger than 100 G and A is the area of that flux, we infer that (1) the maximum allowed ratio of an active region's free magnetic energy to its potential-field energy is 1, and (2) any one CME/flare eruption releases no more than a small fraction (less than 10%) of the active region's free magnetic energy. This work was funded by NASA's Heliophysics Division and NSF's Division of Atmospheric Sciences.

  16. High-resolution Observation of Moving Magnetic Features in Active Regions

    Science.gov (United States)

    Li, Qin; Deng, Na; Jing, Ju; Wang, Haimin

    2017-08-01

    Moving magnetic features (MMFs) are small photospheric magnetic elements that emerge and move outward toward the boundary of moat regions mostly during a sunspot decaying phase, in a serpent wave-like magnetic topology. Studies of MMFs and their classification (e.g., unipolar or bipolar types) strongly rely on the high spatiotemporal-resolution observation of photospheric magnetic field. In this work, we present a detailed observation of a sunspot evolution in NOAA active region (AR) 12565, using exceptionally high resolution Halpha images from the 1.6 New Solar telescope (NST) at Big Bear Solar Observatory (BBSO) and the UV images from the Interface Region Imaging Spectrograph (IRIS). The spectropolarimetric measurements of photospheric magnetic field are obtained from the NST Near InfraRed Imaging Spectropolarimeter (NIRIS) at Fe I 1.56 um line. We investigate the horizontal motion of the classified MMFs and discuss the clustering patterns of the geometry and motion of the MMFs. We estimate the rate of flux generation by appearance of MMFs and the role MMFs play in sunspot decaying phase. We also study the interaction between the MMFs and the existing magnetic field features and its response to Ellerman bombs and IRIS bombs respectively at higher layers.

  17. Three-dimensional magnetic structure of a sunspot: Comparison of the photosphere and upper chromosphere

    Science.gov (United States)

    Joshi, Jayant; Lagg, Andreas; Hirzberger, Johann; Solanki, Sami K.

    2017-08-01

    Aims: We investigate the magnetic field of a sunspot in the upper chromosphere and compare it to the photospheric properties of the field. Methods: We observed the main leading sunspot of the active region NOAA 11124 during two days with the Tenerife Infrared Polarimeter-2 (TIP-2) mounted at the German Vacuum Tower Telescope (VTT). Through inversion of Stokes spectra of the He i triplet at 10 830 Å, we obtained the magnetic field vector of the upper chromosphere. For comparison with the photosphere, we applied height-dependent inversions of the Si i 10 827.1 Å and Ca i 10 833.4 Å lines. Results: We found that the umbral magnetic field strength in the upper chromosphere is lower by a factor of 1.30-1.65 compared to the photosphere. The magnetic field strength of the umbra decreases from the photosphere toward the upper chromosphere by an average rate of 0.5-0.9 G km-1. The difference in the magnetic field strength between both atmospheric layers steadily decreases from the sunspot center to the outer boundary of the sunspot; the field, in particular its horizontal component, is stronger in the chromopshere outside the spot and this is suggestive of a magnetic canopy. The sunspot displays a twist that on average is similar in the two layers. However, the differential twist between the photosphere and chromosphere increases rapidly toward the outer penumbral boundary. The magnetic field vector is more horizontal with respect to the solar surface by roughly 5-20° in the photosphere compared to the upper chromosphere. Above a lightbridge, the chromospheric magnetic field is equally strong as that in the umbra, whereas the field of the lightbridge is weaker than its surroundings in the photosphere by roughly 1 kG. This suggests a cusp-like magnetic field structure above the lightbridge.

  18. Photospheric and Coronal Observations of Abrupt Magnetic Restructuring in Two Flaring Active Regions

    Science.gov (United States)

    Petrie, Gordon

    2016-05-01

    For two major X-class flares observed by the Solar Dynamics Observatory (SDO) and the Solar TErrestrial RElations Observatory Ahead (STEREO-A) spacecraft when they were close to quadrature, we compare major, abrupt changes in the photospheric magnetic vector field to changes in the observed coronal magnetic structure during the two flares. The Lorentz force changes in strong photospheric fields within active regions are estimated from time series of SDO Helioseismic and Magnetic Imager (HMI) vector magnetograms. These show that the major changes occurred in each case near the main neutral line of the region and in two neighboring twisted opposite-polarity sunspots. In each case the horizontal parallel field strengthened significantly near the neutral line while the azimuthal field in the sunspots decreased, suggesting that a flux rope joining the two sunspots collapsed across the neutral line with reduced magnetic pressure because of a reduced field twist component. At the same time, the coronal extreme ultraviolet (EUV) loop structure was observed by the Atmospheric Imaging Assembly (AIA) onboard SDO and the Extreme Ultraviolet Imager (EUVI) on STEREO-A to decrease significantly in height during each eruption, discontinuous changes signifying ejection of magnetized plasma, and outward-propagating continuous but abrupt changes consistent with loop contraction. An asymmetry in the observed EUV loop changes during one of the flares matches an asymmetry in the photospheric magnetic changes associated with that flare. The observations are discussed in terms of the well-known tether-cutting and breakout flare initiation models.

  19. On the Relationship between Solar Wind Speed, Earthward-Directed Coronal Mass Ejections, Geomagnetic Activity, and the Sunspot Cycle Using 12-Month Moving Averages

    Science.gov (United States)

    Wilson, Robert M.; Hathaway, David H.

    2008-01-01

    For 1996 .2006 (cycle 23), 12-month moving averages of the aa geomagnetic index strongly correlate (r = 0.92) with 12-month moving averages of solar wind speed, and 12-month moving averages of the number of coronal mass ejections (CMEs) (halo and partial halo events) strongly correlate (r = 0.87) with 12-month moving averages of sunspot number. In particular, the minimum (15.8, September/October 1997) and maximum (38.0, August 2003) values of the aa geomagnetic index occur simultaneously with the minimum (376 km/s) and maximum (547 km/s) solar wind speeds, both being strongly correlated with the following recurrent component (due to high-speed streams). The large peak of aa geomagnetic activity in cycle 23, the largest on record, spans the interval late 2002 to mid 2004 and is associated with a decreased number of halo and partial halo CMEs, whereas the smaller secondary peak of early 2005 seems to be associated with a slight rebound in the number of halo and partial halo CMEs. Based on the observed aaM during the declining portion of cycle 23, RM for cycle 24 is predicted to be larger than average, being about 168+/-60 (the 90% prediction interval), whereas based on the expected aam for cycle 24 (greater than or equal to 14.6), RM for cycle 24 should measure greater than or equal to 118+/-30, yielding an overlap of about 128+/-20.

  20. A Recount of Sunspot Groups on Staudach's Drawings

    Science.gov (United States)

    Svalgaard, Leif

    2017-01-01

    We have examined the more than 1100 drawings of the solar disk made by the German amateur astronomer Johann Caspar Staudach during 1749 - 1799 and counted the spots on each image. Using the modern perception of how to group spots into active regions, we regrouped the spots as a modern observer would. The resulting number of groups was found to be higher on average by 25 % than the first count of groups performed by Wolf in 1857, which was used by Hoyt and Schatten ( Solar Phys. 181, 491, 1998) in their construction of the group sunspot number. Compared to other observers at the time, Staudach's drawings have a very low average number, about two, of spots per group, possibly indicating an inferior telescope that probably suffered from spherical and chromatic aberration, as would be typical of amateur telescopes of the day. We have initiated an ongoing project aiming at observing sunspots with antique telescopes having similar defects in order to determine the factor necessary to bring the Staudach observations onto a modern scale.

  1. A Recount of Sunspot Groups on Staudach's Drawings

    CERN Document Server

    Svalgaard, Leif

    2015-01-01

    We have examined the more than 1100 drawings of the solar disk made by the German astronomy amateur Johann Caspar Staudach during 1749-1799 and counted the spots on each image. Using the modern perception of how to group spots into active regions we regrouped the spots as a modern observer would. The resulting number of groups was found to be on average 25% higher than the first count of groups performed by Wolf in 1857, and used by Hoyt and Schatten in their construction of the Group Sunspot Number. Compared to other observers at the time, Staudach's drawings have a very low average number, ~2, of spots per group, possibly indicating an inferior telescope likely suffering from spherical and chromatic aberration as would typical of amateur telescopes of the day. We have initiated an ongoing project aiming at observing sunspots with antique telescopes having similar defects in order to determine the factor necessary to bring the Staudach observations onto a modern scale.

  2. Time-Distance Helioseismology of Two Realistic Sunspot Simulations

    CERN Document Server

    DeGrave, K; Rempel, M

    2014-01-01

    Linear time-distance helioseismic inversions are carried out using several filtering schemes to determine vector flow velocities within two $\\sim100^2\\,{\\rm Mm^2}\\times 20\\,{\\rm Mm}$ realistic magnetohydrodynamic sunspot simulations of 25~hr. One simulation domain contains a model of a full sunspot (i.e. one with both an umbra and penumbra), while the other contains a pore (i.e. a spot without a penumbra). The goal is to test current helioseismic methods using these state-of-the-art simulations of magnetic structures. We find that horizontal flow correlations between inversion and simulation flow maps are reasonably high ($\\sim0.5$--0.8) in the upper 3~Mm at distances exceeding 25--30~Mm from spot center, but are substantially lower at smaller distances and larger depths. Inversions of forward-modeled travel times consistently outperform those of our measured travel times in terms of horizontal flow correlations, suggesting that our inability to recover flow structure near these active regions is largely due ...

  3. Chromospheric Sunspot Oscillations in H-alpha and Ca II 8542A

    CERN Document Server

    Maurya, Ram Ajor; Park, Hyungmin; Yang, Heesu; Song, Donguk; Cho, Kyuhyoun

    2013-01-01

    We study chromospheric oscillations including umbral flashes and running penumbral waves in a sunspot of active region (AR) using scanning spectroscopy in H-alpha and Ca II 8542A, with the Fast Imaging Solar Spectrograph (FISS) at the 1.6 meter New Solar Telescope at Big Bear Solar Observatory. A bisector method is applied to spectral observations to construct chromospheric Doppler velocity maps. Temporal sequence analysis of these shows enhanced high-frequency oscillations inside the sunspot umbra in both lines. Their peak frequency gradually decreases outward from the umbra. The oscillation power is found to be associated with magnetic-field strength and inclination, with different relationships in different frequency bands.

  4. Suppression of Heating of Coronal Loops Rooted in Opposite Polarity Sunspot Umbrae

    Science.gov (United States)

    Tiwari, Sanjiv K.; Thalmann, Julia K.; Moore, Ronald L.; Panesar, Navdeep K.; Winebarger, Amy R.

    2016-01-01

    EUV observations of active region (AR) coronae reveal the presence of loops at different temperatures. To understand the mechanisms that result in hotter or cooler loops, we study a typical bipolar AR, near solar disk center, which has moderate overall magnetic twist and at least one fully developed sunspot of each polarity. From AIA 193 and 94 Å images we identify many clearly discernible coronal loops that connect plage or a sunspot of one polarity to an opposite-­polarity plage region. The AIA 94 Å images show dim regions in the umbrae of the spots. To see which coronal loops are rooted in a dim umbral area, we performed a non-linear force-free field (NLFFF) modeling using photospheric vector magnetic field measurements obtained with the Heliosesmic Magnetic Imager (HMI) onboard SDO. The NLFFF model, validated by comparison of calculated model field lines with observed loops in AIA 193 and 94 Å, specifies the photospheric roots of the model field lines. Some model coronal magnetic field lines arch from the dim umbral area of the positive-polarity sunspot to the dim umbral area of a negative-polarity sunspot. Because these coronal loops are not visible in any of the coronal EUV and X-ray images of the AR, we conclude they are the coolest loops in the AR. This result suggests that the loops connecting opposite polarity umbrae are the least heated because the field in umbrae is so strong that the convective braiding of the field is strongly suppressed.

  5. The new Sunspot Number: assembling all corrections

    CERN Document Server

    Frédéric,; Lefèvre, Laure

    2015-01-01

    The Sunspot Number, created by R.Wolf in 1849, provides a direct long-term record of solar activity from 1700 to the present. In spite of its central role in multiple studies of the solar dynamo and of the past Sun-Earth relations, it was never submitted to a global critical revision. However, various discrepancies with other solar indices recently motivated a full re-calibration of this series. Based on various diagnostics and corrections established in the framework of several Sunspot Number Workshops and described in Clette et al. 2014, we assembled all corrections in order to produce a new standard version of this reference time series. In this paper, we explain the three main corrections and the criteria used to choose a final optimal version of each correction factor or function, given the available information and published analyses. We then discuss the good agreement obtained with the Group sunspot Number derived from a recent reconstruction. Among the implications emerging from this re-calibrated ser...

  6. Dynamic Precursors of Flares in Active Region NOAA 10486

    Indian Academy of Sciences (India)

    M. B. Korsós; N. Gyenge; T. Baranyi; A. Ludmány

    2015-03-01

    Four different methods are applied here to study the precursors of flare activity in the Active Region NOAA 10486. Two approaches track the temporal behaviour of suitably chosen features (one, the weighted horizontal gradient WGM, is the generalized form of the horizontal gradient of the magnetic field, GM; the other is the sum of the horizontal gradient of the magnetic field, GS, for all sunspot pairs). WGM is a photospheric indicator, that is a proxy measure of magnetic non-potentiality of a specific area of the active region, i.e., it captures the temporal variation of the weighted horizontal gradient of magnetic flux summed up for the region where opposite magnetic polarities are highly mixed. The third one, referred to as the separateness parameter, Sl−f, considers the overall morphology. Further, GS and Sl−f are photospheric, newly defined quick-look indicators of the polarity mix of the entire active region. The fourth method is tracking the temporal variation of small X-ray flares, their times of succession and their energies observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager instrument. All approaches yield specific pre-cursory signatures for the imminence of flares.

  7. MAG4 Versus Alternative Techniques for Forecasting Active-Region Flare Productivity

    Science.gov (United States)

    Falconer, David A.; Moore, Ronald L.; Barghouty, Abdulnasser F.; Khazanov, Igor

    2014-01-01

    MAG4 is a technique of forecasting an active region's rate of production of major flares in the coming few days from a free-magnetic-energy proxy. We present a statistical method of measuring the difference in performance between MAG4 and comparable alternative techniques that forecast an active region's major-flare productivity from alternative observed aspects of the active region. We demonstrate the method by measuring the difference in performance between the "Present MAG4" technique and each of three alternative techniques, called "McIntosh Active-Region Class," "Total Magnetic Flux," and "Next MAG4." We do this by using (1) the MAG4 database of magnetograms and major-flare histories of sunspot active regions, (2) the NOAA table of the major-flare productivity of each of 60 McIntosh active-region classes of sunspot active regions, and (3) five technique-performance metrics (Heidke Skill Score, True Skill Score, Percent Correct, Probability of Detection, and False Alarm Rate) evaluated from 2000 random two-by-two contingency tables obtained from the databases. We find that (1) Present MAG4 far outperforms both McIntosh Active-Region Class and Total Magnetic Flux, (2) Next MAG4 significantly outperforms Present MAG4, (3) the performance of Next MAG4 is insensitive to the forward and backward temporal windows used, in the range of one to a few days, and (4) forecasting from the free-energy proxy in combination with either any broad category of McIntosh active-region classes or any Mount Wilson active-region class gives no significant performance improvement over forecasting from the free-energy proxy alone (Present MAG4).

  8. Technique for Automated Recognition of Sunspots on Full-Disk Solar Images

    Directory of Open Access Journals (Sweden)

    Zharkov S

    2005-01-01

    Full Text Available A new robust technique is presented for automated identification of sunspots on full-disk white-light (WL solar images obtained from SOHO/MDI instrument and Ca II K1 line images from the Meudon Observatory. Edge-detection methods are applied to find sunspot candidates followed by local thresholding using statistical properties of the region around sunspots. Possible initial oversegmentation of images is remedied with a median filter. The features are smoothed by using morphological closing operations and filled by applying watershed, followed by dilation operator to define regions of interest containing sunspots. A number of physical and geometrical parameters of detected sunspot features are extracted and stored in a relational database along with umbra-penumbra information in the form of pixel run-length data within a bounding rectangle. The detection results reveal very good agreement with the manual synoptic maps and a very high correlation with those produced manually by NOAA Observatory, USA.

  9. Sunspot Bright Points

    CERN Document Server

    Choudhary, Debi Prasad

    2010-01-01

    We used the flux calibrated images through the Broad Band Filter Imager and Stokes Polarimeter data obtained with the Solar Optical Telescope onboard the Hinode spacecraft to study the properties of bright points in and around the sunspots. The well isolated bright points were selected and classified as umbral dot, peripheral umbral dot, penumbral grains and G-band bright point depending on their location. Most of the bright points are smaller than about 150 km. The larger points are mostly associated with the penumbral features. The bright points are not uniformly distributed over the umbra but preferentially located around the penumbral boundary and in the fast decaying parts of umbra. The color temperature of the bright points, derived using the continuum irradiance, are in the range of 4600 K to 6600 K with cooler ones located in the umbra. The temperature increases as a function of distance from the center to outside. The G-band, CN-band and CaII H flux of the bright points as a function of their blue ba...

  10. Looking for granulation and periodicity imprints in the sunspot time series

    CERN Document Server

    Lopes, Ilidio

    2015-01-01

    The sunspot activity is the end result of the cyclic destruction and regeneration of magnetic fields by the dynamo action. We propose a new method to analyze the daily sunspot areas data recorded since 1874. By computing the power spectral density of daily data series using the Mexican hat wavelet, we found a power spectrum with a well-defined shape, characterized by three features. The first term is the 22 yr solar magnetic cycle, estimated in our work to be of 18.43 yr. The second term is related to the daily volatility of sunspots. This term is most likely produced by the turbulent motions linked to the solar granulation. The last term corresponds to a periodic source associated with the solar magnetic activity, for which the maximum of power spectral density occurs at 22.67 days. This value is part of the 22-27 day periodicity region that shows an above-average intensity in the power spectra. The origin of this 22.67 day periodic process is not clearly identified, and there is a possibility that it can be...

  11. AAVSO Visual Sunspot Observations vs. SDO HMI Sunspot Catalog

    Science.gov (United States)

    Howe, R.

    2014-06-01

    (Abstract only) The most important issue with regard to using the SDO HMI data from the National Solar Observatory (NSO, http://www.nso.edu/staff/fwatson/STARA) is that their current model for creating sunspot counts does not split in groups and consequently does not provide a corresponding group count and Wolf number. As it is a different quantity, it cannot be mixed with the data from our sunspot networks. For the AAVSO with about seventy stations contributing each day, adding HMI sunspot data would anyway hardly change the resulting index. Perhaps, the best use of HMI data is for an external validation, by exploiting the fact that HMI provides a series that is rather close to the sunspot number and is acquired completely independently. So, it is unlikely to suffer from the same problems (jumps, biases) at the same time. This validation only works for rather short durations, as the lifetime of space instruments is limited and aging effects are often affecting the data over the mission. In addition, successive instruments have different properties: for example, the NSO model has not managed yet to reconcile the series from MDI and HMI. There is a ~10-15% jump. The first challenge that should be addressed by AAVSO using HMI data is the splitting in groups and deriving group properties. Then, together with the sunspot counts and areas per group, a lot more analyses and diagnostics can be derived (like the selective disappearance of the smallest sunspots?), that can help interpreting trends in the ratio SSN/other solar indices and many other solar effects.

  12. The Relative Phase Asynchronization between Sunspot Numbers and Polar Faculae

    Indian Academy of Sciences (India)

    L. H. Deng; J. Y. Song; Y. Y. Xiang; Y. K. Tang

    2011-09-01

    The monthly sunspot numbers compiled by Temmer et al. and the monthly polar faculae from observations of the National Astronomical Observatory of Japan, for the interval of March 1954 to March 1996, are used to investigate the phase relationship between polar faculae and sunspot activity for total solar disk and for both hemispheres in solar cycles 19, 20, 21 and 22. We found that (1) the polar faculae begin earlier than sunspot activity, and the phase difference exhibits a consistent behaviour for different hemispheres in each of the solar cycles, implying that this phenomenon should not be regarded as a stochastic fluctuation; (2) the inverse correlation between polar faculae and sunspot numbers is not only a long-term behaviour, but also exists in short time range; (3) the polar faculae show leads of about 50–71 months relative to sunspot numbers, and the phase difference between them varies with solar cycle; (4) the phase difference value in the northern hemisphere differs from that in the southern hemisphere in a solar cycle, which means that phase difference also existed between the two hemispheres. Moreover, the phase difference between the two hemispheres exhibits a periodical behaviour. Our results seem to support the finding of Hiremath (2010).

  13. Evershed clouds as precursors of moving magnetic features around sunspots

    CERN Document Server

    Solana, D C; Beck, C; Del Toro-Iniesta, Jose Carlos

    2006-01-01

    The relation between the Evershed flow and moving magnetic features (MMFs) is studied using high-cadence, simultaneous spectropolarimetric measurements of a sunspot in visible (630.2 nm) and near-infrared (1565 nm) lines. Doppler velocities, magnetograms, and total linear polarization maps are calculated from the observed Stokes profiles. We follow the temporal evolution of two Evershed clouds that move radially outward along the same penumbral filament. Eventually, the clouds cross the visible border of the spot and enter the moat region, where they become MMFs. The flux patch farther from the sunspot has the same polarity of the spot, while the MMF closer to it has opposite polarity and exhibits abnormal circular polarization profiles. Our results provide strong evidence that at least some MMFs are the continuation of the penumbral Evershed flow into the moat. This, in turn, suggests that MMFs are magnetically connected to sunspots.

  14. TARPs: Tracked Active Region Patches from SoHO/MDI

    Science.gov (United States)

    Turmon, M.; Hoeksema, J. T.; Bobra, M.

    2013-12-01

    We describe progress toward creating a retrospective MDI data product consisting of tracked magnetic features on the scale of solar active regions, abbreviated TARPs (Tracked Active Region Patches). The TARPs are being developed as a backward-looking extension (covering approximately 3500 regions spanning 1996-2010) to the HARP (HMI Active Region Patch) data product that has already been released for HMI (2010-present). Like the HARPs, the MDI TARP data set is designed to be a catalog of active regions (ARs), indexed by a region ID number, analogous to a NOAA AR number, and time. TARPs from MDI are computed based on the 96-minute synoptic magnetograms and pseudo-continuum intensitygrams. As with the related HARP data product, the approximate threshold for significance is 100G. Use of both image types together allows faculae and sunspots to be separated out as sub-classes of activity, in addition to identifying the overall active region that the faculae/sunspots are part of. After being identified in single images, the magnetically-active patches are grouped and tracked from image to image. Merges among growing active regions, as well as faint active regions hovering at the threshold of detection, are handled automatically. Regions are tracked from their inception until they decay within view, or transit off the visible disk. The final data product is indexed by a nominal AR number and time. For each active region and for each time, a bitmap image is stored containing the precise outline of the active region. Additionaly, metadata such as areas and integrated fluxes are stored for each AR and for each time. Because there is a calibration between the HMI and MDI magnetograms (Liu, Hoeksema et al. 2012), it is straightforward to use the same classification and tracking rules for the HARPs (from HMI) and the MDI TARPs. We anticipate that this will allow a consistent catalog spanning both instruments. We envision several uses for the TARP data product, which will be

  15. Local Helioseismology of Emerging Active Regions: A Case Study

    CERN Document Server

    Kosovichev, Alexander G; Ilonidis, Stathis

    2016-01-01

    Local helioseismology provides a unique opportunity to investigate the subsurface structure and dynamics of active regions and their effect on the large-scale flows and global circulation of the Sun. We use measurements of plasma flows in the upper convection zone, provided by the Time-Distance Helioseismology Pipeline developed for analysis of solar oscillation data obtained by Helioseismic and Magnetic Imager (HMI) on Solar Dynamics Observatory (SDO), to investigate the subsurface dynamics of emerging active region NOAA 11726. The active region emergence was detected in deep layers of the convection zone about 12 hours before the first bipolar magnetic structure appeared on the surface, and 2 days before the emergence of most of the magnetic flux. The speed of emergence determined by tracking the flow divergence with depth is about 1.4 km/s, very close to the emergence speed in the deep layers. As the emerging magnetic flux becomes concentrated in sunspots local converging flows are observed beneath the for...

  16. The Sun's Meridional Flow and Its Role in Magnetic Flux Transport and the Sunspot Cycle

    Science.gov (United States)

    Hathaway, D. H.; Upton, L.

    2014-12-01

    The Sun's meridional flow can be measured with a variety of measurement techniques including, but not limited to: direct Doppler, magnetic feature tracking, velocity feature tracking, time-distance helioseismology, and ring-diagram analysis. Direct Doppler gives information on the flow in the photosphere while the other measurement techniques provide information about the flow at some depth or range of depths in the Sun's convection zone. These various measurement methods now provide a converging (but not yet fully converged) picture of the meridional flow as a function of latitude, depth, and time. This converging picture has a flow which is poleward from the equator all the way to pole in the near surface layers, has an equatorward return flow beginning at a depth of about 50 Mm, and has another poleward branch deeper in the convection zone. The poleward flow in the near surface layers varies systematically in strength and latitudinal structure with the phase of the sunspot cycle and from one cycle to the next. This near surface meridional flow is observed to play a significant role in the poleward transport of the magnetic flux that emerges at the surface in the form of bipolar active regions. Variations in the strength and structure of the meridional flow introduce variations in the strength of the Sun's polar fields, which in turn introduce variations in the size of subsequent sunspot cycles. The polar fields at the end of cycle 23 (2008-2009) were much weaker than the polar fields at the end of the previous cycles. This led to the production of the weakest sunspot cycle in 100 years - cycle 24. Surprisingly, we find that the variations we observed in the meridional flow during cycle 23 led to stronger polar fields than would have been produced otherwise. This suggests that variations in the meridional flow can be one mechanism for modulating the sizes of sunspot cycles - helping to keep them from getting too big or too small.

  17. The Role of Active Regions in the Generation of Torsional Oscillations

    CERN Document Server

    Petrovay, K

    2002-01-01

    We present a model for torsional oscillations where the inhibiting effect of active region magnetic fields on turbulence locally reduces turbulent viscous torques, leading to a cycle- and latitude-dependent modulation of the differential rotation. The observed depth dependence of torsional oscillations as well as their phase relationship with the sunspot butterfly diagram are reproduced quite naturally in this model. The resulting oscillation amplitudes are significantly smaller than observed, though they depend rather sensitively on model details. Meridional circulation is found to have only a weak effect on the oscillation pattern.

  18. Time-Distance analysis of the Emerging Active Region NOAA 10790

    CERN Document Server

    Zharkov, S

    2008-01-01

    We investigate the emergence of Active Region NOAA 10790 by means of time--distance helioseismology. Shallow regions of increased sound speed at the location of increased magnetic activity are observed, with regions becoming deeper at the locations of sunspot pores. We also see a long-lasting region of decreased sound speed located underneath the region of the flux emergence, possibly relating to a temperature perturbation due to magnetic quenching of eddy diffusivity, or to a dense flux tube. We detect and track an object in the subsurface layers of the Sun characterised by increased sound speed which could be related to emerging magnetic flux and thus obtain a provisional estimate of the speed of emergence of around $1 {\\rm km s^{-1}}$.

  19. Indirect comparison of Debrecen and Greenwich daily sums of sunspot areas

    CERN Document Server

    Baranyi, T; Coffey, H E

    2013-01-01

    Sunspot area data play an important role in the studies of solar activity and its long-term variations. In order to reveal real long-term solar variations precise homogeneous sunspot area databases should be used. However, the measured areas may be burdened with systematic deviations, which may vary in time. Thus, there is a need to investigate the long-term variation of sunspot area datasets and to determine the time-dependent cross-calibration factors. In this study, we investigate the time-dependent differences between the available long-term sunspot databases. Using the results, we estimate the correction factor to calibrate the corrected daily sunspot areas of Debrecen Photoheliographic Data (DPD) to the same data of Greenwich Photoheliographic Results (GPR) by using the overlapping Kislovodsk and Pulkovo data. We give the correction factor as GPR=1.08(\\pm 0.11)*DPD

  20. Digitization of sunspot drawings by Sp\\"orer made in 1861-1894

    CERN Document Server

    Diercke, Andrea; Denker, Carsten

    2014-01-01

    Most of our knowledge about the Sun's activity cycle arises from sunspot observations over the last centuries since telescopes have been used for astronomy. The German astronomer Gustav Sp\\"orer observed almost daily the Sun from 1861 until the beginning of 1894 and assembled a 33-year collection of sunspot data covering a total of 445 solar rotation periods. These sunspot drawings were carefully placed on an equidistant grid of heliographic longitude and latitude for each rotation period, which were then copied to copper plates for a lithographic reproduction of the drawings in astronomical journals. In this article, we describe in detail the process of capturing these data as digital images, correcting for various effects of the aging print materials, and preparing the data for contemporary scientific analysis based on advanced image processing techniques. With the processed data we create a butterfly diagram aggregating sunspot areas, and we present methods to measure the size of sunspots (umbra and penumb...

  1. Spot cycle reconstruction: an empirical tool - Application to the sunspot cycle

    CERN Document Server

    Santos, A R G; Avelino, P P; Campante, T L

    2015-01-01

    The increasing interest in understanding stellar magnetic activity cycles is a strong motivation for the development of parameterised starspot models which may be constrained observationally. In this work we develop an empirical tool for the stochastic reconstruction of sunspot cycles, using the average solar properties as a reference. The synthetic sunspot cycle is compared with the sunspot data extracted from the National Geophysical Data Center, in particular using the Kolmogorov-Smirnov test. This tool yields synthetic spot group records, including date, area, latitude, longitude, rotation rate of the solar surface at the group's latitude, and an identification number. Comparison of the stochastic reconstructions with the daily sunspot records (from the National Geophysical Data Center) confirms that our empirical model is able to successfully reproduce the main properties of the solar sunspot cycle. As a by-product of this work, we show that the Gnevyshev-Waldmeier rule, which describes the spots' area-l...

  2. Sunspot latitudes during the Maunder Minimum: a machine-readable catalogue from previous studies

    CERN Document Server

    Vaquero, J M; Sánchez-Bajo, F

    2015-01-01

    The Maunder Minimum (1645-1715 approximately) was a period of very low solar activity and a strong hemispheric asymmetry, with most of sunspots in the southern hemisphere. In this paper, two data sets of sunspot latitudes during the Maunder minimum have been recovered for the international scientific community. The first data set is constituted by latitudes of sunspots appearing in the catalogue published by Gustav Sp\\"orer nearly 130 years ago. The second data set is based on the sunspot latitudes displayed in the butterfly diagram for the Maunder Minimum which was published by Ribes and Nesme-Ribes almost 20 years ago. We have calculated the asymmetry index using these data sets confirming a strong hemispherical asymmetry in this period. A machine-readable version of this catalogue with both data sets is available in the Historical Archive of Sunspot Observations (http://haso.unex.es) and in the appendix of this article.

  3. Short dynamic fibrils in sunspot chromospheres

    CERN Document Server

    van der Voort, Luc Rouppe

    2013-01-01

    Sunspot chromospheres display vigorous oscillatory signature when observed in chromospheric diagnostics like the strong Ca II lines and H-alpha. New high-resolution sunspot observations from the Swedish 1-m Solar Telescope show the ubiquitous presence of small-scale periodic jet-like features that move up and down. This phenomenon has not been described before. Their typical width is about 0.3 arcsec and they display clear parabolic trajectories in space-time diagrams. The maximum extension of the top of the jets is lowest in the umbra, a few 100 km, and progressively longer further away from the umbra in the penumbra, with the longest more than 1000 km. These jets resemble dynamic fibrils found in plage regions but at smaller extensions. LTE inversion of spectro-polarimetric Ca II 8542 observations enabled for a comparison of the magnetic field inclination and the properties of these short jets. We find that the most extended of these jets also have longer periods and tend to be located in regions with more ...

  4. 太阳黑子活动与流感大流行关系的探讨%Discussion on the relationship between sunspot activity and influenza pandemic

    Institute of Scientific and Technical Information of China (English)

    曲江文; 聂绍发

    2011-01-01

    目的 探讨流感大流行与太阳黑子活动周期的关系,为阐明流感大流行的原因和起源提供科学的依据.方法 采用描述性分析、χ2检验以及非条件Logistic回归的方法对1700-2009年的太阳黑子活动与流感大流行的资料进行分析.结果 1700-2009年以来发生的16次流感大流行或者可能的流感大流行中,有13次发生在太阳黑子极值年或前、后一年;太阳黑子极值年或前、后一年流感大流行的发生率(7.65%)高于其他年份的发生率(2.14%),差异有统计学意义(χ2=4.75,P<0.05).太阳黑子极值年或前、后一年与流感大流行的非条件Logistic回归结果表明,OR=4.160(95% CI=1.161~14.903).结论 太阳黑子极值年或前、后一年是流感大流行的一个重要的危险因素.%Objective Through studying the relationship between influenza pandemic and sunspot cycle, we aim to provide scientific basis for the cause and origin of influenza pandemics. Methods Descriptive analysis, chi-square test and non-conditional Logistic regression were used to analyze sunspot number and influenza pandemic data from 1700 to 2009.Results Among 16 influenza pandemics or possible influenza pandemics from 1700 to 2009, 13 of them occurred in Sunspot extremum +/- one year. Incidence rate of influenza pandemic in Sunspot extremum +/- one year (7.65%)wasmuch higher than those in other years (2. 14%), and the difference had a statistical significance (x2=4.75,P<0.05). Non-conditional Logistic regression analysis showed odds ratio value was 4. 160 (95% CI = 1.161~14.903). Conclusions Sunspot extremum +/- one year is an important risk factor for influenza pandemic.

  5. Regional Activities Division. Papers.

    Science.gov (United States)

    International Federation of Library Associations, The Hague (Netherlands).

    Papers on library network activities in Canada, the Third World, Japan, Malaysia, Brazil, and Sweden which were presented at the 1982 International Federation of Library Associations (IFLA) conference include: (1) "Canada: A Voluntary and Flexible Network," a review by Guy Sylvestre of the political, social, and economic structures…

  6. Regional Activities Division. Papers.

    Science.gov (United States)

    International Federation of Library Associations, The Hague (Netherlands).

    Papers on library network activities in Canada, the Third World, Japan, Malaysia, Brazil, and Sweden which were presented at the 1982 International Federation of Library Associations (IFLA) conference include: (1) "Canada: A Voluntary and Flexible Network," a review by Guy Sylvestre of the political, social, and economic structures affecting…

  7. A new look at sunspot formation using theory and observations

    Science.gov (United States)

    Losada, I. R.; Warnecke, J.; Glogowski, K.; Roth, M.; Brandenburg, A.; Kleeorin, N.; Rogachevskii, I.

    2017-10-01

    Sunspots are of basic interest in the study of the Sun. Their relevance ranges from them being an activity indicator of magnetic fields to being the place where coronal mass ejections and flares erupt. They are therefore also an important ingredient of space weather. Their formation, however, is still an unresolved problem in solar physics. Observations utilize just 2D surface information near the spot, but it is debatable how to infer deep structures and properties from local helioseismology. For a long time, it was believed that flux tubes rising from the bottom of the convection zone are the origin of the bipolar sunspot structure seen on the solar surface. However, this theory has been challenged, in particular recently by new surface observation, helioseismic inversions, and numerical models of convective dynamos. In this article we discuss another theoretical approach to the formation of sunspots: the negative effective magnetic pressure instability. This is a large-scale instability, in which the total (kinetic plus magnetic) turbulent pressure can be suppressed in the presence of a weak large-scale magnetic field, leading to a converging downflow, which eventually concentrates the magnetic field within it. Numerical simulations of forced stratified turbulence have been able to produce strong super-equipartition flux concentrations, similar to sunspots at the solar surface. In this framework, sunspots would only form close to the surface due to the instability constraints on stratification and rotation. Additionally, we present some ideas from local helioseismology, where we plan to use the Hankel analysis to study the pre-emergence phase of a sunspot and to constrain its deep structure and formation mechanism.

  8. Sunspot Cycle 24: Smallest Cycle in 100 Years?

    Science.gov (United States)

    2005-01-11

    and H. B. Hathaway, D. H., R. M. Wilson, and E. J. Reichmann (1994), The shape of Snodgrass (1988), The extended solar activity cycle, Nature, 333...748, the sunspot cycle, Sol. Phys., 151, 177. doi:10.1038/333748a0. Hathaway, D. H., R. M. Wilson, and E. J. Reichmann (2002), Group sun- spot numbers

  9. Light Bridge in a Developing Active Region. I. Observation of Light Bridge and its Dynamic Activity Phenomena

    CERN Document Server

    Toriumi, Shin; Cheung, Mark C M

    2015-01-01

    Light bridges, the bright structures that divide the umbra of sunspots and pores into smaller pieces, are known to produce wide variety of activity events in solar active regions (ARs). It is also known that the light bridges appear in the assembling process of nascent sunspots. The ultimate goal of this series of papers is to reveal the nature of light bridges in developing ARs and the occurrence of activity events associated with the light bridge structures from both observational and numerical approaches. In this first paper, exploiting the observational data obtained by Hinode, IRIS, and Solar Dynamics Observatory (SDO), we investigate the detailed structure of the light bridge in NOAA AR 11974 and its dynamic activity phenomena. As a result, we find that the light bridge has a weak, horizontal magnetic field, which is transported from the interior by large-scale convective upflow and is surrounded by strong, vertical fields of adjacent pores. In the chromosphere above the bridge, a transient brightening ...

  10. Doubts about the crucial role of the rising-tube mechanism in the formation of sunspot groups

    CERN Document Server

    Getling, A V; Buchnev, A A

    2014-01-01

    Preliminary processing results are presented for a dataset obtained with the Solar Optical Telescope on the Hinode satellite. The idea of the project is to record, nearly simultaneously, the full velocity and magnetic-field vectors in growing active regions and sunspot groups at a photospheric level and distinguish between the manifestations of two mechanisms of sunspot-group formation --- the rising of an flux tube of a strong magnetic field and the in situ amplification and structuring of magnetic field by convection. A young bipolar subregion developing within AR 11313 was observed on 9--10 October 2011. Filtergrams and Dopplergrams were obtained, and one or two spectropolarimetric fast-mode scans were done. Based on the series of filtergrams, the trajectories of corks are computed, using a technique similar to but more reliable than local correlation tracking, and compared with the magnetic maps. Currently, only the vertical magnetic field and the horizontal flows are used for a qualitative analysis. The ...

  11. Magnetic Properties of Solar Active Regions That Govern Large Solar Flares and Eruptions

    Science.gov (United States)

    Toriumi, Shin; Schrijver, Carolus J.; Harra, Louise K.; Hudson, Hugh; Nagashima, Kaori

    2017-01-01

    Solar flares and coronal mass ejections (CMEs), especially the larger ones, emanate from active regions (ARs). With the aim of understanding the magnetic properties that govern such flares and eruptions, we systematically survey all flare events with Geostationary Orbiting Environmental Satellite levels of ≥M5.0 within 45° from disk center between 2010 May and 2016 April. These criteria lead to a total of 51 flares from 29 ARs, for which we analyze the observational data obtained by the Solar Dynamics Observatory. More than 80% of the 29 ARs are found to exhibit δ-sunspots, and at least three ARs violate Hale’s polarity rule. The flare durations are approximately proportional to the distance between the two flare ribbons, to the total magnetic flux inside the ribbons, and to the ribbon area. From our study, one of the parameters that clearly determine whether a given flare event is CME-eruptive or not is the ribbon area normalized by the sunspot area, which may indicate that the structural relationship between the flaring region and the entire AR controls CME productivity. AR characterization shows that even X-class events do not require δ-sunspots or strong-field, high-gradient polarity inversion lines. An investigation of historical observational data suggests the possibility that the largest solar ARs, with magnetic flux of 2 × 1023 Mx, might be able to produce “superflares” with energies of the order of 1034 erg. The proportionality between the flare durations and magnetic energies is consistent with stellar flare observations, suggesting a common physical background for solar and stellar flares.

  12. A Revised Collection of Sunspot Group Numbers

    CERN Document Server

    Vaquero, J M; Carrasco, V M S; Clette, F; Lefèvre, L; Gallego, M C; Arlt, R; Aparicio, A J P; Richard, J -G; Howe, R

    2016-01-01

    We describe a revised collection of the number of sunspot groups from 1610 to the present. This new collection is based on the work of Hoyt and Schatten (Solar Phys. 179, 189, 1998). The main changes are the elimination of a considerable number of observations during the Maunder Minimum (hereafter, MM) and the inclusion of several long series of observations. Numerous minor changes are also described. Moreover, we have calculated the active-day percentage during the MM from this new collection as a reliable index of the solar activity. Thus, the level of solar activity obtained in this work is greater than the level obtained using the original Hoyt and Schatten data, although it remains compatible with a grand minimum of solar activity. The new collection is available in digital format.

  13. Forecasting the Time Series of Sunspot Numbers

    Science.gov (United States)

    Aguirre, L. A.; Letellier, C.; Maquet, J.

    2008-05-01

    Forecasting the solar cycle is of great importance for weather prediction and environmental monitoring, and also constitutes a difficult scientific benchmark in nonlinear dynamical modeling. This paper describes the identification of a model and its use in the forecasting the time series comprised of Wolf’s sunspot numbers. A key feature of this procedure is that the original time series is first transformed into a symmetrical space where the dynamics of the solar dynamo are unfolded in a better way, thus improving the model. The nonlinear model obtained is parsimonious and has both deterministic and stochastic parts. Monte Carlo simulation of the whole model produces very consistent results with the deterministic part of the model but allows for the determination of confidence bands. The obtained model was used to predict cycles 24 and 25, although the forecast of the latter is seen as a crude approximation, given the long prediction horizon required. As for the 24th cycle, two estimates were obtained with peaks of 65±16 and of 87±13 units of sunspot numbers. The simulated results suggest that the 24th cycle will be shorter and less active than the preceding one.

  14. Search for torsional oscillations in isolated sunspots

    Science.gov (United States)

    Griñón-Marín, A. B.; Socas-Navarro, H.; Centeno, R.

    2017-07-01

    In this work we seek evidence for global torsional oscillations in alpha sunspots. We have used long time series of continuum intensity and magnetic field vector maps from the Helioseismic and Magnetic Imager (HMI) instrument on board the Solar Dynamics Observatory (SDO) spacecraft. The time series analysed here span the total disk passage of 25 isolated sunspots. We found no evidence of global long-term periodic oscillations in the azimuthal angle of the sunspot magnetic field within 1 degree. This study could help us to understand the sunspot dynamics and its internal structure.

  15. Active Region Jets II: Triggering and Evolution of Violent Jets

    Science.gov (United States)

    Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David; Panesar, Navdeep K.; Martinez, Francisco

    2017-08-01

    We study a series of X-ray-bright, rapidly evolving active-region coronal jets outside the leading sunspot of AR 12259, using Hinode/XRT, SDO/AIA and HMI, and IRIS/SJ data. The detailed evolution of such rapidly evolving “violent” jets remained a mystery after our previous investigation of active region jets (Sterling et al. 2016, ApJ, 821, 100). The jets we investigate here erupt from three localized subregions, each containing a rapidly evolving (positive) minority-polarity magnetic-flux patch bathed in a (majority) negative-polarity magnetic-flux background. At least several of the jets begin with eruptions of what appear to be thin (thickness ˜Nature, 523, 437). For some jets strands are difficult/ impossible to detect, perhaps due to their thinness, obscuration by surrounding bright or dark features, or the absence of erupting cool-material minifilaments in those jets. Tracing in detail the flux evolution in one of the subregions, we find bursts of strong jetting occurring only during times of strong flux cancelation. Averaged over seven jetting episodes, the cancelation rate was ~1.5×10^19 Mx/hr. An average flux of ~5×10^18 Mx canceled prior to each episode, arguably building up ~10^28—10^29 ergs of free magnetic energy per jet. From these and previous observations, we infer that flux cancelation is the fundamental process responsible for the pre-eruption buildup and triggering of at least many jets in active regions, quiet regions, and coronal holes.

  16. Peculiarity of the oscillation stratification in sunspot penumbrae

    CERN Document Server

    Kolobov, D Y; Kobanov, N I

    2016-01-01

    Spatial distributions of the dominant oscillation frequency obtained for four sunspots show a feature shared by all the analysed levels of the solar atmosphere in these sunspots. This feature located in the inner penumbrae indicates that this region has favourable conditions for 2.5-4 mHz oscillation propagation. This agrees with the fact that the spectral composition of the oscillations at three atmospheric heights (FeI 6173{\\AA}, 1700{\\AA}, and He II 304{\\AA}) in this region are similar. There have been previous evidence of particular similarities along height of photospheric magnetic field strength, line-of-sight velocity, and temperature profile in the inner penumbra, where the internal boundary of the Evershed flow is located. The finding of the same dominant oscillation frequency at a range of altitudes from the chromosphere up to the transition region extends the height range, suggesting similarities in physical conditions.

  17. Sunspot rotation. I. A consequence of flux emergence

    CERN Document Server

    Sturrock, Z; Archontis, V; McNeill, C M

    2015-01-01

    Context. Solar eruptions and high flare activity often accompany the rapid rotation of sunspots. The study of sunspot rotation and the mechanisms driving this motion are therefore key to our understanding of how the solar atmosphere attains the conditions necessary for large energy release. Aims. We aim to demonstrate and investigate the rotation of sunspots in a 3D numerical experiment of the emergence of a magnetic flux tube as it rises through the solar interior and emerges into the atmosphere. Furthermore, we seek to show that the sub-photospheric twist stored in the interior is injected into the solar atmosphere by means of a definitive rotation of the sunspots. Methods. A numerical experiment is performed to solve the 3D resistive magnetohydrodynamic (MHD) equations using a Lagrangian-Remap code. We track the emergence of a toroidal flux tube as it rises through the solar interior and emerges into the atmosphere investigating various quantities related to both the magnetic field and plasma. Results. Thr...

  18. Multilevel Analysis of Oscillation Motions in Active Regions of the Sun

    CERN Document Server

    Abramov-Maximov, V E; Kobanov, N I; Shibasaki, K; Chupin, S A; 10.1007/s11207-011-9716-7

    2011-01-01

    We present a new method that combines the results of an oscillation study made in optical and radio observations. The optical spectral measurements in photospheric and chromospheric lines of the line-of-sight velocity were carried out at the Sayan Solar Observatory. The radio maps of the Sun were obtained with the Nobeyama Radioheliograph at 1.76 cm. Radio sources associated with the sunspots were analyzed to study the oscillation processes in the chromosphere-corona transition region in the layer with magnetic field B=2000 G. A high level of instability of the oscillations in the optical and radio data was found. We used a wavelet analysis for the spectra. The best similarities of the spectra of oscillations obtained by the two methods were detected in the three-minute oscillations inside the sunspot umbra for the dates when the active regions were situated near the center of the solar disk. A comparison of the wavelet spectra for optical and radio observations showed a time delay of about 50 seconds of the ...

  19. Magnetic Properties of Solar Active Regions that Govern Large Solar Flares and Eruptions

    CERN Document Server

    Toriumi, Shin; Harra, Louise K; Hudson, Hugh; Nagashima, Kaori

    2016-01-01

    Solar flares and coronal mass ejections (CMEs), especially the larger ones, emanate from active regions (ARs). With the aim to understand the magnetic properties that govern such flares and eruptions, we systematically survey all flare events with GOES levels of >=M5.0 within 45 deg from disk center between May 2010 and April 2016. These criteria lead to a total of 51 flares from 29 ARs, for which we analyze the observational data obtained by the Solar Dynamics Observatory. More than 80% of the 29 ARs are found to exhibit delta-sunspots and at least three ARs violate Hale's polarity rule. The flare durations are approximately proportional to the distance between the two flare ribbons, to the total magnetic flux inside the ribbons, and to the ribbon area. From our study, one of the parameters that clearly determine whether a given flare event is CME-eruptive or not is the ribbon area normalized by the sunspot area, which may indicate that the structural relationship between the flaring region and the entire AR...

  20. Solar Indices - Sunspot Numbers

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  1. Decay of Activity Complexes, Formation of Unipolar Magnetic Regions and Coronal Holes in their Causal Relation

    CERN Document Server

    Golubeva, Elena

    2016-01-01

    North-south asymmetry of sunspot activity resulted in an asynchronous reversal of the Sun's polar fields in the current cycle. The asymmetry is also observed in the formation of polar coronal holes. A stable coronal hole was first formed at the South Pole, despite the later polar-field reversal there. The aim of this study is to understand processes making this situation possible. Synoptic magnetic maps from the Global Oscillation Network Group and corresponding coronal-hole maps from the Extreme ultraviolet Imaging Telescope aboard the Solar and Heliospheric Observatory and the Atmospheric Imaging Assembly aboard the Solar Dynamics Observatory are analyzed here to study a causal relationship between the decay of activity complexes, evolution of large-scale magnetic fields, and formation of coronal holes. Ensembles of coronal holes associated with decaying active regions and activity complexes are presented. These ensembles take part in global rearrangements of the Sun's open magnetic flux. In particular, the...

