Solar Indices - Sunspot Numbers
National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...
Growth in the Number of SSN Tracked Orbital Objects
Stansbery, Eugene G.
2004-01-01
The number of objects in earth orbit tracked by the US Space Surveillance Network (SSN) has experienced unprecedented growth since March, 2003. Approximately 2000 orbiting objects have been added to the "Analyst list" of tracked objects. This growth is primarily due to the resumption of full power/full time operation of the AN/FPS-108 Cobra Dane radar located on Shemya Island, AK. Cobra Dane is an L-band (23-cm wavelength) phased array radar which first became operational in 1977. Cobra Dane was a "Collateral Sensor" in the SSN until 1994 when its communication link with the Space Control Center (SCC) was closed. NASA and the Air Force conducted tests in 1999 using Cobra Dane to detect and track small debris. These tests confirmed that the radar was capable of detecting and maintaining orbits on objects as small as 5-cm diameter. Subsequently, Cobra Dane was reconnected to the SSN and resumed full power/full time space surveillance operations on March 4, 2003. This paper will examine the new data and its implications to the understanding of the orbital debris environment and orbital safety.
2010-02-22
... DEPARTMENT OF COMMERCE Census Bureau 15 CFR Part 30 [Docket Number: 090422707-91445-02] RIN 0607-AA48 Foreign Trade Regulations (FTR): Eliminate the Social Security Number (SSN) as an Identification... Trade Regulations (FTR) to eliminate the requirement to report a Social Security Number (SSN) as an...
Revised Sunspot Numbers and the Effects on Understanding the Sunspot Cycle
Hathaway, D. H.
2014-12-01
While sunspot numbers provide only limited information about the sunspot cycle, they provide that information for at least twice as many sunspot cycles as any other direct solar observation. In particular, sunspot numbers are available before, during, and immediately after the Maunder Minimum (1645-1715). The instruments and methods used to count sunspots have changed over the last 400+ years. This leads to systematic changes in the sunspot number that can mask, or artificially introduce, characteristics of the sunspot cycle. The most widely used sunspot number is the International (Wolf/Zurich) sunspot number which is now calculated at the Solar Influences Data Center in Brussels, Belgium. These numbers extend back to 1749. The Group sunspot number extends back to the first telescopic observations of the Sun in 1610. There are well-known and significant differences between these two numbers where they overlap. Recent work has helped us to understand the sources of these differences and has led to proposed revisions in the sunspot numbers. Independent studies now support many of these revisions. These revised sunspot numbers suggest changes to our understanding of the sunspot cycle itself and to our understanding of its connection to climate change.
International Nuclear Information System (INIS)
Moore, R.; Rabin, D.
1985-01-01
It is pointed out that the sun provides a close-up view of many astrophysically important phenomena, nearly all connected with the causes and effects of solar magnetic fields. The present article provides a review of the role of sunspots in a number of new areas of research. Connections with other solar phenomena are examined, taking into account flares, the solar magnetic cycle, global flows, luminosity variation, and global oscillations. A selective review of the structure and dynamic phenomena observed within sunspots is also presented. It is found that sunspots are usually contorted during the growth phase of an active region as magnetic field rapidly emerges and sunspots form, coalesce, and move past or even through each other. Attention is given to structure and flows, oscillations and waves, and plans for future studies. 145 references
The Sunspot Number and beyond : reconstructing detailed solar information over centuries
Lefevre, L.
2014-12-01
With four centuries of solar evolution, the International Sunspot Number (SSN) forms the longest solar time series currently available. It provides an essential reference for understanding and quantifying how the solar output has varied over decades and centuries and thus for assessing the variations of the main natural forcing on the Earth climate. Because of its importance, this unique time-series must be closely monitored for any possible biases and drifts. Here, we report about recent disagreements between solar indices, for example the sunspot sumber and the 10.7cm radio flux. Recent analyses indicate that while part of this divergence may be due to a calibration drift in the SSN, it also results from an intrinsic change in the global magnetic parameters of sunspots and solar active regions, suggesting a possible transition to a new activity regime. Going beyond the SSN series, in the framework of the TOSCA (www.cost-tosca.eu/) and SOLID (projects.pmodwrc.ch/solid/) projects, we produced a survey of all existing catalogs providing detailed sunspot information (Lefevre & Clette, 2014:10.1007/s11207-012-0184-5) and we also located different primary solar images and drawing collections that can be exploitable to complement the existing catalogs. These are first steps towards the construction of a multi-parametric time series of multiple sunspot and sunspot group properties over more than a century, allowing to reconstruct and extend the current 1-D SSN series. By bringing new spatial, morphological and evolutionary information, such a data set should bring major advances for the modeling of the solar dynamo and solar irradiance. We will present here the current status of this work. The preliminary version catalog now extends over the last 150 years. It makes use of data from DPD (http://fenyi.solarobs.unideb.hu/DPD/index.html), from the Uccle Solar Equatorial Table (USET:http://sidc.oma.be/uset/) operated by the Royal Obeservatory of Belgium, the Greenwich
Fractal Dimension and Maximum Sunspot Number in Solar Cycle
Directory of Open Access Journals (Sweden)
R.-S. Kim
2006-09-01
Full Text Available The fractal dimension is a quantitative parameter describing the characteristics of irregular time series. In this study, we use this parameter to analyze the irregular aspects of solar activity and to predict the maximum sunspot number in the following solar cycle by examining time series of the sunspot number. For this, we considered the daily sunspot number since 1850 from SIDC (Solar Influences Data analysis Center and then estimated cycle variation of the fractal dimension by using Higuchi's method. We examined the relationship between this fractal dimension and the maximum monthly sunspot number in each solar cycle. As a result, we found that there is a strong inverse relationship between the fractal dimension and the maximum monthly sunspot number. By using this relation we predicted the maximum sunspot number in the solar cycle from the fractal dimension of the sunspot numbers during the solar activity increasing phase. The successful prediction is proven by a good correlation (r=0.89 between the observed and predicted maximum sunspot numbers in the solar cycles.
Atwell, William; Tylka, Allan J.; Dietrich, William F.; Rojdev, Kristina; Matzkind, Courtney
2016-01-01
In an earlier paper presented at ICES in 2015, we investigated solar particle event (SPE) radiation exposures (absorbed dose) to small, thinly-shielded spacecraft during a period when the monthly smoothed sunspot number (SSN) was less than 30. Although such months are generally considered "solar-quiet", SPEs observed during these months even include Ground Level Events, the most energetic type of SPE. In this paper, we add to previous study those SPEs that occurred in 1973-2015 when the SSN was greater than 30 but less than 50. Based on the observable energy range of the solar protons, we classify the event as GLEs, sub-GLEs, and sub-sub-GLEs, all of which are potential contributors to the radiation hazard. We use the spectra of these events to construct a probabilistic model of the absorbed dose due to solar protons when SSN < 50 at various confidence levels for various depths of shielding and for various mission durations. We provide plots and tables of solar proton-induced absorbed dose as functions of confidence level, shielding thickness, and mission-duration that will be useful to system designers.
A Plan to Optimize the Management of Weld ID SSN Numbering System for Nuclear Power Plants in Korea
International Nuclear Information System (INIS)
Yoo, Hyun Ju; Cho, Chan Hee; Kim, Jin Hoi; Park, Dong Min
2016-01-01
Summary Sheet Number(SSN) in the current LTP is an ID which means a weldment in a nuclear power plant. However, the SSN ID, which is unique on in a nuclear power plant, is not unique one if the weldments of entire nuclear power plant in Korea are treated in one system. Therefore, it is hard to manage the data during life time using the existing SSN ID system. It is also hard to configure the characteristics of weldment in mind because IDs implying Alloy600 and overlay weld do not exist in the existing SSN ID System. An optimized SSN numbering system managing weldments for the life time is introduced in this paper. Moreover, it is explained how to manage the SSN numbering system in the computer program system, too. The problem, which the weld is not harmoniously managed, would be solved provided adapting the new SSN ID introduced in this paper. A weld is managed during its life time from creation to extinction. The inquiry of inspection history of a concerned weld and the reference of statistics would be performed easily and rightly because the concerned weld can be accessed from anywhere connected to KHNP network such as KHNP headquater, plants and CRI
The Recalibrated Sunspot Number: Impact on Solar Cycle Predictions
Clette, F.; Lefevre, L.
2017-12-01
Recently and for the first time since their creation, the sunspot number and group number series were entirely revisited and a first fully recalibrated version was officially released in July 2015 by the World Data Center SILSO (Brussels). Those reference long-term series are widely used as input data or as a calibration reference by various solar cycle prediction methods. Therefore, past predictions may now need to be redone using the new sunspot series, and methods already used for predicting cycle 24 will require adaptations before attempting predictions of the next cycles.In order to clarify the nature of the applied changes, we describe the different corrections applied to the sunspot and group number series, which affect extended time periods and can reach up to 40%. While some changes simply involve constant scale factors, other corrections vary with time or follow the solar cycle modulation. Depending on the prediction method and on the selected time interval, this can lead to different responses and biases. Moreover, together with the new series, standard error estimates are also progressively added to the new sunspot numbers, which may help deriving more accurate uncertainties for predicted activity indices. We conclude on the new round of recalibration that is now undertaken in the framework of a broad multi-team collaboration articulated around upcoming ISSI workshops. We outline the future corrections that can still be expected in the future, as part of a permanent upgrading process and quality control. From now on, future sunspot-based predictive models should thus be made more adaptable, and regular updates of predictions should become common practice in order to track periodic upgrades of the sunspot number series, just like it is done when using other modern solar observational series.
Travaglini, Guido
2015-09-01
Solar activity, as measured by the yearly revisited time series of sunspot numbers (SSN) for the period 1700-2014 (Clette et al., 2014), undergoes in this paper a triple statistical and econometric checkup. The conclusions are that the SSN sequence: (1) is best modeled as a signal that features nonlinearity in mean and variance, long memory, mean reversion, 'threshold' symmetry, and stationarity; (2) is best described as a discrete damped harmonic oscillator which linearly approximates the flux-transport dynamo model; (3) its prediction well into the 22nd century testifies of a substantial fall of the SSN centered around the year 2030. In addition, the first and last Gleissberg cycles show almost the same peak number and height during the period considered, yet the former slightly prevails when measured by means of the estimated smoother. All of these conclusions are achieved by making use of modern tools developed in the field of Financial Econometrics and of two new proposed procedures for signal smoothing and prediction.
International Nuclear Information System (INIS)
Priest, E.R.
1982-01-01
The existence of sunspots has been known since ancient times, but it was only at the beginning of this century that they were found to be the sites of very strong magnetic fields, and it was realised that they represent the places where huge magnetic flux tubes burst through the solar surface. A theoretical understanding of sunspots has had to await the development of magnetohydrodynamics; however, even now, there is some controversy about answers to fundamental questions, such as: why is a sunspot cool, what is its equilibrium structure and how is it formed. Other topics that are discussed in the present chapter include magnetoconvection and the process of magnetic buoyancy whereby a flux tube deep within the Sun tends to rise towards the surface because it is lighter than its surroundings. Outside active regions the magnetic flux is not spread out uniformly to a weak field of a few Gauss, but instead it is mainly concentrated at supergranulation boundaries into intense flux tubes, whose properties are discussed. (Auth.)
78 FR 9765 - Assigning New Social Security Numbers (SSN) for Children Age 13 and Under
2013-02-11
..., during regular business hours, by arranging with the contact person identified below. FOR FURTHER...) and private businesses (such as banks and credit reporting companies), when we assign a new SSN, these... an individual with a work history, a driving record, and a credit history. Under the policy we are...
Directory of Open Access Journals (Sweden)
Cliver Edward W.
2017-01-01
Full Text Available We analyze the normalization factors (k′-factors used to scale secondary observers to the Royal Greenwich Observatory (RGO reference series of the Hoyt & Schatten (1998a, 1998b group sunspot number (GSN. A time series of these k′-factors exhibits an anomaly from 1841 to 1920, viz., the average k′-factor for all observers who began reporting groups from 1841 to 1883 is 1.075 vs. 1.431 for those who began from 1884 to 1920, with a progressive rise, on average, during the latter period. The 1883–1884 break between the two subintervals occurs precisely at the point where Hoyt and Schatten began to use a complex daisy-chaining method to scale observers to RGO. The 1841–1920 anomaly implies, implausibly, that the average sunspot observer who began from 1841 to 1883 was nearly as proficient at counting groups as mid-20th century RGO (for which k′ = 1.0 by definition while observers beginning during the 1884–1920 period regressed in group counting capability relative to those from the earlier interval. Instead, as shown elsewhere and substantiated here, RGO group counts increased relative to those of other long-term observers from 1874 to ~1915. This apparent inhomogeneity in the RGO group count series is primarily responsible for the increase in k′-factors from 1884 to 1920 and the suppression, by 44% on average, of the Hoyt and Schatten GSN relative to the original Wolf sunspot number (WSN before ~1885. Correcting for the early “learning curve” in the RGO reference series and minimizing the use of daisy-chaining rectifies the anomalous behavior of the k′-factor series. The resultant GSN time series (designated GSN* is in reasonable agreement with the revised WSN (SN*; Clette & Lefèvre 2016 and the backbone-based group sunspot number (RGS; Svalgaard & Schatten 2016 but significantly higher than other recent reconstructions (Friedli, personal communication, 2016; Lockwood et al. 2014a, 2014b; Usoskin et al. 2016a. This result
Extreme Value Theory Applied to the Millennial Sunspot Number Series
Acero, F. J.; Gallego, M. C.; García, J. A.; Usoskin, I. G.; Vaquero, J. M.
2018-01-01
In this work, we use two decadal sunspot number series reconstructed from cosmogenic radionuclide data (14C in tree trunks, SN 14C, and 10Be in polar ice, SN 10Be) and the extreme value theory to study variability of solar activity during the last nine millennia. The peaks-over-threshold technique was used to compute, in particular, the shape parameter of the generalized Pareto distribution for different thresholds. Its negative value implies an upper bound of the extreme SN 10Be and SN 14C timeseries. The return level for 1000 and 10,000 years were estimated leading to values lower than the maximum observed values, expected for the 1000 year, but not for the 10,000 year return levels, for both series. A comparison of these results with those obtained using the observed sunspot numbers from telescopic observations during the last four centuries suggests that the main characteristics of solar activity have already been recorded in the telescopic period (from 1610 to nowadays) which covers the full range of solar variability from a Grand minimum to a Grand maximum.
Evolution of the Sunspot Number and Solar Wind B Time Series
Cliver, Edward W.; Herbst, Konstantin
2018-03-01
The past two decades have witnessed significant changes in our knowledge of long-term solar and solar wind activity. The sunspot number time series (1700-present) developed by Rudolf Wolf during the second half of the 19th century was revised and extended by the group sunspot number series (1610-1995) of Hoyt and Schatten during the 1990s. The group sunspot number is significantly lower than the Wolf series before ˜1885. An effort from 2011-2015 to understand and remove differences between these two series via a series of workshops had the unintended consequence of prompting several alternative constructions of the sunspot number. Thus it has been necessary to expand and extend the sunspot number reconciliation process. On the solar wind side, after a decade of controversy, an ISSI International Team used geomagnetic and sunspot data to obtain a high-confidence time series of the solar wind magnetic field strength (B) from 1750-present that can be compared with two independent long-term (> ˜600 year) series of annual B-values based on cosmogenic nuclides. In this paper, we trace the twists and turns leading to our current understanding of long-term solar and solar wind activity.
Atwell, William; Tylka, Allan J.; Dietrich, William; Rojdev, Kristina; Matzkind, Courtney
2016-01-01
In an earlier paper (Atwell, et al., 2015), we investigated solar particle event (SPE) radiation exposures (absorbed dose) to small, thinly-shielded spacecraft during a period when the sunspot number (SSN) was less than 30. These SPEs contain Ground Level Events (GLE), sub-GLEs, and sub-sub-GLEs (Tylka and Dietrich, 2009, Tylka and Dietrich, 2008, and Atwell, et al., 2008). GLEs are extremely energetic solar particle events having proton energies extending into the several GeV range and producing secondary particles in the atmosphere, mostly neutrons, observed with ground station neutron monitors. Sub-GLE events are less energetic, extending into the several hundred MeV range, but do not produce secondary atmospheric particles. Sub-sub GLEs are even less energetic with an observable increase in protons at energies greater than 30 MeV, but no observable proton flux above 300 MeV. In this paper, we consider those SPEs that occurred during 1973-2010 when the SSN was greater than 30 but less than 50. In addition, we provide probability estimates of absorbed dose based on mission duration with a 95% confidence level (CL). We also discuss the implications of these data and provide some recommendations that may be useful to spacecraft designers of these smaller spacecraft.
Coddington, O.; Lean, J.; Pilewskie, P.; Baranyi, T.; Snow, M. A.; Kopp, G.; Richard, E. C.; Lindholm, C.
2017-12-01
An operational climate data record (CDR) of total and spectral solar irradiance became available in November 2015 as part of the National Oceanographic and Atmospheric Administration's National Centers for Environmental Information Climate Data Record Program. The data record, which is updated quarterly, is available from 1610 to the present as yearly-average values and from 1882 to the present as monthly- and daily-averages, with associated time and wavelength-dependent uncertainties. It was developed jointly by the University of Colorado at Boulder's Laboratory for Atmospheric and Space Physics and the Naval Research Laboratory, and, together with the source code and supporting documentation, is available at https://www.ncdc.noaa.gov/cdr/. In the Solar Irradiance CDR, total solar irradiance (TSI) and solar spectral irradiance (SSI) are estimated from models that determine the changes from quiet Sun conditions arising from bright faculae and dark sunspots on the solar disk. The models are constructed using linear regression of proxies of solar sunspot and facular features with the approximately decade-long irradiance observations from the SOlar Radiation and Climate Experiment. A new revision of this data record was recently released in an ongoing effort to reduce solar irradiance uncertainties in two ways. First, the sunspot darkening proxy was revised using a new cross calibration of the current sunspot region observations made by the Solar Observing Optical Network with the historical records of the Royal Greenwich Observatory. This implementation affects modeled irradiances from 1882 - 1978. Second, the impact of a revised record of sunspot number by the Sunspot Index and Long-term Solar Observations center on modeled irradiances was assessed. This implementation provides two different reconstructions of historical, yearly-averaged irradiances from 1610-1881. Additionally, we show new, preliminary results that demonstrate improvements in modeled TSI by using
SOLAR CYCLE 24: CURIOUS CHANGES IN THE RELATIVE NUMBERS OF SUNSPOT GROUP TYPES
International Nuclear Information System (INIS)
Kilcik, A.; Yurchyshyn, V. B.; Ozguc, A.; Rozelot, J. P.
2014-01-01
Here, we analyze different sunspot group (SG) behaviors from the points of view of both the sunspot counts (SSCs) and the number of SGs, in four categories, for the time period of 1982 January-2014 May. These categories include data from simple (A and B), medium (C), large (D, E, and F), and decaying (H) SGs. We investigate temporal variations of all data sets used in this study and find the following results. (1) There is a very significant decrease in the large groups' SSCs and the number of SGs in solar cycle 24 (cycle 24) compared to cycles 21-23. (2) There is no strong variation in the decaying groups' data sets for the entire investigated time interval. (3) Medium group data show a gradual decrease for the last three cycles. (4) A significant decrease occurred in the small groups during solar cycle 23, while no strong changes show in the current cycle (cycle 24) compared to the previous ones. We confirm that the temporal behavior of all categories is quite different from cycle to cycle and it is especially flagrant in solar cycle 24. Thus, we argue that the reduced absolute number of the large SGs is largely, if not solely, responsible for the weak cycle 24. These results might be important for long-term space weather predictions to understand the rate of formation of different groups of sunspots during a solar cycle and the possible consequences for the long-term geomagnetic activity
Social Security Administration — The SSN Verification Service is used by Java applications to execute the GUVERF02 service using the WebSphere/CICS Interface. It accepts several input data fields...
Using dynamo theory to predict the sunspot number during solar cycle 21
Schatten, K. H.; Scherrer, P. H.; Svalgaard, L.; Wilcox, J. M.
1978-01-01
On physical grounds it is suggested that the polar field strength of the sun near a solar minimum is closely related to the solar activity of the following cycle. Four methods of estimating the polar magnetic field strength of the sun near solar minimum are employed to provide an estimate of the yearly mean sunspot number of cycle 21 at solar maximum of 140 + or - 20. This estimate may be considered a first-order attempt to predict the cycle activity using one parameter of physical importance based upon dynamo theory.
Chattopadhyay, Surajit; Chattopadhyay, Goutami
The present paper reports studies on the association between the mean annual sunspot numbers and the summer monsoon rainfall over India. The cross correlations have been studied. After Box-Cox transformation, the time spectral analysis has been executed and it has been found that both of the time series have an important spectrum at the fifth harmonic. An artificial neural network (ANN) model has been developed on the data series averaged continuously by five years and the neural network could establish a predictor-predict and relationship between the sunspot numbers and the mean yearly summer monsoon rainfall over India.
Chatzistergos, Theodosios; Usoskin, Ilya G.; Kovaltsov, Gennady A.; Krivova, Natalie A.; Solanki, Sami K.
2017-06-01
Context. The group sunspot number (GSN) series constitute the longest instrumental astronomical database providing information on solar activity. This database is a compilation of observations by many individual observers, and their inter-calibration has usually been performed using linear rescaling. There are multiple published series that show different long-term trends for solar activity. Aims: We aim at producing a GSN series, with a non-linear non-parametric calibration. The only underlying assumptions are that the differences between the various series are due to different acuity thresholds of the observers, and that the threshold of each observer remains constant throughout the observing period. Methods: We used a daisy chain process with backbone (BB) observers and calibrated all overlapping observers to them. We performed the calibration of each individual observer with a probability distribution function (PDF) matrix constructed considering all daily values for the overlapping period with the BB. The calibration of the BBs was carried out in a similar manner. The final series was constructed by merging different BB series. We modelled the propagation of errors straightforwardly with Monte Carlo simulations. A potential bias due to the selection of BBs was investigated and the effect was shown to lie within the 1σ interval of the produced series. The exact selection of the reference period was shown to have a rather small effect on our calibration as well. Results: The final series extends back to 1739 and includes data from 314 observers. This series suggests moderate activity during the 18th and 19th century, which is significantly lower than the high level of solar activity predicted by other recent reconstructions applying linear regressions. Conclusions: The new series provides a robust reconstruction, based on modern and non-parametric methods, of sunspot group numbers since 1739, and it confirms the existence of the modern grand maximum of solar
Values of Kp Indices, Ap Indices, Cp Indices, C9 Indices, Sunspot Number, and 10.7 cm Flux
National Oceanic and Atmospheric Administration, Department of Commerce — This data file consists of Kp indices, Ap indices, Cp indices, C9 indices, sunspot number, and 10.7 cm flux. The most often requested parameter of this file are the...
Effect of solar flare ans sunspot numbers on the intensity of 5577A line in the night airglow
International Nuclear Information System (INIS)
Kundu, N.; Ghosh, S.N.
1981-01-01
The effects of solar flare and sunspot number on the intensity of 5577 A line emission are presented. The time lag between the occurrence of a flare and the enhancement of 5577 A line intensity is determined by observing the intensity of the line on three successive nights- the night preceding the flare and the two nights following it. The velocity of the solar corpuscles is then calculated. The value obtained at Allahabad (2400 Km/sec) is in agreement with the De Jager's prediction for explosive flare. Day-to-day analyses of the observations taken at Allahabad exhibit high correlation of the intensity of 5577 A line emission with sunspot number. Also, correlation is found for the intensity of 5577 A with the change in sunspot number (DELTA R) from the day preceding the night of observation to the day following it. The intensity appears to vary with the magnetic field produced by the sunspot and not with the spot area. (author)
Towards a first detailed reconstruction of sunspot information over the last 150 years
Lefevre, Laure; Clette, Frédéric
2013-04-01
With four centuries of solar evolution, the International Sunspot Number (SSN) forms the longest solar time series currently available. It provides an essential reference for understanding and quantifying how the solar output has varied over decades and centuries and thus for assessing the variations of the main natural forcing on the Earth climate. For such a quantitative use, this unique time-series must be closely monitored for any possible biases and drifts. This is the main objective of the Sunspot Workshops organized jointly by the National Solar Observatory (NSO) and the Royal Observatory of Belgium (ROB) since 2010. Here, we will report about some recent outcomes of past workshops, like diagnostics of scaling errors and their proposed corrections, or the recent disagreement between the sunspot sumber and other solar indices like the 10.7cm radio flux. Our most recent analyses indicate that while part of this divergence may be due to a calibration drift in the SSN, it also results from an intrinsic change in the global magnetic parameters of sunspots and solar active regions, suggesting a possible transition to a new activity regime. Going beyond the SSN series, in the framework of the SOTERIA, TOSCA and SOLID projects, we produced a survey of all existing catalogs providing detailed sunspot information and we also located different primary solar images and drawing collections that can be exploitable to complement the existing catalogs (COMESEP project). These are first steps towards the construction of a multi-parametric time series of multiple sunspot group properties over at least the last 150 years, allowing to reconstruct and extend the current 1-D SSN series. By bringing new spatial, morphological and evolutionary information, such a data set should bring major advances for the modeling of the solar dynamo and solar irradiance. We will present here the current status of this work. The catalog now extends over the last 3 cycles (Lefevre & Clette 2011
Nordemann, D. J. R.; Rigozo, N. R.; de Souza Echer, M. P.; Echer, E.
2008-11-01
We present here an implementation of a least squares iterative regression method applied to the sine functions embedded in the principal components extracted from geophysical time series. This method seems to represent a useful improvement for the non-stationary time series periodicity quantitative analysis. The principal components determination followed by the least squares iterative regression method was implemented in an algorithm written in the Scilab (2006) language. The main result of the method is to obtain the set of sine functions embedded in the series analyzed in decreasing order of significance, from the most important ones, likely to represent the physical processes involved in the generation of the series, to the less important ones that represent noise components. Taking into account the need of a deeper knowledge of the Sun's past history and its implication to global climate change, the method was applied to the Sunspot Number series (1750-2004). With the threshold and parameter values used here, the application of the method leads to a total of 441 explicit sine functions, among which 65 were considered as being significant and were used for a reconstruction that gave a normalized mean squared error of 0.146.
Predicting Maximum Sunspot Number in Solar Cycle 24 Nipa J Bhatt ...
Indian Academy of Sciences (India)
Key words. Sunspot number—precursor prediction technique—geo- magnetic activity index aa. 1. Introduction. Predictions of solar and geomagnetic activities are important for various purposes, including the operation of low-earth orbiting satellites, operation of power grids on. Earth, and satellite communication systems.
Schatten, K. H.; Hedin, A. E.
1986-01-01
Using the dynamo theory method to predict solar activity, a value for the smoothed sunspot number of 109 + or - 20 is obtained for solar cycle 22. The predicted cycle is expected to peak near December, 1990 + or - 1 year. Concommitantly, F(10.7) radio flux is expected to reach a smoothed value of 158 + or - 18 flux units. Global mean exospheric temperature is expected to reach 1060 + or - 50 K and global total average total thermospheric density at 400 km is expected to reach 4.3 x 10 to the -15th gm/cu cm + or - 25 percent.
Schatten, K. H.; Hedin, A. E.
1984-01-01
Using the 'dynamo theory' method to predict solar activity, a value for the smoothed sunspot number of 109 + or - 20 is obtained for solar cycle 22. The predicted cycle is expected to peak near December, 1990 + or - 1 year. Concommitantly, F(10.7) radio flux is expected to reach a smoothed value of 158 + or - 18 flux units. Global mean exospheric temperature is expected to reach 1060 + or - 50 K and global total average total thermospheric density at 400 km is expected to reach 4.3 x 10 to the -15th gm/cu cm + or - 25 percent.
International Nuclear Information System (INIS)
Joglekar, P.J.; Sathiamurthy, T.S.
1975-01-01
Comparisons of the variation of atmospheric radio noise intensities for 20 to 24 hr to sunspot numbers have been completed. Statistical dependence between the noise intensities and sunspot numbers was found for different seasons at a number of frequencies for many locations in the global network of ARN-2 noise recorders. The noise intensities generally tended to decrease with sunspot number in the range from 50 kHz to 5 MHz, which is presumed to be due to increases in residual ionospheric absorption during nighttime. At frequencies greater than 5 MHz, noise intensities increased with sunspot number in many cases, which would be expected from our present knowledge of ionospheric behavior in the HF range. By convention, CCIR treats year-to-year variation in the noise intensities as random and includes them in the prediction uncertainty sigma /sub Fam/ (for which one value is given at a frequency for a seasonal time block for all locations) in system performance evaluation. An error analysis on a global basis shows that a large portion of the year-to-year variability is due to sunspot variation. This suggests the possibility of improved noise estimates. (auth)
Period of sunspot numbers is 11.02653720 years (11 years 9 days 16 hours 18 minutes 0 seconds)
International Nuclear Information System (INIS)
Norita, Sadataka
1976-01-01
In the statistical analysis of time series there have been applied usually the stationary stochastic process or the Markov stochastic process and recently there are applied remarkably an autoregressive process, a stochastic difference equation, an autoregressive-moving average process, a moving average process, the Whittaker periodogram, the correlogram, Schuster periodogram, chi-squared periodogram, level crossings, harmonic process, difference method, spectral density and first order vector equation, but in special case it is desirable to apply the nonstationary stocastic process. In this paper we introduce an stationarity into the autoregressive process and then it is the first purpose to compute precisely period of sunspot numbers. The result up to the eighth places at the decimal point was obtained that its period is 11.02653720 years, that is, 11 years 9 days 16 hours 18 minutes 0 seconds. This is considered to be more relevant than numerical values by which Schuster (1906) and Yule (1927) had calculated the respective 11.125 years and 10.60 years in the past. We revised the theoretical expression in the thesis of Anderson, Shaman, Lindgren, Brillinger, Newbold, Parzen, Kingman, Van Ness and Kenneth, etc. and executed the numerical analysis of period of sunspot numbers investigated now. (auth.)
Period of sunspot numbers is 11. 02653720 years (11 years 9 days 16 hours 18 minutes 0 seconds)
Energy Technology Data Exchange (ETDEWEB)
Norita, S [Miyazaki Univ. (Japan). Faculty of Engineering
1976-09-01
In the statistical analysis of time series there have been applied usually the stationary stochastic process or the Markov stochastic process and recently there are applied remarkably an autoregressive process, a stochastic difference equation, an autoregressive-moving average process, a moving average process, the Whittaker periodogram, the correlogram, Schuster periodogram, chi-squared periodogram, level crossings, harmonic process, difference method, spectral density and first order vector equation, but in special case it is desirable to apply the nonstationary stocastic process. In this paper we introduce a stationarity into the autoregressive process and then it is the first purpose to compute precisely the period of sunspot numbers. The result up to the eighth places at the decimal point was obtained that its period is 11.02653720 years, that is, 11 years 9 days 16 hours 18 minutes 0 seconds. This is considered to be more relevant than numerical values by which Schuster (1906) and Yule (1927) had calculated the respective 11.125 years and 10.60 years in the past. We revised the theoretical expression in the thesis of Anderson, Shaman, Lindgren, Brillinger, Newbold, Parzen, Kingman, Van Ness and Kenneth, etc. and executed the numerical analysis of period of sunspot numbers investigated now.
Galilei, Galileo; Reeves, Eileen; Helden, Albert van
2010-01-01
Galileo's telescopic discoveries, and especially his observation of sunspots, caused great debate in an age when the heavens were thought to be perfect and unchanging. Christoph Scheiner, a Jesuit mathematician, argued that sunspots were planets or moons crossing in front of the Sun. Galileo, on the other hand, countered that the spots were on or near the surface of the Sun itself, and he supported his position with a series of meticulous observations and mathematical demonstrations that eventually convinced even his rival. On Sunspots collects the correspondenc
Analysis of SSN 688 Class Submarine Maintenance Delays
2017-06-01
Simplified Notional Submarine FRP (Independent Deployer) ..................11 Figure 8. Evolution of Los Angeles Class Submarine Notional...Number TFP Technical Foundation Paper URO Unrestricted Operations xv ACKNOWLEDGMENTS I would like to thank my lead advisor, Professor Nick Dew...only on Los Angeles (SSN 688)-class submarines. Being the higher quantity and older generation submarine hull type, the Los Angeles class submarine
Wilson, Robert M.
2013-01-01
Global warming/climate change has been a subject of scientific interest since the early 19th century. In particular, increases in the atmospheric concentration of carbon dioxide (CO2) have long been thought to account for Earth's increased warming, although the lack of a dependable set of observational data was apparent as late as the mid 1950s. However, beginning in the late 1950s, being associated with the International Geophysical Year, the opportunity arose to begin accurate continuous monitoring of the Earth's atmospheric concentration of CO2. Consequently, it is now well established that the atmospheric concentration of CO2, while varying seasonally within any particular year, has steadily increased over time. Associated with this rising trend in the atmospheric concentration of CO2 is a rising trend in the surface-air and sea-surface temperatures (SSTs). This Technical Publication (TP) examines the statistical relationships between 10-year moving averages (10-yma) of the Global Land-Ocean Temperature Index (GLOTI), sunspot number (SSN), the Atlantic Multidecadal Oscillation (AMO) index, and the Mauna Loa CO2 (MLCO2) index for the common interval 1964-2006, where the 10-yma values are used to indicate trends in the data. Scatter plots using the 10-yma values between GLOTI and each of the other parameters are determined, both as single-variate and multivariate fits. Scatter plots are also determined for MLCO2 using single-variate and bivariate (BV) fits, based on the GLOTI alone and the GLOTI in combination with the AMO index. On the basis of the inferred preferential fits for MLCO2, estimates for MLCO2 are determined for the interval 1885-1964, thereby yielding an estimate of the preindustrial level of atmospheric concentration of CO2. Lastly, 10-yma values of MLCO2 are compared against 10-yma estimates of the total carbon emissions (TCE) to determine the likelihood that manmade sources of carbon emissions are indeed responsible for the recent warming now
The 17 GHz active region number
Energy Technology Data Exchange (ETDEWEB)
Selhorst, C. L.; Pacini, A. A. [IP and D-Universidade do Vale do Paraíba-UNIVAP, São José dos Campos (Brazil); Costa, J. E. R. [CEA, Instituto Nacional de Pesquisas Espaciais, São José dos Campos (Brazil); Giménez de Castro, C. G.; Valio, A. [CRAAM, Universidade Presbiteriana Mackenzie, São Paulo (Brazil); Shibasaki, K., E-mail: caius@univap.br [Nobeyama Solar Radio Observatory/NAOJ, Minamisaku, Nagano 384-1305 (Japan)
2014-08-01
We report the statistics of the number of active regions (NAR) observed at 17 GHz with the Nobeyama Radioheliograph between 1992, near the maximum of cycle 22, and 2013, which also includes the maximum of cycle 24, and we compare with other activity indexes. We find that NAR minima are shorter than those of the sunspot number (SSN) and radio flux at 10.7 cm (F10.7). This shorter NAR minima could reflect the presence of active regions generated by faint magnetic fields or spotless regions, which were a considerable fraction of the counted active regions. The ratio between the solar radio indexes F10.7/NAR shows a similar reduction during the two minima analyzed, which contrasts with the increase of the ratio of both radio indexes in relation to the SSN during the minimum of cycle 23-24. These results indicate that the radio indexes are more sensitive to weaker magnetic fields than those necessary to form sunspots, of the order of 1500 G. The analysis of the monthly averages of the active region brightness temperatures shows that its long-term variation mimics the solar cycle; however, due to the gyro-resonance emission, a great number of intense spikes are observed in the maximum temperature study. The decrease in the number of these spikes is also evident during the current cycle 24, a consequence of the sunspot magnetic field weakening in the last few years.
International Nuclear Information System (INIS)
Lomb, Nick
2013-01-01
The set of sunspot numbers observed since the invention of the telescope is one of the most studied time series in astronomy and yet it is also one of the most complex. Fourteen frequencies are found in the yearly mean sunspot numbers from 1700 to 2011using the Lomb-Scargle periodogram and prewhitening. All of the frequencies corresponding to shorter term periods can be matched with simple algebraic combinations of the frequency of the main 11-year period and the frequencies of the longer term periods in the periodogram. This is exactly what can be expected from amplitude and phase modulation of an 11.12-year periodicity by longer term variations. Similar, though not identical, results are obtained after correcting the sunspot number series as proposed by Svalgaard. On looking separately at the amplitude and phase modulation a clear relationship is found between the two modulations although this relationship has broken down for the last four solar cycles. The phase modulation implies that there is a definite underlying period for the solar cycle. Such a clock mechanism does seem to be a possibility in models of the solar dynamo incorporating a conveyor-belt-like meridional circulation between high polar latitudes and the equator.
Improved Space Surveillance Network (SSN) Scheduling using Artificial Intelligence Techniques
Stottler, D.
There are close to 20,000 cataloged manmade objects in space, the large majority of which are not active, functioning satellites. These are tracked by phased array and mechanical radars and ground and space-based optical telescopes, collectively known as the Space Surveillance Network (SSN). A better SSN schedule of observations could, using exactly the same legacy sensor resources, improve space catalog accuracy through more complementary tracking, provide better responsiveness to real-time changes, better track small debris in low earth orbit (LEO) through efficient use of applicable sensors, efficiently track deep space (DS) frequent revisit objects, handle increased numbers of objects and new types of sensors, and take advantage of future improved communication and control to globally optimize the SSN schedule. We have developed a scheduling algorithm that takes as input the space catalog and the associated covariance matrices and produces a globally optimized schedule for each sensor site as to what objects to observe and when. This algorithm is able to schedule more observations with the same sensor resources and have those observations be more complementary, in terms of the precision with which each orbit metric is known, to produce a satellite observation schedule that, when executed, minimizes the covariances across the entire space object catalog. If used operationally, the results would be significantly increased accuracy of the space catalog with fewer lost objects with the same set of sensor resources. This approach inherently can also trade-off fewer high priority tasks against more lower-priority tasks, when there is benefit in doing so. Currently the project has completed a prototyping and feasibility study, using open source data on the SSN's sensors, that showed significant reduction in orbit metric covariances. The algorithm techniques and results will be discussed along with future directions for the research.
Sunspot drawings handwritten character recognition method based on deep learning
Zheng, Sheng; Zeng, Xiangyun; Lin, Ganghua; Zhao, Cui; Feng, Yongli; Tao, Jinping; Zhu, Daoyuan; Xiong, Li
2016-05-01
High accuracy scanned sunspot drawings handwritten characters recognition is an issue of critical importance to analyze sunspots movement and store them in the database. This paper presents a robust deep learning method for scanned sunspot drawings handwritten characters recognition. The convolution neural network (CNN) is one algorithm of deep learning which is truly successful in training of multi-layer network structure. CNN is used to train recognition model of handwritten character images which are extracted from the original sunspot drawings. We demonstrate the advantages of the proposed method on sunspot drawings provided by Chinese Academy Yunnan Observatory and obtain the daily full-disc sunspot numbers and sunspot areas from the sunspot drawings. The experimental results show that the proposed method achieves a high recognition accurate rate.
Willamo, T.; Usoskin, I. G.; Kovaltsov, G. A.
2018-04-01
The method of active-day fraction (ADF) was proposed recently to calibrate different solar observers to standard observational conditions. The result of the calibration may depend on the overall level of solar activity during the observational period. This dependency is studied quantitatively using data of the Royal Greenwich Observatory by formally calibrating synthetic pseudo-observers to the full reference dataset. It is shown that the sunspot group number is precisely estimated by the ADF method for periods of moderate activity, may be slightly underestimated by 0.5 - 1.5 groups ({≤} 10%) for strong and very strong activity, and is strongly overestimated by up to 2.5 groups ({≤} 30%) for weak-to-moderate activity. The ADF method becomes inapplicable for the periods of grand minima of activity. In general, the ADF method tends to overestimate the overall level of activity and to reduce the long-term trends.
Sunspots During the Maunder Minimum from Machina Coelestis by Hevelius
Carrasco, V. M. S.; Álvarez, J. Villalba; Vaquero, J. M.
2015-10-01
We revisited the sunspot observations published by Johannes Hevelius in his book Machina Coelestis (1679) corresponding to the period of 1653 - 1675 (just in the middle of the Maunder Minimum). We show detailed translations of the original Latin texts describing the sunspot records and provide the general context of these sunspot observations. From this source, we present an estimate of the annual values of the group sunspot number based only on the records that explicitly inform us of the presence or absence of sunspots. Although we obtain very low values of the group sunspot number, in accordance with a grand minimum of solar activity, these values are significantly higher in general than the values provided by Hoyt and Schatten ( Solar Phys. 179, 189, 1998) for the same period.
Featured Image: Bright Dots in a Sunspot
Kohler, Susanna
2018-03-01
This image of a sunspot, located in in NOAA AR 12227, was captured in December 2014 by the 0.5-meter Solar Optical Telescope on board the Hinode spacecraft. This image was processed by a team of scientists led by Rahul Yadav (Udaipur Solar Observatory, Physical Research Laboratory Dewali, India) in order to examine the properties of umbral dots: transient, bright features observed in the umbral region (the central, darkest part) of a sunspot. By exploring these dots, Yadav and collaborators learned how their properties relate to the large-scale properties of the sunspots in which they form for instance, how do the number, intensities, or filling factors of dots relate to the size of a sunspots umbra? To find out more about the authors results, check out the article below.Sunspot in NOAA AR 11921. Left: umbralpenumbral boundary. Center: the isolated umbra from the sunspot. Right: The umbra with locations of umbral dots indicated by yellow plus signs. [Adapted from Yadav et al. 2018]CitationRahul Yadav et al 2018 ApJ 855 8. doi:10.3847/1538-4357/aaaeba
On the insignificance of Herschel's sunspot correlation
Love, Jeffrey J.
2013-08-01
We examine William Herschel's hypothesis that solar-cycle variation of the Sun's irradiance has a modulating effect on the Earth's climate and that this is, specifically, manifested as an anticorrelation between sunspot number and the market price of wheat. Since Herschel first proposed his hypothesis in 1801, it has been regarded with both interest and skepticism. Recently, reports have been published that either support Herschel's hypothesis or rely on its validity. As a test of Herschel's hypothesis, we seek to reject a null hypothesis of a statistically random correlation between historical sunspot numbers, wheat prices in London and the United States, and wheat farm yields in the United States. We employ binary-correlation, Pearson-correlation, and frequency-domain methods. We test our methods using a historical geomagnetic activity index, well known to be causally correlated with sunspot number. As expected, the measured correlation between sunspot number and geomagnetic activity would be an unlikely realization of random data; the correlation is "statistically significant." On the other hand, measured correlations between sunspot number and wheat price and wheat yield data would be very likely realizations of random data; these correlations are "insignificant." Therefore, Herschel's hypothesis must be regarded with skepticism. We compare and contrast our results with those of other researchers. We discuss procedures for evaluating hypotheses that are formulated from historical data.
Long-term Modulation of Cosmic Ray Intensity in relation to Sunspot ...
Indian Academy of Sciences (India)
it should be more closely connected with cosmic ray modulation than with other solar characteristics (sunspot numbers or coronal emission intensity). The intensity of galactic cosmic rays varies inversely with sunspot numbers, having their maximum intensity at the minimum of the 11-year sunspot cycle (Forbush 1954, 1958) ...
Coordination failure caused by sunspots
DEFF Research Database (Denmark)
Beugnot, Julie; Gürgüç, Zeynep; Øvlisen, Frederik Roose
2012-01-01
on the efficient equilibrium, we consider sunspots as a potential reason for coordination failure. We conduct an experiment with a three player 2x2x2 game in which coordination on the efficient equilibrium is easy and should normally occur. In the control session, we find almost perfect coordination on the payoff......-dominant equilibrium, but in the sunspot treatment, dis-coordination is frequent. Sunspots lead to significant inefficiency, and we conclude that sunspots can indeed cause coordination failure....
Towards the automatic detection and analysis of sunspot rotation
Brown, Daniel S.; Walker, Andrew P.
2016-10-01
Torsional rotation of sunspots have been noted by many authors over the past century. Sunspots have been observed to rotate up to the order of 200 degrees over 8-10 days, and these have often been linked with eruptive behaviour such as solar flares and coronal mass ejections. However, most studies in the literature are case studies or small-number studies which suffer from selection bias. In order to better understand sunspot rotation and its impact on the corona, unbiased large-sample statistical studies are required (including both rotating and non-rotating sunspots). While this can be done manually, a better approach is to automate the detection and analysis of rotating sunspots using robust methods with well characterised uncertainties. The SDO/HMI instrument provide long-duration, high-resolution and high-cadence continuum observations suitable for extracting a large number of examples of rotating sunspots. This presentation will outline the analysis of SDI/HMI data to determine the rotation (and non-rotation) profiles of sunspots for the complete duration of their transit across the solar disk, along with how this can be extended to automatically identify sunspots and initiate their analysis.
Iwahashi Zenbei's Sunspot Drawings in 1793 in Japan
Hayakawa, Hisashi; Iwahashi, Kiyomi; Tamazawa, Harufumi; Toriumi, Shin; Shibata, Kazunari
2018-01-01
Three Japanese sunspot drawings associated with Iwahashi Zenbei (1756 - 1811) are shown here from contemporary manuscripts and woodprint documents with the relevant texts. We reveal the observational date of one of the drawings to be 26 August 1793, and the overall observations lasted for over a year. Moreover, we identify the observational site for the dated drawing as Fushimi in Japan. We then compare Zenbei's observations with the group sunspot number and the raw group count from the Sunspot Index and Long-term Solar Observations (SILSO) to reveal the context of the data, and we conclude that these drawings fill gaps in our understanding that are due to the fragmental sunspot observations around 1793. These drawings are important as a clue to evaluate astronomical knowledge of contemporary Japan in the late eighteenth century and are valuable as a non-European observation, considering that most sunspot observations up to the middle of the nineteenth century are from Europe.
Planetary tides during the Maunder sunspot minimum
International Nuclear Information System (INIS)
Smythe, C.M.; Eddy, J.A.
1977-01-01
Sun-centered planetary conjunctions and tidal potentials are here constructed for the AD1645 to 1715 period of sunspot absence, referred to as the 'Maunder Minimum'. These are found to be effectively indistinguishable from patterns of conjunctions and power spectra of tidal potential in the present era of a well established 11 year sunspot cycle. This places a new and difficult restraint on any tidal theory of sunspot formation. Problems arise in any direct gravitational theory due to the apparently insufficient forces and tidal heights involved. Proponents of the tidal hypothesis usually revert to trigger mechanisms, which are difficult to criticise or test by observation. Any tidal theory rests on the evidence of continued sunspot periodicity and the substantiation of a prolonged period of solar anomaly in the historical past. The 'Maunder Minimum' was the most drastic change in the behaviour of solar activity in the last 300 years; sunspots virtually disappeared for a 70 year period and the 11 year cycle was probably absent. During that time, however, the nine planets were all in their orbits, and planetary conjunctions and tidal potentials were indistinguishable from those of the present era, in which the 11 year cycle is well established. This provides good evidence against the tidal theory. The pattern of planetary tidal forces during the Maunder Minimum was reconstructed to investigate the possibility that the multiple planet forces somehow fortuitously cancelled at the time, that is that the positions of the slower moving planets in the 17th and early 18th centuries were such that conjunctions and tidal potentials were at the time reduced in number and force. There was no striking dissimilarity between the time of the Maunder Minimum and any period investigated. The failure of planetary conjunction patterns to reflect the drastic drop in sunspots during the Maunder Minimum casts doubt on the tidal theory of solar activity, but a more quantitative test
Hunter, H. E.; Amato, R. A.
1972-01-01
The results are presented of the application of Avco Data Analysis and Prediction Techniques (ADAPT) to derivation of new algorithms for the prediction of future sunspot activity. The ADAPT derived algorithms show a factor of 2 to 3 reduction in the expected 2-sigma errors in the estimates of the 81-day running average of the Zurich sunspot numbers. The report presents: (1) the best estimates for sunspot cycles 20 and 21, (2) a comparison of the ADAPT performance with conventional techniques, and (3) specific approaches to further reduction in the errors of estimated sunspot activity and to recovery of earlier sunspot historical data. The ADAPT programs are used both to derive regression algorithm for prediction of the entire 11-year sunspot cycle from the preceding two cycles and to derive extrapolation algorithms for extrapolating a given sunspot cycle based on any available portion of the cycle.
Nature's third cycle a story of sunspots
Choudhuri, Arnab Rai
2015-01-01
The cycle of day and night and the cycle of seasons are two familiar natural cycles around which many human activities are organized. But is there a third natural cycle of importance for us humans? On 13 March 1989, six million people in Canada went without electricity for many hours: a large explosion on the sun was discovered as the cause of this blackout. Such explosions occur above sunspots, dark features on the surface of the Sun that have been observed through telescopes since the time of Galileo. The number of sunspots has been found to wax and wane over a period of 11 years. Although this cycle was discovered less than two centuries ago, it is becoming increasingly important for us as human society becomes more dependent on technology. For nearly a century after its discovery, the cause of the sunspot cycle remained completely shrouded in mystery. The 1908 discovery of strong magnetic fields in sunspots made it clear that the 11-year cycle is the magnetic cycle of the sun. It is only during the last ...
Energy Technology Data Exchange (ETDEWEB)
Mandal, Sudip; Chatterjee, Subhamoy; Banerjee, Dipankar, E-mail: sudip@iiap.res.in [Indian Institute of Astrophysics, Koramangala, Bangalore 560034 (India)
2017-02-01
Plages are the magnetically active chromospheric structures prominently visible in the Ca ii K line (3933.67 Å). A plage may or may not be associated with a sunspot, which is a magnetic structure visible in the solar photosphere. In this study we explore this aspect of association of plages with sunspots using the newly digitized Kodaikanal Ca ii K plage data and the Greenwich sunspot area data. Instead of using the plage index or fractional plage area and its comparison with the sunspot number, we use, to our knowledge for the first time, the individual plage areas and compare them with the sunspot area time series. Our analysis shows that these two structures, formed in two different layers, are highly correlated with each other on a timescale comparable to the solar cycle. The area and the latitudinal distributions of plages are also similar to those of sunspots. Different area thresholdings on the “butterfly diagram” reveal that plages of area ≥4 arcmin{sup 2} are mostly associated with a sunspot in the photosphere. Apart from this, we found that the cyclic properties change when plages of different sizes are considered separately. These results may help us to better understand the generation and evolution of the magnetic structures in different layers of the solar atmosphere.
ANALISIS KUALITAS PENGELOLAAN KELAS PEMBELAJARAN SAINS PADA SMP SSN DI KABUPATEN PATI
Directory of Open Access Journals (Sweden)
Prasetyaningsih Prasetyaningsih
2016-12-01
Full Text Available Abstract This study aimed at identifying in: (1 planning the classroom management for the SSN classes and (2 managing the classroom, in the teaching and learning process of science in SSN schools.This is a evaluatif study which focuses on the classroom management of science learning in SSN junior high schools. The subjects of the research are SSN Junior High Schools of Pati Regency which focuses on the classroom management of science learning. There are six SSN schools, namely SMP N 2 Pati, SMP N 4 Pati, SMP N 1 Wedarijaksa, SMP N 1 Trangkil, SMP N 1 Tlogowungu, and SMP N 1 Gabus. The data were gained through observation, interview, questionnaire, and document study.The result shows that : the classroom management planning in SSN Junior High Schools in the science learning at Pati Regency are categorizes good: the science teacher SSN Junior High School the use of ICT in science learning was not taken into account, teaching materials (handouts, worksheets, modules and ICT-based teaching material were not developed yet, the assessment planning did not complete. Process in the science learning at SNN junior High School are as categirizes good. Keywords: Classroom Management, SSN, Science Learning. Abstrak Penelitian ini bertujuan untuk: (1 mengidentifikasi perencanaan pengelolaan kelas di SMP SSN dalam pembelajaran sains; (2 mengidentifikasi proses pengelolaan kelas di SMP SSN dalam pembelajaran sains. Penelitian ini merupakan penelitian evaluatif, yang memfokuskan pada kualitas pengelolaan kelas pembelajaran sains pada SMP SSN. Subjek penelitian ini SMP SSN Kabupaten Pati yang difokuskan pada perencanaan dan pelaksanaan pengelolaan kelas pembelajaran sains.Data penelitian diperoleh melalui: observasi, wawancara, angket, dan dokumentasi. Data yang diperoleh bersifat subjektif, berupa hasil observasi, wawancara, dan angket.Hasil penelitian menunjukkan: perencanaan pengelolaan kelas di SMP SSN dalam pembelajaran sains berkategori baik
Oscillations and Waves in Sunspots
Directory of Open Access Journals (Sweden)
Elena Khomenko
2015-11-01
Full Text Available A magnetic field modifies the properties of waves in a complex way. Significant advances have been made recently in our understanding of the physics of sunspot waves with the help of high-resolution observations, analytical theories, as well as numerical simulations. We review the current ideas in the field, providing the most coherent picture of sunspot oscillations as by present understanding.