  2. A Curious History of Sunspot Penumbrae

    CERN Document Server

    Hathaway, D H

    2013-01-01

    Daily records of sunspot group areas compiled by the Royal Observatory, Greenwich, from May of 1874 through 1976 indicate a curious history for the penumbral areas of the smaller sunspot groups. On average, the ratio of penumbral area to umbral area in a sunspot group increases from 5 to 6 as the total sunspot group area increases from 100 to 2000 microHem (a microHem is a millionth the area of a solar hemisphere). This relationship does not vary substantially with sunspot group latitude or with the phase of the sunspot cycle. However, for the sunspot groups with total areas <100 microHem, this ratio changes dramatically and systematically through this historical record. The ratio for these smallest sunspots is near 5.5 from 1874 to 1900. After a rapid rise to more than 7 in 1905 it drops smoothly to less than 3 by 1930 and then rises smoothly back to more than 7 in 1961. It then returns to near 5.5 from 1965 to 1976. The smooth variation from 1905 to 1961 shows no indication of any step-like changes that ...

  3. Comments on nonparametric predictions of sunspot numbers

    DEFF Research Database (Denmark)

    Jensen, J.L.

    1993-01-01

    Recent results of Cerrito (1990) are criticized, and the level of unexplainable noise in the observed series of sunspot numbers is discussed.......Recent results of Cerrito (1990) are criticized, and the level of unexplainable noise in the observed series of sunspot numbers is discussed....

  4. On the contribution of sunspots to the observed frequency shifts of solar acoustic modes

    CERN Document Server

    Santos, A R G; Avelino, P P; Chaplin, W J; Campante, T L

    2016-01-01

    Activity-related variations in the solar oscillation properties have been known for 30 years. However, the relative importance of the different contributions to the observed variations is not yet fully understood. Our goal is to estimate the relative contribution from sunspots to the observed activity-related variations in the frequencies of the acoustic modes. We use a variational principle to relate the phase differences induced by sunspots on the acoustic waves to the corresponding changes in the frequencies of the global acoustic oscillations. From the sunspot properties (area and latitude as a function of time), we are able to estimate the spot-induced frequency shifts. These are then combined with a smooth frequency shift component, associated with long-term solar-cycle variations, and the results compared with the frequency shifts derived from the Global Oscillation Network Group (GONG) data. The result of this comparison is consistent with a sunspot contribution to the observed frequency shifts of rou...

  5. The Impact of the Revised Sunspot Record on Solar Irradiance Reconstructions

    CERN Document Server

    Kopp, G; Lean, J; Wu, C J

    2016-01-01

    Reliable historical records of total solar irradiance (TSI) are needed for climate change attribution and research to assess the extent to which long-term variations in the Sun's radiant energy incident on the Earth may exacerbate (or mitigate) the more dominant warming in recent centuries due to increasing concentrations of greenhouse gases. We investigate potential impacts of the new Sunspot Index and Long-term Solar Observations (SILSO) sunspot-number time series on model reconstructions of TSI. In contemporary TSI records, variations on time scales longer than about a day are dominated by the opposing effects of sunspot darkening and facular brightening. These two surface magnetic features, retrieved either from direct observations or from solar activity proxies, are combined in TSI models to reproduce the current TSI observational record. Indices that manifest solar-surface magnetic activity, in particular the sunspot-number record, then enable the reconstruction of historical TSI. Revisions to the sunsp...

  6. LOOKING FOR GRANULATION AND PERIODICITY IMPRINTS IN THE SUNSPOT TIME SERIES

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Ilídio [Centro Multidisciplinar de Astrofísica, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Silva, Hugo G., E-mail: ilidio.lopes@tecnico.ulisboa.pt, E-mail: hgsilva@uevora.pt [Departamento de Física, ECT, Instituto de Ciências da Terra, Universidade de Évora, Rua Romão Ramalho 59, 7002-554 Évora (Portugal)

    2015-05-10

    The sunspot activity is the end result of the cyclic destruction and regeneration of magnetic fields by the dynamo action. We propose a new method to analyze the daily sunspot areas data recorded since 1874. By computing the power spectral density of daily data series using the Mexican hat wavelet, we found a power spectrum with a well-defined shape, characterized by three features. The first term is the 22 yr solar magnetic cycle, estimated in our work to be 18.43 yr. The second term is related to the daily volatility of sunspots. This term is most likely produced by the turbulent motions linked to the solar granulation. The last term corresponds to a periodic source associated with the solar magnetic activity, for which the maximum power spectral density occurs at 22.67 days. This value is part of the 22–27 day periodicity region that shows an above-average intensity in the power spectra. The origin of this 22.67 day periodic process is not clearly identified, and there is a possibility that it can be produced by convective flows inside the star. The study clearly shows a north–south asymmetry. The 18.43 yr periodical source is correlated between the two hemispheres, but the 22.67 day one is not correlated. It is shown that toward the large timescales an excess occurs in the northern hemisphere, especially near the previous two periodic sources. To further investigate the 22.67 day periodicity, we made a Lomb–Scargle spectral analysis. The study suggests that this periodicity is distinct from others found nearby.

  7. Simulation of the Formation of a Solar Active Region

    Science.gov (United States)

    Cheung, M. C. M.; Rempel, M.; Title, A. M.; Schüssler, M.

    2010-09-01

    We present a radiative magnetohydrodynamics simulation of the formation of an active region (AR) on the solar surface. The simulation models the rise of a buoyant magnetic flux bundle from a depth of 7.5 Mm in the convection zone up into the solar photosphere. The rise of the magnetic plasma in the convection zone is accompanied by predominantly horizontal expansion. Such an expansion leads to a scaling relation between the plasma density and the magnetic field strength such that B vprop rhov1/2. The emergence of magnetic flux into the photosphere appears as a complex magnetic pattern, which results from the interaction of the rising magnetic field with the turbulent convective flows. Small-scale magnetic elements at the surface first appear, followed by their gradual coalescence into larger magnetic concentrations, which eventually results in the formation of a pair of opposite polarity spots. Although the mean flow pattern in the vicinity of the developing spots is directed radially outward, correlations between the magnetic field and velocity field fluctuations allow the spots to accumulate flux. Such correlations result from the Lorentz-force-driven, counterstreaming motion of opposite polarity fragments. The formation of the simulated AR is accompanied by transient light bridges between umbrae and umbral dots. Together with recent sunspot modeling, this work highlights the common magnetoconvective origin of umbral dots, light bridges, and penumbral filaments.

  8. SOHO sees right through the Sun, and finds sunspots on the far side

    Science.gov (United States)

    2000-03-01

    front side about 6 seconds earlier than equivalent waves from sunspot-free regions, in a total travel time of about 3 hours. The change in speed becomes evident when sound waves shuttling back and forth get out of step with one another. MDI data for 28-29 March 1998 revealed, on the far side, a sunspot group that was not plainly visible on the near side until ten days later. Observations for 24 hours were more than sufficient to detect the sunspots, which means that routine monitoring is a realistic possibility. "The far-side sunspots are a good example of why this spacecraft is so exciting to work with," said Bernhard Fleck, ESA's project scientist for SOHO. "We can make a completely new discovery in fundamental solar physics, and immediately think of applying it to the practical task of monitoring the daily activity of the Sun and predicting its effects on the Earth." The SOHO project is an international cooperation between the European Space Agency (ESA) and NASA. The spacecraft was built in Europe for ESA and equipped with instruments by teams of scientists in Europe and the USA. NASA launched SOHO in December 1995, and in 1998 ESA and NASA decided to extend its highly successful operations until 2003.

  9. Helioseismology of a Realistic Magnetoconvective Sunspot Simulation

    Science.gov (United States)

    Braun, D. C.; Birch, A. C.; Rempel, M.; Duvall, T. L., Jr.

    2012-01-01

    We compare helioseismic travel-time shifts measured from a realistic magnetoconvective sunspot simulation using both helioseismic holography and time-distance helioseismology, and measured from real sunspots observed with the Helioseismic and Magnetic Imager instrument on board the Solar Dynamics Observatory and the Michelson Doppler Imager instrument on board the Solar and Heliospheric Observatory. We find remarkable similarities in the travel-time shifts measured between the methodologies applied and between the simulated and real sunspots. Forward modeling of the travel-time shifts using either Born or ray approximation kernels and the sound-speed perturbations present in the simulation indicates major disagreements with the measured travel-time shifts. These findings do not substantially change with the application of a correction for the reduction of wave amplitudes in the simulated and real sunspots. Overall, our findings demonstrate the need for new methods for inferring the subsurface structure of sunspots through helioseismic inversions.

  10. Wavelet analysis of sunspot relative numbers

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The time series of the monthly smoothed sunspot numbers in 1749-2000 is analyzed with the wavelet.The result shows that besides the known time-variation of the period about 11 years, other main periods of the sunspot numbers, such as the periods of about 100 years and so on,vary with time. We suggest that the time-variation of the main periods is the manifestation of the complex variation of sunspot numbers. It is significant to make a thorough study of the character and mechanism of the time-variation of the periods for proving prediction of sunspot numbers, especially for understanding the variation process of sunspot numbers.

  11. The "Sun-climate" relationship : III. The solar flares, north-south sunspot arrea asymmetry and climate

    CERN Document Server

    Komitov, Boris

    2010-01-01

    In this last Paper III additional evidences that the solar high energetic particles radiation with energies higher as 100 MeV (the solar cosmic rays SCR) is an very important component for the "Sun- climate" relationship are given (see also Paper I and II). The total solar irradiance (TSI) and the galactic cosmic rays (GCR) variations given an integral climate effect of cooling in sunspot minima and warming in the sunspot maxima. Unlike the both ones the powerful solar corpuscular events plays a cooling climate role during the epochs of their heigh levels. By this one subcenturial global and regional temperature quasi- cyclic changes by duration of approximately 60 years could be track during the last 150 years of instrumental climate observations . It has been also evided in the paper that this subcenturial oscilation is very important in the Group sunspot number (GSN) data series since the Maunder minimum up to the end of 20th century. Thus the solar erruptive activity effect make the total "Sun -climate" r...

  12. Predicting Maximum Sunspot Number in Solar Cycle 24

    Indian Academy of Sciences (India)

    Nipa J Bhatt; Rajmal Jain; Malini Aggarwal

    2009-03-01

    A few prediction methods have been developed based on the precursor technique which is found to be successful for forecasting the solar activity. Considering the geomagnetic activity aa indices during the descending phase of the preceding solar cycle as the precursor, we predict the maximum amplitude of annual mean sunspot number in cycle 24 to be 111 ± 21. This suggests that the maximum amplitude of the upcoming cycle 24 will be less than cycles 21–22. Further, we have estimated the annual mean geomagnetic activity aa index for the solar maximum year in cycle 24 to be 20.6 ± 4.7 and the average of the annual mean sunspot number during the descending phase of cycle 24 is estimated to be 48 ± 16.8.

  13. Cyclic Evolution of Sunspots: Gleaning New Results from Old Data

    Indian Academy of Sciences (India)

    S. Κ. Solanki; Μ. Fligge; P. Pulkkinen; P. Hoyng

    2000-09-01

    The records of sunspot number, sunspot areas and sunspot locations gathered over the centuries by various observatories are reanalysed with the aim of finding as yet undiscovered connections between the different parameters of the sunspot cycle and the butterfly diagram. Preliminary results of such interrelationships are presented.

  14. Active region fine structure observed at 0.08 arcsec resolution

    CERN Document Server

    Schlichenmaier, R; Hoch, S; Soltau, D; Berkefeld, T; Schmidt, D; Schmidt, W; Denker, C; Balthasar, H; Hofmann, A; Strassmeier, K G; Staude, J; Feller, A; Lagg, A; Solanki, S K; Collados, M; Sigwarth, M; Volkmer, R; Waldmann, T; Kneer, F; Nicklas, H; Sobotka, M

    2016-01-01

    The various mechanisms of magneto-convective energy transport determines the structure of sunspots and active regions. We characterise the appearance of light bridges and other fine structure details and elaborate on their magneto-convective nature. We present speckle-reconstructed images taken with the broad band imager at the 1.5 m GREGOR telescope in the 486nm and 589nm bands. We estimate the spatial resolution from the noise characteristics of the image bursts and obtain 0.08" at 589nm. We describe structure details in individual best images as well as the temporal evolution of selected features. We find branched dark lanes extending along thin (~1") light bridges in sunspots at various heliocentric angles. In thick (~2") light bridges the branches are disconnected from the central lane and have a `Y' shape with a bright grain toward the umbra. The images reveal that light bridges exist on varying intensity levels and that their small-scale features evolve on time scales of minutes. Faint light bridges sh...

  15. Evolution of twist-shear and dip-shear in Faring active region NOAA 10930

    CERN Document Server

    Gosain, Sanjay

    2010-01-01

    We study the evolution of magnetic shear angle in a flare productive active region NOAA 10930. The magnetic shear angle is defined as the deviation in the orientation of the observed magnetic field vector with respect to the potential field vector. The shear angle is measured in horizontal as well as vertical plane. The former is computed by taking the difference between the azimuth angles of the observed and potential field and is called the twist-shear, while the latter is computed by taking the difference between the inclination angles of the observed and potential field and is called the dip-shear. The evolution of the two shear angles is then tracked over a small region located over the sheared penumbra of the delta sunspot in NOAA 10930. We find that, while the twist-shear shows an increasing trend after the flare the dip-shear shows a significant drop after the flare.

  16. Directional Time-Distance Probing of Model Sunspot Atmospheres

    CERN Document Server

    Moradi, H; Przybylski, D; Shelyag, S

    2015-01-01

    A crucial feature not widely accounted for in local helioseismology is that surface magnetic regions actually open a window from the interior into the solar atmosphere, and that the seismic waves leak through this window, reflect high in the atmosphere, and then re-enter the interior to rejoin the seismic wave field normally confined there. In a series of recent numerical studies using translation invariant atmospheres, we utilised a "directional time-distance helioseismology" measurement scheme to study the implications of the returning fast and Alfv\\'en waves higher up in the solar atmosphere on the seismology at the photosphere (Cally & Moradi 2013; Moradi & Cally 2014). In this study, we extend our directional time-distance analysis to more realistic sunspot-like atmospheres to better understand the direct effects of the magnetic field on helioseismic travel-time measurements in sunspots. In line with our previous findings, we uncover a distinct frequency-dependant directional behaviour in the tra...

  17. Spectropolarimetrically accurate magnetohydrostatic sunspot model for forward modelling in helioseismology

    CERN Document Server

    Przybylski, D; Cally, P S

    2015-01-01

    We present a technique to construct a spectropolarimetrically accurate magneto-hydrostatic model of a large-scale solar magnetic field concentration, mimicking a sunspot. Using the constructed model we perform a simulation of acoustic wave propagation, conversion and absorption in the solar interior and photosphere with the sunspot embedded into it. With the $6173\\mathrm{\\AA}$ magnetically sensitive photospheric absorption line of neutral iron, we calculate observable quantities such as continuum intensities, Doppler velocities, as well as full Stokes vector for the simulation at various positions at the solar disk, and analyse the influence of non-locality of radiative transport in the solar photosphere on helioseismic measurements. Bisector shapes were used to perform multi-height observations. The differences in acoustic power at different heights within the line formation region at different positions at the solar disk were simulated and characterised. An increase in acoustic power in the simulated observ...

  18. The unusual minimum of sunspot cycle 23 a consequence of Sun's meridional plasma flow variations

    CERN Document Server

    Nandy, Dibyendu; Martens, Petrus C H; 10.1038/nature09786

    2013-01-01

    Direct observations over the past four centuries show that the number of sunspots observed on the Sun's surface vary periodically, going through successive maxima and minima. Following sunspot cycle 23, the Sun went into a prolonged minimum characterized by a very weak polar magnetic field and an unusually large number of days without sunspots. Sunspots are strongly magnetized regions and are generated by a dynamo mechanism which recreates the solar polar field mediated via plasma flows. Here we report results from kinematic dynamo simulations which demonstrate that a fast meridional flow in the early half of a cycle, followed by a slower flow in the latter half, reproduces both the characteristics of the minimum of sunspot cycle 23 - a large number of spotless days and a relatively weak polar field. Our model predicts that, in general, very deep minima are associated with weak polar fields. Sunspots govern the solar radiative energy and radio flux, and in conjunction with the polar field, modulate the solar ...

  19. Low Dimensional Chaos from the Group Sunspot Numbers

    Institute of Scientific and Technical Information of China (English)

    Qi-Xiu Li; Ke-Jun Li

    2007-01-01

    We examine the nonlinear dynamical properties of the monthly smoothed group sunspot number Rg and find that the solar activity underlying the time series of Rg is globally governed by a low-dimensional chaotic attractor.This finding is consistent with the nonlinear study results of the monthly Wolf sunspot numbers.We estimate the maximal Lyaponuv exponent (MLE) for the Rg series to be positive and to equal approximately 0.0187±0.0023 (month-1).Thus,the Lyaponuv time or predictability time of the chaotic motion is obtained to be about 4.46±0.5 years.which is slightly different with the predictability time obtained from Rz.However,they both indicate that solar activity forecast should be done only for a short to medium term due to the intrinsic complexity of the time behavior concerned.

  20. A model for the formation of the active region corona driven by magnetic flux emergence

    Science.gov (United States)

    Chen, F.; Peter, H.; Bingert, S.; Cheung, M. C. M.

    2014-04-01

    Aims: We present the first model that couples the formation of the corona of a solar active region to a model of the emergence of a sunspot pair. This allows us to study when, where, and why active region loops form, and how they evolve. Methods: We use a 3D radiation magnetohydrodynamics (MHD) simulation of the emergence of an active region through the upper convection zone and the photosphere as a lower boundary for a 3D MHD coronal model. The coronal model accounts for the braiding of the magnetic fieldlines, which induces currents in the corona to heat up the plasma. We synthesize the coronal emission for a direct comparison to observations. Starting with a basically field-free atmosphere we follow the filling of the corona with magnetic field and plasma. Results: Numerous individually identifiable hot coronal loops form, and reach temperatures well above 1 MK with densities comparable to observations. The footpoints of these loops are found where small patches of magnetic flux concentrations move into the sunspots. The loop formation is triggered by an increase in upward-directed Poynting flux at their footpoints in the photosphere. In the synthesized extreme ultraviolet (EUV) emission these loops develop within a few minutes. The first EUV loop appears as a thin tube, then rises and expands significantly in the horizontal direction. Later, the spatially inhomogeneous heat input leads to a fragmented system of multiple loops or strands in a growing envelope. Animation associated with Fig. 2 is available in electronic form at http://www.aanda.org

  1. A Helioseismic Survey of Near-surface Flows Around Active Regions and their Association with Flares

    CERN Document Server

    Braun, D C

    2016-01-01

    We use helioseismic holography to study the association of shallow flows with solar flare activity in about 250 large sunspot groups observed between 2010 and 2014 with the Helioseismic and Magnetic Imager on the Solar Dynamics Observatory. Four basic flow parameters: horizontal speed, horizontal component of divergence, vertical component of vorticity, and a vertical kinetic helicity proxy, are mapped for each active region during its passage across the solar disk. Flow indices are derived representing the mean and standard deviation of these parameters over magnetic masks and compared with contemporary measures of flare X-ray flux. A correlation exists for several of the flow indices, especially those based on the speed and the standard deviation of all flow parameters. However, their correlation with X-ray flux is similar to that observed with the mean unsigned magnetic flux density over the same masks. The temporal variation of the flow indices are studied, and a superposed epoch analysis with respect to ...

  2. The Role of Small-Scale Processes in Solar Active Region Decay

    Science.gov (United States)

    Meyer, Karen; Mackay, Duncan

    2017-08-01

    Active regions are locations of intense magnetic activity on the Sun, whose evolution can result in highly energetic eruptive phenomena such as solar flares and coronal mass ejections (CMEs). Therefore, fast and accurate simulation of their evolution and decay is essential in the prediction of Space Weather events. In this talk we present initial results from our new model for the photospheric evolution of active region magnetic fields. Observations show that small-scale processes appear to play a role in the dispersal and decay of solar active regions, for example through cancellation at the boundary of sunspot outflows and erosion of flux by surrounding convective cells. Our active region model is coupled to our existing model for the evolution of small-scale photospheric magnetic features. Focusing first on the active region decay phase, we consider the evolution of its magnetic field due to both large-scale (e.g. differential rotation) and small-scale processes, such as its interaction with surrounding small-scale magnetic features and convective flows.This project is funded by The Carnegie Trust for the Universities of Scotland, through their Research Incentives Grant scheme.

  3. Properties of a Decaying Sunspot

    CERN Document Server

    Balthasar, H; Gömöry, P; Muglach, K; Puschmann, K G; Shimizu, T; Verma, M

    2013-01-01

    A small decaying sunspot was observed with the Vacuum Tower Telescope (VTT) on Tenerife and the Japanese Hinode satellite. We obtained full Stokes scans in several wavelengths covering different heights in the solar atmosphere. Imaging time series from Hinode and the Solar Dynamics Observatory (SDO) complete our data sets. The spot is surrounded by a moat flow, which persists also on that side of the spot where the penumbra already had disappeared. Close to the spot, we find a chromospheric location with downflows of more than 10 km/s without photospheric counterpart. The height dependence of the vertical component of the magnetic field strength is determined in two different ways that yielded different results in previous investigations. Such a difference still exists in our present data, but it is not as pronounced as in the past.

  4. The formation of sunspot penumbra. I. Magnetic field properties

    CERN Document Server

    Rezaei, Reza; Schlichenmaier, Rolf

    2011-01-01

    We study the formation of a sunspot penumbra in the active region NOAA11024. We simultaneously observed the Stokes parameters of the photospheric iron lines at 1089.6 nm with the TIP and 617.3 nm with the GFPI spectropolarimeters along with broad-band images using G-band and CaIIK filters at the German VTT. The formation of the penumbra is intimately related to the inclined magnetic field. Within 4.5 h observing time, the magnetic flux of the penumbra increases from 9.7E+20 to 18.2E+20 Mx, while the magnetic flux of the umbra remains constant at about 3.8E+20 Mx. Magnetic flux in the immediate surroundings is incorporated into the spot, and new flux is supplied via small flux patches (SFPs), which on average have a flux of 2-3E+18 Mx. The spot's flux increase rate of 4.2E+16 Mx/s corresponds to the merging of one SFP per minute. We also find that during the formation of the spot penumbra: a) the maximum magnetic field strength of the umbra does not change, b) the magnetic neutral line keeps the same position ...

  5. Evidence for low dimensional chaos in sunspot cycles

    Science.gov (United States)

    Letellier, C.; Aguirre, L. A.; Maquet, J.; Gilmore, R.

    2006-04-01

    Sunspot cycles are widely used for investigating solar activity. In 1953 Bracewell argued that it is sometimes desirable to introduce the inversion of the magnetic field polarity, and that can be done with a sign change at the beginning of each cycle. It will be shown in this paper that, for topological reasons, this so-called Bracewell index is inappropriate and that the symmetry must be introduced in a more rigorous way by a coordinate transformation. The resulting symmetric dynamics is then favourably compared with a symmetrized phase portrait reconstructed from the z-variable of the Rössler system. Such a link with this latter variable - which is known to be a poor observable of the underlying dynamics - could explain the general difficulty encountered in finding evidence of low-dimensional dynamics in sunspot data.

  6. Recurrence plots of sunspots, solar flux and irradiance

    CERN Document Server

    Sparavigna, Amelia

    2008-01-01

    The paper shows the recurrence and cross recurrence plots of three time series, concerning data of the solar activity. The data are the sunspot number and the values of solar radio flux at 10.7 cm and of solar total irradiance, which are known as highly correlated. To compare the series, the radio flux and irradiance values are monthly averaged. Recurrence plots display the oscillating behaviour with remarkable features. Moreover, cross recurrence plots help in identifying time lags between the sunspot number maximum and the maximum of radio or irradiance signals, in circumstances where the data values are highly dispersed. Image processing is useful too, in enhancing the monitoring. An interesting behaviour is displayed by cross recurrence plots of irradiance, which are not symmetric with respect to the line of identity.

  7. Molecular Diagnostics of the Internal Structure of Starspots and Sunspots

    Science.gov (United States)

    Afram, N.; Berdyugina, S. V.; Fluri, D. M.; Solanki, S. K.; Lagg, A.; Petit, P.; Arnaud, J.

    2006-12-01

    We have analyzed the usefulness of molecules as a diagnostic tool for studying solar and stellar magnetism with the molecular Zeeman and Paschen-Back effects. In the first part we concentrate on molecules that are observed in sunspots such as MgH and TiO. We present calculated molecular line profiles obtained by assuming magnetic fields of 2-3 kG and compare these synthetic Stokes profiles with spectro-polarimetric observations in sunspots. The good agreement between the theory and observations allows us to turn our attention in the second part to starspots to gain insight into their internal structure. We investigate the temperature range in which the selected molecules can serve as indicators for magnetic fields on highly active cool stars and compare synthetic Stokes profiles with our recent observations.

  8. Self-affinity and nonextensivity of sunspots

    Energy Technology Data Exchange (ETDEWEB)

    Moret, M.A., E-mail: mamoret@gmail.com [Programa de Modelagem Computacional, SENAI, Cimatec, Av. Orlando Gomes, 1845, Piatã, 41650-010 Salvador, Bahia (Brazil); UNEB, Rua Silveira Martins, 2555, Cabula, 41150-000 Salvador, Bahia (Brazil)

    2014-01-24

    In this paper we study the time series of sunspots by using two different approaches, analyzing its self-affine behavior and studying its distribution. The long-range correlation exponent α has been calculated via Detrended Fluctuation Analysis and the power law vanishes to values greater than 11 years. On the other hand, the distribution of the sunspots obeys a q-exponential decay that suggests a non-extensive behavior. This observed characteristic seems to take an alternative interpretation of the sunspots dynamics. The present findings suggest us to propose a dynamic model of sunspots formation based on a nonlinear Fokker–Planck equation. Therefore its dynamic process follows the generalized thermostatistical formalism.

  9. A closer look at a coronal loop rooted in a sunspot umbra

    CERN Document Server

    Chitta, L P; Young, P R

    2015-01-01

    Extreme UV (EUV) and X-ray loops in the solar corona connect regions of enhanced magnetic activity, but usually they are not rooted in the dark umbrae of sunspots. This is because there the strong magnetic field suppresses convection and thus the Poynting flux of magnetic energy into the upper atmosphere is not significant within the umbra, as long as there are no light bridges, umbral dots. Here we report a rare observation of a coronal loop rooted in the dark umbra of a sunspot without any traces of light bridges or umbral dots. We used the slit-jaw images and spectroscopic data from the IRIS and concentrate on the line profiles of O IV and Si IV that show persistent strong redshifted components in the loop rooted in the umbra. Using the ratios of O IV, we can estimate the density and thus investigate the mass flux. The coronal context and temperature diagnostics of these observations is provided through the EUV channels of the AIA. The coronal loop, embedded within cooler downflows, is hosting supersonic d...

  10. Comparison of Debrecen and Mount Wilson/Kodaikanal sunspot group tilt angles and the Joy's law

    CERN Document Server

    Baranyi, T

    2014-01-01

    The study of active region tilt angles and their variations in different time scales plays an important role in revealing the subsurface dynamics of magnetic flux ropes and in understanding the dynamo mechanism. In order to reveal the exact characteristics of tilt angles, precise long-term tilt angle data bases are needed. However, there are only a few different data sets at present, which are difficult to be compared and cross-calibrate because of their substantial deviations. In this paper, we describe new tilt angle data bases derived from the Debrecen Photoheliographic Data ($DPD$) (1974--) and from the SOHO/MDI-Debrecen Data ($SDD$) (1996-2010) sunspot catalogues. We compare them with the traditional sunspot group tilt angle data bases of Mount Wilson Observatory (1917-85) and Kodaikanal Solar Observatory (1906-87) and we analyse the deviations. Various methods and filters are investigated which may improve the sample of data and may help deriving better results based on combined data. As a demonstration...

  11. Comparison of Debrecen and Mount Wilson/Kodaikanal sunspot group tilt angles and the Joy's law

    Science.gov (United States)

    Baranyi, T.

    2015-02-01

    The study of active region tilt angles and their variations in different time-scales plays an important role in revealing the subsurface dynamics of magnetic flux ropes and in understanding the dynamo mechanism. In order to reveal the exact characteristics of tilt angles, precise long-term tilt angle data bases are needed. However, there are only a few different data sets at present, which are difficult to be compared and cross-calibrate because of their substantial deviations. In this paper, we describe new tilt angle data bases derived from the Debrecen Photoheliographic Data (DPD) (1974-) and from the SOHO/MDI-Debrecen Data (SDD) (1996-2010) sunspot catalogues. We compare them with the traditional sunspot group tilt angle data bases of Mount Wilson Observatory (1917-85) and Kodaikanal Solar Observatory (1906-87) and we analyse the deviations. Various methods and filters are investigated which may improve the sample of data and may help in deriving better results based on combined data. As a demonstration of the enhanced quality of the improved data set a refined diagram of Joy's law is presented.

  12. Formation of Solar Delta Active Regions:Twist and Writhe of Magnetic Ropes

    Institute of Scientific and Technical Information of China (English)

    Hong-Qi Zhang

    2004-01-01

    We analyze the process of formation of delta configuration in some well-known super active regions based on photospheric vector magnetogram observations. It is found that the magnetic field in the initial developing stage of some delta active regions shows a potential-like configuration in the solar atmosphere,the magnetic shear develops mainly near the magnetic neutral line with magnetic islands of opposite polarities, and the large-scale photospheric twisted field forming gradually later. Some results are obtained: (1) The analysis of magnetic writhe of whole active regions cannot be limited in the strong field of sunspots, because the contribution of the fraction of decayed magnetic field is non-negligible. (2) The magnetic model of kink magnetic ropes, supposed to be generated in the subatmosphere,is not consistent with the evolution of large-scale twisted photospheric transverse magnetic field and not entirely consistent with the relationship with magnetic shear in some delta active regions. (3) The proposition is that the large-scale delta active regions are formed from contribution by small-scale non-potential magnetic flux bundles generated in the subatmosphere.

  13. Long-period oscillations of sunspot magnetic fields by simultaneous observations of the Global Oscillation Network Group and Solar and Heliospheric Observatory/Michelson Doppler imager

    Science.gov (United States)

    Efremov, V. I.; Parfinenko, L. D.; Solov'ev, A. A.; Riehokainen, A.

    2016-12-01

    For the first time, the ultra-low oscillation mode of the sunspot magnetic field strength has been detected with a high degree of confidence by ground-based observations of sunspots with the Global Oscillation Network Group (GONG) network of telescopes. Synchronous series of magnetograms derived from the GONG and Solar and Heliospheric Observatory/Michelson Doppler Imager (SOHO/MDI) have been processed. They were obtained on September 27-30, 2010, for the active region NOAA 11109 with a total duration of 80 h. The periods of magnetic field oscillations found by space data coincide with the periods defined with GONG. This confirms the physical reality of the oscillatory process. The power spectrum contains harmonics with periods of 26 h, 8-10 h, and 3-4 h.

  14. Sunspot Dynamics Are Reflected in Human Physiology and Pathophysiology

    Science.gov (United States)

    Hrushesky, William J. M.; Sothern, Robert B.; Du-Quiton, Jovelyn; Quiton, Dinah Faith T.; Rietveld, Wop; Boon, Mathilde E.

    2011-03-01

    Periodic episodes of increased sunspot activity (solar electromagnetic storms) occur with 10-11 and 5-6 year periodicities and may be associated with measurable biological events. We investigated whether this sunspot periodicity characterized the incidence of Pap smear-determined cervical epithelial histopathologies and human physiologic functions. From January 1983 through December 2003, monthly averages were obtained for solar flux and sunspot numbers; six infectious, premalignant and malignant changes in the cervical epithelium from 1,182,421 consecutive, serially independent, screening Pap smears (59°9"N, 4°29"E); and six human physiologic functions of a healthy man (oral temperature, pulse, systolic and diastolic blood pressure, respiration, and peak expiratory flow), which were measured ∼5 times daily during ∼34,500 self-measurement sessions (44°56"N, 93°8"W). After determining that sunspot numbers and solar flux, which were not annually rhythmic, occurred with a prominent 10-year and a less-prominent 5.75-year periodicity during this 21-year study span, each biological data set was analyzed with the same curve-fitting procedures. All six annually rhythmic Pap smear-detected infectious, premalignant and malignant cervical epithelial pathologies showed strong 10-year and weaker 5.75-year cycles, as did all six self-measured, annually rhythmic, physiologic functions. The phases (maxima) for the six histopathologic findings and five of six physiologic measurements were very near, or within, the first two quarters following the 10-year solar maxima. These findings add to the growing evidence that solar magnetic storm periodicities are mirrored by cyclic phase-locked rhythms of similar period length or lengths in human physiology and pathophysiology.

  15. Weather variability, sunspots, and the blooms of cyanobacteria.

    Science.gov (United States)

    Hu, Wenbiao; Connell, Des; Mengersen, Kerrie; Tong, Shilu

    2009-03-01

    The roles of weather variability and sunspots in the occurrence of cyanobacteria blooms, were investigated using cyanobacteria cell data collected from the Fred Haigh Dam, Queensland, Australia. Time series generalized linear model and classification and regression tree (CART) model were used in the analysis. Data on notified cell numbers of cyanobacteria and weather variables over the periods 2001 and 2005 were provided by the Australian Department of Natural Resources and Water, and Australian Bureau of Meteorology, respectively. The results indicate that monthly minimum temperature (relative risk [RR]: 1.13, 95% confidence interval [CI]: 1.02-1.25) and rainfall (RR: 1.11; 95% CI: 1.03-1.20) had a positive association, but relative humidity (RR: 0.94; 95% CI: 0.91-0.98) and wind speed (RR: 0.90; 95% CI: 0.82-0.98) were negatively associated with the cyanobacterial numbers, after adjustment for seasonality and auto-correlation. The CART model showed that the cyanobacteria numbers were best described by an interaction between minimum temperature, relative humidity, and sunspot numbers. When minimum temperature exceeded 18 degrees C and relative humidity was under 66%, the number of cyanobacterial cells rose by 2.15-fold. We conclude that weather variability and sunspot activity may affect cyanobacteria blooms in dams.

  16. Sunspot Observations of Rudolf Wolf from 1849 - 1893

    Science.gov (United States)

    Friedli, Thomas K.

    2016-06-01

    The sunspot observations of Rudolf Wolf form the core of the Wolf series of sunspot relative numbers, or Wolf numbers, since his observations define the original scale of the series and also the main course of solar activity from 1849 to 1893. Unfortunately, the raw data for the years 1856 to 1869 were never published in full detail. The heritage group of the Rudolf Wolf Society in Switzerland digitized parts of the hitherto unpublished original source book of the Wolf series and put it on its website www.wolfinstitute.ch. Now, the Wolf numbers from 1849 to 1876, as provided by the World Data Center for Solar Index and Long-term Solar Observations (WDC-SILSO), can be reconstructed in every detail, since the source book contains all the raw sunspot group and individual spot numbers as well as the implemented calibration and interpolation methods. Thus, the observations made by Rudolf Wolf with the 83/1320 mm Fraunhofer refractor and with the 40/700 mm Parisian refractor as well as those made by Heinrich Schwabe can be identified and separated now. In this article, we describe Wolf's instruments and methods of observation. An inspection of the source book and other published sources reveals that the calibration factor of the 40/700 mm Parisian refractor should probably be lowered. Since no appropriate comparison observations are available, the scale transfer from Heinrich Schwabe to Rudolf Wolf has to be analyzed further.

  17. Modeling sunspot and starspot decay by turbulent erosion

    CERN Document Server

    Litvinenko, Yuri E

    2015-01-01

    Disintegration of sunspots (and starspots) by fluxtube erosion, originally proposed by Simon and Leighton, is considered. A moving boundary problem is formulated for a nonlinear diffusion equation that describes the sunspot magnetic field profile. Explicit expressions for the sunspot decay rate and lifetime by turbulent erosion are derived analytically and verified numerically. A parabolic decay law for the sunspot area is obtained. For moderate sunspot magnetic field strengths, the predicted decay rate agrees with the results obtained by Petrovay and Moreno-Insertis. The new analytical and numerical solutions significantly improve the quantitative description of sunspot and starspot decay by turbulent erosion.

  18. Evolution of active region outflows throughout an active region lifetime

    Science.gov (United States)

    Zangrilli, L.; Poletto, G.

    2016-10-01

    Context. We have shown previously that SOHO/UVCS data allow us to detect active region (AR) outflows at coronal altitudes higher than those reached by other instrumentation. These outflows are thought to be a component of the slow solar wind. Aims: Our purpose is to study the evolution of the outflows in the intermediate corona from AR 8100, from the time the AR first forms until it dissolves, after several transits at the solar limb. Methods: Data acquired by SOHO/UVCS at the time of the AR limb transits, at medium latitudes and at altitudes ranging from 1.5 to 2.3 R⊙, were used to infer the physical properties of the outflows through the AR evolution. To this end, we applied the Doppler dimming technique to UVCS spectra. These spectra include the H i Lyα line and the O vi doublet lines at 1031.9 and 1037.6 Å. Results: Plasma speeds and electron densities of the outflows were inferred over several rotations of the Sun. AR outflows are present in the newly born AR and persist throughout the entire AR life. Moreover, we found two types of outflows at different latitudes, both possibly originating in the same negative polarity area of the AR. We also analyzed the behavior of the Si xii 520 Å line along the UVCS slit in an attempt to reveal changes in the Si abundance when different regions are traversed. Although we found some evidence for a Si enrichment in the AR outflows, alternative interpretations are also plausible. Conclusions: Our results demonstrate that outflows from ARs are detectable in the intermediate corona throughout the whole AR lifetime. This confirms that outflows contribute to the slow wind.

  19. The Impact of the Revised Sunspot Record on Solar Irradiance Reconstructions

    Science.gov (United States)

    Kopp, G.; Krivova, N.; Wu, C. J.; Lean, J.

    2016-11-01

    Reliable historical records of the total solar irradiance (TSI) are needed to assess the extent to which long-term variations in the Sun's radiant energy that is incident upon Earth may exacerbate (or mitigate) the more dominant warming in recent centuries that is due to increasing concentrations of greenhouse gases. We investigate the effects that the new Sunspot Index and Long-term Solar Observations (SILSO) sunspot-number time series may have on model reconstructions of the TSI. In contemporary TSI records, variations on timescales longer than about a day are dominated by the opposing effects of sunspot darkening and facular brightening. These two surface magnetic features, retrieved either from direct observations or from solar-activity proxies, are combined in TSI models to reproduce the current TSI observational record. Indices that manifest solar-surface magnetic activity, in particular the sunspot-number record, then enable reconstructing historical TSI. Revisions of the sunspot-number record therefore affect the magnitude and temporal structure of TSI variability on centennial timescales according to the model reconstruction methods that are employed. We estimate the effects of the new SILSO record on two widely used TSI reconstructions, namely the NRLTSI2 and the SATIRE models. We find that the SILSO record has little effect on either model after 1885, but leads to solar-cycle fluctuations with greater amplitude in the TSI reconstructions prior. This suggests that many eighteenth- and nineteenth-century cycles could be similar in amplitude to those of the current Modern Maximum. TSI records based on the revised sunspot data do not suggest a significant change in Maunder Minimum TSI values, and from comparing this era to the present, we find only very small potential differences in the estimated solar contributions to the climate with this new sunspot record.

  20. Evolution of active region outflows throughout an active region lifetime

    CERN Document Server

    Zangrilli, L

    2016-01-01

    We have shown previously that SOHO/UVCS data allow us to detect active region (AR) outflows at coronal altitudes higher than those reached by other instrumentation. These outflows are thought to be a component of the slow solar wind. Our purpose is to study the evolution of the outflows in the intermediate corona from AR 8100, from the time the AR first forms until it dissolves, after several transits at the solar limb. Data acquired by SOHO/UVCS at the time of the AR limb transits, at medium latitudes and at altitudes ranging from 1.5 to 2.3 R_sun, were used to infer the physical properties of the outflows through the AR evolution. To this end, we applied the Doppler dimming technique to UVCS spectra. These spectra include the H I Lyman alpha line and the O VI doublet lines at 1031.9 and 1037.6 A. Plasma speeds and electron densities of the outflows were inferred over several rotations of the Sun. AR outflows are present in the newly born AR and persist throughout the entire AR life. Moreover, we found two t...

  1. Sunspot drawings handwritten character recognition method based on deep learning

    Science.gov (United States)

    Zheng, Sheng; Zeng, Xiangyun; Lin, Ganghua; Zhao, Cui; Feng, Yongli; Tao, Jinping; Zhu, Daoyuan; Xiong, Li

    2016-05-01

    High accuracy scanned sunspot drawings handwritten characters recognition is an issue of critical importance to analyze sunspots movement and store them in the database. This paper presents a robust deep learning method for scanned sunspot drawings handwritten characters recognition. The convolution neural network (CNN) is one algorithm of deep learning which is truly successful in training of multi-layer network structure. CNN is used to train recognition model of handwritten character images which are extracted from the original sunspot drawings. We demonstrate the advantages of the proposed method on sunspot drawings provided by Chinese Academy Yunnan Observatory and obtain the daily full-disc sunspot numbers and sunspot areas from the sunspot drawings. The experimental results show that the proposed method achieves a high recognition accurate rate.

  2. Wings of the butterfly: Sunspot groups for 1826-2015

    Science.gov (United States)

    Leussu, R.; Usoskin, I. G.; Senthamizh Pavai, V.; Diercke, A.; Arlt, R.; Denker, C.; Mursula, K.

    2017-03-01

    The spatio-temporal evolution of sunspot activity, the so-called Maunder butterfly diagram, has been continously available since 1874 using data from the Royal Greenwich Observatory, extended by SOON network data after 1976. Here we present a new extended butterfly diagram of sunspot group occurrence since 1826, using the recently digitized data from Schwabe (1826-1867) and Spörer (1866-1880). The wings of the diagram are separated using a recently developed method based on an analysis of long gaps in sunspot group occurrence in different latitude bands. We define characteristic latitudes, corresponding to the start, end, and the largest extent of the wings (the F, L, and H latitudes). The H latitudes (30°-45°) are highly significantly correlated with the strength of the wings (quantified by the total sum of the monthly numbers of sunspot groups). The F latitudes (20°-30°) depict a weak tendency, especially in the southern hemisphere, to follow the wing strength. The L latitudes (2°-10°) show no clear relation to the wing strength. Overall, stronger cycle wings tend to start at higher latitudes and have a greater wing extent. A strong (5-6)-cycle periodic oscillation is found in the start and end times of the wings and in the overlap and gaps between successive wings of one hemisphere. While the average wing overlap is zero in the southern hemisphere, it is two to three months in the north. A marginally significant oscillation of about ten solar cycles is found in the asymmetry of the L latitudes. The new long database of butterfly wings provides new observational constraints to solar dynamo models that discuss the spatio-temporal distribution of sunspot occurrence over the solar cycle and longer. Digital data for Fig. 1 are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/599/A131

  3. Sunspot Catalogue of the Valencia Observatory (1920-1928)

    CERN Document Server

    Carrasco, V M S; Aparicio, A J P; Gallego, M C

    2014-01-01

    A sunspot catalogue was maintained by the Astronomical Observatory of Valencia University (Spain) from 1920 to 1928. Here we present a machine-readable version of this catalogue (OV catalog or OVc), including a quality control analysis. Sunspot number (total and hemispheric) and sunspot area series are constructed using this catalogue. The OV catalog's data are compared with other available solar data, demonstrating that the present contribution provides the scientific community with a reliable catalogue of sunspot data.

  4. Simulation study of two major events in the heliosphere during the present sunspot cycle

    Energy Technology Data Exchange (ETDEWEB)

    Akasofu, S.I.; Fillius, W.; Sun, W.; Fry, C.; Dryer, M.

    1985-01-01

    The two major disturbances in the heliosphere during the present sunspot cycle, the event of June to August, 1982, and the event of April to June, 1978, are simulated by the method developed by Hakamada and Akasofu (1982). Specifically, an attempt was made to simulate the effects of six major flares from three active regions in June and July, 1982, and April and May, 1978. A comparison of the results with the solar wind observations at Pioneer 12 (approximately 0.8 au), ISEE-3 (approximately 1 au), Pioneer 11 (approximately 7 to 13 au) and Pioneer 10 (approximately 16 to 28 au) suggests that some major flares occurred behind the disk of the sun during the two periods. The method provides qualitatively some information as to how such a series of intense solar flares can greatly disturb both the inner and outer heliospheres. A long lasting effect on cosmic rays is discussed in conjunction with the disturbed heliosphere.

  5. A mechanism for the dependence of sunspot group tilt angles on cycle strength

    CERN Document Server

    Işık, Emre

    2015-01-01

    The average tilt angle of sunspot groups emerging throughout the solar cycle determines the net magnetic flux crossing the equator, which is correlated with the strength of the subsequent cycle. I suggest that a deep-seated, non-local process can account for the observed cycle-dependent changes in the average tilt angle. Motivated by helioseismic observations indicating cycle-scale variations in the sound speed near the base of the convection zone, I determined the effect of a thermally perturbed overshoot region on the stability of flux tubes and on the tilt angles of emerging flux loops. I found that 5-20 K of cooling is sufficient for emerging flux loops to reproduce the reported amplitude of cycle-averaged tilt angle variations, suggesting that it is a plausible effect responsible for the nonlinearity of the solar activity cycle.

  6. Horizontal flow fields observed in Hinode G-band images II. Flow fields in the final stages of sunspot decay

    CERN Document Server

    Verma, M; Deng, N; Liu, C; Shimizu, T; Wang, H; Denker, C

    2011-01-01

    We present a subset of multi-wavelengths observations obtained with the Japanese Hinode mission, the Solar Dynamics Observatory (SDO), and the Vacuum Tower Telescope (VTT) at Observatorio del Teide, Tenerife, Spain during the time period from 2010 November 18-23. Horizontal proper motions were derived from G-band and Ca II H images, whereas line-of-sight velocities were extracted from VTT Echelle H-alpha 656.28 nm spectra and Fe I 630.25 nm spectral data of the Hinode/Spectro-Polarimeter, which also provided three-dimensional magnetic field information. The Helioseismic and Magnetic Imager on board SDO provided continuum images and line-of-sight magnetograms as context for the high-resolution observations for the entire disk passage of the active region. We have performed a quantitative study of photospheric and chromospheric flow fields in and around decaying sunspots. In one of the trailing sunspots of active region NOAA 11126, we observed moat flow and moving magnetic features (MMFs), even after its penumb...

  7. Flows in and around active region NOAA12118 observed with the GREGOR solar telescope and SDO/HMI

    CERN Document Server

    Verma, M; Balthasar, H; Kuckein, C; Manrique, S J González; Sobotka, M; González, N Bello; Hoch, S; Diercke, A; Kummerow, P; Berkefeld, T; Collados, M; Feller, A; Hofmann, A; Kneer, F; Lagg, A; Löhner-Böttcher, J; Nicklas, H; Yabar, A Pastor; Schlichenmaier, R; Schmidt, D; Schmidt, W; Schubert, M; Sigwarth, M; Solanki, S K; Soltau, D; Staude, J; Strassmeier, K G; Volkmer, R; von der Lühe, O; Waldmann, T

    2016-01-01

    Accurate measurements of magnetic and velocity fields in and around solar active regions are key to unlocking the mysteries of the formation and the decay of sunspots. High spatial resolution image and spectral sequences with a high cadence obtained with the GREGOR solar telescope give us an opportunity to scrutinize 3-D flow fields with local correlation tracking and imaging spectroscopy. We present GREGOR early science data acquired in 2014 July - August with the GREGOR Fabry-P\\'erot Interferometer and the Blue Imaging Channel. Time-series of blue continuum (? 450.6 nm) images of the small active region NOAA 12118 were restored with the speckle masking technique to derive horizontal proper motions and to track the evolution of morphological changes. In addition, high-resolution observations are discussed in the context of synoptic data from the Solar Dynamics Observatory.

  8. ON THE FORCE-FREE NATURE OF PHOTOSPHERIC SUNSPOT MAGNETIC FIELDS AS OBSERVED FROM HINODE (SOT/SP)

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Sanjiv Kumar, E-mail: tiwari@mps.mpg.de [Udaipur Solar Observatory, Physical Research Laboratory, Dewali, Bari Road, Udaipur 313 001 (India)

    2012-01-01

    A magnetic field is force-free if there is no interaction between it and the plasma in the surrounding atmosphere, i.e., electric currents are aligned with the magnetic field, giving rise to zero Lorentz force. The computation of various magnetic parameters, such as magnetic energy (using the virial theorem), gradient of twist of sunspot magnetic fields (computed from the force-free parameter {alpha}), and any kind of extrapolation, heavily hinges on the force-free approximation of the photospheric sunspot magnetic fields. Thus, it is of vital importance to inspect the force-free behavior of sunspot magnetic fields. The force-free nature of sunspot magnetic fields has been examined earlier by some researchers, ending with incoherent results. Accurate photospheric vector field measurements with high spatial resolution are required to inspect the force-free nature of sunspots. For this purpose, we use several vector magnetograms of high spatial resolution obtained from the Solar Optical Telescope/Spectro-Polarimeter on board Hinode. Both the necessary and sufficient conditions for force-free nature are examined by checking the global and local nature of equilibrium magnetic forces over sunspots. We find that sunspot magnetic fields are not very far from the force-free configuration, although they are not completely force-free on the photosphere. The umbral and inner penumbral fields are more force-free than the middle and outer penumbral fields. During their evolution, sunspot magnetic fields are found to maintain their proximity to force-free field behavior. Although a dependence of net Lorentz force components is seen on the evolutionary stages of the sunspots, we do not find a systematic relationship between the nature of sunspot magnetic fields and the associated flare activity. Further, we examine whether the fields at the photosphere follow linear or nonlinear force-free conditions. After examining this in various complex and simple sunspots, we conclude that

  9. Re-evaluation of Predictive Models in Light of New Data: Sunspot Number Version 2.0

    Science.gov (United States)

    Gkana, A.; Zachilas, L.

    2016-10-01

    The original version of the Zürich sunspot number (Sunspot Number Version 1.0) has been revised by an entirely new series (Sunspot Number Version 2.0). We re-evaluate the performance of our previously proposed models for predicting solar activity in the light of the revised data. We perform new monthly and yearly predictions using the Sunspot Number Version 2.0 as input data and compare them with our original predictions (using the Sunspot Number Version 1.0 series as input data). We show that our previously proposed models are still able to produce quite accurate solar-activity predictions despite the full revision of the Zürich Sunspot Number, indicating that there is no significant degradation in their performance. Extending our new monthly predictions (July 2013 - August 2015) by 50 time-steps (months) ahead in time (from September 2015 to October 2019), we provide evidence that we are heading into a period of dramatically low solar activity. Finally, our new future long-term predictions endorse our previous claim that a prolonged solar activity minimum is expected to occur, lasting up to the year ≈ 2100.

  10. Simultaneous SMM flat crystal spectrometer and Very Large Array observations of solar active regions

    Science.gov (United States)

    Lang, Kenneth R.; Willson, Robert F.; Smith, Kermit L.; Strong, Keith T.

    1987-01-01

    High-resolution images of the quiescent emission from two solar active regions at 20 cm (VLA) and soft X-ray (SMM FCS) wavelengths are compared. There are regions where the X-ray coronal loops have been completely imaged at 20 cm wavelength. In other regions, the X-ray radiation was detected without detectable 20 cm radiation, and vice versa. The X-ray data were used to infer average electron temperatures of about 3-million K and average electron densities of about 2.5 x 10 to the 9th/cu cm for the X-ray emitting plasma in the two active regions. The thermal bremsstrahlung of the X-ray emitting plasma is optically thin at 20 cm wavelength. The 20 cm brightness temperatures were always less than T(e), which is consistent with optically thin bremsstrahlung. The low T(B) can be explained if a higher, cooler plasma covers the hotter X-ray emitting plasma. Thermal gyroresonance radiation must account for the intense 20 cm radiation near and above sunspots where no X-ray radiation is detected.

  11. CME Productivity of Active Regions.

    Science.gov (United States)

    Liu, L.; Wang, Y.; Wang, J.; Shen, C.; Ye, P.; Zhang, Q.; Liu, R.; Wang, S.

    2015-12-01

    Solar active regions (ARs) are the major sources of two kinds of the most violent solar eruptions, namely flares and coronal mass ejections (CMEs). Although they are believed to be two phenomena in the same eruptive process, the productivity of them could be quiet different for various ARs. Why is an AR productive? And why is a flare-rich AR CME-poor? To answer these questions, we compared the recent super flare-rich but CME-poor AR 12192, with other four ARs; two were productive in both flares and CMEs and the other two were inert to produce any M-class or intenser flares or CMEs. By investigating the photospheric parameters based on the SDO/HMI vector magnetogram, we find the three productive ARs have larger magnetic flux, current and free magnetic energy than the inert ARs. Furthermore, the two ARs productive in both flares and CMEs contain higher current helicity, concentrating along both sides of the flaring neutral lines, indicating the presence of a seed magnetic structure( that is highly sheared or twisted) of a CME; they also have higher decay index in the low corona, showing weak constraint. The results suggest that productive ARs are always large and have strong current system and sufficient free energy to power flares, and more importantly whether or not a flare is accompanied by a CME is seemingly related to (1) if there is significant sheared or twisted core field serving as the seed of the CME and (2) if the constraint of the overlying arcades is weak enough. Moreover, some productive ARs may frequently produce more than one CME. How does this happen? We do a statistical investigation of waiting times of quasi-homologous CMEs ( CME ssuccessive originating from the same ARs within short intervals) from super ARs in solar cycle 23 to answer this question. The waiting times of quasi-homologous CMEs have a two-component distribution with a separation at about 18 hours, the first component peaks at 7 hours. The correlation analysis among CME waiting times

  12. Tracing sunspot groups to determine angular momentum transfer on the Sun

    CERN Document Server

    Sudar, D; Ruždjak, D; Brajša, R; Wöohl, H

    2014-01-01

    The goal of this paper is to investigate Reynolds stresses and to check if it is plausible that they are responsible for angular momentum transfer toward the solar equator. We also analysed meridional velocity, rotation velocity residuals and correlation between the velocities. We used sunspot groups position measurements from GPR (Greenwich Photographic Result) and SOON/USAF/NOAA (Solar Observing Optical Network/United States Air Force/National Oceanic and Atmospheric Administration) databases covering the period from 1878 until 2011. In order to calculate velocities we used daily motion of sunspot groups. The sample was also limited to $\\pm$58\\degr in Central Meridian Distance (CMD) in order to avoid solar limb effects. We mainly investigated velocity patterns depending on solar cycle phase and latitude. We found that meridional motion of sunspot groups is toward the centre of activity from all available latitudes and in all phases of the solar cycle. The range of meridional velocities is $\\pm10$ m s$^{-1}$...

  13. Planetary model of sunspot emergence: A spectral and autocorrelation analysis

    CERN Document Server

    Edmonds, Ian

    2016-01-01

    This paper is concerned with intermediate range periodicity in the sunspot area spectrum. An empirical model of sunspot area emergence based on Mercury planet conjunctions was developed and the spectra of the model variation and the sunspot area variation compared. By including solar cycle amplitude modulation and the effect of solar magnetic field reversal the model was able to predict fine detail in the sunspot area spectrum. As Mercury planet conjunctions occur predictably it was possible to compare the time variation of band limited components of sunspot area with the corresponding component variations in the model. When the model component variation was stable corresponding components of sunspot area lagged the model variation by a few tens of days. When a 180 degree phase change occurred in the model variation the corresponding component of sunspot area followed the change over an interval of a few hundred days, first by decreasing to zero and then emerging in phase with the model variation. Where perio...

  14. Short Periodicities in Latitudinal Variation of Sunspots

    Science.gov (United States)

    Kim, Bang-Yeop; Chang, Heon-Young

    2011-06-01

    The latitudinal variation of sunspots appearing during the period from 1874 to 2009 has been studied in terms of centerof- latitude (COL). The butterfly diagram has been used to study the evolution of the magnetic field and the dynamics at the bottom of the solar convection zone. Short-term periodicities have been of particular interest, in that they are somehow related to the structure and dynamics of the solar interior. We thus have focused our investigation on shortterm periodicities. We first calculated COL by averaging the latitude of sunspots with the weight function in area. Then, we analyzed the time series of COL using the wavelet transform technique. We found that a periodicity of ~5 years is the most dominant feature in the time series of COL, with the exception of the ~11 year solar cycle itself. This periodicity can be easily understood by considering small humps between the minima in the area-weighted butterfly diagram. However, we find that periodicities of ~1.3 (0.064), ~1.5 (0.056), or ~1.8 (0.046) years ( 1/ month ), which have been previously suggested as evidence of links between the changing structure of the sunspot zone and the tachocline rotation rate oscillations, are insignificant and inconsistent. We therefore conclude that the only existing short-term periodicity is of ~5 years, and that periodicities of ~1.3, ~1.5, or ~1.8 years are likely to be artifacts due to random noise of small sunspots.

  15. A new hypothesis of sunspot formation

    CERN Document Server

    Zhukov, V I

    2003-01-01

    The process of sunspot formation is considered with the account of heat effects. According to the Le Chatelier principle, a local overheating must precede to the cooling of solar surface in the places of sunspot formation. The sunspot dynamics is a process close to the surface nucleate-free boiling in a thin layer with formation of bubbles (or craters), so we focus on the analogy between these two processes. Solar spots and surface nucleate-free boiling in a thin layer have similarities in formation conditions, results of impact on the surface were they have been formed, periodicity, and their place in the hierarchy of self-organization in complex systems. The difference is in the working medium and method of channelling of extra energy from the overheated surface -for boiling process, the energy is forwarded to generation of vapor, and in sunspots the solar energy is consumed to formation of a strong magnetic field. This analogy explains the problem of a steady brightness (temperature) of a spot that is inde...

  16. Sunspots and Their Simple Harmonic Motion

    Science.gov (United States)

    Ribeiro, C. I.

    2013-01-01

    In this paper an example of a simple harmonic motion, the apparent motion of sunspots due to the Sun's rotation, is described, which can be used to teach this subject to high-school students. Using real images of the Sun, students can calculate the star's rotation period with the simple harmonic motion mathematical expression.

  17. Vortex attraction and the formation of sunspots

    Science.gov (United States)

    Parker, E. N.

    1992-01-01

    A downdraft vortex ring in a stratified atmosphere exhibits universal attraction for nearby vertical magnetic flux bundles. It is speculated that the magnetic fields emerging through the surface of the sun are individually encircled by one or more subsurface vortex rings, providing an important part of the observed clustering of magnetic fibrils to form pores and sunspots.

  18. Multi-wavelength study of a delta-spot I: A region of very strong, horizontal magnetic field

    CERN Document Server

    Jaeggli, Sarah A

    2015-01-01

    Active region NOAA 11035 appeared in December 2009, early in the new solar activity cycle. This region achieved a delta sunspot ($\\delta$-spot) configuration when parasitic flux emerged near the rotationally leading magnetic polarity and traveled through the penumbra of the largest sunspot in the group. Both visible and infrared imaging spectropolarimetry of the magnetically sensitive Fe I line pairs at 6302 \\AA\\ and 15650 \\AA\\ show large Zeeman splitting in the penumbra between the parasitic umbra and the main sunspot umbra. The polarized Stokes spectra in the strongest field region display anomalous profiles, and strong blueshifts are seen in an adjacent region. Analysis of the profiles is carried out using a Milne-Eddington inversion code capable of fitting either a single magnetic component with stray light or two independent magnetic components to verify the field strength. The inversion results show that the anomalous profiles cannot be produced by the combination of two profiles with moderate magnetic ...

  19. Comparison of New and Old Sunspot Number Time Series

    Science.gov (United States)

    Cliver, E. W.

    2016-11-01

    Four new sunspot number time series have been published in this Topical Issue: a backbone-based group number in Svalgaard and Schatten ( Solar Phys., 2016; referred to here as SS, 1610 - present), a group number series in Usoskin et al. ( Solar Phys., 2016; UEA, 1749 - present) that employs active day fractions from which it derives an observational threshold in group spot area as a measure of observer merit, a provisional group number series in Cliver and Ling ( Solar Phys., 2016; CL, 1841 - 1976) that removed flaws in the Hoyt and Schatten ( Solar Phys. 179, 189, 1998a; 181, 491, 1998b) normalization scheme for the original relative group sunspot number (RG, 1610 - 1995), and a corrected Wolf (international, RI) number in Clette and Lefèvre ( Solar Phys., 2016; SN, 1700 - present). Despite quite different construction methods, the four new series agree well after about 1900. Before 1900, however, the UEA time series is lower than SS, CL, and SN, particularly so before about 1885. Overall, the UEA series most closely resembles the original RG series. Comparison of the UEA and SS series with a new solar wind B time series (Owens et al. in J. Geophys. Res., 2016; 1845 - present) indicates that the UEA time series is too low before 1900. We point out incongruities in the Usoskin et al. ( Solar Phys., 2016) observer normalization scheme and present evidence that this method under-estimates group counts before 1900. In general, a correction factor time series, obtained by dividing an annual group count series by the corresponding yearly averages of raw group counts for all observers, can be used to assess the reliability of new sunspot number reconstructions.

  20. The Main Sequence of Explosive Solar Active Regions: Comparison of Emerging and Mature Active Regions

    Science.gov (United States)

    Falconer, David; Moore, Ron

    2011-01-01

    For mature active regions, an active region s magnetic flux content determines the maximum free energy the active region can have. Most Large flares and CMEs occur in active regions that are near their free-energy limit. Active-region flare power radiated in the GOES 1-8 band increases steeply as the free-energy limit is approached. We infer that the free-energy limit is set by the rate of release of an active region s free magnetic energy by flares, CMEs and coronal heating balancing the maximum rate the Sun can put free energy into the active region s magnetic field. This balance of maximum power results in explosive active regions residing in a "mainsequence" in active-region (flux content, free energy content) phase space, which sequence is analogous to the main sequence of hydrogen-burning stars in (mass, luminosity) phase space.

  1. A low upper limit on the subsurface rise speed of solar active regions

    CERN Document Server

    Birch, Aaron C; Braun, Douglas C; Cameron, Robert; Gizon, Laurent; Löptien, Björn; Rempel, Matthias

    2016-01-01

    Magnetic field emerges at the surface of the Sun as sunspots and active regions. This process generates a poloidal magnetic field from a rising toroidal flux tube, it is a crucial but poorly understood aspect of the solar dynamo. The emergence of magnetic field is also important because it is a key driver of solar activity. We show that measurements of horizontal flows at the solar surface around emerging active regions, in combination with numerical simulations of solar magnetoconvection, can constrain the subsurface rise speed of emerging magnetic flux. The observed flows imply that the rise speed of the magnetic field is no larger than 150 m/s at a depth of 20 Mm, that is, well below the prediction of the (standard) thin flux tube model but in the range expected for convective velocities at this depth. We conclude that convective flows control the dynamics of rising flux tubes in the upper layers of the Sun and cannot be neglected in models of flux emergence.

  2. The EUV Spectrum of Sunspot Plumes Observed by SUMER on SOHO

    Indian Academy of Sciences (India)

    W. Curdt; B. N. Dwivedi; U. Feldman

    2000-09-01

    We present results from sunspot observations obtained by SUMER on SOHO. In sunspot plumes the EUV spectrum differs from the quiet Sun; continua are observed with different slopes and intensities; emission lines from molecular hydrogen and many unidentified species indicate unique plasma conditions above sunspots. Sunspot plumes are sites of systematic downflow. We also discuss the properties of sunspot oscillations.

  3. Sensitivity of sunspot area to the tidal effect of planet Mercury during solar cycle 23

    CERN Document Server

    Edmonds, Ian

    2014-01-01

    We present evidence that the allowed periods of equatorially trapped Rossby wave modes on the Sun coincide closely with the 88 day period and 176 day sub harmonic period of Mercury and evidence of Rossby waves on the Sun at the same periods. To test the hypothesis that Rossby waves trigger the emergence of sunspots we use band pass filtering to obtain the 88 day period and 176 day period components of hemispherical sunspot area and compare the variations to the tidal height variation on the surface of the Sun due to Mercury. We find that the two components of hemispherical sunspot area occur in several episodes or activations of duration 2 to 6 years during each solar cycle. When the activations are discrete the variation of the 88 day and 176 day period components are phase coherent with the tidal height variation and a 180 degree phase change is evident between successive activations. We use this result to demonstrate that Rieger type quasi-periodicities in sunspot activity are, in most reported cases, peri...

  4. Hi-C Observations of Sunspot Penumbral Bright Dots

    CERN Document Server

    Alpert, Shane E; Moore, Ronald L; Winebarger, Amy R; Savage, Sabrina L

    2016-01-01

    We report observations of bright dots (BDs) in a sunspot penumbra using High Resolution Coronal Imager (Hi-C) data in 193 \\AA\\ and examine their sizes, lifetimes, speeds, and intensities. The sizes of the BDs are on the order of 1\\arcsec\\ and are therefore hard to identify in the Atmospheric Imaging Assembly (AIA) 193 \\AA\\ images, which have 1.2\\arcsec\\ spatial resolution, but become readily apparent with Hi-C's five times better spatial resolution. We supplement Hi-C data with data from AIA's 193 \\AA\\ passband to see the complete lifetime of the BDs that appeared before and/or lasted longer than Hi-C's 3-minute observation period. Most Hi-C BDs show clear lateral movement along penumbral striations, toward or away from the sunspot umbra. Single BDs often interact with other BDs, combining to fade away or brighten. The BDs that do not interact with other BDs tend to have smaller displacements. These BDs are about as numerous but move slower on average than Interface Region Imaging Spectrograph (IRIS) BDs, rec...

  5. Diagnostics of a subsurface radial outflow from a sunspot

    CERN Document Server

    Braun, D; Lindsey, C; Jefferies, S M

    1996-01-01

    We measure the mean frequencies of acoustic waves propagating toward and away from a sunspot employing a spot-centered Fourier-Hankel decomposition of p-mode amplitudes as measured from a set of observations made at the South Pole in 1991. We demonstrate that there is a significant frequency shift between the inward and outward traveling waves which is consistent with the Doppler effect of a radial outflow from the sunspot. For p-modes of temporal frequencies of 3 mHz it is observed that the frequency shift decreases slightly with spatial frequency, for modes with degree l between 160 to 600. From the l dependence of the frequency shift, we infer that the mean radial outflow within the observed annular region (which extends between 30 and 137 Mm from the spot) increases nearly linearly with depth, reaching a magnitude of about 200 m/s at a depth of 20 Mm. This outflow exhibits properties similar to flows recently reported by Lindsey, et al. (1996) using spatially sensitive local helioseismic techniques.

  6. The velocity structure of moving magnetic feature pairs around sunspots: support for the U-loop model

    CERN Document Server

    Zhang, Jun; Woch, J; Wang, Jingxiu

    2007-01-01

    Using data recorded by the Michelson Doppler Imager (MDI) instrument on the Solar and Heliospheric Observatory (SOHO), we have traced 123 pairs of opposite magnetic polarity moving magnetic features (MMFs) in three active regions NOAA ARs 8375, 0330 and 9575. At the time of observation, AR 8375 was young, AR 0330 mature, and AR 9575 decaying. The vertical velocity indicates that the elements of MMF pairs with polarity opposite to that of the sunspot support a downflow of around 50-100 m s$^{-1}$. The average Doppler shift difference between negative and positive elements of an MMF pair is about 150 m s$^{-1}$ in AR 8375, 100 m s$^{-1}$ in AR 0330, and 20 m s$^{-1}$ in AR 9575. These observational results are in agreement with the model that MMF pairs are part of a U-loop emanating from the sunspot's magnetic canopy. According to this model the downflow is caused by the Evershed flow returning below the solar surface. For AR 8375, the horizontal velocity of MMFs ranges from 0.1 km s$^{-1}$ to 0.7 km s$^{-1}$, ...

  7. Multiwavelength study of twenty jets emanating from the periphery of active regions

    CERN Document Server

    Mulay, Sargam M; Del Zanna, Giulio; Mason, Helen

    2016-01-01

    We present a multiwavelength analysis of 20 EUV jets which occurred at the periphery of active regions close to sunspots. We discuss the physical parameters of the jets and their relation with other phenomena such as H alpha surges, nonthermal type III radio bursts and hard X-ray emission. Using AIA wavelength channels sensitive to coronal temperatures, we studied the temperature distribution in the jets using the line-of-sight Differential Emission Measure technique. We also investigated the role of the photospheric magnetic field using the LOS magnetogram data from the HMI. The lifetime of jets range from 5 to 39 minutes with an average of 18 minutes and their velocities range from 87 to 532 km/s with an average of 271 km/s. Most of the jets are co-temporal with nonthermal type III radio bursts observed by the Wind/WAVES spacecraft. We confirm the source region of these bursts using the Potential Field Source Surface technique. 10 out of 20 events showed that the jets originated in a region of flux cancella...

  8. Why Is the Great Solar Active Region 12192 CME-Poor?

    CERN Document Server

    Sun, Xudong; Hoeksema, J Todd; Liu, Yang; Li, Yan; Shen, Chenglong; Couvidat, Sebastien; Norton, Aimee A; Fisher, George H

    2015-01-01

    Solar active region (AR) 12192 of October 2014 hosts the largest sunspot group in 24 years. It is the most prolific flaring site of Cycle 24, but surprisingly produced no coronal mass ejection (CME) from the core region during its disk passage. Here, we study the magnetic conditions that prevented eruption and the consequences that ensued. We find AR 12192 to be "big but mild"; its core region exhibits weaker non-potentiality, stronger overlying field, and smaller flare-related field changes compared to two other major flare-CME-productive ARs (11429 and 11158). These differences are present in the intensive-type indices (e.g., means) but generally not the extensive ones (e.g., totals). AR 12192's large amount of magnetic free energy does not translate into CME productivity. The unexpected behavior suggests that AR eruptiveness is limited by some relative measure of magnetic non-potentiality over the restriction of background field, and that confined flares may leave weaker photospheric and coronal imprints c...

  9. The Counter-kink Rotation of a Non-Hale Active Region

    CERN Document Server

    Fuentes, M C López; Mandrini, C H; van Driel-Gesztelyi, L

    2014-01-01

    We describe the long-term evolution of a bipolar non-Hale active region which was observed from October, 1995, to January, 1996. Along these four solar rotations the sunspots and subsequent flux concentrations, during the decay phase of the region, were observed to move in such a way that by December their orientation conformed to the Hale-Nicholson polarity law. The sigmoidal shape of the observed soft X-ray coronal loops allows us to determine the sense of the twist in the magnetic configuration. This sense is confirmed by extrapolating the observed photospheric magnetic field, using a linear force-free approach, and comparing the shape of computed field lines to the observed coronal loops. This sense of twist agrees with that of the dominant helicity in the solar hemisphere where the region lies, as well as with the evolution observed in the longitudinal magnetogram during the first rotation. At first sight the relative motions of the spots may be miss-interpreted as the rising of an $\\Omega$-loop deformed...

  10. Comparing Digital Sunspot Number Counts to the New International Sunspot Numbers

    Science.gov (United States)

    Balasubramaniam, K. S.; Henry, Timothy

    2016-05-01

    The International Sunspot Numbers (ISN; Version 2) have been recently (2015) revised at the Sunspot Index and Long Term Solar Observations maintained at Royal Observatory of Belgium (http://www.sidc.be/silso/datafiles). ISN is a reconciled aggregate over several ground-based observatories, mostly using hand-drawn sunspot recordings. We make a detailed 10-year comparisons between the Improved Solar Observing Optical Network’s prototype digital data (2002-2011) and the ISN V1 (Version 1; pre-2015), and ISN V2. Over the ~ 10-year period, ISN V1 underestimates the sunspot number counts by up to 40% while the ISN V2 overestimates by a similar amount. We also compare the hand-drawn data from a single telescope at the National Solar Observatory with the digital data and ISN numbers. These comparisons reveal caveats that need to be taken into account, as sunspot numbers are used to forecast both the solar cycle and the near term climatology of solar cycle impacts on the space environment.

  11. Local Helioseismology of Sunspots: Current Status and Perspectives (Invited Review)

    CERN Document Server

    Kosovichev, A G

    2010-01-01

    Mechanisms of formation and stability of sunspots are among the longest-standing and intriguing puzzles of solar physics and astrophysics. Sunspots are controlled by subsurface dynamics hidden from direct observations. Recently, substantial progress in our understanding of physics of the turbulent magnetized plasma has been made by numerical simulations and local helioseismology. Both, the simulations and helioseismic measurements, are extremely challenging, but it becomes clear that the key to understanding the enigma of sunspots is a synergy between models and observations. Recent observations and radiative MHD numerical simulations have provided a convincing explanation to the Evershed flows in sunspot penumbra. Also, they lead to the understanding of sunspots as self-organized magnetic structures in the turbulent plasma of the upper convection zone, which are maintained by a large-scale dynamics. Local helioseismic diagnostics of sunspots still have many uncertainties, some of which are discussed in this ...

  12. Initiation and Eruption Process of Magnetic Flux Rope from Solar Active Region NOAA 11719 to Earth Directed-CME

    CERN Document Server

    Vemareddy, P

    2014-01-01

    An eruption event launched from solar active region (AR) NOAA 11719 is investigated based on coronal EUV observations and photospheric magnetic field measurements obtained from Solar Dynamic Observatory. The AR consists of a filament channel originating from major sunspot and its south section is associated with inverse-S sigmoidal system as observed in AIA passbands. We regard the sigmoid as the main body of the flux rope (FR). There also exists a twisted flux bundle crossing over this FR. This overlying flux bundle transforms in shape similar to kink-rise evolution which has correspondence with rise motion of the FR. The emission measure and temperature along the FR exhibits increasing trend with its rising motion, indicating reconnection in the thinning current sheet underneath the FR. Net magnetic flux of the AR evaluated at north and south polarities showed decreasing behavior whereas the net current in these fluxes exhibits increasing trend. As the negative (positive) flux is having dominant positive (n...

  13. Flare differentially rotates sunspot on Sun's surface

    Science.gov (United States)

    Liu, Chang; Xu, Yan; Cao, Wenda; Deng, Na; Lee, Jeongwoo; Hudson, Hugh S.; Gary, Dale E.; Wang, Jiasheng; Jing, Ju; Wang, Haimin

    2016-10-01

    Sunspots are concentrations of magnetic field visible on the solar surface (photosphere). It was considered implausible that solar flares, as resulted from magnetic reconnection in the tenuous corona, would cause a direct perturbation of the dense photosphere involving bulk motion. Here we report the sudden flare-induced rotation of a sunspot using the unprecedented spatiotemporal resolution of the 1.6 m New Solar Telescope, supplemented by magnetic data from the Solar Dynamics Observatory. It is clearly observed that the rotation is non-uniform over the sunspot: as the flare ribbon sweeps across, its different portions accelerate (up to ~50° h-1) at different times corresponding to peaks of flare hard X-ray emission. The rotation may be driven by the surface Lorentz-force change due to the back reaction of coronal magnetic restructuring and is accompanied by a downward Poynting flux. These results have direct consequences for our understanding of energy and momentum transportation in the flare-related phenomena.

  14. Flare differentially rotates sunspot on Sun's surface

    CERN Document Server

    Liu, Chang; Cao, Wenda; Deng, Na; Lee, Jeongwoo; Hudson, Hugh S; Gary, Dale E; Wang, Jiasheng; Jing, Ju; Wang, Haimin

    2016-01-01

    Sunspots are concentrations of magnetic field visible on the solar surface (photosphere). It was considered implausible that solar flares, as resulted from magnetic reconnection in the tenuous corona, would cause a direct perturbation of the dense photosphere involving bulk motion. Here we report the sudden flare-induced rotation of a sunspot using the unprecedented spatiotemporal resolution of the 1.6 m New Solar Telescope, supplemented by magnetic data from the Solar Dynamics Observatory. It is clearly observed that the rotation is non-uniform over the sunspot: as the flare ribbon sweeps across, its different portions accelerate (up to 50 deg per hr) at different times corresponding to peaks of flare hard X-ray emission. The rotation may be driven by the surface Lorentz-force change due to the back reaction of coronal magnetic restructuring and is accompanied by a downward Poynting flux. These results have direct consequences for our understanding of energy and momentum transportation in the flare-related p...

  15. Flare differentially rotates sunspot on Sun's surface.

    Science.gov (United States)

    Liu, Chang; Xu, Yan; Cao, Wenda; Deng, Na; Lee, Jeongwoo; Hudson, Hugh S; Gary, Dale E; Wang, Jiasheng; Jing, Ju; Wang, Haimin

    2016-10-10

    Sunspots are concentrations of magnetic field visible on the solar surface (photosphere). It was considered implausible that solar flares, as resulted from magnetic reconnection in the tenuous corona, would cause a direct perturbation of the dense photosphere involving bulk motion. Here we report the sudden flare-induced rotation of a sunspot using the unprecedented spatiotemporal resolution of the 1.6 m New Solar Telescope, supplemented by magnetic data from the Solar Dynamics Observatory. It is clearly observed that the rotation is non-uniform over the sunspot: as the flare ribbon sweeps across, its different portions accelerate (up to ∼50° h(-1)) at different times corresponding to peaks of flare hard X-ray emission. The rotation may be driven by the surface Lorentz-force change due to the back reaction of coronal magnetic restructuring and is accompanied by a downward Poynting flux. These results have direct consequences for our understanding of energy and momentum transportation in the flare-related phenomena.

  16. Solar Active Region Coronal Jets. II. Triggering and Evolution of Violent Jets

    Science.gov (United States)

    Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David A.; Panesar, Navdeep K.; Martinez, Francisco

    2017-07-01

    We study a series of X-ray-bright, rapidly evolving active region coronal jets outside the leading sunspot of AR 12259, using Hinode/X-ray telescope, Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager (HMI), and Interface Region Imaging Spectrograph (IRIS) data. The detailed evolution of such rapidly evolving “violent” jets remained a mystery after our previous investigation of active region jets. The jets we investigate here erupt from three localized subregions, each containing a rapidly evolving (positive) minority-polarity magnetic-flux patch bathed in a (majority) negative-polarity magnetic-flux background. At least several of the jets begin with eruptions of what appear to be thin (thickness ≲ 2\\prime\\prime ) miniature-filament (minifilament) “strands” from a magnetic neutral line where magnetic flux cancelation is ongoing, consistent with the magnetic configuration presented for coronal-hole jets in Sterling et al. (2016). Some jets strands are difficult/impossible to detect, perhaps due to, e.g., their thinness, obscuration by surrounding bright or dark features, or the absence of erupting cool-material minifilaments in those jets. Tracing in detail the flux evolution in one of the subregions, we find bursts of strong jetting occurring only during times of strong flux cancelation. Averaged over seven jetting episodes, the cancelation rate was ˜ 1.5× {10}19 Mx hr-1. An average flux of ˜ 5× {10}18 Mx canceled prior to each episode, arguably building up ˜1028-1029 erg of free magnetic energy per jet. From these and previous observations, we infer that flux cancelation is the fundamental process responsible for the pre-eruption build up and triggering of at least many jets in active regions, quiet regions, and coronal holes.

  17. Active Region Emergence and Remote Flares

    Science.gov (United States)

    Fu, Yixing; Welsch, Brian T.

    2016-02-01

    We study the effect of new emerging solar active regions on the large-scale magnetic environment of existing regions. We first present a theoretical approach to quantify the "interaction energy" between new and pre-existing regions as the difference between i) the summed magnetic energies of their individual potential fields and ii) the energy of their superposed potential fields. We expect that this interaction energy can, depending upon the relative arrangements of newly emerged and pre-existing magnetic flux, indicate the existence of "topological" free magnetic energy in the global coronal field that is independent of any "internal" free magnetic energy due to coronal electric currents flowing within the newly emerged and pre-existing flux systems. We then examine the interaction energy in two well-studied cases of flux emergence, but find that the predicted energetic perturbation is relatively small compared to energies released in large solar flares. Next, we present an observational study of the influence of the emergence of new active regions on flare statistics in pre-existing active regions, using NOAA's Solar Region Summary and GOES flare databases. As part of an effort to precisely determine the emergence time of active regions in a large event sample, we find that emergence in about half of these regions exhibits a two-stage behavior, with an initial gradual phase followed by a more rapid phase. Regarding flaring, we find that the emergence of new regions is associated with a significant increase in the occurrence rate of X- and M-class flares in pre-existing regions. This effect tends to be more significant when pre-existing and new emerging active regions are closer. Given the relative weakness of the interaction energy, this effect suggests that perturbations in the large-scale magnetic field, such as topology changes invoked in the "breakout" model of coronal mass ejections, might play a significant role in the occurrence of some flares.

  18. Newly found sunspot observations by Peter Becker from Rostock for 1708, 1709, and 1710

    Science.gov (United States)

    Neuhäuser , R.; Arlt, R.; Pfitzner, E.; Richter, S.

    2015-09-01

    We present a few newly found old sunspot observations from the years AD 1708, 1709, and 1710, which were obtained by Peter Becker from Rostock, Germany. For 1709, Becker gave a detailed drawing: he observed a sunspot group made up of two spots on January 5, 6, and 7, and just one of the two spots was observed on January 8 and 9. We present his drawing and his explanatory text. We can measure the latitude and longitude of these two spots and estimate their sizes for all five days. While the spots and groups in 1708 and the spot on four of the five days in January 1709 were known before from other observers (e.g. Hoyt & Schatten 1998), the location of the spots in early January 1709 were not known before, so that they can now be considered in reconstructed butterfly diagrams. The sunspots detected by Becker on 1709 January 5 and 1710 September 10 were not known before at all, as the only observer known for those two dates, La Hire, did not detect that spot (group). We estimate new group sunspot numbers for the relevant days, months, and years. The time around 1708-1710 is important, because it documents the recovery of solar activity towards the end of the Maunder Grand Minimum. We also show two new spot observations from G. Kirch for 1708 September 13 and 14 as described in his letter to Wurzelbaur (dated Berlin AD 1708 December 19).

  19. A New Approach in Understanding Growth and Decay of the Sunspots

    CERN Document Server

    Hiremath, K M; R, M

    2010-01-01

    From the previous study (Hiremath 2009b; Hiremath 2010), on the genesis of solar cycle and activity phenomena, it is understood that sunspots are formed at different depths by superposition of Alfven wave perturbations of a strong toroidal field structure in the convective envelope and after attaining a critical strength, due to buoyancy, raise toward the surface along the rotational isocontours that have positive (0.7-0.935 $R_{\\odot}$) and negative (0.935-1.0 $R_{\\odot}$) rotational gradients. Owing to physical conditions in these two rotational gradients, from the equation of magnetic induction, sunspot's area growth and decay problem is solved separately. It is found that rate of growth of sunspot's area during its evolution at different depths is function of steady and fluctuating parts of Lorentzian force of the ambient medium, fluctuations in meridional flow velocity, radial variation of rotational gradient and $cot(\\vartheta)$ (where $\\vartheta$ is co-latitude). While rate of decay of sunspot's area a...

  20. An Assessment of Sunspot Number Data Composites over 1845-2014

    Science.gov (United States)

    Lockwood, M.; Owens, M. J.; Barnard, L.; Usoskin, I. G.

    2016-06-01

    New sunspot data composites, some of which are radically different in the character of their long-term variation, are evaluated over the interval 1845-2014. The method commonly used to calibrate historic sunspot data, relative to modern-day data, is “daisy-chaining,” whereby calibration is passed from one data subset to the neighboring one, usually using regressions of the data subsets for the intervals of their overlap. Recent studies have illustrated serious pitfalls in these regressions, and the resulting errors can be compounded by their repeated use as the data sequence is extended back in time. Hence, the recent composite data series by Usoskin et al., R UEA, is a very important advance because it avoids regressions, daisy-chaining, and other common, but invalid, assumptions: this is achieved by comparing the statistics of “active-day” fractions to those for a single reference data set. We study six sunspot data series, including R UEA and the new “backbone” data series (R BB, recently generated by Svalgaard & Schatten by employing both regression and daisy-chaining). We show that all six can be used with a continuity model to reproduce the main features of the open solar flux variation for 1845-2014, as reconstructed from geomagnetic activity data. However, some differences can be identified that are consistent with tests using a basket of other proxies for solar magnetic fields. Using data from a variety of sunspot observers, we illustrate problems with the method employed in generating R BB that cause it to increasingly overestimate sunspot numbers going back in time, and we recommend using R UEA because it employs more robust procedures that avoid such problems.

  1. Major revision of sunspot number: implication for the ionosphere models

    Science.gov (United States)

    Gulyaeva, Tamara

    2016-07-01

    Recently on 1st July, 2015, a major revision of the historical sunspot number series has been carried out as discussed in [Clette et al., Revisiting the Sunspot Number. A 400-Year Perspective on the Solar Cycle, Space Science Reviews, 186, Issue 1-4, pp. 35-103, 2014). The revised SSN2.0 dataset is provided along with the former SSN1.0 data at http://sidc.oma.be/silso/. The SSN2.0 values exceed the former conventional SSN1.0 data so that new SSNs are greater in many cases than the solar radio flux F10.7 values which pose a problem of SSN2.0 implementation as a driver of the International Reference Ionosphere, IRI, its extension to plasmasphere, IRI-Plas, NeQuick model, Russian Standard Ionosphere, SMI. In particular, the monthly predictions of the F2 layer peak are based on input of the ITU-R (former CCIR) and URSI maps. The CCIR and URSI maps coefficients are available for each month of the year, and for two levels of solar activity: low (SSN = 0) and high (SSN = 100). SSN is the monthly smoothed sunspot number from the SSN1.0 data set used as an index of the level of solar activity. For every SSN different from 0 or 100 the critical frequency foF2 and the M3000F2 radio propagation factor used for the peak height hmF2 production may be evaluated by an interpolation. The ionospheric proxies of the solar activity IG12 index or Global Electron Content GEC12 index, driving the ionospheric models, are also calibrated with the former SSN1.0 data. The paper presents a solar proxy intended to calibrate SSN2.0 data set to fit F10.7 solar radio flux and/or SSN1.0 data series. This study is partly supported by TUBITAK EEEAG 115E915.

  2. A solar flare disturbing a light wall above a sunspot light bridge

    CERN Document Server

    Hou, Yijun; Li, Ting; Yang, Shuhong; Li, Leping; Li, Xiaohong

    2016-01-01

    With the high-resolution data from the Interface Region Imaging Spectrograph, we detect a light wall above a sunspot light bridge in the NOAA active region (AR) 12403. In the 1330 A slit-jaw images, the light wall is brighter than the ambient areas while the wall top and base are much brighter than the wall body, and it keeps oscillating above the light bridge. A C8.0 flare caused by a filament activation occurred in this AR with the peak at 02:52 UT on 2015 August 28, and the flare's one ribbon overlapped the light bridge which was the observational base of the light wall. Consequently, the oscillation of the light wall was evidently disturbed. The mean projective oscillation amplitude of the light wall increased from 0.5 Mm to 1.6 Mm before the flare, and decreased to 0.6 Mm after the flare. We suggest that the light wall shares a group of magnetic field lines with the flare loops, which undergo a magnetic reconnection process, and they constitute a coupled system. When the magnetic field lines are pushed u...

  3. Evidence of mass outflow in the low corona over a large sunspot.

    Science.gov (United States)

    Neupert, W. M.; Brosius, J. W.; Thomas, R. J.; Thompson, W. T.

    1994-04-01

    An extreme ultraviolet imaging spectrograph designed for sounding rocket flight has been used to search for velocity fields in the low solar corona. During a flight in May, 1989, the authors obtained emission line profile measurements along a chord through an active region on the Sun. Relative Doppler velocities were measured in emission lines of Mg IX, Fe XV, and Fe XVI with a sensitivity of 2 - 3 km s-1 at 350 A. The only Doppler shift appreciably greater than this level was observed in the line of Mg IX at 368.1 A over the umbra of the large sunspot. The maximum shift measured at that location corresponded to a velocity toward the observer of 14±3 km s-1 relative to the mean of measurements in that emission line made elsewhere over the active region. The magnetic field in the low corona was aligned to within 10° of the line of sight at the location of maximum Doppler shift. Depending on the magnetic field geometry, this mass outflow could either re-appear as a downflow of material in distant footpoints of closed coronal loops or, if along open field lines, could contribute to the solar wind.

  4. Polar Field Reversals and Active Region Decay

    Science.gov (United States)

    Petrie, Gordon; Ettinger, Sophie

    2017-09-01

    We study the relationship between polar field reversals and decayed active region magnetic flux. Photospheric active region flux is dispersed by differential rotation and turbulent diffusion, and is transported poleward by meridional flows and diffusion. We summarize the published evidence from observation and modeling of the influence of meridional flow variations and decaying active region flux's spatial distribution, such as the Joy's law tilt angle. Using NSO Kitt Peak synoptic magnetograms covering cycles 21-24, we investigate in detail the relationship between the transport of decayed active region flux to high latitudes and changes in the polar field strength, including reversals in the magnetic polarity at the poles. By means of stack plots of low- and high-latitude slices of the synoptic magnetograms, the dispersal of flux from low to high latitudes is tracked, and the timing of this dispersal is compared to the polar field changes. In the most abrupt cases of polar field reversal, a few activity complexes (systems of active regions) are identified as the main cause. The poleward transport of large quantities of decayed trailing-polarity flux from these complexes is found to correlate well in time with the abrupt polar field changes. In each case, significant latitudinal displacements were found between the positive and negative flux centroids of the complexes, consistent with Joy's law bipole tilt with trailing-polarity flux located poleward of leading-polarity flux. The activity complexes of the cycle 21 and 22 maxima were larger and longer-lived than those of the cycle 23 and 24 maxima, and the poleward surges were stronger and more unipolar and the polar field changes larger and faster. The cycle 21 and 22 polar reversals were dominated by only a few long-lived complexes whereas the cycle 23 and 24 reversals were the cumulative effects of more numerous, shorter-lived regions. We conclude that sizes and lifetimes of activity complexes are key to

  5. Records of sunspot and aurora during CE 960-1279 in the Chinese chronicle of the Song dynasty

    CERN Document Server

    Hayakawa, Hisashi; Kawamura, Akito D; Isobe, Hiroaki

    2015-01-01

    Records of sunspots and aurora observations in pre-telescopic historical documents can provide useful information about solar activity in the past. This is also true for extreme space weather events, as they may have been recorded as large sunspots observed by the naked eye or as low-latitude auroras. In this paper, we present the results of a comprehensive survey of records of sunspots and auroras in the Songshi, a Chinese formal chronicle spanning the tenth to the thirteenth century. This chronicle contains a record of continuous observations with well-formatted reports conducted as a policy of the government. A brief comparison of the frequency of observations of sunspots and auroras and the observations of radioisotopes as an indicator of the solar activity during corresponding periods is provided. This paper is the first step of our project in which we survey and compile the records of sunspots and aurora in historical documents from various locations and languages, ultimately providing it to the science...

  6. Numerical sunspot models - subsurface structure and helioseismic forward modeling (Invited)

    Science.gov (United States)

    Rempel, M.; Birch, A. C.; Braun, D. C.

    2009-12-01

    The magnetic and thermal subsurface structure of sunspots has been debated for decades. While local helioseismic inversions allow in principle to constrain the subsurface structure of sunspots, a full inversion is still not possible due to the complicated interaction between waves and magnetic field. As an alternative it is possible to address this problem through forward modeling. Over the past few years numerical MHD models of entire sunspots including radiative transfer and a realistic equation of state have become possible. These simulations include p-modes excited by convection and the full interaction of these modes with the magnetic and thermal structure of the sunspot. In this talk I will present recent progress in MHD modeling of sunspots with special emphasis on the thermal and magnetic structure of numerical sunspot models. It turns out that modeled sunspots so far impose rather shallow perturbations to sound and fast mode speeds in the upper most 2 Mm. Nevertheless the seismic signatures are very similar to observed sunspots.

  7. Sunspot Modeling: From Simplified Models to Radiative MHD Simulations

    Directory of Open Access Journals (Sweden)

    Rolf Schlichenmaier

    2011-09-01

    Full Text Available We review our current understanding of sunspots from the scales of their fine structure to their large scale (global structure including the processes of their formation and decay. Recently, sunspot models have undergone a dramatic change. In the past, several aspects of sunspot structure have been addressed by static MHD models with parametrized energy transport. Models of sunspot fine structure have been relying heavily on strong assumptions about flow and field geometry (e.g., flux-tubes, "gaps", convective rolls, which were motivated in part by the observed filamentary structure of penumbrae or the necessity of explaining the substantial energy transport required to maintain the penumbral brightness. However, none of these models could self-consistently explain all aspects of penumbral structure (energy transport, filamentation, Evershed flow. In recent years, 3D radiative MHD simulations have been advanced dramatically to the point at which models of complete sunspots with sufficient resolution to capture sunspot fine structure are feasible. Here overturning convection is the central element responsible for energy transport, filamentation leading to fine-structure and the driving of strong outflows. On the larger scale these models are also in the progress of addressing the subsurface structure of sunspots as well as sunspot formation. With this shift in modeling capabilities and the recent advances in high resolution observations, the future research will be guided by comparing observation and theory.

  8. Disintegration of Magnetic Flux in Decaying Sunspots as Observed with the Hinode SOT

    CERN Document Server

    Kubo, M; Ichimoto, K; Shimizu, T; Suematsu, Y; Katsukawa, Y; Tarbell, T D; Shine, R A; Title, A M; Nagata, S; Tsuneta, S

    2008-01-01

    Continuous observations of sunspot penumbrae with the Solar Optical Telescope aboard \\textit{Hinode} clearly show that the outer boundary of the penumbra fluctuates around its averaged position. The penumbral outer boundary moves inward when granules appear in the outer penumbra. We discover that such granules appear one after another while moving magnetic features (MMFs) are separating from the penumbral ``spines'' (penumbral features that have stronger and more vertical fields than those of their surroundings). These granules that appear in the outer penumbra often merge with bright features inside the penumbra that move with the spines as they elongate toward the moat region. This suggests that convective motions around the penumbral outer boundary are related to the disintegration of magnetic flux in the sunspot. We also find that dark penumbral filaments frequently elongate into the moat region in the vicinity of MMFs that detach from penumbral spines. Such elongating dark penumbral filaments correspond ...

  9. Regional characteristics, opportunity perception and entrepreneurial activities

    DEFF Research Database (Denmark)

    Stuetzer, Michael; Obschonka, Martin; Brixy, Udo

    2014-01-01

    This article seeks to better understand the link between regional characteristics and individual entrepreneurship. We combine individual-level Global Entrepreneurship Monitor data for Western Germany with regional-level data, using multilevel analysis to test our hypotheses. We find no direct lin...... creation, the economic context and an entrepreneurial culture have an effect on the individual perception of founding opportunities, which in turn predicted start-up intentions and activity. © 2013 Springer Science+Business Media New York....... between regional knowledge creation, the economic context and an entrepreneurial culture on the one side and individual business start-up intentions and start-up activity on the other side. However, our findings point to the importance of an indirect effect of regional characteristics as knowledge...

  10. Organized Subsurface Flows near Active Regions

    Science.gov (United States)

    Haber, D. A.; Hindman, B. W.; Toomre, J.; Thompson, M. J.

    2004-04-01

    Local helioseismic techniques, such as ring analysis and time-distance helioseismology, have already shown that large-scale flows near the surface converge towards major active regions. Ring analysis has further demonstrated that at greater depths some active regions exhibit strong outflows. A critique leveled at the ring-analysis results is that the Regularized Least Squares (RLS) inversion kernels on which they are based have negative sidelobes near the surface. Such sidelobes could result in a surface inflow being misidentified as a diverging outflow at depth. In this paper we show that the Optimally Located Averages (OLA) inversion technique, which produces kernels without significant sidelobes, generates flows markedly similar to the RLS results. Active regions are universally zones of convergence near the surface, while large complexes evince strong outflows deeper down.

  11. The Magnetic Free Energy in Active Regions

    Science.gov (United States)

    Metcalf, Thomas R.; Mickey, Donald L.; LaBonte, Barry J.

    2001-01-01

    The magnetic field permeating the solar atmosphere governs much of the structure, morphology, brightness, and dynamics observed on the Sun. The magnetic field, especially in active regions, is thought to provide the power for energetic events in the solar corona, such as solar flares and Coronal Mass Ejections (CME) and is believed to energize the hot coronal plasma seen in extreme ultraviolet or X-rays. The question remains what specific aspect of the magnetic flux governs the observed variability. To directly understand the role of the magnetic field in energizing the solar corona, it is necessary to measure the free magnetic energy available in active regions. The grant now expiring has demonstrated a new and valuable technique for observing the magnetic free energy in active regions as a function of time.

  12. Investigation of the Relationship between Solar Flares and Sunspot Groups

    Science.gov (United States)

    Eren, S.; Kilcik, A.

    2017-01-01

    We studied the relationship between X-Ray flare numbers (C, M, and, X class flares) and sunspot counts in four categories (Simple (A + B), Medium (C), Large (D + E + F), and End (H)). All data sets cover the whole Solar Cycle 23 and the ascending and maximum phases of Cycle 24 (1996-2014). Pearson correlation analysis method was used to investigate the degree of relationship between monthly solar flare numbers and sunspot counts observed in different sunspot categories. We found that the C, M, and X class flares have highest correlation with the large group sunspot counts, while the small category does not any meaningful correlation. Obtained correlation coefficients between large groups and C, M, and X class flare numbers are 0.79, 0.74, and 0.4, respectively. Thus, we conclude that the main sources of X-Ray solar flares are the complex/large sunspot groups.

  13. REGIONALIZATION OF MANAGEMENT PROCESS BY INNOVATIVE ACTIVITY

    Directory of Open Access Journals (Sweden)

    E. V. Sibirskaia

    2014-01-01

    Full Text Available Summary. In current market conditions, the economy and Russia's accession to international trade scholars and experts from various fields of knowledge paying special attention to a huge set of regional problems. The growing role of regional research determines the level of establishing effective mechanisms for the implementation of the economic interests of actors as well as economic development and improving the quality of human life is the priority objectives of federal, regional and local authorities. Today, the Russian economic science faces a global goal - to develop ways and means of transformation of the Russian economy and bring it to a path of sustainable, innovative development, providing new quality of life. Achieving this goal must surely be a central task of the Russian economics and politics, as in the near future and the long term In article authors opened the maintenance of determinants of innovative development of the territory, mediated by strengthening of regionalization of management by innovative activity: condition of resource and innovative potential; the developed forms and nature of interaction between public authorities of regional level, local community and business; applied forms of integration of subjects of managing for realization of their innovative potential due to expansion of opportunities of participation in the perspective directions of scientific and technical, economic and social development; system of the incentives developing favorable conditions for introduction and development of innovative technologies, and also increases in the enterprise activity, formed by the external institutional environment; regional economic policy as instrument of increase of efficiency of innovative activity.