Sound Surfing Network (SSN): Mobile Phone-based Sound Spatialization with Audience Collaboration
Park, Saebyul; Ban, Seonghoon; Hong, Dae Ryong; Yeo, Woon Seung
2013-01-01
SSN (Sound Surfing Network) is a performance system that provides a new musicalexperience by incorporating mobile phone-based spatial sound control tocollaborative music performance. SSN enables both the performer and theaudience to manipulate the spatial distribution of sound using the smartphonesof the audience as distributed speaker system. Proposing a new perspective tothe social aspect music appreciation, SSN will provide a new possibility tomobile music performances in the context of in...
Tran, T.
With the onset of the SmallSat era, the RSO catalog is expected to see continuing growth in the near future. This presents a significant challenge to the current sensor tasking of the SSN. The Air Force is in need of a sensor tasking system that is robust, efficient, scalable, and able to respond in real-time to interruptive events that can change the tracking requirements of the RSOs. Furthermore, the system must be capable of using processed data from heterogeneous sensors to improve tasking efficiency. The SSN sensor tasking can be regarded as an economic problem of supply and demand: the amount of tracking data needed by each RSO represents the demand side while the SSN sensor tasking represents the supply side. As the number of RSOs to be tracked grows, demand exceeds supply. The decision-maker is faced with the problem of how to allocate resources in the most efficient manner. Braxton recently developed a framework called Multi-Objective Resource Optimization using Genetic Algorithm (MOROUGA) as one of its modern COTS software products. This optimization framework took advantage of the maturing technology of evolutionary computation in the last 15 years. This framework was applied successfully to address the resource allocation of an AFSCN-like problem. In any resource allocation problem, there are five key elements: (1) the resource pool, (2) the tasks using the resources, (3) a set of constraints on the tasks and the resources, (4) the objective functions to be optimized, and (5) the demand levied on the resources. In this paper we explain in detail how the design features of this optimization framework are directly applicable to address the SSN sensor tasking domain. We also discuss our validation effort as well as present the result of the AFSCN resource allocation domain using a prototype based on this optimization framework.
The visibility function and its effect on the observed characteristics of sunspot groups. 1
International Nuclear Information System (INIS)
Kopecky, M.; Kuklin, G.V.; Starkova, I.P.
1985-01-01
The paper is an introductory study to a series dealing with the visibility function, the function of foreshortening of sunspot group areas, and with the effect of these functions on the results of the statistical processing of observations, which has to be taken into account in interpreting the results. A ''diagram of observational conditions'' is described, which enables a number of statistical problems of sunspot groups on the rotating Sun to be solved by computer modelling or by graphical methods. Examples are given of the use of this diagram in studying the distribution of the observed lifetime of sunspot groups with a given actual lifetime, of the decrease in the number of sunspot groups towards the limb of the solar disc, of the east-west asymmetry of sunspot group appearance and disappearance. (author)
National Research Council Canada - National Science Library
Opria, George R; Maraska, Donald G
2007-01-01
.... This functionality creep has led to the SSN becoming an almost de facto national ID number. Employers, universities, credit agencies and financial institutions began using the SSN as a unique personal identifier...
Is sunspot activity a factor in influenza pandemics?
Qu, Jiangwen
2016-09-01
The 2009 AH1N1 pandemic became a global health concern, although fortunately, its worst anticipated effects were not realised. While the origins of such outbreaks remain poorly understood, it is very important to identify the precipitating factors in their emergence so that future pandemics can be detected as quickly as possible. Methords: Descriptive epidemiology was used to analyse the association between influenza pandemics and possible pandemics and relative number of sunspots. Non-conditional logistic regression was performed to analyse the statistical association between sunspot extremes and influenza pandemics to within plus or minus 1 year. Almost all recorded influenza/possible pandemics have occurred in time frames corresponding to sunspot extremes, or +/- 1 year within such extremes. These periods were identified as important risk factors in both possible and confirmed influenza pandemics (odds ratio: 3.87; 95% confidence interval: 1.08 to 13.85). Extremes of sunspot activity to within plus or minus 1 year may precipitate influenza pandemics. Mechanisms of epidemic initiation and early spread are discussed including primary causation by externally derived viral variants (from space via cometary dust). Efforts to construct a comprehensive early warning system for potential influenza and other viral pandemics that include analysis of sunspot activity and stratospheric sampling for viral variants should be supported. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Long-term periodicities in the sunspot record
International Nuclear Information System (INIS)
Wilson, R.M.
1984-07-01
Sunspot records are systematically maintained, with the knowledge that an 11 year average period exists since about 1850. Thus, the sunspot record of highest quality and considered to be the most reliable is that of cycle eight through the present. On the basis of cycles 8 through 20, various combinations of sine curves were used to approximate the observed R sub MAX values (where R sub MAX is the smoothed sunspot number at cycle maximum). It is found that a three component sinusoidal function, having an 11 cycle and a 2 cycle variation on a 90 cycle periodicity, yields computed R sub MAX values which fit, reasonably well, observed R sub MAX values for the modern sunspot cycles. Extrapolation of the empirical functions forward in time allows for the projection of values of R sub MAX for cycles 21 and 22. For cycle 21, the function projects a value of 157.3, very close to the actually observed value of 164.5. For cycle 22, the function projects a value of about 107. Linear regressions applied to cycle 22 indicate a long-period cycle (cycle duration 132 months). An extensive bibliography on techniques used to estimate the time dependent behavior of sunspot cycles is provided
The story of the social security number.
Puckett, Carolyn
2009-01-01
The use of the Social Security number (SSN) has expanded significantly since its inception in 1936. Created merely to keep track of the earnings history of U.S. workers for Social Security entitlement and benefit computation purposes, it has come to be used as a nearly universal identifier. Assigned at birth, the SSN enables government agencies to identify individuals in their records and businesses to track an individual's financial information. This article explores the history and meaning of the SSN and the Social Security card, as well as the Social Security Administration's (SSA's) SSN master file, generally known as the Numident. The article also traces the historical expansion of SSN use and the steps SSA has taken to enhance SSN integrity.
The Relative Phase Asynchronization between Sunspot Numbers ...
Indian Academy of Sciences (India)
of Sciences, P. O. Box 110, 650011 Kunming, People's Republic of China. ... by studying the North–South asymmetry in the predominant rotation periods of ... earth, the polar faculae counts show strong annual variation, and the polar region is.
Long-term variations in the geomagnetic activity level Part II: Ascending phases of sunspot cycles
Directory of Open Access Journals (Sweden)
V. Mussino
1994-08-01
Full Text Available Monthly averages of the Helsinki Ak-values have been reduced to the equivalent aa-indices to extend the aa-data set back to 1844. A periodicity of about five cycles was found for the correlation coefficient (r between geomagnetic indices and sunspot numbers for the ascending phases of sunspot cycles 9 to 22, confirming previous findings based on a minor number of sunspot cycles. The result is useful to researchers in topics related to solar-terrestrial physics, particularly for the interpretation of long-term trends in geomagnetic activity during the past, and to forecast geomagnetic activity levels in the future.
HELIOSEISMOLOGY OF A REALISTIC MAGNETOCONVECTIVE SUNSPOT SIMULATION
International Nuclear Information System (INIS)
Braun, D. C.; Birch, A. C.; Rempel, M.; Duvall, T. L. Jr.
2012-01-01
We compare helioseismic travel-time shifts measured from a realistic magnetoconvective sunspot simulation using both helioseismic holography and time-distance helioseismology, and measured from real sunspots observed with the Helioseismic and Magnetic Imager instrument on board the Solar Dynamics Observatory and the Michelson Doppler Imager instrument on board the Solar and Heliospheric Observatory. We find remarkable similarities in the travel-time shifts measured between the methodologies applied and between the simulated and real sunspots. Forward modeling of the travel-time shifts using either Born or ray approximation kernels and the sound-speed perturbations present in the simulation indicates major disagreements with the measured travel-time shifts. These findings do not substantially change with the application of a correction for the reduction of wave amplitudes in the simulated and real sunspots. Overall, our findings demonstrate the need for new methods for inferring the subsurface structure of sunspots through helioseismic inversions.
Visual Circular Analysis of 266 Years of Sunspot Counts.
Buelens, Bart
2016-06-01
Sunspots, colder areas that are visible as dark spots on the surface of the Sun, have been observed for centuries. Their number varies with a period of ∼11 years, a phenomenon closely related to the solar activity cycle. Recently, observation records dating back to 1749 have been reassessed, resulting in the release of a time series of sunspot numbers covering 266 years of observations. This series is analyzed using circular analysis to determine the periodicity of the occurrence of solar maxima. The circular analysis is combined with spiral graphs to provide a single visualization, simultaneously showing the periodicity of the series, the degree to which individual cycle lengths deviate from the average period, and differences in levels reached during the different maxima. This type of visualization of cyclic time series with varying cycle lengths in which significant events occur periodically is broadly applicable. It is aimed particularly at science communication, education, and public outreach.
Probabilistic risk assessment (PRA) on the effectiveness of a core rescue system (SSN) for PWRs
International Nuclear Information System (INIS)
Petrangeli, G.; Valeri, A.
1983-01-01
Safety systems for the prevention of LWR core severe damage have recently been studied, which are based on automatic primary system depressurization and on borated water injection by low pressure accumulators. These systems have been named Core Rescue System (SSN). The present study evaluates the reduction in core melt probability brought about by the installation of a SSN system on the RSS (WASH 1400) PWR plant (Surry 1). The calculated result is a core melt probability reduction factor of about 250. Taking into account the possible effect of external or internal unknown events of negligible, yet undefined, probability it is concluded that a SSN system can make a plant ten times safer. The first part of a review report by Prof. N.C.Rasmussen, MIT, dealing with general comment, is attached
MINAT SISWA SMP N RSBI DAN SSN DI KOTA SEMARANG DALAM MEMILIH SMK
Directory of Open Access Journals (Sweden)
Jarot Tri Bowo Santoso
2016-01-01
Full Text Available The objective of this study is to know junior high school students interest in choosing vocational school (SMK. The research took place in 2 RSBI junior high schools and 2 SSN junior high schools in Semarang. The population of this study 854 students and the samples were 120 students.The data were collected by questionnaire and interview. Then, the data were analyzed by percentage description. The results showed that (1 RSBI junior high school students interest in choosing vocational school is very low. (2 SSN junior high school students interest in choosing vocational school is very low.
The sunspot databases of the Debrecen Observatory
Baranyi, Tünde; Gyori, Lajos; Ludmány, András
2015-08-01
We present the sunspot data bases and online tools available in the Debrecen Heliophysical Observatory: the DPD (Debrecen Photoheliographic Data, 1974 -), the SDD (SOHO/MDI-Debrecen Data, 1996-2010), the HMIDD (SDO/HMI-Debrecen Data, HMIDD, 2010-), the revised version of Greenwich Photoheliographic Data (GPR, 1874-1976) presented together with the Hungarian Historical Solar Drawings (HHSD, 1872-1919). These are the most detailed and reliable documentations of the sunspot activity in the relevant time intervals. They are very useful for studying sunspot group evolution on various time scales from hours to weeks. Time-dependent differences between the available long-term sunspot databases are investigated and cross-calibration factors are determined between them. This work has received funding from the European Community's Seventh Framework Programme (FP7/2012-2015) under grant agreement No. 284461 (eHEROES).
Self-affinity and nonextensivity of sunspots
International Nuclear Information System (INIS)
Moret, M.A.
2014-01-01
In this paper we study the time series of sunspots by using two different approaches, analyzing its self-affine behavior and studying its distribution. The long-range correlation exponent α has been calculated via Detrended Fluctuation Analysis and the power law vanishes to values greater than 11 years. On the other hand, the distribution of the sunspots obeys a q-exponential decay that suggests a non-extensive behavior. This observed characteristic seems to take an alternative interpretation of the sunspots dynamics. The present findings suggest us to propose a dynamic model of sunspots formation based on a nonlinear Fokker–Planck equation. Therefore its dynamic process follows the generalized thermostatistical formalism.
Towards IoT platforms’ integration : Semantic Translations between W3C SSN and ETSI SAREF
Moreira, João Luiz; Daniele, L.M.; Ferreira Pires, Luis; van Sinderen, Marten J.; Wasielewska, Katarzyna; Szmeja, Pawel; Pawlowski, Wieslaw; Ganzha, Maria; Paprzycki, Marcin
2017-01-01
Several IoT ontologies have been developed lately to improve the semantic interoperability of IoT solutions. The most popular of these ontologies, the W3C Semantic Sensor Network (SSN), is considered an ontological foundation for diverse IoT initiatives, particularly OpenIoT. With characteristics
The use of solar faculae in studies of the sunspot cycle
International Nuclear Information System (INIS)
Brown, G.M.; Evans, R.
1980-01-01
Comparison of the long-term variation of photospheric faculae areas with that of sunspots shows that studies of faculae provide both complementary and supplementary information on the behaviour of the solar cycle. Detailed studies of the development of sunspots with respect to faculae show that there is a high degree of order over much of a given cycle, but marked differences from cycle to cycle. Within a cycle the relationship between spot and faculae areas appears to be similar for the N and S solar hemispheres, and over the early stages of a cycle it is directly related to the magnitude of the maximum sunspot number subsequently attained in that cycle. This result may well have predictive applications, and formulae are given relating the peak sunspot number to simple parameters derived from this early developmental stage. Full application to the current cycle 21 is denied due to the cessation of the Greenwich daily photoheliographic measurements, but use of the cruder weekly data suggests a maximum smoothed sunspot number of 150 +- 22. The effects of the incompatibility of the spot and faculae data, in that faculae are unobservable over a large fraction of the solar disc and also do not always develop associated spots, have been examined in a detailed study of two cycles and shown not to vitiate the results. (orig.)
Wings of the butterfly: Sunspot groups for 1826-2015
Leussu, R.; Usoskin, I. G.; Senthamizh Pavai, V.; Diercke, A.; Arlt, R.; Denker, C.; Mursula, K.
2017-03-01
The spatio-temporal evolution of sunspot activity, the so-called Maunder butterfly diagram, has been continously available since 1874 using data from the Royal Greenwich Observatory, extended by SOON network data after 1976. Here we present a new extended butterfly diagram of sunspot group occurrence since 1826, using the recently digitized data from Schwabe (1826-1867) and Spörer (1866-1880). The wings of the diagram are separated using a recently developed method based on an analysis of long gaps in sunspot group occurrence in different latitude bands. We define characteristic latitudes, corresponding to the start, end, and the largest extent of the wings (the F, L, and H latitudes). The H latitudes (30°-45°) are highly significantly correlated with the strength of the wings (quantified by the total sum of the monthly numbers of sunspot groups). The F latitudes (20°-30°) depict a weak tendency, especially in the southern hemisphere, to follow the wing strength. The L latitudes (2°-10°) show no clear relation to the wing strength. Overall, stronger cycle wings tend to start at higher latitudes and have a greater wing extent. A strong (5-6)-cycle periodic oscillation is found in the start and end times of the wings and in the overlap and gaps between successive wings of one hemisphere. While the average wing overlap is zero in the southern hemisphere, it is two to three months in the north. A marginally significant oscillation of about ten solar cycles is found in the asymmetry of the L latitudes. The new long database of butterfly wings provides new observational constraints to solar dynamo models that discuss the spatio-temporal distribution of sunspot occurrence over the solar cycle and longer. Digital data for Fig. 1 are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/599/A131
Sunspot activity and influenza pandemics: a statistical assessment of the purported association.
Towers, S
2017-10-01
Since 1978, a series of papers in the literature have claimed to find a significant association between sunspot activity and the timing of influenza pandemics. This paper examines these analyses, and attempts to recreate the three most recent statistical analyses by Ertel (1994), Tapping et al. (2001), and Yeung (2006), which all have purported to find a significant relationship between sunspot numbers and pandemic influenza. As will be discussed, each analysis had errors in the data. In addition, in each analysis arbitrary selections or assumptions were also made, and the authors did not assess the robustness of their analyses to changes in those arbitrary assumptions. Varying the arbitrary assumptions to other, equally valid, assumptions negates the claims of significance. Indeed, an arbitrary selection made in one of the analyses appears to have resulted in almost maximal apparent significance; changing it only slightly yields a null result. This analysis applies statistically rigorous methodology to examine the purported sunspot/pandemic link, using more statistically powerful un-binned analysis methods, rather than relying on arbitrarily binned data. The analyses are repeated using both the Wolf and Group sunspot numbers. In all cases, no statistically significant evidence of any association was found. However, while the focus in this particular analysis was on the purported relationship of influenza pandemics to sunspot activity, the faults found in the past analyses are common pitfalls; inattention to analysis reproducibility and robustness assessment are common problems in the sciences, that are unfortunately not noted often enough in review.
The Strongest Magnetic Field in Sunspots
Okamoto, J.; Sakurai, T.
2017-12-01
Sunspots are concentrations of magnetic fields on the solar surface. Generally, the strongest magnetic field in each sunspot is located in the dark umbra in most cases. A typical field strength in sunspots is around 3,000 G. On the other hand, some exceptions also have been found in complex sunspots with bright regions such as light bridges that separate opposite polarity umbrae, for instance with a strength of 4,300 G. However, the formation mechanism of such strong fields outside umbrae is still puzzling. Here we report an extremely strong magnetic field in a sunspot, which was located in a bright region sandwiched by two opposite-polarity umbrae. The strength is 6,250 G, which is the largest ever observed since the discovery of magnetic field on the Sun in 1908 by Hale. We obtained 31 scanned maps of the active region observed by Hinode/SOT/SP with a cadence of 3 hours over 5 days (February 1-6, 2014). Considering the spatial and temporal evolution of the vector magnetic field and the Doppler velocity in the bright region, we suggested that this strong field region was generated as a result of compression of one umbra pushed by the outward flow from the other umbra (Evershed flow), like the subduction of the Earth's crust in plate tectonics.
Absorption of acoustic waves by sunspots. II - Resonance absorption in axisymmetric fibril models
Rosenthal, C. S.
1992-01-01
Analytical calculations of acoustic waves scattered by sunspots which concentrate on the absorption at the magnetohydrodynamic Alfven resonance are extended to the case of a flux-tube embedded in a uniform atmosphere. The model is based on a flux-tubes of varying radius that are highly structured, translationally invariant, and axisymmetric. The absorbed fractional energy is determined for different flux-densities and subphotospheric locations with attention given to the effects of twist. When the flux is highly concentrated into annuli efficient absorption is possible even when the mean magnetic flux density is low. The model demonstrates low absorption at low azimuthal orders even in the presence of twist which generally increases the range of wave numbers over which efficient absorption can occur. Resonance absorption is concluded to be an efficient mechanism in monolithic sunspots, fibril sunspots, and plage fields.
Directory of Open Access Journals (Sweden)
Frédéric Ouattara
2009-06-01
Full Text Available Four well known geomagnetic classes of activity such as quiet days activity, fluctuating activity, recurrent activity
and shock activity time occurrences have been determined not only by using time profile of sunspot number
Rz but also by using aa index values.
We show that recurrent wind stream activity and fluctuating activity occur in opposite phase and slow solar wind
activity during minimum phase and shock activity at the maximum phase.
It emerges from this study that fluctuating activity precedes the sunspot cycle by π/2 and the latter also precedes
recurrent activity by π/2. Thus in the majority the activities do not happen at random; the sunspot cycle starts
with quiet days activity, continues with fluctuating activity and during its maximum phase arrives shock activity.
The descending phase is characterized by the manifestation of recurrent wind stream activity.
Diode laser heterodyne observations of silicon monoxide in sunspots - A test of three sunspot models
Glenar, D. A.; Deming, D.; Jennings, D. E.; Kostiuk, T.; Mumma, M. J.
1983-01-01
Absorption features from the 8 micron SiO fundamental (upsilon = 1-0) and hot bands (upsilon = 2-1) have been observed in sunspots at sub-Doppler resolution using a ground-based tunable diode laser heterodyne spectrometer. The observed line widths suggest an upper limit of 0.5 km/s for the microturbulent velocity in sunspot umbrae. Since the silicon monoxide abundance is very sensitive to sunspot temperature, the measured equivalent widths permit an unambiguous determination of the temperature-pressure relation in the upper layers of the umbral atmosphere. In the region of SiO line formation (log P sub g = 3.0-4.5), the results support the sunspot model suggested by Stellmacher and Wiehr (1970).
On the structure of small sunspots
International Nuclear Information System (INIS)
Ringnes, T.S.
1984-01-01
The smallest and most short-lived sunspots are decribed differently at the observatories in Zuerich and Greenwich. These differences which seem to originate both from the observing procedure and from the definitions of penumbra and umbra adopted, are further discussed
Sunspot Positions and Areas from Observations by Galileo Galilei
Vokhmyanin, M. V.; Zolotova, N. V.
2018-02-01
Sunspot records in the seventeenth century provide important information on the solar activity before the Maunder minimum, yielding reliable sunspot indices and the solar butterfly diagram. Galilei's letters to Cardinal Francesco Barberini and Marcus Welser contain daily solar observations on 3 - 11 May, 2 June - 8 July, and 19 - 21 August 1612. These historical archives do not provide the time of observation, which results in uncertainty in the sunspot coordinates. To obtain them, we present a method that minimizes the discrepancy between the sunspot latitudes. We provide areas and heliographic coordinates of 82 sunspot groups. In contrast to Sheiner's butterfly diagram, we found only one sunspot group near the Equator. This provides a higher reliability of Galilei's drawings. Large sunspot groups are found to emerge at the same longitude in the northern hemisphere from 3 May to 21 August, which indicates an active longitude.
Sunspot splitting triggering an eruptive flare
Louis, Rohan E.; Puschmann, Klaus G.; Kliem, Bernhard; Balthasar, Horst; Denker, Carsten
2014-02-01
Aims: We investigate how the splitting of the leading sunspot and associated flux emergence and cancellation in active region NOAA 11515 caused an eruptive M5.6 flare on 2012 July 2. Methods: Continuum intensity, line-of-sight magnetogram, and dopplergram data of the Helioseismic and Magnetic Imager were employed to analyse the photospheric evolution. Filtergrams in Hα and He I 10830 Å of the Chromospheric Telescope at the Observatorio del Teide, Tenerife, track the evolution of the flare. The corresponding coronal conditions were derived from 171 Å and 304 Å images of the Atmospheric Imaging Assembly. Local correlation tracking was utilized to determine shear flows. Results: Emerging flux formed a neutral line ahead of the leading sunspot and new satellite spots. The sunspot splitting caused a long-lasting flow towards this neutral line, where a filament formed. Further flux emergence, partly of mixed polarity, as well as episodes of flux cancellation occurred repeatedly at the neutral line. Following a nearby C-class precursor flare with signs of interaction with the filament, the filament erupted nearly simultaneously with the onset of the M5.6 flare and evolved into a coronal mass ejection. The sunspot stretched without forming a light bridge, splitting unusually fast (within about a day, complete ≈6 h after the eruption) in two nearly equal parts. The front part separated strongly from the active region to approach the neighbouring active region where all its coronal magnetic connections were rooted. It also rotated rapidly (by 4.9° h-1) and caused significant shear flows at its edge. Conclusions: The eruption resulted from a complex sequence of processes in the (sub-)photosphere and corona. The persistent flows towards the neutral line likely caused the formation of a flux rope that held the filament. These flows, their associated flux cancellation, the emerging flux, and the precursor flare all contributed to the destabilization of the flux rope. We
Empirical mode decomposition and long-range correlation analysis of sunspot time series
International Nuclear Information System (INIS)
Zhou, Yu; Leung, Yee
2010-01-01
Sunspots, which are the best known and most variable features of the solar surface, affect our planet in many ways. The number of sunspots during a period of time is highly variable and arouses strong research interest. When multifractal detrended fluctuation analysis (MF-DFA) is employed to study the fractal properties and long-range correlation of the sunspot series, some spurious crossover points might appear because of the periodic and quasi-periodic trends in the series. However many cycles of solar activities can be reflected by the sunspot time series. The 11-year cycle is perhaps the most famous cycle of the sunspot activity. These cycles pose problems for the investigation of the scaling behavior of sunspot time series. Using different methods to handle the 11-year cycle generally creates totally different results. Using MF-DFA, Movahed and co-workers employed Fourier truncation to deal with the 11-year cycle and found that the series is long-range anti-correlated with a Hurst exponent, H, of about 0.12. However, Hu and co-workers proposed an adaptive detrending method for the MF-DFA and discovered long-range correlation characterized by H≈0.74. In an attempt to get to the bottom of the problem in the present paper, empirical mode decomposition (EMD), a data-driven adaptive method, is applied to first extract the components with different dominant frequencies. MF-DFA is then employed to study the long-range correlation of the sunspot time series under the influence of these components. On removing the effects of these periods, the natural long-range correlation of the sunspot time series can be revealed. With the removal of the 11-year cycle, a crossover point located at around 60 months is discovered to be a reasonable point separating two different time scale ranges, H≈0.72 and H≈1.49. And on removing all cycles longer than 11 years, we have H≈0.69 and H≈0.28. The three cycle-removing methods—Fourier truncation, adaptive detrending and the
On two populations of sunspot groups
International Nuclear Information System (INIS)
Kuklin, G.V.
1980-01-01
The principal component method was applied studying the sunspot groups distribution in respect to the maximum area for the individual 11-year cycles 12 to 19 (Lopez Arroyo and Lahulla, 1974) and for the years 1900 to 1964 (Mandrykina, 1974). The existence of two populations of sunspot groups is confirmed. The variations of the importance parameter q, which determines the population shares, in the 80-, 22- and 11-year cycles are considered. The obtained maximal area distributions for populations I and II are approximated by linear combination of logarithmic-normal distributions, the subpopulations Ia, Ib, Ic by the most probable maximum areas of 22, 298 and 90 mvh, respectively, and the subpopulations IIa, IIb, IIc by the most probable maximal areas of 6, 142 and 754 mvh, respectively. The characteristic distinction between populations I and II is apparently the magnetic structure of the groups belonging to them (bipolar and unipolar ones). (author)
Vertical gradients of sunspot magnetic fields
Hagyard, M. J.; Teuber, D.; West, E. A.; Tandberg-Hanssen, E.; Henze, W., Jr.; Beckers, J. M.; Bruner, M.; Hyder, C. L.; Woodgate, B. E.
1983-01-01
The results of a Solar Maximum Mission (SMM) guest investigation to determine the vertical gradients of sunspot magnetic fields for the first time from coordinated observations of photospheric and transition-region fields are described. Descriptions are given of both the photospheric vector field of a sunspot, derived from observations using the NASA Marshall Space Flight Center vector magnetograph, and of the line-of-sight component in the transition region, obtained from the SMM Ultraviolet Spectrometer and Polarimeter instrument. On the basis of these data, vertical gradients of the line-of-sight magnetic field component are calculated using three methods. It is found that the vertical gradient of Bz is lower than values from previous studies and that the transition-region field occurs at a height of approximately 4000-6000 km above the photosphere.
Probing sunspots with two-skip time-distance helioseismology
Duvall, Thomas L., Jr.; Cally, Paul S.; Przybylski, Damien; Nagashima, Kaori; Gizon, Laurent
2018-06-01
Context. Previous helioseismology of sunspots has been sensitive to both the structural and magnetic aspects of sunspot structure. Aims: We aim to develop a technique that is insensitive to the magnetic component so the two aspects can be more readily separated. Methods: We study waves reflected almost vertically from the underside of a sunspot. Time-distance helioseismology was used to measure travel times for the waves. Ray theory and a detailed sunspot model were used to calculate travel times for comparison. Results: It is shown that these large distance waves are insensitive to the magnetic field in the sunspot. The largest travel time differences for any solar phenomena are observed. Conclusions: With sufficient modeling effort, these should lead to better understanding of sunspot structure.
Photoelectric observations of propagating sunspot oscillations
International Nuclear Information System (INIS)
Lites, B.W.; White, O.R.; Packman, D.
1982-01-01
The Sacramento Park Observatory Vacuum Tower Telescope and diode array were used to make repeated intensity and velocity images of a large, isolated sunspot in both a chromospheric (lambda8542 Ca II) and a photospheric (lambda5576 Fe I) line. The movie of the digital data for the chromospheric line shows clearly a relationship between the propagating umbral disturbances and the running penumbral waves. The velocities for transverse propagating of the umbral and penumbral disturbances are 60--70 km s -1 and 20--35 km s -1 , respectively. Power spectra of the oscillations show a sharp peak at a period of about 170 s in both the velocity and intensity signals. The rms velocity fluctuation of this power peak is 0.26 km s -1 . The oscillations at any given point in the sunspot are very regular, and the phase relationship between the velocity and intensity of the chromospheric oscillations is radically different than that for the quiet Sun. Our preliminary interpretation of the phase relationship involves acoustic waves with wave vector directed downwards along the magnetic field lines; however, this interpretation relies on assumptions involved in the data reduction scheme. The mechanical energy flux carried by the observed umbral disturbances does not appear to be a significant contributor to the overall energy budget of the sunspot or the surrounding active region
COMPARISON OF CHAOTIC AND FRACTAL PROPERTIES OF POLAR FACULAE WITH SUNSPOT ACTIVITY
Energy Technology Data Exchange (ETDEWEB)
Deng, L. H.; Xiang, Y. Y.; Dun, G. T. [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650216 (China); Li, B., E-mail: wooden@escience.cn [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, School of Space Science and Physics, Shandong University at Weihai, Weihai 264209 (China)
2016-01-15
The solar magnetic activity is governed by a complex dynamo mechanism and exhibits a nonlinear dissipation behavior in nature. The chaotic and fractal properties of solar time series are of great importance to understanding the solar dynamo actions, especially with regard to the nonlinear dynamo theories. In the present work, several nonlinear analysis approaches are proposed to investigate the nonlinear dynamical behavior of the polar faculae and sunspot activity for the time interval from 1951 August to 1998 December. The following prominent results are found: (1) both the high- and the low-latitude solar activity are governed by a three-dimensional chaotic attractor, and the chaotic behavior of polar faculae is the most complex, followed by that of the sunspot areas, and then the sunspot numbers; (2) both the high- and low-latitude solar activity exhibit a high degree of persistent behavior, and their fractal nature is due to such long-range correlation; (3) the solar magnetic activity cycle is predictable in nature, but the high-accuracy prediction should only be done for short- to mid-term due to its intrinsically dynamical complexity. With the help of the Babcock–Leighton dynamo model, we suggest that the nonlinear coupling of the polar magnetic fields with strong active-region fields exhibits a complex manner, causing the statistical similarities and differences between the polar faculae and the sunspot-related indicators.
Statistics of the largest sunspot and facular areas per solar cycle
International Nuclear Information System (INIS)
Willis, D.M.; Kabasakal Tulunay, Y.
1979-01-01
The statistics of extreme values is used to investigate the statistical properties of the largest areas sunspots and photospheric faculae per solar cycle. The largest values of the synodic-solar-rotation mean areas of umbrae, whole spots and faculae, which have been recorded for nine solar cycles, are each shown to comply with the general form of the extreme value probability function. Empirical expressions are derived for the three extreme value populations from which the characteristic statistical parameters, namely the mode, median, mean and standard deviation, can be calculated for each population. These three extreme value populations are also used to find the expected ranges of the extreme areas in a group of solar cycles as a function of the number of cycles in the group. The extreme areas of umbrae and whole spots have a dispersion comparable to that found by Siscoe for the extreme values of sunspot number, whereas the extreme areas of faculae have a smaller dispersion which is comparable to that found by Siscoe for the largest geomagnetic storm per solar cycle. The expected range of the largest sunspot area per solar cycle for a group of one hundred cycles appears to be inconsistent with the existence of the prolonged periods of sunspot minima that have been inferred from the historical information on solar variability. This inconsistency supports the contention that there are temporal changes of solar-cycle statistics during protracted periods of sunspot minima (or maxima). Indeed, without such temporal changes, photospheric faculae should have been continually observable throughout the lifetime of the Sun. (orig.)
Tracking the Magnetic Flux in and Around Sunspots
Energy Technology Data Exchange (ETDEWEB)
Sheeley, N. R. Jr.; Stauffer, J. R.; Thomassie, J. C.; Warren, H. P., E-mail: solsheeley@verizon.net, E-mail: harry.warren@nrl.navy.mil [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States)
2017-02-10
We have developed a procedure for tracking sunspots observed by the Helioseismic and Magnetic Imager on the Solar Dynamics Observatory and for making curvature-corrected space/time maps of the associated line-of-sight magnetic field and continuum intensity. We apply this procedure to 36 sunspots, each observed continuously for nine days around its central meridian passage time, and find that the proper motions separate into two distinct components depending on their speeds. Fast (∼3–5 km s{sup −1}) motions, comparable to Evershed flows, are produced by weak vertical fluctuations of the horizontal canopy field and recur on a timescale of 12–20 min. Slow (∼0.3–0.5 km s{sup −1}) motions diverge from a sunspot-centered ring whose location depends on the size of the sunspot, occurring in the mid-penumbra for large sunspots and at the outer edge of the penumbra for small sunspots. The slow ingoing features are contracting spokes of a quasi-vertical field of umbral polarity. These inflows disappear when the sunspot loses its penumbra, and may be related to inward-moving penumbral grain. The slow outgoing features may have either polarity depending on whether they originate from quasi-vertical fields of umbral polarity or from the outer edge of the canopy. When a sunspot decays, the penumbra and canopy disappear, and the moat becomes filled with slow outflows of umbral polarity. We apply our procedure to decaying sunspots, to long-lived sunspots, and to numerical simulations of a long-lived sunspot by Rempel.
The EUV Spectrum of Sunspot Plumes Observed by SUMER on ...
Indian Academy of Sciences (India)
tribpo
Abstract. We present results from sunspot observations obtained by. SUMER on SOHO. In sunspot plumes the EUV spectrum differs from the quiet Sun; continua are observed with different slopes and intensities; emission lines from molecular hydrogen and many unidentified species indicate unique plasma conditions ...
Sunspot Modeling: From Simplified Models to Radiative MHD Simulations
Directory of Open Access Journals (Sweden)
Rolf Schlichenmaier
2011-09-01
Full Text Available We review our current understanding of sunspots from the scales of their fine structure to their large scale (global structure including the processes of their formation and decay. Recently, sunspot models have undergone a dramatic change. In the past, several aspects of sunspot structure have been addressed by static MHD models with parametrized energy transport. Models of sunspot fine structure have been relying heavily on strong assumptions about flow and field geometry (e.g., flux-tubes, "gaps", convective rolls, which were motivated in part by the observed filamentary structure of penumbrae or the necessity of explaining the substantial energy transport required to maintain the penumbral brightness. However, none of these models could self-consistently explain all aspects of penumbral structure (energy transport, filamentation, Evershed flow. In recent years, 3D radiative MHD simulations have been advanced dramatically to the point at which models of complete sunspots with sufficient resolution to capture sunspot fine structure are feasible. Here overturning convection is the central element responsible for energy transport, filamentation leading to fine-structure and the driving of strong outflows. On the larger scale these models are also in the progress of addressing the subsurface structure of sunspots as well as sunspot formation. With this shift in modeling capabilities and the recent advances in high resolution observations, the future research will be guided by comparing observation and theory.
An essay on sunspots and solar flares
International Nuclear Information System (INIS)
Akasofu, S.-I.
1984-01-01
The presently prevailing theories of sunspots and solar flares rely on the hypothetical presence of magnetic flux tubes beneath the photosphere and the two subsequent hypotheses, their emergence above the photosphere and explosive magnetic reconnection, converting magnetic energy carried by the flux tubes for solar flare energy. In this paper, attention is paid to the fact that there are large-scale magnetic fields which divide the photosphere into positive and negative (line-of-sight) polarity regions and that they are likely to be more fundamental than sunspot fields, as emphasized most recently by McIntosh. A new phenomenological model of the sunspot pair formation is then constructed by considering an amplification process of these large-scale fields near their boundaries by shear flows, including localized vortex motions. The amplification results from a dynamo process associated with such vortex flows and the associated convergence flow in the large-scale fields. This dynamo process generates also some of the familiar ''force-free'' fields or the ''sheared'' magnetic fields in which the magnetic field-aligned currents are essential. Upward field-aligned currents generated by the dynamo process are carried by downward streaming electrons which are expected to be accelerated by an electric potential structure; a similar structure is responsible for accelerating auroral electrons in the magnetosphere. Depending on the magnetic field configuration and the shear flows, the current-carrying electrons precipitate into different geometrical patterns, causing circular flares, umbral flares, two-ribbon flares, etc. Thus, it is suggested that ''low temperature flares'' are directly driven by the photospheric dynamo process. (author)
Solar rotation and meridional motions derived from sunspot groups
International Nuclear Information System (INIS)
Tuominen, J.; Tuominen, I.; Kyroelaeinen, J.
1982-01-01
Latitudinal and longitudinal motions of sunspot groups have been studied using the positions of recurrent sunspot groups of 103 years published by Greenwich observatory. In order to avoid any limb effects, only positions close to the central meridian have been used. The data were divided into two parts: those belonging to the years around sunspot maxima and those belonging to the years around sunspot minima. Using several different criteria it was ascertained that sunspot groups show meridional motions and that their drift curves as a function of latitude are different around maxima and around minima. In addition, also the angular velocity, as a function of latitude, was found to be different around maxima and minima. (Auth.)
A Hydrological Sensor Web Ontology Based on the SSN Ontology: A Case Study for a Flood
Directory of Open Access Journals (Sweden)
Chao Wang
2017-12-01
Full Text Available Accompanying the continuous development of sensor network technology, sensors worldwide are constantly producing observation data. However, the sensors and their data from different observation platforms are sometimes difficult to use collaboratively in response to natural disasters such as floods for the lack of semantics. In this paper, a hydrological sensor web ontology based on SSN ontology is proposed to describe the heterogeneous hydrological sensor web resources by importing the time and space ontology, instantiating the hydrological classes, and establishing reasoning rules. This work has been validated by semantic querying and knowledge acquiring experiments. The results demonstrate the feasibility and effectiveness of the proposed ontology and its potential to grow into a more comprehensive ontology for hydrological monitoring collaboratively. In addition, this method of ontology modeling is generally applicable to other applications and domains.
International Nuclear Information System (INIS)
Markova, E.
1978-01-01
The relation between the flare activity of active regions within the scope of a large complex and the magnetic gradients of these active regions and their daily variations is investigated in the interval of the exceptionally high flare activity occurring in June 1970. New indices, characterizing the active region, were defined, e.g., the instantaneous sunspot-area density and the instantaneous sunspot-number density. These indices were determined on the basis of measurements of the surface containing all sunspots of the complex of active regions enclosed by an envelope. An attempt was made to substitute the surface in the relation for the individual indices by distance. The daily variations of these indices were again compared with the flare activity and some mutual relations were derived. (author)
Photometric measurements of solar irradiance variations due to sunspots
International Nuclear Information System (INIS)
Chapman, G.A.; Herzog, A.D.; Laico, D.E.; Lawrence, J.K.; Templer, M.S.
1989-01-01
A photometric telescope constructed to obtain photometric sunspot areas and deficits on a daily basis is described. Data from this Cartesian full disk telescope (CFDT) are analyzed with attention given to the period between June 4 and June 17, 1985 because of the availability of overlapping sunspot area and irradiance deficit data from high-resolution digital spectroheliograms made with the San Fernando Observatory 28 cm vacuum solar telescope and spectroheliograph. The CFDT sunspot deficits suggest a substantial irradiance contribution from faculae and active region plage. 23 refs
A Relationship Between the Solar Rotation and Activity Analysed by Tracing Sunspot Groups
Ruždjak, Domagoj; Brajša, Roman; Sudar, Davor; Skokić, Ivica; Poljančić Beljan, Ivana
2017-12-01
The sunspot position published in the data bases of the Greenwich Photoheliographic Results (GPR), the US Air Force Solar Optical Observing Network and National Oceanic and Atmospheric Administration (USAF/NOAA), and of the Debrecen Photoheliographic Data (DPD) in the period 1874 to 2016 were used to calculate yearly values of the solar differential-rotation parameters A and B. These differential-rotation parameters were compared with the solar-activity level. We found that the Sun rotates more differentially at the minimum than at the maximum of activity during the epoch 1977 - 2016. An inverse correlation between equatorial rotation and solar activity was found using the recently revised sunspot number. The secular decrease of the equatorial rotation rate that accompanies the increase in activity stopped in the last part of the twentieth century. It was noted that when a significant peak in equatorial rotation velocity is observed during activity minimum, the next maximum is weaker than the previous one.
Sunspot variation and selected associated phenomena: a look at solar cycle 21 and beyond
International Nuclear Information System (INIS)
Wilson, R.M.
1982-02-01
Solar sunspot cycles 8 through 21 are reviewed. Mean time intervals are calculated for maximum to maximum, minimum to minimum, minimum to maximum, and maximum to minimum phases for cycles 8 through 20 and 8 through 21. Simple cosine functions with a period of 132 years are compared to, and found to be representative of, the variation of smoothed sunspot numbers at solar maximum and minimum. A comparison of cycles 20 and 21 is given, leading to a projection for activity levels during the Spacelab 2 era (tentatively, November 1984). A prediction is made for cycle 22. Major flares are observed to peak several months subsequent to the solar maximum during cycle 21 and to be at minimum level several months after the solar minimum. Additional remarks are given for flares, gradual rise and fall radio events and 2800 MHz radio emission. Certain solar activity parameters, especially as they relate to the near term Spacelab 2 time frame are estimated
Sunspot Light Walls Suppressed by Nearby Brightenings
Energy Technology Data Exchange (ETDEWEB)
Yang, Shuhong; Zhang, Jun; Hou, Yijun; Li, Xiaohong [CAS Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Erdélyi, Robertus [Solar Physics and Space Plasma Research Centre, School of Mathematics and Statistics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Yan, Limei, E-mail: shuhongyang@nao.cas.cn [Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029 (China)
2017-07-01
Light walls, as ensembles of oscillating bright structures rooted in sunspot light bridges, have not been well studied, although they are important for understanding sunspot properties. Using the Interface Region Imaging Spectrograph and Solar Dynamics Observatory observations, here we study the evolution of two oscillating light walls each within its own active region (AR). The emission of each light wall decays greatly after the appearance of adjacent brightenings. For the first light wall, rooted within AR 12565, the average height, amplitude, and oscillation period significantly decrease from 3.5 Mm, 1.7 Mm, and 8.5 minutes to 1.6 Mm, 0.4 Mm, and 3.0 minutes, respectively. For the second light wall, rooted within AR 12597, the mean height, amplitude, and oscillation period of the light wall decrease from 2.1 Mm, 0.5 Mm, and 3.0 minutes to 1.5 Mm, 0.2 Mm, and 2.1 minutes, respectively. Particularly, a part of the second light wall even becomes invisible after the influence of a nearby brightening. These results reveal that the light walls are suppressed by nearby brightenings. Considering the complex magnetic topology in light bridges, we conjecture that the fading of light walls may be caused by a drop in the magnetic pressure, where the flux is canceled by magnetic reconnection at the site of the nearby brightening. Another hypothesis is that the wall fading is due to the suppression of driver source ( p -mode oscillation), resulting from the nearby avalanche of downward particles along reconnected brightening loops.
Sunspots Resource--From Ancient Cultures to Modern Research
Craig, N.
2000-10-01
Sunspots is a web-based lesson that was developed by the Science Education Gateway (SEGway) program with participants from the Exploratorium, a well known science Museum in San Francisco, UC Berkeley Space Sciences Laboratory, and teachers from several California schools. This space science resource allows 8-12 grade students to explore the nature of sunspots and the history of solar physics in its effort to understand their nature. Interviews with solar physicists and archeo-astronomers, historic images, cutting-edge NASA images, movies, and research results, as well as a student-centered sunspot research activity using NASA space science data defines this lesson. The sunspot resource is aligned with the NCTM and National Science Education Standards. It emphasizes inquiry-based methods and mathematical exercises through measurement, graphic data representation, analysis of NASA data, lastly, interpreting results and drawing conclusions. These resources have been successfully classroom tested in 4 middle schools in the San Francisco Unified School District as part of the 3-week Summer School Science curricula. Lessons learned from the Summer School 1999 will be explained. This resource includes teacher-friendly lesson plans, space science background material and student worksheets. There will be Sunspots lesson CD-ROM and printed version of the relevant classroom-ready materials and a teacher resource booklet available. Sunspot resource is brought to you by, The Science Education Gateway - SEGway - Project, and the HESSI satellite and NASA's Office of Space Science Sun-Earth Connection Education Forum.
Latitudinal migration of sunspots based on the ESAI database
Zhang, Juan; Li, Fu-Yu; Feng, Wen
2018-01-01
The latitudinal migration of sunspots toward the equator, which implies there is propagation of the toroidal magnetic flux wave at the base of the solar convection zone, is one of the crucial observational bases for the solar dynamo to generate a magnetic field by shearing of the pre-existing poloidal magnetic field through differential rotation. The Extended time series of Solar Activity Indices (ESAI) elongated the Greenwich observation record of sunspots by several decades in the past. In this study, ESAI’s yearly mean latitude of sunspots in the northern and southern hemispheres during the years 1854 to 1985 is utilized to statistically test whether hemispherical latitudinal migration of sunspots in a solar cycle is linear or nonlinear. It is found that a quadratic function is statistically significantly better at describing hemispherical latitudinal migration of sunspots in a solar cycle than a linear function. In addition, the latitude migration velocity of sunspots in a solar cycle decreases as the cycle progresses, providing a particular constraint for solar dynamo models. Indeed, the butterfly wing pattern with a faster latitudinal migration rate should present stronger solar activity with a shorter cycle period, and it is located at higher latitudinal position, giving evidence to support the Babcock-Leighton dynamo mechanism.
INTERFERENCE FRINGES OF SOLAR ACOUSTIC WAVES AROUND SUNSPOTS
Energy Technology Data Exchange (ETDEWEB)
Chou, Dean-Yi; Zhao Hui; Yang, Ming-Hsu; Liang, Zhi-Chao, E-mail: chou@phys.nthu.edu.tw [Physics Department, National Tsing Hua University, Hsinchu, Taiwan (China)
2012-10-20
Solar acoustic waves are scattered by a sunspot due to the interaction between the acoustic waves and the sunspot. The sunspot, excited by the incident wave, generates the scattered wave. The scattered wave is added to the incident wave to form the total wave around the sunspot. The interference fringes between the scattered wave and the incident wave are visible in the intensity of the total wave because the coherent time of the incident wave is of the order of a wave period. The strength of the interference fringes anti-correlates with the width of temporal spectra of the incident wave. The separation between neighboring fringes increases with the incident wavelength and the sunspot size. The strength of the fringes increases with the radial order n of the incident wave from n = 0 to n = 2, and then decreases from n = 2 to n = 5. The interference fringes play a role analogous to holograms in optics. This study suggests the feasibility of using the interference fringes to reconstruct the scattered wavefields of the sunspot, although the quality of the reconstructed wavefields is sensitive to the noise and errors in the interference fringes.
77 FR 72788 - Reduction of Use of Social Security Numbers in the Department of Defense
2012-12-06
... recommended replacing the SSN with the DoD Electronic Data Interchange Personal Identifier (EDI- PI... Number, the common name for the EDI-PI, is identified by both policies as the primary alternative for the...
ASYMMETRIC SUNSPOT ACTIVITY AND THE SOUTHWARD DISPLACEMENT OF THE HELIOSPHERIC CURRENT SHEET
International Nuclear Information System (INIS)
Wang, Y.-M.; Robbrecht, E.
2011-01-01
Observations of the interplanetary magnetic field (IMF) have suggested a statistical tendency for the heliospheric current sheet (HCS) to be shifted a few degrees southward of the heliographic equator during the period 1965-2010, particularly in the years near sunspot minimum. Using potential-field source-surface extrapolations and photospheric flux-transport simulations, we demonstrate that this southward displacement follows from Joy's law and the observed hemispheric asymmetry in the sunspot numbers, with activity being stronger in the southern (northern) hemisphere during the declining (rising) phase of cycles 20-23. The hemispheric asymmetry gives rise to an axisymmetric quadrupole field, whose equatorial zone has the sign of the leading-polarity flux in the dominant hemisphere; during the last four cycles, the polarity of the IMF around the equator thus tended to match that of the north polar field both before and after polar field reversal. However, large fluctuations are introduced by the nonaxisymmetric field components, which depend on the longitudinal distribution of sunspot activity in either hemisphere. Consistent with this model, the HCS showed an average northward displacement during cycle 19, when the 'usual' alternation was reversed and the northern hemisphere became far more active than the southern hemisphere during the declining phase of the cycle. We propose a new method for determining the north-south displacement of the HCS from coronal streamer observations.
International Nuclear Information System (INIS)
Singleton, D.G.
1974-11-01
A recently proposed means of combining models of ionospheric F-layer peak electron density and irregularity incremental electron density (ΔN) so as to simulate the global occurrence probability of the frequency spreading component of spread-F is discussed. This procedure is then used to model experimental spread-F occurrence results. It is found possible to readily simulate the sunspot-maximum results, independently of season, with only small adjustments to the amplitudes of the empirical expressions used to ΔN in the several latitude regimes. However, at sunspot minimum and for each season, the ΔN model requires modification in the equatorial and mid-latitude regions of high irregularity incidence, before successful simulations of the spread-F data can be obtained. These modifications, which include a broadening of the equatorial region and a polewards shift to the mid-latitude region with decreasing sunspot number, are discussed in detail. It is concluded that the scintillation data base, from which the original ΔN model derives, is not sufficiently representative with regard to sunspot number and magnetic index. The use of the spread-F adaptation of the ΔN model, as well as its original scintillation version, to rectify these failings of the ΔN model are also discussed. (author)
Interactions between nested sunspots. 1: The formation and breakup of a delta-type sunspot
Gaizauskas, V.; Harvey, K. L.; Proulx, M.
1994-01-01
We investigate a nest of sunspots in which three ordinary bipolar pairs of sunspots are aligned collinearly. The usual spreading action of the growing regions brings two spots of leading polarity together (p-p collision) and forces the leading and trailing spots of the two interior regions to overlap inot a single penumbra (p-f collision), thus forming a delta-spot. We examine digitally processed images from the Ottawa River Solar Observatory of two related events inside the delta-spot 5 days after the p-f collision begins: the violent disruption of the f-umbra, and the formation in less than a day of an hydrogen-alpha filament. The evolutionary changes in shape, area, relative motions, and brightness that we measure for each spot in the elongated nest are more compatible with Parker's (1979a) hypothesis of a sunspot as a cluster of flux tubes held together by downdrafts than with the notion of a sunspot as a monolithic plug of magnetic flux. From chromospheric developments over the delta-spot, we show that a shearing motion along a polarity inversion is more effective than convergence for creating a chromospheric filament. We invoke the release of an instability, triggered by a sequence of processes lasting 1 day or more, to explain the disruption of the f-umbra in this delta-spot. We show that the sequence is initiated when the colliding p-f umbrae reach a critical separation around 3200 +/- 200 km. We present a descriptive model in which the reconnected magnetic fields block vertical transport of convective heat flux just beneath the photosphere. We observe the formation of an unusual type of penumbra adjacent to the f-polarity portion of this delta-spot just before its disruption. A tangential penumbral band grows out of disordered matter connected to the f-umbra. We present this as evidence for the extrusion of umbral magnetic flux by thermal plumes rising through a loosely bound umbra.
SEISMIC DISCRIMINATION OF THERMAL AND MAGNETIC ANOMALIES IN SUNSPOT UMBRAE
International Nuclear Information System (INIS)
Lindsey, C.; Cally, P. S.; Rempel, M.
2010-01-01
Efforts to model sunspots based on helioseismic signatures need to discriminate between the effects of (1) a strong magnetic field that introduces time-irreversible, vantage-dependent phase shifts, apparently connected to fast- and slow-mode coupling and wave absorption and (2) a thermal anomaly that includes cool gas extending an indefinite depth beneath the photosphere. Helioseismic observations of sunspots show travel times considerably reduced with respect to equivalent quiet-Sun signatures. Simulations by Moradi and Cally of waves skipping across sunspots with photospheric magnetic fields of order 3 kG show travel times that respond strongly to the magnetic field and relatively weakly to the thermal anomaly by itself. We note that waves propagating vertically in a vertical magnetic field are relatively insensitive to the magnetic field, while remaining highly responsive to the attendant thermal anomaly. Travel-time measurements for waves with large skip distances into the centers of axially symmetric sunspots are therefore a crucial resource for discrimination of the thermal anomaly beneath sunspot umbrae from the magnetic anomaly. One-dimensional models of sunspot umbrae based on compressible-radiative-magnetic-convective simulations such as by Rempel et al. can be fashioned to fit observed helioseismic travel-time spectra in the centers of sunspot umbrae. These models are based on cooling of the upper 2-4 Mm of the umbral subphotosphere with no significant anomaly beneath 4.5 Mm. The travel-time reductions characteristic of these models are primarily a consequence of a Wilson depression resulting from a strong downward buoyancy of the cooled umbral medium.
Umbral oscillations as a probe of sunspot
International Nuclear Information System (INIS)
Abdelatif, T.E.H.
1985-01-01
The interaction of the solar five-minute oscillations with a sunspot is thoroughly explored, both on observational and theoretical grounds. Simple theoretical models are developed in order to understand the observations of umbral oscillations. Observations made at the National Solar Observatory detected both the three-minute and five-minute umbral oscillations at photospheric heights. The three-minute oscillations were found to have a kinetic energy density six times higher in the photosphere than in the chromosphere and to be concentrated in the central part of the umbra, supporting the photospheric resonance theory for the three-minute umbral oscillations. The five-minute oscillations are attenuated in the umbra, which appears to act as a filter in selecting some of the peaks in the power spectrum of five-minute oscillations in the surrounding photosphere. The k-omega power spectrum of the umbral oscillations shows a shift of power to longer wavelengths. Theoretical models of the transmission of acoustic waves into a magnetic region explain both observed effects
Efimenko, V. M.; Lozitsky, V. G.
2018-06-01
We analyze the Greenwich catalog data on areas of sunspot groups of last thirteen solar cycles. Various parameters of sunspots are considered, namely: average monthly smoothed areas, maximum area for each year and equivalent diameters of groups of sunspots. The first parameter shows an exceptional power of the 19th cycle of solar activity, which appears here more contrastively than in the numbers of spots (that is, in Wolf's numbers). It was found that in the maximum areas of sunspot groups for a year there is a unique phenomenon: a short and high jump in the 18th cycle (in 1946-1947) that has no analogues in other cycles. We also studied the integral distributions for equivalent diameters and found the following: (a) the average value of the index of power-law approximation is 5.4 for the last 13 cycles and (b) there is reliable evidence of Hale's double cycle (about 44 years). Since this indicator reflects the dispersion of sunspot group diameters, the results obtained show that the convective zone of the Sun generates embryos of active regions in different statistical regimes which change with a cycle of about 44 years.
Observational Evidence of a Flux Rope within a Sunspot Umbra
Energy Technology Data Exchange (ETDEWEB)
Guglielmino, Salvo L.; Zuccarello, Francesca [Dipartimento di Fisica e Astronomia—Sezione Astrofisica, Università di Catania, Via S. Sofia 78, I-95125 Catania (Italy); Romano, Paolo, E-mail: salvo.guglielmino@oact.inaf.it [INAF—Osservatorio Astrofisico di Catania, Via S. Sofia 78, I-95125 Catania (Italy)
2017-09-10
We observed an elongated filamentary bright structure inside the umbra of the big sunspot in active region NOAA 12529, which differs from the light bridges usually observed in sunspots for its morphology, magnetic configuration, and velocity field. We used observations taken with the Solar Dynamic Observatory satellite to characterize this feature. Its lifetime is 5 days, during which it reaches a maximum length of about 30″. In the maps of the vertical component of the photospheric magnetic field, a portion of the feature has a polarity opposite to that of the hosting sunspot. At the same time, in the entire feature the horizontal component of the magnetic field is about 2000 G, substantially stronger than in the surrounding penumbral filaments. Doppler velocity maps reveal the presence of both upward and downward plasma motions along the structure at the photospheric level. Moreover, looking at the chromospheric level, we noted that it is located in a region corresponding to the edge of a small filament that seems rooted in the sunspot umbra. Therefore, we interpreted the bright structure as the photospheric counterpart of a flux rope touching the sunspot and giving rise to penumbral-like filaments in the umbra.
Sunspot Oscillations From The Chromosphere To The Corona
Brynildsen, N.; Maltby, P.; Fredvik, T.; Kjeldseth-Moe, O.
The behavior of the 3 minute sunspot oscillations is studied as a function of temper- ature through the transition region using observations with CDS/SOHO and TRACE. The oscillations occur above the umbra, with amplitudes increasing to a maximum near 200 000 K, then decreasing towards higher temperatures. Deviations from pure linear oscillations are present in several cases. Power spectra of the oscillations are remarkably similar in the chromosphere and through the transition region in contra- diction to the predictions of the sunspot filter theory. The 3 minute oscillations pene- trate to the low temperature end of the corona, where they are channeled into smaller areas coinciding with the endpoints of sunspot coronal loops. This differs from the transition zone where the oscillating region covers the umbra.
42 CFR 435.910 - Use of social security number.
2010-10-01
... 42 Public Health 4 2010-10-01 2010-10-01 false Use of social security number. 435.910 Section 435... of social security number. (a) The agency must require, as a condition of eligibility, that each... religious objections, refuses to obtain a Social Security Number (SSN). The identification number may be...
The Flares Associated with the Dynamics of the Sunspots K. M. ...
Indian Academy of Sciences (India)
tional theory of magnetic reconnection is briefly discussed. ... between changes in the sunspots' dynamics, emerging flux region, twisting of the field ... the eventual triggering of the flares is due to proper motion of the sunspots. Using .... rotation rates obtained from the daily motion of sunspot groups with respect to their life.
The magnetic nature of umbra-penumbra boundary in sunspots
Jurčák, J.; Rezaei, R.; González, N. Bello; Schlichenmaier, R.; Vomlel, J.
2018-03-01
Context. Sunspots are the longest-known manifestation of solar activity, and their magnetic nature has been known for more than a century. Despite this, the boundary between umbrae and penumbrae, the two fundamental sunspot regions, has hitherto been solely defined by an intensity threshold. Aim. Here, we aim at studying the magnetic nature of umbra-penumbra boundaries in sunspots of different sizes, morphologies, evolutionary stages, and phases of the solar cycle. Methods: We used a sample of 88 scans of the Hinode/SOT spectropolarimeter to infer the magnetic field properties in at the umbral boundaries. We defined these umbra-penumbra boundaries by an intensity threshold and performed a statistical analysis of the magnetic field properties on these boundaries. Results: We statistically prove that the umbra-penumbra boundary in stable sunspots is characterised by an invariant value of the vertical magnetic field component: the vertical component of the magnetic field strength does not depend on the umbra size, its morphology, and phase of the solar cycle. With the statistical Bayesian inference, we find that the strength of the vertical magnetic field component is, with a likelihood of 99%, in the range of 1849-1885 G with the most probable value of 1867 G. In contrast, the magnetic field strength and inclination averaged along individual boundaries are found to be dependent on the umbral size: the larger the umbra, the stronger and more horizontal the magnetic field at its boundary. Conclusions: The umbra and penumbra of sunspots are separated by a boundary that has hitherto been defined by an intensity threshold. We now unveil the empirical law of the magnetic nature of the umbra-penumbra boundary in stable sunspots: it is an invariant vertical component of the magnetic field.
A new look at sunspot formation using theory and observations
Losada, I. R.; Warnecke, J.; Glogowski, K.; Roth, M.; Brandenburg, A.; Kleeorin, N.; Rogachevskii, I.
2017-10-01
Sunspots are of basic interest in the study of the Sun. Their relevance ranges from them being an activity indicator of magnetic fields to being the place where coronal mass ejections and flares erupt. They are therefore also an important ingredient of space weather. Their formation, however, is still an unresolved problem in solar physics. Observations utilize just 2D surface information near the spot, but it is debatable how to infer deep structures and properties from local helioseismology. For a long time, it was believed that flux tubes rising from the bottom of the convection zone are the origin of the bipolar sunspot structure seen on the solar surface. However, this theory has been challenged, in particular recently by new surface observation, helioseismic inversions, and numerical models of convective dynamos. In this article we discuss another theoretical approach to the formation of sunspots: the negative effective magnetic pressure instability. This is a large-scale instability, in which the total (kinetic plus magnetic) turbulent pressure can be suppressed in the presence of a weak large-scale magnetic field, leading to a converging downflow, which eventually concentrates the magnetic field within it. Numerical simulations of forced stratified turbulence have been able to produce strong super-equipartition flux concentrations, similar to sunspots at the solar surface. In this framework, sunspots would only form close to the surface due to the instability constraints on stratification and rotation. Additionally, we present some ideas from local helioseismology, where we plan to use the Hankel analysis to study the pre-emergence phase of a sunspot and to constrain its deep structure and formation mechanism.
International Nuclear Information System (INIS)
Shapoval, A.; Le Mouël, J.-L.; Courtillot, V.; Shnirman, M.
2015-01-01
The irregularity index λ is applied to the high-frequency content of daily sunspot numbers ISSN. This λ is a modification of the standard maximal Lyapunov exponent. It is computed here as a function of embedding dimension m, within four-year time windows centered at the maxima of Schwabe cycles. The λ(m) curves form separate clusters (pre-1923 and post-1933). This supports a regime transition and narrows its occurrence to cycle 16, preceding the growth of activity leading to the Modern Maximum. The two regimes are reproduced by a simple autoregressive process AR(1), with the mean of Poisson noise undergoing 11 yr modulation. The autocorrelation a of the process (linked to sunspot lifetime) is a ≈ 0.8 for 1850-1923 and ≈0.95 for 1933-2013. The AR(1) model suggests that groups of spots appear with a Poisson rate and disappear at a constant rate. We further applied the irregularity index to the daily sunspot group number series for the northern and southern hemispheres, provided by the Greenwich Royal Observatory (RGO), in order to study a possible desynchronization. Correlations between the north and south λ(m) curves vary quite strongly with time and indeed show desynchronization. This may reflect a slow change in the dimension of an underlying dynamical system. The ISSN and RGO series of group numbers do not imply an identical mechanism, but both uncover a regime change at a similar time. Computation of the irregularity index near the maximum of cycle 24 will help in checking whether yet another regime change is under way
75 FR 9548 - Reduction of Use of Social Security Numbers (SSN) in the Department of Defense (DoD)
2010-03-03
... privileges. Examples include office automation, electronic mail, Web services, and major functional or... enclave responsible for connecting computing environments by providing short-haul data transport capabilities such as local or campus area networks, or long- haul data transport capabilities such as...
45 CFR 205.52 - Furnishing of social security numbers.
2010-10-01
... 45 Public Welfare 2 2010-10-01 2010-10-01 false Furnishing of social security numbers. 205.52... GENERAL ADMINISTRATION-PUBLIC ASSISTANCE PROGRAMS § 205.52 Furnishing of social security numbers. The... furnish to the State or local agency a social security account number, hereinafter referred to as the SSN...
4 CFR 83.9 - Social Security number.
2010-01-01
... 4 Accounts 1 2010-01-01 2010-01-01 false Social Security number. 83.9 Section 83.9 Accounts GOVERNMENT ACCOUNTABILITY OFFICE RECORDS PRIVACY PROCEDURES FOR PERSONNEL RECORDS § 83.9 Social Security number. (a) GAO may not require individuals to disclose their Social Security Number (SSN) unless...
HELIOSEISMIC HOLOGRAPHY OF SIMULATED SUNSPOTS: MAGNETIC AND THERMAL CONTRIBUTIONS TO TRAVEL TIMES
Energy Technology Data Exchange (ETDEWEB)
Felipe, T. [Departamento de Astrofísica, Universidad de La Laguna, E-38205 La Laguna, Tenerife (Spain); Braun, D. C.; Crouch, A. D. [NorthWest Research Associates, Colorado Research Associates, Boulder, CO 80301 (United States); Birch, A. C., E-mail: tobias@iac.es [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany)
2016-10-01
Wave propagation through sunspots involves conversion between waves of acoustic and magnetic character. In addition, the thermal structure of sunspots is very different than that of the quiet Sun. As a consequence, the interpretation of local helioseismic measurements of sunspots has long been a challenge. With the aim of understanding these measurements, we carry out numerical simulations of wave propagation through sunspots. Helioseismic holography measurements made from the resulting simulated wavefields show qualitative agreement with observations of real sunspots. We use additional numerical experiments to determine, separately, the influence of the thermal structure of the sunspot and the direct effect of the sunspot magnetic field. We use the ray approximation to show that the travel-time shifts in the thermal (non-magnetic) sunspot model are primarily produced by changes in the wave path due to the Wilson depression rather than variations in the wave speed. This shows that inversions for the subsurface structure of sunspots must account for local changes in the density. In some ranges of horizontal phase speed and frequency there is agreement (within the noise level in the simulations) between the travel times measured in the full magnetic sunspot model and the thermal model. If this conclusion proves to be robust for a wide range of models, it would suggest a path toward inversions for sunspot structure.
HELIOSEISMIC HOLOGRAPHY OF SIMULATED SUNSPOTS: MAGNETIC AND THERMAL CONTRIBUTIONS TO TRAVEL TIMES
International Nuclear Information System (INIS)
Felipe, T.; Braun, D. C.; Crouch, A. D.; Birch, A. C.
2016-01-01
Wave propagation through sunspots involves conversion between waves of acoustic and magnetic character. In addition, the thermal structure of sunspots is very different than that of the quiet Sun. As a consequence, the interpretation of local helioseismic measurements of sunspots has long been a challenge. With the aim of understanding these measurements, we carry out numerical simulations of wave propagation through sunspots. Helioseismic holography measurements made from the resulting simulated wavefields show qualitative agreement with observations of real sunspots. We use additional numerical experiments to determine, separately, the influence of the thermal structure of the sunspot and the direct effect of the sunspot magnetic field. We use the ray approximation to show that the travel-time shifts in the thermal (non-magnetic) sunspot model are primarily produced by changes in the wave path due to the Wilson depression rather than variations in the wave speed. This shows that inversions for the subsurface structure of sunspots must account for local changes in the density. In some ranges of horizontal phase speed and frequency there is agreement (within the noise level in the simulations) between the travel times measured in the full magnetic sunspot model and the thermal model. If this conclusion proves to be robust for a wide range of models, it would suggest a path toward inversions for sunspot structure.
Are climatological correlations with the Hale double sunspot cycle meaningful
International Nuclear Information System (INIS)
Goldberg, R.A.; Herman, J.R.
1975-09-01
A sunspot cycle which may have been subject to a predicted phase reversal between 1800 and 1880 A.D. is discussed. Several climatological parameters normally correlated with this cycle are examined and do not exhibit a corresponding phase reversal during this period. It is proposed that this apparent discrepency can be resolved by suitable observations during the upcoming half decade
Automated Sunspot Detection and Classification Using SOHO/MDI Imagery
2015-03-01
to the geocentric North). 3. Focus and size of the solar disk is adjusted to fit an 18 cm diameter circle on the worksheet. 4. Analyst hand draws the...General Nature of the Sunspot,” The Astrophysical Journal 230, 905–913 (1979). 14. Wheatland, M. S., “A Bayesian Approach to Solar Flare Prediction,” The
3-color photometry of a sunspot using speckle masking techniques
Wiehr, E.; Sütterlin, P.
1998-01-01
A three-colour photometry is used to deduce the temperature of sunspot fine-structures. Using the Speckle-Masking method for image restoration, the resulting images (one per colour and burst) have a spatial resolution only limited by the telescope's aperture, i.e. 95km (blue), 145 km (red) and
SUNSPOT CYCLES IMPACTS ON TOURISM AND QUALITY OF LIFE
Directory of Open Access Journals (Sweden)
Tadeja Jere Jakulin
2017-09-01
Full Text Available We live under the influence of natural cycles caused by the rotation of our planet and its revolution around the sun. The nature of our nearest star is also subject to cyclical change. This article presents a study of a correlation between sunspot cycles and foreign tourists arrivals in Slovenia, based on historical data between sunspot cycles and sea salt production in Slovenia's Municipality of Piran during the Maunder Minimum period (1645-1715. The production of salt by the solar evaporation of brine in salt pans and tourist industry are seasonal economic activities that are affected by changes to the weather. The paper looks at sea salt production in Piran during a particular period in the past. The repetition of the sea salt production in the past is not possible. For this reason, the study uses mathematical tools and an additional case study, which analyses arrivals of foreign tourists to Slovenia over the past 65 years (1948-2012. The study has two purposes: to identify a linear correlation coefficient, which provides evidence of a correlation between arrivals of foreign tourists to Slovenia and sunspot cycles and to develop a causal loop diagram (CLD or so called qualitative model of a complex tourism system, which shows the interdependency of sunspot cycles, tourism system, and quality of life.
TIME DISTRIBUTIONS OF LARGE AND SMALL SUNSPOT GROUPS OVER FOUR SOLAR CYCLES
International Nuclear Information System (INIS)
Kilcik, A.; Yurchyshyn, V. B.; Abramenko, V.; Goode, P. R.; Cao, W.; Ozguc, A.; Rozelot, J. P.
2011-01-01
Here we analyze solar activity by focusing on time variations of the number of sunspot groups (SGs) as a function of their modified Zurich class. We analyzed data for solar cycles 20-23 by using Rome (cycles 20 and 21) and Learmonth Solar Observatory (cycles 22 and 23) SG numbers. All SGs recorded during these time intervals were separated into two groups. The first group includes small SGs (A, B, C, H, and J classes by Zurich classification), and the second group consists of large SGs (D, E, F, and G classes). We then calculated small and large SG numbers from their daily mean numbers as observed on the solar disk during a given month. We report that the time variations of small and large SG numbers are asymmetric except for solar cycle 22. In general, large SG numbers appear to reach their maximum in the middle of the solar cycle (phases 0.45-0.5), while the international sunspot numbers and the small SG numbers generally peak much earlier (solar cycle phases 0.29-0.35). Moreover, the 10.7 cm solar radio flux, the facular area, and the maximum coronal mass ejection speed show better agreement with the large SG numbers than they do with the small SG numbers. Our results suggest that the large SG numbers are more likely to shed light on solar activity and its geophysical implications. Our findings may also influence our understanding of long-term variations of the total solar irradiance, which is thought to be an important factor in the Sun-Earth climate relationship.
Froehlich, Claus; Pap, Judit M.; Hudson, Hugh S.
1994-06-01
The photometric sunspot index (PSI) was developed to study the effects of sunspots on solar irradiance. It is calculated from the sunspot data published in the Solar-Geophysical Data catalog. It has been shown that the former PSI models overestimate the effect of dark sunspots on solar irradiance; furthermore results of direct sunspot photometry indicate that the contrast of spots depends on their area. An improved PSI calculation is presented; it takes into account the area dependence of the contrast and calculates `true' daily means for each observation using the differential rotation of the spots. Moreover, the observations are screened for outliers which improves the homogeneity of the data set substantially, at least for the period after December 1981 when NOAA started to report data from a few instead of one to two stations. A detailed description of the method is provided. The correlation between the newly calculated PSI and total solar irradiance is studied for different phases of the solar cycles 21 and 22 using bi-variate spectral analysis. The results can be used as a `calibration' of PSI in terms of gain, the factor by which PSI has to be multiplied to yield the observed irradiance change. The factor changes with time from about 0.6 in 1980 to 1.1 in 1990. This unexpected result cannot be interpreted by a change of the contrast relative to the quiet Sun (as it is normally defined and determined by direct photometry) but rather as a change of the contrast between the spots and their surrounding as seen in total irradiance (integrated over the solar disk). This may partly be explained by a change in the ratio between the areas of the spots and the surrounding faculae.
Stochastic modeling of sunshine number data
Energy Technology Data Exchange (ETDEWEB)
Brabec, Marek, E-mail: mbrabec@cs.cas.cz [Department of Nonlinear Modeling, Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod Vodarenskou vezi 2, 182 07 Prague 8 (Czech Republic); Paulescu, Marius [Physics Department, West University of Timisoara, V. Parvan 4, 300223 Timisoara (Romania); Badescu, Viorel [Candida Oancea Institute, Polytechnic University of Bucharest, Spl. Independentei 313, 060042 Bucharest (Romania)
2013-11-13
In this paper, we will present a unified statistical modeling framework for estimation and forecasting sunshine number (SSN) data. Sunshine number has been proposed earlier to describe sunshine time series in qualitative terms (Theor Appl Climatol 72 (2002) 127-136) and since then, it was shown to be useful not only for theoretical purposes but also for practical considerations, e.g. those related to the development of photovoltaic energy production. Statistical modeling and prediction of SSN as a binary time series has been challenging problem, however. Our statistical model for SSN time series is based on an underlying stochastic process formulation of Markov chain type. We will show how its transition probabilities can be efficiently estimated within logistic regression framework. In fact, our logistic Markovian model can be relatively easily fitted via maximum likelihood approach. This is optimal in many respects and it also enables us to use formalized statistical inference theory to obtain not only the point estimates of transition probabilities and their functions of interest, but also related uncertainties, as well as to test of various hypotheses of practical interest, etc. It is straightforward to deal with non-homogeneous transition probabilities in this framework. Very importantly from both physical and practical points of view, logistic Markov model class allows us to test hypotheses about how SSN dependents on various external covariates (e.g. elevation angle, solar time, etc.) and about details of the dynamic model (order and functional shape of the Markov kernel, etc.). Therefore, using generalized additive model approach (GAM), we can fit and compare models of various complexity which insist on keeping physical interpretation of the statistical model and its parts. After introducing the Markovian model and general approach for identification of its parameters, we will illustrate its use and performance on high resolution SSN data from the Solar
Stochastic modeling of sunshine number data
Brabec, Marek; Paulescu, Marius; Badescu, Viorel
2013-11-01
In this paper, we will present a unified statistical modeling framework for estimation and forecasting sunshine number (SSN) data. Sunshine number has been proposed earlier to describe sunshine time series in qualitative terms (Theor Appl Climatol 72 (2002) 127-136) and since then, it was shown to be useful not only for theoretical purposes but also for practical considerations, e.g. those related to the development of photovoltaic energy production. Statistical modeling and prediction of SSN as a binary time series has been challenging problem, however. Our statistical model for SSN time series is based on an underlying stochastic process formulation of Markov chain type. We will show how its transition probabilities can be efficiently estimated within logistic regression framework. In fact, our logistic Markovian model can be relatively easily fitted via maximum likelihood approach. This is optimal in many respects and it also enables us to use formalized statistical inference theory to obtain not only the point estimates of transition probabilities and their functions of interest, but also related uncertainties, as well as to test of various hypotheses of practical interest, etc. It is straightforward to deal with non-homogeneous transition probabilities in this framework. Very importantly from both physical and practical points of view, logistic Markov model class allows us to test hypotheses about how SSN dependents on various external covariates (e.g. elevation angle, solar time, etc.) and about details of the dynamic model (order and functional shape of the Markov kernel, etc.). Therefore, using generalized additive model approach (GAM), we can fit and compare models of various complexity which insist on keeping physical interpretation of the statistical model and its parts. After introducing the Markovian model and general approach for identification of its parameters, we will illustrate its use and performance on high resolution SSN data from the Solar
Stochastic modeling of sunshine number data
International Nuclear Information System (INIS)
Brabec, Marek; Paulescu, Marius; Badescu, Viorel
2013-01-01
In this paper, we will present a unified statistical modeling framework for estimation and forecasting sunshine number (SSN) data. Sunshine number has been proposed earlier to describe sunshine time series in qualitative terms (Theor Appl Climatol 72 (2002) 127-136) and since then, it was shown to be useful not only for theoretical purposes but also for practical considerations, e.g. those related to the development of photovoltaic energy production. Statistical modeling and prediction of SSN as a binary time series has been challenging problem, however. Our statistical model for SSN time series is based on an underlying stochastic process formulation of Markov chain type. We will show how its transition probabilities can be efficiently estimated within logistic regression framework. In fact, our logistic Markovian model can be relatively easily fitted via maximum likelihood approach. This is optimal in many respects and it also enables us to use formalized statistical inference theory to obtain not only the point estimates of transition probabilities and their functions of interest, but also related uncertainties, as well as to test of various hypotheses of practical interest, etc. It is straightforward to deal with non-homogeneous transition probabilities in this framework. Very importantly from both physical and practical points of view, logistic Markov model class allows us to test hypotheses about how SSN dependents on various external covariates (e.g. elevation angle, solar time, etc.) and about details of the dynamic model (order and functional shape of the Markov kernel, etc.). Therefore, using generalized additive model approach (GAM), we can fit and compare models of various complexity which insist on keeping physical interpretation of the statistical model and its parts. After introducing the Markovian model and general approach for identification of its parameters, we will illustrate its use and performance on high resolution SSN data from the Solar
Initial phase of the development of sunspot groups and their forecast
International Nuclear Information System (INIS)
Berlyand, B.O.; Burov, V.A.; Stepanyan, N.N.
1979-01-01
Some characteristics of the initial phase of sunspot groups and their forecast have been considered. Experimental data on 340 sunspot groups were obtained in 1967-1969. It was found that oscillations of the magnetic flux in the groups indicate the possibility of the existence of typical periods (2 and 4 days) of the magnetic field development. Most of the groups appears in young plages. The probability of the protons injection from the young groups is very small. The typical time of the development of the proton centre is 10-30 days. The characteristics of the group on the first day of its existence are vaguely connected with the lifetime of the group. On the second and third days the magnetic characteristics (the summary magnetic flux and the number of the unipolar regions) have the highest correlation coefficient (approximately 70%) with the lifetime of the group. The problem of the group lifetime forecast was being solved with the pattern recognition technique. On the base of the second day observation of the existence of the group verification of the received forecast 14% exceeds the verification of the climatological forecast. The forecast of the Zurich class with the same technique is effective beginning with the fifth day of the group existence and the forecast of the flare activity of the group since the day of its appearance. The exceeding of the verification as compared with the climatological forecasts in these problems is 10% and 8% accordingly
Directory of Open Access Journals (Sweden)
D. M. Willis
2005-03-01
Full Text Available Comprehensive catalogues of ancient sunspot and auroral observations from East Asia are used to identify possible intense historical geomagnetic storms in the interval 210 BC-AD 1918. There are about 270 entries in the sunspot catalogue and about 1150 entries in the auroral catalogue. Special databases have been constructed in which the scientific information in these two catalogues is placed in specified fields. For the purposes of this study, an historical geomagnetic storm is defined in terms of an auroral observation that is apparently associated with a particular sunspot observation, in the sense that the auroral observation occurred within several days of the sunspot observation. More precisely, a selection criterion is formulated for the automatic identification of such geomagnetic storms, using the oriental records stored in the sunspot and auroral databases. The selection criterion is based on specific assumptions about the duration of sunspot visibility with the unaided eye, the likely range of heliographic longitudes of an energetic solar feature, and the likely range of transit times for ejected solar plasma to travel from the Sun to the Earth. This selection criterion results in the identification of nineteen putative historical geomagnetic storms, although two of these storms are spurious in the sense that there are two examples of a single sunspot observation being associated with two different auroral observations separated by more than half a (synodic solar rotation period. The literary and scientific reliabilities of the East Asian sunspot and auroral records that define the nineteen historical geomagnetic storms are discussed in detail in a set of appendices. A possible time sequence of events is presented for each geomagnetic storm, including possible dates for both the central meridian passage of the sunspot and the occurrence of the energetic solar feature, as well as likely transit times for the ejected solar plasma
On the correlation of longitudinal and latitudinal motions of sunspots
International Nuclear Information System (INIS)
Gilman, P.A.
1984-01-01
Using new measurements of positions of individual sunspots and sunspot groups obtained from 62 years of the Mt. Wilson white-light plate collection, we have recomputed the correlation between longitude and latitude motion. Our results for groups are similar to those of Ward (1965a) computed from the Greenwich record, but for individual spots the covariance is reduced by a factor of about 3 from the Ward values, though still of the same sign and still statistically significant. We conclude that there is a real correlation between longitude and latitude movement of individual spots, implying angular momentum transport toward the equator as inferred by Ward. The two thirds reduction in the covariance for individual spots as opposed to groups is probably due to certain properties of spot groups, as first pointed out in an unpublished manuscript by Leighton. (orig.)
Molecular Diagnostics of the Internal Structure of Starspots and Sunspots
Afram, N.; Berdyugina, S. V.; Fluri, D. M.; Solanki, S. K.; Lagg, A.; Petit, P.; Arnaud, J.
2006-12-01
We have analyzed the usefulness of molecules as a diagnostic tool for studying solar and stellar magnetism with the molecular Zeeman and Paschen-Back effects. In the first part we concentrate on molecules that are observed in sunspots such as MgH and TiO. We present calculated molecular line profiles obtained by assuming magnetic fields of 2-3 kG and compare these synthetic Stokes profiles with spectro-polarimetric observations in sunspots. The good agreement between the theory and observations allows us to turn our attention in the second part to starspots to gain insight into their internal structure. We investigate the temperature range in which the selected molecules can serve as indicators for magnetic fields on highly active cool stars and compare synthetic Stokes profiles with our recent observations.
Aurorae, sunspots and weather, mainly since A.D. 1200
International Nuclear Information System (INIS)
Schove, D.J.
1981-01-01
Auroral records recieved for the Spectrum of Time project were used in 1955 to estimate sunspot activity and the dates maxima and minima back to 649 B.C. An additional set of rules has been developed and has made possible further improvements utilizing the separate auroral maxima associated with flares and coronal holes on the sun. A further set can now be given. 1) The time between sunspot maxima depends especially on the ratio of the amplitudes: the time between minima is high if the next cycle is very weak and low when the two consecutive cycles are both strong. 2) The time of rise is usually dependent on the strength of the next maxima, and the time of fall is low when a moderate cycle is followed by a strong one. (orig./WL)
Studies of kinematic elements in two multicenter sunspot groups
International Nuclear Information System (INIS)
Korobova, Z.B.
1983-01-01
Some features of kinematic elements (KE) in two multicenter sunspot groups were studied using Tashkent full-disc white light heliograms. KE and morphological elements do not reveal any relationship. A KE coincides with a unipolar or multipolar spot or with part of a spot. It may also contain an extended stream including several spots. Relation of KE to large-scale photospheric magnetic fields is less clear. The line of polarity reversal is, in most cases, the deviding line between two adjacent KE. At the same time, a KE can contain spots of both polarities. Sunspot trajectories in the leading polarity regions show the best similarity. Interactions of KE are greatly influenced by the meridional drift. (author)
Application of the Markov chain approximation to the sunspot observations
International Nuclear Information System (INIS)
Onal, M.
1988-01-01
The positions of the 13,588 sunspot groups observed during the cycle of 1950-1960 at the Istanbul University Observatory have been corrected for the effect of differential rotation. The evolution probability of a sunspot group to the other one in the same region have been determined. By using the Markov chain approximation, the types of these groups and their transition probabilities during the following activity cycle (1950-1960), and the concentration of active regions during 1950-1960 have been estimated. The transition probabilities from the observations of the activity cycle 1960-1970 have been compared with the predicted transition probabilities and a good correlation has been noted. 5 refs.; 2 tabs
LONG-TERM MEASUREMENTS OF SUNSPOT MAGNETIC TILT ANGLES
Energy Technology Data Exchange (ETDEWEB)
Li Jing [Department of Earth and Space Sciences, University of California at Los Angeles, Los Angeles, CA 90095-1567 (United States); Ulrich, Roger K., E-mail: jli@igpp.ucla.edu [Department of Physics and Astronomy, University of California at Los Angeles, Los Angeles, CA 90095-1567 (United States)
2012-10-20
Tilt angles of close to 30,600 sunspots are determined using Mount Wilson daily averaged magnetograms taken from 1974 to 2012, and SOHO/MDI magnetograms taken from 1996 to 2010. Within a cycle, more than 90% of sunspots have a normal polarity alignment along the east-west direction following Hale's law. The median tilts increase with increasing latitude (Joy's law) at a rate of {approx}0.{sup 0}5 per degree of latitude. Tilt angles of spots appear largely invariant with respect to time at a given latitude, but they decrease by {approx}0.{sup 0}9 per year on average, a trend that largely reflects Joy's law following the butterfly diagram. We find an asymmetry between the hemispheres in the mean tilt angles. On average, the tilts are greater in the Southern than in the Northern Hemisphere for all latitude zones, and the differences increase with increasing latitude.
DEFF Research Database (Denmark)
Gómez-Gascón, Lidia; Cardoso-Toset, Fernando; Tarradas, Carmen
2016-01-01
were evaluated. Moreover the composition of peripheral blood leukocyte populations was studied in infected animals. The results show that the immunization of piglets with rSsnA elicits a significant humoral antibody response. However, the antibody response is not reflected in protection of pigs...
The Temperature - Magnetic Field Relation in Observed and Simulated Sunspots
Czech Academy of Sciences Publication Activity Database
Sobotka, Michal; Rezaei, R.
2017-01-01
Roč. 292, č. 12 (2017), 188/1-188/12 ISSN 0038-0938 R&D Projects: GA ČR(CZ) GA14-04338S; GA MŠk(CZ) 7E13003 EU Projects: European Commission(XE) 312495 - SOLARNET Institutional support: RVO:67985815 Keywords : sunspots * magnetic fields * comparison Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 2.682, year: 2016
Directory of Open Access Journals (Sweden)
Nuk Isdiyati
2015-07-01
Full Text Available The purpose of this study is to determine whether there is Contribution of work discipline, work motivation, and teacher perceptions about headmaster leadership style towards teacher performance at SMP N with National Standard School (SSN Semarang. This study includes quantitative expo facto research. The population in this study were teachers at SMP N with National Standard School (SSN Semarang counted 302. The samples in this study are 161 teachers obtained from the table that was developed by Isaac and Michael. The determination of sampling in this study uses with a sample random sampling. The data are collected by survey or questionnaire. Data analysis technique uses multiple linear regression analysis of test preconditions data that is normality test, multicollinearity, heteroscedasticity, autocorrelation test and test. The results showed: (1 there is a contribution to the discipline of work, work motivation and teacher perceptions about headmaster leadership style towards teacher performance at SMP N with National Standard School (SSN Semarang, as shown by the acquisition of the F test with probability value 0.000 <0.05. From the results of data analysis, the R2 value counted 0.429 it means that there are contributions of work discipline, motivation, and teacher perceptions about headmaster leadership style towards teacher performance at SMP N with National Standard School (SSN Semarang counted 42.9%; 2 there is a contribution of work discipline towards teacher performance at SMP N with National Standard School (SSN Semarang, this is indicated with the acquisition probability value <0.05 with the effective contribution counted 12.82%; 3 there is a contribution of work motivation towards teacher performance at SMP N with National Standard School (SSN Semarang, it is shown by the acquisition probability value <0.05 with the effective contribution counted 12.86%; 4 there is contribution of teacher perceptions about headmaster leadership style
Energy Technology Data Exchange (ETDEWEB)
Przybylski, D.; Shelyag, S.; Cally, P. S. [Monash Center for Astrophysics, School of Mathematical Sciences, Monash University, Clayton, Victoria 3800 (Australia)
2015-07-01
We present a technique to construct a spectropolarimetrically accurate magnetohydrostatic model of a large-scale solar magnetic field concentration, mimicking a sunspot. Using the constructed model we perform a simulation of acoustic wave propagation, conversion, and absorption in the solar interior and photosphere with the sunspot embedded into it. With the 6173 Å magnetically sensitive photospheric absorption line of neutral iron, we calculate observable quantities such as continuum intensities, Doppler velocities, as well as the full Stokes vector for the simulation at various positions at the solar disk, and analyze the influence of non-locality of radiative transport in the solar photosphere on helioseismic measurements. Bisector shapes were used to perform multi-height observations. The differences in acoustic power at different heights within the line formation region at different positions at the solar disk were simulated and characterized. An increase in acoustic power in the simulated observations of the sunspot umbra away from the solar disk center was confirmed as the slow magnetoacoustic wave.
International Nuclear Information System (INIS)
Przybylski, D.; Shelyag, S.; Cally, P. S.
2015-01-01
We present a technique to construct a spectropolarimetrically accurate magnetohydrostatic model of a large-scale solar magnetic field concentration, mimicking a sunspot. Using the constructed model we perform a simulation of acoustic wave propagation, conversion, and absorption in the solar interior and photosphere with the sunspot embedded into it. With the 6173 Å magnetically sensitive photospheric absorption line of neutral iron, we calculate observable quantities such as continuum intensities, Doppler velocities, as well as the full Stokes vector for the simulation at various positions at the solar disk, and analyze the influence of non-locality of radiative transport in the solar photosphere on helioseismic measurements. Bisector shapes were used to perform multi-height observations. The differences in acoustic power at different heights within the line formation region at different positions at the solar disk were simulated and characterized. An increase in acoustic power in the simulated observations of the sunspot umbra away from the solar disk center was confirmed as the slow magnetoacoustic wave
Photospheric Origin of Three-minute Oscillations in a Sunspot
Energy Technology Data Exchange (ETDEWEB)
Chae, Jongchul; Lee, Jeongwoo; Cho, Kyuhyoun; Song, Donguk [Astronomy Program, Department of Physics and Astronomy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826 (Korea, Republic of); Cho, Kyungsuk; Yurchyshyn, Vasyl [Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-gu, Daejeon 34055 (Korea, Republic of)
2017-02-10
The origin of the three-minute oscillations of intensity and velocity observed in the chromosphere of sunspot umbrae is still unclear. We investigated the spatio-spectral properties of the 3 minute oscillations of velocity in the photosphere of a sunspot umbra as well as those in the low chromosphere using the spectral data of the Ni i λ 5436, Fe i λ 5435, and Na i D{sub 2} λ 5890 lines taken by the Fast Imaging Solar Spectrograph of the 1.6 m New Solar Telescope at the Big Bear Solar Observatory. As a result, we found a local enhancement of the 3 minute oscillation power in the vicinities of a light bridge (LB) and numerous umbral dots (UDs) in the photosphere. These 3 minute oscillations occurred independently of the 5 minute oscillations. Through wavelet analysis, we determined the amplitudes and phases of the 3 minute oscillations at the formation heights of the spectral lines, and they were found to be consistent with the upwardly propagating slow magnetoacoustic waves in the photosphere with energy flux large enough to explain the chromospheric oscillations. Our results suggest that the 3 minute chromospheric oscillations in this sunspot may have been generated by magnetoconvection occurring in the LB and UDs.
Frequently Occurring Reconnection Jets from Sunspot Light Bridges
Tian, Hui; Yurchyshyn, Vasyl; Peter, Hardi; Solanki, Sami K.; Young, Peter R.; Ni, Lei; Cao, Wenda; Ji, Kaifan; Zhu, Yingjie; Zhang, Jingwen; Samanta, Tanmoy; Song, Yongliang; He, Jiansen; Wang, Linghua; Chen, Yajie
2018-02-01
Solid evidence of magnetic reconnection is rarely reported within sunspots, the darkest regions with the strongest magnetic fields and lowest temperatures in the solar atmosphere. Using the world’s largest solar telescope, the 1.6 m Goode Solar Telescope, we detect prevalent reconnection through frequently occurring fine-scale jets in the Hα line wings at light bridges, the bright lanes that may divide the dark sunspot core into multiple parts. Many jets have an inverted Y-shape, shown by models to be typical of reconnection in a unipolar field environment. Simultaneous spectral imaging data from the Interface Region Imaging Spectrograph show that the reconnection drives bidirectional flows up to 200 km s‑1, and that the weakly ionized plasma is heated by at least an order of magnitude up to ∼80,000 K. Such highly dynamic reconnection jets and efficient heating should be properly accounted for in future modeling efforts of sunspots. Our observations also reveal that the surge-like activity previously reported above light bridges in some chromospheric passbands such as the Hα core has two components: the ever-present short surges likely to be related to the upward leakage of magnetoacoustic waves from the photosphere, and the occasionally occurring long and fast surges that are obviously caused by the intermittent reconnection jets.
MODELING THE CHROMOSPHERE OF A SUNSPOT AND THE QUIET SUN
Energy Technology Data Exchange (ETDEWEB)
Avrett, E.; Tian, H. [Smithsonian Astrophysical Observatory, Cambridge, MA 02138 (United States); Landi, E. [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Curdt, W. [Max Planck Institut für Sonnensystemfoschung, Goettingen (Germany); Wülser, J.-P. [Lockheed Martin Advanced Techonology Center (United States)
2015-10-01
Semiempirical atmospheric modeling attempts to match an observed spectrum by finding the temperature distribution and other physical parameters along the line of sight through the emitting region such that the calculated spectrum agrees with the observed one. In this paper we take the observed spectrum of a sunspot and the quiet Sun in the EUV wavelength range 668–1475 Å from the 2001 SUMER atlas of Curdt et al. to determine models of the two atmospheric regions, extending from the photosphere through the overlying chromosphere into the transition region. We solve the coupled statistical equilibrium and optically thick radiative transfer equations for a set of 32 atoms and ions. The atoms that are part of molecules are treated separately, and are excluded from the atomic abundances and atomic opacities. We compare the Mg ii k line profile observations from the Interface Region Imaging Spectrograph with the profiles calculated from the two models. The calculated profiles for the sunspot are substantially lower than the observed ones, based on the SUMER models. The only way we have found to raise the calculated Mg ii lines to agree with the observations is to introduce illumination of the sunspot from the surrounding active region.
Prediction on sunspot activity based on fuzzy information granulation and support vector machine
Peng, Lingling; Yan, Haisheng; Yang, Zhigang
2018-04-01
In order to analyze the range of sunspots, a combined prediction method of forecasting the fluctuation range of sunspots based on fuzzy information granulation (FIG) and support vector machine (SVM) was put forward. Firstly, employing the FIG to granulate sample data and extract va)alid information of each window, namely the minimum value, the general average value and the maximum value of each window. Secondly, forecasting model is built respectively with SVM and then cross method is used to optimize these parameters. Finally, the fluctuation range of sunspots is forecasted with the optimized SVM model. Case study demonstrates that the model have high accuracy and can effectively predict the fluctuation of sunspots.
Yiǧit, Erdal; Kilcik, Ali; Elias, Ana Georgina; Dönmez, Burçin; Ozguc, Atila; Yurchshyn, Vasyl; Rozelot, Jean-Pierre
2018-06-01
The long term solar activity dependencies of ionospheric F1 and F2 regions' critical frequencies (f0F1 and f0F2) are analyzed for the last four solar cycles (1976-2015). We show that the ionospheric F1 and F2 regions have different solar activity dependencies in terms of the sunspot group (SG) numbers: F1 region critical frequency (f0F1) peaks at the same time with the small SG numbers, while the f0F2 reaches its maximum at the same time with the large SG numbers, especially during the solar cycle 23. The observed differences in the sensitivity of ionospheric critical frequencies to sunspot group (SG) numbers provide a new insight into the solar activity effects on the ionosphere and space weather. While the F1 layer is influenced by the slow solar wind, which is largely associated with small SGs, the ionospheric F2 layer is more sensitive to Coronal Mass Ejections (CMEs) and fast solar winds, which are mainly produced by large SGs and coronal holes. The SG numbers maximize during of peak of the solar cycle and the number of coronal holes peaks during the sunspot declining phase. During solar minimum there are relatively less large SGs, hence reduced CME and flare activity. These results provide a new perspective for assessing how the different regions of the ionosphere respond to space weather effects.
A Standard Law for the Equatorward Drift of the Sunspot Zones
Hathaway, David H.
2012-01-01
The latitudinal location of the sunspot zones in each hemisphere is determined by calculating the centroid position of sunspot areas for each solar rotation from May 1874 to June 2012. When these centroid positions are plotted and analyzed as functions of time from each sunspot cycle maximum there appears to be systematic differences in the positions and equatorward drift rates as a function of sunspot cycle amplitude. If, instead, these centroid positions are plotted and analyzed as functions of time from each sunspot cycle minimum then most of the differences in the positions and equatorward drift rates disappear. The differences that remain disappear entirely if curve fitting is used to determine the starting times (which vary by as much as 8 months from the times of minima). The sunspot zone latitudes and equatorward drift measured relative to this starting time follow a standard path for all cycles with no dependence upon cycle strength or hemispheric dominance. Although Cycle 23 was peculiar in its length and the strength of the polar fields it produced, it too shows no significant variation from this standard. This standard law, and the lack of variation with sunspot cycle characteristics, is consistent with Dynamo Wave mechanisms but not consistent with current Flux Transport Dynamo models for the equatorward drift of the sunspot zones.
Distribution of electric currents in sunspots from photosphere to corona
Energy Technology Data Exchange (ETDEWEB)
Gosain, Sanjay [National Solar Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Démoulin, Pascal [Observatoire de Paris, LESIA, UMR 8109 (CNRS), F-92195 Meudon Principal Cedex (France); López Fuentes, Marcelo [Instituto de Astronomía y Física del Espacio (IAFE), UBA-CONICET, CC. 67, Suc. 28 Buenos Aires 1428 (Argentina)
2014-09-20
We present a study of two regular sunspots that exhibit nearly uniform twist from the photosphere to the corona. We derive the twist parameter in the corona and in the chromosphere by minimizing the difference between the extrapolated linear force-free field model field lines and the observed intensity structures in the extreme-ultraviolet images of the Sun. The chromospheric structures appear more twisted than the coronal structures by a factor of two. Further, we derive the vertical component of electric current density, j{sub z} , using vector magnetograms from the Hinode Solar Optical Telescope (SOT). The spatial distribution of j{sub z} has a zebra pattern of strong positive and negative values owing to the penumbral fibril structure resolved by Hinode/SOT. This zebra pattern is due to the derivative of the horizontal magnetic field across the thin fibrils; therefore, it is strong and masks weaker currents that might be present, for example, as a result of the twist of the sunspot. We decompose j{sub z} into the contribution due to the derivatives along and across the direction of the horizontal field, which follows the fibril orientation closely. The map of the tangential component has more distributed currents that are coherent with the chromospheric and coronal twisted structures. Moreover, it allows us to map and identify the direct and return currents in the sunspots. Finally, this decomposition of j{sub z} is general and can be applied to any vector magnetogram in order to better identify the weaker large-scale currents that are associated with coronal twisted/sheared structures.
High Velocity Horizontal Motions at the Edge of Sunspot Penumbrae
Hagenaar-Daggett, Hermance J.; Shine, R.
2010-05-01
The outer edges of sunspot penumbrae have long been noted as a region of interesting dynamics including formation of MMFs, extensions and retractions of the penumbral tips, fast moving (2-3 km/s) bright features dubbed"streakers", and localized regions of high speed downflows interpreted as Evershed "sinks". Using 30s cadence movies of high spatial resolution G band and Ca II H images taken by the Hinode SOT/FPP instrument from 5-7 Jan 2007, we have been investigating the penumbra around a sunspot in AR 10933. In addition to the expected phenomena, we also see occasional small dark crescent-shaped features with high horizontal velocities (6.5 km/s) in G band movies. These appear to be emitted from penumbral tips. They travel about 1.5 Mm developing a bright wake that evolves into a slower moving (1-2 km/s) bright feature. In some cases, there may be an earlier outward propagating disturbance within the penumbra. We have also analyzed available Fe 6302 Stokes V images to obtain information on the magnetic field. Although only lower resolution 6302 images made with a slower cadence are available for these particular data sets, we can establish that the features have the opposite magnetic polarity of the sunspot. This observation may be in agreement with simulations showing that a horizontal flux tube develops crests that move outward with a velocity as large as 10 km/s. This work was supported by NASA contract NNM07AA01C.
Observations of the birth and fine structure of sunspot penumbrae
International Nuclear Information System (INIS)
Collados, M.; Garcia de la Rosa, J.I.; Moreno-Insertis, F.; Vazquez, M.
1985-01-01
High resolution white-light pictures of sunspot penumbrae are presented. These include pictures showing details of their filamentary structure and some instances of birth of a penumbra. The observations are discussed in the framework of current penumbra theories. A series of pictures have been presented, which give additional evidence of the existence of dark penumbral filaments as individual structures. With respect to the birth of the penumbra some new observational aspects can be seen. The existence of the filamentary penumbra even in the first moments, its non uniformity and its short length are the major aspects derived from the pictures
Investigation of Quasi-periodic Solar Oscillations in Sunspots Based on SOHO/MDI Magnetograms
Kallunki, J.; Riehokainen, A.
2012-10-01
In this work we study quasi-periodic solar oscillations in sunspots, based on the variation of the amplitude of the magnetic field strength and the variation of the sunspot area. We investigate long-period oscillations between three minutes and ten hours. The magnetic field synoptic maps were obtained from the SOHO/MDI. Wavelet (Morlet), global wavelet spectrum (GWS) and fast Fourier transform (FFT) methods are used in the periodicity analysis at the 95 % significance level. Additionally, the quiet Sun area (QSA) signal and an instrumental effect are discussed. We find several oscillation periods in the sunspots above the 95 % significance level: 3 - 5, 10 - 23, 220 - 240, 340 and 470 minutes, and we also find common oscillation periods (10 - 23 minutes) between the sunspot area variation and that of the magnetic field strength. We discuss possible mechanisms for the obtained results, based on the existing models for sunspot oscillations.
36 CFR 1202.22 - Will NARA need my Social Security Number?
2010-07-01
... Will NARA need my Social Security Number? (a) Before a NARA employee or NARA contractor asks you to provide your social security number (SSN), he or she will ensure that the disclosure is required by... Security Number? 1202.22 Section 1202.22 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS...
20 CFR 422.104 - Who can be assigned a social security number.
2010-04-01
... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Who can be assigned a social security number... General Procedures § 422.104 Who can be assigned a social security number. (a) Persons eligible for SSN assignment. We can assign you a social security number if you meet the evidence requirements in § 422.107 and...
Predicting Social Security numbers from public data
Acquisti, Alessandro; Gross, Ralph
2009-01-01
Information about an individual's place and date of birth can be exploited to predict his or her Social Security number (SSN). Using only publicly available information, we observed a correlation between individuals' SSNs and their birth data and found that for younger cohorts the correlation allows statistical inference of private SSNs. The inferences are made possible by the public availability of the Social Security Administration's Death Master File and the widespread accessibility of per...
SUNSPOT AND STARSPOT LIFETIMES IN A TURBULENT EROSION MODEL
Energy Technology Data Exchange (ETDEWEB)
Litvinenko, Yuri E. [Department of Mathematics, University of Waikato, P. B. 3105, Hamilton (New Zealand); Wheatland, M. S. [Sydney Institute for Astronomy, School of Physics, The University of Sydney, NSW 2006 (Australia)
2017-01-10
Quantitative models of sunspot and starspot decay predict the timescale of magnetic diffusion and may yield important constraints in stellar dynamo models. Motivated by recent measurements of starspot lifetimes, we investigate the disintegration of a magnetic flux tube by nonlinear diffusion. Previous theoretical studies are extended by considering two physically motivated functional forms for the nonlinear diffusion coefficient D : an inverse power-law dependence D ∝ B {sup −ν} and a step-function dependence of D on the magnetic field magnitude B . Analytical self-similar solutions are presented for the power-law case, including solutions exhibiting “super fast” diffusion. For the step-function case, the heat-balance integral method yields approximate solutions, valid for moderately suppressed diffusion in the spot. The accuracy of the resulting solutions is confirmed numerically, using a method which provides an accurate description of long-time evolution by imposing boundary conditions at infinite distance from the spot. The new models may allow insight into the differences and similarities between sunspots and starspots.
Response of Solar Irradiance to Sunspot-area Variations
Dudok de Wit, T.; Kopp, G.; Shapiro, A.; Witzke, V.; Kretzschmar, M.