  14. Flows in Sunspot Plumes Detected with SOHO

    Science.gov (United States)

    Brynildsen, N.; Maltby, P.; Brekke, P.; Fredvik, T.; Haugan, S. V. H.; Kjeldseth-Moe, O.; Wikstol, O.

    1998-09-01

    In the Letter, ``Flows in Sunspot Plumes Detected with the Solar and Heliospheric Observatory'' by N. Brynildsen, P. Maltby, P. Brekke, T. Fredvik, S. V. H. Haugan, O. Kjeldseth-Moe, and Ø. Wikstøl (ApJ, 502, L85 [1998]), the following correction should be made: In the last line on page L86, which reads ``peak line intensity I>=5 are located (1) above the umbra or, '' an ``Ī'' should be inserted so that the revised line reads ``peak line intensity I>=5Ī are located (1) above the umbra or.''

  15. ON THE FORMATION OF ACTIVE REGIONS

    Energy Technology Data Exchange (ETDEWEB)

    Stein, Robert F. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Nordlund, Ake, E-mail: stein@pa.msu.edu, E-mail: aake@nbi.dk [Niels Bohr Institute, University of Copenhagen, Copenhagen (Denmark)

    2012-07-01

    Magnetoconvection can produce an active region without an initial coherent flux tube. A simulation was performed where a uniform, untwisted, horizontal magnetic field of 1 kG strength was advected into the bottom of a computational domain 48 Mm wide by 20 Mm deep. The up and down convective motions produce a hierarchy of magnetic loops with a wide range of scales, with smaller loops riding 'piggy-back' in a serpentine fashion on larger loops. When a large loop approaches the surface, it produces a small active region with a compact leading spot and more diffuse following spots.

  16. Magnetic fields of opposite polarity in sunspot penumbrae

    Science.gov (United States)

    Franz, M.; Collados, M.; Bethge, C.; Schlichenmaier, R.; Borrero, J. M.; Schmidt, W.; Lagg, A.; Solanki, S. K.; Berkefeld, T.; Kiess, C.; Rezaei, R.; Schmidt, D.; Sigwarth, M.; Soltau, D.; Volkmer, R.; von der Luhe, O.; Waldmann, T.; Orozco, D.; Pastor Yabar, A.; Denker, C.; Balthasar, H.; Staude, J.; Hofmann, A.; Strassmeier, K.; Feller, A.; Nicklas, H.; Kneer, F.; Sobotka, M.

    2016-11-01

    Context. A significant part of the penumbral magnetic field returns below the surface in the very deep photosphere. For lines in the visible, a large portion of this return field can only be detected indirectly by studying its imprints on strongly asymmetric and three-lobed Stokes V profiles. Infrared lines probe a narrow layer in the very deep photosphere, providing the possibility of directly measuring the orientation of magnetic fields close to the solar surface. Aims: We study the topology of the penumbral magnetic field in the lower photosphere, focusing on regions where it returns below the surface. Methods: We analyzed 71 spectropolarimetric datasets from Hinode and from the GREGOR infrared spectrograph. We inferred the quality and polarimetric accuracy of the infrared data after applying several reduction steps. Techniques of spectral inversion and forward synthesis were used to test the detection algorithm. We compared the morphology and the fractional penumbral area covered by reversed-polarity and three-lobed Stokes V profiles for sunspots at disk center. We determined the amount of reversed-polarity and three-lobed Stokes V profiles in visible and infrared data of sunspots at various heliocentric angles. From the results, we computed center-to-limb variation curves, which were interpreted in the context of existing penumbral models. Results: Observations in visible and near-infrared spectral lines yield a significant difference in the penumbral area covered by magnetic fields of opposite polarity. In the infrared, the number of reversed-polarity Stokes V profiles is smaller by a factor of two than in the visible. For three-lobed Stokes V profiles the numbers differ by up to an order of magnitude.

  17. Data Reduction and Related Software for Photographic Observations of Sunspots in the Yunnan Observatories%云南天文台太阳黑子照相观测资料处理和相关软件

    Institute of Scientific and Technical Information of China (English)

    顾啸马; 刘艳霄; 叶惠莲; 林隽

    2015-01-01

    In this paper we present a data-reduction approach and related software for processing data of sunspots obtained from a photographic full-disk solar observation system established by us.When applied to data from our system the approach and software yield fundamental data and parameter values of sunspots, which can serve as the first-hand data to be accumulated and used by solar physicists to study underlying mechanisms of solar activities.The results of our data reduction include those of the relative sunspot numbers. sunspot-group numbers, sunspot locations, sunspot circular areas, sunspot surface areas, sunspot total areas, sunspot classifications, and distances from sunspots ( or sunspot groups) to the solar center.As part of our data reduction we have incorporated a calculation program, which makes it possible to rapidly process daily sunspot data and give values of the mentioned parameters.Our approach may thus completely change the traditional method of manually handling photographic sunspot data, and greatly improve efficiencies of sunspot observation/data processing.It is still necessary for an observer to have certain observational experience and technical skill to use our approach, especially in grouping sunspots and evaluating group numbers.%在建立太阳全日面黑子照相观测系统的基础上对黑子观测资料进行了处理,给出黑子观测的重要数据及相关参数,为太阳物理学家研究太阳活动规律提供和积累最基本的第一手数据。这些数据包括:太阳黑子相对数,南北半球太阳黑子的坐标和黑子群数,太阳黑子的圆面积和球面积等。编写了一个程序,对每天的太阳黑子观测资料进行处理,给出以上物理参数,彻底改变了手工描绘黑子和计算黑子参数的传统方法,同时也提高了黑子资料处理的精度和效率。

  18. Formation of a Double-decker Magnetic Flux Rope in the Sigmoidal Solar Active Region 11520

    CERN Document Server

    Cheng, X; Zhang, J; Sun, X D; Guo, Y; Wang, Y M; Kliem, B; Deng, Y Y

    2014-01-01

    In this paper, we address the formation of a magnetic flux rope (MFR) that erupted on 2012 July 12 and caused a strong geomagnetic storm event on July 15. Through analyzing the long-term evolution of the associated active region observed by the Atmospheric Imaging Assembly and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, it is found that the twisted field of an MFR, indicated by a continuous S-shaped sigmoid, is built up from two groups of sheared arcades near the main polarity inversion line half day before the eruption. The temperature within the twisted field and sheared arcades is higher than that of the ambient volume, suggesting that magnetic reconnection most likely works there. The driver behind the reconnection is attributed to shearing and converging motions at magnetic footpoints with velocities in the range of 0.1--0.6 km s$^{-1}$. The rotation of the preceding sunspot also contributes to the MFR buildup. Extrapolated three-dimensional non-linear force-free field s...

  19. Speed of CMEs and the Magnetic Non-Potentiality of their Source Active Regions

    Science.gov (United States)

    Tiwari, Sanjiv Kumar; Falconer, David Allen; Moore, Ronald L.; Venkatakrishnan, P.; Winebarger, Amy R.; Khazanov, Igor G.

    2014-01-01

    Most fast coronal mass ejections (CMEs) originate from solar active regions (ARs). Non-potentiality of ARs plausibly determines the speed of CMEs in the outer corona. Several other unexplored parameters might be important as well. To find out the relation between the intial speed of CMEs and the non-potentiality of source ARs, we identified over a hundred of CMEs with source ARs via their co-produced flares. The speed of the CMEs are collected from the SOHO LASCO CME catalog. We have used vector magnetograms obtained with HMI/SDO, to evaluate various magnetic non-potentiality parameters, e.g. magnetic free-energy proxies, twist, shear angle, signed shear angle, net current etc. We have also included several other parameters e.g. total unsigned flux, magnetic area of ARs, area of sunspots, to investigate their correlation, if any, with the initial speeds of CMEs. Our preliminary results show that the ARs with larger non-potentiality and area produce faster CMEs but they can also produce slow ones. The ARs with lesser non-potentiality and area generally produce only slower CMEs.

  20. MAGNETIC HELICITY TRANSPORTED BY FLUX EMERGENCE AND SHUFFLING MOTIONS IN SOLAR ACTIVE REGION NOAA 10930

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y. [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Chaoyang District, Beijing 100012 (China); Kitai, R.; Takizawa, K., E-mail: zhangyin@kwasan.kyoto-u.ac.jp, E-mail: zhangyin@bao.ac.cn [Kwasan and Hida Observatories, Kyoto University, Yamashina-ku, Kyoto 607-8471 (Japan)

    2012-06-01

    We present a new methodology which can determine magnetic helicity transport by the passage of helical magnetic field lines from the sub-photosphere and the shuffling motions of footpoints of preexisting coronal field lines separately. It is well known that only the velocity component, which is perpendicular to the magnetic field ({upsilon}{sub B}), has contributed to the helicity accumulation. Here, we demonstrate that {upsilon}{sub B} can be deduced from a horizontal motion and vector magnetograms under a simple relation of {upsilon}{sub t} = {mu}{sub t} + ({upsilon}{sub n}/B{sub n} ) B{sub t}, as suggested by Demoulin and Berger. Then after dividing {upsilon}{sub B} into two components, as one is tangential and the other is normal to the solar surface, we can determine both terms of helicity transport. Active region (AR) NOAA 10930 is analyzed as an example during its solar disk center passage by using data obtained by the Spectropolarimeter and the Narrowband Filter Imager of Solar Optical Telescope on board Hinode. We find that in our calculation the helicity injection by flux emergence and shuffling motions have the same sign. During the period we studied, the main contribution of helicity accumulation comes from the flux emergence effect, while the dynamic transient evolution comes from the shuffling motions effect. Our observational results further indicate that for this AR the apparent rotational motion in the following sunspot is the real shuffling motions on the solar surface.

  1. Oscillatory Response of the Solar Chromosphere to a Strong Downflow above a Sunspot

    CERN Document Server

    Kwak, Hannah; Song, Donguk; Kim, Yeon-Han; Lim, Eun-Kyung; Madjarska, Maria S

    2016-01-01

    We report three-minute oscillations in the solar chromosphere driven by a strong downflow event in a sunspot. We used the Fast Imaging Solar Spectrograph of the 1.6 m New Solar Telescope and the Interface Region Imaging Spectrograph (IRIS). The strong downflow event is identified in the chromospheric and transition region lines above the sunspot umbra. After the event, oscillations occur at the same region. The amplitude of the Doppler velocity oscillations is 2 km/s, and gradually decreases with time. In addition, the period of the oscillations gradually increases from 2.7 minutes to 3.3 minutes. In the IRIS 1330 slit-jaw images, we identify a transient brightening near the footpoint of the downflow detected in the Ha+0.5A image. The characteristics of the downflowing material are consistent with those of sunspot plumes. Based on our findings, we suggest that the gravitationally stratified atmosphere came to oscillate with three minute period in response to the impulsive downflow event as was theoretically i...

  2. INTERFERENCE OF THE RUNNING WAVES AT LIGHT BRIDGES OF A SUNSPOT

    Energy Technology Data Exchange (ETDEWEB)

    Su, J. T.; Priya, T. G.; Yu, S. J.; Zhang, M. [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Ji, K. F. [Kunming University of Science and Technology, Kunming 650093 (China); Banerjee, D. [Indian Institute of Astrophysics, Koramangala Bangalore 560034 (India); Cao, W. D. [Big Bear Solar Observatory, 40386 North Shore Lane, Big Bear City, CA 92314 (United States); Zhao, J. S.; Ji, H. S., E-mail: jt@bao.ac.cn [Purple Mountain Observatory, CAS, Nanjing 210008 (China)

    2016-01-01

    The observations of chromospheric oscillations of two umbral light bridges (LBs) within a sunspot from NOAA Active Region 12127 are presented. It was found that the running umbral waves with periods of 2.2–2.6 minutes underwent very fast damping before approaching umbral boundaries, while those with higher periods (>2.6 minutes) could propagate outside umbrae. On two sides of each LB adjacent to umbrae, the cross-wavelet spectra displayed that the oscillations on them had a common significant power region with dominant frequencies of 2–6 minutes and phase differences of ∼90°. A counterstream of two running umbral waves in the 2–6 minute frequency range propagated toward the LBs, where they encountered each other and gave rise to constructive or even destructive interference on the LBs. In addition, the velocity and density perturbations on the LBs were found in opposite phases suggesting that the perturbations were caused by the downward propagating waves.

  3. On the maximum rate of change in sunspot number growth and the size of the sunspot cycle

    Science.gov (United States)

    Wilson, Robert M.

    1990-01-01

    Statistically significant correlations exist between the size (maximum amplitude) of the sunspot cycle and, especially, the maximum value of the rate of rise during the ascending portion of the sunspot cycle, where the rate of rise is computed either as the difference in the month-to-month smoothed sunspot number values or as the 'average rate of growth' in smoothed sunspot number from sunspot minimum. Based on the observed values of these quantities (equal to 10.6 and 4.63, respectively) as of early 1989, it is inferred that cycle 22's maximum amplitude will be about 175 + or - 30 or 185 + or - 10, respectively, where the error bars represent approximately twice the average error found during cycles 10-21 from the two fits.

  4. Tracing p-mode Waves from the Photosphere to the Corona in Active Regions

    Science.gov (United States)

    Zhao, Junwei; Felipe, Tobías; Chen, Ruizhu; Khomenko, Elena

    2016-10-01

    Atmosphere above sunspots is abundant with different types of waves. Among these waves are running penumbral waves in the chromosphere, quasi-periodic oscillations in the lower coronal loops, and recently reported running waves in sunspots’ photosphere, all of which were interpreted as magnetoacoustic waves by some authors. Are these waves in different atmospheric layers related to each other, what is the nature of these waves, and where are the ultimate sources of these waves? Applying a time–distance helioseismic analysis over a suite of multi-wavelength observations above a sunspot, we demonstrate that the helioseismic p-mode waves are able to channel up from the photosphere through the chromosphere and transition region into the corona, and that the magnetoacoustic waves observed in different atmospheric layers are a same wave originating from the photosphere but exhibiting differently under different physical conditions. We also show waves of different frequencies travel along different paths, which can be used to derive the physical properties of the atmosphere above sunspots. Our numerical simulation of traveling of waves from a subphotospheric source qualitatively resembles the observed properties of the waves and offers an interpretation of the shapes of the wavefronts above the photosphere.

  5. Sunspot waves and flare energy release

    CERN Document Server

    Sych, R; Altyntsev, A; Dudík, J; Kashapova, L

    2014-01-01

    We address a possibility of the flare process initiation and further maintenance of its energy release due to a transformation of sunspot longitudinal waves into transverse magnetic loop oscillations with initiation of reconnection. This leads to heating maintaining after the energy release peak and formation of a flat stage on the X-ray profile. We applied the time-distance plots and pixel wavelet filtration (PWF) methods to obtain spatio-temporal distribution of wave power variations in SDO/AIA data. To find magnetic waveguides, we used magnetic field extrapolation of SDO/HMI magnetograms. The propagation velocity of wave fronts was measured from their spatial locations at specific times. In correlation curves of the 17 GHz (NoRH) radio emission we found a monotonous energy amplification of 3-min waves in the sunspot umbra before the 2012 June 7 flare. This dynamics agrees with an increase in the wave-train length in coronal loops (SDO/AIA, 171 {\\AA}) reaching the maximum 30 minutes prior to the flare onset...

  6. Earthquake Activity in the North Greenland Region

    Science.gov (United States)

    Larsen, Tine B.; Dahl-Jensen, Trine; Voss, Peter H.

    2017-04-01

    Many local and regional earthquakes are recorded on a daily basis in northern Greenland. The majority of the earthquakes originate at the Arctic plate boundary between the Eurasian and the North American plates. Particularly active regions away from the plate boundary are found in NE Greenland and in northern Baffin Bay. The seismograph coverage in the region is sparse with the main seismograph stations located at the military outpost, Stations Nord (NOR), the weather station outpost Danmarkshavn (DAG), Thule Airbase (TULEG), and the former ice core drilling camp (NEEM) in the middle of the Greenland ice sheet. Furthermore, data is available from Alert (ALE), Resolute (RES), and other seismographs in northern Canada as well as from a temporary deployment of BroadBand seismographs along the north coast of Greenland from 2004 to 2007. The recorded earthquakes range in magnitude from less than 2 to a 4.8 event, the largest in NE Greenland, and a 5.7 event, the largest recorded in northern Baffin Bay. The larger events are recorded widely in the region allowing for focal mechanisms to be calculated. Only a few existing focal mechanisms for the region can be found in the ISC bulletin. Two in NE Greenland representing primarily normal faulting and one in Baffin Bay resulting from reverse faulting. New calculations of focal mechanisms for the region will be presented as well as improved hypocenters resulting from analysis involving temporary stations and regional stations that are not included in routine processing.

  7. Evolution of a Long-lived Sunspot Group and Its Associated Solar-terrestrial Events

    Institute of Scientific and Technical Information of China (English)

    Gui-Qing Zhang; Li-Rong Tian

    2005-01-01

    A long-lived sunspot group (AR 9604) on the south hemisphere that lasted five solar rotations and produced some strong bursts is analyzed. The focus is on its evolving features. Its whole life was successfully maintained by four Emerging Flux Regions (EFRs). Apart from the one that lasted only a short time and did not produce any bursts, the other three EFRs have the following common features: (1) A positive writhe of magnetic flux tubes and a twist of the field lines of the same sign, indicating kink instability. (2) A clockwise rotation and a high tilt because the writhe was right-handed. (3) A compact "island δ" structure of the sunspot group indicating concentrated kink instability. Since magnetic reconnection easily occurs at the kinked point of a very kink-unstable flux tube, these features should be the inducement of the strong bursts.

  8. Evolution of sunspot properties during solar cycle 23

    CERN Document Server

    Watson, Fraser T; Marshall, Stephen; 10.1051/0004-6361/201116655

    2011-01-01

    The long term study of the Sun is necessary if we are to determine the evolution of sunspot properties and thereby inform modeling of the solar dynamo, particularly on scales of a solar cycle. We aim to determine a number of sunspot properties over cycle 23 using the uniform database provided by the SOHO Michelson Doppler Imager data. We focus in particular on their distribution on the solar disk, maximum magnetic field and umbral/penumbral areas. We investigate whether the secular decrease in sunspot maximum magnetic field reported in Kitt Peak data is present also in MDI data. We have used the Sunspot Tracking And Recognition Algorithm (STARA) to detect all sunspots present in the SOHO Michelson Doppler Imager continuum data giving us 30 084 separate detections. We record information on the sunspot locations, area and magnetic field properties and corresponding information for the umbral areas detected within the sunspots, and track them through their evolution. We find the total visible umbral area is 20-4...

  9. Development of a Code to Analyze the Solar White-Light Images from the Kodaikanal Observatory: Detection of Sunspots, Computation of Heliographic Coordinates and Area

    Indian Academy of Sciences (India)

    Ragadeepika Pucha; K. M. Hiremath; Shashanka R. Gurumath

    2016-03-01

    Sunspots are the most conspicuous aspects of the Sun. They have a lower temperature, as compared to the surrounding photosphere; hence, sunspots appear as dark regions on a brighter background. Sunspots cyclically appear and disappear with a 11-year periodicity and are associated with a strong magnetic field $(\\sim 10^3$ G) structure. Sunspots consist of a dark umbra, surrounded by a lighter penumbra. Study of umbra–penumbra area ratio can be used to give a rough idea as to how the convective energy of the Sun is transported from the interior, as the sunspot’s thermal structure is related to this convective medium. An algorithm to extract sunspots from the white-light solar images obtained from the Kodaikanal Observatory is proposed. This algorithm computes the radius and center of the solar disk uniquely and removes the limb darkening from the image. It also separates the umbra and computes the position as well as the area of the sunspots. The estimated results are compared with the Debrecen photoheliographic results. It is shown that both area and position measurements are in quite good agreement.

  10. Non-parametric Data Analysis of Low-latitude Auroras and Naked-eye Sunspots in the Medieval Epoch

    Science.gov (United States)

    Bekli, Mohamed Reda; Zougab, Nabil; Belabbas, Abdelmoumene; Chadou, Ilhem

    2017-04-01

    We have studied solar activity by analyzing naked-eye sunspot observations and aurorae borealis observed at latitudes below 45°. We focused on the medieval epoch by considering the non-telescopic observations of sunspots from AD 974 to 1278 and aurorae borealis from AD 965 to 1273 that are reported in several Far East historical sources, primarily in China and Korea. After setting selection rules, we analyzed the distribution of these individual events following the months of the Gregorian calendar. In December, an unusual peak is observed with data recorded in both China and Japan, but not within Korean data.

  11. Has global warming modified the relationship between sunspot numbers and global temperatures?

    CERN Document Server

    Kristoufek, Ladislav

    2016-01-01

    We study time evolution of the relationship between sunspot numbers and global temperatures between 1880 and 2016 using wavelet coherence framework. The results suggest that the relationship is stable in time. Changes in the sunspot numbers precede changes in the temperatures by more than two years as suggested by the wavelet phase differences. This leading position of the sun activity is stable in time as well. However, the relationship has been disturbed by increasing $CO_2$ emissions since 1960s. Without controlling for the effect of possible global warming, or more precisely the positive connection between increasing $CO_2$ emissions and the global temperatures, the findings would have been quite different. Combination of the cointegration analysis and wavelet coherence framework has enabled uncovering a hidden relationship between the solar activity and global temperatures, and possibly explaining equivocal results in the topical literature.

  12. Has global warming modified the relationship between sunspot numbers and global temperatures?

    Science.gov (United States)

    Kristoufek, Ladislav

    2017-02-01

    We study time evolution of the relationship between sunspot numbers and global temperatures between 1880 and 2016 using wavelet coherence framework. The results suggest that the relationship is stable in time. Changes in the sunspot numbers precede changes in the temperatures by more than two years as suggested by the wavelet phase differences. This leading position of the sun activity is stable in time as well. However, the relationship has been disturbed by increasing CO2 emissions since 1960s. Without controlling for the effect of possible global warming, or more precisely the positive connection between increasing CO2 emissions and the global temperatures, the findings would have been quite different. Combination of the cointegration analysis and wavelet coherence framework has enabled uncovering a hidden relationship between the solar activity and global temperatures, and possibly explaining equivocal results in the topical literature.

  13. Silicon on insulator with active buried regions

    Science.gov (United States)

    McCarthy, A.M.

    1996-01-30

    A method is disclosed for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors. 10 figs.

  14. Infrared Photometry of Solar Active Regions

    Indian Academy of Sciences (India)

    Μ. Sobotka; Μ. V'azquez; Μ. S'anchez Cuberes; J. A. Bonet; A. Hanslmeier

    2000-09-01

    Simultaneous time series of broad-band images of two active regions close to the disk center were acquired at the maximum (0.80 m) and minimum (1.55 m) continuum opacities. Dark faculae are detected in images obtained as weighted intensity differences between both wave-length bands. The elements of quiet regions can be clearly distinguished from those of faculae and pores in scatter plots of brightness temperatures. There is a smooth transition between faculae and pores in the scatter plots. These facts are interpreted in terms of the balance between the inhibition of convective energy transport and the lateral radiative heating.

  15. Oscillations Above Sunspots and Faculae: Height Stratification and Relation to Coronal Fan Structure

    CERN Document Server

    Kobanov, N I; Chelpanov, A A

    2014-01-01

    Oscillation properties in two sunspots and two facular regions are studied using Solar Dynamics Observatory (SDO) data and ground-based observations in the SiI 10827 and HeI 10830 lines. The aim is to study different-frequency spatial distribution characteristics above sunspots and faculae and their dependence on magnetic-field features and to detect the oscillations that reach the corona from the deep photosphere most effectively. We used Fast-Fourier-Transform and frequency filtration of the intensity and Doppler-velocity variations with Morlet wavelet to trace the wave propagating from the photosphere to the chromosphere and corona. Spatial distribution of low-frequency (1-2 mHz) oscillations outlines well the fan-loop structures in the corona (the Fe IX 171 line) above sunspots and faculae. High-frequency oscillations (5-7 mHz) are concentrated in fragments inside the photospheric umbra boundaries and close to facular-region centers. This implies that the upper parts of most coronal loops, which transfer ...

  16. Acoustic Oscillation Properties of Active Region 12193

    Science.gov (United States)

    Monsue, Teresa; Pesnell, William D.; Hill, Frank

    2017-08-01

    Solar flares are dynamic objects occurring randomly and yet unannounced in nature. In order to find an efficient detection method, we require a greater breadth of knowledge of the system. One path to such a method is to observe the solar atmosphere in a region around a flare in different wavelengths of light and acoustic frequency bands. This provides information from different altitudes in the solar atmosphere and allows us to study the temporal evolution of each altitude through the flaring event. A more complete understanding of the time evolution may lead to yet undiscovered precursors of the flare. In this project, we study Active Region 12192 using acoustic observations near an X3 flare occurring on October 24, 2014 at 21:41UT. Our wavelet analysis utilizes time series data to create Fourier power spectra of individual pixels spatially resolved around the flare region, to study the frequency bands. In order to study the power distribution in regions around the flare and to search for any correlation we apply several methods. One method we partition sub-regions in our main flaring region and take a survey of the oscillations for each frequency band within power maps. Another method we average the FFT to take measurements within the p-modes (2-4 mHz) and chromospheric (4-6 mHz) frequencies. The application of these methods should be able to get us closer to tracking waveforms within power maps.

  17. The relationship between the magnetic field and the coronal activities in the polar region

    Science.gov (United States)

    Shimojo, Masumi

    The image of the polar region of the sun is changing based on the observations taken by the three telescopes aboard the Hinode satellite. Based on the data of Solar Optical Telescope (SOT) aboard Hinode, Tsuneta et al. (2007) reported that there are many localized magnetic poles in the polar region, and the magnetic strength of the magnetic poles is over thousand Gauss. They called the strong magnetic pole in the polar region "kG-pathce". And, Cirtain, et al. (2007) and Savcheva, et al. (2007) presented that the occurrence rate of X-ray jets in the polar region is very high and 10 events/hour. Their result was obtained by the high resolution observations by X-ray Telescope (XRT) aboard Hinode. These results are very important for understanding the fast solar wind that blows from the polar region. On the other hand, in order to understand the activities in the polar region, it is very important to investigate the relationship between the magnetic environments and the coronal structures/activities. In the paper, for the purpose, we aligned the photospheric images (G-band, Stoke-IQUV of FeI), the chromospheric images (Ca II H line, Stokes-V of Na) and coronal images (X-ray) obtained by Hinode, and investigate the relationship. Basically, the co-alignment process was done based on the alignment information of the telescopes reported by Shimizu et al. (2007). And, we aligned the images using the curve of the solar limb, finally. As the result of the co-alignments, we found the following things. 1) On most kG-patches in the polar coronal hole, there is any coronal structure. 2) X-ray jets in the polar coronal hole are not always associated with the kG-patches. Some X-ray jets are associated with very weak magnetic field. And, the jets are strongly associated with the emerging/cancelling magnetic flux. The first one suggests that the coronal heating is not effective only in the magnetic field strong, such as the center of the sunspot. The second result indicates that the

  18. Recurrent solar jets in active regions

    CERN Document Server

    Archontis, V; Gontikakis, C; 10.1051/0004-6361/200913752

    2010-01-01

    We study the emergence of a toroidal flux tube into the solar atmosphere and its interaction with a pre-existing field of an active region. We investigate the emission of jets as a result of repeated reconnection events between colliding magnetic fields. We perform 3D simulations by solving the time-dependent, resistive MHD equations in a highly stratified atmosphere. A small active region field is constructed by the emergence of a toroidal magnetic flux tube. A current structure is build up and reconnection sets in when new emerging flux comes into contact with the ambient field of the active region. The topology of the magnetic field around the current structure is drastically modified during reconnection. The modification results in a formation of new magnetic systems that eventually collide and reconnect. We find that reconnection jets are taking place in successive recurrent phases in directions perpendicular to each other, while in each phase they release magnetic energy and hot plasma into the solar at...

  19. Models and observations of sunspot penumbrae

    Institute of Scientific and Technical Information of China (English)

    BORRERO; Juan; Manuel

    2009-01-01

    The mysteries of sunspot penumbrae have been under an intense scrutiny for the past 10 years. During this time, some models have been proposed and refuted, while the surviving ones had to be modified, adapted and evolved to explain the ever-increasing array of observational constraints. In this contribution I will review two of the present models, emphasizing their contributions to this field, but also pinpointing some of their inadequacies to explain a number of recent observations at very high spatial resolution (0.32 ). To help explaining these new observations I propose some modifications to each of those models. These modifications bring those two seemingly opposite models closer together into a general picture that agrees well with recent 3D magneto-hydrodynamic simulations.

  20. Models and Observations of Sunspot Penumbrae

    CERN Document Server

    Borrero, J M

    2008-01-01

    The mysteries of sunspot penumbrae have been under an intense scrutiny for the past 10 years. During this time, some models have been proposed and refuted, while the surviving ones had to be modified, adapted and evolved to explain the ever-increasing array of observational constraints. In this contribution I will review two of the present models, emphasizing their contributions to this field, but also pinpointing some of their inadequacies to explain a number of recent observations at very high spatial resolution. To help explaining these new observations I propose some modifications to each of them. These modifications bring those two seemingly opposite models closer together into a general picture that agrees well with recent 3D magneto-hydrodynamic simulations.

  1. MULTI-WAVELENGTH STUDY OF A DELTA-SPOT. I. A REGION OF VERY STRONG, HORIZONTAL MAGNETIC FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Jaeggli, S. A., E-mail: sarah.jaeggli@nasa.gov [NASA Goddard Space Flight Center, Solar Physics Laboratory, Code 671, Greenbelt, MD 20771 (United States)

    2016-02-10

    Active region NOAA 11035 appeared in 2009 December, early in the new solar activity cycle. This region achieved a delta sunspot (δ spot) configuration when parasitic flux emerged near the rotationally leading magnetic polarity and traveled through the penumbra of the largest sunspot in the group. Both visible and infrared imaging spectropolarimetry of the magnetically sensitive Fe i line pairs at 6302 and 15650 Å show large Zeeman splitting in the penumbra between the parasitic umbra and the main sunspot umbra. The polarized Stokes spectra in the strongest field region display anomalous profiles, and strong blueshifts are seen in an adjacent region. Analysis of the profiles is carried out using a Milne–Eddington inversion code capable of fitting either a single magnetic component with stray light or two independent magnetic components to verify the field strength. The inversion results show that the anomalous profiles cannot be produced by the combination of two profiles with moderate magnetic fields. The largest field strengths are 3500–3800 G in close proximity to blueshifts as strong as 3.8 km s{sup −1}. The strong, nearly horizontal magnetic field seen near the polarity inversion line in this region is difficult to understand in the context of a standard model of sunspot magnetohydrostatic equilibrium.

  2. Rapid Sunspot Displacement Associated with Solar Eruptions

    Science.gov (United States)

    Liu, Chang; Deng, N.; Wang, H.

    2010-05-01

    Many observational and modeling studies of solar eruptions merely treat photosphere as the lower boundary and assume no significant changes of magnetic fields anchoring there to occur during flares/CMEs. With increasing evidence of photospheric magnetic fields variations resulting from energy release in the upper atmosphere, Hudson, Fisher and Welsch (2008, ASP, 383, 221) proposed that the photosphere and even solar interior would respond in a back-reaction process to the coronal magnetic field restructuring. Inspired by this concept, we analyzed white-light images obtained with TRACE and report here rapid and permanent perturbation in the position of delta spot umbrae associated with five X-class flares. Our main results are the following: (1) The centroids of umbrae with opposite magnetic polarities undergo relative as well as overall displacement on the order of 1E3 km after flares/CMEs. (2) The estimated total kinetic energy associated with these motions (Ek) is on the order of 1E29 ergs and appears to correlate with the 6 mHZ seismic energy (Es) derived by the Monash group. (3) There appears correlation between both the Ek and Es corresponding to the velocity of CMEs. We suggest that: (1) sunspot displacement provides a direct observational evidence of the photospheric back-reaction and could potentially serve as an alternative excitation mechanism of seismic waves; (2) These could provide rational support to the back-reaction mechanism in the sense that its magnitude might be related to how violent the coronal magnetic field is disrupted. For selected events with good multiwavelength coverage, we also analyze in detail spatial as well as temporal relationship among the sunspot displacement, magnetic field changes, seismic sources, hard X-ray emissions, and overall flaring condition. This work is supported by NSF grants ATM 08-19662 and ATM 07-45744, and NASA grants NNX 08AQ90G, NNX 07AH78G, and NNX 08AQ32G.

  3. Properties of sunspot umbrae observed in Cycle 24

    CERN Document Server

    Kiess, Christoph; Schmidt, Wolfgang

    2014-01-01

    We analyzed the size, intensity, and magnetic field strength of sunspot umbrae to compare the present cycle 24 with the previous one. We used data of the Helioseismic and Magnetic Imager onboard the Solar Dynamics Observatory and selected all sunspots between May 2010 and October 2012, using one image per day. We created two subsets of this data with a manual tracking algorithm, both without duplication. One is containing each sunspot (910 umbrae within 488 spots) and was used to analyze the distribution of umbral areas, selected with an automated thresholding method. The other one contains 205 fully evolved sunspots. We find nonlinear relations between umbral minimum intensity and size and between maximum magnetic field strength and size. The field strength scales linear with the intensity and the umbral size scales roughly linear with the total magnetic flux, while the size and field strength level off with stronger flux. When separated in hemisphere and averaged temporally, the southern umbrae show a tempo...

  4. Flare forecasting based on sunspot-groups characteristics

    National Research Council Canada - National Science Library

    Contarino, Lidia; Zuccarello, Francesca; Romano, Paolo; Spadaro, Daniele; Guglielmino, Salvatore L; Battiato, Viviana

    2009-01-01

    ... accurate flare forecasting. In order to give a contribution to this aspect, we focused our attention on the characteristics that must be fulfilled by sunspot-groups in order to be flare-productive...

  5. Velocity fields in and around sunspots at the highest resolution

    CERN Document Server

    Denker, Carsten

    2010-01-01

    The flows in and around sunspots are rich in detail. Starting with the Evershed flow along low-lying flow channels, which are cospatial with the horizontal penumbral magnetic fields, Evershed clouds may continue this motion at the periphery of the sunspot as moving magnetic features in the sunspot moat. Besides these well-ordered flows, peculiar motions are found in complex sunspots, where they contribute to the build-up or relaxation of magnetic shear. In principle, the three-dimensional structure of these velocity fields can be captured. The line-of-sight component of the velocity vector is accessible with spectroscopic measurements, whereas local correlation or feature tracking techniques provide the means to assess horizontal proper motions. The next generation of ground-based solar telescopes will provide spectropolarimetric data resolving solar fine structure with sizes below 50 km. Thus, these new telescopes with advanced post-focus instruments act as a "zoom lens" to study the intricate surface flows ...

  6. Search for Possible Connections of Sunspot Features and Torsional Waves

    CERN Document Server

    Muraközy, J

    2014-01-01

    The torsional oscillation is a well established observational fact and there are theoretical attempts for its description but no final solution has yet been accepted. One of the possible candidates for its cause is the presence of sunspots modifying the streaming conditions. The present work focuses on the temporally varying latitudinal distribution of several sunspot features, such as the spot sizes and spot numbers. These features are different faces of the butterfly diagram. In fact some weak spatial correlations can be recognized.

  7. Inclination of magnetic fields and flows in sunspot penumbrae

    Science.gov (United States)

    Langhans, K.; Scharmer, G. B.; Kiselman, D.; Löfdahl, M. G.; Berger, T. E.

    2005-06-01

    An observational study of the inclination of magnetic fields and flows in sunspot penumbrae at a spatial resolution of 0.2 arcsec is presented. The analysis is based on longitudinal magnetograms and Dopplergrams obtained with the Swedish 1-m Solar Telescope on La Palma using the Lockheed Solar Optical Universal Polarimeter birefringent filter. Data from two sunspots observed at several heliocentric angles between 12 ° and 39 ° were analyzed. We find that the magnetic field at the level of the formation of the Fe i-line wing (630.25 nm) is in the form of coherent structures that extend radially over nearly the entire penumbra giving the impression of vertical sheet-like structures. The inclination of the field varies up to 45 ° over azimuthal distances close to the resolution limit of the magnetograms. Dark penumbral cores, and their extensions into the outer penumbra, are prominent features associated with the more horizontal component of the magnetic field. The inclination of this dark penumbral component - designated B - increases outwards from approximately 40 ° in the inner penumbra such that the field lines are nearly horizontal or even return to the solar surface already in the middle penumbra. The bright component of filaments - designated A - is associated with the more vertical component of the magnetic field and has an inclination with respect to the normal of about 35 ° in the inner penumbra, increasing to about 60 ° towards the outer boundary. The magnetogram signal is lower in the dark component B regions than in the bright component A regions of the penumbral filaments. The measured rapid azimuthal variation of the magnetogram signal is interpreted as being caused by combined fluctuations of inclination and magnetic field strength. The Dopplergrams show that the velocity field associated with penumbral component B is roughly aligned with the magnetic field while component A flows are more horizontal than the magnetic field. The observations give

  8. Automatic Recognition of Sunspots in HSOS Full-Disk Solar Images

    Science.gov (United States)

    Zhao, Cui; Lin, GangHua; Deng, YuanYong; Yang, Xiao

    2016-05-01

    A procedure is introduced to recognise sunspots automatically in solar full-disk photosphere images obtained from Huairou Solar Observing Station, National Astronomical Observatories of China. The images are first pre-processed through Gaussian algorithm. Sunspots are then recognised by the morphological Bot-hat operation and Otsu threshold. Wrong selection of sunspots is eliminated by a criterion of sunspot properties. Besides, in order to calculate the sunspots areas and the solar centre, the solar limb is extracted by a procedure using morphological closing and erosion operations and setting an adaptive threshold. Results of sunspot recognition reveal that the number of the sunspots detected by our procedure has a quite good agreement with the manual method. The sunspot recognition rate is 95% and error rate is 1.2%. The sunspot areas calculated by our method have high correlation (95%) with the area data from the United States Air Force/National Oceanic and Atmospheric Administration (USAF/NOAA).

  9. Automatic Recognition of Sunspots in HSOS Full-Disk Solar Images

    CERN Document Server

    Zhao, Cui; Deng, YuanYong; Yang, Xiao

    2016-01-01

    A procedure is introduced to recognise sunspots automatically in solar full-disk photosphere images obtained from Huairou Solar Observing Station, National Astronomical Observatories of China. The images are first pre-processed through Gaussian algorithm. Sunspots are then recognised by the morphological Bot-hat operation and Otsu threshold. Wrong selection of sunspots is eliminated by a criterion of sunspot properties. Besides, in order to calculate the sunspots areas and the solar centre, the solar limb is extracted by a procedure using morphological closing and erosion operations and setting an adaptive threshold. Results of sunspot recognition reveal that the number of the sunspots detected by our procedure has a quite good agreement with the manual method. The sunspot recognition rate is 95% and error rate is 1.2%. The sunspot areas calculated by our method have high correlation (95%) with the area data from USAF/NOAA.

  10. Long-term variations in sunspot magnetic field - area relation

    CERN Document Server

    Nagovitsyn, Yury A; Osipova, Aleksandra A

    2016-01-01

    Using observations of sunspot magnetic field strengths (H) from the Crimean Astrophysical Observatory (CrAO) and area (S) of sunspots from the Kislovodsk Mountain Astronomical Station of Pulkovo Observatory, we investigate the changes in the relation between H and S over the period of about two solar cycles (1994-2013). The data were fitted by H = A + B log S, where A = (778+/-46) and B = (778+/-25). We show that the correlation between H and S varies with the phase of solar cycle, and $A$ coefficient decreases significantly after year 2001, while B coefficient does not change significantly. Furthermore, our data confirm the presence of two distinct populations in distribution of sunspots (small sunspots with weaker field strength and large sunspots with stronger field). We show that relative contribution of each component to the distribution of sunspots by their area changes with the phase of solar cycle and on longer-then-cycle periods. We interpret these changes as a signature of a long-term (centennial) v...

  11. Long Term Sunspot Cycle Phase Coherence with Periodic Phase Disruptions

    CERN Document Server

    Pease, Gerald E

    2016-01-01

    In 1965 Paul D. Jose published his discovery that both the motion of the Sun about the center of mass of the solar system and periods comprised of eight Hale magnetic sunspot cycles with a mean period of ~22.375 years have a matching periodicity of ~179 years. We have investigated the implied link between solar barycentric torque cycles and sunspot cycles and have found that the unsigned solar torque values from 1610 to 2058 are consistently phase and magnitude coherent in ~179 year Jose Cycles. We are able to show that there is also a surprisingly high degree of sunspot cycle phase coherence for times of minima in addition to magnitude correlation of peaks between the nine Schwabe sunspot cycles of 1878 through 1976 (SC12 through SC20) and those of 1699 through 1797 (SC[-5] through SC4). We further identify subsequent subcycles of predominantly non-coherent sunspot cycle phase. In addition we have analyzed the empirical solar motion triggers of both sunspot cycle phase coherence and phase coherence disruptio...

  12. The association between sunspot magnetic fields and superpenumbral fibrils

    CERN Document Server

    Louis, Rohan E; Kuckein, Christoph; Gomory, Peter; Puschmann, Klaus G; Denker, Carsten

    2013-01-01

    Spectropolarimetric observations of a sunspot were carried out with the Tenerife Infrared Polarimeter at Observatorio del Teide, Tenerife, Spain. Maps of the physical parameters were obtained from an inversion of the Stokes profiles observed in the infrared Fe i line at 15648 angstrom. The regular sunspot consisted of a light bridge which separated the two umbral cores of the same polarity. One of the arms of the light bridge formed an extension of a penumbral filament which comprised weak and highly inclined magnetic fields. In addition, the Stokes V profiles in this filament had an opposite sign as the sunspot and some resembled Stokes Q or U. This penumbral filament terminated abruptly into another at the edge of the sunspot, where the latter was relatively vertical by about 30 degrees. Chromospheric H-alpha and He 304 angstrom filtergrams revealed three superpenumbral fibrils on the limb-side of the sunspot, in which one fibril extended into the sunspot and was oriented along the highly inclined penumbral...

  13. Angular dependence of the facular-sunspot coverage relation as derived by MDI magnetograms

    CERN Document Server

    Criscuoli, Serena

    2016-01-01

    Previous studies have shown that the variation over the solar magnetic activity cycle of the area of facular/network features identified on broad band and narrow band imagery is positively correlated with the sunspot area and number, the relation between the area coverages being described as either linear or quadratic. On the other hand, the temporal variation of the spatial distributions of faculae, network and sunspots follows patterns that are less obviously correlated, so that we expect the relation that describes variation of the area coverage of different types of magnetic features to vary with the position over the disk. In this work we employ MDI full-disk magnetograms acquired during Cycle 23 and at the beginning of Cycle 24 to investigate the relation between the coverage of magnetic elements characterized by different amounts of magnetic flux and located at different angular distances from disk center with the sunspot number. In agreement with some previous studies we find that daily data are best ...

  14. GCR intensity during the sunspot maximum phase and the inversion of the heliospheric magnetic field

    CERN Document Server

    Krainev, M; Kalinin, M; Svirzhevskaya, A; Svirzhevsky, N

    2015-01-01

    The maximum phase of the solar cycle is characterized by several interesting features in the solar activity, heliospheric characteristics and the galactic cosmic ray (GCR) intensity. Recently the maximum phase of the current solar cycle (SC) 24, in many relations anomalous when compared with solar cycles of the second half of the 20-th century, came to the end. The corresponding phase in the GCR intensity cycle is also in progress. In this paper we study different aspects of the sunspot, heliospheric and GCR behavior around this phase. Our main conclusions are as follows: 1) The maximum phase of the sunspot SC 24 ended in 06.2014, the development of the sunspot cycle being similar to those of SC 14, 15 (the Glaisberg minimum). The maximum phase of SC 24 in the GCR intensity is still in progress. 2) The inversion of the heliospheric magnetic field consists of three stages, characterized by the appearance of the global heliospheric current sheet (HCS), connecting all longitudes. In two transition dipole stages ...

  15. An Assessment of Sunspot Number Data Composites over 1845-2014

    CERN Document Server

    Lockwood, Mike; Barnard, Luke A; Usoskin, Ilya G

    2016-01-01

    New sunspot data composites, some of which are radically different in the character of their long-term variation, are evaluated over the interval 1845-2014. The method commonly used to calibrate historic sunspot data, relative to modern-day data, is "daisy-chaining", whereby calibration is passed from one data subset to the neighbouring one, usually using regressions of the data subsets for the intervals of their overlap. Recent studies have illustrated serious pitfalls in these regressions and the resulting errors can be compounded by their repeated use as the data sequence is extended back in time. Hence the recent composite data series by Usoskin et al. (2016), $R_{UEA}$, is a very important advance because it avoids regressions, daisy-chaining and other common, but invalid, assumptions: this is achieved by comparing the statistics of "active day" fractions to those for a single reference dataset. We study six sunspot data series including $R_{UEA}$ and the new "backbone" data series $R_{BB}$, recently gen...

  16. Angular Dependence of the Facular-Sunspot Coverage Relation as Derived by MDI Magnetograms

    Science.gov (United States)

    Criscuoli, S.

    2016-08-01

    Previous studies have shown that the variation over the solar magnetic activity cycle of the area of facular/network features identified from broad-band and narrow-band imagery is positively correlated with the sunspot area and number, the relation being described as either linear or quadratic. On the other hand, the temporal variation of the spatial distributions of faculae, network and sunspots follows patterns that are less obviously correlated, so that we expect the relation that describes variation of the area coverage of different types of magnetic features to vary with the position over the disk. In this work we employ Michelson Doppler Interferometer (MDI) full-disk magnetograms acquired during solar cycle 23 and at the beginning of cycle 24 to investigate the relation between the coverage of magnetic elements characterized by different amounts of magnetic flux and located at different angular distances from disk center with the sunspot number. In agreement with some previous studies we find that daily data are best described by a quadratic function while data averaged over six months are best described by a linear function. In both cases the coefficients of the fits show large dependence on the position over the disk and the magnetic flux. We also find that toward disk center six-month averaged data show asymmetries between the ascending and the descending phases. The implications for solar irradiance modeling are discussed.

  17. Magnetic Energy Spectra in Active Regions

    CERN Document Server

    Abramenko, Valentyna

    2010-01-01

    Line-of-sight magnetograms for 217 active regions (ARs) of different flare rate observed at the solar disk center from January 1997 until December 2006 are utilized to study the turbulence regime and its relationship to the flare productivity. Data from {\\it SOHO}/MDI instrument recorded in the high resolution mode and data from the BBSO magnetograph were used. The turbulence regime was probed via magnetic energy spectra and magnetic dissipation spectra. We found steeper energy spectra for ARs of higher flare productivity. We also report that both the power index, $\\alpha$, of the energy spectrum, $E(k) \\sim k^{-\\alpha}$, and the total spectral energy $W=\\int E(k)dk$ are comparably correlated with the flare index, $A$, of an active region. The correlations are found to be stronger than that found between the flare index and total unsigned flux. The flare index for an AR can be estimated based on measurements of $\\alpha$ and $W$ as $A=10^b (\\alpha W)^c$, with $b=-7.92 \\pm 0.58$ and $c=1.85 \\pm 0.13$. We found ...

  18. A Solar Flare Disturbing a Light Wall above a Sunspot Light Bridge

    Science.gov (United States)

    Hou, Yijun; Zhang, Jun; Li, Ting; Yang, Shuhong; Li, Leping; Li, Xiaohong

    2016-10-01

    With the high-resolution data from the Interface Region Imaging Spectrograph, we detect a light wall above a sunspot light bridge in the NOAA active region (AR) 12403. In the 1330 Å slit-jaw images, the light wall is brighter than the ambient areas while the wall top and base are much brighter than the wall body, and it keeps oscillating above the light bridge. A C8.0 flare caused by a filament activation occurred in this AR with the peak at 02:52 UT on 2015 August 28, and the flare’s one ribbon overlapped the light bridge, which was the observational base of the light wall. Consequently, the oscillation of the light wall was evidently disturbed. The mean projective oscillation amplitude of the light wall increased from 0.5 to 1.6 Mm before the flare and decreased to 0.6 Mm after the flare. We suggest that the light wall shares a group of magnetic field lines with the flare loops, which undergo a magnetic reconnection process, and they constitute a coupled system. When the magnetic field lines are pushed upward at the pre-flare stage, the light wall turns to the vertical direction, resulting in the increase of the light wall’s projective oscillation amplitude. After the magnetic reconnection takes place, a group of new field lines with smaller scales are formed underneath the reconnection site, and the light wall inclines. Thus, the projective amplitude notably decrease at the post-flare stage.