2018-02-01
One of the important open questions in solar irradiance studies is whether long-term variability (i.e., on timescales of years and beyond) can be reconstructed by means of models that describe short-term variability (i.e., days) using solar proxies as inputs. Preminger & Walton showed that the relationship between spectral solar irradiance and proxies of magnetic-flux emergence, such as the daily sunspot area, can be described in the framework of linear system theory by means of the impulse response. We significantly refine that empirical model by removing spurious solar-rotational effects and by including an additional term that captures long-term variations. Our results show that long-term variability cannot be reconstructed from the short-term response of the spectral irradiance, which questions the extension of solar proxy models to these timescales. In addition, we find that the solar response is nonlinear in a way that cannot be corrected simply by applying a rescaling to a sunspot area.
Depressed emission between magnetic arcades near a sunspot
Ryabov, B. I.; Shibasaki, K.
The locations of the depressed emission in microwaves, EUV and soft X-rays are compared with each other and with the location of the plasma outflow in the active region (AR) 8535 on the Sun. We found that two open-field regions overlap the regions of depressed emission near the AR's sunspot. These two open-field regions are simulated with the potential-field source-surface (PFSS) model under radial distances of RSS = 1.8 R⊙ and RSS = 2.5 R⊙. Each open-field region is located between the arcades of the loops of the same magnetic polarity. The former open-field region covers the region of the plasma outflow, which is thus useful for the tests on connection to the heliosphere. The utmost microwave depression of the intensity in the ordinary mode (the Very Large Array 15 GHz observations) also overlaps the region of the plasma outflow and thus indicates this outflow. The lasting for eight days depression in soft X-rays and the SOHO EIT 2.84× 10-8 m images are attributed to the evacuation of as hot coronal plasma as T≥ 2× 106 K from the extended in height (``open") magnetic structures. We conclude that the AR 8535 presents the sunspot atmosphere affected by the large-scale magnetic fields.
NUMERICAL SIMULATIONS OF CONVERSION TO ALFVÉN WAVES IN SUNSPOTS
International Nuclear Information System (INIS)
Khomenko, E.; Cally, P. S.
2012-01-01
We study the conversion of fast magnetoacoustic waves to Alfvén waves by means of 2.5D numerical simulations in a sunspot-like magnetic configuration. A fast, essentially acoustic, wave of a given frequency and wave number is generated below the surface and propagates upward through the Alfvén/acoustic equipartition layer where it splits into upgoing slow (acoustic) and fast (magnetic) waves. The fast wave quickly reflects off the steep Alfvén speed gradient, but around and above this reflection height it partially converts to Alfvén waves, depending on the local relative inclinations of the background magnetic field and the wavevector. To measure the efficiency of this conversion to Alfvén waves we calculate acoustic and magnetic energy fluxes. The particular amplitude and phase relations between the magnetic field and velocity oscillations help us to demonstrate that the waves produced are indeed Alfvén waves. We find that the conversion to Alfvén waves is particularly important for strongly inclined fields like those existing in sunspot penumbrae. Equally important is the magnetic field orientation with respect to the vertical plane of wave propagation, which we refer to as 'field azimuth'. For a field azimuth less than 90° the generated Alfvén waves continue upward, but above 90° downgoing Alfvén waves are preferentially produced. This yields negative Alfvén energy flux for azimuths between 90° and 180°. Alfvén energy fluxes may be comparable to or exceed acoustic fluxes, depending upon geometry, though computational exigencies limit their magnitude in our simulations.
Optimal SSN Tasking to Enhance Real-time Space Situational Awareness
Ferreira, J., III; Hussein, I.; Gerber, J.; Sivilli, R.
2016-09-01
Space Situational Awareness (SSA) is currently constrained by an overwhelming number of resident space objects (RSOs) that need to be tracked and the amount of data these observations produce. The Joint Centralized Autonomous Tasking System (JCATS) is an autonomous, net-centric tool that approaches these SSA concerns from an agile, information-based stance. Finite set statistics and stochastic optimization are used to maintain an RSO catalog and develop sensor tasking schedules based on operator configured, state information-gain metrics to determine observation priorities. This improves the efficiency of sensors to target objects as awareness changes and new information is needed, not at predefined frequencies solely. A net-centric, service-oriented architecture (SOA) allows for JCATS integration into existing SSA systems. Testing has shown operationally-relevant performance improvements and scalability across multiple types of scenarios and against current sensor tasking tools.
Sunspots sketches during the solar eclipses of 9th January and 29th December of 1777 in Mexico
Domínguez-Castro, Fernando; Gallego, María Cruz; Vaquero, José Manuel
2017-06-01
Two sunspot observations recorded by the Mexican Felipe de Zúñiga y Ontiveros have been revealed from a manuscript. One sunspot group was recorded on 9th January 1777 and four sunspot groups on 29th December 1777. Both records were taken during the observation of solar eclipses from Mexico City and their description also included sketches of the solar disk with sunspots. The sunspot group corresponding to 9th January was also observed by Erasmus Lievog. The observation on 29th December 1777 is the only record corresponding to this date.
RE-EXAMINING SUNSPOT TILT ANGLE TO INCLUDE ANTI-HALE STATISTICS
International Nuclear Information System (INIS)
McClintock, B. H.; Norton, A. A.; Li, J.
2014-01-01
Sunspot groups and bipolar magnetic regions (BMRs) serve as an observational diagnostic of the solar cycle. We use Debrecen Photohelographic Data (DPD) from 1974-2014 that determined sunspot tilt angles from daily white light observations, and data provided by Li and Ulrich that determined sunspot magnetic tilt angle using Mount Wilson magnetograms from 1974-2012. The magnetograms allowed for BMR tilt angles that were anti-Hale in configuration, so tilt values ranged from 0 to 360° rather than the more common ±90°. We explore the visual representation of magnetic tilt angles on a traditional butterfly diagram by plotting the mean area-weighted latitude of umbral activity in each bipolar sunspot group, including tilt information. The large scatter of tilt angles over the course of a single cycle and hemisphere prevents Joy's law from being visually identified in the tilt-butterfly diagram without further binning. The average latitude of anti-Hale regions does not differ from the average latitude of all regions in both hemispheres. The distribution of anti-Hale sunspot tilt angles are broadly distributed between 0 and 360° with a weak preference for east-west alignment 180° from their expected Joy's law angle. The anti-Hale sunspots display a log-normal size distribution similar to that of all sunspots, indicating no preferred size for anti-Hale sunspots. We report that 8.4% ± 0.8% of all bipolar sunspot regions are misclassified as Hale in traditional catalogs. This percentage is slightly higher for groups within 5° of the equator due to the misalignment of the magnetic and heliographic equators
RE-EXAMINING SUNSPOT TILT ANGLE TO INCLUDE ANTI-HALE STATISTICS
Energy Technology Data Exchange (ETDEWEB)
McClintock, B. H. [University of Southern Queensland, Toowoomba, 4350 (Australia); Norton, A. A. [HEPL, Stanford University, Palo Alto, CA 94305 (United States); Li, J., E-mail: u1049686@umail.usq.edu.au, E-mail: aanorton@stanford.edu, E-mail: jli@igpp.ucla.edu [Department of Earth, Planetary, and Space Sciences, University of California at Los Angeles, Los Angeles, CA 90095 (United States)
2014-12-20
Sunspot groups and bipolar magnetic regions (BMRs) serve as an observational diagnostic of the solar cycle. We use Debrecen Photohelographic Data (DPD) from 1974-2014 that determined sunspot tilt angles from daily white light observations, and data provided by Li and Ulrich that determined sunspot magnetic tilt angle using Mount Wilson magnetograms from 1974-2012. The magnetograms allowed for BMR tilt angles that were anti-Hale in configuration, so tilt values ranged from 0 to 360° rather than the more common ±90°. We explore the visual representation of magnetic tilt angles on a traditional butterfly diagram by plotting the mean area-weighted latitude of umbral activity in each bipolar sunspot group, including tilt information. The large scatter of tilt angles over the course of a single cycle and hemisphere prevents Joy's law from being visually identified in the tilt-butterfly diagram without further binning. The average latitude of anti-Hale regions does not differ from the average latitude of all regions in both hemispheres. The distribution of anti-Hale sunspot tilt angles are broadly distributed between 0 and 360° with a weak preference for east-west alignment 180° from their expected Joy's law angle. The anti-Hale sunspots display a log-normal size distribution similar to that of all sunspots, indicating no preferred size for anti-Hale sunspots. We report that 8.4% ± 0.8% of all bipolar sunspot regions are misclassified as Hale in traditional catalogs. This percentage is slightly higher for groups within 5° of the equator due to the misalignment of the magnetic and heliographic equators.
On the chromospheric network structure around deVeloped groups of sunspots
International Nuclear Information System (INIS)
Kartashova, L.G.
1980-01-01
The chromospheric network structure around several developed groups of sunspots were studied on the basis of the observations in the Hsub(α) line. The resolution on the filtergrams was of 2. The following was found: 1) in the neighbourhood of the groups of sunspots 70% (from 870) of network cells stretch along fibrils direction (with accuracy 30 deg), and 15% of cells stretch approximately across that (at angles 70-90 deg); 2) out of the boundary of the main radial fibrils structure the groups of sunspots is often rounded by the system of network cells stretched approximately perpendicular to radial direction
Sunspot Equilibria in a Production Economy: Do Rational Animal Spirits Cause Overproduction?
Kajii, Atsushi
2008-01-01
We study a standard two period economy with one nominal bond and one firm. The input of the firm is done in the first period and financed with the nominal bond, and its profits are distributed to the shareholders in the second period. We show that a sunspot equilibrium exists around each efficient equilibrium. The interest rate is lower than optimal and there is over production in sunspot equilibria, under some conditions. But a sunspot equilibrium does not exist if the profit share can be tr...
The photospheric vector magnetic field of a sunspot and its vertical gradient
Hagyard, M. J.; West, E. A.; Tandberg-Hanssen, E.; Smith, J. E.; Henze, W., Jr.; Beckers, J. M.; Bruner, E. C.; Hyder, C. L.; Gurman, J. B.; Shine, R. A.
1981-01-01
The results of direct comparisons of photospheric and transition region line-of-sight field observations of sunspots using the SMM UV spectrometer and polarimeter are reported. The analysis accompanying the data is concentrated on demonstrating that the sunspot concentrated magnetic field extends into the transition region. An observation of a sunspot on Oct. 23, 1980 at the S 18 E 03 location is used as an example. Maximum field strengths ranged from 2030-2240 gauss for large and small umbrae viewed and inclination of the field to the line-of-sight was determined for the photosphere and transition region. The distribution of the magnetic field over the sunspot and variation of the line-of-sight gradient are discussed, as are the magnitudes and gradients of the photospheric field across the penumbral-photospheric boundaries.
Variations and Regularities in the Hemispheric Distributions in Sunspot Groups of Various Classes
Gao, Peng-Xin
2018-05-01
The present study investigates the variations and regularities in the distributions in sunspot groups (SGs) of various classes in the northern and southern hemispheres from Solar Cycles (SCs) 12 to 23. Here, we use the separation scheme that was introduced by Gao, Li, and Li ( Solar Phys. 292, 124, 2017), which is based on A/U ( A is the corrected area of the SG, and U is the corrected umbral area of the SG), in order to separate SGs into simple SGs (A/U ≤ 4.5) and complex SGs (A/U > 6.2). The time series of Greenwich photoheliographic results from 1875 to 1976 (corresponding to complete SCs 12 - 20) and Debrecen photoheliographic data during the period 1974 - 2015 (corresponding to complete SCs 21 - 23) are used to show the distributions of simple and complex SGs in the northern and southern hemispheres. The main results we obtain are reported as follows: i) the larger of the maximum annual simple SG numbers in the two hemispheres and the larger of the maximum annual complex SG numbers in the two hemispheres occur in different hemispheres during SCs 12, 14, 18, and 19; ii) the relative changing trends of two curves - cumulative SG numbers in the northern and southern hemispheres - for simple SGs are different from those for complex SGs during SCs 12, 14, 18, and 21; and iii) there are discrepancies between the dominant hemispheres of simple and complex SGs for SCs 12, 14, 18, and 21.
International Nuclear Information System (INIS)
Stephenson, F.R.
1990-01-01
The value of sunspot observations in investigating solar activity trends - mainly on the centennial to millennial timescale - is considered in some detail. It is shown that although observations made since the mid-eighteenth century are in general very reliable indicators of solar activity, older data are of dubious quality and utility. The sunspot record in both the pretelescopic and early telescopic periods appears to be confused by serious data artefacts. (author)
Energy Technology Data Exchange (ETDEWEB)
Yurchyshyn, V.; Abramenko, V. [Big Bear Solar Observatory, New Jersey Institute of Technology, Big Bear City, CA 92314 (United States); Kilcik, A. [Department of Space Science and Technologies, Akdeniz University, 07058 Antalya (Turkey)
2015-01-10
We analyze sunspot oscillations using Interface Region Imaging Spectrograph (IRIS) slit-jaw and spectral data and narrow-band chromospheric images from the New Solar Telescope (NST) for the main sunspot in NOAA AR 11836. We report that the difference between the shock arrival times as measured by the Mg II k 2796.35 Å and Si IV 1393.76 Å line formation levels changes during the observed period, and peak-to-peak delays may range from 40 s to zero. The intensity of chromospheric shocks also displays long-term (about 20 min) variations. NST's high spatial resolution Hα data allowed us to conclude that, in this sunspot, umbral flashes (UFs) appeared in the form of narrow bright lanes stretched along the light bridges and around clusters of umbral bright points. The time series also suggested that UFs preferred to appear on the sunspot-center side of light bridges, which may indicate the existence of a compact sub-photospheric driver of sunspot oscillations. The sunspot's umbra as seen in the IRIS chromospheric and transition region data appears bright above the locations of light bridges and the areas where the dark umbra is dotted with clusters of umbral dots. Co-spatial and co-temporal data from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory showed that the same locations were associated with bright footpoints of coronal loops suggesting that the light bridges may play an important role in heating the coronal sunspot loops. Finally, the power spectra analysis showed that the intensity of chromospheric and transition region oscillations significantly vary across the umbra and with height, suggesting that umbral non-uniformities and the structure of sunspot magnetic fields may play a role in wave propagation and heating of umbral loops.
SUNSPOT ROTATION AS A DRIVER OF MAJOR SOLAR ERUPTIONS IN THE NOAA ACTIVE REGION 12158
Energy Technology Data Exchange (ETDEWEB)
Vemareddy, P.; Ravindra, B. [Indian Institute of Astrophysics, Koramangala, Bangalore-560034 (India); Cheng, X., E-mail: vemareddy@iiap.res.in [School of Astronomy and Space Science, Nanjing University, Nanjing-210023 (China)
2016-09-20
We studied the development conditions of sigmoid structure under the influence of the magnetic non-potential characteristics of a rotating sunspot in the active region (AR) 12158. Vector magnetic field measurements from the Helioseismic Magnetic Imager and coronal EUV observations from the Atmospheric Imaging Assembly reveal that the erupting inverse-S sigmoid had roots at the location of the rotating sunspot. The sunspot rotates at a rate of 0°–5° h{sup −1} with increasing trend in the first half followed by a decrease. The time evolution of many non-potential parameters had a good correspondence with the sunspot rotation. The evolution of the AR magnetic structure is approximated by a time series of force-free equilibria. The non-linear force-free field magnetic structure around the sunspot manifests the observed sigmoid structure. Field lines from the sunspot periphery constitute the body of the sigmoid and those from the interior overlie the sigmoid, similar to a flux rope structure. While the sunspot was rotating, two major coronal mass ejection eruptions occurred in the AR. During the first (second) event, the coronal current concentrations were enhanced (degraded), consistent with the photospheric net vertical current; however, magnetic energy was released during both cases. The analysis results suggest that the magnetic connections of the sigmoid are driven by the slow motion of sunspot rotation, which transforms to a highly twisted flux rope structure in a dynamical scenario. Exceeding the critical twist in the flux rope probably leads to the loss of equilibrium, thus triggering the onset of the two eruptions.
International Nuclear Information System (INIS)
Boncompagni, S.; Fulceri, P.; Oriolo, F.
1985-01-01
The results of the analysis of the transient fallowing internal and external power failure, without scram, in the nuclear power plant of the Italian Unified Nuclear Project are examined. The availability of ECCS is excluded while the breakage of a tube in each steam generator is supposed, togheter with the presence of an original safety system known as SSN (core protection system). Computations have been performed by using Mark 6 RELAP4 code. The study of the transient and the physical model used are briefly illustrated. Finally the results achieved are analysed
International Nuclear Information System (INIS)
Klimes, J.; Krivsky, L.
1984-01-01
Using data from 11-year solar cycle No. 20, it was found that flares with type II radio bursts are more than twice as frequent and flares with type IV bursts nearly twice as frequent in sunspot groups which developed close to each other or which merged in the course of revolutions than in isolated sunspot groups. With both types the occurrence of these flares is concentrated in the revolution of the so-called sunspot group interaction (their approximation, merging). (author)
The topside ionosphere above Arecibo at equinox during sunspot maximum
International Nuclear Information System (INIS)
Bailey, G.J.
1980-01-01
The coupled time-dependent 0 + and H + continuity and momentum equations and 0 + , H + and electron heat balance equations are solved simultaneously within the L = 1.4 (Arecibo) magnetic flux tube between an altitude of 120 km and the equatorial plane. The results of the calculations are used in a study of the topside ionosphere above Arecibo at equinox during sunspot maximum. Magnetically quiet conditions are assumed. The results of the calculations show that the L = 1.4 magnetic flux tube becomes saturated from an arbitrary state within 2-3 days. During the day the ion content of the magnetic flux tube consists mainly of 0 + whereas 0 + and H + are both important during the night. There is an altitude region in the topside ionosphere during the day where ion-counterstreaming occurs with H + flowing downward and 0 + flowing upward. The conditions causing this ion-counterstreaming are discussed. There is a net chemical gain of H + at the higher altitudes. This H + diffuses both upwards and downwards whilst 0 + diffuses upwards from its solar e.u.v. production source which is most important at the lower altitudes. During the night the calculated 0 + and H + temperatures are very nearly equal whereas during the day there are occasions when the H + temperature exceeds the 0 - temperature by about 300 K. (author)
Chromospheric Plasma Ejections in a Light Bridge of a Sunspot
Song, Donguk; Chae, Jongchul; Yurchyshyn, Vasyl; Lim, Eun-Kyung; Cho, Kyung-Suk; Yang, Heesu; Cho, Kyuhyoun; Kwak, Hannah
2017-02-01
It is well-known that light bridges (LBs) inside a sunspot produce small-scale plasma ejections and transient brightenings in the chromosphere, but the nature and origin of such phenomena are still unclear. Utilizing the high-spatial and high-temporal resolution spectral data taken with the Fast Imaging Solar Spectrograph and the TiO 7057 Å broadband filter images installed at the 1.6 m New Solar Telescope of Big Bear Solar Observatory, we report arcsecond-scale chromospheric plasma ejections (1.″7) inside a LB. Interestingly, the ejections are found to be a manifestation of upwardly propagating shock waves as evidenced by the sawtooth patterns seen in the temporal-spectral plots of the Ca II 8542 Å and Hα intensities. We also found a fine-scale photospheric pattern (1″) diverging with a speed of about 2 km s-1 two minutes before the plasma ejections, which seems to be a manifestation of magnetic flux emergence. As a response to the plasma ejections, the corona displayed small-scale transient brightenings. Based on our findings, we suggest that the shock waves can be excited by the local disturbance caused by magnetic reconnection between the emerging flux inside the LB and the adjacent umbral magnetic field. The disturbance generates slow-mode waves, which soon develop into shock waves, and manifest themselves as the arcsecond-scale plasma ejections. It also appears that the dissipation of mechanical energy in the shock waves can heat the local corona.
ENHANCEMENT OF A SUNSPOT LIGHT WALL WITH EXTERNAL DISTURBANCES
Energy Technology Data Exchange (ETDEWEB)
Yang, Shuhong; Zhang, Jun [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Erdélyi, Robert, E-mail: shuhongyang@nao.cas.cn [Solar Physics and Space Plasma Research Centre, School of Mathematics and Statistics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom)
2016-12-20
Based on the Interface Region Imaging Spectrograph observations, we study the response of a solar sunspot light wall to external disturbances. A flare occurrence near the light wall caused material to erupt from the lower solar atmosphere into the corona. Some material falls back to the solar surface and hits the light bridge (i.e., the base of the light wall), then sudden brightenings appear at the wall base followed by the rise of wall top, leading to an increase of the wall height. Once the brightness of the wall base fades, the height of the light wall begins to decrease. Five hours later, another nearby flare takes place, and a bright channel is formed that extends from the flare toward the light bridge. Although no obvious material flow along the bright channel is found, some ejected material is conjectured to reach the light bridge. Subsequently, the wall base brightens and the wall height begins to increase again. Once more, when the brightness of the wall base decays, the wall top fluctuates to lower heights. We suggest, based on the observed cases, that the interaction of falling material and ejected flare material with the light wall results in the brightenings of wall base and causes the height of the light wall to increase. Our results reveal that the light wall can be not only powered by the linkage of p -mode from below the photosphere, but may also be enhanced by external disturbances, such as falling material.
Observations of Running Penumbral Waves Emerging in a Sunspot
Priya, T. G.; Wenda, Cao; Jiangtao, Su; Jie, Chen; Xinjie, Mao; Yuanyong, Deng; Robert, Erdélyi
2018-01-01
We present results from the investigation of 5 minute umbral oscillations in a single-polarity sunspot of active region NOAA 12132. The spectra of TiO, Hα, and 304 Å are used for corresponding atmospheric heights from the photosphere to lower corona. Power spectrum analysis at the formation height of Hα – 0.6 Å to the Hα center resulted in the detection of 5 minute oscillation signals in intensity interpreted as running waves outside the umbral center, mostly with vertical magnetic field inclination >15°. A phase-speed filter is used to extract the running wave signals with speed v ph > 4 km s‑1, from the time series of Hα – 0.4 Å images, and found twenty-four 3 minute umbral oscillatory events in a duration of one hour. Interestingly, the initial emergence of the 3 minute umbral oscillatory events are noticed closer to or at umbral boundaries. These 3 minute umbral oscillatory events are observed for the first time as propagating from a fraction of preceding running penumbral waves (RPWs). These fractional wavefronts rapidly separate from RPWs and move toward the umbral center, wherein they expand radially outwards suggesting the beginning of a new umbral oscillatory event. We found that most of these umbral oscillatory events develop further into RPWs. We speculate that the waveguides of running waves are twisted in spiral structures and hence the wavefronts are first seen at high latitudes of umbral boundaries and later at lower latitudes of the umbral center.
On the Theory of Sunspots Proposed by Signor Kirchoff
Directory of Open Access Journals (Sweden)
Secchi A.
2011-07-01
Full Text Available Eileen Reeves (Department of Comparative Literature, Princeton University, Princeton, New Jersey, 08544 and Mary Posani (Department of French and Italian, The Ohio State University, Columbus, Ohio, 43221 provide a translation of Father Pietro Angelo Secchi’s classic work “ Secchi A. Sulla Teoria Delle Macchie Solari: Proposta dal sig. Kirchoff” as it appeared in Bullettino Meteorologico dell’ Osservatorio del Collegio Romano , 31 January 1864, v.3(4, 1–4. This was the first treatise to propose a partic- ulate photosphere floating on the gaseous body of the Sun. The idea would dominate astrophysical thought for the next 50 years. Secchi appears to have drafted the article, as a response to Gustav Kirchhoff’s proposal, echoing early Galilean ideas, that sunspots represented clouds which floated above the photosphere. Other than presenting a new solar model, noteworthy aspects of this work include Secchi’s appropriate insistence that materials do not emit the same light at the same temperature and his gentle rebuke of Kirchhoff relative to commenting on questions of astronomy.
Complex network approach to characterize the statistical features of the sunspot series
International Nuclear Information System (INIS)
Zou, Yong; Liu, Zonghua; Small, Michael; Kurths, Jürgen
2014-01-01
Complex network approaches have been recently developed as an alternative framework to study the statistical features of time-series data. We perform a visibility-graph analysis on both the daily and monthly sunspot series. Based on the data, we propose two ways to construct the network: one is from the original observable measurements and the other is from a negative-inverse-transformed series. The degree distribution of the derived networks for the strong maxima has clear non-Gaussian properties, while the degree distribution for minima is bimodal. The long-term variation of the cycles is reflected by hubs in the network that span relatively large time intervals. Based on standard network structural measures, we propose to characterize the long-term correlations by waiting times between two subsequent events. The persistence range of the solar cycles has been identified over 15–1000 days by a power-law regime with scaling exponent γ = 2.04 of the occurrence time of two subsequent strong minima. In contrast, a persistent trend is not present in the maximal numbers, although maxima do have significant deviations from an exponential form. Our results suggest some new insights for evaluating existing models. (paper)
Chromospheric Plasma Ejections in a Light Bridge of a Sunspot
Energy Technology Data Exchange (ETDEWEB)
Song, Donguk; Chae, Jongchul; Yang, Heesu; Cho, Kyuhyoun; Kwak, Hannah [Astronomy Program, Department of Physics and Astronomy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826 (Korea, Republic of); Yurchyshyn, Vasyl [Big Bear Solar Observatory, New Jersey Institute of Technology, 40386 North Shore Lane, Big Bear City, CA 92314-9672 (United States); Lim, Eun-Kyung; Cho, Kyung-Suk, E-mail: dusong@astro.snu.ac.kr [Korea Astronomy and Space Science Institute 776, Daedeokdae-ro, Yuseong-gu, Daejeon 34055 (Korea, Republic of)
2017-02-01
It is well-known that light bridges (LBs) inside a sunspot produce small-scale plasma ejections and transient brightenings in the chromosphere, but the nature and origin of such phenomena are still unclear. Utilizing the high-spatial and high-temporal resolution spectral data taken with the Fast Imaging Solar Spectrograph and the TiO 7057 Å broadband filter images installed at the 1.6 m New Solar Telescope of Big Bear Solar Observatory, we report arcsecond-scale chromospheric plasma ejections (1.″7) inside a LB. Interestingly, the ejections are found to be a manifestation of upwardly propagating shock waves as evidenced by the sawtooth patterns seen in the temporal-spectral plots of the Ca ii 8542 Å and H α intensities. We also found a fine-scale photospheric pattern (1″) diverging with a speed of about 2 km s{sup −1} two minutes before the plasma ejections, which seems to be a manifestation of magnetic flux emergence. As a response to the plasma ejections, the corona displayed small-scale transient brightenings. Based on our findings, we suggest that the shock waves can be excited by the local disturbance caused by magnetic reconnection between the emerging flux inside the LB and the adjacent umbral magnetic field. The disturbance generates slow-mode waves, which soon develop into shock waves, and manifest themselves as the arcsecond-scale plasma ejections. It also appears that the dissipation of mechanical energy in the shock waves can heat the local corona.
International Nuclear Information System (INIS)
Zhao, Hui; Chou, Dean-Yi
2016-01-01
The solar acoustic waves are modified by the interaction with sunspots. The interaction can be treated as a scattering problem: an incident wave propagating toward a sunspot is scattered by the sunspot into different modes. The absorption cross section and scattering cross section are two important parameters in the scattering problem. In this study, we use the wavefunction of the scattered wave, measured with a deconvolution method, to compute the absorption cross section σ ab and the scattering cross section σ sc for the radial order n = 0–5 for two sunspots, NOAA 11084 and NOAA 11092. In the computation of the cross sections, the random noise and dissipation in the measured acoustic power are corrected. For both σ ab and σ sc , the value of NOAA 11092 is greater than that of NOAA 11084, but their overall n dependence is similar: decreasing with n . The ratio of σ ab of NOAA 11092 to that of NOAA 11084 approximately equals the ratio of sunspot radii for all n , while the ratio of σ sc of the two sunspots is greater than the ratio of sunspot radii and increases with n . This suggests that σ ab is approximately proportional to the sunspot radius, while the dependence of σ sc on radius is faster than the linear increase.
Energy Technology Data Exchange (ETDEWEB)
Zhao, Hui [National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 200012 (China); Chou, Dean-Yi, E-mail: chou@phys.nthu.edu.tw [Physics Department, National Tsing Hua University, Hsinchu, Taiwan (China)
2016-05-01
The solar acoustic waves are modified by the interaction with sunspots. The interaction can be treated as a scattering problem: an incident wave propagating toward a sunspot is scattered by the sunspot into different modes. The absorption cross section and scattering cross section are two important parameters in the scattering problem. In this study, we use the wavefunction of the scattered wave, measured with a deconvolution method, to compute the absorption cross section σ {sub ab} and the scattering cross section σ {sub sc} for the radial order n = 0–5 for two sunspots, NOAA 11084 and NOAA 11092. In the computation of the cross sections, the random noise and dissipation in the measured acoustic power are corrected. For both σ {sub ab} and σ {sub sc}, the value of NOAA 11092 is greater than that of NOAA 11084, but their overall n dependence is similar: decreasing with n . The ratio of σ {sub ab} of NOAA 11092 to that of NOAA 11084 approximately equals the ratio of sunspot radii for all n , while the ratio of σ {sub sc} of the two sunspots is greater than the ratio of sunspot radii and increases with n . This suggests that σ {sub ab} is approximately proportional to the sunspot radius, while the dependence of σ {sub sc} on radius is faster than the linear increase.
On the determination of heliographic positions and rotation velocities of sunspots. Pt. 2
International Nuclear Information System (INIS)
Balthasar, H.
1983-01-01
Using sunspot positions of small sunspots observed at Debrecen and Locarno as well as positions of recurrent sunspots taken from the Greenwich Photoheliographic Results (1940-1976) the influence of the Wilson depression on the rotation velocities was investigated. It was found that the Wilson depression can be determined by minimizing errors of the rotation velocities or minimizing the differences of rotation velocities determined from disk passages and central meridian passages. The Wilson depressions found were between 765 km and 2500 km for the first sample while they were between 0 km and several 1000 km for the second sample. The averaged Wilson depression for the second sample is between 500 km and 965 km depending on the reduction method. A dependence of the Wilson depression on the age of the spots investigated seems not to exist. (orig.)
Possibility to explain the temperature distribution in sunspots by an anisotropic heat transfer
Energy Technology Data Exchange (ETDEWEB)
Eschrich, K O; Krause, F [Akademie der Wissenschaften der DDR, Potsdam. Zentralinstitut fuer Astrophysik
1977-01-01
Numerical solutions of a heat conduction problem in an anisotropic medium are used for a discussion of the possibility to explain the temperature distribution in sunspots and their environment. The anisotropy is assumed being due to the strong magnetic field in sunspots and the region below. This magnetic field forces the convection to take an anisotropic structure (two-dimensional turbulence) and thus the region gets anisotropic conduction properties, on the average. The discussion shows that the observed temperature profiles can be explained in the case the depth of the region of anisotropy is about as large as the diameter of the spot or larger.
Outflow of chromospheric emission features from the rim of a sunspot
Liu, S.-Y.
1973-01-01
In viewing a 16 mm movie made from a time sequence of spectroheliograms, some of these emission features are found to move outward from the rim of the sunspot until they are eventually lost in the small plage. There are two interpretations for the streaming of the magnetic features. It is possible that kinks in the line of force propagate along a horizontal extension of the penumbral magnetic field. Alternatively, fragments of the sunspot magnetic field are carried away by the photospheric velocity field.
Kim, Jibum; Shin, Hee-Choon; Rosen, Zohn; Kang, Jeong-han; Dykema, Jennifer; Muennig, Peter
2015-01-01
Privacy and confidentiality are often of great concern to respondents answering sensitive questions posed by interviewers. Using the 1993-2010 General Social Survey, we examined trends in the provision of social security numbers (SSNs) and correlates of those responses. Results indicate that the rate of SSN provision has declined over the past…
CHROMOSPHERIC SUNSPOTS IN THE MILLIMETER RANGE AS OBSERVED BY THE NOBEYAMA RADIOHELIOGRAPH
Energy Technology Data Exchange (ETDEWEB)
Iwai, Kazumasa [National Institute of Information and Communications Technology, Koganei 184-8795, Tokyo (Japan); Koshiishi, Hideki [Aerospace Research and Development Directorate, Japan Aerospace Exploration Agency, Tsukuba 305-8505 (Japan); Shibasaki, Kiyoto [Nobeyama Solar Radio Observatory, National Astronomical Observatory of Japan, Minamimaki, Nagano 384-1305 (Japan); Nozawa, Satoshi; Miyawaki, Shun; Yoneya, Takuro, E-mail: kazumasa.iwai@nict.go.jp [Department of Science, Ibaraki University, Mito, Ibaraki 310-8512 (Japan)
2016-01-10
We investigate the upper chromosphere and the transition region of the sunspot umbra using the radio brightness temperature at 34 GHz (corresponding to 8.8 mm observations) as observed by the Nobeyama Radioheliograph (NoRH). Radio free–free emission in the longer millimeter range is generated around the transition region, and its brightness temperature yields the region's temperature and density distribution. We use the NoRH data at 34 GHz by applying the Steer-CLEAN image synthesis. These data and the analysis method enable us to investigate the chromospheric structures in the longer millimeter range with high spatial resolution and sufficient visibilities. We also perform simultaneous observations of one sunspot using the NoRH and the Nobeyama 45 m telescope operating at 115 GHz. We determine that 115 GHz emission mainly originates from the lower chromosphere while 34 GHz emission mainly originates from the upper chromosphere and transition region. These observational results are consistent with the radio emission characteristics estimated from current atmospheric models of the chromosphere. On the other hand, the observed brightness temperature of the umbral region is almost the same as that of the quiet region. This result is inconsistent with current sunspot models, which predict a considerably higher brightness temperature of the sunspot umbra at 34 GHz. This inconsistency suggests that the temperature of the region at which the 34 GHz radio emission becomes optically thick should be lower than that predicted by the models.
On the evolution of magnetic and velocity fields of an originating sunspot group
International Nuclear Information System (INIS)
Bachmann, G.
1978-01-01
Magnetographic measurements were made to derive longitudinal magnetic field strengths, line-of-sight velocities and the brightness distribution in an originating sunspot group. These results and photographs of the group are used to compare the evaluation of a relatively simple active region with our present ideas about the evolution of active regions in general. We found that the total magnetic flux increased from about 4 to 20x10 20 Mx over three days. The downward flow of gas in regions with stronger magnetic fields is formed only after the magnetic field has already been bipolar for two days. The maximum velocity always occurred in the main spots of the preceding and the subsequent parts of the sunspot group. Transformation into a flow pattern, which looks like Evershed motion, is observed in the main preceding sunspot after the formation of the penumbra. The generation of new active regions by concentration and amplification of magnetic fields, under the action of supergranulation flow in photospheric layers, cannot play an important role. On the contrary, the behaviour of the active region is in agreement with the conception of rising flux tubes, out of which the gas flows down. Our observations confirm that a magnetic field strength, leading to the generation of sunspots, is attained earlier in the preceding part of the originating active region than in its subsequent part. A series of subflares occurred in the active region, when short-lived small magnetic structure elements emerged in the larger bipolar magnetic field. (author)
Flow and magnetic field properties in the trailing sunspots of active region NOAA 12396
Czech Academy of Sciences Publication Activity Database
Verma, M.; Denker, C.; Boehm, F.; Balthasar, H.; Fischer, C.E.; Kuckein, C.; Gonzalez, N.B.; Berkefeld, T.; Collados Vera, M.; Diercke, A.; Feller, A.; Gonzalez Manrique, S. J.; Hofmann, A.; Lagg, A.; Nicklas, H.; Orozco Suárez, D.; Pator Yabar, A.; Rezaei, R.; Schlichenmaier, R.; Schmidt, D.; Schmidt, W.; Sigwarth, M.; Sobotka, Michal; Solanki, S.K.; Soltau, D.; Staude, J.; Strassmeier, K.G.; Volkmer, R.; von der Lühe, O.; Waldmann, T.A.
2016-01-01
Roč. 337, č. 10 (2016), s. 1090-1098 ISSN 0004-6337. [Dynamic Sun - Exploring the Many Facets of Solar Eruptive Events. Potsdam, 26.10. 2015 -29.10. 2015 ] Institutional support: RVO:67985815 Keywords : Sun * magnetic fields * sunspots Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.916, year: 2016
Corona magnetic field over sunspots estimated by m-wave observation
International Nuclear Information System (INIS)
Kurihara, Masahiro
1974-01-01
The shape of the magnetic field in corona was estimated from the observation of the type I storm occurred in the last decade of August, 1971. It was found from the observation with a 160 MHz interferometer at Mt. Nobeyama that at most three storm sources, which are called radio wave source, were produced. The radio wave sources were fixed above sunspots. The height of the radio wave sources was estimated to be 0.45 R from the photosphere. The sunspots under the radio wave sources can be classified to four sub-groups. Weakening of the magnetic field on the photosphere was found from the reduction of the area of some sub-group. The relation between the activity of type I storm and the intensity of the magnetic field of sunspots is qualitatively suggested. It is considered that the radio wave sources and the sunspots were connected by common magnetic force lines. The probable magnetic field in corona was presumed and is shown in a figure. An interesting point is that the direction of magnetic force lines inclined by about 30 0 outward to the vertical line to the photosphere surface. (Kato, T.)
Physical Properties of Umbral Dots Observed in Sunspots: A Hinode Observation
Yadav, Rahul; Mathew, Shibu K.
2018-04-01
Umbral dots (UDs) are small-scale bright features observed in the umbral part of sunspots and pores. It is well established that they are manifestations of magnetoconvection phenomena inside umbrae. We study the physical properties of UDs in different sunspots and their dependence on decay rate and filling factor. We have selected high-resolution, G-band continuum filtergrams of seven sunspots from Hinode to study their physical properties. We have also used Michelson Doppler Imager (MDI) continuum images to estimate the decay rate of selected sunspots. An identification and tracking algorithm was developed to identify the UDs in time sequences. The statistical analysis of UDs exhibits an averaged maximum intensity and effective diameter of 0.26 I_{QS} and 270 km. Furthermore, the lifetime, horizontal speed, trajectory length, and displacement length (birth-death distance) of UDs are 8.19 minutes, 0.5 km s-1, 284 km, and 155 km, respectively. We also find a positive correlation between intensity-diameter, intensity-lifetime, and diameter-lifetime of UDs. However, UD properties do not show any significant relation with the decay rate or filling factor.
Fine structure in sunspots. IV. Penumbral grains in speckle reconstucted images
Czech Academy of Sciences Publication Activity Database
Sobotka, Michal; Suetterlin, P.
2001-01-01
Roč. 380, č. 2 (2001), s. 714-718 ISSN 0004-6361 R&D Projects: GA AV ČR KSK2043105; GA AV ČR IAA3003903 Institutional research plan: CEZ:AV0Z1003909 Keywords : sun * sunspots Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.790, year: 2000
Preliminary results from the orbiting solar observatory 8: Transition-zone dynamics over a sunspot
International Nuclear Information System (INIS)
Bruner, E.C. Jr.; Chipman, E.G.; Lites, B.W.; Rottman, G.J.; Shine, R.A.; Athay, R.G.; White, O.R.
1976-01-01
The University of Colorado experiment aboard OSO-8 observed the C IV 1548 A line in the bright plume over a sunspot. Transient redshifts at 5 minute intervals were studied, but the expected phenomena associated with simple Alfven wave effects were not observed
Temperature mapping of sunspots and pores from speckle reconstructed three colour photometry
Sütterlin, P.; Wiehr, E.
1998-01-01
The two-dimensional temperature distribution in a highly structured sunspot and in two small umbrae is determined from a three-colour photometry in narrow spectral continua. Disturbing influences from the earths atmosphere are removed by speckle masking techniques, yielding a spatial resolution
Changed Relation between Solar 10.7-cm Radio Flux and some ...
Indian Academy of Sciences (India)
The time series of monthly average values of sunspot numbers SSN, 10.7 cm flux ... This radio emission comes from the higher part of the chromosphere and .... work elements on the solar surface on one hand and spots on the other hand ... size, their magnetic fields were less composite and characterized by the greater life-.
Energy Technology Data Exchange (ETDEWEB)
McIntosh, Scott W.; Wang, Xin; Markel, Robert S.; Thompson, Michael J. [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307 (United States); Leamon, Robert J.; Malanushenko, Anna V. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Davey, Alisdair R. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Howe, Rachel [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT (United Kingdom); Krista, Larisza D. [Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80205 (United States); Cirtain, Jonathan W. [Marshall Space Flight Center, Code ZP13, Huntsville, AL 35812 (United States); Gurman, Joseph B.; Pesnell, William D., E-mail: mscott@ucar.edu [Solar Physics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)
2014-09-01
Sunspots are a canonical marker of the Sun's internal magnetic field which flips polarity every ∼22 yr. The principal variation of sunspots, an ∼11 yr variation, modulates the amount of the magnetic field that pierces the solar surface and drives significant variations in our star's radiative, particulate, and eruptive output over that period. This paper presents observations from the Solar and Heliospheric Observatory and Solar Dynamics Observatory indicating that the 11 yr sunspot variation is intrinsically tied to the spatio-temporal overlap of the activity bands belonging to the 22 yr magnetic activity cycle. Using a systematic analysis of ubiquitous coronal brightpoints and the magnetic scale on which they appear to form, we show that the landmarks of sunspot cycle 23 can be explained by considering the evolution and interaction of the overlapping activity bands of the longer-scale variability.
A model of a sunspot chromosphere based on OSO 8 observations
Lites, B. W.; Skumanich, A.
1982-01-01
OSO 8 spectrometer observations of the H I, Mg II, and Ca II resonance lines of a large quiet sunspot during November 16-17, 1975, along with a C IV line of that event obtained by a ground-based spectrometer, are analyzed together with near-simultaneous ground-based Stokes measurements to yield an umbral chromosphere and transition region model. Features of this model include a chromosphere that is effectively thin in the resonance lines of H I and Mg II, while being saturated in Ca II, and an upper chromospheric structure similar to that of quiet-sun models. The similarity of the upper chromosphere of the sunspot umbra to the quiet-sun chromosphere suggests that the intense magnetic field plays only a passive role in the chromospheric heating mechanism, and the observations cited indicate that solar-type stars with large areas of ordered magnetic flux would not necessarily exhibit extremely active chromosphere.
The chromosphere above a δ-sunspot in the presence of fan-shaped jets
Robustini, Carolina; Leenaarts, Jorrit; de la Cruz Rodríguez, Jaime
2018-01-01
Context. Delta-sunspots are known to be favourable locations for fast and energetic events like flares and coronal mass ejections. The photosphere of this sunspot type has been thoroughly investigated in the past three decades. The atmospheric conditions in the chromosphere are not as well known, however. Aims: This study is focused on the chromosphere of a δ-sunspot that harbours a series of fan-shaped jets in its penumbra. The aim of this study is to establish the magnetic field topology and the temperature distribution in the presence of jets in the photosphere and the chromosphere. Methods: We use data from the Swedish 1m Solar Telescope (SST) and the Solar Dynamics Observatory. We invert the spectropolarimetric Fe I 6302 Å and Ca II 8542 Å data from the SST using the non-LTE inversion code NICOLE to estimate the magnetic field configuration, temperature, and velocity structure in the chromosphere. Results: A loop-like magnetic structure is observed to emerge in the penumbra of the sunspot. The jets are launched from this structure. Magnetic reconnection between this emerging field and the pre-existing vertical field is suggested by hot plasma patches on the interface between the two fields. The height at which the reconnection takes place is located between log τ500 = -2 and log τ500 = -3. The magnetic field vector and the atmospheric temperature maps show a stationary configuration during the whole observation. Movies associated to Figs. 3-5 are available at http://www.aanda.org
Fully Automated Sunspot Detection and Classification Using SDO HMI Imagery in MATLAB
2014-03-27
initiating the java program scripted to communicate with the SOON telescope used for continual observation of the sun. The SOON telescope is used at...proximity of spots refers to the angular separation between different spots that could make up a group. The area of each sunspot means the total area...degrees and the different magnetic polarities of each spot being considered. For a spot pair that has the same polarity and small angular separation
Energy Technology Data Exchange (ETDEWEB)
Muñoz-Jaramillo, Andrés; Windmueller, John C.; Amouzou, Ernest C.; Longcope, Dana W. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Senkpeil, Ryan R. [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); Tlatov, Andrey G. [Kislovodsk Mountain Astronomical Station of the Pulkovo Observatory, Kislovodsk 357700 (Russian Federation); Nagovitsyn, Yury A. [Pulkovo Astronomical Observatory, Russian Academy of Sciences, St. Petersburg 196140 (Russian Federation); Pevtsov, Alexei A. [National Solar Observatory, Sunspot, NM 88349 (United States); Chapman, Gary A.; Cookson, Angela M. [San Fernando Observatory, Department of Physics and Astronomy, California State University Northridge, Northridge, CA 91330 (United States); Yeates, Anthony R. [Department of Mathematical Sciences, Durham University, South Road, Durham DH1 3LE (United Kingdom); Watson, Fraser T. [National Solar Observatory, Tucson, AZ 85719 (United States); Balmaceda, Laura A. [Institute for Astronomical, Terrestrial and Space Sciences (ICATE-CONICET), San Juan (Argentina); DeLuca, Edward E. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Martens, Petrus C. H., E-mail: munoz@solar.physics.montana.edu [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States)
2015-02-10
In this work, we take advantage of 11 different sunspot group, sunspot, and active region databases to characterize the area and flux distributions of photospheric magnetic structures. We find that, when taken separately, different databases are better fitted by different distributions (as has been reported previously in the literature). However, we find that all our databases can be reconciled by the simple application of a proportionality constant, and that, in reality, different databases are sampling different parts of a composite distribution. This composite distribution is made up by linear combination of Weibull and log-normal distributions—where a pure Weibull (log-normal) characterizes the distribution of structures with fluxes below (above) 10{sup 21}Mx (10{sup 22}Mx). Additionally, we demonstrate that the Weibull distribution shows the expected linear behavior of a power-law distribution (when extended to smaller fluxes), making our results compatible with the results of Parnell et al. We propose that this is evidence of two separate mechanisms giving rise to visible structures on the photosphere: one directly connected to the global component of the dynamo (and the generation of bipolar active regions), and the other with the small-scale component of the dynamo (and the fragmentation of magnetic structures due to their interaction with turbulent convection)
International Nuclear Information System (INIS)
Chou, D.-Y.; Liang, Z.-C.; Yang, M.-H.; Zhao Hui; Sun, M.-T.
2009-01-01
The power of solar acoustic waves in magnetic regions is lower relative to the quiet Sun. Absorption, emissivity reduction, and local suppression of acoustic waves contribute to the observed power reduction in magnetic regions. We propose a model for the energy budget of acoustic waves propagating through a sunspot in terms of the coefficients of absorption, emissivity reduction, and local suppression of the sunspot. Using the property that the waves emitted along the wave path between two points have no correlation with the signal at the starting point, we can separate the effects of these three mechanisms. Applying this method to helioseismic data filtered with direction and phase-velocity filters, we measure the fraction of the contribution of each mechanism to the power deficit in the umbra of the leading sunspot of NOAA 9057. The contribution from absorption is 23.3 ± 1.3%, emissivity reduction 8.2 ± 1.4%, and local suppression 68.5 ± 1.5%, for a wave packet corresponding to a phase velocity of 6.98 x 10 -5 rad s -1 .
SOHO sees right through the Sun, and finds sunspots on the far side
2000-03-01
The story is told today in the journal Science by Charles Lindsey of Tucson, Arizona, and Doug Braun of Boulder, Colorado. They realised that the analytical witchcraft called helioseismic holography might open a window right through the Sun. And the technique worked when they used it to decode waves seen on the visible surface by one of SOHO's instruments, the Michelson Doppler Imager, or MDI. "We've known for ten years that in theory we could make the Sun transparent all the way to the far side," said Charles Lindsey. "But we needed observations of exceptional quality. In the end we got them, from MDI on SOHO." For more than 100 years scientists have been aware that groups of dark sunspots on the Sun's visible face are often the scene of flares and other eruptions. Nowadays they watch the Sun more closely than ever, because modern systems are much more vulnerable to solar disturbances than old-style technology was. The experts can still be taken by surprise, because the Sun turns on its axis. A large group of previously hidden sunspots can suddenly swing into view on the eastern (left-hand) edge of the Sun. It may already be blazing away with menacing eruptions. With a far-side preview of sunspots, nasty shocks for the space weather forecasters may now be avoidable. Last year, French and Finnish scientists used SWAN, another instrument on SOHO, to detect activity on the far side. They saw an ultraviolet glow lighting up gas in the Solar System beyond the Sun, and moving across the sky like a lighthouse beam as the Sun rotated. The method used by Lindsey and Braun with MDI data is completely different, and it pinpoints the source of the activity on the far side. Solar seismology chalks up another success Detection of sound waves reverberating through the Sun opened its gassy interior for investigation, in much the same way as seismologists learned to explore the Earth's rocky interior with earthquake waves. Using special telescopes on the ground and in space
Directory of Open Access Journals (Sweden)
Santos Ângela R. G.
2017-01-01
Full Text Available The activity-related variations in the solar acoustic frequencies have been known for 30 years. However, the importance of the different contributions is still not well established. With this in mind, we developed an empirical model to estimate the spot-induced frequency shifts, which takes into account the sunspot properties, such as area and latitude. The comparison between the model frequency shifts obtained from the daily sunspot records and those observed suggests that the contribution from a stochastic component to the total frequency shifts is about 30%. The remaining 70% is related to a global, long-term variation. We also propose a new observable to investigate the short-and mid-term variations of the frequency shifts, which is insensitive to the long-term variations contained in the data. On the shortest time scales the variations in the frequency shifts are strongly correlated with the variations in the total area covered by sunspots. However, a significant loss of correlation is still found, which cannot be fully explained by ignoring the invisible side of the Sun when accounting for the total sunspot area. We also verify that the times when the frequency shifts and the sunspot areas do not vary in a similar way tend to coincide with the times of the maximum amplitude of the quasi-biennial variations found in the seismic data.
Hayakawa, Hisashi; Iwahashi, Kiyomi; Tamazawa, Harufumi; Ebihara, Yusuke; Kawamura, Akito Davis; Isobe, Hiroaki; Namiki, Katsuko; Shibata, Kazunari
2017-12-01
We present the results of the surveys on sunspots and auroral candidates in Rikkokushi, Japanese official histories from the early 7th century to 887, to review the solar and auroral activities. In total, we found one sunspot record and 13 auroral candidates in Rikkokushi. We then examine the records of the sunspots and auroral candidates, compare the auroral candidates with the lunar phase to estimate their reliability, and compare the records of the sunspots and auroral candidates with the contemporary total solar irradiance reconstructed from radioisotope data. We also identify the locations of the observational sites to review possible equatorward expansion of the auroral oval. These discussions suggest a major gap in auroral candidates from the late 7th to early 9th centuries, which includes the candidate of the grand minimum reconstructed from the radioisotope data, a similar tendency as the distributions of sunspot records in contemporary China, and a relatively high magnetic latitude of observational sites with a higher potential for observing aurorae more frequently than at present.
Directory of Open Access Journals (Sweden)
Robitaille P.-M.
2011-07-01
Full Text Available Father Angelo Secchi used the existence of solar granulation as a central line of rea- soning when he advanced that the Sun was a gaseous body with a photosphere contain- ing incandescent particulate matter (Secchi A. Sulla Struttura della Fotosfera Solare. Bullettino Meteorologico dell’Osservatorio del Collegio Romano , 30 November 1864, v.3(11, 1–3. Secchi saw the granules as condensed matter emitting the photospheric spectrum, while the darkened intergranular lanes conveyed the presence of a gaseous solar interior. Secchi also considered the nature of sunspots and limb darkening. In the context of modern solar models, opacity arguments currently account for the emis- sive properties of the photosphere. Optical depth is thought to explain limb darkening. Both temperature variations and magnetic fields are invoked to justify the weakened emissivities of sunspots, even though the presence of static magnetic fields in materi- als is not usually associated with modified emissivity. Conversely, within the context of a liquid metallic hydrogen solar model, the appearance of granules, limb darkening, and sunspots can be elegantly understood through the varying directional emissivity of condensed matter. A single explanation is applicable to all three phenomena. Granular contrast can be directly associated with the generation of limb darkening. Depending on size, granules can be analyzed by considering Kolmogoroff’s formulations and B ́ enard convection, respectively, both of which were observed using incompressible liquids, not gases. Granules follow the 2-dimensional space filling laws of Aboav-Weiner and Lewis. Their adherence to these structural laws provides supportive evidence that the granular surface of the Sun represents elements which can only be constructed from condensed matter. A gaseous Sun cannot be confined to a 2-dimensional framework. Mesogranules, supergranules, and giant cells constitute additional entities which further
The Formation of a Sunspot Penumbra Sector in Active Region NOAA 12574
Li, Qiaoling; Yan, Xiaoli; Wang, Jincheng; Kong, DeFang; Xue, Zhike; Yang, Liheng; Cao, Wenda
2018-04-01
We present a particular case of the formation of a penumbra sector around a developing sunspot in the active region NOAA 12574 on 2016 August 11 by using the high-resolution data observed by the New Solar Telescope at the Big Bear Solar Observatory and the data acquired by the Helioseismic and Magnetic Imager and the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory satellite. Before the new penumbra sector formed, the developing sunspot already had two umbrae with some penumbral filaments. The penumbra sector gradually formed at the junction of two umbrae. We found that the formation of the penumbra sector can be divided into two stages. First, during the initial stage of penumbral formation, the region where the penumbra sector formed always appeared blueshifted in a Dopplergram. The area, mean transverse magnetic field strength, and total magnetic flux of the umbra and penumbra sector all increased with time. The initial penumbral formation was associated with magnetic emergence. Second, when the penumbra sector appeared, the magnetic flux and area of the penumbra sector increased after the umbra’s magnetic flux and area decreased. These results indicate that the umbra provided magnetic flux for penumbral development after the penumbra sector appeared. We also found that the newly formed penumbra sector was associated with sunspot rotation. Based on these findings, we suggest that the penumbra sector was the result of the emerging flux that was trapped in the photosphere at the initial stage of penumbral formation, and when the rudimentary penumbra formed, the penumbra sector developed at the cost of the umbra.
LOOKING FOR GRANULATION AND PERIODICITY IMPRINTS IN THE SUNSPOT TIME SERIES
Energy Technology Data Exchange (ETDEWEB)
Lopes, Ilídio [Centro Multidisciplinar de Astrofísica, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Silva, Hugo G., E-mail: ilidio.lopes@tecnico.ulisboa.pt, E-mail: hgsilva@uevora.pt [Departamento de Física, ECT, Instituto de Ciências da Terra, Universidade de Évora, Rua Romão Ramalho 59, 7002-554 Évora (Portugal)
2015-05-10
The sunspot activity is the end result of the cyclic destruction and regeneration of magnetic fields by the dynamo action. We propose a new method to analyze the daily sunspot areas data recorded since 1874. By computing the power spectral density of daily data series using the Mexican hat wavelet, we found a power spectrum with a well-defined shape, characterized by three features. The first term is the 22 yr solar magnetic cycle, estimated in our work to be 18.43 yr. The second term is related to the daily volatility of sunspots. This term is most likely produced by the turbulent motions linked to the solar granulation. The last term corresponds to a periodic source associated with the solar magnetic activity, for which the maximum power spectral density occurs at 22.67 days. This value is part of the 22–27 day periodicity region that shows an above-average intensity in the power spectra. The origin of this 22.67 day periodic process is not clearly identified, and there is a possibility that it can be produced by convective flows inside the star. The study clearly shows a north–south asymmetry. The 18.43 yr periodical source is correlated between the two hemispheres, but the 22.67 day one is not correlated. It is shown that toward the large timescales an excess occurs in the northern hemisphere, especially near the previous two periodic sources. To further investigate the 22.67 day periodicity, we made a Lomb–Scargle spectral analysis. The study suggests that this periodicity is distinct from others found nearby.
TILT ANGLE AND FOOTPOINT SEPARATION OF SMALL AND LARGE BIPOLAR SUNSPOT REGIONS OBSERVED WITH HMI
International Nuclear Information System (INIS)
McClintock, B. H.; Norton, A. A.
2016-01-01
We investigate bipolar sunspot regions and how tilt angle and footpoint separation vary during emergence and decay. The Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory collects data at a higher cadence than historical records and allows for a detailed analysis of regions over their lifetimes. We sample the umbral tilt angle, footpoint separation, and umbral area of 235 bipolar sunspot regions in Helioseismic and Magnetic Imager—Debrecen Data with an hourly cadence. We use the time when the umbral area peaks as time zero to distinguish between the emergence and decay periods of each region and we limit our analysis of tilt and separation behavior over time to within ±96 hr of time zero. Tilt angle evolution is distinctly different for regions with small (≈30 MSH), midsize (≈50 MSH), and large (≈110 MSH) maximum umbral areas, with 45 and 90 MSH being useful divisions for separating the groups. At the peak umbral area, we determine median tilt angles for small (7.°6), midsize (5.°9), and large (9.°3) regions. Within ±48 hr of the time of peak umbral area, large regions steadily increase in tilt angle, midsize regions are nearly constant, and small regions show evidence of negative tilt during emergence. A period of growth in footpoint separation occurs over a 72-hr period for all of the regions from roughly 40 to 70 Mm. The smallest bipoles (<9 MSH) are outliers in that they do not obey Joy's law and have a much smaller footpoint separation. We confirm the Muñoz-Jaramillo et al. results that the sunspots appear to be two distinct populations
Energy Technology Data Exchange (ETDEWEB)
Yan, X. L.; Xue, Z. K.; Wang, J. C.; Yang, L. H. [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Priest, E. R. [Mathematics Institute, University of St Andrews, St Andrews, KY16 9SS (United Kingdom); Guo, Q. L., E-mail: yanxl@ynao.ac.cn [College of Mathematics Physics and Information Engineering, Jiaxing University, Jiaxing 314001 (China)
2016-11-20
We present a detailed study of the formation of an inverse S-shaped filament prior to its eruption in active region NOAA 11884 from 2013 October 31 to November 2. In the initial stage, clockwise rotation of a small positive sunspot around the main negative trailing sunspot formed a curved filament. Then the small sunspot cancelled with the negative magnetic flux to create a longer active-region filament with an inverse S-shape. At the cancellation site a brightening was observed in UV and EUV images and bright material was transferred to the filament. Later the filament erupted after cancellation of two opposite polarities below the upper part of the filament. Nonlinear force-free field extrapolation of vector photospheric fields suggests that the filament may have a twisted structure, but this cannot be confirmed from the current observations.
Baker, J. C. A.; Gloor, M.; Boom, A.; Neill, D. A.; Cintra, B. B. L.; Clerici, S. J.; Brienen, R. J. W.
2018-02-01
It was suggested in a recent article that sunspots drive decadal variation in Amazon River flow. This conclusion was based on a novel time series decomposition method used to extract a decadal signal from the Amazon River record. We have extended this analysis back in time, using a new hydrological proxy record of tree ring oxygen isotopes (δ18OTR). Consistent with the findings of Antico and Torres, we find a positive correlation between sunspots and the decadal δ18OTR cycle from 1903 to 2012 (r = 0.60, p r = -0.30, p = 0.11, 1799-1902). This result casts considerable doubt over the mechanism by which sunspots are purported to influence Amazon hydrology.
Hewagama, Tilak; Deming, Drake; Jennings, Donald E.; Osherovich, Vladimir; Wiedemann, Gunter; Zipoy, David; Mickey, Donald L.; Garcia, Howard
1993-01-01
Polarimetric observations at 12 microns of two sunpots are reported. The horizontal distribution of parameters such as magnetic field strength, inclination, azimuth, and magnetic field filling factors are presented along with information about the height dependence of the magnetic field strength. Comparisons with contemporary magnetostatic sunspot models are made. The magnetic data are used to estimate the height of 12 micron line formation. From the data, it is concluded that within a stable sunspot there are no regions that are magnetically filamentary, in the sense of containing both strong-field and field-free regions.
WAVES AS THE SOURCE OF APPARENT TWISTING MOTIONS IN SUNSPOT PENUMBRAE
International Nuclear Information System (INIS)
Bharti, L.; Cameron, R. H.; Hirzberger, J.; Solanki, S. K.; Rempel, M.
2012-01-01
The motion of dark striations across bright filaments in a sunspot penumbra has become an important new diagnostic of convective gas flows in penumbral filaments. The nature of these striations has, however, remained unclear. Here, we present an analysis of small-scale motions in penumbral filaments in both simulations and observations. The simulations, when viewed from above, show fine structure with dark lanes running outward from the dark core of the penumbral filaments. The dark lanes either occur preferentially on one side or alternate between both sides of the filament. We identify this fine structure with transverse (kink) oscillations of the filament, corresponding to a sideways swaying of the filament. These oscillations have periods in the range of 5-7 minutes and propagate outward and downward along the filament. Similar features are found in observed G-band intensity time series of penumbral filaments in a sunspot located near disk center obtained by the Broadband Filter Imager on board the Hinode. We also find that some filaments show dark striations moving to both sides of the filaments. Based on the agreement between simulations and observations we conclude that the motions of these striations are caused by transverse oscillations of the underlying bright filaments.
The mutual attraction of magnetic knots. [solar hydromagnetic instability in sunspot regions
Parker, E. N.
1978-01-01
It is observed that the magnetic knots associated with active regions on the sun have an attraction for each other during the formative period of the active regions, when new magnetic flux is coming to the surface. The attraction disappears when new flux ceases to rise through the surface. Then the magnetic spots and knots tend to come apart, leading to disintegration of the sunspots previously formed. The dissolution of the fields is to be expected, as a consequence of the magnetic repulsion of knots of like polarity and as a consequence of the hydromagnetic exchange instability. The purpose of this paper is to show that the mutual attraction of knots during the formative stages of a sunspot region may be understood as the mutual hydrodynamic attraction of the rising flux tubes. Two rising tubes attract each other, as a consequence of the wake of the leading tube when one is moving behind the other, and as a consequence of the Bernoulli effect when rising side by side.
Sunspots and the physics of magnetic flux tubes in the sun
International Nuclear Information System (INIS)
Ballegooijen, A.A. van.
1982-01-01
This thesis refers to the sub-surface structure of the solar magnetic field. Following an introductory chapter, chapter II presents an analysis of spectroscopic observations of a sunspot at infrared wavelengths and models of the temperature stratification in the sunspot atmosphere are derived. The main subject of this thesis concerns the structure of the magnetic field deep down below the stellar surface, near the base of the convective envelope. In Chapter III the stability of toroidal flux tubes to wave-like perturbations is discussed, assuming that the tubes are neutrally buoyant. A model is proposed in which the toroidal flux tubes are neutrally buoyant and located in a stably stratified layer just below the base of the convective zone. On the basis of some simple assumptions for the temperature stratification in this storage layer the author considers in Chapter IV the properties of the vertical flux tubes in the convective zone. The adiabatic flux model cannot satisfactorily be applied to the simplified model of the storage layer, so that the problem of magnetic flux storage is reconsidered in Chapter V. A new model of the temperature stratification at the interface of convective zone and radiative interior of the sun is described. Finally, in Chapter VI, the stability of toroidal flux tubes in a differentially rotating star are discussed. It is demonstrated that for realistic values of the magnetic field strength, rotation has a strong effect on the stability of the toroidal flux tubes. (C.F.)
NARROW-LINE-WIDTH UV BURSTS IN THE TRANSITION REGION ABOVE SUNSPOTS OBSERVED BY IRIS
Energy Technology Data Exchange (ETDEWEB)
Hou, Zhenyong; Huang, Zhenghua; Xia, Lidong; Li, Bo; Madjarska, Maria S.; Fu, Hui; Mou, Chaozhou; Xie, Haixia, E-mail: z.huang@sdu.edu.cn, E-mail: xld@sdu.edu.cn [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, Shandong University, Weihai, 264209 Shandong (China)
2016-10-01
Various small-scale structures abound in the solar atmosphere above active regions, playing an important role in the dynamics and evolution therein. We report on a new class of small-scale transition region structures in active regions, characterized by strong emissions but extremely narrow Si iv line profiles as found in observations taken with the Interface Region Imaging Spectrograph (IRIS). Tentatively named as narrow-line-width UV bursts (NUBs), these structures are located above sunspots and comprise one or multiple compact bright cores at sub-arcsecond scales. We found six NUBs in two data sets (a raster and a sit-and-stare data set). Among these, four events are short-lived with a duration of ∼10 minutes, while two last for more than 36 minutes. All NUBs have Doppler shifts of 15–18 km s{sup −1}, while the NUB found in sit-and-stare data possesses an additional component at ∼50 km s{sup −1} found only in the C ii and Mg ii lines. Given that these events are found to play a role in the local dynamics, it is important to further investigate the physical mechanisms that generate these phenomena and their role in the mass transport in sunspots.
The Frequency-dependent Damping of Slow Magnetoacoustic Waves in a Sunspot Umbral Atmosphere
Energy Technology Data Exchange (ETDEWEB)
Prasad, S. Krishna; Jess, D. B. [Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast, BT7 1NN (United Kingdom); Doorsselaere, T. Van [Centre for mathematical Plasma Astrophysics, Mathematics Department, KU Leuven, Celestijnenlaan 200B bus 2400, B-3001 Leuven (Belgium); Verth, G. [School of Mathematics and Statistics, The University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH (United Kingdom); Morton, R. J. [Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Ellison Building, Newcastle upon Tyne, NE1 8ST (United Kingdom); Fedun, V. [Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, S1 3JD (United Kingdom); Erdélyi, R. [Solar Physics and Space Plasma Research Centre (SP2RC), School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH (United Kingdom); Christian, D. J., E-mail: krishna.prasad@qub.ac.uk [Department of Physics and Astronomy, California State University Northridge, Northridge, CA 91330 (United States)
2017-09-20
High spatial and temporal resolution images of a sunspot, obtained simultaneously in multiple optical and UV wavelengths, are employed to study the propagation and damping characteristics of slow magnetoacoustic waves up to transition region heights. Power spectra are generated from intensity oscillations in sunspot umbra, across multiple atmospheric heights, for frequencies up to a few hundred mHz. It is observed that the power spectra display a power-law dependence over the entire frequency range, with a significant enhancement around 5.5 mHz found for the chromospheric channels. The phase difference spectra reveal a cutoff frequency near 3 mHz, up to which the oscillations are evanescent, while those with higher frequencies propagate upward. The power-law index appears to increase with atmospheric height. Also, shorter damping lengths are observed for oscillations with higher frequencies suggesting frequency-dependent damping. Using the relative amplitudes of the 5.5 mHz (3 minute) oscillations, we estimate the energy flux at different heights, which seems to decay gradually from the photosphere, in agreement with recent numerical simulations. Furthermore, a comparison of power spectra across the umbral radius highlights an enhancement of high-frequency waves near the umbral center, which does not seem to be related to magnetic field inclination angle effects.
Solar wind and coronal structure near sunspot minimum: Pioneer and SMM observations from 1985-1987
International Nuclear Information System (INIS)
Mihalov, J.D.; Barnes, A.; Hundhausen, A.J.; Smith, E.J.
1990-01-01
The solar wind speeds observed in the outer heliosphere (20 to 40 AU heliocentric distance, approximately) by Pioneers 10 an 11, and at a heliocentric distance of 0.7 AU by the Pioneer Venus spacecraft, reveal a complex set of changes in the years near the recent sunspot minimum, 1985-1987. The pattern of recurrent solar wind streams, the long-term average speed, and the sector polarity of the interplanetary magnetic field all changed in a manner suggesting both a temporal variation, and a changing dependence on heliographic latitude. Coronal observations made from the Solar Maximum Mission spacecraft during the same epoch show a systematic variation in coronal structure and (by implication) the magnetic structure imposed on the expanding solar wind. These observations suggest interpretation of the solar wind speed variations in terms of the familiar model where the speed increases with distance from a nearly flat interplanetary current sheet (or with heliomagnetic latitude), and where this current sheet becomes aligned with the solar equatorial plane as sunspot minimum approaches, but deviates rapidly from that orientation after minimum. The authors confirm here that this basic organization of the solar wind speed persists in the outer heliosphere with an orientation of the neutral sheet consistent with that inferred at a heliocentric distance of a few solar radii, from the coronal observations
Henze, W., Jr.; Tandberg-Hanssen, E.; Hagyard, M. J.; West, E. A.; Woodgate, B. E.; Shine, R. A.; Beckers, J. M.; Bruner, M.; Hyder, C. L.; West, E. A.
1982-01-01
The Ultraviolet Spectrometer and Polarimeter on the Solar Maximum Mission spacraft has observed for the first time the longitudinal component of the magnetic field by means of the Zeeman effect in the transition region above a sunspot. The data presented here were obtained on three days in one sunspot, have spatial resolutions of 10 arcsec and 3 arcsec, and yield maximum field strengths greater than 1000 G above the umbrae in the spot. The method of analysis, including a line-width calibration feature used during some of the observations, is described in some detail in an appendix; the line width is required for the determination of the longitudinal magnetic field from the observed circular polarization. The transition region data for one day are compared with photospheric magnetograms from the Marshall Space Flight Center. Vertical gradients of the magnetic field are compared from the two sets of data; the maximum gradients of 0.41 to 0.62 G/km occur above the umbra and agree with or are smaller than values observed previously in the photosphere and low chromosphere.
Sunspots and the physics of magnetic flux tubes. II. Aerodynamic drag
International Nuclear Information System (INIS)
Parker, E.N.
1979-01-01
The aerodynamic drag on a slender flux tube stretched vertically across a convective cell may push the flux tube into the updrafts or into the downdrafts, depending on the density stratification of the convecting fluid and the asymmetry of the fluid motions. The drag is approximately proportional to the local kinetic energy density, so the density stratification weights the drag in favor of the upper layers where the density is low, tending to push the vertical tube into the downdrafts. If, however, the horizontal motions in the convective cell are concentrated toward the bottom of the cell, they may dominate over the upper layers, pushing the tube into the updrafts. In the simple, idealized circumstance of a vertical tube extending across a fluid of uniform density in a convective cell that is symmetric about its midplane, the net aerodynamic drag vanishes in lowest order. The higher order contributions, including the deflection of the tube, then provide a nonvanishing force pushing the tube into a stable equilibrium midway between the updraft and the downdraft.It is pointed out that in the strongly stratified convective zone of the Sun, a downdraft herds flux tubes together into a cluster, while an updraft disperses them. To account for the observed strong cohesion of the cluster of flux tubes that make up a sunspot, we propose a downdraft of the order 2 km s - 1 through the cluster of seprate tubes beneath the sunspot
Solar wind and coronal structure near sunspot minimum - Pioneer and SMM observations from 1985-1987
Mihalov, J. D.; Barnes, A.; Hundhausen, A. J.; Smith, E. J.
1990-01-01
Changes in solar wind speed and magnetic polarity observed at the Pioneer spacecraft are discussed here in terms of the changing magnetic geometry implied by SMM coronagraph observations over the period 1985-1987. The pattern of recurrent solar wind streams, the long-term average speed, and the sector polarity of the interplanetary magnetic field all changed in a manner suggesting both a temporal variation, and a changing dependence on heliographic latitude. Coronal observations during this epoch show a systematic variation in coronal structure and the magnetic structure imposed on the expanding solar wind. These observations suggest interpretation of the solar wind speed variations in terms of the familiar model where the speed increases with distance from a nearly flat interplanetary current sheet, and where this current sheet becomes aligned with the solar equatorial plane as sunspot minimum approaches, but deviates rapidly from that orientation after minimum.
Balasubramaniam, K. S.; West, E. A.
1991-01-01
The Marshall Space Flight Center (MSFC) vector magnetograph is a tunable filter magnetograph with a bandpass of 125 mA. Results are presented of the inversion of Stokes polarization profiles observed with the MSFC vector magnetograph centered on a sunspot to recover the vector magnetic field parameters and thermodynamic parameters of the spectral line forming region using the Fe I 5250.2 A spectral line using a nonlinear least-squares fitting technique. As a preliminary investigation, it is also shown that the recovered thermodynamic parameters could be better understood if the fitted parameters like Doppler width, opacity ratio, and damping constant were broken down into more basic quantities like temperature, microturbulent velocity, or density parameter.
Oscillations in sunspot umbras due to trapped Alfven waves excited by overstability
International Nuclear Information System (INIS)
Uchida, Yutaka; Sakurai, Takashi.
1975-01-01
Oscillations observed in sunspot umbras are interpreted as a vertical motion in the atmosphere induced by a standing Alfven wave trapped in the region between the overstable layer under the photosphere and the chromosphere-corona transition layer. The Alfven wave motion is considered to be excited by the overstable convection occurring at the bottom of the abovementioned oscillating layer, and waves with special frequencies are selected as eigen-mode waves standing in the ''cavity,'' while other waves which are out of phase with themselves after reflections will disappear. It is shown by solving the eigen-value problem that the fundamental eigen frequency falls in a range around 0.04 rad s -1 (corresponding to 140-180 s) for the condition in the umbra of a typical spot, and also that the eigen frequencies do not depend greatly on the circumstantial physical or geometric parameters of the model atmosphere, such as the temperature in the layer, or the height of the transition layer, etc. The eigen frequencies, however, depend on the Alfven velocity at the base of the oscillating layer (or at the top of the overstable layer), but the latter quantity, which represents the stiffness of the magnetic tube of force against the overturning motion, takes roughly a common value for different sunspots according to SAVAGE's (1969) stability analysis of the umbral atmosphere against thermal convection, and thus gives a comparatively narrow range of resonant frequencies. In addition to the selection mechanism for oscillations of 140-180-s period, some other aspects of the oscillation, such as the relation to the running penumbral waves, are discussed. (auth.)
Surge-like Oscillations above Sunspot Light Bridges Driven by Magnetoacoustic Shocks
Energy Technology Data Exchange (ETDEWEB)
Zhang, Jingwen; Tian, Hui; He, Jiansen; Wang, Linghua, E-mail: huitian@pku.edu.cn [School of Earth and Space Sciences, Peking University, 100871 Beijing (China)
2017-03-20
High-resolution observations of the solar chromosphere and transition region often reveal surge-like oscillatory activities above sunspot light bridges (LBs). These oscillations are often interpreted as intermittent plasma jets produced by quasi-periodic magnetic reconnection. We have analyzed the oscillations above an LB in a sunspot using data taken by the Interface Region Imaging Spectrograph . The chromospheric 2796 Å images show surge-like activities above the entire LB at any time, forming an oscillating wall. Within the wall we often see that the core of the Mg ii k 2796.35 Å line first experiences a large blueshift, and then gradually decreases to zero shift before increasing to a redshift of comparable magnitude. Such a behavior suggests that the oscillations are highly nonlinear and likely related to shocks. In the 1400 Å passband, which samples emission mainly from the Si iv ion, the most prominent feature is a bright oscillatory front ahead of the surges. We find a positive correlation between the acceleration and maximum velocity of the moving front, which is consistent with numerical simulations of upward propagating slow-mode shock waves. The Si iv 1402.77 Å line profile is generally enhanced and broadened in the bright front, which might be caused by turbulence generated through compression or by the shocks. These results, together with the fact that the oscillation period stays almost unchanged over a long duration, lead us to propose that the surge-like oscillations above LBs are caused by shocked p-mode waves leaked from the underlying photosphere.
THE MYSTERIOUS CASE OF THE SOLAR ARGON ABUNDANCE NEAR SUNSPOTS IN FLARES
International Nuclear Information System (INIS)
Doschek, G. A.; Warren, H. P.
2016-01-01
Recently we discussed an enhancement of the abundance of Ar xiv relative to Ca xiv near a sunspot during a flare, observed in spectra recorded by the Extreme-ultraviolet Imaging Spectrometer (EIS) on the Hinode spacecraft. The observed Ar xiv/Ca xiv ratio yields an argon/calcium abundance ratio seven times greater than expected from the photospheric abundance. Such a large abundance anomaly is unprecedented in the solar atmosphere. We interpreted this result as being due to an inverse first ionization potential (FIP) effect. In the published work, two lines of Ar xiv were observed, and one line was tentatively identified as an Ar xi line. In this paper, we report observing a similar enhancement in a full-CCD EIS flare spectrum in 13 argon lines that lie within the EIS wavelength ranges. The observed lines include two Ar xi lines, four Ar xiii lines, six Ar xiv lines, and one Ar xv line. The enhancement is far less than reported in Doschek et al. but exhibits similar morphology. The argon abundance is close to a photospheric abundance in the enhanced area, and the abundance could be photospheric. This enhancement occurs in association with a sunspot in a small area only a few arcseconds (1″ = about 700 km) in size. There is no enhancement effect observed in the normally high-FIP sulfur and oxygen line ratios relative to lines of low-FIP elements available to EIS. Calculations of path lengths in the strongest enhanced area in Doschek et al. indicate a depletion of low-FIP elements.
Energy Technology Data Exchange (ETDEWEB)
Chen, Feng; Rempel, Matthias; Fan, Yuhong, E-mail: chenfeng@ucar.edu [High Altitude Observatory, NCAR, P.O. Box 3000, Boulder, CO, 80307 (United States)
2017-09-10
We present a realistic numerical model of sunspot and active region formation based on the emergence of flux bundles generated in a solar convective dynamo. To this end, we use the magnetic and velocity fields in a horizontal layer near the top boundary of the solar convective dynamo simulation to drive realistic radiative-magnetohydrodynamic simulations of the uppermost layers of the convection zone. The main results are as follows. (1) The emerging flux bundles rise with the mean speed of convective upflows and fragment into small-scale magnetic elements that further rise to the photosphere, where bipolar sunspot pairs are formed through the coalescence of the small-scale magnetic elements. (2) Filamentary penumbral structures form when the sunspot is still growing through ongoing flux emergence. In contrast to the classical Evershed effect, the inflow seems to prevail over the outflow in a large part of the penumbra. (3) A well-formed sunspot is a mostly monolithic magnetic structure that is anchored in a persistent deep-seated downdraft lane. The flow field outside the spot shows a giant vortex ring that comprises an inflow below 15 Mm depth and an outflow above 15 Mm depth. (4) The sunspots successfully reproduce the fundamental properties of the observed solar active regions, including the more coherent leading spots with a stronger field strength, and the correct tilts of bipolar sunspot pairs. These asymmetries can be linked to the intrinsic asymmetries in the magnetic and flow fields adapted from the convective dynamo simulation.
International Nuclear Information System (INIS)
Hardersen, Paul S.; Balasubramaniam, K. S.; Shkolyar, Svetlana
2013-01-01
This work utilizes Improved Solar Observing Optical Network continuum (630.2 nm) and Hα (656.2 nm) data to: (1) detect and measure intrinsic sunspot rotations occurring in the photosphere and chromosphere, (2) identify and measure chromospheric filament mass motions, and (3) assess any large-scale photospheric and chromospheric mass couplings. Significant results from 2003 October 27-29, using the techniques of Brown et al., indicate significant counter-rotation between the two large sunspots in NOAA AR 10486 on October 29, as well as discrete filament mass motions in NOAA AR 10484 on October 27 that appear to be associated with at least one C-class solar flare
Directory of Open Access Journals (Sweden)
Y. Brugnara
2013-07-01
Full Text Available Here we present a study of the 11 yr sunspot cycle's imprint on the Northern Hemisphere atmospheric circulation, using three recently developed gridded upper-air data sets that extend back to the early twentieth century. We find a robust response of the tropospheric late-wintertime circulation to the sunspot cycle, independent from the data set. This response is particularly significant over Europe, although results show that it is not directly related to a North Atlantic Oscillation (NAO modulation; instead, it reveals a significant connection to the more meridional Eurasian pattern (EU. The magnitude of mean seasonal temperature changes over the European land areas locally exceeds 1 K in the lower troposphere over a sunspot cycle. We also analyse surface data to address the question whether the solar signal over Europe is temporally stable for a longer 250 yr period. The results increase our confidence in the existence of an influence of the 11 yr cycle on the European climate, but the signal is much weaker in the first half of the period compared to the second half. The last solar minimum (2005 to 2010, which was not included in our analysis, shows anomalies that are consistent with our statistical results for earlier solar minima.
Yan, X. L.; Wang, J. C.; Pan, G. M.; Kong, D. F.; Xue, Z. K.; Yang, L. H.; Li, Q. L.; Feng, X. S.
2018-03-01
We present a clear case study on the occurrence of two successive X-class flares, including a decade-class flare (X9.3) and two coronal mass ejections (CMEs) triggered by shearing motion and sunspot rotation in active region NOAA 12673 on 2017 September 6. A shearing motion between the main sunspots with opposite polarities began on September 5 and lasted even after the second X-class flare on September 6. Moreover, the main sunspot with negative polarity rotated around its umbral center, and another main sunspot with positive polarity also exhibited a slow rotation. The sunspot with negative polarity at the northwest of the active region also began to rotate counterclockwise before the onset of the first X-class flare, which is related to the formation of the second S-shaped structure. The successive formation and eruption of two S-shaped structures were closely related to the counterclockwise rotation of the three sunspots. The existence of a flux rope is found prior to the onset of two flares by using nonlinear force-free field extrapolation based on the vector magnetograms observed by Solar Dynamics Observatory/Helioseismic and Magnetic Image. The first flux rope corresponds to the first S-shaped structures mentioned above. The second S-shaped structure was formed after the eruption of the first flux rope. These results suggest that a shearing motion and sunspot rotation play an important role in the buildup of the free energy and the formation of flux ropes in the corona that produces solar flares and CMEs.
INTERFERENCE OF THE RUNNING WAVES AT LIGHT BRIDGES OF A SUNSPOT
Energy Technology Data Exchange (ETDEWEB)
Su, J. T.; Priya, T. G.; Yu, S. J.; Zhang, M. [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Ji, K. F. [Kunming University of Science and Technology, Kunming 650093 (China); Banerjee, D. [Indian Institute of Astrophysics, Koramangala Bangalore 560034 (India); Cao, W. D. [Big Bear Solar Observatory, 40386 North Shore Lane, Big Bear City, CA 92314 (United States); Zhao, J. S.; Ji, H. S., E-mail: jt@bao.ac.cn [Purple Mountain Observatory, CAS, Nanjing 210008 (China)
2016-01-01
The observations of chromospheric oscillations of two umbral light bridges (LBs) within a sunspot from NOAA Active Region 12127 are presented. It was found that the running umbral waves with periods of 2.2–2.6 minutes underwent very fast damping before approaching umbral boundaries, while those with higher periods (>2.6 minutes) could propagate outside umbrae. On two sides of each LB adjacent to umbrae, the cross-wavelet spectra displayed that the oscillations on them had a common significant power region with dominant frequencies of 2–6 minutes and phase differences of ∼90°. A counterstream of two running umbral waves in the 2–6 minute frequency range propagated toward the LBs, where they encountered each other and gave rise to constructive or even destructive interference on the LBs. In addition, the velocity and density perturbations on the LBs were found in opposite phases suggesting that the perturbations were caused by the downward propagating waves.
Energy Technology Data Exchange (ETDEWEB)
Kleint, L.; Martínez-Sykora, J. [Bay Area Environmental Research Institute, 625 2nd Street, Ste. 209, Petaluma, CA (United States); Antolin, P. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Tian, H.; Testa, P.; Reeves, K. K.; McKillop, S.; Saar, S.; Golub, L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Judge, P. [High Altitude Observatory/NCAR, P.O. Box 3000, Boulder, CO 80307 (United States); De Pontieu, B.; Wuelser, J. P.; Boerner, P.; Hurlburt, N.; Lemen, J.; Tarbell, T. D.; Title, A. [Lockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover St., Org. ADBS, Bldg. 252, Palo Alto, CA 94304 (United States); Carlsson, M.; Hansteen, V. [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, NO-0315 Oslo (Norway); Jaeggli, S., E-mail: lucia.kleint@fhnw.ch [Department of Physics, Montana State University, Bozeman, P.O. Box 173840, Bozeman, MT 59717 (United States); and others
2014-07-10
Interface Region Imaging Spectrograph data allow us to study the solar transition region (TR) with an unprecedented spatial resolution of 0.''33. On 2013 August 30, we observed bursts of high Doppler shifts suggesting strong supersonic downflows of up to 200 km s{sup –1} and weaker, slightly slower upflows in the spectral lines Mg II h and k, C II 1336, Si IV 1394 Å, and 1403 Å, that are correlated with brightenings in the slitjaw images (SJIs). The bursty behavior lasts throughout the 2 hr observation, with average burst durations of about 20 s. The locations of these short-lived events appear to be the umbral and penumbral footpoints of EUV loops. Fast apparent downflows are observed along these loops in the SJIs and in the Atmospheric Imaging Assembly, suggesting that the loops are thermally unstable. We interpret the observations as cool material falling from coronal heights, and especially coronal rain produced along the thermally unstable loops, which leads to an increase of intensity at the loop footpoints, probably indicating an increase of density and temperature in the TR. The rain speeds are on the higher end of previously reported speeds for this phenomenon, and possibly higher than the free-fall velocity along the loops. On other observing days, similar bright dots are sometimes aligned into ribbons, resembling small flare ribbons. These observations provide a first insight into small-scale heating events in sunspots in the TR.
EVIDENCE FOR A TRANSITION REGION RESPONSE TO PENUMBRAL MICROJETS IN SUNSPOTS
International Nuclear Information System (INIS)
Vissers, G. J. M.; Rouppe van der Voort, L. H. M.; Carlsson, M.
2015-01-01
Penumbral microjets (PMJs) are short-lived, fine-structured, and bright jets that are generally observed in chromospheric imaging of the penumbra of sunspots. Here we investigate their potential transition region signature by combining observations with the Swedish 1-m Solar Telescope in the Ca ii H and Ca ii 8542 Å lines with ultraviolet imaging and spectroscopy obtained with the Interface Region Imaging Spectrograph (IRIS), which includes the C ii 1334/1335 Å, Si iv 1394/1403 Å, and Mg ii h and k 2803/2796 Å lines. We find a clear corresponding signal in the IRIS Mg ii k, C ii, and Si iv slit-jaw images, typically offset spatially from the Ca ii signature in the direction along the jets: from base to top, the PMJs are predominantly visible in Ca ii, Mg ii k, and C ii/Si iv, suggesting progressive heating to transition region temperatures along the jet extent. Hence, these results support the suggestion from earlier studies that PMJs may heat to transition region temperatures
Fan-shaped jets above the light bridge of a sunspot driven by reconnection
Robustini, Carolina; Leenaarts, Jorrit; de la Cruz Rodriguez, Jaime; Rouppe van der Voort, Luc
2016-05-01
We report on a fan-shaped set of high-speed jets above a strongly magnetized light bridge (LB) of a sunspot observed in the Hα line. We study the origin, dynamics, and thermal properties of the jets using high-resolution imaging spectroscopy in Hα from the Swedish 1m Solar Telescope and data from the Solar Dynamics Observatory and Hinode. The Hα jets have lengths of 7-38 Mm, are impulsively accelerated to a speed of ~100 km s-1 close to photospheric footpoints in the LB, and exhibit a constant deceleration consistent with solar effective gravity. They are predominantly launched from one edge of the light bridge, and their footpoints appear bright in the Hα wings. Atmospheric Imaging Assembly data indicates elongated brightenings that are nearly co-spatial with the Hα jets. We interpret them as jets of transition region temperatures. The magnetic field in the light bridge has a strength of 0.8-2 kG and it is nearly horizontal. All jet properties are consistent with magnetic reconnection as the driver. Movies associated to Figs. 1 and 2 are available in electronic form at http://www.aanda.org
A steady-state supersonic downflow in the transition region above a sunspot umbra
Straus, Thomas; Fleck, Bernhard; Andretta, Vincenzo
2015-10-01
We investigate a small-scale (~1.5 Mm along the slit), supersonic downflow of about 90 km s-1 in the transition region above the lightbridged sunspot umbra in AR 11836. The observations were obtained with the Interface Region Spectrograph (IRIS) on 2013 September 2 from 16:40 to 17:59 UT. The downflow shows up as redshifted "satellite" lines of the Si iv and O iv transition region lines and is remarkably steady over the observing period of nearly 80 min. The downflow is not visible in the chromospheric lines, which only show an intensity enhancement at the location of the downflow. The density inferred from the line ratio of the redshifted satellites of the O iv lines (Ne = 1010.6 ± 0.25 cm-3) is only a factor 2 smaller than the one inferred from the main components (Ne = 1010.95 ± 0.20 cm-3). Consequently, this implies a substantial mass flux (~5 × 10-7 g cm-2 s-1), which would evacuate the overlying corona on timescales close to 10 s. We interpret these findings as evidence of a stationary termination shock of a supersonic siphon flow in a cool loop that is rooted in the central umbra of the spot. The movie is available in electronic form at http://www.aanda.org
Energy Technology Data Exchange (ETDEWEB)
Hou, Yijun; Zhang, Jun; Li, Ting; Yang, Shuhong; Li, Xiaohong, E-mail: yijunhou@nao.cas.cn, E-mail: zjun@nao.cas.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)
2017-10-10
Recent high-resolution observations from the Interface Region Imaging Spectrograph reveal bright wall-shaped structures in active regions (ARs), especially above sunspot light bridges. Their most prominent feature is the bright oscillating front in the 1400/1330 Å channel. These structures are named light walls and are often interpreted to be driven by p-mode waves. Above the light bridge of AR 12222 on 2014 December 06, we observed intermittent ejections superimposed on an oscillating light wall in the 1400 Å passband. At the base location of each ejection, the emission enhancement was detected in the Solar Dynamics Observatory 1600 Å channel. Thus, we suggest that in wall bases (light bridges), in addition to the leaked p-mode waves consistently driving the oscillating light wall, magnetic reconnection could happen intermittently at some locations and eject the heated plasma upward. Similarly, in the second event occurring in AR 12371 on 2015 June 16, a jet was simultaneously detected in addition to the light wall with a wave-shaped bright front above the light bridge. At the footpoint of this jet, lasting brightening was observed, implying magnetic reconnection at the base. We propose that in these events, two mechanisms, p-mode waves and magnetic reconnection, simultaneously play roles in the light bridge, and lead to the distinct kinetic features of the light walls and the ejection-like activities, respectively. To illustrate the two mechanisms and their resulting activities above light bridges, in this study we present a cartoon model.
On the structure of a magnetic field and its evolution in the vicinity of sunspots
International Nuclear Information System (INIS)
Gopasyuk, S.I.; Kartashova, L.G.
1981-01-01
The structure of magnetic field and its evolution around single large sunspots has been studied. For this purpose observational data of the longitudinal magnetic field on the photospheric level and hsub(α) filtergrams for 18 active regions have been used. It is shown that there are characteristic directions corresponding to the transition of the spot field without sign change into an extended region of the same polarity and coinciding with extended (100000-300000 km) systems of filamentary feature chains of the fine chromospheric structure in active region. The horizontal magnetic f+eld component of the spot (systems of filamentary feature chains of the fine chromospheric structure) disappears on an extended region of chromospheric surface in the direction, where the satellite field (the field of opposite polarity) appears near its boundary. On the other hand, when satellite field disappears at some direction from the spot the transversal magnetic field appears on the extended surface region of the chromosphere keeping the same direction. One of the possible causes of disappearance of the transversal magnetic field on an extended region in the chromosphere might be the reconnection of magnetic lines of force [ru
Yau, K.
2001-12-01
A prolonged decrease in the Sun's irradiance during the Maunder Minimum has been proposed as a cause of the Little Ice Age ({ca} 1600-1800). Eddy [{Science} {192}, 1976, 1189] made this suggestion after noting that very few sunspots were observed from 1645 to 1715, indicative of a weakened Sun. Pre-telescopic Oriental sunspot records go back over 2200 years. Periods when no sunspots were seen have been documented by, {eg}, Clark [{Astron} {7}, 2/1979, 50]. Abundances of C 14 in tree rings and Be10 in ice cores are also good indicators of past solar activity. These isotopes are produced by cosmic rays high in the atmosphere. When the Sun is less active more of them are made and deposited at ground level. There is thus a strong {negative} correlation between their abundances and sunspot counts. Minima of solar activity in tree rings and a south polar ice core have been collated by, {eg}, Bard [{Earth Planet Sci Lett} {150} 1997, 453]; and show striking correspondence with periods when no sunspots were seen, centered at {ca} 900, 1050, 1500, 1700. Pang and Yau [{Eos} {79}, #45, 1998, F149] investigated the Medieval Minimum at 700, using in addition the frequency of auroral sighting7s, a good indicator of solar activity too [Yau, PhD thesis, 1988]; and found that the progression of minima in solar activity goes back to 700. Auroral frequency, C 14 and Be 10 concentrations are also affected by variations in the geomagnetic field. Deposition changes can also influence C 14 and Be 10 abundances. Sunspot counts are thus the only true indicator of solar activity. The Sun's bolometric variations (-0.3% for the Maunder Minimum) can contribute to climatic changes (\\0.5° C for the Little Ice Age)[{eg}, Lean, {GRL} {22}, 1995, 3195]. For times with no thermometer data, temperature can be estimated from, {eg}, Oxygen 18 isotopic abundance in ice cores, which in turn depends on the temperature of the ocean water it evaporated from. We have linked the Medieval Minimum to the cold
A SOLAR FLARE DISTURBING A LIGHT WALL ABOVE A SUNSPOT LIGHT BRIDGE
Energy Technology Data Exchange (ETDEWEB)
Hou, Yijun; Zhang, Jun; Li, Ting; Yang, Shuhong; Li, Leping; Li, Xiaohong, E-mail: yijunhou@nao.cas.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)
2016-10-01
With the high-resolution data from the Interface Region Imaging Spectrograph , we detect a light wall above a sunspot light bridge in the NOAA active region (AR) 12403. In the 1330 Å slit-jaw images, the light wall is brighter than the ambient areas while the wall top and base are much brighter than the wall body, and it keeps oscillating above the light bridge. A C8.0 flare caused by a filament activation occurred in this AR with the peak at 02:52 UT on 2015 August 28, and the flare’s one ribbon overlapped the light bridge, which was the observational base of the light wall. Consequently, the oscillation of the light wall was evidently disturbed. The mean projective oscillation amplitude of the light wall increased from 0.5 to 1.6 Mm before the flare and decreased to 0.6 Mm after the flare. We suggest that the light wall shares a group of magnetic field lines with the flare loops, which undergo a magnetic reconnection process, and they constitute a coupled system. When the magnetic field lines are pushed upward at the pre-flare stage, the light wall turns to the vertical direction, resulting in the increase of the light wall’s projective oscillation amplitude. After the magnetic reconnection takes place, a group of new field lines with smaller scales are formed underneath the reconnection site, and the light wall inclines. Thus, the projective amplitude notably decrease at the post-flare stage.
A SOLAR FLARE DISTURBING A LIGHT WALL ABOVE A SUNSPOT LIGHT BRIDGE
International Nuclear Information System (INIS)
Hou, Yijun; Zhang, Jun; Li, Ting; Yang, Shuhong; Li, Leping; Li, Xiaohong
2016-01-01
With the high-resolution data from the Interface Region Imaging Spectrograph , we detect a light wall above a sunspot light bridge in the NOAA active region (AR) 12403. In the 1330 Å slit-jaw images, the light wall is brighter than the ambient areas while the wall top and base are much brighter than the wall body, and it keeps oscillating above the light bridge. A C8.0 flare caused by a filament activation occurred in this AR with the peak at 02:52 UT on 2015 August 28, and the flare’s one ribbon overlapped the light bridge, which was the observational base of the light wall. Consequently, the oscillation of the light wall was evidently disturbed. The mean projective oscillation amplitude of the light wall increased from 0.5 to 1.6 Mm before the flare and decreased to 0.6 Mm after the flare. We suggest that the light wall shares a group of magnetic field lines with the flare loops, which undergo a magnetic reconnection process, and they constitute a coupled system. When the magnetic field lines are pushed upward at the pre-flare stage, the light wall turns to the vertical direction, resulting in the increase of the light wall’s projective oscillation amplitude. After the magnetic reconnection takes place, a group of new field lines with smaller scales are formed underneath the reconnection site, and the light wall inclines. Thus, the projective amplitude notably decrease at the post-flare stage.
Extending Counter-streaming Motion from an Active Region Filament to a Sunspot Light Bridge
Wang, Haimin; Liu, Rui; Li, Qin; Liu, Chang; Deng, Na; Xu, Yan; Jing, Ju; Wang, Yuming; Cao, Wenda
2018-01-01
We analyze high-resolution observations from the 1.6 m telescope at Big Bear Solar Observatory that cover an active region filament. Counter-streaming motions are clearly observed in the filament. The northern end of the counter-streaming motions extends to a light bridge, forming a spectacular circulation pattern around a sunspot, with clockwise motion in the blue wing and counterclockwise motion in the red wing, as observed in the Hα off-bands. The apparent speed of the flow is around 10–60 km s‑1 in the filament, decreasing to 5–20 km s‑1 in the light bridge. The most intriguing results are the magnetic structure and the counter-streaming motions in the light bridge. Similar to those in the filament, the magnetic fields show a dominant transverse component in the light bridge. However, the filament is located between opposed magnetic polarities, while the light bridge is between strong fields of the same polarity. We analyze the power of oscillations with the image sequences of constructed Dopplergrams, and find that the filament’s counter-streaming motion is due to physical mass motion along fibrils, while the light bridge’s counter-streaming motion is due to oscillation in the direction along the line-of-sight. The oscillation power peaks around 4 minutes. However, the section of the light bridge next to the filament also contains a component of the extension of the filament in combination with the oscillation, indicating that some strands of the filament are extended to and rooted in that part of the light bridge.
International Nuclear Information System (INIS)
Pagaran, J.; Weber, M.; Burrows, J.
2009-01-01
The change of spectral decomposition of the total radiative output on various timescales of solar magnetic activity is of large interest to terrestrial and solar-stellar atmosphere studies. Starting in 2002, SCIAMACHY was the first satellite instrument to observe daily solar spectral irradiance (SSI) continuously from 230 nm (UV) to 1750 nm (near-infrared; near-IR). In order to address the question of how much UV, visible (vis), and IR spectral regions change on 27 day and 11 year timescales, we parameterize short-term SSI variations in terms of faculae brightening (Mg II index) and sunspot darkening (photometric sunspot index) proxies. Although spectral variations above 300 nm are below 1% and, therefore, well below the accuracy of absolute radiometric calibration, relative accuracy for short-term changes is shown to be in the per mill range. This enables us to derive short-term spectral irradiance variations from the UV to the near-IR. During Halloween solar storm in 2003 with a record high sunspot area, we observe a reduction of 0.3% in the near-IR to 0.5% in the vis and near-UV. This is consistent with a 0.4% reduction in total solar irradiance (TSI). Over an entire 11 year solar cycle, SSI variability covering simultaneously the UV, vis, and IR spectral regions have not been directly observed so far. Using variations of solar proxies over solar cycle 23, solar cycle spectral variations have been estimated using scaling factors that best matched short-term variations of SCIAMACHY. In the 300-400 nm region, which strongly contributes to TSI solar cycle change, a contribution of 34% is derived from SCIAMACHY observations, which is lower than the reported values from SUSIM satellite data and the empirical SATIRE model. The total UV contribution (below 400 nm) to TSI solar cycle variations is estimated to be 55%.
Deming, Drake; Boyle, Robert J.; Jennings, Donald E.; Wiedemann, Gunter
1988-01-01
The use of the extremely Zeeman-sensitive IR emission line Mg I, at 12.32 microns, to study solar magnetic fields. Time series observations of the line in the quiet sun were obtained in order to determine the response time of the line to the five-minute oscillations. Based upon the velocity amplitude and average period measured in the line, it is concluded that it is formed in the temperature minimum region. The magnetic structure of sunspots is investigated by stepping a small field of view in linear 'slices' through the spots. The region of penumbral line formation does not show the Evershed outflow common in photospheric lines. The line intensity is a factor of two greater in sunspot penumbrae than in the photosphere, and at the limb the penumbral emission begins to depart from optical thinness, the line source function increasing with height. For a spot near disk center, the radial decrease in absolute magnetic field strength is steeper than the generally accepted dependence.
Determination of the Alfvén Speed and Plasma-beta Using the Seismology of Sunspot Umbra
Energy Technology Data Exchange (ETDEWEB)
Cho, I.-H.; Moon, Y.-J.; Nakariakov, V. M.; Park, J.; Choi, S. [Department of Astronomy and Space Science, Kyung Hee University, Yongin 446-701 (Korea, Republic of); Cho, K.-S.; Bong, S.-C.; Baek, J.-H.; Kim, Y.-H.; Lee, J., E-mail: ihjo@khu.ac.kr [Space Science Division, Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of)
2017-03-01
For 478 centrally located sunspots observed in the optical continuum with Solar Dynamics Observatory /Helioseismic Magnetic Imager, we perform seismological diagnostics of the physical parameters of umbral photospheres. The new technique is based on the theory of slow magnetoacoustic waves in a non-isothermally stratified photosphere with a uniform vertical magnetic field. We construct a map of the weighted frequency of three-minute oscillations inside the umbra and use it for the estimation of the Alfvén speed, plasma-beta, and mass density within the umbra. We find the umbral mean Alfvén speed ranges between 10.5 and 7.5 km s{sup −1} and is negatively correlated with magnetic field strength. The umbral mean plasma-beta is found to range approximately between 0.65 and 1.15 and does not vary significantly from pores to mature sunspots. The mean density ranges between (1–6) × 10{sup −4} kg m{sup −3} and shows a strong positive correlation with magnetic field strength.
Temporal and Periodic Variations of Sunspot Counts in Flaring and Non-Flaring Active Regions
Kilcik, A.; Yurchyshyn, V.; Donmez, B.; Obridko, V. N.; Ozguc, A.; Rozelot, J. P.
2018-04-01
We analyzed temporal and periodic variations of sunspot counts (SSCs) in flaring (C-, M-, or X-class flares), and non-flaring active regions (ARs) for nearly three solar cycles (1986 through 2016). Our main findings are as follows: i) temporal variations of monthly means of the daily total SSCs in flaring and non-flaring ARs behave differently during a solar cycle and the behavior varies from one cycle to another; during Solar Cycle 23 temporal SSC profiles of non-flaring ARs are wider than those of flaring ARs, while they are almost the same during Solar Cycle 22 and the current Cycle 24. The SSC profiles show a multi-peak structure and the second peak of flaring ARs dominates the current Cycle 24, while the difference between peaks is less pronounced during Solar Cycles 22 and 23. The first and second SSC peaks of non-flaring ARs have comparable magnitude in the current solar cycle, while the first peak is nearly absent in the case of the flaring ARs of the same cycle. ii) Periodic variations observed in the SSCs profiles of flaring and non-flaring ARs derived from the multi-taper method (MTM) spectrum and wavelet scalograms are quite different as well, and they vary from one solar cycle to another. The largest detected period in flaring ARs is 113± 1.6 days while we detected much longer periodicities (327± 13, 312 ± 11, and 256± 8 days) in the non-flaring AR profiles. No meaningful periodicities were detected in the MTM spectrum of flaring ARs exceeding 55± 0.7 days during Solar Cycles 22 and 24, while a 113± 1.3 days period was detected in flaring ARs of Solar Cycle 23. For the non-flaring ARs the largest detected period was only 31± 0.2 days for Cycle 22 and 72± 1.3 days for the current Cycle 24, while the largest measured period was 327± 13 days during Solar Cycle 23.
76 FR 18195 - Privacy Act of 1974; System of Records
2011-04-01
... ``Electronic storage media.'' Retrievability: Delete entry and replace with ``By Social Security Number (SSN... ``Full name; other names used; Social Security Number (SSN); truncated SSN; driver's license number... home address; previous addresses; family information (mother, father, siblings; spouse, children, and...