  19. Multi-wavelength fibril dynamics and oscillations above sunspot - I. morphological signature

    Science.gov (United States)

    Sungging Mumpuni, Emanuel; Herdiwijaya, Dhani; Djamal, Mitra; Djamaluddin, Thomas

    2015-11-01

    In this work we selected one particular fibril from a high resolution observation of the solar chromosphere with the Dutch Open Telescope, and tried to obtain a broad picture of the intricate mechanism that might be operating in the multiple layers of the solar atmosphere visible in high cadence multi-wavelength observations. We analyzed the changing fibril pattern using multi-wavelength tomography, which consists of both the Hα line center and the blue wing, Doppler signal, Ca II H, and the G-band. We have found that the intermittent ejected material through the fibril from Doppler images has clearly shown an oscillation mode, as seen in the Hα blue wing. The oscillations in the umbrae and penumbrae magnetic field lines that are above the sunspot cause a broadening and the area forms a ring shape from 3 to 15 minute oscillations as a function of height. These made a distinct boundary between the umbrae and penumbrae which suggests a comb structure, and indicates that the oscillations could propagate along the inclined magnetic flux tubes from below. The 3 minute oscillations strongly appeared in the broadly inclined penumbrae magnetic field lines and showed a clear light bridge. The well known 5 minute oscillations were dominant in the umbrae-penumbrae region boundary. The long 7 minute oscillations were transparent in the Hα blue wing, as well as the 10 and 15 minute oscillations. They were concentrated in the inner-penumbrae, as seen in the Hα line center. From these findings we propose that the fibril acts as a fabric for interaction between the layers, as well as related activities around the active region under investigation.

  20. Polarimetry and spectroscopy of a simple sunspot. I - On the magnetic field of a sunspot penumbra

    Science.gov (United States)

    Schmidt, W.; Hofmann, A.; Balthasar, H.; Tarbell, T. D.; Frank, Z. A.

    1992-01-01

    We investigate the magnetic field structure of a medium sized sunspot using high resolution magnetograms and spectrograms and derive a relationship between the brightness of penumbral structures and the inclination of the magnetic field. The field inclination to the spot normal is larger in the dark structures than in the bright ones. We show that the field strength does not vary between dark and bright structures. At the inner penumbral boundary the field strength is 2000 Gauss and about 1000 Gauss at the outer penumbral edge. The line-of sight component of the material flow decreases rapidly within one arcsecond at the photospheric boundary of the spot.

  1. Analysis of the vector magnetic fields of complex sunspots

    Science.gov (United States)

    Patty, S. R.

    1981-01-01

    An analysis of the vector magnetic field in the delta-configurations of two complex sunspot groups is presented, noting several characteristics identified in the delta-configurations. The observations of regions 2469 (S12E80) and 2470 (S21E83) took place in May, 1980 with a vector magnetograph, verified by optical viewing. Longitudinal magnetic field plots located the delta-configurations in relation to the transverse field neutral line. It is shown that data on the polarization yields qualitative information on the magnetic field strengths, while the azimuth of the transverse field can be obtained from the relative intensities of linear polarization measurements aligned with respect to the magnetograph analyses axis at 0 and 90 deg, and at the plus and minus 45 deg positions. Details of the longitudinal fields are discussed. A strong, sheared transverse field component is found to be a signature of strong delta. A weak delta is accompanied by a weak longitudinal gradient with an unsheared transverse component of variable strength.

  2. Enhancement of a sunspot light wall with external disturbances

    CERN Document Server

    Yang, Shuhong; Erdélyi, Robert

    2016-01-01

    Based on the \\emph{Interface Region Imaging Spectrograph} observations, we study the response of a solar sunspot light wall to external disturbances. A flare occurrence near the light wall caused material to erupt from the lower solar atmosphere into the corona. Some material falls back to the solar surface, and hits the light bridge (i.e., the base of the light wall), then sudden brightenings appear at the wall base followed by the rise of wall top, leading to an increase of the wall height. Once the brightness of the wall base fades, the height of the light wall begins to decrease. Five hours later, another nearby flare takes place, a bright channel is formed that extends from the flare towards the light bridge. Although no obvious material flow along the bright channel is found, some ejected material is conjectured to reach the light bridge. Subsequently, the wall base brightens and the wall height begins to increase again. Once more, when the brightness of the wall base decays, the wall top fluctuates to ...

  3. Assessment of different sunspot number series using the cosmogenic isotope 44Ti in meteorites

    Science.gov (United States)

    Asvestari, Eleanna; Usoskin, Ilya G.; Kovaltsov, Gennady A.; Owens, Mathew J.; Krivova, Natalie A.; Rubinetti, Sara; Taricco, Carla

    2017-01-01

    Many sunspot number series exist suggesting different levels of solar activity during the past centuries. Their reliability can be assessed only by comparing them with alternative indirect proxies. We test different sunspot number series against the updated record of cosmogenic radionuclide 44Ti measured in meteorites. Two bounding scenarios of solar activity changes have been considered: the HH-scenario (based on the series by Svalgaard and Schatten, 2016) in particular predicting moderate activity during the Maunder minimum; and the LL-scenario (based on the RG series by Lockwood et al., 2014b) predicting moderate activity for the 18-19th centuries and the very low activity level for the Maunder minimum. For each scenario, the magnetic open solar flux, the heliospheric modulation potential and the expected production of 44Ti were computed. The calculated production rates were compared with the corresponding measurements of 44Ti activity in stony meteorites fallen since 1766. The analysis reveals that the LL-scenario is fully consistent with the measured 44Ti data, in particular recovering the observed secular trend between the 17th century and the Modern grand maximum. On the contrary, the HH-scenario appears significantly inconsistent with the data, mostly due the moderate level of activity during the Maunder minimum. It is concluded that the HH-scenario sunspot number reconstruction significantly overestimates solar activity prior to the mid-18th century, especially during the Maunder minimum. The exact level of solar activity after 1750 cannot be distinguished with this method, since both H- and L- scenarios appear statistically consistent with the data.

  4. ANOMALOUS RELATIVE AR/CA CORONAL ABUNDANCES OBSERVED BY THE HINODE/EUV IMAGING SPECTROMETER NEAR SUNSPOTS

    Energy Technology Data Exchange (ETDEWEB)

    Doschek, G. A.; Warren, H. P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Feldman, U. [Artep, Inc., 2922 Excelsior Springs Court, Ellicott City, MD 21042 (United States)

    2015-07-20

    In determining the element abundance of argon (a high first ionization potential; FIP element) relative to calcium (a low FIP element) in flares, unexpectedly high intensities of two Ar xiv lines (194.40, 187.96 Å) relative to a Ca xiv line (193.87 Å) intensity were found in small (a few arcseconds) regions near sunspots in flare spectra recorded by the Extreme-ultraviolet Imaging Spectrometer on the Hinode spacecraft. In the most extreme case the Ar xiv line intensity relative to the Ca xiv intensity was 7 times the value expected from the photospheric abundance ratio, which is about 30 times the abundance of argon relative to calcium in active regions, i.e., the measured Ar/Ca abundance ratio is about 10 instead of 0.37 as in active regions. The Ar xiv and Ca xiv lines are formed near 3.4 MK and have very similar contribution functions. This is the first observation of the inverse FIP effect in the Sun. Other regions show increases of 2–3 over photospheric abundances, or just photospheric abundances. This phenomenon appears to occur rarely and only over small areas of flares away from the regions containing multi-million degree plasma, but more work is needed to quantify the occurrences and their locations. In the bright hot regions of flares the Ar/Ca abundance ratio is coronal, i.e., the same as in active regions. In this Letter we show three examples of the inverse FIP effect.

  5. Sunspot Sizes and the Solar Cycle: Analysis Using Kodaikanal White-light Digitized Data

    Science.gov (United States)

    Mandal, Sudip; Banerjee, Dipankar

    2016-10-01

    Sizes of the sunspots vary widely during the progression of a solar cycle. Long-term variation studies of different sunspot sizes are key to better understand the underlying process of sunspot formation and their connection to the solar dynamo. The Kodaikanal white-light digitized archive provides daily sunspot observations for a period of 90 years (1921-2011). Using different size criteria on the detected individual sunspots, we have generated yearly averaged sunspot area time series for the full Sun as well as for the individual hemispheres. In this Letter, we have used the sunspot area values instead of sunspot numbers used in earlier studies. Analysis of these different time series show that different properties of the sunspot cycles depend on the sunspot sizes. The “odd-even rule” double peaks during the cycle maxima and the long-term periodicities in the area data are found to be present for specific sunspot sizes and are absent or not so prominent in other size ranges. Apart from that, we also find a range of periodicities in the asymmetry index that have a dependency on the sunspot sizes. These statistical differences in the different size ranges may indicate that a complex dynamo action is responsible for the generation and dynamics of sunspots with different sizes.

  6. Origins of the Wolf Sunspot Number Series: Geomagnetic Underpinning

    Science.gov (United States)

    Cliver, E. W.; Svalgaard, L.

    2007-12-01

    The Wolf or International sunspot number (SSN) series is based on the work of Swiss astronomer Rudolf Wolf (1816-1893). Following the discovery of the sunspot cycle by Schwabe in 1843, Wolf culled sunspot counts from journals and observatory reports and combined them with his own observations to produce a SSN series that extended from 1700-1893. Thereafter the SSN record has been maintained by the Zurich Observatory and, since 1981, by the Royal Observatory of Belgium. The 1700-1893 SSN record constructed by Wolf has not been modified since his death. Here we show that Wolf's SSNs were not based solely on reports of sunspots but were calibrated by reference to geomagnetic range observations which closely track the sunspot number. Nor were these corrections small; for example Wolf multiplied the long series (1749-1796) of sunspot counts obtained by Staudacher by factors of 2.0 and 1.25, in turn, to obtain the numbers in use today. It is not surprising then that a competing SSN series obtained by Hoyt and Schatten based on group sunspot numbers is different, generally lower than that of Wolf. Comparison of the International number with current magnetic range observations indicates that, as Wolf found, the magnetic range (specifically, the average annual Y-component of mid-latitude stations) can be used as an independent check on the validity and stability of the SSN series. Moreover, the geomagnetic range series, which in itself is a long-term proxy of solar EUV emission, can be used to resolve discrepancies between the Wolf and Group SSN series during the 19th century.

  7. Oscillations in a sunspot with light bridges

    CERN Document Server

    Yuan, Ding; Huang, Zhenghua; Li, Bo; Su, Jiangtao; Yan, Yihua; Tan, Baolin

    2014-01-01

    Solar Optical Telescope onboard Hinode observed a sunspot (AR 11836) with two light bridges (LBs) on 31 Aug 2013. We analysed a 2-hour \\ion{Ca}{2} H emission intensity data set and detected strong 5-min oscillation power on both LBs and in the inner penumbra. The time-distance plot reveals that 5-min oscillation phase does not vary significantly along the thin bridge, indicating that the oscillations are likely to originate from the underneath. The slit taken along the central axis of the wide light bridge exhibits a standing wave feature. However, at the centre of the wide bridge, the 5-min oscillation power is found to be stronger than at its sides. Moreover, the time-distance plot across the wide bridge exhibits a herringbone pattern that indicates a counter-stream of two running waves originated at the bridge sides. Thus, the 5-min oscillations on the wide bridge also resemble the properties of running penumbral waves. The 5-min oscillations are suppressed in the umbra, while the 3-min oscillations occupy...

  8. Evolution of Magnetic Field and Energy in A Major Eruptive Active Region Based on SDO/HMI Observation

    CERN Document Server

    Sun, Xudong; Liu, Yang; Wiegelmann, Thomas; Hayashi, Keiji; Chen, Qingrong; Thalmann, Julia

    2012-01-01

    We report the evolution of magnetic field and its energy in NOAA active region 11158 over 5 days based on a vector magnetogram series from the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamic Observatory (SDO). Fast flux emergence and strong shearing motion led to a quadrupolar sunspot complex that produced several major eruptions, including the first X-class flare of Solar Cycle 24. Extrapolated non-linear force-free coronal fields show substantial electric current and free energy increase during early flux emergence near a low-lying sigmoidal filament with sheared kilogauss field in the filament channel. The computed magnetic free energy reaches a maximum of ~2.6e32 erg, about 50% of which is stored below 6 Mm. It decreases by ~0.3e32 erg within 1 hour of the X-class flare, which is likely an underestimation of the actual energy loss. During the flare, the photospheric field changed rapidly: horizontal field was enhanced by 28% in the core region, becoming more inclined and more parallel to...

  9. Oscillations in G-band and Ca II H wing in the active region NOAA AR10789. (Slovak Title: Oscilácie v G páse a Ca II H krídle v aktívnej oblasti NOAA AR10789)

    Science.gov (United States)

    Karlovský, V.

    2010-12-01

    Variations of the area of a sunspot in G-band and in Ca II H line wing were analyzed based on observations obtained on 13 July, 2005 by DOT Telescope (La Palma, Canary Islands, Spain) in the active region NOAA 10789. Change of the area at the threshold value of 0.4 was analyzed using wavelet transform in order to determine the significance of the derived periods. Because of the different time dependence of the period distributions in these two spectral regions coherence between the two time series of observations was investigated.

  10. Helioseismic holography of simulated sunspots: magnetic and thermal contributions to travel times

    CERN Document Server

    Felipe, T; Crouch, A D; Birch, A C

    2016-01-01

    Wave propagation through sunspots involves conversion between waves of acoustic and magnetic character. In addition, the thermal structure of sunspots is very different than that of the quiet Sun. As a consequence, the interpretation of local helioseismic measurements of sunspots has long been a challenge. With the aim of understanding these measurements, we carry out numerical simulations of wave propagation through sunspots. Helioseismic holography measurements made from the resulting simulated wavefields show qualitative agreement with observations of real sunspots. We use additional numerical experiments to determine, separately, the influence of the thermal structure of the sunspot and the direct effect of the sunspot magnetic field. We use the ray approximation to show that the travel-time shifts in the thermal (non-magnetic) sunspot model are primarily produced by changes in the wave path due to the Wilson depression rather than variations in the wave speed. This shows that inversions for the subsurfac...

  11. Phase analysis of sunspot group numbers on both solar hemispheres

    Institute of Scientific and Technical Information of China (English)

    Lin-Hua Deng; Zhong-Quan Qu; Xiao-Li Yan; Kai-Rang Wang

    2013-01-01

    Cross-correlation analysis and wavelet transform methods are proposed to investigate the phase relationship between the monthly sunspot group numbers in the solar northern and southern hemispheres.It is found that (1) the monthly sunspot group numbers in the northern hemisphere begin two months earlier than those in the southern one,which should lead to phase asynchrony between them but with a slight effect; (2) the Schwabe cycle length for the monthly sunspot group numbers in the two hemispheres obviously differs from each other,and the mean Schwabe cycle length of the monthly sunspot group numbers in the northern hemisphere is slightly larger than that in the southern one; (3) the monthly sunspot group numbers in the northern hemisphere precede those in the southern hemisphere during the years of about 1874-1927,after which,the southern hemisphere leads the northern hemisphere in the years 1928-1964,and then the northern hemisphere leads in time till the present.

  12. The revised Brussels-Locarno Sunspot Number (1981-2015)

    CERN Document Server

    Clette, Frédéric; Cagnotti, Marco; Cortesi, Sergio; Bulling, Andreas

    2015-01-01

    In 1981, the production of the international Sunspot Number moved from the Z\\"{u}rich Observatory to the Royal Observatory of Belgium, marking a very important transition in the history of the Sunspot Number. Those recent decades are particularly important for linking recent modern solar indices and fluxes and the past Sunspot Number series. However, large variations have been recently identified in the scale of the Sunspot Number between 1981 and the present. Here, we reconstruct a new average Sunspot Number series $S_N$ using long-duration stations between 1981 and 2015. We also extend this reconstruction using long-time series from 35 stations over 1945-2015, which includes the 1981 transition. In both reconstructions, we also derive a parallel Group Number series $G_N$. Our results confirm the variable trends of the Locarno pilot station. We also verify the scale of the resulting 1981-2015 correction factor relative to the preceding period 1945--1980. By comparing the new $S_N$ and $G_N$ series, we find t...

  13. Skin Cancer, Irradiation, and Sunspots: The Solar Cycle Effect

    Directory of Open Access Journals (Sweden)

    Edward Valachovic

    2014-01-01

    Full Text Available Skin cancer is diagnosed in more than 2 million individuals annually in the United States. It is strongly associated with ultraviolet exposure, with melanoma risk doubling after five or more sunburns. Solar activity, characterized by features such as irradiance and sunspots, undergoes an 11-year solar cycle. This fingerprint frequency accounts for relatively small variation on Earth when compared to other uncorrelated time scales such as daily and seasonal cycles. Kolmogorov-Zurbenko filters, applied to the solar cycle and skin cancer data, separate the components of different time scales to detect weaker long term signals and investigate the relationships between long term trends. Analyses of crosscorrelations reveal epidemiologically consistent latencies between variables which can then be used for regression analysis to calculate a coefficient of influence. This method reveals that strong numerical associations, with correlations >0.5, exist between these small but distinct long term trends in the solar cycle and skin cancer. This improves modeling skin cancer trends on long time scales despite the stronger variation in other time scales and the destructive presence of noise.

  14. Development and morphology of leading-following parts of sunspot groups

    CERN Document Server

    Muraközy, J; Ludmány, A

    2014-01-01

    The detailed sunspot catalogues, the DPD and SDD allow to study the leading and following parts of sunspot groups separately. We examine the equilibrium distance of the two parts, the speed of removal, the asymmetry of compactness and the area growth. The distributions of positive and negative tilts of sunspot groups are also examined.

  15. The Life Cycle of Active Region Magnetic Fields

    Science.gov (United States)

    Cheung, M. C. M.; van Driel-Gesztelyi, L.; Martínez Pillet, V.; Thompson, M. J.

    2016-08-01

    We present a contemporary view of how solar active region magnetic fields are understood to be generated, transported and dispersed. Empirical trends of active region properties that guide model development are discussed. Physical principles considered important for active region evolution are introduced and advances in modeling are reviewed.

  16. The irregularities of the sunspot cycle and their theoretical modelling

    CERN Document Server

    Choudhuri, Arnab Rai

    2013-01-01

    The 11-year sunspot cycle has many irregularities, the most promi- nent amongst them being the grand minima when sunspots may not be seen for several cycles. After summarizing the relevant observational data about the irregularities, we introduce the flux transport dynamo model, the currently most successful theoretical model for explaining the 11-year sunspot cycle. Then we analyze the respective roles of nonlinearities and random fluctuations in creating the irregularities. We also discuss how it has recently been realized that the fluctuations in meridional circula- tion also can be a source of irregularities. We end by pointing out that fluctuations in the poloidal field generation and fluctuations in meridional circulation together can explain the occurrences of grand minima.

  17. Signatures of running penumbral waves in sunspot photospheres

    CERN Document Server

    Löhner-Böttcher, Johannes

    2015-01-01

    The highly dynamic atmosphere above sunspots exhibits a wealth of magnetohydrodynamic (MHD) waves. Recent studies suggest a coupled nature of the most prominent phenomena: umbral flashes (UFs) and running penumbral waves (RPWs). From an observational point of view, we perform a height-dependent study of RPWs, compare their wave characteristics and aim to track down these so far only chromospherically observed phenomena to photospheric layers to prove the upward propagating field-guided nature of RPWs. We analyze a time series (58\\,min) of multi-wavelength observations of an isolated circular sunspot (NOAA11823) taken at high spatial and temporal resolution in spectroscopic mode with the Interferometric BIdimensional Spectro-polarimeter (IBIS/DST). By means of a multi-layer intensity sampling, velocity comparisons, wavelet power analysis and sectorial studies of time-slices, we retrieve the power distribution, characteristic periodicities and propagation characteristics of sunspot waves at photospheric and chr...

  18. Cycle dependence of the longitudinal-latitudinal sunspot motion correlations

    CERN Document Server

    Muraközy, J; 10.1051/0004-6361:20078456

    2010-01-01

    aims: It is well known that the azimuthal and meridional shifts of sunspots are correlated and that the correlation exhibits a latitudinal distribution, which is expected due to the Coriolis effect. We study the temporal behaviour of this latitudinal distribution. methods: We analyze the daily positions of sunspot groups, provided by the Debrecen Photoheliographic Data and the Greenwich Photoheliographic Results and correlation values, which were mapped in 5 deg latitudinal bins. The latitudinal distributions were examined for each year. results: We derive a sunspot-motion correlation that exhibits a Coriolis-type latitudinal distribution on long timescales, which are typical for the yearly distributions; at cycle maximum, however, unexpected distortions can occur. conclusions: The causes of the weakening of the Coriolis-pattern remain unclear. Possible relations of the phenomenon to the Gnevyshev-gap, the polarity reversal of the main magnetic field, and some mid-period fluctuations are discussed.

  19. Sunspots are in many ways similar to terrestrial vortices

    CERN Document Server

    Vatistas, Georgios H

    2011-01-01

    In this letter we identify similarities amongst sunspots and terrestrial vortices. The dark appearance of the central part of any sunspot is currently justified by an anticipated cooling effect experienced by the ionized gas. However, it cannot single-handedly reconcile the halo that surrounds the penumbra, the subsequent second dim ring that could be possibly followed by a second halo. In antithesis, light refraction due to density variations in a compressible whirl can give reason for all of these manifestations. Certain data of Wilson's depression fit better the geometric depth profile of a two-celled vortex. The last provides a hurricane equivalent manifestation for the normal and reverse Evershed effect. There is compelling evidence that alike to atmospheric vortices sunspots do also spawn meso-cyclones.

  20. Complex Network for Solar Active Regions

    Science.gov (United States)

    Daei, Farhad; Safari, Hossein; Dadashi, Neda

    2017-08-01

    In this paper we developed a complex network of solar active regions (ARs) to study various local and global properties of the network. The values of the Hurst exponent (0.8-0.9) were evaluated by both the detrended fluctuation analysis and the rescaled range analysis applied on the time series of the AR numbers. The findings suggest that ARs can be considered as a system of self-organized criticality (SOC). We constructed a growing network based on locations, occurrence times, and the lifetimes of 4227 ARs recorded from 1999 January 1 to 2017 April 14. The behavior of the clustering coefficient shows that the AR network is not a random network. The logarithmic behavior of the length scale has the characteristics of a so-called small-world network. It is found that the probability distribution of the node degrees for undirected networks follows the power law with exponents of about 3.7-4.2. This indicates the scale-free nature of the AR network. The scale-free and small-world properties of the AR network confirm that the system of ARs forms a system of SOC. Our results show that the occurrence probability of flares (classified by GOES class C> 5, M, and X flares) in the position of the AR network hubs takes values greater than that obtained for other nodes.

  1. The Revised Brussels-Locarno Sunspot Number (1981 - 2015)

    Science.gov (United States)

    Clette, Frédéric; Lefèvre, Laure; Cagnotti, Marco; Cortesi, Sergio; Bulling, Andreas

    2016-04-01

    In 1981, the production of the international sunspot number moved from the Zürich Observatory to the Royal Observatory of Belgium, with a new pilot station: the Specola Solare Ticinese Observatory in Locarno, Switzerland. This marked a profound transition in the history of the sunspot number. Those recent decades are particularly important as they provide the link between recent modern solar indices and the entire sunspot-number series extending back to the eighteenth century. However, large variations have recently been identified in the scale of the sunspot number during this recent time period. Here, we refine the determination of those recent inhomogeneities by reconstructing a new average sunspot-number series [ SN] from a subset of long-duration stations between 1981 and 2015. We also extend this reconstruction by gathering long time series from 35 stations over 1945 - 2015, thus straddling the critical 1981 transition. In both reconstructions, we also derive a parallel group number series [ GN] built by the same method from exactly the same data set. Our results confirm the variable trends associated with drifts of the Locarno pilot station, which start only in 1983. They lead to a fully uniform SN-series over the entire 1945 - 2015 interval. By comparing the new SN- and GN-series, we find that a constant quadratic relation exists between those two indices over Cycles 19 to 23. Comparisons with a few other solar indices additionally validate this and reveal some possible undetected problems in those series. Using this new reference SN, we find that observing stations are surprisingly grouped among distinct subsets that share similar personal k-scaling coefficients. These various results also open the way to implementing a more advanced method for producing the sunspot number in the future.

  2. The Revised Brussels-Locarno Sunspot Number (1981 - 2015)

    Science.gov (United States)

    Clette, Frédéric; Lefèvre, Laure; Cagnotti, Marco; Cortesi, Sergio; Bulling, Andreas

    2016-11-01

    In 1981, the production of the international sunspot number moved from the Zürich Observatory to the Royal Observatory of Belgium, with a new pilot station: the Specola Solare Ticinese Observatory in Locarno, Switzerland. This marked a profound transition in the history of the sunspot number. Those recent decades are particularly important as they provide the link between recent modern solar indices and the entire sunspot-number series extending back to the eighteenth century. However, large variations have recently been identified in the scale of the sunspot number during this recent time period. Here, we refine the determination of those recent inhomogeneities by reconstructing a new average sunspot-number series [SN] from a subset of long-duration stations between 1981 and 2015. We also extend this reconstruction by gathering long time series from 35 stations over 1945 - 2015, thus straddling the critical 1981 transition. In both reconstructions, we also derive a parallel group number series [GN] built by the same method from exactly the same data set. Our results confirm the variable trends associated with drifts of the Locarno pilot station, which start only in 1983. They lead to a fully uniform SN-series over the entire 1945 - 2015 interval. By comparing the new SN- and GN-series, we find that a constant quadratic relation exists between those two indices over Cycles 19 to 23. Comparisons with a few other solar indices additionally validate this and reveal some possible undetected problems in those series. Using this new reference SN, we find that observing stations are surprisingly grouped among distinct subsets that share similar personal k-scaling coefficients. These various results also open the way to implementing a more advanced method for producing the sunspot number in the future.

  3. Occurrence of Sporadic -E layer during the Low Solar Activity over the Anomaly Crest Region Bhopal, India

    Science.gov (United States)

    Bhawre, Purushottam

    2016-07-01

    Ionospheric anomaly crest regions are most challenging for scientific community to understand its mechanism and investigation, for this purpose we are investigating some inospheric result for this region. The study is based on the ionogram data recorded by IPS-71 Digital Ionosonde installed over anomaly crust region Bhopal (Geo.Lat.23.2° N, Geo. Long77.4° E, Dip latitude18.4°) over a four year period from January 2007 to December 2010, covering the ending phase of 23rd Solar Cycle and starting phase of 24th solar cycle. This particular period is felt to be very suitable for examining the sunspot number and it encompasses periods of low solar activities. Quarterly ionograms are analyzed for 24 hours during these study years and have been carefully examined to note down the presence of sporadic- E. We also note down the space weather activities along with the study. The studies are divided in mainly four parts with space and geomagnetic activities during these periods. The occurrence probability of this layer is highest in summer solstice, moderate during equinox and low during winter solstice. Remarkable occurrence peaks appear from June to July in summer and from December to January in winter. The layer occurrence showed a double peak variation with distinct layer groups, in the morning (0200 LT) and the other during evening (1800 LT).The morning layer descent was associated with layer density increase indicating the strengthening of the layer while it decreased during the evening layer descent. The result indicates the presence of semi-diurnal tide over the location while the higher descent velocities could be due to the modulation of the ionization by gravity waves along with the tides. The irregularities associated with the gradient-drift instability disappear during the counter electrojet and the current flow is reversed in westward.

  4. Normalization of sunspot cycles and eigen mode analysis

    Institute of Scientific and Technical Information of China (English)

    徐文耀

    2002-01-01

    The smoothed monthly sunspot numbers of the previous 22 complete sunspot cycles are normalized in time domain, and then an eigen mode analysis is carried out to draw the principle factors (or components) in the cycles. The results show that the main characteristics of the solar cycles can be described fairly well by the first 5 eigen modes. The obtained eigen modes are used to predict the declining phase of cycle 23 on the basis of the data prior to its maximum. The prediction indicates that cycle 23 will last for 127 months to December 2006, with the minimum of 6.2.

  5. Is solar neutrino capture rate correlated with sunspot number?

    Science.gov (United States)

    Bahcall, J. N.; Field, G. B.; Press, W. H.

    1987-01-01

    The statistical significance of the apparent correlation between sunspots and the observed neutrino rate is quantified. It is shown that the correlation depends almost entirely upon four low neutrino capture rates near the beginning of 1980. A calculation based on standard electroweak theory and neutrino production processes demonstrates that a correlation, if real, would be extremely puzzling on energetic grounds alone. It is concluded that measurements with the Cl-37 detector during the next sunspot cycle will be needed to show that there is a physical correlation, since the existing data are not statistically significant at a definitive level.

  6. Deep probing of the photospheric sunspot penumbra: no evidence of field-free gaps

    Science.gov (United States)

    Borrero, J. M.; Asensio Ramos, A.; Collados, M.; Schlichenmaier, R.; Balthasar, H.; Franz, M.; Rezaei, R.; Kiess, C.; Orozco Suárez, D.; Pastor, A.; Berkefeld, T.; von der Lühe, O.; Schmidt, D.; Schmidt, W.; Sigwarth, M.; Soltau, D.; Volkmer, R.; Waldmann, T.; Denker, C.; Hofmann, A.; Staude, J.; Strassmeier, K. G.; Feller, A.; Lagg, A.; Solanki, S. K.; Sobotka, M.; Nicklas, H.

    2016-11-01

    Context. Some models for the topology of the magnetic field in sunspot penumbrae predict regions free of magnetic fields or with only dynamically weak fields in the deep photosphere. Aims: We aim to confirm or refute the existence of weak-field regions in the deepest photospheric layers of the penumbra. Methods: We investigated the magnetic field at log τ5 = 0 is by inverting spectropolarimetric data of two different sunspots located very close to disk center with a spatial resolution of approximately 0.4-0.45''. The data have been recorded using the GRIS instrument attached to the 1.5-m solar telescope GREGOR at the El Teide observatory. The data include three Fe i lines around 1565 nm, whose sensitivity to the magnetic field peaks half a pressure scale height deeper than the sensitivity of the widely used Fe i spectral line pair at 630 nm. Before the inversion, the data were corrected for the effects of scattered light using a deconvolution method with several point spread functions. Results: At log τ5 = 0 we find no evidence of regions with dynamically weak (Bdata, and does not depend on the amount of stray light (i.e., wide-angle scattered light) considered.

  7. Reconstruction of Subdecadal Changes in Sunspot Numbers Based on the NGRIP 10Be Record

    DEFF Research Database (Denmark)

    Inceoglu, Fadil; Knudsen, Mads Faurschou; Karoff, Christoffer

    2014-01-01

    , to reconstruct both long-term and subdecadal changes in sunspot numbers (SSNs). We compare three different approaches for reconstructing subdecadal-scale changes in SSNs, including a linear approach and two approaches based on the hysteresis effect, i.e. models with ellipse-linear and ellipse relationships......Sunspot observations since 1610 A.D. show that the solar magnetic activity displays long-term changes, from Maunder Minimum-like low-activity states to Modern Maximum-like high-activity episodes, as well as short-term variations, such as the pronounced 11-year periodicity. Information on changes...... the actual solar cycles and the GCR intensity, which is known as the hysteresis effect. In this study, we use the North Greenland Ice Core Project (NGRIP) records of the 10Be flux to reconstruct the solar modulation strength (Φ), which describes the modulation of GCRs throughout the heliosphere...

  8. Development of active regions: flows, magnetic-field patterns and bordering effect

    CERN Document Server

    Getling, A V; Buchnev, A A

    2015-01-01

    A qualitative analysis is given to the data on the full magnetic and velocity vector fields in a growing sunspot group, recorded nearly simultaneously with the Solar Optical Telescope on the Hinode satellite. Observations of a young bipolar subregion developing within AR 11313 were carried out on 9-10 October 2011. Our aim was to form am idea about the consistency of the observed pattern with the well-known rising-tube model of the formation of bipolar acrive regions and sunspot groups. We find from our magnetograms that the distributions of the vertical [B_v] and the horizontal [B_h] component of the magnetic field over the area of the magnetic subregion are spatially well correlated; in contrast, the rise of a flux-tube loop would result in a qualitatively different pattern, with the maxima of the two magnetic-field components spatially separated: the vertical field would be the strongest where either spot emerges, while the maximum horizontal-field strengths would be reached in between them. A specific fea...

  9. Long-period oscillations of active region patterns: least-squares mapping on second-order curves

    CERN Document Server

    Dumbadze, G; Kukhianidze, V; Ramishvili, G; Zaqarashvili, T V; Khodachenko, M; Gurgenashvili, E; Poedts, S; De Causmaecker, P

    2016-01-01

    Active regions (ARs) are the main sources of variety in solar dynamic events. Automated detection and identification tools need to be developed for solar features for a deeper understanding of the solar cycle. Of particular interest here are the dynamical properties of the ARs, regardless of their internal structure and sunspot distribution. We studied the oscillatory dynamics of two ARs: NOAA 11327 and NOAA 11726 using two different methods of pattern recognition. We developed a novel method of automated AR border detection and compared it to an existing method for the proof-of-concept. The first method uses least-squares fitting on the smallest ellipse enclosing the AR, while the second method applies regression on the convex hull.} After processing the data, we found that the axes and the inclination angle of the ellipse and the convex hull oscillate in time. These oscillations are interpreted as the second harmonic of the standing long-period kink oscillations (with the node at the apex) of the magnetic f...

  10. Regional characteristics, opportunity perception and entrepreneurial activities

    DEFF Research Database (Denmark)

    Stuetzer, Michael; Obschonka, Martin; Brixy, Udo

    2014-01-01

    This article seeks to better understand the link between regional characteristics and individual entrepreneurship. We combine individual-level Global Entrepreneurship Monitor data for Western Germany with regional-level data, using multilevel analysis to test our hypotheses. We find no direct link...

  11. The Limit of Free Magnetic Energy in Active Regions

    Science.gov (United States)

    Moore, Ron; Falconer, David; Sterling, Alphonse

    2012-01-01

    By measuring from active-region magnetograms a proxy of the free energy in the active region fs magnetic field, it has been found previously that (1) there is an abrupt upper limit to the free energy the field can hold that increases with the amount of magnetic field in the active region, the active region fs magnetic flux content, and (2) the free energy is usually near its limit when the field explodes in a CME/flare eruption. That is, explosive active regions are concentrated in a main-sequence path bordering the free-energy ]limit line in (flux content, free-energy proxy) phase space. Here, from measurement of Marshall Space Flight Center vector magnetograms, we find the magnetic condition that underlies the free ]energy limit and the accompanying main sequence of explosive active regions. Using a suitable free ]energy proxy measured from vector magnetograms of 44 active regions, we find that (1) in active regions at and near their free ]energy limit, the ratio of magnetic-shear free energy to the non ]free magnetic energy the potential field would have is approximately 1 in the core field, the field rooted along the neutral line, and (2) this ratio is progressively less in active regions progressively farther below their free ]energy limit. This shows that most active regions in which this core-field energy ratio is much less than 1 cannot be triggered to explode; as this ratio approaches 1, most active regions become capable of exploding; and when this ratio is 1 or greater, most active regions are compelled to explode. From these results we surmise the magnetic condition that determines the free ]energy limit is the ratio of the free magnetic energy to the non-free energy the active region fs field would have were it completely relaxed to its potential ]field configuration, and that this ratio is approximately 1 at the free-energy limit and in the main sequence of explosive active regions.

  12. Transition of the Sunspot Number from Zurich to Brussels in 1980: A Personal Perspective

    Science.gov (United States)

    Stenflo, J. O.

    2016-11-01

    The Swiss Federal Observatory, which had been founded in 1863 by Rudolf Wolf, was dissolved in connection with the retirement of Max Waldmeier in 1979. The determination of the Zurich sunpot number, which had been a cornerstone activity of the observatory, was then discontinued by ETH Zurich. A smooth transition of the responsibility for the sunspot number from Zurich to Brussels was achieved in 1980, however, through which it was possible to avoid a discontinuity in this important time series. Here we describe the circumstances that led to the termination in Zurich, how Brussels was chosen for the succession, and how the transfer was accomplished.

  13. A climatological study of the relations among solar activity, galactic cosmic ray and precipitation on various regions over the globe

    Indian Academy of Sciences (India)

    Sourabh Bal; M Bose

    2010-04-01

    We apply Fourier and wavelet analyses to the precipitation and sunspot numbers in the time series (1901–2000) over Australia (27°S, 133°E), Canada (60°N, 95°W), Ethiopia (8°N, 38°E), Greenland (72°N, 40°W), United Kingdom (54°N, 2°W), India (20°N, 77°E), Iceland (65°N, 18°W), Japan (36°N, 138°E), United States (38°N, 97°W), South Africa (29°S, 24°E) and Russia (60°N, 100°E). Correlation analyses were also performed to find any relation among precipitation, sunspot numbers, temperature, and cloud-cover at the same spatial and temporal scale. Further correlations were also performed between precipitation with electron and proton fluence at the time interval, 1987–2006. All these parameters were considered in annual and seasonal scales. Though correlation study between precipitation and other parameters do not hint any linear relation, still the Fourier and wavelet analyses give an idea of common periodicities. The 9–11 year periodicity of sunspot numbers calculated by Fourier transform is also confirmed by wavelet transform in annual scale. Similarly, wavelet analysis for precipitation also supports the short periods at 2–5 years which is verified by Fourier transform in discontinuous time over different geographic regions.

  14. Solar activity forcing of terrestrial hydrological phenomena

    Science.gov (United States)

    Mauas, Pablo J. D.; Buccino, Andrea P.; Flamenco, Eduardo

    2017-10-01

    Recently, the study of the influence of solar activity on the Earth's climate received strong attention, mainly due to the possibility, proposed by several authors, that global warming is not anthropogenic, but is due to an increase in solar activity. Although this possibility has been ruled out, there are strong evidences that solar variability has an influence on Earth's climate, in regional scales. Here we review some of these evidences, focusing in a particular aspect of climate: atmospheric moisture and related quantities like precipitation. In particular, we studied the influence of activity on South American precipitations during centuries. First, we analyzed the stream flow of the Paraná and other rivers of the region, and found a very strong correlation with Sunspot Number in decadal time scales. We found a similar correlation between Sunspot Number and tree-ring chronologies, which allows us to extend our study to cover the last two centuries.

  15. Statistical analysis of acoustic wave parameters near active regions

    CERN Document Server

    Soares, M Cristina Rabello; Scherrer, Philip H

    2016-01-01

    In order to quantify the influence of magnetic fields on acoustic mode parameters and flows in and around active regions, we analyse the differences in the parameters in magnetically quiet regions nearby an active region (which we call `nearby regions'), compared with those of quiet regions at the same disc locations for which there are no neighboring active regions. We also compare the mode parameters in active regions with those in comparably located quiet regions. Our analysis is based on ring diagram analysis of all active regions observed by HMI during almost five years. We find that the frequency at which the mode amplitude changes from attenuation to amplification in the quiet nearby regions is around 4.2 mHz, in contrast to the active regions, for which it is about 5.1 mHz. This amplitude enhancement (the `acoustic halo effect') is as large as that observed in the active regions, and has a very weak dependence on the wave propagation direction. The mode energy difference in nearby regions also changes...

  16. Helioseismic Holography of Simulated Sunspots: Magnetic and Thermal Contributions to Travel Times

    Science.gov (United States)

    Felipe, T.; Braun, D. C.; Crouch, A. D.; Birch, A. C.

    2016-10-01

    Wave propagation through sunspots involves conversion between waves of acoustic and magnetic character. In addition, the thermal structure of sunspots is very different than that of the quiet Sun. As a consequence, the interpretation of local helioseismic measurements of sunspots has long been a challenge. With the aim of understanding these measurements, we carry out numerical simulations of wave propagation through sunspots. Helioseismic holography measurements made from the resulting simulated wavefields show qualitative agreement with observations of real sunspots. We use additional numerical experiments to determine, separately, the influence of the thermal structure of the sunspot and the direct effect of the sunspot magnetic field. We use the ray approximation to show that the travel-time shifts in the thermal (non-magnetic) sunspot model are primarily produced by changes in the wave path due to the Wilson depression rather than variations in the wave speed. This shows that inversions for the subsurface structure of sunspots must account for local changes in the density. In some ranges of horizontal phase speed and frequency there is agreement (within the noise level in the simulations) between the travel times measured in the full magnetic sunspot model and the thermal model. If this conclusion proves to be robust for a wide range of models, it would suggest a path toward inversions for sunspot structure.

  17. Sunspot Sizes and The Solar Cycle: Analysis Using Kodaikanal White-light Digitized Data

    CERN Document Server

    Mandal, Sudip

    2016-01-01

    Sizes of the sunspots vary in a wide range during the progression of a solar cycle. Long-term variation study of different sunspot sizes are key to better understand the underlying process of sunspot formation and their connection to the solar dynamo. Kodaikanal white-light digitized archive provides daily sunspot observations for a period of 90 years (1921-2011). Using different size criteria on the detected individual sunspots, we have generated yearly averaged sunspot area time series for the full Sun as well as for the individual hemispheres. In this paper, we have used the sunspot area values instead of sunspot numbers used in earlier studies. Analysis of these different time series show that different properties of the sunspot cycles depend on the sunspot sizes. The `odd-even rule', double peaks during the cycle maxima and the long-term periodicities in the area data are found to be present for specific sunspot sizes and are absent or not so prominent in other size ranges. Apart from that, we also find ...

  18. VizieR Online Data Catalog: Sunspot areas and tilt angles (Senthamizh Pavai+, 2015)

    Science.gov (United States)

    Senthamizh Pavai, V.; Arlt, R.; Dasi-Espuig, M.; Krivova, N.; Solanki, S.

    2015-11-01

    We present sunspot positions and areas from historical observations of sunspots by Samuel Heinrich Schwabe from Dessau, Germany. He has recorded his observations of sunspots from 1825-1867 as drawings in small circles of about 5cm diameter (representing the solar disk). Even though he has used quite a number of telescopes for his observations, the majority of the full-disk drawings were made with a 3-1/2-foot telescope from Fraunhofer. His observing log books are stored in the library of the Royal Astronomical Society in London. Those drawings were digitized photographically with a resolution of 2912x4378 pixels per page. The sizes and positions of the sunspots were measured using a dozen of circular mouse cursor shapes with different diameters. The sunspot sizes in Schwabe's drawings are not to scale and need to be converted into physical sunspot areas. We employed a statistical approach assuming that the area distribution of sunspots was the same in the 19th century as it was in the 20th century. Umbral areas for about 130,000 sunspots observed by Schwabe were obtained, as well as the tilt angles of sunspot groups assuming them to be bipolar (two or more spots). There is, of course, no polarity information in the observations. Both an updated sunspot database and a tilt angle database are available at http://www.aip.de/Members/rarlt/ sunspots for further study. (2 data files).

  19. Numerical Simulation of Excitation and Propagation of Helioseismic MHD Waves in Magnetostatic Models of Sunspots

    CERN Document Server

    Parchevsky, K; Khomenko, E; Olshevsky, V; Collados, M

    2010-01-01

    We present comparison of numerical simulations of propagation of MHD waves,excited by subphotospheric perturbations, in two different ("deep" and "shallow") magnetostatic models of the sunspots. The "deep" sunspot model distorts both the shape of the wavefront and its amplitude stronger than the "shallow" model. For both sunspot models, the surface gravity waves (f-mode) are affected by the sunspots stronger than the acoustic p-modes. The wave amplitude inside the sunspot depends on the photospheric strength of the magnetic field and the distance of the source from the sunspot axis. For the source located at 9 Mm from the center of the sunspot, the wave amplitude increases when the wavefront passes through the central part of the sunspot. For the source distance of 12 Mm, the wave amplitude inside the sunspot is always smaller than outside. For the same source distance from the sunspot center but for the models with different strength of the magnetic field, the wave amplitude inside the sunspot increases with...

  20. Statistical Analysis of Acoustic Wave Parameters Near Solar Active Regions

    Science.gov (United States)

    Rabello-Soares, M. Cristina; Bogart, Richard S.; Scherrer, Philip H.

    2016-08-01

    In order to quantify the influence of magnetic fields on acoustic mode parameters and flows in and around active regions, we analyze the differences in the parameters in magnetically quiet regions nearby an active region (which we call “nearby regions”), compared with those of quiet regions at the same disk locations for which there are no neighboring active regions. We also compare the mode parameters in active regions with those in comparably located quiet regions. Our analysis is based on ring-diagram analysis of all active regions observed by the Helioseismic and Magnetic Imager (HMI) during almost five years. We find that the frequency at which the mode amplitude changes from attenuation to amplification in the quiet nearby regions is around 4.2 mHz, in contrast to the active regions, for which it is about 5.1 mHz. This amplitude enhacement (the “acoustic halo effect”) is as large as that observed in the active regions, and has a very weak dependence on the wave propagation direction. The mode energy difference in nearby regions also changes from a deficit to an excess at around 4.2 mHz, but averages to zero over all modes. The frequency difference in nearby regions increases with increasing frequency until a point at which the frequency shifts turn over sharply, as in active regions. However, this turnover occurs around 4.9 mHz, which is significantly below the acoustic cutoff frequency. Inverting the horizontal flow parameters in the direction of the neigboring active regions, we find flows that are consistent with a model of the thermal energy flow being blocked directly below the active region.

  1. A Normalized Sunspot-Area Series Starting in 1832: an Update

    CERN Document Server

    Carrasco, V M S; Gallego, M C; Sánchez-Bajo, F

    2016-01-01

    A new normalized sunspot-area series has been reconstructed from the series obtained by the Royal Greenwich Observatory and other contemporary institutions for the period 1874 - 2008 and the area series compiled by De la Rue, Stewart, and Loewy from 1832 to 1868. Since the two sets of series do not overlap in time, we used as a link between them the new version of sunspot index number (Version 2) published by SILSO (Sunspot Index and Long-term Solar Observations). We also present a spectral analysis of the normalized area series in search of periodicities beyond the well-known solar cycle of 11 years and a study of the Waldmeier effect in the new version of sunspot-number and the sunspot-area series presented in this study. We conclude that while this effect is significant in the new series of sunspot number, it has a weak relationship with the sunspot-area series.

  2. Sunspot Groups as Tracers of Sub-Surface Processes

    Indian Academy of Sciences (India)

    Μ. Η. Gokhale

    2000-09-01

    Data on sunspot groups have been quite useful for obtaining clues to several processes on global and local scales within the sun which lead to emergence of toroidal magnetic flux above the sun's surface. I present here a report on such studies carried out at Indian Institute of Astrophysics during the last decade or so.

  3. Prediction of Sunspot Cycles by Data Assimilation Method

    CERN Document Server

    Kitiashvili, I N

    2008-01-01

    Despite the known general properties of the solar cycles, a reliable the forecast of the 11-year sunspot number variations is still a problem. The difficulties are caused by the apparent chaotic behavior of the sunspot numbers from cycle to cycle and by the influence of variations of turbulent dynamo processes, which are far from understanding. For predicting the solar cycle properties we make an initial attempt to use the Ensemble Kalman Filter (EnKF), a data assimilation method, which takes into account uncertainties of a dynamo model and measurements, and allows to estimate future observational data. We present the results of forecasting the solar cycles obtained by the EnKF method in application to a low-mode nonlinear dynamical system, modeling the solar alpha-Omega dynamo process with variable magnetic helicity. Calculations of the predictions for previous sunspot cycles show good agreement (with error 10%) with actual data. This forecast model predicts that the next sunspot cycle will be significant by...

  4. Subsurface magnetic field and flow structure of simulated sunspots

    CERN Document Server

    Rempel, Matthias

    2011-01-01

    We present a series of numerical sunspot models addressing the subsurface field and flow structure in up to 16 Mm deep domains covering up to 2 days of temporal evolution. Changes in the photospheric appearance of the sunspots are driven by subsurface flows in several Mm depth. Most of magnetic field is pushed into a downflow vertex of the subsurface convection pattern, while some fraction of the flux separates from the main trunk of the spot. Flux separation in deeper layers is accompanied in the photosphere with light bridge formation in the early stages and formation of pores separating from the spot at later stages. Over a time scale of less than a day we see the development of a large scale flow pattern surrounding the sunspots, which is dominated by a radial outflow reaching about 50% of the convective rms velocity in amplitude. Several components of the large scale flow are found to be independent from the presence of a penumbra and the associated Evershed flow. While the simulated sunspots lead to blo...

  5. Tests of Sunspot Number Sequences: 1. Using Ionosonde Data

    CERN Document Server

    Lockwood, M; Owens, M J; Barnard, L; Willis, D M

    2016-01-01

    More than 70 years ago it was recognised that ionospheric F2-layer critical frequencies $foF2$ had a strong relationship to sunspot number. Using historic datasets from the Slough and Washington ionosondes, we evaluate the best statistical fits of $foF2$ to sunspot numbers (at each Universal Time [UT] separately) in order to search for drifts and abrupt changes in the fit residuals over Solar Cycles 17 - 21. Polynomial fits are made both with and without allowance for the white-light facular area, which has been reported as being associated with cycle-to-cycle changes in the sunspot number - $foF2$ relationship. Over the interval studied here, the ISN, $R$, the backbone group number $Rbb$, and the corrected number $Rc$ largely differ in their allowance for the 'Waldmeier discontinuity' around 1945 (the correction factor for which for $R$, $Rbb$ and $Rc$ is, respectively, zero, effectively over 20%, and explicitly 11.6%). It is shown that for Solar Cycles 18 - 21, all three sunspot data sequences perform well,...