Czech Academy of Sciences Publication Activity Database
Siu-Tapia, A.; Lagg, A.; Solanki, S.K.; van Noort, M.; Jurčák, Jan
2017-01-01
Roč. 607, November (2017), A36/1-A36/17 E-ISSN 1432-0746 Institutional support: RVO:67985815 Keywords : sunspots * photosphere * magnetic fields Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 5.014, year: 2016
Energy Technology Data Exchange (ETDEWEB)
Wang, Ya; Su, Yingna; Hong, Zhenxiang; Ji, Haisheng [Key Laboratory of DMSA, Purple Mountain Observatory, CAS, Nanjing, 210008 (China); Zeng, Zhicheng; Goode, Philip R.; Cao, Wenda [Big Bear Solar Observatory, 40386 North Shore Lane, Big Bear City, CA 92314 (United States); Ji, Kaifan [Yunnan Astronomical Observatories, Kunming 650011 (China)
2016-12-20
In this paper, we report our first-step results of high resolution He i 10830 Å narrow-band imaging (bandpass: 0.5 Å) of an M1.8 class two-ribbon flare on 2012 July 5. The flare was observed with the 1.6 m aperture New Solar Telescope at Big Bear Solar Observatory. For this unique data set, sunspot dynamics during flaring were analyzed for the first time. By directly imaging the upper chromosphere, running penumbral waves are clearly seen as an outward extension of umbral flashes; both take the form of absorption in the 10830 Å narrow-band images. From a space–time image made of a slit cutting across a flare ribbon and the sunspot, we find that the dark lanes for umbral flashes and penumbral waves are obviously broadened after the flare. The most prominent feature is the sudden appearance of an oscillating absorption strip inside the ribbon when it sweeps into the sunspot’s penumbral and umbral regions. During each oscillation, outwardly propagating umbral flashes and subsequent penumbral waves rush out into the inwardly sweeping ribbon, followed by a return of the absorption strip with similar speed. We tentatively explain the phenomena as the result of a sudden increase in the density of ortho-helium atoms in the area of the sunspot being excited by the flare’s extreme ultraviolet illumination. This explanation is based on the observation that 10830 Å absorption around the sunspot area gets enhanced during the flare. Nevertheless, questions are still open and we need further well-devised observations to investigate the behavior of sunspot dynamics during flares.
Directory of Open Access Journals (Sweden)
G. J. Wang
2010-06-01
Full Text Available The temporal variations of the low latitude nighttime spread F (SF observed by DPS-4 digisonde at low latitude Hainan station (geog. 19.5° N, 109.1° E, dip lat. 9.5° N during the declining solar cycle 23 from March 2002 to February 2008 are studied. The spread F measured by the digisonde were classified into four types, i.e., frequency SF (FSF, range SF (RSF, mixed SF (MSF, and strong range SF (SSF. The statistical results show that MSF and SSF are the outstanding irregularities in Hainan, MSF mainly occurs during summer and low solar activity years, whereas SSF mainly occurs during equinoxes and high solar activity years. The SSF has a diurnal peak before midnight and usually appears during 20:00–02:00 LT, whereas MSF peaks nearly or after midnight and occurs during 22:00–06:00 LT. The time of maximum occurrence of SSF is later in summer than in equinoxes and this time delay can be caused by the later reversal time of the E×B drift in summer. The SunSpot Number (SSN dependence of each type SF is different during different season. The FSF is independent of SSN during each season; RSF with SSN is positive relation during equinoxes and summer and is no relationship during the winter; MSF is significant dependence on SSN during the summer and winter, and does not relate to SSN during the equinoxes; SSF is clearly increasing with SSN during equinoxes and summer, while it is independent of SSN during the winter. The occurrence numbers of each type SF and total SF have the same trend, i.e., increasing as Kp increases from 0 to 1, and then decreasing as increasing Kp. The correlation with Kp is negative for RSF, MSF, SSF and total SF, but is vague for the FSF.
Space Surveillance Network (SSN) Optical Augmentation (SOA)
1999-04-01
physical characteristics, and the geocentric and topocentric positions of each satellite in the deep space object catalog. The SKYMAP propagator...maintains the geocentric and topocentric positions and recomputes the position of each object several times a minute. For each scheduling...AINTENANCE Mission Personnel ( Staffing ) Officers 0.0 0.0 0.0 0.0 $90K/person (0) Enlisted 0.0 0.0 0.0 0.0 $45K/person (0) Contractor 20.0
Bennett, Ruth, Ed.; And Others
An introduction to the Hupa number system is provided in this workbook, one in a series of numerous materials developed to promote the use of the Hupa language. The book is written in English with Hupa terms used only for the names of numbers. The opening pages present the numbers from 1-10, giving the numeral, the Hupa word, the English word, and…
Indian Academy of Sciences (India)
Admin
Triangular number, figurate num- ber, rangoli, Brahmagupta–Pell equation, Jacobi triple product identity. Figure 1. The first four triangular numbers. Left: Anuradha S Garge completed her PhD from. Pune University in 2008 under the supervision of Prof. S A Katre. Her research interests include K-theory and number theory.
Directory of Open Access Journals (Sweden)
Schwarzweller Christoph
2015-02-01
Full Text Available In this article we introduce Proth numbers and prove two theorems on such numbers being prime [3]. We also give revised versions of Pocklington’s theorem and of the Legendre symbol. Finally, we prove Pepin’s theorem and that the fifth Fermat number is not prime.
Mendonça, J. Ricardo G.
2012-01-01
We define a new class of numbers based on the first occurrence of certain patterns of zeros and ones in the expansion of irracional numbers in a given basis and call them Sagan numbers, since they were first mentioned, in a special case, by the North-american astronomer Carl E. Sagan in his science-fiction novel "Contact." Sagan numbers hold connections with a wealth of mathematical ideas. We describe some properties of the newly defined numbers and indicate directions for further amusement.
Petersen, T Kyle
2015-01-01
This text presents the Eulerian numbers in the context of modern enumerative, algebraic, and geometric combinatorics. The book first studies Eulerian numbers from a purely combinatorial point of view, then embarks on a tour of how these numbers arise in the study of hyperplane arrangements, polytopes, and simplicial complexes. Some topics include a thorough discussion of gamma-nonnegativity and real-rootedness for Eulerian polynomials, as well as the weak order and the shard intersection order of the symmetric group. The book also includes a parallel story of Catalan combinatorics, wherein the Eulerian numbers are replaced with Narayana numbers. Again there is a progression from combinatorics to geometry, including discussion of the associahedron and the lattice of noncrossing partitions. The final chapters discuss how both the Eulerian and Narayana numbers have analogues in any finite Coxeter group, with many of the same enumerative and geometric properties. There are four supplemental chapters throughout, ...
Indian Academy of Sciences (India)
Transfinite Numbers. What is Infinity? S M Srivastava. In a series of revolutionary articles written during the last quarter of the nineteenth century, the great Ger- man mathematician Georg Cantor removed the age-old mistrust of infinity and created an exceptionally beau- tiful and useful theory of transfinite numbers. This is.
International Nuclear Information System (INIS)
Lites, B.W.; Skumanich, A.; Rees, D.E.; Murphy, G.A.; Carlsson, M.; Sydney Univ., Australia; Oslo Universitetet, Norway)
1987-01-01
Observed Stokes profiles of Mg I 4571 A are analyzed as a diagnostic of the magnetic field and thermal structure at the temperature minimum of sunspot umbrae. Multilevel non-LTE transfer calculations of the Mg I-II-III excitation and ionization balance in model umbral atmospheres show: (1) Mg I to be far less ionized in sunspot umbrae than in the quiet sun, leading to greatly enhanced opacity in 4571 A, and (2) LTE excitation of 4571 A. Existing umbral models predict emission cores of the Stokes I profile due to the chromospheric temperature rise. This feature is not present in observed umbral profiles. Moreover, such an emission reversal causes similar anomalous features in the Stokes Q, U, V profiles, which are also not observed. Umbral atmospheres with extended temperature minima are suggested. Implications for chromospheric heating mechanisms and the utility of this line for solar vector magnetic field measurements are discussed. 35 references
Ji, Caleb; Khovanova, Tanya; Park, Robin; Song, Angela
2015-01-01
In this paper, we consider a game played on a rectangular $m \\times n$ gridded chocolate bar. Each move, a player breaks the bar along a grid line. Each move after that consists of taking any piece of chocolate and breaking it again along existing grid lines, until just $mn$ individual squares remain. This paper enumerates the number of ways to break an $m \\times n$ bar, which we call chocolate numbers, and introduces four new sequences related to these numbers. Using various techniques, we p...
Andrews, George E
1994-01-01
Although mathematics majors are usually conversant with number theory by the time they have completed a course in abstract algebra, other undergraduates, especially those in education and the liberal arts, often need a more basic introduction to the topic.In this book the author solves the problem of maintaining the interest of students at both levels by offering a combinatorial approach to elementary number theory. In studying number theory from such a perspective, mathematics majors are spared repetition and provided with new insights, while other students benefit from the consequent simpl
International Nuclear Information System (INIS)
Tiwari, Sanjiv K.; Moore, Ronald L.; Winebarger, Amy R.; Alpert, Shane E.
2016-01-01
Penumbral microjets (PJs) are transient narrow bright features in the chromosphere of sunspot penumbrae, first characterized by Katsukawa et al. using the Ca ii H-line filter on Hinode's Solar Optical Telescope (SOT). It was proposed that the PJs form as a result of reconnection between two magnetic components of penumbrae (spines and interspines), and that they could contribute to the transition region (TR) and coronal heating above sunspot penumbrae. We propose a modified picture of formation of PJs based on recent results on the internal structure of sunspot penumbral filaments. Using data of a sunspot from Hinode/SOT, High Resolution Coronal Imager, and different passbands of the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory, we examine whether PJs have signatures in the TR and corona. We find hardly any discernible signature of normal PJs in any AIA passbands, except for a few of them showing up in the 1600 Å images. However, we discovered exceptionally stronger jets with similar lifetimes but bigger sizes (up to 600 km wide) occurring repeatedly in a few locations in the penumbra, where evidence of patches of opposite-polarity fields in the tails of some penumbral filaments is seen in Stokes-V images. These tail PJs do display signatures in the TR. Whether they have any coronal-temperature plasma is unclear. We infer that none of the PJs, including the tail PJs, directly heat the corona in active regions significantly, but any penumbral jet might drive some coronal heating indirectly via the generation of Alfvén waves and/or braiding of the coronal field
Barnes, John
2016-01-01
In this intriguing book, John Barnes takes us on a journey through aspects of numbers much as he took us on a geometrical journey in Gems of Geometry. Similarly originating from a series of lectures for adult students at Reading and Oxford University, this book touches a variety of amusing and fascinating topics regarding numbers and their uses both ancient and modern. The author intrigues and challenges his audience with both fundamental number topics such as prime numbers and cryptography, and themes of daily needs and pleasures such as counting one's assets, keeping track of time, and enjoying music. Puzzles and exercises at the end of each lecture offer additional inspiration, and numerous illustrations accompany the reader. Furthermore, a number of appendices provides in-depth insights into diverse topics such as Pascal’s triangle, the Rubik cube, Mersenne’s curious keyboards, and many others. A theme running through is the thought of what is our favourite number. Written in an engaging and witty sty...
Number names and number understanding
DEFF Research Database (Denmark)
Ejersbo, Lisser Rye; Misfeldt, Morten
2014-01-01
This paper concerns the results from the first year of a three-year research project involving the relationship between Danish number names and their corresponding digits in the canonical base 10 system. The project aims to develop a system to help the students’ understanding of the base 10 syste...... the Danish number names are more complicated than in other languages. Keywords: A research project in grade 0 and 1th in a Danish school, Base-10 system, two-digit number names, semiotic, cognitive perspectives....
Directory of Open Access Journals (Sweden)
Theodore M. Porter
2012-12-01
Full Text Available The struggle over cure rate measures in nineteenth-century asylums provides an exemplary instance of how, when used for official assessments of institutions, these numbers become sites of contestation. The evasion of goals and corruption of measures tends to make these numbers “funny” in the sense of becoming dis-honest, while the mismatch between boring, technical appearances and cunning backstage manipulations supplies dark humor. The dangers are evident in recent efforts to decentralize the functions of governments and corporations using incen-tives based on quantified targets.
Murty, M Ram
2014-01-01
This book provides an introduction to the topic of transcendental numbers for upper-level undergraduate and graduate students. The text is constructed to support a full course on the subject, including descriptions of both relevant theorems and their applications. While the first part of the book focuses on introducing key concepts, the second part presents more complex material, including applications of Baker’s theorem, Schanuel’s conjecture, and Schneider’s theorem. These later chapters may be of interest to researchers interested in examining the relationship between transcendence and L-functions. Readers of this text should possess basic knowledge of complex analysis and elementary algebraic number theory.
Indian Academy of Sciences (India)
this is a characteristic difference between finite and infinite sets and created an immensely useful branch of mathematics based on this idea which had a great impact on the whole of mathe- matics. For example, the question of what is a number (finite or infinite) is almost a philosophical one. However Cantor's work turned it ...
Skumanich, A.; Lites, B. W.
1985-01-01
The least square fitting of Stokes observations of sunspots using a Milne-Eddington-Unno model appears to lead, in many circumstances, to various inconsistencies such as anomalously large doppler widths and, hence, small magnetic fields which are significantly below those inferred solely from the Zeeman splitting in the intensity profile. It is found that the introduction of additional physics into the model such as the inclusion of damping wings and magneto-optic birefrigence significantly improves the fit to Stokes parameters. Model fits excluding the intensity profile, i.e., of both magnitude as well as spectral shape of the polarization parameters alone, suggest that parasitic light in the intensity profile may also be a source of inconsistencies. The consequences of the physical changes on the vector properties of the field derived from the Fe I lambda 6173 line for the 17 November 1975 spot as well as on the thermodynamic state are discussed. A Doppler width delta lambda (D) - 25mA is bound to be consistent with a low spot temperature and microturbulence, and a damping constant of a = 0.2.
Energy Technology Data Exchange (ETDEWEB)
Samanta, Tanmoy; Banerjee, Dipankar [Indian Institute of Astrophysics, Koramangala, Bangalore 560034 (India); Tian, Hui [School of Earth and Space Sciences, Peking University (China); Schanche, Nicole, E-mail: tsamanta@iiap.res.in, E-mail: huitian@pku.edu.cn, E-mail: dipu@iiap.res.in, E-mail: ns81@st-andrews.ac.uk [University of St. Andrews, St. Andrews (United Kingdom)
2017-02-01
Recent high-resolution observations have revealed that subarcsecond bright dots (BDs) with sub-minute lifetimes appear ubiquitously in the transition region (TR) above sunspot penumbra. The presence of penumbral micro-jets (PMJs) in the chromosphere was previously reported. It was proposed that both the PMJs and BDs are formed due to a magnetic reconnection process and may play an important role in heating of the penumbra. Using simultaneous observations of the chromosphere from the Solar Optical Telescope (SOT) on board Hinode and observations of the TR from the Interface Region Imaging Spectrograph , we study the dynamics of BDs and their relation to PMJs. We find two types of BDs, one that is related to PMJs, and another that does not show any visible dynamics in the SOT Ca ii H images. From a statistical analysis we show that these two types have different properties. The BDs that are related to PMJs always appear at the top of the PMJs, the vast majority of which show inward motion and originate before the generation of the PMJs. These results may indicate that the reconnection occurs at the lower coronal/TR height and initiates PMJs at the chromosphere. This formation mechanism is in contrast with the formation of PMJs by reconnection in the (upper) photosphere between differently inclined fields.
Munoz-Jaramillo, Andres
2017-08-01
Data products in heliospheric physics are very often provided without clear estimates of uncertainty. From helioseismology in the solar interior, all the way to in situ solar wind measurements beyond 1AU, uncertainty estimates are typically hard for users to find (buried inside long documents that are separate from the data products), or simply non-existent.There are two main reasons why uncertainty measurements are hard to find:1. Understanding instrumental systematic errors is given a much higher priority inside instrumental teams.2. The desire to perfectly understand all sources of uncertainty postpones indefinitely the actual quantification of uncertainty in our measurements.Using the cross calibration of 200 years of sunspot area measurements as a case study, in this presentation we will discuss the negative impact that inadequate measurements of uncertainty have on users, through the appearance of toxic and unnecessary controversies, and data providers, through the creation of unrealistic expectations regarding the information that can be extracted from their data. We will discuss how empirical estimates of uncertainty represent a very good alternative to not providing any estimates at all, and finalize by discussing the bare essentials that should become our standard practice for future instruments and surveys.
Energy Technology Data Exchange (ETDEWEB)
Yang, Ya-Hui [Institute of Space Science, National Central University, Jhongli 32001, Taiwan (China); Hsieh, Min-Shiu [Geophysical Institute, University of Alaska Fairbanks, AK 99775-7320 (United States); Yu, Hsiu-Shan [Center for Astrophysics and Space Sciences, University of California San Diego, CA 92093 (United States); Chen, P. F., E-mail: yhyang@jupiter.ss.ncu.edu.tw, E-mail: mhsieh2@alaska.edu, E-mail: hsyu@ucsd.edu, E-mail: chenpf@nju.edu.cn [School of Astronomy and Space Science, Nanjing University, Nanjing 210023 (China)
2017-01-10
It is often believed that intense flares preferentially originate from the large-size active regions (ARs) with strong magnetic fields and complex magnetic configurations. This work investigates the dependence of flare activity on the AR properties and clarifies the influence of AR magnetic parameters on the flare productivity, based on two data sets of daily sunspot and flare information as well as the GOES soft X-ray measurements and HMI vector magnetograms. By considering the evolution of magnetic complexity, we find that flare behaviors are quite different in the short- and long-lived complex ARs and the ARs with more complex magnetic configurations are likely to host more impulsive and intense flares. Furthermore, we investigate several magnetic quantities and perform the two-sample Kolmogorov–Smirnov test to examine the similarity/difference between two populations in different types of ARs. Our results demonstrate that the total source field strength on the photosphere has a good correlation with the flare activity in complex ARs. It is noted that intense flares tend to occur at the regions of strong source field in combination with an intermediate field-weighted shear angle. This result implies that the magnetic free energy provided by a complex AR could be high enough to trigger a flare eruption even with a moderate magnetic shear on the photosphere. We thus suggest that the magnetic free energy represented by the source field rather than the photospheric magnetic complexity is a better quantity to characterize the flare productivity of an AR, especially for the occurrence of intense flares.
Sakurai, Takashi; Goossens, Marcel; Hollweg, Joseph V.
1991-01-01
The present method of addressing the resonance problems that emerge in such MHD phenomena as the resonant absorption of waves at the Alfven resonance point avoids solving the fourth-order differential equation of dissipative MHD by recourse to connection formulae across the dissipation layer. In the second part of this investigation, the absorption of solar 5-min oscillations by sunspots is interpreted as the resonant absorption of sounds by a magnetic cylinder. The absorption coefficient is interpreted (1) analytically, under certain simplifying assumptions, and numerically, under more general conditions. The observed absorption coefficient magnitude is explained over suitable parameter ranges.
Maitra, Animesh; Saha, Upal; Adhikari, Arpita
2014-12-01
A long-term observation over three solar cycles indicates a perceptible influence of solar activity on rainfall and associated parameters in the Indian region. This paper attempts to reveal the solar control on the cloud liquid water content (LWC) and integrated water vapor (IWV) along with Indian Summer Monsoon (ISM) rainfall during the period of 1977-2012 over nine different Indian stations. Cloud LWC and IWV are positively correlated with each other. An anti-correlation is observed between the Sunspot Number (SSN) and ISM rainfall for a majority of the stations and a poor positive correlation obtained for other locations. Cloud LWC and IWV possess positive correlations with Galactic Cosmic Rays (GCR) and SSN respectively for most of the stations. The wavelet analyses of SSN, ISM rainfall, cloud LWC and IWV have been performed to investigate the periodic characteristics of climatic parameters and also to indicate the varying relationship of solar activity with ISM rainfall, cloud LWC and IWV. SSN, ISM rainfall and IWV are found to have a peak at around 10.3 years whereas a dip is observed at that particular period for cloud LWC.
Geomagnetic storms and their sources on the sun:the rising phase of the sunspot cycle
Directory of Open Access Journals (Sweden)
Takao Saito
2013-03-01
Full Text Available Solar phenomena, including solar flares and coronal holes, are considered in the context of a NEWS coordinate system, obtained by application of the heliographic and heliomagnetic coordinate systems to the solar latitude and longitude, respectively. By expressing the occurrence of solar phenomena in terms of NEWS coordinates, we discovered that solar flares tend to converge in the NE and SW quadrants of the solar disk, where they act as sources of sporadic storms. Meanwhile, coronal holes converge to solar longitudes of 0° and 180°, where they are sources of recurrent storms. Because of their concentration in the NE- and SW-quadrants, this correlation is referred to as the 'NEWS law'. The neutral line of the source surface shows a beautiful single wave in its declining phase, while it tends to show a double wave in the rising phase. Solar rotation numbers 2118 to 2119, where the neutral line exhibited two complicated asymmetric waves in both the N-S and S-W directions, were chosen for detailed analysis. Notwithstanding such an extremely complicated case, the NEWS law is satisfied when the double wave is separated into its two single-wave parts.
DEFF Research Database (Denmark)
Busato, Francesco; Marchetti, Enrico
This paper explores the ability of a class of one-sector,multi-input models to generate indeterminate equilibrium paths, andendogenous cycles, without relying on factors' hoarding. The modelpresents a novel theoretical economic mechanism that supportssunspot-driven expansions without requiring...
International Nuclear Information System (INIS)
Ambastha, A.; Bhatnagar, A.
1988-01-01
Solar Active Region NOAA 2372 was observed extensively by the Solar Maximum Mission (SMM) satellite and several ground-based observatories during 1980 April 4-13 in the Solar Maximum Year. After its birth around April 4, it underwent a rapid growth and produced a reported 84 flares in the course of its disc passage. In this paper, photospheric and chromospheric observations of this active region have been studied together with Marshall Space Flight Center magnetograms and X-ray data from HXIS aboard the SMM satellite. In particular, the relationship of the flare-productivity with sunspot proper motions and emergence of new regions of magnetic flux in the active region from its birth to its disappearance at the W-limb has been discussed. (author). 7 figures, 2 tables, 29 refs
International Nuclear Information System (INIS)
Ivanov, K.G.; Evdokimova, L.V.; Mikerina, N.V.
1982-01-01
Occurrences of interplanetary shock waves near the Earth after the powerful isolated flares of 1957-1978 are investigated. The close connection between the occurrences of shock waves and the positions of magnetic axes of bipolar groups of sunspots is suggested on the basis of a statistical study. The shock waves are principally observed when the Earth finds itself near the planes that are projected through the flares in parallel to the appropriate magnetic axes of the nearest bipolar groups. This regularity is interpreted as an indirect argument for a three-dimensional geometry for the interplanetary shock waves which, when projected on these flattened to corresponding planes, are traces of large circular arcs. The typical angular scales of isolated interplanetary shock waves are estimated as approx. equal to 150 0 and approx. equal to 30 0 parallel and perpendicular, respectively, to the magnetic axes correspondingly. (orig.)
Directory of Open Access Journals (Sweden)
Fröhlich Claus
2016-01-01
Full Text Available Aims. The existing records of total solar irradiance (TSI since 1978 differ not only in absolute values, but also show different trends. For the study of TSI variability these records need to be combined and three composites have been devised; however, the results depend on the choice of the records and the way they are combined. A new composite should be based on all existing records with an individual qualification. It is proposed to use a time-dependent uncertainty for weighting of the individual records. Methods. The determination of the time-dependent deviation of the TSI records is performed by comparison with the square root of the sunspot number (SSN. However, this correlation is only valid for timescales of the order of a year or more because TSI and SSN react quite differently to solar activity changes on shorter timescales. Hence the results concern only periods longer than the one-year-low-pass filter used in the analysis. Results. Besides the main objective to determine an investigator-independent uncertainty, the comparison of TSI with √SSN turns out to be a powerful tool for the study of the TSI long-term changes. The correlation of √SSN with TSI replicates very well the TSI minima, especially the very low value of the recent minimum. The results of the uncertainty determination confirm not only the need for adequate corrections for degradation, but also show that a rather detailed analysis is needed. The daily average of all TSI values available on that day, weighted with the correspondingly determined uncertainty, is used to construct a “new” composite, which, overall, compares well with the Physikalisch-Meteorologisches Observatorium Davos (PMOD composite. Finally, the TSI − √SSN comparison proves to be an important diagnostic tool not only for estimating uncertainties of observations, but also for a better understanding of the long-term variability of TSI.
Number Sense on the Number Line
Woods, Dawn Marie; Ketterlin Geller, Leanne; Basaraba, Deni
2018-01-01
A strong foundation in early number concepts is critical for students' future success in mathematics. Research suggests that visual representations, like a number line, support students' development of number sense by helping them create a mental representation of the order and magnitude of numbers. In addition, explicitly sequencing instruction…
Richardson, Thomas M.
2014-01-01
We introduce the super Patalan numbers, a generalization of the super Catalan numbers in the sense of Gessel, and prove a number of properties analagous to those of the super Catalan numbers. The super Patalan numbers generalize the super Catalan numbers similarly to how the Patalan numbers generalize the Catalan numbers.
77 FR 21755 - Privacy Act of 1974; System of Records
2012-04-11
... individual's full name, Social Security Number (SSN), their company's name, sales number, and Bidder..., Fort Belvoir, VA 22060-6221. Inquiry should contain the subject individual's full name, Social Security Number (SSN), their company's name, [[Page 21756
National Research Council Canada - National Science Library
Opria, George R; Maraska, Donald G
2007-01-01
...) as a primary personal identifier. Originally intended for the very limited purpose of tracking social security benefits, the value of the SSN as a unique identifier was quickly recognized, and its use rapidly grew...
75 FR 28242 - Privacy Act of 1974; System of Records
2010-05-20
..., position title, position description number, last 4 or 5 numbers of the Social Security Number (SSN...; last 4 or 5 numbers of the Social Security Number (SSN); approximate date of record activity and... of the Social Security Number (SSN); approximate date of record; activity and position title...
Directory of Open Access Journals (Sweden)
A. de Paor
2001-01-01
Full Text Available A new viewpoint on the generation and maintenance of the Earth's magnetic field is put forward, which integrates self-exciting dynamo theory with the possibility of energy coupling along orthogonal axes provided by the Hall effect. A nonlinear third-order system is derived, with a fourth equation serving as an observer of unspecified geophysical processes which could result in field reversal. Lyapunov analysis proves that chaos is not intrinsic to this system. Relative constancy of one of the variables produces pseudo equilibrium in a second order subsystem and allows for self-excitation of the geomagnetic field. Electromagnetic analysis yields expressions for key parameters. Models for secular variations recorded at London, Palermo and at the Cape of Good Hope over the past four hundred years are offered. Offset of the Earth's magnetic axis from the geographic axis is central to time-varying declination, but its causes have not yet been established. Applicability of the model to the explanation of sunspot activity is outlined. A corroborating experiment published by Peter Barlow in 1831 is appended.
Heliospheric Impact on Cosmic Rays Modulation
Tiwari, Bhupendra Kumar
2016-07-01
Heliospheric Impact on Cosmic RaysModulation B. K. Tiwari Department of Physics, A. P. S. University, Rewa (M.P.), btiwari70@yahoo.com Cosmic rays (CRs) flux at earth is modulated by the heliosphereric magnetic field and the structure of the heliosphere, controls by solar outputs and their variability. Sunspots numbers (SSN) is often treated as a primary indicator of solar activity (SA). GCRs entering the helioshphere are affected by the interplanetary magnetic field (IMF) and solar wind speed, their modulation varies with the varying solar activity. The observation based on data recoded from Omniweb data Centre for solar- interplanetary activity indices and monthly mean count rate of cosmic ray intensity (CRI) data from neutron monitors of different cut-off rigidities(Rc) (Moscow Rc=2.42Gv and Oulu Rc=0.80Gv). During minimum solar activity periodof solar cycle 23/24, the sun is remarkably quiet, weakest strength of the IMF and least dense and slowest, solar wind speed, whereas, in 2003, highest value of yearly averaged solar wind speed (~568 Km/sec) associated with several coronal holes, which generate high speed wind stream has been recorded. It is observed that GCRs fluxes reduces and is high anti-correlated with SSN (0.80) and IMF (0.86). CRI modulation produces by a strong solar flare, however, CME associated solar flare produce more disturbance in the interplanetary medium as well as in geomagnetic field. It is found that count rate of cosmic ray intensity and solar- interplanetary parameters were inverse correlated and solar indices were positive correlated. Keywords- Galactic Cosmic rays (GCRs), Sunspot number (SSN), Solar activity (SA), Coronal Mass Ejection (CME), Interplanetary magnetic field (IMF)
Number words and number symbols a cultural history of numbers
Menninger, Karl
1992-01-01
Classic study discusses number sequence and language and explores written numerals and computations in many cultures. "The historian of mathematics will find much to interest him here both in the contents and viewpoint, while the casual reader is likely to be intrigued by the author's superior narrative ability.
75 FR 33791 - Privacy Act of 1974; System of Records
2010-06-15
... information such as name, Social Security Number (SSN), address, citizenship documentation, biometric data... technology protection, threat analysis, counter-narcotics and risk assessments. Records relating to the..., Social Security Number (SSN), citizenship documentation, biometric [[Page 33792
Directory of Open Access Journals (Sweden)
T. Pathinathan
2015-01-01
Full Text Available In this paper we define diamond fuzzy number with the help of triangular fuzzy number. We include basic arithmetic operations like addition, subtraction of diamond fuzzy numbers with examples. We define diamond fuzzy matrix with some matrix properties. We have defined Nested diamond fuzzy number and Linked diamond fuzzy number. We have further classified Right Linked Diamond Fuzzy number and Left Linked Diamond Fuzzy number. Finally we have verified the arithmetic operations for the above mentioned types of Diamond Fuzzy Numbers.
Koninck, Jean-Marie De
2009-01-01
Who would have thought that listing the positive integers along with their most remarkable properties could end up being such an engaging and stimulating adventure? The author uses this approach to explore elementary and advanced topics in classical number theory. A large variety of numbers are contemplated: Fermat numbers, Mersenne primes, powerful numbers, sublime numbers, Wieferich primes, insolite numbers, Sastry numbers, voracious numbers, to name only a few. The author also presents short proofs of miscellaneous results and constantly challenges the reader with a variety of old and new n
Burkhart, Jerry
2009-01-01
Prime numbers are often described as the "building blocks" of natural numbers. This article shows how the author and his students took this idea literally by using prime factorizations to build numbers with blocks. In this activity, students explore many concepts of number theory, including the relationship between greatest common factors and…
Vazzana, Anthony; Garth, David
2007-01-01
One of the oldest branches of mathematics, number theory is a vast field devoted to studying the properties of whole numbers. Offering a flexible format for a one- or two-semester course, Introduction to Number Theory uses worked examples, numerous exercises, and two popular software packages to describe a diverse array of number theory topics.
On the number of special numbers
Indian Academy of Sciences (India)
without loss of any generality to be the first k primes), then the equation a + b = c has .... This is an elementary exercise in partial summation (see [12]). Thus ... This is easily done by inserting a stronger form of the prime number theorem into the.
International Nuclear Information System (INIS)
Wang Haimin; Liu Chang; Wang Shuo; Deng Na; Xu Yan; Jing Ju; Cao Wenda
2013-01-01
Rapid, irreversible changes of magnetic topology and sunspot structure associated with flares have been systematically observed in recent years. The most striking features include the increase of the horizontal field at the polarity inversion line (PIL) and the co-spatial penumbral darkening. A likely explanation of the above phenomenon is the back reaction to the coronal restructuring after eruptions: a coronal mass ejection carries the upward momentum while the downward momentum compresses the field lines near the PIL. Previous studies could only use low-resolution (above 1'') magnetograms and white-light images. Therefore, the changes are mostly observed for X-class flares. Taking advantage of the 0.''1 spatial resolution and 15 s temporal cadence of the New Solar Telescope at the Big Bear Solar Observatory, we report in detail the rapid formation of sunspot penumbra at the PIL associated with the C7.4 flare on 2012 July 2. It is unambiguously shown that the solar granulation pattern evolves to an alternating dark and bright fibril structure, the typical pattern of penumbra. Interestingly, the appearance of such a penumbra creates a new δ sunspot. The penumbral formation is also accompanied by the enhancement of the horizontal field observed using vector magnetograms from the Helioseismic and Magnetic Imager. We explain our observations as being due to the eruption of a flux rope following magnetic cancellation at the PIL. Subsequently, the re-closed arcade fields are pushed down toward the surface to form the new penumbra. NLFFF extrapolation clearly shows both the flux rope close to the surface and the overlying fields
Grešak, Rozalija
2015-01-01
The field of real numbers is usually constructed using Dedekind cuts. In these thesis we focus on the construction of the field of real numbers using metric completion of rational numbers using Cauchy sequences. In a similar manner we construct the field of p-adic numbers, describe some of their basic and topological properties. We follow by a construction of complex p-adic numbers and we compare them with the ordinary complex numbers. We conclude the thesis by giving a motivation for the int...
On the number of special numbers
Indian Academy of Sciences (India)
We now apply the theory of the Thue equation to obtain an effective bound on m. Indeed, by Lemma 3.2, we can write m2 = ba3 and m2 − 4 = cd3 with b, c cubefree. By the above, both b, c are bounded since they are cubefree and all their prime factors are less than e63727. Now we have a finite number of. Thue equations:.
International Nuclear Information System (INIS)
Kaneko, K.
1987-01-01
A relationship between the number projection and the shell model methods is investigated in the case of a single-j shell. We can find a one-to-one correspondence between the number projected and the shell model states
Gallistel, C R
2017-12-01
The representation of discrete and continuous quantities appears to be ancient and pervasive in animal brains. Because numbers are the natural carriers of these representations, we may discover that in brains, it's numbers all the way down.
DEFF Research Database (Denmark)
Andersen, Torben
2014-01-01
had a marked singular and an unmarked plural. Synchronically, however, the singular is arguably the basic member of the number category as revealed by the use of the two numbers. In addition, some nouns have a collective form, which is grammatically singular. Number also plays a role...
DEFF Research Database (Denmark)
Elvik, Rune; Bjørnskau, Torkel
2017-01-01
Highlights •26 studies of the safety-in-numbers effect are reviewed. •The existence of a safety-in-numbers effect is confirmed. •Results are consistent. •Causes of the safety-in-numbers effect are incompletely known....
de Mestre, Neville
2008-01-01
Prime numbers are important as the building blocks for the set of all natural numbers, because prime factorisation is an important and useful property of all natural numbers. Students can discover them by using the method known as the Sieve of Eratosthenes, named after the Greek geographer and astronomer who lived from c. 276-194 BC. Eratosthenes…
International Nuclear Information System (INIS)
Todorov, T.D.
1980-01-01
The set of asymptotic numbers A as a system of generalized numbers including the system of real numbers R, as well as infinitely small (infinitesimals) and infinitely large numbers, is introduced. The detailed algebraic properties of A, which are unusual as compared with the known algebraic structures, are studied. It is proved that the set of asymptotic numbers A cannot be isomorphically embedded as a subspace in any group, ring or field, but some particular subsets of asymptotic numbers are shown to be groups, rings, and fields. The algebraic operation, additive and multiplicative forms, and the algebraic properties are constructed in an appropriate way. It is shown that the asymptotic numbers give rise to a new type of generalized functions quite analogous to the distributions of Schwartz allowing, however, the operation multiplication. A possible application of these functions to quantum theory is discussed
Niederreiter, Harald
2015-01-01
This textbook effectively builds a bridge from basic number theory to recent advances in applied number theory. It presents the first unified account of the four major areas of application where number theory plays a fundamental role, namely cryptography, coding theory, quasi-Monte Carlo methods, and pseudorandom number generation, allowing the authors to delineate the manifold links and interrelations between these areas. Number theory, which Carl-Friedrich Gauss famously dubbed the queen of mathematics, has always been considered a very beautiful field of mathematics, producing lovely results and elegant proofs. While only very few real-life applications were known in the past, today number theory can be found in everyday life: in supermarket bar code scanners, in our cars’ GPS systems, in online banking, etc. Starting with a brief introductory course on number theory in Chapter 1, which makes the book more accessible for undergraduates, the authors describe the four main application areas in Chapters...
DEFF Research Database (Denmark)
Jørgensen, Claus Bjørn; Suetens, Sigrid; Tyran, Jean-Robert
numbers based on recent drawings. While most players pick the same set of numbers week after week without regards of numbers drawn or anything else, we find that those who do change, act on average in the way predicted by the law of small numbers as formalized in recent behavioral theory. In particular......We investigate the “law of small numbers” using a unique panel data set on lotto gambling. Because we can track individual players over time, we can measure how they react to outcomes of recent lotto drawings. We can therefore test whether they behave as if they believe they can predict lotto......, on average they move away from numbers that have recently been drawn, as suggested by the “gambler’s fallacy”, and move toward numbers that are on streak, i.e. have been drawn several weeks in a row, consistent with the “hot hand fallacy”....
Ore, Oystein
2017-01-01
Number theory is the branch of mathematics concerned with the counting numbers, 1, 2, 3, … and their multiples and factors. Of particular importance are odd and even numbers, squares and cubes, and prime numbers. But in spite of their simplicity, you will meet a multitude of topics in this book: magic squares, cryptarithms, finding the day of the week for a given date, constructing regular polygons, pythagorean triples, and many more. In this revised edition, John Watkins and Robin Wilson have updated the text to bring it in line with contemporary developments. They have added new material on Fermat's Last Theorem, the role of computers in number theory, and the use of number theory in cryptography, and have made numerous minor changes in the presentation and layout of the text and the exercises.
Alves, Mauro A.; Lyra, Cássia S.
2008-12-01
The Newcomb-Benford's Law (LNB) of first digits is introduced to high school students in an extracurricular activity through the study of sunspots. The LNB establishes that the first digits of various sets of data describing natural occurrences are not distributed uniformly, but according to a logarithmic distribution of probability. The LNB is counter-intuitive and is a good example of how mathematics applied to the study of natural phenomena can provide surprising and unexpected results serving also as a motivating agent in the study of physical sciences. En este trabajo se describe una actividad extracurricular donde se presenta a los estudiantes la ley de los primeros dígitos de Newcomb-Benford (LNB) con el estudio de manchas solares. La LNB establece que los primeros dígitos de algunos tipos de dados de ocurrencia natural no están distribuidos en manera uniforme, pero sí de acuerdo con una distribución logarítmica de probabilidad. La LNB es contra-intuitiva y es un excelente ejemplo de como las matemáticas aplicadas al estudio de fenómenos naturales pueden sorprender al estudiante, sirviendo también como elemento motivador en la educación de ciencias y de matemáticas. Este trabalho descreve uma atividade extracurricular na qual a lei dos primeiros dígitos de Newcomb-Benford (LNB) é introduzida a estudantes através do estudo de manchas solares. A LNB estabelece que os primeiros dígitos de vários tipos de conjunto de dados de ocorrência natural não são distribuídos de maneira uniforme, mas sim de acordo com uma distribuição logarítmica de probabilidade. A LNB é contra-intuitiva e é um ótimo exemplo de como a matemática aplicada ao estudo de fenômenos naturais pode fornecer resultados surpreendentes e inesperados, servindo também como um agente motivador no ensino de ciências e matemática.
Godefroy, Gilles
2004-01-01
Numbers are fascinating. The fascination begins in childhood, when we first learn to count. It continues as we learn arithmetic, algebra, geometry, and so on. Eventually, we learn that numbers not only help us to measure the world, but also to understand it and, to some extent, to control it. In The Adventure of Numbers, Gilles Godefroy follows the thread of our expanding understanding of numbers to lead us through the history of mathematics. His goal is to share the joy of discovering and understanding this great adventure of the mind. The development of mathematics has been punctuated by a n
DEFF Research Database (Denmark)
Suetens, Sigrid; Galbo-Jørgensen, Claus B.; Tyran, Jean-Robert Karl
2016-01-01
We investigate the ‘law of small numbers’ using a data set on lotto gambling that allows us to measure players’ reactions to draws. While most players pick the same set of numbers week after week, we find that those who do change react on average as predicted by the law of small numbers...... as formalized in recent behavioral theory. In particular, players tend to bet less on numbers that have been drawn in the preceding week, as suggested by the ‘gambler’s fallacy’, and bet more on a number if it was frequently drawn in the recent past, consistent with the ‘hot-hand fallacy’....
Diamond, Harold G; Cheung, Man Ping
2016-01-01
"Generalized numbers" is a multiplicative structure introduced by A. Beurling to study how independent prime number theory is from the additivity of the natural numbers. The results and techniques of this theory apply to other systems having the character of prime numbers and integers; for example, it is used in the study of the prime number theorem (PNT) for ideals of algebraic number fields. Using both analytic and elementary methods, this book presents many old and new theorems, including several of the authors' results, and many examples of extremal behavior of g-number systems. Also, the authors give detailed accounts of the L^2 PNT theorem of J. P. Kahane and of the example created with H. L. Montgomery, showing that additive structure is needed for proving the Riemann hypothesis. Other interesting topics discussed are propositions "equivalent" to the PNT, the role of multiplicative convolution and Chebyshev's prime number formula for g-numbers, and how Beurling theory provides an interpretation of the ...
Intuitive numbers guide decisions
Directory of Open Access Journals (Sweden)
Ellen Peters
2008-12-01
Full Text Available Measuring reaction times to number comparisons is thought to reveal a processing stage in elementary numerical cognition linked to internal, imprecise representations of number magnitudes. These intuitive representations of the mental number line have been demonstrated across species and human development but have been little explored in decision making. This paper develops and tests hypotheses about the influence of such evolutionarily ancient, intuitive numbers on human decisions. We demonstrate that individuals with more precise mental-number-line representations are higher in numeracy (number skills consistent with previous research with children. Individuals with more precise representations (compared to those with less precise representations also were more likely to choose larger, later amounts over smaller, immediate amounts, particularly with a larger proportional difference between the two monetary outcomes. In addition, they were more likely to choose an option with a larger proportional but smaller absolute difference compared to those with less precise representations. These results are consistent with intuitive number representations underlying: a perceived differences between numbers, b the extent to which proportional differences are weighed in decisions, and, ultimately, c the valuation of decision options. Human decision processes involving numbers important to health and financial matters may be rooted in elementary, biological processes shared with other species.
Hirst, Keith
1994-01-01
Number and geometry are the foundations upon which mathematics has been built over some 3000 years. This book is concerned with the logical foundations of number systems from integers to complex numbers. The author has chosen to develop the ideas by illustrating the techniques used throughout mathematics rather than using a self-contained logical treatise. The idea of proof has been emphasised, as has the illustration of concepts from a graphical, numerical and algebraic point of view. Having laid the foundations of the number system, the author has then turned to the analysis of infinite proc
The Extreme Solar Activity during October–November 2003 K. M. ...
Indian Academy of Sciences (India)
between occurrence of the abnormal activities of big sunspot groups that ... better statistics, we add the data of the sunspot positional measurements obtained from the ... Ai are the area values of the sunspot group for i number of observations.
Templates, Numbers & Watercolors.
Clemesha, David J.
1990-01-01
Describes how a second-grade class used large templates to draw and paint five-digit numbers. The lesson integrated artistic knowledge and vocabulary with their mathematics lesson in place value. Students learned how draftspeople use templates, and they studied number paintings by Charles Demuth and Jasper Johns. (KM)
International Nuclear Information System (INIS)
Coveyou, R.R.
1974-01-01
The subject of random number generation is currently controversial. Differing opinions on this subject seem to stem from implicit or explicit differences in philosophy; in particular, from differing ideas concerning the role of probability in the real world of physical processes, electronic computers, and Monte Carlo calculations. An attempt is made here to reconcile these views. The role of stochastic ideas in mathematical models is discussed. In illustration of these ideas, a mathematical model of the use of random number generators in Monte Carlo calculations is constructed. This model is used to set up criteria for the comparison and evaluation of random number generators. (U.S.)
Weiss, Edwin
1998-01-01
Careful organization and clear, detailed proofs characterize this methodical, self-contained exposition of basic results of classical algebraic number theory from a relatively modem point of view. This volume presents most of the number-theoretic prerequisites for a study of either class field theory (as formulated by Artin and Tate) or the contemporary treatment of analytical questions (as found, for example, in Tate's thesis).Although concerned exclusively with algebraic number fields, this treatment features axiomatic formulations with a considerable range of applications. Modem abstract te
Cohn, Harvey
1980-01-01
""A very stimulating book ... in a class by itself."" - American Mathematical MonthlyAdvanced students, mathematicians and number theorists will welcome this stimulating treatment of advanced number theory, which approaches the complex topic of algebraic number theory from a historical standpoint, taking pains to show the reader how concepts, definitions and theories have evolved during the last two centuries. Moreover, the book abounds with numerical examples and more concrete, specific theorems than are found in most contemporary treatments of the subject.The book is divided into three parts
Crossley, John N
1987-01-01
This book presents detailed studies of the development of three kinds of number. In the first part the development of the natural numbers from Stone-Age times right up to the present day is examined not only from the point of view of pure history but also taking into account archaeological, anthropological and linguistic evidence. The dramatic change caused by the introduction of logical theories of number in the 19th century is also treated and this part ends with a non-technical account of the very latest developments in the area of Gödel's theorem. The second part is concerned with the deve
Professor Stewart's incredible numbers
Stewart, Ian
2015-01-01
Ian Stewart explores the astonishing properties of numbers from 1 to10 to zero and infinity, including one figure that, if you wrote it out, would span the universe. He looks at every kind of number you can think of - real, imaginary, rational, irrational, positive and negative - along with several you might have thought you couldn't think of. He explains the insights of the ancient mathematicians, shows how numbers have evolved through the ages, and reveals the way numerical theory enables everyday life. Under Professor Stewart's guidance you will discover the mathematics of codes,
LeVeque, William J
1996-01-01
This excellent textbook introduces the basics of number theory, incorporating the language of abstract algebra. A knowledge of such algebraic concepts as group, ring, field, and domain is not assumed, however; all terms are defined and examples are given - making the book self-contained in this respect.The author begins with an introductory chapter on number theory and its early history. Subsequent chapters deal with unique factorization and the GCD, quadratic residues, number-theoretic functions and the distribution of primes, sums of squares, quadratic equations and quadratic fields, diopha
Kneusel, Ronald T
2015-01-01
This is a book about numbers and how those numbers are represented in and operated on by computers. It is crucial that developers understand this area because the numerical operations allowed by computers, and the limitations of those operations, especially in the area of floating point math, affect virtually everything people try to do with computers. This book aims to fill this gap by exploring, in sufficient but not overwhelming detail, just what it is that computers do with numbers. Divided into two parts, the first deals with standard representations of integers and floating point numb
Sierpinski, Waclaw
1988-01-01
Since the publication of the first edition of this work, considerable progress has been made in many of the questions examined. This edition has been updated and enlarged, and the bibliography has been revised.The variety of topics covered here includes divisibility, diophantine equations, prime numbers (especially Mersenne and Fermat primes), the basic arithmetic functions, congruences, the quadratic reciprocity law, expansion of real numbers into decimal fractions, decomposition of integers into sums of powers, some other problems of the additive theory of numbers and the theory of Gaussian
Directory of Open Access Journals (Sweden)
R. A. Mollin
1986-01-01
Full Text Available A powerful number is a positive integer n satisfying the property that p2 divides n whenever the prime p divides n; i.e., in the canonical prime decomposition of n, no prime appears with exponent 1. In [1], S.W. Golomb introduced and studied such numbers. In particular, he asked whether (25,27 is the only pair of consecutive odd powerful numbers. This question was settled in [2] by W.A. Sentance who gave necessary and sufficient conditions for the existence of such pairs. The first result of this paper is to provide a generalization of Sentance's result by giving necessary and sufficient conditions for the existence of pairs of powerful numbers spaced evenly apart. This result leads us naturally to consider integers which are representable as a proper difference of two powerful numbers, i.e. n=p1−p2 where p1 and p2 are powerful numbers with g.c.d. (p1,p2=1. Golomb (op.cit. conjectured that 6 is not a proper difference of two powerful numbers, and that there are infinitely many numbers which cannot be represented as a proper difference of two powerful numbers. The antithesis of this conjecture was proved by W.L. McDaniel [3] who verified that every non-zero integer is in fact a proper difference of two powerful numbers in infinitely many ways. McDaniel's proof is essentially an existence proof. The second result of this paper is a simpler proof of McDaniel's result as well as an effective algorithm (in the proof for explicitly determining infinitely many such representations. However, in both our proof and McDaniel's proof one of the powerful numbers is almost always a perfect square (namely one is always a perfect square when n≢2(mod4. We provide in §2 a proof that all even integers are representable in infinitely many ways as a proper nonsquare difference; i.e., proper difference of two powerful numbers neither of which is a perfect square. This, in conjunction with the odd case in [4], shows that every integer is representable in
Corry, Leo
2015-01-01
The world around us is saturated with numbers. They are a fundamental pillar of our modern society, and accepted and used with hardly a second thought. But how did this state of affairs come to be? In this book, Leo Corry tells the story behind the idea of number from the early days of the Pythagoreans, up until the turn of the twentieth century. He presents an overview of how numbers were handled and conceived in classical Greek mathematics, in the mathematics of Islam, in European mathematics of the middle ages and the Renaissance, during the scientific revolution, all the way through to the
Dudley, Underwood
2008-01-01
Ideal for a first course in number theory, this lively, engaging text requires only a familiarity with elementary algebra and the properties of real numbers. Author Underwood Dudley, who has written a series of popular mathematics books, maintains that the best way to learn mathematics is by solving problems. In keeping with this philosophy, the text includes nearly 1,000 exercises and problems-some computational and some classical, many original, and some with complete solutions. The opening chapters offer sound explanations of the basics of elementary number theory and develop the fundamenta
African Journals Online (AJOL)
OLUWOLE
Agro-Science Journal of Tropical Agriculture, Food, Environment and Extension. Volume 9 Number 1 ... of persistent dumping of cheap subsidized food imports from developed ... independence of the inefficiency effects in the two estimation ...
High Reynolds Number Turbulence
National Research Council Canada - National Science Library
Smits, Alexander J
2007-01-01
The objectives of the grant were to provide a systematic study to fill the gap between existing research on low Reynolds number turbulent flows to the kinds of turbulent flows encountered on full-scale vehicles...
International Development Research Centre (IDRC) Digital Library (Canada)
Operating a Demographic Surveillance System (DSS) like this one requires a blend of high-tech number-crunching ability and .... views follow a standardized format that takes several ... general levels of health and to the use of health services.
Quantum random number generator
Pooser, Raphael C.
2016-05-10
A quantum random number generator (QRNG) and a photon generator for a QRNG are provided. The photon generator may be operated in a spontaneous mode below a lasing threshold to emit photons. Photons emitted from the photon generator may have at least one random characteristic, which may be monitored by the QRNG to generate a random number. In one embodiment, the photon generator may include a photon emitter and an amplifier coupled to the photon emitter. The amplifier may enable the photon generator to be used in the QRNG without introducing significant bias in the random number and may enable multiplexing of multiple random numbers. The amplifier may also desensitize the photon generator to fluctuations in power supplied thereto while operating in the spontaneous mode. In one embodiment, the photon emitter and amplifier may be a tapered diode amplifier.
Schwartz, Richard Evan
2014-01-01
In the American Mathematical Society's first-ever book for kids (and kids at heart), mathematician and author Richard Evan Schwartz leads math lovers of all ages on an innovative and strikingly illustrated journey through the infinite number system. By means of engaging, imaginative visuals and endearing narration, Schwartz manages the monumental task of presenting the complex concept of Big Numbers in fresh and relatable ways. The book begins with small, easily observable numbers before building up to truly gigantic ones, like a nonillion, a tredecillion, a googol, and even ones too huge for names! Any person, regardless of age, can benefit from reading this book. Readers will find themselves returning to its pages for a very long time, perpetually learning from and growing with the narrative as their knowledge deepens. Really Big Numbers is a wonderful enrichment for any math education program and is enthusiastically recommended to every teacher, parent and grandparent, student, child, or other individual i...
Indian Academy of Sciences (India)
One could endlessly churn out congruent numbers following the method in Box 1 without being certain when a given number n (or n x m 2, for some integer m) will ap- pear on the list. Continuing in this way ·would exhaust one's computing resources, not to mention one's patience! Also, this procedure is of no avail if n is not ...
DEFF Research Database (Denmark)
Korsby, Trine Mygind
2017-01-01
Taking a point of departure in negotiations for access to a phone number for a brothel abroad, the article demonstrates how a group of pimps in Eastern Romania attempt to extend their local business into the rest of the EU. The article shows how the phone number works as a micro-infrastructure in......Taking a point of departure in negotiations for access to a phone number for a brothel abroad, the article demonstrates how a group of pimps in Eastern Romania attempt to extend their local business into the rest of the EU. The article shows how the phone number works as a micro...... in turn cultivate and maximize uncertainty about themselves in others. When making the move to go abroad into unknown terrains, accessing the infrastructure generated by the phone number can provide certainty and consolidate one’s position within criminal networks abroad. However, at the same time......, mishandling the phone number can be dangerous and in that sense produce new doubts and uncertainties....
78 FR 56266 - Consent Based Social Security Number Verification (CBSV) Service
2013-09-12
... developed CBSV as a user- friendly, internet-based application with safeguards that protect the public's information. In addition to the benefit of providing high volume, centralized SSN verification services to users in a secure manner, CBSV provides us with cost and workload management benefits. New Information...
76 FR 60112 - Consent Based Social Security Number Verification (CBSV) Service
2011-09-28
... protect the public's information. In addition to the benefit of providing high volume, centralized SSN verification services to the business community in a secure manner, CBSV provides us with cost and workload management benefits. New Information: To use CBSV, interested parties must pay a one- time non-refundable...
Indeterminacy, sunspots, and development traps
Czech Academy of Sciences Publication Activity Database
Slobodyan, Sergey
2005-01-01
Roč. 29, 1-2 (2005), s. 159-185 ISSN 0165-1889 Institutional research plan: CEZ:AV0Z70850503 Keywords : indeterminacy * development trap * stochastic stability Subject RIV: AH - Economics Impact factor: 0.691, year: 2005 http://dx.doi.org/10.1016/j.jedc.2003.04.011
Energy Technology Data Exchange (ETDEWEB)
Nelson, R.N. (ed.)
1985-05-01
This publication lists all report number codes processed by the Office of Scientific and Technical Information. The report codes are substantially based on the American National Standards Institute, Standard Technical Report Number (STRN)-Format and Creation Z39.23-1983. The Standard Technical Report Number (STRN) provides one of the primary methods of identifying a specific technical report. The STRN consists of two parts: The report code and the sequential number. The report code identifies the issuing organization, a specific program, or a type of document. The sequential number, which is assigned in sequence by each report issuing entity, is not included in this publication. Part I of this compilation is alphabetized by report codes followed by issuing installations. Part II lists the issuing organization followed by the assigned report code(s). In both Parts I and II, the names of issuing organizations appear for the most part in the form used at the time the reports were issued. However, for some of the more prolific installations which have had name changes, all entries have been merged under the current name.
International Nuclear Information System (INIS)
Nelson, R.N.
1985-05-01
This publication lists all report number codes processed by the Office of Scientific and Technical Information. The report codes are substantially based on the American National Standards Institute, Standard Technical Report Number (STRN)-Format and Creation Z39.23-1983. The Standard Technical Report Number (STRN) provides one of the primary methods of identifying a specific technical report. The STRN consists of two parts: The report code and the sequential number. The report code identifies the issuing organization, a specific program, or a type of document. The sequential number, which is assigned in sequence by each report issuing entity, is not included in this publication. Part I of this compilation is alphabetized by report codes followed by issuing installations. Part II lists the issuing organization followed by the assigned report code(s). In both Parts I and II, the names of issuing organizations appear for the most part in the form used at the time the reports were issued. However, for some of the more prolific installations which have had name changes, all entries have been merged under the current name
DEFF Research Database (Denmark)
Levin, Bruce R; McCall, Ingrid C.; Perrot, Veronique
2017-01-01
We postulate that the inhibition of growth and low rates of mortality of bacteria exposed to ribosome-binding antibiotics deemed bacteriostatic can be attributed almost uniquely to these drugs reducing the number of ribosomes contributing to protein synthesis, i.e., the number of effective......-targeting bacteriostatic antibiotics, the time before these bacteria start to grow again when the drugs are removed, referred to as the post-antibiotic effect (PAE), is markedly greater for constructs with fewer rrn operons than for those with more rrn operons. We interpret the results of these other experiments reported...... here as support for the hypothesis that the reduction in the effective number of ribosomes due to binding to these structures provides a sufficient explanation for the action of bacteriostatic antibiotics that target these structures....
Quantum random number generator
Soubusta, Jan; Haderka, Ondrej; Hendrych, Martin
2001-03-01
Since reflection or transmission of a quantum particle on a beamsplitter is inherently random quantum process, a device built on this principle does not suffer from drawbacks of neither pseudo-random computer generators or classical noise sources. Nevertheless, a number of physical conditions necessary for high quality random numbers generation must be satisfied. Luckily, in quantum optics realization they can be well controlled. We present an easy random number generator based on the division of weak light pulses on a beamsplitter. The randomness of the generated bit stream is supported by passing the data through series of 15 statistical test. The device generates at a rate of 109.7 kbit/s.
Alizée Dauvergne
2010-01-01
What makes the LHC the biggest particle accelerator in the world? Here are some of the numbers that characterise the LHC, and their equivalents in terms that are easier for us to imagine. Feature Number Equivalent Circumference ~ 27 km Distance covered by beam in 10 hours ~ 10 billion km a round trip to Neptune Number of times a single proton travels around the ring each second 11 245 Speed of protons first entering the LHC 299 732 500 m/s 99.9998 % of the speed of light Speed of protons when they collide 299 789 760 m/s 99.9999991 % of the speed of light Collision temperature ~ 1016 °C ove...
77 FR 47688 - Agency Information Collection Activities: Proposed Request and Comment Request
2012-08-09
... Security number (SSN). In addition, the employee's name and SSN must match SSA's records for SSA to post... information either through the Internet or via telephone. The respondents are employers who need to verify SSN... Security payments to Canada and (2) mandate the reclamation of funds paid erroneously to a Canadian bank or...
Samuel, Pierre
2008-01-01
Algebraic number theory introduces students not only to new algebraic notions but also to related concepts: groups, rings, fields, ideals, quotient rings and quotient fields, homomorphisms and isomorphisms, modules, and vector spaces. Author Pierre Samuel notes that students benefit from their studies of algebraic number theory by encountering many concepts fundamental to other branches of mathematics - algebraic geometry, in particular.This book assumes a knowledge of basic algebra but supplements its teachings with brief, clear explanations of integrality, algebraic extensions of fields, Gal
Iwaniec, Henryk
2004-01-01
Analytic Number Theory distinguishes itself by the variety of tools it uses to establish results, many of which belong to the mainstream of arithmetic. One of the main attractions of analytic number theory is the vast diversity of concepts and methods it includes. The main goal of the book is to show the scope of the theory, both in classical and modern directions, and to exhibit its wealth and prospects, its beautiful theorems and powerful techniques. The book is written with graduate students in mind, and the authors tried to balance between clarity, completeness, and generality. The exercis
CONFUSION WITH TELEPHONE NUMBERS
Telecom Service
2002-01-01
he area code is now required for all telephone calls within Switzerland. Unfortunately this is causing some confusion. CERN has received complaints that incoming calls intended for CERN mobile phones are being directed to private subscribers. This is caused by mistakenly dialing the WRONG code (e.g. 022) in front of the mobile number. In order to avoid these problems, please inform your correspondents that the correct numbers are: 079 201 XXXX from Switzerland; 0041 79 201 XXXX from other countries. Telecom Service
CONFUSION WITH TELEPHONE NUMBERS
Telecom Service
2002-01-01
The area code is now required for all telephone calls within Switzerland. Unfortunately this is causing some confusion. CERN has received complaints that incoming calls intended for CERN mobile phones are being directed to private subscribers. This is caused by mistakenly dialing the WRONG code (e.g. 022) in front of the mobile number. In order to avoid these problems, please inform your correspondents that the correct numbers are: 079 201 XXXX from Switzerland; 0041 79 201 XXXX from other countries. Telecom Service
Earthquake number forecasts testing
Kagan, Yan Y.
2017-10-01
We study the distributions of earthquake numbers in two global earthquake catalogues: Global Centroid-Moment Tensor and Preliminary Determinations of Epicenters. The properties of these distributions are especially required to develop the number test for our forecasts of future seismic activity rate, tested by the Collaboratory for Study of Earthquake Predictability (CSEP). A common assumption, as used in the CSEP tests, is that the numbers are described by the Poisson distribution. It is clear, however, that the Poisson assumption for the earthquake number distribution is incorrect, especially for the catalogues with a lower magnitude threshold. In contrast to the one-parameter Poisson distribution so widely used to describe earthquake occurrences, the negative-binomial distribution (NBD) has two parameters. The second parameter can be used to characterize the clustering or overdispersion of a process. We also introduce and study a more complex three-parameter beta negative-binomial distribution. We investigate the dependence of parameters for both Poisson and NBD distributions on the catalogue magnitude threshold and on temporal subdivision of catalogue duration. First, we study whether the Poisson law can be statistically rejected for various catalogue subdivisions. We find that for most cases of interest, the Poisson distribution can be shown to be rejected statistically at a high significance level in favour of the NBD. Thereafter, we investigate whether these distributions fit the observed distributions of seismicity. For this purpose, we study upper statistical moments of earthquake numbers (skewness and kurtosis) and compare them to the theoretical values for both distributions. Empirical values for the skewness and the kurtosis increase for the smaller magnitude threshold and increase with even greater intensity for small temporal subdivision of catalogues. The Poisson distribution for large rate values approaches the Gaussian law, therefore its skewness
Wetherell, Chris
2017-01-01
This is an edited extract from the keynote address given by Dr. Chris Wetherell at the 26th Biennial Conference of the Australian Association of Mathematics Teachers Inc. The author investigates the surprisingly rich structure that exists within a simple arrangement of numbers: the times tables.
Bell, Eric Temple
1991-01-01
From one of the foremost interpreters for lay readers of the history and meaning of mathematics: a stimulating account of the origins of mathematical thought and the development of numerical theory. It probes the work of Pythagoras, Galileo, Berkeley, Einstein, and others, exploring how ""number magic"" has influenced religion, philosophy, science, and mathematics
International Nuclear Information System (INIS)
Khan, T.A.; Baum, J.W.; Beckman, M.C.
1993-10-01
This document contains information dealing with the lessons learned from the experience of nuclear plants. In this issue the authors tried to avoid the 'tyranny' of numbers and concentrated on the main lessons learned. Topics include: filtration devices for air pollution abatement, crack repair and inspection, and remote handling equipment
Uniform random number generators
Farr, W. R.
1971-01-01
Methods are presented for the generation of random numbers with uniform and normal distributions. Subprogram listings of Fortran generators for the Univac 1108, SDS 930, and CDC 3200 digital computers are also included. The generators are of the mixed multiplicative type, and the mathematical method employed is that of Marsaglia and Bray.
International Nuclear Information System (INIS)
1994-01-01
The key numbers of energy give statistical data related to production, consumption, and to foreign trade of each energy in the World and in France. A chapter is dedicated to environment and brings quantitative elements on pollutant emissions connected to energy uses
Directory of Open Access Journals (Sweden)
Oli Brown
2008-10-01
Full Text Available Estimates of the potential number of ‘climate changemigrants’ vary hugely. In order to persuade policymakers ofthe need to act and to provide a sound basis for appropriateresponses, there is an urgent need for better analysis, betterdata and better predictions.
Trudgian, Timothy
2009-01-01
One of the difficulties in any teaching of mathematics is to bridge the divide between the abstract and the intuitive. Throughout school one encounters increasingly abstract notions, which are more and more difficult to relate to everyday experiences. This article examines a familiar approach to thinking about negative numbers, that is an…
Indian Academy of Sciences (India)
First page Back Continue Last page Overview Graphics. Typical Complexity Numbers. Say. 1000 tones,; 100 Users,; Transmission every 10 msec. Full Crosstalk cancellation would require. Full cancellation requires a matrix multiplication of order 100*100 for all the tones. 1000*100*100*100 operations every second for the ...
Indian Academy of Sciences (India)
IAS Admin
improved by Selberg [4] in 1941 who showed that a pos- ... be seen by entries of his first letter to G H Hardy in ... tary in the technical sense of the word, employed com- ..... III: On the expression of a number as a sum of primes, Acta Math.,.
1985-02-01
of the blade. The Darrieus VAWT has more complex aerodynamics. This type of wind turbine produces power as a result of the tangential thrust as...Horizontal Axis Propeller-Type b) Verticle Axis Darrieus -Type Figure 78. Wind Turbine Configurations 0 6 Q K [_ 2 -, C 4 UJ UJ...Sailplanes 23 5.2 Wind Turbines 23 6. CONCLUDING REMARKS 24 7. RECOMMENDATIONS FOR FUTURE RESEARCH 24 REFERENCES 25 FIGURES 32 yv/ LOW REYNOLDS NUMBER
LeVeque, William J
2002-01-01
Classic two-part work now available in a single volume assumes no prior theoretical knowledge on reader's part and develops the subject fully. Volume I is a suitable first course text for advanced undergraduate and beginning graduate students. Volume II requires a much higher level of mathematical maturity, including a working knowledge of the theory of analytic functions. Contents range from chapters on binary quadratic forms to the Thue-Siegel-Roth Theorem and the Prime Number Theorem. Includes numerous problems and hints for their solutions. 1956 edition. Supplementary Reading. List of Symb
DEFF Research Database (Denmark)
Wanscher, Jørgen Bundgaard; Sørensen, Majken Vildrik
2006-01-01
Random numbers are used for a great variety of applications in almost any field of computer and economic sciences today. Examples ranges from stock market forecasting in economics, through stochastic traffic modelling in operations research to photon and ray tracing in graphics. The construction...... distributions into others with most of the required characteristics. In essence, a uniform sequence which is transformed into a new sequence with the required distribution. The subject of this article is to consider the well known highly uniform Halton sequence and modifications to it. The intent is to generate...
International Nuclear Information System (INIS)
Saito, Takao; Oki, Tosio
1989-01-01
The photospheric magnetic field is revealed to rotate with different solar rotation periods depending on its m-number, or its longitudinal range. The m-dependent rotation reveals the unexplained solar cycle variation of the 28-day period of the IMF 2-sector structure in inclining/minimum years and of the 27-day period in the declining/minimum years. The m-dependent rotation reveals also the unexplained 155-day periodicity in the occurrence of solar flare clusters, suggesting a motion of the sunspot field relative to the large-scale field. The IMF sector structure is closely related to recurrent geomagnetic storms, while the flare occurrence is related to sporadic SC storms. Hence, the m-dependent rotation is quite important in the study of the STE forecast. (author)
van Gijn, J
2000-01-01
The round figure for the current year has stirred people's minds in anticipation. Numbers have acquired great significance also in today's medical science. The Paris physician Pierre Charles Alexandre Louis (1787-1872) is considered the founding father of the numerical method in medicine. At first the principle of aggregating data from different individuals aroused much resistance and even disgust: Claude Bernard was a leading figure among those who warned that one will never find a mean in nature, and that grouping findings together obscures the true relationship between biological phenomena. True enough, statistical significance is not a characteristic of nature itself. Significant differences or risk reductions do not necessarily imply clinical relevance, and results obtained in a group of patients are rarely applicable to an individual patient in the consultation room. Likewise, the health of a human being cannot be captured in biochemical, radiological or other technical measures, nor in disease-specific scales that reduce well-being to one or two digits. The editors of this journal will remain keen on publishing numerical studies that contribute to evidence-based medicine, but at the same time they will continue to foster the art of reporting illness from the point of view of the sick person.
Lepton family number violation
International Nuclear Information System (INIS)
Herczeg, P.
1999-01-01
At present there is evidence from neutrino oscillation searches that the neutrinos are in fact massive particles and that they mix. If confirmed, this would imply that the conservation of LFN is not exact. Lepton family number violation (LFNV) has been searched for with impressive sensitivities in many processes involving charged leptons. The present experimental limits on some of them (those which the author shall consider here) are shown in Table 1. These stringent limits are not inconsistent with the neutrino oscillation results since, given the experimental bounds on the masses of the known neutrinos and the neutrino mass squared differences required by the oscillation results, the effects of LFNV from neutrino mixing would be too small to be seen elsewhere (see Section 2). The purpose of experiments searching for LFNV involving the charged leptons is to probe the existence of other sources of LFNV. Such sources are present in many extensions of the SM. In this lecture the author shall discuss some of the possibilities, focusing on processes that require muon beams. Other LFNV processes, such as the decays of the kaons and of the τ, provide complementary information. In the next Section he shall consider some sources of LFNV that do not require an extension of the gauge group of the SM (the added leptons or Higgs bosons may of course originate from models with extended gauge groups). In Section 3 he discusses LFNV in left-right symmetric models. In Section 4 he considers LFNV in supersymmetric models, first in R-parity conserving supersymmetric grand unified models, and then in the minimal supersymmetric standard model with R-parity violation. The last section is a brief summary of the author's conclusions
Straight flavor of Binary Number in Decimal Number System
MD. Abdul Awal Ansary; Sushanta Acharjee
2012-01-01
Different number systems are available on the basis of their base numbers. For instance, decimal number system is of base 10, hexadecimal number system which base is 16 and, Binary number system which base is 2 etc. Some numbers systems are easy to understand by the human being and some are easy to understand by electronics machine for instance digital computers. Computers only can understand data and instructions that are stored in binary form, though we input the data and instruction in dec...
Neutrino number of the universe
International Nuclear Information System (INIS)
Kolb, E.W.
1981-01-01
The influence of grand unified theories on the lepton number of the universe is reviewed. A scenario is presented for the generation of a large (>> 1) lepton number and a small (<< 1) baryon number. 15 references
[Intel random number generator-based true random number generator].
Huang, Feng; Shen, Hong
2004-09-01
To establish a true random number generator on the basis of certain Intel chips. The random numbers were acquired by programming using Microsoft Visual C++ 6.0 via register reading from the random number generator (RNG) unit of an Intel 815 chipset-based computer with Intel Security Driver (ISD). We tested the generator with 500 random numbers in NIST FIPS 140-1 and X(2) R-Squared test, and the result showed that the random number it generated satisfied the demand of independence and uniform distribution. We also compared the random numbers generated by Intel RNG-based true random number generator and those from the random number table statistically, by using the same amount of 7500 random numbers in the same value domain, which showed that the SD, SE and CV of Intel RNG-based random number generator were less than those of the random number table. The result of u test of two CVs revealed no significant difference between the two methods. Intel RNG-based random number generator can produce high-quality random numbers with good independence and uniform distribution, and solves some problems with random number table in acquisition of the random numbers.
Vale, P
2013-01-01
Cyclic outbreaks of accumulation of paralytic shellfish poisoning (PSP) toxins in mussels attributed to Gymnodinium catenatum blooms displayed several of the highest inter-annual maxima coincidental with minima of the 11-year solar sunspot number (SSN) cycle. The monthly distribution of PSP was associated with low levels of the solar radio flux, a more quantitative approach than SSN for fluctuations in solar activity. A comparison between monthly distribution of PSP and other common biotoxins (okadaic acid (OA), dinophysistoxin-2 (DTX2) and amnesic shellfish poisoning (ASP) toxins) demonstrated that only PSP was significantly associated with low levels of radio flux (p < 0.01). PSP occurrence suggests a prior decline in solar activity could be required to act as a trigger, in a similar manner to a photoperiodic signal. The seasonal frequency increased towards autumn during the study period, which might be related to the progressive atmospheric cut-off of deleterious radiation associated with the seasonal change in solar declination, and might play an additional role in seasonal signal-triggering. PSP distribution was also associated with low levels of the geomagnetic index Aa. A comparison between monthly distribution of PSP and other common biotoxins, also demonstrated that only PSP was significantly associated with low levels of the Aa index (p < 0.01). In some years of SSN minima no significant PSP-outbreaks in mussels were detected. This was attributed to a steady rise in geomagnetic activity that could disrupt the triggering signal. Global distribution patterns show that hotspots for G. catenatum blooms are regions with deficient crustal magnetic anomalies. In addition to the variable magnetic field mostly of solar origin, static fields related to magnetized rocks in the crust and upper mantle might play a role in restricting worldwide geographic distribution.
Actividad solar del ciclo 23. Predicción del máximo y fase decreciente utilizando redes neuronales
Parodi, M. A.; Ceccatto, H. A.; Piacentini, R. D.; García, P. J.
Different methods have been proposed in order to predict the maximum amplitude of solar cycles, either as a consequence of the intrinsic importance of this event and because of its relation with solar storms and possible effects upon satellites, communication systems, etc. In this work, a neural network solar activity prediction is presented, measured through the sunspot number (SSN). The 16-units neural network, with a 12:3:1 architecture, was trained in a ``feed-forward" propagation way and learning by the so called ``back propagation rule". The annual mean SSN data in the 1700-1975 and 1987-1998 periods were used as the training set. The solar cycle 21 (1976-1986) was taken as the cross-validation data set. After performing the network training we obtained a prediction of the maximum annual mean for the current solar cycle 23, SSNmax= 135 ±17 at the year 2000, which is 13% smaller than the International Consensus Commitee's mean maximum prediction obtained through ``precursor techniques". On the other hand, our prediction is only about 4% smaller than the Consensus's neural network mean prediction. A ``multiple step" prediction technique was also performed and SSN annual mean predicted values for the near-maximum (from the present year 1999 to beyond the maximum) and the declining activity of solar cycle 23 are presented in this work. The sensibility of predictions is also tested. To do so, we changed the interval width and comparated our results with those of a previous neural network prediction and those of others authors using differents methods.
75 FR 81249 - Privacy Act of 1974; System of Records
2010-12-27
... name, Social Security Number (SSN), date of birth, home address, marital status, gender, ethnic group, home and work phone numbers, employment history, awards, years of service, administrative data...
Bell numbers, determinants and series
Indian Academy of Sciences (India)
In this article, we study Bell numbers and Uppuluri Carpenter numbers. We obtain various expressions and relations between them. These include polynomial recurrences and expressions as determinants of certain matrices of binomial coefficients. Keywords. p-adic series; Bell numbers. 1. Introduction. Bell numbers, Bn [2] ...
Cosmic numbers the numbers that define our universe
Stein, James D
2011-01-01
Our fascination with numbers begins when we are children and continues throughout our lives. We start counting our fingers and toes and end up balancing checkbooks and calculating risk. So powerful is the appeal of numbers that many people ascribe to them a mystical significance. Other numbers go beyond the supernatural, working to explain our universe and how it behaves. In Cosmic Numbers , mathematics professor James D. Stein traces the discovery, evolution, and interrelationships of the numbers that define our world. Everyone knows about the speed of light and absolute zero, but numbers lik
Journal of Astrophysics and Astronomy | Indian Academy of Sciences
Indian Academy of Sciences (India)
2016-01-27
Jan 27, 2016 ... The records of sunspot number, sunspot areas and sunspot locations gathered over the centuries by various observatories are reanalysed with the aim of finding as yet undiscovered connections between the different parameters of the sunspot cycle and the butterfly diagram. Preliminary results of such ...
Fermion number in supersymmetric models
International Nuclear Information System (INIS)
Mainland, G.B.; Tanaka, K.
1975-01-01
The two known methods for introducing a conserved fermion number into supersymmetric models are discussed. While the introduction of a conserved fermion number often requires that the Lagrangian be massless or that bosons carry fermion number, a model is discussed in which masses can be introduced via spontaneous symmetry breaking and fermion number is conserved at all stages without assigning fermion number to bosons. (U.S.)
The Mental Number Line in Dyscalculia: Impaired Number Sense or Access from Symbolic Numbers?
Lafay, Anne; St-Pierre, Marie-Catherine; Macoir, Joël
2017-01-01
Numbers may be manipulated and represented mentally over a compressible number line oriented from left to right. According to numerous studies, one of the primary reasons for dyscalculia is related to improper understanding of the mental number line. Children with dyscalculia usually show difficulty when they have to place Arabic numbers on a…
THE RELATIONSHIP BETWEEN NUMBER NAMES AND NUMBER CONCEPTS
DEFF Research Database (Denmark)
Ejersbo, Lisser Rye; Misfeldt, Morten
Different countries have different names for numbers. These names are often related in a regular way to the base-10 place value system used for writing numbers as digits. However, in several languages, this regularity breaks down (e.g., between 10 and 20), and there is limited knowledge of how th......, a second, regular set of number names is introduced in primary school. The study’s findings suggest that the regularity of number names influences the development of number concepts and creates a positive impact on the understanding of the base-10 system....
The theory of algebraic numbers
Pollard, Harry
1998-01-01
An excellent introduction to the basics of algebraic number theory, this concise, well-written volume examines Gaussian primes; polynomials over a field; algebraic number fields; and algebraic integers and integral bases. After establishing a firm introductory foundation, the text explores the uses of arithmetic in algebraic number fields; the fundamental theorem of ideal theory and its consequences; ideal classes and class numbers; and the Fermat conjecture. 1975 edition. References. List of Symbols. Index.
Elementary number theory with programming
Lewinter, Marty
2015-01-01
A successful presentation of the fundamental concepts of number theory and computer programming Bridging an existing gap between mathematics and programming, Elementary Number Theory with Programming provides a unique introduction to elementary number theory with fundamental coverage of computer programming. Written by highly-qualified experts in the fields of computer science and mathematics, the book features accessible coverage for readers with various levels of experience and explores number theory in the context of programming without relying on advanced prerequisite knowledge and con
Distribution theory of algebraic numbers
Yang, Chung-Chun
2008-01-01
The book timely surveys new research results and related developments in Diophantine approximation, a division of number theory which deals with the approximation of real numbers by rational numbers. The book is appended with a list of challenging open problems and a comprehensive list of references. From the contents: Field extensions Algebraic numbers Algebraic geometry Height functions The abc-conjecture Roth''s theorem Subspace theorems Vojta''s conjectures L-functions.
Random Numbers and Quantum Computers
McCartney, Mark; Glass, David
2002-01-01
The topic of random numbers is investigated in such a way as to illustrate links between mathematics, physics and computer science. First, the generation of random numbers by a classical computer using the linear congruential generator and logistic map is considered. It is noted that these procedures yield only pseudo-random numbers since…
Generalized Bernoulli-Hurwitz numbers and the universal Bernoulli numbers
International Nuclear Information System (INIS)
Ônishi, Yoshihiro
2011-01-01
The three fundamental properties of the Bernoulli numbers, namely, the von Staudt-Clausen theorem, von Staudt's second theorem, and Kummer's original congruence, are generalized to new numbers that we call generalized Bernoulli-Hurwitz numbers. These are coefficients in the power series expansion of a higher-genus algebraic function with respect to a suitable variable. Our generalization differs strongly from previous works. Indeed, the order of the power of the modulus prime in our Kummer-type congruences is exactly the same as in the trigonometric function case (namely, Kummer's own congruence for the original Bernoulli numbers), and as in the elliptic function case (namely, H. Lang's extension for the Hurwitz numbers). However, in other past results on higher-genus algebraic functions, the modulus was at most half of its value in these classical cases. This contrast is clarified by investigating the analogue of the three properties above for the universal Bernoulli numbers. Bibliography: 34 titles.
2016 Gainesville Number Theory Conference
Garvan, Frank
2017-01-01
Gathered from the 2016 Gainesville Number Theory Conference honoring Krishna Alladi on his 60th birthday, these proceedings present recent research in number theory. Extensive and detailed, this volume features 40 articles by leading researchers on topics in analytic number theory, probabilistic number theory, irrationality and transcendence, Diophantine analysis, partitions, basic hypergeometric series, and modular forms. Readers will also find detailed discussions of several aspects of the path-breaking work of Srinivasa Ramanujan and its influence on current research. Many of the papers were motivated by Alladi's own research on partitions and q-series as well as his earlier work in number theory. Alladi is well known for his contributions in number theory and mathematics. His research interests include combinatorics, discrete mathematics, sieve methods, probabilistic and analytic number theory, Diophantine approximations, partitions and q-series identities. Graduate students and researchers will find th...
Photon number projection using non-number-resolving detectors
International Nuclear Information System (INIS)
Rohde, Peter P; Webb, James G; Huntington, Elanor H; Ralph, Timothy C
2007-01-01
Number-resolving photo-detection is necessary for many quantum optics experiments, especially in the application of entangled state preparation. Several schemes have been proposed for approximating number-resolving photo-detection using non-number-resolving detectors. Such techniques include multi-port detection and time-division multiplexing. We provide a detailed analysis and comparison of different number-resolving detection schemes, with a view to creating a useful reference for experimentalists. We show that the ideal architecture for projective measurements is a function of the detector's dark count and efficiency parameters. We also describe a process for selecting an appropriate topology given actual experimental component parameters
Bernoulli numbers and zeta functions
Arakawa, Tsuneo; Kaneko, Masanobu
2014-01-01
Two major subjects are treated in this book. The main one is the theory of Bernoulli numbers and the other is the theory of zeta functions. Historically, Bernoulli numbers were introduced to give formulas for the sums of powers of consecutive integers. The real reason that they are indispensable for number theory, however, lies in the fact that special values of the Riemann zeta function can be written by using Bernoulli numbers. This leads to more advanced topics, a number of which are treated in this book: Historical remarks on Bernoulli numbers and the formula for the sum of powers of consecutive integers; a formula for Bernoulli numbers by Stirling numbers; the Clausen–von Staudt theorem on the denominators of Bernoulli numbers; Kummer's congruence between Bernoulli numbers and a related theory of p-adic measures; the Euler–Maclaurin summation formula; the functional equation of the Riemann zeta function and the Dirichlet L functions, and their special values at suitable integers; various formulas of ...
Compendium of Experimental Cetane Numbers
Energy Technology Data Exchange (ETDEWEB)
Yanowitz, Janet [Ecoengineering, Sharonville, OH (United States); Ratcliff, Matthew A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); McCormick, Robert L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Taylor, J. D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Murphy, M. J. [Battelle, Columbus, OH (United States)
2017-02-22
This report is an updated version of the 2014 Compendium of Experimental Cetane Number Data and presents a compilation of measured cetane numbers for pure chemical compounds. It includes all available single-compound cetane number data found in the scientific literature up until December 2016 as well as a number of previously unpublished values, most measured over the past decade at the National Renewable Energy Laboratory. This version of the compendium contains cetane values for 496 pure compounds, including 204 hydrocarbons and 292 oxygenates. 176 individual measurements are new to this version of the compendium, all of them collected using ASTM Method D6890, which utilizes an Ignition Quality Tester (IQT) a type of constant-volume combustion chamber. For many compounds, numerous measurements are included, often collected by different researchers using different methods. The text of this document is unchanged from the 2014 version, except for the numbers of compounds in Section 3.1, the Appendices, Table 1. Primary Cetane Number Data Sources and Table 2. Number of Measurements Included in Compendium. Cetane number is a relative ranking of a fuel's autoignition characteristics for use in compression ignition engines. It is based on the amount of time between fuel injection and ignition, also known as ignition delay. The cetane number is typically measured either in a single-cylinder engine or a constant-volume combustion chamber. Values in the previous compendium derived from octane numbers have been removed and replaced with a brief analysis of the correlation between cetane numbers and octane numbers. The discussion on the accuracy and precision of the most commonly used methods for measuring cetane number has been expanded, and the data have been annotated extensively to provide additional information that will help the reader judge the relative reliability of individual results.
Dynamic Virtual Credit Card Numbers
Molloy, Ian; Li, Jiangtao; Li, Ninghui
Theft of stored credit card information is an increasing threat to e-commerce. We propose a dynamic virtual credit card number scheme that reduces the damage caused by stolen credit card numbers. A user can use an existing credit card account to generate multiple virtual credit card numbers that are either usable for a single transaction or are tied with a particular merchant. We call the scheme dynamic because the virtual credit card numbers can be generated without online contact with the credit card issuers. These numbers can be processed without changing any of the infrastructure currently in place; the only changes will be at the end points, namely, the card users and the card issuers. We analyze the security requirements for dynamic virtual credit card numbers, discuss the design space, propose a scheme using HMAC, and prove its security under the assumption the underlying function is a PRF.
Number-unconstrained quantum sensing
Mitchell, Morgan W.
2017-12-01
Quantum sensing is commonly described as a constrained optimization problem: maximize the information gained about an unknown quantity using a limited number of particles. Important sensors including gravitational wave interferometers and some atomic sensors do not appear to fit this description, because there is no external constraint on particle number. Here, we develop the theory of particle-number-unconstrained quantum sensing, and describe how optimal particle numbers emerge from the competition of particle-environment and particle-particle interactions. We apply the theory to optical probing of an atomic medium modeled as a resonant, saturable absorber, and observe the emergence of well-defined finite optima without external constraints. The results contradict some expectations from number-constrained quantum sensing and show that probing with squeezed beams can give a large sensitivity advantage over classical strategies when each is optimized for particle number.
Schmidt number for quantum operations
International Nuclear Information System (INIS)
Huang Siendong
2006-01-01
To understand how entangled states behave under local quantum operations is an open problem in quantum-information theory. The Jamiolkowski isomorphism provides a natural way to study this problem in terms of quantum states. We introduce the Schmidt number for quantum operations by this duality and clarify how the Schmidt number of a quantum state changes under a local quantum operation. Some characterizations of quantum operations with Schmidt number k are also provided
Random number generation and creativity.
Bains, William
2008-01-01
A previous paper suggested that humans can generate genuinely random numbers. I tested this hypothesis by repeating the experiment with a larger number of highly numerate subjects, asking them to call out a sequence of digits selected from 0 through 9. The resulting sequences were substantially non-random, with an excess of sequential pairs of numbers and a deficit of repeats of the same number, in line with previous literature. However, the previous literature suggests that humans generate random numbers with substantial conscious effort, and distractions which reduce that effort reduce the randomness of the numbers. I reduced my subjects' concentration by asking them to call out in another language, and with alcohol - neither affected the randomness of their responses. This suggests that the ability to generate random numbers is a 'basic' function of the human mind, even if those numbers are not mathematically 'random'. I hypothesise that there is a 'creativity' mechanism, while not truly random, provides novelty as part of the mind's defence against closed programming loops, and that testing for the effects seen here in people more or less familiar with numbers or with spontaneous creativity could identify more features of this process. It is possible that training to perform better at simple random generation tasks could help to increase creativity, through training people to reduce the conscious mind's suppression of the 'spontaneous', creative response to new questions.
Unsolved problems in number theory
Guy, Richard K
1994-01-01
Unsolved Problems in Number Theory contains discussions of hundreds of open questions, organized into 185 different topics. They represent numerous aspects of number theory and are organized into six categories: prime numbers, divisibility, additive number theory, Diophantine equations, sequences of integers, and miscellaneous. To prevent repetition of earlier efforts or duplication of previously known results, an extensive and up-to-date collection of references follows each problem. In the second edition, not only extensive new material has been added, but corrections and additions have been included throughout the book.
Complex numbers in n dimensions
Olariu, Silviu
2002-01-01
Two distinct systems of hypercomplex numbers in n dimensions are introduced in this book, for which the multiplication is associative and commutative, and which are rich enough in properties such that exponential and trigonometric forms exist and the concepts of analytic n-complex function, contour integration and residue can be defined. The first type of hypercomplex numbers, called polar hypercomplex numbers, is characterized by the presence in an even number of dimensions greater or equal to 4 of two polar axes, and by the presence in an odd number of dimensions of one polar axis. The other type of hypercomplex numbers exists as a distinct entity only when the number of dimensions n of the space is even, and since the position of a point is specified with the aid of n/2-1 planar angles, these numbers have been called planar hypercomplex numbers. The development of the concept of analytic functions of hypercomplex variables was rendered possible by the existence of an exponential form of the n-complex numbe...
Directory of Open Access Journals (Sweden)
J. Y. Kang
2013-01-01
Full Text Available Recently, many mathematicians have studied different kinds of the Euler, Bernoulli, and Genocchi numbers and polynomials. In this paper, we give another definition of polynomials Ũn(x. We observe an interesting phenomenon of “scattering” of the zeros of the polynomials Ũn(x in complex plane. We find out some identities and properties related to polynomials Ũn(x. Finally, we also derive interesting relations between polynomials Ũn(x, Stirling numbers, central factorial numbers, and Euler numbers.
BKP and projective Hurwitz numbers
Natanzon, Sergey M.; Orlov, Aleksandr Yu.
2017-06-01
We consider d-fold branched coverings of the projective plane RP^2 and show that the hypergeometric tau function of the BKP hierarchy of Kac and van de Leur is the generating function for weighted sums of the related Hurwitz numbers. In particular, we get the RP^2 analogues of the CP^1 generating functions proposed by Okounkov and by Goulden and Jackson. Other examples are Hurwitz numbers weighted by the Hall-Littlewood and by the Macdonald polynomials. We also consider integrals of tau functions which generate Hurwitz numbers related to base surfaces with arbitrary Euler characteristics sc {e}, in particular projective Hurwitz numbers sc {e}=1.
Prandtl number of toroidal plasmas
International Nuclear Information System (INIS)
Itoh, K.; Itoh, S.; Fukuyama, A.; Yagi, M.; Azumi, M.
1993-06-01
Theory of the L-mode confinement in toroidal plasmas is developed. The Prandtl number, the ratio between the ion viscosity and the thermal conductivity is obtained for the anomalous transport process which is caused by the self-sustained turbulence in the toroidal plasma. It is found that the Prandtl number is of order unity both for the ballooning mode turbulence in tokamaks and for the interchange mode turbulence in helical system. The influence on the anomalous transport and fluctuation level is evaluated. Hartmann number and magnetic Prandtl number are also discussed. (author)
78 FR 48910 - Notice of Information Collection
2013-08-12
... data to include but not limited to name, date of birth, citizenship, social security number (SSN), address, employment history, biometric identifiers (e.g. fingerprints), signature, digital photograph...
78 FR 47784 - Notice of Information Collection
2013-08-06
... data to include but not limited to name, date of birth, citizenship, social security number (SSN), address, employment history, biometric identifiers (e.g. fingerprints), signature, digital photograph...
78 FR 47785 - Notice of Information Collection
2013-08-06
... data to include but not limited to name, date of birth, citizenship, social security number (SSN), address, employment history, biometric identifiers (e.g. fingerprints), signature, digital photograph...
78 FR 61397 - Notice of Information Collection
2013-10-03
..., citizenship, social security number (SSN), address, employment history, biometric identifiers (e.g. fingerprints), signature, digital photograph. NASA collects information from U.S. Citizens requiring access 30...
77 FR 43814 - Privacy Act of 1974; System of Records
2012-07-26
... information such as name, Social Security Number (SSN), address, citizenship documentation, biometric data... technology protection, threat analysis, counter-narcotics and risk assessments. Records relating to the...
Indian Academy of Sciences (India)
016-0309-0. Generalized r-Lah numbers. MARK SHATTUCK. Department of ...... of Dowling lattices, Discrete Math. 312. (2012) 2337–2348. [7] Hsu L C and Shiue P J-S, A unified approach to generalized Stirling numbers, Adv. Appl. Math.
Ore, Oystein
1988-01-01
A prominent mathematician presents the principal ideas and methods of number theory within a historical and cultural framework. Oystein Ore's fascinating, accessible treatment requires only a basic knowledge of algebra. Topics include prime numbers, the Aliquot parts, linear indeterminate problems, congruences, Euler's theorem, classical construction problems, and many other subjects.
Investigating the Randomness of Numbers
Pendleton, Kenn L.
2009-01-01
The use of random numbers is pervasive in today's world. Random numbers have practical applications in such far-flung arenas as computer simulations, cryptography, gambling, the legal system, statistical sampling, and even the war on terrorism. Evaluating the randomness of extremely large samples is a complex, intricate process. However, the…
Fractions, Number Lines, Third Graders
Cramer, Kathleen; Ahrendt, Sue; Monson, Debra; Wyberg, Terry; Colum, Karen
2017-01-01
The Common Core State Standards for Mathematics (CCSSM) (CCSSI 2010) outlines ambitious goals for fraction learning, starting in third grade, that include the use of the number line model. Understanding and constructing fractions on a number line are particularly complex tasks. The current work of the authors centers on ways to successfully…
Pseudo-Random Number Generators
Howell, L. W.; Rheinfurth, M. H.
1984-01-01
Package features comprehensive selection of probabilistic distributions. Monte Carlo simulations resorted to whenever systems studied not amenable to deterministic analyses or when direct experimentation not feasible. Random numbers having certain specified distribution characteristic integral part of simulations. Package consists of collector of "pseudorandom" number generators for use in Monte Carlo simulations.
On Counting the Rational Numbers
Almada, Carlos
2010-01-01
In this study, we show how to construct a function from the set N of natural numbers that explicitly counts the set Q[superscript +] of all positive rational numbers using a very intuitive approach. The function has the appeal of Cantor's function and it has the advantage that any high school student can understand the main idea at a glance…
Core Knowledge, Language, and Number
Spelke, Elizabeth S.
2017-01-01
The natural numbers may be our simplest, most useful, and best-studied abstract concepts, but their origins are debated. I consider this debate in the context of the proposal, by Gallistel and Gelman, that natural number system is a product of cognitive evolution and the proposal, by Carey, that it is a product of human cultural history. I offer a…
The Algebra of Complex Numbers.
LePage, Wilbur R.
This programed text is an introduction to the algebra of complex numbers for engineering students, particularly because of its relevance to important problems of applications in electrical engineering. It is designed for a person who is well experienced with the algebra of real numbers and calculus, but who has no experience with complex number…
Salman, M.; Broersma, Haitze J.
2003-01-01
For two given graphs $G$ and $H$, the Ramsey number $R(G,H)$ is the smallest positive integer $p$ such that for every graph $F$ on $p$ vertices the following holds: either $F$ contains $G$ as a subgraph or the complement of $F$ contains $H$ as a subgraph. In this paper, we study the Ramsey numbers
Salman, M.; Broersma, Haitze J.
For two given graphs $F$ and $H$, the Ramsey number $R(F,H)$ is the smallest positive integer $p$ such that for every graph $G$ on $p$ vertices the following holds: either $G$ contains $F$ as a subgraph or the complement of $G$ contains $H$ as a subgraph. In this paper, we study the Ramsey numbers
Salman, M.; Broersma, Haitze J.
2007-01-01
For two given graphs $F$ and $H$, the Ramsey number $R(F,H)$ is the smallest positive integer $p$ such that for every graph $G$ on $p$ vertices the following holds: either $G$ contains $F$ as a subgraph or the complement of $G$ contains $H$ as a subgraph. In this paper, we study the Ramsey numbers
From natural numbers to quaternions
Kramer, Jürg
2017-01-01
This textbook offers an invitation to modern algebra through number systems of increasing complexity, beginning with the natural numbers and culminating with Hamilton's quaternions. Along the way, the authors carefully develop the necessary concepts and methods from abstract algebra: monoids, groups, rings, fields, and skew fields. Each chapter ends with an appendix discussing related topics from algebra and number theory, including recent developments reflecting the relevance of the material to current research. The present volume is intended for undergraduate courses in abstract algebra or elementary number theory. The inclusion of exercises with solutions also makes it suitable for self-study and accessible to anyone with an interest in modern algebra and number theory.
Generalized Bernoulli-Hurwitz numbers and the universal Bernoulli numbers
Energy Technology Data Exchange (ETDEWEB)
Onishi, Yoshihiro [Faculty of Education Human Sciences, University of Yamanashi, Takeda, Kofu (Japan)
2011-10-31
The three fundamental properties of the Bernoulli numbers, namely, the von Staudt-Clausen theorem, von Staudt's second theorem, and Kummer's original congruence, are generalized to new numbers that we call generalized Bernoulli-Hurwitz numbers. These are coefficients in the power series expansion of a higher-genus algebraic function with respect to a suitable variable. Our generalization differs strongly from previous works. Indeed, the order of the power of the modulus prime in our Kummer-type congruences is exactly the same as in the trigonometric function case (namely, Kummer's own congruence for the original Bernoulli numbers), and as in the elliptic function case (namely, H. Lang's extension for the Hurwitz numbers). However, in other past results on higher-genus algebraic functions, the modulus was at most half of its value in these classical cases. This contrast is clarified by investigating the analogue of the three properties above for the universal Bernoulli numbers. Bibliography: 34 titles.
Low energy fermion number violation
International Nuclear Information System (INIS)
Peccei, R.D.
1989-01-01
After a brief aside on charge quantization in the standard electroweak theory, I concentrate on various aspects of anomaly induced fermion number violation in the standard model. A critical analysis of the role of sphalerons for the universe's baryon asymmetry is presented and the importance of calculating directly fermion number violating Green's functions is stressed. A physical interpretation of the recent observation of Ringwald, that coherent effects in the electroweak theory lead to catastrophic fermion number violation at 100 TeV, is discussed. Possible quantum effects which might spoil this semi-classical picture are examined
Gallistel, C R
2017-02-19
After listing functional constraints on what numbers in the brain must do, I sketch the two's complement fixed-point representation of numbers because it has stood the test of time and because it illustrates the non-obvious ways in which an effective coding scheme may operate. I briefly consider its neurobiological implementation. It is easier to imagine its implementation at the cell-intrinsic molecular level, with thermodynamically stable, volumetrically minimal polynucleotides encoding the remembered numbers, than at the circuit level, with plastic synapses encoding them.This article is part of a discussion meeting issue 'The origins of numerical abilities'. © 2017 The Author(s).
Fundamental number theory with applications
Mollin, Richard A
2008-01-01
An update of the most accessible introductory number theory text available, Fundamental Number Theory with Applications, Second Edition presents a mathematically rigorous yet easy-to-follow treatment of the fundamentals and applications of the subject. The substantial amount of reorganizing makes this edition clearer and more elementary in its coverage. New to the Second Edition Removal of all advanced material to be even more accessible in scope New fundamental material, including partition theory, generating functions, and combinatorial number theory Expa
Classical theory of algebraic numbers
Ribenboim, Paulo
2001-01-01
Gauss created the theory of binary quadratic forms in "Disquisitiones Arithmeticae" and Kummer invented ideals and the theory of cyclotomic fields in his attempt to prove Fermat's Last Theorem These were the starting points for the theory of algebraic numbers, developed in the classical papers of Dedekind, Dirichlet, Eisenstein, Hermite and many others This theory, enriched with more recent contributions, is of basic importance in the study of diophantine equations and arithmetic algebraic geometry, including methods in cryptography This book has a clear and thorough exposition of the classical theory of algebraic numbers, and contains a large number of exercises as well as worked out numerical examples The Introduction is a recapitulation of results about principal ideal domains, unique factorization domains and commutative fields Part One is devoted to residue classes and quadratic residues In Part Two one finds the study of algebraic integers, ideals, units, class numbers, the theory of decomposition, iner...
Microcomputer Unit: Generating Random Numbers.
Haigh, William E.
1986-01-01
Presents an activity, suitable for students in grades 6-12, on generating random numbers. Objectives, equipment needed, list of prerequisite experiences, instructional strategies, and ready-to-copy student worksheets are included. (JN)
Number theory via Representation theory
Indian Academy of Sciences (India)
2014-11-09
Number theory via Representation theory. Eknath Ghate. November 9, 2014. Eightieth Annual Meeting, Chennai. Indian Academy of Sciences1. 1. This is a non-technical 20 minute talk intended for a general Academy audience.
Department of Homeland Security — SEVIS by the Numbers is a quarterly report that highlights nonimmigrant student and exchange visitor trends, values and information using data from the Student and...
Department of Homeland Security — SEVIS by the Numbers is a quarterly report that highlights nonimmigrant student and exchange visitor trends, values and information using data from the Student and...
Additive theory of prime numbers
Hua, L K
2009-01-01
Loo-Keng Hua was a master mathematician, best known for his work using analytic methods in number theory. In particular, Hua is remembered for his contributions to Waring's Problem and his estimates of trigonometric sums. Additive Theory of Prime Numbers is an exposition of the classic methods as well as Hua's own techniques, many of which have now also become classic. An essential starting point is Vinogradov's mean-value theorem for trigonometric sums, which Hua usefully rephrases and improves. Hua states a generalized version of the Waring-Goldbach problem and gives asymptotic formulas for the number of solutions in Waring's Problem when the monomial x^k is replaced by an arbitrary polynomial of degree k. The book is an excellent entry point for readers interested in additive number theory. It will also be of value to those interested in the development of the now classic methods of the subject.
Advanced number theory with applications
Mollin, Richard A
2009-01-01
Algebraic Number Theory and Quadratic Fields Algebraic Number Fields The Gaussian Field Euclidean Quadratic Fields Applications of Unique Factorization Ideals The Arithmetic of Ideals in Quadratic Fields Dedekind Domains Application to Factoring Binary Quadratic Forms Basics Composition and the Form Class Group Applications via Ambiguity Genus Representation Equivalence Modulo p Diophantine Approximation Algebraic and Transcendental Numbers Transcendence Minkowski's Convex Body Theorem Arithmetic Functions The Euler-Maclaurin Summation Formula Average Orders The Riemann zeta-functionIntroduction to p-Adic AnalysisSolving Modulo pn Introduction to Valuations Non-Archimedean vs. Archimedean Valuations Representation of p-Adic NumbersDirichlet: Characters, Density, and Primes in Progression Dirichlet Characters Dirichlet's L-Function and Theorem Dirichlet DensityApplications to Diophantine Equations Lucas-Lehmer Theory Generalized Ramanujan-Nagell Equations Bachet's Equation The Fermat Equation Catalan and the A...
Integral Presentations of Catalan Numbers
Dana-Picard, Thierry
2010-01-01
We compute in three different ways the same definite parametric integral. By-products are the derivation of a combinatorial identity and two integral presentations of Catalan numbers. One of them leads to a presentation using the [gamma] function.
Numbers their history and meaning
Flegg, Graham
2003-01-01
Readable, jargon-free book examines the earliest endeavors to count and record numbers, initial attempts to solve problems by using equations, and origins of infinite cardinal arithmetic. "Surprisingly exciting." - Choice.
Poison control center - emergency number
For a POISON EMERGENCY call: 1-800-222-1222 ANYWHERE IN THE UNITED STATES This national hotline number will let you ... is a free and confidential service. All local poison control centers in the United States use this ...
Women In Numbers - Europe workshop
Bucur, Alina; Feigon, Brooke; Schneps, Leila
2015-01-01
Covering topics in graph theory, L-functions, p-adic geometry, Galois representations, elliptic fibrations, genus 3 curves and bad reduction, harmonic analysis, symplectic groups and mould combinatorics, this volume presents a collection of papers covering a wide swath of number theory emerging from the third iteration of the international Women in Numbers conference, “Women in Numbers - Europe” (WINE), held on October 14–18, 2013 at the CIRM-Luminy mathematical conference center in France. While containing contributions covering a wide range of cutting-edge topics in number theory, the volume emphasizes those concrete approaches that make it possible for graduate students and postdocs to begin work immediately on research problems even in highly complex subjects.
Digital random-number generator
Brocker, D. H.
1973-01-01
For binary digit array of N bits, use N noise sources to feed N nonlinear operators; each flip-flop in digit array is set by nonlinear operator to reflect whether amplitude of generator which feeds it is above or below mean value of generated noise. Fixed-point uniform distribution random number generation method can also be used to generate random numbers with other than uniform distribution.
Random numbers from vacuum fluctuations
International Nuclear Information System (INIS)
Shi, Yicheng; Kurtsiefer, Christian; Chng, Brenda
2016-01-01
We implement a quantum random number generator based on a balanced homodyne measurement of vacuum fluctuations of the electromagnetic field. The digitized signal is directly processed with a fast randomness extraction scheme based on a linear feedback shift register. The random bit stream is continuously read in a computer at a rate of about 480 Mbit/s and passes an extended test suite for random numbers.
Numbers for reducible cubic scrolls
Directory of Open Access Journals (Sweden)
Israel Vainsencher
2004-12-01
Full Text Available We show how to compute the number of reducible cubic scrolls of codimension 2 in (math blackboard symbol Pn incident to the appropriate number of linear spaces.Mostramos como calcular o número de rolos cúbicos redutíveis de codimensão 2 em (math blackboard symbol Pn incidentes a espaços lineares apropriados.
Random numbers from vacuum fluctuations
Energy Technology Data Exchange (ETDEWEB)
Shi, Yicheng; Kurtsiefer, Christian, E-mail: christian.kurtsiefer@gmail.com [Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Center for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543 (Singapore); Chng, Brenda [Center for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543 (Singapore)
2016-07-25
We implement a quantum random number generator based on a balanced homodyne measurement of vacuum fluctuations of the electromagnetic field. The digitized signal is directly processed with a fast randomness extraction scheme based on a linear feedback shift register. The random bit stream is continuously read in a computer at a rate of about 480 Mbit/s and passes an extended test suite for random numbers.