  6. Deep probing of the photospheric sunspot penumbra: no evidence for magnetic field-free gaps

    CERN Document Server

    Borrero, J M; Collados, M; Schlichenmaier, R; Balthasar, H; Franz, M; Rezaei, R; Kiess, C; Suarez, D Orozco; Pastor, A; Berkefeld, T; von der Luehe, O; Schmidt, D; Schmidt, W; Sigwarth, M; Soltau, D; Volkmer, R; Waldmann, T; Denker, C; Hofmann, A; Staude, J; Strassmeier, K G; Feller, A; Lagg, A; Solanki, S K; Sobotka, M; Nicklas, H

    2016-01-01

    Some models for the topology of the magnetic field in sunspot penumbrae predict the existence of field-free or dynamically weak-field regions in the deep Photosphere. To confirm or rule out the existence of weak-field regions in the deepest photospheric layers of the penumbra. The magnetic field at $\\log\\tau_5=0$ is investigated by means of inversions of spectropolarimetric data of two different sunspots located very close to disk center with a spatial resolution of approximately 0.4-0.45 arcsec. The data have been recorded using the GRIS instrument attached to the 1.5-meters GREGOR solar telescope at El Teide observatory. It includes three Fe I lines around 1565 nm, whose sensitivity to the magnetic field peaks at half a pressure-scale-height deeper than the sensitivity of the widely used Fe I spectral line pair at 630 nm. Prior to the inversion, the data is corrected for the effects of scattered light using a deconvolution method with several point spread functions. At $\\log\\tau_5=0$ we find no evidence for...

  7. Oscillation Power in Sunspots and Quiet Sun from Hankel Analysis Performed on SDO/HMI and SDO/AIA Data

    CERN Document Server

    Couvidat, Sebastien

    2012-01-01

    The Helioseismic and Magnetic Imager (HMI) and the Atmospheric Imaging Assembly (AIA) instruments onboard the Solar Dynamics Observatory satellite produce Doppler velocity and continuum intensity at 6173 A as well as intensity maps at 1600 A and 1700 A, which can be used for helioseismic studies at different heights in the solar photosphere. We perform a Hankel-Fourier analysis in an annulus centered around sunspots or quiet-Sun regions, to estimate the change in power of waves crossing these regions of interest. We find that there is a dependence of power-reduction coefficients on measurement height in the photosphere: Sunspots reduce the power of outgoing waves with frequencies lower than 4.5 mHz at all heights, but enhance the power of acoustic waves in the range 4.5-5.5 mHz toward chromospheric heights, which is likely the signature of acoustic glories (halos). Maximum power reduction seems to occur near the continuum level and to decrease with altitude. Sunspots also impact the frequencies of outgoing wa...

  8. Observing coronal nanoflares in active region moss

    OpenAIRE

    Testa, Paola; De Pontieu, Bart; Martinez-Sykora, Juan; DeLuca, Ed; Hansteen, Viggo; Cirtain, Jonathan; Winebarger, Amy; Golub, Leon; Kobayashi, Ken; Korreck, Kelly; Kuzin, Sergey; Walsh, Robert; DeForest, Craig; Title, Alan; Weber, Mark

    2013-01-01

    The High-resolution Coronal Imager (Hi-C) has provided Fe XII 193A images of the upper transition region moss at an unprecedented spatial (~0.3-0.4 arcsec) and temporal (5.5s) resolution. The Hi-C observations show in some moss regions variability on timescales down to ~15s, significantly shorter than the minute scale variability typically found in previous observations of moss, therefore challenging the conclusion of moss being heated in a mostly steady manner. These rapid variability moss r...

  9. STOCHASTIC DESCRIPTION OF THE HIGH-FREQUENCY CONTENT OF DAILY SUNSPOTS AND EVIDENCE FOR REGIME CHANGES

    Energy Technology Data Exchange (ETDEWEB)

    Shapoval, A. [Financial University under the Government of the Russian Federation, Leningradsky pr. 49, Moscow (Russian Federation); Le Mouël, J.-L.; Courtillot, V. [Institute de Physique du Globe, Sorbonne Paris Cité, Paris (France); Shnirman, M. [Institute of Earthquake Prediction Theory and Mathematical Geophysics, Profsoyuznaya 84/32, 117997 Moscow (Russian Federation)

    2015-01-20

    The irregularity index λ is applied to the high-frequency content of daily sunspot numbers ISSN. This λ is a modification of the standard maximal Lyapunov exponent. It is computed here as a function of embedding dimension m, within four-year time windows centered at the maxima of Schwabe cycles. The λ(m) curves form separate clusters (pre-1923 and post-1933). This supports a regime transition and narrows its occurrence to cycle 16, preceding the growth of activity leading to the Modern Maximum. The two regimes are reproduced by a simple autoregressive process AR(1), with the mean of Poisson noise undergoing 11 yr modulation. The autocorrelation a of the process (linked to sunspot lifetime) is a ≈ 0.8 for 1850-1923 and ≈0.95 for 1933-2013. The AR(1) model suggests that groups of spots appear with a Poisson rate and disappear at a constant rate. We further applied the irregularity index to the daily sunspot group number series for the northern and southern hemispheres, provided by the Greenwich Royal Observatory (RGO), in order to study a possible desynchronization. Correlations between the north and south λ(m) curves vary quite strongly with time and indeed show desynchronization. This may reflect a slow change in the dimension of an underlying dynamical system. The ISSN and RGO series of group numbers do not imply an identical mechanism, but both uncover a regime change at a similar time. Computation of the irregularity index near the maximum of cycle 24 will help in checking whether yet another regime change is under way.

  10. Observations of Transient Active Region Heating with Hinode

    OpenAIRE

    Warren, Harry P.; Ugarte-Urra, Ignacio; Brooks, David H.; Cirtain, Jonathan W.; Williams, David R.; Harra, Hirohisa

    2007-01-01

    We present observations of transient active region heating events observed with the Extreme Ultraviolet Imaging Spectrometer (EIS) and X-ray Telescope (XRT) on Hinode. This initial investigation focuses on NOAA active region 10940 as observed by Hinode on February 1, 2007 between 12 and 19 UT. In these observations we find numerous examples of transient heating events within the active region. The high spatial resolution and broad temperature coverage of these instruments allows us to track t...

  11. Power spectra analysis for world-wide and North Africa historical earthquakes data in relation to sunspots periodicities

    Energy Technology Data Exchange (ETDEWEB)

    Shaltout, M.A.M.; Mesiha, S.L. [National Research Inst. of Astronomy and Geophysics, Helwan (Egypt); Tadros, M.T.Y. [Mansoura Univ., Physics Dept., Mansoura (Egypt)

    1999-07-01

    In the last three decades, the influence of solar activity on earth seismicity is one of the most important subjects in the field of long-term prediction of earthquakes. In the present work, the autocorrelation and power spectra analysis were applied for the sequences of sunspots and earthquakes activity. The used data are the worldwide earthquakes of M {>=} 5, and the sunspots number R{sub 2}, for the period 1903-1985. Both are available from the National Oceanic and Atmospheric Administration NOAA, Boulder, Colorado, U.S.A. Also, we restrict our attention to earthquakes in North Africa with two stations, one at Cairo (Egypt), and the other at Alger (Algeria) of M {>=} 4 for the period (1900-1986). The results indicated the presence of the eleven year cycles of the sunspots into the time of the earthquakes of the North Africa. Also, for the worldwide and North Africa earthquakes data a periodicities ranged between 1.01 and 5.5 years are revealed, which may be linked to a solar activity cycle. (Author)

  12. Observing coronal nanoflares in active region moss

    CERN Document Server

    Testa, Paola; Martinez-Sykora, Juan; DeLuca, Ed; Hansteen, Viggo; Cirtain, Jonathan; Winebarger, Amy; Golub, Leon; Kobayashi, Ken; Korreck, Kelly; Kuzin, Sergey; Walsh, Robert; DeForest, Craig; Title, Alan; Weber, Mark

    2013-01-01

    The High-resolution Coronal Imager (Hi-C) has provided Fe XII 193A images of the upper transition region moss at an unprecedented spatial (~0.3-0.4 arcsec) and temporal (5.5s) resolution. The Hi-C observations show in some moss regions variability on timescales down to ~15s, significantly shorter than the minute scale variability typically found in previous observations of moss, therefore challenging the conclusion of moss being heated in a mostly steady manner. These rapid variability moss regions are located at the footpoints of bright hot coronal loops observed by SDO/AIA in the 94A channel, and by Hinode/XRT. The configuration of these loops is highly dynamic, and suggestive of slipping reconnection. We interpret these events as signatures of heating events associated with reconnection occurring in the overlying hot coronal loops, i.e., coronal nanoflares. We estimate the order of magnitude of the energy in these events to be of at least a few $10^{23}rg, also supporting the nanoflare scenario. These Hi-C...

  13. OBSERVING CORONAL NANOFLARES IN ACTIVE REGION MOSS

    Energy Technology Data Exchange (ETDEWEB)

    Testa, Paola; DeLuca, Ed; Golub, Leon; Korreck, Kelly; Weber, Mark [Smithsonian Astrophysical Observatory, 60 Garden street, MS 58, Cambridge, MA 02138 (United States); De Pontieu, Bart; Martinez-Sykora, Juan; Title, Alan [Lockheed Martin Solar and Astrophysics Lab, Org. A021S, Bldg. 252, 3251 Hanover Street, Palo Alto, CA 94304 (United States); Hansteen, Viggo [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, N-0315 Oslo (Norway); Cirtain, Jonathan; Winebarger, Amy; Kobayashi, Ken [NASA Marshall Space Flight Center, ZP 13, Huntsville, AL 35812 (United States); Kuzin, Sergey [P. N. Lebedev Physical institute of the Russian Academy of Sciences, Leninskii prospekt, 53, 119991 Moscow (Russian Federation); Walsh, Robert [University of Central Lancashire, Lancashire, Preston PR1 2HE (United Kingdom); DeForest, Craig, E-mail: ptesta@cfa.harvard.edu [Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302 (United States)

    2013-06-10

    The High-resolution Coronal Imager (Hi-C) has provided Fe XII 193A images of the upper transition region moss at an unprecedented spatial ({approx}0.''3-0.''4) and temporal (5.5 s) resolution. The Hi-C observations show in some moss regions variability on timescales down to {approx}15 s, significantly shorter than the minute-scale variability typically found in previous observations of moss, therefore challenging the conclusion of moss being heated in a mostly steady manner. These rapid variability moss regions are located at the footpoints of bright hot coronal loops observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly in the 94 A channel, and by the Hinode/X-Ray Telescope. The configuration of these loops is highly dynamic, and suggestive of slipping reconnection. We interpret these events as signatures of heating events associated with reconnection occurring in the overlying hot coronal loops, i.e., coronal nanoflares. We estimate the order of magnitude of the energy in these events to be of at least a few 10{sup 23} erg, also supporting the nanoflare scenario. These Hi-C observations suggest that future observations at comparable high spatial and temporal resolution, with more extensive temperature coverage, are required to determine the exact characteristics of the heating mechanism(s).

  14. A Fractal Dimension Survey of Active Region Complexity

    Science.gov (United States)

    McAteer, R. T. James; Gallagher, Peter; Ireland, Jack

    2005-01-01

    A new approach to quantifying the magnetic complexity of active regions using a fractal dimension measure is presented. This fully-automated approach uses full disc MDI magnetograms of active regions from a large data set (2742 days of the SoHO mission; 9342 active regions) to compare the calculated fractal dimension to both Mount Wilson classification and flare rate. The main Mount Wilson classes exhibit no distinct fractal dimension distribution, suggesting a self-similar nature of all active regions. Solar flare productivity exhibits an increase in both the frequency and GOES X-ray magnitude of flares from regions with higher fractal dimensions. Specifically a lower threshold fractal dimension of 1.2 and 1.25 exists as a necessary, but not sufficient, requirement for an active region to produce M- and X-class flares respectively .

  15. Homologous flares and the evolution of NOAA Active Region 2372

    Science.gov (United States)

    Strong, K. T.; Smith, J. B., Jr.; Mccabe, M. K.; Machado, M. E.; Saba, J. L. R.; Simnett, G. M.

    1984-01-01

    A detailed record of the evolution of NOAA Active Region 2372 has been compiled by the FBS Homology Study Group. It was one of the most prolific flare-producing regions observed by SMM. The flares occurred in distinct stages which corresponded to particular evolutionary phases in the development of the active region magnetic field. By comparison with a similar but less productive active region, it is found that the activity seems to be related to the magnetic complexity of the region and the amount of shear in the field. Further, the soft X-ray emission in the quiescent active region is related to its flare rate. Within the broader definition of homology adopted, there was a degree of homology between the events within each stage of evolution of AR2372.

  16. Salient Features of the New Sunspot Number Time Series

    Science.gov (United States)

    Ahluwalia, H. S.; Ygbuhay, R. C.

    2016-12-01

    Recently Clette et al. (Space Sci. Rev. 186, 35, 2014) completed the first revision of the international sunspot number SSN(V2) since its creation by Wolf in 1849 SSN(V1) starting in 1700 and ending in May 2015. The yearly values of SSN(V2) are larger than those of SSN(V1) but the secular trend in their timelines both exhibit a gradual descent after Cycle 21 minimum resulting in greatly reduced activity for Cycle 24. It has two peaks; one in 2012 due to activity in the north hemisphere (NH) and the other in 2014 due to excess activity in the south hemisphere (SH). The N-S excess of hemispheric SSNs is examined for 1950 - 2014, in relation to the time variations of the solar polar field for 1976 - 2015, covering five complete solar cycles (19 - 23) and parts of the bordering two (18, 24). We find that SH tends to become progressively more active in the declining phase of the cycles reaching an extreme value that gave rise to a second higher peak in October 2014 in the smoothed SSNs accompanied by a strong solar polar field in SH. There may be a Gleissberg cyclicity in the asymmetric solar dynamo operation. The continuing descent of the secular trend in SSNs implies that we may be near a Dalton-level grand minimum. The low activity spell may last well past 2060, accompanied by a stable but reduced level of the space weather/climate. Fourier spectrum of the time domain of SSNs shows no evidence of the 208 year/cycle (ypc) (DeVries/Suess cycle) seen in the cosmogenic radionuclide ({}^{10}Be) concentration in the polar ice cores and {}^{14}C record in trees indicating that 208 ypc peak may be of non-solar origin. It may arise from the climate process(es) that change(s) the way radionuclides are deposited on polar ice. It should be noted that we only have {˜} 400 years of SSN data, so it is possible that DeVries/Suess cycle is really driven by the Sun but for now we do not have any evidence of that; there is no known physical process linking 208 ypc to solar dynamo

  17. Analytical Model of an Asymmetric Sunspot with a Steady Plasma Flow in its Penumbra

    Science.gov (United States)

    Solov'ev, A. A.; Kirichek, E. A.

    2016-08-01

    A new exact analytical solution to the stationary problem of ideal magnetohydrodynamics is derived for an unipolar asymmetric sunspot immersed in a realistic solar atmosphere. The radial and vertical profiles of pressure, plasma density, and temperature in the visible layers of the sunspot are calculated. The reduction in plasma density in the magnetic funnel of the sunspot, corresponding to the Wilson depression, is also obtained. The magnetic structure of the sunspot is given analytically in a realistic way: a part of the magnetic flux of the sunspot approaches the surrounding photosphere at the outer edge of the penumbra. The magnetic field of the sunspot is not assumed to be axially symmetric. For the first time, the angular dependence of the physical variables in this model allows us to simulate not only a deviation from the circular shape of the sunspot, but also a fine filamentary structure of the sunspot penumbra. The Alfvén Mach number (the ratio of the plasma speed to the Alfvén speed) is zero at the center of the sunspot and rises slowly toward the periphery of the sunspot; this corresponds to the structure of the Evershed flow in the penumbra. The Evershed flow in our model is mainly concentrated in dark penumbral filaments, as is observed.

  18. Space-weather MDI Active Region Patches (SMARPs)

    Science.gov (United States)

    Bobra, Monica

    2017-08-01

    We are developing a new data product from the Michelson Doppler Imager (MDI) onboard the Solar and Heliospheric Observatory (SoHO) called Space-weather MDI Active Region Patches (SMARPs). The SMARP data series provide maps of the photospheric line-of-sight magnetic field in patches that encompass automatically tracked magnetic concentrations, or active regions, for their entire lifetime. These concentrations are automatically detected in the photospheric line-of-sight magnetic field data using a method described in Turmon et al. (2010) and, thus, are necessarily different from NOAA's definition of an active region. As such, these regions are assigned their own identification number, or SMARP number, which is also linked to a NOAA active region number should it exist. In addition, keywords in the SMARP data series include parameters that concisely characterize the magnetic field distribution. These parameters may be useful for active region event forecasting and for identifying regions of interest. These parameters are calculated per patch and are available on a 96 minute cadence.The SMARP data product is designed to provide seamless coverage with its counterpart, the Space-weather HMI Active Region Patches (SHARPs), described in Bobra et al. (2014). Together, the SMARP and SHARP data series provide continuous coverage of tracked active regions for two solar cycles from 1996 to the present day. The SMARP data series, which runs from April 1996 to October 2010, contains 9496 unique active regions tracked throughout their lifetime. The SHARP data series, which runs from May 2010 to the present day, contains (as of May 30, 2017) 3883 unique active regions tracked throughout their lifetime. In addition, the two series contain 118 unique active regions during the overlap period between May and October 2010. SMARP data will be available at jsoc.stanford.edu and the photospheric line-of-sight magnetic field maps will be available in either of two different coordinate

  19. The Frequency-dependent Damping of Slow Magnetoacoustic Waves in a Sunspot Umbral Atmosphere

    Science.gov (United States)

    Krishna Prasad, S.; Jess, D. B.; Van Doorsselaere, T.; Verth, G.; Morton, R. J.; Fedun, V.; Erdélyi, R.; Christian, D. J.

    2017-09-01

    High spatial and temporal resolution images of a sunspot, obtained simultaneously in multiple optical and UV wavelengths, are employed to study the propagation and damping characteristics of slow magnetoacoustic waves up to transition region heights. Power spectra are generated from intensity oscillations in sunspot umbra, across multiple atmospheric heights, for frequencies up to a few hundred mHz. It is observed that the power spectra display a power-law dependence over the entire frequency range, with a significant enhancement around 5.5 mHz found for the chromospheric channels. The phase difference spectra reveal a cutoff frequency near 3 mHz, up to which the oscillations are evanescent, while those with higher frequencies propagate upward. The power-law index appears to increase with atmospheric height. Also, shorter damping lengths are observed for oscillations with higher frequencies suggesting frequency-dependent damping. Using the relative amplitudes of the 5.5 mHz (3 minute) oscillations, we estimate the energy flux at different heights, which seems to decay gradually from the photosphere, in agreement with recent numerical simulations. Furthermore, a comparison of power spectra across the umbral radius highlights an enhancement of high-frequency waves near the umbral center, which does not seem to be related to magnetic field inclination angle effects.

  20. Improved SOT (Hinode mission) high resolution solar imaging observations: 2—Photometric properties of sunspot umbral dots

    Science.gov (United States)

    Goodarzi, H.; Koutchmy, S.; Adjabshirizadeh, A.

    2016-11-01

    The origin and evolution of solar sunspots in deep photospheric layers are not yet well understood. The case of a quasi-symmetric single mature sunspot near the solar centre is selected for analysis. We use the best available observations of the partial Sun free of turbulent Earth atmospheric effects from the Solar Optical Telescope (SOT) onboard the Hinode spacecraft, after greatly improving the resolution with an optimum Max-likelihood deconvolution with the Point Spread Function (PSF) deduced in a preceding paper. For several different images both the smearing due to the instrumental diffraction effects (PSF core) and the large angle stray light are removed. The selected iterative processing depends on both the signal/noise ratio and on the desired contrast of the ultimate details under examination. The photometric properties of bright umbral dots (BUDs) are deduced from corrected frames. Calibrated isophote maps are provided to show the intensity variations around each UD across the background umbra and the surrounding photospheric field, including the penumbra. We deduce the typical photometrical properties of bright UDs that populate the whole umbral surface down to sub-pixel scales of 0.05448''. The analysis demonstrates the basic heterogeneous nature of the umbra, similar to a network of minute bright and dark round or elongated cells with a spacing of order of 0.35''. For the first time a complete and detailed map of the color index and temperature deduced from the analysis of deeply corrected continuum images is provided, showing that tiny bright UDs can reach photospheric temperatures and even higher for the peripheral BUDs. In the umbra, there are some very dark small regions with temperatures as low as 3100 K. Close links seemingly exist with bright UDs. Central BUDs and peripheral BUDs are found to have similar properties but significantly different contrast values. Photometric analysis shows a large dispersion that reflects the broad range of

  1. Coupling of the magnetic field and gas flows in sunspot penumbra inferred from the Hinode/SOT observation

    Science.gov (United States)

    Ichimoto, Kiyoshi; Shaltout, Abdelrazek Mohammed

    2012-07-01

    Sunspot penumbrae has been an enigmatic region that consists of fine scale filamentary structures harboring conspicuous gas flows known as the Evershed flow in the base of photosphere and the inverse-Evershed flow in higher layer. Recent high resolution observations including those by Hinode/SOT revealed that the penumbral magnetic field is highly fluctuating in its strength and inclination in space, and the geometry is called as interlocking comb structure. There is a strong coupling of the magnetic field and gas flow, i.e., many observational aspects suggest the origin of the sunspot penumbra as the vigorous thermal-convection of plasma under the inclined strong magnetic field of sunspots. However the relation between the magnetic field and gas flow is still an open issue to be settled. A number of observational and theoretical works suggest that the convective hot gas with a large flow speed is associated with a weak field. In this paper, we present an evidence of contradictory relation, i.e., a positive correlation between the field strength and flow velocity in photosphere. The geometry of the inverse-Evershed flow in conjunction with the interlocking magnetic field structure of penumbra is another issue that is not understood. We present an insight on the relation between the magnetic field structure and the inverse-Evershed flow based on the SOT/SP observations.

  2. Global Dynamics of Subsurface Solar Active Regions

    CERN Document Server

    Jouve, L; Aulanier, G

    2012-01-01

    We present three-dimensional numerical simulations of a magnetic loop evolving in either a convectively stable or unstable rotating shell. The magnetic loop is introduced in the shell in such a way that it is buoyant only in a certain portion in longitude, thus creating an \\Omega-loop. Due to the action of magnetic buoyancy, the loop rises and develops asymmetries between its leading and following legs, creating emerging bipolar regions whose characteristics are similar to the ones of observed spots at the solar surface. In particular, we self-consistently reproduce the creation of tongues around the spot polarities, which can be strongly affected by convection. We moreover emphasize the presence of ring-shaped magnetic structures around our simulated emerging regions, which we call "magnetic necklace" and which were seen in a number of observations without being reported as of today. We show that those necklaces are markers of vorticity generation at the periphery and below the rising magnetic loop. We also ...

  3. SDO/HMI survey of emerging active regions for helioseismology

    CERN Document Server

    Schunker, H; Birch, A C; Burston, R B; Gizon, L

    2016-01-01

    Observations from the Solar Dynamics Observatory (SDO) have the potential for allowing the helioseismic study of the formation of hundreds of active regions, which would enable us to perform statistical analyses. Our goal is to collate a uniform data set of emerging active regions observed by the SDO/HMI instrument suitable for helioseismic analysis up to seven days before emergence. We restricted the sample to active regions that were visible in the continuum and emerged into quiet Sun largely avoiding pre-existing magnetic regions. As a reference data set we paired a control region (CR), with the same latitude and distance from central meridian, with each emerging active region (EAR). We call this data set, which is currently comprised of 105 emerging active regions observed between May 2010 and November 2012, the SDO Helioseismic Emerging Active Region (SDO/HEAR) survey. To demonstrate the utility of a data set of a large number of emerging active regions, we measure the relative east-west velocity of the ...

  4. Impact of solar activity on climate changes in Athens region, Greece

    CERN Document Server

    Gizani, Nectaria A B; Vatikiotis, Leonidas; Zervas, Efthimios

    2011-01-01

    The scope of this work is to study the role that the solar weather plays in terrestrial weather. For this reason we study the effect of the solar activity on the climate changes in Greece. In the current work we look for possible correlation between the solar activity data spanning the years from 1975 to 2000 and the meteorological data from two weather stations based inside the city of Athens, Greece (New Philadelphia) and in greater Athens in the north of Attica (Tatoi area). We examine the annual variations of the average values of six meteorological parameters: temperature, atmospheric pressure, direction and intensity of wind, rainfall and relative air humidity. The solar data include decade variations, within the above period, of the solar irradiance, mean sunspot number between two solar cycles, magnetic cycle influence, and solar UV driving of climate (radio flux).

  5. Anger Style, Psychopathology, and Regional Brain Activity

    OpenAIRE

    Stewart, Jennifer L.; Levin, Rebecca L.; Sass, Sarah M.; Heller, Wendy; Gregory A. Miller

    2008-01-01

    Depression and anxiety often involve high levels of trait anger and disturbances in anger expression. Reported anger experience and outward anger expression have recently been associated with left-biased asymmetry of frontal cortical activity, assumed to reflect approach motivation. However, different styles of anger expression could presumably involve different brain mechanisms and/or interact with psychopathology to produce various patterns of brain asymmetry. The present study explored the...

  6. Identification of possible intense historical geomagnetic storms using combined sunspot and auroral observations from East Asia

    Directory of Open Access Journals (Sweden)

    D. M. Willis

    2005-03-01

    Full Text Available Comprehensive catalogues of ancient sunspot and auroral observations from East Asia are used to identify possible intense historical geomagnetic storms in the interval 210 BC-AD 1918. There are about 270 entries in the sunspot catalogue and about 1150 entries in the auroral catalogue. Special databases have been constructed in which the scientific information in these two catalogues is placed in specified fields. For the purposes of this study, an historical geomagnetic storm is defined in terms of an auroral observation that is apparently associated with a particular sunspot observation, in the sense that the auroral observation occurred within several days of the sunspot observation. More precisely, a selection criterion is formulated for the automatic identification of such geomagnetic storms, using the oriental records stored in the sunspot and auroral databases. The selection criterion is based on specific assumptions about the duration of sunspot visibility with the unaided eye, the likely range of heliographic longitudes of an energetic solar feature, and the likely range of transit times for ejected solar plasma to travel from the Sun to the Earth. This selection criterion results in the identification of nineteen putative historical geomagnetic storms, although two of these storms are spurious in the sense that there are two examples of a single sunspot observation being associated with two different auroral observations separated by more than half a (synodic solar rotation period. The literary and scientific reliabilities of the East Asian sunspot and auroral records that define the nineteen historical geomagnetic storms are discussed in detail in a set of appendices. A possible time sequence of events is presented for each geomagnetic storm, including possible dates for both the central meridian passage of the sunspot and the occurrence of the energetic solar feature, as well as likely transit times for the ejected solar plasma

  7. On the State of a Solar Active Region Before Flares and CMEs

    Science.gov (United States)

    Korsós, M. B.; Erdélyi, R.

    2016-06-01

    Several attempts have been made to find reliable diagnostic tools to determine the state prior to flares and related coronal mass ejections (CMEs) in solar active regions (ARs). Characterization of the level of mixed states is carried out using the Debrecen sunspot Data for 116 flaring ARs. Conditional flare probabilities (CFPs) are calculated for different flaring classes. The association with slow/fast CMEs is examined. Two precursor parameters are introduced: (i) the sum of the (daily averaged) horizontal magnetic gradient G S (G DS ) and (ii) the separation parameter {S}l-f. We found that if {S}l-f≤slant 1 for a flaring AR then the CFP of the expected highest-intensity flare being X-class is more than 70%. If 1≤slant {S}l-f≤slant 3 the CFP is more than 45% for the highest-intensity flare(s) to be M-class, and if 3≤slant {S}l-f≤slant 13 there is larger than 60% CFP that C-class flare(s) may have the strongest intensity within 48 hr. Next, from analyzing G S for determining CFP we found: if 5.5≤slant {log}({G}S) ≤slant 6.5, then it is very likely that C-class flare(s) may be the most intense; if 6.5≤slant {log}({G}S)≤slant 7.5 then there is ˜45% CFP that M-class could have the highest intensity; finally, if 7.5≤slant {log}({G}S) then there is at least 70% chance that the strongest energy release will be X-class in the next 48 hr. ARs are unlikely to produce X-class flare(s) if 13≤slant {S}l-f and log(G S ) ≤slant 5.5. Finally, in terms of providing an estimate of an associated slow/fast CME, we found that, if {log}({S}l-f) ≥slant 0.4 or {log}({G}{DS}) ≤slant 6.5, there is no accompanying fast CME in the following 24 hr.

  8. Modeling the Longitudinal Asymmetry in Sunspot Emergence -- the Role of the Wilson Depression

    CERN Document Server

    Watson, Fraser; Dalla, Silvia; Marshall, Stephen; 10.1007/s11207-009-9420-z

    2009-01-01

    The distributions of sunspot longitude at first appearance and at disappearance display an east-west asymmetry that results from a reduction in visibility as one moves from disk centre to the limb. To first order, this is explicable in terms of simple geometrical foreshortening. However, the centre-to-limb visibility variation is much larger than that predicted by foreshortening. Sunspot visibility is also known to be affected by the Wilson effect: the apparent dish shape of the sunspot photosphere caused by the temperature-dependent variation of the geometrical position of the tau=1 layer. In this article we investigate the role of the Wilson effect on the sunspot appearance distributions, deducing a mean depth for the umbral tau=1 layer of 500 to 1500 km. This is based on the comparison of observations of sunspot longitude distribution and Monte Carlo simulations of sunspot appearance using different models for spot growth rate, growth time and depth of Wilson depression.

  9. Modelling the Longitudinal Asymmetry in Sunspot Emergence: The Role of the Wilson Depression

    Science.gov (United States)

    Watson, F.; Fletcher, L.; Dalla, S.; Marshall, S.

    2009-11-01

    The distributions of sunspot longitude at first appearance and at disappearance display an east-west asymmetry that results from a reduction in visibility as one moves from disk centre to the limb. To first order, this is explicable in terms of simple geometrical foreshortening. However, the centre-to-limb visibility variation is much larger than that predicted by foreshortening. Sunspot visibility is also known to be affected by the Wilson effect: the apparent ‘dish’ shape of the sunspot photosphere caused by the temperature-dependent variation of the geometrical position of the τ=1 layer. In this article we investigate the role of the Wilson effect on the sunspot appearance distributions, deducing a mean depth for the umbral τ=1 layer of 500 - 1500 km. This is based on the comparison of observations of sunspot longitude distribution and Monte Carlo simulations of sunspot appearance using different models for spot growth rate, growth time and depth of Wilson depression.

  10. Sunspot rotation and magnetic transients associated with flares in NOAA AR 11429

    Science.gov (United States)

    Zheng, Jian-Chuan; Yang, Zhi-Liang; Guo, Jian-Peng; Guo, Kai-Ming; Huang, Hui; Song, Xuan; Wan, Wei-Xing

    2017-08-01

    We analyze sunspot rotation and magnetic transients in NOAA AR 11429 during two X-class (X5.4 and X1.3) flares using data from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory. A large leading sunspot with positive magnetic polarity rotated counterclockwise. As expected, the rotation was significantly affected by the two flares. Magnetic transients induced by the flares were clearly evident in the sunspots with negative polarity. They were moving across the sunspots with speed of order 3 - 7 km s-1. Furthermore, the trend of magnetic flux evolution in these sunspots exhibited changes associated with the flares. These results may shed light on understanding the evolution of sunspots.

  11. Sunspot seismology: accounting for magnetohydrodynamic wave processes using imaging spectropolarimetry

    CERN Document Server

    Rajaguru, S P

    2012-01-01

    The effects of acoustic wave absorption, mode conversion and transmission by a sunspot on the helioseismic inferences are widely discussed, but yet accounting for them has proved difficult for lack of a consistent framework within helioseismic modelling. Here, following a discussion of problems and issues that the near-surface magnetohydrodynamics hosts through a complex interplay of radiative transfer, measurement issues, and MHD wave processes, I present some possibilities entirely from observational analyses based on imaging spectropolarimetry. In particular, I present some results on wave evolution as a function of observation height and inclination of magnetic field to the vertical, derived from a high-cadence imaging spectropolarimetric observation of a sunspot and its surroundings using the instrument IBIS (NSO/Sac Peak, USA). These observations were made in magnetically sensitive (Fe I 6173 A) and insensitive (Fe I 7090 A) upper photospheric absorption lines. Wave travel time contributions from within...

  12. Uncertainties in the Sunspot Numbers: Estimation and Implications

    CERN Document Server

    de Wit, Thierry Dudok; Clette, Frédéric

    2016-01-01

    Sunspot number series are subject to various uncertainties, which are still poorly known. The need for their better understanding was recently highlighted by the major makeover of the international Sunspot Number [Clette et al., Space Science Reviews, 2014]. We present the first thorough estimation of these uncertainties, which behave as Poisson-like random variables with a multiplicative coefficient that is time- and observatory-dependent. We provide a simple expression for these uncertainties, and reveal how their evolution in time coincides with changes in the observations, and processing of the data. Knowing their value is essential for properly building composites out of multiple observations, and for preserving the stability of the composites in time.

  13. ON THE SOURCE OF PROPAGATING SLOW MAGNETOACOUSTIC WAVES IN SUNSPOTS

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, S. Krishna; Jess, D. B. [Astrophysics Research Centre, School of Mathematics and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Khomenko, Elena, E-mail: krishna.prasad@qub.ac.uk [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain)

    2015-10-10

    Recent high-resolution observations of sunspot oscillations using simultaneously operated ground- and space-based telescopes reveal the intrinsic connection between different layers of the solar atmosphere. However, it is not clear whether these oscillations are externally driven or generated in situ. We address this question by using observations of propagating slow magnetoacoustic waves along a coronal fan loop system. In addition to the generally observed decreases in oscillation amplitudes with distance, the observed wave amplitudes are also found to be modulated with time, with similar variations observed throughout the propagation path of the wave train. Employing multi-wavelength and multi-instrument data, we study the amplitude variations with time as the waves propagate through different layers of the solar atmosphere. By comparing the amplitude modulation period in different layers, we find that slow magnetoacoustic waves observed in sunspots are externally driven by photospheric p-modes, which propagate upward into the corona before becoming dissipated.

  14. Time Distributions of Large and Small Sunspot Groups Over Four Solar Cycles

    CERN Document Server

    Kilcik, A; Abramenko, V; Goode, P R; Ozguc, A; Rozelot, J P; Cao, W; 10.1088/0004-637X/731/1/30

    2011-01-01

    Here we analyze solar activity by focusing on time variations of the number of sunspot groups (SGs) as a function of their modified Zurich class. We analyzed data for solar cycles 2023 by using Rome (cycles 2021) and Learmonth Solar Observatory (cycles 2223) SG numbers. All SGs recorded during these time intervals were separated into two groups. The first group includes small SGs (A, B, C, H, and J classes by Zurich classification) and the second group consists of large SGs (D, E, F, and G classes). We then calculated small and large SG numbers from their daily mean numbers as observed on the solar disk during a given month. We report that the time variations of small and large SG numbers are asymmetric except for the solar cycle 22. In general large SG numbers appear to reach their maximum in the middle of the solar cycle (phase 0.450.5), while the international sunspot numbers and the small SG numbers generally peak much earlier (solar cycle phase 0.290.35). Moreover, the 10.7 cm solar radio flux, the facul...

  15. 3D MHD Models of Active Region Loops

    Science.gov (United States)

    Ofman, Leon

    2004-01-01

    Present imaging and spectroscopic observations of active region loops allow to determine many physical parameters of the coronal loops, such as the density, temperature, velocity of flows in loops, and the magnetic field. However, due to projection effects many of these parameters remain ambiguous. Three dimensional imaging in EUV by the STEREO spacecraft will help to resolve the projection ambiguities, and the observations could be used to setup 3D MHD models of active region loops to study the dynamics and stability of active regions. Here the results of 3D MHD models of active region loops are presented, and the progress towards more realistic 3D MHD models of active regions. In particular the effects of impulsive events on the excitation of active region loop oscillations, and the generation, propagations and reflection of EIT waves are shown. It is shown how 3D MHD models together with 3D EUV observations can be used as a diagnostic tool for active region loop physical parameters, and to advance the science of the sources of solar coronal activity.

  16. Sunspot and starspot lifetimes in a turbulent erosion model

    CERN Document Server

    Litvinenko, Yuri E

    2016-01-01

    Quantitative models of sunspot and starspot decay predict the timescale of magnetic diffusion and may yield important constraints in stellar dynamo models. Motivated by recent measurements of starspot lifetimes, we investigate the disintegration of a magnetic flux tube by nonlinear diffusion. Previous theoretical studies are extended by considering two physically motivated functional forms for the nonlinear diffusion coefficient $D$: an inverse power-law dependence $D \\propto B^{-\

  17. ASSESSMENT OF HUMAN RESOURCES FOR REGIONAL INNOVATION ACTIVITY

    Directory of Open Access Journals (Sweden)

    R. R. Lukyanova

    2010-03-01

    Full Text Available The paper deals with the issues of human resource development regarding an innovation activity. Concepts of labor and human resources have been surveyed. An integral index for assessment of human resources for regional innovation activity has been developed and assessment of the Russian regions has been made on the basis of it. Development tendencies of modern human resources for innovation activity in Russia have been revealed.

  18. The solar magnetic field since 1700: I. Characteristics of sunspot group emergence and reconstruction of the butterfly diagram

    CERN Document Server

    Jiang, Jie; Schmitt, Dieter; Schuessler, Manfred

    2011-01-01

    We use the historic record of sunspot groups compiled by the Royal Greenwich Observatory together with the sunspot number to derive the statistical properties of sunspot group emergence in dependence of cycle phase and strength. In particular we discuss the latitude, longitude, area and tilt angle of sunspot groups as functions of the cycle strength and of time during the solar cycle. Using these empirical characteristics the time-latitude diagram of sunspot group emergence (butterfly diagram) is reconstructed from 1700 onward on the basis of the Wolf and group sunspot numbers. This reconstruction will be useful in studies of the long-term evolution of the Sun's magnetic field.

  19. Photospheric Origin of Three-minute Oscillations in a Sunspot

    Science.gov (United States)

    Chae, Jongchul; Lee, Jeongwoo; Cho, Kyuhyoun; Song, Donguk; Cho, Kyungsuk; Yurchyshyn, Vasyl

    2017-02-01

    The origin of the three-minute oscillations of intensity and velocity observed in the chromosphere of sunspot umbrae is still unclear. We investigated the spatio-spectral properties of the 3 minute oscillations of velocity in the photosphere of a sunspot umbra as well as those in the low chromosphere using the spectral data of the Ni i λ5436, Fe i λ5435, and Na i D2 λ5890 lines taken by the Fast Imaging Solar Spectrograph of the 1.6 m New Solar Telescope at the Big Bear Solar Observatory. As a result, we found a local enhancement of the 3 minute oscillation power in the vicinities of a light bridge (LB) and numerous umbral dots (UDs) in the photosphere. These 3 minute oscillations occurred independently of the 5 minute oscillations. Through wavelet analysis, we determined the amplitudes and phases of the 3 minute oscillations at the formation heights of the spectral lines, and they were found to be consistent with the upwardly propagating slow magnetoacoustic waves in the photosphere with energy flux large enough to explain the chromospheric oscillations. Our results suggest that the 3 minute chromospheric oscillations in this sunspot may have been generated by magnetoconvection occurring in the LB and UDs.

  20. A Multi-Instrument Analysis of Sunspot Umbrae

    CERN Document Server

    Watson, Fraser T; Livingston, William C

    2015-01-01

    The recent solar minimum and rise phase of solar cycle 24 have been unlike any period since the early 1900s. This article examines some of the properties of sunspot umbrae over the last 17 years with three different instruments on the ground and in space: MDI, HMI and BABO. The distribution of magnetic fields and their evolution over time is shown and reveals that the field distribution in cycle 24 is fundamentally different from that in cycle 23. The annual average umbral magnetic field is then examined for the 17 year observation period and shows a small decrease of 375 Gauss in sunspot magnetic fields over the period 1996 to 2013, but the mean intensity of sunspot umbrae does not vary significantly over this time. A possible issue with sample sizes in a previous study is then explored to explain disagreements in data from two of the source instruments. All three instruments show that the relationship between umbral magnetic fields and umbral intensity agrees with past studies in that the umbral intensity d...

  1. Active Longitude and Coronal Mass Ejection Occurrences

    Science.gov (United States)

    Gyenge, N.; Singh, T.; Kiss, T. S.; Srivastava, A. K.; Erdélyi, R.

    2017-03-01

    The spatial inhomogeneity of the distribution of coronal mass ejection (CME) occurrences in the solar atmosphere could provide a tool to estimate the longitudinal position of the most probable CME-capable active regions in the Sun. The anomaly in the longitudinal distribution of active regions themselves is often referred to as active longitude (AL). In order to reveal the connection between the AL and CME spatial occurrences, here we investigate the morphological properties of active regions. The first morphological property studied is the separateness parameter, which is able to characterize the probability of the occurrence of an energetic event, such as a solar flare or CME. The second morphological property is the sunspot tilt angle. The tilt angle of sunspot groups allows us to estimate the helicity of active regions. The increased helicity leads to a more complex buildup of the magnetic structure and also can cause CME eruption. We found that the most complex active regions appear near the AL and that the AL itself is associated with the most tilted active regions. Therefore, the number of CME occurrences is higher within the AL. The origin of the fast CMEs is also found to be associated with this region. We concluded that the source of the most probably CME-capable active regions is at the AL. By applying this method, we can potentially forecast a flare and/or CME source several Carrington rotations in advance. This finding also provides new information for solar dynamo modeling.

  2. Sunspot areas and tilt angles for solar cycles 7-10

    CERN Document Server

    Pavai, V Senthamizh; Dasi-Espuig, M; Krivova, N; Solanki, S

    2015-01-01

    Extending the knowledge about the properties of solar cycles into the past is essential for understanding the solar dynamo. This paper aims at estimating areas of sunspots observed by Schwabe in 1825-1867 and at calculating the tilt angles of sunspot groups. The sunspot sizes in Schwabe's drawings are not to scale and need to be converted into physical sunspot areas. We employed a statistical approach assuming that the area distribution of sunspots was the same in the 19th century as it was in the 20th century. Umbral areas for about 130,000 sunspots observed by Schwabe were obtained, as well as the tilt angles of sunspot groups assuming them to be bipolar. There is, of course, no polarity information in the observations. The annually averaged sunspot areas correlate reasonably with sunspot number. We derived an average tilt angle by attempting to exclude unipolar groups with a minimum separation of the two alleged polarities and an outlier rejection method which follows the evolution of each group and detect...

  3. Strong Earthquake Activity and Its Relation to Regional Neotectonic Movement in Sichuan-Yunnan Region

    Institute of Scientific and Technical Information of China (English)

    Su Youjin; Qin Jiazheng

    2001-01-01

    Based on analyzing space inhomogeneous image of strong earthquake activity, the image of source rupture and the mechanical property of the source fault in Sichuan-Yunnan region, the relations among the strong earthquake activity, active fault, modern movement status of active blocks and structural background of the deep media have been discussed, and the characteristics of strong earthquake activity and possible mechanism have been also discussed.

  4. Determinants of Foreign Technological Activity in German Regions

    DEFF Research Database (Denmark)

    Dettmann, Eva; Lacasa, Iciar Dominguez; Günther, Jutta;

    This paper analyses the determinants of spatial distribution of foreign technological activity across 96 German regions (1996-2009). We identify foreign inventive activity by applying the ‘cross-border-ownership concept’ to transnational patent applications. The descriptive analysis shows...... that foreign technological activity more than doubled during the observation period with persistent spatial heterogeneity in Germany. Using a pooled count data model, we estimate the effect of various sources for externalities on the extent of foreign technological activity across regions. Our results show...... that foreign technological activity is attracted by technologically specialised sectors of regions. In contrast to existing findings this effect applies both to foreign as well as domestic sources of specialisation. We show that the relation between specialization and foreign technological activity is non...

  5. Active Pesticide Production Points, Region 9, 2013, US EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data layer represents Active Pesticide Producing Establishments in USEPA Region 9 (AZ, CA, HI and NV) that reported production for the year 2013. Pesticide...

  6. Photospheric Magnetic Free Energy Density of Solar Active Regions

    Science.gov (United States)

    Zhang, Hongqi

    2016-12-01

    We present the photospheric energy density of magnetic fields in two solar active regions (one of them recurrent) inferred from observational vector magnetograms, and compare it with other available differently defined energy parameters of magnetic fields in the photosphere. We analyze the magnetic fields in Active Regions NOAA 6580-6619-6659 and 11158. The quantity 1/4π{B}n\\cdot{B}p is an important energy parameter that reflects the contribution of magnetic shear to the difference between the potential (Bp) and the non-potential magnetic field (Bn), and also the contribution to the free magnetic energy near the magnetic neutral lines in the active regions. It is found that the photospheric mean magnetic energy density shows clear changes before the powerful solar flares in Active Region NOAA 11158, which is consistent with the change in magnetic fields in the flaring lower atmosphere.

  7. Photospheric Magnetic Free Energy Density of Solar Active Regions

    CERN Document Server

    Zhang, Hongqi

    2016-01-01

    We present the photospheric energy density of magnetic fields in two solar active regions inferred from observational vector magnetograms, and compare it with the possible different defined energy parameters of magnetic fields in the photosphere. We analyze the magnetic fields in active region NOAA 6580-6619-6659 and 11158. It is noticed that the quantity 1/4pi Bn.Bp is an important energy parameter that reflects the contribution of magnetic shear on the difference between the potential magnetic field (Bp) and non-potential one (Bn), and also the contribution to the free magnetic energy near the magnetic neutral lines in the active regions. It is found that the photospheric mean magnetic energy density changes obviously before the powerful solar flares in the active region NOAA 11158, it is consistent with the change of magnetic fields in the lower atmosphere with flares.

  8. DISTRIBUTION OF ELECTRIC CURRENTS IN SOLAR ACTIVE REGIONS

    Energy Technology Data Exchange (ETDEWEB)

    Török, T.; Titov, V. S.; Mikić, Z. [Predictive Science, Inc., 9990 Mesa Rim Road, Suite 170, San Diego, CA 92121 (United States); Leake, J. E. [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States); Archontis, V. [School of Mathematics and Statistics, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9SS (United Kingdom); Linton, M. G. [U.S. Naval Research Lab, 4555 Overlook Avenue, SW Washington, DC 20375 (United States); Dalmasse, K.; Aulanier, G. [LESIA, Observatoire de Paris, CNRS, UPMC, Univ. Paris Diderot, 5 place Jules Janssen, F-92190 Meudon (France); Kliem, B. [Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam (Germany)

    2014-02-10

    There has been a long-standing debate on the question of whether or not electric currents in solar active regions are neutralized. That is, whether or not the main (or direct) coronal currents connecting the active region polarities are surrounded by shielding (or return) currents of equal total value and opposite direction. Both theory and observations are not yet fully conclusive regarding this question, and numerical simulations have, surprisingly, barely been used to address it. Here we quantify the evolution of electric currents during the formation of a bipolar active region by considering a three-dimensional magnetohydrodynamic simulation of the emergence of a sub-photospheric, current-neutralized magnetic flux rope into the solar atmosphere. We find that a strong deviation from current neutralization develops simultaneously with the onset of significant flux emergence into the corona, accompanied by the development of substantial magnetic shear along the active region's polarity inversion line. After the region has formed and flux emergence has ceased, the strong magnetic fields in the region's center are connected solely by direct currents, and the total direct current is several times larger than the total return current. These results suggest that active regions, the main sources of coronal mass ejections and flares, are born with substantial net currents, in agreement with recent observations. Furthermore, they support eruption models that employ pre-eruption magnetic fields containing such currents.

  9. Active Ageing Level of Older Persons: Regional Comparison in Thailand

    Directory of Open Access Journals (Sweden)

    Md. Nuruzzaman Haque

    2016-01-01

    Full Text Available Active ageing level and its discrepancy in different regions (Bangkok, Central, North, Northeast, and South of Thailand have been examined for prioritizing the policy agenda to be implemented. Attempt has been made to test preliminary active ageing models for Thai older persons and hence active ageing index (AAI, ranges from 0 to 1 has been estimated. Using nationally representative data and confirmatory factor analysis approach, this study justified active ageing models for female and male older persons in Thailand. Results revealed that active ageing level of Thai older persons is not high (mean AAIs for female and male older persons are 0.64 and 0.61, resp., and those are significantly different (p<0.001. Mean AAI in Central region is lower than North, Northeast, and South regions but there is no significant difference in the latter three regions of Thailand. Special emphasis should be given to Central region and policy should be undertaken for increasing active ageing level. Implementation of an Integrated Active Ageing Package (IAAP, containing policies for older persons to improve their health and economic security, to promote participation in social groups and longer working lives, and to arrange learning programs, would be helpful for increasing older persons’ active ageing level in Thailand.

  10. Determinants of Foreign Technological Activity in German Regions

    DEFF Research Database (Denmark)

    Dettmann, Eva; Lacasa, Iciar Dominguez; Günther, Jutta

    This paper analyses the determinants of spatial distribution of foreign technological activity across 96 German regions (1996-2009). We identify foreign inventive activity by applying the ‘cross-border-ownership concept’ to transnational patent applications. The descriptive analysis shows......-linear and that it is influenced by sectoral heterogeneity. Externalities related to technological diversification attract foreign R&D only into ‘higher order’ regions....

  11. High Resolution He I 10830 AA Narrow-band Imaging of an M-class Flare. I - Analysis of Sunspot Dynamics during Flaring

    Science.gov (United States)

    Wang, Ya; Su, Yingna; Hong, Zhenxiang; Zeng, Zhicheng; Ji, Kaifan; Goode, Philip R.; Cao, Wenda; Ji, Haisheng

    2016-12-01

    In this paper, we report our first-step results of high resolution He i 10830 Å narrow-band imaging (bandpass: 0.5 Å) of an M1.8 class two-ribbon flare on 2012 July 5. The flare was observed with the 1.6 m aperture New Solar Telescope at Big Bear Solar Observatory. For this unique data set, sunspot dynamics during flaring were analyzed for the first time. By directly imaging the upper chromosphere, running penumbral waves are clearly seen as an outward extension of umbral flashes; both take the form of absorption in the 10830 Å narrow-band images. From a space-time image made of a slit cutting across a flare ribbon and the sunspot, we find that the dark lanes for umbral flashes and penumbral waves are obviously broadened after the flare. The most prominent feature is the sudden appearance of an oscillating absorption strip inside the ribbon when it sweeps into the sunspot’s penumbral and umbral regions. During each oscillation, outwardly propagating umbral flashes and subsequent penumbral waves rush out into the inwardly sweeping ribbon, followed by a return of the absorption strip with similar speed. We tentatively explain the phenomena as the result of a sudden increase in the density of ortho-helium atoms in the area of the sunspot being excited by the flare’s extreme ultraviolet illumination. This explanation is based on the observation that 10830 Å absorption around the sunspot area gets enhanced during the flare. Nevertheless, questions are still open and we need further well-devised observations to investigate the behavior of sunspot dynamics during flares.

  12. Small-scale Magnetic Field Diagnostics outside Sunspots: Comparison of Different Methods

    Indian Academy of Sciences (India)

    D. N. Rachkovsky; T. T. Tsap; V. G. Lozitsky

    2005-12-01

    We analyse different observational data related to the problem of intrinsic magnetic field strength in small-scale fluxtubes outside sunspots. We conclude that the kG range of fluxtube fields follows from not only classical line ratio method, but also from other old and new techniques. For the quiet regions on the Sun, the most probable mode of such fields has a magnetic field strength of 1.2–1.5 kG assuming the rectangular field profile. To best interpret the observations, a weak background field between fluxtubes should be assumed, and its magnetic field strength is expected to increase with the filling factor of fluxtubes. The alternative point of view about subkilogauss fluxtube fields is critically examined, and possible sources of different conclusions are presented.

  13. The long sunspot cycle 23 predicts a significant temperature decrease in cycle 24

    CERN Document Server

    Solheim, Jan-Erik; Humlum, Ole

    2012-01-01

    Relations between the length of a sunspot cycle and the average temperature in the same and the next cycle are calculated for a number of meteorological stations in Norway and in the North Atlantic region. No significant trend is found between the length of a cycle and the average temperature in the same cycle, but a significant negative trend is found between the length of a cycle and the temperature in the next cycle. This provides a tool to predict an average temperature decrease of at least 1.0 "C from solar cycle 23 to 24 for the stations and areas analyzed. We find for the Norwegian local stations investigated that 25-56% of the temperature increase the last 150 years may be attributed to the Sun. For 3 North Atlantic stations we get 63-72% solar contribution. This points to the Atlantic currents as reinforcing a solar signal.

  14. A deep-seated mechanism for cycle-dependent sunspot group tilt angles

    Science.gov (United States)

    Isik, Emre

    2016-07-01

    The cycle-averaged tilt angle of sunspot groups is an important quantity in determining the magnetic flux diffusing across the equator, which is highly correlated with the strength of the next cycle. This quantity has recently been reported to be anti-correlated with the strength of the solar cycle. I suggest that a deep-seated thermodynamic cycle can be responsible for the observed correlation. Motivated by helioseismic indications, I calculate the effect of cooling of the convective overshoot region on the stability and dynamics of thin, unstable flux tubes. I find that only 5-20 K of cooling in the layer can explain the observed range of tilt angle fluctuations among different cycles. This mechanism can play a role in the nonlinear saturation and amplitude fluctuations of the solar dynamo.

  15. Active Ageing Level of Older Persons: Regional Comparison in Thailand

    OpenAIRE

    Md. Nuruzzaman Haque

    2016-01-01

    Active ageing level and its discrepancy in different regions (Bangkok, Central, North, Northeast, and South) of Thailand have been examined for prioritizing the policy agenda to be implemented. Attempt has been made to test preliminary active ageing models for Thai older persons and hence active ageing index (AAI, ranges from 0 to 1) has been estimated. Using nationally representative data and confirmatory factor analysis approach, this study justified active ageing models for female and male...

  16. A Preliminary Study of Active Region Canopies With AIA

    Science.gov (United States)

    Lucchini, Scott; Saar, S.; Muglach, K.

    2013-01-01

    Active region canopies are areas frequently accompanying active regions which have extensive horizontal magnetic fields. The large-scale canopy fields have a significant effect on the kinds of structures which can exist beneath them, and how they evolve. Using data from the Atmospheric Imaging Assembly (AIA), we developed methods to automatically identify these regions. A Differential Emission Measure (DEM) analysis is consistent with the idea that the long, hotter active region loops overlie quite cool, small-scale features ("fibrils"). We suggest that the overlying loops restrict the growth of underlying structures to mostly very short, cool features. We also studied evolution of canopy regions over time. In several cases, a large quiescent filament formed out of the former canopy region over the course of a few solar rotations, confirming previous suggestions. The canopy remains visible for several rotations after its active regions have begun to decay; in this time, the fibril magnetic fields gradually align in such a way as to form a filament channel. Further analysis of our large canopy database should uncover more information on the frequency and characteristics of these canopy-to-filament evolutions, as well as other canopy properties. This work is supported by the NSF REU program at SAO (grant ATM-0851866) and contract SP02H1701R from Lockheed Martin to SAO for SDO research.

  17. Thoughts on the development of active regional public health systems.

    Science.gov (United States)

    Reis, Ademar Arthur Chioro Dos; Sóter, Ana Paula Menezes; Furtado, Lumena Almeida Castro; Pereira, Silvana Souza da Silva

    2017-04-01

    Decentralization and regionalization are strategic themes for reforms in the health system. This paper analyzes the complex process of health regionalization being developed in Brazil. This paper identifies that the normative framework from the Brazilian National Health System, SUS has made advances with respect to its institutionalization and overcoming the initial centrality involved in municipalization. This has strengthened the development of regionalization and the intergovernmental agreement on health but the evidence points to the need to promote a revision. Based on document analysis, literature review and the views given by the authors involved in management in SUS as well as generating radically different views, the challenges for the construction of a regionalization that is active, is debated. We also discuss: its relations with planning and the dimensioning of service networks, the production of active care networks and shared management spaces, the inter-federative agreements and regional regulations, the capacity to coordinate regional systems and financing and the impact of the political dimension and electoral cycles. Regionalization (and SUS itself) is an open book, therefore ways and possibilities on how to maintain an active form of regionalization can be recommended.

  18. IFLA General Conference, 1985. Division on Regional Activities. Papers.

    Science.gov (United States)

    International Federation of Library Associations, The Hague (Netherlands).

    Papers on regional library activities which were presented at the 1985 International Federation of Library Associations (IFLA) conference include: (1) "Importance of Information Resources in National Development with Particular Reference to the Asian Scene" (Yogendra P. Dubey, India); (2) "Report of the Activities of the Regional…

  19. Minimum extreme temperature in the gulf of mexico: is there a connection with solar activity?

    Science.gov (United States)

    Maravilla, D.; Mendoza, B.; Jauregui, E.

    Minimum extreme temperature ( MET) series from several meteorological stations of the Gulf of Mexico are spectrally analyzed using the Maximum Entrophy Method. We obtained periodicities similar to those found in the sunspot number, the magnetic solar cycle, comic ray fluxes and geomagnetic activity which are modulated by solar activity. We suggested that the solar signal is perhaps present in the MET record of this region of Mexico.

  20. Magnetic and Thermal Contributions to Helioseismic Travel times in Simulated Sunspots

    Science.gov (United States)

    Braun, Douglas; Felipe, Tobias; Birch, Aaron; Crouch, Ashley D.

    2016-05-01

    The interpretation of local helioseismic measurements of sunspots has long been a challenge, since waves propagating through sunspots are potentially affected by both mode conversion and changes in the thermal structure of the spots. We carry out numerical simulations of wave propagation through a variety of models which alternately isolate either the thermal or magnetic structure of the sunspot or include both of these. We find that helioseismic holography measurements made from the resulting simulated wavefields show qualitative agreement with observations of real sunspots. Using insight from ray theory, we find that travel-time shifts in the thermal (non-magnetic) sunspot model are primarily produced by changes in the wave path due to the Wilson depression rather than variations in the wave speed. This shows that inversions for the subsurface structure of sunspots must account for local changes in the density. In some ranges of horizontal phase speed and frequency there is agreement (within the noise level of the measurements) between the travel times measured in the full magnetic sunspot model and the thermal model. If this conclusion proves to be robust for a wide range of models, it suggests a path towards inversions for sunspot structure. This research has been funded by the Spanish MINECO through grant AYA2014-55078-P, by the NASA Heliophysics Division through NNX14AD42G and NNH12CF23C, and the NSF Solar Terrestrial program through AGS-1127327.

  1. A Standard Law for the Equatorward Drift of the Sunspot Zones

    Science.gov (United States)

    Hathaway, David H.

    2012-01-01

    The latitudinal location of the sunspot zones in each hemisphere is determined by calculating the centroid position of sunspot areas for each solar rotation from May 1874 to June 2012. When these centroid positions are plotted and analyzed as functions of time from each sunspot cycle maximum there appears to be systematic differences in the positions and equatorward drift rates as a function of sunspot cycle amplitude. If, instead, these centroid positions are plotted and analyzed as functions of time from each sunspot cycle minimum then most of the differences in the positions and equatorward drift rates disappear. The differences that remain disappear entirely if curve fitting is used to determine the starting times (which vary by as much as 8 months from the times of minima). The sunspot zone latitudes and equatorward drift measured relative to this starting time follow a standard path for all cycles with no dependence upon cycle strength or hemispheric dominance. Although Cycle 23 was peculiar in its length and the strength of the polar fields it produced, it too shows no significant variation from this standard. This standard law, and the lack of variation with sunspot cycle characteristics, is consistent with Dynamo Wave mechanisms but not consistent with current Flux Transport Dynamo models for the equatorward drift of the sunspot zones.

  2. Unsupervised segmentation of task activated regions in fmRI

    DEFF Research Database (Denmark)

    Røge, Rasmus; Madsen, Kristoffer Hougaard; Schmidt, Mikkel Nørgaard

    2015-01-01

    Functional Magnetic Resonance Imaging has become a central measuring modality to quantify functional activiation of the brain in both task and rest. Most analysis used to quantify functional activation requires supervised approaches as employed in statistical parametric mapping (SPM) to extract...... of task activated functional units in multi-subject fMRI data that exploits that regions of task activation are consistent across subjects and can be more reliably inferred than regions that are not activated. We develop a non-parametric Gaussian mixture model that apriori assumes activations are smooth...... using a Gaussian Process prior while assuming the segmented functional maps are the same across subjects but having individual time-courses and noise variances. To improve inference we propose an enhanced split-merge procedure. We find that our approach well extracts the induced activity of a finger...

  3. SYSTEMATIC REGULARITY OF HEMISPHERIC SUNSPOT AREAS OVER THE PAST 140 YEARS

    Energy Technology Data Exchange (ETDEWEB)

    Deng, L. H.; Xiang, Y. Y. [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Qu, Z. N. [Department of Physics, School of Science, Sichuan University of Science and Engineering, Zigong 643000 (China); An, J. M., E-mail: znqu@ynao.ac.cn [School of Software Engineering, Chongqing University of Arts and Sciences, Chongqing 402160 (China)

    2016-03-15

    Solar magnetic activity varies with time in the two hemispheres in different ways. The hemispheric interconnection of solar activity phenomena provides an important clue to understanding the dynamical behavior of solar dynamo actions. In this paper, several analysis approaches are proposed to analyze the systematic regularity of hemispheric asynchronism and amplitude asymmetry of long-term sunspot areas during solar cycles 9–24. It is found that, (1) both the hemispheric asynchronism and the amplitude asymmetry of sunspot areas are prevalent behaviors and are not anomalous, but the hemispheric asynchronism exhibits a much more regular behavior than the amplitude asymmetry; (2) the phase-leading hemisphere returns back to the identical hemisphere every 8 solar cycles, and the secular periodic pattern of hemispheric phase differences follows 3 (south leading) + 5 (north leading) solar cycles, which probably corresponds to the Gleissberg cycle; and (3) the pronounced periodicities of (absolute and normalized) asymmetry indices and lines of synchronization (LOSs) are not identical: the significant periodic oscillations are 80.65 ± 6.31, 20.91 ± 0.40, and 13.45 ± 0.16 years for the LOS values, and 51.34 ± 2.48, 8.83/8.69 ± 0.07, and 3.77 ± 0.02 years for the (absolute and normalized) asymmetry indices. The analysis results improve our knowledge on the hemispheric interrelation of solar magnetic activity and may provide valuable constraints for solar dynamo models.

  4. Activated region fitting: a robust high-power method for fMRI analysis using parameterized regions of activation.

    Science.gov (United States)

    Weeda, Wouter D; Waldorp, Lourens J; Christoffels, Ingrid; Huizenga, Hilde M

    2009-08-01

    An important issue in the analysis of fMRI is how to account for the spatial smoothness of activated regions. In this article a method is proposed to accomplish this by modeling activated regions with Gaussian shapes. Hypothesis tests on the location, spatial extent, and amplitude of these regions are performed instead of hypothesis tests of individual voxels. This increases power and eases interpretation. Simulation studies show robust hypothesis tests under misspecification of the shape model, and increased power over standard techniques especially at low signal-to-noise ratios. An application to real single-subject data also indicates that the method has increased power over standard methods.

  5. The Discontinuity Circa 1885 in the Group Sunspot Number

    Science.gov (United States)

    Cliver, E. W.; Ling, A. G.

    2016-11-01

    On average, the international sunspot number (RI) is 44 % higher than the group sunspot number (RG) from 1885 to the beginning of the RI series in 1700. This is the principal difference between RI and RG. Here we show that this difference is primarily due to an inhomogeneity in the Royal Greenwich Observatory (RGO) record of sunspot groups (1874 - 1976) used to derive observer normalization factors (called k-factors) for RG. Specifically, annual RGO group counts increase relative to those of Wolfer and other long-term observers from 1876 - 1915. A secondary contributing cause is that the k-factors for observers who began observing before 1884 and overlapped with RGO for any years during 1874 - 1883 were not based on direct comparison with RGO but were calculated using one or more intermediary or additional observers. We introduce R_{GC} by rectifying the RGO group counts from 1874 - 1915 and basing k-factors on direct comparison with RGO across the 1885 discontinuity, which brings the RG and RI series into reasonable agreement for the 1841 - 1885 interval (after correcting RI for an inhomogeneity from 1849 - 1867 (to give R_{IC})). Comparison with an independently derived backbone-based reconstruction of RG (R_{BB}) indicates that R_{GC} over-corrects R_{BB} by 4 % on average from 1841 - 1925. Our analysis suggests that the maxima of Cycles 10 (in 1860), 12 (1883/1884), and 13 (1893) in the R_{IC} series are too low by ≈ 10 %.

  6. Distribution of electric currents in sunspots from photosphere to corona

    Energy Technology Data Exchange (ETDEWEB)

    Gosain, Sanjay [National Solar Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Démoulin, Pascal [Observatoire de Paris, LESIA, UMR 8109 (CNRS), F-92195 Meudon Principal Cedex (France); López Fuentes, Marcelo [Instituto de Astronomía y Física del Espacio (IAFE), UBA-CONICET, CC. 67, Suc. 28 Buenos Aires 1428 (Argentina)

    2014-09-20

    We present a study of two regular sunspots that exhibit nearly uniform twist from the photosphere to the corona. We derive the twist parameter in the corona and in the chromosphere by minimizing the difference between the extrapolated linear force-free field model field lines and the observed intensity structures in the extreme-ultraviolet images of the Sun. The chromospheric structures appear more twisted than the coronal structures by a factor of two. Further, we derive the vertical component of electric current density, j{sub z} , using vector magnetograms from the Hinode Solar Optical Telescope (SOT). The spatial distribution of j{sub z} has a zebra pattern of strong positive and negative values owing to the penumbral fibril structure resolved by Hinode/SOT. This zebra pattern is due to the derivative of the horizontal magnetic field across the thin fibrils; therefore, it is strong and masks weaker currents that might be present, for example, as a result of the twist of the sunspot. We decompose j{sub z} into the contribution due to the derivatives along and across the direction of the horizontal field, which follows the fibril orientation closely. The map of the tangential component has more distributed currents that are coherent with the chromospheric and coronal twisted structures. Moreover, it allows us to map and identify the direct and return currents in the sunspots. Finally, this decomposition of j{sub z} is general and can be applied to any vector magnetogram in order to better identify the weaker large-scale currents that are associated with coronal twisted/sheared structures.

  7. Measurements of sunspot group tilt angles for solar cycles 19-24

    Science.gov (United States)

    Isik, Seda; Isik, Emre

    2016-07-01

    The tilt angle of a sunspot group is a critical quantity in the surface transport magnetic flux on global scales, playing a role in the solar dynamo. To investigate Joy's law for four cycles, we measured the tilt angles of sunspot groups for solar cycles 19-24. We have developed an IDL routine, which allows the user to interactively select and measure sunspot positions and areas on the solar disc, using the sunspot drawing database of Kandilli Observatory. The method is similar to that used by others in the literature, with the exception that sunspot groups were identified manually, which has improved the accuracy of the tilt angles. We present cycle averages of the tilt angle and compare the results with the existing data in the literature.

  8. SCALER MODE OF THE AUGER OBSERVATORY AND SUNSPOTS

    Energy Technology Data Exchange (ETDEWEB)

    Canal, Carlos A. Garcia; Tarutina, Tatiana [Instituto de Fisica La Plata, CCT La Plata, CONICET and Departamento de Fisica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata CC 67, 1900 La Plata (Argentina); Hojvat, Carlos [Fermilab, P.O. Box 500, Batavia, IL 60510-0500 (United States)

    2012-10-15

    Recent data from the Auger Observatory on low-energy secondary cosmic ray particles are analyzed to study temporal correlations together with data on the daily sunspot numbers and neutron monitor data. Standard spectral analysis demonstrates that the available data show 1/f {sup {beta}} fluctuations with {beta} Almost-Equal-To 1 in the low-frequency range. All data behave like Brownian fluctuations in the high-frequency range. The existence of long-range correlations in the data was confirmed by detrended fluctuation analysis. The real data confirmed the correlation between the scaling exponent of the detrended analysis and the exponent of the spectral analysis.

  9. Hi-C Observations of Sunspot Penumbral Bright Dots

    OpenAIRE

    Alpert, Shane E.; Tiwari, Sanjiv K.; Moore, Ronald L.; Winebarger, Amy R.; Savage, Sabrina L.

    2016-01-01

    We report observations of bright dots (BDs) in a sunspot penumbra using High Resolution Coronal Imager (Hi-C) data in 193 \\AA\\ and examine their sizes, lifetimes, speeds, and intensities. The sizes of the BDs are on the order of 1\\arcsec\\ and are therefore hard to identify in the Atmospheric Imaging Assembly (AIA) 193 \\AA\\ images, which have 1.2\\arcsec\\ spatial resolution, but become readily apparent with Hi-C's five times better spatial resolution. We supplement Hi-C data with data from AIA'...

  10. The Magnetic Classification of Solar Active Regions 1992 - 2015

    CERN Document Server

    Jaeggli, Sarah A

    2016-01-01

    The purpose of this letter is to address a blind-spot in our knowledge of solar active region statistics. To the best of our knowledge there are no published results showing the variation of the Mount Wilson magnetic classifications as a function of solar cycle based on modern observations. We show statistics for all active regions reported in the daily Solar Region Summary from 1992 January 1 to 2015 December 31. We find that the $\\alpha$ and $\\beta$ class active regions (including all sub-groups e.g. $\\beta\\gamma$, $\\beta\\delta$) make up fractions of approximately 20% and 80% of the sample respectively. This fraction is relatively constant during high levels of activity, however, an increase in the $\\alpha$ fraction to about 35% and and a decrease in the $\\beta$ fraction to about 65% can be seen near each solar minimum and is statistically significant at the 2-$\\sigma$ level. Over 30% of all active regions observed during the years of solar maxima were appended with the classifications $\\gamma$ and/or $\\del...

  11. Sunspot Cycle 24 and the Advent of Dalton-Like Minimum

    Directory of Open Access Journals (Sweden)

    H. S. Ahluwalia

    2012-01-01

    Full Text Available Ahluwalia and Jackiewicz (2011 have predicted that sunspot cycle 24 will be only half as active as cycle 23, reaching its peak in May 2013±6 months. Here, we discuss the timeline for cycle 24 since its onset in December, 2008 and compare it to the timelines for the last ten cycles (14 to 23 of the 20th century; cycle 24 is rising the slowest. We speculate that cycle 24 may herald the onset of a Dalton-like minimum in the 21st century. The implications of this outcome on global temperature change and ensuing socioeconomic and political scenarios are discussed, on the basis of the historical record.

  12. Heritage of Konkoly's Solar Observations: the Debrecen Photoheliograph Programme and the Debrecen Sunspot Databases

    CERN Document Server

    Baranyi, T; Ludmány, A

    2016-01-01

    The primary task of the Debrecen Heliophysical Observatory (DHO) was to produce the detailed and reliable photographic documentation of the solar photospheric activity since 1958. This long-term effort resulted in various solar catalogues based on ground-based and space-borne observations. The DHO hosts solar-image databases containing heritages of two former Hungarian observatories. One of the sets of drawings was observed between 1872 and 1891 at the \\'Ogyalla Observatory (now Hurbanovo, Slovakia) founded by Mikl\\'os Konkoly-Thege (1842--1916). We briefly summarize the history of the events that resulted in the longest photographic sunspot database available at the DHO at present, and we show the basic role of Dr. Mikl\\'os Konkoly-Thege in this achievement.

  13. Long-term Modulation of Cosmic Ray Intensity in relation to Sunspot Numbers and Tilt Angle

    Indian Academy of Sciences (India)

    Meera Gupta; V. K. Mishra; A. P. Mishra

    2006-12-01

    A detailed correlative analysis between sunspot numbers (SSN) and tilt angle (TA) with cosmic ray intensity (CRI) in the neutron monitor energy range has been performed for the solar cycles 21, 22 and 23. It is found that solar activity parameters (SSN and TA) are highly (positive) correlated with each other and have inverse correlation with cosmic ray intensity (CRI). The ‘running cross correlation coefficient’ between cosmic ray intensity and tilt angle has also been calculated and it is found that the correlation is positive during the maxima of odd cycles 21 and 23. Moreover, the time lag analysis between CRI and SSN, and between CRI and TA has also been performed and is supported by hysteresis curves, which are wide for odd cycles and narrow for even cycles.

  14. Bimanual passive movement: functional activation and inter-regional coupling.

    Science.gov (United States)

    Macaluso, Emiliano; Cherubini, Andrea; Sabatini, Umberto

    2007-01-01

    The aim of this study was to investigate intra-regional activation and inter-regional connectivity during passive movement. During fMRI, a mechanic device was used to move the subject's index and middle fingers. We assessed four movement conditions (unimanual left/right, bimanual symmetric/asymmetric), plus Rest. A conventional intra-regional analysis identified the passive stimulation network, including motor cortex, primary and secondary somatosensory cortex, plus the cerebellum. The posterior (sensory) part of the sensory-motor activation around the central sulcus showed a significant modulation according to the symmetry of the bimanual movement, with greater activation for asymmetric compared to symmetric movements. A second set of fMRI analyses assessed condition-dependent changes of coupling between sensory-motor regions around the superior central sulcus and the rest of the brain. These analyses showed a high inter-regional covariation within the entire network activated by passive movement. However, the specific experimental conditions modulated these patterns of connectivity. Highest coupling was observed during the Rest condition, and the coupling between homologous sensory-motor regions around the left and right central sulcus was higher in bimanual than unimanual conditions. These findings demonstrate that passive movement can affect the connectivity within the sensory-motor network. We conclude that implicit detection of asymmetry during bimanual movement relies on associative somatosensory region in post-central areas, and that passive stimulation reduces the functional connectivity within the passive movement network. Our findings open the possibility to combine passive movement and inter-regional connectivity as a tool to investigate the functionality of the sensory-motor system in patients with very poor mobility.

  15. Bimanual passive movement: functional activation and inter-regional coupling

    Directory of Open Access Journals (Sweden)

    Emiliano Macaluso

    2007-12-01

    Full Text Available The aim of this study was to investigate intra-regional activation and inter-regional connectivity during passive movement. During fMRI, a mechanic device was used to move the subject's index and middle fingers. We assessed four movement conditions (unimanual left/right, bimanual symmetric/asymmetric, plus Rest. A conventional intra-regional analysis identified the passive stimulation network, including motor cortex, primary and secondary somatosensory cortex, plus the cerebellum. The posterior (sensory part of the sensory-motor activation around the central sulcus showed a significant modulation according to the symmetry of the bimanual movement, with greater activation for asymmetric compared to symmetric movements. A second set of fMRI analyses assessed condition-dependent changes of coupling between sensory-motor regions around the superior central sulcus and the rest of the brain. These analyses showed a high inter-regional covariation within the entire network activated by passive movement. However, the specific experimental conditions modulated these patterns of connectivity. Highest coupling was observed during the Rest condition, and the coupling between homologous sensory-motor regions around the left and right central sulcus was higher in bimanual than unimanual conditions. These findings demonstrate that passive movement can affect the connectivity within the sensory-motor network. We conclude that implicit detection of asymmetry during bimanual movement relies on associative somatosensory region in post-central areas, and that passive stimulation reduces the functional connectivity within the passive movement network. Our findings open the possibility to combine passive movement and inter-regional connectivity as a tool to investigate the functionality of the sensory-motor system in patients with very poor mobility.

  16. Elementary Bipoles, the Building Blocks of Active Regions

    Science.gov (United States)

    Martin, Sara F.; Mkhitaryan, M.

    2013-07-01

    New magnetic flux even in very small active regions appears as a succession of tiny bipolar magnetic fields that successively and concurrently appear in tight clusters. These smallest observable bipoles were initially called “elementary bipoles” when first seen in videomagnetograms from the Big Bear Solar Observatory (Martin, S. F. 1990, “Elementary Bipoles of Active Regions and Ephemeral Active Regions” Societa Astronomica Italiana, Memorie 61, 293). The magnetic flux of each pole of elementary bipole is approximately the same and measures 1018 Mx or less depending on both the spatial resolution and sensitivity of the magnetograph with which the measurements are made. The two poles initially occur very close together and rapidly move in opposite directions with a typical speed of 3 km/sec. The elementary bipoles within a cluster tend to emerge with similar orientations. The most common orientation of the elementary bipoles at any given time determines the “orientation” of a whole simple bipolar region. In this paper we illustrate and compare 6 clusters of elementary bipoles during the development of a large active region less than 2 days old when observed in Hα at the Dutch Open Telescope along with HMI/SDO. Each cluster of elementary bipoles behaves like a single simple bipolar active region. However the clusters are so close together that the magnetic flux of each bipolar cluster merges or cancels with adjacent clusters. The study of elementary bipoles provides a means of simplifying our understanding of the development of complex active regions depending on both the spatial resolution and sensitivity of the magnetograph with which the measurements are made.

  17. Helium line formation and abundance in a solar active region

    CERN Document Server

    Mauas, P J D; Falchi, A; Falciani, R; Teriaca, L N; Cauzzi, G

    2004-01-01

    An observing campaign (SOHO JOP 139), coordinated between ground based and SOHO instruments, has been planned to obtain simultaneous spectroheliograms of the same active region in several spectral lines. The chromospheric lines CaII K, Halpha and Na D as well as HeI 10830, 5876, 584 and HeII 304 AA lines have been observed.These simultaneous observations allow us to build semi-empirical models of the chromosphere and low transition region of an active region, taking into account the estimated total number of photoionizing photons impinging on the target active region and their spectral distribution. We obtained a model that matches very well all the observed line profiles, using a standard value for the He abundance ([He]=0.1) and a modified distribution of microturbulence. For this model we study the influence of the coronal radiation on the computed helium lines. We find that, even in an active region, the incident coronal radiation has a limited effect on the UV He lines, while it results of fundamental im...

  18. Determinants of Regional Entrepreneurial Activity in the Czech Republic

    Directory of Open Access Journals (Sweden)

    Ondřej Dvouletý

    2016-07-01

    Full Text Available The following study is focused on analysis of registered businesses in the 14 regions of the Czech Republic during the period of years 1995-2013. The aim of the study was to quantify factors that affect entrepreneurial activity expressed as rate of registered businesses per capita. Based on the previous empirical studies, the determinants were selected and hypothesis stated. Formed hypothesis investigated positive impact of GDP per capita, unemployment rate and R&D institutions on rate of registered business activity. To evaluate them, data were obtained from the Czech Statistical Office and formed into dataset. Firstly, panel regressions estimated with fixed effects method were employed and secondly, Granger causality tests to evaluate the relationship between entrepreneurial activity and GDP per capita were used. Regression estimates proved positive relationship between entrepreneurial activity in Czech regions and GDP per capita, unemployment rate and support activities of R&D institutions. Positive impact was also confirmed for population density, average age, share of tertiary educated population and real R&D expenditures. Testing Granger causality proved dual causality between entrepreneurial activity and GDP per capita confirming that GDP per capita as good predictor of economic development of Czech regions. Finally, economic growth motivates Czech individuals to enter entrepreneurial activity.

  19. Sunspots sketches during the solar eclipses of 9th January and 29th December of 1777 in Mexico

    Science.gov (United States)

    Domínguez-Castro, Fernando; Gallego, María Cruz; Vaquero, José Manuel

    2017-06-01

    Two sunspot observations recorded by the Mexican Felipe de Zúñiga y Ontiveros have been revealed from a manuscript. One sunspot group was recorded on 9th January 1777 and four sunspot groups on 29th December 1777. Both records were taken during the observation of solar eclipses from Mexico City and their description also included sketches of the solar disk with sunspots. The sunspot group corresponding to 9th January was also observed by Erasmus Lievog. The observation on 29th December 1777 is the only record corresponding to this date.

  20. Photospheric Magnetic Evolution in the WHI Active Regions

    Science.gov (United States)

    Welsch, B. T.; McTiernan, J. M.; Christe, S.

    2012-01-01

    Sequences of line-of-sight (LOS) magnetograms recorded by the Michelson Doppler Imager are used to quantitatively characterize photospheric magnetic structure and evolution in three active regions that rotated across the Sun s disk during the Whole Heliosphere Interval (WHI), in an attempt to relate the photospheric magnetic properties of these active regions to flares and coronal mass ejections (CMEs). Several approaches are used in our analysis, on scales ranging from whole active regions, to magnetic features, to supergranular scales, and, finally, to individual pixels. We calculated several parameterizations of magnetic structure and evolution that have previously been associated with flare and CME activity, including total unsigned magnetic flux, magnetic flux near polarity-inversion lines, amount of canceled flux, the "proxy Poynting flux," and helicity flux. To catalog flare events, we used flare lists derived from both GOES and RHESSI observations. By most such measures, AR 10988 should have been the most flare- and CME-productive active region, and AR 10989 the least. Observations, however, were not consistent with this expectation: ARs 10988 and 10989 produced similar numbers of flares, and AR 10989 also produced a few CMEs. These results highlight present limitations of statistics-based flare and CME forecasting tools that rely upon line-of-sight photospheric magnetic data alone.

  1. Sunspot Pattern Classification using PCA and Neural Networks (Poster)

    Science.gov (United States)

    Rajkumar, T.; Thompson, D. E.; Slater, G. L.

    2005-01-01

    The sunspot classification scheme presented in this paper is considered as a 2-D classification problem on archived datasets, and is not a real-time system. As a first step, it mirrors the Zuerich/McIntosh historical classification system and reproduces classification of sunspot patterns based on preprocessing and neural net training datasets. Ultimately, the project intends to move from more rudimentary schemes, to develop spatial-temporal-spectral classes derived by correlating spatial and temporal variations in various wavelengths to the brightness fluctuation spectrum of the sun in those wavelengths. Once the approach is generalized, then the focus will naturally move from a 2-D to an n-D classification, where "n" includes time and frequency. Here, the 2-D perspective refers both to the actual SOH0 Michelson Doppler Imager (MDI) images that are processed, but also refers to the fact that a 2-D matrix is created from each image during preprocessing. The 2-D matrix is the result of running Principal Component Analysis (PCA) over the selected dataset images, and the resulting matrices and their eigenvalues are the objects that are stored in a database, classified, and compared. These matrices are indexed according to the standard McIntosh classification scheme.

  2. Flocculent flows in the chromospheric canopy of a sunspot

    CERN Document Server

    Vissers, Gregal

    2012-01-01

    High-quality imaging spectroscopy in the H{\\alpha} line, obtained with the CRisp Imaging SpectroPolarimeter (CRISP) at the Swedish 1-m Solar Telescope (SST) at La Palma and covering a small sunspot and its surroundings, are studied. They exhibit ubiquitous flows both along fibrils making up the chromospheric canopy away from the spot and in the superpenumbra. We term these flows "flocculent" to describe their intermittent character, that is morphologically reminiscent of coronal rain. The flocculent flows are investigated further in order to determine their dynamic and morphological properties. For the measurement of their characteristic velocities, accelerations and sizes, we employ a new versatile analysis tool, the CRisp SPectral EXplorer (CRISPEX), which we describe in detail. Absolute velocities on the order of 7.2-82.4 km/s are found, with an average value of 36.5\\pm5.9 km/s and slightly higher typical velocities for features moving towards the sunspot than away. These velocities are much higher than th...

  3. LATERAL DOWNFLOWS IN SUNSPOT PENUMBRAL FILAMENTS AND THEIR TEMPORAL EVOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Esteban Pozuelo, S.; Rubio, L. R. Bellot [Instituto de Astrofísica de Andalucía (CSIC), Apdo. 3004, E-18008 Granada (Spain); Rodríguez, J. de la Cruz, E-mail: sesteban@iaa.es [Institute for Solar Physics, Dept. of Astronomy, Stockholm University, Albanova University Center, SE-10691 Stockholm (Sweden)

    2015-04-20

    We study the temporal evolution of downflows observed at the lateral edges of penumbral filaments in a sunspot located very close to the disk center. Our analysis is based on a sequence of nearly diffraction-limited scans of the Fe i 617.3 nm line taken with the CRisp Imaging Spectro-Polarimeter instrument at the Swedish 1 m Solar Telescope. We compute Dopplergrams from the observed intensity profiles using line bisectors and filter the resulting velocity maps for subsonic oscillations. Lateral downflows appear everywhere in the center-side penumbra as small, weak patches of redshifts next to or along the edges of blueshifted flow channels. These patches have an intermittent life and undergo mergings and fragmentations quite frequently. The lateral downflows move together with the hosting filaments and react to their shape variations, very much resembling the evolution of granular convection in the quiet Sun. There is a good relation between brightness and velocity in the center-side penumbra, with downflows being darker than upflows on average, which is again reminiscent of quiet Sun convection. These results point to the existence of overturning convection in sunspot penumbrae, with elongated cells forming filaments where the flow is upward but very inclined, and weak lateral downward flows. In general, the circular polarization profiles emerging from the lateral downflows do not show sign reversals, although sometimes we detect three-lobed profiles that are suggestive of opposite magnetic polarities in the pixel.

  4. The lost sunspot cycle: New support from Be10 measurements

    CERN Document Server

    Karoff, C; Knudsen, M F; Olsen, J; Fogtmann-Schulz, A

    2014-01-01

    It has been suggested that the deficit in the number of spots on the surface of the Sun between 1790 and 1830, known as the Dalton minimum, contained an extra cycle that was not identified in the original sunspot record by Wolf. Though this cycle would be shorter and weaker than the average solar cycle, it would shift the magnetic parity of the solar magnetic field of the earlier cycles. This extra cycle is sometimes referred to as the 'lost solar cycle' or 'cycle 4b'. Here we reanalyse Be10 measurements with annual resolution from the NGRIP ice core in Greenland in order to investigate if the hypothesis regarding a lost sunspot cycle is supported by these measurements. Specifically, we make use of the fact that the Galactic cosmic rays, responsible for forming Be10 in the Earth's atmosphere, are affected differently by the open solar magnetic field during even and odd solar cycles. This fact enables us to evaluate if the numbering of cycles earlier than cycle 5 is correct. For the evaluation, we use Bayesian...

  5. Synthetic observations of wave propagation in a sunspot umbra

    Energy Technology Data Exchange (ETDEWEB)

    Felipe, T. [NorthWest Research Associates, Colorado Research Associates, Boulder, CO 80301 (United States); Socas-Navarro, H.; Khomenko, E. [Instituto de Astrofísica de Canarias, C/Vía Láctea, s/n, E-38205 La Laguna, Tenerife (Spain)

    2014-11-01

    Spectropolarimetric temporal series from Fe I λ6301.5 Å and Ca II infrared triplet lines are obtained by applying the Stokes synthesis code NICOLE to a numerical simulation of wave propagation in a sunspot umbra from MANCHA code. The analysis of the phase difference between Doppler velocity and intensity core oscillations of the Fe I λ6301.5 Å line reveals that variations in the intensity are produced by opacity fluctuations rather than intrinsic temperature oscillations, except for frequencies between 5 and 6.5 mHz. On the other hand, the photospheric magnetic field retrieved from the weak field approximation provides the intrinsic magnetic field oscillations associated to wave propagation. Our results suggest that this is due to the low magnetic field gradient of our sunspot model. The Stokes parameters of the chromospheric Ca II infrared triplet lines show striking variations as shock waves travel through the formation height of the lines, including emission self-reversals in the line core and highly abnormal Stokes V profiles. Magnetic field oscillations inferred from the Ca II infrared lines using the weak field approximation appear to be related with the magnetic field strength variation between the photosphere and the chromosphere.

  6. Vertical magnetic field gradient in the photospheric layers of sunspots

    CERN Document Server

    Joshi, Jayant; Hirzberger, Johann; Solanki, Sami K; Tiwari, Sanjiv K

    2016-01-01

    We investigate the vertical gradient of the magnetic field of sunspots in the photospheric layer. Independent observations were obtained with the SOT/SP onboard the Hinode spacecraft and with the TIP-2 mounted at the VTT. We apply state-of-the-art inversion techniques to both data sets to retrieve the magnetic field and the corresponding vertical gradient. In the sunspot penumbrae we detected patches of negative vertical gradients of the magnetic field strength, i.e.,the magnetic field strength decreases with optical depth in the photosphere. The negative gradient patches are located in the inner and partly in the middle penumbrae in both data sets. From the SOT/SP observations, we found that the negative gradient patches are restricted mainly to the deep photospheric layers and are concentrated near the edges of the penumbral filaments. MHD simulations also show negative gradients in the inner penumbrae, also at the locations of filaments. Both in the observations and simulation negative gradients of the mag...

  7. Solar small-scale dynamo and polarity of sunspot groups

    CERN Document Server

    Sokoloff, D; Abramenko, V

    2015-01-01

    In order to clarify a possible role of small-scale dynamo in formation of solar magnetic field, we suggest an observational test for small-scale dynamo action based on statistics of anti-Hale sunspot groups. As we have shown, according to theoretical expectations the small-scale dynamo action has to provide a population of sunspot groups which do not follow the Hale polarity law, and the density of such groups on the time-latitude diagram is expected to be independent on the phase of the solar cycle. Correspondingly, a percentage of the anti-Hale groups is expected to reach its maximum values during solar minima. For several solar cycles, we considered statistics of anti-Hale groups obtained by several scientific teams, including ours, to find that the percentage of anti-Hale groups becomes indeed maximal during a solar minimum. Our interpretation is that this fact may be explained by the small-scale dynamo action inside the solar convective zone.

  8. Solar small-scale dynamo and polarity of sunspot groups

    Science.gov (United States)

    Sokoloff, D.; Khlystova, A.; Abramenko, V.

    2015-08-01

    In order to clarify a possible role of small-scale dynamo in formation of solar magnetic field, we suggest an observational test for small-scale dynamo action based on statistics of anti-Hale sunspot groups. As we have shown, according to theoretical expectations the small-scale dynamo action has to provide a population of sunspot groups which do not follow the Hale polarity law, and the density of such groups on the time-latitude diagram is expected to be independent on the phase of the solar cycle. Correspondingly, a percentage of the anti-Hale groups is expected to reach its maximum values during solar minima. For several solar cycles, we considered statistics of anti-Hale groups obtained by several scientific teams, including ours, to find that the percentage of anti-Hale groups becomes indeed maximal during a solar minimum. Our interpretation is that this fact may be explained by the small-scale dynamo action inside the solar convective zone.

  9. Surface-focused Seismic Holography of Sunspots: I. Observations

    CERN Document Server

    Braun, D C

    2008-01-01

    We present a comprehensive set of observations of the interaction of p-mode oscillations with sunspots using surface-focused seismic holography. Maps of travel-time shifts, relative to quiet-Sun travel times, are shown for incoming and outgoing p modes as well as their mean and difference. We compare results using phase-speed filters with results obtained with filters that isolate single p-mode ridges, and further divide the data into multiple temporal frequency bandpasses. The f mode is removed from the data. The variations of the resulting travel-time shifts with magnetic-field strength and with the filter parameters are explored. We find that spatial averages of these shifts within sunspot umbrae, penumbrae, and surrounding plage often show strong frequency variations at fixed phase speed. In addition, we find that positive values of the mean and difference travel-time shifts appear exclusively in waves observed with phase-speed filters that are dominated by power in the low-frequency wing of the p1 ridge....

  10. Sunspot and Starspot Lifetimes in a Turbulent Erosion Model

    Science.gov (United States)

    Litvinenko, Yuri E.; Wheatland, M. S.

    2017-01-01

    Quantitative models of sunspot and starspot decay predict the timescale of magnetic diffusion and may yield important constraints in stellar dynamo models. Motivated by recent measurements of starspot lifetimes, we investigate the disintegration of a magnetic flux tube by nonlinear diffusion. Previous theoretical studies are extended by considering two physically motivated functional forms for the nonlinear diffusion coefficient D: an inverse power-law dependence D ∝ B‑ν and a step-function dependence of D on the magnetic field magnitude B. Analytical self-similar solutions are presented for the power-law case, including solutions exhibiting “superfast” diffusion. For the step-function case, the heat-balance integral method yields approximate solutions, valid for moderately suppressed diffusion in the spot. The accuracy of the resulting solutions is confirmed numerically, using a method which provides an accurate description of long-time evolution by imposing boundary conditions at infinite distance from the spot. The new models may allow insight into the differences and similarities between sunspots and starspots.

  11. ON THE ACTIVE REGION BRIGHT GRAINS OBSERVED IN THE TRANSITION REGION IMAGING CHANNELS OF IRIS

    Energy Technology Data Exchange (ETDEWEB)

    Skogsrud, H.; Voort, L. Rouppe van der; Pontieu, B. De [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway)

    2016-02-01

    The Interface Region Imaging Spectrograph (IRIS) provides spectroscopy and narrow band slit-jaw (SJI) imaging of the solar chromosphere and transition region at unprecedented spatial and temporal resolutions. Combined with high-resolution context spectral imaging of the photosphere and chromosphere as provided by the Swedish 1 m Solar Telescope (SST), we can now effectively trace dynamic phenomena through large parts of the solar atmosphere in both space and time. IRIS SJI 1400 images from active regions, which primarily sample the transition region with the Si iv 1394 and 1403 Å lines, reveal ubiquitous bright “grains” which are short-lived (two to five minute) bright roundish small patches of sizes 0.″5–1.″7 that generally move limbward with velocities up to about 30 km s{sup −1}. In this paper, we show that many bright grains are the result of chromospheric shocks impacting the transition region. These shocks are associated with dynamic fibrils (DFs), most commonly observed in Hα. We find that the grains show the strongest emission in the ascending phase of the DF, that the emission is strongest toward the top of the DF, and that the grains correspond to a blueshift and broadening of the Si iv lines. We note that the SJI 1400 grains can also be observed in the SJI 1330 channel which is dominated by C ii lines. Our observations show that a significant part of the active region transition region dynamics is driven from the chromosphere below rather than from coronal activity above. We conclude that the shocks that drive DFs also play an important role in the heating of the upper chromosphere and lower transition region.

  12. Egeson's (George's transtridecadal weather cycling and sunspots

    Directory of Open Access Journals (Sweden)

    M. Sampson

    2010-09-01

    Full Text Available In the late 19th century, Charles Egeson, a map compiler at the Sydney Observatory, carried out some of the earliest research on climatic cycles, linking them to about 33-year cycles in solar activity, and predicted that a devastating drought would strike Australia at the turn of the 20th century. Eduard Brückner and William J. S. Lockyer, who, like Egeson, found similar cycles, with notable exceptions, are also, like the map compiler, mostly forgotten. But the transtridecadal cycles are important in human physiology, economics and other affairs and are particularly pertinent to ongoing discusions of climate change. Egeson's publication of daily weather reports preceded those officially recorded. Their publication led to clashes with his superiors and his personal life was marked by run-ins with the law and, possibly, an implied, but not proven, confinement in an insane asylum and premature death. We here track what little is known of Egeson's life and of his bucking of the conventional scientific wisdom of his time with tragic results.

  13. Thermospheric density model biases at the 23rd sunspot maximum

    Science.gov (United States)

    Pardini, C.; Moe, K.; Anselmo, L.

    2012-07-01

    Uncertainties in the neutral density estimation are the major source of aerodynamic drag errors and one of the main limiting factors in the accuracy of the orbit prediction and determination process at low altitudes. Massive efforts have been made over the years to constantly improve the existing operational density models, or to create even more precise and sophisticated tools. Special attention has also been paid to research more appropriate solar and geomagnetic indices. However, the operational models still suffer from weakness. Even if a number of studies have been carried out in the last few years to define the performance improvements, further critical assessments are necessary to evaluate and compare the models at different altitudes and solar activity conditions. Taking advantage of the results of a previous study, an investigation of thermospheric density model biases during the last sunspot maximum (October 1999 - December 2002) was carried out by analyzing the semi-major axis decay of four satellites: Cosmos 2265, Cosmos 2332, SNOE and Clementine. Six thermospheric density models, widely used in spacecraft operations, were analyzed: JR-71, MSISE-90, NRLMSISE-00, GOST-2004, JB2006 and JB2008. During the time span considered, for each satellite and atmospheric density model, a fitted drag coefficient was solved for and then compared with the calculated physical drag coefficient. It was therefore possible to derive the average density biases of the thermospheric models during the maximum of the 23rd solar cycle. Below 500 km, all the models overestimated the average atmospheric density by amounts varying between +7% and +20%. This was an inevitable consequence of constructing thermospheric models from density data obtained by assuming a fixed drag coefficient, independent of altitude. Because the uncertainty affecting the drag coefficient measurements was about 3% at both 200 km and 480 km of altitude, the calculated air density biases below 500 km were

  14. METHODOLOGICAL ESSENTIAL PRINCIPLES OF REGIONAL INVESTMENT ACTIVITY FINANCEMENT MECHANIZM IMPROVEMENT

    OpenAIRE

    V.V. Morozov

    2005-01-01

    The strategy principles and main directions of regional investment activity financement mechanism improvement are formulated and worked out in the article. The contemporary conditions are analyzed, the factors are researched, the priority directions are defined, the suggestions on the better use of investment sources are worked out, and on this base the suggestions on the investment process activization in the territorial systems are worked out.

  15. The Evolution of Dark Canopies Around Active Regions

    CERN Document Server

    Wang, Y -M; Muglach, K

    2011-01-01

    As observed in spectral lines originating from the chromosphere, transition region, and low corona, active regions are surrounded by an extensive "circumfacular" area which is darker than the quiet Sun. We examine the properties of these dark moat- or canopy-like areas using \\ion{Fe}{9} 17.1 nm images and line-of-sight magnetograms from the {\\it Solar Dynamics Observatory}. The 17.1 nm canopies consist of fibrils (horizontal fields containing EUV-absorbing chromospheric material) clumped into featherlike structures. The dark fibrils initially form a quasiradial or vortical pattern as the low-lying field lines fanning out from the emerging active region connect to surrounding network and intranetwork elements of the opposite polarity. The area occupied by the 17.1 nm fibrils expands as supergranular convection causes the active region flux to spread into the background medium; the outer boundary of the dark canopy stabilizes where the diffusing flux encounters a unipolar region of the opposite sign. The dark f...