Banner prints social security numbers
Robbins RA
2014-01-01
No abstract available. Article truncated at 150 words. The Monday edition of the Arizona Republic contained a story with potential interest to our readers. On the most recent address labels of Banner Health's magazine, Smart & Healthy, the addressee's Social Security or Medicare identification numbers, which are often identical to their Social Security numbers (1). The magazine was mailed to more than 50,000 recipients in Arizona late last week. The recipients are members of the Medicare Pion...
Directory of Open Access Journals (Sweden)
Saveliev Peter
2005-01-01
Full Text Available Suppose , are manifolds, are maps. The well-known coincidence problem studies the coincidence set . The number is called the codimension of the problem. More general is the preimage problem. For a map and a submanifold of , it studies the preimage set , and the codimension is . In case of codimension , the classical Nielsen number is a lower estimate of the number of points in changing under homotopies of , and for an arbitrary codimension, of the number of components of . We extend this theory to take into account other topological characteristics of . The goal is to find a "lower estimate" of the bordism group of . The answer is the Nielsen group defined as follows. In the classical definition, the Nielsen equivalence of points of based on paths is replaced with an equivalence of singular submanifolds of based on bordisms. We let , then the Nielsen group of order is the part of preserved under homotopies of . The Nielsen number of order is the rank of this group (then . These numbers are new obstructions to removability of coincidences and preimages. Some examples and computations are provided.
Dimensionless numbers in additive manufacturing
Mukherjee, T.; Manvatkar, V.; De, A.; DebRoy, T.
2017-02-01
The effects of many process variables and alloy properties on the structure and properties of additively manufactured parts are examined using four dimensionless numbers. The structure and properties of components made from 316 Stainless steel, Ti-6Al-4V, and Inconel 718 powders for various dimensionless heat inputs, Peclet numbers, Marangoni numbers, and Fourier numbers are studied. Temperature fields, cooling rates, solidification parameters, lack of fusion defects, and thermal strains are examined using a well-tested three-dimensional transient heat transfer and fluid flow model. The results show that lack of fusion defects in the fabricated parts can be minimized by strengthening interlayer bonding using high values of dimensionless heat input. The formation of harmful intermetallics such as laves phases in Inconel 718 can be suppressed using low heat input that results in a small molten pool, a steep temperature gradient, and a fast cooling rate. Improved interlayer bonding can be achieved at high Marangoni numbers, which results in vigorous circulation of liquid metal, larger pool dimensions, and greater depth of penetration. A high Fourier number ensures rapid cooling, low thermal distortion, and a high ratio of temperature gradient to the solidification growth rate with a greater tendency of plane front solidification.
Grammatical typology and frequency analysis: number availability and number use
Directory of Open Access Journals (Sweden)
Dunstan Brown
2013-12-01
Full Text Available The Smith-Stark hierarchy, a version of the Animacy Hierarchy, offers a typology of the cross-linguistic availability of number. The hierarchy predicts that the availability of number is not arbitrary. For any language, if the expression of plural is available to a noun, it is available to any noun of a semantic category further to the left of the hierarchy. In this article we move one step further by showing that the structure of the hierarchy can be observed in a statistical model of number use in Russian. We also investigate three co-variates: plural preference, pluralia tantum and irregularity effects; these account for an item's behaviour being different than that solely expected from its animacy position.
From Natural Numbers to Numbers and Curves in Nature - II
Indian Academy of Sciences (India)
line grows from C towards both left and right. Suppose ... Let there be n steps of growth to the left, and n-l to the right. Then n .... right-hand spirals is 8 and that of left-hand .... [4] I Stewart, Nature's Numbers - Discovering Order and Pattern in the.
Number Meaning and Number Grammar in English and Spanish
Bock, Kathryn; Carreiras, Manuel; Meseguer, Enrique
2012-01-01
Grammatical agreement makes different demands on speakers of different languages. Being widespread in the languages of the world, the features of agreement systems offer valuable tests of how language affects deep-seated domains of human cognition and categorization. Number agreement is one such domain, with intriguing evidence that typological…
The MIXMAX random number generator
Savvidy, Konstantin G.
2015-11-01
In this paper, we study the randomness properties of unimodular matrix random number generators. Under well-known conditions, these discrete-time dynamical systems have the highly desirable K-mixing properties which guarantee high quality random numbers. It is found that some widely used random number generators have poor Kolmogorov entropy and consequently fail in empirical tests of randomness. These tests show that the lowest acceptable value of the Kolmogorov entropy is around 50. Next, we provide a solution to the problem of determining the maximal period of unimodular matrix generators of pseudo-random numbers. We formulate the necessary and sufficient condition to attain the maximum period and present a family of specific generators in the MIXMAX family with superior performance and excellent statistical properties. Finally, we construct three efficient algorithms for operations with the MIXMAX matrix which is a multi-dimensional generalization of the famous cat-map. First, allowing to compute the multiplication by the MIXMAX matrix with O(N) operations. Second, to recursively compute its characteristic polynomial with O(N2) operations, and third, to apply skips of large number of steps S to the sequence in O(N2 log(S)) operations.
Experimental determination of Ramsey numbers.
Bian, Zhengbing; Chudak, Fabian; Macready, William G; Clark, Lane; Gaitan, Frank
2013-09-27
Ramsey theory is a highly active research area in mathematics that studies the emergence of order in large disordered structures. Ramsey numbers mark the threshold at which order first appears and are extremely difficult to calculate due to their explosive rate of growth. Recently, an algorithm that can be implemented using adiabatic quantum evolution has been proposed that calculates the two-color Ramsey numbers R(m,n). Here we present results of an experimental implementation of this algorithm and show that it correctly determines the Ramsey numbers R(3,3) and R(m,2) for 4≤m≤8. The R(8,2) computation used 84 qubits of which 28 were computational qubits. This computation is the largest experimental implementation of a scientifically meaningful adiabatic evolution algorithm that has been done to date.
Stream ciphers and number theory
Cusick, Thomas W; Renvall, Ari R
2004-01-01
This is the unique book on cross-fertilisations between stream ciphers and number theory. It systematically and comprehensively covers known connections between the two areas that are available only in research papers. Some parts of this book consist of new research results that are not available elsewhere. In addition to exercises, over thirty research problems are presented in this book. In this revised edition almost every chapter was updated, and some chapters were completely rewritten. It is useful as a textbook for a graduate course on the subject, as well as a reference book for researchers in related fields. · Unique book on interactions of stream ciphers and number theory. · Research monograph with many results not available elsewhere. · A revised edition with the most recent advances in this subject. · Over thirty research problems for stimulating interactions between the two areas. · Written by leading researchers in stream ciphers and number theory.
Sequences, groups, and number theory
Rigo, Michel
2018-01-01
This collaborative book presents recent trends on the study of sequences, including combinatorics on words and symbolic dynamics, and new interdisciplinary links to group theory and number theory. Other chapters branch out from those areas into subfields of theoretical computer science, such as complexity theory and theory of automata. The book is built around four general themes: number theory and sequences, word combinatorics, normal numbers, and group theory. Those topics are rounded out by investigations into automatic and regular sequences, tilings and theory of computation, discrete dynamical systems, ergodic theory, numeration systems, automaton semigroups, and amenable groups. This volume is intended for use by graduate students or research mathematicians, as well as computer scientists who are working in automata theory and formal language theory. With its organization around unified themes, it would also be appropriate as a supplemental text for graduate level courses.
Negative numbers and antimatter particles
International Nuclear Information System (INIS)
Tsan, Ung Chan
2012-01-01
Dirac's equation states that an electron implies the existence of an antielectron with the same mass (more generally same arithmetic properties) and opposite charge (more generally opposite algebraic properties). Subsequent observation of antielectron validated this concept. This statement can be extended to all matter particles; observation of antiproton, antineutron, antideuton … is in complete agreement with this view. Recently antihypertriton was observed and 38 atoms of antihydrogen were trapped. This opens the path for use in precise testing of nature's fundamental symmetries. The symmetric properties of a matter particle and its mirror antimatter particle seem to be well established. Interactions operate on matter particles and antimatter particles as well. Conservation of matter parallels addition operating on positive and negative numbers. Without antimatter particles, interactions of the Standard Model (electromagnetism, strong interaction and weak interaction) cannot have the structure of group. Antimatter particles are characterized by negative baryonic number A or/and negative leptonic number L. Materialization and annihilation obey conservation of A and L (associated to all known interactions), explaining why from pure energy (A = 0, L = 0) one can only obtain a pair of matter particle antimatter particle — electron antielectron, proton and antiproton — via materialization where the mass of a pair of particle antiparticle gives back to pure energy with annihilation. These two mechanisms cannot change the difference in the number of matter particles and antimatter particles. Thus from pure energy only a perfectly symmetric (in number) universe could be generated as proposed by Dirac but observation showed that our universe is not symmetric, it is a matter universe which is nevertheless neutral. Fall of reflection symmetries shattered the prejudice that there is no way to define in an absolute way right and left or matter and antimatter
Generation of photon number states
International Nuclear Information System (INIS)
Waks, Edo; Diamanti, Eleni; Yamamoto, Yoshihisa
2006-01-01
The visible light photon counter (VLPC) has the capability to discriminate photon number states, in contrast to conventional photon counters which can only detect the presence or absence of photons. We use this capability, along with the process of parametric down-conversion, to generate photon number states. We experimentally demonstrate generation of states containing 1, 2, 3 and 4 photons with high fidelity. We then explore the effect the detection efficiency of the VLPC has on the generation rate and fidelity of the created states
World Epidemiology Review, Number 105.
1978-09-13
respectively last year. Not Siberian The official stated that the Soviet virus is not related to the famous pathogenic agent which appeared in the Siberian...numbers of aphids are due to appear on the alfalfa in the near future. The infestation has approached and even exceeded the extent at which serious
Counting problems for number rings
Brakenhoff, Johannes Franciscus
2009-01-01
In this thesis we look at three counting problems connected to orders in number fields. First we study the probability that for a random polynomial f in Z[X] the ring Z[X]/f is the maximal order in Q[X]/f. Connected to this is the probability that a random polynomial has a squarefree
Linking numbers and variational method
International Nuclear Information System (INIS)
Oda, I.; Yahikozawa, S.
1989-09-01
The ordinary and generalized linking numbers for two surfaces of dimension p and n-p-1 in an n dimensional manifold are derived. We use a variational method based on the properties of topological quantum field theory in order to derive them. (author). 13 refs, 2 figs
From Calculus to Number Theory
Indian Academy of Sciences (India)
A. Raghuram
2016-11-04
Nov 4, 2016 ... diverges to infinity. This means given any number M, however large, we can add sufficiently many terms in the above series to make the sum larger than M. This was first proved by Nicole Oresme (1323-1382), a brilliant. French philosopher of his times.
RELATIONSHIP BETWEEN SLUDGE DEWATERABILITY NUMBER ...
African Journals Online (AJOL)
A representative of a sludge sample collected from the same source was filtered under the same environmental condition and the result analysed with two different concepts. One method of analysis uses Sludge Dewaterability Number, while the second employed the Carman's Specific resistance concept in sludge ...
Materiales, 1995
1995-01-01
Four booklets present articles on Spanish language and culture aimed at teachers of Spanish in the United States for student use in their classes. Number 17, "Los Jovenes Espanoles" (Spanish Youth), includes articles on Spanish youth sports, music, gangs, thoughts, and t-shirt slogans: (1) "Young Spanish Athletes"; (2)…
Materiales, 1997
1997-01-01
These three journals of contemporary cultural, historical, and social interest contain activities designed to enhance the awareness of students of Spanish as a foreign language regarding the entire panorama of daily life in Spain. Number 21 focuses on the role of modern Spanish women; their career status; female authors; and the changing place of…
On badly approximable complex numbers
DEFF Research Database (Denmark)
Esdahl-Schou, Rune; Kristensen, S.
We show that the set of complex numbers which are badly approximable by ratios of elements of , where has maximal Hausdorff dimension. In addition, the intersection of these sets is shown to have maximal dimension. The results remain true when the sets in question are intersected with a suitably...
Models for Rational Number Bases
Pedersen, Jean J.; Armbruster, Frank O.
1975-01-01
This article extends number bases to negative integers, then to positive rationals and finally to negative rationals. Methods and rules for operations in positive and negative rational bases greater than one or less than negative one are summarized in tables. Sample problems are explained and illustrated. (KM)
Residual number processing in dyscalculia.
Cappelletti, Marinella; Price, Cathy J
2014-01-01
Developmental dyscalculia - a congenital learning disability in understanding numerical concepts - is typically associated with parietal lobe abnormality. However, people with dyscalculia often retain some residual numerical abilities, reported in studies that otherwise focused on abnormalities in the dyscalculic brain. Here we took a different perspective by focusing on brain regions that support residual number processing in dyscalculia. All participants accurately performed semantic and categorical colour-decision tasks with numerical and non-numerical stimuli, with adults with dyscalculia performing slower than controls in the number semantic tasks only. Structural imaging showed less grey-matter volume in the right parietal cortex in people with dyscalculia relative to controls. Functional MRI showed that accurate number semantic judgements were maintained by parietal and inferior frontal activations that were common to adults with dyscalculia and controls, with higher activation for participants with dyscalculia than controls in the right superior frontal cortex and the left inferior frontal sulcus. Enhanced activation in these frontal areas was driven by people with dyscalculia who made faster rather than slower numerical decisions; however, activation could not be accounted for by response times per se, because it was greater for fast relative to slow dyscalculics but not greater for fast controls relative to slow dyscalculics. In conclusion, our results reveal two frontal brain regions that support efficient number processing in dyscalculia.
Residual number processing in dyscalculia
Directory of Open Access Journals (Sweden)
Marinella Cappelletti
2014-01-01
Full Text Available Developmental dyscalculia – a congenital learning disability in understanding numerical concepts – is typically associated with parietal lobe abnormality. However, people with dyscalculia often retain some residual numerical abilities, reported in studies that otherwise focused on abnormalities in the dyscalculic brain. Here we took a different perspective by focusing on brain regions that support residual number processing in dyscalculia. All participants accurately performed semantic and categorical colour-decision tasks with numerical and non-numerical stimuli, with adults with dyscalculia performing slower than controls in the number semantic tasks only. Structural imaging showed less grey-matter volume in the right parietal cortex in people with dyscalculia relative to controls. Functional MRI showed that accurate number semantic judgements were maintained by parietal and inferior frontal activations that were common to adults with dyscalculia and controls, with higher activation for participants with dyscalculia than controls in the right superior frontal cortex and the left inferior frontal sulcus. Enhanced activation in these frontal areas was driven by people with dyscalculia who made faster rather than slower numerical decisions; however, activation could not be accounted for by response times per se, because it was greater for fast relative to slow dyscalculics but not greater for fast controls relative to slow dyscalculics. In conclusion, our results reveal two frontal brain regions that support efficient number processing in dyscalculia.
Residual number processing in dyscalculia☆
Cappelletti, Marinella; Price, Cathy J.
2013-01-01
Developmental dyscalculia – a congenital learning disability in understanding numerical concepts – is typically associated with parietal lobe abnormality. However, people with dyscalculia often retain some residual numerical abilities, reported in studies that otherwise focused on abnormalities in the dyscalculic brain. Here we took a different perspective by focusing on brain regions that support residual number processing in dyscalculia. All participants accurately performed semantic and categorical colour-decision tasks with numerical and non-numerical stimuli, with adults with dyscalculia performing slower than controls in the number semantic tasks only. Structural imaging showed less grey-matter volume in the right parietal cortex in people with dyscalculia relative to controls. Functional MRI showed that accurate number semantic judgements were maintained by parietal and inferior frontal activations that were common to adults with dyscalculia and controls, with higher activation for participants with dyscalculia than controls in the right superior frontal cortex and the left inferior frontal sulcus. Enhanced activation in these frontal areas was driven by people with dyscalculia who made faster rather than slower numerical decisions; however, activation could not be accounted for by response times per se, because it was greater for fast relative to slow dyscalculics but not greater for fast controls relative to slow dyscalculics. In conclusion, our results reveal two frontal brain regions that support efficient number processing in dyscalculia. PMID:24266008
Learning Potentials in Number Blocks
DEFF Research Database (Denmark)
Majgaard, Gunver; Misfeldt, Morten; Nielsen, Jacob
2012-01-01
This paper describes an initial exploration of how an interactive cubic user-configurable modular robotic system can be used to support learning about numbers and how they are pronounced. The development is done in collaboration with a class of 7-8 year old children and their mathematics teacher....
An introduction to Catalan numbers
Roman, Steven
2015-01-01
This textbook provides an introduction to the Catalan numbers and their remarkable properties, along with their various applications in combinatorics. Intended to be accessible to students new to the subject, the book begins with more elementary topics before progressing to more mathematically sophisticated topics. Each chapter focuses on a specific combinatorial object counted by these numbers, including paths, trees, tilings of a staircase, null sums in Zn+1, interval structures, partitions, permutations, semiorders, and more. Exercises are included at the end of book, along with hints and solutions, to help students obtain a better grasp of the material. The text is ideal for undergraduate students studying combinatorics, but will also appeal to anyone with a mathematical background who has an interest in learning about the Catalan numbers. “Roman does an admirable job of providing an introduction to Catalan numbers of a different nature from the previous ones. He has made an excellent choice o...
Strouhal number for free swimming
Saadat, Mehdi; van Buren, Tyler; Floryan, Daniel; Smits, Alexander; Haj-Hariri, Hossein
2015-11-01
In this work, we present experimental results to explore the implications of free swimming for Strouhal number (as an outcome) in the context of a simple model for a fish that consists of a 2D virtual body (source of drag) and a 2D pitching foil (source of thrust) representing cruising with thunniform locomotion. The results validate the findings of Saadat and Haj-Hariri (2012): for pitching foils thrust coefficient is a function of Strouhal number for all gaits having amplitude less than a certain critical value. Equivalently, given the balance of thrust and drag forces at cruise, Strouhal number is only a function of the shape, i.e. drag coefficient and area, and essentially a constant for high enough swimming speeds for which the mild dependence of drag coefficient on the speed vanishes. Furthermore, a dimensional analysis generalizes the findings. A scaling analysis shows that the variation of Strouhal number with cruising speed is functionally related to the variation of body drag coefficient with speed. Supported by ONR MURI Grant N00014-14-1-0533.
Directory of Open Access Journals (Sweden)
Peter Saveliev
2005-04-01
Full Text Available Suppose X, Y are manifolds, f,g:XÃ¢Â†Â’Y are maps. The well-known coincidence problem studies the coincidence set C={x:f(x=g(x}. The number m=dimÃ¢Â€Â‰XÃ¢ÂˆÂ’dimÃ¢Â€Â‰Y is called the codimension of the problem. More general is the preimage problem. For a map f:XÃ¢Â†Â’Z and a submanifold Y of Z, it studies the preimage set C={x:f(xÃ¢ÂˆÂˆY}, and the codimension is m=dimÃ¢Â€Â‰X+dimÃ¢Â€Â‰YÃ¢ÂˆÂ’dimÃ¢Â€Â‰Z. In case of codimension 0, the classical Nielsen number N(f,Y is a lower estimate of the number of points in C changing under homotopies of f, and for an arbitrary codimension, of the number of components of C. We extend this theory to take into account other topological characteristics of C. The goal is to find a Ã¢Â€Âœlower estimateÃ¢Â€Â of the bordism group ÃŽÂ©p(C of C. The answer is the Nielsen group Sp(f,Y defined as follows. In the classical definition, the Nielsen equivalence of points of C based on paths is replaced with an equivalence of singular submanifolds of C based on bordisms. We let Sp'(f,Y=ÃŽÂ©p(C/Ã¢ÂˆÂ¼N, then the Nielsen group of order p is the part of Sp'(f,Y preserved under homotopies of f. The Nielsen number Np(F,Y of order p is the rank of this group (then N(f,Y=N0(f,Y. These numbers are new obstructions to removability of coincidences and preimages. Some examples and computations are provided.
75 FR 13091 - Privacy Act of 1974; System of Records
2010-03-18
... birth, gender, Social Security Number (SSN), rank/grade, duty status, skill specialty, and deployability..., Social Security Number (SSN), rank/ grade, duty status, skill specialty, deployability and related reason... properly screened and cleared for need-to-know. System users can view only truncated Social Security Number...
75 FR 43497 - Privacy Act of 1974; System of Records
2010-07-26
... media and paper. Retrievability: By Social Security Number (SSN) and name. Safeguards: Records are..., address, date of birth, Social Security Number (SSN), business phone number and e-mail address, personal... information, foreign activities and interests, and family personal contact information. Authority for...
76 FR 5351 - Privacy Act of 1974; System of Records
2011-01-31
... (SSN), race/ethnicity, gender, and marital status. Contact information: home telephone number, fax number, personal e- mail address, mailing/home address, home of record address, State, work telephone... Security Number (SSN), race/ethnicity, gender, and marital status. Contact information: Home telephone...
75 FR 14141 - Privacy Act of 1974; System of Records
2010-03-24
... electronic storage media. RETRIEVABILITY: Individual's name, Social Security Number (SSN), or date of birth... facilities. CATEGORIES OF RECORDS IN THE SYSTEM: Subject individual's full name, Social Security Number (SSN... and address; children's names, dates of birth, address and telephone number; parents names, addresses...
Gaussian distribution of LMOV numbers
Directory of Open Access Journals (Sweden)
A. Mironov
2017-11-01
Full Text Available Recent advances in knot polynomial calculus allowed us to obtain a huge variety of LMOV integers counting degeneracy of the BPS spectrum of topological theories on the resolved conifold and appearing in the genus expansion of the plethystic logarithm of the Ooguri–Vafa partition functions. Already the very first look at this data reveals that the LMOV numbers are randomly distributed in genus (! and are very well parameterized by just three parameters depending on the representation, an integer and the knot. We present an accurate formulation and evidence in support of this new puzzling observation about the old puzzling quantities. It probably implies that the BPS states, counted by the LMOV numbers can actually be composites made from some still more elementary objects.
Energy Technology Data Exchange (ETDEWEB)
Nakayama, Kazunori [Theory Center, KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Takahashi, Fuminobu, E-mail: fumi@tuhep.phys.tohoku.ac.jp [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa 277-8568 (Japan); Yanagida, Tsutomu T. [Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa 277-8568 (Japan); Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan)
2011-05-23
We propose that the stability of dark matter is ensured by a discrete subgroup of the U(1){sub B-L} gauge symmetry, Z{sub 2}(B-L). We introduce a set of chiral fermions charged under the U(1){sub B-L} in addition to the right-handed neutrinos, and require the anomaly-cancellation conditions associated with the U(1){sub B-L} gauge symmetry. We find that the possible number of fermions and their charges are tightly constrained, and that non-trivial solutions appear when at least five additional chiral fermions are introduced. The Fermat theorem in the number theory plays an important role in this argument. Focusing on one of the solutions, we show that there is indeed a good candidate for dark matter, whose stability is guaranteed by Z{sub 2}(B-L).
International Nuclear Information System (INIS)
Nakayama, Kazunori; Takahashi, Fuminobu; Yanagida, Tsutomu T.
2011-01-01
We propose that the stability of dark matter is ensured by a discrete subgroup of the U(1) B-L gauge symmetry, Z 2 (B-L). We introduce a set of chiral fermions charged under the U(1) B-L in addition to the right-handed neutrinos, and require the anomaly-cancellation conditions associated with the U(1) B-L gauge symmetry. We find that the possible number of fermions and their charges are tightly constrained, and that non-trivial solutions appear when at least five additional chiral fermions are introduced. The Fermat theorem in the number theory plays an important role in this argument. Focusing on one of the solutions, we show that there is indeed a good candidate for dark matter, whose stability is guaranteed by Z 2 (B-L).
Gyori, Ervin; Lovasz, Laszlo
2006-01-01
This volume honours the eminent mathematicians Vera Sos and Andras Hajnal. The book includes survey articles reviewing classical theorems, as well as new, state-of-the-art results. Also presented are cutting edge expository research papers with new theorems and proofs in the area of the classical Hungarian subjects, like extremal combinatorics, colorings, combinatorial number theory, etc. The open problems and the latest results in the papers are sure to inspire further research.
Large number discrimination by mosquitofish.
Directory of Open Access Journals (Sweden)
Christian Agrillo
Full Text Available BACKGROUND: Recent studies have demonstrated that fish display rudimentary numerical abilities similar to those observed in mammals and birds. The mechanisms underlying the discrimination of small quantities (<4 were recently investigated while, to date, no study has examined the discrimination of large numerosities in fish. METHODOLOGY/PRINCIPAL FINDINGS: Subjects were trained to discriminate between two sets of small geometric figures using social reinforcement. In the first experiment mosquitofish were required to discriminate 4 from 8 objects with or without experimental control of the continuous variables that co-vary with number (area, space, density, total luminance. Results showed that fish can use the sole numerical information to compare quantities but that they preferentially use cumulative surface area as a proxy of the number when this information is available. A second experiment investigated the influence of the total number of elements to discriminate large quantities. Fish proved to be able to discriminate up to 100 vs. 200 objects, without showing any significant decrease in accuracy compared with the 4 vs. 8 discrimination. The third experiment investigated the influence of the ratio between the numerosities. Performance was found to decrease when decreasing the numerical distance. Fish were able to discriminate numbers when ratios were 1:2 or 2:3 but not when the ratio was 3:4. The performance of a sample of undergraduate students, tested non-verbally using the same sets of stimuli, largely overlapped that of fish. CONCLUSIONS/SIGNIFICANCE: Fish are able to use pure numerical information when discriminating between quantities larger than 4 units. As observed in human and non-human primates, the numerical system of fish appears to have virtually no upper limit while the numerical ratio has a clear effect on performance. These similarities further reinforce the view of a common origin of non-verbal numerical systems in all
DISCRETE MATHEMATICS/NUMBER THEORY
Mrs. Manju Devi*
2017-01-01
Discrete mathematics is the study of mathematical structures that are fundamentally discrete rather than continuous. In contrast to real numbers that have the property of varying "smoothly", the objects studied in discrete mathematics such as integers, graphs, and statements do not vary smoothly in this way, but have distinct, separated values. Discrete mathematics therefore excludes topics in "continuous mathematics" such as calculus and analysis. Discrete objects can often be enumerated by ...
Number systems and combinatorial problems
Yordzhev, Krasimir
2014-01-01
The present work has been designed for students in secondary school and their teachers in mathematics. We will show how with the help of our knowledge of number systems we can solve problems from other fields of mathematics for example in combinatorial analysis and most of all when proving some combinatorial identities. To demonstrate discussed in this article method we have chosen several suitable mathematical tasks.
World Epidemiology Review, Number 109.
1978-10-11
infantilism, "lung color," monale, followed by cardiac deficiency, cyanosis, intestinal stenosis ; glomerulonephritis and neurological symptoms. Many...Bursa were infected by rabid dogs and cats. The following breakdown was given for the number of persons infected during the succeeding 7 months of...area it is much more difficult to save his life. One of the six dogs taken into custody under the suspicion of being rabid during the past 8 months
Number theory meets Higgs physics
CERN. Geneva
2014-01-01
Inspired by results from modern number theory and algebraic geometry, a lot of progress has recently been made regarding the computation of multi-loop integrals and scattering amplitudes. I will discuss various new approaches to the computation of loop integrals, and illustrate them on the first computation of a quantity at N3LO in perturbative QCD, the soft-virtual part of the inclusive Higgs-boson cross section in gluon fusion at N3LO.
Residual number processing in dyscalculia ?
Cappelletti, Marinella; Price, Cathy J.
2013-01-01
Developmental dyscalculia – a congenital learning disability in understanding numerical concepts – is typically associated with parietal lobe abnormality. However, people with dyscalculia often retain some residual numerical abilities, reported in studies that otherwise focused on abnormalities in the dyscalculic brain. Here we took a different perspective by focusing on brain regions that support residual number processing in dyscalculia. All participants accurately performed semantic and ca...
International Nuclear Information System (INIS)
Bursa, M.
1988-01-01
The secular Love number of Phobos was estimated k s =10.4. It only deviates by one order of magnitude from that corresponding to the ideal equilibrium state. It is not in contradiction with the theory of the origin of Phobos as a result of the accretion around Mars. In its early history, the rotation period of Phobos had been estimated to be approx. 2.4 hours. (author). 1 tab., 4 refs
When a number is not only a number
DEFF Research Database (Denmark)
Christensen, Ken Ramshøj; Roepstorff, Andreas; Saddy, Douglas
at. 1999, 2004). Furthermore, lesions studies have shown that damage to the posterior inferior parietal cortex leads to severe difficulties with performing simple calculation, such as stepwise computation (Joseph 2000: 463). The same frontal-parietal network is also involved in working memory (WM......MRI study which involves numerical processing as well as WM and error detection. Three types of stimuli: (a) repeated chunks (x, y, z, x, y, z…), (b) smaller structured chunks requiring minimal calculation (x, x+1, y, y+1, z, z+1…), and (c) strings with an increased calculation requirement (x = x+3......). The control condition consists of simple x = x+1 strings (e.g. 1, 2, 3, 4, 5, 6…). The subjects have to press a button when they detect error to the general patterns, i.e., when a number does not conform to the numerical string. Using a block design to investigate the numerical processing, all three...
Propulsion at low Reynolds number
International Nuclear Information System (INIS)
Najafi, Ali; Golestanian, Ramin
2005-01-01
We study the propulsion of two model swimmers at low Reynolds number. Inspired by Purcell's model, we propose a very simple one-dimensional swimmer consisting of three spheres that are connected by two arms whose lengths can change between two values. The proposed swimmer can swim with a special type of motion, which breaks the time-reversal symmetry. We also show that an ellipsoidal membrane with tangential travelling wave on it can also propel itself in the direction preferred by the travelling wave. This system resembles the realistic biological animals like Paramecium
Propulsion at low Reynolds number
Energy Technology Data Exchange (ETDEWEB)
Najafi, Ali [Institute for Advanced Studies in Basic Sciences, Zanjan 45195-159 (Iran, Islamic Republic of); Faculty of Science, Zanjan University, Zanjan 313 (Iran, Islamic Republic of); Golestanian, Ramin [Institute for Advanced Studies in Basic Sciences, Zanjan 45195-159 (Iran, Islamic Republic of)
2005-04-13
We study the propulsion of two model swimmers at low Reynolds number. Inspired by Purcell's model, we propose a very simple one-dimensional swimmer consisting of three spheres that are connected by two arms whose lengths can change between two values. The proposed swimmer can swim with a special type of motion, which breaks the time-reversal symmetry. We also show that an ellipsoidal membrane with tangential travelling wave on it can also propel itself in the direction preferred by the travelling wave. This system resembles the realistic biological animals like Paramecium.
Fedosov differentials and Catalan numbers
Energy Technology Data Exchange (ETDEWEB)
Loeffler, Johannes, E-mail: j.j.loeffler@web.d [Muehlgasse 19, 78549 Spaichingen (Germany)
2010-06-11
The aim of the paper is to establish a non-recursive formula for the general solution of Fedosov's 'quadratic' fixed-point equation (Fedosov 1994 J. Diff. Geom. 40 213-38). Fedosov's geometrical fixed-point equation for a differential is rewritten in a form similar to the functional equation for the generating function of Catalan numbers. This allows us to guess the solution. An adapted example for Kaehler manifolds of constant sectional curvature is considered in detail. Also for every connection on a manifold a familiar classical differential will be introduced.
Fedosov differentials and Catalan numbers
Löffler, Johannes
2010-06-01
The aim of the paper is to establish a non-recursive formula for the general solution of Fedosov's 'quadratic' fixed-point equation (Fedosov 1994 J. Diff. Geom. 40 213-38). Fedosov's geometrical fixed-point equation for a differential is rewritten in a form similar to the functional equation for the generating function of Catalan numbers. This allows us to guess the solution. An adapted example for Kaehler manifolds of constant sectional curvature is considered in detail. Also for every connection on a manifold a familiar classical differential will be introduced. Dedicated to the memory of Nikolai Neumaier.
2014-12-01
at $23,200 an hour. So that’s another $1.2M a day. Pete: Don’t they shoot at you? Joe: Well, we usually wire together a bunch of microwave ovens we...Officer, to break his vow never to sail on a “ bird farm.” MORS welcomes Kevin Williams as the new AF sponsor. He became the Director of...person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number
Random Generators and Normal Numbers
Bailey, David H.; Crandall, Richard E.
2002-01-01
Pursuant to the authors' previous chaotic-dynamical model for random digits of fundamental constants, we investigate a complementary, statistical picture in which pseudorandom number generators (PRNGs) are central. Some rigorous results are achieved: We establish b-normality for constants of the form $\\sum_i 1/(b^{m_i} c^{n_i})$ for certain sequences $(m_i), (n_i)$ of integers. This work unifies and extends previously known classes of explicit normals. We prove that for coprime $b,c>1$ the...
DEFF Research Database (Denmark)
Krarup, Jakob
2016-01-01
Born in 1936 I was a schoolboy on the threshold of the secondary school when a knapsack-type game was played with a class mate around 1946–1947. To play the game well and fascinated by numbers in general since my early childhood, however, I realized soon the usefulness of knowing that 1001 = 7 × 11...... × 13. Today, about 70 years later, the game has been passed to some of my grandchildren who also should convince themselves that simple, arithmetic calculations do not necessarily require a pocket computer. As a side effect of the recent revival of the game I felt motivated to seek more insight...
Nielsen number and differential equations
Directory of Open Access Journals (Sweden)
Andres Jan
2005-01-01
Full Text Available In reply to a problem of Jean Leray (application of the Nielsen theory to differential equations, two main approaches are presented. The first is via Poincaré's translation operator, while the second one is based on the Hammerstein-type solution operator. The applicability of various Nielsen theories is discussed with respect to several sorts of differential equations and inclusions. Links with the Sharkovskii-like theorems (a finite number of periodic solutions imply infinitely many subharmonics are indicated, jointly with some further consequences like the nontrivial -structure of solutions of initial value problems. Some illustrating examples are supplied and open problems are formulated.
Sunspot waves and flare energy release
Czech Academy of Sciences Publication Activity Database
Sych, R.A.; Karlický, Marian; Altyntsev, A.; Dudík, Jaroslav; Kashapova, L. K.
2015-01-01
Roč. 577, May (2015), A43/1-A43/8 ISSN 0004-6361 R&D Projects: GA ČR GAP209/12/0103; GA ČR GAP209/12/1652 Grant - others:EC(XE) 606862 Program:FP7 Institutional support: RVO:67985815 Keywords : Sun flares * Sun oscillations * Sun X-rays Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.378, year: 2014
A GEOMETRICAL HEIGHT SCALE FOR SUNSPOT PENUMBRAE
International Nuclear Information System (INIS)
Puschmann, K. G.; Ruiz Cobo, B.; MartInez Pillet, V.
2010-01-01
Inversions of spectropolarimetric observations of penumbral filaments deliver the stratification of different physical quantities in an optical depth scale. However, without establishing a geometrical height scale, their three-dimensional geometrical structure cannot be derived. This is crucial in understanding the correct spatial variation of physical properties in the penumbral atmosphere and to provide insights into the mechanism capable of explaining the observed penumbral brightness. The aim of this work is to determine a global geometrical height scale in the penumbra by minimizing the divergence of the magnetic field vector and the deviations from static equilibrium as imposed by a force balance equation that includes pressure gradients, gravity, and the Lorentz force. Optical depth models are derived from the inversion of spectropolarimetric data of an active region observed with the Solar Optical Telescope on board the Hinode satellite. We use a genetic algorithm to determine the boundary condition for the inference of geometrical heights. The retrieved geometrical height scale permits the evaluation of the Wilson depression at each pixel and the correlation of physical quantities at each height. Our results fit into the uncombed penumbral scenario, i.e., a penumbra composed of flux tubes with channeled mass flow and with a weaker and more horizontal magnetic field as compared with the background field. The ascending material is hotter and denser than their surroundings. We do not find evidence of overturning convection or field-free regions in the inner penumbral area analyzed. The penumbral brightness can be explained by the energy transfer of the ascending mass carried by the Evershed flow, if the physical quantities below z = -75 km are extrapolated from the results of the inversion.
Cryptography and computational number theory
Shparlinski, Igor; Wang, Huaxiong; Xing, Chaoping; Workshop on Cryptography and Computational Number Theory, CCNT'99
2001-01-01
This volume contains the refereed proceedings of the Workshop on Cryptography and Computational Number Theory, CCNT'99, which has been held in Singapore during the week of November 22-26, 1999. The workshop was organized by the Centre for Systems Security of the Na tional University of Singapore. We gratefully acknowledge the financial support from the Singapore National Science and Technology Board under the grant num ber RP960668/M. The idea for this workshop grew out of the recognition of the recent, rapid development in various areas of cryptography and computational number the ory. The event followed the concept of the research programs at such well-known research institutions as the Newton Institute (UK), Oberwolfach and Dagstuhl (Germany), and Luminy (France). Accordingly, there were only invited lectures at the workshop with plenty of time for informal discussions. It was hoped and successfully achieved that the meeting would encourage and stimulate further research in information and computer s...
Signals of lepton number violation
Panella, O; Srivastava, Y N
1999-01-01
The production of like-sign-dileptons (LSD), in the high energy lepton number violating ( Delta L=+2) reaction, pp to 2jets+l/sup +/l /sup +/, (l=e, mu , tau ), of interest for the experiments to be performed at the forthcoming Large Hadron Collider (LHC), is reported, taking up a composite model scenario in which the exchanged virtual composite neutrino is assumed to be a Majorana particle. Numerical estimates of the corresponding signal cross-section that implement kinematical cuts needed to suppress the standard model background, are presented which show that in some regions of the parameter space the total number of LSD events is well above the background. Assuming non-observation of the LSD signal it is found that LHC would exclude a composite Majorana neutrino up to 700 GeV (if one requires 10 events for discovery). The sensitivity of LHC experiments to the parameter space is then compared to that of the next generation of neutrinoless double beta decay ( beta beta /sub 0 nu /) experiment, GENIUS, and i...
Number theory III Diophantine geometry
1991-01-01
From the reviews of the first printing of this book, published as Volume 60 of the Encyclopaedia of Mathematical Sciences: "Between number theory and geometry there have been several stimulating influences, and this book records of these enterprises. This author, who has been at the centre of such research for many years, is one of the best guides a reader can hope for. The book is full of beautiful results, open questions, stimulating conjectures and suggestions where to look for future developments. This volume bears witness of the broad scope of knowledge of the author, and the influence of several people who have commented on the manuscript before publication ... Although in the series of number theory, this volume is on diophantine geometry, and the reader will notice that algebraic geometry is present in every chapter. ... The style of the book is clear. Ideas are well explained, and the author helps the reader to pass by several technicalities. Reading and rereading this book I noticed that the topics ...
Banner prints social security numbers
Directory of Open Access Journals (Sweden)
Robbins RA
2014-02-01
Full Text Available No abstract available. Article truncated at 150 words. The Monday edition of the Arizona Republic contained a story with potential interest to our readers. On the most recent address labels of Banner Health's magazine, Smart & Healthy, the addressee's Social Security or Medicare identification numbers, which are often identical to their Social Security numbers (1. The magazine was mailed to more than 50,000 recipients in Arizona late last week. The recipients are members of the Medicare Pioneer Accountable Care Organization, a government health-care plan that Banner serves. Banner generated its mailing list from information it received from the U.S. Centers for Medicare & Medicaid Services, which is an agency within the U.S. Department of Health & Human Services (HHS responsible for administration of several federal health-care programs. Although medical information has been protected by the Health Insurance Portability and Accountability Act (HIPAA since 1996, penalties were recently increased. Civil monetary penalties were increased from a maximum of $100 ...
Intersection numbers of spectral curves
Eynard, B.
2011-01-01
We compute the symplectic invariants of an arbitrary spectral curve with only 1 branchpoint in terms of integrals of characteristic classes in the moduli space of curves. Our formula associates to any spectral curve, a characteristic class, which is determined by the laplace transform of the spectral curve. This is a hint to the key role of Laplace transform in mirror symmetry. When the spectral curve is y=\\sqrt{x}, the formula gives Kontsevich--Witten intersection numbers, when the spectral curve is chosen to be the Lambert function \\exp{x}=y\\exp{-y}, the formula gives the ELSV formula for Hurwitz numbers, and when one chooses the mirror of C^3 with framing f, i.e. \\exp{-x}=\\exp{-yf}(1-\\exp{-y}), the formula gives the Marino-Vafa formula, i.e. the generating function of Gromov-Witten invariants of C^3. In some sense this formula generalizes ELSV, Marino-Vafa formula, and Mumford formula.
Topics in Number Theory Conference
Andrews, George; Ono, Ken
1999-01-01
From July 31 through August 3,1997, the Pennsylvania State University hosted the Topics in Number Theory Conference. The conference was organized by Ken Ono and myself. By writing the preface, I am afforded the opportunity to express my gratitude to Ken for beng the inspiring and driving force behind the whole conference. Without his energy, enthusiasm and skill the entire event would never have occurred. We are extremely grateful to the sponsors of the conference: The National Sci ence Foundation, The Penn State Conference Center and the Penn State Depart ment of Mathematics. The object in this conference was to provide a variety of presentations giving a current picture of recent, significant work in number theory. There were eight plenary lectures: H. Darmon (McGill University), "Non-vanishing of L-functions and their derivatives modulo p. " A. Granville (University of Georgia), "Mean values of multiplicative functions. " C. Pomerance (University of Georgia), "Recent results in primality testing. " C. ...
Directory of Open Access Journals (Sweden)
Christian Agrillo
Full Text Available BACKGROUND: Research on human infants, mammals, birds and fish has demonstrated that rudimentary numerical abilities pre-date the evolution of human language. Yet there is controversy as to whether animals represent numbers mentally or rather base their judgments on non-numerical perceptual variables that co-vary with numerosity. To date, mental representation of number has been convincingly documented only for a few mammals. METHODOLOGY/PRINCIPAL FINDINGS: Here we used a training procedure to investigate whether mosquitofish could learn to discriminate between two and three objects even when denied access to non-numerical information. In the first experiment, fish were trained to discriminate between two sets of geometric figures. These varied in shape, size, brightness and distance, but no control for non-numerical variables was made. Subjects were then re-tested while controlling for one non-numerical variable at a time. Total luminance of the stimuli and the sum of perimeter of figures appeared irrelevant, but performance dropped to chance level when stimuli were matched for the cumulative surface area or for the overall space occupied by the arrays, indicating that these latter cues had been spontaneously used by the fish during the learning process. In a second experiment, where the task consisted of discriminating 2 vs 3 elements with all non-numerical variables simultaneously controlled for, all subjects proved able to learn the discrimination, and interestingly they did not make more errors than the fish in Experiment 1 that could access non-numerical information in order to accomplish the task. CONCLUSIONS/SIGNIFICANCE: Mosquitofish can learn to discriminate small quantities, even when non-numerical indicators of quantity are unavailable, hence providing the first evidence that fish, like primates, can use numbers. As in humans and non-human primates, genuine counting appears to be a 'last resort' strategy in fish, when no other
International Nuclear Information System (INIS)
Metcalfe, N.; Shanks, T.; Fong, R.; Jones, L.R.
1991-01-01
Using the Prime Focus CCD Camera at the Isaac Newton Telescope we have determined the form of the B and R galaxy number-magnitude count relations in 12 independent fields for 21 m ccd m and 19 m ccd m 5. The average galaxy count relations lie in the middle of the wide range previously encompassed by photographic data. The field-to-field variation of the counts is small enough to define the faint (B m 5) galaxy count to ±10 per cent and this variation is consistent with that expected from galaxy clustering considerations. Our new data confirm that the B, and also the R, galaxy counts show evidence for strong galaxy luminosity evolution, and that the majority of the evolving galaxies are of moderately blue colour. (author)
Polynomials formalism of quantum numbers
International Nuclear Information System (INIS)
Kazakov, K.V.
2005-01-01
Theoretical aspects of the recently suggested perturbation formalism based on the method of quantum number polynomials are considered in the context of the general anharmonicity problem. Using a biatomic molecule by way of example, it is demonstrated how the theory can be extrapolated to the case of vibrational-rotational interactions. As a result, an exact expression for the first coefficient of the Herman-Wallis factor is derived. In addition, the basic notions of the formalism are phenomenologically generalized and expanded to the problem of spin interaction. The concept of magneto-optical anharmonicity is introduced. As a consequence, an exact analogy is drawn with the well-known electro-optical theory of molecules, and a nonlinear dependence of the magnetic dipole moment of the system on the spin and wave variables is established [ru
Navy Virginia (SSN 774) Class Attack Submarine Procurement: Background and Issues for Congress
2016-10-25
Implications for U.S. Navy Capabilities—Background and Issues for Congress, by Ronald O’Rourke. 45 Stephen J. Hadley and William J. Perry, co...Generally speaking, delays in maintenance periods will impact the overall operational availability of the submarine force,” Lt. Cmdr. Tim Hawkins
Navy Virginia (SSN-774) Class Attack Submarine Procurement: Background and Issues for Congress
2015-12-17
acquisition strategy within Congress, and between Congress and the Department of Defense (DOD), that occurred in 1995-1997 (i.e., during the markup of...increasing demand for the unique capabilities they provide, could result in the Navy meeting an even smaller percentage of combatant commander
mm (2010) 70) 3-14 tSSN: 0189-9546
African Journals Online (AJOL)
MODELLING SAFETY FACTORS OF SLOPE STABILITY FOR OPEN-. PIT MINING OF ... Computer simulation of bench face angles was carried out using SLOPE/W. SoftWare to determine the ... Kazeem, 2004). -. -_A lot of work has been.
75 FR 17908 - Privacy Act of 1974; System of Records
2010-04-08
... replace with ``Name, Social Security Number (SSN), rank, service, date assigned and the Office of the... and replace with ``10 U.S.C. 1125, Recognition for Accomplishments: Awards & Trophies; Recognition for..., Social Security Number (SSN) and be signed.'' Record access procedures: Delete entry and replace with...
75 FR 21258 - Privacy Act of 1974; System of Records
2010-04-23
... folders and electronic storage media. Retrievability: By surname or Social Security Number (SSN....'' Categories of records in the system: Delete entry and replace with ``Name, Social Security Number (SSN... Academy, his/her scholastic and athletic achievements, performance, motivation, discipline, final standing...
75 FR 42719 - Privacy Act of 1974; System of Records
2010-07-22
... characteristics (such as name, last four digits of Social Security Number (SSN), grade, Unit Identification Code...) organization. CATEGORIES OF RECORDS IN THE SYSTEM: Name, last four digits of Social Security Number (SSN), duty... RECORDS IN THE SYSTEM: STORAGE: Records are stored on electronic storage media. RETRIEVABILITY: Records...
75 FR 3899 - Privacy Act of 1974; System of Records
2010-01-25
... media. Retrievability: Records are retrieved in the system by name, Social Security Number (SSN), NGA.... DATES: The system will be effective on February 24, 2010, unless comments are received that would result..., or badge to an NGA facility. Categories of records in the system: Names, Social Security Number (SSN...
The european emergency number 112 - the questionnaire
Directory of Open Access Journals (Sweden)
Krzysztof Goniewicz
2017-07-01
Conclusions. Most of the respondents (92% identify the 112 number as an emergency number that allows them to connect to emergency services from anywhere in the European Union. A significant number of respondents (47% identify the 112 number as an emergency number in Poland. One in three respondents will use the 999 number to contact the emergency services as a witness to an emergency in Poland. Non-medical university students more often (63% will use the 112 emergency number than medical college students (41%. Respondents (98% confirmed the usefulness of a unified emergency number throughout Europe, but decided that they were not sufficiently informed about 112 as the European emergency number.
Essays on the theory of numbers
Dedekind, Richard
1963-01-01
Two classic essays by great German mathematician: one provides an arithmetic, rigorous foundation for the irrational numbers, the other is an attempt to give the logical basis for transfinite numbers and properties of the natural numbers.
How to be Brilliant at Numbers
Webber, Beryl
2010-01-01
How to be Brilliant at Numbers will help students to develop an understanding of numbers, place value, fractions and decimals. They will develop the language of number, and of the relationships between numbers. They will also use mathematics to solve problems and will develop mathematical reasoning. Using the worksheets in this book, pupils will learn about: ancient Greek numbers; coins; digits; consecutive numbers; magic ladders; fractions; matching pairs; multiples of 10; rounding; decimal un
Visser, H.; Molenaar, J.
1995-05-01
The detection of trends in climatological data has become central to the discussion on climate change due to the enhanced greenhouse effect. To prove detection, a method is needed (i) to make inferences on significant rises or declines in trends, (ii) to take into account natural variability in climate series, and (iii) to compare output from GCMs with the trends in observed climate data. To meet these requirements, flexible mathematical tools are needed. A structural time series model is proposed with which a stochastic trend, a deterministic trend, and regression coefficients can be estimated simultaneously. The stochastic trend component is described using the class of ARIMA models. The regression component is assumed to be linear. However, the regression coefficients corresponding with the explanatory variables may be time dependent to validate this assumption. The mathematical technique used to estimate this trend-regression model is the Kaiman filter. The main features of the filter are discussed.Examples of trend estimation are given using annual mean temperatures at a single station in the Netherlands (1706-1990) and annual mean temperatures at Northern Hemisphere land stations (1851-1990). The inclusion of explanatory variables is shown by regressing the latter temperature series on four variables: Southern Oscillation index (SOI), volcanic dust index (VDI), sunspot numbers (SSN), and a simulated temperature signal, induced by increasing greenhouse gases (GHG). In all analyses, the influence of SSN on global temperatures is found to be negligible. The correlations between temperatures and SOI and VDI appear to be negative. For SOI, this correlation is significant, but for VDI it is not, probably because of a lack of volcanic eruptions during the sample period. The relation between temperatures and GHG is positive, which is in agreement with the hypothesis of a warming climate because of increasing levels of greenhouse gases. The prediction performance of
2010-10-01
... OPERATIONS § 303.70 Requests by the State Parent Locator Service (SPLS) for information from the Federal... information: (1) The parent's name; (2) The parent's social security number (SSN). If the SSN is unknown, the... child, or for making or enforcing a child custody or visitation determination as defined in section 463...
Some relations between entropy and approximation numbers
Institute of Scientific and Technical Information of China (English)
郑志明
1999-01-01
A general result is obtained which relates the entropy numbers of compact maps on Hilbert space to its approximation numbers. Compared with previous works in this area, it is particularly convenient for dealing with the cases where the approximation numbers decay rapidly. A nice estimation between entropy and approximation numbers for noncompact maps is given.
Visuospatial Priming of the Mental Number Line
Stoianov, Ivilin; Kramer, Peter; Umilta, Carlo; Zorzi, Marco
2008-01-01
It has been argued that numbers are spatially organized along a "mental number line" that facilitates left-hand responses to small numbers, and right-hand responses to large numbers. We hypothesized that whenever the representations of visual and numerical space are concurrently activated, interactions can occur between them, before response…
Fast integration using quasi-random numbers
International Nuclear Information System (INIS)
Bossert, J.; Feindt, M.; Kerzel, U.
2006-01-01
Quasi-random numbers are specially constructed series of numbers optimised to evenly sample a given s-dimensional volume. Using quasi-random numbers in numerical integration converges faster with a higher accuracy compared to the case of pseudo-random numbers. The basic properties of quasi-random numbers are introduced, various generators are discussed and the achieved gain is illustrated by examples
Fast integration using quasi-random numbers
Bossert, J.; Feindt, M.; Kerzel, U.
2006-04-01
Quasi-random numbers are specially constructed series of numbers optimised to evenly sample a given s-dimensional volume. Using quasi-random numbers in numerical integration converges faster with a higher accuracy compared to the case of pseudo-random numbers. The basic properties of quasi-random numbers are introduced, various generators are discussed and the achieved gain is illustrated by examples.
On domination multisubdivision number of unicyclic graphs
Directory of Open Access Journals (Sweden)
Joanna Raczek
2018-01-01
Full Text Available The paper continues the interesting study of the domination subdivision number and the domination multisubdivision number. On the basis of the constructive characterization of the trees with the domination subdivision number equal to 3 given in [H. Aram, S.M. Sheikholeslami, O. Favaron, Domination subdivision number of trees, Discrete Math. 309 (2009, 622-628], we constructively characterize all connected unicyclic graphs with the domination multisubdivision number equal to 3. We end with further questions and open problems.