  16. Check the special moves Halftone a central sun sunspot different angles using local correlation tracking

    Directory of Open Access Journals (Sweden)

    Monireh Askarikhah

    2016-03-01

    Full Text Available Sunspots, solar magnetic field effect on a large scale are outstanding. In this research field study of surface movement (special move in a Lightening Solar Shade Halftone sphere central angle of the sun in three different here. The evolution of current research and special horizontal movement in a sunspot on the basis of time-series observations imaging data in the blue spectral range with a wavelength continuum Central line spots active area of 4504 angstroms During the 3 day 10933NOAA dated 7 January (9.0 hours (UT 12:35 until (UT 12: 56, 8 January (8.0 hours (UT 06: 00 to (UT 06 21, Jan 9 (6/0 of the time (UT 05: 00 to (UT 05: 21, 2007 were obtained by using LCT (local correlation tracking has studied. Halftone stains in the three-averaged (averaged over 10 consecutive images and averaged over 20 consecutive images flow rate for each of the three categories Map angles (total 9 speed stream map obtained, as well as a lot of speed graph speed on the map, each of which is for an angle we examined. What is clear in some parts of the maps quickly climb (eruption in plasma and in some places fall (collapse plasma-level Halftone be observed. The maps quickly, the (current intensity Halftone patterns toward the inner penumbra shadow and movement patterns foreign to the outside strongly suggest Halftone That resulted in the dismissal of this shift is the dividing line that location is reached. Due to the frequency graph maps quickly we realized all three angles to this topic Slick passing moves quickly, especially given that the three angles of the half shadow has fallen. As well as speed of movement of the intensity of the Halftone patterns of the dividing line within the shadows of the reductions in external Halftone dividing line toward the photosphere increases.

  17. Socioeconomic and regional differences in active transportation in Brazil

    Directory of Open Access Journals (Sweden)

    Thiago Hérick de Sá

    2016-01-01

    Full Text Available ABSTRACT OBJECTIVE To present national estimates regarding walking or cycling for commuting in Brazil and in 10 metropolitan regions. METHODS By using data from the Health section of 2008’s Pesquisa Nacional por Amostra de Domicílio (Brazil’s National Household Sample Survey, we estimated how often employed people walk or cycle to work, disaggregating our results by sex, age range, education level, household monthly income per capita, urban or rural address, metropolitan regions, and macro-regions in Brazil. Furthermore, we estimated the distribution of this same frequency according to quintiles of household monthly income per capita in each metropolitan region of the country. RESULTS A third of the employed men and women walk or cycle from home to work in Brazil. For both sexes, this share decreases as income and education levels rise, and it is higher among younger individuals, especially among those living in rural areas and in the Northeast region of the country. Depending on the metropolitan region, the practice of active transportation is two to five times more frequent among low-income individuals than among high-income individuals. CONCLUSIONS Walking or cycling to work in Brazil is most frequent among low-income individuals and the ones living in less economically developed areas. Active transportation evaluation in Brazil provides important information for public health and urban mobility policy-making

  18. LOCAL DEVELOPMENT IN NORTHEST REGION THROUGH ACTIVITIES IN ITC DOMAIN

    Directory of Open Access Journals (Sweden)

    Daniela\tENACHESCU

    2015-06-01

    Full Text Available Economic areas with high technology are key drivers in sustainable regional development, including unemployment and consequently decreasing population migration in the region. Northeast Region is the largest development region of Romania in terms of number of inhabitants and the owned area. On 01/01/2014, according to balance employment, labor resources of the region were numbered 2,428,700, which represent 49.6% of employed population. The registered unemployment rate at 31 August 2014 was 6.5%, with 82 thousand unemployed registered. In terms of participation in the main economic activities, civilian employment in agriculture, forestry and fishing is predominant (40.1% while in service, civilian employment is 37.1%, while industry and construction is 22.8%. The paper aims to analyze the situation that the potential employment and development opportunities for the Northeast region through activities in the field of ITC domain. Unfortunately, this area was the worst in most indicators, the use of computers and the internet to the turnover of companies and investments in the IT & C and unfortunately in terms of employment population that is under 50%

  19. Enhanced ULF electromagnetic activity detected by DEMETER above seismogenic regions

    CERN Document Server

    Athanasiou, M; David, C; Anagnostopoulos, G

    2013-01-01

    In this paper we present results of a comparison between ultra low frequency (ULF) electromagnetic (EM) radiation, recorded by an electric field instrument (ICE) onboard the satellite DEMETER in the topside ionosphere, and the seismicity of regions with high and lower seiismic activity. In particular we evaluated the energy variations of the ULF Ez-electric field component during a period of four years (2006-2009), in order to examine check the possible relation of ULF EM radiation with seismogenic regions located in central America, Indonesia, Eastern Mediterranean Basin and Greece. As a tool of evaluating the ULF Ez energy variations we used Singular Spectrum Analysis (SSA) techniques. The results of our analysis clearly show a significant increase of the ULF EM energy emmited from regions of highest seismic activity at the tectonic plates boundaries. We interpret these results as suggesting that the highest ULF EM energy detected in the topside ionosphere is originated from seismic processes within Earth's...

  20. Active region upflows: 2. Data driven MHD modeling

    CERN Document Server

    Galsgaard, K; Vanninathan, K; Huang, Z; Presmann, M

    2015-01-01

    Context. Observations of many active regions show a slow systematic outflow/upflow from their edges lasting from hours to days. At present no physical explanation has been proven, while several suggestions have been put forward. Aims. This paper investigates one possible method for maintaining these upflows assuming that convective motions drive the magnetic field to initiate them through magnetic reconnection. Methods. We use Helioseismic and Magnetic Imager (HMI) data to provide an initial potential three dimensional magnetic field of the active region NOAA 11123 on 2010 November 13 where the characteristic upflow velocities are observed. A simple one-dimensional hydrostatic atmospheric model covering the region from the photosphere to the corona is derived. Local Correlation Tracking of the magnetic features in the HMI data is used to derive a proxy for the time dependent velocity field. The time dependent evolution of the system is solved using a resistive three-dimensional MagnetoHydro-Dynamic code. Resu...

  1. The transcriptionally active regions in the genome of Bacillus subtilis

    DEFF Research Database (Denmark)

    Rasmussen, Simon; Nielsen, Henrik Bjørn; Jarmer, Hanne Østergaard

    2009-01-01

    The majority of all genes have so far been identified and annotated systematically through in silico gene finding. Here we report the finding of 3662 strand-specific transcriptionally active regions (TARs) in the genome of Bacillus subtilis by the use of tiling arrays. We have measured the genome...

  2. Helicity of Solar Active Regions from a Dynamo Model

    Indian Academy of Sciences (India)

    Piyali Chatterjee

    2006-06-01

    We calculate helicities of solar active regions based on the idea that poloidal flux lines get wrapped around a toroidal flux tube rising through the convection zone, thereby giving rise to the helicity. We use our solar dynamo model based on the Babcock–Leighton -effect to study how helicity varies with latitude and time.

  3. The active region in galactic nuclei a spinar model

    CERN Document Server

    Pacini, F

    1978-01-01

    Shows that in the spinar model for active galactic nuclei the physical parameters of the central region are unequivocally determined by observational qualities. In homogeneous models the energy output via the inverse Compton effect should be of the same order as the primary emission. (5 refs).

  4. Unwinding motion of a twisted active region filament

    Energy Technology Data Exchange (ETDEWEB)

    Yan, X. L.; Xue, Z. K.; Kong, D. F. [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Liu, J. H. [Department of Physics, Shijiazhuang University, Shijiazhuang 050035 (China); Xu, C. L. [Yunnan Normal University, Kunming 650092 (China)

    2014-12-10

    To better understand the structures of active region filaments and the eruption process, we study an active region filament eruption in active region NOAA 11082 in detail on 2010 June 22. Before the filament eruption, the opposite unidirectional material flows appeared in succession along the spine of the filament. The rising of the filament triggered two B-class flares at the upper part of the filament. As the bright material was injected into the filament from the sites of the flares, the filament exhibited a rapid uplift accompanying the counterclockwise rotation of the filament body. From the expansion of the filament, we can see that the filament consisted of twisted magnetic field lines. The total twist of the filament is at least 5π obtained by using a time slice method. According to the morphology change during the filament eruption, it is found that the active region filament was a twisted flux rope and its unwinding motion was like a solar tornado. We also find that there was a continuous magnetic helicity injection before and during the filament eruption. It is confirmed that magnetic helicity can be transferred from the photosphere to the filament. Using the extrapolated potential fields, the average decay index of the background magnetic fields over the filament is 0.91. Consequently, these findings imply that the mechanism of solar filament eruption could be due to the kink instability and magnetic helicity accumulation.

  5. Unwinding motion of a twisted active-region filament

    CERN Document Server

    Yan, X L; Liu, J H; Kong, D F; Xu, C L

    2014-01-01

    To better understand the structures of active-region filaments and the eruption process, we study an active-region filament eruption in active region NOAA 11082 in detail on June 22, 2010. Before the filament eruption, the opposite unidirectional material flows appeared in succession along the spine of the filament. The rising of the filament triggered two B-class flares at the upper part of the filament. As the bright material was injected into the filament from the sites of the flares, the filament exhibited a rapid uplift accompanying the counterclockwise rotation of the filament body. From the expansion of the filament, we can see that the filament is consisted of twisted magnetic field lines. The total twist of the filament is at least 5$\\pi$ obtained by using time slice method. According to the morphology change during the filament eruption, it is found that the active-region filament was a twisted flux rope and its unwinding motion was like a solar tornado. We also find that there was a continuous magn...

  6. Unwinding Motion of a Twisted Active Region Filament

    Science.gov (United States)

    Yan, X. L.; Xue, Z. K.; Liu, J. H.; Kong, D. F.; Xu, C. L.

    2014-12-01

    To better understand the structures of active region filaments and the eruption process, we study an active region filament eruption in active region NOAA 11082 in detail on 2010 June 22. Before the filament eruption, the opposite unidirectional material flows appeared in succession along the spine of the filament. The rising of the filament triggered two B-class flares at the upper part of the filament. As the bright material was injected into the filament from the sites of the flares, the filament exhibited a rapid uplift accompanying the counterclockwise rotation of the filament body. From the expansion of the filament, we can see that the filament consisted of twisted magnetic field lines. The total twist of the filament is at least 5π obtained by using a time slice method. According to the morphology change during the filament eruption, it is found that the active region filament was a twisted flux rope and its unwinding motion was like a solar tornado. We also find that there was a continuous magnetic helicity injection before and during the filament eruption. It is confirmed that magnetic helicity can be transferred from the photosphere to the filament. Using the extrapolated potential fields, the average decay index of the background magnetic fields over the filament is 0.91. Consequently, these findings imply that the mechanism of solar filament eruption could be due to the kink instability and magnetic helicity accumulation.

  7. Tests of Sunspot Number Sequences: 2. Using Geomagnetic and Auroral Data

    CERN Document Server

    Lockwood, Mike; Barnard, Luke A; Scott, Chris J; Usoskin, Ilya G; Nevanlinna, Heikki

    2016-01-01

    We compare four sunspot-number data sequences against geomagnetic and terrestrial auroral observations. The comparisons are made for the original SIDC composite of Wolf-Zurich-International sunspot number [$R_{ISNv1}$], the group sunspot number [$R_{G}$] by Hoyt and Schatten (Solar Phys., 1998), the new "backbone" group sunspot number [$R_{BB}$] by Svalgaard and Schatten (Solar Phys., 2016), and the "corrected" sunspot number [$R_{C}$] by Lockwood at al. (J.G.R., 2014). Each sunspot number is fitted with terrestrial observations, or parameters derived from terrestrial observations to be linearly proportional to sunspot number, over a 30-year calibration interval of 1982-2012. The fits are then used to compute test sequences, which extend further back in time and which are compared to $R_{ISNv1}$, $R_{G}$, $R_{BB}$, and $R_{C}$. To study the long-term trends, comparisons are made using averages over whole solar cycles (minimum-to-minimum). The test variations are generated in four ways: i) using the IDV(1d) an...

  8. Solar magnetic field studies using the 12 micron emission lines. I - Quiet sun time series and sunspot slices

    Science.gov (United States)

    Deming, Drake; Boyle, Robert J.; Jennings, Donald E.; Wiedemann, Gunter

    1988-01-01

    The use of the extremely Zeeman-sensitive IR emission line Mg I, at 12.32 microns, to study solar magnetic fields. Time series observations of the line in the quiet sun were obtained in order to determine the response time of the line to the five-minute oscillations. Based upon the velocity amplitude and average period measured in the line, it is concluded that it is formed in the temperature minimum region. The magnetic structure of sunspots is investigated by stepping a small field of view in linear 'slices' through the spots. The region of penumbral line formation does not show the Evershed outflow common in photospheric lines. The line intensity is a factor of two greater in sunspot penumbrae than in the photosphere, and at the limb the penumbral emission begins to depart from optical thinness, the line source function increasing with height. For a spot near disk center, the radial decrease in absolute magnetic field strength is steeper than the generally accepted dependence.

  9. Small-scale magnetic flux emergence in a sunspot light bridge

    Science.gov (United States)

    Louis, Rohan E.; Bellot Rubio, Luis R.; de la Cruz Rodríguez, Jaime; Socas-Navarro, Héctor; Ortiz, Ada

    2015-12-01

    Context. Light bridges are convective intrusions in sunspots that often show enhanced chromospheric activity. Aims: We seek to determine the nature of flux emergence in a light bridge and the processes related to its evolution in the solar atmosphere. Methods: We analyse a sequence of high-resolution spectropolarimetric observations of a sunspot taken at the Swedish 1-m Solar Telescope. The data consist of spectral scans of the photospheric Fe i line pair at 630 nm and the chromospheric Ca ii 854.2 nm line. Bisectors were used to construct Dopplergrams from the Fe i 630.15 nm measurements. We employed LTE and non-LTE inversions to derive maps of physical parameters in the photosphere and chromosphere, respectively. Results: We observe the onset of blueshifts of about 2 km s-1 near the entrance of a granular light bridge on the limbward side of the spot. The blueshifts lie immediately next to a strongly redshifted patch that appeared six minutes earlier. Both patches can be seen for 25 min until the end of the sequence. The blueshifts coincide with an elongated emerging granule, while the redshifts appear at the end of the granule. In the photosphere, the development of the blueshifts is accompanied by a simultaneous increase in field strength of about 400 G. The field inclination increases by some 25°, becoming nearly horizontal. At the position of the redshifts, the magnetic field is equally horizontal but of opposite polarity. An intense brightening is seen in the Ca ii filtergrams over the blueshifts and redshifts, about 17 min after their detection in the photosphere. The brightening is due to emission in the blue wing of the Ca ii 854.2 nm line, close to its knee. Non-LTE inversions reveal that this kind of asymmetric emission is caused by a temperature enhancement of ~700 K between -5.0 ≤ log τ ≤ -3.0 and a blueshift of 3 km s-1 at log τ = -2.3 that decreases to zero at log τ = -6.0 Conclusions: The photospheric blueshifts and redshifts observed in a

  10. Regional differences in rat conjunctival ion transport activities

    OpenAIRE

    2012-01-01

    Active ion transport and coupled osmotic water flow are essential to maintain ocular surface health. We investigated regional differences in the ion transport activities of the rat conjunctivas and compared these activities with those of cornea and lacrimal gland. The epithelial sodium channel (ENaC), sodium/glucose cotransporter 1 (Slc5a1), transmembrane protein 16 (Tmem16a, b, f, and g), cystic fibrosis transmembrane conductance regulator (Cftr), and mucin (Muc4, 5ac, and 5b) mRNA expressio...

  11. Sunspot numbers based on historic records in the 1610s: Early telescopic observations by Simon Marius and others

    Science.gov (United States)

    Neuhäuser, R.; Neuhäuser, D. L.

    2016-07-01

    Hoyt & Schatten (1998) claim that Simon Marius would have observed the sun from 1617 Jun 7 to 1618 Dec 31 (Gregorian calendar) all days, except three short gaps in 1618, but would never have detected a sunspot - based on a quotation from Marius in Wolf (1857), but mis-interpreted by Hoyt & Schatten. Marius himself specified in early 1619 that for one and a half year ... rather few or more often no spots could be detected ... which was never observed before (Marius 1619). The generic statement by Marius can be interpreted such that the active day fraction was below 0.5 (but not zero) from fall 1617 to spring 1619 and that it was 1 before fall 1617 (since August 1611). Hoyt & Schatten cite Zinner (1952), who referred to Zinner (1942), where observing dates by Marius since 1611 are given but which were not used by Hoyt & Schatten. We present all relevant texts from Marius where he clearly stated that he observed many spots in different form on and since 1611 Aug 3 (Julian) = Aug 13 (Greg.) (on the first day together with Ahasverus Schmidnerus); 14 spots on 1612 May 30 (Julian) = Jun 9 (Greg.), which is consistent with drawings by Galilei and Jungius for that day, the latter is shown here for the first time; at least one spot on 1611 Oct 3 and/or 11 (Julian), i.e. Oct 13 and/or 21 (Greg.), when he changed his sunspot observing technique; he also mentioned that he has drawn sunspots for 1611 Nov 17 (Julian) = Nov 27 (Greg.); in addition to those clearly datable detections, there is evidence in the texts for regular observations. For all the information that can be compared to other observers, the data from Marius could be confirmed, so that his texts are highly credible. We also correct several shortcomings or apparent errors in the database by Hoyt & Schatten (1998) regarding 1612 (Harriot), 1615 (Saxonius, Tardé), 1616 (Tardé), 1617-1619 (Marius, Riccioli/Argoli), and Malapert (for 1618, 1620, and 1621). Furthermore, Schmidnerus, Cysat, David & Johann Fabricius

  12. GPS based TEC measurements for a period August 2008–December 2009 near the northern crest of Indian equatorial ionospheric anomaly region

    Indian Academy of Sciences (India)

    S P Karia; K N Pathak

    2011-10-01

    In recent years, measurements of total electron content (TEC) have gained importance with increasing demand for the GPS-based navigation applications in trans-ionospheric communications. To study the variation in ionospheric TEC, we used the data obtained from GPS Ionospheric Scintillation and TEC monitoring (GISTM) system which is in operation at SVNIT, Surat, India (21.16°N, 72.78°E) located at the northern crest of equatorial anomaly region. The data collected (for the low sunspot activity period from August 2008–December 2009) were used to study the diurnal, monthly, seasonal semi-annual and annual variations of TEC at Surat. It was observed that the diurnal variation at the region reaches its maximum value between 13:00 and 16:00 IST. The monthly average diurnal variations showed that the TEC maximizes during the equinox months followed by the winter months, and are lowest during the summer months. The ionospheric range delay to TEC for the primary GPS signal is 0.162 m per TECU. The diurnal variation in TEC shows a minimum to maximum variation of about 5 to 50 TECU (in current low sunspot activity periods). These TEC values correspond to range delay variations of about 1 to 9 m at Surat. These variations in the range delay will certainly increase in high sunspot activity periods. Detected TEC variations are also closely related to space weather characterizing quantities such as solar wind and geomagnetic activity indices.

  13. Active faulting in the Birjand region of NE Iran

    Science.gov (United States)

    Walker, R. T.; Khatib, M. M.

    2006-08-01

    We use satellite imagery and field observations to investigate the distribution of active faults around Birjand in eastern Iran to determine how the transition between conjugate zones of faulting can be accommodated by diffuse active faulting. In the south of the study area, right-lateral strike-slip faults of the Sistan Suture Zone end in thrusts which die away westward from the strike-slip faults. These thrust terminations appear to allow a northward change to E-W thrusting in central parts of the study area. The introduction of E-W thrusting is, in turn, likely to facilitate a change to E-W left-lateral faulting north of the study region. The relatively diffuse pattern of active faulting at Birjand relates to the regional transition between N-S and E-W strike-slip faulting in northeast Iran, which involves a change from nonrotational to rotational deformation. The change from N-S to E-W faulting is likely to result from the orientation of preexisting structures in Iran and western Afghanistan, which are roughly parallel to the active fault zones. The features described at Birjand also show the influence of preexisting structure on the location and style of active faulting at a local scale, with the position of individual faults apparently controlled by inherited geological weaknesses. Very few modern earthquakes have occurred in the region of Birjand and yet destructive events are known from the historical record. The large number of active faults mapped in this study pose a substantial seismic hazard to Birjand and surrounding regions.

  14. On the Magnetic Field Strength of Active Region Filaments

    CERN Document Server

    Kuckein, C; Pillet, V Martinez; Casini, R; Sainz, R Manso; Shimizu, T

    2009-01-01

    We study the vector magnetic field of a filament observed over a compact Active Region Neutral Line. Spectropolarimetric data acquired with TIP-II (VTT, Tenerife, Spain) of the 10830 \\AA spectral region provide full Stokes vectors which were analyzed using three different methods: magnetograph analysis, Milne-Eddington inversions and PCA-based atomic polarization inversions. The inferred magnetic field strengths in the filament are of the order of 600 - 700 G by all these three methods. Longitudinal fields are found in the range of 100 - 200 G whereas the transverse components become dominant, with fields as large as 500 - 600 G. We find strong transverse fields near the Neutral Line also at photospheric levels. Our analysis indicates that strong (higher than 500 G, but below kG) transverse magnetic fields are present in Active Region filaments. This corresponds to the highest field strengths reliably measured in these structures. The profiles of the Helium 10830 \\AA lines observed in this Active Region filam...

  15. Static and Dynamic Modeling of a Solar Active Region

    Science.gov (United States)

    Warren, Harry P.; Winebarger, Amy R.

    2007-09-01

    Recent hydrostatic simulations of solar active regions have shown that it is possible to reproduce both the total intensity and the general morphology of the high-temperature emission observed at soft X-ray wavelengths using static heating models. These static models, however, cannot account for the lower temperature emission. In addition, there is ample observational evidence that the solar corona is highly variable, indicating a significant role for dynamical processes in coronal heating. Because they are computationally demanding, full hydrodynamic simulations of solar active regions have not been considered previously. In this paper we make first application of an impulsive heating model to the simulation of an entire active region, AR 8156 observed on 1998 February 16. We model this region by coupling potential field extrapolations to full solutions of the time-dependent hydrodynamic loop equations. To make the problem more tractable we begin with a static heating model that reproduces the emission observed in four different Yohkoh Soft X-Ray Telescope (SXT) filters and consider impulsive heating scenarios that yield time-averaged SXT intensities that are consistent with the static case. We find that it is possible to reproduce the total observed soft X-ray emission in all of the SXT filters with a dynamical heating model, indicating that nanoflare heating is consistent with the observational properties of the high-temperature solar corona. At EUV wavelengths the simulated emission shows more coronal loops, but the agreement between the simulation and the observation is still not acceptable.

  16. Vertical magnetic field gradient in the photospheric layers of sunspots

    Science.gov (United States)

    Joshi, Jayant; Lagg, Andreas; Hirzberger, Johann; Solanki, Sami K.; Tiwari, Sanjiv K.

    2017-03-01

    Aims: We investigate the vertical gradient of the magnetic field of sunspots in the photospheric layer. Methods: Independent observations were obtained with the Solar Optical Telescope/Spectropolarimeter (SOT/SP) on board the Hinode spacecraft and with the Tenrife Infrared Polarimeter-2 (TIP-2) mounted at the German Vacuum Tower Telescope (VTT). We apply state-of-the-art inversion techniques to both data sets to retrieve the magnetic field and the corresponding vertical gradient along with other atmospheric parameters in the solar photosphere. Results: In the sunspot penumbrae we detected patches of negative vertical gradients of the magnetic field strength, i.e., the magnetic field strength decreases with optical depth in the photosphere. The negative gradient patches are located in the inner and partly in the middle penumbrae in both data sets. From the SOT/SP observations we found that the negative gradient patches are restricted mainly to the deep photospheric layers and are concentrated near the edges of the penumbral filaments. Magnetohydrodynamic (MHD) simulations also show negative gradients in the inner penumbrae, also at the locations of filaments. In the observations and the simulation negative gradients of the magnetic field vs. optical depth dominate at some radial distances in the penumbra. The negative gradient with respect to optical depth in the inner penumbrae persists even after averaging in the azimuthal direction in the observations and, to a lesser extent, in the MHD simulations. If the gradients in the MHD simulations are determined with respect to geometrical height, then the azimuthal averages are always positive within the sunspot (above log τ = 0), corresponding to magnetic field increasing with depth, as generally expected. Conclusions: We interpret the observed localized presence of negative vertical gradient of the magnetic field strength in the observations as a consequence of stronger field from spines expanding with height and

  17. Decreased replication origin activity in temporal transition regions.

    Science.gov (United States)

    Guan, Zeqiang; Hughes, Christina M; Kosiyatrakul, Settapong; Norio, Paolo; Sen, Ranjan; Fiering, Steven; Allis, C David; Bouhassira, Eric E; Schildkraut, Carl L

    2009-11-30

    In the mammalian genome, early- and late-replicating domains are often separated by temporal transition regions (TTRs) with novel properties and unknown functions. We identified a TTR in the mouse immunoglobulin heavy chain (Igh) locus, which contains replication origins that are silent in embryonic stem cells but activated during B cell development. To investigate which factors contribute to origin activation during B cell development, we systematically modified the genetic and epigenetic status of the endogenous Igh TTR and used a single-molecule approach to analyze DNA replication. Introduction of a transcription unit into the Igh TTR, activation of gene transcription, and enhancement of local histone modifications characteristic of active chromatin did not lead to origin activation. Moreover, very few replication initiation events were observed when two ectopic replication origin sequences were inserted into the TTR. These findings indicate that the Igh TTR represents a repressive compartment that inhibits replication initiation, thus maintaining the boundaries between early and late replication domains.

  18. Reconstruction of Subdecadal Changes in Sunspot Numbers Based on the NGRIP 10Be Record

    Science.gov (United States)

    Inceoglu, F.; Knudsen, M. F.; Karoff, C.; Olsen, J.

    2014-11-01

    Sunspot observations since 1610 A.D. show that the solar magnetic activity displays long-term changes, from Maunder Minimum-like low-activity states to Modern Maximum-like high-activity episodes, as well as short-term variations, such as the pronounced 11-year periodicity. Information on changes in solar activity levels before 1610 relies on proxy records of solar activity stored in natural archives, such as 10Be in ice cores and 14C in tree rings. These cosmogenic radionuclides are produced by the interaction between Galactic cosmic rays (GCRs) and atoms in the Earth's atmosphere; their production rates are anti-correlated with the solar magnetic activity. The GCR intensity displays a distinct 11-year periodicity due to solar modulation of the GCRs in the heliosphere, which is inversely proportional to, but out of phase with, the 11-year solar cycle. This implies a time lag between the actual solar cycles and the GCR intensity, which is known as the hysteresis effect. In this study, we use the North Greenland Ice Core Project (NGRIP) records of the 10Be flux to reconstruct the solar modulation strength (Φ), which describes the modulation of GCRs throughout the heliosphere, to reconstruct both long-term and subdecadal changes in sunspot numbers (SSNs). We compare three different approaches for reconstructing subdecadal-scale changes in SSNs, including a linear approach and two approaches based on the hysteresis effect, i.e. models with ellipse-linear and ellipse relationships between Φ and SSNs. We find that the ellipse approach provides an amplitude-sensitive reconstruction and the highest cross-correlation coefficients in comparison with the ellipse-linear and linear approaches. The long-term trend in the reconstructed SSNs is computed using a physics-based model and agrees well with the other group SSN reconstructions. The new empirical approach, combining a physics-based model with ellipse-modeling of the 11-year cycle, therefore provides a method for

  19. PATTERNS OF ACTIVITY IN A GLOBAL MODEL OF A SOLAR ACTIVE REGION

    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, S. J. [Department of Physics and Astronomy, Rice University, Houston, TX 77005 (United States); Viall, N. M., E-mail: stephen.bradshaw@rice.edu, E-mail: Nicholeen.M.Viall@nasa.gov [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2016-04-10

    In this work we investigate the global activity patterns predicted from a model active region heated by distributions of nanoflares that have a range of frequencies. What differs is the average frequency of the distributions. The activity patterns are manifested in time lag maps of narrow-band instrument channel pairs. We combine hydrodynamic and forward modeling codes with a magnetic field extrapolation to create a model active region and apply the time lag method to synthetic observations. Our aim is not to reproduce a particular set of observations in detail, but to recover some typical properties and patterns observed in active regions. Our key findings are the following. (1) Cooling dominates the time lag signature and the time lags between the channel pairs are generally consistent with observed values. (2) Shorter coronal loops in the core cool more quickly than longer loops at the periphery. (3) All channel pairs show zero time lag when the line of sight passes through coronal loop footpoints. (4) There is strong evidence that plasma must be re-energized on a timescale comparable to the cooling timescale to reproduce the observed coronal activity, but it is likely that a relatively broad spectrum of heating frequencies are operating across active regions. (5) Due to their highly dynamic nature, we find nanoflare trains produce zero time lags along entire flux tubes in our model active region that are seen between the same channel pairs in observed active regions.

  20. Study and assessment of clusters activity effect on regional economy

    Directory of Open Access Journals (Sweden)

    Babkin A.

    2017-01-01

    Full Text Available The cluster approach, i.e., forming basic innovative and industrial clusters is widely applied in modern Russian conditions for the development of the economy. These actions are considered as effective measures for implementing the economic policy stimulating regional development by federal and regional authorities. The analysis we carried out showed that the quantitative approach for assessing the efficiency of cluster creation and performance is still insufficiently used. In this paper we establish and quantitatively estimate the influence cluster have on the regional economy using regression analysis with an example of a number of Russian regional clusters. Expanding the practice of creation and the state support of clusters taking into account the revealed quantitative dependences estimating their efficiency is suggested. We have advanced the hypothesis that clustering has a positive influence on regional economy, and confirmed this influence by means of quantitative methods using representative datasets. Our study of course had a selective character as it is not possible to carry out the calculations for all the existing clusters and cluster initiatives of Russia and discuss the results within a single article. At the same time, following the analysis we performed, we concluded that it is effective to initiate cluster creation in Russian regions. It is shown that cluster activity is capable to have of having a positive impact on GRP growth and the budgetary income in the region. Along with that, we note the dissimilarities in the multiplying influence of clusters on the regional development, its dependence on territorial and branch specifics that will be the direction for a further indepth study.

  1. Convective motions and net circular polarization in sunspot penumbrae

    CERN Document Server

    Borrero, J M

    2009-01-01

    We have employed a penumbral model, that includes the Evershed flow and convective motions inside penumbral filaments, to reproduce the azimuthal variation of the net circular polarization (NCP) in sunspot penumbrae at different heliocentric angles for two different spectral lines. The theoretical net circular polarization fits the observations as satisfactorily as penumbral models based on flux-tubes. The reason for this is that the effect of convective motions on the NCP is very small compared to the effect of the Evershed flow. In addition, the NCP generated by convective upflows cancels out the NCP generated by the downflows. We have also found that, in order to fit the observed NCP, the strength of the magnetic field inside penumbral filaments must be very close to 1000 G. In particular, field-free or weak-field filaments fail to reproduce both the correct sign of the net circular polarization, as well as its dependence on the azimuthal and heliocentric angles.

  2. Vigorous convection in a sunspot granular light bridge

    CERN Document Server

    Lagg, Andreas; van Noort, Michiel; Danilovic, Sanja

    2014-01-01

    Light bridges are the most prominent manifestation of convection in sunspots. The brightest representatives are granular light bridges composed of features that appear to be similar to granules. An in-depth study of the convective motions, temperature stratification, and magnetic field vector in and around light bridge granules is presented with the aim of identifying similarities and differences to typical quiet-Sun granules. Spectropolarimetric data from the Hinode Solar Optical Telescope were analyzed using a spatially coupled inversion technique to retrieve the stratified atmospheric parameters of light bridge and quiet-Sun granules. Central hot upflows surrounded by cooler fast downflows reaching 10 km/s clearly establish the convective nature of the light bridge granules. The inner part of these granules in the near surface layers is field free and is covered by a cusp-like magnetic field configuration. We observe hints of field reversals at the location of the fast downflows. The quiet-Sun granules in ...

  3. Sunspot Umbral Oscillations: Results from SOHO JOP097

    Science.gov (United States)

    O'Shea, E.; Muglach, K.; Fleck, B.

    2003-10-01

    We present results of an ongoing analysis of time series data, which were obtained in the context of the Joint Observing Program (JOP) 97 of the year 2000. This JOP included the Coronal Diagnostic Spectrometer (CDS) and the Michelson Doppler Imager (MDI) instrument, both part of SOHO, the TRACE satellite and various ground based observatories. We show evidence for apparently upwardly propagating in a sunspot umbra which we suggest are due to magnetoacoustic waves. These waves manifest themselves as oscillations in lines ranging in temperature from the upper photosphere/chromosphere to the corona. To our knowledge this is the first time umbral oscillations have been conclusively seen in coronal lines. This research is part of the European Solar Magnetometry Network (ESMN) supported by the EU through the TMR programme.

  4. Modeling the Subsurface Evolution of Active Region Flux Tubes

    CERN Document Server

    Fan, Y

    2009-01-01

    I present results from a set of 3D spherical-shell MHD simulations of the buoyant rise of active region flux tubes in the solar interior which put new constraints on the initial twist of the subsurface tubes in order for them to emerge with tilt angles consistent with the observed Joy's law for the mean tilt of solar active regions. Due to the asymmetric stretching of the $\\Omega$-shaped tube by the Coriolis force, a field strength asymmetry develops with the leading side having a greater field strength and thus being more cohesive compared to the following side. Furthermore, the magnetic flux in the leading leg shows more coherent values of local twist $\\alpha \\equiv {\\bf J} \\cdot {\\bf B} / B^2$, whereas the values in the following leg show large fluctuations and are of mixed signs.

  5. Electric currents and coronal heating in NOAA active region 6952

    Science.gov (United States)

    Metcalf, T. R.; Canfield, R. C.; Hudson, H. S.; Mickey, D. L.; Wulser, J. -P.; Martens, P. C. H.; Tsuneta, S.

    1994-01-01

    We examine the spatial and temporal relationship between coronal structures observed with the soft X-ray telescope (SXT) on board the Yohkoh spacecraft and the vertical electric current density derived from photospheric vector magnetograms obtained using the Stokes Polarimeter at the Mees Solar Observatory. We focus on a single active region: AR 6952 which we observed on 7 days during 1991 December. For 11 independent maps of the vertical electric current density co-aligned with non-flaring X-ray images, we search for a morphological relationship between sites of high vertical current density in the photosphere and enhanced X-ray emission in the overlying corona. We find no compelling spatial or temporal correlation between the sites of vertical current and the bright X-ray structures in this active region.

  6. Soft electron beams in solar active and flare region

    Energy Technology Data Exchange (ETDEWEB)

    Korneev, V.V.; Mandelshtam, S.L.; Oparin, S.N.; Urnov, A.M.; Zhitnik, I.A.

    1982-01-01

    On the basis of the experimental data obtained from the high resolution X-ray spectra for solar flares and active regions the suprathermal electron model (SEM) was proposed. This model suggests the existance of the multi-temperature structure of the solar plasma emitting Fe and Ca X-rays and the presence of additional electrons with low energies (no more than 10 keV) and small densities of about 1-5 percent relative to the thermal component.

  7. Size-Flux Relation in Solar Active Regions

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    We present a study of the relationship between integral area and corre-sponding total magnetic flux for solar active regions. It is shown that some of theserelationships are satisfied to simple power laws. Fractal examination showed thatsome of these power laws can not be justified inside the simple models of stationarymagnetic flux tube aggregation. All magnetic fluxes and corresponding areas werecalculated using the data measured with the Solar Magnetic Field Telescope of theHuairou Solar Observing Station in Beijing.

  8. Influence of the cardiac myosin hinge region on contractile activity.

    OpenAIRE

    Margossian, S S; Krueger, J W; Sellers, J R; Cuda, G; Caulfield, J B; Norton, P.; Slayter, H. S.

    1991-01-01

    The participation of cardiac myosin hinge in contractility was investigated by in vitro motility and ATPase assays and by measurements of sarcomere shortening. The effect on contractile activity was analyzed using an antibody directed against a 20-amino acid peptide within the hinge region of myosin. This antibody bound specifically at the hinge at a distance of 55 nm from the S1/S2 junction, was specific to human, dog, and rat cardiac myosins, did not crossreact with gizzard or skeletal myos...

  9. High Power VCSEL Device with Periodic Gain Active Region

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    High power vertical cavity surface emitting lasers(VCSEKLs) with large aperture have been fabricated through improving passivation, lateral oxidation and heat dissipation techniques. Different from conventional three quantum well structures, a periodic gain active region with nine quantum wells was incorporated into the VCSEL structure, with which high efficiency and high power operation were expected. The nine quantum wells were divided into three groups with each of them located at the antinodes of the ca...

  10. On the Active Region Bright Grains Observed in the Transition Region Imaging Channels of IRIS

    CERN Document Server

    Skogsrud, H; De Pontieu, B

    2015-01-01

    The Interface Region Imaging Spectrograph (IRIS) provides spectroscopy and narrow band slit-jaw (SJI) imaging of the solar chromosphere and transition region at unprecedented spatial and temporal resolution. Combined with high-resolution context spectral imaging of the photosphere and chromosphere as provided by the Swedish 1-m Solar Telescope (SST), we can now effectively trace dynamic phenomena through large parts of the solar atmosphere in both space and time. IRIS SJI 1400 images from active regions, which primarily sample the transition region with the Si IV 1394 and 1403 {\\AA} lines, reveal ubiquitous bright "grains" which are short-lived (2-5 min) bright roundish small patches of sizes 0.5-1.7" that generally move limbward with velocities up to about 30 km s$^{-1}$. In this paper we show that many bright grains are the result of chromospheric shocks impacting the transition region. These shocks are associated with dynamic fibrils (DFs), most commonly observed in H{\\alpha}. We find that the grains show ...

  11. Impulsively Driven Waves And Flows In Coronal Active Regions

    Science.gov (United States)

    Ofman, Leon; Wang, T.; Davila, J. M.; Liu, W.

    2012-05-01

    Recent SDO/AIA and Hinode EIS observations indicate that both (super) fast and slow magnetosonic waves are present in active region (AR) magnetic structures. Evidence for fast (100-300 km/s) impulsive flows is found in spectroscopic and imaging observations of AR loops. The super-fast waves were observed in magnetic funnels of ARs. The observations suggest that waves and flow are produced by impulsive events, such as (micro) flares. We have performed three-dimensional magnetohydrodynamic (3D MHD) simulations of impulsively generated flows and waves in coronal loops of a model bi-polar active region (AR). The model AR is initiated with a dipole magnetic field and gravitationally stratified density, with impulsively driven flow at the coronal base of the AR in localized magnetic field structures. We model the excitation of the flows in hot (6MK) and cold (1MK) active region plasma, and find slow and fast magnetosonic waves produced by these events. We also find that high-density (compared to surrounding corona) loops are produced as a result of the upflows. We investigate the parametric dependence between the properties of the impulsive flows and the waves. The results of the 3D MHD modeling study supports the conjecture that slow magnetosonic waves are often produced by impulsive upflows along the magnetic field, and fast magnetosonic waves can result from impulsive transverse field line perturbations associated with reconnection events. The waves and flows can be used for diagnostic of AR structure and dynamics.

  12. Observations of Transient Active Region Heating with Hinode

    CERN Document Server

    Warren, Harry P; Brooks, David H; Cirtain, Jonathan W; Williams, David R; Harra, Hirohisa

    2007-01-01

    We present observations of transient active region heating events observed with the Extreme Ultraviolet Imaging Spectrometer (EIS) and X-ray Telescope (XRT) on Hinode. This initial investigation focuses on NOAA active region 10940 as observed by Hinode on February 1, 2007 between 12 and 19 UT. In these observations we find numerous examples of transient heating events within the active region. The high spatial resolution and broad temperature coverage of these instruments allows us to track the evolution of coronal plasma. The evolution of the emission observed with XRT and EIS during these events is generally consistent with loops that have been heated and are cooling. We have analyzed the most energetic heating event observed during this period, a small GOES B-class flare, in some detail and present some of the spectral signatures of the event, such as relative Doppler shifts at one of the loop footpoints and enhanced line widths during the rise phase of the event. While the analysis of these transient even...

  13. Magneto-acoustic waves in sunspots: first results from a new 3D nonlinear magnetohydrodynamic code

    CERN Document Server

    Felipe, T; Collados, M

    2010-01-01

    Waves observed in the photosphere and chromosphere of sunspots show complex dynamics and spatial patterns. The interpretation of high-resolution sunspot wave observations requires modeling of three-dimensional non-linear wave propagation and mode transformation in the sunspot upper layers in realistic spot model atmospheres. Here we present the first results of such modeling. We have developed a 3D non-linear numerical code specially designed to calculate the response of magnetic structures in equilibrium to an arbitrary perturbation. The code solves the 3D nonlinear MHD equations for perturbations; it is stabilized by hyper-diffusivity terms and is fully parallelized. The robustness of the code is demonstrated by a number of standard tests. We analyze several simulations of a sunspot perturbed by pulses of different periods at subphotospheric level, from short periods, introduced for academic purposes, to longer and realistic periods of three and five minutes. We present a detailed description of the three-d...

  14. Long-Term Sunspot Number Prediction based on EMD Analysis and AR Model

    Institute of Scientific and Technical Information of China (English)

    Tong Xu; Jian Wu; Zhen-Sen Wu; Qiang Li

    2008-01-01

    The Empirical Mode Decomposition (EMD) and Auto-Regressive model (AR) are applied to a long-term prediction of sunspot numbers. With the sample data of sunspot numbers from 1848 to 1992, the method is evaluated by examining the measured data of the solar cycle 23 with the prediction: different time scale components are obtained by the EMD method and multi-step predicted values are combined to reconstruct the sunspot number time series. The result is remarkably good in comparison to the predictions made by the solar dynamo and precursor approaches for cycle 23. Sunspot numbers of the coming solar cycle 24 are obtained with the data from 1848 to 2007, the maximum amplitude of the next solar cycle is predicted to be about 112 in 2011-2012.

  15. Sunspot Numbers and Areas from the Madrid Astronomical Observatory (1876-1986)

    CERN Document Server

    Aparicio, A J P; Carrasco, V M S; Gallego, M C

    2014-01-01

    The solar program of the Astronomical Observatory of Madrid started in 1876. For ten solar cycles, observations were made in this institution to determine sunspot numbers and areas. The program was completed in 1986. The resulting data have been published in various Spanish scientific publications. The metadata allowed four periods of this program (with different observers and instruments) to be identified. In the present work, the published data were retrieved and digitized. Their subsequent analysis showed that most of these data can be considered reliable given their very high correlation with international reference indices (International Sunspot Number, Group Sunspot Number, and Sunspot Area). An abrupt change emerged in the spots/groups ratio in 1946 which lasted until 1972.

  16. High resolution He I 10830 \\AA\\ narrow-band imaging of an M-class flare. I - analysis of sunspot dynamics during flaring

    CERN Document Server

    Wang, Ya; Hong, Zhenxiang; Zeng, Zhicheng; Ji, Kaifan; Goode, Philip R; Cao, Wenda; Ji, Haisheng

    2016-01-01

    In this paper, we report our first-step results of high resolution He\\,\\textsc{i} 10830 \\AA\\ narrow-band imaging (bandpass: 0.5 {\\AA}) of an M1.8 class two-ribbon flare on July 5, 2012. The flare was observed with the 1.6 meter aperture New Solar Telescope at Big Bear Solar Observatory. For this unique data set, sunspot dynamics during flaring were analyzed for the first time. By directly imaging the upper chromosphere, running penumbral waves are clearly seen as an outward extension of umbral flashes, both take the form of absorption in the 10830 \\AA\\ narrow-band images. From a space-time image made of a slit cutting across a flare ribbon and the sunspot, we find that the dark lanes for umbral flashes and penumbral waves are obviously broadened after the flare. The most prominent feature is the sudden appearance of an oscillating absorption strip inside the ribbon when it sweeps into the sunspot's penumbral and umbral regions. During each oscillation, outwardly propagating umbral flashes and subsequent penum...

  17. Influence of the lifetime parameter on the rotation rate of sunspots

    Science.gov (United States)

    Zuccarello, F.

    1993-05-01

    Recent investigations on the photospheric angular velocity pattern have shown that young and short- living tracers show rotation rates higher than those determined both by older tracers and by photospheric plasma. As a direct relationship between the age of the tracer and the angular velocity determination has been found (Zappalà & Zuccarello 1991), it seemed very interesting to investigate whether also the "lifetime" parameter might have a role on angular velocity determinations. We have therefore analyzed the sunspot-group data reported in the Greenwich Photoheliographic Results during the 1874-1976 period. 9000 objects were selected as young sunspot-groups (YSG) and, using the lifetime parameter as selecting rule, we could catalogue 4463 objects having a lifetime between 2 and 10 d. The rotation rate of these objects as a function of their lifetime was calculated and the results obtained may be summarized in the following main points: 1. Independently of their lifetime, sunspots rotate during the first 2-3 days of life in the photosphere, at a higher rate than that of recurrent sunspots. 2. Sunspots with a lifetime ranging from 2 to 8 d are more efficiently decelerated than YSG, while 11-day living sunspots are less efficiently decelerated. 3. Sunspots in the equatorial belt (0-10°) having a lifetime comparable to that of supergranule cells, rotate slower than the cells themselves. 4. The angular velocity measured during the last day of life is lower both than that of YSG and than that deduced by sunspots which disappear the day after. These results have been analyzed in the scenario of the sunspots cluster model ( 1987). According to the conclusions drawn, the initial higher angular velocity of young and short-living sunspots is not a function of the cluster "aggregation capability"; the rate of rise of the merging level through the convection zone is influenced by (or influences) the ability of the cluster to keep coalesced; finally, when the merging level

  18. Solar Spectral Irradiance Variability of Some Chromospheric Emission Lines Through the Solar Activity Cycles 21-23

    Science.gov (United States)

    Göker, Ü. D.; Gigolashvili, M. Sh.; Kapanadze, N.

    2017-02-01

    A study of variations of solar spectral irradiance (SSI) in the wavelength ranges 121.5 nm-300.5 nm for the period 1981-2009 is presented. We used various data for ultraviolet (UV) spectral lines and international sunspot number (ISSN) from interactive data centers such as SME (NSSDC), UARS (GDAAC), SORCE (LISIRD) and SIDC, respectively. We reduced these data by using the MATLAB software package. In this respect, we revealed negative correlations of intensities of UV (289.5 nm-300.5 nm) spectral lines originating in the solar chromosphere with the ISSN index during the unusually prolonged minimum between the solar activity cycles (SACs) 23 and 24. We also compared our results with the variations of solar activity indices obtained by the ground-based telescopes. Therefore, we found that plage regions decrease while facular areas are increasing in SAC 23. However, the decrease in plage regions is seen in small sunspot groups (SGs), contrary to this, these regions in large SGs are comparable to previous SACs or even larger as is also seen in facular areas. Nevertheless, negative correlations between ISSN and SSI data indicate that these variations are in close connection with the classes of sunspots/SGs, faculae and plage regions. Finally, we applied the time series analysis of spectral lines corresponding to the wavelengths 121.5 nm-300.5 nm and made comparisons with the ISSN data. We found an unexpected increase in the 298.5 nm line for the Fe II ion. The variability of Fe II ion 298.5 nm line is in close connection with the facular areas and plage regions, and the sizes of these solar surface indices play an important role for the SSI variability, as well. So, we compared the connection between the sizes of faculae and plage regions, sunspots/SGs, chemical elements and SSI variability. Our future work will be the theoretical study of this connection and developing of a corresponding model.

  19. Should We Try to Re-Construct the American Relative Sunspot Index (Ra)? (Abstract)

    Science.gov (United States)

    Howe, R.

    2016-06-01

    (Abstract only) The new correction of the international sunspot number (ISN), called the Sunspot Number Version 2.0, led by Frédéric Clette (Director of the World Data Centre [WDC]-SILSO), Ed Cliver (National Solar Observatory), and Leif Svalgaard (Stanford University), nullifies the claim that there has been a Modern Grand Maximum. This comes from the International Astronomical Union (IAU) press release, August 2015 (http://www.iau.org/news/pressreleases/detail/iau1508/).

  20. An Analysis of the Sunspot Groups and Flares of Solar Cycle 23

    Science.gov (United States)

    2012-05-07

    for compact interior. The classes AXX, BXO , BXI, CRO, HSX, HAX, HRX, and HHX have a negligibly small probability of producing an Hα flare. Sunspot...to DRO, HHX, CHO, CRI, and CRO in this study and to FAO, FAC, AXX, BXO , and HRX in Kildahl (1980). While there is good agreement between the two...simplest classes AXX, BXO and CRO accounted for a nearly 28% decrease in total sunspot contribution. Figure 5 indicates that these categories are